WorldWideScience

Sample records for supersaturation

  1. Supersaturating drug delivery systems

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Löbmann, Korbinian; Grohganz, Holger

    2017-01-01

    of the bioavailability of poorly water-soluble drugs by increasing the driving force for drug absorption. However, ASDs often require a high weight percentage of carrier (usually a hydrophilic polymer) to ensure molecular mixing of the drug in the carrier and stabilization of the supersaturated state, often leading......Amorphous solid dispersions (ASDs) are probably the most common and important supersaturating drug delivery systems for the formulation of poorly water-soluble compounds. These delivery systems are able to achieve and maintain a sustained drug supersaturation which enables improvement...... strategy for poorly-soluble drugs. While the current research on co-amorphous formulations is focused on preparation and characterization of these systems, more detailed research on their supersaturation and precipitation behavior and the effect of co-formers on nucleation and crystal growth inhibition...

  2. Studying the propensity of compounds to supersaturate

    DEFF Research Database (Denmark)

    Palmelund, Henrik; Madsen, Cecilie Maria; Christensen, Jakob Plum

    2016-01-01

    Supersaturating drug delivery systems can enhance the oral bioavailability of poorly soluble drug compounds. Supersaturation of such compounds has been studied in many different ways; however, a more standardized method is required. The rationale of choosing suitable concentrations of supersatura......Supersaturating drug delivery systems can enhance the oral bioavailability of poorly soluble drug compounds. Supersaturation of such compounds has been studied in many different ways; however, a more standardized method is required. The rationale of choosing suitable concentrations...... of supersaturation to study has previously been very inconsistent. This makes comparisons between studies and compounds difficult, as the propensity of compounds to supersaturate varies greatly. This study presents a standardized method to study the supersaturation of drug compounds. The method allows, both......, for a ranking of compounds according to their supersaturation propensity and the effectiveness of precipitation inhibitors. The time-concentration profile of supersaturation and precipitation was studied in situ for 4 different concentrations for 6 model compounds (albendazole, aprepitant, danazol, felodipine...

  3. Experimental study on total dissolved gas supersaturation in water

    Directory of Open Access Journals (Sweden)

    Lu Qu

    2011-12-01

    Full Text Available More and more high dams have been constructed and operated in China. The total dissolved gas (TDG supersaturation caused by dam discharge leads to gas bubble disease or even death of fish. Through a series of experiments, the conditions and requirements of supersaturated TDG generation were examined in this study. The results show that pressure (water depth, aeration, and bubble dissolution time are required for supersaturated TDG generation, and the air-water contact area and turbulence intensity are the main factors that affect the generation rate of supersaturated TDG. The TDG supersaturation levels can be reduced by discharging water to shallow shoals downstream of the dam or using negative pressure pipelines. Furthermore, the TDG supersaturation levels in stilling basins have no direct relationship with those in reservoirs. These results are of great importance for further research on the prediction of supersaturated TDG generation caused by dam discharge and aquatic protection.

  4. Supersaturated calcium carbonate solutions are classical

    Energy Technology Data Exchange (ETDEWEB)

    Henzler, Katja; Fetisov, Evgenii O.; Galib, Mirza; Baer, Marcel D.; Legg, Benjamin A.; Borca, Camelia; Xto, Jacinta M.; Pin, Sonia; Fulton, John L.; Schenter, Gregory K.; Govind, Niranjan; Siepmann, J. Ilja; Mundy, Christopher J.; Huthwelker, Thomas; De Yoreo, James J.

    2018-01-01

    We will present a description of nucleation phenomena in the condensed phase that takes into account non-ideal solution effects associated with cluster-cluster interaction. To do this we employ aggregation-volume bias Monte Carlo simulation, making the estimation of free-energy of large pre-critical clusters of sizes 10-20 tractable. We will compare and contrast empirical potential and electronic structure (e.g. Density functional theory) based descriptions of molecular interaction associated with the nucleation of CaCO3, highlighting free-energy trends and qualitative differences in populations of pre-critical clusters as a function of supersaturation. The influence of how the precise local interaction influences the non-ideal solution behavior on the nucleation and growth processes will be highlighted. This research was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

  5. Carbon diffusion in carbon-supersaturated ferrite and austenite

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; Král, Lubomír

    2014-01-01

    Roč. 586, FEB (2014), s. 129-135 ISSN 0925-8388 R&D Projects: GA ČR(CZ) GAP108/11/0148; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : carbon diffusion * Carbon supersaturation * Carbon supersaturation * Ferrite * Austenite Subject RIV: BJ - Thermodynamics Impact factor: 2.999, year: 2014

  6. The use of supersaturation for the vaginal application of microbicides

    DEFF Research Database (Denmark)

    Grammen, Carolien; Plum, Jakob; Van Den Brande, Jeroen

    2014-01-01

    In this study, we investigated the potential of supersaturation for the formulation of the poorly water-soluble microbicide dapivirine (DPV) in an aqueous vaginal gel in order to enhance its vaginal tissue uptake. Different excipients such as hydroxypropylmethylcellulose, polyethylene glycol 1000....... The best performing supersaturated gel containing 500 μM DPV (supersaturation degree of 4) in the presence of sulfobutyl ether-beta-cyclodextrin (2.5%) appeared to be stable for at least 3 months. In addition, the gel generated a significant increase in vaginal drug uptake in rabbits as compared...... with suspension gels. We conclude that supersaturation is a possible strategy to enhance the vaginal concentration of hydrophobic microbicides, thereby increasing permeation into the vaginal submucosa....

  7. Zn-Ni sulfide selective precipitation: The role of supersaturation

    NARCIS (Netherlands)

    Sampaio, R.M.M.; Timmers, R.A.; Kocks, N.; Andre, V.; Duarte, M.T.; Hullebusch, van E.D.; Farges, F.; Lens, P.N.L.

    2010-01-01

    The selective removal of Zn with Na2S from a mixture of Zn and Ni was studied in a continuously stirred tank reactor. At pH 5 and pS 18 the selectivity was improved from 61% to 99% by reducing the supersaturation at the dosing points by means of the reduction of the influent concentrations. The

  8. THE SEARCH FOR SUPER-SATURATION IN CHROMOSPHERIC EMISSION

    International Nuclear Information System (INIS)

    Christian, Damian J.; Arias, Tersi; Mathioudakis, Mihalis; Jess, David B.; Jardine, Moira

    2011-01-01

    We investigate if the super-saturation phenomenon observed at X-ray wavelengths for the corona exists in the chromosphere for rapidly rotating late-type stars. Moderate resolution optical spectra of fast-rotating EUV- and X-ray-selected late-type stars were obtained. Stars in α Per were observed in the northern hemisphere with the Isaac Newton 2.5 m telescope and Intermediate Dispersion Spectrograph. Selected objects from IC 2391 and IC 2602 were observed in the southern hemisphere with the Blanco 4 m telescope and R-C spectrograph at CTIO. Ca II H and K fluxes were measured for all stars in our sample. We find the saturation level for Ca II K at log (L CaK /L bol ) = -4.08. The Ca II K flux does not show a decrease as a function of increased rotational velocity or smaller Rossby number as observed in the X-ray. This lack of 'super-saturation' supports the idea of coronal stripping as the cause of saturation and super-saturation in stellar chromospheres and coronae, but the detailed underlying mechanism is still under investigation.

  9. Vanadium supersaturated silicon system: a theoretical and experimental approach

    Science.gov (United States)

    Garcia-Hemme, Eric; García, Gregorio; Palacios, Pablo; Montero, Daniel; García-Hernansanz, Rodrigo; Gonzalez-Diaz, Germán; Wahnon, Perla

    2017-12-01

    The effect of high dose vanadium ion implantation and pulsed laser annealing on the crystal structure and sub-bandgap optical absorption features of V-supersaturated silicon samples has been studied through the combination of experimental and theoretical approaches. Interest in V-supersaturated Si focusses on its potential as a material having a new band within the Si bandgap. Rutherford backscattering spectrometry measurements and formation energies computed through quantum calculations provide evidence that V atoms are mainly located at interstitial positions. The response of sub-bandgap spectral photoconductance is extended far into the infrared region of the spectrum. Theoretical simulations (based on density functional theory and many-body perturbation in GW approximation) bring to light that, in addition to V atoms at interstitial positions, Si defects should also be taken into account in explaining the experimental profile of the spectral photoconductance. The combination of experimental and theoretical methods provides evidence that the improved spectral photoconductance up to 6.2 µm (0.2 eV) is due to new sub-bandgap transitions, for which the new band due to V atoms within the Si bandgap plays an essential role. This enables the use of V-supersaturated silicon in the third generation of photovoltaic devices.

  10. Phase stability in wear-induced supersaturated Al-Ti solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Y.; Yokoyama, K. [Dept. of Functional Machinery Mechanics Shinshu Univ., Ueda (Japan); Hosoda, H. [Precision and Intelligence Lab., Tokyo Inst. of Tech., Nagatsuta, Midori-ku, Yokohama (Japan)

    2002-07-01

    Al-Ti supersaturated solid solutions were introduced by wear testing and the rapid quenching of an Al/Al{sub 3}Ti composite (part of an Al/Al{sub 3}Ti functionally graded material) that was fabricated using the centrifugal method. The phase stability of the supersaturated solid solution was studied through systematic annealing of the supersaturated solid solution. It was found that the Al-Ti supersaturated solid solution decomposed into Al and Al{sub 3}Ti intermetallic compound phases during the heat treatment. The Al-Ti supersaturated solid solutions fabricated were, therefore, not an equilibrium phase, and thus decomposed into the equilibrium phases during heat treatment. It was also found that heat treatment leads to a significant hardness increase for the Al-Ti supersaturated solid solution. Finally, it was concluded that formation of the wear-induced supersaturated solid solution layer was a result of severe plastic deformation. (orig.)

  11. Cumulative effects of cascade hydropower stations on total dissolved gas supersaturation.

    Science.gov (United States)

    Ma, Qian; Li, Ran; Feng, Jingjie; Lu, Jingying; Zhou, Qin

    2018-03-01

    Elevated levels of total dissolved gas (TDG) may occur downstream of dams during the spill process. These high levels would increase the incidence of gas bubble disease in fish and cause severe environmental impacts. With increasing numbers of cascade hydropower stations being built or planned, the cumulative effects of TDG supersaturation are becoming increasingly prominent. The TDG saturation distribution in the downstream reaches of the Jinsha River was studied to investigate the cumulative effects of TDG supersaturation resulting from the cascade hydropower stations. A comparison of the effects of the joint operation and the single operation of two hydropower stations (XLD and XJB) was performed to analyze the risk degree to fish posed by TDG supersaturation. The results showed that water with supersaturated TDG generated at the upstream cascade can be transported to the downstream power station, leading to cumulative TDG supersaturation effects. Compared with the single operation of XJB, the joint operation of both stations produced a much higher TDG saturation downstream of XJB, especially during the non-flood discharge period. Moreover, the duration of high TDG saturation and the lengths of the lethal and sub-lethal areas were much higher in the joint operation scenario, posing a greater threat to fish and severely damaging the environment. This work provides a scientific basis for strategies to reduce TDG supersaturation to the permissible level and minimize the potential risk of supersaturated TDG.

  12. Effect of voids-controlled vacancy supersaturations on B diffusion

    International Nuclear Information System (INIS)

    Marcelot, O.; Claverie, A.; Cristiano, F.; Cayrel, F.; Alquier, D.; Lerch, W.; Paul, S.; Rubin, L.; Jaouen, H.; Armand, C.

    2007-01-01

    We present here preliminary results on boron diffusion in presence of pre-formed voids of different characteristics. The voids were fabricated by helium implantation followed by annealing allowing the desorption of He prior to boron implantation. We show that under such conditions boron diffusion is always largely reduced and can even be suppressed in some cases. Boron diffusion suppression can be observed in samples not containing nanovoids in the boron-rich region. It is suggested that direct trapping of Si(int)s by the voids is not the mechanism responsible for the reduction of boron diffusion in such layers. Alternatively, our experimental results suggest that this reduction of diffusivity is more probably due to the competition between two Ostwald ripening phenomena taking place at the same time: in the boron-rich region, the competitive growth of extrinsic defects at the origin of TED and, in the void region, the Ostwald ripening of the voids which involves large supersaturations of Vs

  13. Effect of voids-controlled vacancy supersaturations on B diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Marcelot, O. [CEMES/CNRS, 29 rue Jeanne Marvig, 31055 Toulouse (France)]. E-mail: marcelot@cemes.fr; Claverie, A. [CEMES/CNRS, 29 rue Jeanne Marvig, 31055 Toulouse (France); Cristiano, F. [LAAS/CNRS, 7 av. du Col. Roche, 31077 Toulouse (France); Cayrel, F. [LMP, Universite de Tours, 16 rue Pierre et Marie Curie, BP 7155, 37071 Tours (France); Alquier, D. [LMP, Universite de Tours, 16 rue Pierre et Marie Curie, BP 7155, 37071 Tours (France); Lerch, W. [Mattson Thermal Products GmbH, Daimlerstr. 10, D-89160 Dornstadt (Germany); Paul, S. [Mattson Thermal Products GmbH, Daimlerstr. 10, D-89160 Dornstadt (Germany); Rubin, L. [Axcelis Technologies, 108 Cherry Hill Drive, Beverly MA 01915 (United States); Jaouen, H. [STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles (France); Armand, C. [LNMO/INSA, Service analyseur ionique, 135 av. de Rangueil, 31077 Toulouse (France)

    2007-04-15

    We present here preliminary results on boron diffusion in presence of pre-formed voids of different characteristics. The voids were fabricated by helium implantation followed by annealing allowing the desorption of He prior to boron implantation. We show that under such conditions boron diffusion is always largely reduced and can even be suppressed in some cases. Boron diffusion suppression can be observed in samples not containing nanovoids in the boron-rich region. It is suggested that direct trapping of Si(int)s by the voids is not the mechanism responsible for the reduction of boron diffusion in such layers. Alternatively, our experimental results suggest that this reduction of diffusivity is more probably due to the competition between two Ostwald ripening phenomena taking place at the same time: in the boron-rich region, the competitive growth of extrinsic defects at the origin of TED and, in the void region, the Ostwald ripening of the voids which involves large supersaturations of Vs.

  14. In-line bulk supersaturation measurement by electrical conductometry in KDP crystal growth from aqueous solution

    Science.gov (United States)

    Bordui, P. F.; Loiacono, G. M.

    1984-07-01

    A method is presented for in-line bulk supersaturation measurement in crystal growth from aqueous solution. The method is based on a computer-controlled concentration measurement exploiting an experimentally predetermined cross-correlation between the concentration, electrical conductivity, and temperature of the growth solution. The method was applied to Holden crystallization of potassium dihydrogen phosphate (KDP). An extensive conductivity-temperature-concentration data base was generated for this system over a temperature range of 31 to 41°C. The method yielded continous, automated bulk supersaturation output accurate to within ±0.05 g KDP100 g water (±0.15% relative supersaturation).

  15. Supersaturation of zafirlukast in fasted and fed state intestinal media with and without precipitation inhibitors

    DEFF Research Database (Denmark)

    Madsen, Cecilie Maria; Boyd, Ben; Rades, Thomas

    2016-01-01

    by 40%. The aim of this study was to investigate the effect of simulated fasted and fed state intestinal media as well as the effect of HPMC and PVP on the supersaturation and precipitation of ZA in vitro. Supersaturation of aZA was studied in vitro in a small scale setup using the μDiss Profiler......™. Several media were used for this study: One medium simulating the fasted state intestinal fluids and three media simulating different fed state intestinal fluids. Solid state changes of the drug were investigated by small angle x-ray scattering. The duration wherein aZA was maintained at a supersaturated...... simulated intestinal media, but the concentration during supersaturation was higher. It was thus not possible to predict any positive or negative food effects from the dissolution/precipitation curves from different media. Lipolysis products in the fed state simulated media seemed to cause both a negative...

  16. Aqueous aerosol may build up large upper tropospheric ice supersaturation

    Science.gov (United States)

    Bogdan, Anatoli; Molina, Mario J.

    2010-05-01

    Keywords: ice supersaturation, upper tropospheric cirrus clouds, freezing of aqueous aerosol. Observations often reveal enhanced and persistent upper tropospheric (UT) ice supersaturation, Si up to 100%, independently of whether cirrus ice clouds are present or not (Krämer et al., 2009; Lawson et al., 2008). However, a water activity criterion (WAC) (Koop et al., 2000) does not allow the formation of Si > ~67% by the homogeneous freezing of aqueous droplets even at the lowest atmospheric temperature of ~185 K. For aqueous aerosol the WAC predicts the existence of a so called homogeneous ice nucleation threshold which, being expressed as Si, is between ~52 and 67% in the temperature range of ~220 - 185 K. The nature of the formation of large Si remains unclear. Since water vapor is the dominant greenhouse gas it is important to know the nature of the accumulation and persistence of water vapor in the UT. We studied the freezing behavior of micrometer-scaled 3-, 4-, and 5-component droplets, which contain different weight fractions of H2O, H2SO4, HNO3, (NH4)2SO4, (NH4)HSO4, NH4NO3, and (NH4)3H(SO4)2. The study was performed between 133 and 278 K at cooling rates of 3, 0.1, and 0.05 K/min using differential scanning calorimetry (DSC) (Bogdan and Molina, 2010). The cooling rates of 0.1 and 0.05 K/min (6 and 3 K/h) are similar to the smallest reported synoptic temperature change of ~2 K/h (Carslaw et al., 1998). Using the measured freezing temperature of ice, Ti, and the thermodynamic E-AIM model of the system of H+ - NH4+ - SO42-- NO3-- H2O (Clegg et al., 1998), we calculated the corresponding clear-sky Si which would be built up immediately prior to the formation of ice cirrus clouds by the homogeneous freezing of aqueous aerosol of similar composition. We found that our calculated values of Si are both larger and smaller than the homogeneous ice nucleation threshold. For example, for the droplets of compositions of 15/10 and 20/10 wt % (NH4)3H(SO4)2/H2SO4, which

  17. Direct NMR Monitoring of Phase Separation Behavior of Highly Supersaturated Nifedipine Solution Stabilized with Hypromellose Derivatives.

    Science.gov (United States)

    Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu

    2017-07-03

    We investigated the phase separation behavior and maintenance mechanism of the supersaturated state of poorly water-soluble nifedipine (NIF) in hypromellose (HPMC) derivative solutions. Highly supersaturated NIF formed NIF-rich nanodroplets through phase separation from aqueous solution containing HPMC derivative. Dissolvable NIF concentration in the bulk water phase was limited by the phase separation of NIF from the aqueous solution. HPMC derivatives stabilized the NIF-rich nanodroplets and maintained the NIF supersaturation with phase-separated NIF for several hours. The size of the NIF-rich phase was different depending on the HPMC derivatives dissolved in aqueous solution, although the droplet size had no correlation with the time for which NIF supersaturation was maintained without NIF crystallization. HPMC acetate and HPMC acetate succinate (HPMC-AS) effectively maintained the NIF supersaturation containing phase-separated NIF compared with HPMC. Furthermore, HPMC-AS stabilized NIF supersaturation more effectively in acidic conditions. Solution 1 H NMR measurements of NIF-supersaturated solution revealed that HPMC derivatives distributed into the NIF-rich phase during the phase separation of NIF from the aqueous solution. The hydrophobicity of HPMC derivative strongly affected its distribution into the NIF-rich phase. Moreover, the distribution of HPMC-AS into the NIF-rich phase was promoted at lower pH due to the lower aqueous solubility of HPMC-AS. The distribution of a large amount of HPMC derivatives into NIF-rich phase induced the strong inhibition of NIF crystallization from the NIF-rich phase. Polymer distribution into the drug-rich phase directly monitored by solution NMR technique can be a useful index for the stabilization efficiency of drug-supersaturated solution containing a drug-rich phase.

  18. The use of supersaturation for the vaginal application of microbicides: a case study with dapivirine.

    Science.gov (United States)

    Grammen, Carolien; Plum, Jakob; Van Den Brande, Jeroen; Darville, Nicolas; Augustyns, Koen; Augustijns, Patrick; Brouwers, Joachim

    2014-11-01

    In this study, we investigated the potential of supersaturation for the formulation of the poorly water-soluble microbicide dapivirine (DPV) in an aqueous vaginal gel in order to enhance its vaginal tissue uptake. Different excipients such as hydroxypropylmethylcellulose, polyethylene glycol 1000, and cyclodextrins were evaluated for their ability to inhibit precipitation of supersaturated DPV in the formulation vehicle as such as well as in biorelevant media. In vitro permeation assessment across HEC-1A cell layers demonstrated an enhanced DPV flux from supersaturated gels compared with suspension gels. The best performing supersaturated gel containing 500 μM DPV (supersaturation degree of 4) in the presence of sulfobutyl ether-beta-cyclodextrin (2.5%) appeared to be stable for at least 3 months. In addition, the gel generated a significant increase in vaginal drug uptake in rabbits as compared with suspension gels. We conclude that supersaturation is a possible strategy to enhance the vaginal concentration of hydrophobic microbicides, thereby increasing permeation into the vaginal submucosa. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. Review of Current Literature and Research on Gas Supersaturation and Gas Bubble Trauma: Special Publication Number 1, 1986.

    Energy Technology Data Exchange (ETDEWEB)

    Colt, John; Bouck, Gerald R.; Fidler, Larry

    1986-12-01

    This report presents recently published information and on-going research on the various areas of gas supersaturation. Growing interest in the effects of chronic gas supersaturation on aquatic animals has been due primarily to heavy mortality of salmonid species under hatchery conditions. Extensive examination of affected animals has failed to consistently identify pathogenic organisms. Water quality sampling has shown that chronic levels of gas supersaturation are commonly present during a significant period of the year. Small marine fish larvae are significantly more sensitive to gas supersaturation than salmonids. Present water quality criteria for gas supersaturation are not adequate for the protection of either salmonids under chronic exposure or marine fish larvae, especially in aquaria or hatcheries. To increase communication between interested parties in the field of gas supersaturation research and control, addresses and telephone numbers of all people responding to the questionnaire are included. 102 refs.

  20. Enhanced diffusion of dopants in vacancy supersaturation produced by MeV implantation

    International Nuclear Information System (INIS)

    Venezia, V.C.; Univ. of North Texas, Denton, TX; Haynes, T.E.; Agarwal, A.; Lucent Technologies, Murray Hill, NJ; Gossmann, H.J.; Eaglesham, D.J.

    1997-04-01

    The diffusion of Sb and B markers has been studied in vacancy supersaturations produced by MeV Si implantation in float zone (FZ) silicon and bonded etch-back silicon-on-insulator (BESOI) substrates. MeV Si implantation produces a vacancy supersaturated near-surface region and an interstitial-rich region at the projected ion range. Transient enhanced diffusion (TED) of Sb in the near surface layer was observed as a result of a 2 MeV Si + , 1 x 10 16 /cm 2 , implant. A 4x larger TED of Sb was observed in BESOI than in FZ silicon, demonstrating that the vacancy supersaturation persists longer in BESOI than in FZ. B markers in samples with MeV Si implant showed a factor of 10x smaller diffusion relative to markers without the MeV Si + implant. This data demonstrates that a 2 MeV Si + implant injects vacancies into the near surface region

  1. Cooling Crystallization of Indomethacin: Effect of Supersaturation, Temperature and Seeding on Polymorphism and Crystal Size Distribution

    DEFF Research Database (Denmark)

    Malwade, Chandrakant Ramkrishna; Qu, Haiyan

    2018-01-01

    In this work, effect of crystallization parameters i.e., supersaturation, seeding, and temperature on polymorphism and crystal size of a non-steroidal anti-inflammatory drug, indomethacin (IMC), was investigated. Firstly, several crystallization solvents (ethanol, methanol, ethyl acetate, acetone...... of IMC from ethanol confirmed that the supersaturation, operating temperature and seeding does affect the polymorphism as well as crystal size distribution of IMC. Fine needle shaped crystals of metastable α-IMC were obtained at 5 °C with high supersaturation even in presence of γ-IMC seeds, while...... rhombic plates like crystals of thermodynamically stable γ-IMC were obtained in remaining experiments. The amount of seed loading only marginally influenced the crystal growth rate and median particle diameter (d50). Particle size analysis of crystals obtained showed bimodal distribution in all...

  2. Impact of curcumin supersaturation in antibacterial photodynamic therapy-effect of cyclodextrin type and amount

    DEFF Research Database (Denmark)

    Hegge, A.B.; Nielsen, T.T.; Larsen, Kim Lambertsen

    2012-01-01

    Curcumin has been investigated as a potential photosensitizer (PS) in antimicrobial photodynamic therapy (aPDT). The phototoxic effect of curcumin is dependent on proper formulations of the compound because of the lipophilic nature of the molecule and the extremely low water solubility...... at physiological conditions. In the present study, the combination of curcumin with either a methylated β-cyclodextrin (CD) or polyethylene glycol-based β-CD or γ-CD polymers was investigated in aPDT using Escherichia coli (E. coli) and Enterococcus faecalis as model bacteria. Solutions with various...... supersaturation ratios of curcumin were prepared with the selected CD or CD polymers. The concept of supersaturation was then investigated as a mean to enhance the phototoxic effect of curcumin, especially toward the gram-negative bacteria E. coli. A high supersaturation ratio corresponded with high phototoxicity...

  3. Structure and Supersaturation of Highly Concentrated Solutions of Buckyball in 1-Butyl-3-Methylimidazolium Tetrafluoroborate

    DEFF Research Database (Denmark)

    Fileti, E. E.; Chaban, V. V.

    2014-01-01

    Solubilization of fullerenes is of high interest because of their wide usage in both fundamental research and numerous applications. This paper reports molecular dynamics (MD) simulations of saturated and supersaturated solutions of C-60 in 1-butyl-3-methylimidazolium tetrafluoroborate, [C4C1IM......-long real-time dynamics. The ion-molecular structure patterns in saturated and supersaturated solutions are distinguished in terms of radial distribution functions and cluster analysis of the solute particles. The cation separated solute pair is found to be a common structure in both saturated......][BF4], room-temperature ionic liquid (RTIL). The simulations cover a wide range of temperatures between 280 and 500 K at ambient pressure. Unlike in simpler solvents, C-60 in [C4C1IM][BF4] forms highly supersaturated solutions, whose internal arrangement remains unaltered during nearly a microsecond...

  4. Investigation of the Intra- and Interlaboratory Reproducibility of a Small Scale Standardized Supersaturation and Precipitation Method

    DEFF Research Database (Denmark)

    Plum, Jakob; Madsen, Cecilie M; Teleki, Alexandra

    2017-01-01

    order for the three model compounds using the SSPM (aprepitant > felodipine ≈ fenofibrate). The α-value is dependent on the experimental setup and can be used as a parameter to evaluate the uniformity of the data set. This study indicated that the SSPM was able to obtain the same rank order of the β...... compound available for absorption. However, due to the stochastic nature of nucleation, supersaturating drug delivery systems may lead to inter- and intrapersonal variability. The ability to define a feasible range with respect to the supersaturation level is a crucial factor for a successful formulation...... reproducibility study of felodipine was conducted, after which seven partners contributed with data for three model compounds; aprepitant, felodipine, and fenofibrate, to determine the interlaboratory reproducibility of the SSPM. The first part of the SSPM determines the apparent degrees of supersaturation (a...

  5. Effect of supersaturation on L-glutamic acid polymorphs under droplet-based microchannels

    Science.gov (United States)

    Jiang, Nan; Wang, Zhanzhong; Dang, Leping; Wei, Hongyuan

    2016-07-01

    Supersaturation is an important controlling factor for crystallization process and polymorphism. Droplet-based microchannels and conventional crystallization were used to investigate polymorphs of L-gluatamic acid in this work. The results illustrate that it is easy to realize the accurate and rapid control of the crystallization temperature in the droplets, which is especially beneficial to heat and mass transfer during crystallization. It is also noted that higher degree of supersaturation favors the nucleation of α crystal form, while lower degree of supersaturation favors the nucleation of β crystal form under droplet-based microchannels for L-gluatamic acid. In addition, there is a different nucleation behavior to be found under droplet-based microchannels both for the β form and α form of L-glutamic acid. This new finding can provide important insight into the development and design of investigation meanings for drug polymorph.

  6. Laboratory Studies of the Effects of Pressure and Dissolved Gas Supersaturation on Turbine-Passed Fish

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.

    2009-09-14

    Migratory and resident fish in the Columbia River Basin are exposed to stresses associated with hydroelectric power production, including changes in pressure as they pass through turbines and dissolved gas supersaturation (resulting from the release of water from the spillway). To examine pressure changes as a source of turbine-passage injury and mortality, Pacific Northwest National Laboratory scientists conducted specific tests using a hyperbaric chamber. Tests were designed to simulate Kaplan turbine passage conditions and to quantify the response of fish to rapid pressure changes, with and without the complication of fish being acclimated to gas-supersaturated water.

  7. Nucleation and droplet growth from supersaturated vapor at temperatures below the triple point temperature

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2016-01-01

    temperature Ttr.p. crystallizes via a liquid droplet is an example of Ostwald's step rule. The homogeneous nucleation in the supersaturated gas is not to a crystal, but to a liquid-like critical nucleus. We have for the first time performed constant energy (NVE) Molecular Dynamics (MD) of homogeneous...... nucleation without the use of a thermostat. The simulations of homogeneous nucleation in a Lennard-Jones system from supersaturated vapor at temperatures below Ttr.p. reveals that the nucleation to a liquid-like critical nucleus is initiated by a small cold cluster [S. Toxvaerd, J. Chem. Phys. \\textbf{143...

  8. Decomposition features of a supersaturated solid solution in the Mg-3.3 wt. % Yb alloy

    International Nuclear Information System (INIS)

    Dobromyslov, A.V.; Kajgorodova, L.I.; Sukhanov, V.D.; Dobatkina, T.V.

    2007-01-01

    Methods of electron microscopy, hardness measuring and X-ray diffraction analysis are applied to study decomposition kinetics for a supersaturated solid solution in a Mg-3.3 mas. % alloy on aging within a temperature range of 150-225 deg C. The mechanism of supersaturation solid solution decomposition is revealed along with the nature of phases precipitated at various stages of aging: on incomplete and extended aging as well as at maximum hardness. The types of structural constituents responsible for changes of hardness on aging are determined [ru

  9. Do lagoons near concentrated animal feeding operations promote nitrous oxide supersaturation?

    International Nuclear Information System (INIS)

    Makris, Konstantinos C.; Sarkar, Dibyendu; Andra, Syam S.; Bach, Stephan B.H.; Datta, Rupali

    2009-01-01

    Animal wastewater lagoons nearby concentrated animal feeding operations (CAFOs) represent the latest tendency in global animal farming, severely impacting the magnitude of greenhouse gas emissions, including nitrous oxide (N 2 O). We hypothesized that lagoon wastewater could be supersaturated with N 2 O as part of incomplete microbial nitrification/denitrification processes, thereby regulating the N 2 O partitioning in the gaseous phase. The objectives of this study were: (i) to investigate the magnitude of dissolved N 2 O concentrations in the lagoon; and (ii) to determine the extent to which supersaturation of N 2 O occurs in wastewater lagoons. Dissolved N 2 O concentrations in the wastewater samples were high, ranging from 0.4 to 40.5 μg N 2 O mL -1 . Calculated dissolved N 2 O concentrations from the experimentally measured partition coefficients were much greater than those typically expected in aquatic systems ( 2 O mL -1 ). Knowledge of the factors controlling the magnitude of N 2 O supersaturation could potentially bridge mass balance differences between in situ measurements and global N 2 O models. - Supersaturation of nitrous oxide may occur in lagoons near concentrated animal feeding operations.

  10. Effects of the rate of supersaturation generation on polymorphic crystallization of m-hydroxybenzoic acid and o-aminobenzoic acid

    Science.gov (United States)

    He, Guangwen; Wong, Annie B. H.; Chow, Pui Shan; Tan, Reginald B. H.

    2011-01-01

    Effects of the rate of supersaturation generation on polymorphic crystallization have been investigated through evaporation and cooling crystallization experiments of m-hydroxybenzoic acid (m-HBA) in methanol, acetone and ethyl acetate, and o-aminobenzoic acid (o-ABA) in ethanol. The rate of supersaturation generation has been altered by systematically changing either the cooling rate or the evaporation rate of solvent using a jacketed crystallizer and a microfluidic evaporation device, respectively. The results have revealed that the rate of supersaturation generation and the tendency of the formation of the less stable polymorph are positively correlated. Kinetic effects are dominant when the rate of supersaturation generation is high, thereby producing the metastable polymorphs (orthorhombic m-HBA; Form II of o-ABA); on the contrary, more stable polymorphs (monoclinic m-HBA; Forms III and I of o-ABA) are formed when the rate of supersaturation generation is low and the thermodynamic effects are prevailing.

  11. On the influence of atmospheric super-saturation layer on China's heavy haze-fog events

    Science.gov (United States)

    Wang, Jizhi; Yang, Yuanqin; Zhang, Xiaoye; Liu, Hua; Che, Huizheng; Shen, Xiaojing; Wang, Yaqiang

    2017-12-01

    With the background of global change, the air quality in Earth's atmosphere has significantly decreased. The North China Plain (NCP), Yangtze River Delta (YRD), Pearl River Delta (PRD) and Si-Chuan Basin (SCB) are the major areas suffering the decreasing air quality and frequent pollution events in recent years. Studying the effect of meteorological conditions on the concentration of pollution aerosols in these pollution sensitive regions is a hot focus now. This paper analyses the characteristics of atmospheric super-saturation and the corresponding H_PMLs (height of supersaturated pollution mixing layer), investigating their contribution to the frequently-seen heavy haze-fog weather. The results suggest that: (1) in the above-mentioned pollution sensitive regions in China, super-saturated layers repeatedly appear in the low altitude and the peak value of supersaturation S can reach 6-10%, which makes pollution particles into the wet adiabatic uplift process in the stable-static atmosphere. After low-level atmosphere reaches the super-saturation state below the H_PMLs, meteorological condition contributes to humidification and condensation of pollution particles. (2) Caculation of condensation function Fc, one of PLAM sensetive parameter, indicates that super-saturation state helps promote condensation, beneficial to the formation of Condensational Kink (CK) in the pollution sensitive areas. This favors the formation of new aerosol particles and intensities the cumulative growth of aerosol concentration. (3) By calculating the convective inhibition energy on average │CIN│ > 1.0 × 104 J kg-1, we found the value is about 100 times higher than the stable critical value. The uplifting diffusion of the particles is inhibited by the ambient airflow. So, this is the important reason for the aggravation and persistence of aerosol pollutants in local areas. (4) H_PMLs is negatively correlated to the pollution meteorological condition index PLAM which can describe the

  12. Lecithin hydrophobicity modulates the process of cholesterol crystal nucleation and growth in supersaturated model bile systems.

    OpenAIRE

    Ochi, H; Tazuma, S; Kajiyama, G

    1996-01-01

    The present study was performed to determine whether the degree of lecithin hydrophobicity regulates bile metastability and, therefore, affects the process of cholesterol crystallization. Supersaturated model bile (MB) solutions were prepared with an identical composition on a molar basis (taurocholate/lecithin/cholesterol, 73:19.5:7.5; total lipid concentration 9 g/dl) except for the lecithin species; egg yolk phosphatidylcholine, soybean phosphatidylcholine, 1-palmitoyl-2-linoleoyl-sn-phosp...

  13. Influence of Isovalent Impurity Ge on Nucleation and Morphology of Supersaturated Oxygen Precipitate in CZSi

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effects of Ge in CZSi on the density and the rate of nucleation of supersaturated oxygen precipitation at lower annealing temperatures were examined.It is discovered that rod-like precipitation was suppressed when annealing at 700℃,but Ge has no effect on the morphology and the growth of oxygen precipitation at annealing temperatures more than 900℃.The results indicated that Ge neither acted as center of nucleation nor was involved in oxygen precipitation and its defect.

  14. Extremely slow carbon diffusion in carbon-supersaturated surface of ferrite

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; Král, Lubomír

    2014-01-01

    Roč. 52, č. 3 (2014), s. 125-133 ISSN 0023-432X R&D Projects: GA ČR(CZ) GAP108/11/0148; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : carbon diffusion * carbon supersaturation * diffusion barrier * ferrite * P91 Subject RIV: BJ - Thermodynamics Impact factor: 0.406, year: 2014

  15. Experimental Precipitation of Carbonate Minerals: Effect of pH, Supersaturation and Substrate

    OpenAIRE

    Tetteh, Abednego

    2012-01-01

    Understanding the controlling factors and elucidating the requirements and conditions necessary for carbon dioxide (CO2) storage by mineral trapping (or carbonation) is of paramount interest for any technical application as a means for carbon dioxide capture and storage (CCS). The effect of pH, supersaturation and substrate has been studied using non-stirred batch reactors at initial constant temperature of 150 oC. These conditions are relevant for mineral trapping. A set of experiments was c...

  16. Laboratory Studies of the Effects of Pressure and Dissolved Gas Supersaturation on Turbine-Passed Fish

    International Nuclear Information System (INIS)

    Abernethy, Cary S; Amidan, Brett G

    2001-01-01

    The objective of this study was to examine the relative importance of pressure changes as a source of turbine-passage injury and mortality. Specific tests were designed to quantify the response of fish to rapid pressure changes typical of turbine passage, with and without the complication of the fish being acclimated to gas supersaturated water. We investigated the responses of rainbow trout (Oncorhynchus mykiss), chinook salmon (O. tshawytscha), and bluegill sunfish (Lepomis macrochirus) to these two stresses, both singly and in combination

  17. Decomposition of supersaturated solid solutions Mg-Ho and Mg-Gd

    International Nuclear Information System (INIS)

    Sukhanov, V.D.; Dobromyslov, A.V.; Rokhlin, L.L.; Dobatkina, T.V.

    2002-01-01

    Methods of electron microscopy and X-ray diffraction analysis are applied to study ageing magnesium base alloys with holmium and gadolinium. It is shown that the precipitation of supersaturated Mg base solid solutions goes through several subsequent stages and is accompanied by a considerable precipitation hardening effect at the stage of metastable phase precipitation. The influence of aging time and temperature on precipitation kinetics is established [ru

  18. In Silico Modeling Approach for the Evaluation of Gastrointestinal Dissolution, Supersaturation, and Precipitation of Posaconazole.

    Science.gov (United States)

    Hens, Bart; Pathak, Shriram M; Mitra, Amitava; Patel, Nikunjkumar; Liu, Bo; Patel, Sanjaykumar; Jamei, Masoud; Brouwers, Joachim; Augustijns, Patrick; Turner, David B

    2017-12-04

    The aim of this study was to evaluate gastrointestinal (GI) dissolution, supersaturation, and precipitation of posaconazole, formulated as an acidified (pH 1.6) and neutral (pH 7.1) suspension. A physiologically based pharmacokinetic (PBPK) modeling and simulation tool was applied to simulate GI and systemic concentration-time profiles of posaconazole, which were directly compared with intraluminal and systemic data measured in humans. The Advanced Dissolution Absorption and Metabolism (ADAM) model of the Simcyp Simulator correctly simulated incomplete gastric dissolution and saturated duodenal concentrations of posaconazole in the duodenal fluids following administration of the neutral suspension. In contrast, gastric dissolution was approximately 2-fold higher after administration of the acidified suspension, which resulted in supersaturated concentrations of posaconazole upon transfer to the upper small intestine. The precipitation kinetics of posaconazole were described by two precipitation rate constants, extracted by semimechanistic modeling of a two-stage medium change in vitro dissolution test. The 2-fold difference in exposure in the duodenal compartment for the two formulations corresponded with a 2-fold difference in systemic exposure. This study demonstrated for the first time predictive in silico simulations of GI dissolution, supersaturation, and precipitation for a weakly basic compound in part informed by modeling of in vitro dissolution experiments and validated via clinical measurements in both GI fluids and plasma. Sensitivity analysis with the PBPK model indicated that the critical supersaturation ratio (CSR) and second precipitation rate constant (sPRC) are important parameters of the model. Due to the limitations of the two-stage medium change experiment the CSR was extracted directly from the clinical data. However, in vitro experiments with the BioGIT transfer system performed after completion of the in silico modeling provided an almost

  19. Effectiveness of supersaturation promoting excipients on albendazole concentrations in upper gastrointestinal lumen of fasted healthy adults.

    Science.gov (United States)

    Kourentas, Alexandros; Vertzoni, Maria; Symillides, Mira; Goumas, Konstantinos; Gibbon, Robert; Butler, James; Reppas, Christos

    2016-08-25

    To evaluate the impact of dosage form relevant levels of a polymeric precipitation inhibitor and of lipid excipients on supersaturation of upper gastrointestinal contents with albendazole, a lipophilic weak base. Albendazole concentrations in stomach and in duodenum were evaluated after administration of 1) a suspension in water (Susp-Control), 2) a suspension in water in which hydroxyprolylmethylcellulose E5 (HPMC E5) had been pre-dissolved (Susp-HPMC), and 3) and 4) two contrasting designs of lipid based suspensions dispersed in water (Susp-IIIA and Susp-IV), on a cross-over basis to fasted healthy adults. Limited, but statistically significant supersaturation of duodenal contents was observed after Susp-HPMC, Susp-IIIA, and Susp-IV; supersaturation was more consistent after Susp-HPMC administration. Based on total albendazole amount per volume, gastric secretions did not significantly alter volumes of bulk gastric contents during the first 40min post administration of a glass of non-caloric water-based fluid. Αlbendazole gastric concentrations were higher than in the administered suspensions, but similar for all four formulations. Gastric emptying of albendazole after administration of Susp-Control or Susp-HPMC was slower than after administration of Susp-IIIA or Susp-IV. Small amounts of HPMC E5 were as effective as lipid excipients in achieving supersaturation of duodenal contents with albendazole, a fast precipitating weak base, in fasted adults. However, compared with the effect of HPMC E5 the effect of lipid excipients was delayed and variable. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Multiscale description of carbon-supersaturated ferrite in severely drawn pearlitic wires

    International Nuclear Information System (INIS)

    Nematollahi, Gh. Ali; Grabowski, Blazej; Raabe, Dierk; Neugebauer, Jörg

    2016-01-01

    A multiscale simulation approach based on atomistic calculations and a discrete diffusion model is developed and applied to carbon-supersaturated ferrite, as experimentally observed in severely deformed pearlitic steel. We employ the embedded atom method and the nudged elastic band technique to determine the energetic profile of a carbon atom around a screw dislocation in bcc iron. The results clearly indicate a special region in the proximity of the dislocation core where C atoms are strongly bound, but where they can nevertheless diffuse easily due to low barriers. Our analysis suggests that the previously proposed pipe mechanism for the case of a screw dislocation is unlikely. Instead, our atomistic as well as the diffusion model results support the so-called drag mechanism, by which a mobile screw dislocation is able to transport C atoms along its glide plane. Combining the C-dislocation interaction energies with density-functional-theory calculations of the strain dependent C formation energy allows us to investigate the C supersaturation of the ferrite phase under wire drawing conditions. Corresponding results for local and total C concentrations agree well with previous atom probe tomography measurements indicating that a significant contribution to the supersaturation during wire drawing is due to dislocations.

  1. Study of supersaturation of defects under neutron irradiation by Zener relaxation

    International Nuclear Information System (INIS)

    Gonzalez, Hector C.; Justus, Francisco J.W.

    2004-01-01

    Vacancy supersaturation in dynamic equilibrium under fast neutron irradiation could be determined by anelastic relaxation. This phenomenon is particularly noticeable in some substitutional binary alloys. Relaxation is due to the reordering of atoms pairs under a stress, being a local reordering at the atomic scale. Relaxation time (τ) is inversely proportional to the vacancy concentration (Cv) and decreases under irradiation because a dynamical equilibrium of vacancy concentration, higher than thermodynamic equilibrium, is established. Theoretical models allow estimating the magnitude of that supersaturation. Determinations of τ at different temperatures, with and without fast neutron irradiations, were made with an 'in situ' device placed in the high temperature loop in the RA1 CAC-CNEA reactor. An alloy Au-30% Ni was used, since it presents an appreciable Zener effect. The measurements were performed in a spring-shaped specimen in order to minimize temperature and flux gradients. An Arrhenius plot of τ was obtained, and it was observed that for temperatures lower than 220 C degrees a vacancy supersaturation exists. The lowest temperature of our experiments was 190 C degrees. A value of τ at this temperature was three times lower under irradiations. A plot of τ vs. fast neutron fluence (φ f t) at the irradiation temperature T= 203 C degrees was obtained. An increase of τ was observed. After an annealing at T = 280 C degrees, the value of τ recovers the value corresponding to the unirradiated case. This fact suggests that the loops produced by irradiation act as defect sinks. (author) [es

  2. Energy Levels of Defects Created in Silicon Supersaturated with Transition Metals

    Science.gov (United States)

    García, H.; Castán, H.; Dueñas, S.; García-Hemme, E.; García-Hernansaz, R.; Montero, D.; González-Díaz, G.

    2018-03-01

    Intermediate-band semiconductors have attracted much attention for use in silicon-based solar cells and infrared detectors. In this work, n-Si substrates have been implanted with very high doses (1013 cm-2 and 1014 cm-2) of vanadium, which gives rise to a supersaturated layer inside the semiconductor. However, the Mott limit was not exceeded. The energy levels created in the supersaturated silicon were studied in detail by means of thermal admittance spectroscopy. We found a single deep center at energy near E C - 200 meV. This value agrees with one of the levels found for vanadium in silicon. The capture cross-section values of the deep levels were also calculated, and we found a relationship between the capture cross-section and the energy position of the deep levels which follows the Meyer-Neldel rule. This process usually appears in processes involving multiple excitations. The Meyer-Neldel energy values agree with those previously obtained for silicon supersaturated with titanium and for silicon contaminated with iron.

  3. Supersaturation induced by Itraconazole/Soluplus® micelles provided high GI absorption in vivo

    Directory of Open Access Journals (Sweden)

    Yue Zhong

    2016-04-01

    Full Text Available To investigate the effect of supersaturation induced by micelle formation during dissolution on the bioavailability of itraconazole (ITZ/Soluplus® solid dispersion. Solid dispersions prepared by hot melt extrusion (HME were compressed into tablets directly with other excipients. Dissolution behavior of ITZ tablets was studied by dissolution testing and the morphology of micelles in dissolution media was studied using transmission electron microscopy (TEM. Drug transferring from stomach into intestine was simulated to obtain a supersaturated drug solution. Bioavailability studies were performed on the ITZ tablets and Sporanox® in beagle dogs. The morphology of micelles in the dissolution media was observed to be spherical in shape, with an average size smaller than 100 nm. The supersaturated solutions formed by Soluplus® micelles were stable and no precipitation took place over a period of 180 min. Compared with Sporanox®, ITZ tablets exhibited a 2.50-fold increase in the AUC(0–96 of ITZ and a 1.95-fold increase in its active metabolite hydroxyitraconazole (OH-ITZ in the plasma of beagle dogs. The results obtained provided clear evidence that not only the increase in the dissolution rate in the stomach, but also the supersaturation produced by micelles in the small intestine may be of great assistance in the successful development of poorly water-soluble drugs. The micelles formed by Soluplus® enwrapped the molecular ITZ inside the core which promoted the amount of free drug in the intestinal cavity and carried ITZ through the aqueous boundary layer (ABL, resulting in high absorption by passive transportation across biological membranes. The uptake of intact micelles through pinocytosis together with the inhibition of P-glycoprotein-mediated drug efflux in intestinal epithelia contributed to the absorption of ITZ in the gastrointestinal tract. These results indicate that HME with Soluplus®, which can induce supersaturation by micelle

  4. Maintaining Supersaturation of Nimodipine by PVP with or without the Presence of Sodium Lauryl Sulfate and Sodium Taurocholate.

    Science.gov (United States)

    Pui, Yipshu; Chen, Yuejie; Chen, Huijun; Wang, Shan; Liu, Chengyu; Tonnis, Wouter; Chen, Linc; Serno, Peter; Bracht, Stefan; Qian, Feng

    2018-05-30

    Amorphous solid dispersion (ASD) is one of the most versatile supersaturating drug delivery systems to improve the dissolution rate and oral bioavailability of poorly water-soluble drugs. PVP based ASD formulation of nimodipine (NMD) has been marketed and effectively used in clinic for nearly 30 years, yet the mechanism by which PVP maintains the supersaturation and subsequently improves the bioavailability of NMD was rarely investigated. In this research, we first studied the molecular interactions between NMD and PVP by solution NMR, using CDCl 3 as the solvent, and the drug-polymer Flory-Huggins interaction parameter. No strong specific interaction between PVP and NMD was detected in the nonaqueous state. However, we observed that aqueous supersaturation of NMD could be significantly maintained by PVP, presumably due to the hydrophobic interactions between the hydrophobic moieties of PVP and NMD in aqueous medium. This hypothesis was supported by dynamic light scattering (DLS) and supersaturation experiments in the presence of different surfactants. DLS revealed the formation of NMD/PVP aggregates when NMD was supersaturated, suggesting the formation of hydrophobic interactions between the drug and polymer. The addition of surfactants, sodium lauryl sulfate (SLS) or sodium taurocholate (NaTC), into PVP maintained that NMD supersaturation demonstrated different effects: SLS could only improve NMD supersaturation with concentration above its critical aggregation concentration (CAC) value while not with lower concentration. Nevertheless, NaTC could prolong NMD supersaturation independent of concentration, with lower concentration outperformed higher concentration. We attribute these observations to PVP-surfactant interactions and the formation of PVP/surfactant complexes. In summary, despite the lack of specific interactions in the nonaqueous state, NMD aqueous supersaturation in the presence of PVP was attained by hydrophobic interactions between the hydrophobic

  5. Improved arterial blood oxygenation following intravenous infusion of cold supersaturated dissolved oxygen solution.

    Science.gov (United States)

    Grady, Daniel J; Gentile, Michael A; Riggs, John H; Cheifetz, Ira M

    2014-01-01

    One of the primary goals of critical care medicine is to support adequate gas exchange without iatrogenic sequelae. An emerging method of delivering supplemental oxygen is intravenously rather than via the traditional inhalation route. The objective of this study was to evaluate the gas-exchange effects of infusing cold intravenous (IV) fluids containing very high partial pressures of dissolved oxygen (>760 mm Hg) in a porcine model. Juvenile swines were anesthetized and mechanically ventilated. Each animal received an infusion of cold (13 °C) Ringer's lactate solution (30 mL/kg/hour), which had been supersaturated with dissolved oxygen gas (39.7 mg/L dissolved oxygen, 992 mm Hg, 30.5 mL/L). Arterial blood gases and physiologic measurements were repeated at 15-minute intervals during a 60-minute IV infusion of the supersaturated dissolved oxygen solution. Each animal served as its own control. Five swines (12.9 ± 0.9 kg) were studied. Following the 60-minute infusion, there were significant increases in PaO2 and SaO2 (P < 0.05) and a significant decrease in PaCO2 (P < 0.05), with a corresponding normalization in arterial blood pH. Additionally, there was a significant decrease in core body temperature (P < 0.05) when compared to the baseline preinfusion state. A cold, supersaturated dissolved oxygen solution may be intravenously administered to improve arterial blood oxygenation and ventilation parameters and induce a mild therapeutic hypothermia in a porcine model.

  6. Supersaturation of dissolved H(2) and CO (2) during fermentative hydrogen production with N(2) sparging.

    Science.gov (United States)

    Kraemer, Jeremy T; Bagley, David M

    2006-09-01

    Dissolved H(2) and CO(2) were measured by an improved manual headspace-gas chromatographic method during fermentative H(2) production with N(2) sparging. Sparging increased the yield from 1.3 to 1.8 mol H(2)/mol glucose converted, although H(2) and CO(2) were still supersaturated regardless of sparging. The common assumption that sparging increases the H(2) yield because of lower dissolved H(2) concentrations may be incorrect, because H(2) was not lowered into the range necessary to affect the relevant enzymes. More likely, N(2) sparging decreased the rate of H(2) consumption via lower substrate concentrations.

  7. Raman spectroscopic studies on single supersaturated droplets of sodium and magnesium acetate.

    Science.gov (United States)

    Wang, Liang-Yu; Zhang, Yun-Hong; Zhao, Li-Jun

    2005-02-03

    Raman spectroscopy was used to study structural changes, in particular, the formation of contact-ion pairs in supersaturated aqueous NaCH(3)COO and Mg(CH(3)COO)(2) droplets at ambient temperatures. The single droplets levitated in an electrodynamic balance (EDB), lost water, and became supersaturated when the relative humidity (RH) decreased. For NaCH(3)COO droplet the water-to-solute molar ratio (WSR) was 3.87 without solidification when water molecules were not enough to fill in the first hydration layer of Na(+), in favor of the formation of contact-ion pairs. However, the symmetric stretching vibration band (nu(3) mode) of free -COO(-) constantly appeared at 1416 cm(-1), and no spectroscopic information related to monodentate, bidentate, or bridge bidentate contact-ion pairs was observed due to the weak interactions between the Na(+) and acetate ion. On the other hand, the band of methyl deformation blue shifted from 1352 to 1370 cm(-1) (at RH = 34.2%, WSR = 2.43), corresponding to the solidification process of a novel metastable phase in the highly supersaturated solutions. With further decreasing RH, a small amount of supersaturated solution still existed and was proposed to be hermetically covered by the metastable phase of the particle. In contrast, the interaction between Mg(2+) and acetate ion is much stronger. When WSR decreased from 21.67 to 2.58 for the Mg(CH(3)COO)(2) droplet, the band of C-C-symmetric stretching (nu(4) mode) had a blue shift from 936 to 947 cm(-1). The intensity of the two new shoulders (approximately 1456 and approximately 1443 cm(-1)) of the nu(3) band of free -COO(-) at 1420 cm(-1) increased with the decrease of WSR. These changes were attributed to the formation of contact-ion pairs with bidentate structures. In particular, the small frequency difference between the shoulder at approximately 1443 cm(-1) and the nu(3) band of the free -COO(-) group (approximately 1420 cm(-1)) was proposed to be related to the formation of a chain

  8. Investigation of changes to the operation of Keenleyside Dam to reduce supersaturation of dissolved gases downstream

    International Nuclear Information System (INIS)

    Nunn, J.O.H.; Fidler, L.E.; Northcott, P.

    1993-01-01

    Keenlyside Dam is located on the Columbia River in southeast British Columbia. It impounds Arrow Lakes Reservoir, which has a live storage of 8.8 billion m 3 . The dam is used for flood control and to increase power generation in the USA. Recent field measurements have shown that the current operation of the dam often creates high levels of total gas pressure (TGP) downstream of the dam, with supersaturation levels occasionally reaching as high as 140%. It appeared that these increased levels were associated with the use of the spillway. High levels of dissolved gases may have adverse effects on aquatic life. Therefore, a comprehensive study was initiated to investigate ways of reducing TGP levels. The discharge facilities at the dam are described, along with the effects of dissolved gas supersaturation on fish. Current studies include measurement of field TGP levels, development of a model to predict TGP levels for different modes of operation of the discharge facilities, assessing the effects of TGP on different fish species at different life stages, field testing of the discharge facilities, and assessment of long-term impacts of various operating alternatives on the dam structures and equipment. Preliminary results indicate that the north low-level ports of the spillway increase the TGP level significantly less than the other two components of the discharge facilities. Current operating practice therefore maximizes use of the north ports within current operating limits. 9 refs., 4 figs

  9. UV-vis Imaging of Piroxicam Supersaturation, Precipitation, and Dissolution in a Flow-Through Setup.

    Science.gov (United States)

    Sun, Yu; Chapman, Alex; Larsen, Susan W; Jensen, Henrik; Petersen, Nickolaj J; Goodall, David M; Østergaard, Jesper

    2018-06-05

    Evaluation of drug precipitation is important in order to address challenges regarding low and variable bioavailability of poorly water-soluble drugs, to assess potential risk of patient safety with infusion therapy, and to explore injectable in situ suspension-forming drug delivery systems. Generally, drug precipitation is assessed in vitro through solution concentration analysis methods. Dual-wavelength UV-vis imaging is a novel imaging technique that may provide an opportunity for simultaneously monitoring changes in both solution and solid phases during precipitation. In the present study, a multimodal approach integrating UV-vis imaging, light microscopy, and Raman spectroscopy was developed for characterization of piroxicam supersaturation, precipitation, and dissolution in a flow-through setup. A solution of piroxicam dissolved in 1-methyl-2-pyrrolidinone was injected into a flowing aqueous environment (pH 7.4), causing piroxicam to precipitate. Imaging at 405 and 280 nm monitored piroxicam concentration distributions during precipitation and revealed different supersaturation levels dependent on the initial concentration of the piroxicam solution. The combination with imaging at 525 nm, light microscopy, and Raman spectroscopy measurements demonstrated concentration-dependent precipitation and the formation, growth, and dissolution of individual particles. Results emphasize the importance of the specific hydrodynamic conditions on the piroxicam precipitation. The approach used may facilitate comprehensive understanding of drug precipitation and dissolution processes and may be developed further into a basic tool for formulation screening and development.

  10. "Supersaturated" self-assembled charge-selective interfacial layers for organic solar cells.

    Science.gov (United States)

    Song, Charles Kiseok; Luck, Kyle A; Zhou, Nanjia; Zeng, Li; Heitzer, Henry M; Manley, Eric F; Goldman, Samuel; Chen, Lin X; Ratner, Mark A; Bedzyk, Michael J; Chang, Robert P H; Hersam, Mark C; Marks, Tobin J

    2014-12-24

    To achieve densely packed charge-selective organosilane-based interfacial layers (IFLs) on the tin-doped indium oxide (ITO) anodes of organic photovoltaic (OPV) cells, a series of Ar2N-(CH2)n-SiCl3 precursors with Ar = 3,4-difluorophenyl, n = 3, 6, 10, and 18, was synthesized, characterized, and chemisorbed on OPV anodes to serve as IFLs. To minimize lateral nonbonded -NAr2···Ar2N- repulsions which likely limit IFL packing densities in the resulting self-assembled monolayers (SAMs), precursor mixtures having both small and large n values are simultaneously deposited. These "heterogeneous" SAMs are characterized by a battery of techniques: contact angle measurements, X-ray reflectivity, X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy (UPS), cyclic voltammetry, and DFT computation. It is found that the headgroup densities of these "supersaturated" heterogeneous SAMs (SHSAMs) are enhanced by as much as 17% versus their homogeneous counterparts. Supersaturation significantly modifies the IFL properties including the work function (as much as 16%) and areal dipole moment (as much as 49%). Bulk-heterojunction OPV devices are fabricated with these SHSAMs: ITO/IFL/poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][2-[[(2-ethylhexyl)oxy]carbonyl]-3-fluorothieno[3,4-b]thiophenediyl

  11. Codissolution of calcium hydrogenphosphate and sodium hydrogencitrate in water. Spontaneous supersaturation of calcium citrate increasing calcium bioavailability

    DEFF Research Database (Denmark)

    Hedegaard, Martina Vavrusova; Danielsen, Bente Pia; Garcia, André Castilho

    2018-01-01

    The sparingly soluble calcium hydrogenphosphate dihydrate, co-dissolving in water during dissolution of freely soluble sodium hydrogencitrate sesquihydrate as caused by proton transfer from hydrogencitrate to hydrogenphosphate, was found to form homogenous solutions supersaturated by a factor up...... to 8 in calcium citrate tetrahydrate. A critical hydrogencitrate concentration for formation of homogeneous solutions was found to depend linearly on dissolved calcium hydrogenphosphate: [HCitr2-] = 14[CaHPO4] - 0.05 at 25 °C. The lag phase for precipitation of calcium citrate tetrahydrate......, as identified from FT-IR spectra, from these spontaneously formed supersaturated solutions was several hours, and the time to reach solubility equilibrium was several days. Initial calcium ion activity was found to be almost independent of the degree of supersaturation as determined electrochemically...

  12. Kinetics of a new phase formation in supersaturated solid solutions. 1. Dilute one-component systems

    International Nuclear Information System (INIS)

    Dubinko, V.I.

    1991-07-01

    A complete set of kinetic equations describing the diffusion decay of supersaturated solutions, as well as the formation of new-phase fluctuations in equilibrium systems, is derived. A novel method of determining forward and backward reaction rates entering the master equation is proposed which does not require the use of any reference cluster size distribution, either the constrained or the true equilibrium one, employed in all modifications of the classical nucleation theory. Instead, this reference distribution can be obtained as an equilibrium solution of the present master equation. The main advantage of this method is the possibility to take into account various factors affecting the diffusion decay, such as the reaction kinetics at the precipitate surfaces and the diffusion kinetics in the mother phase with account of elastic interaction between nucleating species and their clusters. The latter is of a key importance in the irradiation environment considered in the forthcoming second part of the article. (author). 3 refs

  13. Gasometer: An inexpensive device for continuous monitoring of dissolved gases and supersaturation

    Science.gov (United States)

    Bouck, G.R.

    1982-01-01

    The “gasometer” is a device that measures differential dissolved-gas pressures (δP) in water relative to barometric pressure (as does the “Weiss saturometer”), but operates continuously without human attention. The gasometer can be plumbed into a water-supply system and requires 8 liters/minute of water or more at 60 kilopascals. The gasometer's surfaces are nontoxic, and flow-through water can be used for fish culture. The gasometer may be connected to a small submersible pump and operated as a portable unit. The gasometer can activate an alarm system and thus protect fish from hyperbaric (supersaturation) or hypobaric gas pressures (usually due to low dissolved oxygen). Instructions are included for calculating and reporting data including the pressure and saturation of individual gases. Construction and performance standards are given for the gasometer. Occasional cleaning is required to remove biofouling from the gas-permeable tubing.PDF

  14. Morphology evolution of hierarchical ZnO nanostructures modulated by supersaturation and growth temperature

    Science.gov (United States)

    Yan, Youguo; Zhou, Lixia; Yu, Lianqing; Zhang, Ye

    2008-07-01

    Three kinds of ZnO hierarchical structures, nanocombs with tube- and needle-shaped teeth and hierarchical nanorod arrays, were successfully synthesized through the chemical vapor deposition method. Combining the experimental parameters, the microcosmic growing conditions (growth temperature and supersaturation) along the flux was discussed at length, and, based on the conclusions, three reasonable growth processes were proposed. The results and discussions were beneficial to further realize the relation between the growing behavior of the nanomaterial and microcosmic conditions, and the hierarchical nanostructures obtained were also expected to have potential applications as functional blocks in future nanodevices. Furthermore, the study of photoluminescence further indicated that the physical properties were strongly dependent on the crystal structure.

  15. Double crystal X-ray analysis of phosphorus precipitation in supersaturated Si-P solid solutions

    International Nuclear Information System (INIS)

    Servidori, M.; Zini, Q.; Dal Monte, C.

    1983-01-01

    The physical nature of the electrically inactive phosphorus in silicon is investigated by double crystal X-ray diffraction measurements. This analysis is performed on laser annealed supersaturated samples, doped by ion implantation up to 5 x 10 21 cm -3 . After isothermal heat treatments, these solid solutions show marked reductions in the electrically active phosphorus concentration. In particular, 850 0 C heatings give rise to a carrier concentration which corresponds to the phosphorus solubility in equilibrium with the inactive dopant. This dopant is characterized by means of lattice strain measurements: they are found consistent with the presence of perfectly coherent cubic SiP precipitates. This result is in agreement with the one obtained in preceeding works by electrical measurements and transmission electron microscopy observations and contradicts the hypothesis that the excess dopant atoms are, at least in part, charged point defects (E-centres). (author)

  16. Toward the development of erosion-free ultrasonic cavitation cleaning with gas-supersaturated water

    Science.gov (United States)

    Yamashita, Tatsuya; Ando, Keita

    2015-11-01

    In ultrasonic cleaning, contaminant particles attached at target surfaces are removed by liquid flow or acoustic waves that are induced by acoustic cavitation bubbles. However, the inertial collapse of such bubbles often involve strong shock emission or water hammer by re-entrant jets, thereby giving rise to material erosion. Here, we aim at developing an erosion-free ultrasonic cleaning technique with the aid of gas-supersaturated water. The key idea is that (gaseous) cavitation is triggered easily even with low-intensity sonication in water where gases are dissolved beyond Henry's saturation limit, allowing us to buffer violent bubble collapse. In this presentation, we report on observations of the removal of micron/submicron-sized particles attached at glass surfaces by the action of gaseous cavitation bubbles under low-intensity sonication.

  17. Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions.

    Science.gov (United States)

    Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona; Gysel, Martin; Weingartner, Ernest; Lohmann, Ulrike; Baltensperger, Urs; Cziczo, Daniel J

    2009-09-28

    Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of atmospheric interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation (SS) with respect to liquid water. In this study the subsaturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as well as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were investigated. Aerosols were generated both with a wet and a dry disperser. The water uptake was parameterized via the hygroscopicity parameter kappa. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived kappa values between 0.00 and 0.02 (the latter corresponds to a particle consisting of 96.7% by volume insoluble material and approximately 3.3% ammonium sulfate). Pure clay aerosols were generally found to be less hygroscopic than natural desert dust particles. The illite and montmorillonite samples had kappa approximately 0.003. The kaolinite samples were less hygroscopic and had kappa=0.001. SD (kappa=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (kappa=0.007) and ATD (kappa=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles. Thus, the generation method is critically important when presenting such data. These results indicate any atmospheric processing of a fresh mineral dust particle which

  18. Kinetics of release of a model disperse dye from supersaturated cellulose acetate matrices.

    Science.gov (United States)

    Papadokostaki, K G; Petropoulos, J H

    1998-08-14

    A study has been made of the kinetics of release into water of a model disperse dye (4-aminoazobenzene) from supersaturated solvent-cast cellulose acetate films at room temperature. Excess dye was introduced into the polymer matrix by: (i) sorption from aqueous solution at 100 degrees C; (ii) sorption from the vapour phase at 110 degrees C; or (iii) prior dissolution in the casting solvent. The effect of the method of introduction of the dye, the degree of supersaturation and the rate of agitation of the bath were investigated. Under conditions of strong agitation, the release kinetics from films dyed by method (i) or (iii) were in general accord with the theoretical model which assumes solute in the film in excess of the saturation limit to be in the form of immobile aggregates at equilibrium with mobile dye; although the value of the diffusion coefficient of the solute in the film was found to be substantially higher than that in the unsaturated film. On the other hand, when dyeing had been effected from the vapour phase, Fickian kinetics was followed and the diffusion coefficient was found to be equal to that observed in unsaturated film. It was concluded that under these conditions, the excess dye in the film tends to remain molecularly dispersed. Under conditions of slow agitation, the square root of t kinetics was not attained in many instances. General and early-time approximate expressions based on the Roseman-Higuchi model proved useful for the interpretation of the results in such cases; while the said model was extended to include the effect of significant variation of the partition coefficient of the solute with concentration.

  19. Vacancies supersaturation induced by fast neutron irradiation in FeNi alloys

    International Nuclear Information System (INIS)

    Lucki, G.; Chambron, W.; Watanabe, S.; Verdone, J.

    1975-01-01

    The void formation in metals and alloys during irradiation with high-energy particles is a problem of interest in physics and of paramount importance in nuclear technology. Voids are formed as a consequence of vacancy supersaturation and result in swelling as well as in changes of mechanical, electrical and magnetic properties of materials used in power reactors. Isothermal annealings were performed between 400 and 500 0 C with and without fast-neutron (1 MeV) irradiation. Pure Fe--Ni (50--50 at. percent) was irradiated in the Melousine reactor in Grenoble, and Fe--Ni(Mo) (50--50 at. percent + 50 ppM), in the IEAR-1 reactor at the Instituto de Energia Atomica in Sao Paulo. The toroidal-shaped specimens were fabricated from Johnson Mathey zone-refined ingots, and were initially annealed at 800 0 C during 1 h in hydrogen atmosphere and then slowly cooled (4 h) inside the furnace. Magnetic After Effect measurements (MAE) permitted the evaluation of activation energies during fast-neutron irradiation (1.54 eV) and without irradiation (3.14 eV) for pure Fe--Ni and respectively (1.36 eV) and (2.32 eV) for Fe--Ni(Mo). Since the time constants of the relaxation process are inversely proportional to the vacancy concentration, a quantitative evaluation of vacancy supersaturation was made; it decreases from the value 700 at 410 0 C to the value 40 at 490 0 C for pure Fe--Ni and from 765 to 121 for Fe--Ni(Mo) in the same temperature range. 3 figures, 5 tables

  20. Supersaturation-nucleation behavior of poorly soluble drugs and its impact on the oral absorption of drugs in thermodynamically high-energy forms.

    Science.gov (United States)

    Ozaki, Shunsuke; Minamisono, Takuma; Yamashita, Taro; Kato, Takashi; Kushida, Ikuo

    2012-01-01

    In order to better understand the oral absorption behavior of poorly water-soluble drugs, their supersaturation-nucleation behavior was characterized in fasted state simulated intestinal fluid. The induction time (t(ind)) for nucleation was measured for four model drugs: itraconazole, erlotinib, troglitazone, and PLX4032. Supersaturated solutions were prepared by solvent shift method, and nucleation initiation was monitored by ultraviolet detection. The relationship between t(ind) and degree of supersaturation was analyzed in terms of classical nucleation theory. The defined supersaturation stability proved to be compound specific. Clinical data on oral absorption were investigated for drugs in thermodynamically high-energy forms such as amorphous forms and salts and was compared with in vitro supersaturation-nucleation characteristics. Solubility-limited maximum absorbable dose was proportionate to intestinal effective drug concentrations, which are related to supersaturation stability and thermodynamic solubility. Supersaturation stability was shown to be an important factor in determining the effect of high-energy forms. The characterization of supersaturation-nucleation behavior by the presented method is, therefore, valuable for assessing the potential absorbability of poorly water-soluble drugs. Copyright © 2011 Wiley-Liss, Inc.

  1. Decoupling of bilayer leaflets under gas supersaturation: nitrogen nanobubbles in a membrane and their implication in decompression sickness

    Science.gov (United States)

    Li, Jing; Zhang, Xianren; Cao, Dapeng

    2018-05-01

    Decompression sickness (also known as diver’s sickness) is a disease that arises from the formation of a bubble inside the body caused by rapid decompression from high atmospheric pressures. However, the nature of pre-existing micronuclei that are proposed for interpreting the formation and growth of the bubble, as well as their very existence, is still highly controversial. In this work, atomistic molecular dynamics simulations are employed to investigate the nucleation of gas bubbles under the condition of nitrogen supersaturation, in the presence of a lipid bilayer and lipid micelle representing other macromolecules with a smaller hydrophobic region. Our simulation results demonstrate that by crossing a small energy barrier, excess nitrogen molecules can enter the lipid bilayer nearly spontaneously, for which the hydrophobic core serves as a potential well for gas enrichment. At a rather low nitrogen supersaturation, gas molecules in the membrane are dispersed in the hydrophobic region of the bilayer, with a slight increase in membrane thickness. But as the level of gas supersaturation reaches a threshold, the accumulation of N2 molecules in the bilayer center causes the two leaflets to be decoupled and the formation of nanobubbles. Therefore, we propose a nucleation mechanism for bubble formation in a supersaturated solution of inert gas: a cell membrane acts as a potential well for gas enrichment, being an ideal location for forming nanobubbles that induce membrane damage at a high level of gas supersaturation. As opposed to previous models, the new mechanism involves forming gas nuclei in a very low-tension hydrophobic environment, and thus a rather low energy barrier is required and pre-existing bubble micronuclei are not needed.

  2. Combined Effects of Supersaturation Rates and Doses on the Kinetic-Solubility Profiles of Amorphous Solid Dispersions Based on Water-Insoluble Poly(2-hydroxyethyl methacrylate) Hydrogels.

    Science.gov (United States)

    Schver, Giovanna C R M; Lee, Ping I

    2018-05-07

    Under nonsink dissolution conditions, the kinetic-solubility profiles of amorphous solid dispersions (ASDs) based on soluble carriers typically exhibit so-called "spring-and-parachute" concentration-time behaviors. However, the kinetic-solubility profiles of ASDs based on insoluble carriers (including hydrogels) are known to show sustained supersaturation during nonsink dissolution through a matrix-regulated diffusion mechanism by which the supersaturation of the drug is built up gradually and sustained over an extended period without any dissolved polymers acting as crystallization inhibitors. Despite previous findings demonstrating the interplay between supersaturation rates and total doses on the kinetic-solubility profiles of soluble amorphous systems (including ASDs based on dissolution-regulated releases from soluble polymer carriers), the combined effects of supersaturation rates and doses on the kinetic-solubility profiles of ASDs based on diffusion-regulated releases from water-insoluble carriers have not been investigated previously. Thus, the objective of this study is to examine the impacts of total doses and supersaturation-generation rates on the resulting kinetic-solubility profiles of ASDs based on insoluble hydrogel carriers. We employed a previously established ASD-carrier system based on water-insoluble-cross-linked-poly(2-hydroxyethyl methacrylate) (PHEMA)-hydrogel beads and two poorly water soluble model drugs: the weakly acidic indomethacin (IND) and the weakly basic posaconazole (PCZ). Our results show clearly for the first time that by using the smallest-particle-size fraction and a high dose (i.e., above the critical dose), it is indeed possible to significantly shorten the duration of sustained supersaturation in the kinetic-solubility profile of an ASD based on a water-insoluble hydrogel carrier, such that it resembles the spring-and-parachute dissolution profiles normally associated with ASDs based on soluble carriers. This generates

  3. pH-Induced precipitation behavior of weakly basic compounds: determination of extent and duration of supersaturation using potentiometric titration and correlation to solid state properties.

    Science.gov (United States)

    Hsieh, Yi-Ling; Ilevbare, Grace A; Van Eerdenbrugh, Bernard; Box, Karl J; Sanchez-Felix, Manuel Vincente; Taylor, Lynne S

    2012-10-01

    To examine the precipitation and supersaturation behavior of ten weak bases in terms of the relationship between pH-concentration-time profiles and the solid state properties of the precipitated material. Initially the compound was dissolved at low pH, followed by titration with base to induce precipitation. Upon precipitation, small aliquots of acid or base were added to induce slight subsaturation and supersaturation respectively and the resultant pH gradient was determined. The concentration of the unionized species was calculated as a function of time and pH using mass and charge balance equations. Two patterns of behavior were observed in terms of the extent and duration of supersaturation arising following an increase in pH and this behavior could be rationalized based on the crystallization tendency of the compound. For compounds that did not readily crystallize, an amorphous precipitate was formed and a prolonged duration of supersaturation was observed. For compounds that precipitated to crystalline forms, the observed supersaturation was short-lived. This study showed that supersaturation behavior has significant correlation with the solid-state properties of the precipitate and that pH-metric titration methods can be utilized to evaluate the supersaturation behavior.

  4. Inhibition of crystal nucleation and growth by water-soluble polymers and its impact on the supersaturation profiles of amorphous drugs.

    Science.gov (United States)

    Ozaki, Shunsuke; Kushida, Ikuo; Yamashita, Taro; Hasebe, Takashi; Shirai, Osamu; Kano, Kenji

    2013-07-01

    The impact of water-soluble polymers on drug supersaturation behavior was investigated to elucidate the role of water-soluble polymers in enhancing the supersaturation levels of amorphous pharmaceuticals. Hydroxypropyl methylcellulose (HPMC), polyvinylpyrrolidone (PVP), and Eudragit L-100 (Eudragit) were used as representative polymers, and griseofulvin and danazol were used as model drugs. Supersaturation profiles of amorphous drugs were measured in biorelevant dissolution tests. Crystal growth rate was measured from the decrease in dissolved drug concentration in the presence of seed crystals. Nucleation kinetics was evaluated by measuring the induction time for nucleation. All experiments were performed in the presence and absence of polymers. The degree of supersaturation of the amorphous model drugs increased with an increase in the inhibitory efficiency of polymers against crystal nucleation and growth (HPMC > PVP > Eudragit). In the presence of HPMC, the addition of seed crystals diminished the supersaturation ratio dramatically for griseofulvin and moderately for danazol. The results demonstrated that the polymers contributed to drug supersaturation by inhibiting both nucleation and growth. The effect of the polymers was drug dependent. The detailed characterization of polymers would allow selection of appropriate crystallization inhibitors and a planned quality control strategy for the development of supersaturable formulations. Copyright © 2013 Wiley Periodicals, Inc.

  5. Use of a screening method to determine excipients which optimize the extent and stability of supersaturated drug solutions and application of this system to solid formulation design.

    Science.gov (United States)

    Vandecruys, Roger; Peeters, Jef; Verreck, Geert; Brewster, Marcus E

    2007-09-05

    Assessing the effect of excipients on the ability to attain and maintain supersaturation of drug-based solution may provide useful information for the design of solid formulations. Judicious selection of materials that affect either the extent or stability of supersaturating drug delivery systems may be enabling for poorly soluble drug candidates or other difficult-to-formulate compounds. The technique suggested herein is aimed at providing a screening protocol to allow preliminary assessment of these factors based on small to moderate amounts of drug substance. A series of excipients were selected that may, by various mechanisms, affect supersaturation including pharmaceutical polymers such as HMPC and PVP, surfactants such as Polysorbate 20, Cremophor RH40 and TPGS and hydrophilic cyclodextrins such as HPbetaCD. Using a co-solvent based method and 25 drug candidates, the data suggested, on the whole, that the surfactants and the selected cyclodextrin seemed to best augment the extent of supersaturation but had variable benefits as stabilizers, while the pharmaceutical polymers had useful effect on supersaturation stability but were less helpful in increasing the extent of supersaturation. Using these data, a group of simple solid dosage forms were prepared and tested in the dog for one of the drug candidates. Excipients that gave the best extent and stability for the formed supersaturated solution in the screening assay also gave the highest oral bioavailability in the dog.

  6. Facet-controlled phase separation in supersaturated Au-Ni nanoparticles upon shape equilibration

    Energy Technology Data Exchange (ETDEWEB)

    Herz, A., E-mail: andreas.herz@tu-ilmenau.de, E-mail: dong.wang@tu-ilmenau.de; Rossberg, D.; Hentschel, M.; Theska, F.; Wang, D., E-mail: andreas.herz@tu-ilmenau.de, E-mail: dong.wang@tu-ilmenau.de; Schaaf, P. [Department of Materials for Electronics and Electrical Engineering, Institute of Materials Science and Engineering and Institute of Micro- and Nanotechnologies MacroNano, TU Ilmenau, D-98693 Ilmenau (Germany); Friák, M. [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, v.v.i., Žižkova 22, CZ-616 62 Brno (Czech Republic); Central European Institute of Technology, CEITEC MU, Masaryk University, Kamenice 5, CZ-625 00 Brno (Czech Republic); Holec, D. [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700 Leoben (Austria); Šob, M. [Central European Institute of Technology, CEITEC MU, Masaryk University, Kamenice 5, CZ-625 00 Brno (Czech Republic); Institute of Physics of Materials, Academy of Sciences of the Czech Republic, v.v.i., Žižkova 22, CZ-616 62 Brno (Czech Republic); Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno (Czech Republic); Schneeweiss, O. [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, v.v.i., Žižkova 22, CZ-616 62 Brno (Czech Republic)

    2015-08-17

    Solid-state dewetting is used to fabricate supersaturated, submicron-sized Au-Ni solid solution particles out of thin Au/Ni bilayers by means of a rapid thermal annealing technique. Phase separation in such particles is studied with respect to their equilibrium crystal (or Wulff) shape by subsequent annealing at elevated temperature. It is found that (100) faceting planes of the equilibrated particles are enriched with Ni and (111) faces with Au. Both phases are considered by quantum-mechanical calculations in combination with an error-reduction scheme that was developed to compensate for a missing exchange-correlation potential that would reliably describe both Au and Ni. The observed phase configuration is then related to the minimization of strongly anisotropic elastic energies of Au- and Ni-rich phases and results in a rather unique nanoparticle composite state that is characterized by nearly uniform value of elastic response to epitaxial strains all over the faceted surface. The same conclusion is yielded also by evaluating bi-axial elastic moduli when employing interpolated experimental elastic constants. This work demonstrates a useful route for studying features of physical metallurgy at the mesoscale.

  7. Manufacture of nanosized apatite coatings on titanium with different surface treatments using a supersaturated calcification solution

    Directory of Open Access Journals (Sweden)

    Adrian Paz Ramos

    Full Text Available The biomimetic method is used for the deposition of calcium phosphate coatings (Ca - P on the surface of different biomaterials. However, the application of this method requires long exposure times in order to obtain a suitable layer thickness for its use in medical devices. In this paper, we present a fast approach to obtain apatite coatings on titanium, using a combination of supersaturated calcification solution (SCS with chemical modification of the titanium surface. Also, it was evaluated the effect of four different surface treatments on the apatite deposition rate. Commercially pure titanium plates were activated by chemical or thermochemical treatments. Then, the activated samples were immersed in a solution with high content of calcium and phosphate ions at 37 ºC for 24 h, mimicking the physiological conditions. The coatings were studied by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, scanning electron microscopy (SEM and energy dispersive X-ray spectroscopy (EDX. The use of SCS solutions allowed the formation of crystalline hydroxyapatite coatings within a period of 24 h with a thickness between 1 and 5.3 µm. Besides, precipitates of hydroxyapatite nanoparticles with a globular configuration, forming aggregates with submicrometer size, were found in SCS solutions.

  8. Vacancies supersaturation induced by fast neutronn irradiation in FeNi alloys

    International Nuclear Information System (INIS)

    Lucki, G.; Watanabe, S.; Chambron, W.; Verdoni, J.

    1976-01-01

    Isothermal annealings have been performed between 400 and 555 0 C with and without fast neutron (1 MeV) irradiation. Pure FeNi (50-50 at %) was irradiated in the Melousine reactor in Grenoble and FeNiMO (50-50 at % + 50 ppm.) in the IEAR 1 reactor at the Instituto de Energia Atomica in Sao Paulo. The toroidal shaped specimens were fabricated from Johnson Mathey zone refined ingots and were initially annealed at 800 0 C during 1 h in hydrogen atmosphere and then slowly cooled (4 h) inside the furnace. Magnetic After Effect Measurements (MAE) permitted the evaluation of activation energies during fast neutron irradiation (1.54eV) and without irradiation (3.14eV) for pure FeNi and respectively (1.36eV) and 2.32eV) for FeNiMO. Since the time constants of relaxation process are inversely proportional to the vacancies comcentration a quantitative evaluation of vacancies supersaturation was made it decreases from value 700 at 410 0 C to the value 40 at 190 0 C for pure FeNi and from 765 to 121 for FeNiMO in the same temperature range

  9. Energy levels distribution in supersaturated silicon with titanium for photovoltaic applications

    International Nuclear Information System (INIS)

    Pérez, E.; Castán, H.; García, H.; Dueñas, S.; Bailón, L.; Montero, D.; García-Hernansanz, R.; García-Hemme, E.; González-Díaz, G.; Olea, J.

    2015-01-01

    In the attempt to form an intermediate band in the bandgap of silicon substrates to give it the capability to absorb infrared radiation, we studied the deep levels in supersaturated silicon with titanium. The technique used to characterize the energy levels was the thermal admittance spectroscopy. Our experimental results showed that in samples with titanium concentration just under Mott limit there was a relationship among the activation energy value and the capture cross section value. This relationship obeys to the well known Meyer-Neldel rule, which typically appears in processes involving multiple excitations, like carrier capture/emission in deep levels, and it is generally observed in disordered systems. The obtained characteristic Meyer-Neldel parameters were Tmn = 176 K and kTmn = 15 meV. The energy value could be associated to the typical energy of the phonons in the substrate. The almost perfect adjust of all experimental data to the same straight line provides further evidence of the validity of the Meyer Neldel rule, and may contribute to obtain a deeper insight on the ultimate meaning of this phenomenon

  10. Energy levels distribution in supersaturated silicon with titanium for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, E., E-mail: eduper@ele.uva.es; Castán, H.; García, H.; Dueñas, S.; Bailón, L. [Dept. de Electricidad y Electrónica, Universidad de Valladolid, ETSI Telecomunicación, Paseo de Belén 15, 47011 Valladolid (Spain); Montero, D.; García-Hernansanz, R.; García-Hemme, E.; González-Díaz, G. [Dept. de Física Aplicada III (Electricidad y Electrónica), Univ. Complutense de Madrid, 28040 Madrid (Spain); CEI Campus Moncloa, UCM-UPM, 28040 Madrid (Spain); Olea, J. [CEI Campus Moncloa, UCM-UPM, 28040 Madrid (Spain); Instituto de Energía Solar, E.T.S.I. de Telecomunicación, Univ. Politécnica de Madrid, 28040 Madrid (Spain)

    2015-01-12

    In the attempt to form an intermediate band in the bandgap of silicon substrates to give it the capability to absorb infrared radiation, we studied the deep levels in supersaturated silicon with titanium. The technique used to characterize the energy levels was the thermal admittance spectroscopy. Our experimental results showed that in samples with titanium concentration just under Mott limit there was a relationship among the activation energy value and the capture cross section value. This relationship obeys to the well known Meyer-Neldel rule, which typically appears in processes involving multiple excitations, like carrier capture/emission in deep levels, and it is generally observed in disordered systems. The obtained characteristic Meyer-Neldel parameters were Tmn = 176 K and kTmn = 15 meV. The energy value could be associated to the typical energy of the phonons in the substrate. The almost perfect adjust of all experimental data to the same straight line provides further evidence of the validity of the Meyer Neldel rule, and may contribute to obtain a deeper insight on the ultimate meaning of this phenomenon.

  11. One year of operation of Mammoth Pacific`s MP1-100 turbine with metastable, supersaturated expansions

    Energy Technology Data Exchange (ETDEWEB)

    Mines, G.L. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-12-31

    The Idaho National Engineering and Environmental Laboratory`s Heat Cycle Research project is developing a technology base that will increase the use of moderate-temperature hydrothermal resources to generate electrical power. One of the concepts under investigation is the use of a metastable, supersaturated turbine expansion. This expansion process supports a supersaturated vapor. If brought to equilibrium conditions, liquid condensate would be present in the expanding vapor. Analytical studies show that a plant designed to operate with this expansion will have an improvement in the brine effectiveness of up to 8% provided there is no adverse impact on turbine performance. Determining the impact of this expansion on turbine performance is focus of the project investigations being reported.

  12. Collisional stabilization efficiencies that control condensation flux rates in supersaturated vapors of n-alcohols and water

    International Nuclear Information System (INIS)

    Bauer, S.H.; Wilcox, C.F. Jr.

    1994-01-01

    Using J(S;T) values, magnitudes for a temperature-dependent stabilization factor, the size-dependent activation energy for evaporation from stabilized clusters, and the size-dependent heats of evaporation are derived. This kinetic derivation is carried out using data from supersaturated water and six n-alcohols obtained with the double-piston expansion technique. 30 refs., 5 figs., 1 tab

  13. Constraining the supersaturation density equation of state from core-collapse supernova simulations? Excluded volume extension of the baryons

    International Nuclear Information System (INIS)

    Fischer, Tobias

    2016-01-01

    In this article the role of the supersaturation density equation of state (EOS) is explored in simulations of failed core-collapse supernova explosions. Therefore the nuclear EOS is extended via a one-parameter excluded-volume description for baryons, taking into account their finite and increasing volume with increasing density in excess of saturation density. Parameters are selected such that the resulting supernova EOS represent extreme cases, with high pressure variations at supersaturation density which feature extreme stiff and soft EOS variants of the reference case, i.e. without excluded-volume corrections. Unlike in the interior of neutron stars with central densities in excess of several times saturation density, central densities of core-collapse supernovae reach only slightly above saturation density. Hence, the impact of the supersaturation density EOS on the supernova dynamics as well as the neutrino signal is found to be negligible. It is mainly determined from the low- and intermediate-density domain, which is left unmodified within this generalized excluded volume approach. (orig.)

  14. Effects of initial supersaturation on spontaneous precipitation of calcium carbonate in the presence of charged poly-L-amino acids.

    Science.gov (United States)

    Njegić-Dzakula, Branka; Falini, Giuseppe; Brecević, Ljerka; Skoko, Zeljko; Kralj, Damir

    2010-03-15

    Spontaneous precipitation of calcium carbonate was investigated in two precipitation systems: (1) with initial supersaturation lower than that corresponding to the solubility of amorphous calcium carbonate (ACC), at which vaterite precipitated, and (2) with initial supersaturation higher than that of ACC solubility, at which a mixture of calcite and vaterite was formed. After the addition of an acidic polypeptide, poly-L-glutamic acid (pGlu) or poly-L-aspartic acid (pAsp), into (1) a significant inhibition of nucleation, expressed as an increase in induction time, and growth of vaterite, perceived as a dead zone, was observed. Extent of inhibition decreased in the order: Inh(pAps)>Inh(pGlu)>Inh(pLys). The addition of a polypeptide into (2) caused the inhibition of precipitation and changed the morphology and polymorphic composition of the precipitate; only vaterite appeared at approximately c(pAsp)=3 ppm, c(pGlu)=6 ppm, or c(pLys)=7 ppm. This finding is explained as a consequence of kinetic constraints through the inhibition of calcite nucleation and stronger binding of acidic polypeptide by the calcite surfaces than by the vaterite surfaces. Laboratory precipitation studies using conditions that resemble those in living organism should be run at an initial supersaturation corresponding to the solubility of ACC as a limiting condition. 2009 Elsevier Inc. All rights reserved.

  15. Nutrient digestibility and growth in rainbow trout (Oncorhynchus mykiss) are impaired by short term exposure to moderate supersaturation in total gas pressure

    DEFF Research Database (Denmark)

    Skov, Peter Vilhelm; Pedersen, Lars-Flemming; Pedersen, Per Bovbjerg

    2013-01-01

    Excess levels of dissolved nitrogen gas (N2) may occur in recirculating aquaculture systems, as a result of aeration efforts, localized occurrences of denitrification, or from insufficient degassing of makeup water. If levels of dissolved N2 are sufficiently high, or if oxygen (O2) is also...... maintained at or above saturation, this leads to a supersaturation in total gas pressure (TGP). Depending on severity, total gas pressures above saturation may lead to gas bubble trauma, evident by visual inspection of the fish. Physiological effects of subclinical levels of TGP are not well known and have...... not been investigated for rainbow trout. The present study examined the effects of N2 supersaturation, with or without simultaneous excess TGP. Supersaturation with N2 (ΔP 22mmHg) without total gas supersaturation (ΔTGP −6mmHg) did not have any significant effects on feed intake, feed conversion or growth...

  16. Effect of layer thickness on device response of silicon heavily supersaturated with sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, David [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy NY 12180 (United States); Department of Physics and Nuclear Engineering, United States Military Academy, West Point NY 10996 (United States); Mathews, Jay [US Army ARDEC – Benét Laboratories, Watervliet NY 12189 (United States); Department of Physics, University of Dayton, Dayton, OH 45469 (United States); Sullivan, Joseph T.; Buonassisi, Tonio [School of Engineering, Massachusetts Institute of Technology, Cambridge MA 02139 (United States); Akey, Austin [School of Engineering, Massachusetts Institute of Technology, Cambridge MA 02139 (United States); Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge MA 02138 (United States); Aziz, Michael J. [Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge MA 02138 (United States); Persans, Peter [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy NY 12180 (United States); Warrender, Jeffrey M., E-mail: jwarrend@post.harvard.edu [US Army ARDEC – Benét Laboratories, Watervliet NY 12189 (United States)

    2016-05-15

    We report on a simple experiment in which the thickness of a hyperdoped silicon layer, supersaturated with sulfur by ion implantation followed by pulsed laser melting and rapid solidification, is systematically varied at constant average sulfur concentration, by varying the implantation energy, dose, and laser fluence. Contacts are deposited and the external quantum efficiency (EQE) is measured for visible wavelengths. We posit that the sulfur layer primarily absorbs light but contributes negligible photocurrent, and we seek to support this by analyzing the EQE data for the different layer thicknesses in two interlocking ways. In the first, we use the measured concentration depth profiles to obtain the approximate layer thicknesses, and, for each wavelength, fit the EQE vs. layer thickness curve to obtain the absorption coefficient of hyperdoped silicon for that wavelength. Comparison to literature values for the hyperdoped silicon absorption coefficients [S.H. Pan et al. Applied Physics Letters 98, 121913 (2011)] shows good agreement. Next, we essentially run this process in reverse; we fit with Beer’s law the curves of EQE vs. hyperdoped silicon absorption coefficient for those wavelengths that are primarily absorbed in the hyperdoped silicon layer, and find that the layer thicknesses obtained from the fit are in good agreement with the original values obtained from the depth profiles. We conclude that the data support our interpretation of the hyperdoped silicon layer as providing negligible photocurrent at high S concentrations. This work validates the absorption data of Pan et al. [Applied Physics Letters 98, 121913 (2011)], and is consistent with reports of short mobility-lifetime products in hyperdoped layers. It suggests that for optoelectronic devices containing hyperdoped layers, the most important contribution to the above band gap photoresponse may be due to photons absorbed below the hyperdoped layer.

  17. Effect of layer thickness on device response of silicon heavily supersaturated with sulfur

    Directory of Open Access Journals (Sweden)

    David Hutchinson

    2016-05-01

    Full Text Available We report on a simple experiment in which the thickness of a hyperdoped silicon layer, supersaturated with sulfur by ion implantation followed by pulsed laser melting and rapid solidification, is systematically varied at constant average sulfur concentration, by varying the implantation energy, dose, and laser fluence. Contacts are deposited and the external quantum efficiency (EQE is measured for visible wavelengths. We posit that the sulfur layer primarily absorbs light but contributes negligible photocurrent, and we seek to support this by analyzing the EQE data for the different layer thicknesses in two interlocking ways. In the first, we use the measured concentration depth profiles to obtain the approximate layer thicknesses, and, for each wavelength, fit the EQE vs. layer thickness curve to obtain the absorption coefficient of hyperdoped silicon for that wavelength. Comparison to literature values for the hyperdoped silicon absorption coefficients [S.H. Pan et al. Applied Physics Letters 98, 121913 (2011] shows good agreement. Next, we essentially run this process in reverse; we fit with Beer’s law the curves of EQE vs. hyperdoped silicon absorption coefficient for those wavelengths that are primarily absorbed in the hyperdoped silicon layer, and find that the layer thicknesses obtained from the fit are in good agreement with the original values obtained from the depth profiles. We conclude that the data support our interpretation of the hyperdoped silicon layer as providing negligible photocurrent at high S concentrations. This work validates the absorption data of Pan et al. [Applied Physics Letters 98, 121913 (2011], and is consistent with reports of short mobility-lifetime products in hyperdoped layers. It suggests that for optoelectronic devices containing hyperdoped layers, the most important contribution to the above band gap photoresponse may be due to photons absorbed below the hyperdoped layer.

  18. Coexistence effect of UVA absorbers to increase their solubility and stability of supersaturation.

    Science.gov (United States)

    Endo, M; Mukawa, T; Sato, N; Maezawa, D; Ohtsu, Y; Kuroda, A; Wakabayashi, M; Asakura, K

    2014-12-01

    Sunscreens containing UVA absorbers in high concentrations are expected to be developed, since recent studies have suggested the possibility of involvement of UVA ray in skin cancer and early skin aging. Solubility and stability of supersaturation of UVA absorbers in UVB absorber were determined in the absence and the presence of cosmetic oil. Coexistence effect of UVA absorbers was analyzed to dissolve them in high concentrations. Two UVA absorbers, diethylamino hydroxybenzoyl hexyl benzoate (DHHB) and butyl methoxydibenzoylmethane (BMDM), a UVB absorber, 2-ethylhexyl methoxycinnamate (EHMC), and a cosmetic oil, 2-ethylhexyl ester of oligomer of hydroxystearic acid (EH-O-HSA), were used. Their solutions were prepared at 80°C and cooled to 5°C. The solid DHHB and/or BMDM were added to it, and the time evolution of concentrations of the UVA absorbers in the solution phase was monitored. At the saturation in the absence of EH-O-HSA at 5°C, weight ratio of DHHB and BMDM to EHMC was 0.39/1.00 and 0.22/1.00, respectively. Addition of EH-O-HSA slightly changed the solubility of DHHB and BMDM. When the weight ratio of EH-O-HSA to EHMC was 0.20/1.00, weight ratio of DHHB and BMDM to EHMC was 0.35/1.00 and 0.25/1.00, respectively at the saturation at 5°C. In the presence of EH-O-HSA, a strong coexistence effect of DHHB and BMDM was found on their solubility. A thermodynamically stable saturated solution at 5°C having the composition that DHHB: BMDM: EHMC: EH-O-HSA = 0.47: 0.46: 1.00: 0.20 was obtained by the simultaneous addition of solid DHHB and BMDM into the initial solution. The solution type composite having the highest concentrations of DHHB and BMDM prepared in this study exhibited critical wavelength at 368 nm that was just below the border for sunscreens being qualified as 'Broad Spectrum' protection under the new rule launched by US FDA. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  19. Rationalising polymer selection for supersaturated film forming systems produced by an aerosol spray for the transdermal delivery of methylphenidate.

    Science.gov (United States)

    Edwards, A; Qi, S; Liu, F; Brown, M B; McAuley, W J

    2017-05-01

    Film forming systems offer a number of advantages for topical and transdermal drug delivery, in particular enabling production of a supersaturated state which can greatly improve drug absorption and bioavailability. However the suitability of individual film forming polymers to stabilise the supersaturated state and optimise delivery of drugs is not well understood. This study reports the use of differential scanning calorimetry (DSC) to measure the solubility of methylphenidate both as the free base and as the hydrochloride salt in two polymethacrylate copolymers, Eudragit RS (EuRS) and Eudragit E (EuE) and relates this to the ability of films formed using these polymers to deliver methylphenidate across a model membrane. EuRS provided greater methylphenidate delivery when the drug was formulated as the free base in comparison EuE because the lower solubility of the drug in EuRS provided a higher degree of drug saturation in the polymeric film. In contrast EuE provided greater delivery of methylphenidate hydrochloride as EuRS could not prevent its crystallisation from a supersaturated state. Methylphenidate flux across the membrane could be directly related to degree of saturation of the drug in the film formulation as estimated by the drug solubility in the individual polymers demonstrating the importance of drug solubility in the polymer included in film forming systems for topical/transdermal drug delivery. In addition DSC has been demonstrated to be a useful tool for determining the solubility of drugs in polymers used in film forming systems and the approaches outlined here are likely to be useful for predicting the suitability of polymers for particular drugs in film forming transdermal drug delivery systems. Copyright © 2017. Published by Elsevier B.V.

  20. Enhanced oral bioavailability of valsartan using a polymer-based supersaturable self-microemulsifying drug delivery system

    Directory of Open Access Journals (Sweden)

    Yeom DW

    2017-05-01

    Full Text Available Dong Woo Yeom,1,* Bo Ram Chae,2,* Ho Yong Son,1 Jin Han Kim,1 Jun Soo Chae,1 Seh Hyon Song,2 Dongho Oh,2 Young Wook Choi1 1College of Pharmacy, Chung-Ang University, Seoul, 2Daewon Pharm. Co., Ltd, Seoul, Republic of Korea *These authors contributed equally to this work Abstract: A novel, supersaturable self-microemulsifying drug delivery system (S-SMEDDS was successfully formulated to enhance the dissolution and oral absorption of valsartan (VST, a poorly water-soluble drug, while reducing the total quantity for administration. Poloxamer 407 is a selectable, supersaturating agent for VST-containing SMEDDS composed of 10% Capmul® MCM, 45% Tween® 20, and 45% Transcutol® P. The amounts of SMEDDS and Poloxamer 407 were chosen as formulation variables for a 3-level factorial design. Further optimization was established by weighting different levels of importance on response variables for dissolution and total quantity, resulting in an optimal S-SMEDDS in large quantity (S-SMEDDS_LQ; 352 mg in total and S-SMEDDS in reduced quantity (S-SMEDDS_RQ; 144.6 mg in total. Good agreement was observed between predicted and experimental values for response variables. Consequently, compared with VST powder or suspension and SMEDDS, both S-SMEDDS_LQ and S-SMEDDS_RQ showed excellent in vitro dissolution and in vivo oral bioavailability in rats. The magnitude of dissolution and absorption-enhancing capacities using quantity-based comparisons was in the order S-SMEDDS_RQ > S-SMEDDS_LQ > SMEDDS > VST powder or suspension. Thus, we concluded that, in terms of developing an effective SMEDDS preparation with minimal total quantity, S-SMEDDS_RQ is a promising candidate. Keywords: valsartan, SMEDDS, supersaturation, factorial design, optimization, bio­availability 

  1. Effect of surfactants, gastric emptying, and dosage form on supersaturation of dipyridamole in an in vitro model simulating the stomach and duodenum.

    Science.gov (United States)

    Mitra, A; Fadda, H M

    2014-08-04

    The purpose of this study was to investigate the influence of gastric emptying patterns, surfactants, and dosage form on the supersaturation of a poorly soluble weakly basic drug, dipyridamole, using an in vitro model mimicking the dynamic environment of the upper gastrointestinal tract, and, furthermore, to evaluate the usefulness of this model in establishing correlations to in vivo bioavailability for drugs with solubility/dissolution limited absorption. A simulated stomach duodenum model comprising four compartments was used to assess supersaturation and precipitation kinetics as a function of time. It integrates physiologically relevant fluid volumes, fluid transfer rates, and pH changes of the upper GI tract. Monoexponential gastric emptying patterns simulating the fasted state were compared to linear gastric emptying patterns simulating the fed state. The effect of different surfactants commonly used in oral preparations, specifically, sodium lauryl sulfate (SLS), poloxamer-188, and polysorbate-80, on dipyridamole supersaturation was investigated while maintaining surface tension of the simulated gastric fluids at physiological levels and without obtaining artificial micellar solubilization of the drug. The supersaturation behavior of different dose strengths of dipyridamole was explored. Significant levels of dipyridamole supersaturation were observed in the duodenal compartment under all the different in vivo relevant conditions explored. Dipyridamole supersaturation ratios of up to 11-fold have been observed, and supersaturation has been maintained for up to 120 min. Lower duodenal concentrations of dipyridamole were observed under linear gastric emptying patterns compared to mononexponential gastric emptying. The mean duodenal area under concentration-time curves (AUC60min) for the dipyridamole concentration profile in the duodenal compartment is significantly different for all the surfactants explored (P stomach duodenum model can provide a reliable and

  2. Nanosuspensions of 10-hydroxycamptothecin that can maintain high and extended supersaturation to enhance oral absorption: preparation, characterization and in vitro/in vivo evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Xiaohui; Sun, Jin, E-mail: sunjin66@21cn.com [Shenyang Pharmaceutical University, Department of Biopharmaceutics, School of Pharmacy (China); Han, Jihong [Keele University, School of Pharmacy and Institute for Science and Technology in Medicine (United Kingdom); Lian, He; Zhang, Peng [Shenyang Pharmaceutical University, Department of Biopharmaceutics, School of Pharmacy (China); Yan, Zhongtian [Nantion Institutes for Food and Drug Control (China); He, Zhonggui, E-mail: hezhgui_student@yahoo.com.cn [Shenyang Pharmaceutical University, Department of Biopharmaceutics, School of Pharmacy (China)

    2013-11-15

    The purpose of the study was to prepare and characterize nanosuspensions that can maintain high and extended supersaturation to improve the dissolution and absorption of poorly soluble 10-hydroxycamptothecin (10-HCPT). 10-HCPT oral nanosuspensions (HCPT-Nanosuspensions) were produced on a laboratory-scale by microprecipitation- high pressure homogenization method. The particle morphology and the physical state were studied using transmission electron microscopy, X-ray powder diffraction (XRPD), and differential scanning calorimetry (DSC). Supersaturated dissolution tests were carried out with the paddle method. Caco-2 cell experiments were performed to imitate the oral absorption. The in vivo pharmacokinetics studies were undertaken in rats following oral administration. The 10-HCPT nanoparticles were 135 nm in dimension before lyophilization and were claviform or lump in shape. XRPD and DSC both confirmed that a portion of 10-HCPT was present in a crystalline state in nanosuspension. Supersaturated dissolution tests showed HCPT-Nanosuspensions could maintain high supersaturated level for an extended period time. The cell experiment on HCPT-Nanosuspensions showed a significantly higher uptake and greater membrane permeability compared with the other formulations. The pharmacokinetic test exhibited HCPT-Nanosuspensions had a similar pharmacokinetic performance with 10-HCPT solution. In conclusion, highly and extendedly supersaturated HCPT-Nanosuspensions have been prepared which could result in high peak concentration (C{sub max}) and great exposure (AUC) after oral administration.

  3. Highly CO2-supersaturated melts in the Pannonian lithospheric mantle - A transient carbon reservoir?

    Science.gov (United States)

    Créon, Laura; Rouchon, Virgile; Youssef, Souhail; Rosenberg, Elisabeth; Delpech, Guillaume; Szabó, Csaba; Remusat, Laurent; Mostefaoui, Smail; Asimow, Paul D.; Antoshechkina, Paula M.; Ghiorso, Mark S.; Boller, Elodie; Guyot, François

    2017-08-01

    determined by Raman spectroscopy and microthermometry (0.1-1.1 GPa). The CO2/silicate melt mass ratios in the metasomatic agent that percolated through the lithospheric mantle below the Pannonian Basin are estimated to be between 9.0 and 25.4 wt.%, values consistent with metasomatism either by (1) silicate melts already supersaturated in CO2 before reaching lithospheric depths or (2) carbonatite melts that interacted with mantle peridotite to generate carbonated silicic melts. Taking the geodynamical context of the Pannonian Basin and our calculations of the CO2/silicate melt mass ratios in the metasomatic agent into account, we suggest that slab-derived melts initially containing up to 25 wt.% of CO2 migrated into the lithospheric mantle and exsolved CO2-rich fluid that became trapped in secondary fluid inclusions upon fracturing of the peridotite mineral matrix. We propose a first-order estimate of 2000 ppm as the minimal bulk CO2 concentration in the lithospheric mantle below the Pannonian Basin. This transient carbon reservoir is believed to be degassed through the Pannonian Basin due to volcanism and tectonic events, mostly focused along the lithospheric-scale regional Mid-Hungarian shear Zone.

  4. Disintegration mediated controlled release supersaturating solid dispersion formulation of an insoluble drug: design, development, optimization, and in vitro evaluation.

    Science.gov (United States)

    Verma, Sanjay; Rudraraju, Varma S

    2015-02-01

    The objective of this study was to develop a solid dispersion based controlled release system for drug substances that are poorly soluble in water. A wax-based disintegration mediated controlled release system was designed based on the fact that an amorphous drug can crystallize out from hydrophilic matrices. For this study, cilostazol (CIL) was selected as the model drug, as it exhibits poor aqueous solubility. An amorphous solid dispersion was prepared to assist the drug to attain a supersaturated state. Povidone was used as carrier for solid dispersion (spray drying technique), hydrogenated vegetable oil (HVO) as wax matrix former, and sodium carboxymethyl cellulose (NaCMC) as a disintegrant. The extreme vertices mixture design (EVMD) was applied to optimize the designed and developed composition. The optimized formulation provided a dissolution pattern which was equivalent to the predicted curve, ascertaining that the optimal formulation could be accomplished with EVMD. The release profile of CIL was described by the Higuchi's model better than zero-order, first-order, and Hixson-Crowell's model, which indicated that the supersaturation state of CIL dominated to allow drug release by diffusion rather than disintegration regulated release as is generally observed by Hixson-Crowell's model. The optimized composition was evaluated for disintegration, dissolution, XRD, and stability studies. It was found that the amorphous state as well as the dissolution profile of CIL was maintained under the accelerated conditions of 40°C/75% RH for 6 months.

  5. Hygroscopic growth and critical supersaturations for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance

    Directory of Open Access Journals (Sweden)

    B. Svenningsson

    2006-01-01

    Full Text Available The organic fraction of atmospheric aerosols contains a multitude of compounds and usually only a small fraction can be identified and quantified. However, a limited number of representative organic compounds can be used to describe the water-soluble organic fraction. In this work, initiated within the EU 5FP project SMOCC, four mixtures containing various amounts of inorganic salts (ammonium sulfate, ammonium nitrate, and sodium chloride and three model organic compounds (levoglucosan, succinic acid and fulvic acid were studied. The interaction between water vapor and aerosol particles was studied at different relative humidities: at subsaturation using a hygroscopic tandem differential mobility analyzer (H-TDMA and at supersaturation using a cloud condensation nuclei spectrometer (CCN spectrometer. Surface tensions as a function of carbon concentrations were measured using a bubble tensiometer. Parameterizations of water activity as a function of molality, based on hygroscopic growth, are given for the pure organic compounds and for the mixtures, indicating van't Hoff factors around 1 for the organics. The Zdanovskii-Stokes-Robinson (ZSR mixing rule was tested on the hygroscopic growth of the mixtures and it was found to adequately explain the hygroscopic growth for 3 out of 4 mixtures, when the limited solubility of succinic acid is taken into account. One mixture containing sodium chloride was studied and showed a pronounced deviation from the ZSR mixing rule. Critical supersaturations calculated using the parameterizations of water activity and the measured surface tensions were compared with those determined experimentally.

  6. Why the free floating macrophyte Stratiotes aloides mainly grows in highly CO2-supersaturated waters

    DEFF Research Database (Denmark)

    Nielsen, Lasse Tor; Borum, Jens

    2008-01-01

    consistently supersaturated CO2 conditions to grow and complete its life cycle. Submerged rosettes formed from over-wintering turions had typical traits of submerged plants with high specific leaf area and low chlorophyll a concentrations. Emergent leaf parts of mature, floating specimens had typical...... estimated at CO2 concentrations corresponding to air equilibrium were not sufficiently high to support any noticeable growth except for rosettes, in which bicarbonate utilization combined with high CO2 affinity resulted in photosynthetic rates corresponding to almost 34% of maximum rates at high free CO2....... We conclude that S. aloides requires consistently high CO2-supersaturation to support high growth and to complete its life cycle, and we infer that this requirement explains why S. aloides mainly grows in ponds, ditches and reed zones that are characterized by strong CO2-supersaturation....

  7. A case study on the formation and evolution of ice supersaturation in the vicinity of a warm conveyor belt's outflow region

    Directory of Open Access Journals (Sweden)

    P. Spichtinger

    2005-01-01

    Full Text Available A case study is presented on the formation and evolution of an ice-supersaturated region (ISSR that was detected by a radiosonde in NE Germany at 06:00 UTC 29 November 2000. The ISSR was situated in the vicinity of the outflow region of a warm conveyor belt associated with an intense event of cyclogenesis in the eastern North Atlantic. Using ECMWF analyses and trajectory calculations it is determined when the air parcels became supersaturated and later subsaturated again. In the case considered, the state of air parcel supersaturation can last for longer than 24h. The ISSR was unusually thick: while the mean vertical extension of ISSRs in NE Germany is about 500m, the one investigated here reached 3km. The ice-supersaturated region investigated was bordered both vertically and horizontally by strongly subsaturated air. Near the path of the radiosonde the ISSR was probably cloud free, as inferred from METEOSAT infrared images. However, at other locations within the ISSR it is probable that there were cirrus clouds. Relative humidity measurements obtained by the Lindenberg radiosonde are used to correct the negative bias of the ECMWF humidity and to construct two-dimensional maps of ice supersaturation over Europe during the considered period. A systematic backward trajectory analysis for the ISSRs on these maps shows that the ISSR air masses themselves experienced only a moderate upward motion during the previous days, whereas parts of the ISSRs were located just above strongly ascending air masses from the boundary layer. This indicates qualitatively that warm conveyor belts associated with mid-latitude cyclogenesis are disturbances that can induce the formation of ISSRs in the upper troposphere. The ISSR maps also lead us to a new perception of ISSRs as large dynamic regions of supersaturated air where cirrus clouds can be embedded at some locations while there is clear air at others.

  8. Water uptake by biomass burning aerosol at sub- and supersaturated conditions: closure studies and implications for the role of organics

    Directory of Open Access Journals (Sweden)

    U. Dusek

    2011-09-01

    Full Text Available We investigate the CCN activity of freshly emitted biomass burning particles and their hygroscopic growth at a relative humidity (RH of 85%. The particles were produced in the Mainz combustion laboratory by controlled burning of various wood types. The water uptake at sub- and supersaturations is parameterized by the hygroscopicity parameter, κ (c.f. Petters and Kreidenweis, 2007. For the wood burns, κ is low, generally around 0.06. The main emphasis of this study is a comparison of κ derived from measurements at sub- and supersaturated conditions (κG and κCCN, in order to see whether the water uptake at 85% RH can predict the CCN properties of the biomass burning particles. Differences in κGand κCCN can arise through solution non-idealities, the presence of slightly soluble or surface active compounds, or non-spherical particle shape. We find that κG and κCCN agree within experimental uncertainties (of around 30% for particle sizes of 100 and 150 nm; only for 50 nm particles is κCCN larger than κG by a factor of 2. The magnitude of this difference and its dependence on particle size is consistent with the presence of surface active organic compounds. These compounds mainly facilitate the CCN activation of small particles, which form the most concentrated solution droplets at the point of activation. The 50 nm particles, however, are only activated at supersaturations higher than 1% and are therefore of minor importance as CCN in ambient clouds. By comparison with the actual chemical composition of the biomass burning particles, we estimate that the hygroscopicity of the water-soluble organic carbon (WSOC fraction can be represented by a κWSOC value of approximately 0.2. The effective hygroscopicity of a typical wood burning particle can therefore be represented by a linear mixture of an inorganic component with κ ≅ 0.6, a WSOC

  9. Homogeneous nucleation in supersaturated vapors of methane, ethane, and carbon dioxide predicted by brute force molecular dynamics.

    Science.gov (United States)

    Horsch, Martin; Vrabec, Jadran; Bernreuther, Martin; Grottel, Sebastian; Reina, Guido; Wix, Andrea; Schaber, Karlheinz; Hasse, Hans

    2008-04-28

    Molecular dynamics (MD) simulation is applied to the condensation process of supersaturated vapors of methane, ethane, and carbon dioxide. Simulations of systems with up to a 10(6) particles were conducted with a massively parallel MD program. This leads to reliable statistics and makes nucleation rates down to the order of 10(30) m(-3) s(-1) accessible to the direct simulation approach. Simulation results are compared to the classical nucleation theory (CNT) as well as the modification of Laaksonen, Ford, and Kulmala (LFK) which introduces a size dependence of the specific surface energy. CNT describes the nucleation of ethane and carbon dioxide excellently over the entire studied temperature range, whereas LFK provides a better approach to methane at low temperatures.

  10. Observation of enhanced infrared absorption in silicon supersaturated with gold by pulsed laser melting of nanometer-thick gold films

    Science.gov (United States)

    Chow, Philippe K.; Yang, Wenjie; Hudspeth, Quentin; Lim, Shao Qi; Williams, Jim S.; Warrender, Jeffrey M.

    2018-04-01

    We demonstrate that pulsed laser melting (PLM) of thin 1, 5, and 10 nm-thick vapor-deposited gold layers on silicon enhances its room-temperature sub-band gap infrared absorption, as in the case of ion-implanted and PLM-treated silicon. The former approach offers reduced fabrication complexity and avoids implantation-induced lattice damage compared to ion implantation and pulsed laser melting, while exhibiting comparable optical absorptance. We additionally observed strong broadband absorptance enhancement in PLM samples made using 5- and 10-nm-thick gold layers. Raman spectroscopy and Rutherford backscattering analysis indicate that such an enhancement could be explained by absorption by a metastable, disordered and gold-rich surface layer. The sheet resistance and the diode electrical characteristics further elucidate the role of gold-supersaturation in silicon, revealing the promise for future silicon-based infrared device applications.

  11. Cost-effective alternative to nano-encapsulation: Amorphous curcumin-chitosan nanoparticle complex exhibiting high payload and supersaturation generation.

    Science.gov (United States)

    Nguyen, Minh Hiep; Yu, Hong; Kiew, Tie Yi; Hadinoto, Kunn

    2015-10-01

    While the wide-ranging therapeutic activities of curcumin have been well established, its successful delivery to realize its true therapeutic potentials faces a major challenge due to its low oral bioavailability. Even though nano-encapsulation has been widely demonstrated to be effective in enhancing the bioavailability of curcumin, it is not without drawbacks (i.e. low payload and costly preparation). Herein we present a cost-effective bioavailability enhancement strategy of curcumin in the form of amorphous curcumin-chitosan nanoparticle complex (or curcumin nanoplex in short) exhibiting a high payload (>80%). The curcumin nanoplex was prepared by a simple yet highly efficient drug-polysaccharide complexation method that required only mixing of the curcumin and chitosan solutions under ambient condition. The effects of (1) pH and (2) charge ratio of chitosan to curcumin on the (i) physical characteristics of the nanoplex (i.e. size, colloidal stability and payload), (ii) complexation efficiency, and (iii) production yield were investigated from which the optimal preparation condition was determined. The nanoplex formation was found to favor low acidic pH and charge ratio below unity. At the optimal condition (i.e. pH 4.4. and charge ratio=0.8), stable curcumin nanoplex (≈260nm) was prepared at >90% complexation efficiency and ≈50% production yield. The amorphous state stability, colloidal stability, and in vitro non-cytotoxicity of the nanoplex were successfully established. The curcumin nanoplex produced prolonged supersaturation (3h) in the presence of hydroxypropyl methylcellulose (HPMC) at five times of the saturation solubility of curcumin. In addition, curcumin released from the nanoplex exhibited improved chemical stability owed to the presence of chitosan. Both results (i.e. high supersaturation and improved chemical stability) bode well for the ability of the curcumin nanoplex to enhance the bioavailability of curcumin clinically. Copyright © 2015

  12. Riverine CO2 supersaturation and outgassing in a subtropical monsoonal mountainous area (Three Gorges Reservoir Region) of China

    Science.gov (United States)

    Li, Siyue; Ni, Maofei; Mao, Rong; Bush, Richard T.

    2018-03-01

    Rivers are an important source of CO2 to the atmosphere, however, mountainous rivers and streams with high emission rates are not well studied particularly in China. We report the first detailed investigation on monsoonal mountainous rivers in the Three Gorges Reservoir (TGR) region, with a focus on the riverine CO2 partial pressure (pCO2), CO2 degassing and their potential controls. The pCO2 levels ranged from 50 to 6019 μatm with averages of 1573 (SD. ±1060) in dry Autumn and 1276 (SD. ±1166) μatm in wet Summer seasons. 94% of samples were supersaturated with CO2 with respect to the atmospheric equilibrium (410 μatm). Monsoonal precipitation controlled pCO2 seasonality, with both the maximal and minimal levels occurring in the wet season, and showing the overall effects of dilution. Riverine pCO2 could be predicted better in the dry season using pH, DO% and DTP, whereas pH and DOC were better predictors in the wet season. We conclude that in-situ respiration of allochthonous organic carbon, rather than photosynthesis, resulted in negative relationships between pCO2 and DO and pH, and thus CO2 supersaturation. Photosynthetic primary production was effectively limited by rapid flow velocity and short residence time. The estimated water-to-air CO2 emission rate in the TGR rivers was 350 ± 319 in the Autumn and lower, yet more variable at 326 ± 439 mmol/m2/d in Summer. Our calculated CO2 areal fluxes were in the upper-level magnitude of published data, demonstrating the importance of mountainous rivers and streams as a global greenhouse gas source, and urgency for more detailed studies on CO2 degassing, to address a global data gap for these environments.

  13. Effects of tablet formulation and subsequent film coating on the supersaturated dissolution behavior of amorphous solid dispersions.

    Science.gov (United States)

    Sakai, Toshiro; Hirai, Daiki; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-04-05

    The effects of tablet preparation and subsequent film coating with amorphous solid dispersion (ASD) particles that were composed of a drug with poor water solubility and hydrophilic polymers were investigated. ASD particles were prepared with a drug and vinylpyrrolidone-vinyl acetate copolymer (PVPVA) or polyvinylpyrrolidone (PVP) at a weight ratio of 1:1 or 1:2 using a melt extrusion technique. Tablets were prepared by conventional direct compression followed by pan coating. A mathematical model based on the Noyes-Whitney equation assuming that stable crystals precipitated at the changeable surface area of the solid-liquid interface used to estimate drug dissolution kinetics in a non-sink dissolution condition. All the ASD particles showed a maximum dissolution concentration approximately ten times higher than that of the crystalline drug. The ASD particles with PVPVA showed higher precipitation rate with lower polymer ratio, while PVP did not precipitate within 960 min regardless of the polymer ratio, suggesting the ASD particles of 1:1 drug:PVPVA (ASD-1) were the most unstable among the ASD particles considered. The dissolution of a core tablet with ASD-1 showed less supersaturation and a much higher precipitation rate than those of ASD-1 particles. However, a film-coated tablet or core tablet with a trace amount of hydroxypropylmethylcellulose (HPMC) showed a similar dissolution profile to that of the ASD-1 particles, indicating HPMC had a remarkable precipitation inhibition effect. Overall, these results suggest that tablet preparation with ASD may adversely affect the maintenance of supersaturation; however, this effect can be mitigated by adding an appropriate precipitation inhibitor to the formulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Role of Molecular Interactions for Synergistic Precipitation Inhibition of Poorly Soluble Drug in Supersaturated Drug-Polymer-Polymer Ternary Solution.

    Science.gov (United States)

    Prasad, Dev; Chauhan, Harsh; Atef, Eman

    2016-03-07

    We are reporting a synergistic effect of combined Eudragit E100 and PVP K90 in precipitation inhibition of indomethacin (IND) in solutions at low polymer concentration, a phenomenon that has significant implications on the usefulness of developing novel ternary solid dispersion of poorly soluble drugs. The IND supersaturation was created by cosolvent technique, and the precipitation studies were performed in the absence and the presence of individual and combined PVP K90 and Eudragit E100. The studies were also done with PEG 8000 as a noninteracting control polymer. A continuous UV recording of the IND absorption was used to observe changes in the drug concentration over time. The polymorphic form and morphology of precipitated IND were characterized by Raman spectroscopy and scanning electron microscopy. The change in the chemical shift in solution (1)H NMR was used as novel approach to probe IND-polymer interactions. Molecular modeling was used for calculating binding energy between IND-polymer as another indication of IND-polymer interaction. Spontaneous IND precipitation was observed in the absence of polymers. Eudragit E100 showed significant inhibitory effect on nuclei formation due to stronger interaction as reflected in higher binding energy and greater change in chemical shift by NMR. PVP K90 led to significant crystal growth inhibition due to adsorption on growing IND crystals as confirmed by modified crystal habit of precipitate in the presence of PVP K90. Combination of polymers resulted in a synergistic precipitation inhibition and extended supersaturation. The NMR confirmed interaction between IND-Eudragit E100 and IND-PVP K90 in solution. The combination of polymers showed similar peak shift albeit using lower polymer concentration indicating stronger interactions. The results established the significant synergistic precipitation inhibition effect upon combining Eudragit E100 and PVP K90 due to drug-polymer interaction.

  15. The impact of supersaturation level for oral absorption of BCS class IIb drugs, dipyridamole and ketoconazole, using in vivo predictive dissolution system: Gastrointestinal Simulator (GIS).

    Science.gov (United States)

    Tsume, Yasuhiro; Matsui, Kazuki; Searls, Amanda L; Takeuchi, Susumu; Amidon, Gregory E; Sun, Duxin; Amidon, Gordon L

    2017-05-01

    The development of formulations and the assessment of oral drug absorption for Biopharmaceutical Classification System (BCS) class IIb drugs is often a difficult issue due to the potential for supersaturation and precipitation in the gastrointestinal (GI) tract. The physiological environment in the GI tract largely influences in vivo drug dissolution rates of those drugs. Thus, those physiological factors should be incorporated into the in vitro system to better assess in vivo performance of BCS class IIb drugs. In order to predict oral bioperformance, an in vitro dissolution system with multiple compartments incorporating physiologically relevant factors would be expected to more accurately predict in vivo phenomena than a one-compartment dissolution system like USP Apparatus 2 because, for example, the pH change occurring in the human GI tract can be better replicated in a multi-compartmental platform. The Gastrointestinal Simulator (GIS) consists of three compartments, the gastric, duodenal and jejunal chambers, and is a practical in vitro dissolution apparatus to predict in vivo dissolution for oral dosage forms. This system can demonstrate supersaturation and precipitation and, therefore, has the potential to predict in vivo bioperformance of oral dosage forms where this phenomenon may occur. In this report, in vitro studies were performed with dipyridamole and ketoconazole to evaluate the precipitation rates and the relationship between the supersaturation levels and oral absorption of BCS class II weak base drugs. To evaluate the impact of observed supersaturation levels on oral absorption, a study utilizing the GIS in combination with mouse intestinal infusion was conducted. Supersaturation levels observed in the GIS enhanced dipyridamole and ketoconazole absorption in mouse, and a good correlation between their supersaturation levels and their concentration in plasma was observed. The GIS, therefore, appears to represent in vivo dissolution phenomena and

  16. Unprecedented Al supersaturation in single-phase rock salt structure VAlN films by Al+ subplantation

    Science.gov (United States)

    Greczynski, G.; Mráz, S.; Hans, M.; Primetzhofer, D.; Lu, J.; Hultman, L.; Schneider, J. M.

    2017-05-01

    Modern applications of refractory ceramic thin films, predominantly as wear-protective coatings on cutting tools and on components utilized in automotive engines, require a combination of excellent mechanical properties, thermal stability, and oxidation resistance. Conventional design approaches for transition metal nitride coatings with improved thermal and chemical stability are based on alloying with Al. It is well known that the solubility of Al in NaCl-structure transition metal nitrides is limited. Hence, the great challenge is to increase the Al concentration substantially while avoiding precipitation of the thermodynamically favored wurtzite-AlN phase, which is detrimental to mechanical properties. Here, we use VAlN as a model system to illustrate a new concept for the synthesis of metastable single-phase NaCl-structure thin films with the Al content far beyond solubility limits obtained with conventional plasma processes. This supersaturation is achieved by separating the film-forming species in time and energy domains through synchronization of the 70-μs-long pulsed substrate bias with intense periodic fluxes of energetic Al+ metal ions during reactive hybrid high power impulse magnetron sputtering of the Al target and direct current magnetron sputtering of the V target in the Ar/N2 gas mixture. Hereby, Al is subplanted into the cubic VN grains formed by the continuous flux of low-energy V neutrals. We show that Al subplantation enables an unprecedented 42% increase in metastable Al solubility limit in V1-xAlxN, from x = 0.52 obtained with the conventional method to 0.75. The elastic modulus is 325 ± 5 GPa, in excellent agreement with density functional theory calculations, and approximately 50% higher than for corresponding films grown by dc magnetron sputtering. The extension of the presented strategy to other Al-ion-assisted vapor deposition methods or materials systems is straightforward, which opens up the way for producing supersaturated single

  17. Theoretical and experimental investigation of drug-polymer interaction and miscibility and its impact on drug supersaturation in aqueous medium.

    Science.gov (United States)

    Baghel, Shrawan; Cathcart, Helen; O'Reilly, Niall J

    2016-10-01

    Amorphous solid dispersions (ASDs) have the potential to offer higher apparent solubility and bioavailability of BCS class II drugs. Knowledge of the solid state drug-polymer solubility/miscibility and their mutual interaction are fundamental requirements for the effective design and development of such systems. To this end, we have carried out a comprehensive investigation of various ASD systems of dipyridamole and cinnarizine in polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) at different drug loadings. Theoretical and experimental examinations (by implementing binary and ternary Flory-Huggins (F-H) theory) related to drug-polymer interaction/miscibility including solubility parameter approach, melting point depression method, phase diagram, drug-polymer interaction in the presence of moisture and the effect of drug loading on interaction parameter were performed. The information obtained from this study was used to predict the stability of ASDs at different drug loadings and under different thermal and moisture conditions. Thermal and moisture sorption analysis not only provided the composition-dependent interaction parameter but also predicted the composition dependent miscibility. DPM-PVP, DPM-PAA and CNZ-PAA systems have shown molecular level mixing over the complete range of drug loading. For CNZ-PVP, the presence of a single Tg at lower drug loadings (10, 20 and 35%w/w) indicates the formation of solid solution. However, drug recrystallization was observed for samples with higher drug weight fractions (50 and 65%w/w). Finally, the role of polymer in maintaining drug supersaturation has also been explored. It has been found that drug-polymer combinations capable of hydrogen-bonding in the solution state (DPM-PVP, DPM-PAA and CNZ-PAA) are more effective in preventing drug crystallization compared to the drug-polymer systems without such interaction (CNZ-PVP). The DPM-PAA system outperformed all other ASDs in various stability conditions (dry-state, in

  18. Solid formulation of a supersaturable self-microemulsifying drug delivery system for valsartan with improved dissolution and bioavailability.

    Science.gov (United States)

    Yeom, Dong Woo; Chae, Bo Ram; Kim, Jin Han; Chae, Jun Soo; Shin, Dong Jun; Kim, Chang Hyun; Kim, Sung Rae; Choi, Ji Ho; Song, Seh Hyon; Oh, Dongho; Sohn, Se Il; Choi, Young Wook

    2017-11-07

    In order to improve the dissolution and oral bioavailability of valsartan (VST), and reduce the required volume for treatment, we previously formulated a supersaturable self-microemulsifying drug delivery system (SuSMEDDS) composed of VST (80 mg), Capmul ® MCM (13.2 mg), Tween ® 80 (59.2 mg), Transcutol ® P (59.2 mg), and Poloxamer 407 (13.2 mg). In the present study, by using Florite ® PS-10 (119.1 mg) and Vivapur ® 105 (105.6 mg) as solid carriers, VST-loaded solidified SuSMEDDS (S-SuSMEDDS) granules were successfully developed, which possessed good flow properties and rapid drug dissolution. By introducing croscarmellose sodium (31 mg) as a superdisintegrant, S-SuSMEDDS tablets were also successfully formulated, which showed fast disintegration and high dissolution efficiency. Preparation of granules and tablets was successfully optimized using D-optimal mixture design and 3-level factorial design, respectively, resulting in percentage prediction errors of <10%. In pharmacokinetic studies in rats, the relative bioavailability of the optimized granules was 107% and 222% of values obtained for SuSMEDDS and Diovan ® powder, respectively. Therefore, we conclude that novel S-SuSMEDDS formulations offer great potential for developing solid dosage forms of a liquefied formulation such as SuSMEDDS, while improving oral absorption of drugs with poor water solubility.

  19. Local solid phase growth of few-layer graphene on silicon carbide from nickel silicide supersaturated with carbon

    International Nuclear Information System (INIS)

    Escobedo-Cousin, Enrique; Vassilevski, Konstantin; Hopf, Toby; Wright, Nick; O'Neill, Anthony; Horsfall, Alton; Goss, Jonathan; Cumpson, Peter

    2013-01-01

    Patterned few-layer graphene (FLG) films were obtained by local solid phase growth from nickel silicide supersaturated with carbon, following a fabrication scheme, which allows the formation of self-aligned ohmic contacts on FLG and is compatible with conventional SiC device processing methods. The process was realised by the deposition and patterning of thin Ni films on semi-insulating 6H-SiC wafers followed by annealing and the selective removal of the resulting nickel silicide by wet chemistry. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to confirm both the formation and subsequent removal of nickel silicide. The impact of process parameters such as the thickness of the initial Ni layer, annealing temperature, and cooling rates on the FLG films was assessed by Raman spectroscopy, XPS, and atomic force microscopy. The thickness of the final FLG film estimated from the Raman spectra varied from 1 to 4 monolayers for initial Ni layers between 3 and 20 nm thick. Self-aligned contacts were formed on these patterned films by contact photolithography and wet etching of nickel silicide, which enabled the fabrication of test structures to measure the carrier concentration and mobility in the FLG films. A simple model of diffusion-driven solid phase chemical reaction was used to explain formation of the FLG film at the interface between nickel silicide and silicon carbide.

  20. First report of the successful operation of a side stream supersaturation hypolimnetic oxygenation system in a eutrophic, shallow reservoir.

    Science.gov (United States)

    Gerling, Alexandra B; Browne, Richard G; Gantzer, Paul A; Mobley, Mark H; Little, John C; Carey, Cayelan C

    2014-12-15

    Controlling hypolimnetic hypoxia is a key goal of water quality management. Hypoxic conditions can trigger the release of reduced metals and nutrients from lake sediments, resulting in taste and odor problems as well as nuisance algal blooms. In deep lakes and reservoirs, hypolimnetic oxygenation has emerged as a viable solution for combating hypoxia. In shallow lakes, however, it is difficult to add oxygen into the hypolimnion efficiently, and a poorly designed hypolimnetic oxygenation system could potentially result in higher turbidity, weakened thermal stratification, and warming of the sediments. As a result, little is known about the viability of hypolimnetic oxygenation in shallow bodies of water. Here, we present the results from recent successful tests of side stream supersaturation (SSS), a type of hypolimnetic oxygenation system, in a shallow reservoir and compare it to previous side stream deployments. We investigated the sensitivity of Falling Creek Reservoir, a shallow (Zmax = 9.3 m) drinking water reservoir located in Vinton, Virginia, USA, to SSS operation. We found that the SSS system increased hypolimnetic dissolved oxygen concentrations at a rate of ∼1 mg/L/week without weakening stratification or warming the sediments. Moreover, the SSS system suppressed the release of reduced iron and manganese, and likely phosphorus, from the sediments. In summary, SSS systems hold great promise for controlling hypolimnetic oxygen conditions in shallow lakes and reservoirs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Air supersaturation, release of wooden fibres and upstream migration of Atlantic salmon at Rygene power plant in the River Nidelva, Aust Agder county

    International Nuclear Information System (INIS)

    Thorstad, Eva B.; Kroglund, Frode; Oekland, Finn; Heggberget, Tor G.

    1997-01-01

    Incidents of dead fish have been reported in connection with a power plant at Rygene on the River Nidelva in the Aust-Agder county, Norway. Air supersaturation has been used in a bypass construction of the power plant tunnel system. In addition, wooden fibres from a fabric have been released into the water of the tunnel. Results from relevant studies concerning air saturation, wooden fibres and upstream migration are summarised in this report. 148 refs., 4 figs., 2 tabs

  2. In vivo analysis of supersaturation/precipitation/absorption behavior after oral administration of pioglitazone hydrochloride salt; determinant site of oral absorption.

    Science.gov (United States)

    Tanaka, Yusuke; Sugihara, Masahisa; Kawakami, Ayaka; Imai, So; Itou, Takafumi; Murase, Hirokazu; Saiki, Kazunori; Kasaoka, Satoshi; Yoshikawa, Hiroshi

    2017-08-30

    The purpose of this study was to evaluate in vivo supersaturation/precipitation/absorption behavior in the gastrointestinal (GI) tract based on the luminal concentration-time profiles after oral administration of pioglitazone (PG, a highly permeable lipophilic base) and its hydrochloride salt (PG-HCl) to rats. In the in vitro precipitation experiment in the classic closed system, while the supersaturation was stable in the simulated gastric condition, PG drastically precipitated in the simulated intestinal condition, particularly at a higher initial degree of supersaturation. Nonetheless, a drastic and moderate improvement in absorption was observed in vivo at a low and high dose of PG-HCl, respectively. Analysis based on the luminal concentration of PG after oral administration of PG-HCl at a low dose revealed that most of the dissolved PG emptied from the stomach was rapidly absorbed before its precipitation in the duodenum. At a high dose of PG-HCl, PG partly precipitated in the duodenum but was absorbed to some extent. Therefore, the extent of the absorption was mainly dependent on the duodenal precipitation behavior. Furthermore, a higher-than expected absorption after oral administration of PG-HCl from in vitro precipitation study may be due to the absorption process in the small intestine, which suppresses the precipitation by removal of the drug. This study successfully clarify the impact of the absorption process on the supersaturation/precipitation/absorption behavior and key absorption site for a salt formulation of a highly permeable lipophilic base based on the direct observation of in vivo luminal concentration. Our findings may be beneficial in developing an ideal physiologically based pharmacokinetic model and in vitro predictive dissolution tools and/or translating the in silico and in vitro data to the in vivo outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The free energy of the metastable supersaturated vapor via restricted ensemble simulations. III. An extension to the Corti and Debenedetti subcell constraint algorithm

    International Nuclear Information System (INIS)

    Nie, Chu; Geng, Jun; Marlow, William H.

    2016-01-01

    In order to improve the sampling of restricted microstates in our previous work [C. Nie, J. Geng, and W. H. Marlow, J. Chem. Phys. 127, 154505 (2007); 128, 234310 (2008)] and quantitatively predict thermal properties of supersaturated vapors, an extension is made to the Corti and Debenedetti subcell constraint algorithm [D. S. Corti and P. Debenedetti, Chem. Eng. Sci. 49, 2717 (1994)], which restricts the maximum allowed local density at any point in a simulation box. The maximum allowed local density at a point in a simulation box is defined by the maximum number of particles N m allowed to appear inside a sphere of radius R, with this point as the center of the sphere. Both N m and R serve as extra thermodynamic variables for maintaining a certain degree of spatial homogeneity in a supersaturated system. In a restricted canonical ensemble, at a given temperature and an overall density, series of local minima on the Helmholtz free energy surface F(N m , R) are found subject to different (N m , R) pairs. The true equilibrium metastable state is identified through the analysis of the formation free energies of Stillinger clusters of various sizes obtained from these restricted states. The simulation results of a supersaturated Lennard-Jones vapor at reduced temperature 0.7 including the vapor pressure isotherm, formation free energies of critical nuclei, and chemical potential differences are presented and analyzed. In addition, with slight modifications, the current algorithm can be applied to computing thermal properties of superheated liquids.

  4. Molecular-level elucidation of saccharin-assisted rapid dissolution and high supersaturation level of drug from Eudragit® E solid dispersion.

    Science.gov (United States)

    Ueda, Keisuke; Kanaya, Harunobu; Higashi, Kenjirou; Yamamoto, Keiji; Moribe, Kunikazu

    2018-03-01

    In this work, the effect of saccharin (SAC) addition on the dissolution and supersaturation level of phenytoin (PHT)/Eudragit® E (EUD-E) solid dispersion (SD) at neutral pH was examined. The PHT/EUD-E SD showed a much slower dissolution of PHT compared to the PHT/EUD-E/SAC SD. EUD-E formed a gel layer after the dispersion of the PHT/EUD-E SD into an aqueous medium, resulting in a slow dissolution of PHT. Pre-dissolving SAC in the aqueous medium significantly improved the dissolution of the PHT/EUD-E SD. Solid-state 13 C NMR measurements showed an ionic interaction between the tertiary amino group of EUD-E and the amide group of SAC in the EUD-E gel layer. Consequently, the ionized EUD-E could easily dissolve from the gel layer, promoting PHT dissolution. Solution-state 1 H NMR measurements revealed the presence of ionic interactions between SAC and the amino group of EUD-E in the PHT/EUD-E/SAC solution. In contrast, interactions between PHT and the hydrophobic group of EUD-E strongly inhibited the crystallization of the former from its supersaturated solution. The PHT supersaturated solution was formed from the PHT/EUD-E/SAC SD by the fast dissolution of PHT and the strong crystallization inhibition effect of EUD-E after aqueous dissolution. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Thermodynamics of Highly Supersaturated Aqueous Solutions of Poorly Water-Soluble Drugs-Impact of a Second Drug on the Solution Phase Behavior and Implications for Combination Products.

    Science.gov (United States)

    Trasi, Niraj S; Taylor, Lynne S

    2015-08-01

    There is increasing interest in formulating combination products that contain two or more drugs. Furthermore, it is also common for different drug products to be taken simultaneously. This raises the possibility of interactions between different drugs that may impact formulation performance. For poorly water-soluble compounds, the supersaturation behavior may be a critical factor in determining the extent of oral absorption. The goal of the current study was to evaluate the maximum achievable supersaturation for several poorly water-soluble compounds alone, and in combination. Model compounds included ritonavir, lopinavir, paclitaxel, felodipine, and diclofenac. The "amorphous solubility" for the pure drugs was determined using different techniques and the change in this solubility was then measured in the presence of differing amounts of a second drug. The results showed that "amorphous solubility" of each component in aqueous solution is substantially decreased by the second component, as long as the two drugs are miscible in the amorphous state. A simple thermodynamic model could be used to predict the changes in solubility as a function of composition. This information is of great value when developing co-amorphous or other supersaturating formulations and should contribute to a broader understanding of drug-drug physicochemical interactions in in vitro assays as well as in the gastrointestinal tract. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Enhanced Supersaturation and Oral Absorption of Sirolimus Using an Amorphous Solid Dispersion Based on Eudragit® E

    Directory of Open Access Journals (Sweden)

    Youngseok Cho

    2015-05-01

    Full Text Available The present study aimed to investigate the effect of Eudragit® E/HCl (E-SD on the degradation of sirolimus in simulated gastric fluid (pH 1.2 and to develop a new oral formulation of sirolimus using E-SD solid dispersions to enhance oral bioavailability. Sirolimus-loaded solid dispersions were fabricated by a spray drying process. A kinetic solubility test demonstrated that the sirolimus/E-SD/TPGS (1/8/1 solid dispersion had a maximum solubility of 196.7 μg/mL within 0.5 h that gradually decreased to 173.4 μg/mL after 12 h. According to the dissolution study, the most suitable formulation was the sirolimus/E-SD/TPGS (1/8/1 solid dispersion in simulated gastric fluid (pH 1.2, owing to enhanced stability and degree of supersaturation of E-SD and TPGS. Furthermore, pharmacokinetic studies in rats indicated that compared to the physical mixture and sirolimus/HPMC/TPGS (1/8/1 solid dispersion, the sirolimus/E-SD/TPGS (1/8/1 solid dispersion significantly improved oral absorption of sirolimus. E-SD significantly inhibited the degradation of sirolimus in a dose-dependent manner. E-SD also significantly inhibited the precipitation of sirolimus compared to hydroxypropylmethyl cellulose (HPMC. Therefore, the results from the present study suggest that the sirolimus-loaded E-SD/TPGS solid dispersion has great potential in clinical applications.

  7. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 3: understanding supersaturation versus precipitation potential during the in vitro digestion of type I, II, IIIA, IIIB and IV lipid-based formulations.

    Science.gov (United States)

    Williams, Hywel D; Sassene, Philip; Kleberg, Karen; Calderone, Marilyn; Igonin, Annabel; Jule, Eduardo; Vertommen, Jan; Blundell, Ross; Benameur, Hassan; Müllertz, Anette; Pouton, Colin W; Porter, Christopher J H

    2013-12-01

    Recent studies have shown that digestion of lipid-based formulations (LBFs) can stimulate both supersaturation and precipitation. The current study has evaluated the drug, formulation and dose-dependence of the supersaturation - precipitation balance for a range of LBFs. Type I, II, IIIA/B LBFs containing medium-chain (MC) or long-chain (LC) lipids, and lipid-free Type IV LBF incorporating different doses of fenofibrate or tolfenamic acid were digested in vitro in a simulated intestinal medium. The degree of supersaturation was assessed through comparison of drug concentrations in aqueous digestion phases (APDIGEST) during LBF digestion and the equilibrium drug solubility in the same phases. Increasing fenofibrate or tolfenamic acid drug loads (i.e., dose) had negligible effects on LC LBF performance during digestion, but promoted drug crystallization (confirmed by XRPD) from MC and Type IV LBF. Drug crystallization was only evident in instances when the calculated maximum supersaturation ratio (SR(M)) was >3. This threshold SR(M) value was remarkably consistent across all LBF and was also consistent with previous studies with danazol. The maximum supersaturation ratio (SR(M)) provides an indication of the supersaturation 'pressure' exerted by formulation digestion and is strongly predictive of the likelihood of drug precipitation in vitro. This may also prove effective in discriminating the in vivo performance of LBFs.

  8. Understanding the generation and maintenance of supersaturation during the dissolution of amorphous solid dispersions using modulated DSC and 1H NMR.

    Science.gov (United States)

    Baghel, Shrawan; Cathcart, Helen; O'Reilly, Niall J

    2018-01-30

    In this study, the dissolution behaviour of dipyridamole (DPM) and cinnarizine (CNZ) spray-dried amorphous solid dispersions (ASDs) using polyvinyl pyrrolidone (PVP) and polyacrylic acid (PAA) as a carrier matrix were evaluated and compared. The drug concentrations achieved from the dissolution of PVP and PAA solid dispersions were significantly greater than the equilibrium solubility of crystalline DPM and CNZ in phosphate buffer pH 6.8 (PBS 6.8). The maximum drug concentration achieved by dissolution of PVP and PAA solid dispersions did not exceed the theoretically calculated apparent solubility of amorphous DPM and CNZ. However, the degree of supersaturation of DPM and CNZ increased considerably as the polymer weight fraction within the solid dispersion increased. In addition, the supersaturation profile of DPM and CNZ were studied in the presence and absence of the polymers. PAA was found to maintain a higher level of supersaturation compared to PVP. The enhanced drug solution concentration following dissolution of ASDs can be attributed to the reduced crystal growth rates of DPM and CNZ at an equivalent supersaturation. We have also shown that, for drugs having high crystallization tendency and weak drug-polymer interaction, the feasible way to increase dissolution might be increase the polymer weight fraction in the ASD. Solution 1 H NMR spectra were used to understand dissolution mechanism and to identify drug-polymer interaction. The change in electron densities of proton attached to different groups in DPM and CNZ suggested drug-polymer interaction in solution. The relative intensities of peak shift and nature of interaction between drug and polymer in different systems are different. These different effects suggest that DPM and CNZ interacts in a different way with PVP and PAA in solution which goes some way towards explaining the different polymeric effect, particularly in terms of inhibition of drug recrystallization and dissolution of DPM and CNZ ASDs

  9. Investigation of the effective peak supersaturation for liquid-phase clouds at the high-alpine site Jungfraujoch, Switzerland (3580 m a.s.l.

    Directory of Open Access Journals (Sweden)

    E. Hammer

    2014-01-01

    Full Text Available Aerosols influence the Earth's radiation budget directly through absorption and scattering of solar radiation in the atmosphere but also indirectly by modifying the properties of clouds. However, climate models still suffer from large uncertainties as a result of insufficient understanding of aerosol-cloud interactions. At the high altitude research station Jungfraujoch (JFJ; 3580 m a.s.l., Switzerland cloud condensation nuclei (CCN number concentrations at eight different supersaturations (SS from 0.24% to 1.18% were measured using a CCN counter during Summer 2011. Simultaneously, in-situ aerosol activation properties of the prevailing ambient clouds were investigated by measuring the total and interstitial (non-activated dry particle number size distributions behind two different inlet systems. Combining all experimental data, a new method was developed to retrieve the so-called effective peak supersaturation SSpeak, as a measure of the SS at which ambient clouds are formed. A 17-month CCN climatology was then used to retrieve the SSpeak values also for four earlier summer campaigns (2000, 2002, 2004 and 2010 where no direct CCN data were available. The SSpeak values varied between 0.01% and 2.0% during all campaigns. An overall median SSpeak of 0.35% and dry activation diameter of 87 nm was observed. It was found that the difference in topography between northwest and southeast plays an important role for the effective peak supersaturation in clouds formed in the vicinity of the JFJ, while differences in the number concentration of potential CCN only play a minor role. Results show that air masses coming from the southeast (with the slowly rising terrain of the Aletsch Glacier generally experience lower SSpeak values than air masses coming from the northwest (steep slope. The observed overall median values were 0.41% and 0.22% for northwest and southeast wind conditions, respectively, corresponding to literature values for cumulus clouds and

  10. Fabrication of Nb3Al superconducting wires by utilizing the mechanically alloyed Nb(Al)ss supersaturated solid-solution with low-temperature annealing

    International Nuclear Information System (INIS)

    Pan, X.F.; Yan, G.; Qi, M.; Cui, L.J.; Chen, Y.L.; Zhao, Y.; Li, C.S.; Liu, X.H.; Feng, Y.; Zhang, P.X.; Liu, H.J.

    2014-01-01

    Highlights: • This paper reported superconducting properties of the powder-in-tube Nb 3 Al wires. • The Nb 3 Al wires were made by using Nb(Al) ss supersaturated solid solution powders. • The Cu-matrix Nb 3 Al superconducting wires have been successfully fabricated. • The transport J c of Nb 3 Al wires at 4.2 K, 10 T is up to 12,700 A/cm 2 . - Abstract: High-performance Nb 3 Al superconducting wire is a promising candidate to the application of high-field magnets. However, due to the production problem of km-grade wires that are free from low magnetic field instability, the Nb 3 Al wires made by rapid heating, quenching and transformation (RHQT) are still not available to the large-scale engineering application. In this paper, we reported the properties of the in situ powder-in-tube (PIT) Nb 3 Al superconducting wires, which were made by using the mechanically alloyed Nb(Al) ss supersaturated solid solution, as well as the low temperature heat-treatment at 800 °C for 10 h. The results show that Nb 3 Al superconductors in this method possess very fine grains and well superconducting properties, though a little of Nb 2 Al and Nb impurities still keep being existence at present work. At the Nb 3 Al with a nominal 26 at.% Al content, the onset T c reaches 15.8 K. Furthermore, a series of Nb 3 Al wires and tapes with various sizes have been fabricated; for the 1.0 mm-diameter wire, the J c at 4.2 K, 10 T and 14 T have achieved 12,700 and 6900 A/cm 2 , respectively. This work suggests it is possible to develop high-performance Cu-matrix Nb 3 Al superconducting wires by directly using the Nb(Al) ss supersaturated solid-solution without the complex RHQT heat-treatment process

  11. Fabrication of Nb{sub 3}Al superconducting wires by utilizing the mechanically alloyed Nb(Al){sub ss} supersaturated solid-solution with low-temperature annealing

    Energy Technology Data Exchange (ETDEWEB)

    Pan, X.F. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Yan, G., E-mail: gyan@c-nin.com [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Qi, M. [Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Cui, L.J. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Chen, Y.L.; Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity and New Energy R and D Center, Southwest Jiaotong University, Chengdu 610031 (China); Li, C.S. [Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Liu, X.H. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Feng, Y.; Zhang, P.X. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity and New Energy R and D Center, Southwest Jiaotong University, Chengdu 610031 (China); Liu, H.J. [Institute of Plasma Physics, Chinese Academy of Sciences (CAS), Hefei 230031 (China); and others

    2014-07-15

    Highlights: • This paper reported superconducting properties of the powder-in-tube Nb{sub 3}Al wires. • The Nb{sub 3}Al wires were made by using Nb(Al){sub ss} supersaturated solid solution powders. • The Cu-matrix Nb{sub 3}Al superconducting wires have been successfully fabricated. • The transport J{sub c} of Nb{sub 3}Al wires at 4.2 K, 10 T is up to 12,700 A/cm{sup 2}. - Abstract: High-performance Nb{sub 3}Al superconducting wire is a promising candidate to the application of high-field magnets. However, due to the production problem of km-grade wires that are free from low magnetic field instability, the Nb{sub 3}Al wires made by rapid heating, quenching and transformation (RHQT) are still not available to the large-scale engineering application. In this paper, we reported the properties of the in situ powder-in-tube (PIT) Nb{sub 3}Al superconducting wires, which were made by using the mechanically alloyed Nb(Al){sub ss} supersaturated solid solution, as well as the low temperature heat-treatment at 800 °C for 10 h. The results show that Nb{sub 3}Al superconductors in this method possess very fine grains and well superconducting properties, though a little of Nb{sub 2}Al and Nb impurities still keep being existence at present work. At the Nb{sub 3}Al with a nominal 26 at.% Al content, the onset T{sub c} reaches 15.8 K. Furthermore, a series of Nb{sub 3}Al wires and tapes with various sizes have been fabricated; for the 1.0 mm-diameter wire, the J{sub c} at 4.2 K, 10 T and 14 T have achieved 12,700 and 6900 A/cm{sup 2}, respectively. This work suggests it is possible to develop high-performance Cu-matrix Nb{sub 3}Al superconducting wires by directly using the Nb(Al){sub ss} supersaturated solid-solution without the complex RHQT heat-treatment process.

  12. Investigation and modeling of Al3(Sc, Zr) precipitation strengthening in the presence of enhanced supersaturation and within Al-Cu binary alloys

    Science.gov (United States)

    Deane, Kyle

    Diffuse Al-Sc and Al-Zr alloys have been demonstrated in literature to be relatively coarsening resistant at higher temperatures when compared with commonly used precipitation strengthening alloys (e.g. 2000 series, 6000 series). However, because of a limited strengthening due to the low solubility of scandium and zirconium in aluminum, and owing to the scarcity and therefore sizeable price tag attached to scandium, little research has been done in the way of optimizing these alloys for commercial applications. With this in mind, this dissertation describes research which aims to tackle several important areas of Al-Sc-Zr research that have been yet unresolved. In Chapter 4, rapid solidification was utilized to enhance the achievable supersaturation of the alloy in an effort to increase the achievable precipitate strengthening. In Chapter 5, Additive Friction Stir processing (AFS), a novel method of mechanically combining materials without melting, was employed in an attempt to pass the benefits of supersaturation from melt spun ribbon into a more structurally useful bulk material. In Chapter 6, a Matlab program written to predict precipitate nucleation, growth, and coarsening with a modified Kampmann and Wagner Numerical (KWN) model, was used to predict heat treatment regimens for more efficient strengthening. Those predictions were then tested experimentally to test the validity of the results. And lastly, in Chapter 7, the effect of zirconium on Al-Cu secondary precipitates was studied in an attempt to increase their thermal stability, as much higher phase fractions of Al-Cu precipitates are achievable than Al-Zr precipitates.

  13. Transport and transformation of soil-derived CO2, CH4 and DOC sustain CO2 supersaturation in small boreal streams.

    Science.gov (United States)

    Rasilo, Terhi; Hutchins, Ryan H S; Ruiz-González, Clara; Del Giorgio, Paul A

    2017-02-01

    Streams are typically supersaturated in carbon dioxide (CO 2 ) and methane (CH 4 ), and are recognized as important components of regional carbon (C) emissions in northern landscapes. Whereas there is consensus that in most of the systems the CO 2 emitted by streams represents C fixed in the terrestrial ecosystem, the pathways delivering this C to streams are still not well understood. We assessed the contribution of direct soil CO 2 injection versus the oxidation of soil-derived dissolved organic C (DOC) and CH 4 in supporting CO 2 supersaturation in boreal streams in Québec. We measured the concentrations of CO 2 , CH 4 and DOC in 43 streams and adjacent soil waters during summer base-flow period. A mass balance approach revealed that all three pathways are significant, and that the mineralization of soil-derived DOC and CH 4 accounted for most of the estimated stream CO 2 emissions (average 75% and 10%, respectively), and that these estimated contributions did not change significantly between the studied low order (≤3) streams. Whereas some of these transformations take place in the channel proper, our results suggest that they mainly occur in the hyporheic zones of the streams. Our results further show that stream CH 4 emissions can be fully explained by soil CH 4 inputs. This study confirms that these boreal streams, and in particular their hyporheic zones, are extremely active processors of soil derived DOC and CH 4 , not just vents for soil produced CO 2 . Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Influence of the Al distribution on the structure, elastic properties, and phase stability of supersaturated Ti1-xAlxN

    International Nuclear Information System (INIS)

    Mayrhofer, P. H.; Music, D.; Schneider, J. M.

    2006-01-01

    Ti 1-x Al x N films and/or their alloys are employed in many industrial applications due to their excellent mechanical and thermal properties. Synthesized by plasma-assisted vapor deposition, Ti 1-x Al x N is reported to crystallize in the cubic NaCl (c) structure for AlN mole fractions below 0.4-0.91, whereas at larger Al contents the hexagonal ZnS-wurtzite (w) structure is observed. Here we use ab initio calculations to analyze the effect of composition and Al distribution on the metal sublattice on phase stability, structure, and elastic properties of c-Ti 1-x Al x N and w-Ti 1-x Al x N. We show that the phase stability of supersaturated c-Ti 1-x Al x N not only depends on the chemical composition but also on the Al distribution of the metal sublattice. An increase of the metastable solubility limit of AlN in c-Ti 1-x Al x N from 0.64 to 0.74 is obtained by decreasing the number of Ti-Al bonds. This can be understood by considering the Al distribution induced changes of the electronic structure, bond energy, and configurational entropy. This may in part explain the large variation of the metastable solubility limit reported in the literature

  15. Evaluation of surface tension and Tolman length as a function of droplet radius from experimental nucleation rate and supersaturation ratio: metal vapor homogeneous nucleation.

    Science.gov (United States)

    Onischuk, A A; Purtov, P A; Baklanov, A M; Karasev, V V; Vosel, S V

    2006-01-07

    Zinc and silver vapor homogeneous nucleations are studied experimentally at the temperature from 600 to 725 and 870 K, respectively, in a laminar flow diffusion chamber with Ar as a carrier gas at atmospheric pressure. The size, shape, and concentration of aerosol particles outcoming the diffusion chamber are analyzed by a transmission electron microscope and an automatic diffusion battery. The wall deposit is studied by a scanning electron microscope (SEM). Using SEM data the nucleation rate for both Zn and Ag is estimated as 10(10) cm(-3) s(-1). The dependence of critical supersaturation on temperature for Zn and Ag measured in this paper as well as Li, Na, Cs, Ag, Mg, and Hg measured elsewhere is analyzed. To this aim the classical nucleation theory is extended by the dependence of surface tension on the nucleus radius. The preexponent in the formula for the vapor nucleation rate is derived using the formula for the work of formation of noncritical embryo [obtained by Nishioka and Kusaka [J. Chem. Phys. 96, 5370 (1992)] and later by Debenedetti and Reiss [J. Chem. Phys. 108, 5498 (1998)

  16. Air supersaturation, release of wooden fibres and upstream migration of Atlantic salmon at Rygene power plant in the River Nidelva, Aust Agder county; Vurdering av luftovermetning, trefiberutslipp og oppvandring av laks ved Rygene kraftverk i Nidelva, Aust-Agder

    Energy Technology Data Exchange (ETDEWEB)

    Thorstad, Eva B.; Kroglund, Frode; Oekland, Finn; Heggberget, Tor G.

    1997-12-31

    Incidents of dead fish have been reported in connection with a power plant at Rygene on the River Nidelva in the Aust-Agder county, Norway. Air supersaturation has been used in a bypass construction of the power plant tunnel system. In addition, wooden fibres from a fabric have been released into the water of the tunnel. Results from relevant studies concerning air saturation, wooden fibres and upstream migration are summarised in this report. 148 refs., 4 figs., 2 tabs.

  17. Evaluating the predictability of the in vitro transfer model and in vivo rat studies as a surrogate to investigate the supersaturation and precipitation behaviour of different Albendazole formulations for humans.

    Science.gov (United States)

    Ruff, Aaron; Holm, René; Kostewicz, Edmund S

    2017-07-15

    The present study investigated the ability of the in vitro transfer model and an in vivo pharmacokinetic study in rats to investigate the supersaturation and precipitation behaviour of albendazole (ABZ) relative to data from a human intestinal aspiration study reported in the literature. Two lipid based formulation systems, a hydroxypropyl-β-cyclodextrin (HPβCD) solution and the addition of a crystallization inhibitor (HPMC-E5) on the behaviour of ABZ was investigated. These formulations were investigated to represent differences in their ability to facilitate supersaturation within the small intestine. Overall, both the in vitro transfer model and the in vivo rat study were able to rank order the formulations (as aqueous suspension±HPMCsupersaturation and precipitation behaviour of ABZ using the different formulation strategies, could be attained. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Dynamical Conditions of Ice Supersaturation and Ice Nucleation in Convective Systems: A Comparative Analysis Between in Situ Aircraft Observations and WRF Simulations

    Science.gov (United States)

    D’Alessandro, John J.; Diao, Minghui; Wu, Chenglai; Liu, Xiaohong; Chen, Ming; Morrison, Hugh; Eidhammer, Trude; Jensen, Jorgen B.; Bansemer, Aaron; Zondlo, Mark A.; hide

    2017-01-01

    Occurrence frequency and dynamical conditions of ice supersaturation (ISS, where relative humidity with respect to ice (RHi) greater than 100%) are examined in the upper troposphere around convective activity. Comparisons are conducted between in situ airborne observations and the Weather Research and Forecasting model simulations using four double-moment microphysical schemes at temperatures less than or or equal to -40degdegC. All four schemes capture both clear-sky and in-cloud ISS conditions. However, the clear-sky (in-cloud) ISS conditions are completely (significantly) limited to the RHi thresholds of the Cooper parameterization. In all of the simulations, ISS occurrence frequencies are higher by approximately 3-4 orders of magnitude at higher updraft speeds (greater than 1 m s(exp -1) than those at the lower updraft speeds when ice water content (IWC) greater than 0.01 gm(exp -3), while observations show smaller differences up to approximately 1-2 orders of magnitude. The simulated ISS also occurs less frequently at weaker updrafts and downdrafts than observed. These results indicate that the simulations have a greater dependence on stronger updrafts to maintain/generate ISS at higher IWC. At lower IWC (less than or equal or 0.01 gm(exp -3), simulations unexpectedly show lower ISS frequencies at stronger updrafts. Overall, the Thompson aerosol-aware scheme has the closest magnitudes and frequencies of ISS greater than 20% to the observations, and the modified Morrison has the closest correlations between ISS frequencies and vertical velocity at higher IWC and number density. The Cooper parameterization often generates excessive ice crystals and therefore suppresses the frequency and magnitude of ISS, indicating that it should be initiated at higher ISS (e.g.,lees than or equal to 25%).

  19. The effect of cation:anion ratio in solution on the mechanism of barite growth at constant supersaturation: Role of the desolvation process on the growth kinetics

    Science.gov (United States)

    Kowacz, M.; Putnis, C. V.; Putnis, A.

    2007-11-01

    The mechanism of barite growth has been investigated in a fluid cell of an Atomic Force Microscope by passing solutions of constant supersaturation ( Ω) but variable ion activity ratio ( r=a/a) over a barite substrate.The observed dependence of step-spreading velocity on solution stoichiometry can be explained by considering non-equivalent attachment frequency factors for the cation and anion. We show that the potential for two-dimensional nucleation changes under a constant thermodynamic driving force due to the kinetics of barium integration into the surface, and that the growth mode changes from preexisting step advancement to island spreading as the cation/anion activity ratio increases. Scanning electron microscopy studies of crystals grown in bulk solutions support our findings that matching the ion ratio in the fluid to that of the crystal lattice does not result in maximum growth and nucleation rates. Significantly more rapid rates correspond to solution stoichiometries where [Ba 2+] is in excess with respect to [ SO42-]. Experiments performed in dilute aqueous solutions of methanol show that even 0.02 molar fraction of organic cosolvent in the growth solution significantly accelerates step growth velocity and nucleation rates (while keeping Ω the same as in the reference solution in water). Our observations suggest that the effect of methanol on barite growth results first of all from reduction of the barrier that prevents the Ba 2+ from reaching the surface and corroborate the hypothesis that desolvation of the cation and of the surface is the rate limiting kinetic process for two-dimensional nucleation and for crystal growth.

  20. A detailed analysis of the energy levels configuration existing in the band gap of supersaturated silicon with titanium for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, E.; Dueñas, S.; Castán, H.; García, H.; Bailón, L. [Dept. de Electricidad y Electrónica, Universidad de Valladolid, Paseo de Belén 15, 47011 Valladolid (Spain); Montero, D.; García-Hernansanz, R.; García-Hemme, E.; González-Díaz, G. [Dept. de Física Aplicada III (Electricidad y Electrónica), Univ. Complutense de Madrid, 28040 Madrid (Spain); CEI Campus Moncloa, UCM-UPM, 28040 Madrid (Spain); Olea, J. [CEI Campus Moncloa, UCM-UPM, 28040 Madrid (Spain); Instituto de Energía Solar, E.T.S.I. de Telecomunicación, Univ. Politécnica de Madrid, 28040 Madrid (Spain)

    2015-12-28

    The energy levels created in supersaturated n-type silicon substrates with titanium implantation in the attempt to create an intermediate band in their band-gap are studied in detail. Two titanium ion implantation doses (10{sup 13 }cm{sup -2} and 10{sup 14 }cm{sup -2}) are studied in this work by conductance transient technique and admittance spectroscopy. Conductance transients have been measured at temperatures of around 100 K. The particular shape of these transients is due to the formation of energy barriers in the conduction band, as a consequence of the band-gap narrowing induced by the high titanium concentration. Moreover, stationary admittance spectroscopy results suggest the existence of different energy level configuration, depending on the local titanium concentration. A continuum energy level band is formed when titanium concentration is over the Mott limit. On the other hand, when titanium concentration is lower than the Mott limit, but much higher than the donor impurity density, a quasi-continuum energy level distribution appears. Finally, a single deep center appears for low titanium concentration. At the n-type substrate, the experimental results obtained by means of thermal admittance spectroscopy at high reverse bias reveal the presence of single levels located at around E{sub c}-425 and E{sub c}-275 meV for implantation doses of 10{sup 13 }cm{sup −2} and 10{sup 14 }cm{sup −2}, respectively. At low reverse bias voltage, quasi-continuously distributed energy levels between the minimum of the conduction bands, E{sub c} and E{sub c}-450 meV, are obtained for both doses. Conductance transients detected at low temperatures reveal that the high impurity concentration induces a band gap narrowing which leads to the formation of a barrier in the conduction band. Besides, the relationship between the activation energy and the capture cross section values of all the energy levels fits very well to the Meyer-Neldel rule. As it is known

  1. Sulfate but not thiosulfate reduces calculated and measured urinary ionized calcium and supersaturation: implications for the treatment of calcium renal stones.

    Directory of Open Access Journals (Sweden)

    Allen Rodgers

    Full Text Available Urinary sulfate (SO4(2- and thiosulfate (S2O3(2- can potentially bind with calcium and decrease kidney stone risk. We modeled the effects of these species on the concentration of ionized calcium (iCa and on supersaturation (SS of calcium oxalate (CaOx and calcium phosphate (CaP, and measured their in vitro effects on iCa and the upper limit of stability (ULM of these salts.Urine data from 4 different types of stone patients were obtained from the Mayo Nephrology Clinic (Model 1. A second data set was obtained from healthy controls and hypercalciuric stone formers in the literature who had been treated with sodium thiosulfate (STS (Model 2. The Joint Expert Speciation System (JESS was used to calculate iCa and SS. In Model 1, these parameters were calculated as a function of sulfate and thiosulfate concentrations. In Model 2, data from pre- and post STS urines were analyzed. ULM and iCa were determined in human urine as a function of sulfate and thiosulfate concentrations.Calculated iCa and SS values for all calcium salts decreased with increasing sulfate concentration. Thiosulfate had no effect on these parameters. In Model 2, calculated iCa and CaOx SS increased after STS treatment, but CaP SS decreased, perhaps due to a decrease in pH after STS treatment. In confirmatory in vitro experiments supplemental sulfate, but not thiosulfate, significantly increased the calcium needed to achieve the ULM of CaP and tended to increase the oxalate needed to reach the ULM of CaOx. Sulfate also significantly decreased iCa in human urine, while thiosulfate had no effect.Increasing urinary sulfate could theoretically reduce CaOx and CaP stone risk. Although STS may reduce CaP stone risk by decreasing urinary pH, it might also paradoxically increase iCa and CaOx SS. As such, STS may not be a viable treatment option for stone disease.

  2. On aerosol hygroscopicity, cloud condensation nuclei (CCN spectra and critical supersaturation measured at two remote islands of Korea between 2006 and 2009

    Directory of Open Access Journals (Sweden)

    J. H. Kim

    2011-12-01

    Full Text Available Aerosol size distribution, total concentration (i.e. condensation nuclei (CN concentration, NCN, cloud condensation nuclei (CCN concentration (NCCN, hygroscopicity at ~90% relative humidity (RH were measured at a background monitoring site at Gosan, Jeju Island, south of the Korean Peninsula in August 2006, April to May 2007 and August to October 2008. Similar measurements took place in August 2009 at another background site (Baengnyeongdo Comprehensive Monitoring Observatory, BCMO on the island of Baengnyeongdo, off the west coast of the Korean Peninsula. Both islands were found to be influenced by continental sources regardless of season and year. Average values for all of the measured NCCN at 0.2, 0.6 and 1.0% supersaturations (S, NCN, and geometric mean diameter (Dg from both islands were in the range of 1043–3051 cm−3, 2076–4360 cm−3, 2713–4694 cm−3, 3890–5117 cm−3 and 81–98 nm, respectively. Although the differences in Dg and NCN were small between Gosan and BCMO, NCCN at various S was much higher at the latter, which is closer to China.

    Most of the aerosols were internally mixed and no notable differences in hygroscopicity were found between the days of strong pollution influence and the non-pollution days for both islands. During the 2008 and 2009 campaigns, critical supersaturation for CCN nucleation (Sc for selected particle sizes was measured. Particles of 100 nm diameters had mean Sc of 0.19 ± 0.02% during 2008 and those of 81 and 110 nm diameters had mean Sc of 0.26 ± 0.07% and 0.17 ± 0.04%, respectively, during 2009. The values of the hygroscopicity parameter (κ, estimated from measured Sc, were mostly higher than the κ values

  3. A comparative study of vitamin E TPGS/HPMC supersaturated system and other solubilizer/polymer combinations to enhance the permeability of a poorly soluble drug through the skin.

    Science.gov (United States)

    Ghosh, Indrajit; Michniak-Kohn, Bozena

    2012-11-01

    In transdermal drug delivery systems (TDDS), it is a challenge to achieve stable and prolonged high permeation rates across skin, because the concentration of the drug dissolved in the matrix has to be high in order to maintain zero order release kinetics of the drug. In case of poorly soluble drugs, due to thermodynamic challenges, there is a high tendency for the drug to nucleate immediately after formulating or even during storage. The present study focuses on the efficiency of vitamin E TPGS/HPMC supersaturated solution and other solubilizer/polymer systems to improve the solubility of the drug and inhibit crystal growth in the transdermal formulation. Effect of several solubilizers, for example, Pluronic F-127, vitamin E TPGS and co-solvent, for example, propylene glycol (PG) were studied on the supersaturated systems of ibuprofen as model drug. Various stabilizers such as hydroxylpropyl methylcellulose (HPMC 3 cps) and polyvinylpyrrolidone (PVP K-30) were examined to evaluate their crystal inhibitory effects. Different analytical tools were used in this study to detect the growth of crystals in the systems. Vitamin E TPGS and HPMC 3 cps formulation produced the highest permeation rate of the drug as compared to other systems. In addition, the onset of crystallization time was shown to be longer with this formulation as compared to other solubilizer/polymer combinations.

  4. TED of boron in the presence of EOR defects: the use of the theory of Ostwald ripening to calculate Si-interstitial supersaturation in the vicinity of extrinsic defects

    Science.gov (United States)

    Bonafos, C.; Alquier, D.; Martinez, A.; Mathiot, D.; Claverie, A.

    1996-05-01

    When end-of-range defects are located close to or within doping profiles they render diffusion "anomalous" by both enhancing the dopant diffusivity and trapping it, both phenomena decreasing with time. Upon annealing, these defects grow in size and their density is reduced through the emission and capture of Si-interstitial atoms by a coarsening process called Ostwald ripening. In this paper, we report on how, by coupling the Ostwald ripening theory with TEM observations of the time evolution of the dislocation loops upon annealing, quantitative information allowing the enhanced diffusivity to be understood can be extracted. Indeed, during the coarsening process, a supersaturation, {C}/{C e}, of Si self-interstitial atoms is maintained between the loops and decreases with time. The enhanced diffusivity is assumed to be linked to the evolution of this interstitial supersaturation during annealing through the interstitial component of boron diffusion. We show that C drastically decreases during the first second of the anneal to asymptotically reach a value just above the equilibrium concentration Ce. This rapid decay is precisely at the origin of the transient enhanced diffusivity of dopants in the vicinity of the loops.

  5. Evaluation and optimized selection of supersaturating drug delivery systems of posaconazole (BCS class 2b) in the gastrointestinal simulator (GIS): An in vitro-in silico-in vivo approach.

    Science.gov (United States)

    Hens, Bart; Bermejo, Marival; Tsume, Yasuhiro; Gonzalez-Alvarez, Isabel; Ruan, Hao; Matsui, Kazuki; Amidon, Gregory E; Cavanagh, Katie L; Kuminek, Gislaine; Benninghoff, Gail; Fan, Jianghong; Rodríguez-Hornedo, Naír; Amidon, Gordon L

    2018-03-30

    Supersaturating drug delivery systems (SDDS) have been put forward in the recent decades in order to circumvent the issue of low aqueous solubility. Prior to the start of clinical trials, these enabling formulations should be adequately explored in in vitro/in silico studies in order to understand their in vivo performance and to select the most appropriate and effective formulation in terms of oral bioavailability and therapeutic outcome. The purpose of this work was to evaluate the in vivo performance of four different oral formulations of posaconazole (categorized as a biopharmaceutics classification system (BCS) class 2b compound) based on the in vitro concentrations in the gastrointestinal simulator (GIS), coupled with an in silico pharmacokinetic model to predict their systemic profiles. Recently published intraluminal and systemic concentrations of posaconazole for these formulations served as a reference to validate the in vitro and in silico results. Additionally, the morphology of the formed precipitate of posaconazole was visualized and characterized by optical microscopy studies and thermal analysis. This multidisciplinary work demonstrates an in vitro-in silico-in vivo approach that provides a scientific basis for screening SDDS by a user-friendly formulation predictive dissolution (fPD) device in order to rank these formulations towards their in vivo performance. Copyright © 2018. Published by Elsevier B.V.

  6. La préparation des catalyseurs. Première partie : Germination et croissance des particules. Importance de la sursaturation du milieu Preparation of Catalysts. Part One: Particle Germination and Growth. Importance of the Supersaturation of the Medium

    Directory of Open Access Journals (Sweden)

    Marcilly C.

    2006-11-01

    Full Text Available Cet article présente les deux notions fondamentales et générales de germination et croissance des particules ou cristaux élémentaires qui peuvent former aussi bien le support du catalyseur que l'agent actif dispersé à sa surface. Germination et croissance sont deux étapes très importantes qui interviennent à divers stades de la préparation des catalyseurs : précipitation, séchage, calcination, etc. On montre que le paramètre essentiel qui régit ces deux étapes et qui détermine la dimension, la structure et le faciès des particules élémentaires est la sursaturation du milieu. This article describes the two fundamental and general concepts of germination and growth of elementary particles or crystals which may form either the catalyst support or the dispersed active agent on its surface. Germination and growth are two very important steps which occur at dif-ferent stages of the preparation of catalysts, i,e. precipitation, drying, calcination, etc. The supersaturation of the medium is shown to be the essential parameter governing these two steps and determining the size, structure and facies of elementary particles.

  7. Pressure waves in a supersaturated bubbly magma

    Science.gov (United States)

    Kurzon, I.; Lyakhovsky, V.; Navon, O.; Chouet, B.

    2011-01-01

    We study the interaction of acoustic pressure waves with an expanding bubbly magma. The expansion of magma is the result of bubble growth during or following magma decompression and leads to two competing processes that affect pressure waves. On the one hand, growth in vesicularity leads to increased damping and decreased wave amplitudes, and on the other hand, a decrease in the effective bulk modulus of the bubbly mixture reduces wave velocity, which in turn, reduces damping and may lead to wave amplification. The additional acoustic energy originates from the chemical energy released during bubble growth. We examine this phenomenon analytically to identify conditions under which amplification of pressure waves is possible. These conditions are further examined numerically to shed light on the frequency and phase dependencies in relation to the interaction of waves and growing bubbles. Amplification is possible at low frequencies and when the growth rate of bubbles reaches an optimum value for which the wave velocity decreases sufficiently to overcome the increased damping of the vesicular material. We examine two amplification phase-dependent effects: (1) a tensile-phase effect in which the inserted wave adds to the process of bubble growth, utilizing the energy associated with the gas overpressure in the bubble and therefore converting a large proportion of this energy into additional acoustic energy, and (2) a compressive-phase effect in which the pressure wave works against the growing bubbles and a large amount of its acoustic energy is dissipated during the first cycle, but later enough energy is gained to amplify the second cycle. These two effects provide additional new possible mechanisms for the amplification phase seen in Long-Period (LP) and Very-Long-Period (VLP) seismic signals originating in magma-filled cracks.

  8. Sobresaturacion urinaria del Oxalato de Calcio más alla de la Nefrolitiasis: La relación con el daño tubulointersticial Urinary calcium oxalate supersaturation beyond nephrolithiasis: Relationship with tubulointerstitial damage

    Directory of Open Access Journals (Sweden)

    J. E. Toblli

    2003-04-01

    Full Text Available Numerosos estudios han demostrado que el producto de la actividad iónica (PAI de oxalato de calcio (OxCa en la orina, como indicador de sobresaturación (SS urinaria, es mayor en pacientes formadores de cálculos que en sujetos normales. Más allá de la relación entre SS urinaria del OxCa y litogénesis, la exposición de OxCa al epitelio tubular puede ocasionar lesiones en la célula tubular y en el intersticio renal. Nuestro objetivo fue evaluar la posible relación entre SS urinaria de OxCa y el daño tubulointersticial (TI en un modelo animal de hiperoxaluria. Durante cuatro semanas, ratas Sprague-Dawley machos, divididas en dos grupos recibieron: grupo 1 Control [G1], (n= 8 agua, grupo 2 [G2], (n = 8 etilenglicol (ETG al 1% en el agua de beber. La SS urinaria de OxCa se valoró mediante el PAI del OxCa. Las lesiones TI se analizaron al finalizar el estudio por microscopía óptica e inmunohistoquímica. El G2 (ETG presentó valores mayores (pA number of studies have demonstrated that the urinary ion activity product (IAP of calcium oxalate (CaOx, as an index of urinary CaOx supersaturation (SS, is higher in renal stone formers than in normal subjects. Besides, the relation between CaOx SS and lithogenesis, crystal CaOx exposition can produce tubular cell as well as renal interstitial lesions. The aim of our study was to evaluate the possible relationship between CaOx SS and tubulointerstitial (TI damage in an animal model of hyperoxaluria. During four weeks, male Sprague-Dawley rats received: G1 (n=8 control regular water, and G2 (n= 8 1% ethylene glycol (ETG (precursor for oxalates in drinking water. In order to evaluate urinary CaOx SS, IAP assessed by Tisselius formula was performed. At the end of the study, renal lesions were evaluated by light microscopy and immunohistochemistry. Animals from G2 (ETG presented higher (p< 0.01 values of: a urinary oxalate excretion; b urinary CaOx SS; c crystalluria score; d proteinuria; and lower (p

  9. MÚSCULO DIAFRAGMA HOMÓLOGO CONSERVADO EM SOLUÇÃO SUPERSATURADA DE AÇÚCAR PARA REPARAÇÃO DE GRANDE DEFEITO NO DIAFRAGMA DE CÃO HOMOLOGOUS DIAPHRAGM MUSCLE CONSERVED IN SUPERSATURATED SUGAR SOLUTION TO REPAR LARGE DEFECTS IN DIAPHRAGM OF DOGS

    Directory of Open Access Journals (Sweden)

    Alexandre Mazzanti

    2001-04-01

    Full Text Available O comportamento cicatricial de um segmento muscular homólogo, conservado em solução supersaturada de açúcar a 300%, foi pesquisado no músculo diafragma de cão. Foram utilizados nove cães, adultos, três machos, sem raça definida com peso variando de 10,4 a 21,0kg, separados em três grupos de igual número denominados de I, II e III. Foi criado um defeito no hemidiafragma direito na porção muscular de dimensões 9,0 x 6,0cm, através de toracotomia no 10º espaço intercostal direito para fixação do implante muscular com fio poliglactina 910 3-0, por meio de pontos de Wolff com sobreposição de bordas. Os cães foram observados por um período de 30 dias (grupo I, 75 dias (grupo II e 120 dias (grupo III de pós-operatório, quando foram reoperados para observação macroscópica e coleta de amostras para avaliação histológica. Foi verificado nos animais do grupo I, substituição parcial e nos grupos II e III, substituição total da porção muscular do diafragma enxertado por tecido fibrovascular, que ocluía o defeito diafragmático, sendo observado com a evolução pós-operatória, um tecido de menor espessura, quase transparente. O emprego de segmento de músculo diafragma, conservado em solução supersaturada de açúcar a 300%, em temperatura ambiente, para reparação de grande defeito no músculo diafragma de cão, é substituído por uma fina camada de tecido conjuntivo fibroso.The repair induced by an homologous muscular segment conserved in 300% supersaturated sugar solution on the diaphragmatic muscle of dogs was investigated. Nine adults mongrel dogs, three males, weights varying from 10.4 to 21.0kg, were used separated in three equally numbered denominated groups I, II and III. A defect was created, on the muscular portion of the right hemidiaphragm, with dimensions of 9.0 x 6.0cm, through thoracotomy in the 10th right intercostal space. The graft was sutured with thread poligalactin 910 3-0, by means of

  10. The effect of a supersaturated calcium phosphate mouth rinse on the development of oral mucositis in head and neck cancer patients treated with (chemo)radiation: a single-center, randomized, prospective study of a calcium phosphate mouth rinse + standard of care versus standard of care.

    Science.gov (United States)

    Lambrecht, Maarten; Mercier, Carole; Geussens, Yasmyne; Nuyts, Sandra

    2013-10-01

    Mucosal damage is an important and debilitating side effect when treating head and neck cancer patients with (chemo-)radiation. The aim of this randomized clinical trial was to investigate whether the addition of a neutral, supersaturated, calcium phosphate (CP) mouth rinse benefits the severity and duration of acute mucositis in head and neck cancer patients treated with (chemo)radiation. A total of 60 patients with malignant neoplasms of the head and neck receiving (chemo)radiation were included in this study. Fifty-eight patients were randomized into two treatment arms: a control group receiving standard of care (n = 31) and a study group receiving standard of care + daily CP mouth rinses (n = 27) starting on the first day of (chemo-)radiation. Oral mucositis and dysphagia were assessed twice a week using the National Cancer Institute common toxicity criteria scale version 3, oral pain was scored with a visual analogue scale. No significant difference in grade III mucositis (59 vs. 71 %; p = 0.25) and dysphagia (33 vs. 42 %, p = 0.39) was observed between the study group compared to the control group. Also no significant difference in time until development of peak mucositis (28.6 vs. 28.7 days; p = 0.48), duration of peak mucositis (22.7 vs. 24.6 days; p = 0.31), recuperation of peak dysphagia (20.5 vs 24.2 days; p = 0.13) and occurrence of severe pain (56 vs. 52 %, p = 0.5). In this randomized study, the addition of CP mouth rinse to standard of care did not improve the frequency, duration or severity of the most common acute toxicities during and early after (chemo)radiation. There is currently no evidence supporting its standard use in daily practice.

  11. Bubble coalescence dynamics and supersaturation in electrolytic gas evolution

    Energy Technology Data Exchange (ETDEWEB)

    Stover, R.L. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering]|[Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

    1996-08-01

    The apparatus and procedures developed in this research permit the observation of electrolytic bubble coalescence, which heretofore has not been possible. The influence of bubble size, electrolyte viscosity, surface tension, gas type, and pH on bubble coalescence was examined. The Navier-Stokes equations with free surface boundary conditions were solved numerically for the full range of experimental variables that were examined. Based on this study, the following mechanism for bubble coalescence emerges: when two gas bubbles coalesce, the surface energy decreases as the curvature and surface area of the resultant bubble decrease, and the energy is imparted into the surrounding liquid. The initial motion is driven by the surface tension and slowed by the inertia and viscosity of the surrounding fluid. The initial velocity of the interface is approximately proportional to the square root of the surface tension and inversely proportional to the square root of the bubble radius. Fluid inertia sustains the oblate/prolate oscillations of the resultant bubble. The period of the oscillations varies with the bubble radius raised to the 3/2 power and inversely with the square root of the surface tension. Viscous resistance dampens the oscillations at a rate proportional to the viscosity and inversely proportional to the square of the bubble radius. The numerical simulations were consistent with most of the experimental results. The differences between the computed and measured saddle point decelerations and periods suggest that the surface tension in the experiments may have changed during each run. By adjusting the surface tension in the simulation, a good fit was obtained for the 150-{micro}m diameter bubbles. The simulations fit the experiments on larger bubbles with very little adjustment of surface tension. A more focused analysis should be done to elucidate the phenomena that occur in the receding liquid film immediately following rupture.

  12. Kinetics of small particle activation in supersaturated vapors

    Energy Technology Data Exchange (ETDEWEB)

    McGraw, R.; Wang, J.

    2010-08-29

    We examine the nucleated (with barrier) activation of perfectly wetting (zero contact angle) particles ranging from bulk size down to one nanometer. Thermodynamic properties of the particles, coated with liquid layers of varying thickness and surrounded by vapor, are analyzed. Nano-size particles are predicted to activate at relative humidity below the Kelvin curve on crossing a nucleation barrier, located at a critical liquid layer thickness such that the total particle size (core + liquid layer) equals the Kelvin radius (Fig. 1). This barrier vanishes precisely as the critical layer thickness approaches the thin layer limit and the Kelvin radius equals the radius of the particle itself. These considerations are similar to those included in Fletcher's theory (Fletcher, 1958) however the present analysis differs in several important respects. Firstly, where Fletcher used the classical prefactor-exponent form for the nucleation rate, requiring separate estimation of the kinetic prefactor, we solve a diffusion-drift equation that is equivalent to including the full Becker-Doering (BD) multi-state kinetics of condensation/evaporation along the growth coordinate. We also determine the mean first passage time (MFPT) for barrier crossing (Wedekind et al., 2007), which is shown to provide a generalization of BD nucleation kinetics especially useful for barrier heights that are considerably lower than those typically encountered in homogeneous vapor-liquid nucleation, and make explicit comparisons between the MFPT and BD kinetic models. Barrier heights for heterogeneous nucleation are computed by a thermo-dynamic area construction introduced recently to model deliquescence and efflorescence of small particles (McGraw and Lewis, 2009). In addition to providing a graphical representation of the activation process that offers new insights, the area construction provides a molecular approach that avoids explicit use of the interfacial tension. Typical barrier profiles for water condensation on particles of different size are shown in Fig. 2. The main emphasis of this paper lies in the computation of these barriers and barrier crossing rates by the various methods described. The present theory is especially relevant to determining the lower size limit for particle detection in condensation particle counters. Recently it has been shown that particles can take on liquid at sizes significantly smaller than predicted from the Kelvin relation in the no-barrier case (Winkler et al., 2008). This implies a detection principle based on the activated nucleation model that is the focus of the present study. Calculations are presented for water, n-propanol, and several other condensable vapors.

  13. Homogeneous Nucleation Rate Measurements in Supersaturated Water Vapor

    Czech Academy of Sciences Publication Activity Database

    Brus, David; Ždímal, Vladimír; Smolík, Jiří

    2008-01-01

    Roč. 129, č. 17 (2008), , 174501-1-174501-8 ISSN 0021-9606 R&D Projects: GA ČR GA101/05/2214 Institutional research plan: CEZ:AV0Z40720504 Keywords : homogeneous nucleation * water * diffusion chamber Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.149, year: 2008

  14. Vacancy supersaturations produced by high-energy ion implantation

    International Nuclear Information System (INIS)

    Venezia, V.C.; Eaglesham, D.J.; Jacobson, D.C.; Gossmann, H.J.

    1998-01-01

    A new technique for detecting the vacancy clusters produced by high-energy ion implantation into silicon is proposed and tested. This technique takes advantage of the fact that metal impurities, such as Au, are gettered near one-half of the projected range (1/2 R p ) of MeV implants. The vacancy clustered region produced by a 2 MeV Si + implant into silicon has been labeled with Au diffused in from the front surface. The trapped Au was detected by Rutherford backscattering spectrometry (RBS) to profile the vacancy clusters. Cross section transmission electron microscopy (XTEM) analysis shows that the Au in the region of vacancy clusters is in the form of precipitates. By annealing MeV implanted samples prior to introduction of the Au, changes in the defect concentration within the vacancy clustered region were monitored as a function of annealing conditions

  15. Hernioplastia diafragmática em cão com pericárdio bovino conservado em solução supersaturada de açúcar Diaphragmatic hernioplasty in dogs with bovine pericardium preserved in supersaturated sugar solution

    Directory of Open Access Journals (Sweden)

    A. Mazzanti

    2003-12-01

    implantation site. Histologically, fine connective tissue occluded the diaphragmatic defect. Bovine pericardium preserved in 300% supersaturated sugar solution at room temperature is replaced by a fine layer of connective fibrous tissue and promote repair of large diaphragmatic defects in dogs.

  16. Supersaturated Self-Assembled Charge-Selective Interfacial Layers for Organic Solar Cells

    Science.gov (United States)

    2014-11-24

    layers (IFLs) on the tin-doped indium oxide (ITO) anodes of organic photovoltaic (OPV) cells, a series of Ar2N-(CH2)n-SiCl3 precursors with Ar = 3,4...Bulk- heterojunction OPV devices are fabricated with these SHSAMs: ITO/IFL/poly[[4,8- bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][2...phobicity,15,19,20 electrical conductivity,21−23 and charge in- jection/collection selectivity through the film.1,2,10 For example, on metal oxide substrates

  17. Nucleation of voids in materials supersaturated with mobile interstitials, vacancies and divacancies

    International Nuclear Information System (INIS)

    Wolfer, W.G.; Si-Ahmed, A.

    1982-01-01

    In previous void nucleation theories, the void size has been allowed to change only by one atomic volume through vacancy or interstitial absorption or through vacancy emission. To include the absorption of divacancies, the classical nucleation theory is here extended to include double-step transitions between clusters. The new nucleation theory is applied to study the effect of divacancies on void formation. It is found that the steady-state void nucleation rate is enhanced by several orders of magnitude as compared to results with previous void nucleation theories. However, to obtain void nucleation rates comparable to measured ones, the effect of impurities, segregation and insoluble gases must still be invoked. (author)

  18. Crystal nucleus formation on the cathode under conditions of supersaturation of melt by lower valent forms

    International Nuclear Information System (INIS)

    Kaliev, K.A.; Aksent'ev, A.G.; Baraboshkin, A.N.

    1979-01-01

    Nucleation on the cathode of sodium-tungsten bronzes forom the Na 2 WO 4 -WO 3 melt, containing 40 mol.% WO 3 is studied. It has been found that in the initial period the cathode deposition of sodium-tungsten bronze is preceeded by the formation of tungsten soluble lower reduced forms, the concentration of which can considerably exceed the equilibrium one because of excessive overstress of oxide bronze crystal nucleation. The polarization of cathode and change of its potential at the crystal nucleation of sodium-tungsten bronze and switching-off of the electrolysis current has been studied

  19. Statistical analysis of dimer formation in supersaturated metal vapor based on molecular dynamics simulation

    Science.gov (United States)

    Korenchenko, Anna E.; Vorontsov, Alexander G.; Gelchinski, Boris R.; Sannikov, Grigorii P.

    2018-04-01

    We discuss the problem of dimer formation during the homogeneous nucleation of atomic metal vapor in an inert gas environment. We simulated nucleation with molecular dynamics and carried out the statistical analysis of double- and triple-atomic collisions as the two ways of long-lived diatomic complex formation. Close pair of atoms with lifetime greater than the mean time interval between atom-atom collisions is called a long-lived diatomic complex. We found that double- and triple-atomic collisions gave approximately the same probabilities of long-lived diatomic complex formation, but internal energy of the resulted state was essentially lower in the second case. Some diatomic complexes formed in three-particle collisions are stable enough to be a critical nucleus.

  20. Improved Accident Tolerance of Austenitic Stainless Steel Cladding through Colossal Supersaturation with Interstitial Solutes

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Frank [Case Western Reserve Univ., Cleveland, OH (United States)

    2016-10-13

    We proposed a program-supporting research project in the area of fuel-cycle R&D, specifically on the topic of advanced fuels. Our goal was to investigate whether SECIS (surface engineering by concentrated interstitial solute – carbon, nitrogen) can improve the properties of austenitic stainless steels and related structural alloys such that they can be used for nuclear fuel cladding in LWRs (light-water reactors) and significantly excel currently used alloys with regard to performance, safety, service life, and accident tolerance. We intended to demonstrate that SECIS can be adapted for post-processing of clad tubing to significantly enhance mechanical properties (hardness, wear resistance, and fatigue life), corrosion resistance, resistance to stress–corrosion cracking (hydrogen-induced embrittlement), and – potentially – radiation resistance (against electron-, neutron-, or ion-radiation damage). To test this hypothesis, we measured various relevant properties of the surface-engineered alloys and compared them with corresponding properties of the non–treated, as-received alloys. In particular, we studied the impact of heat exposure corresponding to BWR (boiling-water reactor) working and accident (loss-of-coolant) conditions and the effect of ion irradiation.

  1. Measurements of T0 temperatures of supersaturated Si-As alloys

    International Nuclear Information System (INIS)

    Lee, K.R.; West, J.A.; Smith, P.M.; Aziz, M.J.

    1992-01-01

    In this paper the congruent melting point, or T 0 curve, of crystalline Si-As alloys has been measured in the range of 1.6 to 18.1 at.% arsenic by line source electron beam annealing. Alloys were created by ion implantation of as into 0.1 mm Si-on-sapphire and crystallized by pulsed laser melting. T 0 temperatures decrease form 1673 ± 10K at 2.0 at.% As to 1516 ± 30K at 18.1 at.% As. The results of these measurements are significantly higher than the previous results of studies using pulsed laser melting techniques. Advantages of the e-beam technique over previous techniques are discussed. Chemical free energy functions of the solid and liquid phases were calculated from existing thermodynamic data. The calculated T 0 curve agrees with the measured values only in low concentration region (less than 8 at.%)

  2. Supersaturating Silicon with Titanium by Continuous-Wave Laser Irradiation of Sputtered Titanium Film on Silicon

    Science.gov (United States)

    Bao-Dian, Fan; Yu, Qiu; Rong, Chen; Miao, Pan; Li-Han, Cai; Jiang-Hui, Zheng; Chao, Chen

    2016-02-01

    Not Available Supported by the National Natural Science Foundation of China under Grant No 61076056, and the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure of Shanghai Institute of Ceramics of Chinese Academy of Sciences under Grant No SKL201404SIC.

  3. Contrasting magnetism in dilute and supersaturated cobalt-fullerene mixture films

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Stupakov, Alexandr; Pokorný, Jan; Lavrentieva, Inna; Vacík, Jiří; Dejneka, Alexandr; Barchuk, M.; Čapková, P.

    2015-01-01

    Roč. 48, č. 33 (2015), s. 335002 ISSN 0022-3727 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : cobalt * fullerene * nanomagnetism * nanostructure * self-organization Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 2.772, year: 2015

  4. Spontaneous growth of the polyhedral fullerene crystals in the supersaturated Ni-C(60) composite

    Czech Academy of Sciences Publication Activity Database

    Vacík, Jiří; Lavrentiev, Vasyl; Michalcová, A.; Abe, H.; Horák, Pavel

    2011-01-01

    Roč. 509, č. 1 (2011), S380-S383 ISSN 0925-8388. [17th International Symposium on Metastable, Amorphous and Nanostructured Materials (ISMANAM 2010). Zurich, 04.09.2010-09.06.2010] R&D Projects: GA ČR GAP107/11/1856; GA AV ČR(CZ) KAN400480701; GA AV ČR(CZ) IAA400320901; GA AV ČR IAA200480702; GA ČR GA106/09/1264; GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z40320502 Keywords : Nickel * Fullerene s * Phase separation * Polyhedral particles Subject RIV: JJ - Other Materials Impact factor: 2.289, year: 2011

  5. Enhancement of the droplet nucleation in a dense supersaturated Lennard-Jones vapor

    Energy Technology Data Exchange (ETDEWEB)

    Zhukhovitskii, D. I., E-mail: dmr@ihed.ras.ru [Joint Institute of High Temperatures, Russian Academy of Sciences, Izhorskaya 13, Bd. 2, 125412 Moscow (Russian Federation)

    2016-05-14

    The vapor–liquid nucleation in a dense Lennard-Jones system is studied analytically and numerically. A solution of the nucleation kinetic equations, which includes the elementary processes of condensation/evaporation involving the lightest clusters, is obtained, and the nucleation rate is calculated. Based on the equation of state for the cluster vapor, the pre-exponential factor is obtained. The latter diverges as a spinodal is reached, which results in the nucleation enhancement. The work of critical cluster formation is calculated using the previously developed two-parameter model (TPM) of small clusters. A simple expression for the nucleation rate is deduced and it is shown that the work of cluster formation is reduced for a dense vapor. This results in the nucleation enhancement as well. To verify the TPM, a simulation is performed that mimics a steady-state nucleation experiments in the thermal diffusion cloud chamber. The nucleating vapor with and without a carrier gas is simulated using two different thermostats for the monomers and clusters. The TPM proves to match the simulation results of this work and of other studies.

  6. Improved Accident Tolerance of Austenitic Stainless Steel Cladding through Colossal Supersaturation with Interstitial Solutes

    International Nuclear Information System (INIS)

    Ernst, Frank

    2016-01-01

    We proposed a program-supporting research project in the area of fuel-cycle R&D, specifically on the topic of advanced fuels. Our goal was to investigate whether SECIS (surface engineering by concentrated interstitial solute - carbon, nitrogen) can improve the properties of austenitic stainless steels and related structural alloys such that they can be used for nuclear fuel cladding in LWRs (light-water reactors) and significantly excel currently used alloys with regard to performance, safety, service life, and accident tolerance. We intended to demonstrate that SECIS can be adapted for post-processing of clad tubing to significantly enhance mechanical properties (hardness, wear resistance, and fatigue life), corrosion resistance, resistance to stress-corrosion cracking (hydrogen-induced embrittlement), and - potentially - radiation resistance (against electron-, neutron-, or ion-radiation damage). To test this hypothesis, we measured various relevant properties of the surface-engineered alloys and compared them with corresponding properties of the non-treated, as-received alloys. In particular, we studied the impact of heat exposure corresponding to BWR (boiling-water reactor) working and accident (loss-of-coolant) conditions and the effect of ion irradiation.

  7. Friction and corrosion resistance of sputter deposited supersaturated metastable aluminium-molybdenum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Zeid, O.A. [Univ. of the United Arab Emirates, Al-Ain (United Arab Emirates). Dept. of Mech. Eng.; Bates, R.I. [Design, Mfg. and Marketing Research Inst., Univ. of Salford (United Kingdom)

    1996-12-15

    Two closed field unbalanced magnetrons with targets of aluminium and molybdenum have been used for the co-deposition of aluminium-molybdenum coatings with different compositions. A pin on disk machine and a computer controlled potentiostat have been used to evaluate respectively, the tribological and corrosion properties of the deposited alloys. Results have shown that introducing molybdenum into aluminium coatings improves their poor tribological properties. Aluminium-molybdenum coatings with different compositions have shown low wear behaviour and for coatings with high molybdenum contents (> 80%) friction coefficients against steel, as low as 0.18 have been obtained. The addition of molybdenum into aluminium coatings has reduced their corrosion tendency and corrosion current density in a marine environment. (orig.)

  8. Influence of supersaturated carbon on the diffusion of Ni in ferrite determined by atom probe tomography

    KAUST Repository

    Kresse, T.; Li, Yujiao; Boll, Torben; Borchers, Christine; Choi, Pyuckpa; Al-Kassab, Talaat; Raabe, Dierk; Kirchheim, Reiner

    2013-01-01

    In patented and cold-drawn pearlitic steel wires dissociation of cementite occurs during mechanical deformation. In this study the influence of the carbon decomposition on the diffusion of nickel in ferrite is investigated by means of atom probe tomography. In the temperature range 423-523 K we observed a much smaller activation energy of Ni diffusion than for self-diffusion in body-centered cubic iron, indicating an increased vacancy density owing to enhanced formation of vacancy-carbon complexes. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Facet-controlled phase separation in supersaturated Au-Ni nanoparticles upon shape equilibration

    Czech Academy of Sciences Publication Activity Database

    Herz, A.; Friák, Martin; Rossberg, D.; Hentschel, M.; Theska, F.; Wang, D.; Holec, D.; Šob, Mojmír; Schneeweiss, Oldřich; Schaaf, P.

    2015-01-01

    Roč. 107, č. 7 (2015), art.n. 073109 ISSN 0003-6951 Institutional support: RVO:68081723 Keywords : GENERALIZED GRADIENT APPROXIMATION * NANOPOROUS GOLD NANOPARTICLES * AUGMENTED-WAVE METHOD * ELASTIC-CONSTANTS * BILAYER * NICKEL Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.142, year: 2015

  10. Understanding the glass-forming ability of active pharmaceutical ingredients for designing supersaturating dosage forms.

    Science.gov (United States)

    Kawakami, Kohsaku; Usui, Toshinori; Hattori, Mitsunari

    2012-09-01

    Amorphous solid dispersions have great potential for enhancing oral absorption of poorly soluble drugs. Crystallization behavior during storage and after exposure to aqueous media must be examined in detail for designing stable and effective amorphous formulations, and it is significantly affected by the intrinsic properties of an amorphous drug. Many attempts have been made to correlate various thermodynamic parameters of pharmaceutical glasses with their crystallization behavior; however, variations in model drugs that could be used for such investigation has been limited because the amorphous characteristics of drugs possessing a high crystallization tendency are difficult to evaluate. In this study, high-speed differential scanning calorimetry, which could inhibit their crystallization using high cooling rates up to 2000°C/s, was employed for assessing such drugs. The thermodynamic parameters of the glasses, including glass transition temperature (T(g)) and fragility, were obtained to show that their crystallization tendency cannot be explained simply by the parameters, although there have been general thought that fragility may be correlated with crystallization tendency. Also investigated was correlation between the thermodynamic parameters and crystallization tendency upon contact with water, which influences in vivo efficacy of amorphous formulations. T(g) was correlated well with the crystallization tendency upon contact with water. Copyright © 2012 Wiley Periodicals, Inc.

  11. Influence of supersaturated carbon on the diffusion of Ni in ferrite determined by atom probe tomography

    KAUST Repository

    Kresse, T.

    2013-09-01

    In patented and cold-drawn pearlitic steel wires dissociation of cementite occurs during mechanical deformation. In this study the influence of the carbon decomposition on the diffusion of nickel in ferrite is investigated by means of atom probe tomography. In the temperature range 423-523 K we observed a much smaller activation energy of Ni diffusion than for self-diffusion in body-centered cubic iron, indicating an increased vacancy density owing to enhanced formation of vacancy-carbon complexes. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Supersaturation Control using Analytical Crystal Size Distribution Estimator for Temperature Dependent in Nucleation and Crystal Growth Phenomena

    Science.gov (United States)

    Zahari, Zakirah Mohd; Zubaidah Adnan, Siti; Kanthasamy, Ramesh; Saleh, Suriyati; Samad, Noor Asma Fazli Abdul

    2018-03-01

    The specification of the crystal product is usually given in terms of crystal size distribution (CSD). To this end, optimal cooling strategy is necessary to achieve the CSD. The direct design control involving analytical CSD estimator is one of the approaches that can be used to generate the set-point. However, the effects of temperature on the crystal growth rate are neglected in the estimator. Thus, the temperature dependence on the crystal growth rate needs to be considered in order to provide an accurate set-point. The objective of this work is to extend the analytical CSD estimator where Arrhenius expression is employed to cover the effects of temperature on the growth rate. The application of this work is demonstrated through a potassium sulphate crystallisation process. Based on specified target CSD, the extended estimator is capable of generating the required set-point where a proposed controller successfully maintained the operation at the set-point to achieve the target CSD. Comparison with other cooling strategies shows a reduction up to 18.2% of the total number of undesirable crystals generated from secondary nucleation using linear cooling strategy is achieved.

  13. Theory, Electro-Optical Design, Testing, and Calibration of a Prototype Atmospheric Supersaturation, Humidity, and Temperature Sensor.

    Science.gov (United States)

    1982-07-15

    Voltage versus Aspirated Dew Point 94 Hygrometer Reading in Degrees Celsius (10 Second Averages) Fig. (7.5)(b) Scatter Diagram - NCAR Lyman-Alpha...Hygrometer Output Voltage versus Aspirated Dew Point Hygrometer Reading in Degrees Celsius (10 Second Averages) Fig. (7.6) Ophir Air Temperature...goal thus translates to an absolute humidity accuracy of 1% of reading or better over a dynamic r-dnj(! ,(f i(jul. 4 uder. of magnitude. 29 - ITI VAP

  14. Investigation on the formation of Cu-Fe nano crystalline super-saturated solid solution developed by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, M., E-mail: m.mojtahedi@gmail.com [School of Materials Science and Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Goodarzi, M.; Aboutalebi, M.R. [School of Materials Science and Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Ghaffari, M. [Department of Electrical and Electronics Engineering, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Soleimanian, V. [Department of Physics, Faculty of Science, Shahrekord University, P.O. Box 115, Shahrekord (Iran, Islamic Republic of)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer The deformation of the mechanically alloyed Cu-Fe powder is anisotropic. Black-Right-Pointing-Pointer The Rietveld method is more proper and results in smaller crystallite size than the Scherer and Williamson-Hall methods. Black-Right-Pointing-Pointer A dual phase super saturated solid solution achieved after 96 h of milling of the mixtures with 30, 50 and 70 wt.% of Iron. Black-Right-Pointing-Pointer A final proportion of approximately 85% FCC and 15% BCC structure obtained in all of the applied compositions. - Abstract: In this study, the formation of super saturated solid solution in the binary Cu-Fe system was investigated. Three powder blends with 30, 50 and 70 wt.% of Fe were milled for different times to 96 h. The variations of lattice parameter and inter-planar spacing were calculated and analyzed using X-ray diffraction analysis (XDA). The anisotropy of lattice deformation in the FCC phase was studied and the obtained results were compared to milled pure Cu powder. Furthermore, crystallite size was calculated using Scherer formula in comparison with Rietveld full profile refinement method. Considering the previous studies about the formation of non-equilibrium FCC and BCC phases, the phase evolution has been discussed and the proportion of each phase was calculated using Rietveld refinement method. Supplementary studies on the evolution of microstructure and formation of solid solution were carried out using high resolution transmission electron microscopy (HRTEM). Finally, high angle annular dark field (HAADF) imaging was utilized to find out the level of homogeneity in the resulting phases. While true alloying takes place in each phase, the final structure consists of both FCC and BCC nano-crystallites.

  15. Gas Supersaturation May Reduce the Survival of Yearling Chinook Salmon in the Lower Columbia River and Ocean Plume

    Science.gov (United States)

    Brosnan, Ian; Welch, David; Scott, Melinda Jacobs

    2015-01-01

    Unusually high flows in the Columbia River in 2011 raised total dissolved gas (TDG) levels in the river above the 120 percent legal limit imposed to prevent harmful impacts to aquatic organisms. This provided a unique opportunity to evaluate the effect on smolt survival. In-river (IR) migrating juvenile yearling Chinook released at Bonneville Dam with acoustic tags during periods when TDG exceeded 120 percent received estimated maximum exposures of 134 TDG. Subsequent daily survival rates in the lower river and plume were reduced by 0.06 per day (SE equals 0.01) and 0.15 per day (SE equals 0.05) relative to IR migrant fish released when TDG was less than 120 percent. Transported smolts (T) released 10-13 kilometers below Bonneville Dam had lower maximum exposure levels (126 percent) and experienced no difference in daily survival rates relative to unexposed smolts. River temperature levels and trends in turbidity and disease prevalence between releases of high and low exposure smolts were not consistent with the observed effects on survival rates. We conclude that smolts may suffer from chronic effects of elevated TDG exposure while migrating through the Columbia River and plume. Consideration should be given to measuring these survival losses in an explicit experimental framework that isolates possible confounding factors.

  16. Homogeneous and Light-Induced Nucleation of Sulfur Vapor-Diffusion Cloud Chamber Investigation of Constant Rate Supersaturation

    Czech Academy of Sciences Publication Activity Database

    Uchtmann, H.; Kazitsyna, S. Yu.; Hensel, F.; Ždímal, Vladimír; Tříska, B.; Smolík, Jiří

    2001-01-01

    Roč. 105, č. 47 (2001), s. 11754-11762 ISSN 1089-5647 R&D Projects: GA ČR GA104/97/1198 Institutional research plan: CEZ:AV0Z4072921 Keywords : Cesium vapor * growth Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.379, year: 2001

  17. CO2 supersaturation and net heterotrophy in a tropical estuary (Cochin, India): Influence of anthropogenic effect - Carbon dynamics in tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, G.V.M.; Thottathil, S.D.; Balachandran, K.K.; Madhu, N.V.; Madeswaran, P.; Nair, S.

    of pCO sub(2) (up to 6000 mu atm) and CO sub(2) effluxes (up to 274 mmolC m sup(-2) d sup(-1)) especially during monsoon. A first-order estimate of the carbon mass balance shows that net production of dissolved inorganic carbon is an order of magnitude...

  18. Instant and supersaturated dissolution of naproxen and sesamin (poorly water-soluble drugs and supplements) nanoparticles prepared by continuous expansion of liquid carbon dioxide solution through long dielectric nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Arita, Toshihiko, E-mail: tarita@tagen.tohoku.ac.jp [Tohoku University, Institute of Multidisciplinary Research for Advanced Materials (Japan); Manabe, Noriyoshi [Tohoku University, Graduate School of Engineering (Japan); Nakahara, Koichi [Suntory Bussiness Expert Limited, Frontier Center for Value Creation (Japan)

    2012-11-15

    Nanoparticles (NPs) of naproxen (a nonsteroidal anti-inflammatory drug, BCS Class 2) and sesamin (a poorly water-soluble lignan) were investigated. By applying a newly developed rapid expansion system of liquid carbon dioxide solutions equipped with a dielectric nozzle, well-separated and fine both naproxen NPs (averaged particle size (APS) = 46.9 nm) and sesamin NPs (APS = 60.2 nm) were obtained without heating, surfactants, and co-solvents. Obtained naproxen and sesamin NPs had large surface/weight ratio, therefore, they showed instant dissolution to water until about ten percent higher than the saturated concentrations. In addition, the technique developed in the study has big advantage on producing especially drug NPs because the NPs produced by the method never includes neither poisonous additives (especially co-solvents and detergents) nor thermally denatured compounds.

  19. Reparação do diafragma de cães com segmento muscular homólogo ortotópico conservado em solução supersaturada de açúcar Diaphragm repair in dogs with muscular homologous ortothopic segment preserved in supersaturated sugar solution

    Directory of Open Access Journals (Sweden)

    A. Mazzanti

    2001-02-01

    Full Text Available O uso de enxerto muscular homólogo conservado em solução supersaturada de açúcar a 300% foi pesquisado no músculo diafragma de cães. Foram utilizados 12 cães adultos, quatro machos e oito fêmeas, sem raça definida, com peso entre 9 e 18kg, para confecção de um defeito diafragmático na porção muscular, com dimensões de 4,0 × 4,5cm, seguido da implantação de um segmento de músculo diafragma homólogo. Seis cães foram observados por um período de 30 dias de pós-operatório e seis por 60 dias, quando foram reoperados para observação macroscópica e coleta de amostra para avaliação histológica. Nos animais do grupo de 30 dias de pós-operatório verificou-se substituição parcial e nos de 60 dias, substituição total da porção muscular do diafragma por tecido de granulação, o que permitiu o restabelecimento completo do diafragma por meio de firme inserção. O segmento de músculo diafragma homólogo conservado em solução supersaturada de açúcar a 300%, em temperatura ambiente, pode ser utilizado para reparação de defeitos diafragmáticos, uma vez que é substituído por tecido conjuntivo fibroso, sem apresentar sinais clínicos nem histológico de rejeição.The viability of tissular healing of a muscular homologous ortothopic diaphragmatic segment preserved in hipersaturated sugar solution at 300% was studied as an implant in the canine diaphragmatic muscle. Twelve adult mongrel dogs were used, four males, and eight females weighing 9 to 18kg. A diaphragmatic defect, measuring 4.0 × 4.5 cm, was provoked in the muscular portion of the diaphragm for the implantation of the homologous diaphragmatic muscle segment. Six animals were observed for 30 days after the surgery and the other six for 60 days. After this period, they were reoperated, for macroscopic observation and collection of samples for histologic evaluation. A partial replacement of the implant was observed in the 30-day observation group whereas in the 60-day group a total substitution of the diaphragmatic muscular portion by granulation tissue rich in collagen fibers had occurred, allowing the reconstruction of the diaphragm. The homologous diaphragmatic muscle segment preserved in 300%, satured sugar solution, at room temperature, was substituted by fibrous connective tissue. The implant did not present clinical and histological signs of rejection and therefore it can be used for the repair of diaphragmatic defects.

  20. Infrared spectroscopic study of polytypic effects on the crystal-growth mechanism of n-hexatriacontane (n-C36H74)

    Science.gov (United States)

    Kubota, Hideki; Kaneko, Fumitoshi; Kawaguchi, Tatsuya; Kawasaki, Masatsugu

    2005-10-01

    The solution-crystallization mechanism was investigated for two polytypes in the M011 modification of n-hexatriacontane (n-C36H74), single-layered structure Mon, and double-layered one Orth II. The crystal growth under controlled supersaturation was followed with a micro- Fourier-transform-infrared spectrometer equipped with an optical system for oblique transmission measurements. Supersaturation dependence of growth behavior was significantly different between Mon and Orth II. Although the Mon crystal continued growing at a supersaturation of 0.27, the overgrowth of Orth II on the (001) face of the Mon crystal was confirmed at supersaturations below 0.21. Such a polytypic transformation was not observed for the Orth II crystal at any supersaturation below 0.30. The growth rate of Mon showed a quadratic dependence on supersaturation, while that of Orth II was approximately linear, suggesting spiral growth and two-dimensional-nucleation mechanisms for Mon and Orth II, respectively.

  1. Physics of foam formation on a solid surface in carbonated liquids

    NARCIS (Netherlands)

    Zuidberg, A.F.

    1997-01-01

    The amount and size of bubbles in a foam layer that have originated from a solid surface in a gas supersaturated solution is largely determined by the physical properties of that solid and liquid surface and the supersaturation level of the gas in the liquid. The presence of pre-existent

  2. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 3

    DEFF Research Database (Denmark)

    Williams, Hywel D; Sassene, Philip; Kleberg, Karen

    2013-01-01

    PURPOSE: Recent studies have shown that digestion of lipid-based formulations (LBFs) can stimulate both supersaturation and precipitation. The current study has evaluated the drug, formulation and dose-dependence of the supersaturation - precipitation balance for a range of LBFs. METHODS: Type I,...

  3. Bubbles as a means for the deaeration of water bodies

    NARCIS (Netherlands)

    Zhang, Yuhang; Zhou, Gedi; Prosperetti, Andrea

    2017-01-01

    Occasional dissolved-air supersaturation - such as may occur, for instance, downstream of dams - is harmful to fish because it causes gas bubble disease. A counterintuitive but effective means of reducing dissolved air content is the injection of bubbles in the supersaturated water. The bubbles

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The chemical driving force for DP is one of solute supersaturation. Although solute supersaturation is responsible for precipitation, it has to be coupled with another driving force to explain grain boundary migration. This coupling driving force has been identified to be diffusional coherency strain which has been verified to be ...

  5. The effect of surfactants on the dissolution behavior of amorphous formulations

    DEFF Research Database (Denmark)

    Mah, Pei T; Peltonen, Leena; Novakovic, Dunja

    2016-01-01

    The optimal design of oral amorphous formulations benefits from the use of excipients to maintain drug supersaturation and thus ensures adequate absorption during intestinal transit. The use of surfactants for the maintenance of supersaturation in amorphous formulations has not been investigated ...

  6. Growing bubbles and freezing drops: depletion effects and tip singularities

    NARCIS (Netherlands)

    Enriquez Paz y Puente, O.R.

    2015-01-01

    In this thesis, the author investigates the growth of gas bubbles in a supersaturated solution and the freezing of water drops when placed on a cold plate. Supersaturated solutions are common in nature and industry; perhaps the best know examples are carbonated drinks, such as beer or soda. These

  7. Numerical simulation of flow and mass transfer for large KDP crystal growth via solution-jet method

    Science.gov (United States)

    Yin, Huawei; Li, Mingwei; Hu, Zhitao; Zhou, Chuan; Li, Zhiwei

    2018-06-01

    A novel technique of growing large crystals of potassium dihydrogen phosphate (KDP) named solution-jet method is proposed. The aim is to increase supersaturation on the pyramidal face, especially for crystal surface regions close to the rotation axis. The fluid flow and surface supersaturation distribution of crystals grown under different conditions were computed using the finite-volume method. Results indicate that the time-averaged supersaturation of the pyramidal face in the proposed method significantly increases and the supersaturation difference from the crystal center to edge clearly decreases compared with the rotating-crystal method. With increased jet velocity, supersaturation on the pyramidal face steadily increases. Rotation rate considerably affects the magnitude and distribution of the prismatic surface supersaturation. With increased crystal size, the mean value of surface supersaturation averaged over the pyramid gradually decreases; conversely, standard deviation increases, which is detrimental to crystal growth. Moreover, the significant roles played by natural and forced convection in the process of mass transport are discussed. Results show that further increased jet velocity to 0.6 m/s renders negligible the effects of natural convection around the pyramid. The simulation for step propagation indicates that solution-jet method can promote a steady step migration and enhance surface morphology stability, which can improve the crystal quality.

  8. Technical Note: Characterization of a static thermal-gradient CCN counter

    Directory of Open Access Journals (Sweden)

    G. P. Frank

    2007-06-01

    Full Text Available The static (parallel-plate thermal-gradient diffusion chamber (SDC was one of the first instruments designed to measure cloud condensation nuclei (CCN concentrations as a function of supersaturation. It has probably also been the most widely used type of CCN counter. This paper describes the detailed experimental characterization of a SDC CCN counter, including calibration with respect to supersaturation and particle number concentration. In addition, we investigated the proposed effect of lowered supersaturation because of water vapor depletion with increasing particle concentration. The results obtained give a better understanding why and in which way it is necessary to calibrate the SDC CCN counter. The calibration method is described in detail and can, in parts, be used for calibrations also for other types of CCN counters.

    We conclude the following: 1 it is important to experimentally calibrate SDC CCN counters with respect to supersaturation, and not only base the supersaturation on the theoretical description of the instrument; 2 the number concentration calibration needs to be performed as a function of supersaturation, also for SDC CCN counter using the photographic technique; and 3 we observed no evidence that water vapor depletion lowered the supersaturation.

  9. Steady-state molecular dynamics simulation of vapor to liquid nucleation with Mc Donald's demon

    International Nuclear Information System (INIS)

    Horsch, M.; Miroshnichenko, S.; Vrabec, J.

    2009-01-01

    Grand canonical MD with McDonald's demon is discussed in the present contribution and applied for sampling both nucleation kinetics and steady-state properties of a supersaturated vapor. The idea behind the new approach is to simulate the production of clusters up to a given size for a specified supersaturation. The classical nucleation theory is found to overestimate the free energy of cluster formation and deviate by two orders of magnitude from the nucleation rate below the triple point at high supersaturations.

  10. Nucleation and growth kinetics of zirconium hydroxide by precipitation with ammonium hydroxide

    International Nuclear Information System (INIS)

    Carleson, T.E.; Chipman, N.A.

    1987-01-01

    The results of a study of the nucleation and growth kinetics of the precipitation of zirconium hydroxide from the reaction of hexafluorozirconate solution with ammonium hydroxide are reported. The McCabe linear growth rate model was used to correlate the results. The growth rate decreased with residence time and supersaturation for studies with 7 residence times (3.5 - 90 minutes and two supersaturation ratios (0.03 - 0.04, and 0.4). The nucleation rate increased with residence time and supersaturation. A negative kinetic order of nucleation was observed that may be due to the inhibition of particle growth by adsorption of reacting species on the crystal surfaces

  11. Efficient Havinga–Kondepudi resolution of conglomerate amino acid derivatives by slow cooling and abrasive grinding

    NARCIS (Netherlands)

    Leeman, Michel; Noorduin, Wim L.; Millemaggi, Alessia; Vlieg, Elias; Meekes, Hugo; Enckevort, Willem J.P. van; Kaptein, Bernard; Kellogg, Richard M.

    2010-01-01

    The complete resolution of the conglomerate racemates of two amino acid derivatives susceptible to racemization in solution was achieved by slow crystallization from a supersaturated solution accompanied by cooling and abrasive grinding.

  12. Relevance of hereditary defects in lipid transport proteins for the pathogenesis of cholesterol gallstone disease

    NARCIS (Netherlands)

    vanBerge-Henegouwen, G. P.; Venneman, N. G.; Portincasa, P.; Kosters, A.; van Erpecum, K. J.; Groen, A. K.

    2004-01-01

    In the formation of cholesterol gallstones, cholesterol hypersecretion into bile causing cholesterol supersaturation and crystallization appears to be the primary factor, with disturbed gallbladder and intestinal motility as secondary factors. Although intestinal uptake mechanisms have not yet been

  13. Interrelationships and distribution of hydrochemical parameters in coastal waters off Visakhapatnam, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.; Rao, T.V.N.; RamaRaju, V.S.; Rathod, V.; Suguna, C.

    The distribution of hydrochemical parameters in the coastal waters off Visakhapatnam during the July 1979-June 1980 showed distinct changes with time The observed supersaturation and saturation of oxygen in surface waters was due to favourable...

  14. An Effective Continuum Model for the Gas Evolution in Internal Steam Drives

    Energy Technology Data Exchange (ETDEWEB)

    Tsimpanogiannis, Ioannis N.; Yortsos, Yanis C.

    2002-06-11

    This report examines the gas phase growth from a supersaturated, slightly compressible, liquid in a porous medium, driven by heat transfer and controlled by the application of a constant-rate decline of the system pressure.

  15. What Is the Mechanism Behind Increased Permeation Rate of a Poorly Soluble Drug from Aqueous Dispersions of an Amorphous Solid Dispersion?

    DEFF Research Database (Denmark)

    Frank, K. J.; Westedt, U.; Rosenblatt, K. M.

    2014-01-01

    of amorphous microparticles present in aqueous dispersions induces lasting supersaturation maintaining enhanced permeation. The hypothesis is supported by a slower drug permeation when the microparticles were removed. (c) 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci...

  16. 76 FR 71940 - Takes of Marine Mammals Incidental to Specified Activities; Physical Oceanographic Studies in the...

    Science.gov (United States)

    2011-11-21

    ... would be valid from January 23, 2012 through March 7, 2012. Within this time period, the Navy would... supersaturated tissue by a behavioral response to acoustic exposure, could be a pathologic mechanism for the...

  17. The growth of oscillating bubbles in an ultrasound field

    Science.gov (United States)

    Yamauchi, Risa; Yamashita, Tatsuya; Ando, Keita

    2017-11-01

    From our recent experiments to test particle removal by underwater ultrasound, dissolved gas supersaturation is found to play an important role in physical cleaning; cavitation bubble nucleation can be triggered easily by weak ultrasound under the supersaturation and mild motion of the bubbles contributes to efficient cleaning without erosion. The state of gas bubble nuclei in water is critical to the determination of a cavitation inception threshold. Under ultrasound forcing, the size of bubble nuclei is varied by the transfer of dissolved gas (i.e., rectified diffusion); the growth rate will be promoted by the supersaturation and is thus expected to contribute to cavitation activity enhancement. In the present work, we experimentally study rectified diffusion for bubbles attached at glass surfaces in an ultrasound field. We will present the evolution of bubble nuclei sizes with varying parameters such as dissolved oxygen supersaturation, and ultrasound intensity and frequency. the Research Grant of Keio Leading-edge Laboratory of Science & Technology.

  18. In Situ AFM Study of Crystal Growth on a Barite (001 Surface in BaSO4 Solutions at 30 °C

    Directory of Open Access Journals (Sweden)

    Yoshihiro Kuwahara

    2016-11-01

    Full Text Available The growth behavior and kinetics of the barite (001 surface in supersaturated BaSO4 solutions (supersaturation index (SI = 1.1–4.1 at 30 °C were investigated using in situ atomic force microscopy (AFM. At the lowest supersaturation, the growth behavior was mainly the advancement of the initial step edges and filling in of the etch pits formed in the water before the BaSO4 solution was injected. For solutions with higher supersaturation, the growth behavior was characterized by the advance of the and [010] half-layer steps with two different advance rates and the formation of growth spirals with a rhombic to bow-shaped form and sector-shaped two-dimensional (2D nuclei. The advance rates of the initial steps and the two steps of 2D nuclei were proportional to the SI. In contrast, the advance rates of the parallel steps with extremely short step spacing on growth spirals were proportional to SI2, indicating that the lateral growth rates of growth spirals were directly proportional to the step separations. This dependence of the advance rate of every step on the growth spirals on the step separations predicts that the growth rates along the [001] direction of the growth spirals were proportional to SI2 for lower supersaturations and to SI for higher supersaturations. The nucleation and growth rates of the 2D nuclei increased sharply for higher supersaturations using exponential functions. Using these kinetic equations, we predicted a critical supersaturation (SI ≈ 4.3 at which the main growth mechanism of the (001 face would change from a spiral growth to a 2D nucleation growth mechanism: therefore, the morphology of bulk crystals would change.

  19. Single-particle levitation system for automated study of homogeneous solute nucleation

    OpenAIRE

    Olsen, Adam P.; Flagan, Richard C.; Kornfield, Julia A.

    2006-01-01

    We present an instrument that addresses two critical requirements for quantitative measurements of the homogeneous crystal nucleation rate in supersaturated aqueous solution. First, the need to perform repeated measurements of nucleation incubation times is met by automating experiments to enable programmable cycling of thermodynamic conditions. Second, the need for precise and robust control of the chemical potential in supersaturated aqueous solution is met by implementing a novel technique...

  20. Influence of the grain boundary atomic structure on the intergranular precipitation

    International Nuclear Information System (INIS)

    Le Coze, J.

    1975-01-01

    The number of intergranular precipitates after long time annealing is calculated taking into account nucleation, growth and coarsening. With intermediate supersaturation, the great number of precipitates which is observed in some boundaries may have different causes: in low misorientation boundaries and (111) twin, the maxima come from semi-coherent nucleation with one grain; in the other boundaries, the maxima are connected with a great number of high energy atomic sites. Depending on supersaturation, some maxima may disappear whereas others are reinforced [fr

  1. MECHANISM OF BORAX CRYSTALLIZATION USING CONDUCTIVITY METHOD

    OpenAIRE

    Suharso, Suharso

    2010-01-01

    The kinetics of crystal growth of borax has been studied by using conductivity method at temperature of 25 °C and at various relative supersaturations. It was found that the growth rate increases with increasing supersaturation. At low concentration, growth occurs via a spiral growth mechanism and at high concentration birth and spread is the principal mechanism operating.     Keywords: borax; growth rate; crystallization; conductivity method

  2. MECHANISM OF BORAX CRYSTALLIZATION USING CONDUCTIVITY METHOD

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available The kinetics of crystal growth of borax has been studied by using conductivity method at temperature of 25 °C and at various relative supersaturations. It was found that the growth rate increases with increasing supersaturation. At low concentration, growth occurs via a spiral growth mechanism and at high concentration birth and spread is the principal mechanism operating.     Keywords: borax; growth rate; crystallization; conductivity method

  3. Measurements of Protein Crystal Face Growth Rates

    Science.gov (United States)

    Gorti, S.

    2014-01-01

    Protein crystal growth rates will be determined for several hyperthermophile proteins.; The growth rates will be assessed using available theoretical models, including kinetic roughening.; If/when kinetic roughening supersaturations are established, determinations of protein crystal quality over a range of supersaturations will also be assessed.; The results of our ground based effort may well address the existence of a correlation between fundamental growth mechanisms and protein crystal quality.

  4. Advantageous Solubility-Permeability Interplay When Using Amorphous Solid Dispersion (ASD) Formulation for the BCS Class IV P-gp Substrate Rifaximin: Simultaneous Increase of Both the Solubility and the Permeability.

    Science.gov (United States)

    Beig, Avital; Fine-Shamir, Noa; Lindley, David; Miller, Jonathan M; Dahan, Arik

    2017-05-01

    Rifaximin is a BCS class IV (low-solubility, low-permeability) drug and also a P-gp substrate. The aims of this work were to assess the efficiency of different rifaximin amorphous solid dispersion (ASDs) formulations in achieving and maintaining supersaturation and to investigate the consequent solubility-permeability interplay. Spray-dried rifaximin ASDs were prepared with different hydrophilic polymers and their ability to achieve and maintain supersaturation was assessed. Then, rifaximin's apparent intestinal permeability was investigated as a function of increasing supersaturation both in vitro using the parallel artificial membrane permeability assay (PAMPA) and in vivo using the single-pass rat intestinal perfusion (SPIP) model. The efficiency of the different ASDs to achieve and maintain supersaturation of rifaximin was found to be highly polymer dependent, and the copovidone/HPC-SL formulation was found to be superior to the other two, allowing supersaturation of 200× that of the crystalline solubility for 20 h. In vitro, rifaximin flux was increased and the apparent permeability was constant as a function of increasing supersaturation level. In vivo, on the other hand, absorption rate coefficient (k a ) was first constant as a function of increasing supersaturation, but at 250×, the crystalline solubility k a was doubled, similar to the k a in the presence of the strong P-gp inhibitor GF120918. In conclusion, a new and favorable nature of solubility-permeability interplay was revealed in this work: delivering high supersaturation level of the BCS class IV drug rifaximin via ASD, thereby saturating the drugs' P-gp-mediated efflux transport, led to the favorable unique win-win situation, where both the solubility and the permeability increased simultaneously.

  5. Infrared spectroscopic study on polytypic transformation of growing single crystal of n-hexatriacontane ( n-C 36H 74)

    Science.gov (United States)

    Kubota, Hideki; Kaneko, Fumitoshi; Kawaguchi, Tatsuya; Kawasaki, Masatsugu

    2005-02-01

    There are two polytypic structures, single-layered structure Mon and double-layered structure Orth II for the M 011 modification of n-hexatriacontane ( n-C 36H 74). The solution crystal growth of the two polytypes under controlled supersaturation was investigated by the oblique IR transmission method. As to the supersaturation dependence of growth behavior, there was a significant difference between the two polytypes. While the overgrowth of Orth II took place on the (0 0 1) face of the Mon crystal at moderate supersaturations, the overgrowth of Mon on the Orth II crystals was not confirmed at any supersaturations below 0.30. The growth rate of Mon showed about a second-order dependence on supersaturation, whereas that of Orth II showed a first-order dependence. The growth mechanism of the M 011 modification and the cause for the one-way overgrowth were deduced on the basis of the thermodynamical stabilities and the supersaturation dependence of the growth rates.

  6. A distribution law for relative humidity in the upper troposphere and lower stratosphere derived from three years of MOZAIC measurements

    Directory of Open Access Journals (Sweden)

    K. Gierens

    1999-09-01

    Full Text Available Data from three years of MOZAIC measurements made it possible to determine a distribution law for the relative humidity in the upper troposphere and lower stratosphere. Data amounting to 13.5% of the total were obtained in regions with ice supersaturation. Troposphere and stratosphere are distinguished by an ozone concentration of 130 ppbv as threshold. The probability of measuring a certain amount of ice supersaturation in the troposphere decreases exponentially with the degree of ice supersaturation. The probability of measuring a certain relative humidity in the stratosphere (both with respect to water and ice decreases exponentially with the relative humidity. A stochastic model that naturally leads to the exponential distribution is provided. Mean supersaturation in the troposphere is about 15%, whereas ice nucleation requires 30% supersaturation on the average. This explains the frequency of regions in which aircraft induce persistent contrails but which are otherwise free of clouds. Ice supersaturated regions are 3-4 K colder and contain more than 50% more vapour than other regions in the upper troposphere. The stratospheric air masses sampled are dry, as expected, having mean relative humidity over water of 12% and over ice of 23%, respectively. However, 2% of the stratospheric data indicate ice supersaturation. As the MOZAIC measurements have been obtained on commercial flights mainly between Europe and North America, the data do not provide a complete global picture, but the exponential character of the distribution laws found is probably valid globally. Since water vapour is the most important greenhouse gas and since it might enhance the anthropogenic greenhouse effects via positive feedback mechanisms, it is important to represent its distribution correctly in climate models. The discovery of the distribution law of the relative humidity makes possible simple tests to show whether the hydrological cycle in climate models is

  7. Calibration Uncertainties in the Droplet Measurement Technologies Cloud Condensation Nuclei Counter

    Science.gov (United States)

    Hibert, Kurt James

    Cloud condensation nuclei (CCN) serve as the nucleation sites for the condensation of water vapor in Earth's atmosphere and are important for their effect on climate and weather. The influence of CCN on cloud radiative properties (aerosol indirect effect) is the most uncertain of quantified radiative forcing changes that have occurred since pre-industrial times. CCN influence the weather because intrinsic and extrinsic aerosol properties affect cloud formation and precipitation development. To quantify these effects, it is necessary to accurately measure CCN, which requires accurate calibrations using a consistent methodology. Furthermore, the calibration uncertainties are required to compare measurements from different field projects. CCN uncertainties also aid the integration of CCN measurements with atmospheric models. The commercially available Droplet Measurement Technologies (DMT) CCN Counter is used by many research groups, so it is important to quantify its calibration uncertainty. Uncertainties in the calibration of the DMT CCN counter exist in the flow rate and supersaturation values. The concentration depends on the accuracy of the flow rate calibration, which does not have a large (4.3 %) uncertainty. The supersaturation depends on chamber pressure, temperature, and flow rate. The supersaturation calibration is a complex process since the chamber's supersaturation must be inferred from a temperature difference measurement. Additionally, calibration errors can result from the Kohler theory assumptions, fitting methods utilized, the influence of multiply-charged particles, and calibration points used. In order to determine the calibration uncertainties and the pressure dependence of the supersaturation calibration, three calibrations are done at each pressure level: 700, 840, and 980 hPa. Typically 700 hPa is the pressure used for aircraft measurements in the boundary layer, 840 hPa is the calibration pressure at DMT in Boulder, CO, and 980 hPa is the

  8. Precipitation of calcium carbonate in aqueous solutions in presence of ethylene glycol and dodecane.

    Science.gov (United States)

    Natsi, Panagiota D.; Rokidi, Stamatia; Koutsoukos, Petros G.

    2015-04-01

    The formation of calcium carbonate (CaCO3) in aqueous supersaturated solutions has been intensively studied over the past decades, because of its significance for a number of processes of industrial and environmental interest. In the oil and gas production industry the deposition of calcium carbonate affects adversely the productivity of the wells. Calcium carbonate scale deposits formation causes serious problems in water desalination, CO2 sequestration in subsoil wells, in geothermal systems and in heat exchangers because of the low thermal coefficient of the salt. Amelioration of the operational conditions is possible only when the mechanisms underlying nucleation and crystal growth of calcium carbonate in the aqueous fluids is clarified. Given the fact that in oil production processes water miscible and immiscible hydrocarbons are present the changes of the dielectric constant of the fluid phase has serious impact in the kinetics of calcium carbonate precipitation, which remains largely unknown. The problem becomes even more complicated if polymorphism exhibited by calcium carbonate is also taken into consideration. In the present work, the stability of aqueous solutions supersaturated with respect to all calcium carbonate polymorphs and the subsequent kinetics of calcium carbonate precipitation were measured. The measurements included aqueous solutions and solutions in the presence of water miscible (ethylene glycol, MEG) and water immiscible organics (n-dodecane). All measurements were done at conditions of sustained supersaturation using the glass/ Ag/AgCl combination electrode as a probe of the precipitation and pH as the master variable for the addition of titrant solutions with appropriate concentration needed to maintenance the solution supersaturation. Initially, the metastable zone width was determined from measurements of the effect of the solution supersaturation on the induction time preceding the onset of precipitation at free-drift conditions. The

  9. Improved Cloud Condensation Nucleus Spectrometer

    Science.gov (United States)

    Leu, Ming-Taun

    2010-01-01

    An improved thermal-gradient cloud condensation nucleus spectrometer (CCNS) has been designed to provide several enhancements over prior thermal- gradient counters, including fast response and high-sensitivity detection covering a wide range of supersaturations. CCNSs are used in laboratory research on the relationships among aerosols, supersaturation of air, and the formation of clouds. The operational characteristics of prior counters are such that it takes long times to determine aerosol critical supersaturations. Hence, there is a need for a CCNS capable of rapid scanning through a wide range of supersaturations. The present improved CCNS satisfies this need. The improved thermal-gradient CCNS (see Figure 1) incorporates the following notable features: a) The main chamber is bounded on the top and bottom by parallel thick copper plates, which are joined by a thermally conductive vertical wall on one side and a thermally nonconductive wall on the opposite side. b) To establish a temperature gradient needed to establish a supersaturation gradient, water at two different regulated temperatures is pumped through tubes along the edges of the copper plates at the thermally-nonconductive-wall side. Figure 2 presents an example of temperature and supersaturation gradients for one combination of regulated temperatures at the thermally-nonconductive-wall edges of the copper plates. c) To enable measurement of the temperature gradient, ten thermocouples are cemented to the external surfaces of the copper plates (five on the top plate and five on the bottom plate), spaced at equal intervals along the width axis of the main chamber near the outlet end. d) Pieces of filter paper or cotton felt are cemented onto the interior surfaces of the copper plates and, prior to each experimental run, are saturated with water to establish a supersaturation field inside the main chamber. e) A flow of monodisperse aerosol and a dilution flow of humid air are introduced into the main

  10. Experimental study of ion-induced nucleation by radon decay

    International Nuclear Information System (INIS)

    He, F.; Hopke, P.K.

    1993-01-01

    In the environment, the presence of ions from natural radioactivity may increase the rate of new particle formation through ion-induced nucleation. A thermal diffusion cloud chamber (TDCC) has been built to experimentally study ion-induced nucleation where the ions are produced by gaseous radioactive sources. The critical supersaturation values and nucleation rates for methanol, ethanol, 1-propanol, and 1-butanol vapors on ions produced within the volume of the chamber by alpha decay of 222 Rn have been measured quantitatively at various radioactivity concentrations and supersaturations. The presence of ion tracks and the effect of an external electric field were also investigated. The alpha tracks and ion-induced nucleation formed by 222 Rn decay become visible at the critical supersaturation that is below the value needed for homogeneous nucleation. At this supersaturation, the nucleation rates increase substantially with increasing 222 Rn at low activity concentrations, but attain limiting values at higher concentrations. The experimental results indicate that the ionization by radon decay will promote ion-cluster formation and lower the free energy barriers. The formation of visible droplets is strongly dependent on the supersaturation. This study also confirms that the external electric field has a significant effect on the observed rates of nucleation

  11. A Cannibalistic Approach to Grand Canonical Crystal Growth.

    Science.gov (United States)

    Karmakar, Tarak; Piaggi, Pablo M; Perego, Claudio; Parrinello, Michele

    2018-04-04

    Canonical molecular dynamics simulations of crystal growth from solution suffer from severe finite-size effects. As the crystal grows, the solute molecules are drawn from the solution to the crystal, leading to a continuous drop in the solution concentration. This is in contrast to experiments in which the crystal grows at an approximately constant supersaturation of a bulk solution. Recently, Perego et al. [ J. Chem. Phys. 2015, 142, 144113] showed that in a periodic setup in which the crystal is represented as a slab, the concentration in the vicinity of the two surfaces can be kept constant while the molecules are drawn from a part of the solution that acts as a molecular reservoir. This method is quite effective in studying crystallization under controlled supersaturation conditions. However, once the reservoir is depleted, the constant supersaturation conditions cannot be maintained. We propose a variant of this method to tackle this depletion problem by simultaneously dissolving one side of the crystal while letting the other side grow. A continuous supply of particles to the solution due to the crystal dissolution maintains a steady solution concentration and avoids reservoir depletion. In this way, a constant supersaturation condition can be maintained for as long as necessary. We have applied this method to study the growth and dissolution of urea crystal from water solution under constant supersaturation and undersaturation conditions, respectively. The computed growth and dissolution rates are in good agreement with those obtained in previous studies.

  12. Nucleation control and separation of paracetamol polymorphs through swift cooling crystallization process

    Science.gov (United States)

    Sudha, C.; Srinivasan, K.

    2014-09-01

    Polymorphic nucleation behavior of pharmaceutical solid paracetamol has been investigated by performing swift cooling crystallization process. Saturated aqueous solution prepared at 318 K was swiftly cooled to 274 K in steps of every 1 K in the temperature range from 274 K to 313 K with uniform stirring of 100 rpm. The resultant supersaturation generated in the mother solution favours the nucleation of three different polymorphs of paracetamol. Lower supersaturation region σ=0.10-0.83 favours stable mono form I; the intermediate supersaturation region σ=0.92-1.28 favours metastable ortho form II and the higher supersaturation region σ=1.33-1.58 favours unstable form III polymorphic nucleation. Depending upon the level of supersaturation generated during swift cooling process and the corresponding solubility limit and metastable zone width (MSZW) of each polymorph, the nucleation of a particular polymorph occurs in the system. The type of polymorphs was identified by in-situ optical microscopy and the internal structure was confirmed by Powder X-ray diffraction (PXRD) study. By this novel approach, the preferred nucleation regions of all the three polymorphs of paracetamol are optimized in terms of different cooling ranges employed during the swift cooling process. Also solution mediated polymorphic transformations from unstable to mono and ortho to mono polymorphs have been studied by in-situ.

  13. Studies on the effect of different operational parameters on the crystallization kinetics of α-lactose monohydrate single crystals in aqueous solution

    Science.gov (United States)

    Parimaladevi, P.; Srinivasan, K.

    2014-09-01

    Supersaturation dependent nucleation, size and morphology of alpha-lactose monohydrate (α-LM) crystals from aqueous solution were investigated by adopting two different crystallization methods, slow evaporation and fast evaporation, in the supersaturation range between σ=0.05 and 1.30. The induction period of nucleation is comparatively long in case of slow evaporation and is very short in case of fast evaporation process as the interconversion between α-L and β-L is uncontrollable in the former and is under control in the latter case. Moreover α-LM crystals with tomahawk morphology were obtained throughout the supersaturation range by slow evaporation method whereas crystals with tomahawk, triangular and needle-like morphologies were obtained in supersaturation ranges σ=0.05-0.5, σ=0.5-0.9 and σ=0.9-1.30 respectively by fast evaporation method. Experimentally observed nucleation parameters were verified with theoretically deuced values. It is realized that the fast evaporation method employed in the present study is found to be highly efficient in controlling the interconversion between α-L and β-L as well as in suppressing the inhibitory activity of β molecule on the nucleation and growth of α-LM crystals when compared to conventional slow evaporation method and is successful in producing the industrially preferred needle-like crystals at high supersaturation ranges.

  14. Aspects of calcium oxalate crystallization: theory, in vitro studies, and in vivo implementation.

    Science.gov (United States)

    Rodgers, A

    1999-11-01

    There are three main approaches to urolithiasis research: theory, basic science, and clinical implementation. Although each approach has yielded meaningful results, there does not appear to be complete synergy between them. This article examines these approaches as they pertain to urinary calcium oxalate crystallization processes. Theoretical calculations were performed to examine the role of oxalate concentration on calcium oxalate supersaturation. The effects of magnesium, citrate, and combinations thereof on calcium oxalate crystallization kinetics were examined in a mixed suspension, mixed product removal crystallizer. Finally, male volunteers were given supplements of calcium alone and binary combinations of calcium, magnesium, and citrate to investigate their effects on the urinary supersaturation of calcium oxalate. Calculations showed that oxalate is 23 times more potent than calcium in its effect on the supersaturation of calcium oxalate. In the in vitro experiments, magnesium and citrate reduced the growth and nucleation kinetics as well as the supersaturation. In combination, these two components were more effective than the individual components in reducing the growth rate and the supersaturation. All of the supplements favorably altered the kinetic and thermodynamic risk factors. Calcium was the most effective in reducing the urinary excretion of oxalate. Articulation of these three approaches is essential for the meaningful investigation and understanding of urolithiasis.

  15. Microstructure and Service Properties of Copper Alloys

    Directory of Open Access Journals (Sweden)

    Polok-Rubiniec M.

    2016-09-01

    Full Text Available This elaboration shows the effect of combined heat treatment and cold working on the structure and utility properties of alloyed copper. As the test material, alloyed copper CuTi4 was employed. The samples were subjected to treatment according to the following schema: 1st variant – supersaturation and ageing, 2nd variant – supersaturation, cold rolling and ageing. The paper presents the results of microstructure, hardness, and abrasion resistance. The analysis of the wipe profile geometry was realized using a Zeiss LSM 5 Exciter confocal microscope. Cold working of the supersaturated solid solution affects significantly its hardness but the cold plastic deformation causes deterioration of the wear resistance of the finally aged CuTi4 alloy.

  16. Calcium carbonate scaling kinetics determined from radiotracer experiments with calcium-47

    International Nuclear Information System (INIS)

    Turner, C.W.; Smith, D.W.

    1998-01-01

    The deposition rate of calcium carbonate on a heat-transfer surface has been measured using a calcium-47 radiotracer and compared to the measured rate of thermal fouling. The crystalline phase of calcium carbonate that precipitates depends on the degree of supersaturation at the heat-transfer surface, with aragonite precipitating at higher supersaturations and calcite precipitating at lower supersaturations. Whereas the mass deposition rates were constant with time, the thermal fouling rates decreased throughout the course of each experiment as a result of densification of the deposit. It is proposed that the densification was driven by the temperature gradient across the deposit together with the retrograde solubility of calcium carbonate. The temperature dependence of the deposition rate yielded an activation energy of 79 ± 4 kJ/mol for the precipitation of calcium carbonate on a heat-transfer surface. (author)

  17. Formation of gas bubbles in gas superheated water

    International Nuclear Information System (INIS)

    Finkelstein, Y.

    1984-05-01

    The phenomenon of bubbles formation in supersaturated solutions of gases in water is a transport process, the final result of which is a separation of phases. In spite of its widespread appearance in industry and in nature, no model exists that can explain it and predict the degree of supersaturation which a gas-water solution can tolerate before bubbles are formed. The objective of this study was to fill this gap, and indeed, an extensive experimental work was carried out, a model was established and simple but accurate means were developed for predicting the tolerable degree of supersaturation of gas-water solutions. The model is also capable of predicting quite accurately the activation phenomenon in water. Superheating and supercooling phenomena were also examined in the light of the new model. (author)

  18. Fabrication of superhydrophobic surfaces via CaCO3 mineralization mediated by poly(glutamic acid)

    Science.gov (United States)

    Cao, Heng; Yao, Jinrong; Shao, Zhengzhong

    2013-03-01

    Surfaces with micrometer and nanometer sized hierarchical structures were fabricated by an one-step in situ additive controlled CaCO3 mineralization method. After chemical modification, the surfaces with various morphologies showed superhydrophobicity in different states, which could be easily adjusted by the initial supersaturation of the mineralization solution (concentration of calcium ion and poly(glutamic acid)). Generally, the "lotus state" surface which was covered by a thick layer of tetrahedron-shaped CaCO3 particles to exhibit a contact angle (CA) of 157±1° and a very low contact angle hysteresis (CAH) (roll-off angle=1°) was produced under high supersaturation. On the other hands, the petal-like surface with flower-shaped calcite spherulites was obtained in a relative low supersaturation, which showed both high CA (156±2°) and CAH (180°) in a "Cassie impregnating wetting state".

  19. In situ synchrotron X-ray diffraction study of the effect of chromium additions to the steel and solution on CO2 corrosion of pipeline steels

    International Nuclear Information System (INIS)

    Ko, M.; Ingham, B.; Laycock, N.; Williams, D.E.

    2014-01-01

    Highlights: •We studied the effect of chromium on CO 2 corrosion processes. •Chromium addition accelerates the onset of siderite and chukanovite precipitation. •One of the key effects is to decrease the critical supersaturation for siderite nucleation. -- Abstract: We demonstrate the important effects of chromium in the steel composition and of Cr 3+ ions in solution on the nucleation and growth of corrosion layers in a CO 2 environment. We propose that high-valent metal cations in solution (within the boundary layer) catalyse the nucleation of siderite, which otherwise has a high critical supersaturation for precipitation. One of the key effects of small alloy additions to the steel is to put into the local solution species that decrease the critical supersaturation for siderite and modify the growth rate of the scale, thereby promoting the formation of an adherent and protective scale

  20. Hopper Growth of Salt Crystals.

    Science.gov (United States)

    Desarnaud, Julie; Derluyn, Hannelore; Carmeliet, Jan; Bonn, Daniel; Shahidzadeh, Noushine

    2018-06-07

    The growth of hopper crystals is observed for many substances, but the mechanism of their formation remains ill understood. Here we investigate their growth by performing evaporation experiments on small volumes of salt solutions. We show that sodium chloride crystals that grow very fast from a highly supersaturated solution form a peculiar form of hopper crystal consisting of a series of connected miniature versions of the original cubic crystal. The transition between cubic and such hopper growth happens at a well-defined supersaturation where the growth rate of the cubic crystal reaches a maximum (∼6.5 ± 1.8 μm/s). Above this threshold, the growth rate varies as the third power of supersaturation, showing that a new mechanism, controlled by the maximum speed of surface integration of new molecules, induces the hopper growth of cubic crystals in cascade.

  1. Polymer⁻Surfactant System Based Amorphous Solid Dispersion: Precipitation Inhibition and Bioavailability Enhancement of Itraconazole.

    Science.gov (United States)

    Feng, Disang; Peng, Tingting; Huang, Zhengwei; Singh, Vikramjeet; Shi, Yin; Wen, Ting; Lu, Ming; Quan, Guilan; Pan, Xin; Wu, Chuanbin

    2018-04-24

    The rapid release of poorly water-soluble drugs from amorphous solid dispersion (ASD) is often associated with the generation of supersaturated solution, which provides a strong driving force for precipitation and results in reduced absorption. Precipitation inhibitors, such as polymers and surfactants, are usually used to stabilize the supersaturated solution by blocking the way of kinetic or thermodynamic crystal growth. To evaluate the combined effect of polymers and surfactants on maintaining the supersaturated state of itraconazole (ITZ), various surfactants were integrated with enteric polymer hydroxypropyl methylcellulose acetate succinate (HPMC AS) to develop polymer⁻surfactant based solid dispersion. The supersaturation stability was investigated by in vitro supersaturation dissolution test and nucleation induction time measurement. Compared to the ASD prepared with HPMC AS alone, the addition of d-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) exhibited a synergistic effect on precipitation inhibition. The results indicated that the TPGS not only significantly reduced the degree of supersaturation which is the driving force for precipitation, but also provided steric hindrance to delay crystal growth by absorbing onto the surface of small particles. Subsequently, the formulations were evaluated in vivo in beagle dogs. Compared with commercial product Sporanox ® , the formulation prepared with HPMC AS/TPGS exhibited a 1.8-fold increase in the AUC (0⁻24 h) of ITZ and a 1.43-fold increase of hydroxyitraconazole (OH-ITZ) in the plasma. Similarly, the extent of absorption was increased by more than 40% when compared to the formulation prepared with HPMC AS alone. The results of this study demonstrated that the ASD based on polymer⁻surfactant system could obviously inhibit drug precipitation in vitro and in vivo, which provides a new access for the development of ASD for poorly water-soluble drug.

  2. Development of a Video-Microscopic Tool To Evaluate the Precipitation Kinetics of Poorly Water Soluble Drugs: A Case Study with Tadalafil and HPMC.

    Science.gov (United States)

    Christfort, Juliane Fjelrad; Plum, Jakob; Madsen, Cecilie Maria; Nielsen, Line Hagner; Sandau, Martin; Andersen, Klaus; Müllertz, Anette; Rades, Thomas

    2017-12-04

    Many drug candidates today have a low aqueous solubility and, hence, may show a low oral bioavailability, presenting a major formulation and drug delivery challenge. One way to increase the bioavailability of these drugs is to use a supersaturating drug delivery strategy. The aim of this study was to develop a video-microscopic method, to evaluate the effect of a precipitation inhibitor on supersaturated solutions of the poorly soluble drug tadalafil, using a novel video-microscopic small scale setup. Based on preliminary studies, a degree of supersaturation of 29 was chosen for the supersaturation studies with tadalafil in FaSSIF. Different amounts of hydroxypropyl methyl cellulose (HPMC) were predissolved in FaSSIF to give four different concentrations, and the supersaturated system was then created using a solvent shift method. Precipitation of tadalafil from the supersaturated solutions was monitored by video-microscopy as a function of time. Single-particle analysis was possible using commercially available software; however, to investigate the entire population of precipitating particles (i.e., their number and area covered in the field of view), an image analysis algorithm was developed (multiparticle analysis). The induction time for precipitation of tadalafil in FaSSIF was significantly prolonged by adding 0.01% (w/v) HPMC to FaSSIF, and the maximum inhibition was reached at 0.1% (w/v) HPMC, after which additional HPMC did not further increase the induction time. The single-particle and multiparticle analyses yielded the same ranking of the HPMC concentrations, regarding the inhibitory effect on precipitation. The developed small scale method to assess the effect of precipitation inhibitors can speed up the process of choosing the right precipitation inhibitor and the concentration to be used.

  3. Nano Precipitation and Hardening of Die-Quenched 6061 Aluminum Alloy.

    Science.gov (United States)

    Utsunomiya, Hiroshi; Tada, Koki; Matsumoto, Ryo; Watanabe, Katsumi; Matsuda, Kenji

    2018-03-01

    Die quenching is applied to an age-hardenable aluminium alloys to obtain super-saturated solid solution. The application is advantageous because it can reduce number of manufacturing processes, and may increase strength by strain aging. If die quenching is realized in forging as well as sheet forming, it may widen industrial applicability further. In this study, Al-Mg-Si alloy AA6061 8 mm-thick billets were reduced 50% in height without cracks by die-quench forging. Supersaturated solid solution was successfully obtained. The die-quenched specimen shows higher hardness with nano precipitates at shorter aging time than the conventional water-quenched specimen.

  4. Hot water, fresh beer, and salt

    International Nuclear Information System (INIS)

    Crawford, F.S.

    1990-01-01

    In the ''hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO 2 ) provided you first (a) get rid of much of the excess CO 2 so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, ''Do ionizing particles produce bubbles in fresh beer?'' is answered experimentally

  5. Recent studies of uranium and plutonium chemistry in alkaline radioactive waste solutions

    International Nuclear Information System (INIS)

    King, William D.; Wilmarth, William R.; Hobbs, David T.; Edwards, Thomas B.

    2008-01-01

    Solubility studies of uranium and plutonium in a caustic, radioactive Savannah River Site tank waste solution revealed the existence of uranium supersaturation in the as-received sample. Comparison of the results to predictions generated from previously published models for solubility in these waste types revealed that the U model poorly predicts solubility while Pu model predictions are quite consistent with experimental observations. Separate studies using simulated Savannah River Site evaporator feed solution revealed that the known formation of sodium aluminosilicate solids in waste evaporators can promote rapid precipitation of uranium from supersaturated solutions

  6. Size Fluctuations of Near Critical Nuclei and Gibbs Free Energy for Nucleation of BDA on Cu(001)

    Science.gov (United States)

    Schwarz, Daniel; van Gastel, Raoul; Zandvliet, Harold J. W.; Poelsema, Bene

    2012-07-01

    We present a low-energy electron microscopy study of nucleation and growth of BDA on Cu(001) at low supersaturation. At sufficiently high coverage, a dilute BDA phase coexists with c(8×8) crystallites. The real-time microscopic information allows a direct visualization of near-critical nuclei, determination of the supersaturation and the line tension of the crystallites, and, thus, derivation of the Gibbs free energy for nucleation. The resulting critical nucleus size nicely agrees with the measured value. Nuclei up to 4-6 times larger still decay with finite probability, urging reconsideration of the classic perception of a critical nucleus.

  7. Flux pinning by precipitates in the Bi-Sr-Ca-Cu-O system

    International Nuclear Information System (INIS)

    Shi, D.

    1992-01-01

    This patent describes a method for forming a ceramic oxide superconductor. It comprises heating a ceramic oxide to a temperature above its melting point to form a liquid; introducing calcium or copper into the ceramic oxide liquid to the extent that the ceramic oxide is supersaturated with calcium or copper; quenching the ceramic oxide liquid so as to convert the ceramic oxide to a glass supersaturated with calcium or copper; and annealing the calcium or copper and the ceramic oxide in forming grains in the ceramic oxide and a precipitate of the calcium or copper within the grains of the ceramic oxide so as to form superconducting phases in the ceramic oxide

  8. Hot water, fresh beer, and salt

    Science.gov (United States)

    Crawford, Frank S.

    1990-11-01

    In the ``hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO2) provided you first (a) get rid of much of the excess CO2 so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, ``Do ionizing particles produce bubbles in fresh beer?'' is answered experimentally.

  9. Behavior of oxygem bubbles during alkaline water electrolysis

    NARCIS (Netherlands)

    Wedershoven, H.M.S.; Jonge, de R.M.; Sillen, C.W.M.P.; Stralen, van S.J.D.

    1982-01-01

    Growth rate, departure radius and population of oxygen bubbles at the transparent anode during alkaline water electrolysis have been investigated experimentally. The supersaturation of dissolved oxygen in the electrolyte adjacent to the anode surface has been derived from bubble growth rates.

  10. Effect of cholesterol nucleation-promoting activity on cholesterol solubilization in model bile

    NARCIS (Netherlands)

    Groen, A. K.; Ottenhoff, R.; Jansen, P. L.; van Marle, J.; Tytgat, G. N.

    1989-01-01

    Human bile contains a factor with cholesterol nucleation-promoting activity that binds to concanavalin A-Sepharose. In this study we have investigated the effect of this activity on the dynamics of lipid solubilization in supersaturated model bile. A concanavalin A binding protein fraction of human

  11. ANÁLISE MORFOLÓGICA E MICROBIOLÓGICA DO PERICÁRDIO BOVINO CONSERVADO EM AÇÚCAR, GLICERINA, MEL E SAL

    Directory of Open Access Journals (Sweden)

    Antônio Fernando Bariani Júnior

    2014-07-01

    Full Text Available Histological and microbiological comparative analysis of bovine pericardium preserved for 30 and 60 days in glycerin (98%, supersaturated sugar solution (300%, supersaturated solution of salt (150% and unprocessed honey were performed aiming to establish alternative ways of preservation of biological membranes. Samples of pericardium from five cattle were collected in fridge and maintained for up to 60 days in containers with the above mentioned solutions of conservation. For morphological analysis of the constituents of bovine pericardium were performed routine histological techniques associated to two microbiological culture techniques: streaking on the surface of the plate and pour-plate. The supersaturated solution of sugar (300% was the medium of preservation with results closer to the obtained with glycerin (98%, but was unable to prevent microorganisms growth. The unprocessed honey and supersaturated solution of salt (150% had suitable antiseptic characteristics, but failed to effectively conserve the pericardium, with a greater structural disorganization of the connective tissue, indicating advanced process of autolysis after 60 days of storage. It was concluded that glycerin (98% appeared as the most efficient solution when compared to the others evaluated in this study.

  12. Browse Title Index

    African Journals Online (AJOL)

    Items 351 - 400 of 490 ... Vol 5, No 3 (2009), Propositional Optimal Trajectory Programming for Improving Stability of Hermite Definite Control System, Abstract. SO Abdulkareem, AS ... Vol 7, No 1 (2011), Regression approach to estimate OF of the E(S2) values for supersaturated designs, Abstract. CO Todo, JI Mbegbu.

  13. The Background Level of the Summer Tropospheric Aerosol over Greenland and the North Atlantic Ocean

    DEFF Research Database (Denmark)

    Flyger, H.; Hansen, K. A.; Megaw, W.J.

    1973-01-01

    An experiment to measure the concentration and size of Aitken nuclei, the concentration of cloud nuclei active at a supersaturation of 1%, the concentration of freezing nuclei activated at -20C, and the chemical nature of the tropospheric aerosol over Greenland and the seas surrounding it is desc...

  14. Nucleation and Crystal Growth of Organic-Inorganic Lead Halide Perovskites under Different Relative Humidity.

    Science.gov (United States)

    Gao, Hao; Bao, Chunxiong; Li, Faming; Yu, Tao; Yang, Jie; Zhu, Weidong; Zhou, Xiaoxin; Fu, Gao; Zou, Zhigang

    2015-05-06

    Organic-inorganic lead halide perovskite compounds are very promising materials for high-efficiency perovskite solar cells. But how to fabricate high-quality perovksite films under controlled humidity conditions is still an important issue due to their sensitivity to moisture. In this study, we investigated the influence of ambient humidity on crystallization and surface morphology of one-step spin-coated perovskite films, as well as the performance of solar cells based on these perovskite films. On the basis of experimental analyses and thin film growth theory, we conclude that the influence of ambient humidity on nucleation at spin-coating stage is quite different from that on crystal growth at annealing stage. At the spin-coating stage, high nucleation density induced by high supersaturation prefers to appear under anhydrous circumstances, resulting in layer growth and high coverage of perovskite films. But at the annealing stage, the modest supersaturation benefits formation of perovskite films with good crystallinity. The films spin-coated under low relative humidity (RH) followed by annealing under high RH show an increase of crystallinity and improved performance of devices. Therefore, a mechanism of fast nucleation followed by modest crystal growth (high supersaturation at spin-coating stage and modest supersaturation at annealing stage) is suggested in the formation of high-quality perovskite films.

  15. Carbon dioxide nucleation as a novel cleaning method for ultrafiltration membranes

    KAUST Repository

    Al Ghamdi, Mohanned

    2016-01-01

    will become in a supersaturated state and bubbles will start to nucleate on the surface of the membrane and its pores from this solution resulting in the removal of the fouling material deposited on the membrane. Different compositions of fouling solutions

  16. Ultrasound assisted nucleation and growth characteristics of glycine polymorphs--a combined experimental and analytical approach.

    Science.gov (United States)

    Renuka Devi, K; Raja, A; Srinivasan, K

    2015-05-01

    For the first time, the effect of ultrasound in the diagnostic frequency range of 1-10 MHz on the nucleation and growth characteristics of glycine has been explored. The investigation employing the ultrasonic interferometer was carried out at a constant insonation time over a wide range of relative supersaturation from σ=-0.09 to 0.76 in the solution. Ultrasound promotes only α nucleation and completely inhibits both the β and γ nucleation in the system. The propagation of ultrasound assisted mass transport facilitates nucleation even at very low supersaturation levels in the solution. The presence of ultrasound exhibits a profound effect on nucleation and growth characteristics in terms of decrease in induction period, increase in nucleation rate and decrease in crystal size than its absence in the solution. With an increase in the frequency of ultrasound, a further decrease in induction period, increase in nucleation rate and decrease in the size of the crystal is noticed even at the same relative supersaturation levels. The increase in the nucleation rate explains the combined dominating effects of both the ultrasound frequency and the supersaturation in the solution. Analytically, the nucleation parameters of the nucleated polymorph have been deduced at different ultrasonic frequencies based on the classical nucleation theory and correlations with the experimental results have been obtained. Structural affirmation of the nucleated polymorph has been ascertained by powder X-ray diffraction. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Initiation of microporosity from pre-existing bubbles: a computational study

    International Nuclear Information System (INIS)

    Sasikumar, Roschen; Savithri, S; Walker, Michael J; Sundarraj, Suresh

    2008-01-01

    Representation of the pore nucleation phenomenon has been a weak link in models of microporosity formation in castings. Porosity models in the literature use different criteria for the stage at which a pore first appears. Pre-existence of microbubbles in the melt has been proposed by many as the reason for non-classical nucleation of pores at low supersaturations. However, nucleation of pores from pre-existing bubbles has not been explicitly modeled or included in models of microporosity. In this paper we present a model for initiation of hydrogen porosity by diffusion of hydrogen into pre-existing bubbles containing insoluble gas. We find that small pre-existing microbubbles have a quiescent stage of very slow growth until a critical supersaturation is built up, followed by a stage of rapid growth that exhausts most of the built-up supersaturation. After that the growth takes place at a small supersaturation until the end of solidification. The phenomenon is analogous to the undercooling and recalescence that occurs during nucleation and growth of solid grains

  18. Buffer gas cooling and mixture analysis

    Science.gov (United States)

    Patterson, David S.; Doyle, John M.

    2018-03-06

    An apparatus for spectroscopy of a gas mixture is described. Such an apparatus includes a gas mixing system configured to mix a hot analyte gas that includes at least one analyte species in a gas phase into a cold buffer gas, thereby forming a supersaturated mixture to be provided for spectroscopic analysis.

  19. Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy

    NARCIS (Netherlands)

    Liu, Yuelian; Layrolle, Pierre; de Bruijn, Joost Dick; van Blitterswijk, Clemens; de Groot, K.

    2001-01-01

    Titanium alloy implants were precoated biomimetically with a thin and dense layer of calcium phosphate and then incubated either in a supersaturated solution of calcium phosphate or in phosphate-buffered saline, each containing bovine serum albumin (BSA) at various concentrations, under

  20. Effect of CaCO3(S) nucleation modes on algae removal from alkaline water.

    Science.gov (United States)

    Choi, Jin Yong; Kinney, Kerry A; Katz, Lynn E

    2016-02-29

    The role of calcite heterogeneous nucleation was studied in a particle coagulation treatment process for removing microalgae from water. Batch experiments were conducted with Scenedesmus sp. and Chlorella sp. in the presence and absence of carbonate and in the presence and absence of Mg to delineate the role of CaCO 3(S) nucleation on microalgae removal. The results indicate that effective algae coagulation (e.g., up to 81 % algae removal efficiency) can be achieved via heterogeneous nucleation with CaCO 3(S) ; however, supersaturation ratios between 120 and 200 are required to achieve at least 50% algae removal, depending on ion concentrations. Algae removal was attributed to adsorption of Ca 2+ onto the cell surface which provides nucleation sites for CaCO 3(S) precipitation. Bridging of calcite particles between the algal cells led to rapid aggregation and formation of larger flocs. However, at higher supersaturation conditions, algae removal was diminished due to the dominance of homogeneous nucleation of CaCO 3(S) . Removal of algae in the presence of Ca 2+ and Mg 2+ required higher supersaturation values; however, the shift from heteronucleation to homonucleation with increasing supersaturation was still evident. The results suggest that water chemistry, pH, ionic strength, alkalinity and Ca 2+ concentration can be optimized for algae removal via coagulation-sedimentation.

  1. Laboratory Experiments to Study Spherical, Iron Oxide Concretion Growth Without Solid Nuclei: Implications for Understanding Meridiani "Blueberries"

    Science.gov (United States)

    Ormö, J.; Souza-Egipsy, V.; Chan, M. A.; Park, A. J.; Stich, M.; Komatsu, G.

    2006-03-01

    Spherical hematite concretions can form without a nucleus. Self-organized zones of super-saturated solution cause spherical precipitates of amorphous iron-hydroxide. Diffusion of Fe ions towards the outer perimeter of the amorphous sphere forms a rind, which then grows inwards.

  2. Nitrous oxide in the Schelde estuary: production by nitrification and emission to the atmosphere

    NARCIS (Netherlands)

    De Wilde, H.; De Bie, M.J.M.

    2000-01-01

    Concentrations of nitrous oxide (N2O), oxygen, nitrate, and ammonium, as well as nitrification activity were determined along the salinity gradient of the Schelde Estuary, Northwest Europe, in October 1993, March 1994, and July 1996, The entire estuary was always supersaturated with N2O.

  3. The Metastability and Nucleation Thresholds of Ibuprofen in Ethanol and Water-Ethanol Mixtures

    Directory of Open Access Journals (Sweden)

    Abdur Rashid

    2015-01-01

    Full Text Available To investigate the crystallization of ibuprofen [((RS-2-(4-(2-methylpropyl phenyl propanoic acid] from ethanol and water-ethanol mixtures it is necessary to know the nucleation limits of its solutions. In the absence of crystals, nucleation will seldom occur below the PNT (primary nucleation threshold. If crystals are present, nucleation will seldom occur until below the lower SNT (secondary nucleation threshold. Below the SNT, crystals will still grow with negligible nucleation. PNT and SNT values (expressed as relative supersaturation σ have been measured at 10, 25, and 40°C for ibuprofen in ethanol and in a range of mixtures of different ethanol (E/water (W ratios. The induction times were determined from observing the times to nucleate for a range of different supersaturated solutions at a given temperature and E/W ratio. As expected, lowering the supersaturation leads to longer induction times. In ethanol, the SNT values are small and thus the secondary metastable zone width (MSZW is relatively narrow with a 1 h SNT relative supersaturation typically about σ ~ 0.05. The 1 h PNT values are much larger with values for σ around 0.3. In aqueous ethanolic mixtures at 25°C, both the PNT and SNT decrease as the water content increases.

  4. Dynamics of homogeneous nucleation

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2015-01-01

    The classical nucleation theory for homogeneous nucleation is formulated as a theory for a density fluctuation in a supersaturated gas at a given temperature. But molecular dynamics simulations reveal that it is small cold clusters which initiates the nucleation. The temperature in the nucleating...

  5. Global-scale atmosphere monitoring by in-service aircraft – current achievements and future prospects of the European Research Infrastructure IAGOS

    Directory of Open Access Journals (Sweden)

    Andreas Petzold

    2015-10-01

    and aerosol particles in the UTLS, including the impacts of cross-tropopause transport, deep convection and lightning on the distribution of these species; characterisation of ice-supersaturated regions in the UTLS; and finally, improved understanding of the spatial distribution of upper tropospheric humidity including the finding that the UTLS is much more humid than previously assumed.

  6. Predicting and measurement of pH of seawater reverse osmosis concentrates

    KAUST Repository

    Waly, Tarek; Kennedy, Maria Dolores; Witkamp, Geert-Jan; Amy, Gary L.; Schippers, Jan Cornelis

    2011-01-01

    The pH of seawater reverse osmosis plants (SWRO) is the most influential parameter in determining the degree of supersaturation of CaCO3 in the concentrate stream. For this, the results of pH measurements of the concentrate of a seawater reverse

  7. Size fluctuations of near critical and Gibbs free energy for nucleation of BDA on Cu(001)

    NARCIS (Netherlands)

    Schwarz, Daniel; van Gastel, Raoul; Zandvliet, Henricus J.W.; Poelsema, Bene

    2012-01-01

    We present a low-energy electron microscopy study of nucleation and growth of BDA on Cu(001) at low supersaturation. At sufficiently high coverage, a dilute BDA phase coexists with c(8×8) crystallites. The real-time microscopic information allows a direct visualization of near-critical nuclei,

  8. Molecular interactions between bile salts, phospholipids and cholesterol : relevance to bile formation, cholesterol crystallization and bile salt toxicity

    NARCIS (Netherlands)

    Moschetta, Antonio

    2001-01-01

    Cholesterol is a nonpolar lipid dietary constituent, absorbed from the small intestine, transported in blood and taken up by the liver. In bile, the sterol is solubilized in mixed micelles by bile salts and phospholipids. In case of supersaturation, cholesterol is kept in vesicles with phospholipid

  9. Chemical oceanography

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.

    biogeochemical conditions affect the cycling of climatically important gases viz. carbon dioxide (CO sub(2)), nitrous oxide (N sub(2)O) and methane. Surface waters are normally supersaturated with CO sub(2) in the Arabian Sea and undersaturated in some parts...

  10. On the growth of ammonium nitrate(III) crystals

    NARCIS (Netherlands)

    Vogels, L.J.P.; Marsman, H.A.M.; Verheijen, M.A.; Bennema, P.; Elwenspoek, Michael Curt

    The growth rate of NH4NO3 phase III crystals is measured and interpreted using two models. The first is a standard crystal growth model based on a spiral growth mechanism, the second outlines the concept of kinetical roughening. As the crystal becomes rough a critical supersaturation can be

  11. Biokemistri

    African Journals Online (AJOL)

    2015-09-30

    Sep 30, 2015 ... Biokemistri. An International Journal of the Nigerian Society for Experimental Biology ... As medicinal substance, its anti-bacterial ability and supersaturated ... of L-arginine to form the nonprotein amino acid L-ornithine and urea ..... Subcellular localization, metal ion requirement and kinetic properties of.

  12. Zener solutions for particle growth in multi-component alloys

    NARCIS (Netherlands)

    Vermolen, F.J.

    2006-01-01

    In this paper the Zener theory on precipitate growth in supersaturated alloys for planar, cylindrical and spherical geometries is extended to multi-component alloys. The obtained solutions can be used to check the results from numerical simulations under simplified conditions. Further, the

  13. Model for efficient visible emission from Si nanocrystals ion beam synthesized in SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, M. E-mail: mlopez@el.ub.es; Garrido, B.; Bonafos, C.; Perez-Rodriguez, A.; Morante, J.R.; Claverie, A

    2001-05-01

    The photoluminescence (PL) emission of Si nanocrystals ion beam synthesized in SiO{sub 2} is studied in this work as a function of annealing time and initial Si atomic excess (super-saturation). The optical properties of this system have been correlated with the characteristics of the nanocrystal population. The Si nanocrystals show a wide and very intense PL red/infrared emission. This emission peaks at about 1.7 eV for the low super-saturation range between 1% and 10% and shifts to the infrared for higher super-saturation (20% and 30%). Remarkably, there is a linear increase of PL intensity versus super-saturation in the low range. Moreover, the annealing kinetic studies show a typical behavior of PL intensity with annealing time, with a fast transitory increase that bends over to reach asymptotic saturation. The PL intensity saturation is satisfactorily explained by the Ostwald ripening stage of the nanocrystal population while the transient stage is a consequence of both nanocrystal growth and nanocrystal surface passivation mechanisms acting together. Indeed, electron spin resonance measurements demonstrate that the concentration of P{sub b} centers (Si dangling bonds) at the Si-SiO{sub 2} interface correlates inversely with PL intensity during most of the transient stage.

  14. Homogeneous Nucleation Rate Measurements of 1-Propanol in Helium: The Effect of Carrier Gas Pressure

    Czech Academy of Sciences Publication Activity Database

    Brus, David; Ždímal, Vladimír; Stratmann, F.

    2006-01-01

    Roč. 124, č. 16 (2006), Art. No. 164306 ISSN 0021-9606 R&D Projects: GA AV ČR(CZ) IAA2076203 Institutional research plan: CEZ:AV0Z40720504 Keywords : diffusion cloud-chamber * supersaturated vapor * background gases Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.166, year: 2006

  15. An Activity-Based Dissolution Model for Solute-Containing Microdroplets

    DEFF Research Database (Denmark)

    Bitterfield, Deborah L; Madsen, Anders Utoft; Needham, D.

    2016-01-01

    to form and observe the dehydration of single NaCl solution microdroplets in octanol or butyl acetate. The model successfully predicts the droplet diameter as a function of time in both organic solvents. The NaCl concentration in water is measured well into the supersaturated area >5.4 M...

  16. Fine interstitial clusters as recombinators in decomposing solid solutions under irradiation

    International Nuclear Information System (INIS)

    Trushin, Yu.V.

    1991-01-01

    Behaviour of interstitial clusters and their roll in processes of radiation swelling of metals are described. It is shown that occurrence of coherent advanced precipitations during decomposition of solid solutions under irradiation leads to matrix supersaturation over interstitial atoms. This enhances recombination of unlike defects due to vacancy precipitation on fine interstitial clusters. Evaluation of cluster sizes was conducted

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Discontinuous precipitation (DP) occurs in many alloy systems under certain conditions. Although solute supersaturation is the chemical driving force for DP, this has to be coupled with another driving force for grain boundary migration. This was identified to be diffusional coherency strain ahead of the moving boundary in ...

  18. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Formation of 1D Liesegang patterns was studied numerically in precipitation and reversible complex formation of precipitate scenarios in an electric field. The Ostwald's supersaturation model reported by Büki, Kárpáti-Smidróczki and Zrínyi (BKZ model) was extended further. In the presence of an electric field the position of ...

  19. The Carrier Gas Pressure Effect in a Laminar Flow Diffusion Chamber, Homogeneous Nucleation of n-Butanol in Helium

    Czech Academy of Sciences Publication Activity Database

    Hyvärinen, A-P.; Brus, David; Ždímal, Vladimír; Smolík, Jiří; Kulmala, M.; Viisanen, V.; Lihavainen, H.

    2006-01-01

    Roč. 124, č. 22 (2006), Art. No. 224304 ISSN 0021-9606 R&D Projects: GA AV ČR(CZ) IAA2076203 Institutional research plan: CEZ:AV0Z40720504 Keywords : supersaturated vapor * cloud chamber * background gas es Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.166, year: 2006

  20. Dissolution and precipitation behavior of ternary solid dispersions of ezetimibe in biorelevant media.

    Science.gov (United States)

    Alhayali, Amani; Tavellin, Staffan; Velaga, Sitaram

    2017-01-01

    The effects of different formulations and processes on inducing and maintaining the supersaturation of ternary solid dispersions of ezetimibe (EZ) in two biorelevant media fasted-state simulated intestinal fluid (FaSSIF) and fasted-state simulated gastric fluid (FaSSGF) at different temperatures (25 °C and 37 °C) were investigated in this work. Ternary solid dispersions of EZ were prepared by adding polymer PVP-K30 and surfactant poloxamer 188 using melt-quenching and spray-drying methods. The resulting solid dispersions were characterized using scanning electron microscopy, differential scanning calorimetry (DSC), modulated DSC, powder X-ray diffraction and Fourier transformation infrared spectroscopy. The dissolution of all the ternary solid dispersions was tested in vitro under non-sink conditions. All the prepared solid dispersions were amorphous in nature. In FaSSIF at 25 °C, the melt-quenched (MQ) solid dispersions of EZ were more soluble than the spray-dried (SD) solid dispersions and supersaturation was maintained. However, at 37 °C, rapid and variable precipitation behavior was observed for all the MQ and SD formulations. In FaSSGF, the melting method resulted in better solubility than the spray-drying method at both temperatures. Ternary solid dispersions show potential for improving solubility and supersaturation. However, powder dissolution experiments of these solid dispersions of EZ at 25 °C may not predict the supersaturation behavior at physiologically relevant temperatures.

  1. Inhibition of calcium carbonate crystal growth by organic additives using the constant composition method in conditions of recirculating cooling circuits

    Science.gov (United States)

    Chhim, Norinda; Kharbachi, Chams; Neveux, Thibaut; Bouteleux, Céline; Teychené, Sébastien; Biscans, Béatrice

    2017-08-01

    The cooling circuits used in power plants are subject to mineral crystallization which can cause scaling on the surfaces of equipment and construction materials reducing their heat exchange efficiency. Precipitated calcium carbonate is the predominant mineral scale commonly observed in cooling systems. Supersaturation is the key parameter controlling the nucleation and growth of calcite in these systems. The present work focuses on the precipitation of calcite using the constant composition method at constant supersaturation, through controlled addition of reactants to a semi-batch crystallizer, in order to maintain constant solution pH. The determination of the thermodynamic driving force (supersaturation) was based on the relevant chemical equilibria, total alkalinity and calculation of the activity coefficients. Calcite crystallization rates were derived from the experiments performed at supersaturation levels similar to those found in industrial station cooling circuits. Several types of seeds particles were added into the aqueous solution to mimic natural river water conditions in terms of suspended particulate matters content, typically: calcite, silica or illite particles. The effect of citric and copolycarboxylic additive inhibitors added to the aqueous solution was studied. The calcium carbonate growth rate was reduced by 38.6% in the presence of the citric additive and a reduction of 92.7% was observed when the copolycarboxylic additive was used under identical experimental conditions. These results are explained by the location of the adsorbed inhibitor at the crystal surface and by the degree of chemical bonding to the surface.

  2. Effect of neutron irradiation on the cellular stage of Ni-Be alloy decomposition

    International Nuclear Information System (INIS)

    Larikov, L.N.; Borimskaya, S.T.

    1981-01-01

    Effects of neutron irradiation on the cellular stage of decomposition are investigated in deformed supersaturated solid solution Ni-1.92%Be by the X-ray structural and metallographic analyses. Radiation-initiated stimulation of the recovery properties in the deformed alloy and a lower rate of the cellular decomposition in irradiated samples are discovered [ru

  3. The increase in pH during aging of porous sol-gel silica spheres

    NARCIS (Netherlands)

    Titulaer, M.K.; Kegel, W.K.; Jansen, J.B.H.; Geus, John W.

    1994-01-01

    The increase in pH in the hydrothermal fluid is studied after hydrothermal aging of porous silica gel spheres of 1–3 mm diameter. The porous silica spheres are formed by the sol-gel process from a supersaturated silica solution. The increase of the pH of the hydrothermal solution affects the silica

  4. Growth of the (001) face of borax crystals

    OpenAIRE

    Suharso, Suharso

    2010-01-01

    he growth rates of borax crystals from aqueous solutions in the (001) direction at various relative supersaturations were measured using in situ cell optical microscopy method. The result shows that the growth mechanism of the (001) face of borax crystal at temperature of 20 °C is spiral growth mechanism.   Keywords: Growth mechanism, borax.

  5. Temperature controlled 'void' formation

    International Nuclear Information System (INIS)

    Dasgupta, P.; Sharma, B.D.

    1975-01-01

    The nucleation and growth of voids in structural materials during high temperature deformation or irradiation is essentially dependent upon the existence of 'vacancy supersaturation'. The role of temperature dependent diffusion processes in 'void' formation under varying conditions, and the mechanical property changes associated with this microstructure are briefly reviewed. (author)

  6. Geochemistry of highly basic calcium hydroxide groundwater in Jordan

    Science.gov (United States)

    Barnes, I.; Presser, T.S.; Saines, M.; Dickson, P.; Van Groos, A. F. K.

    1982-01-01

    Highly-alkaline (pH > 12.5) meteoric waters of a Ca2+OH--type issue from naturally calcined bituminous marl. The cold (16.5 ??? T(??C) ??? 19.1) waters are super-saturated with minerals thought to be of high-temperature origin. ?? 1982.

  7. Sulfide-induced release of phosphate from sediments of coastal lagoons and the possible relation to the disappearance of Ruppia sp

    NARCIS (Netherlands)

    Heijs, S.K.; Azzoni, R.; Giordani, G.; Jonkers, H.M.; Nizzoli, D.; Viaroli, P.; van Gemerden, H.

    2000-01-01

    The production and consumption of sulfide and its influence on phosphorous cycling were studied in a hypertrophic coastal lagoon (Valle Smarlacca, Italy). Oxygen measurements revealed that the water phase was supersaturated except for the layer directly overlying the sediment. This layer was devoid

  8. Sulfide-induced release of phosphate from sediments of coastal lagoons and the possible relation to the disappearance of Ruppia sp.

    NARCIS (Netherlands)

    Heijs, SK; Azzoni, R; Giordani, G; Jonkers, HM; Nizzoli, D; Viaroli, P; van Gemerden, H

    2000-01-01

    The production and consumption of sulfide and its influence on phosphorous cycling were studied in a hypertrophic coastal lagoon (Valle Smarlacca, Italy). Oxygen measurements revealed that the water phase was supersaturated except for the layer directly overlying the sediment. This layer was devoid

  9. Neutronic irradiation effect in FeNi alloys, observed by magnetic measurements

    International Nuclear Information System (INIS)

    Sciani, V.; Lucki, G.

    1986-01-01

    In this work some aspects of radiation damage are analysed through the influence of neutron irradiation on magnetic properties of FeNi alloys. The main points emphasized are: radiation enhanced diffusion, determination of the activation energy for diffusion process and vacancies supersaturation, which is an important parameter from technological point of view and a necessary condition for the void formation. (Author) [pt

  10. Bioinspired magnetite synthesis via solid precursor phases

    NARCIS (Netherlands)

    Lenders, J.J.M.; Mirabello, G.; Sommerdijk, N.A.J.M.

    2016-01-01

    Living organisms often exploit solid but poorly ordered mineral phases as precursors in the biomineralization of their inorganic body parts. Generally speaking, such precursor-based approaches allow the organisms-without the need of high supersaturation levels-to accumulate significant quantities of

  11. Experimental determination of droplet size and density field in condensing flows

    NARCIS (Netherlands)

    Lamanna, G.; van Poppel, J.; Dongen, van M.E.H.

    2002-01-01

    We report a detailed experimental characterization of the process of homogeneous condensation in supersonic expanding flow. In our experiments, the supersaturated mixture expands in a Laval nozzle, where, depending on the initial conditions, a steady or periodically oscillating flow may evolve due

  12. Biofilm exopolymers control microbialite formation at thermal springs discharging into the alkaline Pyramid Lake, Nevada, USA

    Science.gov (United States)

    Arp, Gernot; Thiel, Volker; Reimer, Andreas; Michaelis, Walter; Reitner, Joachim

    1999-07-01

    Calcium carbonate precipitation and microbialite formation at highly supersaturated mixing zones of thermal spring waters and alkaline lake water have been investigated at Pyramid Lake, Nevada. Without precipitation, pure mixing should lead to a nearly 100-fold supersaturation at 40°C. Physicochemical precipitation is modified or even inhibited by the properties of biofilms, dependent on the extent of biofilm development and the current precipitation rate. Mucus substances (extracellular polymeric substances, EPS, e.g., of cyanobacteria) serve as effective Ca 2+-buffers, thus preventing seed crystal nucleation even in a highly supersaturated macroenvironment. Carbonate is then preferentially precipitated in mucus-free areas such as empty diatom tests or voids. After the buffer capacity of the EPS is surpassed, precipitation is observed at the margins of mucus areas. Hydrocarbon biomarkers extracted from (1) a calcifying Phormidium-biofilm, (2) the stromatolitic carbonate below, and (3) a fossil `tufa' of the Pleistocene pinnacles, indicate that the cyanobacterial primary producers have been subject to significant temporal changes in their species distribution. Accordingly, the species composition of cyanobacterial biofilms does not appear to be relevant for the formation of microbial carbonates in Pyramid Lake. The results demonstrate the crucial influence of mucus substances on carbonate precipitation in highly supersaturated natural environments.

  13. Modeling of Precipitation Sequence and Ageing Kinetics in Al-Mg-Si Alloys

    NARCIS (Netherlands)

    Bahrami, A.

    2010-01-01

    Al-Mg-Si alloys are heat treatable alloys in which strength is obtained by precipitation hardening. Precipitates, formed from a supersaturated solid solution during ageing heat treatment, are GP-zones, B", B´ and B-Mg2Si. Precipitation kinetics and strength vary with alloy composition and process

  14. Physical cleaning by bubbly streaming flow in an ultrasound field

    Science.gov (United States)

    Yamashita, Tatsuya; Ando, Keita

    2017-11-01

    Low-intensity ultrasonic cleaning with gas-supersaturated water is a promising method of physical cleaning without erosion; we are able to trigger cavitation bubble nucleation by weak ultrasound under gas supersaturation and thus clean material surfaces by mild bubble dynamics. Here, we perform particle image velocimetry (PIV) measurement of liquid flow and cavitation bubble translation in an ultrasonic cleaning bath driven at 28 kHz and then relate it to cleaning tests using glass slides at which silica particles are attached. The ultrasound pressure amplitude at the cleaning spot is set at 1.4 atm. We select the supersaturation level of dissolved oxygen (DO) as a parameter and control it by oxygen microbubble aeration. It follows from the PIV measurement that the liquid flow is enhanced by the cavitation bubble translation driven by acoustic radiation force; this trend becomes clearer when the bubbles appear more densely as the DO supersaturation increases. In the cleaning tests, the cleaned areas appear as straight streaks. This suggests that physical cleaning is achieved mainly by cavitation bubbles that translate in ultrasound fields.

  15. The effect of sodium bicarbonate upon urinary citrate excretion in calcium stone formers.

    Science.gov (United States)

    Pinheiro, Vivian Barbosa; Baxmann, Alessandra Calábria; Tiselius, Hans-Göran; Heilberg, Ita Pfeferman

    2013-07-01

    To evaluate the effects of oral sodium bicarbonate (NaBic) supplementation upon urinary citrate excretion in calcium stone formers (CSFs). Sixteen adult calcium stone formers with hypocitraturia were enrolled in a randomized, double-blind, crossover protocol using 60 mEq/day of NaBic during 3 days compared to the same period and doses of potassium citrate (KCit) supplementation. Blood and 24-hour urine samples were collected at baseline and during the third day of each alkali salt. NaBic, similarly to KCit supplementation, led to an equivalent and significant increase in urinary citrate and pH. Compared to baseline, NaBic led to a significant increase in sodium excretion without concomitant increases in urinary calcium excretion, whereas KCit induced a significant increase in potassium excretion coupled with a significant reduction in urinary calcium. Although NaBic and KCit both reduced calcium oxalate supersaturation (CaOxSS) significantly vs baseline, KCit reduced calcium oxalate supersaturation significantly further vs NaBic. Both KCit and NaBic significantly reduced urinary phosphate and increased calcium phosphate supersaturation (CaPSS) compared to baseline. Finally, a significantly higher sodium urate supersaturation (NaUrSS) was observed after the use of the 2 drugs. This short-term study suggests that NaBic represents an effective alternative for the treatment of hypocitraturic calcium oxalate stone formers who cannot tolerate or afford the cost of KCit. In view of the increased sodium urate supersaturation, patients with pure uric acid stones and high urate excretion may be less suited for treatment with NaBic. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Relative Humidity in the Tropopause Saturation Layer

    Science.gov (United States)

    Selkirk, H. B.; Schoeberl, M. R.; Pfister, L.; Thornberry, T. D.; Bui, T. V.

    2017-12-01

    The tropical tropopause separates two very different atmospheric regimes: the stable lower stratosphere where the air is both extremely dry and nearly always so, and a transition layer in the uppermost tropical troposphere, where humidity on average increases rapidly downward but can undergo substantial temporal fluctuations. The processes that control the humidity in this layer below the tropopause include convective detrainment (which can result in either a net hydration or dehydration), slow ascent, wave motions and advection. Together these determine the humidity of the air that eventually passes through the tropopause and into the stratosphere, and we refer to this layer as the tropopause saturation layer or TSL. We know from in situ water vapor observations such as Ticosonde's 12-year balloonsonde record at Costa Rica that layers of supersaturation are frequently observed in the TSL. While their frequency is greatest during the local rainy season from June through October, supersaturation is also observed in the boreal winter dry season when deep convection is well south of Costa Rica. In other words, local convection is not a necessary condition for the presence of supersaturation. Furthermore, there are indications from airborne measurements during the recent POSIDON campaign at Guam that if anything deep convection tends to `reset' the TSL locally to a state of just-saturation. Conversely, it may be that layers of supersaturation are the result of slow ascent. To explore these ideas we take Ticosonde water vapor observations from the TSL, stratify them on the basis of relative humidity and report on the differences in the the history of upstream convective influence between supersaturated parcels and those that are not.

  17. The inhibition of crystal growth of mirabilite in aqueous solutions in the presence of phosphonates

    Science.gov (United States)

    Vavouraki, A. I.; Koutsoukos, P. G.

    2016-02-01

    The formation of sodium sulfate decahydrate (Mirabilite) has been known to cause serious damages to structural materials both of modern and of historical buildings. Methods which can retard or completely suppress the development of mirabilte crystals are urgently needed especially as remedies or preventive measures for the preservation of the built cultural heritage. In the present work we present results on the effect of the presence of phosphonate compounds on the kinetics of crystal growth from aqueous supersaturated solutions at 18 °C using the seeded growth technique. The phosphonate compounds tested differed with respect to the number of ionizable phosphonate groups and with respect to the number of amino groups in the respective molecules. The crystal growth process was monitored by the temperature changes during the exothermic crystallization of mirabilite in the stirred supersaturated solutions. The crystal growth of mirabilite in the presence of: (1-hydroxyethylidene)-1, 1-diphosphonic acid (HEDP), amino tri (methylene phosphonic acid) (ATMP), hexamethylenediaminetetra (methylene)phosphonic acid (HTDMP), and diethylene triamine penta(methylene phosphonic acid)(DETPMP) over a range of concentrations between 0.1-5% w/w resulted in significant decrease of the rates of mirabilite crystal growth. All phosphonic compounds tested reduced the crystallization rates up to 60% in comparison with additive-free solutions. The presence of the test compounds did not cause changes of the mechanism of crystal growth which was surface diffusion controlled, as shown by the second order dependence of the rates of mirabilite crystal growth on the relative supersaturation. The excellent fit of the measured rates to a kinetic Langmuir-type model suggested that the activity of the tested inhibitors could be attributed to the adsorption and subsequent reduction of the active crystal growth sites of the seed crystals. In all cases, the inhibitory activity was reduced with

  18. Growth morphologies of crystal surfaces

    Science.gov (United States)

    Xiao, Rong-Fu; Alexander, J. Iwan D.; Rosenberger, Franz

    1991-03-01

    We have expanded our earlier Monte Carlo model [Phys. Rev. A 38, 2447 (1988); J. Crystal Growth 100, 313 (1990)] to three dimensions and included reevaporation after accommodation and growth on dislocation-induced steps. We found again that, for a given set of growth parameters, the critical size, beyond which a crystal cannot retain its macroscopically faceted shape, scales linearly with the mean free path in the vapor. However, the three-dimensional (3D) the systems show increased shape stability compared to corresponding 2D cases. Extrapolation of the model results to mean-free-path conditions used in morphological stability experiments leads to order-of-magnitude agreement of the predicted critical size with experimental findings. The stability region for macroscopically smooth (faceted) surfaces in the parameter space of temperature and supersaturation depends on both the surface and bulk diffusion. While surface diffusion is seen to smooth the growth morphology on the scale of the surface diffusion length, bulk diffusion is always destabilizing. The atomic surface roughness increases with increase in growth temperature and supersaturation. That is, the tendency of surface kinetics anisotropies to stabilize the growth shape is reduced through thermal and kinetic roughening. It is also found that the solid-on-solid assumption, which can be advantageously used at low temperatures and supersaturations, is insufficient to describe the growth dynamics of atomically rough interfaces where bulk diffusion governs the process. For surfaces with an emerging screw dislocation, we find that the spiral growth mechanism dominates at low temperatures and supersaturations. The polygonization of a growth spiral decreases with increasing temperature or supersaturation. When the mean free path in the nutrient is comparable to the lattice constant, the combined effect of bulk and surface diffusion reduces the terrace width of a growth spiral in its center region. At elevated

  19. Cloud condensation nuclei closure study on summer arctic aerosol

    Science.gov (United States)

    Martin, M.; Chang, R. Y.-W.; Sierau, B.; Sjogren, S.; Swietlicki, E.; Abbatt, J. P. D.; Leck, C.; Lohmann, U.

    2011-11-01

    We present an aerosol - cloud condensation nuclei (CCN) closure study on summer high Arctic aerosol based on measurements that were carried out in 2008 during the Arctic Summer Cloud Ocean Study (ASCOS) on board the Swedish ice breaker Oden. The data presented here were collected during a three-week time period in the pack ice (>85° N) when the icebreaker Oden was moored to an ice floe and drifted passively during the most biological active period into autumn freeze up conditions. CCN number concentrations were obtained using two CCN counters measuring at different supersaturations. The directly measured CCN number concentration was then compared with a CCN number concentration calculated using both bulk aerosol mass composition data from an aerosol mass spectrometer (AMS) and aerosol number size distributions obtained from a differential mobility particle sizer, assuming κ-Köhler theory, surface tension of water and an internally mixed aerosol. The last assumption was supported by measurements made with a hygroscopic tandem differential mobility analyzer (HTDMA) for particles >70 nm. For the two highest measured supersaturations, 0.73 and 0.41%, closure could not be achieved with the investigated settings concerning hygroscopicity and density. The calculated CCN number concentration was always higher than the measured one for those two supersaturations. This might be caused by a relative larger insoluble organic mass fraction of the smaller particles that activate at these supersaturations, which are thus less good CCN than the larger particles. On average, 36% of the mass measured with the AMS was organic mass. At 0.20, 0.15 and 0.10% supersaturation, closure could be achieved with different combinations of hygroscopic parameters and densities within the uncertainty range of the fit. The best agreement of the calculated CCN number concentration with the observed one was achieved when the organic fraction of the aerosol was treated as nearly water insoluble

  20. Behaviour of calcium carbonate in sea water

    Science.gov (United States)

    Cloud, P.E.

    1962-01-01

    Anomalies in the behaviour of calcium carbonate in natural solutions diminish when considered in context. Best values found by traditional oceanographie methods for the apparent solubility product constant K'CaCO3 in sea water at atmospheric pressure are consistent mineralogically-at 36 parts per thousand salinity and T-25??C, K'aragonlte is estimated as 1.12 ?? 10-6 and K'calcite as 0.61 ?? 10-6. At 30??C the corresponding values are 0.98 ?? 10-6 for aragonite and 0.53 ?? 10-6 for calcite. Because the K' computations do not compensate for ionic activity, however, they cannot give thermodynamically satisfactory results. It is of interest, therefore, that approximate methods and information now available permit the estimation from the same basic data of an activity product constant KCaCO3 close to that found in solutions to which Debye-Hu??ckel theory applies. Such methods indicate approximate Karagonite 7.8 ?? 10-9 for surface sea water at 29??C; Kcalcite would be proportionately lower. Field data and experimental results indicate that the mineralogy of precipitated CaCO3 depends primarily on degree of supersaturation, thus also on kinetic or biologic factors that facilitate or inhibit a high degree of supersaturation. The shallow, generally hypersaline bank waters west of Andros Island yield aragonitic sediments with O18 O16 ratios that imply precipitation mainly during the warmer months, when the combination of a high rate of evaporation, increasing salinity (and ionic strength), maximal temperatures and photosynthetic removal of CO2 result in high apparent supersaturation. The usual precipitate from solutions of low ionic strength is calcite, except where the aragonite level of supersaturation is reached as a result of diffusion phenomena (e.g. dripstones), gradual and marked evaporation, or biologic intervention. Published data also suggest the possibility of distinct chemical milieus for crystallographic variations in skeletal calcium carbonate. It appears

  1. Acoustic levitation: recent developments and emerging opportunities in biomaterials research.

    Science.gov (United States)

    Weber, Richard J K; Benmore, Chris J; Tumber, Sonia K; Tailor, Amit N; Rey, Charles A; Taylor, Lynne S; Byrn, Stephen R

    2012-04-01

    Containerless sample environments (levitation) are useful for study of nucleation, supercooling, and vitrification and for synthesis of new materials, often with non-equilibrium structures. Elimination of extrinsic nucleation by container walls extends access to supercooled and supersaturated liquids under high-purity conditions. Acoustic levitation is well suited to the study of liquids including aqueous solutions, organics, soft materials, polymers, and pharmaceuticals at around room temperature. This article briefly reviews recent developments and applications of acoustic levitation in materials R&D. Examples of experiments yielding amorphous pharmaceutical materials are presented. The implementation and results of experiments on supercooled and supersaturated liquids using an acoustic levitator at a high-energy X-ray beamline are described.

  2. Gas–liquid nucleation at large metastability: unusual features and a new formalism

    International Nuclear Information System (INIS)

    Santra, Mantu; Singh, Rakesh S; Bagchi, Biman

    2011-01-01

    Nucleation at large metastability is still largely an unsolved problem, even though it is a problem of tremendous current interest, with wide-ranging practical value, from atmospheric research to materials science. It is now well accepted that the classical nucleation theory (CNT) fails to provide a qualitative picture and gives incorrect quantitative values for such quantities as activation-free energy barrier and supersaturation dependence of nucleation rate, especially at large metastability. In this paper, we present an alternative formalism to treat nucleation at large supersaturation by introducing an extended set of order parameters in terms of the kth largest liquid-like clusters, where k = 1 is the largest cluster in the system, k = 2 is the second largest cluster and so on. At low supersaturation, the size of the largest liquid-like cluster acts as a suitable order parameter. At large supersaturation, the free energy barrier for the largest liquid-like cluster disappears. We identify this supersaturation as the one at the onset of kinetic spinodal. The kinetic spinodal is system-size-dependent. Beyond kinetic spinodal many clusters grow simultaneously and competitively and hence the nucleation and growth become collective. In order to describe collective growth, we need to consider the full set of order parameters. We derive an analytic expression for the free energy of formation of the kth largest cluster. The expression predicts that, at large metastability (beyond kinetic spinodal), the barrier of growth for several largest liquid-like clusters disappears, and all these clusters grow simultaneously. The approach to the critical size occurs by barrierless diffusion in the cluster size space. The expression for the rate of barrier crossing predicts weaker supersaturation dependence than what is predicted by CNT at large metastability. Such a crossover behavior has indeed been observed in recent experiments (but eluded an explanation till now). In order

  3. Substantial convection and precipitation enhancements by ultrafine aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Jiwen; Rosenfeld, Daniel; Zhang, Yuwei; Giangrande, Scott E.; Li, Zhanqing; Machado, Luiz A. T.; Martin, Scot T.; Yang, Yan; Wang, Jian; Artaxo, Paulo; Barbosa, Henrique M. J.; Braga, Ramon C.; Comstock, Jennifer M.; Feng, Zhe; Gao, Wenhua; Gomes, Helber B.; Mei, Fan; Pöhlker, Christopher; Pöhlker, Mira L.; Pöschl, Ulrich; de Souza, Rodrigo A. F.

    2018-01-25

    Aerosol-cloud interaction remains the largest uncertainty in climate projections. Ultrafine aerosol particles (UAP; size <50nm) are considered too small to serve as cloud condensation nuclei conventionally. However, this study provides observational evidence to accompany insights from numerical simulations to support that deep convective clouds (DCCs) over Amazon have strong capability of nucleating UAP from an urban source and forming greater numbers of droplets, because fast drop coalescence in these DCCs reduces drop surface area available for condensation, leading to high vapor supersaturation. The additional droplets subsequently decrease supersaturation and release more condensational latent heating, a dominant contributor to convection intensification, whereas enhanced latent heat from ice-related processes plays a secondary role. Therefore, the addition of anthropogenic UAP may play a much greater role in modulating clouds than previously believed over the Amazon region and possibly in other relatively pristine regions such as maritime and forest locations.

  4. Spatial and temporal variability of seawater pCO2 within the Canadian Arctic Archipelago and Baffin Bay during the summer and autumn 2011

    DEFF Research Database (Denmark)

    Geilfus, N.-X.; Pind, M. L.; Else, B. G. T.

    2018-01-01

    The partial pressure of CO2 in surface water (pCO2sw) measured within the Canadian Arctic Archipelago (CAA) and Baffin Bay was highly variable with values ranging from strongly undersaturated (118 μatm) to slightly supersaturated (419 μatm) with respect to the atmospheric levels ( 386 μatm) during...... summer and autumn 2011. During summer, melting sea ice contributed to cold and fresh surface water and enhanced the ice-edge bloom, resulting in strong pCO2sw undersaturation. Coronation Gulf was the only area with supersaturated pCO2sw, likely due to warm CO2-enriched freshwater input from...... the Coppermine River. During autumn, the entire CAA (including Coronation Gulf) was undersaturated, despite generally increasing pCO2sw. Coronation Gulf was the one place where pCO2sw decreased, likely due to seasonal reduction in discharge from the Coppermine River and the decreasing sea surface temperature...

  5. Investigation of the L-Glutamic acid polymorphism: Comparison between stirred and stagnant conditions

    Science.gov (United States)

    Tahri, Yousra; Gagnière, Emilie; Chabanon, Elodie; Bounahmidi, Tijani; Mangin, Denis

    2016-02-01

    This work highlights the effect of the stirring, the temperature and the supersaturation on the cooling crystallization of L-Glutamic acid (LGlu) polymorphs. First, solubility measurements of the metastable polymorph α and the stable polymorph β were performed. Then, crystallization experiments were carried out in stirred vessel and in stagnant cell. All these experiments were monitored by in situ devices. The effect of the temperature on the LGlu polymorphs was found to be more relevant than the supersaturation in the stirred crystallizer. In the stagnant cell, only the stable form β crystallized regardless of the operating conditions. Moreover, an unexpected and new habit of the β form was discovered and confirmed. These results suggest that the temperature and the stirring can strongly affect the nucleation and the growth kinetics of polymorphic forms.

  6. Photoinduced nucleation: A novel tool for detecting molecules in air at ultra-low concentrations

    International Nuclear Information System (INIS)

    Katz, Joseph L.; Lihavainen, Heikki; Rudek, Markus M.; Salter, Brian C.

    2000-01-01

    This paper describes the development of a novel detection method and the demonstration of its capability to detect substances at concentrations as small as a few parts per trillion. It is shown that photoinduced nucleation is not in itself a nucleation process; rather, supersaturated vapor condenses onto long-lasting clusters formed by chemical reaction of photo-excited molecules. The role of the supersaturated vapor is to increase the size of these photoproducts by condensation to a size readily detectable by light scattering. Furthermore, the measured nucleation rate variation with illumination wavelength exactly matches the substance's vapor-phase UV light absorption wavelength dependence, thus providing species identification. The ability to detect and identify molecules of substances at extremely low concentrations from ambient air is useful for detecting and monitoring pollutants, and for detecting explosives such as TNT. (c) 2000 American Institute of Physics

  7. Phase Equilibrium Studies of Savannah River Tanks and Feed Streams for the Salt Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.F.

    2001-06-19

    A chemical equilibrium model is developed and used to evaluate supersaturation of tanks and proposed feed streams to the Salt Waste Processing Facility. The model uses Pitzer's model for activity coefficients and is validated by comparison with a variety of thermodynamic data. The model assesses the supersaturation of 13 tanks at the Savannah River Site (SRS), indicating that small amounts of gibbsite and or aluminosilicate may form. The model is also used to evaluate proposed feed streams to the Salt Waste Processing Facility for 13 years of operation. Results indicate that dilutions using 3-4 M NaOH (about 0.3-0.4 L caustic per kg feed solution) should avoid precipitation and reduce the Na{sup +} ion concentration to 5.6 M.

  8. Formation of an ascorbate-apatite composite layer on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Atsuo [National Institute of Advanced Industrial Science and Technology (AIST), Institute for Human Science and Biomedical Engineering, Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566 (Japan); Sogo, Yu [National Institute of Advanced Industrial Science and Technology (AIST), Institute for Human Science and Biomedical Engineering, Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566 (Japan); Ebihara, Yuko [School of Science and Technology, Waseda University, 3-4-1 Okubo, Sinjuku-ku, Tokyo 169-8050 (Japan); Onoguchi, Masahiro [School of Science and Technology, Waseda University, 3-4-1 Okubo, Sinjuku-ku, Tokyo 169-8050 (Japan); Oyane, Ayako [National Institute of Advanced Industrial Science and Technology (AIST), Nanotechnology Research Institute, Central 4, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562 (Japan); Ichinose, Noboru [School of Science and Technology, Waseda University, 3-4-1 Okubo, Sinjuku-ku, Tokyo 169-8050 (Japan)

    2007-09-15

    An ascorbate-apatite composite layer was successfully formed on NaOH- and heat-treated titanium by coprecipitating L-ascorbic acid phosphate and low-crystalline apatite in a supersaturated calcium phosphate solution at 37 {sup 0}C for 48 h. The supersaturated calcium phosphate solutions used have chemical compositions attainable by mixing infusion fluids officially approved for clinical use. The amount of immobilized L-ascorbic acid phosphate ranged from 1.0 to 2.3 {mu}g mm{sup -2}, which is most likely to be sufficient for the in vitro osteogenic differentiation of mesenchymal stem cells on titanium. Since ascorbate is important for the collagen synthesis and subsequent osteogenesis of mesenchymal stem cells, titanium coated with the ascorbate-apatite composite layer would be useful as a scaffold in bone tissue engineering and as a bone substitute.

  9. Formation of an ascorbate-apatite composite layer on titanium

    International Nuclear Information System (INIS)

    Ito, Atsuo; Sogo, Yu; Ebihara, Yuko; Onoguchi, Masahiro; Oyane, Ayako; Ichinose, Noboru

    2007-01-01

    An ascorbate-apatite composite layer was successfully formed on NaOH- and heat-treated titanium by coprecipitating L-ascorbic acid phosphate and low-crystalline apatite in a supersaturated calcium phosphate solution at 37 0 C for 48 h. The supersaturated calcium phosphate solutions used have chemical compositions attainable by mixing infusion fluids officially approved for clinical use. The amount of immobilized L-ascorbic acid phosphate ranged from 1.0 to 2.3 μg mm -2 , which is most likely to be sufficient for the in vitro osteogenic differentiation of mesenchymal stem cells on titanium. Since ascorbate is important for the collagen synthesis and subsequent osteogenesis of mesenchymal stem cells, titanium coated with the ascorbate-apatite composite layer would be useful as a scaffold in bone tissue engineering and as a bone substitute

  10. Scanning electron microscope observations of sublimates from Merapi Volcano, Indonesia

    Science.gov (United States)

    Symonds, R.

    1993-01-01

    Sublimates were sampled from high-temperature (up to 800??C) fumaroles at Merapi volcano in January 1984. Sampling is accomplished by inserting silica tubes into high-temperature vents. Volcanic glass flows through the tubes and sublimates precipitate on the inner walls in response to the temperature gradient. With decreasing temperature (800-500??C) in the tubes, there are five sublimate zones. Texturally, the sublimate phases grade from large, well-formed crystals at their highest-temperature occurrence to more numerous, smaller crystals that are less perfect at lower temperatures. These changes imply that the crystal nucleation and growth rates increase and decrease, respectively, as temperature decreases. Overall, the textural data suggest that the gas is saturated or slightly super-saturated with the phases at their hottest occurrence, but that the gas becomes increasingly super-saturated with the phases at lower temperatures. -from Author

  11. Phase decomposition in a mechanically alloyed Cu-44.5 at%Ni-22.5 at%Fe alloy during isothermal aging

    International Nuclear Information System (INIS)

    Lopez-Hirata, Victor M.; Saucedo-Munoz, Maribel L.; Diaz-Barriga-Arceo, Lucia G.

    2006-01-01

    A supersaturated solid solution of Cu-44.5 at%Ni-22.5 at%Fe alloy was produced by ball milling of a pure chemical elemental mixture for 1080 ks. An fcc supersaturated solid solution with a grain size of about 20 nm was obtained after milling. This alloy was subsequently aged at 803, 898 and 1003 K for different times. The growth kinetics of the modulation wavelength was determined from the X-ray diffraction results and followed the Lifshitz-Slyozov-Wagner theory for a diffusion-controlled coarsening in the MA alloy after aging. The growth kinetics of composition modulation wavelength for the MA alloy was faster at 803 and 898 K than that for the same alloy composition obtained by a conventional processing and then aged at the same temperatures. The activation energy for the decomposed phase coarsening process in the MA alloy was lower than that corresponding to the conventionally-processed alloy. (author)

  12. Crystallization of inorganic salts from aqueous solutions in a microwave field

    International Nuclear Information System (INIS)

    Kochetkov, S. E.; Kuznetsov, V. A.; Lyashenko, A. V.; Bakshutov, V. S.

    2006-01-01

    The crystallization of some inorganic salts (KH 2 PO 4 , NaCl, Sr(NO 3 ) 2 , KNO 2 , Ca(OH) 2 ) by the thermal-gradient (with decreasing temperature) and solvent-evaporation methods using microwave heating of solutions is investigated. It is established that the growth rates of single crystals in a microwave field are an order of magnitude higher than obtained in other known techniques at comparable crystallization temperatures and supersaturations. For example, the growth rate of prismatic faces {100} of KH 2 PO 4 crystals is as high as 11 mm/day at supersaturations of ∼1.2%. The results obtained are discussed in the context of the effect of microwave radiation on the adsorption surface layers of crystals. Fine-grained phases of the salts under study are obtained by evaporation of the solvent

  13. DKDP crystal growth controlled by cooling rate

    Science.gov (United States)

    Xie, Xiaoyi; Qi, Hongji; Shao, Jianda

    2017-08-01

    The performance of deuterated potassium dihydrogen phosphate (DKDP) crystal directly affects beam quality, energy and conversion efficiency in the Inertial Confinement Fusion(ICF)facility, which is related with the initial saturation temperature of solution and the real-time supersaturation during the crystal growth. However, traditional method to measure the saturation temperature is neither efficient nor accurate enough. Besides, the supersaturation is often controlled by experience, which yields the higher error and leads to the instability during the crystal growth. In this paper, DKDP solution with 78% deuteration concentration is crystallized in different temperatures. We study the relation between solubility and temperature of DKDP and fit a theoretical curve with a parabola model. With the model, the measurement of saturation temperature is simplified and the control precision of the cooling rate is improved during the crystal growth, which is beneficial for optimizing the crystal growth process.

  14. Evidence of water vapor in excess of saturation in the atmosphere of Mars.

    Science.gov (United States)

    Maltagliati, L; Montmessin, F; Fedorova, A; Korablev, O; Forget, F; Bertaux, J-L

    2011-09-30

    The vertical distribution of water vapor is key to the study of Mars' hydrological cycle. To date, it has been explored mainly through global climate models because of a lack of direct measurements. However, these models assume the absence of supersaturation in the atmosphere of Mars. Here, we report observations made using the SPICAM (Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars) instrument onboard Mars Express that provide evidence of the frequent presence of water vapor in excess of saturation, by an amount far surpassing that encountered in Earth's atmosphere. This result contradicts the widespread assumption that atmospheric water on Mars cannot exist in a supersaturated state, directly affecting our long-term representation of water transport, accumulation, escape, and chemistry on a global scale.

  15. Crystal agglomeration of europium oxalate in reaction crystallization using double-jet semi-batch reactor

    International Nuclear Information System (INIS)

    Kim, Woo-Sik; Kim, Woon-Soo; Kim, Kwang-Seok; Kim, Joon-Soo; Ward, Michael D.

    2004-01-01

    The particle agglomeration of europium oxalate was investigated in a double-jet semi-batch reactor over a wide range of operating variables, including the agitation speed, reactant feed rate, and reactant concentration. The size of the agglomerates was directly dictated by the particle collision and supersaturation promoting agglomeration and the fluid shear force inhibiting agglomeration. Thus, with a longer feeding time and higher feed concentration for the reaction crystallization, the mean particle size increased, while the corresponding total particle population decreased due to the enhanced chance of particle agglomeration, resulting from a longer residence time and higher supersaturation in the reactor. Agitation was found to exhibit a rather complicated influence on particle agglomeration. Although both particle collision and turbulent fluid shear were promoted by an increase in the mixing intensity, the crystal agglomeration of europium oxalate was maximized at around 500 rpm of agitation speed due to an optimized balance between particle aggregation and breakage

  16. Solid-Phase and Oscillating Solution Crystallization Behavior of (+)- and (-)-N-Methylephedrine.

    Science.gov (United States)

    Tulashie, Samuel Kofi; Polenske, Daniel; Seidel-Morgenstern, Andreas; Lorenz, Heike

    2016-11-01

    This work involves the study of the solid-phase and solution crystallization behavior of the N-methylephedrine enantiomers. A systematic investigation of the melt phase diagram of the enantiomeric N-methylephedrine system was performed considering polymorphism. Two monotropically related modifications of the enantiomer were found. Solubilities and the ternary solubility phase diagrams of N-methylephedrine enantiomers in 2 solvents [isopropanol:water, 1:3 (Vol) and (2R, 3R)-diethyl tartrate] were determined in the temperature ranges between 15°C and 25°C, and 25°C and 40°C, respectively. Preferential nucleation and crystallization experiments at higher supersaturation leading to an unusual oscillatory crystallization behavior as well as a successful preferential crystallization experiment at lower supersaturation are presented and discussed. Copyright © 2016. Published by Elsevier Inc.

  17. Cloud Condensation Nuclei Particle Counter (CCN) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Uin, Janek [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-01

    The Cloud Condensation Nuclei Counter—CCN (Figure 1) is a U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility instrument for measuring the concentration of aerosol particles that can act as cloud condensation nuclei [1, 2]. The CCN draws the sample aerosol through a column with thermodynamically unstable supersaturated water vapor that can condense onto aerosol particles. Particles that are activated, i.e., grown larger in this process, are counted (and sized) by an Optical Particle Counter (OPC). Thus, activated ambient aerosol particle number concentration as a function of supersaturation is measured. Models CCN-100 and CCN-200 differ only in the number of humidifier columns and related subsystems: CCN-100 has one column and CCN-200 has two columns along with dual flow systems and electronics.

  18. Dissolution and growth of precipitates under electron irradiation in an Al-11.8 at % Zn alloy by small angle neutron scattering

    International Nuclear Information System (INIS)

    Baig, M.R.

    1995-01-01

    Dissolution and growth of precipitates in a room temperature aged Al-11.8 at % Zn alloy have been studied under electron irradiation using small angle neutron scattering (SANS). A series of electron irradiations were performed on each sample and SANS measurements were made on each irradiation. In general for low doses the results show an initial decrease in the magnitude of the scattering, but associated with an increase in the precipitate size. This is followed on prolonged irradiation by an increase in the magnitude of the scattering with a continued increase in precipitate size. It is believed, that at low doses some precipitate grow in size but others may dissolve in the matrix, which then becomes supersaturated. With the enhanced rate of diffusion as a result of the irradiation, the remaining precipitates grow rapidly. As the supersaturation reduces, a coarsening mechanism takes over, via a radiation enhanced diffusion mechanism

  19. Gas-liquid nucleation at large metastability: unusual features and a new formalism

    Science.gov (United States)

    Santra, Mantu; Singh, Rakesh S.; Bagchi, Biman

    2011-03-01

    Nucleation at large metastability is still largely an unsolved problem, even though it is a problem of tremendous current interest, with wide-ranging practical value, from atmospheric research to materials science. It is now well accepted that the classical nucleation theory (CNT) fails to provide a qualitative picture and gives incorrect quantitative values for such quantities as activation-free energy barrier and supersaturation dependence of nucleation rate, especially at large metastability. In this paper, we present an alternative formalism to treat nucleation at large supersaturation by introducing an extended set of order parameters in terms of the kth largest liquid-like clusters, where k = 1 is the largest cluster in the system, k = 2 is the second largest cluster and so on. At low supersaturation, the size of the largest liquid-like cluster acts as a suitable order parameter. At large supersaturation, the free energy barrier for the largest liquid-like cluster disappears. We identify this supersaturation as the one at the onset of kinetic spinodal. The kinetic spinodal is system-size-dependent. Beyond kinetic spinodal many clusters grow simultaneously and competitively and hence the nucleation and growth become collective. In order to describe collective growth, we need to consider the full set of order parameters. We derive an analytic expression for the free energy of formation of the kth largest cluster. The expression predicts that, at large metastability (beyond kinetic spinodal), the barrier of growth for several largest liquid-like clusters disappears, and all these clusters grow simultaneously. The approach to the critical size occurs by barrierless diffusion in the cluster size space. The expression for the rate of barrier crossing predicts weaker supersaturation dependence than what is predicted by CNT at large metastability. Such a crossover behavior has indeed been observed in recent experiments (but eluded an explanation till now). In order

  20. The role of silicon, vacancies, and strain in carbon distribution in low temperature bainite

    Energy Technology Data Exchange (ETDEWEB)

    Sampath, S. [Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-Universität Bochum, Bochum 44780 (Germany); Rementeria, R. [Department of Physical Metallurgy, National Center for Metallurgical Research (CENIM-CSIC), Avda. Gregorio del Amo, 8, Madrid E-28040 (Spain); Huang, X. [Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-Universität Bochum, Bochum 44780 (Germany); Poplawsky, J.D. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Road, P.O. Box 2008, MS-6064, Oak Ridge, TN 37831 (United States); Garcia-Mateo, C.; Caballero, F.G. [Department of Physical Metallurgy, National Center for Metallurgical Research (CENIM-CSIC), Avda. Gregorio del Amo, 8, Madrid E-28040 (Spain); Janisch, R., E-mail: rebecca.janisch@rub.de [Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-Universität Bochum, Bochum 44780 (Germany)

    2016-07-15

    We investigated the phenomenon of carbon supersaturation and carbon clustering in bainitic ferrite with atom probe tomography (APT) and ab-initio density functional theory (DFT) calculations. The experimental results show a homogeneous distribution of silicon in the microstructure, which contains both ferrite and retained austenite. This distribution is mimicked well by the computational approach. In addition, an accumulation of C in certain regions of the bainitic ferrite with C concentrations up to 13 at % is observed. Based on the DFT results, these clusters are explained as strained, tetragonal regions in the ferritic bainite, in which the solution enthalpy of C can reach large, negative values. It seems that Si itself only has a minor influence on this phenomenon. - Highlights: • Atom-probe tomography shows supersaturation of bainitic ferrite with C. • Ab initio calculations show that Si has negative influence on C solubility. • Combination of tetragonality of the lattice and strain can explain C accumulation.

  1. In vitro models for the prediction of in vivo performance of oral dosage forms

    DEFF Research Database (Denmark)

    Kostewicz, Edmund S; Abrahamsson, Bertil; Brewster, Marcus

    2014-01-01

    Accurate prediction of the in vivo biopharmaceutical performance of oral drug formulations is critical to efficient drug development. Traditionally, in vitro evaluation of oral drug formulations has focused on disintegration and dissolution testing for quality control (QC) purposes. The connection...... of formulations that rely on complex intraluminal processes (e.g. solubilization, supersaturation, precipitation…) remains extremely challenging. Concomitantly, the increasing demand for complex formulations to overcome low drug solubility or to control drug release rates urges the development of new in vitro...

  2. Conversion of borate ions in liquid phase. Izmenenie sostava borationov v zhidkoj faze

    Energy Technology Data Exchange (ETDEWEB)

    Gode, G K; Bernare, A A [Latvijskij Gosudarstvennyj Univ., Riga (USSR)

    1989-01-01

    Isomolar series of aquepus solutions of magnesium chloride and potassium tetraborate at 25 deg C are investigated by the refractometry method. It is established that inderite containing triborate-ion is crystalized from solutions of rather high concentration. In 0.1 M solution reagents form supersaturated solutions with the decreased refractive index against the calculated one. It is supposed that this deviation is caused by partial transformation of tetraborate-ion to triborate-ion under the magnesium ion effect.

  3. Conversion of borate ions in liquid phase

    International Nuclear Information System (INIS)

    Gode, G.K.; Bernare, A.A.

    1989-01-01

    Isomolar series of aquepus solutions of magnesium chloride and potassium tetraborate at 25 deg C are investigated by the refractometry method. It is established that inderite containing triborate-ion is crystalized from solutions of rather high concentration. In 0.1 M solution reagents form supersaturated solutions with the decreased refractive index against the calculated one. It is supposed that this deviation is caused by partial transformation of tetraborate-ion to triborate-ion under the magnesium ion effect

  4. Safe Inner Ear Gas Tensions for Switch from Helium to Air Breathing During Decompression

    Science.gov (United States)

    2013-04-01

    Diving Medical Officer either cleared or disqualified diver-subjects for participating in each experimental dive. Divers refrained from any hyperbaric ...exposure for a minimum of 48 hours before and following any experimental dive. Divers also refrained from any hypobaric exposure for a minimum of 48...the inner ear during its brief period of supersaturation. There are relatively few published data concerning VGE detection at hyperbaric pressure

  5. Laser annealing of ion implanted silicon

    International Nuclear Information System (INIS)

    White, C.W.; Appleton, B.R.; Wilson, S.R.

    1980-01-01

    Pulsed laser annealing of ion implanted silicon leads to the formation of supersaturated alloys by nonequilibrium crystal growth processes at the interface occurring during liquid phase epitaxial regrowth. The interfacial distribution coefficients from the melt (k') and the maximum substitutional solubilities (C/sub s//sup max/) are far greater than equilibrium values. Both K' and C/sub s//sup max/ are functions of growth velocity. Mechanisms limiting substitutional solubilities are discussed. 5 figures, 2 tables

  6. To the kinetics of moisture formation in disturbed flows

    International Nuclear Information System (INIS)

    Bazarov, S.M.; Shpenzer, G.G.

    1979-01-01

    A peculiar feature of disperse multiphase flows is the existence of pronounced fluctuations of parameters of state. An effect of fluctuations of parameters of vapor flows state on a degree of vapor flow supersaturation, a critical dimension of condensation nuclei, nucleation rate and droplet growth rate in disturbed flows has been analytically investigated. The analysis of obtained correlations is shown that state parameter pulsations and relaxation phenomena hardly effect on initial moisture formation and determine disperce composition of a suspended phase

  7. Intragranular Chromium Nitride Precipitates in Duplex and Superduplex Stainless Steel

    OpenAIRE

    Iversen, Torunn Hjulstad

    2012-01-01

    Intragranular chromium nitrides is a phenomenon with detrimental effects on material properties in superduplex stainless steels which have not received much attention. Precipitation of nitrides occurs when the ferritic phase becomes supersaturated with nitrogen and there is insufficient time during cooling for diffusion of nitrogen into austenite. Heat treatment was carried out at between 1060◦C and 1160◦C to study the materials susceptibility to nitride precipitation with...

  8. Electroformed Nanocrystalline Coatings: An Advanced Alternative to Hard Chrome Electroplating

    Science.gov (United States)

    2003-11-21

    100mL/min. The vials were then analyzed for any traces of cobalt, iron, chloride, sulphate, and for two additives. A summary of the emission results...observed that correspond to cobalt- phosphites , indicating that the phosphorus is present in the deposits in a solid solution state (similar to XRD...precipitation of cobalt- phosphites from the supersaturated solid solution at elevated temperatures. Figure 4-2 shows the variation in hardness as a

  9. Asam Urat dan Hiperuresemia

    OpenAIRE

    Syukri, Maimun

    2010-01-01

    Uric acid is nitrogen compounds, produced catabolisme purine. Purine compounds produced diet and endogen nucleat (DNA). Most of uric acid excreted by kidney and a little by gut. Uric acid will supersaturation and cristalization process in urine and will formatted stone of urinary tract. Hyperurecemia due to over production or decreased excretion of uric acid. Acute arthritis due to the mobilization of uric acid in synovial liquid and that is provocated by fluctuated of uric acid serum.

  10. Growth mechanism of NaClO 3 and NaBrO 3 crystals from aqueous ...

    Indian Academy of Sciences (India)

    A study of growth rates of NaClO3 and NaBrO3 has been carried out using a small growth cell by in situ observation. Normal growth rates of {100} faces of NaClO3 and {111} faces of NaBrO3 along ⟨ 110 ⟩ direction are measured under relatively high supersaturation ranging from 3–8%. In the initial stages of growth, {100}, ...

  11. Morphology evolution in spinel manganite films deposited from an aqueous solution

    International Nuclear Information System (INIS)

    Ko, Song Won; Li, Jing; Trolier-McKinstry, Susan

    2012-01-01

    Spinel manganite films were deposited by the spin spray technique at low deposition temperatures ( 1000, agglomeration of small particles was dominant, which suggests that homogeneous nucleation is dominant during deposition. Heterogeneous nucleation was critical to obtain dense films. - Highlights: ► Film microstructure depends on supersaturation. ► Heterogeneous nucleation induces dense and continuous films. ► The spin spray technique enables use of a variety of substrates.

  12. Effects of freshwater Synechococcus sp. cyanobacteria pH buffering on CaCO3 precipitation: Implications for CO2 sequestration

    International Nuclear Information System (INIS)

    Martinez, Raul E.; Weber, Sebastian; Grimm, Christian

    2016-01-01

    In the present study, a mixed-flow steady-state bio-reactor was designed to biomineralize CO 2 as a consequence of photosynthesis from active Synechococcus sp. Dissolved CO 2 , generated by constant air bubbling of inorganic and cyanobacteria stock solutions, was the only source of inorganic carbon. The release of hydroxide ion by cyanobacteria from photosynthesis maintained highly alkaline pH conditions. In the presence of Ca 2+ and carbonate species, this led to calcite supersaturation under steady state conditions. Ca 2+ remained constant throughout the experiments showing the presence of steady state conditions. Similarly, the Synechococcus sp. biomass concentration remained stable within uncertainty. A gradual pH decrease was observed for the highest Ca 2+ condition coinciding with the formation of CaCO 3 . The high degree of supersaturation, under steady-state conditions, contributed to the stabilization of calcite and maintained a constant driving force for the mineral nucleation and growth. For the highest Ca 2+ condition a fast crystal growth rate was consistent with rapid calcite precipitation as suggested further by affinity calculations. Although saturation state based kinetic precipitation models cannot accurately reflect the controls on crystal growth kinetics or reliably predict growth mechanisms, the relatively reaction orders obtained from modeling of calcite precipitation rates as function of decreasing carbonate concentration suggest that the precipitation occurred via surface-controlled rate determining reactions. These high reaction orders support in addition the hypothesis that crystal growth proceeded through complex surface controlled mechanisms. In conclusion, the steady state supersaturated conditions generated by a constant cyanobacteria biomass and metabolic activity strongly suggest that these microorganisms could be used for the development of efficient CO 2 sequestration methods in a controlled large-scale environment. - Highlights:

  13. Ultrasound Assisted Particle Size Control by Continuous Seed Generation and Batch Growth

    OpenAIRE

    Jordens, Jeroen; Canini, Enio; Gielen, Bjorn; Van Gerven, Tom; Braeken, Leen

    2017-01-01

    Controlling particle size is essential for crystal quality in the chemical and pharmaceutical industry. Several articles illustrate the potential of ultrasound to tune this particle size during the crystallization process. This paper investigates how ultrasound can control the particle size distribution (PSD) of acetaminophen crystals by continuous seed generation in a tubular crystallizer followed by batch growth. It is demonstrated that the supersaturation ratio at which ultrasound starts s...

  14. Overview of models allowing calculation of activity coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Jaussaud, C.; Sorel, C

    2004-07-01

    Activity coefficients must be estimated to accurately quantify the extraction equilibrium involved in spent fuel reprocessing. For these calculations, binary data are required for each electrolyte over a concentration range sometimes exceeding the maximum solubility. The activity coefficients must be extrapolated to model the behavior of binary supersaturated aqueous solution. According to the bibliography, the most suitable models are based on the local composition concept. (authors)

  15. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    Energy Technology Data Exchange (ETDEWEB)

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken; Ciochetto, David; Niedermeier, Dennis; Ovchinnikov, Mikhail; Shaw, Raymond A.; Yang, Fan

    2016-11-28

    The influence of aerosol concentration on cloud droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud droplet growth and fallout. As aerosol concentration is increased the cloud droplet mean diameter decreases as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τc < τt) for high aerosol concentration, and slow microphysics (τc > τt) for low aerosol concentration; here, τc is the phase relaxation time and τt is the turbulence correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τs-1c-1 + τt-1, and the measurements are in excellent agreement with this finding. This finding underscores the importance of droplet size dispersion for the aerosol indirect effect: increasing aerosol concentration not only suppresses precipitation formation through reduction of the mean droplet diameter, but perhaps more importantly, through narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol / slow microphysics limit are likely of leading importance for precipitation formation.

  16. Method for fabricating apatite crystals and ceramics

    Science.gov (United States)

    Soules, Thomas F.; Schaffers, Kathleen I.; Tassano, Jr., John B.; Hollingsworth, Joel P.

    2013-09-10

    The present invention provides a method of crystallizing Yb:C-FAP [Yb.sup.3+:Ca.sub.5(PO.sub.4).sub.3F], by dissolving the Yb:C-FAP in an acidic solution, following by neutralizing the solution. The present invention also provides a method of forming crystalline Yb:C-FAP by dissolving the component ingredients in an acidic solution, followed by forming a supersaturated solution.

  17. A comparative study of hydroxyapatite nanoparticles synthesized by different routes

    OpenAIRE

    Paz, Adrian; Guadarrama, Dainelys; López, Mónica; E. González, Jesús; Brizuela, Nayrim; Aragón, Javier

    2012-01-01

    In this study, bioactive hydroxyapatite nanoparticles were prepared by two different methods: wet chemical precipitation and biomimetic precipitation. The aim was to evaluate the morphology, particle-size, crystallinity and phases of the powders obtained by traditional wet chemical precipitation and the novel biomimetic precipitation using a supersaturated calcium solution. The nanoparticles were investigated by transmission electron microscopy, Fourier transform infrared spectroscopy and X-r...

  18. Dendritic growth forms of borax crystals

    International Nuclear Information System (INIS)

    Takoo, R.K.; Patel, B.R.; Joshi, M.S.

    1983-01-01

    A variety of dendritic forms of borax grown from solutions by the film formation method is given. The changing growth morphology is followed as a function of concentration and temperature. The initial, intermediate and final growth morphologies are described and discussed. Influence of evaporation rate and supersaturation on the mechanism of growth is assessed. It is suggested that under all crystallization conditions, borax crystals have dendritic form in the initial stages of growth. (author)

  19. EFFECT OF SODIUM DODECYLBENZENESULFONIC ACID (SDBS ON THE GROWTH RATE AND MORPHOLOGY OF BORAX CRYSTAL

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available An investigation of the effect of sodium dodecylbenzenesulfonic acid (SDBS on both growth rate and morphology of borax crystal has been carried out.  This experiment was carried out at temperature of 25 °C and relative supersaturation of 0.21 and 0.74 under in situ cell optical microscopy method.  The result shows that SDBS inhibits the growth rate and changes the morphology of borax crystal.   Keywords: Borax; growth rate; crystallization, SDBS

  20. EVALUATION OF SODIUM CHLORIDE CRYSTALLIZATION IN MEMBRANE DISTILLATION CRYSTALLIZATION APPLIED TO WATER DESALINATION

    Directory of Open Access Journals (Sweden)

    Y. N. Nariyoshi

    Full Text Available Abstract Crystallization in a Direct Contact Membrane Distillation (DCMD process was studied both theoretically and experimentally. A mathematical model was proposed in order to predict the transmembrane flux in DCMD. The model fitted well experimental data for the system NaCl-H2O from undersaturated to supersaturated conditions in a specially designed crystallization setup at a bench scale. It was found that higher transmembrane fluxes induce higher temperature and concentration polarizations, as well as higher supersaturation in the vicinity of the solution-vapor interface. In this region, the supersaturation ratio largely exceeded the metastable limit for NaCl crystallization for the whole range of transmembrane fluxes of 0.37 to 1.54 kg/ (m2 h, implying that heterogeneous primary nucleation occurred close to such interface either in solution or on the membrane surface. Solids formed in solution accounted for 14 to 36% of the total solids, whereas solid formed on the membrane surface (fouling was responsible for 6 to 19%. The remaining solids deposited on other surfaces such as in pumps and pipe fittings. It was also discovered that, by increasing the supersaturation ratio, heterogeneous nucleation in solution increased and on the membrane surface decreased. Heterogeneous nuclei in solution grew in size both by a molecular mechanism and by agglomeration. Single crystals were cubic shaped with well-formed edges and dominant size of about 40 µm whereas agglomerates were about 240 µm in size. The approach developed here may be applied to understanding crystallization phenomena in Membrane Distillation Crystallization (MDC processes of any scale.

  1. Physics of Beer Tapping

    OpenAIRE

    Rodríguez-Rodríguez , Javier; Casado-Chacón , Almudena; Fuster , Daniel

    2014-01-01

    International audience; The popular bar prank known in colloquial English as beer tapping consists in hitting the top of a beer bottle with a solid object, usually another bottle, to trigger the foaming over of the former within a few seconds. Despite the trick being known for long time, to the best of our knowledge, the phenomenon still lacks scientific explanation. Although it seems natural to think that shock-induced cavitation enhances the diffusion of CO2 from the supersaturated bulk liq...

  2. Transient enhanced diffusion of dopants in preamorphized Si layers

    International Nuclear Information System (INIS)

    Claverie, A.; Bonafos, C.; Omri, M.; Mauduit, B. de; Ben Assayag, G.; Martinez, A.; Alquier, D.; Mathiot, D.

    1997-01-01

    Transient Enhanced Diffusion (TED) of dopants in Si is the consequence of the evolution, upon annealing, of a large supersaturation of Si self-interstitial atoms left after ion bombardment. In the case of amorphizing implants, this supersaturation is located just beneath the c/a interface and evolves through the nucleation and growth of End-Of-Range (EOR) defects. For this reason, the authors discuss here the relation between TED and EOR defects. Modelling of the behavior of these defects upon annealing allows one to understand why and how they affect dopant diffusion. This is possible through the development of the Ostwald ripening theory applied to extrinsic dislocation loops. This theory is shown to be readily able to quantitatively describe the evolution of the defect population (density, size) upon annealing and gives access to the variations of the mean supersaturation of Si self-interstitial atoms between the loops and responsible for TED. This initial supersaturation is, before annealing, at least 5 decades larger than the equilibrium value and exponentially decays with time upon annealing with activation energies that are the same than the ones observed for TED. It is shown that this time decay is precisely at the origin of the transient enhancement of boron diffusivity through the interstitial component of boron diffusion. Side experiments shed light on the effect of the proximity of a free surface on the thermal behavior of EOR defects and allow us to quantitatively describe the space and time evolutions of boron diffusivity upon annealing of preamorphized Si layers

  3. Alkalinity of the Mediterranean Sea

    OpenAIRE

    Schneider, Anke; Wallace, Douglas W.R.; Körtzinger, Arne

    2007-01-01

    Total alkalinity (AT) was measured during the Meteor 51/2 cruise, crossing the Mediterranean Sea from west to east. AT concentrations were high (∼2600 μmol kg−1) and alkalinity-salinity-correlations had negative intercepts. These results are explained by evaporation coupled with high freshwater AT inputs into coastal areas. Salinity adjustment of AT revealed excess alkalinity throughout the water column compared to mid-basin surface waters. Since Mediterranean waters are supersaturated with r...

  4. Influence of steel composition and plastic deformation on the surface properties induced by low temperature thermochemical processing

    DEFF Research Database (Denmark)

    Bottoli, Federico

    to the formation of a supersaturated solid solution known as expanded austenite, or S-Phase. Expanded austenite is characterized by high hardness, up to 1400 Vickers, and high compressive stresses in the surface region, which result in improved wear and fatigue resistance of the components. Along....../nitrocarburizing on the stress distribution. The experimental techniques applied entail X-ray diffraction (XRD), Glow Discharge Optical EmissionSpectroscopy (GD-OES), Scanning electron microscopy (SEM), light optical microscopy (LOM) and hardness measurement....

  5. A study of Al-Mo powder processing as a possible way to corrosion resistent aluminum-alloys

    Directory of Open Access Journals (Sweden)

    Wilson Corrêa Rodrigues

    2009-06-01

    Full Text Available Elementary Al and Mo powder mixtures have been processed by high energy ball milling up to milling times of 100 hours. The shift of the pitting potential and the X ray analysis of green milled samples showed that part of the Mo has formed a supersaturated solid solution of Mo in Al. Elementary Mo powder, however, was still present after 100 hours of milling. Sintering led to the formation of the intermetallic Al12Mo phase.

  6. Nanocrystals of [Cu3(btc)2] (HKUST-1): a combined time-resolved light scattering and scanning electron microscopy study.

    Science.gov (United States)

    Zacher, Denise; Liu, Jianing; Huber, Klaus; Fischer, Roland A

    2009-03-07

    The formation of [Cu(3)(btc)(2)] (HKUST-1; btc = 1,3,5-benzenetricarboxylate) nanocrystals from a super-saturated mother solution at room temperature was monitored by time-resolved light scattering (TLS); the system is characterized by a rapid growth up to a size limit of 200 nm within a few minutes, and the size and shape of the crystallites were also determined by scanning electron microscopy (SEM).

  7. Analytical description of thermodynamic properties of steam, water and the phase interface for use in CFD

    OpenAIRE

    Hrubý Jan; Duška Michal

    2014-01-01

    We present a system of analytical equations for computation of all thermodynamic properties of dry steam and liquid water (undesaturated, saturated and metastable supersaturated) and properties of the liquid-vapor phase interface. The form of the equations is such that it enables computation of all thermodynamic properties for independent variables directly related to the balanced quantities - total mass, liquid mass, energy, momenta. This makes it suitable for the solvers of fluid dynamics e...

  8. X-ray transparent Microfluidics for Protein Crystallization and Biomineralization

    Science.gov (United States)

    Opathalage, Achini

    Protein crystallization demands the fundamental understanding of nucleation and applying techniques to find the optimal conditions to achieve the kinetic pathway for a large and defect free crystal. Classical nucleation theory predicts that the nucleation occurs at high supersaturation conditions. In this dissertation we sought out to develop techniques to attain optimal supersaturation profile to a large defect free crystal and subject it to in-situ X-ray diffraction using microfluidics. We have developed an emulsion-based serial crystallographic technology in nanolitre-sized droplets of protein solution encapsulated in to nucleate one crystal per drop. Diffraction data are measured, one crystal at a time, from a series of room temperature crystals stored on an X-ray semi-transparent microfluidic chip, and a 93% complete data set is obtained by merging single diffraction frames taken from different un-oriented crystals. As proof of concept, the structure of Glucose Isomerase was solved to 2.1 A. We have developed a suite of X-ray semi-transparent micrfluidic devices which enables; controlled evaporation as a method of increasing supersaturation and manipulating the phase space of proteins and small molecules. We exploited the inherently high water permeability of the thin X-ray semi-transparent devices as a mean of increasing the supersaturation by controlling the evaporation. We fabricated the X-ray semi-transparent version of the PhaseChip with a thin PDMS membrane by which the storage and the reservoir layers are separated, and studies the phase transition of amorphous CaCO3.

  9. Mechanism for enhanced absorption of a solid dispersion formulation of LY2300559 using the artificial stomach duodenum model.

    Science.gov (United States)

    Polster, Christopher S; Wu, Sy-Juen; Gueorguieva, Ivelina; Sperry, David C

    2015-04-06

    An artificial stomach duodenum (ASD) model has been used to demonstrate the performance difference between two formulations of LY2300559, a low-solubility acidic developmental drug. The two formulations investigated were a conventional high-shear wet granulation (HSWG) formulation and a solid dispersion formulation. A pharmacokinetic study in humans demonstrated the enhanced performance of the solid dispersion formulation relative to the HSWG formulation. The Cmax and AUC of the solid dispersion was 2.6 and 1.9 times greater, respectively, compared to the HSWG formulation. In the ASD, the solid dispersion formulation performance was characterized by three main phases: (1) rapid release in the stomach, creating a supersaturated concentration of drug, (2) precipitation in the stomach, and (3) rapid redissolution of the precipitate in the duodenum to concentration levels that are supersaturated relative to crystalline drug. A series of complementary experiments were employed to describe this performance behavior mechanistically. Imaging experiments with a pH indicating dye showed that local pH gradients from meglumine in the solid dispersion formulation were responsible for creating a high initial supersaturation concentration in the stomach. Upon dissipation of meglumine, the drug precipitated in the stomach as an amorphous solid. Because the precipitated drug is in an amorphous form, it can then rapidly redissolve as it transits to the more neutral environment of the duodenum. This unexpected sequence of physical state changes gives a mechanistic explanation for the enhanced in vivo performance of the solid dispersion formulation relative to the HSWG formulation.

  10. Structural motifs of pre-nucleation clusters.

    Science.gov (United States)

    Zhang, Y; Türkmen, I R; Wassermann, B; Erko, A; Rühl, E

    2013-10-07

    Structural motifs of pre-nucleation clusters prepared in single, optically levitated supersaturated aqueous aerosol microparticles containing CaBr2 as a model system are reported. Cluster formation is identified by means of X-ray absorption in the Br K-edge regime. The salt concentration beyond the saturation point is varied by controlling the humidity in the ambient atmosphere surrounding the 15-30 μm microdroplets. This leads to the formation of metastable supersaturated liquid particles. Distinct spectral shifts in near-edge spectra as a function of salt concentration are observed, in which the energy position of the Br K-edge is red-shifted by up to 7.1 ± 0.4 eV if the dilute solution is compared to the solid. The K-edge positions of supersaturated solutions are found between these limits. The changes in electronic structure are rationalized in terms of the formation of pre-nucleation clusters. This assumption is verified by spectral simulations using first-principle density functional theory and molecular dynamics calculations, in which structural motifs are considered, explaining the experimental results. These consist of solvated CaBr2 moieties, rather than building blocks forming calcium bromide hexahydrates, the crystal system that is formed by drying aqueous CaBr2 solutions.

  11. Crosslinked hydrogels—a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs

    Directory of Open Access Journals (Sweden)

    Dajun D. Sun

    2014-02-01

    Full Text Available Water-insoluble materials containing amorphous solid dispersions (ASD are an emerging category of drug carriers which can effectively improve dissolution kinetics and kinetic solubility of poorly soluble drugs. ASDs based on water-insoluble crosslinked hydrogels have unique features in contrast to those based on conventional water-soluble and water-insoluble carriers. For example, solid molecular dispersions of poorly soluble drugs in poly(2-hydroxyethyl methacrylate (PHEMA can maintain a high level of supersaturation over a prolonged period of time via a feedback-controlled diffusion mechanism thus avoiding the initial surge of supersaturation followed by a sharp decline in drug concentration typically encountered with ASDs based on water-soluble polymers. The creation of both immediate- and controlled-release ASD dosage forms is also achievable with the PHEMA based hydrogels. So far, ASD systems based on glassy PHEMA have been shown to be very effective in retarding precipitation of amorphous drugs in the solid state to achieve a robust physical stability. This review summarizes recent research efforts in investigating the potential of developing crosslinked PHEMA hydrogels as a promising alternative to conventional water-soluble ASD carriers, and a related finding that the rate of supersaturation generation does affect the kinetic solubility profiles implications to hydrogel based ASDs.

  12. Crosslinked hydrogels-a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs.

    Science.gov (United States)

    Sun, Dajun D; Lee, Ping I

    2014-02-01

    Water-insoluble materials containing amorphous solid dispersions (ASD) are an emerging category of drug carriers which can effectively improve dissolution kinetics and kinetic solubility of poorly soluble drugs. ASDs based on water-insoluble crosslinked hydrogels have unique features in contrast to those based on conventional water-soluble and water-insoluble carriers. For example, solid molecular dispersions of poorly soluble drugs in poly(2-hydroxyethyl methacrylate) (PHEMA) can maintain a high level of supersaturation over a prolonged period of time via a feedback-controlled diffusion mechanism thus avoiding the initial surge of supersaturation followed by a sharp decline in drug concentration typically encountered with ASDs based on water-soluble polymers. The creation of both immediate- and controlled-release ASD dosage forms is also achievable with the PHEMA based hydrogels. So far, ASD systems based on glassy PHEMA have been shown to be very effective in retarding precipitation of amorphous drugs in the solid state to achieve a robust physical stability. This review summarizes recent research efforts in investigating the potential of developing crosslinked PHEMA hydrogels as a promising alternative to conventional water-soluble ASD carriers, and a related finding that the rate of supersaturation generation does affect the kinetic solubility profiles implications to hydrogel based ASDs.

  13. Formation and Transformation Behavior of Sodium Dehydroacetate Hydrates

    Directory of Open Access Journals (Sweden)

    Xia Zhang

    2016-04-01

    Full Text Available The effect of various controlling factors on the polymorphic outcome of sodium dehydroacetate crystallization was investigated in this study. Cooling crystallization experiments of sodium dehydroacetate in water were conducted at different concentrations. The results revealed that the rate of supersaturation generation played a key role in the formation of the hydrates. At a high supersaturation generation rate, a new sodium dehydroacetate dihydrate needle form was obtained; on the contrary, a sodium dehydroacetate plate monohydrate was formed at a low supersaturation generation rate. Furthermore, the characterization and transformation behavior of these two hydrated forms were investigated with the combined use of microscopy, powder X-ray diffraction (PXRD, Raman spectroscopy, Fourier transform infrared (FTIR, thermal gravimetric analysis (TGA, scanning electron microscopy (SEM and dynamic vapor sorption (DVS. It was found that the new needle crystals were dihydrated and hollow, and they eventually transformed into sodium dehydroacetate monohydrate. In addition, the mechanism of formation of sodium dehydroacetate hydrates was discussed, and a process growth model of hollow crystals in cooling crystallization was proposed.

  14. Droplet activation, separation, and compositional analysis: laboratory studies and atmospheric measurements

    Science.gov (United States)

    Hiranuma, N.; Kohn, M.; Pekour, M. S.; Nelson, D. A.; Shilling, J. E.; Cziczo, D. J.

    2011-10-01

    Droplets produced in a cloud condensation nuclei chamber (CCNC) as a function of supersaturation have been separated from unactivated aerosol particles using counterflow virtual impaction. Residual material after droplets were evaporated was chemically analyzed with an Aerodyne Aerosol Mass Spectrometer (AMS) and the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument. Experiments were initially conducted to verify activation conditions for monodisperse ammonium sulfate particles and to determine the resulting droplet size distribution as a function of supersaturation. Based on the observed droplet size, the counterflow virtual impactor cut-size was set to differentiate droplets from unactivated interstitial particles. Validation experiments were then performed to verify that only droplets with sufficient size passed through the counterflow virtual impactor for subsequent analysis. A two-component external mixture of monodisperse particles was also exposed to a supersaturation which would activate one of the types (hygroscopic salts) but not the other (polystyrene latex spheres or adipic acid). The mass spectrum observed after separation indicated only the former, validating separation of droplets from unactivated particles. Results from ambient measurements using this technique and AMS analysis were inconclusive, showing little chemical differentiation between ambient aerosol and activated droplet residuals, largely due to low signal levels. When employing as single particle mass spectrometer for compositional analysis, however, we observed enhancement of sulfate in droplet residuals.

  15. Measurements of thermodynamic and optical properties of selected aqueous organic and organic-inorganic mixtures of atmospheric relevance.

    Science.gov (United States)

    Lienhard, Daniel M; Bones, David L; Zuend, Andreas; Krieger, Ulrich K; Reid, Jonathan P; Peter, Thomas

    2012-10-11

    Atmospheric aerosol particles can exhibit liquid solution concentrations supersaturated with respect to the dissolved organic and inorganic species and supercooled with respect to ice. In this study, thermodynamic and optical properties of sub- and supersaturated aqueous solutions of atmospheric interest are presented. The density, refractive index, water activity, ice melting temperatures, and homogeneous ice freezing temperatures of binary aqueous solutions containing L(+)-tartaric acid, tannic acid, and levoglucosan and ternary aqueous solutions containing levoglucosan and one of the salts NH(4)HSO(4), (NH(4))(2)SO(4), and NH(4)NO(3) have been measured in the supersaturated concentration range for the first time. In addition, the density and refractive index of binary aqueous citric acid and raffinose solutions and the glass transition temperatures of binary aqueous L(+)-tartaric acid and levoglucosan solutions have been measured. The data presented here are derived from experiments on single levitated microdroplets and bulk solutions and should find application in thermodynamic and atmospheric aerosol models as well as in food science applications.

  16. Overcoming time scale and finite size limitations to compute nucleation rates from small scale well tempered metadynamics simulations

    Science.gov (United States)

    Salvalaglio, Matteo; Tiwary, Pratyush; Maggioni, Giovanni Maria; Mazzotti, Marco; Parrinello, Michele

    2016-12-01

    Condensation of a liquid droplet from a supersaturated vapour phase is initiated by a prototypical nucleation event. As such it is challenging to compute its rate from atomistic molecular dynamics simulations. In fact at realistic supersaturation conditions condensation occurs on time scales that far exceed what can be reached with conventional molecular dynamics methods. Another known problem in this context is the distortion of the free energy profile associated to nucleation due to the small, finite size of typical simulation boxes. In this work the problem of time scale is addressed with a recently developed enhanced sampling method while contextually correcting for finite size effects. We demonstrate our approach by studying the condensation of argon, and showing that characteristic nucleation times of the order of magnitude of hours can be reliably calculated. Nucleation rates spanning a range of 10 orders of magnitude are computed at moderate supersaturation levels, thus bridging the gap between what standard molecular dynamics simulations can do and real physical systems.

  17. Seasonal variation in aragonite saturation in surface waters of Puget Sound – a pilot study

    Directory of Open Access Journals (Sweden)

    Gregory Pelletier

    2018-01-01

    Full Text Available A pilot study of sampling, using monthly marine flights over spatially distributed stations, was conducted with the aim to characterize the carbonate system in Puget Sound over a full year-long period. Surface waters of Puget Sound were found to be under-saturated with respect to aragonite during October–March, and super-saturated during April–September. Highest pCO2 and lowest pH occurred during the corrosive October–March period. Lowest pCO2 and highest pH occurred during the super-saturated April–September period. The monthly variations in pCO2 , pH, and aragonite saturation state closely followed the variations in monthly average chlorophyll a. Super-saturated conditions during April–September are likely strongly influenced by photosynthetic uptake of CO2 during the phytoplankton growing season. The relationship between phytoplankton production, the carbonate system, and aragonite saturation state suggests that long-term trends in eutrophication processes may contribute to trends in ocean acidification in Puget Sound

  18. CCN characteristics over a tropical coastal station during south-west monsoon: observations and closure studies

    Science.gov (United States)

    Jayachandran, V.; Nair, Vijayakumar S.; Babu, S. Suresh

    2017-09-01

    Number concentration measurements of cloud condensation nuclei (CCN) at five supersaturation values between 0.2 and 1.0% were made from a coastal site (Thiruvananthapuram) of peninsular India using a single column CCN counter during the summer monsoon period (June-September) of 2013 and 2014. The CCN concentration over this site showed diurnal variations of high values during nighttime and low values during daytime in association with the change in mesoscale circulation patterns. The inter-annual variations of CCN (CCN0.4% = 2,232 ± 672 cm-3 during August 2013 and CCN0.4% = 941 ± 325 cm-3 during August 2014) are mostly associated with the varying intensity of monsoon rainfall. The variation of CCN number concentration with supersaturation is found to be steeper during nighttime (indicating a less CCN active aerosol system) than during daytime (CCN active system). The CCN activation ratio estimated using simultaneous measurements of CCN and aerosol number (CN) concentration clearly depict the role of land-sea breeze circulations with higher values during daytime than the nighttime. The CCN number concentration predicted for different supersaturations, from measured aerosol number size distribution using Kohler theory, indicate the importance of the change in aerosol composition associated with different airmasses in a coastal environment.

  19. Cocrystals to facilitate delivery of poorly soluble compounds beyond-rule-of-5.

    Science.gov (United States)

    Kuminek, Gislaine; Cao, Fengjuan; Bahia de Oliveira da Rocha, Alanny; Gonçalves Cardoso, Simone; Rodríguez-Hornedo, Naír

    2016-06-01

    Besides enhancing aqueous solubilities, cocrystals have the ability to fine-tune solubility advantage over drug, supersaturation index, and bioavailability. This review presents important facts about cocrystals that set them apart from other solid-state forms of drugs, and a quantitative set of rules for the selection of additives and solution/formulation conditions that predict cocrystal solubility, supersaturation index, and transition points. Cocrystal eutectic constants are shown to be the most important cocrystal property that can be measured once a cocrystal is discovered, and simple relationships are presented that allow for prediction of cocrystal behavior as a function of pH and drug solubilizing agents. Cocrystal eutectic constant is a stability or supersatuation index that: (a) reflects how close or far from equilibrium a cocrystal is, (b) establishes transition points, and (c) provides a quantitative scale of cocrystal true solubility changes over drug. The benefit of this strategy is that a single measurement, that requires little material and time, provides a principled basis to tailor cocrystal supersaturation index by the rational selection of cocrystal formulation, dissolution, and processing conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Production method of carbamazepine/saccharin cocrystal particles by using two solution mixing based on the ternary phase diagram

    Science.gov (United States)

    Kudo, Shoji; Takiyama, Hiroshi

    2014-04-01

    In the pharmaceutical field, improvement of drug solubility is required, and an interest in cocrystals is growing. Crystallization methods for industrial production of cocrystals have not been developed enough whereas many cocrystals have been prepared in order to find a new crystal form by screening in the laboratory. The objective of this study was the development of the crystallization method which is useful for the industrial production of cocrystal particles based on the phase diagram. A cocrystal of carbamazepine and saccharin was selected as a model substance. The ternary phase diagram of carbamazepine and saccharin in methanol at 303 K was measured. A cocrystallization method of mixing two kinds of different eutectic solutions was designed based on the ternary phase diagram. In order to adjust the cocrystallization conditions, the determination method of the driving force for cocrystal deposition such as supersaturation based on mass balance was proposed. The cocrystal particles were obtained under all the conditions of the five mixing ratios. From these experimental results, the relationship between the supersaturation and the induction time for nucleation was confirmed as well as conventional crystallization. In conclusion, the crystallization method for industrial production of cocrystal particles including the determination of the supersaturation was suggested.

  1. Investigation of the operating conditions to morphology evolution of β-L-glutamic acid during seeded cooling crystallization

    Science.gov (United States)

    Zhang, Fangkun; Liu, Tao; Huo, Yan; Guan, Runduo; Wang, Xue Z.

    2017-07-01

    In this paper the effects of operating conditions including cooling rate, initial supersaturation, and seeding temperature were investigated on the morphology evolution of β-L-glutamic acid (β-LGA) during seeded cooling crystallization. Based on the results of in-situ image acquisition of the crystal morphology evolution during the crystallization process, it was found that the crystal products tend to be plate-like or short rod-like under a slow cooling rate, low initial supersaturation, and low seeding temperature. In the opposite, the operating conditions of a faster cooling rate, higher initial supersaturation, and higher seeding temperature tend to produce long rod-like or needle-like crystals, and meanwhile, the length and width of crystal products will be increased together with a wider crystal size distribution (CSD). The aspect ratio of crystals, defined by the crystal length over width measured from in-situ or sample images, was taken as a shape index to analyze the crystal morphologies. Based on comparative analysis of the experimental results, guidelines on these operating conditions were given for obtaining the desired crystal shapes, along with the strategies for obtaining a narrower CSD for better product quality. Experimental verifications were performed to illustrate the proposed guidelines on the operating conditions for seeded cooling crystallization of LGA solution.

  2. Photoacoustic assay for probing amyloid formation: feasibility study

    Science.gov (United States)

    Petrova, Elena; Yoon, Soon Joon; Pelivanov, Ivan; O'Donnell, Matthew

    2018-02-01

    The formation of amyloid - aggregate of misfolded proteins - is associated with more than 50 human pathologies, including Alzheimer's disease, Parkinson's disease, and Type 2 diabetes mellitus. Investigating protein aggregation is a critical step in drug discovery and development of therapeutics targeted to these pathologies. However, screens to identify protein aggregates are challenging due to the stochastic character of aggregate nucleation. Here we employ photoacoustics (PA) to screen thermodynamic conditions and solution components leading to formation of protein aggregates. Particularly, we study the temperature dependence of the Gruneisen parameter in optically-contrasted, undersaturated and supersaturated solutions of glycoside hydrolase (lysozyme). As nucleation of protein aggregates proceeds in two steps, where the first is liquid-liquid separation (rearrangement of solute's density), the PA response from complex solutions and its temperature-dependence monitor nucleation and differentiate undersaturated and supersaturated protein solutions. We demonstrate that in the temperature range from 22 to 0° C the PA response of contrasted undersaturated protein solution behaves similar to water and exhibits zero thermal expansion at 4°C or below, while the response of contrasted supersaturated protein solution is nearly temperature independent, similar to the behavior of oils. These results can be used to develop a PA assay for high-throughput screening of multi-parametric conditions (pH, ionic strength, chaperone, etc.) for protein aggregation that can become a key tool in drug discovery, targeting aggregate formation for a variety of amyloids.

  3. Growth rate and surface morphology of 4H-SiC crystals grown from Si-Cr-C and Si-Cr-Al-C solutions under various temperature gradient conditions

    Science.gov (United States)

    Mitani, Takeshi; Komatsu, Naoyoshi; Takahashi, Tetsuo; Kato, Tomohisa; Fujii, Kuniharu; Ujihara, Toru; Matsumoto, Yuji; Kurashige, Kazuhisa; Okumura, Hajime

    2014-09-01

    The growth rate and surface morphology of 4H-SiC crystals prepared by solution growth with Si1-xCrx and Si1-x-yCrxAly (x=0.4, 0.5 and 0.6; y=0.04) solvents were investigated under various temperature conditions. The growth rate was examined as functions of the temperature difference between the growth surface and C source, the amount of supersaturated C and supersaturation at the growth surface. We found that generation of trench-like surface defects in 4H-SiC crystals was suppressed using Si1-x-yCrxAly solvents even under highly supersaturated conditions where the growth rate exceeded 760 μm/h. Conversely, trench-like defects were observed in crystals grown with Si1-xCrx solvents under all experimental conditions. Statistical observation of the macrostep structure showed that the macrostep height in crystals grown with Si1-x-yCrxAly solvents was maintained at lower levels than that obtained using Si1-xCrx solvents. Addition of Al prevents the macrosteps from developing into large steps, which are responsible for the generation of trench-like surface defects.

  4. Should bulk cloudwater or fogwater samples obey Henry's law

    Energy Technology Data Exchange (ETDEWEB)

    Pandis, S.N.; Seinfeld, J.H. (Department of Chemical Engineering and Environmental Quality Laboratory, California Institute of Technology, Pasadena, CA (USA))

    1991-06-20

    In this work we prove that mixing of droplets with different {ital p}H that are individually in Henry's law equilibrium with the surrounding atmosphere always results in a bulk mixture that is supersaturated with weak acids like S(IV) and HCOOH and bases like NH{sub 3} with respect to the original atmosphere. The degree of supersaturation of the bulk liquid water sample for a particular species depends on its dissociation constant, on the initial {ital p}H of the bulk droplet mixture, and on the distribution of the {ital p}H and of the liquid water over the droplet spectrum. High supersaturations result only when the {ital p}H of the bulk droplet mixture exceeds the {ital p}K{sub {ital a}} of the species, in which {ital p}H range large {ital p}H differences among droplets of different sizes lead to large deviations from Henry's law for the bulk mixture. The deviation is shown to depend on the ratio of the arithmetic mean to the harmonic mean of the hydrogen ion concentrations of the droplets with the liquid water content used was weighting factor in the calculation of the means. The theory developed can explain observed discrepancies from Henry's law in atmospheric samples and also other observed phenomena like the reported increase of {ital p}H values of bulk aqueous samples during storage. {copyright} American Geophysical Union 1991

  5. Statistical steady states in turbulent droplet condensation

    Science.gov (United States)

    Bec, Jeremie; Krstulovic, Giorgio; Siewert, Christoph

    2017-11-01

    We investigate the general problem of turbulent condensation. Using direct numerical simulations we show that the fluctuations of the supersaturation field offer different conditions for the growth of droplets which evolve in time due to turbulent transport and mixing. This leads to propose a Lagrangian stochastic model consisting of a set of integro-differential equations for the joint evolution of the squared radius and the supersaturation along droplet trajectories. The model has two parameters fixed by the total amount of water and the thermodynamic properties, as well as the Lagrangian integral timescale of the turbulent supersaturation. The model reproduces very well the droplet size distributions obtained from direct numerical simulations and their time evolution. A noticeable result is that, after a stage where the squared radius simply diffuses, the system converges exponentially fast to a statistical steady state independent of the initial conditions. The main mechanism involved in this convergence is a loss of memory induced by a significant number of droplets undergoing a complete evaporation before growing again. The statistical steady state is characterised by an exponential tail in the droplet mass distribution.

  6. Probing the mechanisms of drug release from amorphous solid dispersions in medium-soluble and medium-insoluble carriers.

    Science.gov (United States)

    Sun, Dajun D; Lee, Ping I

    2015-08-10

    The objective of the current study is to mechanistically differentiate the dissolution and supersaturation behaviors of amorphous drugs from amorphous solid dispersions (ASDs) based on medium-soluble versus medium-insoluble carriers under nonsink dissolution conditions through a direct head-to-head comparison. ASDs of indomethacin (IND) were prepared in several polymers which exhibit different solubility behaviors in acidic (pH1.2) and basic (pH7.4) dissolution media. The selected polymers range from water-soluble (e.g., PVP and Soluplus) and water-insoluble (e.g., ethylcellulose and Eudragit RL PO) to those only soluble in an acidic or basic dissolution medium (e.g., Eudragit E100, Eudragit L100, and HPMCAS). At 20wt.% drug loading, DSC and powder XRD analysis confirmed that the majority of incorporated IND was present in an amorphous state. Our nonsink dissolution results confirm that whether the carrier matrix is medium soluble determines the release mechanism of amorphous drugs from ASD systems which has a direct impact on the rate of supersaturation generation, thus in turn affecting the evolution of supersaturation in amorphous systems. For example, under nonsink dissolution conditions, the release of amorphous IND from medium-soluble carriers is governed by a dissolution-controlled mechanism leading to an initial surge of supersaturation followed by a sharp decline in drug concentration due to rapid nucleation and crystallization. In contrast, the dissolution of IND ASD from medium-insoluble carriers is more gradual as drug release is regulated by a diffusion-controlled mechanism by which drug supersaturation is built up gradually and sustained over an extended period of time without any apparent decline. Since several tested carrier polymers can be switched from soluble to insoluble by simply changing the pH of the dissolution medium, the results obtained here provide unequivocal evidence of the proposed transition of kinetic solubility profiles from the

  7. Hydrochemical controls on aragonite versus calcite precipitation in cave dripwaters

    Science.gov (United States)

    Rossi, Carlos; Lozano, Rafael P.

    2016-11-01

    Despite the paleoclimatic relevance of primary calcite to aragonite transitions in stalagmites, the relative role of fluid Mg/Ca ratio, supersaturation and CO32- concentration in controlling such transitions is still incompletely understood. Accordingly, we have monitored the hydrochemistry of 50 drips and 8 pools that are currently precipitating calcite and/or aragonite in El Soplao and Torca Ancha Caves (N. Spain), investigating the mineralogy and geochemistry of the CaCO3 precipitates on the corresponding natural speleothem surfaces. The data reveal that, apart from possible substrate effects, dripwater Mg/Ca is the only obvious control on CaCO3 polymorphism in the studied stalagmites and pools, where calcite- and aragonite-precipitating dripwaters are separated by an initial (i.e. at stalactite tips) Mg/Ca threshold at ≈1.1 mol/mol. Within the analyzed ranges of pH (8.2-8.6), CO32- concentration (1-6 mg/L), supersaturation (SIaragonite: 0.08-1.08; SIcalcite: 0.23-1.24), drip rate (0.2-81 drops/min) and dissolved Zn (6-90 μg/L), we observe no unequivocal influence of these parameters on CaCO3 mineralogy. Despite the almost complete overlapping supersaturations of calcite- and aragonite-precipitating waters, the latter are on average less supersaturated because the waters having Mg/Ca above ∼1.1 have mostly achieved such high ratios by previously precipitating calcite. Both calcite and aragonite precipitated at or near oxygen isotopic equilibrium, and Mg incorporation into calcite was consistent with literature-based predictions, indicating that in the studied cases CaCO3 precipitation was not significantly influenced by strong kinetic effects. In the studied cases, the calcites that precipitate at ∼11 °C from dripwaters with initial Mg/Ca approaching ∼1.1 incorporate ∼5 mol% MgCO3, close to the published value above which calcite solubility exceeds aragonite solubility, suggesting that aragonite precipitation in high-relative-humidity caves is

  8. Hot-melt extrusion for enhanced delivery of drug particles.

    Science.gov (United States)

    Miller, Dave A; McConville, Jason T; Yang, Wei; Williams, Robert O; McGinity, James W

    2007-02-01

    With the recent advent of nanotechnology for pharmaceutical applications, drug particle engineering is the focus of increasing interest as a viable approach for overcoming solubility limitations of poorly water-soluble drugs. Although these particle engineering techniques have been proven successful for enhancing the dissolution properties of many poorly water-soluble drugs, there are limitations associated with them such as particle aggregation, morphological instability, and poor wettability. The aim of this study was to demonstrate a processing technique in which hot-melt extrusion (HME) is utilized to overcome these limitations. Micronized particles of amorphous itraconazole (ITZ) stabilized with PVP or HPMC were produced and subsequently melt extruded with poloxamer 407 and PEO 200 M to deaggregate and disperse the particles into the hydrophilic polymer matrix. Differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy were used to demonstrate that the HME process did not alter the properties of the micronized particles. Dissolution testing conducted at sink conditions revealed that the dissolution rate of the micronized particles was improved by HME due to particle deaggregation and enhanced wetting. Supersaturation dissolution testing demonstrated that the ITZ-HPMC micronized particle extrudates provided superior supersaturation of ITZ compared to the ITZ-PVP micronized particle extrudates. Supersaturation dissolution testing incorporating a pH change (from pH 1.2 to 6.8 at 2 h) revealed that neither micronized particle extrudate formulation significantly reduced the rate of ITZ precipitation from supersaturated solution once pH was increased. Moreover, the two extrudate formulations performed very similarly when only considering dissolution testing from just before pH adjustment through the duration of testing at neutral pH. From oral dosing of rats, it was determined that the two extrudate formulations performed similarly in

  9. Condensation: Passenger Not Driver in Atmospheric Thermodynamics

    Directory of Open Access Journals (Sweden)

    Jack Denur

    2016-11-01

    Full Text Available The second law of thermodynamics states that processes yielding work or at least capable of yielding work are thermodynamically spontaneous, and that those costing work are thermodynamically nonspontaneous. Whether a process yields or costs heat is irrelevant. Condensation of water vapor yields work and hence is thermodynamically spontaneous only in a supersaturated atmosphere; in an unsaturated atmosphere it costs work and hence is thermodynamically nonspontaneous. Far more of Earth’s atmosphere is unsaturated than supersaturated; based on this alone evaporation is far more often work-yielding and hence thermodynamically spontaneous than condensation in Earth’s atmosphere—despite condensation always yielding heat and evaporation always costing heat. Furthermore, establishment of the unstable or at best metastable condition of supersaturation, and its maintenance in the face of condensation that would wipe it out, is always work-costing and hence thermodynamically nonspontaneous in Earth’s atmosphere or anywhere else. The work required to enable supersaturation is most usually provided at the expense of temperature differences that enable cooling to below the dew point. In the case of most interest to us, convective weather systems and storms, it is provided at the expense of vertical temperature gradients exceeding the moist adiabatic. Thus, ultimately, condensation is a work-costing and hence thermodynamically nonspontaneous process even in supersaturated regions of Earth’s or any other atmosphere. While heat engines in general can in principle extract all of the work represented by any temperature difference until it is totally neutralized to isothermality, convective weather systems and storms in particular cannot. They can extract only the work represented by partial neutralization of super-moist-adiabatic lapse rates to moist-adiabaticity. Super-moist-adiabatic lapse rates are required to enable convection of saturated air

  10. Airborne measurement of submicron aerosol number concentration and CCN activity in and around the Korean Peninsula and their comparison to ground measurement in Seoul

    Science.gov (United States)

    Park, M.; Kim, N.; Yum, S. S.

    2016-12-01

    Aerosols exert impact not only on human health and visibility but also on climate change directly by scattering or absorbing solar radiation and indirectly by acting as cloud condensation nuclei (CCN) and thus altering cloud radiative and microphysical properties. Aerosol indirect effects on climate has been known to have large uncertainty because of insufficient measurement data on aerosol and CCN activity distribution. Submicron aerosol number concentration (NCN, TSI CPC) and CCN number concentration (NCCN, DMT CCNC) were measured on board the NASA DC-8 research aircraft and at a ground site at Olympic Park in Seoul from May 2nd to June 10th, 2016. CCNC on the airborne platform was operated with the fixed internal supersaturation of 0.6% and CCNC at the ground site was operated with the five different supersaturations (0.2%, 0.4%, 0.6%, 0.8%, and 1.0%). The NASA DC-8 conducted 20 research flights (about 150 hours) in and around the Korean Peninsula and the ground measurement at Olympic Park was continuously made during the measurement period. Both airborne and ground measurements showed spatially and temporally varied aerosol number concentration and CCN activity. Aerosol number concentration in the boundary layer measured on airborne platform was highly affected by pollution sources on the ground. The average diurnal distribution of ground aerosol number concentration showed distinct peaks are located at about 0800, 1500, and 2000. The middle peak indicates that new particle formation events frequently occurred during the measurement period. CCN activation ratio at 0.6% supersaturation (NCCN/NCN) of the airborne measurement ranged from 0.1 to 0.9, indicating that aerosol properties in and around the Korean Peninsula varied so much (e. g. size, hygroscopicity). Comprehensive analysis results will be shown at the conference.

  11. Poly-phase flows in the vicinity of wells in hydrocarbon deposits; Les ecoulements polyphasiques aux abords des puits dans les gisements d`hydrocarbures

    Energy Technology Data Exchange (ETDEWEB)

    Betata, S.A.

    1998-02-13

    During the production phase of an oil reservoir, a pressure drawdown occurs in the near wellbore region. This may lower the pressure below the bubble-point pressure, leading to the appearance of a gas phase, thus decreasing the oil relative permeability and the well productivity. The main goal of this study is the development of an appropriate laboratory procedure and its modeling, so as to derive gas-oil relative permeabilities at conditions representative of the near wellbore region, e.g. for a dispersed gas phase. A set of depressurization tests in porous media are performed for various conditions of pressure gradient and supersaturation. They are interpreted using a model relating the gas saturation to the supersaturation, as well as the nucleation rate J. Gas-oil relative permeabilities and average gas saturation versus time are measured. Oil relative permeabilities are found to be a function of both the gas saturation and the supersaturation. In addition to that, above a given threshold pressure drop part of the gas is mobilized. The value of J, obtained from the oil production curve leads to the description of the bubble population, in terms of their number and size. It is shown that oil-phase flow impairment is caused more by a limited number of large bubbles rather than by the presence of regularly distributed small ones. The procedure thus established allows the description of the behavior of oil and gas, not only above the critical gas saturation (defined as the saturation above which the gas phase becomes continuous), but also in the early stage of the nucleation, when the gas, even in a dispersed form, can flow depending on the applied pressure gradient. (author) 39 refs.

  12. Mathematical model to analyze the dissolution behavior of metastable crystals or amorphous drug accompanied with a solid-liquid interface reaction.

    Science.gov (United States)

    Hirai, Daiki; Iwao, Yasunori; Kimura, Shin-Ichiro; Noguchi, Shuji; Itai, Shigeru

    2017-04-30

    Metastable crystals and the amorphous state of poorly water-soluble drugs in solid dispersions (SDs), are subject to a solid-liquid interface reaction upon exposure to a solvent. The dissolution behavior during the solid-liquid interface reaction often shows that the concentration of drugs is supersaturated, with a high initial drug concentration compared with the solubility of stable crystals but finally approaching the latter solubility with time. However, a method for measuring the precipitation rate of stable crystals and/or the potential solubility of metastable crystals or amorphous drugs has not been established. In this study, a novel mathematical model that can represent the dissolution behavior of the solid-liquid interface reaction for metastable crystals or amorphous drug was developed and its validity was evaluated. The theory for this model was based on the Noyes-Whitney equation and assumes that the precipitation of stable crystals at the solid-liquid interface occurs through a first-order reaction. Moreover, two models were developed, one assuming that the surface area of the drug remains constant because of the presence of excess drug in the bulk and the other that the surface area changes in time-dependency because of agglomeration of the drug. SDs of Ibuprofen (IB)/polyvinylpyrrolidone (PVP) were prepared and their dissolution behaviors under non-sink conditions were fitted by the models to evaluate improvements in solubility. The model assuming time-dependent surface area showed good agreement with experimental values. Furthermore, by applying the model to the dissolution profile, parameters such as the precipitation rate and the potential solubility of the amorphous drug were successfully calculated. In addition, it was shown that the improvement in solubility with supersaturation was able to be evaluated quantitatively using this model. Therefore, this mathematical model would be a useful tool to quantitatively determine the supersaturation

  13. Microstructural investigation of D2 tool steel during rapid solidification

    Science.gov (United States)

    Delshad Khatibi, Pooya

    Solidification is considered as a key processing step in developing the microstructure of most metallic materials. It is, therefore, important that the solidification process can be designed and controlled in such a way so as to obtain the desirable properties in the final product. Rapid solidification refers to the system's high undercooling and high cooling rate, which can yield a microstructure with unique chemical composition and mechanical properties. An area of interest in rapid solidification application is high-chromium, high-carbon tool steels which experience considerable segregation of alloying elements during their solidification in a casting process. In this dissertation, the effect of rapid solidification (undercooling and cooling rate) of D2 tool steel on the microstructure and carbide precipitation during annealing was explored. A methodology is described to estimate the eutectic and primary phase undercooling of solidifying droplets. The estimate of primary phase undercooling was confirmed using an online measurement device that measured the radiation energy of the droplets. The results showed that with increasing primary phase and eutectic undercooling and higher cooling rate, the amount of supersaturation of alloying element in metastable retained austenite phase also increases. In the case of powders, the optimum hardness after heat treatment is achieved at different temperatures for constant periods of time. Higher supersaturation of austenite results in obtaining secondary hardness at higher annealing temperature. D2 steel ingots generated using spray deposition have high eutectic undercooling and, as a result, high supersaturation of alloying elements. This can yield near net shape D2 tool steel components with good mechanical properties (specifically hardness). The data developed in this work would assist in better understanding and development of near net shape D2 steel spray deposit products with good mechanical properties.

  14. Enhanced stability of steep channel beds to mass failure and debris flow initiation

    Science.gov (United States)

    Prancevic, J.; Lamb, M. P.; Ayoub, F.; Venditti, J. G.

    2015-12-01

    Debris flows dominate bedrock erosion and sediment transport in very steep mountain channels, and are often initiated from failure of channel-bed alluvium during storms. While several theoretical models exist to predict mass failures, few have been tested because observations of in-channel bed failures are extremely limited. To fill this gap in our understanding, we performed laboratory flume experiments to identify the conditions necessary to initiate bed failures in non-cohesive sediment of different sizes (D = 0.7 mm to 15 mm) on steep channel-bed slopes (S = 0.45 to 0.93) and in the presence of water flow. In beds composed of sand, failures occurred under sub-saturated conditions on steep bed slopes (S > 0.5) and under super-saturated conditions at lower slopes. In beds of gravel, however, failures occurred only under super-saturated conditions at all tested slopes, even those approaching the dry angle of repose. Consistent with theoretical models, mass failures under super-saturated conditions initiated along a failure plane approximately one grain-diameter below the bed surface, whereas the failure plane was located near the base of the bed under sub-saturated conditions. However, all experimental beds were more stable than predicted by 1-D infinite-slope stability models. In partially saturated sand, enhanced stability appears to result from suction stress. Enhanced stability in gravel may result from turbulent energy losses in pores or increased granular friction for failures that are shallow with respect to grain size. These grain-size dependent effects are not currently included in stability models for non-cohesive sediment, and they may help to explain better the timing and location of debris flow occurrence.

  15. Measuring the CCN and IN ability of bacterial isolates: implications for the southeastern United States and Puerto Rico

    Science.gov (United States)

    Purdue, S.; Waters, S.; Konstantinidis, K.; Nenes, A.; DeLeon-Rodriguez, N.

    2015-12-01

    Ice nucleation is an important process in the climate system as it influences global precipitation processes, and can affect the vertical distribution of clouds with effects that both cool and warm the atmosphere. Of the pathways to ice nucleation, immersion mode, which occurs when ice nuclei (IN) particles are surrounded by an aqueous phase that subsequently freezes, dominates primary ice production in mixed-phase clouds. A simple but effective method to study immersion freezing is to utilize a droplet freezing assay (DFA) that consists of an aluminum plate, precisely cooled by a continuous flow of an ethylene glycol-water mixture. Using such a system we study the immersion IN characteristics of bacterial isolates (for temperatures ranging from -15oC to 0oC) isolated from rainwater and air collected in Atlanta, GA and Puerto Rico, over storms throughout the year. Despite their relatively large size and the presence of hydrophilic groups on the outer membranes of many bacteria, it is unclear if bacteria possess an inherent ability to nucleate an aqueous phase (a requirement for immersion freezing) for the wide range of supersaturations found in clouds. For this, we measure the cloud condensation nucleation (CCN) activity of each isolate (over the 0.05% to 0.6% supersaturation range) using a Continuous Flow Streamwise Thermal Gradient CCN Counter. Initial results have shown certain isolates to be very efficient CCN, allowing them to form droplets even for the very low supersaturations found in radiation fogs. In combination, these experiments provide insight into the potential dual-ability of some bacteria, isolated from the southeastern United States and Puerto Rico, to act as both efficient CCN and IN.

  16. Gas bubble disease monitoring and research of juvenile salmonids

    International Nuclear Information System (INIS)

    Maule, A.G.; Beeman, J.; Hans, K.M.; Mesa, M.G.; Haner, P.; Warren, J.J.

    1997-10-01

    This document describes the project activities 1996--1997 contract year. This report is composed of three chapters which contain data and analyses of the three main elements of the project: field research to determine the vertical distribution of migrating juvenile salmonids, monitoring of juvenile migrants at dams on the Snake and Columbia rivers, and laboratory experiments to describe the progression of gas bubble disease signs leading to mortality. The major findings described in this report are: A miniature pressure-sensitive radio transmitter was found to be accurate and precise and, after compensation for water temperature, can be used to determine the depth of tagged-fish to within 0.32 m of the true depth (Chapter 1). Preliminary data from very few fish suggest that depth protects migrating juvenile steelhead from total dissolved gas supersaturation (Chapter 1). As in 1995, few fish had any signs of gas bubble disease, but it appeared that prevalence and severity increased as fish migrated downstream and in response to changing gas supersaturation (Chapter 2). It appeared to gas bubble disease was not a threat to migrating juvenile salmonids when total dissolved gas supersaturation was < 120% (Chapter 2). Laboratory studies suggest that external examinations are appropriate for determining the severity of gas bubble disease in juvenile salmonids (Chapter 3). The authors developed a new method for examining gill arches for intravascular bubbles by clamping the ventral aorta to reduce bleeding when arches were removed (Chapter 3). Despite an outbreak of bacterial kidney disease in the experimental fish, the data indicate that gas bubble disease is a progressive trauma that can be monitored (Chapter 3)

  17. In Vitro, in Silico, and in Vivo Assessments of Intestinal Precipitation and Its Impact on Bioavailability of a BCS Class 2 Basic Compound.

    Science.gov (United States)

    Kou, Dawen; Zhang, Chen; Yiu, Hiuwing; Ng, Tania; Lubach, Joseph W; Janson, Matthew; Mao, Chen; Durk, Matthew; Chinn, Leslie; Winter, Helen; Wigman, Larry; Yehl, Peter

    2018-04-02

    In this study, a multipronged approach of in vitro experiments, in silico simulations, and in vivo studies was developed to evaluate the dissolution, supersaturation, precipitation, and absorption of three formulations of Compound-A, a BCS class 2 weak base with pH-dependent solubility. In in vitro 2-stage dissolution experiments, the solutions were highly supersaturated with no precipitation at the low dose but increasing precipitation at higher doses. No difference in precipitation was observed between the capsules and tablets. The in vitro precipitate was found to be noncrystalline with higher solubility than the crystalline API, and was readily soluble when the drug concentration was lowered by dilution. A gastric transit and biphasic dissolution (GTBD) model was developed to better mimic gastric transfer and intestinal absorption. Precipitation was also observed in GTBD, but the precipitate redissolved and partitioned into the organic phase. In vivo data from the phase 1 clinical trial showed linear and dose proportional PK for the formulations with no evidence of in vivo precipitation. While the in vitro precipitation observed in the 2-stage dissolution appeared to overestimate in vivo precipitation, the GTBD model provided absorption profiles consistent with in vivo data. In silico simulation of plasma concentrations by GastroPlus using biorelevant in vitro dissolution data from the tablets and capsules and assuming negligible precipitation was in line with the observed in vivo profiles of the two formulations. The totality of data generated with Compound-A indicated that the bioavailability differences among the three formulations were better explained by the differences in gastric dissolution than intestinal precipitation. The lack of intestinal precipitation was consistent with several other BCS class 2 basic compounds in the literature for which highly supersaturated concentrations and rapid absorption were also observed.

  18. Organic Aerosols as Cloud Condensation Nuclei

    Science.gov (United States)

    Hudson, J. G.

    2002-05-01

    The large organic component of the atmospheric aerosol contributes to both natural and anthropogenic cloud condensation nuclei (CCN). Moreover, some organic substances may reduce droplet surface tension (Facchini et al. 1999), while others may be partially soluble (Laaksonen et al. 1998), and others may inhibit water condensation. The interaction of organics with water need to be understood in order to better understand the indirect aerosol effect. Therefore, laboratory CCN spectral measurements of organic aerosols are presented. These are measurements of the critical supersaturation (Sc), the supersaturation needed to produce an activated cloud droplet, as a function of the size of the organic particles. Substances include sodium lauryl (dodecyl) sulfate, oxalic, adipic, pinonic, hexadecanedioic, glutaric, stearic, succinic, phthalic, and benzoic acids. These size-Sc relationships are compared with theoretical and measured size-Sc relationships of common inorganic compounds (e.g., NaCl, KI, ammonium and calcium sulfate). Unlike most inorganics some organics display variations in solubility per unit mass as a function of particle size. Those showing relatively greater solubility at smaller sizes may be attributable to surface tension reduction, which is greater for less water dilution, as is the case for smaller particles, which are less diluted at the critical sizes. This was the case for sodium dodecyl sulfate, which does reduce surface tension. Relatively greater solubility for larger particles may be caused by greater dissolution at the higher dilutions that occur with larger particles; this is partial solubility. Measurements are also presented of internal mixtures of various organic and inorganic substances. These measurements were done with two CCN spectrometers (Hudson 1989) operating simultaneously. These two instruments usually displayed similar results in spite of the fact that they have different flow rates and supersaturation profiles. The degree of

  19. Continuous high-frequency dissolved O2/Ar measurements by equilibrator inlet mass spectrometry.

    Science.gov (United States)

    Cassar, Nicolas; Barnett, Bruce A; Bender, Michael L; Kaiser, Jan; Hamme, Roberta C; Tilbrook, Bronte

    2009-03-01

    The oxygen (O(2)) concentration in the surface ocean is influenced by biological and physical processes. With concurrent measurements of argon (Ar), which has similar solubility properties as oxygen, we can remove the physical contribution to O(2) supersaturation and determine the biological oxygen supersaturation. Biological O(2) supersaturation in the surface ocean reflects the net metabolic balance between photosynthesis and respiration, i.e., the net community productivity (NCP). We present a new method for continuous shipboard measurements of O(2)/Ar by equilibrator inlet mass spectrometry (EIMS). From these measurements and an appropriate gas exchange parametrization, NCP can be estimated at high spatial and temporal resolution. In the EIMS configuration, seawater from the ship's continuous intake flows through a cartridge enclosing a gas-permeable microporous membrane contactor. Gases in the headspace of the cartridge equilibrate with dissolved gases in the flowing seawater. A fused-silica capillary continuously samples headspace gases, and the O(2)/Ar ratio is measured by mass spectrometry. The ion current measurements on the mass spectrometer reflect the partial pressures of dissolved gases in the water flowing through the equilibrator. Calibration of the O(2)/Ar ion current ratio (32/40) is performed automatically every 2 h by sampling ambient air through a second capillary. A conceptual model demonstrates that the ratio of gases reaching the mass spectrometer is dependent on several parameters, such as the differences in molecular diffusivities and solubilities of the gases. Laboratory experiments and field observations performed by EIMS are discussed. We also present preliminary evidence that other gas measurements, such as N(2)/Ar and pCO(2) measurements, may potentially be performed with EIMS. Finally, we compare the characteristics of the EIMS with the previously described membrane inlet mass spectrometry (MIMS) approach.

  20. Diblock Terpolymers Are Tunable and pH Responsive Vehicles To Increase Hydrophobic Drug Solubility for Oral Administration.

    Science.gov (United States)

    Tale, Swapnil; Purchel, Anatolii A; Dalsin, Molly C; Reineke, Theresa M

    2017-11-06

    Synthetic polymers offer tunable platforms to create new oral drug delivery vehicles (excipients) to increase solubility, supersaturation maintenance, and bioavailability of poorly aqueous soluble pharmaceutical candidates. Five well-defined diblock terpolymers were synthesized via reversible addition-fragmentation chain transfer polymerization (RAFT) and consist of a first block of either poly(ethylene-alt-propylene) (PEP), poly(N-isopropylacrylamide) (PNIPAm), or poly(N,N-diethylaminoethyl methacrylate) (PDEAEMA) and a second hydrophilic block consisting of a gradient copolymer of N,N-dimethylacrylamide (DMA) and 2-methacrylamidotrehalose (MAT). This family of diblock terpolymers offers hydrophobic, hydrophilic, or H-bonding functionalities to serve as noncovalent sites of drug binding. Drug-polymer spray dried dispersions (SDDs) were created with a model drug, probucol, and characterized by differential scanning calorimetry (DSC). These studies revealed that probucol crystallinity decreased with increasing H-bonding sites available in the polymer. The PNIPAm-b-P(DMA-grad-MAT) systems revealed the best performance at pH 6.5, where immediate probucol release and effective maintenance of 100% supersaturation was found, which is important for facilitating drug solubility in more neutral conditions (intestinal environment). However, the PDEAEMA-b-P(DMA-grad-MAT) system revealed poor probucol dissolution at pH 6.5 and 5.1. Alternatively, at an acidic pH of 3.1, a rapid and high dissolution profile and effective supersaturation maintenance of up to 90% of the drug was found, which could be useful for triggering drug release in acidic environments (stomach). The PEP-b-P(DMA-grad-MAT) system showed poor performance (only ∼20% of drug solubility at pH 6.5), which was attributed to the low solubility of the polymers in the dissolution media. This work demonstrates the utility of diblock terpolymers as a potential new excipient platform to optimize design parameters for

  1. Fabrication and thermal characterization of amorphous and nanocrystalline Al{sub 9}FeNi/Al{sub 3}Ti compound

    Energy Technology Data Exchange (ETDEWEB)

    Tavoosi, Majid, E-mail: ma.tavoosi@gmail.com

    2017-01-15

    In this study, the fabrication and structural characterization of amorphous/nanocrystalline Al{sub 9}FeNi/Al{sub 3}Ti phase has been performed. In this regards, milling and annealing processes were applied on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} (at. %) powder mixture for different periods of time. The prepared samples were characterized using X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM) and differential scanning calorimetery (DSC). According to the results, supersaturated solid solution, nanocrystalline Al{sub 9}FeNi/Al{sub 3}Ti (with average crystallite size of about 7 nm) and amorphous phases indicated three different microstructures which can be formed in Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} system during milling process. The formed supersaturated solid solution and amorphous phases were unstable and transformed to Al{sub 9}FeNi/Al{sub 3}Ti intermetallic compound during annealing process. It is shown that, Al{sub 9}FeNi phase in Al{sub 9}FeNi/Al{sub 3}Ti intermetallic compound can decompose into Al{sub 3}Ni, Al{sub 13}Fe{sub 4} and liquid phases during a reversible peritectic reaction at 809 °C. - Highlights: • We study the effect of milling process on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} alloy. • We study the effect of annealing on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} supersaturated solid solution phase. • We study the effect of annealing on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} amorphous phase. • We study the thermal behaviour of Al{sub 9}FeNi/Al{sub 3}Ti compound.

  2. Anachronistic facies from a drowned Lower Triassic carbonate platform: Lower member of the Alwa Formation (Ba'id Exotic), Oman Mountains

    Science.gov (United States)

    Woods, Adam D.; Baud, Aymon

    2008-09-01

    The lower member of the Alwa Formation (Lower Olenekian), found within the Ba'id Exotic in the Oman Mountains (Sultanate of Oman), consists of ammonoid-bearing, pelagic limestones that were deposited on an isolated, drowned carbonate platform on the Neotethyan Gondwana margin. The strata contain a variety of unusual carbonate textures and features, including thrombolites, Frutexites-bearing microbialites that contain synsedimentary cements, matrix-free breccias surrounded by isopachous calcite cement, and fissures and cavities filled with large botryoidal cements. Thrombolites are found throughout the study interval, and occur as 0.5-1.0 m thick lenses or beds that contain laterally laterally-linked stromatactis cavities. The Frutexites-bearing microbialites occur less frequently, and also form lenses or beds, up to 30 cm thick; the microbialites may be laminated, and often developed on hardgrounds. In addition, the Frutexites-bearing microbialites also contain synsedimentary calcite cement crusts and botryoids (typically fracturing of the limestone and the precipitation of large, botryoidal aragonite cements in fissures that cut across the primary fabric. Environmental conditions, specifically palaeoxygenation and the degree of calcium carbonate supersaturation, likely controlled whether the thrombolites (high level of calcium carbonate supersaturation associated with vertical mixing of water masses and dysoxic conditions) or Frutexites-bearing microbialites (low level of calcium carbonate supersaturation associated with anoxic conditions and deposition below a stable chemocline) formed. The results of this study point to continued environmental stress in the region during the Early Triassic that likely contributed to the uneven recovery from the Permian-Triassic mass extinction.

  3. Isotopic versus micrometeorologic ocean CO2 fluxes: A serious conflict

    International Nuclear Information System (INIS)

    Broecker, W.S.; Ledwell, J.R.; Takahashi, T.; Weiss, R.; Merlivat, L.; Memery, L.; Tsung-Hung Peng; Jahne, B.; Otto Munnich, K.

    1986-01-01

    Eddy correlation measurements over the ocean give CO 2 fluxes an order of magnitude or more larger than expected from mass balance or more larger than expected from mass balance measurements using radiocarbon and radon 222. In particular, Smith and Jones (1985) reported large upward and downward fluxes in a surf zone at supersaturations of 15% and attributed them to the equilibration of bubbles at elevated pressures. They argue that even on the open ocean such bubble injection may create steady state CO 2 supersaturations and that inferences of fluxes based on air-sea pCO 2 differences and radon exchange velocities must be made with caution. We defend the global average CO 2 exchange rate determined by three independent radioisotopic means: prebomb radiocarbon inventories; global surveys of mixed layer radon deficits; and oceanic uptake of bomb-produced radiocarbon. We argue that laboratory and lake data do not lead one to expect fluxes as large as reported from the eddy correlation technique; that the radon method of determining exchange velocities is indeed useful for estimating CO 2 fluxes; that supersaturations of CO 2 due to bubble injection on the open ocean are negligible; that the hypothesis that Smith and Jones advance cannot account for the fluxes that they report; and that the pCO 2 values reported by Smith and Jones are likely to be systematically much too high. The CO 2 fluxes for the ocean measured to data by the micrometeorological method can be reconciled with neither the observed concentrations of radioisotopes of radon and carbon in the oceans nor the tracer experiments carried out in lakes and in wind/wave tunnels

  4. The impact of dissolved fluorine on bubble nucleation in hydrous rhyolite melts

    Science.gov (United States)

    Gardner, James E.; Hajimirza, Sahand; Webster, James D.; Gonnermann, Helge M.

    2018-04-01

    Surface tension of hydrous rhyolitic melt is high enough that large degrees of supersaturation are needed to homogeneously nucleate H2O bubbles during eruptive magma ascent. This study examines whether dissolved fluorine lowers surface tension of hydrous rhyolite, and thus lowers the supersaturation required for bubble nucleation. Fluorine was targeted because it, like H2O, changes melt properties and is highly soluble, unlike all other common magmatic volatiles. Rhyolite melts were saturated at Ps = 245 MPa with H2O fluid that contained F, generating rhyolite with 6.7 ± 0.4 wt.% H2O and 1.1-1.3 wt.% F. When these melts were decompressed rapidly to Pf = 149-202 MPa and quenched after 60 s, bubbles nucleated at supersaturations of ΔP = Ps - Pf ≥52 MPa, and reached bubble number densities of NB = 1012-13 m-3 at ΔP = 78-101 MPa. In comparison, rhyolite saturated with 6.34 ± 0.09 wt.% H2O, but only 0.25 wt.% F, did not nucleate bubbles until ΔP ≥ 100-116 MPa, and even then, at significantly lower NB (<1010 m-3). Numerical modeling of bubble nucleation and growth was used to estimate the values of surface tension required to generate the observed values of NB. Slight differences in melt compositions (i.e., alkalinity and H2O content), H2O diffusivity, or melt viscosity cannot explain the observed differences in NB. Instead, surface tension of F-rich rhyolite must be lower by approximately 4% than that of F-poor rhyolite. This difference in surface tension is significant and, for example, exceeds that found between hydrous basaltic andesite and hydrous rhyolite. These results suggest that is likely that surface tension for F-rich magmas, such as topaz rhyolite, is significantly lower than for F-poor magmas.

  5. Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity tests

    Directory of Open Access Journals (Sweden)

    M. Salzmann

    2010-08-01

    Full Text Available A new stratiform cloud scheme including a two-moment bulk microphysics module, a cloud cover parameterization allowing ice supersaturation, and an ice nucleation parameterization has been implemented into the recently developed GFDL AM3 general circulation model (GCM as part of an effort to treat aerosol-cloud-radiation interactions more realistically. Unlike the original scheme, the new scheme facilitates the study of cloud-ice-aerosol interactions via influences of dust and sulfate on ice nucleation. While liquid and cloud ice water path associated with stratiform clouds are similar for the new and the original scheme, column integrated droplet numbers and global frequency distributions (PDFs of droplet effective radii differ significantly. This difference is in part due to a difference in the implementation of the Wegener-Bergeron-Findeisen (WBF mechanism, which leads to a larger contribution from super-cooled droplets in the original scheme. Clouds are more likely to be either completely glaciated or liquid due to the WBF mechanism in the new scheme. Super-saturations over ice simulated with the new scheme are in qualitative agreement with observations, and PDFs of ice numbers and effective radii appear reasonable in the light of observations. Especially, the temperature dependence of ice numbers qualitatively agrees with in-situ observations. The global average long-wave cloud forcing decreases in comparison to the original scheme as expected when super-saturation over ice is allowed. Anthropogenic aerosols lead to a larger decrease in short-wave absorption (SWABS in the new model setup, but outgoing long-wave radiation (OLR decreases as well, so that the net effect of including anthropogenic aerosols on the net radiation at the top of the atmosphere (netradTOA = SWABS-OLR is of similar magnitude for the new and the original scheme.

  6. Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity tests

    Science.gov (United States)

    Salzmann, M.; Ming, Y.; Golaz, J.-C.; Ginoux, P. A.; Morrison, H.; Gettelman, A.; Krämer, M.; Donner, L. J.

    2010-08-01

    A new stratiform cloud scheme including a two-moment bulk microphysics module, a cloud cover parameterization allowing ice supersaturation, and an ice nucleation parameterization has been implemented into the recently developed GFDL AM3 general circulation model (GCM) as part of an effort to treat aerosol-cloud-radiation interactions more realistically. Unlike the original scheme, the new scheme facilitates the study of cloud-ice-aerosol interactions via influences of dust and sulfate on ice nucleation. While liquid and cloud ice water path associated with stratiform clouds are similar for the new and the original scheme, column integrated droplet numbers and global frequency distributions (PDFs) of droplet effective radii differ significantly. This difference is in part due to a difference in the implementation of the Wegener-Bergeron-Findeisen (WBF) mechanism, which leads to a larger contribution from super-cooled droplets in the original scheme. Clouds are more likely to be either completely glaciated or liquid due to the WBF mechanism in the new scheme. Super-saturations over ice simulated with the new scheme are in qualitative agreement with observations, and PDFs of ice numbers and effective radii appear reasonable in the light of observations. Especially, the temperature dependence of ice numbers qualitatively agrees with in-situ observations. The global average long-wave cloud forcing decreases in comparison to the original scheme as expected when super-saturation over ice is allowed. Anthropogenic aerosols lead to a larger decrease in short-wave absorption (SWABS) in the new model setup, but outgoing long-wave radiation (OLR) decreases as well, so that the net effect of including anthropogenic aerosols on the net radiation at the top of the atmosphere (netradTOA = SWABS-OLR) is of similar magnitude for the new and the original scheme.

  7. EQUILIBRIUM AND KINETIC PARAMETERS FOR THE SEDIMENTATION OF TARTARIC SALTS IN YOUNG WINES

    Directory of Open Access Journals (Sweden)

    Ecaterina Covaci

    2015-06-01

    Full Text Available In young wines potassium hydrogen tartrate is always present in supersaturating concentration and crystallizes spontaneously. The aim of this study is to obtain kinetic parameters, which explain the stability of young wines during the stabilization treatments. The kinetic and equilibrium parameters were evaluated and discussed. The heating factor has a decisive influence on the reaction rate of potassium hydrogen tartrate precipitation in young wines. An increase of temperature leads to a decrease in efficiency of stabilization process and to an enhancement of the activation energy of the system. According to the obtained experimental results, the optimal regime for production and stabilization of young wines has been established.

  8. Real-Time Visualization of the Precipitation and Phase Behavior of Octaethylporphyrin in Lipid Microparticles

    DEFF Research Database (Denmark)

    Parra, Elisa; Hervella, Pablo; Needham, David

    2017-01-01

    , as single microparticles. We employed a real-time, single-particle microscopic technique based on micropipette injection to characterize the behavior of these materials and their mixtures upon solvent loss and precipitation. A clear phase separation was observed between the triolein liquid core...... supersaturations. This type of real-time, single-particle characterization is expected to offer important information about the formulation of other hydrophobic compounds of interest, where finding the proper encapsulation environment is a key step for their retention and stability....

  9. On void nucleation

    International Nuclear Information System (INIS)

    Subbotin, A.V.

    1978-01-01

    Nucleation of viable voids in irradiated materials is considered. The mechanism of evaporation and absorption of interstitials and vacancies disregarding the possibility of void merging is laid down into the basis of the discussion. The effect of irradiated material structure on void nucleation is separated from the effect of the properties of supersaturated solutions of vacancies and interstitials. An analytical expression for the nucleation rate is obtained and analyzed in different cases. The interstitials are concluded to effect severely the nucleation rate of viable voids

  10. Heterogeneous nucleation of calcium oxalate on native oxide surfaces

    International Nuclear Information System (INIS)

    Song, L.; Pattillo, M.J.; Graff, G.L.; Campbell, A.A.; Bunker, B.C.

    1994-04-01

    The aqueous deposition of calcium oxalate onto colloidal oxides has been studied as a model system for understanding heterogeneous nucleation processes of importance in biomimetic synthesis of ceramic thin films. Calcium oxalate nucleation has been monitored by measuring induction times for nucleation using Constant Composition techniques and by measuring nucleation densities on extended oxide surfaces using an atomic force microscope. Results show that the dependence of calcium oxalate nucleation on solution supersaturation fits the functional form predicted by classical nucleation theories. Anionic surfaces appear to promote nucleation better than cationic surfaces, lowering the effective energy barrier to heterogeneous nucleation

  11. Geochemistry and migration of contaminants at the Weldon Spring chemical plant site, St. Charles County, Missouri, 1989--91

    International Nuclear Information System (INIS)

    Schumacher, J.G.

    1993-01-01

    Investigations were conducted by the US Geological Survey in cooperation with the US Department of Energy at the Weldon Spring chemical plant site to determine the geochemistry of the shallow aquifer and geochemical controls on the migration of uranium and other constituents from the raffinate (waste) pits. Water-quality analyses from monitoring wells at the site and vicinity property indicate that water in the shallow aquifer is a calcium magnesium bicarbonate type that is at equilibrium with respect to calcite and slightly supersaturated with respect to dolomite

  12. Ventilation in Sewers Quantified by Measurements of CO2

    DEFF Research Database (Denmark)

    Fuglsang, Emil Dietz; Vollertsen, Jes; Nielsen, Asbjørn Haaning

    2012-01-01

    Understanding and quantifying ventilation in sewer systems is a prerequisite to predict transport of odorous and corrosive gasses within the system as well as their interaction with the urban atmosphere. This paper studies ventilation in sewer systems quantified by measurements of the natural...... occurring compound CO2. Most often Danish wastewater is supersaturated with CO2 and hence a potential for stripping is present. A novel model was built based on the kinetics behind the stripping process. It was applied to simulate ventilation rates from field measurements of wastewater temperature, p...

  13. O the Size Dependence of the Chemical Properties of Cloud Droplets: Exploratory Studies by Aircraft

    Science.gov (United States)

    Twohy, Cynthia H.

    1992-09-01

    cumulus clouds, the CVI was combined with a cloud condensation nucleus spectrometer to study the supersaturation spectra of residual particles from droplets. The median critical supersaturation of the droplet residual particles was consistently less than or equal to the median critical supersaturation of ambient particles except at cloud top, where residual particles exhibited a variety of critical supersaturations.

  14. Materials research utilizing NSLS [National Synchrotron Light Source]: Progress report

    International Nuclear Information System (INIS)

    Liedl, G.L.

    1986-08-01

    Research was conducted using NSLS synchrotron radiation on the following: decomposition kinetics of a supersaturated Ni-Si alloy, hexane monolayers on graphite, layering of Fe(CO) 5 on graphite, charge density waves, aging of Al-Li, superlattices in ternary MBE-grown semiconductor films, phase transformation in Cu-Be and Al-Zn, microstructural changes in complex alloys, diffuse x-ray scattering, ion conduction in Ag-Ge-Se glass, organic monolayers of the Langmuir Blodgett type, and residual stress in coating

  15. Evaporation-condensation transition of the two-dimensional Potts model in the microcanonical ensemble

    KAUST Repository

    Nogawa, Tomoaki

    2011-12-05

    The evaporation-condensation transition of the Potts model on a square lattice is numerically investigated by the Wang-Landau sampling method. An intrinsically system-size-dependent discrete transition between supersaturation state and phase-separation state is observed in the microcanonical ensemble by changing constrained internal energy. We calculate the microcanonical temperature, as a derivative of microcanonical entropy, and condensation ratio, and perform a finite-size scaling of them to indicate the clear tendency of numerical data to converge to the infinite-size limit predicted by phenomenological theory for the isotherm lattice gas model. © 2011 American Physical Society.

  16. Investigation on the microstructure and mechanical properties of a cast Mg-6Zn-5Al-4RE alloy

    International Nuclear Information System (INIS)

    Xiao Wenlong; Jia Shusheng; Wang Jun; Wang, Jianli; Wang Limin

    2008-01-01

    Mg-6Zn-5Al-4RE (RE = Mischmetal, mass%) alloy was prepared by metal mould casting method. The microstructure and mechanical properties of the as-cast and heat-treated alloys were investigated. The results show that the phase compositions of the as-cast state alloy are supersaturated solid solution α-Mg, lamellar β-Al 12 Mg 17 , polygonal Al 3 RE and cluster Al 2 REZn 2 phases. The mechanical properties, especially the ultimate tensile strength and elongation of the alloy were significantly improved by the heat treatment. Fracture surface of tensile specimens was analyzed by optical microscope and scanning electron microscope

  17. Sulfate passivation in the lead-acid system as a capacity limiting process

    Science.gov (United States)

    Kappus, W.; Winsel, A.

    1982-10-01

    Calculations of the discharge capacity of Pb and PbO 2 electrodes as a function of various parameters are presented. They are based on the solution-precipitation mechanism for the discharge reaction and its formulation by Winsel et al. A logarithmic pore size distribution is used to fit experimental porosigrams of Pb and PbO 2 electrodes. Based on this pore size distribution the capacity is calculated as a function of current, BET surface, and porosity of the PbSO 4 diaphragm. The PbSO 4 supersaturation as the driving force of the diffusive transport is chosen as a free parameter.

  18. Sulfate passivation in the lead-acid system as a capacity limiting process

    Energy Technology Data Exchange (ETDEWEB)

    Kappus, W.; Winsel, A.

    1982-09-15

    Calculations of the discharge capacity of Pb and PbO/sub 2/ electrodes as a function of various parameters are presented. They are based on the solution-precipitation mechanism for the discharge reaction and its formulation by Winsel et al. A logarithmic pore size distribution is used to fit experimental porosigrams of Pb and PbO/sub 2/ electrodes. Based on this pore size distribution the capacity is calculated as a function of current, BET surface, and porosity of the PbSO/sub 4/ diaphragm. The PbSO/sub 4/ supersaturation as the driving force of the diffusive transport is chosen as a free parameter.

  19. Can we determine what controls the spatio-temporal distribution of d-excess and 17O-excess in precipitation using the LMDZ general circulation model?

    Directory of Open Access Journals (Sweden)

    C. Risi

    2013-09-01

    Full Text Available Combined measurements of the H218O and HDO isotopic ratios in precipitation, leading to second-order parameter D-excess, have provided additional constraints on past climates compared to the H218O isotopic ratio alone. More recently, measurements of H217O have led to another second-order parameter: 17O-excess. Recent studies suggest that 17O-excess in polar ice may provide information on evaporative conditions at the moisture source. However, the processes controlling the spatio-temporal distribution of 17O-excess are still far from being fully understood. We use the isotopic general circulation model (GCM LMDZ to better understand what controls d-excess and 17O-excess in precipitation at present-day (PD and during the last glacial maximum (LGM. The simulation of D-excess and 17O-excess is evaluated against measurements in meteoric water, water vapor and polar ice cores. A set of sensitivity tests and diagnostics are used to quantify the relative effects of evaporative conditions (sea surface temperature and relative humidity, Rayleigh distillation, mixing between vapors from different origins, precipitation re-evaporation and supersaturation during condensation at low temperature. In LMDZ, simulations suggest that in the tropics convective processes and rain re-evaporation are important controls on precipitation D-excess and 17O-excess. In higher latitudes, the effect of distillation, mixing between vapors from different origins and supersaturation are the most important controls. For example, the lower d-excess and 17O-excess at LGM simulated at LGM are mainly due to the supersaturation effect. The effect of supersaturation is however very sensitive to a parameter whose tuning would require more measurements and laboratory experiments. Evaporative conditions had previously been suggested to be key controlling factors of d-excess and 17O-excess, but LMDZ underestimates their role. More generally, some shortcomings in the simulation of 17O

  20. Carbon and phosphorus regulating bacterial metabolism in oligotrophic boreal lakes

    DEFF Research Database (Denmark)

    Vidal, L. O.; Graneli, W.; Daniel, C. B.

    2011-01-01

    This study focused on how phosphorus and carbon control pelagic bacteria in lakes over a gradient of dissolved organic carbon (DOC from 6.7 to 29.5 mg C L(-1)) and phosphorus (P-tot from 5 to 19 mu g L(-1)). Five oligotrophic lakes in southern Sweden were sampled in late autumn. Phosphate...... carbon mineralization in this kind of system during autumn is conditioned by the combined availability of labile carbon and phosphorus, with the assimilated carbon mainly transformed to inorganic carbon in respiration, contributing to CO(2) supersaturation in these systems....

  1. Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel

    OpenAIRE

    Pinedo,Carlos Eduardo; Tschiptschin,André Paulo

    2013-01-01

    In this work an austenitic AISI 316L and a duplex AISI F51 (EN 1.4462) stainless steel were DC-Plasma carburized at 480ºC, using CH4 as carbon carrier gas. For the austenitic AISI 316L stainless steel, low temperature plasma carburizing induced a strong carbon supersaturation in the austenitic lattice and the formation of carbon expanded austenite (γC) without any precipitation of carbides. The hardness of the carburized AISI 316L steel reached a maximum of 1000 HV due to ∼13 at% c...

  2. Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel Cementação sob plasma à baixa temperatura do aço inoxidável austenítico AISI 316L e do aço inoxidável duplex AISI F51

    OpenAIRE

    Carlos Eduardo Pinedo; André Paulo Tschiptschin

    2013-01-01

    In this work an austenitic AISI 316L and a duplex AISI F51 (EN 1.4462) stainless steel were DC-Plasma carburized at 480ºC, using CH4 as carbon carrier gas. For the austenitic AISI 316L stainless steel, low temperature plasma carburizing induced a strong carbon supersaturation in the austenitic lattice and the formation of carbon expanded austenite (γC) without any precipitation of carbides. The hardness of the carburized AISI 316L steel reached a maximum of 1000 HV due to ∼13 at% c...

  3. Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel

    OpenAIRE

    Pinedo, Carlos Eduardo; Tschiptschin, André Paulo

    2013-01-01

    In this work an austenitic AISI 316L and a duplex AISI F51 (EN 1.4462) stainless steel were DC-Plasma carburized at 480ºC, using CH4 as carbon carrier gas. For the austenitic AISI 316L stainless steel, low temperature plasma carburizing induced a strong carbon supersaturation in the austenitic lattice and the formation of carbon expanded austenite (γC) without any precipitation of carbides. The hardness of the carburized AISI 316L steel reached a maximum of 1000 HV due to ∼13 at% carbon super...

  4. Expanded austenite in nitrided layers deposited on austenitic and super austenitic stainless steel grades; Analise da austenita expandida em camadas nitretadas em acos inoxidaveis austeniticos e superaustenitico

    Energy Technology Data Exchange (ETDEWEB)

    Casteletti, L.C.; Fernandes, F.A.P.; Heck, S.C. [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). Escola de Engenharia. Dept. de Engenharia de Materais, Aeronautica e Automobilistica; Oliveira, A.M. [Instituto de Educacao, Ciencia e Tecnologia do Maranhao (IFMA), Sao Luis, MA (Brazil); Gallego, J., E-mail: gallego@dem.feis.unesp.b [UNESP, Ilha Solteira, SP (Brazil). Dept. Engenharia Mecanica

    2010-07-01

    In this work nitrided layers deposited on austenitic and super austenitic stainless steels were analyzed through optical microscopy and X-rays diffraction analysis (XRD). It was observed that the formation of N supersaturated phase, called expanded austenite, has promoted significant increment of hardness (> 1000HV). XRD results have indicated the anomalous displacement of the diffracted peaks, in comparison with the normal austenite. This behavior, combined with peaks broadening, it was analyzed in different nitriding temperatures which results showed good agreement with the literature. (author)

  5. Microstructure and Aging Behavior of Nonflammable AZ91D Mg Alloy

    OpenAIRE

    Seok Hong Min; Tae Kwon Ha

    2014-01-01

    Phase equilibria of AZ91D Mg alloys for nonflammable use, containing Ca and Y, were carried out by using FactSage® and FTLite database, which revealed that solid solution treatment could be performed at temperatures from 400 to 450oC. Solid solution treatment of AZ91D Mg alloy without Ca and Y was successfully conducted at 420oC and supersaturated microstructure with all beta phase resolved into matrix was obtained. In the case of AZ91D Mg alloy with some Ca and Y; howeve...

  6. Integrated computational microstructure engineering for single-crystal nickel-base superalloys

    Science.gov (United States)

    Wang, Billie

    A methodology that integrates the phase field model with simpler models was developed to study the early stages of microstructural development in nickel base superalloys under non-isothermal conditions, allowing for faster, more comprehensive examination of the experimental system. Additionally, the parameters required for calibrating a phase field model were examined for uncertainty, and a comprehensive method for linking experimental data to a model was developed. The methodology developed was applied to analyze the formation of bimodal particle size distributions during linear continuous cooling. The dynamic competition for supersaturation by growth of existing precipitates and nucleation of new particles was modeled. The nucleation rate was calculated according to classical nucleation theory as function of local supersaturation and temperature. The depletion of matrix super-saturation by growth of existing particles was calculated from fully diffusion-controlled precipitate growth in an infinite matrix. Phase field simulations of gamma' precipitation in a binary Ni-Al alloy were performed under continuous cooling conditions. Then the average and maximum matrix supersaturations were calculated and plotted onto the contours of nucleation rate and growth rate in concentration and temperature space. These methods were used iteratively to identify the window for bimodal particle size distributions. Combining the models of different complexities produced a much more comprehensive understanding of the competing dynamics involved early in microstructure formation. A systemic method for calibrating a model to experimental alloy systems was developed. Calibrated to isothermal aging data along with literature, database and parametric values, a phase field model reproduced the precipitation kinetics. Quantitative phase field modeling techniques were developed to control the influence of uncertainty in the original data sources for model inputs. Using more data sources than

  7. Quantitative interface models for simulating microstructure evolution

    International Nuclear Information System (INIS)

    Zhu, J.Z.; Wang, T.; Zhou, S.H.; Liu, Z.K.; Chen, L.Q.

    2004-01-01

    To quantitatively simulate microstructural evolution in real systems, we investigated three different interface models: a sharp-interface model implemented by the software DICTRA and two diffuse-interface models which use either physical order parameters or artificial order parameters. A particular example is considered, the diffusion-controlled growth of a γ ' precipitate in a supersaturated γ matrix in Ni-Al binary alloys. All three models use the thermodynamic and kinetic parameters from the same databases. The temporal evolution profiles of composition from different models are shown to agree with each other. The focus is on examining the advantages and disadvantages of each model as applied to microstructure evolution in alloys

  8. Aqueous citric acid as a promising cleaning agent of whey evaporators

    DEFF Research Database (Denmark)

    Hedegaard, Martina Vavrusova; P. Johansen, Nikolaj; Garcia, André Castilho

    2017-01-01

    concentration of citric acid was the most effective for all the investigated volumes. From the citric acid solutions, spontaneously supersaturated in calcium citrate tetrahydrate during scale dissolution in the smaller volumes for all citric acid concentrations, calcium citrate tetrahydrate slowly precipitated...... in acceptable purity for technical use. Dissolution efficiency of aqueous solutions of 0.200 mol L−1 nitric acid combined with 0.100, 0.500, and 1.00 mol L−1 citric acid with final volumes of 100, 50, and 25 mL showed synergistic effect especially for the higher concentrations and lower volumes of two acids...

  9. Terror and Wellbeing

    DEFF Research Database (Denmark)

    Raffnsøe, Sverre

    Currently, terrorism provokes a widespread feeling of insecurity and global reactions to the terrorist attacks. This is not simply because it poses a substantial threat to society and to the lives of individual citizens. The relatively rare incidents of terrorism cause emotional overreaction...... because they challenge and intensify the contract that supersaturates today's society.In the welfare society one can observe the existence of a diffuse but widespread social contract, which has become the single most cohesive element in the social fabric. According the terms of this contract, we agree...

  10. Control of phase transition dynamics in media with nanoscale nonuniformities by coherence loss spectroscopy

    International Nuclear Information System (INIS)

    Brodsky, Anatol M

    2010-01-01

    The optical nondestructive characterization of chemical transformation dynamics and diffusion kinetics, including phase transitions, in heterogeneous media with a random distribution of nanoparticles (nano-nonuniformities), is of great theoretical and practical importance. Such characterization, with the help of coherence loss spectroscopy, considered in this paper can be applied for the control of a number of industrial processes dynamics, environmental monitoring, and medical diagnostics and therapy. As a specific example, the growth of crystal nuclei (embrions) as a result of the diffusion to them of a substance from the surrounding supersaturated solution is considered

  11. SiC nanofibers grown by high power microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Honda, Shin-ichi; Baek, Yang-Gyu; Ikuno, Takashi; Kohara, Hidekazu; Katayama, Mitsuhiro; Oura, Kenjiro; Hirao, Takashi

    2003-01-01

    Silicon carbide (SiC) nanofibers have been synthesized on Si substrates covered by Ni thin films using high power microwave chemical vapor deposition (CVD). Characterization using transmission electron microscopy (TEM) combined with electron energy-dispersive X-ray spectroscopy (EDX) revealed that the resultant fibrous nanostructures were assigned to β-SiC with high crystallinity. The formation of SiC nanofibers can be explained by the vapor liquid solid (VLS) mechanism in which precipitation of SiC occurs from the supersaturated Ni nanoparticle containing Si and C

  12. Thermoanalytical investigation of nanocrystalline iron (II) phosphate obtained by spontaneous precipitation from aqueous solutions

    International Nuclear Information System (INIS)

    Scaccia, Silvera; Carewska, Maria; Di Bartolomeo, Angelo; Prosini, Pier Paolo

    2003-01-01

    Fe 3 (PO 4 ) 2 ·8H 2 O has been precipitated under supersaturation conditions from deaerated Fe(NH 4 ) 2 (SO 4 ) 2 ·6H 2 O and K 2 HPO 4 aqueous, ethanol-water and iso-propanol-water solutions at pH=6.5 and ambient temperature. The precipitates have been characterised by TG/DTG/DTA and DSC techniques, chemical analysis, BET, and X-ray powder diffraction. The presence of ethanol and iso-propanol in the spontaneous precipitation process of ferrous phosphate leads to highly crystalline powder. Thermal treatment at 500 deg. C yields a poorly crystalline dehydrated iron phosphate

  13. Selected characteristic of silumins with additives of Ni, Cu, Cr, Mo, W and V

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2010-04-01

    Full Text Available The study, presents an investigation results of new grades of silumins containing of: 7,0÷17,0% Si, 4,0% Ni, 4,0% Cu and 0,5% Cr, Mo, W each as well as V. The influence tests were carried out of - antimony addition, strontium and phosphorus modification, supersaturation and ageing processes - on microstructure and silumins hardness. Revealed that investigated silumins, depending on the state, are characte-rized by hardness in the range of 80÷180 HB.

  14. Comparative Study of Different Methods for the Prediction of Drug-Polymer Solubility

    DEFF Research Database (Denmark)

    Knopp, Matthias Manne; Tajber, Lidia; Tian, Yiwei

    2015-01-01

    monomer weight ratios. The drug–polymer solubility at 25 °C was predicted using the Flory–Huggins model, from data obtained at elevated temperature using thermal analysis methods based on the recrystallization of a supersaturated amorphous solid dispersion and two variations of the melting point......, which suggests that this method can be used as an initial screening tool if a liquid analogue is available. The learnings of this important comparative study provided general guidance for the selection of the most suitable method(s) for the screening of drug–polymer solubility....

  15. Microstructural analysis of the creep resistance of die-cast Mg-4Al-2RE alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, S.M. [CAST CRC, Department of Materials Engineering, Monash University, Victoria 3800 (Australia)], E-mail: suming.zhu@eng.monash.edu.au; Gibson, M.A. [CAST CRC, CSIRO Materials Science and Engineering, Private Bag 33, Clayton South MDC, Clayton, Victoria 3169 (Australia); Nie, J.F.; Easton, M.A. [CAST CRC, Department of Materials Engineering, Monash University, Victoria 3800 (Australia); Abbott, T.B. [Advanced Magnesium Technologies, Milton, Queensland 4064 (Australia)

    2008-03-15

    The microstructure and microstructural stability of die-cast AE42 (Mg-4Al-2RE) alloy were investigated by transmission electron microscopy. It is shown that the formation of Mg{sub 17}Al{sub 12} after ageing at 200 deg. C is not due to the decomposition of A1{sub 11}RE{sub 3} as reported in the literature, but, rather, is associated with the supersaturation of Al solute in the {alpha}-Mg matrix. The level of Al solute retained in the {alpha}-Mg matrix after die-casting is suggested to be an important factor in influencing creep resistance.

  16. The physics of Beer Tapping

    OpenAIRE

    Rodriguez-Rodriguez, Javier

    2015-01-01

    The popular bar prank known in colloquial English as beer tapping consists in hitting the top of a beer bottle with a solid object, usually another bottle, to trigger the foaming over of the former within a few seconds. Despite the trick being nown for a long time, to the best of our knowledge, the phenomenon still lacked scientific explanation. Although it seems natural to think that shock-induced cavitation enhances the diffusion of CO2 from the supersaturated bulk liquid into the bub...

  17. In situ expression of genes involved in carbon concentrating expression of genes involved in carbon concentratingmechanisms in hot spring cyanobacteria

    DEFF Research Database (Denmark)

    Jensen, Sheila Ingemann; Steunou, Anne-Soisig; Bhaya, Devaki

    supersaturating levels, and the intense photosynthetic activity of the cyanobacteria causes a pH >9.5 in the euphotic zone of the mat. During the night, the mat rapidly becomes anoxic, and intense respiration, reoxidation of reduced solutes and fermentation acidifies the mat to pH ~7.5. High temperature (55-70 0C......) itself imposes a constraint on the availability of Ci for photosynthesis because of the low solubility of CO2 at elevated temperatures; this is exacerbated by the relatively high O2-concentration and high pH in the mat during the day. Therefore, it is likely important for the cyanobacteria in the mat...

  18. Protein crystal growth in low gravity

    Science.gov (United States)

    Feigelson, Robert S.

    1993-01-01

    This Final Technical Report for NASA Grant NAG8-774 covers the period from April 27, 1989 through December 31, 1992. It covers five main topics: fluid flow studies, the influence of growth conditions on the morphology of isocitrate lyase crystals, control of nucleation, the growth of lysozyme by the temperature gradient method and graphoepitaxy of protein crystals. The section on fluid flow discusses the limits of detectability in the Schlieren imaging of fluid flows around protein crystals. The isocitrate lyase study compares crystals grown terrestrially under a variety of conditions with those grown in space. The controlling factor governing the morphology of the crystals is the supersaturation. The lack of flow in the interface between the drop and the atmosphere in microgravity causes protein precipitation in the boundary layer and a lowering of the supersaturation in the drop. This lowered supersaturation leads to improved crystal morphology. Preliminary experiments with lysozyme indicated that localized temperature gradients could be used to nucleate crystals in a controlled manner. An apparatus (thermonucleator) was designed to study the controlled nucleation of protein crystals. This apparatus has been used to nucleate crystals of materials with both normal (ice-water, Rochelle salt and lysozyme) and retrograde (horse serum albumin and alpha chymotrypsinogen A) solubility. These studies have lead to the design of an new apparatus that small and more compatible with use in microgravity. Lysozyme crystals were grown by transporting nutrient from a source (lysozyme powder) to the crystal in a temperature gradient. The influence of path length and cross section on the growth rate was demonstrated. This technique can be combined with the thermonucleator to control both nucleation and growth. Graphoepitaxy utilizes a patterned substrate to orient growing crystals. In this study, silicon substrates with 10 micron grooves were used to grow crystals of catalase

  19. Growth of (CH$_3$)$_2$NH$_2$CuCl$_3$ single crystals using evaporation method with different temperatures and solvents

    OpenAIRE

    Chen, L. M.; Tao, W.; Zhao, Z. Y.; Li, Q. J.; Ke, W. P.; Wang, X. M.; Liu, X. G.; Fan, C.; Sun, X. F.

    2013-01-01

    The bulk single crystals of of low-dimensional magnet (CH$_3$)$_2$NH$_2$CuCl$_3$ (DMACuCl$_3$ or MCCL) are grown by a slow evaporation method with different kinds of solvents, different degrees of super-saturation of solution and different temperatures of solution, respectively. Among three kinds of solvent, methanol, alcohol and water, alcohol is found to be the best one for growing MCCL crystals because of its structural similarity to the raw materials and suitable evaporation rate. The bes...

  20. Study on effect of process parameters and mixing on morphology of ammonium diuranate

    International Nuclear Information System (INIS)

    Subhankar Manna; Chandrabhanu Basak; Thakkar, U.R.; Shital Thakur; Roy, S.B.; Joshi, J.B.; Institute of Chemical Technology, Matunga, Mumbai

    2016-01-01

    Ammonium diuranate (ADU) is an important intermediate for the production of uranium base fuel. Controlling morphology of crystalline ADU powders is very important as it is retained by its subsequent products. Because of the high level of supersaturation, the involved mechanisms of precipitation like primary nucleation, crystal growth, aggregation and breakage occur simultaneously and they control the morphology. Effects of concentration of uranyl nitrate solution, temperature and the mixing intensity have been investigated on the morphology, crystal structure and the other physical properties of ADU. Effect of temperature is found to be more dominant for controlling morphology. (author)

  1. Expanded austenite in nitrided layers deposited on austenitic and super austenitic stainless steel grades

    International Nuclear Information System (INIS)

    Casteletti, L.C.; Fernandes, F.A.P.; Heck, S.C.; Gallego, J.

    2010-01-01

    In this work nitrided layers deposited on austenitic and super austenitic stainless steels were analyzed through optical microscopy and X-rays diffraction analysis (XRD). It was observed that the formation of N supersaturated phase, called expanded austenite, has promoted significant increment of hardness (> 1000HV). XRD results have indicated the anomalous displacement of the diffracted peaks, in comparison with the normal austenite. This behavior, combined with peaks broadening, it was analyzed in different nitriding temperatures which results showed good agreement with the literature. (author)

  2. Microstructure and properties of A15 superconductors formed by direct precipitation

    International Nuclear Information System (INIS)

    Hong, M.; Dietderich, D.R.; Wu, I.W.; Morris, J.W. Jr.

    1980-09-01

    Superconducting materials were made by quenching supersaturated solutions of V-Ga and Nb-Al, deforming the quenched specimens, and then precipitating the A15 phase by aging at intermediate temperature. The critical current characteristics of the product materials depend both on the inherent properties of the A15 phase, which presumably reflect its composition, and on the details of the precipitation process, which determine the grain size, continuity, and volume fraction of the A15. These features of the precipitation process differ qualitatively between V-Ga and Nb-Al. They are described and used to interpret the critical current characteristics

  3. Modifications to POISSON

    International Nuclear Information System (INIS)

    Harwood, L.H.

    1981-01-01

    At MSU we have used the POISSON family of programs extensively for magnetic field calculations. In the presently super-saturated computer situation, reducing the run time for the program is imperative. Thus, a series of modifications have been made to POISSON to speed up convergence. Two of the modifications aim at having the first guess solution as close as possible to the final solution. The other two aim at increasing the convergence rate. In this discussion, a working knowledge of POISSON is assumed. The amount of new code and expected time saving for each modification is discussed

  4. CHARACTERIZATION OF SURFACE OF THE (010 FACE OF BORAX CRYSTALS USING EX SITU ATOMIC FORCE MICROSCOPY (AFM:

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available The surface topology of borax crystals grown at a relative supersaturation of 0.21 has been investigated using ex situ atomic force microscopy (AFM. It was found that the cleavage of borax crystals along the (010 face planes has features of the cleavage of layered compounds, exhibiting cleavage steps of low heights. The step heights of the cleavage of the (010 face of borax crystal are from one unit cell to three unit cells of this face.   Keywords: AFM, cleavage, borax.

  5. GROWTH RATE DISTRIBUTION OF BORAX SINGLE CRYSTALS ON THE (001 FACE UNDER VARIOUS FLOW RATES

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available The growth rates of borax single crystals from aqueous solutions at various flow rates in the (001 direction were measured using in situ cell method. From the growth rate data obtained, the growth rate distribution of borax crystals was investigated using Minitab Software and SPSS Software at relative supersaturation of 0807 and temperature of 25 °C. The result shows that normal, gamma, and log-normal distribution give a reasonably good fit to GRD. However, there is no correlation between growth rate distribution and flow rate of solution.   Keywords: growth rate dispersion (GRD, borax, flow rate

  6. Structural and phase changes in copper-fullerene films by ion implantation and annealing

    International Nuclear Information System (INIS)

    Shpilevsky, E.M.; Baran, L.V.; Okatova, G.P.; Jakimovich, A.V.

    2001-01-01

    The structural and phase changes and the electrical properties of copper - fullerene (Cu-C 60 ) films by the ion implantation(B + , E=80 keV, D 5·10 21 m -2 ) and the thermal annealing are described. We found the copper-fullerene solid supersaturated solution formed in process of the two-component films obtaining. The result of the thermal annealing is the phase segregation of fullerene. It has been established the ion implantation adduces to the partial fragmentation of fullerene, to the destruction of the C 60 molecules and to the formation of the CuB 24 , B 25 C and B 4 C phases

  7. Reconstruction Effects on Surface Properties of Co/Mg/Al Layered Double Hydroxide

    Directory of Open Access Journals (Sweden)

    Denis SOKOL

    2017-08-01

    Full Text Available Layered double hydroxides having different cationic (Mg2+, Co2+, Al3+ composition were successfully synthesized by the low supersaturation method. The samples were thermally decomposed and reconstructed using water and nitrate media at different temperatures. X-ray powder diffraction analysis, X-ray fluorescence analysis, thermogravimetry and BET/BJH methods were used to investigate the differences between the directly obtained layered materials and those after the reconstruction process.DOI: http://dx.doi.org/10.5755/j01.ms.23.2.15184

  8. The chemistry and saturation states of subsurface fluids during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland

    DEFF Research Database (Denmark)

    Snaebjornsdottir, Sandra O.; Oelkers, Eric H.; Mesfin, Kiflom

    2017-01-01

    is supersaturated prior to and during the mixed gas injection and in the following months. In July 2013, the HN-04 fluid sampling pump broke down due to calcite precipitation, verifying the carbonation of the injected CO2. Mass balance calculations, based on the recovery of non-reactive tracers co......-gas mixture were sequentially injected into basaltic rocks at the CarbFix site at Hellisheidi, SW-Iceland from January to August 2012. This paper reports the chemistry and saturation states with respect to potential secondary minerals of sub-surface fluids sampled prior to, during, and after...

  9. Numerical study of two-dimensional moist symmetric instability

    Directory of Open Access Journals (Sweden)

    M. Fantini

    2008-06-01

    Full Text Available The 2-D version of the non-hydrostatic fully compressible model MOLOCH developed at ISAC-CNR was used in idealized set-up to study the start-up and finite amplitude evolution of symmetric instability. The unstable basic state was designed by numerical integration of the equation which defines saturated equivalent potential vorticity qe*. We present the structure and growth rates of the linear modes both for a supersaturated initial state ("super"-linear mode and for a saturated one ("pseudo"-linear mode and the modifications induced on the base state by their finite amplitude evolution.

  10. The variation of calcium, magnesium, sodium, potassium and bicarbonate concentration, pH and conductivity in groundwater of Karachi region

    International Nuclear Information System (INIS)

    Zubair, A.; Ali, S.I.

    2002-01-01

    Groundwater in Karachi is influenced mainly by the evaporation / crystallization process as expressed by the Na/(Na+Ca) weight concentration ratio. The high coefficient of determined between conductivity and total dissolved ions concentration in meq/sup -1/ revealed that major ions affect the conductivity of groundwater. It was also found that groundwater quality with respect to cations is not significantly influenced by geology, particularly in the Urban are of the city, where the 90% of the population resides. The relationship between conductivity and bicarbonate concentration shows that supersaturation of groundwater with carbon dioxide is responsible for general depression of pH. (author)

  11. Effect of Fe ion concentration on fatigue life of carbon steel in aqueous CO2 environment

    DEFF Research Database (Denmark)

    Rogowska, Magdalena; Gudme, J.; Rubin, A.

    2016-01-01

    situ measurements of Fe2+ and pH. Characterisation of the corrosion scales and crack formations was performed using microscopic and diffraction techniques. Fatigue results showed two times better fatigue life, at the stress ranges of 250 MPa, for samples tested in solutions containing the concentration...... of Fe2+ marginally above the solubility limit of FeCO3 compared to the samples tested in highly supersaturated solution of Fe2+. Results revealed that the impact of the alternating stresses on the corrosion behaviour of samples reduces with lowering the applied stresses. At the stress range of 100 MPa...

  12. Influence of small additions of Sc and Zr on structure and mechanical properties of Al-Zn-Mg-Cu alloy

    International Nuclear Information System (INIS)

    Kajgorodova, L.I.; Sel'nikhina, E.I.; Tkachenko, E.A.; Senatorova, O.G.

    1996-01-01

    A study was made into Sc and Zr addition effects on grain structure formation, supersaturated solid solution decomposition and mechanical properties of Al-7%Zn-2%Mg-1.2%Cu alloy. It is shown that grain structure is determined by volume fraction and distribution character of disperse particles of Al 3 Sc and Al 3 (Sc 1-x Zr x ). The reason for additives influence on decomposition kinetics during natural and artificial ageing are revealed. The structural factors responsible for the enhancement of mechanical properties on alloying are discussed. 17 refs.; 5 figs.; 2 tabs

  13. Thermal pollution studies near nuclear power stations in India. Part of a coordinated programme on the physical and biological effects on the environment of cooling systems and thermal discharges from nuclear power plants

    International Nuclear Information System (INIS)

    Kamath, P.

    1978-12-01

    Thermal stresses caused by higher than ambient temperatures increased the susceptibility of fishes to disease and predation. Examples are given: Bluegill - Predator-prey relationships should be studied as a problem in community relationships. Experiments are reported to find the link between temperature and differential predation rates. In tropical conditions, there is no evidence of any damage to fish life due to warm water releases, however, experiments indicate that conditions in the waters receiving heated effluents are optimal to: proliferation of parasites and pathogens; oxygen supersaturation in outfall; weed growth

  14. EVAPORATION FORM OF ICE CRYSTALS IN SUBSATURATED AIR AND THEIR EVAPORATION MECHANISM

    OpenAIRE

    ゴンダ, タケヒコ; セイ, タダノリ; Takehiko, GONDA; Tadanori, SEI

    1987-01-01

    The evaporation form and the evaporation mechanism of dendritic ice crystals grown in air of 1.0×(10)^5 Pa and at water saturation and polyhedral ice crystals grown in air of 4.0×10 Pa and at relatively low supersaturation are studied. In the case of dendritic ice crystals, the evaporation preferentially occurs in the convex parts of the crystal surfaces and in minute secondary branches. On the other hand, in the case of polyhedral ice crystals, the evaporation preferentially occurs in the pa...

  15. Growth of ZnO nanostructures on Au-coated Si: Influence of growth temperature on growth mechanism and morphology

    DEFF Research Database (Denmark)

    Kumar, Rajendra; McGlynn, E.; Biswas, M.

    2008-01-01

    ZnO nanostructures were grown on Au-catalyzed Si silicon substrates using vapor phase transport at growth temperatures from 800 to 1150 degrees C. The sample location ensured a low Zn vapor supersaturation during growth. Nanostructures grown at 800 and 850 degrees C showed a faceted rodlike...... growth tended to dominate resulting in the formation of a porous, nanostructured morphology. In all cases growth was seen only on the Au-coated region. Our results show that the majority of the nanostructures grow via a vapor-solid mechanism at low growth temperatures with no evidence of Au nanoparticles...

  16. Metal scavenging by calcium carbonate at the Eyjafjallajökull volcano

    DEFF Research Database (Denmark)

    Olsson, J.; Stipp, S. L S; Makovicky, E.

    2014-01-01

    . Boxwork textures were observed within the porous calcite that probably originated from transformation of a metastable phase such as ikaite (CaCO3·6 H2O). A gradual decrease of conductivity from 1.8mS/cm at the river water outlet to 1.1mS/cm downstream and a clear drop in dissolved metal concentration...... were also scavenged from the river water, including Al, Fe, K, P, S, Si, Ti, V and the rare earth elements (REE). Our thermodynamic modeling suggests that, in addition to calcite and ikaite, silica, clay minerals, ferrihydrite, gibbsite and amorphous Ca, Mg carbonate minerals were supersaturated...

  17. Effect of Corrosion Inhibitors on In Situ Leak Repair by Precipitation of Calcium Carbonate in Potable Water Pipelines.

    Science.gov (United States)

    Wang, Fei; Devine, Christina L; Edwards, Marc A

    2017-08-01

    Corrosion inhibitors can affect calcium carbonate precipitation and associated in situ and in-service water distribution pipeline leak repair via clogging. Clogging of 150 μm diameter leak holes represented by glass capillary tubes, in recirculating solutions that are supersaturated with calcite (Ω calcite = 13), demonstrated that Zn, orthophosphate, tripolyphosphate, and hexametaphosphate corrosion/scaling inhibitors hinder clogging but natural organic matter (NOM) has relatively little impact. Critical concentrations of phosphates that could inhibit leak repair over the short-term in one water tested were: tripolyphophate (0.05 mg/L as P) water systems.

  18. Hydroxyapatite Reinforced Coatings with Incorporated Detonationally Generated Nanodiamonds

    International Nuclear Information System (INIS)

    Pramatarova, L.; Pecheva, E.; Hikov, T.; Fingarova, D.; Dimitrova, R.; Spassov, T.; Krasteva, N.; Mitev, D.

    2010-01-01

    We studied the effect of the substrate chemistry on the morphology of hydroxyapatite-detonational nanodiamond composite coatings grown by a biomimetic approach (immersion in a supersaturated simulated body fluid). When detonational nanodiamond particles were added to the solution, the morphology of the grown for 2 h composite particles was porous but more compact then that of pure hydroxyapatite particles. The nanodiamond particles stimulated the hydroxyapatite growth with different morphology on the various substrates (Ti, Ti alloys, glasses, Si, opal). Biocompatibility assay with MG63 osteoblast cells revealed that the detonational nanodiamond water suspension with low and average concentration of the detonational nanodiamond powder is not toxic to living cells.

  19. Pre-precipitation studies in an Al-Zn alloy by positron Doppler broadening measurements

    International Nuclear Information System (INIS)

    Panchanadeeswaran, S.; Plichta, M.R.; Byrne, J.G.

    1984-01-01

    Positron annihilation studies using measurements of Doppler broadening of annihilation γ-rays have been carried out in an Al-8.5 wt% Zn alloy. More than 90% of positron trapping is believed to occur at GP zones formed on quenching the supersaturated solid solution. The dissolution of GP zones above 373 K was revealed by drastic narrowing of the Doppler energy spectrum for samples aged above 373 K. The kinetics of formation of GP zones at ambient temperatures is drastically reduced when the alloy containing GP zones formed during quenching from supersaturated solid solution was reverted at 403 K and reaged at ambient temperature. It was also observed that, even after long reageing, the total number of GP zones formed is much lower than in a directly quenched alloy. The kinetics of formation of GP zones are also reduced by quenching from a single phase to an intermediate temperature where GP zones are not stable, followed by ageing at ambient temperature. Transmission electron micrographs revealed the presence of dislocation loops in alloys quenched from temperature above 773 K. The sensitivity of positrons to the presence of dislocation loops was analysed using the R parameter analysis. (author)

  20. An observational study of atmospheric ice nuclei number concentration during three fog-haze weather periods in Shenyang, northeastern China

    Science.gov (United States)

    Li, Liguang; Zhou, Deping; Wang, Yangfeng; Hong, Ye; Cui, Jin; Jiang, Peng

    2017-05-01

    Characteristics of ice nuclei (IN) number concentrations during three fog-haze weather periods from November 2010 to January 2012 in Shenyang were presented in this paper. A static diffusion chamber was used and sampling of IN aerosols was conducted using a membrane filter method. Sampling membrane filter processing conditions were unified in the activation temperature at - 15 °C under conditions of 20% ice supersaturation and 3% water supersaturation. The variations of natural IN number concentrations in different weather conditions were investigated. The relations between the meteorological factors and the IN number concentrations were analyzed, and relationships between pollutants and IN number concentrations were also studied. The results showed that mean IN number concentration were 38.68 L- 1 at - 20 °C in Shenyang, for all measurements. Mean IN number concentrations are higher during haze days (55.92 L- 1 at - 20 °C) and lower after rain. Of all meteorological factors, wind speed, boundary stability, and airflow direction appeared to influence IN number concentrations. IN number concentrations were positively correlated with particulate matters PM1, PM2.5, and PM10 during haze weather.

  1. Effect of hydraulic retention time on metal precipitation in sulfate reducing inverse fluidized bed reactors

    KAUST Repository

    Villa-Gómez, Denys Kristalia

    2014-02-13

    BACKGROUND: Metal sulfide recovery in sulfate reducing bioreactors is a challenge due to the formation of small precipitates with poor settling properties. The size of the metal sulfide precipitates with the change in operational parameters such as pH, sulfide concentration and reactor configuration has been previously studied. The effect of the hydraulic retention time (HRT) on the metal precipitate characteristics such as particle size for settling has not yet been addressed. RESULTS: The change in size of the metal (Cu, Zn, Pb and Cd) sulfide precipitates as a function of the HRT was studied in two sulfate reducing inversed fluidized bed (IFB) reactors operating at different chemical oxygen demand concentrations to produce high and low sulfide concentrations. The decrease of the HRT from 24 to 9h in both IFB reactors affected the contact time of the precipitates formed, thus making differences in aggregation and particle growth regardless of the differences in sulfide concentration. Further HRT decrease to 4.5h affected the sulfate reducing activity for sulfide production and hence, the supersaturation level and solid phase speciation. Metal sulfide precipitates affected the sulfate reducing activity and community in the biofilm, probably because of the stronger local supersaturation causing metal sulfides accumulation in the biofilm. CONCLUSIONS: This study shows that the HRT is an important factor determining the size and thus the settling rate of the metal sulfides formed in bioreactors.

  2. Towards a Model Climatology of Relative Humidity in the Upper Troposphere for Estimation of Contrail and Contrail-Induced Cirrus

    Science.gov (United States)

    Selkirk, Henry B.; Manyin, M.; Ott, L.; Oman, L.; Benson, C.; Pawson, S.; Douglass, A. R.; Stolarski, R. S.

    2011-01-01

    The formation of contrails and contrail cirrus is very sensitive to the relative humidity of the upper troposphere. To reduce uncertainty in an estimate of the radiative impact of aviation-induced cirrus, a model must therefore be able to reproduce the observed background moisture fields with reasonable and quantifiable fidelity. Here we present an upper tropospheric moisture climatology from a 26-year ensemble of simulations using the GEOS CCM. We compare this free-running model's moisture fields to those obtained from the MLS and AIRS satellite instruments, our most comprehensive observational databases for upper tropospheric water vapor. Published comparisons have shown a substantial wet bias in GEOS-5 assimilated fields with respect to MLS water vapor and ice water content. This tendency is clear as well in the GEOS CCM simulations. The GEOS-5 moist physics in the GEOS CCM uses a saturation adjustment that prevents supersaturation, which is unrealistic when compared to in situ moisture observations from MOZAIC aircraft and balloon sondes as we will show. Further, the large-scale satellite datasets also consistently underestimate super-saturation when compared to the in-situ observations. We place these results in the context of estimates of contrail and contrail cirrus frequency.

  3. Ice Nucleation and Dehydration in the Tropical Tropopause Layer

    Science.gov (United States)

    Jensen, Eric J.; Diskin, Glenn S.; Lawson, R Paul; Lance, Sara; Bui, Thaopaul Van; Hlavka, Dennis L.; Mcgill, Matthew J.; Pfister, Leonhard; Toon, Owen B.; Gao, Rushan

    2013-01-01

    Optically thin cirrus near the tropical tropopause regulate the humidity of air entering the stratosphere, which in turn has a strong influence on the Earth's radiation budget and climate. Recent highaltitude, unmanned aircraft measurements provide evidence for two distinct classes of cirrus formed in the tropical tropopause region: (i) vertically extensive cirrus with low ice number concentrations, low extinctions, and large supersaturations (up to approx. 70%) with respect to ice; and (ii) vertically thin cirrus layers with much higher ice concentrations that effectively deplete the vapor in excess of saturation. The persistent supersaturation in the former class of cirrus is consistent with the long time-scales (several hours or longer) for quenching of vapor in excess of saturation given the low ice concentrations and cold tropical tropopause temperatures. The low-concentration clouds are likely formed on a background population of insoluble particles with concentrations less than 100 L-1 (often less than 20 L-1), whereas the high ice concentration layers (with concentrations up to 10,000 L-1) can only be produced by homogeneous freezing of an abundant population of aqueous aerosols. These measurements, along with past high-altitude aircraft measurements, indicate that the low-concentration cirrus occur frequently in the tropical tropopause region, whereas the high-concentration cirrus occur infrequently. The predominance of the low-concentration clouds means cirrus near the tropical tropopause may typically allow entry of air into the stratosphere with as much as approx. 1.7 times the ice saturation mixing ratio.

  4. Nucleation behavior of glutathione polymorphs in water

    International Nuclear Information System (INIS)

    Chen, Zhi; Dang, Leping; Li, Shuai; Wei, Hongyuan

    2013-01-01

    Nucleation behavior of glutathione (GSH) polymorphs in water was investigated by experimental method combined with classical nucleation theory. The solubility of α and β forms GSH in water at different temperatures, and the nucleation induction period at various supersaturations and temperatures were determined experimentally. The results show that, in a certain range of supersaturation, the nucleation of β form predominates at relatively higher temperature, while α form will be obtained at lower temperature. The nucleation kinetics parameters of α and β form were then calculated. To understand the crucial role of temperature on crystal forms, “hypothetic” nucleation parameters of β form at 283.15 K were deduced based on extrapolation method. The results show that the interfacial tension, critical free energy, critical nucleus radius and nucleus number of α form are smaller than that of β form in the same condition at 283.15 K, which implies that α form nucleates easier than β form at low temperature. This work may be useful for the control and optimization of GSH crystallization process in industry

  5. Inhibition of ice crystallisation in highly viscous aqueous organic acid droplets

    Directory of Open Access Journals (Sweden)

    B. J. Murray

    2008-09-01

    Full Text Available Homogeneous nucleation of ice within aqueous solution droplets and their subsequent crystallisation is thought to play a significant role in upper tropospheric ice cloud formation. It is normally assumed that homogeneous nucleation will take place at a threshold supersaturation, irrespective of the identity of the solute, and that rapid growth of ice particles will follow immediately after nucleation. However, it is shown here through laboratory experiments that droplets may not readily freeze in the very cold tropical tropopause layer (TTL, typical temperatures of 186–200 K. In these experiments ice crystal growth in citric acid solution droplets did not occur when ice nucleated below 197±6 K. Citric acid, 2-hydroxypropane-1,2,3-tricarboxyllic acid, is a molecule with similar functionality to oxygenated organic compounds which are ubiquitous in atmospheric aerosol. It is therefore thought to be a sensible proxy for atmospheric organic material. Evidence is presented that suggests citric acid solution droplets become ultra-viscous and form glassy solids under atmospherically relevant conditions. Diffusion of liquid water molecules to ice nuclei is expected to be very slow in ultra-viscous solution droplets and nucleation is negligible in glassy droplets; this most likely provides an explanation for the experimentally observed inhibition of ice crystallisation. The implications of ultra-viscous and glassy solution droplets for ice cloud formation and supersaturations in the TTL are discussed.

  6. Nonclassical nucleation pathways in protein crystallization.

    Science.gov (United States)

    Zhang, Fajun

    2017-11-08

    Classical nucleation theory (CNT), which was established about 90 years ago, has been very successful in many research fields, and continues to be the most commonly used theory in describing the nucleation process. For a fluid-to-solid phase transition, CNT states that the solute molecules in a supersaturated solution reversibly form small clusters. Once the cluster size reaches a critical value, it becomes thermodynamically stable and favored for further growth. One of the most important assumptions of CNT is that the nucleation process is described by one reaction coordinate and all order parameters proceed simultaneously. Recent studies in experiments, computer simulations and theory have revealed nonclassical features in the early stage of nucleation. In particular, the decoupling of order parameters involved during a fluid-to-solid transition leads to the so-called two-step nucleation mechanism, in which a metastable intermediate phase (MIP) exists between the initial supersaturated solution and the final crystals. Depending on the exact free energy landscapes, the MIPs can be a high density liquid phase, mesoscopic clusters, or a pre-ordered state. In this review, we focus on the studies of nonclassical pathways in protein crystallization and discuss the applications of the various scenarios of two-step nucleation theory. In particular, we focus on protein solutions in the presence of multivalent salts, which serve as a model protein system to study the nucleation pathways. We wish to point out the unique features of proteins as model systems for further studies.

  7. The laminar flow tube reactor as a quantitative tool for nucleation studies: Experimental results and theoretical analysis of homogeneous nucleation of dibutylphthalate

    International Nuclear Information System (INIS)

    Mikheev, Vladimir B.; Laulainen, Nels S.; Barlow, Stephan E.; Knott, Michael; Ford, Ian J.

    2000-01-01

    A laminar flow tube reactor was designed and constructed to provide an accurate, quantitative measurement of a nucleation rate as a function of supersaturation and temperature. Measurements of nucleation of a supersaturated vapor of dibutylphthalate have been made for the temperature range from -30.3 to +19.1 degree sign C. A thorough analysis of the possible sources of experimental uncertainties (such as defining the correct value of the initial vapor concentration, temperature boundary conditions on the reactor walls, accuracy of the calculations of the thermodynamic parameters of the nucleation zone, and particle concentration measurement) is given. Both isothermal and the isobaric nucleation rates were measured. The experimental data obtained were compared with the measurements of other experimental groups and with theoretical predictions made on the basis of the self-consistency correction nucleation theory. Theoretical analysis, based on the first and the second nucleation theorems, is also presented. The critical cluster size and the excess of internal energy of the critical cluster are obtained. (c) 2000 American Institute of Physics

  8. Hydroxyapatite formation on graphene oxide modified with amino acids: arginine versus glutamic acid

    Science.gov (United States)

    Tavafoghi, M.; Brodusch, N.; Gauvin, R.; Cerruti, M.

    2016-01-01

    Hydroxyapatite (HA, Ca5(PO4)3OH) is the main inorganic component of hard tissues, such as bone and dentine. HA nucleation involves a set of negatively charged phosphorylated proteins known as non-collagenous proteins (NCPs). These proteins attract Ca2+ and PO43− ions and increase the local supersaturation to a level required for HA precipitation. Polar and charged amino acids (AAs) are highly expressed in NCPs, and seem to be responsible for the mineralizing effect of NCPs; however, the individual effect of these AAs on HA mineralization is still unclear. In this work, we investigate the effect of a negatively charged (Glu) and positively charged (Arg) AA bound to carboxylated graphene oxide (CGO) on HA mineralization in simulated body fluids (SBF). Our results show that Arg induces HA precipitation faster and in larger amounts than Glu. We attribute this to the higher stability of the complexes formed between Arg and Ca2+ and PO43− ions, and also to the fact that Arg exposes both carboxyl and amino groups on the surface. These can electrostatically attract both Ca2+ and PO43− ions, thus increasing local supersaturation more than Glu, which exposes carboxyl groups only. PMID:26791001

  9. Investigation on the effect of collagen and vitamins on biomimetic hydroxyapatite coating formation on titanium surfaces

    International Nuclear Information System (INIS)

    Ciobanu, Gabriela; Ciobanu, Octavian

    2013-01-01

    This study uses an in vitro experimental approach to investigate the roles of collagen and vitamins in regulating the deposition of hydroxyapatite layer on the pure titanium surface. Titanium implants were coated with a hydroxyapatite layer under biomimetic conditions by using a supersaturated calcification solution (SCS), modified by adding vitamins A and D 3 , and collagen. The hydroxyapatite deposits on titanium were investigated by means of scanning electron microscopy (SEM) coupled with X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The results obtained have shown that hydroxyapatite coatings were produced in vitro under vitamins and collagen influence. - Highlights: ► Hydroxyapatite was grown on Ti using a modified supersaturated calcification solution (M-SCS). ► Vitamins (A and D3) and collagen in M-SCS have a significant effect on apatite precipitation. ► M-SCS stimulates a biomimetic apatite deposition with 0.5–1 μm thickness in a short time. ► Hydroxyapatite crystallites have thin plate morphologies and size below 1 μm

  10. Improved success of sparse matrix protein crystallization screening with heterogeneous nucleating agents.

    Directory of Open Access Journals (Sweden)

    Anil S Thakur

    2007-10-01

    Full Text Available Crystallization is a major bottleneck in the process of macromolecular structure determination by X-ray crystallography. Successful crystallization requires the formation of nuclei and their subsequent growth to crystals of suitable size. Crystal growth generally occurs spontaneously in a supersaturated solution as a result of homogenous nucleation. However, in a typical sparse matrix screening experiment, precipitant and protein concentration are not sampled extensively, and supersaturation conditions suitable for nucleation are often missed.We tested the effect of nine potential heterogenous nucleating agents on crystallization of ten test proteins in a sparse matrix screen. Several nucleating agents induced crystal formation under conditions where no crystallization occurred in the absence of the nucleating agent. Four nucleating agents: dried seaweed; horse hair; cellulose and hydroxyapatite, had a considerable overall positive effect on crystallization success. This effect was further enhanced when these nucleating agents were used in combination with each other.Our results suggest that the addition of heterogeneous nucleating agents increases the chances of crystal formation when using sparse matrix screens.

  11. Desolvation of L-histidine and {alpha}-ketoisocaproic acid complex from ethanolate crystals under humidified conditions and influence of crystallinity on its desolvation; Histidine Ketoisocapron san ensan ethanol wamono kessho no koshitsudo jokenka deno datsu ethanol to datsu ethanol sei ni oyobosu kesshosei no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, S.; Tanabe, T.; Maruyama, S.; Kishishita, A.; Nagashima, N. [Ajinomoto Co. Inc., Tokyo (Japan)

    1996-07-10

    Desolvation of L-histidine and a-ketoisocaproic acid complex from ethanolate crystals was investigated. The ethanolate crystals were obtained from ethanol aqueous solutions of above 60 wt% of ethanol. It was difficult to remove ethanol molecules from the crystals lay vacuum drying. However, it was found that ethanol molecules in the crystal lattice could be released under humidified conditions, for example, 313 K and 60% relative humidity, accompanied by transformation to non-solvated crystals. When the peak of 2{theta}=9.0{degree}(CuK{alpha} radiation) in powder X-ray diffraction pattern of the ethanolate crystals was weak, ethanol molecules (about 1wt.%) remained in the crystals at the end of transformations and then the residual ethanol decreased slowly. A controlled moderate cooling process, where the supersaturation is released slowly, is the key point to obtain ethanolate crystals having high `crystallinity` (defined as peak height of 2{theta}=9.0{degree}) which shows quick desolation rather than adding ethanol for a rapid increase of supersaturation in crystallization. 6 refs., 7 figs.

  12. Correlation of Salivary Statherin and Calcium Levels with Dental Calculus Formation: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Deepak Gowda Sadashivappa Pateel

    2017-01-01

    Full Text Available Background. Salivary constituents have a wide range of functions including oral calcium homeostasis. Salivary proteins such as statherin inhibit crystal growth of calcium phosphate in supersaturated solutions and interact with several oral bacteria to adsorb on hydroxyapatite. Concurrently, saliva, which is supersaturated with respect to calcium phosphates, is the driving force for plaque mineralization and formation of calculus. Thus, the aim of the present study was to estimate and correlate salivary statherin and calcium concentration to the dental calculus formation. Methods. A cross-sectional study was conducted to assess the relationship between salivary statherin, calcium, and dental calculus among 70 subjects, aged 20–55 years. Subjects were divided into 3 groups based on the calculus scores as interpreted by Calculus Index which was followed by collection of whole saliva using Super•SAL™. Salivary calcium levels were assessed by calorimetric method using Calcium Assay kit (Cayman Chemical, Michigan, USA and statherin levels by using ELISA Kit (Cusabio Biotech. Results. Statherin levels showed a weak negative correlation with the calcium levels and with calculus formation. The mean salivary statherin and calcium concentration were found to be 0.96 μg/ml and 3.87 mg/ml, respectively. Salivary statherin levels differed significantly among the three groups (p<0.05. Conclusions. Our preliminary data indicates that statherin could possibly play a role in the formation of dental calculus.

  13. Correlation of Salivary Statherin and Calcium Levels with Dental Calculus Formation: A Preliminary Study.

    Science.gov (United States)

    Pateel, Deepak Gowda Sadashivappa; Gunjal, Shilpa; Math, Swarna Y; Murugeshappa, Devarasa Giriyapura; Nair, Sreejith Muraleedharan

    2017-01-01

    Salivary constituents have a wide range of functions including oral calcium homeostasis. Salivary proteins such as statherin inhibit crystal growth of calcium phosphate in supersaturated solutions and interact with several oral bacteria to adsorb on hydroxyapatite. Concurrently, saliva, which is supersaturated with respect to calcium phosphates, is the driving force for plaque mineralization and formation of calculus. Thus, the aim of the present study was to estimate and correlate salivary statherin and calcium concentration to the dental calculus formation. A cross-sectional study was conducted to assess the relationship between salivary statherin, calcium, and dental calculus among 70 subjects, aged 20-55 years. Subjects were divided into 3 groups based on the calculus scores as interpreted by Calculus Index which was followed by collection of whole saliva using Super•SAL™. Salivary calcium levels were assessed by calorimetric method using Calcium Assay kit (Cayman Chemical, Michigan, USA) and statherin levels by using ELISA Kit (Cusabio Biotech). Statherin levels showed a weak negative correlation with the calcium levels and with calculus formation. The mean salivary statherin and calcium concentration were found to be 0.96  μ g/ml and 3.87 mg/ml, respectively. Salivary statherin levels differed significantly among the three groups ( p dental calculus.

  14. Gastrointestinal Behavior of Weakly Acidic BCS Class II Drugs in Man--Case Study of Diclofenac Potassium.

    Science.gov (United States)

    Van Den Abeele, Jens; Brouwers, Joachim; Mattheus, Ruben; Tack, Jan; Augustijns, Patrick

    2016-02-01

    This study aimed to investigate the gastrointestinal supersaturation and precipitation behavior of a weakly acidic Biopharmaceutics Classification System (BCS) Class II drug in healthy volunteers. For this purpose, a tablet containing 50 mg diclofenac potassium (Cataflam(®)) was predissolved in 240 mL of water and this solution was subsequently orally administered to five healthy volunteers under fasted and fed state conditions with or without concomitant use of a proton-pump inhibitor (PPI) (40 mg esomeprazole, Nexiam(®)). Subsequently, total diclofenac content and dissolved intraluminal drug concentrations as well as drug thermodynamic solubility were determined in gastrointestinal aspirates. In all volunteers, gastric supersaturation resulted in precipitation of diclofenac in the stomach. The extent of precipitation correlated well with gastric pH (r = - 0.78). pH dependency of precipitation was corroborated by the absence of precipitate in the stomach after coadministration of a meal and/or a PPI. Diclofenac was found to be fully dissolved in the duodenum in all test conditions. It can be concluded that substantial pH-dependent gastric precipitation of a weakly acidic BCS Class II drug administered as a solution occurs in humans. With regard to its implications for intestinal absorption, results suggest the instantaneous redissolution of gastric drug precipitate upon transfer to the duodenum. Copyright © 2016. Published by Elsevier Inc.

  15. Growth of vertically oriented InN nanorods from In-rich conditions on unintentionally patterned sapphire substrates

    Energy Technology Data Exchange (ETDEWEB)

    Terziyska, Penka T., E-mail: pterziy1@lakeheadu.ca [Semiconductor Research Laboratory, Department of Electrical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1 (Canada); Butcher, Kenneth Scott A. [Semiconductor Research Laboratory, Department of Electrical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1 (Canada); MEAglow Ltd., Box 398, 2400 Nipigon Road, Thunder Bay, ON P7C4W1 (Canada); Rafailov, Peter [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria); Alexandrov, Dimiter [Semiconductor Research Laboratory, Department of Electrical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1 (Canada); MEAglow Ltd., Box 398, 2400 Nipigon Road, Thunder Bay, ON P7C4W1 (Canada)

    2015-10-30

    Highlights: • Vertical InN nanorods are grown on selective areas of sapphire substrates. • In metal droplets nucleate on the sharp needle apexes on the selective areas. • The preferred orientation and the growth direction of the nanorods are (0 0 0 1). • The nanorods grow from the supersaturated indium melt on their tops. - Abstract: Vertically oriented InN nanorods were grown on selective areas of unintentionally patterned c-oriented sapphire substrates exhibiting sharp needles that preferentially accommodate In-metal liquid droplets, using Migration Enhanced Afterglow (MEAglow) growth technique. We point out that the formation of AlN needles on selected areas can be reproduced intentionally by over-nitridation of unmasked areas of sapphire substrates. The liquid indium droplets serve as a self-catalyst and the nanorods grow from the supersaturated indium melt in the droplet in a vertical direction. X-ray diffraction measurements indicate the presence of hexagonal InN only, with preferred orientation along (0 0 0 1) crystal axis, and very good crystalline quality. The room temperature Raman spectrum shows the presence of the A{sub 1}(TO), E{sub 2}(high) and A{sub 1}(LO) phonon modes of the hexagonal InN.

  16. Impurity effect of iron(III) on the growth of potassium sulfate crystal in aqueous solution

    Science.gov (United States)

    Kubota, Noriaki; Katagiri, Ken-ichi; Yokota, Masaaki; Sato, Akira; Yashiro, Hitoshi; Itai, Kazuyoshi

    1999-01-01

    Growth rates of the {1 1 0} faces of a potassium sulfate crystal were measured in a flow cell in the presence of traces of impurity Fe(III) (up to 2 ppm) over the range of pH=2.5-6.0. The growth rate was significantly suppressed by the impurity. The effect became stronger as the impurity concentration was increased and at pH5 it finally disappeared completely. The concentration and supersaturation effects on the impurity action were reasonably explained with a model proposed by Kubota and Mullin [J. Crystal Growth, 152 (1995) 203]. The surface coverage of the active sites by Fe(III) is estimated to increase linearly on increasing its concentration in solution in the range examined by growth experiments. The impurity effectiveness factor is confirmed to increase inversely proportional to the supersaturation as predicted by the model. Apart from the discussion based on the model, the pH effect on the impurity action is qualitatively explained by assuming that the first hydrolysis product of aqua Fe(III) complex compound, [Fe(H 2O) 5(OH)] 2+, is both growth suppression and adsorption active, but the second hydrolysis product, [Fe(H 2O) 4(OH) 2] +, is only adsorption active.

  17. Liesegang rings in tissue. How to distinguish Liesegang rings from the giant kidney worm, Dioctophyma renale.

    Science.gov (United States)

    Tuur, S M; Nelson, A M; Gibson, D W; Neafie, R C; Johnson, F B; Mostofi, F K; Connor, D H

    1987-08-01

    Liesegang rings (LRs) are periodic precipitation zones from supersaturated solutions in colloidal systems. They are formed by a process that involves an interplay of diffusion, nucleation, flocculation or precipitation, and supersaturation. Examples include LRs of calcium carbonate in oölitic limestone (in nature), LRs of silver chromate in gelatin (in vitro), and LRs of glycoprotein in pulmonary corpora amylacea (in vivo). Here we describe LRs in lesions from 29 patients--mostly lesions of the kidney, synovium, conjunctiva, and eyelid. The LRs formed in cysts, or in fibrotic, inflamed, or necrotic tissue. The LRs in this study varied greatly in shape and size, measuring 7-800 microns. Special stains and energy-dispersive radiographic analysis or scanning electron microscopy revealed that some LRs contained calcium, iron (hemosiderin), silicon, and sulfur. Some pathologists have mistaken LRs for eggs, larvae, or adults of the giant kidney worm, Dioctophyma renale. D. renale is a large blood-red nematode that infects a variety of fish-eating mammals, especially mink. Fourteen documented infections of humans have been recorded, usually with adult worms expelled from the urethra. The adult worms are probably the largest helminth to parasitize humans. Eggs of D. renale are constant in size (60-80 microns X 39-47 microns), contain an embryo, and have characteristic sculpturing of the shell. Liesegang rings should not be mistaken for eggs, larvae, or adults of D. renale, or for any other helminth.

  18. Calcium D-saccharate

    DEFF Research Database (Denmark)

    Garcia, André Castilho; Hedegaard, Martina Vavrusova; Skibsted, Leif Horsfelt

    2016-01-01

    Molar conductivity of saturated aqueous solutions of calcium d-saccharate, used as a stabilizer of beverages fortified with calcium d-gluconate, increases strongly upon dilution, indicating complex formation between calcium and d-saccharate ions, for which, at 25 °C, Kassoc = 1032 ± 80, ΔHassoc......° = -34 ± 6 kJ mol-1, and ΔSassoc° = -55 ± 9 J mol-1 K-1, were determined electrochemically. Calcium d-saccharate is sparingly soluble, with a solubility product, Ksp, of (6.17 ± 0.32) × 10-7 at 25 °C, only moderately increasing with the temperature: ΔHsol° = 48 ± 2 kJ mol-1, and ΔSassoc° = 42 ± 7 J mol-1...... K-1. Equilibria in supersaturated solutions of calcium d-saccharate seem only to adjust slowly, as seen from calcium activity measurements in calcium d-saccharate solutions made supersaturated by cooling. Solutions formed by isothermal dissolution of calcium d-gluconate in aqueous potassium d...

  19. Microstructural Evolution, Thermodynamics, and Kinetics of Mo-Tm2O3 Powder Mixtures during Ball Milling

    Directory of Open Access Journals (Sweden)

    Yong Luo

    2016-10-01

    Full Text Available The microstructural evolution, thermodynamics, and kinetics of Mo (21 wt % Tm2O3 powder mixtures during ball milling were investigated using X-ray diffraction and transmission electron microscopy. Ball milling induced Tm2O3 to be decomposed and then dissolved into Mo crystal. After 96 h of ball milling, Tm2O3 was dissolved completely and the supersaturated nanocrystalline solid solution of Mo (Tm, O was obtained. The Mo lattice parameter increased with increasing ball-milling time, opposite for the Mo grain size. The size and lattice parameter of Mo grains was about 8 nm and 0.31564 nm after 96 h of ball milling, respectively. Ball milling induced the elements of Mo, Tm, and O to be distributed uniformly in the ball-milled particles. Based on the semi-experimental theory of Miedema, a thermodynamic model was developed to calculate the driving force of phase evolution. There was no chemical driving force to form a crystal solid solution of Tm atoms in Mo crystal or an amorphous phase because the Gibbs free energy for both processes was higher than zero. For Mo (21 wt % Tm2O3, it was mechanical work, not the negative heat of mixing, which provided the driving force to form a supersaturated nanocrystalline Mo (Tm, O solid solution.

  20. Grain Orientation and Interface Character Distribution During Austenite Precipitation Phase in Duplex Stainless Steel

    Directory of Open Access Journals (Sweden)

    XU Ting

    2018-02-01

    Full Text Available The grain orientation and the interface character distribution were investigated for γ precipitation from the supersaturated α during aging at 1323K in duplex stainless steel by using EBSD technique and misorientation analysis based on Rodrigues-Frank (R-F space. The results show that sharp texture and the grain boundary character distribution featured by a high population of low angle grain boundary (LAB and a small number of twin boundaries (TBs are produced in the γ precipitated from cold-rolled supersaturated coarse α with pre-strain of ε=2. The precipitated γ grains approximately possess K-S, N-W and Bain orientation relationship with the α matrix equally. For the unstrained α matrix of the same orientation, nearly random texture and the grain boundary character predominated by TBs are introduced in the γ precipitation after aging. Most of γ have K-S relation with the α matrix. However, twining in γ leads to the deviation from typical K-S orientation relationship. And also, one-fourth of phase boundaries along γ grains containing twins are found to obey a new orientation relationship of 35°/〈110〉 with α matrix.

  1. Solubility effects in waste-glass/demineralized-water systems

    International Nuclear Information System (INIS)

    Fullam, H.T.

    1981-06-01

    Aqueous systems involving demineralized water and four glass compositions (including standins for actinides and fission products) at temperatures of up to 150 0 C were studied. Two methods were used to measure the solubility of glass components in demineralized water. One method involved approaching equilibrium from subsaturation, while the second method involved approaching equilibrium from supersaturation. The aqueous solutions were analyzed by induction-coupled plasma spectrometry (ICP). Uranium was determined using a Scintrex U-A3 uranium analyzer and zinc and cesium were determined by atomic absorption. The system that results when a waste glass is contacted with demineralized water is a complex one. The two methods used to determine the solubility limits gave very different results, with the supersaturation method yielding much higher solution concentrations than the subsaturation method for most of the elements present in the waste glasses. The results show that it is impossible to assign solubility limits to the various glass components without thoroughly describing the glass-water systems. This includes not only defining the glass type and solution temperature, but also the glass surface area-to-water volume ratio (S/V) of the system and the complete thermal history of the system. 21 figures, 22 tables

  2. Dynamic air layer on textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev

    2013-09-03

    We provide an experimental demonstration that a novel macroscopic, dynamic continuous air layer or plastron can be sustained indefinitely on textured superhydrophobic surfaces in air-supersaturated water by a natural gas influx mechanism. This type of plastron is an intermediate state between Leidenfrost vapor layers on superheated surfaces and the equilibrium Cassie-Baxter wetting state on textured superhydrophobic surfaces. We show that such a plastron can be sustained on the surface of a centimeter-sized superhydrophobic sphere immersed in heated water and variations of its dynamic behavior with air saturation of the water can be regulated by rapid changes of the water temperature. The simple experimental setup allows for quantification of the air flux into the plastron and identification of the air transport model of the plastron growth. Both the observed growth dynamics of such plastrons and millimeter-sized air bubbles seeded on the hydrophilic surface under identical air-supersaturated solution conditions are consistent with the predictions of a well-mixed gas transport model. © 2013 American Chemical Society.

  3. Aspects of microstructure evolution under cascade damage conditions

    International Nuclear Information System (INIS)

    Singh, B.N.; Trinkaus, H.; Barashev, A.V.

    1997-01-01

    The conventional theoretical models describing the damage accumulation, particularly void swelling, under cascade damage conditions do not include treatments of important features such as intracascade clustering of self-interstitial atoms (SIAs) and one-dimensional glide of SIA clusters produced in the cascades. Recently, it has been suggested that the problem can be treated in terms of 'production bias' and one-dimensional glide of small SIA clusters. In the earlier treatments a 'mean size approximation' was used for the defect clusters and cavities evolving during irradiation. In the present work, we use the 'size distribution function' to determine the dose dependence of sink strengths, vacancy supersaturation and void swelling as a function of dislocation density and grain size within the framework of production bias model and glide of small SIA clusters. In this work, the role of the sessile-glissile loop transformation (due to vacancy supersaturation) on the damage accumulation behaviour is included. The calculated results on void swelling are compared with the experimental results as well as the results of the earlier calculations using the 'mean size approximation'. The calculated results agree very well with the experimental results. (orig.)

  4. Phase Transformations in a Uranium-Zirconium Alloy containing 2 weight per cent Zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Lagerberg, G

    1961-04-15

    The phase transformations in a uranium-zirconium alloy containing 2 weight percent zirconium have been examined metallographically after heat treatments involving isothermal transformation of y and cooling from the -y-range at different rates. Transformations on heating and cooling have also been studied in uranium-zirconium alloys with 0.5, 2 and 5 weight per cent zirconium by means of differential thermal analysis. The results are compatible with the phase diagram given by Howlett and Knapton. On quenching from the {gamma}-range the {gamma} phase transforms martensitically to supersaturated a the M{sub S} temperature being about 490 C. During isothermal transformation of {gamma} in the temperature range 735 to 700 C {beta}-phase is precipitated as Widmanstaetten plates and the equilibrium structure consists of {beta} and {gamma}{sub 1}. Below 700 C {gamma} transforms completely to Widmanstaetten plates which consist of {beta} above 660 C and of a at lower temperatures. Secondary phases, {gamma}{sub 2} above 610 C and {delta} below this temperature, are precipitated from the initially supersaturated Widmanstaetten plates during the isothermal treatments. At and slightly below 700 C the cooperative growth of |3 and {gamma}{sub 2} is observed. The results of isothermal transformation are summarized in a TTTdiagram.

  5. A few proofs for nonexistence of the metastable states

    International Nuclear Information System (INIS)

    Blazjevski, Atanas

    2007-01-01

    This paper is the bigger part of one until now unpublished author's work, whose title is 'A few proofs for nonexistence of the metastable states'. Because of a big volume of the work, the problems of supersaturated (metastable) steam which appears at the following of slightly, superheated, saturated or wet steam in the convergent and Laval nozzles will be discussed in the main. This steam is mentioned in the literature as one between of the strongest proofs for existence of metastable states in the substances. In this work the steam is not one -phase gaseous metastable steam, as it was thought until now, but yat it is nonequilibrium wet steam in which during the expanding process in the nozzles extreme small particles condensate, consisted of two, three or only few agglomerated molecules are formed which stay in heat, mechanical and internal nonequilibrium with the rest of the expanding gaseous phase of the steam. It means, that this steam, which is called a supersaturated or metastable steam, in fact does not exist in reality because it is nothing else but only nonequilibrium wet steam consisted of tho phases: the expanding gaseous phase of the steam in the nozzle and the mentioned small and nonequilibrium particles condensate which are formed there...

  6. Interaction of Microphysical Aerosol Processes with Hydrodynamics Mixing

    KAUST Repository

    Alshaarawi, Amjad

    2015-12-15

    This work is concerned with the interaction between condensing aerosol dynamics and hydrodynamic mixing within ow configurations in which aerosol particles form (nucleate) from a supersaturated vapor and supersaturation is induced by the mixing of two streams (a saturated stream and a cold one). Two canonical hydrodynamic configurations are proposed for the investigation. The First is the steady one-dimensional opposed-ow configuration. The setup consists of the two (saturated and cold) streams owing from opposite nozzles. A mixing layer is established across a stagnation plane in the center where nucleation and other aerosol dynamics are triggered. The second is homogeneous isotropic turbulence in a three-dimensional periodic domain. Patches of a hot saturated gas mix with patches of a cold one. A mixing layer forms across the growing interface where the aerosol dynamics of interest occur. In both configurations, a unique analogy is observed. The results reveal a complex response to variations in the mixing rates. Depending on the mixing rate, the response of the number density falls into one of two regimes. For fast mixing rates, the maximum reached number density of the condensing droplets increases with the hydrodynamic time. We refer to this as the nucleation regime. On the contrary, for low mixing rates, the maximum reached number density decreases with the hydrodynamic time. We refer to this as the consumption regime. It is shown that vapor scavenging by the aerosol phase is key to explaining the transition between these two regimes.

  7. Estimation of the growth kinetics for the cooling crystallisation of paracetamol and ethanol solutions

    Science.gov (United States)

    Mitchell, Niall A.; Ó'Ciardhá, Clifford T.; Frawley, Patrick J.

    2011-08-01

    This work details the estimation of the growth kinetics of paracetamol in ethanol solutions for cooling crystallisation processes, by means of isothermal seeded batch experiments. The growth kinetics of paracetamol crystals were evaluated in isolation, with the growth rate assumed to be size independent. Prior knowledge of the Metastable Zone Width (MSZW) was required, so that supersaturation ratios of 1.7-1.1 could be induced in solution without the occurrence of nucleation. The technique involved the utilisation of two in-situ Process Analytical Techniques (PATs), with a Focused Beam Reflectance Measurement (FBRM ®) utilised to ensure that negligible nucleation occurred and an Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) probe employed for online monitoring of solute concentration. Initial Particle Size Distributions (PSDs) were used in conjunction with desupersaturation profiles to determine the growth rate as a function of temperature and supersaturation. Furthermore, the effects of seed loading and size on the crystal growth rate were investigated. A numerical model, incorporating the population balance equation and the method of moments, was utilised to describe the crystal growth process. Experimental parameters were compared to the model simulation, with the accuracy of the model validated by means of the final product PSDs and solute concentration.

  8. Preparation of La{sub 0.75}Sr{sub 0.25}Cr{sub 0.5}Mn{sub 0.5}O{sub 3-{delta}} fine powders by carbonate coprecipitation for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Sang Bu; Cho, Pyeong-Seok; Cho, Yoon Ho; Lee, Dokyol; Lee, Jong-Heun [Department of Materials Science and Engineering, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713 (Korea)

    2010-01-01

    A range of La{sub 0.75}Sr{sub 0.25}Cr{sub 0.5}Mn{sub 0.5}O{sub 3-{delta}} (LSCM) powders is prepared by the carbonate coprecipitation method for use as anodes in solid oxide fuel cells. The supersaturation ratio (R = [(NH{sub 4}){sub 2}CO{sub 3}]/([La{sup 3+}] + [Sr{sup 2+}] + [Cr{sup 3+}] + [Mn{sup 2+}])) during the coprecipitation determines the relative compositions of La, Sr, Cr, and Mn. The composition of the precursor approaches the stoichiometric one at the supersaturation range of 4 {<=} R {<=} 12.5, whereas Sr and Mn components are deficient at R < 4 and excessive at R = 25. The fine and phase-pure LSCM powders are prepared by heat treatment at very low temperature (1000 C) at R = 7.5 and 12.5. By contrast, the solid-state reaction requires a higher heat-treatment temperature (1400 C). The catalytic activity of the LSCM electrodes is enhanced by using carbonate-derived powders to manipulate the electrode microstructures. (author)

  9. Bubble growth as a means to measure dissolved nitrogen concentration in aerated water

    Science.gov (United States)

    Ando, Keita; Yamashita, Tatsuya

    2017-11-01

    Controlling the amount of dissolved gases in water is important, for example, to food processing; it is essential to quantitatively evaluate dissolved gas concentration. The concentration of dissolved oxygen (DO) can be measured by commercial DO meters, but that of dissolved nitrogen (DN) cannot be obtained easily. Here, we propose a means to measure DN concentration based on Epstein-Plesset-type analysis of bubble growth under dissolved gas supersaturation. DO supersaturation in water is produced by oxygen microbubble aeration. The diffusion-driven growth of bubbles nucleated at glass surfaces in contact with the aerated water is first observed. The observed growth is then compared to the extended Epstein-Plesset theory that considers Fick's mass transfer of both DO and DN across bubble interfaces; in this comparison, the unknown DN concentration is treated as a fitting parameter. Comparisons between the experiment and the theory suggest, as expected, that DN can be effectively purged by oxygen microbubble aeration. This study was supported in part by the Mizuho Foundation for the Promotion of Science and by a MEXT Grant-in-Aid for the Program for Leading Graduate Schools.

  10. Simulation of aerosol nucleation and growth in a turbulent mixing layer

    KAUST Repository

    Zhou, Kun

    2014-06-25

    A large-scale simulation of aerosol nucleation and growth in a turbulent mixing layer is performed and analyzed with the aim of elucidating the key processes involved. A cold gaseous stream is mixed with a hot stream of vapor, nanometer sized droplets nucleate as the vapor becomes supersaturated, and subsequently grow as more vapor condenses on their surface. All length and time scales of fluid motion and mixing are resolved and the quadrature method of moments is used to describe the dynamics of the condensing, non-inertial droplets. The results show that a region of high nucleation rate is located near the cold, dry stream, while particles undergo intense growth via condensation on the hot, humid vapor side. Supersaturation and residence times are such that number densities are low and neither coagulation nor vapor scavenging due to condensation are significant. The difference in Schmidt numbers of aerosol particles (approximated as infinity) and temperature and vapor (near unity) causes a drift of the aerosol particles in scalar space and contributes to a large scatter in the conditional statistics of aerosol quantities. The spatial distribution of the aerosol reveals high volume fraction on the hot side of the mixing layer. This distribution is due to drift against the mean and is related to turbulent mixing, which displaces particles from the nucleation region (cold side) into the growth region (hot side). Such a mechanism is absent in laminar flows and is a distinct feature of turbulent condensing aerosols.

  11. Solid solution in Al-4.5 wt% Cu produced by mechanical alloying

    International Nuclear Information System (INIS)

    Fogagnolo, J.B.; Amador, D.; Ruiz-Navas, E.M.; Torralba, J.M.

    2006-01-01

    Mechanical alloying has been used to produce oxide dispersion strengthened alloys, intermetallic compounds, aluminium alloys and to obtain nanostructured and amorphous materials, as well as to extend the solid solution limit. In this work, Al and Cu elemental powders were subjected to high-energy milling to produce Al-4.5 wt% Cu powder alloy. The powders obtained were characterized by scanning electron microscopy, X-ray diffraction (XRD) and differential scanning calorimetry (DSC), aiming to explore if the copper is present in solid solution or as small particles after high-energy milling. Related to the formation of a supersaturated solid solution, the results of scanning electron microscopy and X-ray diffraction are non-conclusive: the copper could be dispersed with a very small size, undetectable to both techniques. The Al 2 Cu precipitation at temperatures between 160 and 230 deg. C, verified by DSC and XRD analyses, substantiated that mechanical alloying had produced a supersaturated solid solution of copper in aluminium. The crystallite size as a function of milling time and annealing temperature was also determined by X-ray techniques

  12. Hydroxyapatite formation on graphene oxide modified with amino acids: arginine versus glutamic acid.

    Science.gov (United States)

    Tavafoghi, M; Brodusch, N; Gauvin, R; Cerruti, M

    2016-01-01

    Hydroxyapatite (HA, Ca5(PO4)3OH) is the main inorganic component of hard tissues, such as bone and dentine. HA nucleation involves a set of negatively charged phosphorylated proteins known as non-collagenous proteins (NCPs). These proteins attract Ca(2+) and PO4(3-) ions and increase the local supersaturation to a level required for HA precipitation. Polar and charged amino acids (AAs) are highly expressed in NCPs, and seem to be responsible for the mineralizing effect of NCPs; however, the individual effect of these AAs on HA mineralization is still unclear. In this work, we investigate the effect of a negatively charged (Glu) and positively charged (Arg) AA bound to carboxylated graphene oxide (CGO) on HA mineralization in simulated body fluids (SBF). Our results show that Arg induces HA precipitation faster and in larger amounts than Glu. We attribute this to the higher stability of the complexes formed between Arg and Ca(2+) and PO4(3-) ions, and also to the fact that Arg exposes both carboxyl and amino groups on the surface. These can electrostatically attract both Ca(2+) and PO4(3-) ions, thus increasing local supersaturation more than Glu, which exposes carboxyl groups only. © 2016 The Author(s).

  13. Effect of sulfide concentration on the location of the metal precipitates in inversed fluidized bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Villa-Gomez, D., E-mail: d.villagomez@unesco-ihe.org [Core Pollution Prevention and Control, UNESCO-IHE, Institute for Water Education, PO Box 3015, 2601 DA Delft (Netherlands); Ababneh, H.; Papirio, S.; Rousseau, D.P.L.; Lens, P.N.L. [Core Pollution Prevention and Control, UNESCO-IHE, Institute for Water Education, PO Box 3015, 2601 DA Delft (Netherlands)

    2011-08-15

    Highlights: {yields} Sulfide concentration governs the location of metal precipitates in sulfate reducing bioreactors. {yields} High dissolved sulfide induces metal precipitation in the bulk liquid as fines. {yields} Low dissolved sulfide concentrations yield local supersaturation and thus metal precipitation in the biofilm. -- Abstract: The effect of the sulfide concentration on the location of the metal precipitates within sulfate-reducing inversed fluidized bed (IFB) reactors was evaluated. Two mesophilic IFB reactors were operated for over 100 days at the same operational conditions, but with different chemical oxygen demand (COD) to SO{sub 4}{sup 2-} ratio (5 and 1, respectively). After a start up phase, 10 mg/L of Cu, Pb, Cd and Zn each were added to the influent. The sulfide concentration in one IFB reactor reached 648 mg/L, while it reached only 59 mg/L in the other one. In the high sulfide IFB reactor, the precipitated metals were mainly located in the bulk liquid (as fines), whereas in the low sulfide IFB reactor the metal preciptiates were mainly present in the biofilm. The latter can be explained by local supersaturation due to sulfide production in the biofilm. This paper demonstrates that the sulfide concentration needs to be controlled in sulfate reducing IFB reactors to steer the location of the metal precipitates for recovery.

  14. Method of mechanochemical synthesis for the production of nanocrystalline Nb-Al alloys

    International Nuclear Information System (INIS)

    Portnoj, V.K.; Tret'yakov, K.V.; Logacheva, A.I.; Logunov, A.V.; Razumovskij, I.M.

    2004-01-01

    Using X-ray diffraction and DS analyses the process of solid phase synthesis on cooperative comminution of components (Nb, Al, Cr) in a planetary ball mill is investigated. Powder nanocrystalline Nb 3 Al base alloys of various compositions with simultaneous introduction of chromium are synthesized. High power milling results in block size of ∼ 20 nm. It is shown that final chromium dissolution and partial decomposition of Nb(Al) supersaturated solid solutions proceed after heating up to 1100 deg C only. With the help of doping with niobium by the method of mechanical alloying, a two-phase alloy Nb 3 Al + Nb 2 Al having been produced by arc melting, is corrected by composition and transferred to the two-phase region of Nb 3 Al + Nb(Al). It is revealed that the process of niobium aluminide phase formation during mechanochemical synthesis and the process of mechanical activation of Nb-Al system intermetallics enriched with niobium always proceed through formation of supersaturated solid solutions. The mechanism of the process is probably associated with stacking faults formation due to deformation [ru

  15. Dissolved atmospheric gas in xylem sap measured with membrane inlet mass spectrometry.

    Science.gov (United States)

    Schenk, H Jochen; Espino, Susana; Visser, Ate; Esser, Bradley K

    2016-04-01

    A new method is described for measuring dissolved gas concentrations in small volumes of xylem sap using membrane inlet mass spectrometry. The technique can be used to determine concentrations of atmospheric gases, such as argon, as reported here, or for any dissolved gases and their isotopes for a variety of applications, such as rapid detection of trace gases from groundwater only hours after they were taken up by trees and rooting depth estimation. Atmospheric gas content in xylem sap directly affects the conditions and mechanisms that allow for gas removal from xylem embolisms, because gas can dissolve into saturated or supersaturated sap only under gas pressure that is above atmospheric pressure. The method was tested for red trumpet vine, Distictis buccinatoria (Bignoniaceae), by measuring atmospheric gas concentrations in sap collected at times of minimum and maximum daily temperature and during temperature increase and decline. Mean argon concentration in xylem sap did not differ significantly from saturation levels for the temperature and pressure conditions at any time of collection, but more than 40% of all samples were supersaturated, especially during the warm parts of day. There was no significant diurnal pattern, due to high variability between samples. © 2015 John Wiley & Sons Ltd.

  16. Large scale synthesis of α-Si3N4 nanowires through a kinetically favored chemical vapour deposition process

    Science.gov (United States)

    Liu, Haitao; Huang, Zhaohui; Zhang, Xiaoguang; Fang, Minghao; Liu, Yan-gai; Wu, Xiaowen; Min, Xin

    2018-01-01

    Understanding the kinetic barrier and driving force for crystal nucleation and growth is decisive for the synthesis of nanowires with controllable yield and morphology. In this research, we developed an effective reaction system to synthesize very large scale α-Si3N4 nanowires (hundreds of milligrams) and carried out a comparative study to characterize the kinetic influence of gas precursor supersaturation and liquid metal catalyst. The phase composition, morphology, microstructure and photoluminescence properties of the as-synthesized products were characterized by X-ray diffraction, fourier-transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy and room temperature photoluminescence measurement. The yield of the products not only relates to the reaction temperature (thermodynamic condition) but also to the distribution of gas precursors (kinetic condition). As revealed in this research, by controlling the gas diffusion process, the yield of the nanowire products could be greatly improved. The experimental results indicate that the supersaturation is the dominant factor in the as-designed system rather than the catalyst. With excellent non-flammability and high thermal stability, the large scale α-Si3N4 products would have potential applications to the improvement of strength of high temperature ceramic composites. The photoluminescence spectrum of the α-Si3N4 shows a blue shift which could be valued for future applications in blue-green emitting devices. There is no doubt that the large scale products are the base of these applications.

  17. Investigation on the effect of collagen and vitamins on biomimetic hydroxyapatite coating formation on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ciobanu, Gabriela, E-mail: gciobanu03@yahoo.co.uk [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Prof. dr. docent Dimitrie Mangeron Rd., no. 63, zip: 700050, Iasi (Romania); Ciobanu, Octavian [“Grigore T. Popa” University of Medicine and Pharmacy, Faculty of Medical Bioengineering, Universitatii Str., no. 16, zip: 700115, Iasi (Romania)

    2013-04-01

    This study uses an in vitro experimental approach to investigate the roles of collagen and vitamins in regulating the deposition of hydroxyapatite layer on the pure titanium surface. Titanium implants were coated with a hydroxyapatite layer under biomimetic conditions by using a supersaturated calcification solution (SCS), modified by adding vitamins A and D{sub 3}, and collagen. The hydroxyapatite deposits on titanium were investigated by means of scanning electron microscopy (SEM) coupled with X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The results obtained have shown that hydroxyapatite coatings were produced in vitro under vitamins and collagen influence. - Highlights: ► Hydroxyapatite was grown on Ti using a modified supersaturated calcification solution (M-SCS). ► Vitamins (A and D3) and collagen in M-SCS have a significant effect on apatite precipitation. ► M-SCS stimulates a biomimetic apatite deposition with 0.5–1 μm thickness in a short time. ► Hydroxyapatite crystallites have thin plate morphologies and size below 1 μm.

  18. Ion Transport and Precipitation Kinetics as Key Aspects of Stress Generation on Pore Walls Induced by Salt Crystallization

    Science.gov (United States)

    Naillon, A.; Joseph, P.; Prat, M.

    2018-01-01

    The stress generation on pore walls due to the growth of a sodium chloride crystal in a confined aqueous solution is studied from evaporation experiments in microfluidic channels in conjunction with numerical computations of crystal growth. The study indicates that the stress buildup on the pore walls is a highly transient process taking place over a very short period of time (in less than 1 s in our experiments). The analysis makes clear that what matters for the stress generation is not the maximum supersaturation at the onset of the crystal growth but the supersaturation at the interface between the solution and the crystal when the latter is about to be confined between the pore walls. The stress generation is summarized in a simple stress diagram involving the pore aspect ratio and the Damkhöler number characterizing the competition between the precipitation reaction kinetics and the ion transport towards the growing crystal. This opens up the route for a better understanding of the damage of porous materials induced by salt crystallization, an important issue in Earth sciences, reservoir engineering, and civil engineering.

  19. Diameter Dependence of Planar Defects in InP Nanowires.

    Science.gov (United States)

    Wang, Fengyun; Wang, Chao; Wang, Yiqian; Zhang, Minghuan; Han, Zhenlian; Yip, SenPo; Shen, Lifan; Han, Ning; Pun, Edwin Y B; Ho, Johnny C

    2016-09-12

    In this work, extensive characterization and complementary theoretical analysis have been carried out on Au-catalyzed InP nanowires in order to understand the planar defect formation as a function of nanowire diameter. From the detailed transmission electron microscopic measurements, the density of stacking faults and twin defects are found to monotonically decrease as the nanowire diameter is decreased to 10 nm, and the chemical analysis clearly indicates the drastic impact of In catalytic supersaturation in Au nanoparticles on the minimized planar defect formation in miniaturized nanowires. Specifically, during the chemical vapor deposition of InP nanowires, a significant amount of planar defects is created when the catalyst seed sizes are increased with the lower degree of In supersaturation as dictated by the Gibbs-Thomson effect, and an insufficient In diffusion (or Au-rich enhancement) would lead to a reduced and non-uniform In precipitation at the NW growing interface. The results presented here provide an insight into the fabrication of "bottom-up" InP NWs with minimized defect concentration which are suitable for various device applications.

  20. Source limitation of carbon gas emissions in high-elevation mountain streams and lakes

    Science.gov (United States)

    Crawford, John T.; Dornblaser, Mark M.; Stanley, Emily H.; Clow, David W.; Striegl, Robert G.

    2015-01-01

    Inland waters are an important component of the global carbon cycle through transport, storage, and direct emissions of CO2 and CH4 to the atmosphere. Despite predictions of high physical gas exchange rates due to turbulent flows and ubiquitous supersaturation of CO2—and perhaps also CH4—patterns of gas emissions are essentially undocumented for high mountain ecosystems. Much like other headwater networks around the globe, we found that high-elevation streams in Rocky Mountain National Park, USA, were supersaturated with CO2 during the growing season and were net sources to the atmosphere. CO2concentrations in lakes, on the other hand, tended to be less than atmospheric equilibrium during the open water season. CO2 and CH4 emissions from the aquatic conduit were relatively small compared to many parts of the globe. Irrespective of the physical template for high gas exchange (high k), we found evidence of CO2 source limitation to mountain streams during the growing season, which limits overall CO2emissions. Our results suggest a reduced importance of aquatic ecosystems for carbon cycling in high-elevation landscapes having limited soil development and high CO2 consumption via mineral weathering.

  1. In situ synchrotron X-ray diffraction study of scale formation during CO{sub 2} corrosion of carbon steel in sodium and magnesium chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ingham, B. [Industrial Research Limited, P.O. Box 31-310, Lower Hutt 5045 (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington 6140 (New Zealand); Ko, M., E-mail: m.ko@questintegrity.com [MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington 6140 (New Zealand); Quest Integrity Group, P.O. Box 38-096, Lower Hutt 5045 (New Zealand); School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1022 (New Zealand); Laycock, N. [Quest Integrity Group, P.O. Box 38-096, Lower Hutt 5045 (New Zealand); Burnell, J. [Industrial Research Limited, P.O. Box 31-310, Lower Hutt 5045 (New Zealand); Kappen, P. [Centre for Materials and Surface Science, Department of Physics, La Trobe University, Bundoora, VIC 3086 (Australia); Kimpton, J.A. [Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168 (Australia); Williams, D.E. [MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington 6140 (New Zealand); School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1022 (New Zealand)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer We studied the scale formation processes of carbon steel in CO{sub 2} saturated brine at 80 Degree-Sign C. Black-Right-Pointing-Pointer Protective scales were formed in all tests. Black-Right-Pointing-Pointer Only FeCO{sub 3} formed in saturated brine while Fe(OH){sub 2}CO{sub 3} detected with presence of MgCl{sub 2}. Black-Right-Pointing-Pointer MgCl{sub 2} accelerates the onset of siderite precipitation. - Abstract: In situ synchrotron X-ray diffraction was used to follow the formation of corrosion products on carbon steel in CO{sub 2} saturated NaCl solution and mixed NaCl/magnesium chloride (MgCl{sub 2}) at 80 Degree-Sign C. Siderite (FeCO{sub 3}) was the only phase formed in NaCl solution, while Fe(OH){sub 2}CO{sub 3} was also detected when MgCl{sub 2} was present. The proposed model is that siderite precipitation, occurring once the critical supersaturation was exceeded within a defined boundary layer, caused local acidification which accelerated the anodic dissolution of iron. The current fell once a complete surface scale was formed. It is suggested that MgCl{sub 2} addition decreased the required critical supersaturation for precipitation.

  2. Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus

    Energy Technology Data Exchange (ETDEWEB)

    Saw, Jimmy H [Los Alamos National Laboratory; Mountain, Bruce W [NEW ZEALAND; Feng, Lu [NANKAI UNIV; Omelchenko, Marina V [NCBI/NLM/NIH; Hou, Shaobin [UNIV OF HAWAII; Saito, Jennifer A [UNIV OF HAWAII; Stott, Matthew B [NEW ZEALAND; Li, Dan [NANKAI UNIV; Zhao, Guang [NANKAI UNIV; Wu, Junli [NANKAI UNIV; Galperin, Michael Y [NCBI/NLM/NIH; Koonin, Eugene V [NCBI/NLM/NIH; Makarova, Kira S [NCBI/NLM/NIH; Wolf, Yuri I [NCBI/NLM/NIH; Rigden, Daniel J [UNIV OF LIVERPOOL; Dunfield, Peter F [UNIV OF CALGARY; Wang, Lei [NANKAI UNIV; Alam, Maqsudul [UNIV OF HAWAII

    2008-01-01

    Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.

  3. Transmission X-Ray Microscopy of the Galvanostatic Growth of Lead Sulfate on Lead: Impact of Lignosulfonate

    International Nuclear Information System (INIS)

    Knehr, K.W.; Eng, Christopher; Wang, Jun; West, Alan C.

    2015-01-01

    The galvanostatic growth of PbSO 4 on Pb in H 2 SO 4 was studied using scanning electron microscopy and in situ transmission X-ray microscopy (TXM). Images from the TXM are used to investigate the effects of sodium lignosulfonate on the PbSO 4 formation and the initial growth of the PbSO 4 crystals. Sodium lignosulfonate is shown to retard, on average, the growth of the PbSO 4 crystals, yielding a film with smaller crystals and higher crystal densities. In addition, results from experiments with and without sodium lignosulfonate indicate an increase in the nucleation rate of the PbSO 4 crystals when the oxidation current is applied, which was attributed to an increase in the supersaturation of the electrolyte. Furthermore, an analysis of the growth rates of individual, large crystals showed an initial rapid growth which declined as the PbSO 4 surface coverage increased. It was concluded that the increase in PbSO 4 provides additional sites for precipitation and reduces the precipitation rate on the existing crystals. Finally, the potential-time transient at the beginning of oxidation is suggested to result from the relaxation of a supersaturated solution and the development of a PbSO 4 film with increasing resistance

  4. Effects of quench rate and natural ageing on the age hardening behaviour of aluminium alloy AA6060

    International Nuclear Information System (INIS)

    Strobel, Katharina; Lay, Matthew D.H.; Easton, Mark A.; Sweet, Lisa; Zhu, Suming; Parson, Nick C.; Hill, Anita J.

    2016-01-01

    Quench sensitivity in Al–Mg–Si alloys has been largely attributed to the solute loss at the heterogeneous nucleation sites, primarily dispersoids, during slow cooling after extrusion. As such, the number density of dispersoids, the solute type and concentration are considered to be the key variables for the quench sensitivity. In this study, quench sensitivity and the influence of natural ageing in a lean Al–Mg–Si alloy, AA6060, which contains few dispersoids, have been investigated by hardness measurement, thermal analysis, transmission electron microscopy (TEM) and positron annihilation lifetime spectroscopy (PALS). It is shown that the quench sensitivity in this alloy is associated with the degree of supersaturation of vacancies after cooling. Due to vacancy annihilation and clustering during natural ageing, the quench sensitivity is more pronounced after a short natural ageing time (30 min) compared to a longer natural ageing time (24 h). Therefore, prolonged natural ageing not only leads to an increase in hardness, but can also have a positive effect on the quench sensitivity of lean Al–Mg–Si alloys. - Highlights: • Significant quench sensitivity observed in AA6060 alloy after 30 min natural ageing • Prolonged natural ageing increased hardness and reduced QS. • Low dispersoid density leads to insignificant QS from non-hardening precipitates. • Vacancy supersaturation identified as a contributor to QS.

  5. Crystal size control of sulfathiazole using high pressure carbon dioxide

    Science.gov (United States)

    Kitamura, M.; Yamamoto, M.; Yoshinaga, Y.; Masuoka, H.

    1997-07-01

    The effect of the pressurization method of carbon dioxide on the crystallization behavior and crystal size of sulphathiazole (SUT) was investigated. In the "stepwise pressurization" method exceptionally large pillar-like crystals of 2-6 mm were obtained as mainly a scaling on the wall of the crystallizer. In the "rapid pressurization" method, crystals with a size one third to half of that obtained in the stepwise method precipitated, indicating the accelerated nucleation rate by the rapid increase of the supersaturation degree with a vigorous bubbling. With the new method of "two-step pressurization", in the first step the nucleation is accelerated with a much larger pressure instantly created, and in the second step the growth rate is retarded with the lower pressure. By this method much more fine crystals (from a few tens to several hundred micrometers) were produced and the scaling was suppressed. In this method a large supersaturation degree at an interface between the gas (bubble) and liquid phase under a vigorous bubbling may play an important role in accelerating the nucleation. The average size of the crystals tended to become smaller with increase of the first pressure and the expansion ratio at a decompression point, and it tended to get larger with increase of the second pressure. These results show that the GAS method is very useful for the control of crystal size over a wide range.

  6. Interdependent effect of chemical composition and thermal history on artificial aging of AA6061

    International Nuclear Information System (INIS)

    Pogatscher, S.; Antrekowitsch, H.; Uggowitzer, P.J.

    2012-01-01

    In this study, the interdependent effect of chemical composition and thermal history on artificial aging was investigated for the aluminum alloy AA6061. Based on thermodynamic calculations, including Al, Fe, Cr, Zn, Ti, Mg, Si and Cu, model alloys exhibiting a maximum variation of the reachable solute super-saturation of elements relevant for precipitation hardening within the compositional limits of AA6061 were produced. The artificial aging behavior of these alloys at 175 °C was studied by tensile testing for two thermal histories, including very short- and long-term room temperature storage after quenching. Precipitation during artificial aging was investigated by an analysis of yield strength data. As generally expected, precipitation kinetics was found to depend strongly on the solute super-saturation in the case of very short room temperature storage. For artificial aging after long-term room temperature storage the kinetics showed almost no dependence on the chemical composition. This seems to be an exception from simple precipitation kinetics and can be explained based on the complex role of quenched-in vacancies in artificial aging of AA6061.

  7. Effects of quench rate and natural ageing on the age hardening behaviour of aluminium alloy AA6060

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Katharina, E-mail: katharina.strobel@aol.com [CAST Co-operative Research Centre, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Lay, Matthew D.H., E-mail: mlay@fbrice.com [CSIRO Manufacturing Flagship, Clayton, Victoria 3169 (Australia); Easton, Mark A., E-mail: mark.easton@rmit.edu.au [CAST Co-operative Research Centre, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Sweet, Lisa, E-mail: lisa.sweet@monash.edu [CAST Co-operative Research Centre, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Zhu, Suming, E-mail: suming.zhu@rmit.edu.au [CAST Co-operative Research Centre, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Parson, Nick C., E-mail: nick.parson@riotinto.com [Rio Tinto Alcan, Arvida Research and Development Centre, 1955, Mellon Blvd, Jonquière, Québec G7S 4K8 (Canada); Hill, Anita J., E-mail: anita.hill@csiro.au [CSIRO Manufacturing Flagship, Clayton, Victoria 3169 (Australia)

    2016-01-15

    Quench sensitivity in Al–Mg–Si alloys has been largely attributed to the solute loss at the heterogeneous nucleation sites, primarily dispersoids, during slow cooling after extrusion. As such, the number density of dispersoids, the solute type and concentration are considered to be the key variables for the quench sensitivity. In this study, quench sensitivity and the influence of natural ageing in a lean Al–Mg–Si alloy, AA6060, which contains few dispersoids, have been investigated by hardness measurement, thermal analysis, transmission electron microscopy (TEM) and positron annihilation lifetime spectroscopy (PALS). It is shown that the quench sensitivity in this alloy is associated with the degree of supersaturation of vacancies after cooling. Due to vacancy annihilation and clustering during natural ageing, the quench sensitivity is more pronounced after a short natural ageing time (30 min) compared to a longer natural ageing time (24 h). Therefore, prolonged natural ageing not only leads to an increase in hardness, but can also have a positive effect on the quench sensitivity of lean Al–Mg–Si alloys. - Highlights: • Significant quench sensitivity observed in AA6060 alloy after 30 min natural ageing • Prolonged natural ageing increased hardness and reduced QS. • Low dispersoid density leads to insignificant QS from non-hardening precipitates. • Vacancy supersaturation identified as a contributor to QS.

  8. Identification of microstructural mechanisms during densification of a TiAl alloy by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Jabbar, Houria; Couret, Alain; Durand, Lise [CNRS, CEMES-UPR 8011, Centre d' Elaboration de Materiaux et d' Etudes Structurales, BP 94347, 29 rue J. Marvig, F-31055 Toulouse (France); Universite de Toulouse, UPS, F-31055 Toulouse (France); Monchoux, Jean-Philippe, E-mail: monchoux@cemes.fr [CNRS, CEMES-UPR 8011, Centre d' Elaboration de Materiaux et d' Etudes Structurales, BP 94347, 29 rue J. Marvig, F-31055 Toulouse (France); Universite de Toulouse, UPS, F-31055 Toulouse (France)

    2011-10-13

    Graphical abstract: Highlights: > Mechanisms of a TiAl alloy powder densified by spark plasma sintering are identified. > Microstructure evolution of the powder is followed during the sintering cycle. > As-atomized supersaturated powder comes back to equilibrium. > Densification occurs by plastification of the particles at high temperature. > No mechanisms related to electric current are observed. - Abstract: This work aims at identifying, by coupled scanning and transmission electron microscopy (SEM and TEM) observations, the densification mechanisms occurring when an atomized Ti-47Al-1W-1Re-0.2Si powder is densified by spark plasma sintering (SPS). For this purpose, interruptions of the SPS cycle have been performed to follow the evolution of the microstructure step by step. The powder particles exhibit a classical dendritic microstructure containing a large amount of out-of-equilibrium {alpha} phase. During heating-up, the microstructure undergoes successive transformations. At T = 525-875 deg. C the {alpha} phase transforms into {gamma}. The {gamma} phase formed is supersaturated in W and Re. It de-saturates for T above 875 deg. C by discontinuous precipitation of W and Re-rich B2 phase. Densification takes place for T between 900 deg. C and 1150 deg. C by plastic deformation of the powder particles. TEM observations show that the repartition of the plastic deformation is correlated to the dendritic microstructure, and that dynamic recrystallization mechanisms occur. Microstructural phenomena directly resulting from the high currents involved in the SPS process have not been observed.

  9. Convection in a volcanic conduit recorded by bubbles

    Science.gov (United States)

    Carey, Rebecca J.; Manga, Michael; Degruyter, Wim; Gonnermann, Helge M.; Swanson, Donald; Houghton, Bruce F.; Orr, Tim R.; Patrick, Matthew R.

    2013-01-01

    Microtextures of juvenile pyroclasts from Kīlauea’s (Hawai‘i) early A.D. 2008 explosive activity record the velocity and depth of convection within the basaltic magma-filled conduit. We use X-ray microtomography (μXRT) to document the spatial distribution of bubbles. We find small bubbles (radii from 5 μm to 70 μm) in a halo surrounding larger millimeter-size bubbles. This suggests that dissolved water was enriched around the larger bubbles—the opposite of what is expected if bubbles grow as water diffuses into the bubble. Such volatile enrichment implies that the volatiles within the large bubbles were redissolving into the melt as they descended into the conduit by the downward motion of convecting magma within the lava lake. The thickness of the small bubble halo is ∼100–150 μm, consistent with water diffusing into the melt on time scales on the order of 103 s. Eruptions, triggered by rockfall, rapidly exposed this magma to lower pressures, and the haloes of melt with re-dissolved water became sufficiently supersaturated to cause nucleation of the population of smaller bubbles. The required supersaturation pressures are consistent with a depth of a few hundred meters and convection velocities of the order of 0.1 m s−1, similar to the circulation velocity observed on the surface of the Halema‘uma‘u lava lake.

  10. An analysis of the growth of silver catalyzed In{sub x}Ga{sub 1−x}As nanowires on Si (100) by metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, K.; Banerji, P., E-mail: pallab@matsc.iitkgp.ernet.in [Materials Science Centre, Indian Institute of Technology, Kharagpur 721302 (India); Palit, M.; Chattopadhyay, S. [Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata 700098 (India)

    2016-08-28

    A model is proposed here to understand the nucleation of III–V semiconductor nanowires (NW). Whereas the classical nucleation theory is not adequately sufficient in explaining the evolution of the shape of the NWs under different chemical environment such as flow rate or partial pressure of the precursors, the effect of adsorption and desorption mediated growth, and diffusion limited growth are taken into account to explain the morphology and the crystal structure of In{sub x}Ga{sub 1−x}As nanowires (NW) on Silicon (100) substrates grown by a metalorganic chemical vapor deposition technique. It is found that the monolayer nucleus that originates at the triple phase line covers the entire nucleus-substrate (NS) region at a specific level of supersaturation and there are cases when the monolayer covers a certain fraction of the NS interface. When the monolayer covers the total NS interface, NWs grow with perfect cylindrical morphology and whenever a fraction of the interface is covered by the nucleus, the NWs become curved as observed from high resolution transmission electron microscopy images. The supersaturation, i.e., the chemical potential is found to be governed by the concentration of precursors into the molten silver which in the present case is taken as a catalyst. Our study provides new insights into the growth of ternary NWs which will be helpful in understanding the behavior of growth of different semiconducting NWs.

  11. Review and problem definition of water/rock reactions associated with injection of spent geothermal fluids from a geothermal plant into aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Elders, W.A.

    1986-07-01

    Among the technical problems faced by the burgeoning geothermal industry is the disposal of spent fluids from power plants. Except in unusual circumstances the normal practice, especially in the USA, is to pump these spent fluids into injection wells to prevent contamination of surface waters, and possibly in some cases, to reduce pressure drawdown in the producing aquifers. This report is a survey of experience in geothermal injection, emphasizing geochemical problems, and a discussion of approaches to their possible mitigation. The extraction of enthalpy from geothermal fluid in power plants may cause solutions to be strongly supersaturated in various dissolved components such as silica, carbonates, sulfates, and sulfides. Injection of such supersaturated solutions into disposal wells has the potential to cause scaling in the well bores and plugging of the aquifers, leading to loss of injectivity. Various aspects of the geochemistry of geothermal brines and their potential for mineral formation are discussed, drawing upon a literature survey. Experience of brine treatment and handling, and the economics of mineral extraction are also addressed in this report. Finally suggestions are made on future needs for possible experimental, field and theoretical studies to avoid or control mineral scaling.

  12. The mechanism of borax crystallization using in situ optical microscopy and AFM

    International Nuclear Information System (INIS)

    Suharso, G.; Parkinson, M.; Ogden, M.

    2002-01-01

    Full text: The quality of high-purity borax depends both on the concentrations of the impurities and the product appearance, which are mainly determined by the size and morphology of the crystals. Thus, knowledge about crystallization of borax is of direct relevance to the industrial production of borax. In addition, fundamental studies of borax crystallization will provide results of relevance to the crystallization of other economically important materials. An investigation into the fundamental mechanism of crystal growth of borax from aqueous solution was carried out, as a model system. The investigation focussed on the growth mechanism, and the influence of factors such as solution supersaturation, temperature, crystal size and solution flow on the rate of crystal growth. In situ optical microscopy was used to determine growth rates of three different faces of borax crystals at 20, 25, 30, and 35 deg C, at various concentrations. It was found that the growth rate increases with increasing temperature and supersaturation. At low concentration , growth on the (010), (001), and (111) faces occurs via a spiral growth mechanism and at high concentration birth and spread is the principal mechanism operating. The activation energy for the different mechanisms was determined. Examination by ex situ Atomic Force Microscopy (AFM) showed features suggesting that the (100), (010), (001) faces of borax crystals grow by spiral mechanism at low concentration and two dimensional nucleation at high concentration. These experiments support the data obtained from in situ optical microscopy. Copyright (2002) Australian Society for Electron Microscopy Inc

  13. Effect of quench rate on the mechanical properties of U-6 wt % Nb

    International Nuclear Information System (INIS)

    Eckelmeyer, K.H.

    1980-03-01

    U-6 wt % Nb conventionally is water quenched from 800 0 C in order to obtain a niobium supersaturated α'' structure having good corrosion resistance and high ductility (125% tensile elongation). The high cooling rate associated with the water quench, however, produces undesirable distortion and residual stress. This study was conducted to determine the extent to which the quench rate could be reduced (in order to minimize the distortion and residual stress problems) without sacrificing properties. The results indicate that quench rate can be reduced by as much as a factor of 10 without any loss of ductility, and that a factor of 100 reduction in quench rate (as is produced by air cooling) still produces material with moderate ductility (> 12% tensile elongation). The results also indicate that supersaturated α'' structures are produced at all of these quench rates. This suggests that these reductions in quench rate should not have drastic adverse effects on corrosion resistance. Hence, it should not be possible to substantially reduce the magnitudes of the distortion and residual stress problems while retaining appreciable ductility and corrosion resistance in U-6 wt % Nb

  14. Theoretical assessment of particle generation from sodium pool fires

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M., E-mail: monica.gmartin@ciemat.es [CIEMAT, Unit of Nuclear Safety Research, Av. Complutense, 40, 28040 Madrid (Spain); Herranz, L.E., E-mail: luisen.herranz@ciemat.es [CIEMAT, Unit of Nuclear Safety Research, Av. Complutense, 40, 28040 Madrid (Spain); Kissane, M.P., E-mail: Martin.KISSANE@oecd.org [Nuclear Safety Technology and Regulation Division, OECD Nuclear Energy Agency (NEA), 46 quai Alphonse Le Gallo, 92100 Boulogne-Billancourt (France)

    2016-12-15

    Highlights: • Development of particle generation model for sodium-oxides aerosol formation. • Development of partially validated numerical simulations to build up maps of saturation ratio. • Nucleation of supersaturated vapours as relevant source of aerosols over sodium pools. • Prediction of high concentrations of primary particles in the combustion zone. - Abstract: Potential sodium discharge in the containment during postulated Beyond Design Basis Accidents (BDBAs) in Sodium-cooled Fast Reactors (SFRs) would have major consequences for accident development in terms of energetics and source term. In the containment, sodium vaporization and subsequent oxidation would result in supersaturated oxide vapours that would undergo rapid nucleation creating toxic aerosols. Therefore, modelling this vapour nucleation is essential to proper source term assessment in SFRs. In the frame of the EU-JASMIN project, a particle generation model to calculate the particle generation rate and their primary size during an in-containment sodium pool fire has been developed. Based on a suite of individual models for sodium vaporization, oxygen natural circulation (3D modelling), sodium-oxygen chemical reactions, sodium-oxides-vapour nucleation and condensation, its consistency has been partially validated by comparing with available experimental data. As an outcome, large temperature and vapour concentration gradients set over the sodium pool have been found which result in large particle concentrations in the close vicinity of the pool.

  15. The solubility of rhodochrosite (MnCO3) and siderite (FeCO3) in anaerobic aquatic environments

    DEFF Research Database (Denmark)

    Jensen, Dorthe Lærke; Boddum, J.K.; Tjell, Jens Christian

    2002-01-01

    Natural groundwaters are often reported to be highly supersaturated with the carbonate minerals siderite (FeCO3) and rhodochrosite (MnCO3). The kinetics of precipitation and dissolution were determined in the light of new determinations of the solubility products of siderite and rhodochrosite...... steady state for rhodochrosite was reached after 140 days. Suspensions of siderite and rhodochrosite crystals reached steady state after 10 and 80 days, respectively. The solubility product of siderite (log KS0(FeCO3)) was 11.03 0.10 for dried crystals and 10.43 0.15 for wet crystals. For rhodochrosite...... the solubility product (log KS0(MnCO3)) was 11.39 0.14 for dried crystals and 12.51 0.07 for wet crystals. The solubility product determined from supersaturated solutions was log KS0(MnCO3)=11.65 0.14. The observed slow precipitation kinetics of siderite and rhodochrosite might explain the apparent...

  16. A new in vitro lipid digestion - in vivo absorption model to evaluate the mechanisms of drug absorption from lipid-based formulations.

    Science.gov (United States)

    Crum, Matthew F; Trevaskis, Natalie L; Williams, Hywel D; Pouton, Colin W; Porter, Christopher J H

    2016-04-01

    In vitro lipid digestion models are commonly used to screen lipid-based formulations (LBF), but in vitro-in vivo correlations are in some cases unsuccessful. Here we enhance the scope of the lipid digestion test by incorporating an absorption 'sink' into the experimental model. An in vitro model of lipid digestion was coupled directly to a single pass in situ intestinal perfusion experiment in an anaesthetised rat. The model allowed simultaneous real-time analysis of the digestion and absorption of LBFs of fenofibrate and was employed to evaluate the influence of formulation digestion, supersaturation and precipitation on drug absorption. Formulations containing higher quantities of co-solvent and surfactant resulted in higher supersaturation and more rapid drug precipitation in vitro when compared to those containing higher quantities of lipid. In contrast, when the same formulations were examined using the coupled in vitro lipid digestion - in vivo absorption model, drug flux into the mesenteric vein was similar regardless of in vitro formulation performance. For some drugs, simple in vitro lipid digestion models may underestimate the potential for absorption from LBFs. Consistent with recent in vivo studies, drug absorption for rapidly absorbed drugs such as fenofibrate may occur even when drug precipitation is apparent during in vitro digestion.

  17. A reduced theoretical model for estimating condensation effects in combustion-heated hypersonic tunnel

    Science.gov (United States)

    Lin, L.; Luo, X.; Qin, F.; Yang, J.

    2018-03-01

    As one of the combustion products of hydrocarbon fuels in a combustion-heated wind tunnel, water vapor may condense during the rapid expansion process, which will lead to a complex two-phase flow inside the wind tunnel and even change the design flow conditions at the nozzle exit. The coupling of the phase transition and the compressible flow makes the estimation of the condensation effects in such wind tunnels very difficult and time-consuming. In this work, a reduced theoretical model is developed to approximately compute the nozzle-exit conditions of a flow including real-gas and homogeneous condensation effects. Specifically, the conservation equations of the axisymmetric flow are first approximated in the quasi-one-dimensional way. Then, the complex process is split into two steps, i.e., a real-gas nozzle flow but excluding condensation, resulting in supersaturated nozzle-exit conditions, and a discontinuous jump at the end of the nozzle from the supersaturated state to a saturated state. Compared with two-dimensional numerical simulations implemented with a detailed condensation model, the reduced model predicts the flow parameters with good accuracy except for some deviations caused by the two-dimensional effect. Therefore, this reduced theoretical model can provide a fast, simple but also accurate estimation of the condensation effect in combustion-heated hypersonic tunnels.

  18. Nucleation and strain-stabilization during organic semiconductor thin film deposition.

    Science.gov (United States)

    Li, Yang; Wan, Jing; Smilgies, Detlef-M; Bouffard, Nicole; Sun, Richard; Headrick, Randall L

    2016-09-07

    The nucleation mechanisms during solution deposition of organic semiconductor thin films determine the grain morphology and may influence the crystalline packing in some cases. Here, in-situ optical spectromicroscopy in reflection mode is used to study the growth mechanisms and thermal stability of 6,13-bis(trisopropylsilylethynyl)-pentacene thin films. The results show that the films form in a supersaturated state before transforming to a solid film. Molecular aggregates corresponding to subcritical nuclei in the crystallization process are inferred from optical spectroscopy measurements of the supersaturated region. Strain-free solid films exhibit a temperature-dependent blue shift of optical absorption peaks due to a continuous thermally driven change of the crystalline packing. As crystalline films are cooled to ambient temperature they become strained although cracking of thicker films is observed, which allows the strain to partially relax. Below a critical thickness, cracking is not observed and grazing incidence X-ray diffraction measurements confirm that the thinnest films are constrained to the lattice constants corresponding to the temperature at which they were deposited. Optical spectroscopy results show that the transition temperature between Form I (room temperature phase) and Form II (high temperature phase) depends on the film thickness, and that Form I can also be strain-stabilized up to 135 °C.

  19. CCN Activity, Variability and Influence on Droplet Formation during the HygrA-Cd Campaign in Athens

    Directory of Open Access Journals (Sweden)

    Aikaterini Bougiatioti

    2017-06-01

    Full Text Available Measurements of cloud condensation nuclei (CCN concentrations (cm−3 at five levels of supersaturation between 0.2–1%, together with remote sensing profiling and aerosol size distributions, were performed at an urban background site of Athens during the Hygroscopic Aerosols to Cloud Droplets (HygrA-CD campaign. The site is affected by local emissions and long-range transport, as portrayed by the aerosol size, hygroscopicity and mixing state. Application of a state-of-the-art droplet parameterization is used to link the observed size distribution measurements, bulk composition, and modeled boundary layer dynamics with potential supersaturation, droplet number, and sensitivity of these parameters for clouds forming above the site. The sensitivity is then used to understand the source of potential droplet number variability. We find that the importance of aerosol particle concentration levels associated with the background increases as vertical velocities increase. The updraft velocity variability was found to contribute 58–90% (68.6% on average to the variance of the cloud droplet number, followed by the variance in aerosol number (6–32%, average 23.2%. Therefore, although local sources may strongly modulate CCN concentrations, their impact on droplet number is limited by the atmospheric dynamics expressed by the updraft velocity regime.

  20. Effects of different operating parameters on the particle size of silver chloride nanoparticles prepared in a spinning disk reactor

    Science.gov (United States)

    Dabir, Hossein; Davarpanah, Morteza; Ahmadpour, Ali

    2015-07-01

    The aim of this research was to present an experimental method for large-scale production of silver chloride nanoparticles using spinning disk reactor. Silver nitrate and sodium chloride were used as the reactants, and the protecting agent was gelatin. The experiments were carried out in a continuous mode by injecting the reactants onto the surface of the spinning disk, where a chemical precipitation reaction took place to form AgCl particles. The effects of various operating variables, including supersaturation, disk rotational speed, reactants flow rate, disk diameter, and excess ions, on the particle size of products were investigated. In addition, the AgCl nanoparticles were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. According to the results, smaller AgCl particles are obtained under higher supersaturations and also higher disk rotation speeds. Moreover, in the range of our investigation, the use of lower reactants flow rates and larger disk diameter can reduce the particle size of products. The non-stoichiometric condition of reactants has a significant influence on the reduction in particle aggregation. It was also found that by optimizing the operating conditions, uniform AgCl nanoparticles with the mean size of around 37 nm can be produced.

  1. Nonclassical nucleation pathways in protein crystallization

    Science.gov (United States)

    Zhang, Fajun

    2017-11-01

    Classical nucleation theory (CNT), which was established about 90 years ago, has been very successful in many research fields, and continues to be the most commonly used theory in describing the nucleation process. For a fluid-to-solid phase transition, CNT states that the solute molecules in a supersaturated solution reversibly form small clusters. Once the cluster size reaches a critical value, it becomes thermodynamically stable and favored for further growth. One of the most important assumptions of CNT is that the nucleation process is described by one reaction coordinate and all order parameters proceed simultaneously. Recent studies in experiments, computer simulations and theory have revealed nonclassical features in the early stage of nucleation. In particular, the decoupling of order parameters involved during a fluid-to-solid transition leads to the so-called two-step nucleation mechanism, in which a metastable intermediate phase (MIP) exists between the initial supersaturated solution and the final crystals. Depending on the exact free energy landscapes, the MIPs can be a high density liquid phase, mesoscopic clusters, or a pre-ordered state. In this review, we focus on the studies of nonclassical pathways in protein crystallization and discuss the applications of the various scenarios of two-step nucleation theory. In particular, we focus on protein solutions in the presence of multivalent salts, which serve as a model protein system to study the nucleation pathways. We wish to point out the unique features of proteins as model systems for further studies.

  2. Growth Mechanism of Pumpkin-Shaped Vaterite Hierarchical Structures

    Science.gov (United States)

    Ma, Guobin; Xu, Yifei; Wang, Mu

    2015-03-01

    CaCO3-based biominerals possess sophisticated hierarchical structures and promising mechanical properties. Recent researches imply that vaterite may play an important role in formation of CaCO3-based biominerals. However, as a less common polymorph of CaCO3, the growth mechanism of vaterite remains not very clear. Here we report the growth of a pumpkin-shaped vaterite hierarchical structure with a six-fold symmetrical axis and lamellar microstructure. We demonstrate that the growth is controlled by supersaturation and the intrinsic crystallographic anisotropy of vaterite. For the scenario of high supersaturation, the nucleation rate is higher than the lateral extension rate, favoring the ``double-leaf'' spherulitic growth. Meanwhile, nucleation occurs preferentially in as determined by the crystalline structure of vaterite, modulating the grown products with a hexagonal symmetry. The results are beneficial for an in-depth understanding of the biomineralization of CaCO3. The growth mechanism may also be applicable to interpret the formation of similar hierarchical structures of other materials. The authors gratefully acknowledge the financial support from National Science Foundation of China (Grant Nos. 51172104 and 50972057) and National Key Basic Research Program of China (Grant No. 2010CB630705).

  3. Modelling heterogeneous ice nucleation on mineral dust and soot with parameterizations based on laboratory experiments

    Science.gov (United States)

    Hoose, C.; Hande, L. B.; Mohler, O.; Niemand, M.; Paukert, M.; Reichardt, I.; Ullrich, R.

    2016-12-01

    Between 0 and -37°C, ice formation in clouds is triggered by aerosol particles acting as heterogeneous ice nuclei. At lower temperatures, heterogeneous ice nucleation on aerosols can occur at lower supersaturations than homogeneous freezing of solutes. In laboratory experiments, the ability of different aerosol species (e.g. desert dusts, soot, biological particles) has been studied in detail and quantified via various theoretical or empirical parameterization approaches. For experiments in the AIDA cloud chamber, we have quantified the ice nucleation efficiency via a temperature- and supersaturation dependent ice nucleation active site density. Here we present a new empirical parameterization scheme for immersion and deposition ice nucleation on desert dust and soot based on these experimental data. The application of this parameterization to the simulation of cirrus clouds, deep convective clouds and orographic clouds will be shown, including the extension of the scheme to the treatment of freezing of rain drops. The results are compared to other heterogeneous ice nucleation schemes. Furthermore, an aerosol-dependent parameterization of contact ice nucleation is presented.

  4. Agglomeration Control during Ultrasonic Crystallization of an Active Pharmaceutical Ingredient

    Directory of Open Access Journals (Sweden)

    Bjorn Gielen

    2017-02-01

    Full Text Available Application of ultrasound during crystallization can efficiently inhibit agglomeration. However, the mechanism is unclear and sonication is usually enabled throughout the entire process, which increases the energy demand. Additionally, improper operation results in significant crystal damage. Therefore, the present work addresses these issues by identifying the stage in which sonication impacts agglomeration without eroding the crystals. This study was performed using a commercially available API that showed a high tendency to agglomerate during seeded crystallization. The crystallization progress was monitored using process analytical tools (PAT, including focus beam reflectance measurements (FBRM to track to crystal size and number and Fourier transform infrared spectroscopy (FTIR to quantify the supersaturation level. These tools provided insight in the mechanism by which ultrasound inhibits agglomeration. A combination of improved micromixing, fast crystal formation which accelerates depletion of the supersaturation and a higher collision frequency prevent crystal cementation to occur. The use of ultrasound as a post-treatment can break some of the agglomerates, but resulted in fractured crystals. Alternatively, sonication during the initial seeding stage could assist in generating nuclei and prevent agglomeration, provided that ultrasound was enabled until complete desupersaturation at the seeding temperature. FTIR and FBRM can be used to determine this end point.

  5. Optimisation of a combined transient-ion-drift/rapid thermal annealing process for copper detection in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Belayachi, A.; Heiser, T.; Schunck, J.P.; Bourdais, S.; Bloechl, P.; Huber, A.; Kempf, A

    2003-09-15

    The transient ion drift (TID) technique has been recently proposed for copper trace detection in silicon. Cu atoms may be present either in the vicinity of the Si surface or within the volume. In the latter case they are either gathered at secondary defects or form precipitates believed to be silicides. In order to become detectable by TID Cu atoms must be put into the highly mobile interstitial state. Depending on the initial configuration of the Cu/Si system different physical mechanisms may enable Cu atoms to become 'TID active'. In this work we study the Cu activation process using rapid thermal processing (RTP) in an attempt to minimise the thermal budget required to achieve a complete activation. Both, surface and volume contaminated samples are investigated. During RTP treatments the activation of surface Cu atoms is found to proceed significantly faster than during standard furnace anneal. We tentatively attribute this behaviour to the UV light exposure associated with the RTP, which may enhance the release of copper atoms from the surface. The dissolution kinetics of the Cu precipitates occurring during RTPs are found to be only limited by Cu diffusion. The RTP/TID process is used to study the low temperature reaction path of supersaturated Cu. If prior to the RTP process, Cu atoms are chemically removed from the surface or near surface region, TID measures only the residual bulk Cu atoms. Our results show that out-diffusion and near-surface precipitation are reducing mostly the copper supersaturation.

  6. Transient enhanced diffusion in preamorphized silicon: the role of the surface

    Science.gov (United States)

    Cowern, N. E. B.; Alquier, D.; Omri, M.; Claverie, A.; Nejim, A.

    1999-01-01

    Experiments on the depth dependence of transient enhanced diffusion (TED) of boron during rapid thermal annealing of Ge-preamorphized layers reveal a linear decrease in the diffusion enhancement between the end-of-range (EOR) defect band and the surface. This behavior, which indicates a quasi-steady-state distribution of excess interstitials, emitted from the EOR band and absorbed at the surface, is observed for annealing times as short as 1 s at 900°C. Using an etching procedure we vary the distance xEOR from the EOR band to the surface in the range 80-175 nm, and observe how this influences the interstitial supersaturation, s( x). The supersaturations at the EOR band and the surface remain unchanged, while the gradient d s/d x, and thus the flux to the surface, varies inversely with xEOR. This confirms the validity of earlier modelling of EOR defect evolution in terms of Ostwald ripening, and provides conclusive evidence that the surface is the dominant sink for interstitials during TED.

  7. Analysis of grain growth process in melt spun Fe-B alloys under the initial saturated grain boundary segregation condition

    International Nuclear Information System (INIS)

    Chen, Z.; Liu, F.; Yang, X.Q.; Fan, Y.; Shen, C.J.

    2012-01-01

    Highlights: → We compared pure kinetic, pure thermodynamic and extended thermo-kinetic models. → An initial saturated GB segregation condition of nanoscale Fe-B alloys was determined. → The controlled-mechanism was proposed using two characteristic times (t 1 and t 2 ). - Abstract: A grain growth process in the melt spun low-solid-solubility Fe-B alloys was analyzed under the initial saturated grain boundary (GB) segregation condition. Applying melt spinning technique, single-phase supersaturated nanograins were prepared. Grain growth behavior of the single-phase supersaturated nanograins was investigated by performing isothermal annealing at 700 deg. C. Combined with the effect of GB segregation on the initial GB excess amount, the thermo-kinetic model [Chen et al., Acta Mater. 57 (2009) 1466] was extended to describe the initial GB segregation condition of nanoscale Fe-B alloys. In comparison of pure kinetic model, pure thermodynamic model and the extended thermo-kinetic model, an initial saturated GB segregation condition was determined. The controlled-mechanism of grain growth under initial saturated GB segregation condition was proposed using two characteristic annealing times (t 1 and t 2 ), which included a mainly kinetic-controlled process (t ≤ t 1 ), a transition from kinetic-mechanism to thermodynamic-mechanism (t 1 2 ) and pure thermodynamic-controlled process (t ≥ t 2 ).

  8. Dissolution properties of co-amorphous drug-amino acid formulations in buffer and biorelevant media.

    Science.gov (United States)

    Heikkinen, A T; DeClerck, L; Löbmann, K; Grohganz, H; Rades, T; Laitinen, R

    2015-07-01

    Co-amorphous formulations, particularly binary drug-amino acid mixtures, have been shown to provide enhanced dissolution for poorly-soluble drugs and improved physical stability of the amorphous state. However, to date the dissolution properties (mainly intrinsic dissolution rate) of the co-amorphous formulations have been tested only in buffers and their supersaturation ability remain unexplored. Consequently, dissolution studies in simulated intestinal fluids need to be conducted in order to better evaluate the potential of these systems in increasing the oral bioavailability of biopharmaceutics classification system class II drugs. In this study, solubility and dissolution properties of the co-amorphous simvastatin-lysine, gibenclamide-serine, glibenclamide-threonine and glibenclamide-serine-threonine were studied in phosphate buffer pH 7.2 and biorelevant media (fasted and fed state simulated intestinal fluids (FaSSIF and FeSSIF, respectively)). The co-amorphous formulations were found to provide a long-lasting supersaturation and improve the dissolution of the drugs compared to the crystalline and amorphous drugs alone in buffer. Similar improvement, but in lesser extent, was observed in biorelevant media suggesting that a dissolution advantage observed in aqueous buffers may overestimate the advantage in vivo. However, the results show that, in addition to stability advantage shown earlier, co-amorphous drug-amino acid formulations provide dissolution advantage over crystalline drugs in both aqueous and biorelevant conditions.

  9. Nanosecond-laser induced crosstalk of CMOS image sensor

    Science.gov (United States)

    Zhu, Rongzhen; Wang, Yanbin; Chen, Qianrong; Zhou, Xuanfeng; Ren, Guangsen; Cui, Longfei; Li, Hua; Hao, Daoliang

    2018-02-01

    The CMOS Image Sensor (CIS) is photoelectricity image device which focused the photosensitive array, amplifier, A/D transfer, storage, DSP, computer interface circuit on the same silicon substrate[1]. It has low power consumption, high integration,low cost etc. With large scale integrated circuit technology progress, the noise suppression level of CIS is enhanced unceasingly, and its image quality is getting better and better. It has been in the security monitoring, biometrice, detection and imaging and even military reconnaissance and other field is widely used. CIS is easily disturbed and damaged while it is irradiated by laser. It is of great significance to study the effect of laser irradiation on optoelectronic countermeasure and device for the laser strengthening resistance is of great significance. There are some researchers have studied the laser induced disturbed and damaged of CIS. They focused on the saturation, supersaturated effects, and they observed different effects as for unsaturation, saturation, supersaturated, allsaturated and pixel flip etc. This paper research 1064nm laser interference effect in a typical before type CMOS, and observring the saturated crosstalk and half the crosstalk line. This paper extracted from cmos devices working principle and signal detection methods such as the Angle of the formation mechanism of the crosstalk line phenomenon are analyzed.

  10. Should bulk cloudwater or fogwater samples obey Henry's law?

    Science.gov (United States)

    Pandis, Spyros N.; Seinfeld, John H.

    1991-06-01

    Mixing of droplets with different pH that are individually in Henry's law equilibrium with the surrounding atmosphere always results in a bulk mixture that is supersaturated with weak acids like S(IV) and HCOOH, and bases like NH3 with respect to the original atmosphere. High supersaturations result only when the pH of the bulk droplet mixture exceeds the pKa of the species, in which pH range large pH differences among droplets of different sizes lead to large deviations from Henry's law for the bulk mixture. The deviation is shown to depend on the ratio of the arithmetic mean to the harmonic mean of the hydrogen ion concentrations of the droplets with the liquid water content used as weighting factor in the calculation of the means. The theory developed can explain observed discrepancies from Henry's law in atmospheric samples and also other observed phenomena like the reported increase of pH values of bulk aqueous samples during storage.

  11. Double Ion Implantation and Pulsed Laser Melting Processes for Third Generation Solar Cells

    Directory of Open Access Journals (Sweden)

    Eric García-Hemme

    2013-01-01

    Full Text Available In the framework of the third generation of photovoltaic devices, the intermediate band solar cell is one of the possible candidates to reach higher efficiencies with a lower processing cost. In this work, we introduce a novel processing method based on a double ion implantation and, subsequently, a pulsed laser melting (PLM process to obtain thicker layers of Ti supersaturated Si. We perform ab initio theoretical calculations of Si impurified with Ti showing that Ti in Si is a good candidate to theoretically form an intermediate band material in the Ti supersaturated Si. From time-of-flight secondary ion mass spectroscopy measurements, we confirm that we have obtained a Ti implanted and PLM thicker layer of 135 nm. Transmission electron microscopy reveals a single crystalline structure whilst the electrical characterization confirms the transport properties of an intermediate band material/Si substrate junction. High subbandgap absorption has been measured, obtaining an approximate value of 104 cm−1 in the photons energy range from 1.1 to 0.6 eV.

  12. Simulation of aerosol nucleation and growth in a turbulent mixing layer

    KAUST Repository

    Zhou, Kun; Attili, Antonio; Alshaarawi, Amjad; Bisetti, Fabrizio

    2014-01-01

    A large-scale simulation of aerosol nucleation and growth in a turbulent mixing layer is performed and analyzed with the aim of elucidating the key processes involved. A cold gaseous stream is mixed with a hot stream of vapor, nanometer sized droplets nucleate as the vapor becomes supersaturated, and subsequently grow as more vapor condenses on their surface. All length and time scales of fluid motion and mixing are resolved and the quadrature method of moments is used to describe the dynamics of the condensing, non-inertial droplets. The results show that a region of high nucleation rate is located near the cold, dry stream, while particles undergo intense growth via condensation on the hot, humid vapor side. Supersaturation and residence times are such that number densities are low and neither coagulation nor vapor scavenging due to condensation are significant. The difference in Schmidt numbers of aerosol particles (approximated as infinity) and temperature and vapor (near unity) causes a drift of the aerosol particles in scalar space and contributes to a large scatter in the conditional statistics of aerosol quantities. The spatial distribution of the aerosol reveals high volume fraction on the hot side of the mixing layer. This distribution is due to drift against the mean and is related to turbulent mixing, which displaces particles from the nucleation region (cold side) into the growth region (hot side). Such a mechanism is absent in laminar flows and is a distinct feature of turbulent condensing aerosols.

  13. In situ synchrotron X-ray diffraction study of scale formation during CO2 corrosion of carbon steel in sodium and magnesium chloride solutions

    International Nuclear Information System (INIS)

    Ingham, B.; Ko, M.; Laycock, N.; Burnell, J.; Kappen, P.; Kimpton, J.A.; Williams, D.E.

    2012-01-01

    Highlights: ► We studied the scale formation processes of carbon steel in CO 2 saturated brine at 80 °C. ► Protective scales were formed in all tests. ► Only FeCO 3 formed in saturated brine while Fe(OH) 2 CO 3 detected with presence of MgCl 2 . ► MgCl 2 accelerates the onset of siderite precipitation. - Abstract: In situ synchrotron X-ray diffraction was used to follow the formation of corrosion products on carbon steel in CO 2 saturated NaCl solution and mixed NaCl/magnesium chloride (MgCl 2 ) at 80 °C. Siderite (FeCO 3 ) was the only phase formed in NaCl solution, while Fe(OH) 2 CO 3 was also detected when MgCl 2 was present. The proposed model is that siderite precipitation, occurring once the critical supersaturation was exceeded within a defined boundary layer, caused local acidification which accelerated the anodic dissolution of iron. The current fell once a complete surface scale was formed. It is suggested that MgCl 2 addition decreased the required critical supersaturation for precipitation.

  14. Influence of high-pressure torsion on formation/destruction of nano-sized spinodal structures

    Science.gov (United States)

    Alhamidi, Ali; Edalati, Kaveh; Horita, Zenji

    2018-04-01

    The microstructures and hardness of Al - 30 mol.% Zn are investigated after processing by high-pressure torsion (HPT) for different numbers of revolutions, N = 1, 3, 10 or 25, as well as after post-HPT annealing at different temperatures, T = 373 K, 473 K, 573 K and 673 K. It was found that a work softening occurs by decreasing the grain size to the submicrometer level and increasing the fraction of high-angle boundaries. As a result of HPT processing, a complete decomposition of supersaturated solid solution of Zn in Al occurs and the spinodal structure is destroyed. This suggests that softening of the Al-Zn alloys after HPT is due to the decomposition of the supersaturated solid solution and destruction of spinodal decomposition. After post-HPT annealing, ultrafine-grained Al-Zn alloys show an unusual mechanical properties and its hardness increased to 187 HV. Microstructural analysis showed that the high hardness after post-HPT annealing is due to the formation of spinodal structures.

  15. Formation of nanocrystalline and amorphous phase of Al-Pb-Si-Sn-Cu powder during mechanical alloying

    International Nuclear Information System (INIS)

    Ran Guang; Zhou Jingen; Xi Shengqi; Li Pengliang

    2006-01-01

    Al-15%Pb-4%Si-1%Sn-1.5%Cu alloys (mass fraction, %) were prepared by mechanical alloying (MA). Phase transformation and microstructure characteristics of the alloy powders were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the nanocrystalline supersaturated solid solutions and amorphous phase in the powders are obtained during MA. The effect of ball milling is more evident to lead than to aluminum. During MA, the mixture powders are firstly fined, alloyed, nanocrystallized and then the nanocrystalline partly transforms to amorphous phase. A thermodynamic model is developed based on semi-experimental theory of Miedema to calculate the driving force for phase evolution. The thermodynamic analysis shows that there is no chemical driving force to form a crystalline solid solution from the elemental components. But for the amorphous phase, the Gibbs free energy is higher than 0 for the alloy with lead content in the ranges of 0-86.8 at.% and 98.4-100 at.% and lower than 0 in range of 86.8-98.4 at.%. For the Al-2.25 at.%Pb (Al-15%Pb, mass fraction, %), the driving force for formation of amorphization and nanocrystalline supersaturated solid solutions are provided not by the negative heat of mixing but by mechanical work

  16. Complete covalent structure of statherin, a tyrosine-rich acidic peptide which inhibits calcium phosphate precipitation from human parotid saliva.

    Science.gov (United States)

    Schlesinger, D H; Hay, D I

    1977-03-10

    The complete amino acid sequence of human salivary statherin, a peptide which strongly inhibits precipitation from supersaturated calcium phosphate solutions, and therefore stabilizes supersaturated saliva, has been determined. The NH2-terminal half of this Mr=5380 (43 amino acids) polypeptide was determined by automated Edman degradations (liquid phase) on native statherin. The peptide was digested separately with trypsin, chymotrypsin, and Staphylococcus aureus protease, and the resulting peptides were purified by gel filtration. Manual Edman degradations on purified peptide fragments yielded peptides that completed the amino acid sequence through the penultimate COOH-terminal residue. These analyses, together with carboxypeptidase digestion of native statherin and of peptide fragments of statherin, established the complete sequence of the molecule. The 2 serine residues (positions 2 and 3) in statherin were identified as phosphoserine. The amino acid sequence of human salivary statherin is striking in a number of ways. The NH2-terminal one-third is highly polar and includes three polar dipeptides: H2PO3-Ser-Ser-H2PO3-Arg-Arg-, and Glu-Glu-. The COOH-terminal two-thirds of the molecule is hydrophobic, containing several repeating dipeptides: four of -Gn-Pro-, three of -Tyr-Gln-, two of -Gly-Tyr-, two of-Gln-Tyr-, and two of the tetrapeptide sequence -Pro-Tyr-Gln-Pro-. Unusual cleavage sites in the statherin sequence obtained with chymotrypsin and S. aureus protease were also noted.

  17. Contribution of the bubbles to gas transfer across the ocean-atmosphere interface

    International Nuclear Information System (INIS)

    Memery, Laurent

    1983-05-01

    A first theoretical approach to gas transfer by bubbles is undertaken. Certain parameters which are neglected by smooth air-water interface models are studied. It is found that transfer velocity increases when solubility decreases. Further, bubble overpressure leads to water supersaturation at equilibrium, this supersaturation being more significant for less soluble gases. Although the transfer velocity remains roughly constant for a variable concentration gradient far from equilibrium, its range of variation becomes infinite near equilibrium. Because the notion of transfer velocity is not useful near equilibrium, attention is turned directly to the flux itself: the flux is a linear function of the concentration gradient. At least for tracers the coefficients of this function are entirely defined by the physico-chemical properties of the gas and by the bubble distribution. The dissertation is divided in three parts: - a synthesis which sums up the main experimental and theoretical results of the study of the influence of the bubbles created by breaking waves on gas transfer, - an article published in 'Journal of Geophysical Research', - an article submitted to 'Tellus'. (author) [fr

  18. Model for capping of membrane receptors based on boundary surface effects

    Science.gov (United States)

    Gershon, N. D.

    1978-01-01

    Crosslinking of membrane surface receptors may lead to their segregation into patches and then into a single large aggregate at one pole of the cell. This process is called capping. Here, a novel explanation of such a process is presented in which the membrane is viewed as a supersaturated solution of receptors in the lipid bilayer and the adjacent two aqueous layers. Without a crosslinking agent, a patch of receptors that is less than a certain size cannot stay in equilibrium with the solution and thus should dissolve. Patches greater than a certain size are stable and can, in principle, grow by the precipitation of the remaining dissolved receptors from the supersaturated solution. The task of the crosslinking molecules is to form such stable patches. These considerations are based on a qualitative thermodynamic calculation that takes into account the existence of a boundary tension in a patch (in analogy to the surface tension of a droplet). Thermodynamically, these systems should cap spontaneously after the patches have reached a certain size. But, in practice, such a process can be very slow. A suspension of patches may stay practically stable. The ways in which a cell may abolish this metastable equilibrium and thus achieve capping are considered and possible effects of capping inhibitors are discussed. PMID:274724

  19. The role of impurities on the process of growing potassium hydrogen phthalate crystals from solution; A quantitative approach

    Science.gov (United States)

    Hottenhuis, M. H. J.; Lucasius, C. B.

    1988-09-01

    Quantitative information about the influence of impurities on the crystal growth process of potassium hydrogen phthalate from its aqueous solution was obtained at two levels: microscopic and macroscopic. At the microscopic level, detailed in situ observations of spiral steps at the (010) face were performed. The velocity of these steps was measured, as well in a "clean" as in a contaminated solution, where the influence of a number of different impurities was investigated. This resulted in a measure of effectiveness of step retardation for each of these impurities. From the same microscopic observations it was observed how these effectiveness factors were influenced by the supersaturation σ, the saturation temperature Ts of the solution and the concentration cimp of the impurity that w as used. At the macroscopic level, ICP (inductively coupled plasma) measurements were carried out in order to determine the distribution coefficient of the same impurities. In these measurements again the influence of the impurity concentration and the supersaturation on the distribution coefficient kD was determined.

  20. The influence of temperature on the tribological properties of the metastable austenite in Hadfield cast steel hardened by explosion

    International Nuclear Information System (INIS)

    Stradomski, Z.

    1999-01-01

    The paper presents the tribological tests of Hadfield cast steel subjected to the explosion pre-strengthening and then to aging at temperatures of 150 o C or 410 o C. The examined material has been in the form of cast steel plates 30 mm thick, pre-strengthened with flat charges of the Hardex-70 explosive of the detonation rate of 7200 m/s. The strengthening has been done by the single, double or tipple detonation of the 3 mm thick charges of the explosive placed directly on the cast steel surfaces. The hardness change exhibits 72-78% increase of its value as compared with the supersaturated state. The assessment of the abrasive wear resistance has been performed by means of the T-05 device operating in the 'roller-block'system under the load of 50 N. The test results confirm the very high effectiveness of the strengthening operation, the values of the investigated properties being 7-15 times higher as compared with the initial (supersaturated) state, depending on the multiplicity of the explosion repeating. Because of the dislocational character of the strengthening mechanism, the aging process performed at 150 o C for 794 hours, and at 410 o C for 286 hours, results in rapid decreasing of the tribological properties of the cast steel, their values being now by 4 and 12 times lower, respectively, than for the explosion-strengthened state of the material. (author)

  1. Mesoscopic surface roughness of ice crystals pervasive across a wide range of ice crystal conditions

    Science.gov (United States)

    Magee, N. B.; Miller, A.; Amaral, M.; Cumiskey, A.

    2014-11-01

    Here we show high-magnification images of hexagonal ice crystals acquired by environmental scanning electron microscopy (ESEM). Most ice crystals were grown and sublimated in the water vapor environment of an FEI-Quanta-200 ESEM, but crystals grown in a laboratory diffusion chamber were also transferred intact and imaged via ESEM. All of these images display prominent mesoscopic topography including linear striations, ridges, islands, steps, peaks, pits, and crevasses; the roughness is not observed to be confined to prism facets. The observations represent the most highly magnified images of ice surfaces yet reported and expand the range of conditions in which rough surface features are known to be conspicuous. Microscale surface topography is seen to be ubiquitously present at temperatures ranging from -10 °C to -40 °C, in supersaturated and subsaturated conditions, on all crystal facets, and irrespective of substrate. Despite the constant presence of surface roughness, the patterns of roughness are observed to be dramatically different between growing and sublimating crystals, and transferred crystals also display qualitatively different patterns of roughness. Crystals are also demonstrated to sometimes exhibit inhibited growth in moderately supersaturated conditions following exposure to near-equilibrium conditions, a phenomenon interpreted as evidence of 2-D nucleation. New knowledge about the characteristics of these features could affect the fundamental understanding of ice surfaces and their physical parameterization in the context of satellite retrievals and cloud modeling. Links to supplemental videos of ice growth and sublimation are provided.

  2. Evaluation of the Impact of Excipients and an Albendazole Salt on Albendazole Concentrations in Upper Small Intestine Using an In Vitro Biorelevant Gastrointestinal Transfer (BioGIT) System.

    Science.gov (United States)

    Kourentas, Alexandros; Vertzoni, Maria; Khadra, Ibrahim; Symillides, Mira; Clark, Hugh; Halbert, Gavin; Butler, James; Reppas, Christos

    2016-09-01

    An in vitro biorelevant gastrointestinal transfer (BioGIT) system was assessed for its ability to mimic recently reported albendazole concentrations in human upper small intestine after administration of free base suspensions to fasted adults in absence and in presence of supersaturation promoting excipients (hydroxypropylmethylcellulose and lipid self-emulsifying vehicles). The in vitro method was also used to evaluate the likely impact of using the sulfate salt on albendazole concentrations in upper small intestine. In addition, BioGIT data were compared with equilibrium solubility data of the salt and the free base in human aspirates and biorelevant media. The BioGIT system adequately simulated the average albendazole gastrointestinal transfer process and concentrations in upper small intestine after administration of the free base suspensions to fasted adults. However, the degree of supersaturation observed in the duodenal compartment was greater than in vivo. Albendazole sulfate resulted in minimal increase of albendazole concentrations in the duodenal compartment of the BioGIT, despite improved equilibrium solubility observed in human aspirates and biorelevant media, indicating that the use of a salt is unlikely to lead to any significant oral absorption advantage for albendazole. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Modelling and interpreting the isotopic composition of water vapour in convective updrafts

    Directory of Open Access Journals (Sweden)

    M. Bolot

    2013-08-01

    Full Text Available The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener–Bergeron–Findeisen process. As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  4. Modelling and interpreting the isotopic composition of water vapour in convective updrafts

    Science.gov (United States)

    Bolot, M.; Legras, B.; Moyer, E. J.

    2013-08-01

    The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  5. Modelling and intepreting the isotopic composition of water vapour in convective updrafts

    Science.gov (United States)

    Bolot, M.; Legras, B.; Moyer, E. J.

    2012-08-01

    The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, droplet size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  6. Calcium carbonate crystallisation at the microscopic level

    International Nuclear Information System (INIS)

    Dobson, Phillip Stephen

    2001-01-01

    The primary concern of this thesis is the investigation of crystal nucleation and growth processes, and the effect of foreign substrates on the rate, extent and mechanism of crystallisation, with particular emphasis on the calcium carbonate system. A methodology, based on the in-line mixing of two stable solutions, which permits the continuous delivery of a solution with a constant, known supersaturation, has been developed and characterised. This has been used to induce CaCO 3 crystallisation in experimental systems involving the channel flow and wall jet techniques. The channel flow method has been adapted to facilitate the study of crystal growth at a single calcite crystal. Ca 2+ ion selective electrodes have been employed as a means of monitoring depletion of the supersaturated solution, downstream of the crystal substrate. The data obtained suggested a growth rate constant of 3x10 -12 mol cm -2 s -1 (and a reaction order of 1.52 on supersaturation). The ex-situ techniques of optical microscopy and atomic force microscopy (AFM) were employed to visualise changes in the calcite surface topography resulting from exposure to the growth solution. A technique based on an impinging jet of supersaturated solution was developed and characterised as a method for inducing crystal growth on foreign substrates under defined hydrodynamic control. When used in conjunction with the ex-situ techniques of scanning electron microscopy (SEM), optical microscopy and micro-Raman spectroscopy, the role of substrate and supersaturation on the morphology and polymorphology of the CaCOs microcrystals was determined. The technique also proved to be a powerful tool for the evaluation of scale inhibiting surface coatings. The combination of the impinging jet method with thin transparent substrates allowed in-situ observation, through optical microscopy, of the induction and growth of CaCO 3 microcrystals on foreign substrates. A number of substrates, displaying various surface energies

  7. Sodium Lauryl Sulfate Competitively Interacts with HPMC-AS and Consequently Reduces Oral Bioavailability of Posaconazole/HPMC-AS Amorphous Solid Dispersion.

    Science.gov (United States)

    Chen, Yuejie; Wang, Shujing; Wang, Shan; Liu, Chengyu; Su, Ching; Hageman, Michael; Hussain, Munir; Haskell, Roy; Stefanski, Kevin; Qian, Feng

    2016-08-01

    Sodium lauryl sulfate (SLS), as an effective surfactant, is often used as a solubilizer and/or wetting agent in various dosage forms for the purpose of improving the solubility and dissolution of lipophilic, poorly water-soluble drugs. This study aims to understand the impact of SLS on the solution behavior and bioavailability of hypromellose acetate succinate (HPMC-AS)-based posaconazole (PSZ) ASDs, and to identify the underlying mechanisms governing the optimal oral bioavailability of ASDs when surfactants such as SLS are used in combination. Fluorescence spectroscopy and optical microscopy showed that "oil-out" or "liquid-liquid phase separation (LLPS)" occurred in the supersaturated PSZ solution once drug concentration surpassed ∼12 μg/mL, which caused the formation of drug-rich oily droplets with initial size of ∼300-400 nm. Although FT-IR study demonstrated the existence of specific interactions between PSZ and HPMC-AS in the solid state, predissolved HPMC-AS was unable to delay LLPS of the supersaturated PSZ solution and PSZ-rich amorphous precipitates with ∼16-18% HPMC-AS were formed within 10 min. The coprecipitated HPMC-AS was found to be able to significantly delay the crystallization of PSZ in the PSZ-rich amorphous phase from less than 10 min to more than 4 h, yet coexistent SLS was able to negate this crystallization inhibition effect of HPMC-AS in the PSZ-rich amorphous precipitates and cause fast PSZ crystallization within 30 min. 2D-NOESY and the CMC/CAC results demonstrated that SLS could assemble around HPMC-AS and competitively interact with HPMC-AS in the solution, thus prevent HPMC-AS from acting as an effective crystallization inhibitor. In a crossover dog PK study, this finding was found to be correlating well with the in vivo bioavailability of PSZ ASDs formulated with or without SLS. The SLS containing PSZ ASD formulation demonstrated an in vivo bioavailability ∼30% of that without SLS, despite the apparently better in vitro

  8. Toward the establishment of standardized in vitro tests for lipid-based formulations. 2. The effect of bile salt concentration and drug loading on the performance of type I, II, IIIA, IIIB, and IV formulations during in vitro digestion.

    Science.gov (United States)

    Williams, Hywel D; Anby, Mette U; Sassene, Philip; Kleberg, Karen; Bakala-N'Goma, Jean-Claude; Calderone, Marilyn; Jannin, Vincent; Igonin, Annabel; Partheil, Anette; Marchaud, Delphine; Jule, Eduardo; Vertommen, Jan; Maio, Mario; Blundell, Ross; Benameur, Hassan; Carrière, Frédéric; Müllertz, Anette; Pouton, Colin W; Porter, Christopher J H

    2012-11-05

    The LFCS Consortium was established to develop standardized in vitro tests for lipid-based formulations (LBFs) and to examine the utility of these tests to probe the fundamental mechanisms that underlie LBF performance. In this publication, the impact of bile salt (sodium taurodeoxycholate, NaTDC) concentration and drug loading on the ability of a range of representative LBFs to generate and sustain drug solubilization and supersaturation during in vitro digestion testing has been explored and a common driver of the potential for drug precipitation identified. Danazol was used as a model poorly water-soluble drug throughout. In general, increasing NaTDC concentrations increased the digestion of the most lipophilic LBFs and promoted lipid (and drug) trafficking from poorly dispersed oil phases to the aqueous colloidal phase (AP(DIGEST)). High NaTDC concentrations showed some capacity to reduce drug precipitation, although, at NaTDC concentrations ≥3 mM, NaTDC effects on either digestion or drug solubilization were modest. In contrast, increasing drug load had a marked impact on drug solubilization. For LBFs containing long-chain lipids, drug precipitation was limited even at drug loads approaching saturation in the formulation and concentrations of solubilized drug in AP(DIGEST) increased with increased drug load. For LBFs containing medium-chain lipids, however, significant precipitation was evident, especially at higher drug loads. Across all formulations a remarkably consistent trend emerged such that the likelihood of precipitation was almost entirely dependent on the maximum supersaturation ratio (SR(M)) attained on initiation of digestion. SR(M) defines the supersaturation "pressure" in the system and is calculated from the maximum attainable concentration in the AP(DIGEST) (assuming zero precipitation), divided by the solubility of the drug in the colloidal phases formed post digestion. For LBFs where phase separation of oil phases did not occur, a

  9. Gamma rays induced decoloration and degradation of astrazon type cationic textile dyes

    International Nuclear Information System (INIS)

    Kantoglu, O.

    2012-01-01

    Full text: In many parts of the world, rapid development of agriculture and industry, together with the growth of large population centers, have led to the problems in the areas of management and purification of industrial and municipal wastes. In recent years, both the public and government all over the world are encouraging the implementation of new technologies in this respect. Textile industry, which is one of most pollutant contributer to the environment produces high volume of effluent containing several organic based chemicals which are generally harmful, toxic and non-biodegradable. Synthetic dyes are a major part of our life. Products ranging from clothes to leather accessories to furniture all depend on extensive use of organic dyes. Textile wastewater generally contains various pollutants, which can cause problems during treatment. Radiation technology is applied to enhance the biodegradability of textile wastewater. In this study, biodegradability and decolororation of cationic textile dyes of Astrazon Black FDL, Red FBL and Blue FGRL have been examined. The biodegradability (BOD/COD) increased at a 2, 1, 2 kGy for Astrazon FBL, Astrazon FGRL, Astrazon FDL in all irradiation environments, respectively. The biorefractory organic compounds were converted into more easily biodegradable compounds having lower molecular weights. In optimum dose and pH determination assays, 5 kGy pH 9 at air, 5 kGy pH 11 at supersaturated with oxygen, 7 kGy pH 11 at 2.6 mM hydrogen peroxide for Astrazon Red FBL, 3 kGy pH 8 at air, 7 kGy pH 5 at supersaturated with oxygen, 7 kGy pH 5 at 2.6 mM hydrogen peroxide for Astrazon Blue FGRL, 5 kGy pH 12 at air, 7 kGy pH 3 at supersaturated with oxygen, 9 kGy pH 3 at 2.6 mM hydrogen peroxide for Astrazon Black FDL were found as the optimum irradiation conditions. (author)

  10. A review on the kinetics of microbially induced calcium carbonate precipitation by urea hydrolysis

    Science.gov (United States)

    van Paassen, L. A.

    2017-12-01

    In this study the kinetics of calcium carbonate precipitation induced by the ureolytic bacteria are reviewed based on experiments and mathematical modelling. The study shows how urea hydrolysis rate depends on the amount of bacteria and the conditions during growth, storage, hydrolysis and precipitation. The dynamics of Microbially Induced Carbonate Precipitation has been monitored in non-seeded liquid batch experiments. Results show that particulary for a fast hydrolysis of urea (>1 M-urea day-1) in a highly concentrated equimolar solution with calcium chloride (>0.25 M) the solubility product of CaCO3 is exceeded within a short period (less than 30 minutes), the supersaturation remains high for an exended period, resulting in prolonged periods of nucleation and crystal growth and extended growth of metastable precursor mineral phases. The pH, being a result of the speciation, quickly rises until critical supersaturation is reached and precipitation is initiated. Then pH drops (sometimes showing oscillating behaviour) to about neutral where it stays until all substrates are depleted. Higher hydrolysis rates lead to higher supersaturation and pH and relatively many small crystals, whereas higher concentrations of urea and calcium chloride mainly lead to lower pH values. The conversion can be reasonably monitored by electrical conductivity and reasonably predicted, using a simplified model based on a single reaction as long as the urea hydrolysis rate is known. Complex geochemical models, which include chemical speciciation through acid-base equilibria and kinetic equations to describe mineral precipitation, do not show significant difference from the simplified model regarding the bulk chemistry and the total amount of precipitates. However, experiments show that ureolytic MICP can result in a highly variable crystal morphologies with large variation in the affected hydraulic properties when applied in a porous medium. In order to calculate the number, size and

  11. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2010-08-01

    Full Text Available The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario

  12. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    Science.gov (United States)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Leisner, T.

    2010-08-01

    The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario that coating layers

  13. Early-age hydration and volume change of calcium sulfoaluminate cement-based binders

    Science.gov (United States)

    Chaunsali, Piyush

    Shrinkage cracking is a predominant deterioration mechanism in structures with high surface-to-volume ratio. One way to allay shrinkage-induced stresses is to use calcium sulfoaluminate (CSA) cement whose early-age expansion in restrained condition induces compressive stress that can be utilized to counter the tensile stresses due to shrinkage. In addition to enhancing the resistance against shrinkage cracking, CSA cement also has lower carbon footprint than that of Portland cement. This dissertation aims at improving the understanding of early-age volume change of CSA cement-based binders. For the first time, interaction between mineral admixtures (Class F fly ash, Class C fly ash, and silica fume) and OPC-CSA binder was studied. Various physico-chemical factors such as the hydration of ye'elimite (main component in CSA cement), amount of ettringite (the main phase responsible for expansion in CSA cement), supersaturation with respect to ettringite in cement pore solution, total pore volume, and material stiffness were monitored to examine early-age expansion characteristics. This research validated the crystallization stress theory by showing the presence of higher supersaturation level of ettringite, and therefore, higher crystallization stress in CSA cement-based binders. Supersaturation with respect to ettringite was found to increase with CSA dosage and external supply of gypsum. Mineral admixtures (MA) altered the expansion characteristics in OPC-CSA-MA binders with fixed CSA cement. This study reports that fly ash (FA) behaves differently depending on its phase composition. The Class C FA-based binder (OPC-CSA-CFA) ceased expanding beyond two days unlike other OPC-CSA-MA binders. Three factors were found to govern expansion of CSA cement-based binders: 1) volume fraction of ettringite in given pore volume, 2) saturation level of ettringite, and 3) dynamic modulus. Various models were utilized to estimate the macroscopic tensile stress in CSA cement

  14. Effect of Hydrochemistry on Mineral Precipitation and Textural Diversity in Serpentinization-driven Alkaline Environments; Insights from Thermal Springs in the Oman Ophiolite.

    Science.gov (United States)

    Bach, W.; Giampouras, M.; Garcia-Ruiz, J. M.; Garrido, C. J.; Los, C.; Fussmann, D.; Monien, P.

    2017-12-01

    Interactions between meteoric water and ultramafic rocks within Oman ophiolite give rise to the formation of thermal spring waters of variable composition and temperature. Discharge of two different types of water forms complex hydrological networks of streams and ponds, in which the waters mix, undergo evaporation, and take up atmospheric CO2. We conducted a pond-by-pond sampling of waters and precipitates in two spring sites within the Wadi Tayin massif, Nasif and Khafifah, and examined how hydrochemistry and associated mineral saturation states affect the variations in mineral phases and textures. Three distinctive types of waters were identified in the system: a) Mg-type (7.9 11.6); Ca-OH-rich waters, and c) Mix-type (9.6 < pH < 11.5); waters arising upon mixing of Mg-type and Ca-type. PHREEQC was used to evaluate the role of mixing in aqueous speciation and the evolution of the saturation index value of different mineral phases. Mineral and textural characterization by X-ray diffraction, Raman spectroscopy and scanning electron microscopy were combined with these hydrogeochemical constraints to determine the factors controlling mineralogical and textural diversity in the system. In Ca-type waters, uptake of CO2 during the exposure of the fluids to the atmosphere is the predominant precipitation mechanism of CaCO3. High Mg:Ca ratios and high supersaturation rate of CaCO3 favor the growth of aragonite over calcite in mixed fluids. Changes in morphology and texture of aragonite crystals and crystal aggregates indicate the variations in the values of supersaturation and supersaturation rate of CaCO3 in the different water types. Brucite precipitation is common and driven by fluid mixing, while interaction with air-derived CO2 causes its alteration to hydromagnesite. The proximity of gabbroic lithologies appears to affect the presence of Al-bearing layered double hydroxides (LDHs). Furthermore, transformation of nesquehonite to dypingite in Mg-type waters record a

  15. Solubility and precipitation of Fe on reduced TiO{sub 2}(001)

    Energy Technology Data Exchange (ETDEWEB)

    Busiakiewicz, Adam, E-mail: adambus@uni.lodz.pl

    2014-01-01

    The solubility of Fe in reduced rutile TiO{sub 2} crystals and the followed precipitation on the (001) surface have been studied using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) in ultra-high vacuum. The first step includes dissolving Fe in reduced TiO{sub 2} at 1073 K by the means of thermal diffusion and as a result the saturated solid solution is formed. Then, it undergoes fast cooling which leads to obtaining a supersaturated solid solution. When this supersaturated crystal is annealed at low temperatures of about 500 K, Fe starts to precipitate on the (001) surface forming spherical Fe-containing nanoparticles. The fast migration of Fe cations to the surface and their precipitation at relatively low temperatures are caused by high diffusion anisotropy and the reduction of the TiO{sub 2}. At about 900 K, the size of nanoparticles increases and they are transformed into nanocrystals with clearly visible facets. Simultaneously, the number of the nanocrystals substantially decreases. The partial oxidation of Fe is also observed around 900 K, which is related to strong metal support interaction between Fe and reduced TiO{sub 2}(001). The XPS and STM results suggest that the nanocrystals are mostly composed of mixed Fe/Ti oxides like FeTiO{sub 3} of ilmenite structure. Above 973 K, the nanocrystals disappear which is explained by the restored solubility of Fe cations in the reduced TiO{sub 2}. The process of the nanoparticle precipitation at lower temperatures is repeatable and the precipitation and disappearance of Fe-containing nanocrystals on TiO{sub 2}(001) are also a fully reversible phenomenon easily controlled by annealing temperature. - Highlights: • The supersaturated solid solution of Fe in TiO{sub 2}(001) is obtained at 1073 K. • Fe precipitates forming nanoparticles above 500 K and nanocrystals above 900 K. • Nanocrystals are ascribed to formation of FeTiO{sub 3} compound.

  16. Biomass Burning Organic Aerosol as a Modulator of Droplet Number in the Southern Atlantic

    Science.gov (United States)

    Kacarab, M.; Howell, S. G.; Small Griswold, J. D.; Thornhill, K. L., II; Wood, R.; Redemann, J.; Nenes, A.

    2017-12-01

    Aerosols play a significant yet highly variable role in local and global air quality and climate. They act as cloud condensation nuclei (CCN) and both scatter and absorb radiation, lending a large source of uncertainty to climate predictions. Biomass burning organic aerosol (BBOA) can drastically elevate CCN concentrations, but the response in cloud droplet number may be suppressed or even reversed due to low supersaturations that develop from strong competition for water vapor. Constraining droplet response to BBOA is a key factor to understanding aerosol-cloud interactions. The southeastern Atlantic (SEA) cloud deck off the west coast of central Africa is a prime opportunity to study these cloud-BBOA interactions for marine stratocumulus as during winter in the southern hemisphere the SEA cloud deck is overlain by a large, optically thick BBOA plume. The NASA ObseRvations of Aerosols above Clouds and their intEractionS (ORACLES) study focuses on increasing the understanding of how these BBOA affect the SEA cloud deck. Measurements of CCN concentration, aerosol size distribution and composition, updraft velocities, and cloud droplet number in and around the SEA cloud deck and associated BBOA plume were taken aboard the NASA P-3 aircraft during the first two years of the ORACLES campaign in September 2016 and August 2017. Here we evaluate the predicted and observed droplet number sensitivity to the aerosol fluctuations and quantify, using the data, the drivers of droplet number variability (vertical velocity or aerosol properties) as a function of biomass burning plume characteristics. Over the course of the campaign, different levels of BBOA influence in the marine boundary layer (MBL) were observed, allowing for comparison of cloud droplet number, hygroscopicity parameter (κ), and maximum in-cloud supersaturation over a range of "clean" and "dirty" conditions. Droplet number sensitivity to aerosol concentration, κ, and vertical updraft velocities are also

  17. Explicit Cloud Nucleation from Arbitrary Mixtures of Aerosol Types and Sizes Using an Ultra-Efficient In-Line Aerosol Bin Model in High-Resolution Simulations of Hurricanes

    Science.gov (United States)

    Walko, R. L.; Ashby, T.; Cotton, W. R.

    2017-12-01

    The fundamental role of atmospheric aerosols in the process of cloud droplet nucleation is well known, and there is ample evidence that the concentration, size, and chemistry of aerosols can strongly influence microphysical, thermodynamic, and ultimately dynamic properties and evolution of clouds and convective systems. With the increasing availability of observation- and model-based environmental representations of different types of anthropogenic and natural aerosols, there is increasing need for models to be able to represent which aerosols nucleate and which do not in supersaturated conditions. However, this is a very complex process that involves competition for water vapor between multiple aerosol species (chemistries) and different aerosol sizes within each species. Attempts have been made to parameterize the nucleation properties of mixtures of different aerosol species, but it is very difficult or impossible to represent all possible mixtures that may occur in practice. As part of a modeling study of the impact of anthropogenic and natural aerosols on hurricanes, we developed an ultra-efficient aerosol bin model to represent nucleation in a high-resolution atmospheric model that explicitly represents cloud- and subcloud-scale vertical motion. The bin model is activated at any time and location in a simulation where supersaturation occurs and is potentially capable of activating new cloud droplets. The bins are populated from the aerosol species that are present at the given time and location and by multiple sizes from each aerosol species according to a characteristic size distribution, and the chemistry of each species is represented by its absorption or adsorption characteristics. The bin model is integrated in time increments that are smaller than that of the atmospheric model in order to temporally resolve the peak supersaturation, which determines the total nucleated number. Even though on the order of 100 bins are typically utilized, this leads only

  18. Studies of turbulent round jets through experimentation, simulation, and modeling

    Science.gov (United States)

    Keedy, Ryan

    This thesis studies the physics of the turbulent round jet. In particular, it focuses on three different problems that have the turbulent round jet as their base flow. The first part of this thesis examines a compressible turbulent round jet at its sonic condition. We investigate the shearing effect such a jet has when impinging on a solid surface that is perpendicular to the flow direction. We report on experiments to evaluate the jet's ability to remove different types of explosive particles from a glass surface. Theoretical analysis revealed trends and enabled modeling to improve the predictability of particle removal for various jet conditions. The second part of thesis aims at developing a non-intrusive measurement technique for free-shear turbulent flows in nature. Most turbulent jet investigations in the literature, both in the laboratory and in the field, required specialized intrusive instrumentation and/or complex optical setups. There are many situations in naturally-occurring flows where the environment may prove too hostile or remote for existing instrumentation. We have developed a methodology for analyzing video of the exterior of a naturally-occurring flow and calculating the flow velocity. We found that the presence of viscosity gradients affects the velocity analysis. While these effects produce consistent, predictable changes, we became interested in the mechanism by which the viscosity gradients affect the mixing and development of the turbulent round jet. We conducted a stability analysis of the axisymmetric jet when a viscosity gradient is present. Finally, the third problem addressed in this thesis is the growth of liquid droplets by condensation in a turbulent round jet. A vapor-saturated turbulent jet issues into a cold, dry environment. The resulting mixing produces highly inhomogeneous regions of supersaturation, where droplets grow and evaporate. Non-linear interactions between the droplet growth rate and the supersaturation field make

  19. Graphite crystals grown within electromagnetically levitated metallic droplets

    International Nuclear Information System (INIS)

    Amini, Shaahin; Kalaantari, Haamun; Mojgani, Sasan; Abbaschian, Reza

    2012-01-01

    Various graphite morphologies were observed to grow within the electromagnetically levitated nickel–carbon melts, including primary flakes and spheres, curved surface graphite and eutectic flakes, as well as engulfed and entrapped particles. As the supersaturated metallic solutions were cooled within the electromagnetic (EM) levitation coil, the primary graphite flakes and spheres formed and accumulated near the periphery of the droplet due to EM circulation. The primary graphite islands, moreover, nucleated and grew on the droplet surface which eventually formed a macroscopic curved graphite crystal covering the entire liquid. Upon further cooling, the liquid surrounding the primary graphite went under a coupled eutectic reaction while the liquid in the center formed a divorced eutectic due to EM mixing. This brought about the formation of graphite fine flakes and agglomerated particles close to the surface and in the center of the droplet, respectively. The graphite morphologies, growth mechanisms, defects, irregularities and growth instabilities were interpreted with detailed optical and scanning electron microscopies.

  20. Atmospheric ice nuclei: No detectable effects from a coal-fired powerplant plume

    International Nuclear Information System (INIS)

    Schnell, R.C.; Van Valin, C.C.; Pueschel, R.F.

    1976-01-01

    Atmospheric ice nuclei were measured upwind and within the effluent plume of a coalfired powerplant during February 1976. Aerosol particles were captured on two types of membrane filters (Nuclepore and Millipore) and processed in two different thermal diffusion chambers, one calibrated to produce a 100% saturation relative to water and the other to produce a slight supersaturation relative to water. Consequently, the ice nuclei measured were active in the modes that are dominant in diffusion chambers, viz., deposition nucleation and condensation-followed-by-freezing nucleation. Results indicate that plume particles do not act as ice nuclei between the temperatures of -10 and -20degreeC, nor do combustion gases in the plume deactivate natural ice nuclei