WorldWideScience

Sample records for superplastic mechanical behavior

  1. The Neighbor Switching Mechanism of Superplastic Deformation

    Science.gov (United States)

    Sherwood, David John

    At one time the notion that crystal plasticity resulted from the simultaneous motion of lattice planes over one another was entertained. This idea was displaced by the concept that relative atomic motions occur sequentially when dislocations move through the crystal. Similarly, McLean suggested that grains switch neighbors sequentially in a polycrystalline material undergoing superplastic flow. Morral and Ashby observed that the neighbor switching reactions in a froth occurred at irregular cells, and that these irregularities were associated with dislocations in the cellular array. They introduced cellular dislocation glide as a model for superplastic flow, and suggested that if the concentration of these defects required to make the froth flow increased with the flow stress, then the froth would have a non-Newtonian viscosity, like many superplastic materials. Cahn and Padawer pointed out that cellular dislocation climb was used as a model for grain growth by Hillert; this process results in the elimination of cells from the froth. Sato, Kuribayashi and Horiuchi used cellular dislocation climb to model both grain motion and the deformation-enhanced grain growth which can accompany superplastic flow. Here, the neighbor switching mechanism of superplastic deformation is developed as a topic in dislocation theory. The compatibility theory of dislocations is developed at an introductory level with exterior calculus. "Compatibility" of a cellular array corresponds to statements, a la Rivier, about the distribution of edges amongst the cells. The theory of dislocation motion, or crystal plasticity, is also developed with exterior calculus. Morral and Ashby's constitutive relationship for superplastic flow is analyzed and two models for deformation-enhanced grain growth are developed. The constitutive relationship and grain growth kinetics for superplastic flow are illustrated by modelling the behavior exhibited by single phase (Sn-1% Bi) and quasi -single phase (7475 Al

  2. Superplasticity

    Science.gov (United States)

    Rouxel, T.

    Permanent deformation of a material through flow, e.g., creep, viscosity, viscoplasticity, gets easier as the grain size in the material gets smaller. In the most spectacular cases, relative extensions greater than 100% (nominal strain > 1) can be obtained at relatively low temperatures compared with the temperatures usually required to observe creep in materials: this is the effect known as superplasticity. Typically, superplasticity only occurs in fine-grained dense materials (grains 0.5Tmelting, when such a temperature has any meaning (materials sometimes decomposing before melting). Even in ancient times, smiths made good use of this remarkable property to forge tough, hard steel blades. The steel used by the Persians at the time of the crusades, and by Saladin's armies, or Damascus steel, is one of the greatest achievements of metallurgy and the forge, where the choice of alloy at the outset (in this case a steel with a high carbon content, known as wootz, from India) and the masterly control of a judicious forging cycle (the thickness of the initial ingot was first reduced by a factor of about 10 by hammering) produced a material with ideal fine microstructure for making sharp cutting blades that could also resist mechanical shocks. Figure 9.1 illustrates the phenomenon of superplastic behaviour for a steel containing 1.6% carbon (ultrahigh carbon steel), with a fine microstructure, close to Damascus steel, which seems to have been produced first in India in the fourth century BC.

  3. Modeling microstructural evolution and the mechanical response of superplastic materials

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Syn, C.K.; Cadwell, K.L.; Preuss, C.S.

    1993-01-11

    A model has been developed that accounts for grain growth during, superplastic flow and its subsequent influence on stress-strain-strain rate behavior. These studies are experimentally based and have involved two different types of superplastic materials -- a quasi-single phase metal (Coronze 638) and a microduplex metal (ultrahigh-carbon steel - UHCS). In both materials the kinetics of strain-enhanced grain growth have been studied as a function of strain, strain rate and temperature. An equation for the rate of grain growth has been developed that incorporates the influence of temperature. The evolution of the grain size distribution during superplastic deformation has also been investigated. Our model integrates grain growth laws derived from these studies with two mechanism based, rate dependent constitutive laws to predict the stress-strainstrain rate behavior of materials during superplastic deformation. The influence of crain size distribution and its evolution with strain and strain rate on the stress-strain-strain rate behavior has been represented through the use of distributed parameters. The model can capture the stress-strain-strain rate behavior over a wide range of strains and strain rates with a single set of parameters. Many subtle features of the mechanical response of these materials can be adequately predicted.

  4. Microstructure Evolution and Mechanical Behavior of Ultrafine Ti-6Al-4V During Low Temperature Superplastic Deformation (Postprint)

    Science.gov (United States)

    2016-09-13

    alloys , Russ. J. Non- Ferrous Met. 56 (2016) 437e441. [40] B.B. Straumal, X. Sauvage, B. Baretzky, A.A. Mazilkin, R.Z. Valiev, Grain boundary films in...dynamic coarsening response and plastic-flow behavior of the alloy with a mean size of α (sub)grains and β particles of 0.1–0.4 μm were determined via a...Very limited cavitation was observed in the specimens after superplastic deformation under optimal conditions. 15. SUBJECT TERMS Titanium alloy ; Low

  5. Superplasticity and superplastic forming of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Nieh, T.G.; Wadsworth, J.

    1994-05-01

    Recent advances in the basic understanding of superplasticity and superplastic forming of ceramics are reviewed. Deformation mechanisms as well as microstructural requirements for superplastic ceramics are discussed. Microstructural effects, such as grain size, dynamic grain growth, and the presence of grain-boundary liquid phases, on the superplastic properties and deformation behavior of ceramics are addressed. Superplastic forming, and particularly biaxial gas-pressure forming, of several ceramics, including YTZP and Al{sub 2}O{sub 3}/YTZP, is also presented. The forming behavior of these ceramics is correlated with that obtained from conventional uniaxial tests. Examples of concurrent superplastic forming and diffusion bonding (SPF/DB) of metal-ceramic hybrids are given.

  6. Superplastic behavior of coarse-grained aluminum alloys

    NARCIS (Netherlands)

    Chezan, AR; De Hosson, JTM

    2005-01-01

    In this paper we concentrate on the superplastic behavior and the microstructural evolution of two coarse-grained Al alloys: Al-4.4w/oMg and Al-4.4w/oMg-0.4w/oCu. The values for the strain rate sensitivity index and activation energy suggest that solute drag on dislocation motion is an important phe

  7. Micrograin Superplasticity: Characteristics and Utilization

    Directory of Open Access Journals (Sweden)

    Farghalli A. Mohamed

    2011-07-01

    Full Text Available Micrograin Superplasticity refers to the ability of fine-grained materials (1 µm < d < 10 μm, where d is the grain size to exhibit extensive neck-free elongations during deformation at elevated temperatures. Over the past three decades, good progress has been made in rationalizing this phenomenon. The present paper provides a brief review on this progress in several areas that have been related to: (a the mechanical characteristics of micrograin superplasticity and their origin; (b the effect of impurity content and type on deformation behavior, boundary sliding, and cavitation during superplastic deformation; (c the formation of cavity stringers; (d dislocation activities and role during superplastic flow; and (e the utilization of superplasticity.

  8. Microstructure evolution and fracture behavior in superplastic deformation of hot-rolled AZ31 Mg alloy sheet

    Energy Technology Data Exchange (ETDEWEB)

    Yin, D.L.; Zhang, K.F.; Wang, G.F. [School of Material Science and Technology, Harbin Inst. of Tech. (China)

    2005-07-01

    Fine-grained AZ31 magnesium alloy sheets were prepared through hot rolling process. The superplastic properties of hot-rolled AZ31 Mg alloy was examined by uniaxial tensile tests at a temperature range 250{proportional_to}450 C and strain rate range 0.7 x 10{sup -3}{proportional_to}1.4 x 10{sup -1} s{sup -1}. Optical and scanning electronic microscope (SEM) were used to observe the microstructure evolution and fracture behavior in superplastic deformation of AZ31 Mg alloy and the values of deformation activation energy at various temperatures were calculated. It is demonstrated that, the hot-rolled AZ31 alloy begins to exhibit superplasticity from 300 C and a maximum elongation of 362.5% is obtained at 400 C and 0.7 x 10{sup -3} s{sup -1}. In the temperature range 300{proportional_to}400 C, the dominant superplastic deformation mechanism is grain boundary sliding (GBS) controlled by grain boundary diffusion and the influence of temperature on the fracture behavior of AZ31 Mg alloy is characterized by the change from dimple-aggregating type to intercrystalline one. (orig.)

  9. Superplastic behavior of hot extruded gamma TiAl (Mo, Si) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, J.A.; Carsi, M.; Ruano, O.A. [Dept. of Physical Metallurgy, Centro Nacional de Investigaciones Metalurgicas, C.S.I.C., Madrid (Spain); Frommeyer, G.; Knippscher, S. [Dept. of Materials Engineering, Max Planck Inst. fuer Eisenforschung, Duesseldorf (Germany); Wittig, J. [Dept. of Materials Science and Engineering, Vanderbilt Univ., Nashville (United States)

    2003-07-01

    Superplastic behavior of hot extruded intermetallic Ti-46Al-1.7(Mo,Si) (at%) alloys was studied by stress change tests in compression and tensile tests at temperatures ranging from 700 to 1050 C. The material produced by arc melting exhibited a structure of coarse lamellar grains in the as-cast condition that transforms to an equiaxic near {gamma} microstructure after processing by hot extrusion at 1250 C. This microstructure consists of zones of {gamma} grains finer than 1 {mu}m and band like regions with coarser grains, ranging from 5 to 20 {mu}m. In addition to {gamma} grains, a volume fraction of more than 20 vol% of {alpha}{sub 2}-Ti{sub 3}Al particles finely dispersed are also present in the fine-grained zones. Compression tests of the extruded material at stresses ranging from 4 to 825 MPa showed values of the strain-rate-sensitivity exponent near 0.5 at low stresses and/or high temperatures. The microstructure in the fine-grained areas remains essentially constant during deformation. TEM analysis of deformed samples in this regime leads to relate grain boundary sliding as the mechanism controlling the deformation process. High elongation to failure, characteristic of superplasticity, was achieved at 975 and 1050 C at an initial strain rate of 4.6 x 10{sup -4} and 4.6 x 10{sup -3} s{sup -1}. (orig.)

  10. Thinning Behavior Simulations in Superplastic Forming of Friction Stir Processed Titanium 6Al-4V

    Science.gov (United States)

    Edwards, Paul D.; Sanders, Daniel G.; Ramulu, M.; Grant, Glenn; Trapp, Tim; Comley, Peter

    2010-06-01

    A study was undertaken to simulate the thinning behavior of titanium 6Al-4V alloy sheet during Superplastic Forming and to evaluate the feasibility of controlling thinning in areas of interest with Friction Stir Processing (FSP) of the material. The commercially available Finite Element Analysis software ABAQUS was used to execute these simulations. Material properties of the parent sheet and the Friction Stir Processed regions input into the models were determined experimentally by elevated temperature tensile testing. The results of these simulations were compared to experimental test results via Superplastically Forming representative aerospace parts and analytical computations for validation. It was found that numerical simulations can be used to predict the thin-out characteristics of superplastically formed titanium parts and the thin-out can be controlled in desired areas by FSP, locally, prior to forming.

  11. Effect of Post-Rolling after ECAP on Superplastic Behavior of Commercial Al-Mg Alloy

    Institute of Scientific and Technical Information of China (English)

    Dong Hyuk Shin; Byung Du Ahn; Hyun Soo; Woo Kyeom Kim; Kyung-Tae Park

    2004-01-01

    A commercial Al-Mg alloy was subjected to equal channel angular pressing of 4 passes with and without postrolling, and the effects of post-rolling on the deformation characteristics of the alloy at 723 K were examined. Post-rolling was found to influence the deformation behavior significantly. The deformation behavior of the alloy processed only by equal channel angular pressing was characterized by (a) localized deformation indicated by severe surface prominence and depression, (b) the strain rate sensitivity of 0.33, and (c) moderate high strain rate superplastic elongations. By contrast, that of the alloy processed by equal channel angular pressing and post-rolling (70 % thickness reduction) was manifested by (a) uniform deformation associated with grain boundary sliding throughout the sample, (b) a sigmoidal behavior showing the strain rate sensitivity of 0.45 at the intermediate strain rates in the logarithmic stress-strain rate curve, and (c) very large high strain rate superplastic elongations.

  12. Effect of state of stress on the cavitation behavior of Al 5083 superplastic material

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Namas; Kalu, Peter [Dept. of Mech. Eng., Florida State Univ., Tallahassee, FL (United States); Khraisheh, Marwan K. [Dept. of MEch. Eng., Univ. of Kentucky, Lexington, KY (United States)

    2005-07-01

    In this paper we address the controversial issue of nucleation of cavities in Al 5083 alloys and their subsequent growth to coalescence and failure. We focus on the origin and growth of cavities not only during the primary processing of Al 5083 in sheet forms, but also during the manufacture of these sheets into SPF (superplastic forming) components. Experimental observations of pre-existing cavities in this alloy are made using optical and electron microscopy. The role of sheet rolling direction, and the state of stress during superplastic deformation on the cavity formation and coalescence are also discussed. The effect of the state of stress (uniaxial, plane strain, balanced biaxial, and tri-axial) on the growth characteristics of cavitation is also examined. It is found that the uniaxial model based cavitation cannot directly be extended to predict the behavior of more complex stress states, unless great care is taken to identify the right strain measure for the mapping process. (orig.)

  13. Maintaining the mechanical strength of La-, Y-co-substituted zirconia porous ceramics through the superplastically foaming method

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Akira, E-mail: kishim-a@cc.okayama-u.ac.jp; Okada, Masanori; Teranishi, Takashi; Hayashi, Hidetaka

    2013-10-01

    The superplastically foaming method was adopted to make closed-pore inclusive zirconia-based ceramics. Lanthanum oxide was added to monoclinic or tetragonal yttria-stabilised zirconia to reduce the thermal conductivity of the matrix. Sintering and superplastic deformation led to a solid solution and transformation to the cubic phase. The resulting superplastically foamed porous ceramics having a porosity of 45% had only 40% of the thermal conductivity of the fully densified ceramics having the same composition. This value was comparable to that of conventionally fabricated porous ceramics with the same composition and porosity. The superplastically foamed ceramics had 60%, while conventionally fabricated ceramics had only 20%, of the mechanical strength of the fully dense ceramics.

  14. High-strain-rate superplasticity in oxide ceramics: a trial of microstructural design based on creep-cavitation mechanisms

    Institute of Scientific and Technical Information of China (English)

    Keijiro HIRAGA; Byung-Nam KIM; Koji MORITA; Hidehiro YOSHIDA; Yoshio SAKKA; Masaaki TABUCHI

    2011-01-01

    From existing knowledge about high-temperature cavitation mechanisms, necessary conditions were discussed for the suppression of cavitation failure during superplastic deformation in ceramic materials. The discussion, where special attention was placed on the relaxation of stress concentrations during grain-boundary sliding and cavity nucleation and growth, leaded to a conclusion that cavitation failure could be retarded by the simultaneous controlling of the initial grain size, the number of residual defects,diffusivity, dynamic grain growth and the homogeneity of microstructure. On the basis of this conclusion, high-strain-rate superplasticity (defined as superplasticity at a strain rate higher than 0.01 s-1) could be intentionally attained in some oxide ceramic materials. This was shown in tetragonal zirconia and composites consisting of zirconia, α-alumina and a spinel phase.

  15. Creep study of mechanisms involved in low-temperature superplasticity of UFG Ti-6Al-4V processed by SPD

    Energy Technology Data Exchange (ETDEWEB)

    Kral, Petr, E-mail: pkral@ipm.cz [Institute of Physics of Materials, ASCR, Zizkova 22, CZ -61662 Brno (Czech Republic); CEITEC – IPM ASCR, v.v.i., Zizkova 22, CZ-61662 Brno (Czech Republic); Dvorak, Jiri [Institute of Physics of Materials, ASCR, Zizkova 22, CZ -61662 Brno (Czech Republic); CEITEC – IPM ASCR, v.v.i., Zizkova 22, CZ-61662 Brno (Czech Republic); Blum, Wolfgang [Inst. f. Werkstoffwissenschaften, University of Erlangen-Nürnberg, D-91058 Erlangen (Germany); Kudryavtsev, Egor; Zherebtsov, Sergey; Salishchev, Gennady [Belgorod State University, Laboratory of Bulk Nanostructured Materials, Pobeda Str. 85, 308015 Belgorod (Russian Federation); Kvapilova, Marie; Sklenicka, Vaclav [Institute of Physics of Materials, ASCR, Zizkova 22, CZ -61662 Brno (Czech Republic); CEITEC – IPM ASCR, v.v.i., Zizkova 22, CZ-61662 Brno (Czech Republic)

    2016-06-15

    The deformation kinetics of ultrafine-grained Ti-6Al-4V with mean (sub)grain size about 150 nm (produced by isothermal multiaxial forging) and superplastic properties at the relatively low temperature of 873 K was investigated in compression and tension over a large range of strain rates from 10{sup −7} to 10{sup −2} s{sup −1}. Electron microscopic observations showed that the grains coarsen during deformation towards the quasi-stationary spacing w{sub qs} of strain induced boundaries. In spite of the grain coarsening the grains were generally smaller than w{sub qs} allowing high-angle boundaries to dominate the quasi-stationary strength. Texture measurements indicate that dislocation glide plays a large role in deformation. Glide in this alloy is significantly influenced by solid solution strengthening leading to a stress sensitivity of strain rate of n = 3. The present ultrafine-grained Ti alloy displays a stress sensitivity exponent n = 2 over an extended stress range where its superplastic behavior is optimal. While the deformation kinetics of present ultrafine-grained Ti alloy can be roughly explained by the traditional formula for superplastic flow, the significant discrepancy to the measured values suggests that solid solution strengthening must be taken into account to get a complete insight. - Highlights: • The UFG Ti-6Al-4V alloy behaves superplastically at low temperature of 873 K. • Grain coarsening at low stresses limits superplasticity of UFG Ti alloy. • Solute strengthening plays an important role in low-temperature superplasticity. • Acceleration of creep in UFG Ti alloy is caused by processes related to hab.

  16. Superplastic Deformation Behavior of Hot-rolled AZ31 Magnesium Alloy Sheet at Elevated Temperatures

    Institute of Scientific and Technical Information of China (English)

    ZHANG Kaifeng; YIN Deliang; WANG Guofeng; HAN Wenbo

    2006-01-01

    Uniaxial tensile tests were carried out in the temperature range of 250-450 ℃ and the strain rate range of 0.7×10-3-1.4×10-1s-1 to evaluate the superplasticity of AZ31 Mg alloy. The threshold stress which characterizes the difficulty for grain boundary sliding was calculated at various temperatures. The surface relieves of superplastically deformed specimens were observed by using a scanning electronic microscope (SEM). Results show that, at the temperature of 400 ℃ and strain rate of 0.7×10-3 s-1, the strain rate sensitivity exponent, i e, m value reaches 0.47 and the maximum elongation of 362.5% is achieved. Grain boundary sliding (GBS) is the primary deformation mechanism and characterized by a pronounced improvement in the homogeneity with increasing temperatures. A large number of filaments were formed at the end of deformation and intergranular cavities were produced with the necking and fracture of filaments. Finally, the model for the formation of intergranular cavities was proposed.

  17. Deformation and reconstruction mechanisms in coarse-grained superplastic Al-Mg alloys

    NARCIS (Netherlands)

    Soer, W. A.; Chezan, A. R.; De Hosson, J. Th. M.

    2006-01-01

    This paper concentrates on the superplastic response of fine-grained and coarse-grained Al-Mg alloys under uniaxial tension. To identify the main characteristics of superplastic deformation and to determine the optimum deformation parameters, the microstructure and dislocation substructure of the al

  18. Materials issues in some advanced forming techniques, including superplasticity

    Energy Technology Data Exchange (ETDEWEB)

    Wadsworth, J.; Henshall, G.A.; Nieh, T.G. [and others

    1995-08-22

    From mechanics and macroscopic viewpoints, the sensitivity of the flow stress of a material to the strain rate, i.e. the strain rate sensitivity (m), governs the development of neck formation and therefore has a strong influence on the tensile ductility and hence formability of materials. Values of strain rate sensitivity range from unity, for the case of Newtonian viscous materials, to less than 0.1 for some dispersion strengthened alloys. Intermediate values of m = 0.5 are associated with classical superplastic materials which contain very fine grain sizes following specialized processing. An overview is given of the influence of strain rate sensitivity on tensile ductility and of the various materials groups that can exhibit high values of strain rate sensitivity. Recent examples of enhanced formability (or extended tensile ductility) in specific regimes between m = 1 and m = 0.3 are described, and potential areas for commercial exploitation are noted. These examples include: internal stress superplasticity, superplastic ceramics, superplastic intermetallics, superplastic laminated composites, superplastic behavior over six orders of magnitude of strain rate in a range of aluminum-based alloys and composites, and enhanced ductility in Al-Mg alloys that require no special processing for microstructural development.

  19. Superplasticity in ceramic and metal matrix composites and the role of grain size, segregation, interfaces, and second phase morphology

    Energy Technology Data Exchange (ETDEWEB)

    Wadsworth, J.; Nieh, T.G.

    1992-10-01

    Structural ceramics and ceramic composites have been shown to exhibit superplasticity in recent times and this discovery has attracted tremendous interest. Although the number of ceramics exhibits superplasticity is now quite large, there are gaps in understanding the requirements for superplasticity in ceramics. Also, superplastic behavior at very high strain rates (1 s{sup {minus}1}) in metallic-based materials is an area of increasing research. In this case, the phenomenon has been observed quite extensively in aluminum alloy-based metal matrix composites and mechanically alloyed aluminum- and nickel-based materials. Again, the details of the structural requirements of this phenomenon are not yet understood. In the present paper, experimental results on superplasticity in ceramic-based materials and on high strain rate behavior in metallic-based materials are presented. The roles of grain size, grain boundary and interface chemistry, and second phase morphology and compatibility with the matrix material will be emphasized.

  20. Superplastic behavior of silica nanowires obtained by direct patterning of silsesquioxane-based precursors

    Science.gov (United States)

    Yılmaz, Mustafa; Wollschläger, Nicole; Nasr Esfahani, Mohammad; Österle, Werner; Leblebici, Yusuf; Erdem Alaca, B.

    2017-03-01

    Silica nanowires spanning 10 μm-deep trenches are fabricated from different types of silsesquioxane-based precursors by direct e-beam patterning on silicon followed by release through deep reactive ion etching. Nanowire aspect ratios as large as 150 are achieved with a critical dimension of about 50 nm and nearly rectangular cross-sections. In situ bending tests are carried out inside a scanning electron microscope, where the etch depth of 10 μ {{m}} provides sufficient space for deformation. Silica NWs are indeed observed to exhibit superplastic behavior without fracture with deflections reaching the full etch depth, about two orders of magnitude larger than the nanowire thickness. A large-deformation elastic bending model is utilized for predicting the deviation from the elastic behavior. The results of forty different tests indicate a critical stress level of 0.1–0.4 GPa for the onset of plasticity. The study hints at the possibility of fabricating silica nanowires in a monolithic fashion through direct e-beam patterning of silsesquioxane-based resins. The fabrication technology is compatible with semiconductor manufacturing and provides silica nanowires with a very good structural integrity.

  1. Effect of superplastic forming exposure on fatigue crack propagation behavior of Ti-6Al-4V alloy

    Science.gov (United States)

    Jeong, Daeho; Kwon, Yongnam; Goto, Masahiro; Kim, Sangshik

    2016-09-01

    The effect of superplastic forming (SPF) exposure on the ɛ (strain)-N (number of cycles to failure) fatigue and fatigue crack propagation (FCP) behaviors of Ti-6Al-4V (Ti64) alloy was examined at 298 and 473 K. To simulate the thermal exposure during superplastic forming process, the mill-annealed Ti64 alloy sheet was heated in the vacuum chamber with the pre-determined temperature profile. Notable microstructural change during the SPF exposure included the shape of transformed β phase from fine and round particles in the as-received specimen to coarse angular particles in the as-exposed specimen. The effective grain size tended to increase with the exposure, enhancing the slip reversibility and the resistance to FCP. However, the crack hindering effect by fine, particle-like β phase became weak with the exposure, offseting the beneficial effect associated with the increment of effective grain size. The effect of SPF exposure on ɛ-N fatigue and FCP behavior of mill-annealed Ti64 alloy was therefore marginal, excluding the effect of α-case (the oxygen-enriched phase) on the surface.

  2. Effect of grain boundary microstructure on superplastic deformation of Al-Li-Cu-Mg-Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, S.; Yoshimura, T.; Tsurekawa, S.; Watanabe, T. [Tohoku Univ., Sendai (Japan). Dept. of Machine Intelligence and Syst. Eng.

    1999-07-01

    It is common knowledge that grain boundary sliding (GBS) is the most important deformation mechanism for superplastic deformation. In this investigation, Al-Li-Cu-Mg-Zr alloys having two distinct microstructures were produced to examine the effect of grain boundary (GB) microstructure on superplastic deformation. The effective GB microstructure to develop the superplastic deformation is discussed. Specimens with homogeneous and {l_brace}011{r_brace} textured grains, including high frequency of low-angle GBs showed superplastic behavior. The texture was weakened and most of low-angle GBs were changed into random GBs during deformation. Mean grain size increased slightly with deformation. On the other hand, specimens with heterogeneous and randomly oriented grains, with a high frequency of random GBs resulted in nonsuperplastic behavior. This microstructure was essentially unchanged by deformation. Extensive cavitation at GB triple junctions was also observed after superplastic deformation. In particular, cavities were most likely to form at the triple junctions composed of two or more random GBs. We will discuss the development of superplasticity through the optimization of GB microstructures in polycrystalline materials. (orig.)

  3. Influence of carbon content on superplastic behavior in Ti- and B-added Cr-Mo steels

    Energy Technology Data Exchange (ETDEWEB)

    Aramaki, M.; Higashida, K.; Onodera, R. [Kyushu Univ., Fukuoka (Japan). Dept. of Materials Science and Engineering

    1999-05-01

    Superplasticity has been investigated in various ferrous alloys and steels. However, in these materials, especially in hypoeutectoid steels below the A{sub 1} temperature, the relationship between the content of carbon and elongation to failure is not obvious. In the present investigation, the influence of carbon content on superplastic behavior is studied using carbon steels based on Cr-Mo steel. In order to obtain the fine grain structure, a small amount of Ti and B were added and the content of carbon was controlled to be in the range from 0.24 to 0.83 pct. The largest value of elongation to failure was 644 pct, which was obtained for a specimen containing 0.58 pct carbon. The temperature and strain rate at which the maximum value was obtained were 710 C and 5 {times} 10{sup {minus}4} s{sup {minus}1}, respectively. Of all the specimens, this specimen had the minimum grain size. Moreover, the area fraction of carbide took the maximum value at the temperature where the largest elongation value was obtained. These results show that the addition of carbon has an effect on grain refinement by the formation of carbide, but excess amounts of carbon (>0.6 pct) bring about premature failure because of the resulting coarse microstructure and larger carbides.

  4. Mechanical analysis of temperature impact on stability during superplastic tensile deformation

    Institute of Scientific and Technical Information of China (English)

    SONG; Yuquan; GUAN; Zhiping; WANG; Minghui; SONG; Jiawang

    2006-01-01

    Based on state equation that stress is the function of strain, strain-rate and temperature, the paper establishes the differential constitutive equation used for analyzing load-stability and the variational constitutive equation used for analyzing geometry-stability during superplastic tensile deformation, which contain strain hardening index, strain-rate sensitivity index, temperature sensitivity index introducted for the first time and temperature undulation index introducted for the first time in the paper. And then, based on the universal condition of plastic elementary theory, the paper analyzes load-stability and geometry-stability under continuously rising temperature and under the non-uniform temperature along the axes of specimen respectively. The results prove the impact of continuously rising speed and non-uniform value of temperature on deformation stability is that the faster temperature rises and the more non-uniform temperature is, the smaller the corresponding uniform strain of load-stability and geometry-stability are; strain hardening index is the necessary condition of stability during superplastic tensile deformation, and geometry-instability will not happen when load-instability occurs, but happen when uniform deformation has lasted after load-instability; in the superplastic temperature field, constant temperature is not necessary condition of superplasticitiy, but during the deformation, the slower temperature rises and the more uniform temperature is, the more stable deformation is.

  5. Formability and cavitation behavior of superplastic AA5083 aluminum alloy under biaxial tension

    Institute of Scientific and Technical Information of China (English)

    LUO Ying-bing; LI Da-yong; PENG Ying-hong

    2006-01-01

    The superplastic forming potential of two fine-grained 5083 aluminum alloys were studied under biaxial tension using a pneumatic bulge test. Experiments were performed at temperatures ranging from 475 to 525 ℃ with three different strain paths ranging from equi-biaxial to approaching plane strain. The shape of the forming limited diagram(FLD) is found to be significantly different from FLDs commonly used in room temperature stamping. The effects of temperature on final thickness distribution, dome height and cavitation were investigated for the case of equi-biaxial stretching. Increasing temperature in free bulge forming can improve the thickness distribution of final parts but have no significant effect on dome height. The results indicate that determination of forming limits in SPF cannot be represented with a simple FLD and additional metrics such as external thinning and internal cavitation needed to determine the SPF potential of a material.

  6. Cryogenic mechanical properties of low density superplastically formable Al-Li alloys

    Science.gov (United States)

    Verzasconi, S. L.; Morris, J. W., Jr.

    1989-01-01

    The aerospace industry is considering the use of low density, superplastically formable (SPF) materials, such as Al-Li alloys in cryogenic tankage. SPF modifications of alloys 8090, 2090, and 2090+In were tested for strength and Kahn tear toughness. The results were compared to those of similar tests of 2219-T87, an alloy currently used in cryogenic tankage, and 2090-T81, a recently studied Al-Li alloy with exceptional cryogenic properties (1-9). With decreasing temperature, all materials showed an increase in strength, while most materials showed an increase in elongation and decrease in Kahn toughness. The indium addition to 2090 increased alloy strength, but did not improve the strength-toughness combination. The fracture mode was predominantly intergranular along small, recrystallized grains, with some transgranular fracture, some ductile rupture, and some delamination on large, unrecrystallized grains.

  7. Mechanical problems of superplastic fill-forming bulge solved by one-dimensional tensile and two-dimensional free bulging constitutive equations

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Because of the strong structural sensitivity of superplasticity, the deformation rule must be affected by stress-state. It is necessary to prove whether one-dimensional tensile constitutive equation can be directly generalized to deal with the two-dimensional mechanical problems or not. In this paper, theoretical results of fill-forming bulge have been derived from both one-dimensional tensile and two-dimensional bulging constitutive equation with variable m value. By comparing theoretical analysis and experimental results made on typical superplastic alloy Zn-wt22%Al, it is shown that one-dimensional tensile constitutive equation cannot be directly generalized to deal with two-dimensional mechanical questions. A method to correct deviation between theoretical and experimental results is also proposed.

  8. Investigation on Superplasticity in SiCp/2024 Cold Rolling Sheet after Heat Treatment

    Institute of Scientific and Technical Information of China (English)

    Bol(u) XIAO; Zongyi MA; Jing BI

    2003-01-01

    High strain rate superplastic deformation behavior of powder metallurgy (PM) processed 17 vol. pct SiCp/2024 Al composite sheet after heat treatment was investigated over a range of temperature from 753 to 833 K. At 813 K,a maximum elongation of 259% was discovered at a strain rate of 10-1 s-1. The activation energy was closed to that for lattice diffusion of Al and increased at temperature upon incipient melting temperature. The mechanism of superplastic deformation for present composites was attributed to lattice diffusion controlled grain boundary sliding.

  9. Forming of superplastic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Wadsworth, J.; Nieh, T.G.

    1994-05-01

    Superplasticity in ceramics has now advanced to the stage that technologically viable superplastic deformation processing can be performed. In this paper, examples of superplastic forming and diffusion bonding of ceramic components are given. Recent work in biaxial gas-pressure forming of several ceramics is provided. These include yttria-stabilized, tetragonal zirconia (YTZP), a 20% alumina/YTZP composite, and silicon. In addition, the concurrent superplastic forming and diffusion bonding of a hybrid ceramic-metal structure are presented. These forming processes offer technological advantages of greater dimensional control and increased variety and complexity of shapes than is possible with conventional ceramic shaping technology.

  10. The effect of composition on the mechanism of continuous recrystallization and superplastic response of aluminum-scandium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, E.L. III

    1993-05-01

    The continuous recrystallization (CRX) appears to be fundamental in Al-Sc because it occurs irrespective of solute composition. It appears to be due to a combination of subgrain coalescence at low strains and incorporation of additional dislocations generated during grain boundary sliding at higher strains when the misorientation has increased sufficiently. Alloying additives such as Mg, Li are more important with respect to deformation after CRX is completed. Mg, and to a lesser extent Li, affect the max m-values (strain-rate sensitivities) in Al-Sc by changing the melting points (mp). Max m- values correlate inversely with mp so that the alloy with the greatest Mg had the highest m-values and lowest mp; the stress is raised at which power-law creep and breakdown occurs. The power-law breakdonw at much lower stresses in Al-0.5Sc and Al-1.2Li-0.5Sc causes the m-value to decrease more rapidly with strain rate. Al alloys for commercial superplastic applications should contain elements that raise the power-law strength so that the m-values are maximized while preserving the post-formed mechanical properties. Refs, figs, tabs.

  11. Superplastic Deformation of TC6 Alloy

    Directory of Open Access Journals (Sweden)

    DING Ling

    2016-12-01

    Full Text Available The superplastic tensile tests of TC6 alloy were conducted in the temperature range of 800-900℃ by using the maximum m value superplasticity deformation (Max m SPD method and the constant strain rate deformation method at the strain rate range of 0.0001-0.1 s-1. The stress-strain curve of the tensile tests was obtained and the microstructure near the fracture were analyzed by metallographic microscope. The result shows that the superplasticity of TC6 alloy is excellent, and the elongation increases first and then decreases with the increase of strain rate or temperature. When the temperature is 850℃ and strain rate is 0.001 s-1 at constant stain rate tensile tests, the elongation reaches up to 993%. However, the elongation using Max m SPD method at 850℃ is 1353%. It is shown that the material can achieve better superplasticity by using Max m SPD tensile compared to constant stain rate tensile under the same temperature. The superplastic deformation of TC6 alloy can enhance the dynamic recrystallization behavior significantly, the dynamic recrystallization behavior is promoted when strain rate and temperature are increased.

  12. Rheology of Superplastic Ceramics

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Constitutive equation of rheglogy describing a phenomenological level of superplastic deformation as functional correlation between tensor components of stress and strain rate has been analyzed for the case of superplastic ceramic flow. Rheological properties of material are taken into account by means of scalar rheological coefficients of shear and volume viscosity, which are functions of temperature, effective stress (or strain rate) and density of material.

  13. Enhanced superplasticity in an extruded high strength Mg–Gd–Y–Zr alloy with Ag addition

    Energy Technology Data Exchange (ETDEWEB)

    Movahedi-Rad, A. [School of Metallurgical and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Mahmudi, R., E-mail: mahmudi@ut.ac.ir [School of Metallurgical and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Wu, G.H.; Jafari Nodooshan, H.R. [National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-03-25

    Highlights: • Addition of 2% Ag to the base alloy refined the microstructure and increased m-value. • Volume fractions of both high angle grain boundaries and particles increased after Ag addition. • Ag-containing alloy had an m-value of 0.51, typical of superplastic materials. • Grain boundary sliding accommodated by lattice diffusion was the dominant deformation mechanism. - Abstract: The effect of 2 wt% Ag addition on the superplastic behavior of an extruded Mg–8.5Gd–2.5Y–0.5Zr (wt%) alloy was investigated by impression testing in the temperature range of 523–598 K. The average sizes of the dynamically recrystallized grains of the Ag-free and Ag-containing alloys were about 8 and 3 μm, respectively. Analysis of electron backscattered diffraction (EBSD) data confirmed the higher fractions of high-angle grain boundaries (HAGBs) in the Ag-containing alloy. The deformation response of this alloy in proper temperature range conforms to regions I, II and III, typical of superplastic deformation behavior. The addition of Ag to the base alloys led to enhanced superplasticity in region II by increasing the strain rate sensitivity (SRS) indices (m-values) from 0.25 to 0.51 and 0.36 to 0.46 at 573 and 598 K, respectively. These high m-values together with the activation energy of 181 kJ/mol suggest that the major mechanism involved in superplastic deformation is grain boundary sliding (GBS) accommodated by lattice diffusion at temperatures above 573 K.

  14. Enhanced foaming of cellular metals by internal stress superplasticity

    Energy Technology Data Exchange (ETDEWEB)

    Kitazono, K.; Sato, E.; Kuribayashi, K. [The Inst. of Space and Astronautical Science, Kanagawa (Japan)

    2004-07-01

    Effects of internal stress superplasticity on solid-state foaming process were examined using Al-8.69Si alloy and pure zinc compacts produced by the powder metallurgical (P/M) route. Isothermal and thermal cycling compression creep behaviors revealed that composite CTE (coefficient of thermal expansion)-mismatch superplasticity was induced in P/M Al-Si alloy, however, no difference was shown in the solid-state foaming. On the other hand, the foaming rate of P/M zinc was enhanced by anisotropic CTE-mismatch superplasticity. The cell morphology of the foamed zinc has anisotropy due to the original powder compact produced by hot-extrusion. (orig.)

  15. Superplastic flow lubricates carbonate faults during earthquake slip

    Science.gov (United States)

    De Paola, Nicola; Holdsworth, Robert; Viti, Cecilia; Collettini, Cristiano; Faoro, Igor; Bullock, Rachael

    2014-05-01

    Tectonic earthquakes are hosted in the shallower portion of crustal fault zones, where fracturing and cataclasis are thought to be the dominant processes during frictional sliding. Aseismic shear in lower crust and lithospheric mantle shear zones is accomplished by crystal plasticity, including superplastic flow acting at low strain rates on ultrafine-grained rocks. Superplasticity has also been observed at high strain rates for a range of nano-phase alloys and ceramics, and could potentially occur in fine-grained geological materials, if deformed at high strain rates and temperatures. We performed a set of displacement-controlled experiments to explore whether superplastic flow can effectively weaken faults, and facilitate earthquake propagation. The experiments were performed on fine-grained synthetic gouges (63 lubrication mechanisms. When T ≥ 800 °C are attained, micro-textures diagnostic of diffusion-dominated grain boundary sliding are widespread within the slip zone, and suggest bulk superplastic flow. Flow stresses predicted by superplasticity constitutive laws at the slip zone temperatures, grain sizes and strain rates attained during the experiments match those we measured in the laboratory (μ = 0.16). We propose therefore that the activation of diffusion creep at high temperatures (T ≥ 800 °C) leads to slip zone-localised superplastic flow and that this causes the dynamic weakening of carbonate faults at seismic slip rates. Note, however, that both cataclasis and dislocation creep operating at lower temperatures, during the earlier stages of slip, are critical, precursory processes needed to produce the nanoscale grain sizes required to activate grainsize sensitive mechanisms during superplastic flow. Finally, the re-strengthening observed during the decelerating phase of deformation can be explained by the falling temperature "switching off" slip zone-localized superplasticity, leading to a return to frictional sliding. These results indicate

  16. Superplasticity and cavitation in an aluminum-magnesium alloy

    Science.gov (United States)

    Bae, Donghyun

    2000-10-01

    Fundamental issues related to the forming performance of superplastic metals include the mechanisms of flow and cavitation occurring during the forming process. Cavitation beyond a critical amount is damaging to the mechanical behavior of fabricated parts. Therefore, the role of process parameters which influence cavitation must be precisely documented and understood. In this study, (1) the mechanism of deformation, (2) cavity formation and growth, and (3) the effect of forming parameters on cavitation are systematically investigated in a fine grain Al-4.7%Mg-0.8%Mn-0.4%Cu alloy. The mechanical flow response of the alloy is characterized by a new type of step strain-rate test which preserves the initial microstructure of the alloy. Under isostructural condition, sigmoidal log s vs. log 3˙ relationship is determined and then analyzed by using a grain-mantle based quantitative model1 for superplastic flow. The activation energies in both grain-mantle creep and core creep are analyzed, and the overall controlling mechanism is found to be dislocation glide and climb. Grain-mantle creep rate in the low strain-rate region is found to be enhanced many times due to a high concentration of vacancies near grain boundaries. Cavitation caused by superplastic straining under uniaxial tension is evaluated by the SEM (for frame associated with superplastic deformation. In the model, faster cavity growth is predicted for lower m and for smaller cavity density when cavity stress fields are not overlapping. Observed cavitation quantitatively agrees with the present model, but diffusional growth is found to be too slow, which cannot explain the observed nanoscale void growth behavior. Another parameter affecting the degree of cavitation is the imposed stress-state. Cavity growth rate as well as cavity nucleation rate increase with the level of mean hydrostatic tension. For a fixed cavitation volume fraction, V, the principal surface strains, 31 and 32 , for the various stress

  17. Superplastic Micro-forming Mechanism and Size Effects of Micro-array Made of Nanocrystalline Material%纳米材料微阵列超塑微成形机理与尺度效应

    Institute of Scientific and Technical Information of China (English)

    王国峰; 李优; 刘奇; 赵相禹

    2015-01-01

    微成形技术是未来批量制造高精密微小零件的关键技术,但是,微小尺度下材料的塑性变形行为不仅表现出明显的尺度效应,而且零件尺度已经接近常规材料的晶粒尺寸,每个晶粒的形状、取向、变形特征对整体变形产生复杂的影响,难以保证微成形的工艺稳定性。本项目采用纳米材料进行微成形,制造微阵列,零件内部包含大量的晶粒,可以排除晶粒复杂性的影响,而且纳米材料具有超塑性,在超塑状态下,变形抗力和摩擦力都明显降低,从而显著降低微成形工艺对模具性能的苛刻要求,提高工艺稳定性和成形精度。目前,纳米材料超塑性微成形技术方面的研究极少,变形时纳米材料的力学行为、变形机理、尺度效应、位错演化、力学模型等关键问题还有待研究。采用电沉积技术制备晶粒尺寸可控的纳米材料,将工艺实验研究、性能测试、组织分析、力学性能表征、数值模拟相结合,深入探究了纳米材料微阵列超塑性微成形机理和成形规律,以促进该技术的广泛应用。%ABSTRACT:Micro-forming is a key technique for fabricating high-precision micro-part in large volume. However, plastic deformation at small scale has obvious size effects. The shape, orientation and deformation behavior of each grain have complicated influence on the micro-forming, since the scale of the parts approaches to the size of grain in common materi-als. Consequently, it is very hard to ensure the processing stability of micro-forming. In the current project, nanocrystalline materials were used to form micro-array. The influence of grain complexity could be eliminated since there were a lot of grains in the micro-part. In addition, nanocrystalline materials usually have superplasticity. Under this condition, the de-formation force and friction decrease obviously, which decreases the requirement on the mechanical

  18. Superplastic forming and diffusion bonding: Progress and trends

    Directory of Open Access Journals (Sweden)

    Zhiqiang Li

    2015-01-01

    Full Text Available This paper summarized recent progress in metal superplasticity and the application of Superplastic Forming/Diffusion Bonding (SPF/DB or SPF/Welding in typical structures. Various aerospace components such as three dimensional lattice structures made by SPF/DB have been demonstrated. In addition, some newly developed technologies, such as melt droplet spreading/thermo-mechanical forming (MDS/TMF, were also included. Finally, the future potential of SPF/DB technology was predicted.

  19. Superplasticity in a lean Fe-Mn-Al steel.

    Science.gov (United States)

    Han, Jeongho; Kang, Seok-Hyeon; Lee, Seung-Joon; Kawasaki, Megumi; Lee, Han-Joo; Ponge, Dirk; Raabe, Dierk; Lee, Young-Kook

    2017-09-29

    Superplastic alloys exhibit extremely high ductility (>300%) without cracks when tensile-strained at temperatures above half of their melting point. Superplasticity, which resembles the flow behavior of honey, is caused by grain boundary sliding in metals. Although several non-ferrous and ferrous superplastic alloys are reported, their practical applications are limited due to high material cost, low strength after forming, high deformation temperature, and complicated fabrication process. Here we introduce a new compositionally lean (Fe-6.6Mn-2.3Al, wt.%) superplastic medium Mn steel that resolves these limitations. The medium Mn steel is characterized by ultrafine grains, low material costs, simple fabrication, i.e., conventional hot and cold rolling, low deformation temperature (ca. 650 °C) and superior ductility above 1300% at 850 °C. We suggest that this ultrafine-grained medium Mn steel may accelerate the commercialization of superplastic ferrous alloys.Research in new alloy compositions and treatments may allow the increased strength of mass-produced, intricately shaped parts. Here authors introduce a superplastic medium manganese steel which has an inexpensive lean chemical composition and which is suited for conventional manufacturing processes.

  20. Superplastic deformation of commercial 00Cr22Ni5Mo3N0.17 duplex stainless steel

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The superplastic behavior of a commercial duplex stainless steel has been studied by means of isothermal hot tensile testat temperatures of 850-1050℃ for the initial strain rates ranging from 3×l0-4 s-1 to 5X10-2 s-1. At 960℃, the best superplastic de-formation that caused the maximum elongation greater than 840% was obtained for an initial strain rate of 1.2×10-3 s-1. At 850℃, thebest elongation 500% was achieved for an initial strain rate of 2.5×10-3 s-1. During the deformation in higher temperature region,coarse γ grains formed during the prior treatments were broken into spherical particles, resulting in a homogeneous dispersion of γparticles within the δ-ferrite matrix. However, at lower temperatures between 800 and 950℃, the σ phase was formed through theeutectoid decomposition of δ→γ+σ, resulting finally in the stable equiaxed micro-duplex structures with δ/γ and γ/σ, respectively.The precipitation of the σ phase played an important role in improving the superplasticity at 850℃. The strain-rate sensitivity coeffi-cient, m-values, were also determined by the strain rate change tests. The microstructure studies show that the superplastic processoccurs mainly by the local work hardening and the subsequent dynamic recrystallization and a grain boundary sliding and grain switching mechanism.

  1. Ultrahigh carbon steels, Damascus steels, and superplasticity

    Energy Technology Data Exchange (ETDEWEB)

    Sherby, O.D. [Stanford Univ., CA (United States). Dept. of Materials Science and Engineering; Wadsworth, J. [Lawrence Livermore National Lab., CA (United States)

    1997-04-01

    The processing properties of ultrahigh carbon steels (UHCSs) have been studied at Stanford University over the past twenty years. These studies have shown that such steels (1 to 2.1% C) can be made superplastic at elevated temperature and can have remarkable mechanical properties at room temperature. It was the investigation of these UHCSs that eventually brought us to study the myths, magic, and metallurgy of ancient Damascus steels, which in fact, were also ultrahigh carbon steels. These steels were made in India as castings, known as wootz, possibly as far back as the time of Alexander the Great. The best swords are believed to have been forged in Persia from Indian wootz. This paper centers on recent work on superplastic UHCSs and on their relation to Damascus steels. 32 refs., 6 figs.

  2. Deformation of superplastic alloys at relatively low strain rates

    Energy Technology Data Exchange (ETDEWEB)

    Grivas, D.

    1978-02-01

    The superplastic and sub-superplastic creep properties of Pb-Sn eutectic and Al-Zn eutectoid alloys were studied. Various thermomechanical treatments we tested to check the possibilities of whether the subsuperplastic deformation mechanism is affected by these treatments. All thermomechanical histories were found to reveal the same stress exponent, which is believed to be indicative of the predominant mechanism. The mechanical data in the low stress region lead us to suggest that dislocation glide is the predominant mechanism in this region. At higher stresses extensive grain boundary sliding takes place and the dislocation movement is directed to relieve the stress concentration developed by the grain movement.

  3. Discontinuous Dynamic Recrystallization of Inconel 718 Superalloy During the Superplastic Deformation

    Science.gov (United States)

    Huang, Linjie; Qi, Feng; Hua, Peitao; Yu, Lianxu; Liu, Feng; Sun, Wenru; Hu, Zhuangqi

    2015-09-01

    The superplastic behavior of Inconel 718 superalloy with particular emphasis on the microstructural evolution has been systematically investigated through tensile tests at the strain rate of 10-3 s-1 and the temperatures ranging from 1223 K to 1253 K (950 °C to 980 °C). Its elongations exceeded 300 pct under all of the experimental conditions and peaked a maximum value of 520 pct at 1223 K (950 °C). Moreover, the stress reached the top value at the strain of 0.3, and then declined until the tensile failure. In addition, we have found that the grain size reduced after deformation while the δ phase precipitation increased. Microstructural evolution during the superplasticity was characterized via transmission electron microscope, and the randomly distributed dislocation, dislocation network, dislocation arrays, low-angled subgrains, and high-angled recrystallized new grains were observed in sequence. These new grains were found to nucleate at the triple junction, twin boundary, and near the δ phase. Based on these results, it is deemed that the discontinuous dynamic recrystallization occurred as the main mechanism for the superplastic deformation of Inconel 718 alloy.

  4. Deformation behavior and mechanisms of Ti- 1023 alloy

    Institute of Scientific and Technical Information of China (English)

    BAO Ru-qiang; HUANG Xu; CAO Chun-xiao

    2006-01-01

    The deformation behavior and mechanisms of Ti-1023 alloy were studied in the temperature range of 650-900 ℃ and strain rate range of 0.001-10 s-1 by compression and tensile tests. The results show that in a limited strain rate range of 0.001-0.1 s-1,the kinetic rate equation is obeyed and a linear fit is obtained at all the temperatures. The apparent activation energy is 322 kJ/mol in the α-β region and 160 kJ/mol in the β region, respectively. Power dissipation maps of this alloy developed by using Gleeble test data show three domains in the tested range. Superplasticity, marked by abnormal elongation at 700 ℃, occurs in the temperature range of 650-750 ℃ and at strain rates below about 0.03 s-1 Large grain superplasticity takes place in the temperature range of 750-850℃ and strain rates range of 0.001-0.03 s-1. Dynamic recrystallization occurs in the temperature range of 850-900 ℃ and at strain rates below about 1 s-1. The instability maps of this alloy were also developed.

  5. High Temperature Creep and Superplasticity in a Mg-Zn-Zr Alloy

    Institute of Scientific and Technical Information of China (English)

    S. Spigarelli; M. El Mehtedi; M. Regev; E. Gariboldi; N. Lecis

    2012-01-01

    Creep and superplasticity were investigated by testing a fine-grained extruded Mg–Zn–Zr magnesium alloy under a wide range of applied stress in the temperature range between 100 and 300 ℃. Grain boundary sliding became the dominating mechanism at 200 ℃, leading to a true superplastic behaviour at 300 ℃, where superplasticity was attained even under relatively high strain rates (5×10-3 s-1 ). By contrast, for lower temperatures, the straining process was controlled by dislocation climb. A comprehensive model, taking into account the simultaneous operation of the different mechanisms, was developed to describe the strain rate dependence on applied stress.

  6. Zr基大块非晶合金在过冷液相区超塑性成形的摩擦行为及机理研究%Study on the Friction Behavior and Mechanism of Zr-based Bulk Metallic Glass Superplastic Forming in the Supercooled Liquid Region

    Institute of Scientific and Technical Information of China (English)

    郑志镇; 成蛟; 王新云; 李建军

    2009-01-01

    The friction behavior of Zr_(55) Al_(10)Ni_5Cu_(30) bulk metallic glass in the supercooled liquid region was investigated. The influence of forming temperature and velocity on friction factor was established by double cup extrusion test. The calibration curves of friction factor were evaluated by FE simulation and Kawamura's constitutive equation was adopted. Constant parameters in the constitutive equation were acquired by fitting the data from compression test. The results indicate that the friction factor of bulk metallic glass forming in the supercooled liquid region is between 0. 2 and 0. 7. With the temperature rising, the friction factor decreases in general under a low forming velocity. However, the friction factor increases slightly and then decreases abruptly under a high forming velocity. In low temperature area of supercooled liquid region, the friction factor increases abruptly with increasing of the forming velocity. While in high temperature area of supercooled liquid region, the friction factor decreases slightly with increasing of the forming velocity. The friction mechanism of bulk metallic glass forming in supercooled liquid region was analyzed by modern tribology theory. Adhesion is the dominant factor contributing to the friction of bulk metallic glass.%采用双杯挤压方法研究了成形温度、应变速率等工艺参数对Zr_(55) Al_(10) Ni_5 Cu_(30)块体非晶合金在过冷液相区塑性成形时模具和零件之间的摩擦行为的影响.采用有限元模拟方法获得大块非晶合金双杯挤压的摩擦因数标定曲线,有限元模拟中非晶合金的变形采用Kawamura的本构模型,将高温压缩实验的数据拟合,获得本构模型中的参数,结果表明非晶合金在过冷液相区内变形的摩擦因数在0.2~0.7之间.当应变速率较低时,随着温度的升高,摩擦因数总体上降低;而当应变速率较高时,随着温度的升高,摩擦因数先略有上升,然后急剧下降.当温度较低

  7. Current assisted superplastic forming of titanium alloy

    Directory of Open Access Journals (Sweden)

    Wang Guofeng

    2015-01-01

    Full Text Available Current assisted superplastic forming combines electric heating technology and superplastic forming technology, and can overcome some shortcomings of traditional superplastic forming effectively, such as slow heating rate, large energy loss, low production efficiency, etc. Since formability of titanium alloy at room temperature is poor, current assisted superplastic forming is suitable for titanium alloy. This paper mainly introduces the application of current assisted superplastic forming in the field of titanium alloy, including forming technology of double-hemisphere structure and bellows.

  8. Superplasticity of a Ti-24Al-14Nb-3V-0.5Mo Intermetallic Alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Superplastic properties and microstructural evolution of a Ti-24Al-14Nb-3V-0.5Mo (at. pct)intermetallic alloy were studied. Optimum superplastic properties were obtained for temperatures in the interval 960°C< T<980°C. The apparent activation energy in the superplastic regime was determined and the deformation mechanism was also discussed. Based on the studies, a curve panel with three sheets sandwich structure was fabricated successfully. The microstructures corresponding to different strain in the part were also studied.

  9. Mechanical behaviors of nanowires

    Science.gov (United States)

    Chen, Yujie; An, Xianghai; Liao, Xiaozhou

    2017-09-01

    The mechanical behaviors of nanowires (NWs) are significantly different from those of their bulk materials because of their small dimensions. Determining the mechanical performance of NWs and understanding their deformation behavior are crucial for designing and manufacturing NW-based devices with predictable and reproducible operation. Owing to the difficulties to manipulate these nanoscale materials, nanomechanical testing of NWs is always challenging, and errors can be readily introduced in the measured mechanical data. Here, we survey the techniques that have been developed to quantify the mechanical properties and to understand the deformation mechanisms of NWs. We also provide a general review of the mechanical properties and deformation behaviors of NWs and discuss possible sources responsible for the discrepancy of measured mechanical properties. The effects of planar defects on the mechanical behavior of NWs are also reviewed.

  10. Cavity coalescence in superplastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Stowell, M.J.; Livesey, D.W.; Ridley, N.

    1984-01-01

    An analysis of the probability distribution function of particles randomly dispersed in a solid has been applied to cavitation during superplastic deformation and a method of predicting cavity coalescence developed. Cavity size distribution data were obtained from two microduplex nickel-silver alloys deformed superplastically to various extents at elevated temperature, and compared to theoretical predictions. Excellent agreement occurred for small void sizes but the model underestimated the number of voids in the largest size groups. It is argued that the discrepancy results from a combination of effects due to non-random cavity distributions and to enhanced growth rates and incomplete spheroidization of the largest cavities.

  11. Metallurgical Characterization of Superplastic Forming

    Science.gov (United States)

    1980-09-01

    The trans - formation of constant-crosshead-speed stress-strain curves into constant-strain- rate curves is clearly not satisfactory because it is based...MILL-ANNEALED AND SUPERPLASTICALLY- FORMED CONDITIONS; FORMING TEMPERATURE - 949EPC (17400F). 01"tln Stoi rte yeld grasa Ultimate l to oret~lSri as...1975), p. 163. 7. G. Rai and N. J. Grant, "On the Measurermients of Superplasticity in an Al-Cu Alloy," Met. Trans . 6A, 385 (1975). 8. A. K, Mukherjee

  12. Effect of thermal processing practices on the properties of superplastic Al-Li alloys

    Science.gov (United States)

    Hales, Stephen J.; Lippard, Henry E.

    1993-01-01

    The effect of thermal processing on the mechanical properties of superplastically formed structural components fabricated from three aluminum-lithium alloys was evaluated. The starting materials consisted of 8090, 2090, and X2095 (Weldalite(TM) 049), in the form of commercial-grade superplastic sheet. The experimental test matrix was designed to assess the impact on mechanical properties of eliminating solution heat treatment and/or cold water quenching from post-forming thermal processing. The extensive hardness and tensile property data compiled are presented as a function of aging temperature, superplastic strain and temper/quench rate for each alloy. The tensile properties of the materials following superplastic forming in two T5-type tempers are compared with the baseline T6 temper. The implications for simplifying thermal processing without degradation in properties are discussed on the basis of the results.

  13. Achieving superplastic properties in a ZK10 magnesium alloy processed by equal-channel angular pressing

    Directory of Open Access Journals (Sweden)

    Roberto B. Figueiredo

    2017-04-01

    Full Text Available Equal-channel angular pressing provides an opportunity for refining the grain structure and introducing superplastic properties in magnesium alloys. This report describes the use of this processing technique with a ZK10 (Mg–1.0 wt.% Zn–0.26 wt.% Zr alloy. The grain structure was successfully refined from ∼12.9 to ∼5.2 μm after 4 passes and superplastic elongations were observed when testing at low strain rates at temperatures of 473 and 523 K. An analysis shows that the superplastic behavior is consistent with the conventional theoretical model for superplastic flow and at higher stresses and strain rates there is a transition to control by a viscous glide process.

  14. Phase boundary sliding model controlled by diffusion-solution zone in superplastic deformation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With scanning electron microscope (SEM), the surface morphology of phase boundary sliding (PBS) in superplastic deformation (SPD) of Zn-Al alloy and the diffusion behavior of Zn, Al interfaces in their powers' sintering have been investigated. The results show that Zn-Al eutectoid microstructure can be achieved through their powders' sintering, and the diffusion characteristic between Zn and Al is just a demonstration of Kirkendall effect, in which Zn can dissolve into Al whereas A1 can hardly dissolve into Zn. During sintering, a diffusion-solution zone ?′ has formed and subsequently transformed into a eutectoid microstructure in the cooling process. The superplastic deformation mechanism of Zn-Al eutectic alloy is phase boundary sliding which is controlled by the diffusion-solution zone ?′. If the diffusion-solution zone ?′ is unsaturated, it will have much more crystal defects and the combination between ?′ and phase ? is weak, thus the process of phase boundary sliding becomes easily; on the contrary, if the diffusion-solution zone ?′ becomes thick and saturated, the sliding will be difficult.

  15. Superplasticity of Ti2448 Alloy with Nanostructured Grains

    Institute of Scientific and Technical Information of China (English)

    M.J. Xiao; Y.X. Tian; G.W. Mao; S.J. Li; Y.L. Hao; R. Yang

    2011-01-01

    Ti-24Nb-4Zr-8Sn, abbreviated as Ti2448 from its chemical composition in weight percent, is a multifunctional β type titanium alloy with body centered cubic (bcc) crystal structure, and its highly localized plastic deformation behavior contributes significantly to grain refinement during conventional cold processing. In the paper, the nanostructured (NS) alloy with grain size less than 50 nm produced by cold rolling has been used to investigate its superplastic deformation behavior by uniaxial tensile tests at initial strain rates of 1.5×10-2, 1.5×10-3 and 1.6×10-4 s-1 and temperatures of 600, 650 and 700℃. The results show that, in comparison with the coarse-grained alloy with size of 50 μm, the NS alloy has better superplasticity with elongation up to ~275% and ultimate strength of 50-100 Mpa. Strain rate sensitivity (m) of the NS alloy is 0.21, 0.30 and 0.29 for 600, 650 and 700℃, respectively. These results demonstrate that grain refinement is a valid way to enhance the superplasticity of Ti2448 alloy.

  16. Superplastically foaming method to make closed pores inclusive porous ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Akira; Hayashi, Hidetaka, E-mail: kishim-a@cc.okayama-u.ac.jp [Division of Molecular and Material Science, Graduate School of Natural Science and Technology, Okayama University Okayama (Japan)

    2011-04-15

    Porous ceramics incorporates pores to improve several properties including thermal insulation maintaining inherenet ceramic properties such as corrosion resistance and large mechanical strength. Conventional porous ceramics is usually fabricated through an insufficient sintering. Since the sintering accompanies the exclusion of pores, it must be terminated at the early stage to maintain the high porosity, leading to degraded strength and durability. Contrary to this, we have innovated superplastically foaming method to make ceramic foams only in the solid state. In this method, the previously inserted foam agent evaporates after the full densification of matrix at around the sintering temperature. Closed pores expand utilizing the superplastic deformation driven by the evolved gas pressure. The typical features of this superplastically foaming method are listed as follows, 1. The pores are introduced after sintering the solid polycrystal. 2. Only closed pores are introduced, improving the insulation of gas and sound in addition to heat. 3. The pore walls are fully densified expecting a large mechanical strength. 4. Compared with the melt foaming method, this method is practical because the fabrication temperature is far below the melting point and it does not need molds. 5. The size and the location pores can be controlled by the amount and position of the foam agent.

  17. Age hardening characteristics and mechanical behavior of Al-Cu-Li-Zr-In alloys

    Science.gov (United States)

    Wagner, John A.

    1989-01-01

    An investigation was conducted to determine the age-hardening response and cryogenic mechanical properties of superplastic Al-Cu-Li-Zr-In alloys. Two alloys with compositions Al-2.65Cu-2.17Li-O.13Zr (baseline) and Al-2.60Cu-2.34Li-0.16Zr-0.17In were scaled-up from 30 lb permanent mold ingots to 350 lb DC (direct chill) ingots and thermomechanically processed to 3.2 mm thick sheet. The microstructure of material which contained the indium addition was partially recrystallized compared to the baseline suggesting that indium may influence recrystallization behavior. The indium-modified alloy exhibited superior hardness and strength compared to the baseline alloy when solution-heat-treated at 555 C and aged at 160 C or 190 C. For each alloy, strength increased and toughness was unchanged or decreased when tested at - 185 C compared to ambient temperature. By using optimized heat treatments, the indium-modified alloy exhibited strength levels approaching those of the baseline alloy without deformation prior to aging. The increase in strength of these alloys in the T6 condition make them particularly attractive for superplastic forming applications where post-SPF parts cannot be cold deformed to increase strength.

  18. Recrystallization and superplasticity at 300 C in an aluminum-magnesium alloy

    Science.gov (United States)

    Hales, S. J.; Mcnelley, T. R.; Mcqueen, H. J.

    1991-01-01

    Variations in thermomechanical processing (TMP) which regulate the microstructural characteristics and superplastic response of an Al-10Mg-0.1Zr alloy at 300 C were evaluated. Mechanical property data revealed that the superplastic ductility can be enhanced by simultaneously increasing the total rolling strain, the reduction per pass, and the duration of reheating intervals between passes during isothermal rolling. Texture and microscopy data were consistent with the development of a refined microstructure by recovery-dominated processes, i.e., continuous recrystallization, during the processing. The mechanisms by which a refined substructure can be progressively converted into a fine-grained structure during repeated cycles of deformation and annealing are addressed. A qualitative description of the complex sequence of developments leading to a microstructure better suited to support superplastic response is presented.

  19. Recrystallization and superplasticity at 300 °C in an aluminum-magnesium alloy

    Science.gov (United States)

    Hales, S. J.; McNelley, T. R.; McQueen, H. J.

    1991-05-01

    Variations in thermomechanical processing (TMP) which regulate the microstructural characteristics and superplastic response of an Al-lOMg-0.1Zr alloy at 300 °C were evaluated. Mechanical property data revealed that the superplastic ductility can be enhanced by simultaneously increasing the total rolling strain, the reduction per pass, and the duration of reheating intervals between passes during isothermal rolling. Texture and microscopy data were consistent with the development of a refined microstructure by recovery-dominated processes, i.e., continuous recrystallization, during the processing. The mechanisms by which a refined substructure can be progressively converted into a fine-grained structure during repeated cycles of deformation and annealing are addressed. A qualitative description of the complex sequence of developments leading to a microstructure better suited to support superplastic response is presented.

  20. Investigation on the factors influencing the thickness distribution of superplastic-formed components

    Institute of Scientific and Technical Information of China (English)

    GAO Chong-yang; FANG You-tong

    2005-01-01

    In the superplastic sheet forming process, the uniformity of the sheet's final thickness distribution is vital for ensuring the good mechanical quality of the formed components. The influences of the component shape and the contact friction on the final thickness distribution were investigated in this work by using finite element method on a series of axisymmetric models. It was concluded that shape optimization and friction elimination are required to get uniform thickness distribution, and eventually to improve the mechanical quality of the formed components. The constitutive equation of the Ti-6A1-4V superplastic material was also determined on the basis of experimental data.

  1. Early stages of superplasticity and positron lifetime spectroscopy in an Al-Mg-Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ayciriex, M.D.; Romero, R.; Somoza, A. [Universidad Nacional del Centro de la Provincia de Buenos Aires (Argentina). Instituto de Fisica de Materiales Tandil

    1996-07-01

    In the present paper, by using positron lifetime technique, a careful study is carried out to analyze the microstructural changes induced on samples of an Al-based commercial alloy (Al-Mg-Cu-Mn-Cr) by superplastic deformation in the early stages of superplastic behavior of the alloy (strain range from 0.2% to 100%). These results are compared with those obtained on specimens only heat treated at the same temperature and for a time equivalent to the elapsed time during each tensile test, in order to evaluate the thermal contribution to the microstructural changes induced during the superplastic deformation process. Moreover, the positron results were linked with the microstructural evolution of the samples followed by means of optical microscopy and Vickers microhardness technique.

  2. An investigation of neutron irradiation test on superplastic zirconia-ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Taiju; Ishihara, Masahiro; Baba, Shinichi; Hayashi, Kimio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Motohashi, Yoshinobu [Ibaraki Univ., Mito (Japan)

    2000-05-01

    A neutron irradiation test on superplastic ceramic materials at high temperature has been proposed as an innovative basic research on high-temperature engineering using the High Temperature Engineering Test Reactor (HTTR). For the effective execution of the test, we reviewed the superplastic deformation mechanism of ceramic materials and discussed neutron irradiation effects on the superplastic deformation process of stabilized Tetragonal Zirconia Polycrystal (TZP), which is a representative superplastic ceramic material. As a result, we pointed out that the decrease in the activation energy for superplastic deformation is expected by the radiation-enhanced diffusion. We selected a fast neutron fluence of 5x10{sup 20} n/cm{sup 2} and an irradiation temperature of about 600degC as test conditions for the first irradiation test on TZP and decided to perform a preliminary irradiation test by the Japan Materials Testing Reactor (JMTR). Moreover, we estimated the radioactivity of irradiated TZP and indicated that it is in the order of 10{sup 10} Bq/g (about 0.3 Ci/g) immediately after irradiation to a thermal neutron fluence of 3x10{sup 20} n/cm{sup 2} and that it decays to about 1/100 in a year. (author)

  3. Microstructure and Properties of Superplastic Welding between 4OCr and CrWMn Steels

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Superplastic welding of tool steel and structural steel was investigated. The welding between 40Cr and CrWMn steels was carried out under the conditions of temperature 750~780°C, strain rate 2×10-4 s-1, compressive stress 50~90 MPa for 3~5 min. The joints show similar strength to that of 40Cr steel and the good metallurgical joining is formed. The structural change occurring during superplastic welding was analyzed by metallography and distribution of carbon content in the vicinity of the welding joint was also determined. The mechanism of superplastic welding for steels is proposed to be the disappearance of original bond interfaces caused by atomic diffusion and the grain sliding.

  4. Isothermal superplastic solid state bonding of 40Cr and Cr12MoV steels based on surface modification

    Institute of Scientific and Technical Information of China (English)

    Zhang Keke; Zhang Zhanling; Liu Shuai; Yue Yun; Ma Ning; Yang Yunlin

    2009-01-01

    Based on the feasibility of isothermal superplastic solid state bonding of 40Cr and Cr12MoV steels, the surfaces of both steels to be bonded were ultra-fined through high frequency hardening, then the superplastic solid state bonding were conducted, the microstructure and fracture surface of bonded joint were observed and analysed, and bonding mechanisms was researched. The experimental results show that with the sample surfaces of 40Cr and Cr12MoV steels after the high frequency hardening, under the prepressing stress of 56.6 MPa, initial strain rate of 1.5×10~(-2) min~(-1) and at the bonding temperature of 800-820℃, the superplastic solid state bonding can be carried out in about 3.5min, and the joint strength is up to that of 40Cr steel base metal and the radial expansion ratio of the joint does not exceed 6%. The superplastic solid state bonding parameter of both steels is within the ranges of the isothermal compressive superplastic deformation of Cr12MoV steel, and the deformation in Cr12MoV steel side near the interfacial zone of joint presents the characteristic of superplasticity. In bonding process, the atoms in two sides of joint interface have diffused each other.

  5. Continuous recrystallization during thermomechanical processing of a superplastic Al-10Mg-0.1Zr alloy

    Science.gov (United States)

    Hales, S. J.; Mcnelley, T. R.; Crooks, R.

    1990-01-01

    Microstructural evolution via static continuous recrystallization during thermomechanical processing of an Al-Mg-Zr alloy is addressed. Mechanical property data demonstrated that as-rolled material was capable of superplastic response without further treatment. Further, superplastic ductility at 300 C was enhanced by a factor of five by increasing the reheating time between rolling passes during processing also at 300 C. This enhanced ductility was associated with a Cu-texture and a microstructure consisting of predominantly high-angle boundaries. Processing to minimize recovery resulted in a strong Brass-texture component, a predominantly low-angle boundary microstructure and poorer ductility.

  6. Continuous recrystallization during thermomechanical processing of a superplastic Al-10Mg-0.1Zr alloy

    Science.gov (United States)

    Hales, S. J.; Mcnelley, T. R.; Crooks, R.

    1990-01-01

    Microstructural evolution via static continuous recrystallization during thermomechanical processing of an Al-Mg-Zr alloy is addressed. Mechanical property data demonstrated that as-rolled material was capable of superplastic response without further treatment. Further, superplastic ductility at 300 C was enhanced by a factor of five by increasing the reheating time between rolling passes during processing also at 300 C. This enhanced ductility was associated with a Cu-texture and a microstructure consisting of predominantly high-angle boundaries. Processing to minimize recovery resulted in a strong Brass-texture component, a predominantly low-angle boundary microstructure and poorer ductility.

  7. SUPERPLASTICITY OF A SiCw/2024 Al COMPOSITE MADE BY PRESSURE INFILTRATION

    Institute of Scientific and Technical Information of China (English)

    X.J. Xu; W. Wang; L. Cai

    2002-01-01

    The superplastic characteristics of the β-SiC whisker reinforced 2024 aluminum com-posite, fabricated by pressure infiltration and hot-rolling after extrusion, were inves-tigated. The composite has a fine grain size of about 1μm, and exhibits a maximumtensile elongation of 370% in the initial strain rate of 3.3× 10-3 s-1 at 788K. The su-perplastic deformation mechanism of the composite is thought to be grain boundary(interface) sliding accommodated by grain boundary diffusion of aluminum atom andan appropriate amount of liquid phase.

  8. Numerical simulation and experimental study on cavity growth in uniaxial tension of superplastic magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    于彦东; 张凯锋; 郑海荣; 蒋大鸣

    2003-01-01

    The cavity growth was studied in uniaxial tension of superplastic magnesium alloy. An exponentially increasing cavity growth model was introduced into the numerical simulation effectively. A three-dimensional rigid visco-plastic finite element method (FEM) program was developed to predict the variation of radius and volume fraction of cavity. Experimental radius and volume fraction of cavity were determined based on the optical microscope observation and analyses. The values obtained by numerical simulation are perfectly in agreement with experimental results. The results are potentially helpful to designing the optimal processing parameters for superplastic forming of materials and to enhance their subsequent mechanical properties.

  9. Grain boundary dynamics in ceramics superplasticity

    Directory of Open Access Journals (Sweden)

    Wakai, E.

    2001-04-01

    Full Text Available Superplasticity refers to an ability of polycrystalline solids to exhibit exceptionally large elongation in tension. The application of superplasticity makes it possible to fabricate ceramic components by superplastic forming (SPF, concurrent with diffusion bonding, and superplastic sinter-forging just like superplastic metals. Furthermore the superplastic deformation plays an important role in stress-assisted densification processes such as hot isostatic pressing (HIP and hot pressing (HP. The ceramics superplasticity has been one of intensive research fields in the last decade. Although most of reports are still limited to those of zirconia[1], new developments have been achieved in superplasticity of Si3N4 and SiC in recent years. It is clearly demonstrated that the superplasticity is one of the common natures of fine-grained ceramics and nanocrystalline ceramics at elevated temperatures.

    La superplaticidad se refiere a la capacidad que posee un sólido policristalino de presentar alargamientos excepcionalmente elevados en tracción. La aplicación de la superplasticidad hace posible la fabricación de componentes cerámicos por conformado superplástico, soldadura por difusión y forja-sinterizado superplástica, igual que en metales superplásticos. Además, la deformación superplástica tiene un rol importante en los procesos de densificación asistidos por tensiones, tales como la compactación isostática en caliente y el prensado en caliente. Las cerámicas superplásticas han sido uno de los campos donde se ha realizado una investigación más intensa en la última década. Aunque, la mayoría de los informes se limitan a la circonia[1] se han alcanzado nuevos desarrollos en superplasticidad de Si3N4 y SiC. Está claramente demostrado que la superplasticidad es una propiedad intrínseca de las cerámicas de pequeño tamaño de grano y de las cer

  10. A high-strain-rate superplastic ceramic.

    Science.gov (United States)

    Kim, B N; Hiraga, K; Morita, K; Sakka, Y

    2001-09-20

    High-strain-rate superplasticity describes the ability of a material to sustain large plastic deformation in tension at high strain rates of the order of 10-2 to 10-1 s-1 and is of great technological interest for the shape-forming of engineering materials. High-strain-rate superplasticity has been observed in aluminium-based and magnesium-based alloys. But for ceramic materials, superplastic deformation has been restricted to low strain rates of the order of 10-5 to 10-4 s-1 for most oxides and nitrides with the presence of intergranular cavities leading to premature failure. Here we show that a composite ceramic material consisting of tetragonal zirconium oxide, magnesium aluminate spinel and alpha-alumina phases exhibits superplasticity at strain rates up to 1 s-1. The composite also exhibits a large tensile elongation, exceeding 1,050 per cent for a strain rate of 0.4 s-1. The tensile flow behaviour and deformed microstructure of the material indicate that superplasticity is due to a combination of limited grain growth in the constitutive phases and the intervention of dislocation-induced plasticity in the zirconium oxide phase. We suggest that the present results hold promise for the application of shape-forming technologies to ceramic materials.

  11. Thermomechanical Processing and Superplasticity of AZ91 Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    Rongshi CHEN; J.J. Blandin; M.Suéry; Qudong WANG; Enhou HAN

    2004-01-01

    The effect of extrusion on grain refinement has been studied in the AZ91 cast ingots. It is found that grain size smaller than 10 μm can be obtained by the extrusion processing. Vickers hardness measurements were also carried out to evaluate the effect of these processes on the room temperature mechanical properties. The experimental results of high temperature tensile tests revealed that the stress was inversely proportional to the square of the grain size and that the activation energy for superplastic flow was higher than that for grain boundary diffusion.

  12. Numerical simulation of industrial superplastic forming. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Haberman, K.S.; Bennett, J.G.; Piltch, M.S.

    1996-11-01

    Superplastic forming (SPF) is a metal forming process that allows a variety of components with very complex geometries to be produced at a fraction of the cost of conventional machining. The industrial superplastic forming process can be optimized with the application of the finite element method to predict the optimal pressure schedules, overall forming time, and the final thickness distribution. This paper discusses the verification and applications of NIKE3D in 4 optimizing the industrial superplastic forming process.

  13. CONSTITUTE EQUATIONS OF 40Cr STEEL UNDER SUPERPLASTIC COMPRESSIVE DEFORMATION

    Institute of Scientific and Technical Information of China (English)

    K.K. Zhang; Y.L. Yang; S.Z. Liu; C.X. Han; D. Xu

    2003-01-01

    The microstructure of 40Cr steel sample and its surface is ultra-fined through saltbath cyclic quenching and high frequency hardening, then the superplasticity is studied under isothermal superplastic compressive deformation condition. The experimental results indicate that the stress-strain curves are shown to take place obvious superplastic flow characteristic at the temperature of 730-770℃ and at the initial strain rate of (1.7-5.0)× 10-4s-1. Its strain rate sensitivity is 0.30-0.38, the steady superplastic flow stress is 60-70MPa, the superplastic flow activation energy is 198-217kJ/mol,and it is close to α-Fe grain boundary self-diffusion activation energy. The superplastic compressive constitute equations of this steel are correspondingly set up. Due to the finer microstructure of high frequency hardening, it appears bigger strain rate sensitivity value, smaller the steady superplastic flow stress and the superplastic flow activation energy, so it has better superplastic deformation capability.

  14. Development of fine-grain size titanium 6Al–4V alloy sheet material for low temperature superplastic forming

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tuoyang [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan (China); Liu, Yong, E-mail: yonliu@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan (China); Sanders, Daniel G. [Boeing Research and Technology, Seattle, WA (United States); Liu, Bin; Zhang, Weidong; Zhou, Canxu [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan (China)

    2014-07-01

    Fine-grained titanium 6Al–4V alloy, which typically has a grain size of about 1–2 μm, can be made to superplastic form at around 800 °C with special processing. The normal temperature for superplastic forming (SPF) with conventional titanium 6Al–4V sheet material is 900 °C. The lower temperature performance is of interest to the Boeing Company because it can be exploited to achieve significant cost savings in processing by reducing the high-temperature oxidation of the SPF dies, improving the heater rod life for the hot presses, increasing operator safety and replacing the chemical milling operation to remove alpha case contamination with a less intensive nitric hydrofluoric acid etchant (pickle). In this report, room temperature tensile tests and elevated temperature constant strain rate tensile tests of fine-grained Ti–6Al–4V sheets provided by the Baoti Company of Xi'an, China, were conducted according to the test method standards of ASTM-E8 and ASTM-E2448. The relationships among the processing parameters, microstructure and superplastic behavior have been analyzed. The results show that two of the samples produced met the Boeing minimum requirements for low-temperature superplasticity. The successful material was heat-treated at 800 °C subsequent to hot rolling above the beta transus temperature, T{sub β}-(150–250 °C). It was found that the sheet metal microstructure has a significant influence on superplastic formability of the Ti–6Al–4V alloy. Specifically, fine grains, a narrow grain size distribution, low grain aspect ratio and moderate β phase volume fraction can contribute to higher superplastic elongations.

  15. Mechanical behavior of emerging materials

    Directory of Open Access Journals (Sweden)

    Challapalli Suryanarayana

    2012-11-01

    Full Text Available Nanocrystalline and glassy materials, especially the bulk metallic glasses are of relatively recent origin and exhibit high strength, but lack sufficient plasticity. A clear understanding of the mechanical behavior of these novel materials is essential before these can be seriously considered for structural applications. A great deal of research has been conducted over the past couple of decades and a vast amount of data has been generated. Here, results on strength, ductility, and deformation behavior of these novel materials have been reviewed. Recent results have been highlighted and problems, wherever they exist, have been pointed out. New directions for enhancing the understanding of the mechanical behavior of these interesting materials have been suggested.

  16. High strain rate superplastic aluminium alloys: the way forward?

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, R.; Dashwood, R.J.; Flower, H.M. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom). Dept. of Materials

    2001-07-01

    The technical and commercial barriers to the development and successful exploitation of a high strain rate superplastically deformable aluminium alloy for use in the automotive industry are considered in this paper. Batch processing routes, such as mechanical alloying or equal channel angular extrusion, employed to deliver appropriate chemistry and structure, are inherently costly and unlikely to deliver either the quantity or the size of strip required commercially. There is evidence that there is still scope for development of conventional casting and rolling routes, but a particulate casting route combined with roll consolidation offers the prospect of a commercially viable Al-Mg-Zr product. The use of alloying additions, including zirconium, is also discussed and comparative costs are presented: on this basis the use of scandium appears economically prohibitive. (orig.)

  17. SUPERPLASTICITY AND DIFFUSION BONDING OF IN718 SUPERALLOY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The superplasticity and diffusion bonding of IN718 superalloy were studied in this article. The strain rate sensitivity index m was obtained at different temperatures and various initial strain rates using the tensile speed mutation method; m reached its maximum value 0.53 at an initial strain rate of 1 ×10-4s-1 at 1253K. The diffusion bonding parameters, including the bonding temperature T,pressure p, and time t, affected the mechanism of joints. When the bonded specimen with 25μm thick nickel foil interlayer was tensile at room temperature, the shear fracture of the joints with nickel foil interlayer took place at the IN718 part. Microstructure study was carried out with the bonded samples. The microstructure shows an excellent bonding at the interfaces. The optimum parameters for the diffusion bonding are: T= 1273-1323K, p = 20-30MPa, t = 45-60min.

  18. Research on the diffusion bonding of superplastic magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    于彦东; 张凯锋; 蒋大鸣; 郑海荣; 王刚

    2002-01-01

    The elevated temperature tensile experiments have been carried out on the magnesium alloy and results indicate that the magnesium alloy has excellent superplastic property. Gleebe-1500 testing machine was used in the diffusion bonding experiment on the superplastic magnesium alloy. Then, the shear strength of the joints under different conditions is obtained through shear testing and the optimum processing parameters for the diffusion bonding are achieved. By metallurgical microscope and scanning electron microscope (SEM), it is revealed that the micromechanism of diffusion bonding is the slide of grain boundaries caused by the growth of grains and atom diffusion of the superplastic magnesium alloy.

  19. Free Bulging at Constant Pressure of Superplastic Sheet Metal

    Directory of Open Access Journals (Sweden)

    Costanzo Bellini

    2015-08-01

    Full Text Available This work intends to establish, by means of analytical modelling, a practical definition of the superplastic behaviour by using the results of the free bulging of sheet metal instead of the results of the traditional tensile test. In particular this paper analyses the superplastic flow of PbSn60 alloy and it focuses the attention on the value of H parameter corresponding to the maximum value of dt/dH, never considered in the literature. This parameter can represent a practical tool in industrial applications to establish the superplastic behaviour of a sheet metal.

  20. Gas-pressure forming of superplastic ceramic sheet

    Energy Technology Data Exchange (ETDEWEB)

    Nieh, T.G.; Wadsworth, J.

    1993-06-24

    Superplasticity in ceramics has now advanced to the stage that technologically viable superplastic deformation processing can be performed. In this paper, examples of biaxial gas-pressure forming of several ceramics are given. These include yttria stabilized, tetragonal zirconia (YTZP) a 20% alumina/YTZP composite, and silicon. In addition, the concurrent superplastic forming and diffusion bonding of a hybrid YTZP/C103 (ceramic-metal) structure are presented. These forming processes offer technological advantages of greater dimensional control and increased variety and complexity of shapes than is possible with conventional ceramic shaping technology.

  1. Superplastic Forming of Aluminum (Task C)

    Science.gov (United States)

    1989-03-01

    purchase order number 9-342779-01 was modified to incorporate integral hinge attachment features to drawing number 160K136160. The material used to form a...0.805 7. Trans. Drill 8 his. from 136153-3 & 136152-1 Hinges C/T Straps and 136161-11 & -13 Fittings .016 0.053 8. Disassemble 0.182 9. DBR 0.008 0.158 10...door utilizes a conventional aluminum alloy skin stiffened by a weld bonded monolithic superplastically formed element fabricated trom Supral 220

  2. SUPERPLASTICITY OF A WATER-QUENCHED AND TEMPERED 40Cr STEEL

    Institute of Scientific and Technical Information of China (English)

    X.J.Xu; G.L.Liu; L.J Shi; X.N.Cheng; L.Cai

    2004-01-01

    The superplastic deformation characteristics, of commercial 40Cr (i.e., 5140) steel that was water-quenched only 1 times and subsequent high-temperature tempered, were investigated.The results showed that the 40Cr steel has a fine grain of 10-15μm at room temperature,and exhibits a tensile elongation of 304%, a true flow stress of 89.3MPa and a strain rate sensitivity m-value of 0.227 at the initial strain rate of 1.0×10-3s-1and at the temperature of 750℃. The final fracture is caused by the development of neck. The experimental result of elongation is in good agreement with the theoretically predicated value according to the analytical expression ef = (1/f)mexp(nv+mε)-1(where ef, m, f, nv and e is respectively elongation, average strain rate sensitivity, initial geometric defect, average strain hardening sensitivity at constant deformation velocity and average true strain). The fracture surface is intergraular, and superplastic deformation induces an equiaxed and grown grain. Decreasing strain rate increases tensile elongation and strain rate sensitivity m-value. The primary superplastic deformation mechanism is thought to be atom-diffusion-controlled grain boundary sliding.

  3. Dental implant superstructures by superplastic forming

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, R.V.; Garriga-Majo, D.; Soo, S.; Pagliaria, D. [Kings Coll., London (United Kingdom). Dept. of Dental Biomaterials Science; Juszczyk, A.S.; Walter, J.D. [Kings Coll., London (United Kingdom). Dept. of Prosthetic Dentistry

    2001-07-01

    A novel application of superplastic forming is described for the production of fixed-bridge dental implant superstructures. Finite element analysis (FEA) has shown that Ti-6Al-4V sheet would be a suitable candidate material for the design of a fixed-bridge dental implant superstructure. Traditionally superstructures are cast in gold alloy onto pre-machined gold alloy cylinders but castings are often quite bulky and 25% of castings do not fit accurately (1) which means that sectioning and soldering is required to obtain a fit that is clinically acceptable and will not prejudice the integrity of the commercially pure cp-titanium implants osseointegrated with the bone. Superplastic forming is shown to be a forming technique that would allow the production of strong, light-weight components of thin section with low residual stress that could be suitable for such applications. Considerable cost savings over traditional dental techniques can be achieved using a low-cost ceramic die material. The properties of these die materials are optimised so that suitable components can be produced. Satisfactory hot strength is demonstrated and thermal properties are matched to those of the titanium alloy for accurate fit of the prosthesis. (orig.)

  4. Elastic stability of superplastically formed/diffusion-bonded orthogonally corrugated core sandwich plates

    Science.gov (United States)

    Ko, W. L.

    1980-01-01

    The paper concerns the elastic buckling behavior of a newly developed superplastically formed/diffusion-bonded (SPF/DB) orthogonally corrugated core sandwich plate. Uniaxial buckling loads were calculated for this type of sandwich plate with simply supported edges by using orthotropic sandwich plate theory. The buckling behavior of this sandwich plate was then compared with that of an SPF/DB unidirectionally corrugated core sandwich plate under conditions of equal structural density. It was found that the buckling load for the former was considerably higher than that of the latter.

  5. New method for making super-plastic glasses

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ It was a long-cherished dream for materials scientists to find a nearly ideal metallic alloy with high strength and super-plasticity concurrently as a super-material both extremely strong and exceptionally hard for human use.

  6. Quantitative determination of homogeneous strain value in superplastic tension

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    After load instability, a passage of homogeneous strain ε can be still continued in superplastic tensile deformation. But untill now, no one has given the precise value of ε corresponding to actual materials, neither in experimental measurements nor in theoretical calculations. Using the elaborate experimental measuring methods of m value and its function expressions, the note first gives the method to determine homogeneous ε, and the homogeneous ε value of typical superplastic alloy Zn-5% Al under 18℃ and 340℃ respectively.

  7. Low Temperature Superplasticity of Ti-6Al-4V Processed by Warm Multidirectional Forging (Preprint)

    Science.gov (United States)

    2012-07-01

    using a JEOL JEM-2100FX transmission electron microscope (TEM) and a Quanta 600 field-emission-gun scanning-electron microscope (SEM). Results and...factor of three compared to the initial condition (Fig. 2b). A backscattered electron ( BSE ) image revealed the distribution of the  phase in the...a) BSE image of Ti-6Al-4V after annealing at Т=550С for 0.5 hour and (b) grain size as a function of soak time at 550C. Superplastic Behavior

  8. Method of producing superplastic alloys and superplastic alloys produced by the method

    Science.gov (United States)

    Troeger, Lillianne P. (Inventor); Starke, Jr., Edgar A. (Inventor); Crooks, Roy (Inventor)

    2002-01-01

    A method for producing new superplastic alloys by inducing in an alloy the formation of precipitates having a sufficient size and homogeneous distribution that a sufficiently refined grain structure to produce superplasticity is obtained after subsequent PSN processing. An age-hardenable alloy having at least one dispersoid phase is selected for processing. The alloy is solution heat-treated and cooled to form a supersaturated solid solution. The alloy is plastically deformed sufficiently to form a high-energy defect structure useful for the subsequent heterogeneous nucleation of precipitates. The alloy is then aged, preferably by a multi-stage low and high temperature process, and precipitates are formed at the defect sites. The alloy then is subjected to a PSN process comprising plastically deforming the alloy to provide sufficient strain energy in the alloy to ensure recrystallization, and statically recrystallizing the alloy. A grain structure exhibiting new, fine, equiaxed and uniform grains is produced in the alloy. An exemplary 6xxx alloy of the type capable of being produced by the present invention, and which is useful for aerospace, automotive and other applications, is disclosed and claimed. The process is also suitable for processing any age-hardenable aluminum or other alloy.

  9. Superplasticity and joining of zirconia-based ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez-Rodriguez, A.; Gutierrez-Mora, F.; Jimenez-Melendo, M.; Chaim, R.; Routbort, J. L.

    1999-12-10

    Steady-state creep and joining of alumina/zirconia composites containing alumina volume fractions of 20, 60, and 85% have been investigated between 1,250 and 1,350 C. Superplasticity of these compounds is controlled by grain-boundary sliding and the creep rate is a function of alumina volume fraction, not grain size. Using the principles of superplasticity, pieces of the composite have been joined by applying the stress required to achieve 5 to 10% strain to form a strong interface at temperatures as low as 1,200 C.

  10. Superplastic Forming and Diffusion Bonding of Titanium Alloys

    Directory of Open Access Journals (Sweden)

    A. K. Ghosh

    1986-04-01

    Full Text Available New and advanced fabrication methods for titanium components are emerging today to replace age-old fabrication processes and reduce component cost. Superplastic forming and diffusion bonding are two such advanced fabrication technologies which when applied individually or in combination can provide significant cost and weight benefits and a rather broad manufacturing technology base. This paper briefly reviews the state of understanding of the science and technology of super plastic forming of titanium alloys, and their diffusion bonding capability. Emphasis has been placed on the metallurgy of superplastic flow in two phase titanium alloys, the microstructural and external factors which influence this behaviour.

  11. Effect of equal channel angular extrusion on the microstructure and superplasticity of an Al-Li alloy

    Science.gov (United States)

    Salem, H. G.; Lyons, J. S.

    2002-08-01

    This research investigates the use of equal channel angular extrusion (ECAE) processing to produce a superplastic form of the aluminum alloy 2098. The starting material was a hot-rolled and precipitation-hardened plate with elongated grains of width 67-92 µm, and a composition in weight percent of 2.2% Li, 1.3% Cu, 0.73% Mg, 0.05% Zr, balance Al. Microstructural evolution was investigated with optical and transmission electron microscopy (TEM) and microhardness measurements after each step of a multipass ECAE process. ECAE produced a submicron grain structure with an average size of about 0.5 µm. The sub-grain microstructure size was a function of the magnitude of the input strain and the extrusion temperature. Misorientation angles of the developed submicron structure increase with increasing number of passes at warm working temperatures. Superplastic behavior of the ECAE-processed alloy was achieved. However, the low zirconium content of the 2098 alloy resulted in grain growth of the refined structure at the superplastic processing temperatures, placing a lower limit on the deformation rates that can be used.

  12. Mechanical properties of yttria-stabilized zirconia ceramics

    Science.gov (United States)

    Shirooyeh A, Mahmood R.

    Superplasticity is a well-known characteristic of Y2O 3-stabilized tetragonal zirconia (3Y-TZP) ceramic composites at elevated temperatures. The present investigation was originated to evaluate the potential of producing zirconia ceramics suitable for achieving superplasticity. High purity 3 mol% Y2O3-stabilized tetragonal zirconia (3Y-TZP) ceramic composites containing 20 wt% alumina were successfully consolidated by application of Cold Isostatic Pressing (CIP) followed by a subsequent sintering process. Constant-stress tensile creep experiments at elevated temperatures were conducted in order to examine plastic deformation behavior of the material. In addition to mechanical testing data, the microstructure observations confirmed superplastic properties of the ceramic composite. It is also known that in order to attain High Strain Rate Superplasticity (HSRS) in zirconia ceramics, it is essential to retain a stable fine-grained microstructure at high temperatures. Experiments have confirmed that adding a second soft phase such as spinel can facilitate to reach high strain-rate superplasticity in zirconia ceramics by suppressing grain growth during sintering process and enhancing cation diffusion. In the present investigation, homogenous 3Y-TZP ceramic composite powders containing 30 vol% MgAl2O4 spinel were successfully prepared through both physical-based and chemical-based methods. An electric current-activated method known as Spark Plasma Sintering (SPS) was employed for powder consolidation process. This is a very rapid electric current-activated sintering technique having a heating rate of 300 K/min. The powder preparation and consolidation steps were carried out over a wide range of conditions to ensure a homogenous nanocomposite. The experiments showed that fully-dense zirconia ceramics with an average initial grain size of the order of ˜100 nm can be sintered at the relatively low processing temperature of 1373 K in 10 min. In order to study the

  13. Superplasticity of low carbon HSLA steel during bainite transformation. Teitanso teigokinko no beinaito hentai ni okeru chososei kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, H.; Yamamoto, S.; Miyaji, H.; Furubayashi, E. (National Research Inst. for Metals, Tsukuba, Ibaraki (Japan))

    1993-12-01

    Recently, the development of high strength low alloy steel (HSLA steel) of untempered type is advanced by using the comparatively high strength and excellent tenacity of the bainite or martensite of carbon remained being transformed. In the present researches, the superplasticity during the bainite transformation due to the continuous cooling and changes of the structure as well as the mechanical properties due to the superplastic deformation are examined with the samples of Mn-Cr-Mo system HSLA steel. The results obtained therefrom are shown as follows. The temperatre range of B[sub S] and bainite transformation is moving to the higher temperature side along with the increasing of the applied stress when it is over 60 MPa. The bainitic structure is composed of the mixture lath-like bainitic ferrite and granular bainitic ferrite in the use of having no applied stress, while the percentage of the latter increases simultaneously with the increasing of the applied stress. Transformation superplastic strain is increasing together with the increasing of the applied stress, and its increasing is over the linear function when the applied stress is above about 50 MPa. 22 refs., 9 figs., 2 tabs.

  14. Mechanical Behavior of Microelectromechanical Microshutters

    Science.gov (United States)

    Burns, Devin Edward; Jones, Justin Scott; Li, Mary J.

    2014-01-01

    A custom micro-mechanical test system was constructed using off-the-shelf components to characterize the mechanical properties of microshutters. Microshutters are rectangular microelectromechanical apertures which open and close about a narrow torsion bar hinge. Displacement measurements were verified using both capacitive and digital image correlation techniques. Repeatable experiments on Si3N4 cantilever beams verified that the test system operates consistently. Using beam theory, the modulus of elasticity of the low stress Si3N4 was approximately 150 GPa, though significant uncertainty exists for this measurement due primarily to imprecise knowledge of the cantilever thickness. Tests conducted on microshutter arrays concluded that reducing the Si3N4 thickness from 250 nm to 500 nm reduces the torsional stiffness by a factor of approximately four. This is in good agreement with analytical and finite element models of the microshutters.

  15. Modeling and optimization of shape change in shell spatial cross-sections under superplastic moulding

    Science.gov (United States)

    Chumachenko, E. N.

    2008-08-01

    The necessity to develop and optimize new technological processes of gas moulding of shells under the superplasticity conditions, which ensure large elongation and complexity of the shape of end items, makes the specialists in the field of mathematical simulation to pose and solve problems of constant improvement of the imitation models. Because of a large number of "embedded" nonlinearities (the physical properties of the material, friction, and unknown boundaries), the solution of such problems requires large computer resources, high qualification of designers, and large amount of labor. In the present paper, we consider the problems of express analysis of pattern change of spatial shells on the basis of estimation of the behavior of their critical cross-sections. We solve problems of moulding of titan shells (made of VT6 alloy) in a matrix of complicated shape. We theoretically and experimentally justify the methods for predicting and constructing the optimal technological processes of shell deformation under conditions close to superplasticity by using the 2.5D designing procedures.

  16. Integrated Manufacturing of Aerospace Components by Superplastic Forming Technology

    Directory of Open Access Journals (Sweden)

    Ju Min Kyung

    2015-01-01

    Full Text Available Aerospace vehicle requires lightweight structures to obtain weight saving and fuel efficiency. It is known that superplastic characteristics of some materials provide significant opportunity for forming complicated, lightweight components of aerospace structure. One of the most important advantages of using superplastic forming process is its simplicity to form integral parts and economy in tooling[1]. For instance, it can be applied to blow-forming, in which a metal sheet is deformed due to the pressure difference of hydrostatic gas on both sides of the sheet. Since the loading medium is gas pressure difference, this forming is different from conventional sheet metal forming technique in that this is stress-controlled rather than strain and strain rate controlled. This method is especially advantageous when several sheet metals are formed into complex shapes. In this study, it is demonstrated that superplastic forming process with titanium and steel alloy can be applied to manufacturing lightweight integral structures of aerospace structural parts and rocket propulsion components. The result shows that the technology to design and develop the forming process of superplastic forming can be applied for near net shape forming of a complex contour of a thrust chamber and a toroidal fuel tank.

  17. Effects of friction stir processing on the microstructure and superplasticity of in situ nano-ZrB2/2024Al composite

    Institute of Scientific and Technical Information of China (English)

    Yutao Zhao; Xizhou Kai; Gang Chen; Weili Lin; Chunmei Wang

    2016-01-01

    In this study, in situ nano-ZrB2/2024Al composites fabricated from 2024Al–K2ZrF6–KBF4 system were processed by friction stir processing (FSP) to achieve superplasticity of the composites. And the effects of particle contents (1 wt%, 3 wt%, 5 wt%), matrix grain size (micron or sub-micron), strain rates (5 × 10¯3 s¯1, 1 × 10¯2 s¯1, 2 × 10¯2 s¯1) and deformation temperatures (400 K, 480 K, 600 K, 700 K, 750 K) on the superplasticity of the composites were investigated. After the friction stir processing, the coarse grains of the cast composites with matrix grain size of about 80–100 μm and nano-ZrB2 reinforcement size of 30–100 nm were crushed into small grains about 1 μm in size, and the uniformity of the nano-ZrB2 reinforcements was also improved. And under the same superplastic tensile testing condition at the temperature of 750 K and strain rate of 5 × 10¯3 s¯1, the FSP nano 3 wt%ZrB2/2024Al composite exhibited an superplastic elongation of 292.5%, while the elongation of the corresponding cast composite was only less than 100%. Meanwhile, the m values of the FSP composites were always higher than the cast composites, especially the FSP composites with 3 wt% particles has the m value of 0.5321 i.e., the FSP composites should had better superplastic properties than cast ones. Furthermore, the FSP composites had higher apparent deformation activation energy (Q) than that of the lattice diffusion of pure aluminium, indicating that the deformation mechanisms of the FSP composites should be grain boundary sliding mechanisms.

  18. Grain size control and superplasticity in 6013-type aluminum alloys

    Science.gov (United States)

    Troeger, Lillianne Plaster Whitelock

    Aluminum alloys have been the material of choice for aircraft construction since the 1930's. Currently, the automotive industry is also showing an increasing interest in aluminum alloys as structural materials. 6xxx aluminum alloys possess a combination of strength and formability which makes them attractive to both industries. In addition, 6xxx alloys are highly weldable, corrosion resistant, and low in cost as compared with the 2xxx and 7xxx aluminum alloys. Superplastic forming (SPF) is a manufacturing process which exploits the phenomenon of superplasticity in which gas pressure is used to form complex-shaped parts in a single forming operation. This reduces part counts and the need for fasteners and connectors, resulting in reduced product weight. Reduced product/vehicle weight improves fuel economy. Most alloys must be specially processed for superplasticity. Much research effort has been directed at the development of thermomechanical processes for the grain refinement of aluminum alloys by static or dynamic recrystallization. to induce superplasticity. While large numbers of studies have been conducted on 2xxx, 5xxx, 7xxx, and 8xxx aluminum alloys, very few studies have been focused on the grain refinement of 6xxx aluminum alloys for superplasticity. The current research describes a new thermomechanical process for application to 6xxx aluminum alloys for grain refinement and superplasticity. The process is shown to successfully refine and induce superplasticity in an Al-Mg-Si-Cu alloy which falls within the compositional limits of both 6013 and 6111. The grain refinement is by particle-stimulated nucleation of recrystallization. The microstructural evolution during the thermomechanical processing is characterized in terms of precipitate size, shape, distribution and composition; texture; recrystallization; and grain size, shape, and thermal stability. The new process produces a statically-stable, weakly-textured, equiaxed grain structure with an average

  19. Superplasticity of metals: phenomenology based on rheological properties and structural dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, O.M. [Moscow State Steel and Alloys Inst. (Russian Federation). Lab. of Superplastic Mater. Deformation

    1997-12-31

    Fine structure superplasticity (FSSP), high strain rate superplasticity (HSRSP) and phase transformation superplasticity (PTSP) as well as superplastic-like behaviour of some natural and industrial materials evidently belong to the same type of rheological behaviour i.e. non-linear viscoplastic flow. Temperature map has been proposed as a base for rheological analysis of various types of superplastic and superplastic-like flow of metallic materials. A phenomenological model has been developed to describe deformation of polycrystalline materials at elevated temperatures in a wide range of strain rates with respect to structure evolution during deformation. Rheological analysis of FSSP, HSRSP and PTSP materials along with a slurry during rheocasting shows similarities and peculiarities of superplastic and superplastic-like behaviour. The value of apparent viscosity seems to be an informative index for estimation of rheological and physical state of grain boundaries as a viscous phase and of polycrystalline material as a whole. A new process of impulse bulk forming is presented to show unique possibility of joining in one process two stages of a regular superplastic technology, i.e. preparation of ultrafine grain structure followed by HSRSP deformation. (orig.) 37 refs.

  20. Behavioral analyses of GHB: receptor mechanisms.

    Science.gov (United States)

    Carter, Lawrence P; Koek, Wouter; France, Charles P

    2009-01-01

    GHB is used therapeutically and recreationally, although the precise mechanism of action responsible for its different behavioral effects is not entirely clear. The purpose of this review is to summarize how behavioral procedures, especially drug discrimination procedures, have been used to study the mechanism of action of GHB. More specifically, we will review several different drug discrimination procedures and discuss how they have been used to qualitatively and quantitatively study different components of the complex mechanism of action of GHB. A growing number of studies have provided evidence that the behavioral effects of GHB are mediated predominantly by GABAB receptors. However, there is also evidence that the mechanisms mediating the effects of GHB and the prototypical GABAB receptor agonist baclofen are not identical, and that other mechanisms such as GHB receptors and subtypes of GABAA and GABAB receptors might contribute to the effects of GHB. These findings are consistent with the different behavioral profile, abuse liability, and therapeutic indications of GHB and baclofen. A better understanding of the similarities and differences between GHB and baclofen, as well as the pharmacological mechanisms of action underlying the recreational and therapeutic effects of GHB, could lead to more effective medications with fewer adverse effects.

  1. Consolidation of nanostructured metal powders by rapid forging: Processing, modeling, and subsequent mechanical behavior

    Science.gov (United States)

    Shaik, G. R.; Milligan, W. W.

    1997-03-01

    Fe-10Cu powders containing 20-nm grains were produced by attritor milling of elemental powders in argon. A rapid powder forging technique was developed to consolidate the powders into fully dense compacts while maintaining nanoscale grain sizes. Grain growth during the consolidation was controlled by reducing the time of exposure at elevated temperature to a few minutes or less, a technique which is applicable to all materials and does not necessitate the addition of dispersoids. This was achieved by heating green compacts quickly using an induction heater, and then forging and rapidly cooling them back to room temperature. Forging was conducted in a protective argon atmosphere to limit contamination. Fully dense compacts were produced at relatively low temperatures, mainly due to the accelerated creep rates exhibited by the nanostructures. Transmission electron microscopy and X-ray diffraction analysis found an average grain size of 45 nm in the fully dense samples forged at 530°C. Indications are that finer grain sizes should be attainable by using slightly lower temperatures and higher pressures. The success of the technique (compared to hot-isostatic pressing (“hipping”)) is due to both reducing time at elevated temperatures and applying relatively high pressures. Microhardness tests revealed a significant strengthening effect due to grain size refinement, following a Hall-Petch relation. Compression testing at room temperature showed no strain hardening during plastic deformation, which occurred by shear banding. High strengths, up to 1800 MPa, were obtained at room temperature. Compression testing at 575°C revealed a significant strain rate dependence of mechanical behavior and also the possibility of superplastic behavior. Power-law creep was observed at 575°C, with very high steady-state creep rates on the order of 50 pct/s at 230 MPa. The consolidation process was successfully modeled by slightly modifying and applying the Arzt, Ashby, and

  2. On the theory of behavioral mechanics.

    Science.gov (United States)

    Dzendolet, E

    1999-12-01

    The Theory of Behavioral Mechanics is the behavioral analogue of Newton's laws of motion, with the rate of responding in operant conditioning corresponding to physical velocity. In an earlier work, the basic relation between rate of responding and sessions under two FI schedules and over a range of commonly used session values had been shown to be a power function. Using that basic relation, functions for behavioral acceleration, mass, and momentum are derived here. Data from other laboratories also support the applicability of a power function to VI schedules. A particular numerical value is introduced here to be the standard reference value for the behavioral force under the VI-60-s schedule. This reference allows numerical values to be calculated for the behavioral mass and momentum of individual animals. A comparison of the numerical values of the momenta of two animals can be used to evaluate their relative resistances to change, e.g., to extinction, which is itself viewed as a continuously changing behavioral force being imposed on the animal. This overall numerical approach allows behavioral force-values to be assigned to various experimental conditions such as the evaluation of the behavioral force of a medication dosage.

  3. Superplastic forming gas pressure of titanium alloy bellows

    Institute of Scientific and Technical Information of China (English)

    王刚; 张凯锋; 陈军; 阮雪榆

    2004-01-01

    The complex superplastic forming (SPF) technology applying gas pressure and compressive axial load is an advanced forming method for titanium alloy bellows, whose forming process consists of the three main forming phases namely bulging, clamping and calibrating phase. The influence of forming gas pressure in various phases on the forming process was analyzed and the models of forming gas pressure for bellows were derived according to the thin shell theory and the plasticity deformation theory. Using the model values, taking a two-convolution DN250 Ti6Al-4V titanium alloy bellows as an example, a series of superplastic forming tests were performed to evaluate the influence of the variation of forming gas pressure on the forming process. According to the experimental results these models were corrected to make the forming gas pressures prediction more accurate.

  4. Superplastic Deformation and Viscous Flow in an Zr-Based Metallic Glass at 410 Degrees C

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Mukai, T.; Nieh, T.G.; Wadsworth, J.; Wang, J.G.

    1998-12-01

    The thermal properties of an amorphous alloy (composition in at.%: Zr-l0Al-5Ti-l7.9Cu-14.6Ni), and particularly the glass transition and crystallization temperature as a function of heating rate, were characterized using Differential Scanning Calorimetry (DSC). X-ray diffraction analyses and Transmission Electron Microscopy were also conducted on samples heat-treated at different temperatures for comparison with the DSC results. Superplasticity in the alloy was studied at 410 degrees C, a temperature within the supercooled liquid region. Both single strain rate and strain rate cycling tests in tension were carried out to investigate the deformation behavior of the alloy in the supercooled liquid region. The experimental results indicated that the alloy did not behave like a Newtonian fluid.

  5. Carburizing of Duplex Stainless Steel (DSS) Under Compression Superplastic Deformation

    Science.gov (United States)

    Ahamad, Nor Wahida; Jauhari, Iswadi

    2012-12-01

    A new surface carburizing technique which combines superplastic deformation with superplastic carburizing (SPC) is introduced. SPC was conducted on duplex stainless steel under compression mode at a fixed 0.5 height reduction strain rates ranging from 6.25 × 10-5 to 1 × 10-3 s-1 and temperature ranging from 1173 K to 1248 K (900 °C to 975 °C). The results are compared with those from conventional and non-superplastic carburizing. The results show that thick hard carburized layers are formed at a much faster rate compared with the other two processes. A more gradual hardness transition from the surface to the substrate is also obtained. The highest carburized layer thickness and surface hardness are attained under SPC process at 1248 K (975 °C) and 6.25 × 10-5 s-1 with a value of (218.3 ± 0.5) μm and (1581.0 ± 5.0) HV respectively. Other than that, SPC also has the highest scratch resistance.

  6. Boronization and Carburization of Superplastic Stainless Steel and Titanium-Based Alloys

    Directory of Open Access Journals (Sweden)

    Masafumi Matsushita

    2011-07-01

    Full Text Available Bronization and carburization of fine-grain superplastic stainless steel is reviewed, and new experimental results for fine grain Ti88.5Al4.5V3Fe2Mo2 are reported. In superplastic duplex stainless steel, the diffusion of carbon and boron is faster than in non-superplastic duplex stainless steel. Further, diffusion is activated by uniaxial compressive stress. Moreover, non-superplastic duplex stainless steel shows typical grain boundary diffusion; however, inner grain diffusion is confirmed in superplastic stainless steel. The presence of Fe and Cr carbides or borides is confirmed by X-ray diffraction, which indicates that the diffused carbon and boron react with the Fe and Cr in superplastic stainless steel. The Vickers hardness of the carburized and boronized layers is similar to that achieved with other surface treatments such as electro-deposition. Diffusion of boron into the superplastic Ti88.5Al4.5V3Fe2Mo2 alloy was investigated. The hardness of the surface exposed to boron powder can be increased by annealing above the superplastic temperature. However, the Vickers hardness is lower than that of Ti boride.

  7. Influence of superplastic deformation on the anisotropy of 03Kh26N6T steel

    Science.gov (United States)

    Fuad, M. F. Akhmed; Tsepin, M. A.; Lobach, A. A.

    1991-10-01

    The maximum difference in relative elongation parallel and transverse to the rolling direction at the optimum temperature of superplastic deformation does not completely characterize the anisotropy since it is caused by the increased sensitivity of superplastic deformation to transverse grain dimensions in these directions.

  8. Superplastic behaviour of AZ91 magnesium alloy processed by high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Al-Zubaydi, Ahmed S.J., E-mail: asaz1e11@soton.ac.uk [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Branch of Materials Science, Department of Applied Sciences, University of Technology, Baghdad (Iraq); Zhilyaev, Alexander P. [Institute for Problems of Metals Superplasticity, Russian Academy of Sciences, Khalturina 39, Ufa 450001 (Russian Federation); Wang, Shun C.; Reed, Philippa A.S. [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2015-06-18

    An investigation has been conducted on the tensile properties of a fine-grained AZ91 magnesium alloy processed at room temperature by high pressure torsion (HPT). Tensile testing was carried out at 423 K, 473 K and 573 K using strain rates from 1×10{sup −1} s{sup −1} to 1×10{sup −4} s{sup −1} for samples processed in HPT for N=1, 3, 5 and 10 turns. After testing was completed, the microstructures were investigated by scanning electron microscopy and energy dispersive spectroscopy. The alloy processed at room temperature in HPT exhibited excellent superplastic behaviour with elongations higher than elongations reported previously for fine-grained AZ91 alloy produced by other severe plastic deformation processes, e.g. HPT, ECAP and EX-ECAP. A maximum elongation of 1308% was achieved at a testing temperature of 573 K using a strain rate of 1×10{sup −4} s{sup −1}, which is the highest value of elongation reported to date in this alloy. Excellent high-strain rate superplasticity (HSRSP) was achieved with maximum elongations of 590% and 860% at temperatures of 473 K and 573 K, respectively, using a strain rate of 1×10{sup −2} s{sup −1}. The alloy exhibited low-temperature superplasticity (LTSP) with maximum elongations of 660% and 760% at a temperature of 423 K and using strain rates of 1×10{sup −3} s{sup −1} and 1×10{sup −4} s{sup −1}, respectively. Grain-boundary sliding (GBS) was identified as the deformation mechanism during HSRSP, and the glide-dislocation creep accommodated by GBS dominated during LTSP. Grain-boundary sliding accommodated with diffusion creep was the deformation mechanism at high test temperature and slow strain rates. An enhanced thermal stability of the microstructure consisting of fine equiaxed grains during deformation at elevated temperature was attributed to the extremely fine grains produced in HPT at room temperature, a high volume fraction of nano β-particles, and the formation of β-phase filaments.

  9. Finite Element Simulation in Superplastic forming of Friction Stir Welded Aluminium Alloy 6061-T6

    Directory of Open Access Journals (Sweden)

    P Ganesh

    2011-09-01

    Full Text Available Superplasticity in materials is the ability of materials to achieve large elongation only under specific conditions of temperature and strain rate. Superplastic Forming (SPF is an important industrial process that has found application in sheet metal forming in the aerospace and automotive industries. Friction Stir Welding (FSW is a solid state joining process that can alter the grain structure of the parent material. FSW process is an effective tool to refine the grain structure of the sheet metal and enhance their Superplasticity. Friction Stir Welding was used to join Superplastic AA 6061-T6 sheets. The Finite Element Simulation was performed for the Superplastic Forming of the Friction Stir Welded joints to evaluate the thinning and formability of AA 6061-T6 for hemispherical shape. The commercially available Finite Element Software ABAQUS was used to execute these simulations.

  10. Mechanisms of chemotherapy-induced behavioral toxicities.

    Science.gov (United States)

    Vichaya, Elisabeth G; Chiu, Gabriel S; Krukowski, Karen; Lacourt, Tamara E; Kavelaars, Annemieke; Dantzer, Robert; Heijnen, Cobi J; Walker, Adam K

    2015-01-01

    While chemotherapeutic agents have yielded relative success in the treatment of cancer, patients are often plagued with unwanted and even debilitating side-effects from the treatment which can lead to dose reduction or even cessation of treatment. Common side effects (symptoms) of chemotherapy include (i) cognitive deficiencies such as problems with attention, memory and executive functioning; (ii) fatigue and motivational deficit; and (iii) neuropathy. These symptoms often develop during treatment but can remain even after cessation of chemotherapy, severely impacting long-term quality of life. Little is known about the underlying mechanisms responsible for the development of these behavioral toxicities, however, neuroinflammation is widely considered to be one of the major mechanisms responsible for chemotherapy-induced symptoms. Here, we critically assess what is known in regards to the role of neuroinflammation in chemotherapy-induced symptoms. We also argue that, based on the available evidence, neuroinflammation is unlikely the only mechanism involved in the pathogenesis of chemotherapy-induced behavioral toxicities. We evaluate two other putative candidate mechanisms. To this end we discuss the mediating role of damage-associated molecular patterns (DAMPs) activated in response to chemotherapy-induced cellular damage. We also review the literature with respect to possible alternative mechanisms such as a chemotherapy-induced change in the bioenergetic status of the tissue involving changes in mitochondrial function in relation to chemotherapy-induced behavioral toxicities. Understanding the mechanisms that underlie the emergence of fatigue, neuropathy, and cognitive difficulties is vital to better treatment and long-term survival of cancer patients.

  11. Mechanisms of chemotherapy-induced behavioral toxicities

    Directory of Open Access Journals (Sweden)

    Elisabeth G Vichaya

    2015-04-01

    Full Text Available While chemotherapeutic agents have yielded relative success in the treatment of cancer, patients are often plagued with unwanted and even debilitating side-effects from the treatment which can lead to dose reduction or even cessation of treatment. Common side effects (symptoms of chemotherapy include (i cognitive deficiencies such as problems with attention, memory and executive functioning; (ii fatigue and motivational deficit; and (iii neuropathy. These symptoms often develop during treatment but can remain even after cessation of chemotherapy, severely impacting long-term quality of life. Little is known about the underlying mechanisms responsible for the development of these behavioral toxicities, however, neuroinflammation is widely considered to be one of the major mechanisms responsible for chemotherapy-induced symptoms. Here, we critically assess what is known in regards to the role of neuroinflammation in chemotherapy-induced symptoms. We also argue that, based on the available evidence neuroinflammation is unlikely the only mechanism involved in the pathogenesis of chemotherapy-induced behavioral toxicities. We evaluate two other putative candidate mechanisms. To this end we discuss the mediating role of damage-associated molecular patterns (DAMPs activated in response to chemotherapy-induced cellular damage. We also review the literature with respect to possible alternative mechanisms such as a chemotherapy-induced change in the bioenergetic status of the tissue involving changes in mitochondrial function in relation to chemotherapy-induced behavioral toxicities. Understanding the mechanisms that underlie the emergence of fatigue, neuropathy, and cognitive difficulties is vital to better treatment and long-term survival of cancer patients.

  12. Economic transactions, opportunistic behavior and protective mechanisms

    DEFF Research Database (Denmark)

    Koch, Carsten Allan

    Whenever actors participate in transactions they expose themselves to risks of various kinds. Some of these risks are attributable to events outside the control of the participants and are unavoidable. Others originate in, or are aggrevated by, opportunistic actions undertaken by contract partners...... and other co-operators. This paper is concerned with the latter type of risk and the protection against it. Six protective mechanisms, which may serve as safeguards against opportunistic behavior, are presented and discussed. Special attention is paid to reputation effects. It is noted that such effects may...... account for the lack of opportunistic behavior with which networks are often credited. No protective mechanism is, however, effective under all circumstances....

  13. Multiaxial mechanical behavior of biological materials.

    Science.gov (United States)

    Sacks, Michael S; Sun, Wei

    2003-01-01

    For native and engineered biological tissues, there exist many physiological, surgical, and medical device applications where multiaxial material characterization and modeling is required. Because biological tissues and many biocompatible elastomers are incompressible, planar biaxial testing allows for a two-dimensional (2-D) stress-state that can be used to fully characterize their three-dimensional (3-D) mechanical properties. Biological tissues exhibit complex mechanical behaviors not easily accounted for in classic elastomeric constitutive models. Accounting for these behaviors by careful experimental evaluation and formulation of constitutive models continues to be a challenging area in biomechanical modeling and simulation. The focus of this review is to describe the application of multiaxial testing techniques to soft tissues and their relation to modern biomechanical constitutive theories.

  14. Shape and Mechanical Behavior of Geotextile Tubes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-bin; TAN Jia-hua

    2006-01-01

    Nowadays, geotextile tubes hydraulically filled with dredged materials have been used in the application of cofferdam,sea reclamation and deepwater channel regulation in China.The shape and mechanical behaviors during the process of filling, consolidation and stacked are one of the main problems concerned by designers and researchers. This paper uses the method of elliptic integrals to study the behaviors of filling and deduces the regressive formulas of shape features and circumferential tension. The results show that the proposal regressive formulas are only the function of pressure at bottom;they are very convenient and suitable for the filling design.When the filling materials are sandy, the shape and mechanical behaviors nearly remain during the process of consolidation. The behaviors of stacked geotextile tubes are very complex, because they are involved in the properties of the filling material,geotextile and foundation. Using the commercial finite element analysis program ABAQUS, this paper establishes the entire 2-D finite element load model to investigate, which include the part of filling material, geotextile and foundation. The numerical results suggest that the maximum circumferential tension varies with the properties of filling materials and foundations, whereas the largest tensile force occurs during the filling process.

  15. Thermomechanical processing and mechanical properties of hypereutectoid steels and cast irons

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Syn, C.K.; Sherby, O.D. (eds.)

    1998-01-01

    Recent advances in metallurgy of hypereutectoid steels and cast irons show that unique properties, such ultrahigh hardness and strength, and superplasticity, are achievable. This book focuses on the mechanical properties of hypereutectoid steels and cast irons as influenced by thermomechanical processing and microstructure. Some topics covered are: (1) Hot workability of hypereutectoid tool steels; (2) Thermomechanical processing of austempered ductile iron: An overview; (3) Mechanical behavior of ultrahigh strength, ultrahigh carbon steel wire and rod; and (4) Tensile elongation behavior of fine-grained Fe-C alloys at elevated temperatures.

  16. Hot Workability and Superplasticity of Low-Al and High-Nb Containing TiAl Alloys

    Science.gov (United States)

    Tang, Bin; Zhao, Fengtong; Chu, Yudong; Kou, Hongchao; Li, Jinshan

    2017-09-01

    The superplastic deformation mechanism of low-Al and high-Nb containing TiAl alloy was investigated in compression mode. The experimental results showed that intense dynamic recrystallization (DRX) breaks the balance and leads to a significant drop in flow stress after the peak when deforming below 950°C. Arrhenius kinetic analysis revealed that the activation energy for superplastic compression first increased then decreased with temperature, suggesting a change in the deformation mechanism. Microstructure observations showed that, when deformed at 850°C, the deformation mechanism was grain-boundary sliding accommodated by γ-DRX, γ-intragranular deformation, and β/B2-phase decomposition, while the mechanism was grain-boundary sliding accommodated by γ-DRX, β/B2-DRX, and γ → β/B2 + α 2 phase transformation when deformed at 1000°C. After compression, the microstructure tended to be uniform, which may yield important information for the development of new deformation techniques for TiAl alloys.

  17. Understanding cement mechanical behavior in SAGD wells

    Energy Technology Data Exchange (ETDEWEB)

    Xie, J.; Zahacy, T. A. [C-FER Technologies (Canada)

    2011-07-01

    In the heavy oil industry, the steam assisted gravity drainage process is often used to enhance oil recovery but it can cause cracks in the cement sheath. These cracks are the result of high steam temperatures and thermal expansion. In order to mitigate this risk, improved well designs are required. The aim of this paper is to present the mechanical behavior of the cement sheath during the heating phase. An analysis of the impact of design and operating parameters was conducted through thermal hydraulic and thermal mechanical analyses to assess cement integrity. These analyses were then performed on an example of an SAGD project in the southern part of the Athabasca oilsands region to assess the performance of the cement sheath. Results showed that potential damage to the cement can be reduced by slow heating and a lower Young's modulus cement blend. This paper makes recommendations for optimizing cement design in thermal recovery wells.

  18. Activation Energy for Superplastic Flow Above Critical Temperature of Die Steels

    Institute of Scientific and Technical Information of China (English)

    WEN Jiu-ba; ZHANG Ke-ke; CHEN Fu-xiao; YANG Yong-shun

    2006-01-01

    Some commercial cold working die steels GCr15 and CrWMn with ultra-fine grain size were chosen as tested materials to research the activation energy for superplastic flow at different temperatures and strain rates above critical temperature. Based on the Arrhenius equation, the activation energy for superplastic flow is evaluated. The activation energy at constant strain rate is estimated by the logσt vs 1/T relationship. The results show that the activation energy is usually small under the conditions of optimal flow. The characteristics of superplastic deformation of steels above the critical temperature were also analyzed.

  19. Elastic constants for superplastically formed/diffusion-bonded sandwich structures

    Science.gov (United States)

    Ko, W. L.

    1979-01-01

    Formulae and the associated graphs are presented for contrasting the effective elastic constants for a superplastically formed/diffusion-bonded (SPF/DB) corrugated sandwich core and a honeycomb sandwich core. The results used in the comparison of the structural properties of the two types of sandwich cores are under conditions of equal sandwich density. It was found that the stiffness in the thickness direction of the optimum SPF/DB corrugated core (i.e., triangular truss core) was lower than that of the honeycomb core, and that the former had higher transverse shear stiffness than the latter.

  20. Alligator osteoderms: Mechanical behavior and hierarchical structure

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Irene H. [Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093 (United States); Yang, Wen, E-mail: wey005@eng.ucsd.edu [Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093 (United States); Meyers, Marc A. [Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093 (United States); Departments of Mechanical and Aerospace Engineering and Nanoengineering, University of California, San Diego, La Jolla, CA 92093 (United States)

    2014-02-01

    Osteoderms are bony scutes embedded underneath the dermal layers of the skin acting as a protection of the alligator (Archosauria: Crocodylia) internal organs and tissues. Additionally, these scutes function as an aid in temperature regulation. The scutes are inter-linked by fibrous connective tissue. They have properties similar to bone and thus have the necessary toughness to provide protection against predators. The scutes consist of hydroxyapatite and have a porosity of approximately 12%. They have a disc-like morphology with a ridge along the middle of the plate, called the keel; the outer perimeter of the disc has depressions, grooves, and jagged edges which anchor the collagen and act as sutures. Computerized tomography reveals the pattern of elongated pores, which emanate from the keel in a radial pattern. Micro-indentation measurements along the cross-section show a zigzag behavior due to the porosity. Compression results indicate that the axial direction is the strongest (UTS ∼ 67 MPa) and toughest (11 MJ/m{sup 3}); this is the orientation in which they undergo the largest external compression forces from predator teeth. Toughening mechanisms are identified through observation of the damage progression and interpreted in mechanistic terms. They are: flattening of pores, microcrack opening, and microcrack growth and coalescence. Collagen plays an essential role in toughening and plasticity by providing bridges that impede the opening of the cracks and prevent their growth. - Highlights: • We characterized the hierarchical structure of alligator scute. • The anisotropic mechanical behavior of alligator scute was studied. • Toughening mechanisms were identified at the micro- and nano-levels.

  1. Mechanical behaviors of notched composite laminates

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Presents the study on the mechanical behaviors of composite laminates with both static and fatigue tests per formed with different notched specimens and concludes with experimental results that ultimate strength and initial stiff ness of various notched composite laminates is almost as same as un-notched ones but the fatigue life of notched speci mens is much higher than un-notched ones. Compared with metals, composite materials are notch insensitive. The properties measured by using bar type specimens can not represent the real properties of composite laminates. Notches on the free edge may be helpful to the structure. The fatigue life can be predicted through theoretical models estab lished using the residual stiffness model.

  2. MECHANICAL BEHAVIOR OF AMORPHOUS POLYMERS IN SHEAR

    Institute of Scientific and Technical Information of China (English)

    张赟; 黄筑平

    2004-01-01

    Based on the non-equilibrium thermodynamic theory, a new thermo-viscoelastic constitutive model for an incompressible material is proposed. This model can be considered as a kind of generalization of the non-Gaussian network theory in rubber elasticity to include the viscous and the thermal effects. A set of second rank tensorial internal variables was introduced, and in order to adequately describe the evolution of these internal variables, a new expression of the Helmholtz free energy was suggested. The mechanical behavior of the thermo-viscoelastic material under simple shear deformation was studied, and the "viscous dissipation induced" anisotropy due to the change of orientation distribution of molecular chains was examined. Influences of strain rate and thermal softening produced by the viscous dissipation on the shear stress were also discussed. Finally, the model predictions were compared with the experimental results performed by G'Sell et al., thus the validity of the proposed model is verified.

  3. Developing Attention: Behavioral and Brain Mechanisms

    Directory of Open Access Journals (Sweden)

    Michael I. Posner

    2014-01-01

    Full Text Available Brain networks underlying attention are present even during infancy and are critical for the developing ability of children to control their emotions and thoughts. For adults, individual differences in the efficiency of attentional networks have been related to neuromodulators and to genetic variations. We have examined the development of attentional networks and child temperament in a longitudinal study from infancy (7 months to middle childhood (7 years. Early temperamental differences among infants, including smiling and laughter and vocal reactivity, are related to self-regulation abilities at 7 years. However, genetic variations related to adult executive attention, while present in childhood, are poor predictors of later control, in part because individual genetic variation may have many small effects and in part because their influence occurs in interaction with caregiver behavior and other environmental influences. While brain areas involved in attention are present during infancy, their connectivity changes and leads to improvement in control of behavior. It is also possible to influence control mechanisms through training later in life. The relation between maturation and learning may allow advances in our understanding of human brain development.

  4. High-temperature tensile deformation behavior of aluminum oxide with and without an applied electric field

    Science.gov (United States)

    Campbell, James

    1998-12-01

    Ceramics are usually considered to be brittle, but under certain conditions some ceramics exhibit a large degree of ductility. They are fine-grained and exhibit superplastic behavior when deformed at high temperatures and low stresses. Whereas superplasticity gives enhanced ductility to metals, it may be the only method for imparting large plasticity to ceramics. Electric fields have been shown to increase ductility, reduce flow stress and reduce cavitation in the superplastic forming of 7475 Al and yttria-stabilized zirconia. Thus, the concurrent application of an electric field may give improved superplastic properties and increased plasticity to a marginally ductile ceramic such as aluminum oxide (alpha-alumina). Fine-grained alumina tensile specimens, formed by dry pressing and sintering a spray-dried powder, were tested in tension at high temperature with and without an electric field of 300 V/cm. Constant strain rate, strain rate cycling and stress relaxation tests were performed. The effects of an electric field on the ductility, flow stress, cavitation and parameters of the Weertman-Dorn deformation equation were measured. Without an electric field, the following deformation parameters were found: the stress exponent n = 2.2, the grain size exponent p = 1.9, the activation energy Q = 490 kJ/mol and the threshold stress sigmao ≈ 0 MPa, indicating structural superplasticity where grain boundary sliding is the predominant deformation mode and was likely accommodated by the motion of grain boundary dislocations. An electric field of 300 V/cm gave a Joule heating temperature increase of ˜30°C and caused the alumina to swell 5--25% (increasing with time), even while under no applied stress, thereby reducing its ductility and flow stress. After correcting for Joule heating and swelling there was still a significant flow stress reduction produced by the field and the following deformation parameters were found: n = 2.2, p = 1.9, Q = 950 kJ/mol and sigmao ≈ 0

  5. A two-step superplastic forging forming of semi-continuously cast AZ70 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Pan Wang

    2015-03-01

    Full Text Available A two-step technology combined forging with superplastic forming has been developed to enhance the forgeability of semi-continuously cast AZ70 magnesium alloy and realize the application of the as-cast magnesium alloy in large deformation bullet shell. In the first step, fine-grained microstructure preforms that are suitable for superplastic forming were obtained by reasonably designing the size of the initial blanks with the specific height-to-diameter ratio, upsetting the blanks and subsequent annealing. In the second step, the heat treated preforms were forged into the end products at the superplastic conditions. The end products exhibit high quality surface and satisfied microstructure. Consequently, this forming technology that not only avoids complicating the material preparation but also utilizes higher strain rate superplastic provides a near net-shaped novel method on magnesium forging forming technology using as-cast billet.

  6. Effect of current pulses on fracture morphology in superplastic deformation of 2091 Al-Li alloy

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The effect of current pulses on the fracture morphology in the superplastic deformation of 2091 AlLi alloy at two kinds of initial strain rate ((ε)1 = 3.33 × 10 -3 s-1;(ε)2= 3.33 × 10-2 s- 1 ) was investigated. Experimental results show that current pulse turns fracture of superplastic deformation at low strain rate from local interior fracture morphology to typical fracture by growth and interlinkage of cavities, and at high strain rate from rough grain boundary surface to smooth grain boundary surface. It is indicated that the characteristic, that current pulse promotes atomic diffusion, maintains an equiaxial grain microstructure at low strain rate, and accelerates the development of diffusional type of cavity and relaxes stress concentration at triple junction of grain boundaries at high strain rate, and makes the superplastic deformation at two kinds of strain rate show a normal superplastic fracture morphology.

  7. Superplasticity in an Aluminum Alloy 6061/A12O3p Composite

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The superplasticity of an Al2O3p/6061Al composite, fabricated by powder metallurgy techniques,has been investigated. Instead of any special thermomechanical processing or hot rolling, simple hot extrusion has been employed to obtain a fine grained structure before superplastic testing.Superplastic tensile tests were performed at strain rates ranging from 10-2 to 10-4 s-1 and at temperatures from 833 to 893 K. A maximum elongation of 200% was achieved at a temperature of 853 K and an initial strain rate of 1.67×10-3 s-1. The highest value obtained for the strain rate sensitivity index (m) was 0.32. Differential scanning calorimeter was used to ascertain the possibility of any partial melting in the vicinity of optimum superplastic temperature. These results suggested that no liquid phase existed where maximum elongation was achieved and deformation took place entirely in the solid state.

  8. Effects of friction stir processing on the microstructure and superplasticity of in situ nano-ZrB2/2024Al composite

    Directory of Open Access Journals (Sweden)

    Yutao Zhao

    2016-02-01

    Full Text Available In this study, in situ nano-ZrB2/2024Al composites fabricated from 2024Al–K2ZrF6–KBF4 system were processed by friction stir processing (FSP to achieve superplasticity of the composites. And the effects of particle contents (1 wt%, 3 wt%, 5 wt%, matrix grain size (micron or sub-micron, strain rates (5×10−3 s−1, 1×10−2 s−1, 2×10−2 s−1 and deformation temperatures (400 K, 480 K, 600 K, 700 K, 750 K on the superplasticity of the composites were investigated. After the friction stir processing, the coarse grains of the cast composites with matrix grain size of about 80–100 μm and nano-ZrB2 reinforcement size of 30–100 nm were crushed into small grains about 1 μm in size, and the uniformity of the nano-ZrB2 reinforcements was also improved. And under the same superplastic tensile testing condition at the temperature of 750 K and strain rate of 5×10−3 s−1, the FSP nano 3 wt%ZrB2/2024Al composite exhibited an superplastic elongation of 292.5%, while the elongation of the corresponding cast composite was only less than 100%. Meanwhile, the m values of the FSP composites were always higher than the cast composites, especially the FSP composites with 3 wt% particles has the m value of 0.5321 i.e., the FSP composites should had better superplastic properties than cast ones. Furthermore, the FSP composites had higher apparent deformation activation energy (Q than that of the lattice diffusion of pure aluminium, indicating that the deformation mechanisms of the FSP composites should be grain boundary sliding mechanisms.

  9. Mechanical behavior of carbon-carbon composites

    Science.gov (United States)

    Rozak, G. A.

    1984-01-01

    A general background, test plan, and some results of preliminary examinations of a carbon-carbon composite material are presented with emphasis on mechanical testing and inspection techniques. Experience with testing and evaluation was gained through tests of a low modulus carbon-carbon material, K-Karb C. The properties examined are the density - 1.55 g/cc; four point flexure strength in the warp - 137 MPa (19,800 psi) and the fill - 95.1 MPa (13,800 psi,) directions; and the warp interlaminar shear strength - 14.5 MPa (2100 psi). Radiographic evaluation revealed thickness variations and the thinner areas of the composite were scrapped. The ultrasonic C-scan showed attenuation variations, but these did not correspond to any of the physical and mechanical properties measured. Based on these initial tests and a survey of the literature, a plan has been devised to examine the effect of stress on the oxidation behavior, and the strength degradation of coated carbon-carbon composites. This plan will focus on static fatigue tests in the four point flexure mode in an elevated temperature, oxidizing environment.

  10. Thermal and mechanical behavior of rubber systems

    Science.gov (United States)

    Macon, David James

    The study of the physical behavior of rubbery materials is motivated by the desire to use these materials in a variety of environments, different mechanical conditions, and at different temperatures. For this to be possible, accurate testing conditions and modeling schemes need to be devised. These tests can be difficult to perform and existing mathematical models often neglect several basic physical requirements. One model is the statistical thermodynamic approach for calculating the thermoelastic behavior of an ideal rubber network, which assumes affine deformation of crosslinked junctions and no internal energy change with isothermal deformation. Yet, when the same relations have been manipulated according to the laws of thermodynamics, an internal energy contribution is revealed. This result is an artifact of improperly referencing strain measures and elasticity coefficients with regard to temperature. When a proper strain reference state is selected, thermoelastic stress-strain-temperature relations result that are totally entropic yet reduce to the usual isothermal conditions. This work proposes a phenomenological model that accurately models existing thermoelastic data. Experimental methods to determine the entropic and energetic contributions to rubber elasticity usually focus on the force-temperature behavior of a uniaxial sample held at constant length. Ideally, these thermoelastic measurements would be made at constant volume. Measurements are made at constant pressure and require complex corrections. It is demonstrated that two dimensionally constrained membrane samples can overcome these difficulties. By using time-average vibrational holographic interferometry, the two principal stresses of a membrane in anisotropic biaxial extension can be directly determined as a function of temperature. This two dimensionally constrained stress-temperature response greatly simplifies the resulting mathematical relations and yields no difference between constant

  11. Structure and mechanical behavior of human hair.

    Science.gov (United States)

    Yu, Yang; Yang, Wen; Wang, Bin; Meyers, Marc André

    2017-04-01

    The understanding of the mechanical behavior of hair under various conditions broadens our knowledge in biological materials science and contributes to the cosmetic industry. The hierarchical organization of hair is studied from the intermediate filament to the structural levels. The effects of strain rate, relative humidity, and temperature are evaluated. Hair exhibits a high tensile strength, 150-270MPa, which is significantly dependent on strain rate and humidity. The strain-rate sensitivity, approximately 0.06-0.1, is comparable to that of other keratinous materials and common synthetic polymers. The structures of the internal cortex and surface cuticle are affected by the large tensile extension. One distinguishing feature, the unwinding of the α-helix and the possible transformation to β-sheet structure of keratin under tension, which affects the ductility of hair, is analytically evaluated and incorporated into a constitutive equation. A good agreement with the experimental results is obtained. This model elucidates the tensile response of the α-keratin fibers. The contributions of elastic and plastic strains on reloading are evaluated and correlated to structural changes. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Mechanisms of Superplastic Deformation of Nanocrystalline Silicon Carbide Ceramics

    Science.gov (United States)

    2012-08-01

    CAMPBELL MZ436 30 44 D DEBUSSCHER MZ436 20 29 J ERIDON MZ436 21 24 W HERMAN MZ435 01 24 S PENTESCU MZ436 21 24 38500 MOUND RD... HESS & EISENHARDT G ALLEN D MALONE T RUSSELL 9113 LE SAINT DR FAIRFIELD OH 45014 NO. OF NO. OF COPIES ORGANIZATION COPIES

  13. Physico-chemo-mechanical coupling mechanisms in soil behavior

    Science.gov (United States)

    Hu, Liangbo

    Many processes in geomechanics or geotechnical/geomechanical system engineering involve phenomena that are physical and/or chemical in nature, the understanding of which is crucial to modeling the mechanical responses of soils to various loads. Such physico-chemo-mechanical coupling mechanisms are prevalent in two different types of geomechanical processes studied in this dissertation: long-term soil/sediments compaction & desiccation cracking. Most commonly the underlying physical and chemical phenomena are explained, formulated and quantified at microscopic level. In addition to the necessity of capturing the coupling mechanisms, another common thread that emerges in formulating their respective mathematical model is the necessity of linking phenomena occurring at different scales with a theory to be formulated at a macroscopic continuum level. Part I of this dissertation is focused on the subject of long-term compaction behavior of soils and sediments. The interest in this subject arises from the need to evaluate reservoir compaction and land subsidence that may result from oil/gas extraction in petroleum engineering. First, a damage-enhanced reactive chemo-plasticity model is developed to simulate creep of saturated geomaterials, a long-term strain developed at constant stress. Both open and closed systems are studied. The deformation at a constant load in a closed system exhibits most of the characteristics of the classical creep. Primary, secondary and tertiary creep can be interpreted in terms of dominant mechanisms in each phase, emphasizing the role of the rates of dissolution and precipitation, variable reaction areas and chemical softening intensity. The rest of Part I is devoted to the study of soil aging, an effect of a localized mineral dissolution related creep strain and subsequent material stiffening. A three-scale mathematical model is developed to numerically simulate the scenarios proposed based on macroscopic experiments and geochemical

  14. Hot Superplastic Powder Forging for Transparent nanocrystalline Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, W. Roger

    2006-05-22

    The program explored a completely new, economical method of manufacturing nanocrystalline ceramics, Hot Superplastic Powder Forging (HSPF). The goal of the work was the development of nanocrystalline/low porosity optically transparent zirconia/alumina. The high optical transparency should result from lack of grain boundary scattering since grains will be smaller than one tenth the wavelength of light and from elimination of porosity. An important technological potential for this process is manufacturing of envelopes for high-pressure sodium vapor lamps. The technique for fabricating monolithic nanocrystalline material does not begin with powder whose particle diameter is <100 nm as is commonly done. Instead it begins with powder whose particle diameter is on the order of 10-100 microns but contains nanocrystalline crystallites <<100 nm. Spherical particles are quenched from a melt and heat treated to achieve the desired microstructure. Under a moderate pressure within a die or a mold at temperatures of 1100C to 1300C densification is by plastic flow of superplastic particles. A nanocrystalline microstructure results, though some features are greater than 100nm. It was found, for instance, that in the fully dense Al2O3-ZrO2 eutectic specimens that a bicontinuous microstructure exists containing <100 nm ZrO2 particles in a matrix of Al2O3 grains extending over 1-2 microns. Crystallization, growth, phase development and creep during hot pressing and forging were studied for several compositions and so provided some details on development of polycrystalline microstructure from heating quenched ceramics.

  15. Sedentary Behavior and Cardiovascular Disease Risk: Mediating Mechanisms.

    NARCIS (Netherlands)

    Carter, S.; Hartman, Y.A.W.; Holder, S.; Thijssen, D.H.J.; Hopkins, N.D.

    2017-01-01

    Sedentary behavior has a strong association with cardiovascular disease (CVD) risk, which may be independent of physical activity. To date, the mechanism(s) that mediate this relationship are poorly understood. We hypothesize that sedentary behavior modifies key hemodynamic, inflammatory, and

  16. Thermally assisted deformation of structural superplastics and nanostructured materials: A personal perspective

    Indian Academy of Sciences (India)

    K A Padmanabhan

    2003-02-01

    Optimal structural superplasticity and the deformation of nanostructured materials in the thermally activated region are regarded as being caused by the same physical process. In this analysis, grain/interphase boundary sliding controls the rate of deformation at the level of atomistics. Boundary sliding develops to a mesoscopic level by plane interface formation involving two or more boundaries and at this stage the rate controlling step is boundary migration. In other words, grain/interphase boundary sliding is viewed as a two-scale process. The non-zero, unbalanced shear stresses present at the grain/interphase boundaries ensure that near-random grain rotation is also a non-rate controlling concomitant of this mechanism. Expressions have been derived for the free energy of activation for the atomic scale rate controlling process, the threshold stress that should be crossed for the commencement of mesoscopic boundary sliding, the inverse Hall-Petch effect and the steady state rate equation connecting the strain rate to the independent variables of stress, temperature and grain size. Beyond the point of inflection in the log stress-log strain rate plot, climb controlled multiple dislocation motion within the grains becomes increasingly important and at sufficiently high stresses becomes rate controlling. The predictions have been validated experimentally.

  17. Superplasticity and cooperative grain boundary sliding in nanocrystalline Ni{sub 3}Al

    Energy Technology Data Exchange (ETDEWEB)

    Mara, N.A. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)], E-mail: namara@lanl.gov; Sergueeva, A.V.; Mara, T.D. [Materials Science Division, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States); McFadden, S.X. [Sandia Laboratories, Livermore, CA 94550 (United States); Mukherjee, A.K. [Materials Science Division, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States)

    2007-08-15

    Cooperative grain boundary sliding (CGBS) has been shown to account for the majority of macroscopic strain seen in microcrystalline metallic systems undergoing superplastic deformation. While CGBS has been observed on the surface of microcrystalline samples deforming superplastically through the shifting of diamond scribe lines, there have been few transmission electron microscopy results showing such occurrences in the bulk of the material, or the details behind the micromechanism of CGBS. In this work, nanocrystalline Ni{sub 3}Al produced via high-pressure torsion is deformed superplastically in the electron microscope. High-temperature ({approx}700 deg. C) in situ tensile testing shows the nature of CGBS at the nanoscale through direct observation of this phenomenon.

  18. Ultrasonic Nondestructive Testing of Superplastic Solid-State Welding Joint for Different Steels

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on quantitative microscopic examinations of welds and welding rate for different steels (40Cr and T10A) joint, which possess the ultra-fine microstructure after high frequency hardening (HFH) and salt-bath cyclic quenching (SCQ), the suitable defect grey scale threshold value was determined, and the welding rate of superplastic solid-state welding of different steels (40Cr and T10A steel) was systematically inspected and analyzed by means of self-made ultrasonic imaging inspection system. The experimental results showed that the superplastic solid-state weld of different steels can be inspected more accurately, reliably and quickly by this system, and the results were in good accordance with that of metallographic observation. The welding rate of superplastic welding is in linear relation with tensile strength of joint.

  19. Ultrasonic C-scanning imaging inspection of superplastic solid-state welded joint quality

    Institute of Scientific and Technical Information of China (English)

    张柯柯; 陈怀东; 杨蕴林; 薛锦

    2002-01-01

    Based on a large amount of dissection at welded interface and quantitative microscopic examination of welded rate, the suitable limit grey scale value was determined, and the welded rate of superplastic solid-state welding interface of heterogeneous steel was systematically studied by means of self-made ultrasonic C-scanning imaging inspection system. The experimental results show: the welded state of superplastic solid-state welding interface of heterogeneous steel can be conducted to be more accurately, reliably and quickly inspected by means of this system, and the ultrasonic testing results are good consistent with actual examination results of the interface defective distribution. Within the extent of the suitble welded rate,the welded rate in 40Cr/T10A superplastic welding process tested by this system is linear with its tensile strength of joint.

  20. Superplasticity in Aeroengine Titanium Alloy VT-9 and its Modified Compositions

    Directory of Open Access Journals (Sweden)

    Abhijit Dutta

    1986-04-01

    Full Text Available The alloy (Ti-6.5AL-3.3 Mo-1.6Zr-O.3Si is a Soviet composition designated VT-9. Excellent superplastic characteristics found by us in this alloy prompted us to explore the possibility of use of Si-free VT-9 in sheet form for superplastic forming. An optimum thermomechanical processing produced a microstructure that resulted in an elongation of 1700 per cent at a fairly high deformation rate (2 X 10-3 set-1. Thus, the same aeroengine alloy (VT-9 can be used for superplastically formed airframe parts in the Si-free condition. The present study also shows that for making the forming process commercially viable, deformation temperature could be lowered by temporarily alloying with hydrogen in a particular concentration range (0.1 to 0.2 wt per cent.

  1. Effect of partial melting on superplasticity ofAlNp/6061Al composite

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AlN particulate reinforced 6061 aluminum alloy composite was fabricated by powder metallurgy method and hot-rolled after extrusion. Tensile strength and elongation at elevated temperature were measured by tensile test at initial strain rates between 10-2 s-1 and 100 s-1. The AlNp/6061Al composite exhibits an m-value of 0.42 and a maximum elongation of 450% at 863?K. Differential scanning calorimeter was used to ascertain the possibility of any partial melting in the vicinity of optimum superplastic temperature. Partial melting resulting from solute segregation at interfaces has much influence on superplasticity of the composite. It is postulated that AlNp/matrix interface sliding occurs along with grain boundary in superplastic deformation.

  2. Superplasticity of the aluminum alloys containing the Al{sub 3}Ni eutectic particles

    Energy Technology Data Exchange (ETDEWEB)

    Portnoy, V.K. [Department of Physical Metallurgy Non-Ferrous Metals, National University of Science and Technology ' ' MISIS' ' , Moscow (Russian Federation); Mikhaylovskaya, A.V.

    2012-09-15

    The structures and parameters of superplasticity of aluminum alloys containing fine and coarse eutectic Al{sub 3}Ni particles were investigated. Traditional hot and cold rolling were used for sheet producing. The research alloys have low- or high - alloying solid solution. Superplasticity characterization of the alloy with high-alloying solid solution is much better beside alloys with low-alloying solid solution. Alloying by zirconium improves superplasticity in some investigated alloys. Some alloys with partially recrystallized structure show d = 500-700% at T = 0.95 Tm with the constant strain rates to the range of (1.10{sup -3}-1.10{sup -2}) s{sup -1}. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Effect of Rare Earth on Superplasticity of Zn-5Al Eutectic Alloy

    Institute of Scientific and Technical Information of China (English)

    石志强; 叶以富; 李世春; 王焕荣; 滕新营

    2002-01-01

    The superplastic deformation curves of Zn-5Al eutectic alloy containing small amount of rare earth were measured, and the influence of rare earth on structure and superplasticity characteristics of the alloy was examined with optical microscope, XDF and TEM. The results show that the elongation of Zn-5Al eutectic alloy can be increased if less than 0.2 %(mass fraction) misch-metal was added. Rare earth which exists in the form of compounds Al2CeZn2 and CeZn3 can refrain the dissolution and diffusion of Zn to Al and postpone the saturation of the diffusion-dissolution zone(DDZ) above 350 ℃, and in such a way boost up α/β interface sliding which benefits the superplasticity.

  4. Experimental and FE simulation validation of sheet thickness optimization in superplastic forming of Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kumaresan, G.; Jothilingam, A. [Anna University, Chennai (India)

    2016-07-15

    Superplasticity is the ability of a polycrystalline materials to exhibit very large elongations without necking prior to failure. In this paper, the superplastic forming potential of fine grained 7075 aluminium alloy was studied. The process parameters like pressure, forming time and initial sheet thickness were selected, using the design of experiments technique. The same condition of formation process was attempted in the finite element simulation using ABAQUS software. The deviation of the thickness distribution between the simulation and experiment was made and the variation lies within 8%.

  5. HIGH STRAIN RATE SUPERPLASTICITY OF A AIN PARTICULATE REINFORCED 6061Al COMPOSITE

    Institute of Scientific and Technical Information of China (English)

    L.H. Han; J.T. Niu; D.M. Jiang; T. Imai

    2001-01-01

    The superplasticity of AlNp/6061Al composite, fabricated by powder metallurgy method and hot-rolled after extrusion, was investigated. The AlNp/6061Al composite exhibits an m-value of 0.49 and a maximum elongation of 438% in the strain rates ranging from 10-2-10°s-1 and at temperatures from 823K to 893K. Differential scanning calorimeter was used to ascertain the possibility of any partial melting in the vicinity of optimum superplastic temperature. These results suggested that liquid phase existed where maximum elongation was obtained.

  6. Consumer behavior as a mechanism for identity

    Directory of Open Access Journals (Sweden)

    O. M. Kuzmuk

    2015-03-01

    Given this vital question is presence of  ukrainian society manifestations of contemporary consumer culture in which consumption can be considered as social­communicative function that has qualitative and quantitative characteristics and is mechanism for constructing person’s identity.

  7. Dynamic reverse phase transformation induced high-strain-rate superplasticity in low carbon low alloy steels with commercial potential.

    Science.gov (United States)

    Cao, Wenquan; Huang, Chongxiang; Wang, Chang; Dong, Han; Weng, Yuqing

    2017-08-23

    Superplastic materials are capable of exhibiting large tensile elongation at elevated temperature, which is of great industrial significance because it forms the basis of a fabrication method to produce complex shapes. Superplasticity with elongation larger than 500% has been widely realized in many metals and alloys, but seldomly been succeeded in low carbon low alloy steel, even though it is commercially applied in the largest quantity. Here we report ultrahigh superplastic elongation of 900-1200% in the FeMnAl low carbon steels at high strain rate of 10(-2)-10(-3) s(-1). Such high-strain-rate superplasticity was attributed to dynamic austenite reverse phase transformation from a heavily cold rolled ferrite to fine-grained ferrite/austenite duplex microstructure and subsequent limited dynamic grain coarsening, under which a large fraction of high angle boundaries can be resulted for superplastic deformation. It is believed that this finding of the low carbon low alloy steel with ultrahigh superplasticity and relative low cost would remarkably promote the application of superplastic forming technique in automobile, aeronautical, astronautical and other fields.

  8. A prototype of behavior selection mechanism based on emotion

    Science.gov (United States)

    Zhang, Guofeng; Li, Zushu

    2007-12-01

    In bionic methodology rather than in design methodology more familiar with, summarizing the psychological researches of emotion, we propose the biologic mechanism of emotion, emotion selection role in creature evolution and a anima framework including emotion similar to the classical control structure; and consulting Prospect Theory, build an Emotion Characteristic Functions(ECF) that computer emotion; two more emotion theories are added to them that higher emotion is preferred and middle emotion makes brain run more efficiently, emotional behavior mechanism comes into being. A simulation of proposed mechanism are designed and carried out on Alife Swarm software platform. In this simulation, a virtual grassland ecosystem is achieved where there are two kinds of artificial animals: herbivore and preyer. These artificial animals execute four types of behavior: wandering, escaping, finding food, finding sex partner in their lives. According the theories of animal ethnology, escaping from preyer is prior to other behaviors for its existence, finding food is secondly important behavior, rating is third one and wandering is last behavior. In keeping this behavior order, based on our behavior characteristic function theory, the specific functions of emotion computing are built of artificial autonomous animals. The result of simulation confirms the behavior selection mechanism.

  9. Creep Behavior and Mechanism for CMCs with Continuous Ceramic Fibers

    Science.gov (United States)

    Chermant, Jean-Louis; Farizy, Gaëlle; Boitier, Guillaume; Darzens, Séverine; Vicens, Jean; Sangleboeuf, Jean-Christophe

    This paper gives an overview on the creep behavior and mechanism of some CMCs, with a SiC ceramic matrix, such as Cf-SiC, SiCf-SiC and SiCf-SiBC. Tensile creep tests were conducted under argon and air in order to have the influence of the environmental conditions on the macroscopical mechanical response. Nevertheless, multi-scale and multi-technique approaches were required to identify and quantify mechanism(s) which is (are) involved in the creep behavior. The initiation and propagation of damages which are occurring under high stress and temperature conditions were investigated at mesoscopic, microscopic and nanoscopic scales using SEM, TEM and HREM, in order to identify the mechanism(s) involved at each scale. Automatic image analysis was used in order to quantify the evolution of some damage morphological parameters. The macroscopical creep behavior has been investigated through a damage mechanics approach which seems to be the most promising route. A good correlation was found between the kinetics of the damage mechanisms and the creep behavior. For such ceramic matrix composites, the governing mechanism is a damage-creep one, with an additional delay effect due to formation of a glass when tests are performed under air.

  10. Mechanic behavior of unloading fractured rock mass

    Institute of Scientific and Technical Information of China (English)

    YIN Ke; ZHANG Yongxing; WU Hanhui

    2003-01-01

    Under tension and shear conditions related to unloading of rock mass, a jointed rock mass model of linear elastic fracture mechanics is established. According to the model, the equations of stresses, strains and displacements of the region influenced by the crack but relatively faraway the crack (the distance between the research point and the center of the crack is longer than the length of crack) are derived. They are important for evaluating the deformation of cracked rock. It is demonstrated by the comparison between computational results of these theoretical equations and the observed data from unloading test that they are applicable for actual engineering.

  11. Physical mechanisms underlying the strain-rate-dependent mechanical behavior of kangaroo shoulder cartilage

    Science.gov (United States)

    Thibbotuwawa, Namal; Oloyede, Adekunle; Li, Tong; Singh, Sanjleena; Senadeera, Wijitha; Gu, YuanTong

    2015-09-01

    Due to anatomical and biomechanical similarities to human shoulder, kangaroo was chosen as a model to study shoulder cartilage. Comprehensive enzymatic degradation and indentation tests were applied on kangaroo shoulder cartilage to study mechanisms underlying its strain-rate-dependent mechanical behavior. We report that superficial collagen plays a more significant role than proteoglycans in facilitating strain-rate-dependent behavior of the kangaroo shoulder cartilage. By comparing the mechanical properties of degraded and normal cartilages, it was noted that proteoglycan and collagen degradation significantly compromised strain-rate-dependent mechanical behavior of the cartilage. Superficial collagen contributed equally to the tissue behavior at all strain-rates. This is different to the studies reported on knee cartilage and confirms the importance of superficial collagen on shoulder cartilage mechanical behavior. A porohyperelastic numerical model also indicated that collagen disruption would lead to faster damage of the shoulder cartilage than when proteoglycans are depleted.

  12. Adolescent Suicidal Behavior and Substance Use: Developmental Mechanisms

    Directory of Open Access Journals (Sweden)

    Donald M. Dougherty

    2008-01-01

    Full Text Available Adolescent suicidal behaviors and substance use are disturbingly common. Research suggests overlap of some of the etiological mechanisms for both adolescent suicidal behavior and substance use, yet clear understanding of the complex relations between these behaviors and their causal underpinnings is lacking. A growing body of evidence and a diathesis model (Mann et al. 1999; Mann, 2003 highlight the importance of impulse control as a proximal risk factor for adolescent suicidal and substance use behaviors. This literature review extends current theory on the relationships between adolescent suicidal behavior and substance use by: (1 examining how, when, and to what extent adolescent development is affected by poor impulse control, stressful life events, substance use behavior, and biological factors; (2 presenting proposed causal mechanisms by which these risk factors interact to increase risk for suicidal behaviors and substance use; and (3 proposing specific new hypotheses to extend the diathesis model to adolescents at risk for suicide and substance use. More specifically, new hypotheses are presented that predict bidirectional relationships between stressful life events and genetic markers of 5-HT dysregulation; substance use behavior and impulsivity; and substance use behavior and suicide attempts. The importance of distinguishing between different developmental trajectories of suicidal and substance use behaviors, and the effects of specific risk and protective mechanisms are discussed. Use of new statistical approaches that provide for the comparison of latent growth curves and latent class models is recommended to identify differences in developmental trajectories of suicidal behavior and substance use. Knowledge gained from these prospective longitudinal methods should lead to greater understanding on the timing, duration, and extent to which specific risk and protective factors influence the outcomes of suicidal behavior and substance

  13. Modeling behavior: the quest to link mechanisms to function.

    Science.gov (United States)

    Janus, C; Dubnau, J

    2003-02-01

    T. Dobzhansky (1973) has been credited with saying: 'nothing in biology makes sense, except in the light of evolution'. The evolutionary conservation of gene function, as well as remarkable conservation of elemental behavioral mechanisms, guarantees that much of what we learn in one organism will inform our understanding of behavior in all animals, including humans. This insight has permitted behavior-geneticists to choose organisms based on experimental tractability for a given scientific question. IBANGS as a society has clearly embraced this Dobzhanskian worldview. As a result, the intellectual synergy of cross-species behavior-genetic analysis was palpable at the IBANGS meeting in Tours, France.

  14. Behavioral and neural Darwinism: selectionist function and mechanism in adaptive behavior dynamics.

    Science.gov (United States)

    McDowell, J J

    2010-05-01

    An evolutionary theory of behavior dynamics and a theory of neuronal group selection share a common selectionist framework. The theory of behavior dynamics instantiates abstractly the idea that behavior is selected by its consequences. It implements Darwinian principles of selection, reproduction, and mutation to generate adaptive behavior in virtual organisms. The behavior generated by the theory has been shown to be quantitatively indistinguishable from that of live organisms. The theory of neuronal group selection suggests a mechanism whereby the abstract principles of the evolutionary theory may be implemented in the nervous systems of biological organisms. According to this theory, groups of neurons subserving behavior may be selected by synaptic modifications that occur when the consequences of behavior activate value systems in the brain. Together, these theories constitute a framework for a comprehensive account of adaptive behavior that extends from brain function to the behavior of whole organisms in quantitative detail.

  15. Superplasticity of a fine-grained Mg–9Gd–4Y–0.4Zr alloy evaluated using shear punch testing

    Directory of Open Access Journals (Sweden)

    Reza Alizadeh

    2014-07-01

    Full Text Available The superplasticity of an extruded fine-grained Mg–9Gd–4Y–0.4Zr alloy was investigated by measuring the strain rate sensitivity using shear punch testing (SPT. Shear punch tests were conducted at shear strain rates in the range of 3 × 10−3–2 × 10−1 s−1 and at temperatures in the range of 573–773 K. The results indicate the strain rate sensitivity, m, increases from about 0.11 at 573 K to about 0.40 at 723 K and then decreases to 0.32 with a further increase in test temperature. A strain rate sensitivity of 0.40 and an activation energy of 140 kJ/mol are indicative of a superplastic deformation behavior dominated by grain boundary sliding accommodated by lattice diffusion at temperatures above 673 K.

  16. Low temperature superplasticity through grain refinement in Ti-6Al-4V by a novel route of quench-roll-recrystallise

    Directory of Open Access Journals (Sweden)

    Jalumedi Babu

    2015-07-01

    Full Text Available A ‘quench + roll + recrystallise’ method was simulated through compression testing of initially ‘water quenched’ Ti-6Al-4V alloy at a temperature of 973 K and rolling strain-rate 100 s−1 in order to achieve superplasticity at lower temperature through grain refinement, with a view to increase die life. Subsequent annealing of wire-cut specimens of a rolled sheet at temperatures 1023, 1073, 1123, and 1173 K revealed that, the structures became finer and equi-axial in the range of 1–2 μm, when annealed at 1073 and 1123 K. In compliance to this behavior, a tensile sample from industrially ‘quenched + rolled’ sheet at 973 K could produce an elongation of 740% at a temperature of 1073 K under a strain-rate of 10−3 s−1. Significant elongation of 652% was obtained at further lower temperature of 1023 K under a strain-rate of 10−3 s−1. Quench-roll-recrystallise technique pushes down superplastic forming temperature to 1023 K.

  17. Telescoping Mechanics: A New Paradigm for Composite Behavior Simulation

    Science.gov (United States)

    Chamis, C. C.; Murthy, P. L. N.; Gotsis, P. K.; Mital. S. K.

    2004-01-01

    This report reviews the application of telescoping mechanics to composites using recursive laminate theory. The elemental scale is the fiber-matrix slice, the behavior of which propagates to laminate. The results from using applications for typical, hybrid, and smart composites and composite-enhanced reinforced concrete structures illustrate the versatility and generality of telescoping scale mechanics. Comparisons with approximate, single-cell, and two- and three-dimensional finite-element methods demonstrate the accuracy and computational effectiveness of telescoping scale mechanics for predicting complex composite behavior.

  18. Superplastic forming of Al-Li alloys for lightweight, low-cost structures

    Science.gov (United States)

    Hales, Stephen J.; Wagner, John A.

    1991-01-01

    Superplastic forming of advanced aluminum alloys is being evaluated as an approach for fabricating low-cost, light-weight, cryogenic propellant tanks. Built-up structure concepts (with inherent reduced scrap rate) are under investigation to offset the additional raw material expenses incurred by using aluminum lithium alloys. This approach to fabrication offers the potential for significant improvements in both structural efficiency and overall manufacturing costs. Superplasticity is the ability of specially processed material to sustain very large forming strains without failure at elevated temperatures under controlled deformation conditions. It was demonstrated that superplastic forming technology can be used to fabricate complex structural components in a single operation and increase structural efficiency by as much as 60 percent compared to conventional configurations in skin-stiffened structures. Details involved in the application of this technology to commercial grade superplastic aluminum lithium material are presented. Included are identification of optimum forming parameters, development of forming procedures, and assessment of final part quality in terms of cavitation volume and thickness variation.

  19. Recent Achievements in Developing Low Temperature and High Strain Rate Superplastic Materials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper is to briefly outline our recent activities in developing low temperature or high strain rate superplastic materials, including aircraft-used and general-purpose Al- and Mg-base alloys or composites, as well as Ti3Al base intermetallic alloys. The processing routes applied included the thermomechanical treatment, equal channel angular pressing and other extrusion or forging methods.

  20. Influence of superplastic deformation on the anisotropy of 03Kh26N6T steel

    Energy Technology Data Exchange (ETDEWEB)

    Akhmed Faud, M.F.; Tsepin, M.A.; Lobach, A.A. [Tabbinskii Metallurgical Institute, Cario (Egypt)]|[Moscow Institute of Steel and Alloys (Russian Federation)] [and others

    1992-03-01

    The rules of change in anisotropy of 03Kh26N6T corrosion-resistant steel with a nonequiaxial fine-grained structure deformed under superplastic conditions were considered and an investigation was made of the change in anisotropy of the plastic properties in connection with the presence of original metallographic nonuniformity of the steel structure. 8 refs., 5 figs.

  1. Surface properties and activation energy of superplastically carburized duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ahamad, Nor Wahida, E-mail: wahida_um@yahoo.com [Department of Mechanical and Materials Engineering, Faculty of Engineering, University Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Jauhari, Iswadi, E-mail: iswadi@um.edu.my [Department of Mechanical and Materials Engineering, Faculty of Engineering, University Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Azis, Sharidah Azuar Abdul, E-mail: sharidah_azuar@yahoo.com [Department of Mechanical and Materials Engineering, Faculty of Engineering, University Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Aziz, Nur Hafizah Abd, E-mail: phiza_aziz@yahoo.com [Department of Mechanical and Materials Engineering, Faculty of Engineering, University Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)

    2010-08-01

    A new surface carburizing technique which combines superplastic phenomenon and carburizing process called superplastic carburizing (SPC) was introduced and compared with conventional carburizing (CC) process. Thermomechanically treated duplex stainless steel (DSS) with a fine grain microstructure that exhibits superplasticity was used as the superplastic material. SPC was carried out at temperatures of 1198-1248 K and a compression rate of 1 x 10{sup -4} s{sup -1} for various durations. Metallographic studies revealed that a carbon layer with a uniform, dense and smooth morphology formed on all carburized specimens. The case depth of the carbon layer was between 50.8 and 159.1 {mu}m. A remarkable increase in surface hardness was observed in the range 389.9-1129.0 HV. Activation energy for SPC was determined as 183.4 kJ mol{sup -1}, which is lower compare to CC process. The results indicate that SPC accelerates the diffusion of carbon atoms into the surface of DSS, thus increasing the thickness of the carburized layer and the surface hardness, at lower activation energy.

  2. Bats Use Geomagnetic Field: Behavior and Mechanism

    Science.gov (United States)

    Pan, Y.; Tian, L.; Zhang, B.; Zhu, R.

    2015-12-01

    It has been known that numerous animals can use the Earth's magnetic field for spatial orientation and long-distance navigation, nevertheless, how animals can respond to the magnetic field remain mostly ambiguous. The intensities of the global geomagnetic field varies between 23 and 66 μT, and the geomagnetic field intensity could drop to 10% during geomagnetic polarity reversals or geomagnetic excursions. Such dramatic changes of the geomagnetic field may pose a significant challenge for the evolution of magnetic compass in animals. For examples, it is vital whether the magnetic compass can still work in such very weak magnetic fields. Our previous experiment has demonstrated that a migratory bat (Nyctalus plancyi) uses a polarity compass for orientation during roosting when exposed to an artificial magnetic field (100 μT). Recently, we experimentally tested whether the N. plancyi can sense very weak magnetic fields that were even lower than those of the present-day geomagnetic field. Results showed: 1) the bats can sense the magnetic north in a field strength of present-day local geomagnetic field (51μT); 2) As the field intensity decreased to only 1/5th of the natural intensity (10 μT), the bats still responded by positioning themselves at the magnetic north. Notably, as the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT). Hence, N. plancyi is able to detect the direction of a magnetic field with intensity range from twice to 1/5th of the present-day field strength. This allows them to orient themselves across the entire range of present-day global geomagnetic field strengths and sense very weak magnetic fields. We propose that this high sensitivity might have evolved in bats as the geomagnetic field strength varied and the polarity reversed tens of times over the past fifty million years since the origin of bats. The physiological mechanisms underlying

  3. Mechanical behavior of mullite-zirconia composites

    Directory of Open Access Journals (Sweden)

    Sahnoune F.

    2010-06-01

    Full Text Available In this work, mechanical properties of mullite–zirconia composites synthesised through reaction sintering of Algerian kaolin, α-Al2O3, and ZrO2 were characterized. Phases present and their transformations were characterized using x-ray diffraction. Hardness H and fracture toughness KIC were measured by Vickers indentation using a Zwick microhardness tester. The flexural strength was measured through three point bending test using an Instron Universal Testing Machine. It was found that the increase of ZrO2 content (from 0 to 32wt.% decreased the microhardness of the composites from 14 to 10.8 GPa. However, the increase of ZrO2 content (from 0 to 24wt.% increased the flexural strength of the composites from 142 to 390 MPa then decreased it with further increase of ZrO2 content. Also, the fracture toughness increased from 1.8 to 2.9 MPa.m1/2 with the increase of ZrO2 content from 0 to 32 wt.%; and the rate of the increase decreased at higher fractions of ZrO2 content. The average linear coefficient of thermal expansion (within the range 50 to 1450°C for samples containing 0 and 16 wt.% ZrO2 sintered at 1600°C for 2 hours was 4.7 x10-6 K-1 and 5.2 x 10-6 K-1 respectively.

  4. Mechanical behavior of mullite-zirconia composites

    Science.gov (United States)

    Sahnoune, F.; Saheb, N.

    2010-06-01

    In this work, mechanical properties of mullite-zirconia composites synthesised through reaction sintering of Algerian kaolin, α-Al2O3, and ZrO2 were characterized. Phases present and their transformations were characterized using x-ray diffraction. Hardness H and fracture toughness KIC were measured by Vickers indentation using a Zwick microhardness tester. The flexural strength was measured through three point bending test using an Instron Universal Testing Machine. It was found that the increase of ZrO2 content (from 0 to 32wt.%) decreased the microhardness of the composites from 14 to 10.8 GPa. However, the increase of ZrO2 content (from 0 to 24wt.%) increased the flexural strength of the composites from 142 to 390 MPa then decreased it with further increase of ZrO2 content. Also, the fracture toughness increased from 1.8 to 2.9 MPa.m1/2 with the increase of ZrO2 content from 0 to 32 wt.%; and the rate of the increase decreased at higher fractions of ZrO2 content. The average linear coefficient of thermal expansion (within the range 50 to 1450°C) for samples containing 0 and 16 wt.% ZrO2 sintered at 1600°C for 2 hours was 4.7 x10-6 K-1 and 5.2 x 10-6 K-1 respectively.

  5. Nanometric Gouge in High-Speed Shearing Experiments: Superplasticity?

    Science.gov (United States)

    Green, H. W.; Lockner, D. A.; Bozhilov, K. N.; Maddon, A.; Beeler, N. M.; Reches, Z.

    2010-12-01

    rates by “superplasticity” (viscous flow dominated by grain-boundary sliding). The high-pressure gouge also coarsens rapidly after sliding stops if quench rate is too slow, presumably driven largely by the very fine grain size. We will use transmission electron microscopy to identify the gouge state (crystalline or amorphous) and whether the nanometric particles have been sintered into a nanocrystalline layer that could flow similarly to the high-pressure experiments (in which the gouge was created by different processes). If such a nanocrystalline layer exists, the large friction drop of this material may be due to “superplastic” flow similarly to the high-pressure experiments. The recrystallization of the gouge into a coarser-crystalline pavement after sliding stops but before temperature falls should take it out of the superplastic regime at high velocities because grain-boundary sliding is strongly grain-size dependent. Thus, refragmenting the coarsened gouge would be required to re-establish the very low apparent friction. We propose that development of such a superplastic gouge during propagation of earthquakes may yield very low apparent friction by dynamically producing this lubricating material.

  6. Architectural mechanisms for dynamic changes of behavior selection strategies in behavior-based systems.

    Science.gov (United States)

    Scheutz, Matthias; Andronache, Virgil

    2004-12-01

    Behavior selection is typically a "built-in" feature of behavior-based architectures and hence, not amenable to change. There are, however, circumstances where changing behavior selection strategies is useful and can lead to better performance. In this paper, we demonstrate that such dynamic changes of behavior selection mechanisms are beneficial in several circumstances. We first categorize existing behavior selection mechanisms along three dimensions and then discuss seven possible circumstances where dynamically switching among them can be beneficial. Using the agent architecture framework activation, priority, observer, and component (APOC), we show how instances of all (nonempty) categories can be captured and how additional architectural mechanisms can be added to allow for dynamic switching among them. In particular, we propose a generic architecture for dynamic behavior selection, which can integrate existing behavior selection mechanisms in a unified way. Based on this generic architecture, we then verify that dynamic behavior selection is beneficial in the seven cases by defining architectures for simulated and robotic agents and performing experiments with them. The quantitative and qualitative analyzes of the results obtained from extensive simulation studies and experimental runs with robots verify the utility of the proposed mechanisms.

  7. Influence of fluoridation on the strength of superplastic Zn-21Al-2Cu alloy deformed in a saline medium

    Energy Technology Data Exchange (ETDEWEB)

    Elizalde-Torres, J.; Torres-Villasenor, G. [UNAM, Mexico Distrito Federal (Mexico); Sandoval-Jimenez, A. [Instituto Nacional de Investigaciones Nucleares, Mexico Distrito Federal (Mexico)

    1999-04-09

    The interest in Zi-Al-Cu alloys has intensified in recent years because they possess the highest known yield strengths among the entire series of Zn-Al superplastic alloys. The superplastic materials are generally fine-grained materials and the deformation is associated with the grain boundary processes. Because of this, the superplastic alloys are exposed to a potential danger of intergranular stress corrosion cracking under susceptible service conditions. Consequently, the study of enhancing the strength and increasing the corrosion resistance of the material at room temperature is an important research area. Fluorine passivation technology of metal surfaces (fluoridation) has been proved to be very effective in the protection of several metals such as austenitic stainless steel and aluminum. In the present investigation the superplastic Zn-Al-Cu alloy has been studied to evaluate the effects of fluoridation and the stress corrosion damage.

  8. Epigenetic mechanisms underlying learning and the inheritance of learned behaviors.

    Science.gov (United States)

    Dias, Brian G; Maddox, Stephanie A; Klengel, Torsten; Ressler, Kerry J

    2015-02-01

    Gene expression and regulation is an important sculptor of the behavior of organisms. Epigenetic mechanisms regulate gene expression not by altering the genetic alphabet but rather by the addition of chemical modifications to proteins associated with the alphabet or of methyl marks to the alphabet itself. Being dynamic, epigenetic mechanisms of gene regulation serve as an important bridge between environmental stimuli and genotype. In this review, we outline epigenetic mechanisms by which gene expression is regulated in animals and humans. Using fear learning as a framework, we then delineate how such mechanisms underlie learning and stress responsiveness. Finally, we discuss how epigenetic mechanisms might inform us about the transgenerational inheritance of behavioral traits that are being increasingly reported.

  9. Numerical simulation of mechanical behavior of composite materials

    CERN Document Server

    Oller, Sergio

    2014-01-01

    An original mechanical formulation to treat nonlinear orthotropic behavior of composite materials is presented in this book. It also examines different formulations that allow us to evaluate the behavior of composite materials through the composition of its components, obtaining a new composite material. Also two multiple scale homogenization methods are given, one based on the analytical study of the cells (Ad-hoc homogenization), and other one, more general based on the finite element procedure applied on the macro scale (upper-scale) and in the micro scale (sub-scale). A very general formulation to simulate the mechanical behavior for traditional composite structures (plywood, reinforced concrete, masonry, etc.), as well as the new composite materials reinforced with long and short fibers, nanotubes, etc., are also shown in this work. Typical phenomena occurring in composite materials are also described in this work, including fiber-matrix debounding, local buckling of fibers and its coupling with the over...

  10. Mechanical behavior of recycled polyethylene/piassava fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Elzubair, Amal, E-mail: amal@metalmat.ufrj.br [Universidade Federal de Rio de Janeiro, Departamento de Engenharia Metalurgica e de Materiais, Ilha do Fundao, Bloco F, 21941-972 Rio de Janeiro, RJ (Brazil); Praca General Tiburcio, 80, Urca, 22290-270 Rio de Janeiro, RJ (Brazil); Miguez Suarez, Joao Carlos, E-mail: jmiguez@ime.eb.br [Instituto Militar de Engenharia, Secao de Engenharia Mecanica e de Materiais, Praca General Tiburcio, 80, Urca, 22290-270, Rio de Janeiro, RJ (Brazil); Praca General Tiburcio, 80, Urca, 22290-270 Rio de Janeiro, RJ (Brazil)

    2012-11-15

    The use of natural fibers for reinforcement of thermoplastics (which are found in domestic waste) is desirable since it is based on abundant and renewable resources and can be ecologically correct. Leopoldinia piassaba Wallace (commonly known as piassava), a palm tree native of Amazon-Brazil, is cheap, easily found in Brazilian markets and the main component of home appliances and decorative goods. The subject of the present work is a study of mechanical properties of composites of recycled high density polyethylene (HDPE-r) reinforced with untreated, and treated (silane and NaOH) piassava fibers, in proportions varying from 0% to 20% and injection molded under fixed processing conditions. The influence of increasing amounts of piassava fibers and of surface treatment on the mechanical behavior of the composites was investigated by thermogravimetric analysis (TGA), mechanical testing (tensile and flexure) and scanning electron microscopy (SEM). The topography of the fractured surfaces of tested tensile specimens of unfilled and filled recycled HDPE was also observed by SEM and correlated with the mechanical behavior. As the fiber content increases, the composites show a gradual change in the mechanical properties and in the fracture mechanisms. Composites with 15% and 20% of piassava fibers were found to exhibit the best mechanical performance.

  11. Mechanical behavior of plastic materials for automobile cockpit module

    Science.gov (United States)

    Woo, Changsu.; Park, Hyunsung.; Jo, Jinho.

    2013-12-01

    Engineering plastics are used in instrument panels, interior trims, and other vehicle applications, and the thermo-mechanical behaviors of plastic materials are strongly influenced by many environmental factors such as temperature, sunlight, and rain. As the material properties change, the mechanical parts create unexpected noise. In this study, the dynamic mechanical property changes of plastics used in automobiles are measured to investigate the effect of temperature. Visco-elastic properties such as the glass transition temperature and storage modulus and loss factors under temperature and frequency sweeps were measured. The data results were compared with the original ones before aging to analyze the behavioral changes. It was found that as the temperature increased, the storage modulus decreased and the loss factor increased slightly.

  12. Modeling thermal-mechanical behavior of networks with reconfigurable crosslinks

    Science.gov (United States)

    Yang, Jeh-Chang; Meng, Yuan; Anthamatten, Mitchell

    Actively moving polymers nearly always involve the storage or release of mechanical energy using external stimuli. Thermomechanical experiments were conducted on well-defined chemical networks bearing both permanent and light-reconfigurable covalent junctions. Experimental data include stress relaxation and mechanical creep during photoinduced network reconfiguration as well as equilibrium stress-strain behavior of reprogrammed networks. Physical models of elastic networks were applied to describe thermomechanical behavior during and after bond re-formation while under external stress. The role of dangling ends in influencing competitive network mechanics is evaluated to explain observed phenomena and discrepancies between theory and data. Understanding how process path is related to the equilibrium thermomechanics of such reprogrammed networks is important to engineering shape actuator driven by crystallization. Nsf ECCS-1530540.

  13. One-dimensional tensile constitutive equation cannot be directly generalized to deal with two-dimensional bulging mechanical problems

    Institute of Scientific and Technical Information of China (English)

    SONG; Yuquan(宋玉泉); LIU; Shumei(刘术梅)

    2002-01-01

    Superplastic forming has been extensively applied to manufacture parts and components with complex shapes or high-precisions. However, superplastic formation is in multi-stress state. In a long time, uniaxial tensile constitutive equation has been directly generalized to deal with multi-stress state. Whether so doing is feasible or not needs to be proved in theory. This paper first summarizes the establishing processes of superplastic tensile and bulging constitutive equation with variable m, and, using the analytical expressions of equivalent stress ? and equivalent strain rateof free bulge based on the fundamentals of continuum medium plastic mechanics, derives the analytical expressions of optimum loading rules for superplastic free bulge. By comparing the quantitative results on typical superplastic alloy ZnAl22, it is shown that one-dimensional tensile constitutive equations cannot be directly generalized to deal with two-dimensional bulging quantitative mechanical problems; only superplastic bulging constitutive equation based on bulging stress state can be used to treat the quantitative mechanical problems of bulge.

  14. Effect of two-stage aging on superplasticity of Al-Li alloy

    Institute of Scientific and Technical Information of China (English)

    LUO Zhi-hui; ZHANG Xin-ming; DU Yu-xuan; YE Ling-ying

    2006-01-01

    The effect of two-stage aging on the microstructures and superplasticity of 01420 Al-Li alloy was investigated by means of OM, TEM analysis and stretching experiment. The results demonstrate that the second phase particles distributed more uniformly with a larger volume fraction can be observed after the two-stage aging (120 ℃, 12 h+300 ℃, 36 h) compared with the single-aging(300 ℃, 48 h). After rolling and recrystallization annealing, fine grains with size of 8-10 μm are obtained, and the superplastic elongation of the specimens reaches 560% at strain rate of 8×10-4 s-1 and 480 ℃. Uniformly distributed fine particles precipitate both on grain boundaries and in grains at lower temperature. When the sheet is aged at high temperature, the particles become coarser with a large volume fraction.

  15. 2010 Thin Film & Small Scale Mechanical Behavior Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Thomas Balk

    2010-07-30

    Over the past decades, it has been well established that the mechanical behavior of materials changes when they are confined geometrically at least in one dimension to small scale. It is the aim of the 2010 Gordon Conference on 'Thin Film and Small Scale Mechanical Behavior' to discuss cutting-edge research on elastic, plastic and time-dependent deformation as well as degradation mechanisms like fracture, fatigue and wear at small scales. As in the past, the conference will benefit from contributions from fundamental studies of physical mechanisms linked to material science and engineering reaching towards application in modern applications ranging from optical and microelectronic devices and nano- or micro-electrical mechanical systems to devices for energy production and storage. The conference will feature entirely new testing methodologies and in situ measurements as well as recent progress in atomistic and micromechanical modeling. Particularly, emerging topics in the area of energy conversion and storage, such as material for batteries will be highlighted. The study of small-scale mechanical phenomena in systems related to energy production, conversion or storage offer an enticing opportunity to materials scientists, who can provide new insight and investigate these phenomena with methods that have not previously been exploited.

  16. Mechanical behavior and stress effects in hard superconductors: a review

    Energy Technology Data Exchange (ETDEWEB)

    Koch, C. C.; Easton, D. S.

    1977-11-01

    The mechanical properties of type II superconducting materials are reviewed as well as the effect of stress on the superconducting properties of these materials. The bcc alloys niobium-titanium and niobium-zirconium exhibit good strength and extensive ductility at room temperature. Mechanical tests on these alloys at 4.2/sup 0/K revealed serrated stress-strain curves, nonlinear elastic effects and reduced ductility. The nonlinear behavior is probably due to twinning and detwinning or a reversible stress-induced martensitic transformation. The brittle A-15 compound superconductors, such as Nb/sub 3/Sn and V/sub 3/Ga, exhibit unusual elastic properties and structural instabilities at cryogenic temperatures. Multifilamentary composites consisting of superconducting filaments in a normal metal matrix are generally used for superconducting devices. The mechanical properties of alloy and compound composites, tapes, as well as composites of niobium carbonitride chemically vapor deposited on high strength carbon fibers are presented. Hysteretic stress-strain behavior in the metal matrix composites produces significant heat generation, an effect which may lead to degradation in the performance of high field magnets. Measurements of the critical current density, J/sub c/, under stress in a magnetic field are reported. Modest stress-reversible degradation in J/sub c/ was observed in niobium-titanium composites, while more serious degradation was found in Nb/sub 3/Sn samples. The importance of mechanical behavior to device performance is discussed.

  17. Superplastic Forming and Diffusion Bonding for Sandwich Structure of Ti-6Al-4V Alloy

    Institute of Scientific and Technical Information of China (English)

    Wenbo HAN; Kaifeng ZHANG; Guofeng WANG; Xiaojun ZHANG

    2005-01-01

    Superplastic forming and diffusion bonding (SPF/DB) is a well-established process for the manufacture of components almost exclusively from Ti-6Al-4V sheet material. The sandwich structure of Ti-6Al-4V alloy is investigated. The effects of the microstructure on the SPF/DB process were discussed. The microstructure at the interfaces and the distribution of thickness were researched.

  18. Mechanical Behavior and Failure Mechanism of Recycled Semi-lfexible Pavement Material

    Institute of Scientific and Technical Information of China (English)

    DING Qingjun; ZHAO Mingyu; SHEN Fan; ZHANG Xiaoqiang

    2015-01-01

    The mechanical behavior and failure mechanism of recycled semi-lfexible pavement material were investigated by different scales method. The macroscopic mechanical behavior of samples was studied by static and dynamic splitting tensile tests on mechanics testing system (MTS). The mechanical analysis in micro scale was carried out by material image analysis method and ifnite element analysis system. The strains of recycled semi-lfexible pavement material on samples surface and in each phase materials were obtained. The test results reveal that the performance of recovered asphalt binder was the major determinant on the structural stability of recycled semi-lfexible pavement material. The asphalt binder with high viscoelasticity could delay the initial cracking time and reduce the residual strain under cyclic loading conditions. The failure possibility order of each phase in recycled semi-flexible pavement material was asphalt binder, reclaimed aggregate, cement paste and virgin aggregate.

  19. Development of Cutting Tool Through Superplastic Boronizing of Duplex Stainless Steel

    Science.gov (United States)

    Jauhari, Iswadi; Harun, Sunita; Jamlus, Siti Aida; Sabri, Mohd Faizul Mohd

    2017-03-01

    In this study, a cutting tool is developed from duplex stainless steel (DSS) using the superplastic boronizing technique. The feasibility of the development process is studied, and the cutting performances of the cutting tool are evaluated and compared with commercially available carbide and high-speed steel (HSS) tools. The superplastically boronized (SPB) cutting tool yielded a dense boronized layer of 50.5 µm with a surface hardness of 3956 HV. A coefficient of friction value of 0.62 is obtained, which is lower than 1.02 and 0.8 of the carbide and HSS tools. When tested on an aluminum 6061 surface under dry condition, the SPB cutting tool is also able to produce turning finishing below 0.4 µm, beyond the travel distance of 3000 m, which is comparable to the carbide tool, but produces much better results than HSS tool. Through superplastic boronizing of DSS, it is possible to produce a high-quality metal-based cutting tool that is comparable to the conventional carbide tool.

  20. Development of Cutting Tool Through Superplastic Boronizing of Duplex Stainless Steel

    Science.gov (United States)

    Jauhari, Iswadi; Harun, Sunita; Jamlus, Siti Aida; Sabri, Mohd Faizul Mohd

    2017-01-01

    In this study, a cutting tool is developed from duplex stainless steel (DSS) using the superplastic boronizing technique. The feasibility of the development process is studied, and the cutting performances of the cutting tool are evaluated and compared with commercially available carbide and high-speed steel (HSS) tools. The superplastically boronized (SPB) cutting tool yielded a dense boronized layer of 50.5 µm with a surface hardness of 3956 HV. A coefficient of friction value of 0.62 is obtained, which is lower than 1.02 and 0.8 of the carbide and HSS tools. When tested on an aluminum 6061 surface under dry condition, the SPB cutting tool is also able to produce turning finishing below 0.4 µm, beyond the travel distance of 3000 m, which is comparable to the carbide tool, but produces much better results than HSS tool. Through superplastic boronizing of DSS, it is possible to produce a high-quality metal-based cutting tool that is comparable to the conventional carbide tool.

  1. Numerical Simulation and Superplastic Forming of Ti-6Al-4V Alloy for a Dental Prosthesis

    Science.gov (United States)

    Li, Xiaomei; Soo, Steven

    2011-04-01

    This article investigates superplastic forming (SPF) technique in conjunction with finite element (FE) simulation applied to dental repair. The superplasticity of Ti-6Al-4V alloys has been studied using a uniquely designed five-hole test with the aim of obtaining the modeled grain size and the flow stress parameters. The data from the five-hole test are subsequently put into the FE program for the simulation of a partial upper denture dental prosthesis (PUD4). The FE simulation of the PUD4 is carried out to set up appropriate input parameters for pressing due to the SPF process being fully automatic controlled. A variety of strain rates ranging from 2.4 × 10-5 to 1 × 10-3 s-1 are selected for the characterization of superplastic properties of the alloy. The Superflag FE program is used to generate an appropriate pressure-time profile and provide information on thickness, grain size, and grain growth rate distribution. Both membrane elements and solid elements have been adopted in the simulation and the results from both types of elements are compared. An evaluation of predicted parameters for the SPF of the prosthesis is presented.

  2. Mechanisms of Choice Behavior Shift Using Cue-approach Training

    Directory of Open Access Journals (Sweden)

    Akram eBakkour

    2016-03-01

    Full Text Available Cue-approach training has been shown to effectively shift choices for snack food items by associating a cued button-press motor response to particular food items. Furthermore, attention is biased toward previously cued items, even when the cued item is not chosen for real consumption during a choice phase. However, the exact mechanism by which preferences shift during cue-approach training is not entirely clear. In three experiments, we shed light on the possible underlying mechanisms at play during this novel paradigm: 1 Uncued, wholly predictable motor responses paired with particular food items were not sufficient to elicit a preference shift; 2 Cueing motor responses early – concurrently with food item onset – and thus eliminating the need for heightened top-down attention to the food stimulus in preparation for a motor response also eliminated the shift in food preferences. This finding reinforces our hypothesis that heightened attention at behaviorally relevant points in time is key to changing choice behavior in the cue-approach task; 3 Crucially, indicating choice using eye movements rather than manual button presses preserves the effect, thus demonstrating that the shift in preferences is not governed by a learned motor response but more likely via modulation of subjective value in higher associative regions, consistent with previous neuroimaging results. Cue-approach training drives attention at behaviorally relevant points in time to modulate the subjective value of individual items, providing a mechanism for behavior change that does not rely on external reinforcement and that holds great promise for developing real world behavioral interventions.

  3. Multiaxial mechanical behavior of the porcine anterior lens capsule.

    Science.gov (United States)

    Heistand, M R; Pedrigi, R M; Delange, S L; Dziezyc, J; Humphrey, J D

    2005-11-01

    The biomechanics of the lens capsule of the eye is important both in physiologic processes such as accommodation and clinical treatments such as cataract surgery. Although the lens capsule experiences multiaxial stresses in vivo, there have been no measurements of its multiaxial properties or possible regional heterogeneities. Rather all prior mechanical data have come from 1-D pressure-volume or uniaxial force-length tests. Here, we report a new experimental approach to study in situ the regional, multiaxial mechanical behavior of the lens capsule. Moreover, we report multiaxial data suggesting that the porcine anterior lens capsule exhibits a typical nonlinear pseudo-elastic behavior over finite strains, that the in situ state is pre-stressed multi-axially, and that the meridional and circumferential directions are principal directions of strain, which is nearly equi-biaxial at the pole but less so towards the equator. Such data are fundamental to much needed constitutive formulations.

  4. Micro-Mechanical Behavior of HOPG in Nano-Indentation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The mechanical behavior of highly oriented pyrolyti c graphite (HOPG) has been investigated in this paper, by simulating a machining p rocess in a nano-indent test with the method of molecular dynamics (MD) and by doing an experiment directly using the probe tip of atomic force microscope (AFM ) as tool. The characteristics and properties of graphite crystal lattice are di scussed firstly, then, three potentials are selected for different interaction b etween graphite atoms according to the graphite prope...

  5. Basic description of tailings from Aitik focusing on mechanical behavior

    OpenAIRE

    Bhanbhro, Riaz; Knutsson, Roger; Rodriguez, Juan; Edeskär, Tommy; Knutsson, Sven

    2013-01-01

    Tailings are artificial granular materials that behave different as compared to natural soil of equal grain sizes. Tailings particle sizes, shapes, gradation and mechanical behavior may influence the performance of tailings dams. Hence it is essential to understand the tailings materials in depth. This article describes present studies being carried out on Aitik tailings. Basic tailings characteristics including specific gravity, phase relationships, particle sizes, particle shapes and direct...

  6. Neural and behavioral mechanisms of proactive and reactive inhibition.

    Science.gov (United States)

    Meyer, Heidi C; Bucci, David J

    2016-10-01

    Response inhibition is an important component of adaptive behavior. Substantial prior research has focused on reactive inhibition, which refers to the cessation of a motor response that is already in progress. More recently, a growing number of studies have begun to examine mechanisms underlying proactive inhibition, whereby preparatory processes result in a response being withheld before it is initiated. It has become apparent that proactive inhibition is an essential component of the overall ability to regulate behavior and has implications for the success of reactive inhibition. Moreover, successful inhibition relies on learning the meaning of specific environmental cues that signal when a behavioral response should be withheld. Proactive inhibitory control is mediated by stopping goals, which reflect the desired outcome of inhibition and include information about how and when inhibition should be implemented. However, little is known about the circuits and cellular processes that encode and represent features in the environment that indicate the necessity for proactive inhibition or how these representations are implemented in response inhibition. In this article, we will review the brain circuits and systems involved in implementing inhibitory control through both reactive and proactive mechanisms. We also comment on possible cellular mechanisms that may contribute to inhibitory control processes, noting that substantial further research is necessary in this regard. Furthermore, we will outline a number of ways in which the temporal dynamics underlying the generation of the proactive inhibitory signal may be particularly important for parsing out the neurobiological correlates that contribute to the learning processes underlying various aspects of inhibitory control.

  7. Investigation of mechanisms of viscoelastic behavior of collagen molecule.

    Science.gov (United States)

    Ghodsi, Hossein; Darvish, Kurosh

    2015-11-01

    Unique mechanical properties of collagen molecule make it one of the most important and abundant proteins in animals. Many tissues such as connective tissues rely on these properties to function properly. In the past decade, molecular dynamics (MD) simulations have been used extensively to study the mechanical behavior of molecules. For collagen, MD simulations were primarily used to determine its elastic properties. In this study, constant force steered MD simulations were used to perform creep tests on collagen molecule segments. The mechanical behavior of the segments, with lengths of approximately 20 (1X), 38 (2X), 74 (4X), and 290 nm (16X), was characterized using a quasi-linear model to describe the observed viscoelastic responses. To investigate the mechanisms of the viscoelastic behavior, hydrogen bonds (H-bonds) rupture/formation time history of the segments were analyzed and it was shown that the formation growth rate of H-bonds in the system is correlated with the creep growth rate of the segment (β=2.41βH). In addition, a linear relationship between H-bonds formation growth rate and the length of the segment was quantified. Based on these findings, a general viscoelastic model was developed and verified here, using the smallest segment as a building block, the viscoelastic properties of larger segments could be predicted. In addition, the effect of temperature control methods on the mechanical properties were studied, and it was shown that application of Langevin Dynamics had adverse effect on these properties while the Lowe-Anderson method was shown to be more appropriate for this application. This study provides information that is essential for multi-scale modeling of collagen fibrils using a bottom-up approach.

  8. On the significance of microtubule flexural behavior in cytoskeletal mechanics.

    Directory of Open Access Journals (Sweden)

    Mehrdad Mehrbod

    Full Text Available Quantitative description of cell mechanics has challenged biological scientists for the past two decades. Various structural models have been attempted to analyze the structure of the cytoskeleton. One important aspect that has been largely ignored in all these modeling approaches is related to the flexural and buckling behavior of microtubular filaments. The objective of this paper is to explore the influence of this flexural and buckling behavior in cytoskeletal mechanics.In vitro the microtubules are observed to buckle in the first mode, reminiscent of a free, simply-supported beam. In vivo images of microtubules, however, indicate that the buckling mostly occurs in higher modes. This buckling mode switch takes place mostly because of the lateral support of microtubules via their connections to actin and intermediate filaments. These lateral loads are exerted throughout the microtubule length and yield a considerable bending behavior that, unless properly accounted for, would produce erroneous results in the modeling and analysis of the cytoskeletal mechanics.One of the promising attempts towards mechanical modeling of the cytoskeleton is the tensegrity model, which simplifies the complex network of cytoskeletal filaments into a combination merely of tension-bearing actin filaments and compression-bearing microtubules. Interestingly, this discrete model can qualitatively explain many experimental observations in cell mechanics. However, evidence suggests that the simplicity of this model may undermine the accuracy of its predictions, given the model's underlying assumption that "every single member bears solely either tensile or compressive behavior," i.e. neglecting the flexural behavior of the microtubule filaments. We invoke an anisotropic continuum model for microtubules and compare the bending energy stored in a single microtubule with its axial strain energy at the verge of buckling. Our results suggest that the bending energy can

  9. Solid-like mechanical behaviors of ovalbumin aqueous solutions.

    Science.gov (United States)

    Ikeda, S; Nishinari, K

    2001-04-12

    Flow and dynamic mechanical properties of ovalbumin (OVA) aqueous solutions were investigated. OVA solutions exhibited relatively large zero-shear viscosity values under steady shear flow and solid-like mechanical responses against oscillating small shear strains, that is, the storage modulus was always larger than the loss modulus in the examined frequency range (0.1--100 rad s(-1)). These results suggest that dispersed OVA molecules arranged into a colloidal crystal like array stabilized by large interparticle repulsive forces. However, marked solid-like mechanical behaviors were detected even when electrostatic repulsive forces among protein molecules were virtually absent, which could not be explained solely on the basis of conventional Derjaguin--Landau--Verwey--Overbeek (DLVO) theory. Large non-DLVO repulsive forces seem to stabilize native OVA aqueous solutions.

  10. Anomalous mechanical behavior and crack growth of oxide glasses

    Science.gov (United States)

    Seaman, Jared Hilliard

    This thesis is concerned with analytically describing anomalous mechanical behaviors of glass. A new slow crack growth model is presented that considers a semi-elliptical crack in a cylindrical glass rod subjected to 4-point bending that is both loaded statically and under a time-dependent load. This model is used to explain a suppression of the loading-rate dependency of ion-exchanged strengthened glass. The stress relaxation behavior of an ion-exchanged strengthened glass is then analyzed in view of a newly observed water-assisted surface stress relaxation mechanism. By making refinements to a time-dependent Maxwell material model for stress buildup and relaxation, the anomalous subsurface compressive stress peak in ion-exchanged strengthened glass is explained. The notion of water-assisted stress relaxation is extended to the crack tip, where high tensile stresses exist. A toughening effect has historically been observed for cracks aged at subcritical stress intensity factors, where crack tip stress relaxation is hypothesized. A simple fracture mechanics model is developed that estimates a shielding stress intensity factor that is then superimposed with the far-field stress intensity factor. The model is used to estimate anomalous "restart" times for aged cracks. The same model predicts a non-linear crack growth rate for cracks loaded near the static fatigue limit. Double cantilever beam slow crack growth experiments were performed and new slow crack growth data for soda-lime silicate glass was collected. Interpretation of this new experimental slow crack growth data suggests that the origin of the static fatigue limit in glass is due to water-assisted stress relaxation. This thesis combines a number of studies that offer a new unified understanding of historical anomalous mechanical behaviors of glass. These anomalies are interpreted as simply the consequence of slow crack growth and water-assisted surface stress relaxation.

  11. Corrosion and mechanical behavior of materials for coal gasification applications

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.

    1980-05-01

    A state-of-the-art review is presented on the corrosion and mechanical behavior of materials at elevated temperatures in coal-gasification environments. The gas atmosphere in coal-conversion processes are, in general, complex mixtures which contain sulfur-bearing components (H/sub 2/S, SO/sub 2/, and COS) as well as oxidants (CO/sub 2//CO and H/sub 2/O/H/sub 2/). The information developed over the last five years clearly shows sulfidation to be the major mode of material degradation in these environments. The corrosion behavior of structural materials in complex gas environments is examined to evaluate the interrelationships between gas chemistry, alloy chemistry, temperature, and pressure. Thermodynamic aspects of high-temperature corrosion processes that pertain to coal conversion are discussed, and kinetic data are used to compare the behavior of different commercial materials of interest. The influence of complex gas environments on the mechanical properties such as tensile, stress-rupture, and impact on selected alloys is presented. The data have been analyzed, wherever possible, to examine the role of environment on the property variation. The results from ongoing programs on char effects on corrosion and on alloy protection via coatings, cladding, and weld overlay are presented. Areas of additional research with particular emphasis on the development of a better understanding of corrosion processes in complex environments and on alloy design for improved corrosion resistance are discussed. 54 references, 65 figures, 24 tables.

  12. Super-plasticity of Zr64.80Cu14.85Ni10.35Al10 bulk metallic glass at room temperature

    Institute of Scientific and Technical Information of China (English)

    TAO PingJun; YANG YuanZheng; BAI XiaoJun; XIE ZhiWei; CHEN XianCao; DONG ZhenJiang; Wen JianGuo

    2008-01-01

    Generally, bulk metallic glasses (BMGs) exhibit a very limited plastic deformation under a compression load at room temperature, often less than 2% before fracturing. In this letter, through an appropriate choice of BMGs' composition, an amorphous rod of Zr64.80Cu14.85Ni10.35Al10 with a diameter of 2 mm was prepared by using copper mold suction casting. X-ray diffraction and differential scanning calorimetry were utilized to determine its structure and thermal stability, and the uniaxial compression test was adopted to study its plastic deformation behavior at room temperature simultaneously. The results showed that the glass transition temperature and onset temperature of the exothermic reaction of the amorphous rod were 646 and 750 K, respectively, and its micro-hardness was 594.7 Hv. During com-pression, when the engineering strain and engineering stress arrived at 9.05% and 1732 MPa, respec-tively, i.e., the true strain and true stress reached 9.42% and 1560 MPa, respectively, the amorphous rod started to yield. After yielding, with the increase of load, the strain increased and the glass rod ulti-mately were compressed into flake-like form. Although the maximum engineering strain was larger than 70%, i.e., the maximum true strain exceeded by 120%, the amorphous specimen was not fractured, indicating that it has super-plasticity at room temperature. Through the appropriate choice of compo-sition and optimization of the technological process, flexible BMG with super-plasticity at room tem-perature could be produced.

  13. Mechanical and fracture behavior of calcium phosphate cements

    Science.gov (United States)

    Jew, Victoria Chou

    Apatite-based calcium phosphate cements are currently employed to a limited extent in the biomedical and dental fields. They present significant potential for a much broader range of applications, particularly as a bone mineral substitute for fracture fixation. Specifically, hydroxyapatite (HA) is known for its biocompatibility and non-immunogenicity, attributed to its similarity to the mineral phase of natural bone. The advantages of a cement-based HA include injectability, greater resorbability and osteoconductivity compared to sintered HA, and an isothermal cement-forming reaction that avoids necrosis during cement setting. Although apatite cements demonstrate good compressive strength, tensile properties are very weak compared to natural bone. Applications involving normal weight-bearing require better structural integrity than apatite cements currently provide. A more thorough understanding of fracture behavior can elucidate failure mechanisms and is essential for the design of targeted strengthening methods. This study investigated a hydroxyapatite cement using a fracture mechanics approach, focusing on subcritical crack growth properties. Subcritical crack growth can lead to much lower load-bearing ability than critical strength values predict. Experiments show that HA cement is susceptible to crack growth under both cyclic fatigue-crack growth and stress corrosion cracking conditions, but only environmental, not mechanical, mechanisms contribute to crack extension. This appears to be the first evidence ever presented of stress corrosion crack growth behavior in calcium phosphate cements. Stress corrosion cracking was examined for a range of environmental conditions. Variations in pH have surprisingly little effect. Behavior in water at elevated temperature (50°C) is altered compared to water at ambient temperature (22°C), but only for crack-growth velocities below 10-7 m/s. However, fracture resistance of dried HA cement in air increases significantly

  14. Effect of electric current pulse on grain growth in superplastic deformation of 2091 Al-Li alloy

    Institute of Scientific and Technical Information of China (English)

    刘志义; 许晓嫦; 崔建忠

    2003-01-01

    The effect of electric current pulse on the grain growth in the superplastic deformation of 2091 Al-Li alloy was investigated. Optical metallographic microstructure observation and average linear intercept measuring results show that at same strain, the grain size in the superplastic deformation loaded with electric current pulse is smaller than that unemploying electric current pulse, and so does the grain growth rate. TEM observation shows that the dislocation density at grain boundary in the superplastic deformation applied with electric current pulse is lower than that unemploying electric current pulse.It indicates that electric current pulse increases the rate of dislocation slip and climb in grain boundary, which leads to a decrease of both the density of the dislocation slipping across grain boundary at same strain rate and the driving force for grain growth, therefore the rate of grain growth decreases.The established model for grain growth shows an exponential relation of grain size with strain.

  15. Computational rationality: linking mechanism and behavior through bounded utility maximization.

    Science.gov (United States)

    Lewis, Richard L; Howes, Andrew; Singh, Satinder

    2014-04-01

    We propose a framework for including information-processing bounds in rational analyses. It is an application of bounded optimality (Russell & Subramanian, 1995) to the challenges of developing theories of mechanism and behavior. The framework is based on the idea that behaviors are generated by cognitive mechanisms that are adapted to the structure of not only the environment but also the mind and brain itself. We call the framework computational rationality to emphasize the incorporation of computational mechanism into the definition of rational action. Theories are specified as optimal program problems, defined by an adaptation environment, a bounded machine, and a utility function. Such theories yield different classes of explanation, depending on the extent to which they emphasize adaptation to bounds, and adaptation to some ecology that differs from the immediate local environment. We illustrate this variation with examples from three domains: visual attention in a linguistic task, manual response ordering, and reasoning. We explore the relation of this framework to existing "levels" approaches to explanation, and to other optimality-based modeling approaches.

  16. [The behavioral-neuroendocrine mechanism of development of homosexuality].

    Science.gov (United States)

    Xue, Hui; Tai, Fa-Dao

    2007-10-01

    In this review, we primarily focus on the behavioral-neuroendocrine mechanism of development of homosexuality from genetic, neuroendocrine neuroanatomical and behavioral studies. Besides the influence of genetics and environment, sexual orientation was determined by the early perinatal hormone exposure. Gonadal steroidal hormone interacted with many neurotransmitters in individual development by hypothalamus pituitary adrenal axis and hypothalamus pituitary gonadal axis, which regulated the individual's sexual orientation. It was summarized here about the future directions on sexual orientation and demonstrated problems which would have to investigate next step. All these may be beneficial for our understanding of the homosexuality and paying attention to psychological and physiological health of homosexuality, which is useful to prevent the development of teenage homosexuality.

  17. Perinatal programming of neuroendocrine mechanisms connecting feeding behavior and stress

    Directory of Open Access Journals (Sweden)

    Sarah J Spencer

    2013-06-01

    Full Text Available Feeding behavior is closely regulated by neuroendocrine mechanisms that can be influenced by stressful life events. However, the feeding response to stress varies among individuals with some increasing and others decreasing food intake after stress. In addition to the impact of acute lifestyle and genetic backgrounds, the early life environment can have a life-long influence on neuroendocrine mechanisms connecting stress to feeding behavior and may partially explain these opposing feeding responses to stress. In this review I will discuss the perinatal programming of adult hypothalamic stress and feeding circuitry. Specifically I will address how early life (prenatal and postnatal nutrition, early life stress, and the early life hormonal profile can program the hypothalamic-pituitary-adrenal (HPA axis, the endocrine arm of the body’s response to stress long-term and how these changes can, in turn, influence the hypothalamic circuitry responsible for regulating feeding behavior. Thus, over- or under-feeding and / or stressful events during critical windows of early development can alter glucocorticoid (GC regulation of the HPA axis, leading to changes in the GC influence on energy storage and changes in GC negative feedback on HPA axis-derived satiety signals such as corticotropin-releasing-hormone. Furthermore, peripheral hormones controlling satiety, such as leptin and insulin are altered by early life events, and can be influenced, in early life and adulthood, by stress. Importantly, these neuroendocrine signals act as trophic factors during development to stimulate connectivity throughout the hypothalamus. The interplay between these neuroendocrine signals, the perinatal environment, and activation of the stress circuitry in adulthood thus strongly influences feeding behavior and may explain why individuals have unique feeding responses to similar stressors.

  18. Bending Mechanical Behavior of Polyester Matrix Reinforced with Fique Fiber

    Science.gov (United States)

    Altoé, Giulio Rodrigues; Netto, Pedro Amoy; Barcelos, Mariana; Gomes, André; Margem, Frederico Muylaert; Monteiro, Sergio Neves

    Environmentally correct composites, made from natural fibers, are among the most investigated and applied today. In this paper, we investigate the mechanical behavior of polyester matrix composites reinforced with continuous fique fibers, through bending tensile tests. Specimens containing 0, 10, 20 and 30% in volume of fique fiber were aligned along the entire length of a mold to create plates of these composites, those plates were cut following the ASTM standard to obtained bending tests specimens. The test was conducted in a Instron Machine and the fractured specimens were analyzed by SEM, the results showed the increase in the materials tensile properties with the increase of fiber amount.

  19. Flocculation behavior and mechanism of bioflocculant produced by Aspergillus flavus.

    Science.gov (United States)

    Aljuboori, Ahmad H Rajab; Idris, Azni; Al-joubory, Hamid Hussain Rijab; Uemura, Yoshimitsu; Ibn Abubakar, B S U

    2015-03-01

    In this study, the flocculation behavior and mechanism of a cation-independent bioflocculant IH-7 produced by Aspergillus flavus were investigated. Results showed 91.6% was the lowest flocculating rate recorded by IH-7 (0.5 mg L(-1)) at pH range 4-8. Moreover, IH-7 showed better flocculation performance than polyaluminum chloride (PAC) at a wide range of flocculant concentration (0.06-25 mg L(-1)), temperature (5-45 °C) and salinity (10-60% w/w). The current study found that cation addition did not significantly enhance the flocculating rate and IH-7 is a positively charged bioflocculant. These findings suggest that charge neutralization is the main flocculation mechanism of IH-7 bioflocculant. IH-7 was significantly used to flocculate different types of suspended solids such as activated carbons, kaolin clays, soil solids and yeast cells.

  20. Continuum mechanical and computational aspects of material behavior

    Energy Technology Data Exchange (ETDEWEB)

    Fried, Eliot; Gurtin, Morton E.

    2000-02-10

    The focus of the work is the application of continuum mechanics to materials science, specifically to the macroscopic characterization of material behavior at small length scales. The long-term goals are a continuum-mechanical framework for the study of materials that provides a basis for general theories and leads to boundary-value problems of physical relevance, and computational methods appropriate to these problems supplemented by physically meaningful regularizations to aid in their solution. Specific studies include the following: the development of a theory of polycrystalline plasticity that incorporates free energy associated with lattice mismatch between grains; the development of a theory of geometrically necessary dislocations within the context of finite-strain plasticity; the development of a gradient theory for single-crystal plasticity with geometrically necessary dislocations; simulations of dynamical fracture using a theory that allows for the kinking and branching of cracks; computation of segregation and compaction in flowing granular materials.

  1. Dynamic Mechanical Behaviors of 6082-T6 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Peng Yibo

    2013-01-01

    Full Text Available The structural components of high speed trains are usually made of aluminum alloys, for example, 6082. The dynamic mechanical behavior of the material is one of key factors considered in structural design and safety assessment. In this paper, dynamic mechanical experiments were conducted with strain rate ranging from 0.001 s−1 to 100 s−1 using Instron tensile testing machine. The true stress-strain curves were fitted based on experimental data. Johnson-Cook model of 6082-T6 aluminum alloy was built to investigate the effect of strain and strain rate on flow stress. It has shown that the flow stress was sensitive to the strain rate. Yield strength and tensile strength increased with a high strain rate, which showed strain rate effect to some extent. Fracture analysis was carried out by using Backscattered Electron imaging (BSE. As strain rate increased, more precipitates were generated in fracture.

  2. Structural design and mechanical behavior of alligator (Alligator mississippiensis) osteoderms.

    Science.gov (United States)

    Sun, Chang-Yu; Chen, Po-Yu

    2013-11-01

    Alligator is a well-adapted living fossil covered with dorsal armor. This dermal shield consists of bony plates, called osteoderms, interconnected by sutures and non-mineralized collagen fibers, providing a dual function of protection and flexibility. Osteoderm features a sandwich structure, combining an inner porous core and an outer dense cortex, to offer enhancements for stiffness and energy absorbance. In this study, we investigated the multi-scale structure and mechanical behaviors of the American alligator (Alligator mississippiensis) osteoderm. Microcomputed tomography was applied to reveal the complex neurovascular network. Through the observation under optical and scanning electron microscopes, the osteoderm was found to consist of woven bone in the dorsal region and lamellar-zonal bone in the ventral region. Nanoindentation and compressive tests were performed to evaluate the mechanical properties of osteoderms. The varying mineral contents and porosity result in a graded mechanical property: a hard and stiff dorsal cortex gradually transform to a more compliant ventral base. Three protective mechanisms optimized for alligator osteoderms were proposed and elucidated.

  3. Electro-mechanical behavior of a shape memory alloy actuator

    Science.gov (United States)

    Pausley, Matthew E.; Furst, Stephen J.; Talla, Vamsi; Seelecke, Stefan

    2009-03-01

    This paper presents experimental study and numerical simulation of the electro-thermo-mechanical behavior of a commercially available Flexinol shape memory alloy (SMA) wire [1]. Recently, a novel driver device has been presented [2], which simultaneously controls electric power and measures resistance of an SMA wire actuator. This application of a single wire as both actuator and sensor will fully exploit the multifunctional nature of SMA materials and minimize system complexity by avoiding extra sensors. Though the subject is not new [3-6], comprehensive resistance data under controlled conditions for time-resolved and hysteresis-based experiments is not readily available from the literature. A simple experimental setup consisting of a Flexinol wire mounted in series with the tip of a compliant cantilever beam is used to systematically study the SMA behavior. A Labview-based data acquisition system measures actuator displacement and SMA wire stress and resistance and controls the power passed through the SMA actuator wire. The experimental setup is carefully insulated from ambient conditions, as the thermal response of a 50-micron diameter Flexinol wire is extremely sensitive to temperature fluctuation due to convective heat transfer. Actuator performance is reported for a range of actuation frequencies and input power levels. The effect of varying actuator pre-stress is reported as well. All of the experimental data is compared with simulated behavior that is derived from a numerical model for SMA material [7-10].

  4. Mechanical Properties and Corrosion Behavior of Low Carbon Steel Weldments

    Directory of Open Access Journals (Sweden)

    Mohamed Mahdy

    2013-01-01

    Full Text Available This research involves studying the mechanical properties and corrosion behavior of “low carbon steel” (0.077wt% C before and after welding using Arc, MIG and TIG welding. The mechanical properties include testing of microhardness, tensile strength, the results indicate that microhardness of TIG, MIG welding is more than arc welding, while tensile strength in arc welding more than TIG and MIG.The corrosion behavior of low carbon weldments was performed by potentiostat at scan rate 3mV.sec-1 in 3.5% NaCl to show the polarization resistance and calculate the corrosion rate from data of linear polarization by “Tafel extrapolation method”. The results indicate that the TIG welding increase the corrosion current density and anodic Tafel slop, while decrease the polarization resistance compared with unwelded low carbon steel. Cyclic polarization were measured to show resistance of specimens to pitting corrosion and to calculate the forward and reveres potentials. The results show shifting the forward, reverse and pitting potentials toward active direction for weldments samples compared with unwelded sample.

  5. Mechanical Behavior of Spray-Coated Metallic Laminates

    Science.gov (United States)

    Vackel, Andrew; Nakamura, Toshio; Sampath, Sanjay

    2016-06-01

    Thermal spray (TS) coatings have been extensively utilized for various surface modifications such as enhancing wear/erosion resistance and thermal protection. In the present study, a new function of TS material is explored by studying its load-carrying capability. Due to the inherent microstructures containing voids and interfaces, it has been presumed TS materials were not suitable to bear loads. However, the recent advances in TS technology to manufacture near fully dense TS coatings have expanded their potential applications. In the current experiments, TS nickel coatings are deposited onto metallic substrates, and their mechanical behaviors are closely examined. Based on the measured data, the estimated elastic modulus of TS Ni is about 130 GPa (35% less than bulk value), and the maximum tensile strength is about 500 MPa (comparable to bulk value). It was found that such a high value is attainable because the coating is deposited onto a substrate, enabling a load-transfer mechanism and preventing coating failure at a much lower stress level. Three distinct deformation stages are identified to describe this behavior. Such a clarification is critical for enabling TS process to restore structural parts as well as to additively manufacture load-bearing components.

  6. Mephedrone: Public health risk, mechanisms of action, and behavioral effects.

    Science.gov (United States)

    Dybdal-Hargreaves, Nicholas F; Holder, Nicholas D; Ottoson, Paige E; Sweeney, Melanie D; Williams, Tyisha

    2013-08-15

    The recent shortage of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) has led to an increased demand for alternative amphetamine-like drugs such as the synthetic cathinone, 4-methylmethcathinone (mephedrone). Despite the re-classification of mephedrone as a Class B restricted substance by the United Kingdom and restrictive legislation by the United States, international policy regarding mephedrone control is still developing and interest in synthetic amphetamine-like drugs could drive the development of future mephedrone analogues. Currently, there is little literature investigating the mechanism of action and long-term effects of mephedrone. As such, we reviewed the current understanding of amphetamines, cathinones, and cocaine emphasizing the potentially translational aspects to mephedrone, as well as contrasting with the work that has been done specifically on mephedrone in order to present the current state of understanding of mephedrone in terms of its risks, mechanisms, and behavioral effects. Emerging research suggests that while there are structural and behavioral similarities of mephedrone with amphetamine-like compounds, it appears that serotonergic signaling may mediate more of mephedrone's effects unlike the more dopaminergic dependent effects observed in traditional amphetamine-like compounds. As new designer drugs are produced, current and continuing research on mephedrone and other synthetic cathinones should help inform policymakers' decisions regarding the regulation of novel 'legal highs.'

  7. Experimental study on dynamic mechanical behaviors of polycarbonate

    Science.gov (United States)

    Zhang, Wei; Gao, Yubo; Ye, Nan; Huang, Wei; Li, Dacheng

    2017-01-01

    Polycarbonate (PC) is a widely used engineering material in aerospace field, since it has excellent mechanical and optical property. In present study, both compressive and tensile tests of PC were conducted at high strain rates by using a split Hopkinson pressure bar. The high-speed camera and 2D Digital Image Correlation method (DIC) were used to analyze the dynamic deformation behavior of PC. Meanwhile, the plate impact experiment was carried out to measure the equation of state of PC in a single-stage gas gun, which consists of asymmetric impact technology, manganin gauges, PVDF, electromagnetic particle velocity gauges. The results indicate that the yield stress of PC increased with the strain rates in both dynamic compression and tension tests. The same phenomenon was similar to elasticity modulus at different strain rate. A constitutive model was used to describe the mechanical behaviors of PC accurately in different strain rates by contrast with the results of 2D-DIC. At last, The D-u Hugoniot curve of polycarbonate in high pressure was fitted by the least square method.

  8. On the Mechanical Behavior of Advanced Composite Material Structures

    Science.gov (United States)

    Vinson, Jack

    During the period between 1993 and 2004, the author, as well as some colleagues and graduate students, had the honor to be supported by the Office of Naval Research to conduct research in several aspects of the behavior of structures composed of composite materials. The topics involved in this research program were numerous, but all contributed to increasing the understanding of how various structures that are useful for marine applications behaved. More specifically, the research topics focused on the reaction of structures that were made of fiber reinforced polymer matrix composites when subjected to various loads and environmental conditions. This included the behavior of beam, plate/panel and shell structures. It involved studies that are applicable to fiberglass, graphite/carbon and Kevlar fibers imbedded in epoxy, polyester and other polymeric matrices. Unidirectional, cross-ply, angle ply, and woven composites were involved, both in laminated, monocoque as well as in sandwich constructions. Mid-plane symmetric as well as asymmetric laminates were studied, the latter involving bending-stretching coupling and other couplings that only can be achieved with advanced composite materials. The composite structures studied involved static loads, dynamic loading, shock loading as well as thermal and hygrothermal environments. One major consideration was determining the mechanical properties of composite materials subjected to high strain rates because the mechanical properties vary so significantly as the strain rate increases. A considerable number of references are cited for further reading and study for those interested.

  9. Mechanical behavior study of laser welded joints for DP steel

    Science.gov (United States)

    Yan, Qi

    2008-03-01

    Advanced High Strength Steels (AHSS) are gaining considerable market shares in the automotive industry. The development and application of Dual Phase (DP) steel is just a consistent step towards high-strength steel grades with improved mechanical behavior. Tailor welded blanks with DP steel are promoted in the application of Body-In-White (BIW) structure by the automotive industry. A tailor welded blank consists of several flat sheets that are laser welded together before stamping. Applied cases of tailor welded blanks of high strength steels on the automotive structural parts are investigated in this paper. The mechanical behavior of laser welded joints for DP steel is studied. Microstructure of laser welded joints for DP steel was observed by SEM. Martensite in the weld seam explains the higher strength of welded joints than the base metal. Results show that the strain safety tolerance of laser welded seam for high strength steel can meet the requirement of automobile parts for stamping if the location of laser welded seam is designed reasonably.

  10. Mechanisms of renewal after the extinction of discriminated operant behavior.

    Science.gov (United States)

    Todd, Travis P; Vurbic, Drina; Bouton, Mark E

    2014-07-01

    Three experiments demonstrated, and examined the mechanisms that underlie, the renewal of extinguished discriminated operant behavior. In Experiment 1, rats were trained to perform 1 response (lever press or chain pull) in the presence of one discriminative stimulus (S; light or tone) in Context A, and to perform the other response in the presence of the other S in Context B. Next, each of the original S/response combinations was extinguished in the alternate context. When the S/response combinations were tested back in the context in which they had been trained, responding in the presence of S returned (an ABA renewal effect was observed). This renewal could not be due to differential context-reinforcer associations, suggesting instead that the extinction context inhibits either the response and/or the effectiveness of the S. Consistent with the latter mechanism, in Experiment 2, ABA renewal was still observed when both the extinction and renewal contexts inhibited the same response. However, in Experiment 3, previous extinction of the response in the renewing context (occasioned by a different S) reduced AAB renewal more than did extinction of the different response. Taken together, the results suggest at least 2 mechanisms of renewal after instrumental extinction. First, extinction performance is at least partly controlled by a direct inhibitory association that is formed between the context and the response. Second, in the discriminated operant procedure, extinction performance can sometimes be partly controlled by a reduction in the effectiveness of the S in the extinction context. Renewal of discriminated operant behavior can be produced by a release from either of these forms of inhibition.

  11. An investigation of mechanical behavior and failure mechanisms of composite T-joints with transverse stitching

    Science.gov (United States)

    Stickler, Patrick Bickford

    2001-07-01

    A new low cost damage tolerant method of joining load-bearing composite structures using two-dimensional dry fabric preforms with transverse stitching and a novel fiber insertion process with resin transfer molding has recently been developed, however, knowledge of strength prediction and failure mechanisms is not well understood. In this investigation, fundamental knowledge of T-joint mechanical behavior was developed through detailed experimental, numerical, and post failure analyses. Experiments were conducted under flexure, tension, and shear loads and failed specimens were examined to discern failure modes. T-joint constituent elastic and strength properties were experimentally determined. Elastic properties were used as input to the finite element analysis and strength properties were used as limiting values in the T-joint failure analysis. Linear elastic, nonlinear elastic, and progressive damage finite element models were developed under each load condition. T-joint numerical models are shown to predict experimental behavior through ultimate load. Damage accumulation was characterized based on experimental, numerical, and post failure analyses. A parametric finite element analysis was conducted and design curves were derived to demonstrate the effect of varying key T-joint interface parameters on mechanical behavior under each load condition. Results of this research enable the application of T-joints with transverse stitching to future products and predictive finite element models developed herein reduce the structural testing required to validate these designs.

  12. Neuroimaging mechanisms of change in psychotherapy for addictive behaviors: emerging translational approaches that bridge biology and behavior.

    Science.gov (United States)

    Feldstein Ewing, Sarah W; Chung, Tammy

    2013-06-01

    Research on mechanisms of behavior change provides an innovative method to improve treatment for addictive behaviors. An important extension of mechanisms of change research involves the use of translational approaches, which examine how basic biological (i.e., brain-based mechanisms) and behavioral factors interact in initiating and sustaining positive behavior change as a result of psychotherapy. Articles in this special issue include integrative conceptual reviews and innovative empirical research on brain-based mechanisms that may underlie risk for addictive behaviors and response to psychotherapy from adolescence through adulthood. Review articles discuss hypothesized mechanisms of change for cognitive and behavioral therapies, mindfulness-based interventions, and neuroeconomic approaches. Empirical articles cover a range of addictive behaviors, including use of alcohol, cigarettes, marijuana, cocaine, and pathological gambling and represent a variety of imaging approaches including fMRI, magneto-encephalography, real-time fMRI, and diffusion tensor imaging. Additionally, a few empirical studies directly examine brain-based mechanisms of change, whereas others examine brain-based indicators as predictors of treatment outcome. Finally, two commentaries discuss craving as a core feature of addiction, and the importance of a developmental approach to examining mechanisms of change. Ultimately, translational research on mechanisms of behavior change holds promise for increasing understanding of how psychotherapy may modify brain structure and functioning and facilitate the initiation and maintenance of positive treatment outcomes for addictive behaviors. 2013 APA, all rights reserved

  13. Mechanical Behavior of Homogeneous and Composite Random Fiber Networks

    Science.gov (United States)

    Shahsavari, Ali

    Random fiber networks are present in many biological and non-biological materials such as paper, cytoskeleton, and tissue scaffolds. Mechanical behavior of networks is controlled by the mechanical properties of the constituent fibers and the architecture of the network. To characterize these two main factors, different parameters such as fiber density, fiber length, average segment length, nature of the cross-links at the fiber intersections, ratio of bending to axial behavior of fibers have been considered. Random fiber networks are usually modeled by representing each fiber as a Timoshenko or an Euler-Bernoulli beam and each cross-link as either a welded or rotating joint. In this dissertation, the effect of these modeling options on the dependence of the overall linear network modulus on microstructural parameters is studied. It is concluded that Timoshenko beams can be used for the whole range of density and fiber stiffness parameters, while the Euler-Bernoulli model can be used only at relatively low densities. In the low density-low bending stiffness range, elastic strain energy is stored in the bending mode of the deformation, while in the other extreme range of parameters, the energy is stored predominantly in the axial and shear deformation modes. It is shown that both rotating and welded joint models give the same rules for scaling of the network modulus with different micromechanical parameters. The elastic modulus of sparsely cross-linked random fiber networks, i.e. networks in which the degree of cross-linking varies, is studied. The relationship between the micromechanical parameters - fiber density, fiber axial and bending stiffness, and degree of cross-linking - and the overall elastic modulus is presented in terms of a master curve. It is shown that the master plot with various degrees of cross-linking can be collapsed to a curve which is also valid for fully cross-linked networks. Random fiber networks in which fibers are bonded to each other are

  14. The measurement of friction for superplastic forming of Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, R.B.; Leen, S.B.; Pashby, I.R.; Kennedy, A.R. [School of M3EM, Univ. of Nottingham (United Kingdom)

    2004-07-01

    An experimental test for measuring the friction between Ti-6Al-4V sheet material and S310 stainless steel tool material at 900 C is presented. The test is intended for application to Ti-6Al-4V superplastic forming for the manufacture of aeroengine components. The work is motivated by the need for accurate, representative data for process modelling, where accurate simulation is critical to formed component dimensions. The results show a time dependency of friction. The effects of boron nitride density, applied normal load and die surface roughness are investigated. (orig.)

  15. Elastic constants for superplastically formed/diffusion-bonded corrugated sandwich core

    Science.gov (United States)

    Ko, W. L.

    1980-01-01

    Formulas and associated graphs for evaluating the effective elastic constants for a superplastically formed/diffusion bonded (SPF/DB) corrugated sandwich core, are presented. A comparison of structural stiffnesses of the sandwich core and a honeycomb core under conditions of equal sandwich core density was made. The stiffness in the thickness direction of the optimum SPF/DB corrugated core (that is, triangular truss core) is lower than that of the honeycomb core, and that the former has higher transverse shear stiffness than the latter.

  16. Mechanical behavior of intragranular, nano-porous electrodeposited zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan, Rejin, E-mail: r.raghavan@mpie.de [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkstrasse 39, 3602 Thun (Switzerland); Elias, Jamil [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkstrasse 39, 3602 Thun (Switzerland); Erni, Rolf; Parlinska, Magdalena [Empa, Swiss Federal Laboratories for Materials Science and Technology, Electron Microscopy Center, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); Philippe, Laetitia; Michler, Johann [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkstrasse 39, 3602 Thun (Switzerland)

    2015-03-02

    The mechanical properties and deformation mechanisms of nano-porous ZnO thin films electrodeposited on glass substrates were determined by nanoindentation and in situ scanning electron microscope (SEM) micropillar compression. The intragranular nature of the nanoscale porosity within the individual mono-crystals of the films was probed at nano- and micro-scales for determining their mechanical response. The hardness (3.5 GPa) and reduced elastic modulus (65 GPa) of the compact thin film were found to decrease by increasing the intragranular porosity controlled by the electrochemical deposition potential of ZnO. Focused ion beam (FIB) cross-sections of residual imprints reveal that the decrease in hardness and elastic modulus observed is primarily due to compaction of the nano-porous structure. In situ SEM compression of FIB machined micropillars reveals brittle fracture and near theoretical strengths in the compact film (~ 2 GPa), and a higher flaw tolerant response despite lower failure stress in the most porous film. - Highlights: • Micromechanical behavior of intragranular, nanoporous electrodeposited ZnO thin films • Densification by closure of porosity during indentation • Resistance to fracture by crack deflection and blunting in porous films during microcompression.

  17. Novel mechanical behaviors of wurtzite CdSe nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Bing [Shanghai Normal University, Department of Physics (China); Chen, Li [MCPHS University, School of Arts and Sciences (United States); Xie, Yiqun; Feng, Jie; Ye, Xiang, E-mail: yexiang@shnu.edu.cn [Shanghai Normal University, Department of Physics (China)

    2015-09-15

    As an important semiconducting nanomaterial, CdSe nanowires have attracted much attention. Although many studies have been conducted in the electronic and optical properties of CdSe NWs, the mechanical properties of Wurtzite (WZ) CdSe nanowires remain unclear. Using molecular dynamics simulations, we have studied the tensile mechanical properties and behaviors of [0001]-oriented Wurtzite CdSe nanowires. By monitoring the stretching processes of CdSe nanowires, three distinct structures are found: the WZ wire, a body-centered tetragonal structure with four-atom rings (denoted as BCT-4), and a structure that consists of ten-atom rings with two four-atom rings (denoted as TAR-4) which is observed for the first time. Not only the elastic tensile characteristics are highly reversible under unloading, but a reverse transition between TAR-4 and BCT-4 is also observed. The stretching processes also have a strong dependence on temperature. A tubular structure similar to carbon nanotubes is observed at 150 K, a single-atom chain is formed at 300, 350 and 450 K, and a double-atom chain is found at 600 K. Our findings on tensile mechanical properties of WZ CdSe nanowires does not only provide inspiration to future study on other properties of CdSe nanomaterials but also help design and build efficient nanoscale devices.

  18. Mechanisms of renewal after the extinction of instrumental behavior.

    Science.gov (United States)

    Todd, Travis P

    2013-07-01

    Four experiments with rats examined renewal of extinguished instrumental behavior when the reinforcement histories of the contexts were equated by giving complementary training and extinction of a different response (lever press and chain pull) in each context. In Experiments 1 through 3, renewal occurred when the response was tested in the acquisition context (ABA) or outside the extinction context (AAB and ABC). Further, in Experiments 1 through 3, when both responses were simultaneously available, there was a clear preference for the response that was not in its extinction context. In Experiment 4, renewal was not reduced when testing occurred in a context that had been associated with extinction of the other instrumental response. The experimental designs rule out differential context-reinforcer associations being the only contributing mechanism of renewal, and also raise questions about configural and occasion-setting accounts. The results are consistent with the idea that during extinction an inhibitory association is formed between the context and the response.

  19. Viscoelastic behavior of maize kernel studied by dynamic mechanical analyzer.

    Science.gov (United States)

    Sheng, Shao-Yang; Wang, Li-Jun; Li, Dong; Mao, Zhi-Huai; Adhikari, Benu

    2014-11-04

    The creep recovery, stress relaxation, temperature-dependence and their frequency-dependence of maize kernel were determined within a moisture content range of 11.9% to 25.9% (w/w) by using a dynamic mechanical analyzer. The 4-element Burgers model was found to adequately represent the creep behavior of the maize seeds (R(2)>0.97). The 5-element Maxwell model was able to better predict the stress relaxation behavior of maize kernel than the 3-element Maxwell model. The Tg values for the maize kernels decreased with increased moisture content. For example, the Tg values were 114 °C and 65 °C at moisture content values of 11.9% (w/w) and 25.9% (w/w), respectively. The magnitude of the loss moduli and loss tangent and their rate of change with frequency were highest at 20.7% and lowest at 11.9% moisture contents. The maize kernel structure exhibited A-type crystalline pattern and the microstructure was found to expand with increase in moisture content.

  20. Fear Generalization and Anxiety: Behavioral and Neural Mechanisms.

    Science.gov (United States)

    Dunsmoor, Joseph E; Paz, Rony

    2015-09-01

    Fear can be an adaptive emotion that helps defend against potential danger. Classical conditioning models elegantly describe how animals learn which stimuli in the environment signal danger, but understanding how this learning is generalized to other stimuli that resemble aspects of a learned threat remains a challenge. Critically, the overgeneralization of fear to harmless stimuli or situations is a burden to daily life and characteristic of posttraumatic stress disorder and other anxiety disorders. Here, we review emerging evidence on behavioral and neural mechanisms of generalization of emotional learning with the goal of encouraging further research on generalization in anxiety disorders. We begin by placing research on fear generalization in a rich historical context of stimulus generalization dating back to Pavlov, which lays the foundation for theoretical and experimental approaches used today. We then transition to contemporary behavioral and neurobiological research on generalization of emotional learning in humans and nonhuman animals and discuss the factors that promote generalization on the one hand from discrimination on the other hand.

  1. Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials

    Science.gov (United States)

    Jordan, William

    1998-01-01

    Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).

  2. Strain rate and temperature dependent mechanical behavior of nanocrystalline gold

    Science.gov (United States)

    Karanjgaokar, Nikhil J.

    Nanocrystalline metal films are candidate materials for microelectronics and Microelectromechanical Systems (MEMS). The long term mechanical stability of metal films requires quantitative understanding of their thermo-mechanical behavior in the large range of operating strain rates and temperatures. This dissertation research studied (a) the role of thermally activated processes based on the strain rate and temperature dependent mechanical behavior of nanocrystalline Au thin films, and (b) deformation processes at nominally elastic loads that lead to creep strain over a moderate temperature range that is relevant to MEMS applications. The rate dependent mechanical behavior of nanocrystalline Au thin films was first investigated at room temperature ~ 25 °C and at strain rates between 10-6 to 20 s-1. The use of digital image correlation (DIC) facilitated repeatable and accurate measurements of fullfield strain from free-standing nanocrystalline Au thin films. The experimental stress-strain curves were used to calculate activation volumes for two film thicknesses (0.85 mum, and 1.75 mum), which were 4.5b3 and 8.1b3, at strain rates smaller than 10-4 s-1 and 12.5b3 and 14.6b3 at strain rates higher than 10-4 s-1. The reduced activation volume and increased strain rate sensitivity at slow strain rates were attributed to grain boundary (GB) diffusional processes that result in creep strain. The room temperature strain rate results were augmented with microscale strain rate experiments at temperatures up to 110 °C. Two methods for heating free-standing microscale thin film specimens, namely uniform heating using a custom-built microheater and resistive (Joule) heating, were evaluated using a combination of full-field strain measurements by optical microscopy and full-field temperature measurements by infrared (IR) thermal imaging. It was shown for the first time that the Joule specimen heating method results in large underestimation of the inelastic material properties

  3. Use of laser(s) in the process of superplastic forming and diffusion bonding

    Energy Technology Data Exchange (ETDEWEB)

    Jocelyn, A.; Jonik, M.; Keevil, A.; Ackerman, M.; Way, J.; Flower, T. [Aerospace Mfg. Research Centre, Faculty of Computing, Engineering and Mathematical Sciences, Coldharbour Lane, Bristol (United Kingdom); Kar, A. [Univ. of Central Florida, School Optics/CREOL, Orlando, FL (United States)

    2004-07-01

    Superplastic forming and diffusion bonding (SPF/DB) has permitted the manufacture of some of the lightest, strongest, corrosion resistant, complex, and yet often elegant structures ever to be produced. For the last 30 years, all such components have been made by some form of high thermal-mass, isothermal method of production using conventional equipment, such as hot platen presses or furnaces. However, if laser(s) could be used just to heat the material to be superplastically formed, this could provide a novel, low thermal-mass, means of production which could, relatively easily, be integrated into a laser based manufacturing centre. In this paper, a concept is described of how a laser based manufacturing centre, comprised of a number of individual process cells, together with integrated pre and post SPF/DB operations, would work and the benefits that would result. The concept is based on four considerations. Firstly, that it is essential to heat the material directly and quickly. Secondly, the environment must be completely inert so that there is no contamination of components. Thirdly, the complete process of diffusion bonding must only entail the use of laser(s). Lastly, established laser activities such as cutting, welding, hole drilling or trepanning and the removal of surplus material, must be integrated into the process. In addition, the envisaged cells need to be modular in concept so industry can acquire capital plant progressively, thereby spreading the cost over time. (orig.)

  4. Standard test method for determining the superplastic properties of metallic sheet materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method describes the procedure for determining the superplastic forming properties (SPF) of a metallic sheet material. It includes tests both for the basic SPF properties and also for derived SPF properties. The test for basic properties encompasses effects due to strain hardening or softening. 1.2 This test method covers sheet materials with thicknesses of at least 0.5 mm but not greater than 6 mm. It characterizes the material under a uni-axial tensile stress condition. Note 1—Most industrial applications of superplastic forming involve a multi-axial stress condition in a sheet; however it is more convenient to characterize a material under a uni-axial tensile stress condition. Tests should be performed in different orientations to the rolling direction of the sheet to ascertain initial anisotropy. 1.3 This method has been used successfully between strain rates of 10-5 to 10-1 per second. 1.4 This method has been used successfully on Aluminum and Titanium alloys. The use of the method wi...

  5. Scaling up of High-Pressure Sliding (HPS) for Grain Refinement and Superplasticity

    Science.gov (United States)

    Takizawa, Yoichi; Masuda, Takahiro; Fujimitsu, Kazushige; Kajita, Takahiro; Watanabe, Kyohei; Yumoto, Manabu; Otagiri, Yoshiharu; Horita, Zenji

    2016-09-01

    The process of high-pressure sliding (HPS) is a method of severe plastic deformation developed recently for grain refinement of metallic materials under high pressure. The sample for HPS is used with a form of sheet or rod. In this study, an HPS facility with capacities of 500 tonnes for vertical pressing and of 500 and 300 tonnes for horizontal forward and backward pressings, respectively, was newly built and applied for grain refinement of a Mg alloy as AZ61, Al alloys such as Al-Mg-Sc, A2024 and A7075 alloys, a Ti alloy as ASTM-F1295, and a Ni-based superalloy as Inconel 718. Sheet samples with dimensions of 10 to 30 mm width, 100 mm length, and 1 mm thickness were processed at room temperature and ultrafine grains with sizes of ~200 to 300 nm were successfully produced in the alloys. Tensile testing at elevated temperatures confirmed the advent of superplasticity with total elongations of more than 400 pct in all the alloys. It is demonstrated that the HPS can make all the alloys superplastic through processing at room temperature with a form of rectangular sheets.

  6. Mechanical behavior of materials engineering methods for deformation, fracture, and fatigue

    CERN Document Server

    Dowling, Norman E

    2012-01-01

    For upper-level undergraduate engineering courses in Mechanical Behavior of Materials. Mechanical Behavior of Materials, 4/e introduces the spectrum of mechanical behavior of materials, emphasizing practical engineering methods for testing structural materials to obtain their properties, and predicting their strength and life when used for machines, vehicles, and structures. With its logical treatment and ready-to-use format, it is ideal for upper-level undergraduate students who have completed elementary mechanics of materials courses.

  7. On Physical and Mechanical Behavior of Natural Marine Intermediate Deposites

    Institute of Scientific and Technical Information of China (English)

    SHI Ming-lei; DENG Xue-jun

    2005-01-01

    Coastal structures may be built on natural sedimentary intermediate grounds, which mainly consist of silty soils and fine sandy soils. In this study, extensive field and laboratory tests were performed on the natural marine intermediate deposits to demonstrate the difference in behavior between natural marine clayey soils and natural marine intermediate deposits. The natural intermediate deposits have almost the same ratios of natural water content to liquid limit as those of the soft natural marine clays, but the former have much higher in-situ strength and sensitivity than the latter. The research results indicate that grain size distributions of soils affect significantly tip resistance obtained in field cone penetration tests. The mechanical parameters of natural marine intermediate deposits are also significantly affected by sample disturbance due to their high sensitivity and relatively large permeability. Unconfined compression shear tests largely underestimate the strength of natural marine intermediate soils. The triaxial consolidated compression shear tests with simulated in-situ confined pressure give results much better than those of uncomfined compression shear tests.

  8. Mechanical Behavior of CFRP Lattice Core Sandwich Bolted Corner Joints

    Science.gov (United States)

    Zhu, Xiaolei; Liu, Yang; Wang, Yana; Lu, Xiaofeng; Zhu, Lingxue

    2017-02-01

    The lattice core sandwich structures have drawn more attention for the integration of load capacity and multifunctional applications. However, the connection of carbon fibers reinforced polymer composite (CFRP) lattice core sandwich structure hinders its application. In this paper, a typical connection of two lattice core sandwich panels, named as corner joint or L-joint, was investigated by experiment and finite element method (FEM). The mechanical behavior and failure mode of the corner joints were discussed. The results showed that the main deformation pattern and failure mode of the lattice core sandwich bolted corner joints structure were the deformation of metal connector and indentation of the face sheet in the bolt holes. The metal connectors played an important role in bolted corner joints structure. In order to save the calculation resource, a continuum model of pyramid lattice core was used to replace the exact structure. The computation results were consistent with experiment, and the maximum error was 19%. The FEM demonstrated the deflection process of the bolted corner joints structure visually. So the simplified FEM can be used for further analysis of the bolted corner joints structure in engineering.

  9. High-resolution analysis of the mechanical behavior of tissue

    Science.gov (United States)

    Hudnut, Alexa W.; Armani, Andrea M.

    2017-06-01

    The mechanical behavior and properties of biomaterials, such as tissue, have been directly and indirectly connected to numerous malignant physiological states. For example, an increase in the Young's Modulus of tissue can be indicative of cancer. Due to the heterogeneity of biomaterials, it is extremely important to perform these measurements using whole or unprocessed tissue because the tissue matrix contains important information about the intercellular interactions and the structure. Thus, developing high-resolution approaches that can accurately measure the elasticity of unprocessed tissue samples is of great interest. Unfortunately, conventional elastography methods such as atomic force microscopy, compression testing, and ultrasound elastography either require sample processing or have poor resolution. In the present work, we demonstrate the characterization of unprocessed salmon muscle using an optical polarimetric elastography system. We compare the results of compression testing within different samples of salmon skeletal muscle with different numbers of collagen membranes to characterize differences in heterogeneity. Using the intrinsic collagen membranes as markers, we determine the resolution of the system when testing biomaterials. The device reproducibly measures the stiffness of the tissues at variable strains. By analyzing the amount of energy lost by the sample during compression, collagen membranes that are 500 μm in size are detected.

  10. Mechanical behavior of high strength ceramic fibers at high temperatures

    Science.gov (United States)

    Tressler, R. E.; Pysher, D. J.

    1991-01-01

    The mechanical behavior of commercially available and developmental ceramic fibers, both oxide and nonoxide, has been experimentally studied at expected use temperatures. In addition, these properties have been compared to results from the literature. Tensile strengths were measured for three SiC-based and three oxide ceramic fibers for temperatures from 25 C to 1400 C. The SiC-based fibers were stronger but less stiff than the oxide fibers at room temperature and retained more of both strength and stiffness to high temperatures. Extensive creep and creep-rupture experiments have been performed on those fibers from this group which had the best strengths above 1200 C in both single filament tests and tests of fiber bundles. The creep rates for the oxides are on the order of two orders of magnitude faster than the polymer derived nonoxide fibers. The most creep resistant filaments available are single crystal c-axis sapphire filaments. Large diameter CVD fabricated SiC fibers are the most creep and rupture resistant nonoxide polycrystalline fibers tested to date.

  11. Mechanical behavior and numerical analysis of corrugated wire mesh laminates

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeong Ho; Shankar, Krishna; Tahtali, Murat [UNSW, ADFA, Canberra (Australia)

    2012-01-15

    The objective is to show a possibility of corrugated wire mesh laminate (CWML) structure for bone application. CWML is a part of open-cell structures with low density and high strength built with bonded mesh layers. Specimens of CWML made of 316 stainless steel woven meshes with 0.22 mm wire diameter and 0.95 mm mesh aperture, bonded by transit liquid phase (TLP) at low temperatures, were fabricated and tested under quasi-static conditions to determine their compressive behavior with varying numbers of layers of the sample. The finite element software was used to model the CWML and studied their response to mechanical loading. Then, the numerical model was confirmed by the tested sample. Consequently, CWML specimens were reasonably matched with the human tibia bone ranged over apparent density from 0.05 to 0.08 g/cm{sup 3} in Young's modulus and from 0.05 to 0.11 g/cm{sup 3} in compressive yield strength. The CWML model can have the potential for bone application.

  12. Fatigue Behavior and Deformation Mechanisms in Inconel 718 Superalloy Investigated

    Science.gov (United States)

    2005-01-01

    The nickel-base superalloy Inconel 718 (IN 718) is used as a structural material for a variety of components in the space shuttle main engine (SSME) and accounts for more than half of the total weight of this engine. IN 718 is the bill-of-material for the pressure vessels of nickel-hydrogen batteries for the space station. In the case of the space shuttle main engine, structural components are typically subjected to startup and shutdown load transients and occasional overloads in addition to high-frequency vibratory loads from routine operation. The nickel-hydrogen battery cells are prooftested before service and are subjected to fluctuating pressure loads during operation. In both of these applications, the structural material is subjected to a monotonic load initially, which is subsequently followed by fatigue. To assess the life of these structural components, it is necessary to determine the influence of a prior monotonic load on the subsequent fatigue life of the superalloy. An insight into the underlying deformation and damage mechanisms is also required to properly account for the interaction between the prior monotonic load and the subsequent fatigue loading. An experimental investigation was conducted to establish the effect of prior monotonic straining on the subsequent fatigue behavior of wrought, double-aged, IN 718 at room temperature. First, monotonic strain tests and fully-reversed, strain-controlled fatigue tests were conducted on uniform-gage-section IN 718 specimens. Next, fully reversed fatigue tests were conducted under strain control on specimens that were monotonically strained in tension. Results from this investigation indicated that prior monotonic straining reduced the fatigue resistance of the superalloy particularly at the lowest strain range. Some of the tested specimens were sectioned and examined by transmission electron microscopy to reveal typical microstructures as well as the active deformation and damage mechanisms under each of

  13. Superplastic Deformation and Microstructural Evolution of Ti-6Al-4V Alloy%Ti-6Al-4V合金超塑性变形及微观组织演变

    Institute of Scientific and Technical Information of China (English)

    朱堂葵; 李淼泉

    2012-01-01

    通过高温拉伸试验研究了Ti-6Al-4V合金的高温变形力学行为和超塑性,并对试样断口附近的组织进行了观察.结果表明,随着变形温度的升高或初始应变速率的降低,Ti-6Al-4V合金的流动应力明显减小 ;Ti-6Al-4V合金的最佳超塑性变形工艺参数为880℃/0.001 s-1,最大延伸率为689%,峰值应力仅为30.03 MPa ;在超塑性拉伸过程中,试样变形区发生明显的动态再结晶,使片层状的α相晶粒破碎、细化和等轴化,促进超塑性的增加;随着变形温度的提高、变形量增大和变形时间的加长,再结晶α相发生了聚集长大,从而使显微组织明显粗化.对于双态组织的两相钛合金,最佳超塑性变形温度应低于或等于片层状α→β转变的终了温度.%The deformation behavior and superplasticity of Ti-6A1-4V alloy at elevated temperature have been investigated through tensile tests. The microstructures near the fracture of the specimen have been observed by optical microscopy. The results show that the flow stress of Ti-6AI-4V alloy decreases obviously with increasing of the temperature or decreasing of the initial strain rate. The temperature and the initial strain rate of optimal superplastic deformation are 880 ℃ and 0.001 s-1, respectively. Under this optimal condition, the maximum elongation is 689%; however, the peak stress is only 30.03 MPa. During the superplastic tensile deformation, the dynamic recrystallization occurs obviously in the deformation zone of the specimen and the lamellar α grain is broken, refined and spheroidized, so that the superplasticity can be improved. With increasing of the deformation temperature, the deformation amount and the deformation time, the recrystal α grain will merge and grow up, causing obvious coarsening of the microstructure. The temperature of optimal superplastic deformation should not exceed the ceasing temperature of lamellar α→β phase transformation for the α+β titanium alloy

  14. Behavioral flexibility as a mechanism for coping with climate change

    Science.gov (United States)

    Beever, Erik; Hall, L. Embere; Varner, Johanna; Loosen, Anne E.; Dunham, Jason; Gahl, Megan K.; Smith, Felisa A.; Lawler, Joshua J.

    2017-01-01

    Of the primary responses to contemporary climate change – “move, adapt, acclimate, or die” – that are available to organisms, “acclimate” may be effectively achieved through behavioral modification. Behavioral flexibility allows animals to rapidly cope with changing environmental conditions, and behavior represents an important component of a species’ adaptive capacity in the face of climate change. However, there is currently a lack of knowledge about the limits or constraints on behavioral responses to changing conditions. Here, we characterize the contexts in which organisms respond to climate variability through behavior. First, we quantify patterns in behavioral responses across taxa with respect to timescales, climatic stimuli, life-history traits, and ecology. Next, we identify existing knowledge gaps, research biases, and other challenges. Finally, we discuss how conservation practitioners and resource managers can incorporate an improved understanding of behavioral flexibility into natural resource management and policy decisions.

  15. Study of mechanical behavior of AFM silicon tips under mechanical load

    Science.gov (United States)

    Kopycinska-Mueller, M.; Gluch, J.; Köhler, B.

    2016-11-01

    In this paper we address critical issues concerning calibration of AFM based methods used for nanoscale mechanical characterization of materials. It has been shown that calibration approaches based on macroscopic models for contact mechanics may yield excellent results in terms of the indentation modulus of the sample, but fail to provide a comprehensive and actual information concerning the tip-sample contact radius or the mechanical properties of the tip. Explanations for the severely reduced indentation modulus of the tip included the inadequacies of the models used for calculations of the tip-sample contact stiffness, discrepancies in the actual and ideal shape of the tip, presence of the amorphous silicon phase within the silicon tip, as well as negligence of the actual size of the stress field created in the tip during elastic interactions. To clarify these issues, we investigated the influence of the mechanical load applied to four AFM silicon tips on their crystalline state by exposing them to systematically increasing loads, evaluating the character of the tip-sample interactions via the load-unload stiffness curves, and assessing the state of the tips from HR-TEM images. The results presented in this paper were obtained in a series of relatively simple and basic atomic force acoustic microscopy (AFAM) experiments. The novel combination of TEM imaging of the AFM tips with the analysis of the load-unload stiffness curves gave us a detailed insight into their mechanical behavior under load conditions. We were able to identify the limits for the elastic interactions, as well as the hallmarks for phase transformation and dislocation formation and movement. The comparison of the physical dimensions of the AFM tips, geometry parameters determined from the values of the contact stiffness, and the information on the crystalline state of the tips allowed us a better understanding of the nanoscale contact.

  16. Rheological and Mechanical Behavior of Silk Fibroin Reinforced Waterborne Polyurethane

    Directory of Open Access Journals (Sweden)

    Yongzhen Tao

    2016-03-01

    Full Text Available Waterborne polyurethane (WPU is a versatile and environment-friendly material with growing applications in both industry and academia. Silk fibroin (SF is an attractive material known for its structural, biological and hemocompatible properties. The SF reinforced waterborne polyurethane (WPU is a promising scaffold material for tissue engineering applications. In this work, we report synthesis and characterization of a novel nanocomposite using SF reinforced WPU. The rheological behaviors of WPU and WPU-SF dispersions with different solid contents were investigated with steady shear and dynamic oscillatory tests to evaluate the formation of the cross-linked gel structure. The average particle size and the zeta potential of WPU-SF dispersions with different SF content were examined at 25 °C to investigate the interaction between SF and WPU. FTIR, SEM, TEM and tensile testing were performed to study the effects of SF content on the structural morphology and mechanical properties of the resultant composite films. Experimental results revealed formation of gel network in the WPU dispersions at solid contents more than 17 wt %. The conjugate reaction between the WPU and SF as well as the hydrogen bond between them helped in dispersing the SF powder into the WPU matrix as small aggregates. Addition of SF to the WPU also improved the Young’s modulus from 0.30 to 3.91 MPa, tensile strength from 0.56 to 8.94 MPa, and elongation at break from 1067% to 2480%, as SF was increased up to 5 wt %. Thus, significant strengthening and toughening can be achieved by introducing SF powder into the WPU formulations.

  17. Superplastic Solid-Phase Welding of 40 Cr-T10A Steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The microstructure of 40Cr and T10A steel sample and its surface to be welded is ultra-fined through salt-bath cyclic quenching and high frequency hardening, then the surface is cleaned. Under non-vacuum and no shielded gas, the welding parameter of isothermal superplastic solidphase welding and the effect of surface microstructure prior to pressure welding on the quality of joint are studied. At the temperature of 730~750°C and at initial strain rate of (2~4) × 10-4 s-1,the strength of the joint is up to or close to that of 40Cr base metal in 3~5 min pressure welding.

  18. Synthesis and Enhanced Superplasticity of the Zirconia-dispersed Alumina Nanocomposite

    Institute of Scientific and Technical Information of China (English)

    Guoqing CHEN; Kaifeng ZHANG; Wenbo HAN; Junting LUO

    2005-01-01

    A series of alumina-zirconia composites with various grain sizes were prepared from the nano-sized powders with different agglomerations. Microstructural analysis of the sintered compacts indicates that the as-sintered material is a typical intra/inter granular nanocomposite with uniform distribution of the zirconia grains in the alumina matrix.Superplastic deep drawing test under different conditions demonstrates that dense Al2O3/ZrO2 samples with average grain size of 230 nm can be elongated to a dome height of at least 12 mm at the punch rate of 0.6 mm.min-1at 1400℃. Further drawing tests show that for the composites with larger grain size, such elongation cannot be achieved at such a strain rate.

  19. Stored energy analysis of Zn-5Al eutectic alloy in superplastic deformation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The stored energy and the energy release during SPD (superplastic deformation) ofa Zn-5Al alloy were studied. The alloy after rolling process gains more stored energy, and the as-rolled specimen can obtain maximum elongation and minimum flow stress without hot holding treatment before SPD. Experimental results show that stored energy release process is along with SPD process and is also an impetus to SPD. The as-rolled Zn-5Al alloy has 48 J/mol stored energy which was measured with DSC (differential scanning calorimeter) and conforms well to the calculated value. The as-rolled Zn-5Al alloy after SPD with an elongation of 2 500% releases 112 J/mol stored energy. Analysis shows that the strain rate is in direct ratio to the rate of stored energy release.

  20. Mechanical Behavior of Tough Hydrogels for Structural Applications

    Science.gov (United States)

    Illeperuma, Widusha Ruwangi Kaushalya

    novel applications. This thesis aims to investigate the broader applications, well beyond those investigated so far. We show fiber reinforced tough hydrogels can dissipate a significant amount of energy at a tunable level of stress, making them suitable for energy absorbing applications such as inner layer of helmets. We develop inexpensive fire-retarding materials using tough hydrogels that provide superior protection from burn injuries. We also study hydrogels as actuators that can be used in soft robotics. Hydrogels contain mostly water and they freeze when the temperature drops below 00C and lose its functions. We demonstrate a new class of hydrogels that do not freeze and hydrogels that partially freeze below water freezing temperature. Partially freezing hydrogels are ideal for cooling applications such as gel packs and non-freezing hydrogels are useful in all the structural applications at low temperatures. This thesis will enable the use of inexpensive hydrogels in a new class of non-traditional structural applications where the mechanical behavior of the hydrogel is of prime importance.

  1. Mechanical behavior and failure mechanism of pre-cracked specimen under uniaxial compression

    Science.gov (United States)

    Liu, Ting; Lin, Baiquan; Yang, Wei

    2017-08-01

    As a desirable permeability enhancement method, hydraulic slotting has been widely used for enhanced coal bed methane (ECBM) recovery in China. Aiming at the problem that the action mechanism of the slot on the mechanical properties of the slotted coal is still unclear, this paper investigates the effects of flaw inclination on the strength, deformation and cracking process of the pre-cracked specimens. The result shows that the stress-strain curves can be divided into three categories based on the stress behaviors, dropping step by step or dropping sharply, after the peak. With an increase of the flaw inclination, the strength and elastic modulus of the pre-cracked specimen increases gradually, which is verified by the numerical simulation and theoretical results. Analysis of the cracking processes indicates that the initiation position of the first crack in specimens with various flaw inclinations is different, which is caused by the various distributions of tensile and compressive stress concentration zones. The distribution of the stress field controls the cracking process which will in turn affect the stress field distribution. With the propagation of the cracks, the tensile stress concentration zones expand and the concentration degree lowers gradually, while the compressive stress concentration zones show the opposite variation trend. Based on the above results, an optimized slot arrangement method has been proposed for the field application of hydraulic slotting.

  2. Effects of crystal boundary gliding and dislocation on superplastic deformation of SiCw/6061 Al composite

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    SiCw/6061Al composite was fabricated with squeeze casting method, hot extruded and superplastically tensile tested. At the temperature of 570  ℃and the strain rate of 2.0×10-3 s-1, an elongation of 280% was obtained. The change of grain shape, dislocation density and distribution was observed by TEM. The results show that during the superplastic deformation grain shape on the whole is unchanged, but the dislocation density and distribution vary quite a lot with the tensile action. Under the optimal straining conditions, dislocation mainly distributes along the grain boundary, which has an important effect on cooperative strain especially. When the strain magnitude is big enough, there appears stacking faults and twin crystals, which also has some effect on the cooperative strain.

  3. Exploring Managerial Mechanisms That Influence Innovative Work Behavior

    DEFF Research Database (Denmark)

    Bysted, Rune; Jespersen, Kristina Risom

    2014-01-01

    Increasing employees’ innovative work behaviour is a complex process of developing an internal climate supportive of idea generation and realization through use of financial, participative, and decentralization mechanisms. This article investigates the effectiveness of these managerial mechanisms...

  4. Neuronal mechanisms and circuits underlying repetitive behaviors in mouse models of autism spectrum disorder.

    Science.gov (United States)

    Kim, Hyopil; Lim, Chae-Seok; Kaang, Bong-Kiun

    2016-01-20

    Autism spectrum disorder (ASD) refers to a broad spectrum of neurodevelopmental disorders characterized by three central behavioral symptoms: impaired social interaction, impaired social communication, and restricted and repetitive behaviors. However, the symptoms are heterogeneous among patients and a number of ASD mouse models have been generated containing mutations that mimic the mutations found in human patients with ASD. Each mouse model was found to display a unique set of repetitive behaviors. In this review, we summarize the repetitive behaviors of the ASD mouse models and variations found in their neural mechanisms including molecular and electrophysiological features. We also propose potential neuronal mechanisms underlying these repetitive behaviors, focusing on the role of the cortico-basal ganglia-thalamic circuits and brain regions associated with both social and repetitive behaviors. Further understanding of molecular and circuitry mechanisms of the repetitive behaviors associated with ASD is necessary to aid the development of effective treatments for these disorders.

  5. Superplastic forming of the Cd-17.4Zn alloy; Conformado superplastico de la aleacion Cd-17.4Zn

    Energy Technology Data Exchange (ETDEWEB)

    Llanes-Briceno, J. A.; Torres-Villasenor, G. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    2000-06-01

    In the present work the necessary steps to carry on the superplastic forming of the Cd-17.4Zn alloy are defined. The use of either atmospheric pressure or gas pressure as forming tools is analyzed. The optimum values of the variable involved (temperature, maximum strain and sensitivity index) are determined while a method for the characterization of futures superplastic alloys is set forth. The experimental characterization of the superplastic forming is achieved with free bulging of circular membranes of 12, 16, 24, 32 and 40 mm in diameter and with three different membrane thicknesses (0.4, 0.6, 0.8 mm). [Spanish] Se definen los pasos necesarios para el conformado superplastico de la aleacion Cd-17.4 Zn. Se comparan la presion atmosferica y el gas a presion como herramientas de conformado. Se determinan los valores optimos de la variables involucradas (temperatura, deformacion maxima e indice de sensibilidad) y se plantea una metodologia para la caracterizacion de futuras aleaciones superplasticas. El conformado superplastico se caracteriza experimentalmente mediante el inflado libre de membranas circulares de 12, 16, 24, 32 y 40 mm de diametro y tres diferentes espesores (0.4, 0.6 y 0.8 mm). Se muestra la estructura perlitica (enfuiada al aive Cd-17.4Zn) y la estructura grano fino. Se muestra la profundidad de deformacion en tres espesores (0.4, 0.6, 0.8 mm) a P=200 Kpa y T = 200 y a T = 230.

  6. Thermo-mechanical behavior of graphene oxide hydrogel

    Science.gov (United States)

    Ghosh, Rituparna; Deka Boruah, Buddha; Misra, Abha

    2017-02-01

    Graphene oxide hydrogel with encapsulated water presents a unique structural characteristic similar to open cell foam. It is demonstrated that the encapsulated water plays a vital role in tailoring compressive behavior of graphene oxide hydrogel under varying thermal conditions. The present study is focused on systematically evaluating both the temperature and frequency dependence on compressive behavior of hydrogel to elucidate the evolution of stiffness in a wider temperature range. The stiffness of the hydrogel is further tailored through encapsulation of nanoparticles to achieve an extraordinary enhancement in storage modulus. It is concluded that the change in phase of water provides a large gradient in the stiffness of the hydrogel.

  7. Dynamic mechanical behavior magnetorheological nanocomposites containing CNTs: A review

    Science.gov (United States)

    Ismail, Rozaina; Ibrahim, Azmi; Hamid, Hanizah Ab.; Mahmood, Mohamad Rusop; Adnan, Azlan

    2016-07-01

    Carbon nanotubes (CNTs) based polymer composites have variety of engineering applications due to their excellent mechanical, electrical, chemical, magnetic, etc. properties. This paper is an attempt to present a coherent yet concise review of as many of these publications as possible on the mechanical aspect of the Magnetorheological Elastomer (MRE) composites with the addition of multi-walled carbon nanotubes (CNTs). The dynamic mechanical response of the MR nanocomposites to applied magnetic fields has been investigated through dynamic mechanical analysis. It is found that a small amount of carbon nanotubes can effectively improve the mechanical performance of conventional MR elastomers. In summary, multi-walled carbon nanotubes reinforced magnetorheological composite has been developed to take advantage of both the smart MR technology and outstanding properties of carbon nanotubes. Furthermore review is also carried out on the capability of carbon nanotubes to impart the stiffness and damping performance encountered with the properties of CNT based Natural Rubber.

  8. Dissolution behavior and dissolution mechanism of palygorskite in HCl solution

    Institute of Scientific and Technical Information of China (English)

    CAI Yuanfeng; XUE Jiyue

    2004-01-01

    The 1 mol/L, 3 mol/L and 5 mol/L HCl solutions were employed to leach two palygorskites with different trioctahedral contents in their crystal structure for different period of time. The results of the dissolution experiments show that the dissolution process could be divided into three steps, and that this dissolution behavior can be attributed to its higher Mg2+ content, and is restricted by the extraction behavior of Si4+. The preferential extraction for Mg2+ promotes the extraction behavior of Si4+ from Si-O framework. Because the Si4+ in the form of amorphous SiO2 is adsorbed onto the surface of palygorskite fibre, the reaction between palygorskite and acid is obstructed. With the elapsing of time, or the increasing of the acid concentration, the amorphous SiO2 flocculates, and then the channels of chemical reaction are reopened. The ratio value of Mg2+/(Fe3++Al3+) in leaching solution tends to a fixed value, showing that the acid attacks not only the surface but also the structural channels. There are no obvious three steps observed during the acid attack on the palygorskite with a lower trioctahedral content. The differential behavior for two palygorskites is discussed.

  9. Behavioral and neural mechanisms underlying habitual and compulsive drug seeking.

    Science.gov (United States)

    Smith, Rachel J; Laiks, Lillian S

    2017-09-05

    Addiction is characterized by compulsive drug use despite negative consequences. Here we review studies that indicate that compulsive drug use, and in particular punishment resistance in animal models of addiction, is related to impaired cortical control over habitual behavior. In humans and animals, instrumental behavior is supported by goal-directed and habitual systems that rely on distinct corticostriatal networks. Chronic exposure to addictive drugs or stress has been shown to bias instrumental response strategies toward habit learning, and impair prefrontal cortical (PFC) control over responding. Moreover, recent work has implicated prelimbic PFC hypofunction in the punishment resistance that has been observed in a subset of animals with an extended history of cocaine self-administration. This may be related to a broader role for prelimbic PFC in mediating adaptive responding and behavioral flexibility, including exerting goal-directed control over behavior. We hypothesize that impaired cortical control and reduced flexibility between habitual and goal-directed systems may be critically involved in the development of maladaptive, compulsive drug use. Copyright © 2017. Published by Elsevier Inc.

  10. Physical Exercise Affects Attentional Orienting Behavior through Noradrenergic Mechanisms

    Science.gov (United States)

    Robinson, Andrea M.; Buttolph, Thomas; Green, John T.; Bucci, David J.

    2015-01-01

    Spontaneously Hypertensive Rats (SHRs), a commonly-used animal model of ADHD, exhibit little habituation of the orienting response to repeated presentations of a non-reinforced visual stimulus. However, SHRs that have access to a running wheel for 5, 10, or 21 days exhibit robust habituation that is indistinguishable from normo-active rats. Two days of exercise, in comparison, was not sufficient to affect habituation. Here we tested the hypothesis that the effect of exercise on orienting behavior in SHRs is mediated by changes in noradrenergic function. In Experiment 1, we found that 5, 10, or 21 days of access to a running wheel, but not 2 days, significantly reduced levels of the norepinephrine transporter (NET) in medial prefrontal cortex. In Experiment 2, we tested for a causal relationship between changes in noradrenergic function and orienting behavior by blocking noradrenergic receptors during exercise. Rats that received propranolol (beta adrenergic/noradrenergic receptor blocker) during 10 days of exercise failed to exhibit an exercise-induced reduction in orienting behavior. The results inform a growing literature regarding the effects of exercise on behavior and the potential use of exercise as a treatment for mental disorders. PMID:26030434

  11. Parental Familism and Antisocial Behaviors: Development, Gender, and Potential Mechanisms

    Science.gov (United States)

    Morcillo, Carmen; Duarte, Cristiane S.; Shen, Sa; Blanco, Carlos; Canino, Glorisa; Bird, Hector R.

    2011-01-01

    Objective: To examine the relation between parental familism (strong values of attachment to nuclear and extended family members) and youth antisocial behaviors over time. Method: Puerto Rican children 5 to 13 years of age at baseline residing in the South Bronx in New York (n = 1,138) and in the Standard Metropolitan Area in San Juan and Caguas,…

  12. [Optogenetics in Investigations of Brain Mechanisms of Behavior].

    Science.gov (United States)

    Dygalo, N N

    2015-01-01

    Optogenetics--new method which enables the control of selected cell type activity using light. This method significantly enhances the capabilities of modern neurobiology. In the review, the general concept of optogenetics and recent results and prospects of application of this approach in psycho-behavioral studies are discussed.

  13. STUDIES ON THE MECHANICAL PROPERTIES AND CRYSTALLIZATION BEHAVIOR OF POLYETHYLENE COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    ZHU Jin; OU Yuchun; FENG Yupeng

    1995-01-01

    The effects of interfacial modifier on the mechanical, dynamic mechanical properties and crystallization behavior of the polyethylene composites were investigated in the present paper.It was found that the interfacial modifer significantly improved the mechanical properties,influenced the dynamic mechanical spectra and slightly changed the crystallization behavior.The results showed that the interfacial modifier changed the dispersion state of dispersed phase of the composites, resulting in different phase structure, which was the major reason leading to different mechanical and crystallization properties.

  14. Underlying mechanisms of improving physical activity behavior after rehabilitation

    NARCIS (Netherlands)

    van der Ploeg, Hidde P; Streppel, Kitty R M; van der Beek, Allard J; van der Woude, Luc H V; van Harten, Wim H; van Mechelen, Willem; van der Woude, Lucas

    2008-01-01

    BACKGROUND: Regular physical activity is beneficial for the health and functioning of people with a disability. Effective components of successful physical activity promotion interventions should be identified and disseminated. PURPOSE: To study the underlying mechanisms of the combined sport stimul

  15. Underlying mechanisms of improving physical activity behavior after rehabilitation

    NARCIS (Netherlands)

    Ploeg, van der Hidde P.; Streppel, Kitty R.M.; Beek, van der Allard J.; Woude, Luc H.V.; Harten, van Wim H.; Mechelen, van Willem

    2008-01-01

    Background: Regular physical activity is beneficial for the health and functioning of people with a disability. Effective components of successful physical activity promotion interventions should be identified and disseminated. Purpose: To study the underlying mechanisms of the combined sport stimul

  16. The Modeling of Coupled Electromagnetic-Thermo-Mechanical Laser Interactions and Microstructural Behavior of Energetic Aggregates

    Science.gov (United States)

    2015-01-01

    ABSTRACT BROWN, JUDITH ALICE. The Modeling of Coupled Electromagnetic- Thermo -Mechanical Laser Interactions and Microstructural Behavior of...Energetic Aggregates. (Under the direction of Dr. Mohammed Zikry). The coupled electromagnetic- thermo -mechanical response of RDX (cyclotrimethylene...frequency electromagnetic (EM) wave propagation, laser heat absorption, thermal conduction, and inelastic dynamic thermo - mechanical deformation in

  17. Mechanical Properties and Fatigue Behavior of Unitized Composite Airframe Structures at Elevated Temperature

    Science.gov (United States)

    2016-09-01

    suitability of this composite for use in aerospace components designed to contain high-temperature environments, mechanical tests were performed under... contain high-temperature environments, mechanical tests were performed under temperature conditions simulating the actual operating conditions. In all... MECHANICAL PROPERTIES AND FATIGUE BEHAVIOR OF UNITIZED COMPOSITE AIRFRAME STRUCTURES AT ELEVATED

  18. On the mechanical behavior of the human biliary system

    Institute of Scientific and Technical Information of China (English)

    Xiaoyu Luo; Wenguang Li; Nigel Bird; Swee Boon Chin; NA Hill; Alan G Johnson

    2007-01-01

    This paper reviews the progress made in understanding the mechanical behaviour of the biliary system.Gallstones and diseases of the biliary tract affect more than 10% of the adult population. The complications of gallstones, i.e. acute pancreatitis and obstructive jandice, can be lethal, and patients with acalculous gallbladder pain often pose diagnostic difficulties and undergo repeated ultrasound scans and oral cholecystograms. Moreover, surgery to remove the gallbladder in these patients, in an attempt to relieve the symptoms, gives variable results. Extensive research has been carried out to understand the physiological and pathological functions of the biliary system, but the mechanism of the pathogenesis of gallstones and pain production still remain poorly understood. It is believed that the mechanical factors play an essential role in the mechanisms of the gallstone formation and biliary diseases. However, despite the extensive literature in clinical studies, only limited work has been carried out to study the biliary system from the mechanical point of view. In this paper, we discuss the state of art knowledge of the fluid dynamics of bile flow in the biliary tract, the solid mechanics of the gallbladder and bile ducts, recent mathematical and numerical modelling of the system,and finally the future challenges in the area.

  19. Superplasticity. Revision

    Science.gov (United States)

    1989-09-01

    NASA IAA Journal Article Issue 10 Structural materials for future aerospace developments. Materiales estructurales para los futuros desarrollos...aeroespaciale (AA)GARCIA POGGIO. JOSE A. (Congreso Nacional de Ingenieria Mecanica , 6th, Madrid. Spain. Dec. 15-18, 1987) Ingenieria Aeronautica y Astronautica

  20. Mechanisms linking employee affective delivery and customer behavioral intentions.

    Science.gov (United States)

    Tsai, Wei-Chi; Huang, Yin-Mei

    2002-10-01

    Past empirical evidence has indicated that employee affective delivery can influence customer reactions (e.g., customer satisfaction, service quality evaluation). This study extends previous research by empirically examining mediating processes underlying the relationship between employee affective delivery and customer behavioral intentions. Data were collected from 352 employee-customer pairs in 169 retail shoe stores in Taiwan. Results showed that the influence of employee affective delivery on customers' willingness to return to the store and pass positive comments to friends was indirect through the mediating processes of customer in-store positive moods and perceived friendliness. The study also indicated that employee affective delivery influences customers' time spent in store, which, in turn, influences customer behavioral intentions.

  1. Behavioral addictions in addiction medicine: from mechanisms to practical considerations.

    Science.gov (United States)

    Banz, Barbara C; Yip, Sarah W; Yau, Yvonne H C; Potenza, Marc N

    2016-01-01

    Recent progress has been made in our understanding of nonsubstance or "behavioral" addictions, although these conditions and their most appropriate classification remain debated and the knowledge basis for understanding the pathophysiology of and treatments for these conditions includes important gaps. Recent developments include the classification of gambling disorder as a "Substance-Related and Addictive Disorder" in the 5th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) and proposed diagnostic criteria for Internet Gaming Disorder in Section 3 of DSM-5. This chapter reviews current neuroscientific understandings of behavioral addictions and the potential of neurobiological data to assist in the development of improved policy, prevention, and treatment efforts. © 2016 Elsevier B.V. All rights reserved.

  2. Behavioral and Neural Mechanisms of Overgeneralization in Anxiety.

    Science.gov (United States)

    Laufer, Offir; Israeli, David; Paz, Rony

    2016-03-21

    Overgeneralization of dangerous stimuli is a possible etiological account for anxiety disorders, yet the underlying behavioral and neural origins remain vague. Specifically, it is unclear whether this is a choice behavior in an unsafe environment ("better safe than sorry") or also a fundamental change in how the stimulus is perceived. We show that anxiety patients have wider generalization for loss-conditioned tone when compared to controls and do so even in a safe context that requires a different behavioral policy. Moreover, patients overgeneralized for gain-conditioned tone as well. Imaging (fMRI) revealed that in anxiety only, activations during conditioning in the dACC and the putamen were correlated with later overgeneralization of loss and gain, respectively, whereas valence distinction in the amygdala and hippocampus during conditioning mediated the difference between loss and gain generalization. During generalization itself, neural discrimination based on multivoxel patterns in auditory cortex and amygdala revealed specific stimulus-related plasticity. Our results suggest that overgeneralization in anxiety has perceptual origins and involves affective modulation of stimulus representations in primary cortices and amygdala.

  3. Social carry-over effects on non-social behavioral variation: mechanisms and consequences

    Directory of Open Access Journals (Sweden)

    Petri Toivo Niemelä

    2015-05-01

    Full Text Available The field of animal personality is interested in decomposing behaviors into different levels of variation, with its present focus on the ecological and evolutionary causes and consequences of expressed variation. Recently the role of the social environment, i.e. social partners, has been suggested to affect behavioral variation and induce selection on animal personality. Social partner effects exist because characters of social partners (e.g. size, behavior, affect the behavioral expression of a focal individual. Here, we 1 first review the proximate mechanisms underlying the social partner effects on behavioral expression and the timescales at which such effects might take place. We then 2 discuss how within- and among-individual variation in single behaviors and covariation between multiple behaviors, caused by social partners, can carry-over to non-social behaviors expressed outside the social context. Finally, we 3 highlight evolutionary consequences of social carry-over effects to non-social behaviors and 4 suggest study designs and statistical approaches which can be applied to study the nature and evolutionary consequences of social carry-over effects on non-social behaviors. Understanding the proximate mechanisms underpinning the social partner effects is important since it opens a door for deeper understanding of how social environments can affect behavioral variation and covariation at multiple levels, and the evolution of non-social behaviors (i.e. exploration, activity, boldness that are affected by social interactions.

  4. Microscale Mechanical Deformation Behaviors and Mechanisms in Bulk Metallic Glasses Investigated with Micropillar Compression Experiments

    Science.gov (United States)

    Ye, Jianchao

    2011-12-01

    Over the past years of my PhD study, the focused-ion-beam (FIB) based microcompression experiment has been thoroughly investigated with respect to the small-scale deformation in metallic glasses. It was then utilized to explore the elastic and plastic deformation mechanisms in metallic glasses. To this end, micropillars with varying sample sizes and aspect ratios were fabricated by the FIB technique and subsequently compressed on a modified nanoindentation system. An improved formula for the measurement of the Young's modulus was derived by adding a geometrical prefactor to the Sneddon's solution. Through the formula, geometry-independent Young's moduli were extracted from microcompression experiments, which are consistent with nanoindentation results. Furthermore, cyclic microcompression was developed, which revealed reversible inelastic deformation in the apparent elastic regime through high-frequency cyclic loading. The reversible inelastic deformation manifests as hysteric loops in cyclic microcompression and can be captured by the Kelvin-type viscoelastic model. The experimental results indicate that the free-volume zones behave essentially like supercooled liquids with an effective viscosity on the order of 1 x 108 Pas. The microscopic yield strengths were first extracted with a formula derived based on the Mohr-Coulomb law to account for the geometrical effects from the tapered micropillar and the results showed a weak size effect on the yield strengths of a variety of metallic-glass alloys, which can be attributed to Weibull statistics. The nature of the yielding phenomenon was explored with the cyclic micro-compression approach. Through cyclic microcompression of a Zr-based metallic glass, it can be demonstrated that its yielding stress increases at higher applied stress rate but its yielding strain is kept at a constant of ~ 2%. The room-temperature post-yielding deformation behavior of metallic glasses is characterized by flow serrations, which were

  5. 2012 THIN FILM AND SMALL SCALE MECHANICAL BEHAVIOR GRS/GRC, JULY 21-27, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Balk, Thomas

    2012-07-27

    The mechanical behavior of materials with small dimension(s) is of both fundamental scientific interest and technological relevance. The size effects and novel properties that arise from changes in deformation mechanism have important implications for modern technologies such as thin films for microelectronics and MEMS devices, thermal and tribological coatings, materials for energy production and advanced batteries, etc. The overarching goal of the 2012 Gordon Research Conference on "Thin Film and Small Scale Mechanical Behavior" is to discuss recent studies and future opportunities regarding elastic, plastic and time-dependent deformation, as well as degradation and failure mechanisms such as fatigue, fracture and wear. Specific topics of interest include, but are not limited to: fundamental studies of physical mechanisms governing small-scale mechanical behavior; advances in test techniques for materials at small length scales, such as nanotribology and high-temperature nanoindentation; in-situ mechanical testing and characterization; nanomechanics of battery materials, such as swelling-induced phenomena and chemomechanical behavior; flexible electronics; mechanical properties of graphene and carbon-based materials; mechanical behavior of small-scale biological structures and biomimetic materials. Both experimental and computational work will be included in the oral and poster presentations at this Conference.

  6. Mechanical Behavior of PBO Fiber Used for Lunar Soil Sampler

    Science.gov (United States)

    Gao, Xingwen; Tang, Dewei; Yue, Honghao; Qiao, Fei; Li, Yanwei

    2017-06-01

    The stability of the mechanical properties of the materials used for lunar soil sampler at different temperatures is one of the key factors to ensure the success of the lunar sampling task. In this paper, two kinds of poly(pphenylene-2,6-benzobisoxazole) (PBO) fiber fabric used for lunar soil sampler, flexible tube and wireline, are tested for mechanical properties. The results show that the mechanical properties of the PBO flexible tube and wireline raised 8.3% and 5.7% respectively in -194°C environment comparing with the room temperature of 25°C. When the temperature rises to 300°C, the deviation is -38.6% and -46.4% respectively.

  7. Mechanical behavior of novel W alloys produced by HIP

    Energy Technology Data Exchange (ETDEWEB)

    Pastor, J.Y.; Martin, A.; Llorca, J. [Madrid Univ. Politecnica, Dept de Ciencia de Materiales (Spain); Monge, M.A.; Pareja, R. [Madrid Univ. Carlos 3, Dept. de Fisica (Spain)

    2007-07-01

    Full text of publication follows: W appears to be one of the candidate materials being considered for making plasma-facing components (PFCs) in a future fusion power reactor because of its refractory characteristics, low tritium retention and low sputtering yielding. However, its use in PFCs requires the development of W materials that, in addition to these properties, maintains good mechanical properties at high temperatures. In W, high temperature strength and creep resistance may be effectively increased by solid-solution and dispersion strengthening. Sintering could be a suitable method to produce solid-solution and dispersion strengthening in W alloys for these applications if their recrystallization temperature is high enough and the grain growth is restrained. The aim of the present work is to investigate the mechanical properties of W materials produced by liquid phase sintering using Ti as sintering activator and nanoparticles of Y{sub 2}O{sub 3} as strengthening dispersoids. The mechanical behaviour of pure W and W alloys, having 0.5 wt % Y{sub 2}O{sub 3}, X Wt % Ti and 0.5 wt % Y{sub 2}O{sub 3} + X wt % Ti prepared by powder metallurgy have been studied (0{<=}X{<=}4). Three point bending tests have been performed on 2 x 2 x 25 mm{sup 3} specimens cut from ingots consolidated by a two-stage hot isostatic pressing process. The bending strength, fracture toughness and elastic modulus have been determined as a function of temperature. The fracture surfaces have been analyzed to find the fracture mode and investigate the temperature dependence of the mechanical properties and fracture mechanisms. The effect of the Y{sub 2}O{sub 3} dispersion and Ti content on the mechanical properties is also investigated. (authors)

  8. Ultrafine-grained magnesium–lithium alloy processed by high-pressure torsion: Low-temperature superplasticity and potential for hydroforming

    Energy Technology Data Exchange (ETDEWEB)

    Matsunoshita, Hirotaka [Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Edalati, Kaveh, E-mail: kaveh.edalati@zaiko6.zaiko.kyushu-u.ac.jp [Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395 (Japan); WPI, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Furui, Mitsuaki [Graduate School of Science and Engineering for Research, University of Toyama, Toyama 930-8555 (Japan); Horita, Zenji [Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395 (Japan); WPI, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan)

    2015-07-29

    A Mg–Li alloy with 8 wt% Li was processed by severe plastic deformation (SPD) through the process of high-pressure torsion (HPT) to achieve ultrafine grains with an average grain size of ~500 nm. Tensile testing with an initial strain rate of 10{sup −3} s{sup −1} showed that the alloy exhibited superplasticity at a temperature of 323 K or higher. Tensile testing in boiling water confirmed that the specimens were elongated to 350–480% at 373 K under the initial strain rates of 10{sup −3} s{sup −1} to {sup 1}0{sup −2} s{sup −1} with a strain rate sensitivity of ~0.3. The current study suggests that not only superplastic forming but also superplastic hydroforming should be feasible after the grain refinement using the HPT method.

  9. Superplastic Behavior of Ti-6Al-4V-0.1B Alloy (Preprint)

    Science.gov (United States)

    2011-10-01

    Galeyev, O.R. Valiakhmetov, F.H. (Sam) Froes, Journal of Alloys and Compounds 345 (2002) 221–227. 8. A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev... Journal of Alloys and Compounds 490 (2010) 118–123. 7 Approved for public release; distribution unlimited. 17. S. Tamirisakandala, R.B. Bhat

  10. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals

    NARCIS (Netherlands)

    Dao, M.; Lu, L.; Asaro, R. J.; De Hosson, J. T. M.; Ma, E.

    Focusing on nanocrystalline (nc) pure face-centered cubic metals, where systematic experimental data are available, this paper presents a brief overview of the recent progress made in improving mechanical properties of nc materials, and in quantitatively and mechanistically understanding the

  11. Theoretical Modeling of Mechanical Behavior and Release Properties of Microcapsules

    NARCIS (Netherlands)

    Sagis, L.M.C.

    2015-01-01

    Microcapsules in food often have a shell with a complex microstructure; the mechanical and structural properties of these shells affect the response of the capsules to deforming forces and the release kinetics of encapsulated components. In this chapter we will discuss a number of models which are t

  12. Mechanical behavior of a composite interface: Calcium-silicate-hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Palkovic, Steven D.; Moeini, Sina; Büyüköztürk, Oral, E-mail: obuyuk@mit.edu [Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Yip, Sidney [Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-07-21

    The generalized stacking fault (GSF) is a conceptual procedure historically used to assess shear behavior of defect-free crystalline structures through molecular dynamics or density functional theory simulations. We apply the GSF technique to the spatially and chemically complex quasi-layered structure of calcium-silicate-hydrates (C-S-H), the fundamental nanoscale binder within cementitious materials. A failure plane is enforced to calculate the shear traction-displacement response along a composite interface containing highly confined water molecules, hydroxyl groups, and calcium ions. GSF simulations are compared with affine (homogeneous) shear simulations, which allow strain to localize naturally in response to the local atomic environment. Comparison of strength and deformation behavior for the two loading methods shows the composite interface controls bulk shear deformation. Both models indicate the maximum shear strength of C-S-H exhibits a normal-stress dependency typical of cohesive-frictional materials. These findings suggest the applicability of GSF techniques to inhomogeneous structures and bonding environments, including other layered systems such as biological materials containing organic and inorganic interfaces.

  13. Molecular mechanism: ERK signaling, drug addiction and behavioral effects

    Science.gov (United States)

    Sun, Wei-Lun; Quizon, Pamela M.; Zhu, Jun

    2017-01-01

    Addiction to psychostimulants has been considered as a chronic psychiatric disorder, characterized by craving and compulsive drug seeking and use. Over the past two decades, accumulating evidence has demonstrated that repeated drug exposure causes long-lasting neurochemical and cellular changes that results in enduring neuroadaptation in brain circuitry and underlie compulsive drug consumption and relapse. Through intercellular signaling cascades, drugs of abuse induce remodeling in the rewarding circuitry that contributes to the neuroplasticity of learning and memory associated with addiction. Here, we review the role of the extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase, and its related intracellular signaling pathways in drug-induced neuroadaptive changes that are associated with drug-mediated psychomotor activity, rewarding properties and relapse of drug seeking behaviors. We also discuss the neurobiological and behavioral effects of pharmacological and genetic interferences with ERK-associated molecular cascades in response to abused substances. Understanding the dynamic modulation of ERK signaling in response to drugs may provide novel molecular targets for therapeutic strategies to drug addiction. PMID:26809997

  14. Mechanical Model for Dynamic Behavior of Concrete Under Impact Loading

    Science.gov (United States)

    Sun, Yuanxiang

    Concrete is a geo-material which is used substantively in the civil building and military safeguard. One coupled model of damage and plasticity to describe the complex behavior of concrete subjected to impact loading is proposed in this research work. The concrete is assumed as homogeneous continuum with pre-existing micro-cracks and micro-voids. Damage to concrete is caused due to micro-crack nucleation, growth and coalescence, and defined as the probability of fracture at a given crack density. It induces a decrease of strength and stiffness of concrete. Compaction of concrete is physically a collapse of the material voids. It produces the plastic strain in the concrete and, at the same time, an increase of the bulk modulus. In terms of crack growth model, micro-cracks are activated, and begin to propagate gradually. When crack density reaches a critical value, concrete takes place the smashing destroy. The model parameters for mortar are determined using plate impact experiment with uni-axial strain state. Comparison with the test results shows that the proposed model can give consistent prediction of the impact behavior of concrete. The proposed model may be used to design and analysis of concrete structures under impact and shock loading. This work is supported by State Key Laboratory of Explosion science and Technology, Beijing Institute of Technology (YBKT14-02).

  15. Molecular Mechanism: ERK Signaling, Drug Addiction, and Behavioral Effects.

    Science.gov (United States)

    Sun, Wei-Lun; Quizon, Pamela M; Zhu, Jun

    2016-01-01

    Addiction to psychostimulants has been considered as a chronic psychiatric disorder characterized by craving and compulsive drug seeking and use. Over the past two decades, accumulating evidence has demonstrated that repeated drug exposure causes long-lasting neurochemical and cellular changes that result in enduring neuroadaptation in brain circuitry and underlie compulsive drug consumption and relapse. Through intercellular signaling cascades, drugs of abuse induce remodeling in the rewarding circuitry that contributes to the neuroplasticity of learning and memory associated with addiction. Here, we review the role of the extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase, and its related intracellular signaling pathways in drug-induced neuroadaptive changes that are associated with drug-mediated psychomotor activity, rewarding properties and relapse of drug seeking behaviors. We also discuss the neurobiological and behavioral effects of pharmacological and genetic interferences with ERK-associated molecular cascades in response to abused substances. Understanding the dynamic modulation of ERK signaling in response to drugs may provide novel molecular targets for therapeutic strategies to drug addiction. Copyright © 2016. Published by Elsevier Inc.

  16. How Do Apps Work? An Analysis of Physical Activity App Users' Perceptions of Behavior Change Mechanisms.

    Science.gov (United States)

    Hoj, Taylor H; Covey, Emarie L; Jones, Allyn C; Haines, Amanda C; Hall, P Cougar; Crookston, Benjamin T; West, Joshua H

    2017-08-03

    Physical activity apps are commonly used to increase levels of activity and health status. To date, the focus of research has been to determine the potential of apps to influence behavior, to ascertain the efficacy of a limited number of apps to change behavior, and to identify the characteristics of apps that users prefer. The purpose of this study was to identify the mechanisms by which the use of physical activity apps may influence the users' physical activity behavior. This study used a cross-sectional survey of users of health-related physical activity apps during the past 6 months. An electronic survey was created in Qualtrics' Web-based survey software and deployed on Amazon Mechanical Turk. Individuals who had used at least one physical activity app in the past 6 months were eligible to respond. The final sample comprised 207 adults living in the United States. 86.0% (178/207) of respondents were between the ages of 26 and 54 years, with 51.2% (106/207) of respondents being female. Behavior change theory informed the creation of 20 survey items relating to the mechanisms of behavior change. Respondents also reported about engagement with the apps, app likeability, and physical activity behavior. Respondents reported that using a physical activity app in the past 6 months resulted in a change in their attitudes, beliefs, perceptions, and motivation. Engagement with the app (Papp use (P=.03), and app price (P=.01) were related to the reported impact of the behavior change theory or mechanisms of change. The mechanisms of change were associated with self-reported physical activity behaviors (Papps may impact behavior. App developers may wish to incorporate these mechanisms in an effort to increase impact. Practitioners should consider the extent to which behavior change theory is integrated into a particular app when they consider making recommendations to others wishing to increase levels of physical activity.

  17. A Mechanism Facilitates Pollination due to Stigma Behavior in Campsis radicans (Bignoniaceae)

    Institute of Scientific and Technical Information of China (English)

    YANGShu-Xiang; YANGChun-Feng; ZHANGTao; WANGQing-Feng

    2004-01-01

    The precise factors affecting stigma behavior in Campsis radicans (L.) Seem. ex Bureau. remain unclear up to now. In this study mechanical touch, self- and cross-pollination, and pollination with variable amounts of pollen grains separately contacting with stigmas have been conducted to determine the exact factor affecting the stigma behavior. Results show that mechanical touch alone cannot make the stigmas close permanently. It is the adequate pollen (>350) deposition that causes the stigma permanent closure, which is in accordance with previous reports that sufficient pollen grains are necessary for fruit development. In addition, the stigma behavior does not display differences when pollinated with cross- or self-pollen separately; both self and cross pollen grains can germinate and grow successfully. Our results cannot demonstrate that the stigma behavior in C. radicans is an outcrossing mechanism, but strongly indicate it acts as a mechanism to facilitate pollination, and then enhance the reproductive success.

  18. Catastrophe mechanism & classification of discontinuity behavior in thermal science (Ⅰ) --Fold catastrophe

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The mechanism of discontinuity behavior has important significance in the study of thermal science,such as fire,combustion,explosion and heat transfer.This sort of discontinuity behavior and the catastrophe caused by system nonlinearity may be equivalently classified according to the catastrophe model promulgated by catastrophe theory.Under the conditions of uniform temperature and thermal isolation,the self-ignition behavior of a Semenov System can be viewed as a result of the fold catastrophe of the system.

  19. Feeding Behavior of Aplysia: A Model System for Comparing Cellular Mechanisms of Classical and Operant Conditioning

    Science.gov (United States)

    Baxter, Douglas A.; Byrne, John H.

    2006-01-01

    Feeding behavior of Aplysia provides an excellent model system for analyzing and comparing mechanisms underlying appetitive classical conditioning and reward operant conditioning. Behavioral protocols have been developed for both forms of associative learning, both of which increase the occurrence of biting following training. Because the neural…

  20. Agent Behavior alignment : A mechanism to overcome problems in agent interactions during runtime

    NARCIS (Netherlands)

    Meyer, Gerben G.; Szirbik, Nick B.; Klusch, M; Hindriks, K; Papazoglou, MP; Strerling, L

    2007-01-01

    When two or more agents interacting, their behaviors are not necessarily matching. Automated ways to overcome conflicts in the behavior of agents can make the execution of interactions more reliable. Such an alignment mechanism will reduce the necessary human intervention. This paper shows how to de

  1. Methylphenidate and atomoxetine inhibit social play behavior through prefrontal and subcortical limbic mechanisms in rats

    NARCIS (Netherlands)

    Achterberg, E J Marijke; van Kerkhof, Linda W M; Damsteegt, Ruth; Trezza, Viviana; Vanderschuren, Louk J M J

    2015-01-01

    Positive social interactions during the juvenile and adolescent phases of life, in the form of social play behavior, are important for social and cognitive development. However, the neural mechanisms of social play behavior remain incompletely understood. We have previously shown that methylphenidat

  2. Mechanical behavior of chemically treated Jute/Polymer composites

    Directory of Open Access Journals (Sweden)

    Murali B

    2014-03-01

    Full Text Available Fiber which serves as a reinforcement in reinforced plastics may be synthetic or natural past studies show that only artificial fibers such as glass, carbon etc., have been used in fiber reinforced plastics. Although glass and other synthetic fiber reinforced plastics possess high specific strength, their fields of application are very limited because of their inherent higher cost of production. In this connection, an investigation has been carried out to make use of jute , a natural fiber abundantly available in India. Natural fibers are not only strong and lightweight but also relatively very cheap. In the present work, jute composites are developed and their mechanical properties are evaluated. Mechanical properties of jute/polymer and compared with glass fiber/epoxy. These results indicate that jute can be used as a potential reinforcing material for making low load bearing thermoplastic composites.

  3. Chaotic behavior of seismic mechanisms: experiment and observation

    Directory of Open Access Journals (Sweden)

    Mourad Bezzeghoud

    2012-04-01

    Full Text Available

    To simulate the dynamics of earthquakes, a mechanical prototype was constructed that was inspired by the Burridge-Knopoff model and equipped with accurate instrumental devices. The data obtained by the prototype appeared to be consistent with seismic data from the San Andreas Fault, California, USA, which were analyzed using two different methodologies: seismology and modern developments of chaos theory. Perspectives for future work are also presented.

  4. Mechanical experiments on the superplastic material ALNOVI-1, including leak information

    NARCIS (Netherlands)

    Snippe, Q.H.C.; Meinders, T.

    2011-01-01

    In subatomic particle physics, unstable particles can be detected with a so-called vertex detector, placed inside a particle accelerator. A detecting unit close to the accelerator bunch of charged particles must be separated from the accelerator vacuum. A thin sheet with a complex 3D shape prevents

  5. Characterizing the mechanical behavior of the zebrafish germ layers

    Science.gov (United States)

    Kealhofer, David; Serwane, Friedhelm; Mongera, Alessandro; Rowghanian, Payam; Lucio, Adam; Campàs, Otger

    Organ morphogenesis and the development of the animal body plan involve complex spatial and temporal control of tissue- and cell-level mechanics. A prime example is the generation of stresses by individual cells to reorganize the tissue. These processes have remained poorly understood due to a lack of techniques to characterize the local constitutive law of the material, which relates local cellular forces to the resulting tissue flows. We have developed a method for quantitative, local in vivo study of material properties in living tissue using magnetic droplet probes. We use this technique to study the material properties of the different zebrafish germ layers using aggregates of zebrafish mesendodermal and ectodermal cells as a model system. These aggregates are ideal for controlled studies of the mechanics of individual germ layers because of the homogeneity of the cell type and the simple spherical geometry. Furthermore, the numerous molecular tools and transgenic lines already developed for this model organism can be applied to these aggregates, allowing us to characterize the contributions of cell cortex tension and cell adhesion to the mechanical properties of the zebrafish germ layers.

  6. Mechanical Behavior of Electrospun Palmfruit Bunch Reinforced Polylactide Composite Fibers

    Science.gov (United States)

    Adeosun, S. O.; Akpan, E. I.; Gbenebor, O. P.; Peter, A. A.; Olaleye, Samuel Adebayo

    2016-01-01

    In this study, the mechanical characteristics of electrospun palm fruit bunch reinforced poly lactic acid (PLA) nanofiber composites using treated and untreated filler was examined. Poly lactic acid-palm fruit bunch-dichloromethane blends were electrospun by varying the concentration of the palm fruit bunch between 0 wt.% and 8 wt.%. A constant voltage of 26 kV was applied, the tip-to-collector distance was maintained at 27.5 cm and PLA-palm fruit bunch-dichloromethane (DCM) concentration of 12.5% (w/v) was used. The results revealed that the presence of untreated palm fruit bunch fillers in the electrospun PLA matrix significantly reduces the average diameters of the fibers, causing the formation of beads. As a result there are reductions in tensile strengths of the fibers. The presence of treated palm fruit bunch fillers in the electrospun PLA matrix increases the average diameters of the fibers with improvements in the mechanical properties. The optimal mechanical responses were obtained at 3 wt.% of the treated palm fruit bunch fillers in the PLA matrix. However, increase in the palm fruit fillers (treated and untreated) in the PLA matrix promoted the formation of beads in the nanofiber composites.

  7. Effect of Carbon Nanofiber on Mechanical Behavior of Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Saeed Ghaffarpour Jahromi

    2015-09-01

    Full Text Available Uses of fibers to improve material properties have a scientific background in recent years in civil engineering. Use of Nanofiber reinforcement of materials refers to incorporating materials with desired properties within some other materials lacking those properties. Use of fibers for improvement is not a new phenomenon as the technique of fiber-reinforced bitumen began as early as 1950, but using nanofiber is a new idea. In this research the mechanical properties of asphalt mixture that have been modified with carbon nanofiber were investigated using mechanical tests, which can improve the performance of flexible pavements. To evaluate the effect of nanofiber contents on bituminous mixtures, laboratory investigations were carried out on the samples with and without nanofibers. During the course of this study, various tests were undertaken applying the Marshall test, indirect tensile test, resistance to fatigue cracking by using repeated load indirect tensile test and creep test. Carbon nanofiber exhibited consistency in results and it was observed that the addition of nanofiber can change the properties of bituminous mixtures, increase its stability and decrease the flow value. Results indicate that nanofiber have the potential to resist structural distress in the pavement and thus improve fatigue by increasing resistance to cracks or permanent deformation, when growing traffic loads. On the whole, the results show that the addition of carbon nanofiber will improve some of the mechanical properties such as fatigue and deformation in the flexible pavement.

  8. The development of a high strain rate superplastic Al-Mg-Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dashwood, R.J.; Grimes, R.; Harrison, A.W.; Flower, H.M. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom). Dept. of Materials

    2001-07-01

    In order for superplastic forming of aluminium to break out of the niche market low cost alloys are required that exhibit higher strain rate capability that are capable of volume production. This paper describes an investigation into the feasibility of producing such an alloy. A series of Al-4Mg alloys with 0, 0.25, 0.5, 0.75 and 1% Zr additions was prepared using a cheap particulate casting route, in an attempt to achieve higher levels of Zr supersaturation than are possible with conventional casting. The particulate was processed into a sheet product via hot extrusion followed by cold rolling and the effect of a number of process variables on the SPF performance of the sheet was investigated. It was found that increasing the Zr content, and manipulation of the thermomechanical processing conditions improved the SPF performance. Ductilities in excess of 600% have been achieved at a strain rate of 0.01 s{sup -1}, together with flow stresses less than 15 MPa. (orig.)

  9. Tunable Mechanical Behavior of Synthetic Organogels as Biofidelic Tissue Simulants

    Science.gov (United States)

    2013-01-01

    Keywords: Tissue simulants Rheology Impact indentation PDMS Soft tissues Energy dissipation a b s t r a c t Solvent-swollen polymer gels can be utilized as...area and volume. 3. Results and discussion 3.1. Comparison of gel and tissue rheology at low strains and rates 3.1.1. Effect of solvent loading on the...the mechanical properties and rheology of polydimethylsiloxane-based polymeric gels . Polymer 52, 3422–3430. Nicolle, S., Vezin, P., Parlierne, J.-F

  10. Understanding the Personality and Behavioral Mechanisms Defining Hypersexuality in Men Who Have Sex With Men.

    Science.gov (United States)

    Miner, Michael H; Romine, Rebecca Swinburne; Raymond, Nancy; Janssen, Erick; MacDonald, Angus; Coleman, Eli

    2016-09-01

    Hypersexuality has been conceptualized as sexual addiction, compulsivity, and impulsivity, among others, in the absence of strong empirical data in support of any specific conceptualization. To investigate personality factors and behavioral mechanisms that are relevant to hypersexuality in men who have sex with men. A sample of 242 men who have sex with men was recruited from various sites in a moderate-size mid-western city. Participants were assigned to a hypersexuality group or a control group using an interview similar to the Structured Clinical Interview for the Diagnostic and Statistical Manual for Mental Disorders, Fourth Edition. Self-report inventories were administered that measured the broad personality constructs of positive emotionality, negative emotionality, and constraint and more narrow constructs related to sexual behavioral control, behavioral activation, behavioral inhibition, sexual excitation, sexual inhibition, impulsivity, attention-deficit/hyperactivity disorder, and sexual behavior. Hierarchical logistic regression was used to determine the relation between these personality and behavioral variables and group membership. A hierarchical logistic regression controlling for age showed a significant positive relation between hypersexuality and negative emotionality and a negative relation with constraint. None of the behavioral mechanism variables entered this equation. However, a hierarchical multiple regression analysis predicting sexual behavioral control indicated that lack of such control was positively related to sexual excitation and sexual inhibition owing to the threat of performance failure and negatively related to sexual inhibition owing to the threat of performance consequences and general behavioral inhibition Hypersexuality was found to be related to two broad personality factors that are characterized by emotional reactivity, risk taking, and impulsivity. The associated lack of sexual behavior control is influenced by sexual

  11. Development and Mechanical Behavior of FML/Aluminium Foam Sandwiches

    Science.gov (United States)

    Baştürk, S. B.; Tanoğlu, M.

    2013-10-01

    In this study, the Fiber-Metal Laminates (FMLs) containing glass fiber reinforced polypropylene (GFPP) and aluminum (Al) sheet were consolidated with Al foam cores for preparing the sandwich panels. The aim of this article is the comparison of the flexural properties of FML/Al foam sandwich panels bonded with various surface modification approaches (silane treatment and combination of silane treatment with polypropylene (PP) based film addition). The FML/foam sandwich systems were fabricated by laminating the components in a mould at 200 °C under 1.5 MPa pressure. The energy absorbtion capacities and flexural mechanical properties of the prepared sandwich systems were evaluated by mechanical tests. Experiments were performed on samples of varying foam thicknesses (8, 20 and 30 mm). The bonding among the sandwich components were achieved by various surface modification techniques. The Al sheet/Al foam sandwiches were also consolidated by bonding the components with an epoxy adhesive to reveal the effect of GFPP on the flexural performance of the sandwich structures.

  12. State of the art: Mechanical behavior of soil-structure interface

    Institute of Scientific and Technical Information of China (English)

    Ga Zhang; Jianmin Zhang

    2009-01-01

    The monotonic and cyclic behavior of a soil-structure interface has a significant effect on the mechanical response of a soil-structure interaction system. Thus, the behavior of the interface should be investigated with focusing on the individual characters different from other geomaterials. A brief introduction and critical review are presented on the state of the art of monotonic and cyclic behavior of soil-structure interface, including the test device and measurement techniques, fundamental rules and deformation mechanism, constitutive models and their applications in the numerical simulations. The tendencies of the investigation on the interface are also predicted in this paper.

  13. Mechanical properties and failure behavior of unidirectional porous ceramics

    Science.gov (United States)

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.

    2016-04-01

    We show that the honeycomb out-of-plane model derived by Gibson and Ashby can be applied to describe the compressive behavior of unidirectional porous materials. Ice-templating allowed us to process samples with accurate control over pore volume, size, and morphology. These samples allowed us to evaluate the effect of this microstructural variations on the compressive strength in a porosity range of 45-80%. The maximum strength of 286 MPa was achieved in the least porous ice-templated sample (P(%) = 49.9), with the smallest pore size (3 μm). We found that the out-of-plane model only holds when buckling is the dominant failure mode, as should be expected. Furthermore, we controlled total pore volume by adjusting solids loading and sintering temperature. This strategy allows us to independently control macroporosity and densification of walls, and the compressive strength of ice-templated materials is exclusively dependent on total pore volume.

  14. Key factors affecting mechanical behavior of metallic glass nanowires

    Science.gov (United States)

    Zhang, Qi; Li, Qi-Kai; Li, Mo

    2017-01-01

    Both strengthening and weakening trends with decreasing diameter have been observed for metallic glass nanowires, sometimes even in the samples with the same chemical composition. How to reconcile the results has reminded a puzzle. Since the detailed stress state and microstructure of metallic glass nanowires may differ from each other significantly depending on preparation, to discover the intrinsic size effect it is necessary to study metallic glass nanowires fabricated differently. Here we show the complex size effects from one such class of metallic glass nanowires prepared by casting using molecular dynamics simulations. As compared with the nanowires of the same composition prepared by other methods, the cast nanowires deform nearly homogeneously with much lower strength but better ductility; and also show strengthening in tension but weakening in compression with decreasing wire diameter. The subtle size dependence is shown to be related to the key factors including internal and surface stress state, atomic structure variation, and presence of various gradients. The complex interplay of these factors at decreasing size leads to the different deformation behaviors.

  15. Thermo-mechanical behavior of stainless steel knitted structures

    Science.gov (United States)

    Hamdani, Syed Talha Ali; Fernando, Anura; Maqsood, Muhammad

    2016-09-01

    Heating fabric is an advanced textile material that is extensively researched by the industrialists and the scientists alike. Ability to create highly flexible and drapeable heating fabrics has many applications in everyday life. This paper presents a study conducted on the comparison of heatability of knitted fabric made of stainless steel yarn. The purpose of the study is to find a suitable material for protective clothing against cold environments. In the current research the ampacity of stainless steel yarn is observed in order to prevent the overheating of the heating fabrics. The behavior of the knitted structure is studied for different levels of supply voltage. Infrared temperature sensing is used to measure the heat generated from the fabrics in order to measure the temperature of the fabrics without physical contact. It is concluded that interlock structure is one of the most suited structures for knitted heating fabrics. As learnt through this research, fabrics made of stainless steel yarn are capable of producing a higher level of heating compared to that of knitted fabric made using silver coated polymeric yarn at the same supply voltage.

  16. Mechanical properties and failure behavior of unidirectional porous ceramics.

    Science.gov (United States)

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J

    2016-04-14

    We show that the honeycomb out-of-plane model derived by Gibson and Ashby can be applied to describe the compressive behavior of unidirectional porous materials. Ice-templating allowed us to process samples with accurate control over pore volume, size, and morphology. These samples allowed us to evaluate the effect of this microstructural variations on the compressive strength in a porosity range of 45-80%. The maximum strength of 286 MPa was achieved in the least porous ice-templated sample (P(%) = 49.9), with the smallest pore size (3 μm). We found that the out-of-plane model only holds when buckling is the dominant failure mode, as should be expected. Furthermore, we controlled total pore volume by adjusting solids loading and sintering temperature. This strategy allows us to independently control macroporosity and densification of walls, and the compressive strength of ice-templated materials is exclusively dependent on total pore volume.

  17. Adsorption behavior and mechanism of D113 resin for lanthanum

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The sorption properties of macroporous weak acid resin (Dl13) for La3+ ion were studied by chemical analysis and IR spectra. Experimental results indicate that the D113 resin has a good adsorption ability for La3+ at pH = 6.0 in the HAc-NaAc medium. The statically saturated adsorption capacity is 273.3 mg/g. Separation coefficients of βLa3+/ Ce3+, βLa3+/ Gd3+, βLa3+/ Er3+, and βLa3+/γ3+ are 2.29, 3.64,4.27, and 0.627, respectively. The apparent activation energy of adsorption, Ea is 18.4 kJ/mol, the thermodynamics parameters △H, △S, and △G of Sorption are 4.53 kJ/mol, 61.8 J/(mol·K), -13.9 kJ/mol, respectively. The adsorption behavior of Dl13 for La3+ obeys the Freundlich isotherm. La3+ adsorbed on resin can be eluted by 2.0 mol/LHC1 quantitatively.

  18. Experimental investigations on mechanical behavior of aluminium metal matrix composites

    Science.gov (United States)

    Rajesh, A. M.; Kaleemulla, Mohammed

    2016-09-01

    Today we are widely using aluminium based metal matrix composite for structural, aerospace, marine and automobile applications for its light weight, high strength and low production cost. The purpose of designing metal matrix composite is to add the desirable attributes of metals and ceramics to the base metal. In this study we developed aluminium metal matrix hybrid composite by reinforced Aluminium7075 alloy with silicon carbide (SiC) and aluminium oxide (alumina) by method of stir casting. This technique is less expensive and very effective. The Hardness test and Wear test were performed on the specimens which are prepared by stir casting techniques. The result reveals that the addition of silicon carbide and alumina particles in aluminium matrix improves the mechanical properties.

  19. The mechanical behavior of GLARE laminates for aircraft structures

    Science.gov (United States)

    Wu, Guocai; Yang, J.-M.

    2005-01-01

    GLARE (glass-reinforced aluminum laminate) is a new class of fiber metal laminates for advanced aerospace structural applications. It consists of thin aluminum sheets bonded together with unidirectional or biaxially reinforced adhesive prepreg of high-strength glass fibers. GLARE laminates offer a unique combination of properties such as outstanding fatigue resistance, high specific static properties, excellent impact resistance, good residual and blunt notch strength, flame resistance and corrosion properties, and ease of manufacture and repair. GLARE laminates can be tailored to suit a wide variety of applications by varying the fiber/resin system, the alloy type and thickness, stacking sequence, fiber orientation, surface pretreatment technique, etc. This article presents a comprehensive overview of the mechanical properties of various GLARE laminates under different loading conditions.

  20. Stress and Memory: Behavioral Effects and Neurobiological Mechanisms

    Directory of Open Access Journals (Sweden)

    Carmen Sandi

    2007-01-01

    Full Text Available Stress is a potent modulator of learning and memory processes. Although there have been a few attempts in the literature to explain the diversity of effects (including facilitating, impairing, and lack of effects described for the impact of stress on memory function according to single classification criterion, they have proved insufficient to explain the whole complexity of effects. Here, we review the literature in the field of stress and memory interactions according to five selected classifying factors (source of stress, stressor duration, stressor intensity, stressor timing with regard to memory phase, and learning type in an attempt to develop an integrative model to understand how stress affects memory function. Summarizing on those conditions in which there was enough information, we conclude that high stress levels, whether intrinsic (triggered by the cognitive challenge or extrinsic (induced by conditions completely unrelated to the cognitive task, tend to facilitate Pavlovian conditioning (in a linear-asymptotic manner, while being deleterious for spatial/explicit information processing (which with regard to intrinsic stress levels follows an inverted U-shape effect. Moreover, after reviewing the literature, we conclude that all selected factors are essential to develop an integrative model that defines the outcome of stress effects in memory processes. In parallel, we provide a brief review of the main neurobiological mechanisms proposed to account for the different effects of stress in memory function. Glucocorticoids were found as a common mediating mechanism for both the facilitating and impairing actions of stress in different memory processes and phases. Among the brain regions implicated, the hippocampus, amygdala, and prefrontal cortex were highlighted as critical for the mediation of stress effects.

  1. Kinetic behavior of the general modifier mechanism of Botts and Morales with non-equilibrium binding

    CERN Document Server

    Jia, Chen; Qian, Min-Ping; Jiang, Da-Quan; Zhang, Yu-Ping

    2010-01-01

    In this paper, we thoroughly investigate the kinetic behavior of the general modifier mechanism of Botts and Morales at both equilibrium steady state assuming equilibrium substrate- and modifier-binding steps and non-equilibrium steady state (NESS) without assuming equilibrium binding steps. We introduce the net flux into discussion and propose a method which gains a strong advantage over early approaches involving King-Atman method and even the numerical computations in dealing with the cyclic reaction systems. Using this new approach, the expression of product rate at NESS gives clear biophysical significance. Moreover, we classify the kinetic behavior of the modifier into three categories, namely hyperbolic behavior, bell-shaped behavior, and switching behavior. It turns out that a modifier cannot be regarded as overall activator or inhibitor when the reaction system is not at equilibrium. The switching-behaved modifier may convert between activator and inhibitor via the general modifier mechanism when the...

  2. The Effect of Nanoparticles Percentage on Mechanical Behavior of Silica-Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Md Saiful Islam

    2013-01-01

    Full Text Available Silica-epoxy nanocomposites are very common among nanocomposites, which makes them very important. Several researchers have studied the effect of nanoparticle’s size, shape, and loading on mechanical behavior of silica-epoxy nanocomposites. This paper reviews the most important research done on the effect of nanoparticle loading on mechanical properties of silica-epoxy nanocomposites. While the main focus is the tensile behavior of nanocomposite, the compressive behavior and flexural behavior were also reviewed. Finally, some of the published experimental data were combined in the graphs, using dimensionless parameters. Later, the best fitted curves were used to derive some empirical formulas for mechanical properties of silica-epoxy nanocomposites as functions of weight or volume fraction of nanoparticles.

  3. An Examination of the Mechanisms of Action in Cognitive Behavioral Therapy for Bulimia Nervosa

    Science.gov (United States)

    Spangler, Diane L.; Baldwin, Scott A.; Agras, W. Stewart

    2004-01-01

    Cognitive-behavioral therapy (CBT) for bulimia nervosa (BN) has received considerable empirical support for its efficacy. However, few investigators have examined the mechanisms proposed to account for the reduction of BN symptoms during CBT. The current study examined the associations between therapist interventions, client mechanisms, and…

  4. Epigenetics: Behavioral Influences on Gene Function, Part II--Molecular Mechanisms

    Science.gov (United States)

    Ogren, Marilee P.; Lombroso, Paul J.

    2008-01-01

    A study presented on the effect of parenting on stress response and other behaviors show that animals exposed to a high degree of nurturing show a blunted response to stress. Molecular mechanisms responsible for these differences in the adult offspring as well as the molecular mechanisms by which epigenetic effects are propagated from one…

  5. Low-Temperature Mechanical Behavior of Super Duplex Stainless Steel with Sigma Precipitation

    Directory of Open Access Journals (Sweden)

    Seul-Kee Kim

    2015-09-01

    Full Text Available Experimental studies in various aspects have to be conducted to maintain stable applications of super duplex stainless steels (SDSS because the occurrence rate of sigma phase, variable temperature and growth direction of sigma phase can influence mechanical performances of SDSS. Tensile tests of precipitated SDSS were performed under various temperatures to analyze mechanical and morphological behavior.

  6. An Examination of the Mechanisms of Action in Cognitive Behavioral Therapy for Bulimia Nervosa

    Science.gov (United States)

    Spangler, Diane L.; Baldwin, Scott A.; Agras, W. Stewart

    2004-01-01

    Cognitive-behavioral therapy (CBT) for bulimia nervosa (BN) has received considerable empirical support for its efficacy. However, few investigators have examined the mechanisms proposed to account for the reduction of BN symptoms during CBT. The current study examined the associations between therapist interventions, client mechanisms, and…

  7. Epigenetics: Behavioral Influences on Gene Function, Part II--Molecular Mechanisms

    Science.gov (United States)

    Ogren, Marilee P.; Lombroso, Paul J.

    2008-01-01

    A study presented on the effect of parenting on stress response and other behaviors show that animals exposed to a high degree of nurturing show a blunted response to stress. Molecular mechanisms responsible for these differences in the adult offspring as well as the molecular mechanisms by which epigenetic effects are propagated from one…

  8. Bearing capacity and mechanical behavior of CFG pile composite foundation

    Institute of Scientific and Technical Information of China (English)

    陈秋南; 赵明华; 周国华; 张主华

    2008-01-01

    CFG pile (i.e., pile constructed by granular materials of cement, fly-ash and gravel) composite foundation is applied in subsoil treatment widely and successfully. In order to have a further study of this kind of subsoil treatment technology, the influencing factors and calculation methods of the vertical bearing capacity of single CFG pile and the CFG pile composite foundation were discussed respectively. And based on the obtained solutions, effects by the cushion and measurements to reduce negative friction area were analyzed. Moreover, the developing law of settlement and bearing capacity eigenvalue controlled by the material strength with the increase of load were given for the CFG composite foundation. The in-situ static load test was tested for CFG pile. The results of test show that the maximum test load or half of the ultimate load is used from all the points of test, the average bearing capacity eigenvalue of single pile is 390 kN, and slightly greater than the design value of bearing capacity. The bearing capacity eigenvalues of composite foundation for 3 piles are greater than 300 kPa, and the mechanical properties of CFG pile composite foundation are almost identical in the case of the same load and cushion thickness. The pile-soil stress ratio and the load-sharing ratio can be adjusted through setting up cushion thickness.

  9. Mechanical Behavior of Advanced Materials for Aerospace Applications

    Science.gov (United States)

    Telesman, Ignancy (Technical Monitor); Kantzos, Peter; Shannon, Brian

    2003-01-01

    The purpose of this study was to determine whether High Cycle Fatigue (HCF) loading has any deleterious synergistic effect on life when combined with the typical Low Cycle Fatigue (LCF) loading present in engine disks. This interaction is particularly important in the rim region of blisk applications, where fatigue initiations from vibratory stresses (HCF) may be propagated to the disk by LCF. The primary effort in this study was focused on determining and documenting initiation sites and damage mechanisms. Under LCF loading conditions the failures were predominantly surface initiated, while HCF loading favored internal initiations. Deleterious HCF/LCF interactions would always result in a transition from internal to surface initiations. The results indicated that under the relative stress conditions evaluated there was no interaction between HCF and LCF. In FY99 this effort was extended to investigate several other loading conditions (R-ratio effects) as well as interactions between LCF and two-hour tensile dwells. The results will be published as a NASA Technical Memorandum.

  10. Mechanical behavior of ultralong multiwalled carbon nanotube mats

    Science.gov (United States)

    Deck, Christian P.; Flowers, Jason; McKee, Gregg S. B.; Vecchio, Kenneth

    2007-01-01

    Carbon nanotubes (CNTs) have been a subject of great interest partially due to their potential for exceptional material properties. Improvements in synthesis methods have facilitated the production of ultralong CNT mats, with lengths in the millimeter range. The increased length of these ultralong mats has, in return, opened the way to greater flexibility to probe their mechanical response. In this work, mats of dense, well-aligned, multiwalled carbon nanotubes were grown with a vapor-phase chemical vapor deposition technique using ferrocene and benzene as reactants, and subsequently tested in both tension and compression using two methods, in a thermomechanical analyzer and in situ inside a scanning electron microscope. In compression, measured stiffness was very low, due to buckling of the nanotubes. In tension, the nanotube mats behaved considerably stiffer; however, they were still more compliant than expected for nanotubes (˜1TPa). Analysis of both the growth method used and the nanotube mat fracture surface suggests that the mats grown in this method are not composed of continuous nanotubes and their strengths actually closely match those of woven nanotube yarns and ropes.

  11. Effect of grain boundary on the mechanical behaviors of irradiated metals: a review

    Science.gov (United States)

    Xiao, XiaZi; Chu, HaiJian; Duan, HuiLing

    2016-06-01

    The design of high irradiation-resistant materials is very important for the development of next-generation nuclear reactors. Grain boundaries acting as effective defect sinks are thought to be able to moderate the deterioration of mechanical behaviors of irradiated materials, and have drawn increasing attention in recent years. The study of the effect of grain boundaries on the mechanical behaviors of irradiated materials is a multi-scale problem. At the atomic level, grain boundaries can effectively affect the production and formation of irradiation-induced point defects in grain interiors, which leads to the change of density, size distribution and evolution of defect clusters at grain level. The change of microstructure would influence the macroscopic mechanical properties of the irradiated polycrystal. Here we give a brief review about the effect of grain boundaries on the mechanical behaviors of irradiated metals from three scales: microscopic scale, mesoscopic scale and macroscopic scale.

  12. Thermo-mechanical response and fatigue behavior of shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kusagawa, Masaki; Asada, Yasuhide; Nakamura, Toshiya [Tokyo Univ. (Japan). Dept. of Mechanical Engineering

    1998-11-01

    Mechanical, thermo-mechanical and fatigue behaviors of Ni-Ti-Nb shape memory alloy (SMA) have been studied to prepare material data for a design purpose. Presented are testing devices, testing procedure and test results of monotonic tensile, recovery of inelastic deformation due to post heating (thermo-mechanical recovery) and fatigue for future use of the SMA as a structural material of nuclear incore structures. (orig.)

  13. State of Charge Dependent Mechanical Integrity Behavior of 18650 Lithium-ion Batteries

    OpenAIRE

    Jun Xu; Binghe Liu; Dayong Hu

    2016-01-01

    Understanding the mechanism of mechanical deformation/stress-induced electrical failure of lithium–ion batteries (LIBs) is important in crash-safety design of power LIBs. The state of charge (SOC) of LIBs is a critical factor in their electrochemical performance; however, the influence of SOC with mechanical integrity of LIBs remains unclear. This study investigates the electrochemical failure behaviors of LIBs with various SOCs under both compression and bending loadings, underpinned by the ...

  14. Explicating the Social Mechanisms Linking Alcohol Use Behaviors and Ecology to Child Maltreatment

    OpenAIRE

    Freisthler, Bridget; Holmes, Megan R.

    2012-01-01

    This paper begins to describe and explicate the specific mechanisms by which alcohol use and the alcohol use environment contribute to specific types of child maltreatment. These mechanisms relating alcohol outlet densities to child maltreatment described here include effects on social disorganization, parent’s drinking behaviors, and parental supervision. By investigating potential mechanisms, new information could be obtained on the importance and role of alcohol and their availability in t...

  15. Another look at safety climate and safety behavior: deepening the cognitive and social mediator mechanisms.

    Science.gov (United States)

    Fugas, Carla S; Silva, Sílvia A; Meliá, José L

    2012-03-01

    In this study, safety climate literature and the theory of planned behavior were combined to explore the cognitive and social mechanisms that mediate the relationship between organizational safety climate and compliance and proactive safety behaviors. The sample consisted of 356 workers from a transportation organization. Using a multiple mediation design, the results revealed that proactive and compliance safety behaviors are explained by different patterns of combinations of individual and situational factors related to safety. On the one hand, the relationship between organizational safety climate and proactive safety behaviors was mediated by coworkers' descriptive norms and attitudes toward safety. On the other hand, supervisors' injunctive safety norms and perceived behavioral control were the mediator variables between organizational safety climate and compliance safety behaviors. Theoretical and practical implications of the findings are discussed.

  16. Evaluation of the behavior of ceramic powders under mechanical vibration and its effect on the mechanics of auto-granulation

    Science.gov (United States)

    Ku, Nicholas

    In ceramic powder processing, the correlations between the constituent particles and the product structure-property outcomes are well established. However, the influence of static powder properties on the dynamic bulk powder behavior in such advance powder processes remains elusive. A multi-scale evaluation is necessary to understand the full effects of the particle ensemble on the bulk powder behavior, ranging from the particle micro-scale to the bulk powder macro-scale. Fine powders, with particle size of 10 ?m or less, often exhibit cohesive behavior. Cohesion in powders can cause poor flowability, affect agglomerate formation, as well as induce powder caking, all of which can be detrimental to the processing of the powders and/or final product structure-property outcomes. For this reason, it is critical to correlate the causal properties of the powders to this detrimental behavior. In this study, the bulk behavior of ceramic powders is observed under a simple powder process: harmonic, mechanical vibration. Four powder samples, two titania and two alumina powders, were studied. The main difference between the two powder variants of each material is particle size. The two alumina (Al2O3) powder samples had a primary particle size at 50% less than, or d50 of, 0.5 and 2.3 microm and the titania (TiO2) powder samples had a d 50 particle size of 0.1 and 1 microm. Due to mechanical vibration, the titania powder variant with a primary particle size of 0.1 microm exhibited a clustering behavior known as auto-granulation. Auto-granulation is the growth of particle clusters within a dry, fine powder bed without the addition of any binder or liquid to the system. The amplitude and frequency of the mechanical vibration was varied to view the effect on the equilibrium granule size and density. Furthermore, imaging of cross-sections of the granules was conducted to provide insight into to the internal microstructure and measure the packing fraction of the constituent

  17. Adsorption behavior and mechanism of glufosinate onto goethite.

    Science.gov (United States)

    Xu, Jian; Gu, Xueyuan; Guo, Yong; Tong, Fei; Chen, Liangyan

    2016-08-01

    The adsorption of glufosinate (GLU), a widely used herbicide similar to glyphosate (GLY), onto goethite was investigated as a function of the pH, ionic strength, background cations and anions, heavy metal ions and fulvic acids (FAs) by using batch adsorption experiments. In situ ATR-FTIR spectroscopy and density functional theory (DFT) calculations were carried out to characterize the molecular interactions between GLU and goethite surfaces. The macroscopic results indicated that an increasing pH exerted an adverse effect on GLU adsorption because of the electrostatic repulsion, and the adsorption was not sensitive to ionic strengths or background cation types, indicating that an inner-sphere surface complex was involved. GLU adsorption can be considerably depressed by PO4(3-), SO4(2-), and a high level of FA because of the competitive effect, while being enhanced by Cu(2+) with a maximum adsorption at approximately pH5 because of the metal ion bridging effect. Other examined divalent metal cations (Cd(2+), Zn(2+), and Pb(2+)) showed almost no effect on GLU adsorption, indicating weak interaction between them. ATR-FTIR spectra and the DFT calculations further proved that GLU was bonded to goethite surfaces through the formation of a monodentate mononuclear inner-sphere complex between the phosphinic moiety and surface Fe(III) centers under an acidic condition. The results showed that GLU had a similar adsorption mechanism to that of GLY onto goethite, but with a lower adsorption affinity, possibly exerting higher mobility and risk in soils.

  18. Modeling the Coupled Chemo-Thermo-Mechanical Behavior of Amorphous Polymer Networks.

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Jonathan A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Nguyen, Thao D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Xiao, Rui [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-02-01

    Amorphous polymers exhibit a rich landscape of time-dependent behavior including viscoelasticity, structural relaxation, and viscoplasticity. These time-dependent mechanisms can be exploited to achieve shape-memory behavior, which allows the material to store a programmed deformed shape indefinitely and to recover entirely the undeformed shape in response to specific environmental stimulus. The shape-memory performance of amorphous polymers depends on the coordination of multiple physical mechanisms, and considerable opportunities exist to tailor the polymer structure and shape-memory programming procedure to achieve the desired performance. The goal of this project was to use a combination of theoretical, numerical and experimental methods to investigate the effect of shape memory programming, thermo-mechanical properties, and physical and environmental aging on the shape memory performance. Physical and environmental aging occurs during storage and through exposure to solvents, such as water, and can significantly alter the viscoelastic behavior and shape memory behavior of amorphous polymers. This project – executed primarily by Professor Thao Nguyen and Graduate Student Rui Xiao at Johns Hopkins University in support of a DOE/NNSA Presidential Early Career Award in Science and Engineering (PECASE) – developed a theoretical framework for chemothermo- mechanical behavior of amorphous polymers to model the effects of physical aging and solvent-induced environmental factors on their thermoviscoelastic behavior.

  19. Time-dependent deformation behavior of polyvinylidene fluoride binder: Implications on the mechanics of composite electrodes

    Science.gov (United States)

    Santimetaneedol, Arnuparp; Tripuraneni, Rajasekhar; Chester, Shawn A.; Nadimpalli, Siva P. V.

    2016-11-01

    The majority of existing battery models that simulate composite electrode behavior assume the binder as a linear elastic material due to lack of a thorough understanding of time-dependent mechanical behavior of binders. Here, thin films of polyvinylidene fluoride binder, prepared according to commercial battery manufacturing method, are subjected to standard monotonic, load-unload, and relaxation tests to characterize the time-dependent mechanical behavior. The strain in the binder samples is measured with the digital image correlation technique to eliminate experimental errors. The experimental data showed that for (charging/discharging) time scales of practical importance, polyvinylidene fluoride behaves more like an elastic-viscoplastic material as opposed to a visco-elastic material; based on this observation, a simple elastic-viscoplastic model, calibrated against the data is adopted to represent the deformation behavior of binder in a Si-based composite electrode; the lithiation/delithiation process of this composite was simulated at different C rates and the stress/strain behavior was monitored. It is observed that the linear elastic assumption of the binder leads to inaccurate results and the time-dependent constitutive behavior of the binder not only leads to accurate prediction of the mechanics but is an essential step towards developing advanced multi-physics models for simulating the degradation behavior of batteries.

  20. Influence of thermo-mechanical processing on microstructure, mechanical properties and corrosion behavior of a new metastable -titanium biomedical alloy

    Indian Academy of Sciences (India)

    Mohsin Talib Mohammed; Zahid A Khan; M Geetha; Arshad N Siddiquee; Prabhash Mishra

    2015-02-01

    This paper presents the results on the influence of different thermo-mechanical processing (TMP) on themechanical properties and electrochemical behavior of newmetastable -alloy Ti–20.6Nb–13.6Zr–0.5V (TNZV). TMP included hot working in below -transus, solution heat treatments at same temperature in different cooling rates in addition to aging. Depending upon the TMP conditions, a wide range of microstructures with varying spatial distributions and morphologies of equiaxed/elongated , phases were attained, allowing for a wide range of mechanical and electrochemical properties to be achieved. The corrosion behavior of studied alloy was evaluated in Ringer’s solution at 37°C using open-circuit potential-time and potentiodynamic polarization measurements.

  1. How Do Apps Work? An Analysis of Physical Activity App Users’ Perceptions of Behavior Change Mechanisms

    Science.gov (United States)

    Hoj, Taylor H; Covey, Emarie L; Jones, Allyn C; Haines, Amanda C; Hall, P Cougar; Crookston, Benjamin T

    2017-01-01

    Background Physical activity apps are commonly used to increase levels of activity and health status. To date, the focus of research has been to determine the potential of apps to influence behavior, to ascertain the efficacy of a limited number of apps to change behavior, and to identify the characteristics of apps that users prefer. Objective The purpose of this study was to identify the mechanisms by which the use of physical activity apps may influence the users’ physical activity behavior. Methods This study used a cross-sectional survey of users of health-related physical activity apps during the past 6 months. An electronic survey was created in Qualtrics’ Web-based survey software and deployed on Amazon Mechanical Turk. Individuals who had used at least one physical activity app in the past 6 months were eligible to respond. The final sample comprised 207 adults living in the United States. 86.0% (178/207) of respondents were between the ages of 26 and 54 years, with 51.2% (106/207) of respondents being female. Behavior change theory informed the creation of 20 survey items relating to the mechanisms of behavior change. Respondents also reported about engagement with the apps, app likeability, and physical activity behavior. Results Respondents reported that using a physical activity app in the past 6 months resulted in a change in their attitudes, beliefs, perceptions, and motivation. Engagement with the app (P<.001), frequency of app use (P=.03), and app price (P=.01) were related to the reported impact of the behavior change theory or mechanisms of change. The mechanisms of change were associated with self-reported physical activity behaviors (P<.001). Conclusions The findings from this study provide an overview of the mechanisms by which apps may impact behavior. App developers may wish to incorporate these mechanisms in an effort to increase impact. Practitioners should consider the extent to which behavior change theory is integrated into a

  2. Micro-mechanical investigation of the effect of fine content on mechanical behavior of gap graded granular materials using DEM

    Science.gov (United States)

    Taha, Habib; Nguyen, Ngoc-Son; Marot, Didier; Hijazi, Abbas; Abou-Saleh, Khalil

    2017-06-01

    In this paper, we present a micro-mechanical study of the effect of fine content on the behavior of gap graded granular samples by using numerical simulations performed with the Discrete Element Method. Different samples with fine content varied from 0% to 30% are simulated. The role of fine content in reinforcing the granular skeleton and in supporting the external deviatoric stress is then brought into the light.

  3. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation.

    Science.gov (United States)

    Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin

    2017-02-21

    Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  4. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation

    Directory of Open Access Journals (Sweden)

    Yue Hou

    2017-02-01

    Full Text Available Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM experiments, Phase Dynamics Theory and Molecular Dynamics (MD Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  5. Size and rate effects on mechanical behavior of ultra high performance concrete

    Science.gov (United States)

    Lim, Boon Him

    Cor-Tuf, broadly characterize as a reactive powder concrete is a type of cementitious material. Cementitious materials have been observed to exhibit a strain-rate dependent mechanical behavior. The mechanical behavior of cementitious materials can also depend significantly on specimen sizes. Therefore it is crucial to determine the behavior of Cor-Tuf with different specimen sizes for high-rate applications. For this purpose, split Hopkinson pressure bar (SHPB), also known as Kolsky bar was utilized to determine the dynamic behavior of Cor-Tuf for different specimen sizes under uniaxial dynamic compression loading at different strain rates. It was observed that as strain rate increases the compressive strength decreases for the small specimen. However for specimens at larger diameter, the compressive strength was observed to be rate independent. The Young's modulus decreases as strain rate increases for all specimen sizes. However the critical strain and energy absorption per unit volume was observed to increase as the strain rate increases.

  6. Anomalous Scaling Behaviors in a Rice-Pile Model with Two Different Driving Mechanisms

    Institute of Scientific and Technical Information of China (English)

    ZHANGDuan-Ming; SUNHong-Zhang; LIZhi-Hua; PANGui-Jun; YUBo-Ming; LIRui; YINYan-Ping

    2005-01-01

    The moment analysis is applied to perform large scale simulations of the rice-pile model. We find that this model shows different scaling behavior depending on the driving mechanism used. With the noisy driving, the rice-pile model violates the finite-size scaling hypothesis, whereas, with fixed driving, it shows well defined avalanche exponents and displays good finite size scaling behavior for the avalanche size and time duration distributions.

  7. Mechanical implications of the arthropod exoskeleton microstructures and the mechanical behavior of the bioinspired composites

    Science.gov (United States)

    Cheng, Liang

    Many biological materials possess complicated hierarchical and multiscale structures, after millions of years of evolution. Most of them also demonstrate outstanding mechanical properties, along with multi-functionality. Arthropod is the most widely distributed and the largest phylum of animals in the planet. Their exoskeletons are well-known for excellent mechanical performance and versatility, and consequently emerge among the best sources to study and uncover the mystery of nature in devising its own material systems. This work first investigated the microstructures of the exoskeletons from selected arthropods, including Homarus Americanus, Callinectes sapidus and Popillia japonica, which exhibit highly complex but interesting hierarchical structures. Exoskeletons are chitin-protein based material systems organized into horizontally well-defined multi-region and multi-layer patterns, with elaborate structures interweaving in the vertical direction. Using SEM (Scanning Electron Microscope) and TEM (Transmission Electron Microscope), the characteristic and distinctive structural features of the exoskeletons were revealed for all the species investigated. In particular, distinct patterns (e.g., stacking sequence of multiple layers) were identified in each region of exoskeletons studied. For example, the "helicoidal structure" is characterized by a stacking sequence in which layers are continuously and unidirectionally rotating a small angle with respect to their adjacent layers. Important mechanical implications of those unique structural features were subsequently evaluated and compared using mechanics-based modeling and analysis, as well as numerical simulation. After the structure-property-function relationship of the investigated biomaterial systems was established, attempts were made to reveal and extract the design strategies employed by nature in designing its own materials and structures. One of the most predominant structural patterns observed in the

  8. Effects of Heating Rate on the Process Parameters of Superplastic Forming for Zr55Cu30Al10Ni5

    Institute of Scientific and Technical Information of China (English)

    YANG Fan; SHI Tielin; LIAO Guanglan

    2014-01-01

    We investigated the effects of heating rate on the process parameters of superplastic forming for Zr55Cu30Al10Ni5 by differential scanning calorimetry. The continuous heating and isothermal annealing analyses suggested that the temperatures of glass transition and onset crystallization are heating rate-dependent in the supercooled liquid region. Then, the time-temperature-transformation diagram under different heating rates indicates that increasing the heating rate can lead to an increase of the incubation time at the same anneal temperature in the supercooled liquid region. Based on the Arrhenius relationship, we discovered that the incubation time increases by 1.08-1.11 times with double increase of the heating rate at the same anneal temperature, and then verified it by the data of literatures and the experimental results. The obtained curve of the max available incubation time reveals that the incubation time at a certain anneal temperature in the supercooled liquid region is not infinite, and will increase with increasing heating rate until this temperature shifts out of the supercooled liquid region because of exceeding critical heating rate. It is concluded that heating rate must be an important processing parameter of superplastic forming for Zr55Cu30Al10Ni5.

  9. State of Charge Dependent Mechanical Integrity Behavior of 18650 Lithium-ion Batteries

    Science.gov (United States)

    Xu, Jun; Liu, Binghe; Hu, Dayong

    2016-02-01

    Understanding the mechanism of mechanical deformation/stress-induced electrical failure of lithium–ion batteries (LIBs) is important in crash-safety design of power LIBs. The state of charge (SOC) of LIBs is a critical factor in their electrochemical performance; however, the influence of SOC with mechanical integrity of LIBs remains unclear. This study investigates the electrochemical failure behaviors of LIBs with various SOCs under both compression and bending loadings, underpinned by the short circuit phenomenon. Mechanical behaviors of the whole LIB body, which is regarded as an intact structure, were analyzed in terms of structure stiffness. Results showed that the mechanical behaviors of LIBs depend highly on SOC. Experimental verification on the cathode and anode sheet compression tests show that higher SOC with more lithium inserted in the anode leads to higher structure stiffness. In the bending tests, failure strain upon occurrence of short circuit has an inverse linear relationship with the SOC value. These results may shed light on the fundamental physical mechanism of mechanical integrity LIBs in relation to inherent electrochemical status.

  10. State of Charge Dependent Mechanical Integrity Behavior of 18650 Lithium-ion Batteries

    Science.gov (United States)

    Xu, Jun; Liu, Binghe; Hu, Dayong

    2016-01-01

    Understanding the mechanism of mechanical deformation/stress-induced electrical failure of lithium–ion batteries (LIBs) is important in crash-safety design of power LIBs. The state of charge (SOC) of LIBs is a critical factor in their electrochemical performance; however, the influence of SOC with mechanical integrity of LIBs remains unclear. This study investigates the electrochemical failure behaviors of LIBs with various SOCs under both compression and bending loadings, underpinned by the short circuit phenomenon. Mechanical behaviors of the whole LIB body, which is regarded as an intact structure, were analyzed in terms of structure stiffness. Results showed that the mechanical behaviors of LIBs depend highly on SOC. Experimental verification on the cathode and anode sheet compression tests show that higher SOC with more lithium inserted in the anode leads to higher structure stiffness. In the bending tests, failure strain upon occurrence of short circuit has an inverse linear relationship with the SOC value. These results may shed light on the fundamental physical mechanism of mechanical integrity LIBs in relation to inherent electrochemical status. PMID:26911922

  11. The contribution of proteoglycans to the mechanical behavior of mineralized tissues.

    Science.gov (United States)

    Bertassoni, Luiz E; Swain, Michael V

    2014-10-01

    It has been widely shown that proteoglycans (PG) and their glycosaminoglycan (GAG) side-chains form supramolecular aggregates that interconnect the collagenous network in connective tissues and play a significant role in regulating the mechanical behavior of the extracellular matrix, particularly in soft tissues. However, collective evidence of the mechanical participation of PGs and GAGs in mineralized tissues remains poorly explored in the literature. Here, we address this knowledge gap and discuss the participation of PGs on the biomechanics of mineralized tissues including dentine, cementum and bone. We review evidence suggesting that, on a microscale, PGs regulate the hydrostatic and osmotic pressure, as well as the poroelastic behavior of dentine and bone. On the nanoscale, we review the so-called sliding filament theory and intramolecular stretching of GAGs. We also discuss recent interpretations whereby folding and unfolding of the PG protein core, potentially in association with SIBLING proteins, may be a contributing factor to the mechanical behavior of mineralized tissues. Finally, we review in vitro and in vivo studies of mineralized tissues with targeted disruption or digestion of specific PG family members, which provide further insights into their relevance to the mechanical properties of load bearing hard tissues. In summary, this review brings forth collective evidence suggesting that PGs and GAGs, although less than 5% of the tissue matrix, may play a role in the mechanical behavior and durability of mineralized tissues.

  12. Improvement in the Mechanical Behavior of Mechanically Alloyed Aluminum Using Short-Time NH3 Flow

    Science.gov (United States)

    Caballero, E. S.; Cintas, J.; Cuevas, F. G.; Montes, J. M.; Herrera-García, M.

    2016-12-01

    In order to study the influence of a short-time ammonia gas flow during mechanical alloying (MA) of aluminum powders, samples were prepared using a simple press and sinter method. All milling experiments were performed at room temperature for a total of 10 hours. A short-time ammonia flow was incorporated into the milling process, allowing for the appearance of nitrogen-rich second phases, mainly oxycarbonitride and oxynitride aluminum (Al3CON and Al5O6N, respectively), during powder sintering. Testing of the sintering parts showed that the use of a short-time ammonia gas flow during vacuum milling substantially improved the mechanical properties at room and high temperatures.

  13. Behavioral and neurobiological mechanisms of extinction in Pavlovian and instrumental learning.

    Science.gov (United States)

    Todd, Travis P; Vurbic, Drina; Bouton, Mark E

    2014-02-01

    This article reviews research on the behavioral and neural mechanisms of extinction as it is represented in both Pavlovian and instrumental learning. In Pavlovian extinction, repeated presentation of a signal without its reinforcer weakens behavior evoked by the signal; in instrumental extinction, repeated occurrence of a voluntary action without its reinforcer weakens the strength of the action. In either case, contemporary research at both the behavioral and neural levels of analysis has been guided by a set of extinction principles that were first generated by research conducted at the behavioral level. The review discusses these principles and illustrates how they have informed the study of both Pavlovian and instrumental extinction. It shows that behavioral and neurobiological research efforts have been tightly linked and that their results are readily integrated. Pavlovian and instrumental extinction are also controlled by compatible behavioral and neural processes. Since many behavioral effects observed in extinction can be multiply determined, we suggest that the current close connection between behavioral-level and neural-level analyses will need to continue.

  14. Study of defensive methods and mechanisms in developmental, emotional (internalization), and disruptive behavior (externalization) disorders.

    Science.gov (United States)

    Jamilian, H R; Zamani, N; Darvishi, M; Khansari, M R

    2014-09-18

    We need to find a way for adaptation with inherent unpleasantness of being human condition and conflicts that it caused, as we did not fail. Methods that we used for adaptation are named defense. This research have performed with the aim of study and compare defensive mechanisms and methods of Developmental, Emotional (Internalization), and Disruptive behavior (Externalization) disorders. Method, sample of this research included 390 family that are by available sampling method are selected. Tools of research were structured clinical interview of forth cognitive and statistical guide of psychopathic disorders for axis I and the way used for assess defensive mechanisms is defensive method 40 question's questionnaires of Andrews (1993). The data are compared by statistical methods comparison of averages and one way variance analysis and HSD tests and results show that undeveloped defensive mechanisms in by developmental disorder family (25.2 ± 3.7) mean and standard deviation, it is most used mechanism and in disruptive behavior disorder family by (11.2 ± 1.9) mean and standard deviation is used least mechanism and in developed mechanism of emotional disorder family by (7.8 ± 3.1) mean and standard deviation is most used mechanism and in developmental disorder family by (4.3 ± 1.5) mean and standard deviation is least mechanism in neuroticism patient, social phobia affected emotional disorder family (15.6 ± 2.6) and disruptive behavior disorder family have least mean and standard deviation (9.2 ± 1.7) (p< 0.005). Recent research shows significant of study defensive mechanism in psychopathic family of disorder children that affecting on the way of life of persons and interpersonal and intrapersonal relations and method of solving problem in family of them in life, so defensive mechanisms require more attention.

  15. Hormonal and non-hormonal bases of maternal behavior: The role of experience and epigenetic mechanisms.

    Science.gov (United States)

    Stolzenberg, Danielle S; Champagne, Frances A

    2016-01-01

    This article is part of a Special Issue "Parental Care". Though hormonal changes occurring throughout pregnancy and at the time of parturition have been demonstrated to prime the maternal brain and trigger the onset of mother-infant interactions, extended experience with neonates can induce similar behavioral interactions. Sensitization, a phenomenon in which rodents engage in parental responses to young following constant cohabitation with donor pups, was elegantly demonstrated by Rosenblatt (1967) to occur in females and males, independent of hormonal status. Study of the non-hormonal basis of maternal behavior has contributed significantly to our understanding of hormonal influences on the maternal brain and the cellular and molecular mechanisms that mediate maternal behavior. Here, we highlight our current understanding regarding both hormone-induced and experience-induced maternal responsivity and the mechanisms that may serve as a common pathway through which increases in maternal behavior are achieved. In particular, we describe the epigenetic changes that contribute to chromatin remodeling and how these molecular mechanisms may influence the neural substrates of the maternal brain. We also consider how individual differences in these systems emerge during development in response to maternal care. This research has broad implications for our understanding of the parental brain and the role of experience in the induction of neurobiological and behavior changes.

  16. NUMERICAL SIMULATION OF MECHANICAL BEHAVIORS OF SUPERCONDUCTING POWDER BSCCO (BiSrCaCuO)

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yinghong; LEI Liping; ZENG Pan

    2007-01-01

    An equivalent continuum method and a deformable discrete method to describe the mechanical behaviors of superconducting powder BSCCO (BiSrCaCuO) aggregate are studied systematically. The equivalent continuum model idealizes the aggregation of the powder as an equivalent continuum material. The powder aggregate yielding is caused by not only the deviatoric stress but also the hydrostatic stress and the modified Drucker-Prager/Cap model is adopted to describe the mechanical behaviors of BSCCO powder aggregate in continuum method. The deformable discrete model is known as a direct model, which considers the discrete nature of the powder particles. Its framework encompasses the local behaviors between the particles, such as particles contact, sliding and rolling. Based on commercial finite element software ABAQUS, the equivalent continuum model and the deformable discrete model are used to simulate the confined compression of superconducting powder BSCCO, and the numerical results show agreement with experimental results, which verify the correctness of these built models. Compared with the equivalent continuum model based on macroscopic statistics method, the deformable discrete model can present the microscopic information during processing and can describe the nature of mechanical behaviors of superconducting powder BSCCO. But from an industrial viewpoint, the equivalent continuum model has a definitive edge over the microscopic models in that the gross behavior of the powder mass can be modeled and simulated on an industrial scale.

  17. Instrumented Indentation of Lung Reveals Significant Short Term Alteration in Mechanical Behavior with 100% Oxygen

    Directory of Open Access Journals (Sweden)

    Maricris R. Silva

    2010-01-01

    Full Text Available In critical care, trauma, or other situations involving reduced lung function, oxygen is given to avoid hypoxia. It is known that under certain conditions and long time (several hours exposure, oxygen is toxic to the lungs, the possible mechanisms being direct cellular damage or surfactant dysfunction. Our key objective was to investigate possible changes in lung function when exposed to 100% oxygen in the short term (several tidal volumes. We performed mechanical tests on lobar surfaces of excised mammalian lungs inflated with air or 100% oxygen, examining (i stiffness, (ii non-linear mechanical response and (iii induced alveolar deformation. Our results showed that within five tidal volumes of breathing 100% oxygen, lung mechanics are significantly altered. In addition, after five tidal volumes of laboratory air, lung mechanical behavior begins to return to pre-oxygen levels, indicating some reversibility. These significant and short-term mechanical effects of oxygen could be linked to oxygen toxicity.

  18. Emotion dysregulation as a mechanism linking stress exposure to adolescent aggressive behavior.

    Science.gov (United States)

    Herts, Kate L; McLaughlin, Katie A; Hatzenbuehler, Mark L

    2012-10-01

    Exposure to stress is associated with a wide range of internalizing and externalizing problems in adolescents, including aggressive behavior. Extant research examining mechanisms underlying the associations between stress and youth aggression has consistently identified social information processing pathways that are disrupted by exposure to violence and increase risk of aggressive behavior. In the current study, we use longitudinal data to examine emotion dysregulation as a potential mechanism linking a broader range of stressful experiences to aggressive behavior in a diverse sample of early adolescents (N = 1065). Specifically, we examined the longitudinal associations of peer victimization and stressful life events with emotion dysregulation and aggressive behavior. Structural equation modeling was used to create latent constructs of emotion dysregulation and aggression. Both stressful life events and peer victimization predicted subsequent increases in emotion dysregulation over a 4-month period. These increases in emotion dysregulation, in turn, were associated with increases in aggression over the subsequent 3 months. Longitudinal mediation models showed that emotion dysregulation mediated the relationship of both peer victimization (z = 2.35, p = 0.019) and stressful life events (z = 2.32, p = 0.020) with aggressive behavior. Increasing the use of adaptive emotion regulation strategies is an important target for interventions aimed at preventing the onset of adolescent aggressive behavior.

  19. Analysis of mechanical behavior and hysteresis heat generating mechanism of PDM motor

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Changshuai; Zhu, Xiaohua; Tang, Liping [Southwest Petroleum University, Chengdu (China); Deng, Juan [Avic Chengdu Engine (Group) Co.,Ltd, Chengdu (China)

    2017-03-15

    Positive displacement motor (PDM), which is prone to high temperature fatigue failure, can be weakened in its application in deep and superdeep well. In order to study the forced state, deformation regularity and thermal hysteresis of PDM motor, the paper established the three-dimensional thermal-mechanical coupled Finite element model (FEM). Based on the theoretical research, experimental study and numerical simulation, the study found that the displacement of stator lining shows a sinusoidal variation under internal pressure, when adapting the general form of sine function to fitting inner contour line deformation function. Then the paper analyzed the hysteresis heat generating mechanism of the motor, learning that hysteresis thermogenous of stator lining occurs due to the viscoelastic of rubber material and cyclic loading of stator lining. A heartburn happens gradually in the center of the thickest part of the stator lining as temperature increases, which means work efficiency and service life of PDM will be decreased when used in deep or superdeep well. In this paper, we established a theory equation for the choice of interference fit and motor line type optimization design, showing hysteresis heat generating analyzing model and method are reasonable enough to significantly improve PDM’s structure and help better use PDM in deep and surdeep well.

  20. Emotion Dysregulation as a Mechanism Linking Stress Exposure to Adolescent Aggressive Behavior

    Science.gov (United States)

    Herts, Kate L.; McLaughlin, Katie A.; Hatzenbuehler, Mark L.

    2012-01-01

    Exposure to stress is associated with a wide range of internalizing and externalizing problems in adolescents, including aggressive behavior. Extant research examining mechanisms underlying the associations between stress and youth aggression has consistently identified social information processing pathways that are disrupted by exposure to…

  1. The effect of microstructures on mechanical behaviors of Ti2AlNb intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liming; Yao, Mei; Zou, Dunxu; Zhu, Dong; Cai, Qigong (Harbin Institute of Technology, (China) Central Iron and Steel Research Institute, Beijing, (China))

    1992-03-01

    Ti2AlNb intermetallics are presently heat-treated and subjected to compressive loading at various temperatures, in order to ascertain microstructure-mechanical behavior relationships. Heat-treated and oil-quenched samples exhibit beta phase; the 'O' phase transformation was restrained by quenching. The O phase increased with rising heat-treatment temperature. 10 refs.

  2. The effect of combined cyclic mechanical stretching and microgrooved surface topography on the behavior of fibroblasts

    NARCIS (Netherlands)

    Loesberg, W.A.; Walboomers, X.F.; Loon, J.J. van; Jansen, J.A.

    2005-01-01

    Under the influence of mechanical stress, cultured fibroblasts have a tendency to orient themselves perpendicular to the stress direction. Similar cell alignment can be induced by guiding cells along topographical clues, like microgrooves. The aim of this study was to evaluate cell behavior on micro

  3. An Overview of the Use of Mechanical Turk in Behavioral Sciences: Implications for Social Work

    Science.gov (United States)

    Chan, Chitat; Holosko, Michael J.

    2016-01-01

    Crowdsourcing is a process in which a firm parcels out work to a "crowd" and offers payment for anyone within the crowd who completes the task determined by that firm. A growing number of behavioral scientists have begun using the Mechanical Turk (MTurk) to facilitate their research and practice, but there is apparently not one academic…

  4. Impact of Conflict Management Strategies on the Generation Mechanism of Miners' Unsafe Behavior Tendency

    Science.gov (United States)

    Li, Ji-Zu; Zhang, Ya-Ping; Liu, Xiao-Guang; Liu, Yao-Long; Wang, Tian-Ri

    2017-01-01

    In this paper, we examine the relationship between the generation mechanism of miners' unsafe behavior tendency and conflict management strategies, including cooperative conflict management strategy, competitive conflict management strategy and avoidant conflict management strategy. Miners from 3 collieries in Shanxi province completed a…

  5. Methylphenidate and atomoxetine inhibit social play behavior through prefrontal and subcortical limbic mechanisms in rats.

    Science.gov (United States)

    Achterberg, E J Marijke; van Kerkhof, Linda W M; Damsteegt, Ruth; Trezza, Viviana; Vanderschuren, Louk J M J

    2015-01-07

    Positive social interactions during the juvenile and adolescent phases of life, in the form of social play behavior, are important for social and cognitive development. However, the neural mechanisms of social play behavior remain incompletely understood. We have previously shown that methylphenidate and atomoxetine, drugs widely used for the treatment of attention-deficit hyperactivity disorder (ADHD), suppress social play in rats through a noradrenergic mechanism of action. Here, we aimed to identify the neural substrates of the play-suppressant effects of these drugs. Methylphenidate is thought to exert its effects on cognition and emotion through limbic corticostriatal systems. Therefore, methylphenidate was infused into prefrontal and orbitofrontal cortical regions as well as into several subcortical limbic areas implicated in social play. Infusion of methylphenidate into the anterior cingulate cortex, infralimbic cortex, basolateral amygdala, and habenula inhibited social play, but not social exploratory behavior or locomotor activity. Consistent with a noradrenergic mechanism of action of methylphenidate, infusion of the noradrenaline reuptake inhibitor atomoxetine into these same regions also reduced social play. Methylphenidate administration into the prelimbic, medial/ventral orbitofrontal, and ventrolateral orbitofrontal cortex, mediodorsal thalamus, or nucleus accumbens shell was ineffective. Our data show that the inhibitory effects of methylphenidate and atomoxetine on social play are mediated through a distributed network of prefrontal and limbic subcortical regions implicated in cognitive control and emotional processes. These findings increase our understanding of the neural underpinnings of this developmentally important social behavior, as well as the mechanism of action of two widely used treatments for ADHD.

  6. A coupled model between hydrogen diffusion and mechanical behavior of superelastic NiTi alloys

    Science.gov (United States)

    Elkhal Letaief, W.; Hassine, T.; Gamaoun, F.

    2017-07-01

    The undesirable effects of hydrogen show significant alterations to the thermomechanical behavior of superelastic NiTi shape memory alloys. Through experimental results, the presence of hydrogen induces a delay of forward transformation. Added to that, hydrogen-induced expansion is clearly noticed. We also remark a loss of superelasticity. These effects occur according to the hydrogen absorption by the NiTi alloy. The aim of this paper is to develop a coupled diffusion-mechanical model of shape memory alloys, which regards the aforesaid effects of hydrogen on the thermomechanical behavior and the transformation mechanism of NiTi alloys. The model is derived from the relationship between the chemical potential of hydrogen and the thermodynamics laws. Furthermore, we introduce a special transformation hardening function that predicts stress-strain behavior well during the transformation plateau. The model is implemented in ABAQUS finite element analysis software through the UMAT and UMATHT subroutines. The simulation results present good concordance with the experiments.

  7. Explicating the Social Mechanisms Linking Alcohol Use Behaviors and Ecology to Child Maltreatment.

    Science.gov (United States)

    Freisthler, Bridget; Holmes, Megan R

    2012-12-01

    This paper begins to describe and explicate the specific mechanisms by which alcohol use and the alcohol use environment contribute to specific types of child maltreatment. These mechanisms relating alcohol outlet densities to child maltreatment described here include effects on social disorganization, parent's drinking behaviors, and parental supervision. By investigating potential mechanisms, new information could be obtained on the importance and role of alcohol and their availability in the etiology of child maltreatment. This knowledge can be used to further tailor interventions to those conditions most likely to prevent and reduce maltreatment.

  8. A molecular mechanics approach for analyzing tensile nonlinear deformation behavior of single-walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Yu Wang; Daining Fang; Ai Kah Soh; Bin Liu

    2007-01-01

    In this paper, by capturing the atomic informa-tion and reflecting the behaviour governed by the nonlin-ear potential function, an analytical molecular mechanics approach is proposed. A constitutive relation for single-walled carbon nanotubes (SWCNT's) is established to describe the nonlinear stress-strain curve of SWCNT's and to predict both the elastic properties and breaking strain of SWCNT's during tensile deformation. An analysis based on the virtual internal bond (VIB) model proposed by P. Zhang et al. is also presented for comparison. The results indicate that the proposed molecular mechanics approach is indeed an acceptable analytical method for analyzing the mechanical behavior of SWCNT's.

  9. Mechanisms That Link Parenting Practices to Adolescents' Risky Sexual Behavior: A Test of Six Competing Theories.

    Science.gov (United States)

    Simons, Leslie Gordon; Sutton, Tara E; Simons, Ronald L; Gibbons, Frederick X; Murry, Velma McBride

    2016-02-01

    Risky sexual behavior, particularly among adolescents, continues to be a major source of concern. In order to develop effective education and prevention programs, there is a need for research that identifies the antecedents of such behavior. This study investigated the mediators that link parenting experiences during early adolescence to subsequent risky sexual behaviors among a diverse sample of African American youth (N = 629, 55 % female). While there is ample evidence that parenting practices (e.g., supportive parenting, harsh parenting, parental management) are antecedent to risky sexual behavior, few studies have examined whether one approach to parenting is more strongly related to risky sex than others. Using a developmental approach, the current study focused on factors associated with six theories of risky sexual behavior. While past research has provided support for all of the theories, few studies have assessed the relative contribution of each while controlling for the processes proposed by the others. The current study addresses these gaps in the literature and reports results separately by gender. Longitudinal analyses using structural equation modeling revealed that the mediating mechanisms associated with social learning and attachment theories were significantly related to the risky sexual behavior of males and females. Additionally, there was support for social control and self-control theories only for females and for life history theory only for males. We did not find support for problem behavior theory, a perspective that dominates the risky sex literature, after controlling for the factors associated with the other theories. Finally, supportive parenting emerged as the parenting behavior most influential with regard to adolescents' risky sexual behavior. These results provide insight regarding efficacious approaches to education and preventative programs designed to reduce risky sexual behaviors among adolescents.

  10. Validation of the Brazilian version of Behavioral Pain Scale in adult sedated and mechanically ventilated patients

    Directory of Open Access Journals (Sweden)

    Isabela Freire Azevedo-Santos

    Full Text Available Abstract Background and objectives: The Behavioral Pain Scale is a pain assessment tool for uncommunicative and sedated Intensive Care Unit patients. The lack of a Brazilian scale for pain assessment in adults mechanically ventilated justifies the relevance of this study that aimed to validate the Brazilian version of Behavioral Pain Scale as well as to correlate its scores with the records of physiological parameters, sedation level and severity of disease. Methods: Twenty-five Intensive Care Unit adult patients were included in this study. The Brazilian Behavioral Pain Scale version (previously translated and culturally adapted and the recording of physiological parameters were performed by two investigators simultaneously during rest, during eye cleaning (non-painful stimulus and during endotracheal suctioning (painful stimulus. Results: High values of responsiveness coefficient (coefficient = 3.22 were observed. The Cronbach's alpha of total Behavioral Pain Scale score at eye cleaning and endotracheal suctioning was 0.8. The intraclass correlation coefficient of total Behavioral Pain Scale score was ≥ 0.8 at eye cleaning and endotracheal suctioning. There was a significant highest Behavioral Pain Scale score during application of painful procedure when compared with rest period (p ≤ 0.0001. However, no correlations were observed between pain and hemodynamic parameters, sedation level, and severity of disease. Conclusions: This pioneer validation study of Brazilian Behavioral Pain Scale exhibits satisfactory index of internal consistency, interrater reliability, responsiveness and validity. Therefore, the Brazilian Behavioral Pain Scale version was considered a valid instrument for being used in adult sedated and mechanically ventilated patients in Brazil.

  11. Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries

    Science.gov (United States)

    Zhang, Chao; Xu, Jun; Cao, Lei; Wu, Zenan; Santhanagopalan, Shriram

    2017-07-01

    The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion and a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. The test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.

  12. Mechanical Behavior of Ultrafine Gradient Grain Structures Produced via Ambient and Cryogenic Surface Mechanical Attrition Treatment in Iron

    Directory of Open Access Journals (Sweden)

    Heather A. Murdoch

    2015-06-01

    Full Text Available Ambient and cryogenic surface mechanical attrition treatments (SMAT are applied to bcc iron plate. Both processes result in significant surface grain refinement down to the ultrafine-grained regime; the cryogenic treatment results in a 45% greater grain size reduction. However, the refined region is shallower in the cryogenic SMAT process. The tensile ductility of the grain size gradient remains low (<10%, in line with the expected behavior of the refined surface grains. Good tensile ductility in a grain size gradient requires the continuation of the gradient into an undeformed region.

  13. Mechanical behavior simulation of MEMS-based cantilever beam using COMSOL multiphysics

    Science.gov (United States)

    Acheli, A.; Serhane, R.

    2015-03-01

    This paper presents the studies of mechanical behavior of MEMS cantilever beam made of poly-silicon material, using the coupling of three application modes (plane strain, electrostatics and the moving mesh) of COMSOL Multi-physics software. The cantilevers playing a key role in Micro Electro-Mechanical Systems (MEMS) devices (switches, resonators, etc) working under potential shock. This is why they require actuation under predetermined conditions, such as electrostatic force or inertial force. In this paper, we present mechanical behavior of a cantilever actuated by an electrostatic force. In addition to the simplification of calculations, the weight of the cantilever was not taken into account. Different parameters like beam displacement, electrostatics force and stress over the beam have been calculated by finite element method after having defining the geometry, the material of the cantilever model (fixed at one of ends but is free to move otherwise) and his operational space.

  14. Mechanical behavior simulation of MEMS-based cantilever beam using COMSOL multiphysics

    Energy Technology Data Exchange (ETDEWEB)

    Acheli, A., E-mail: aacheli@cdta.dz; Serhane, R. [Centre de Développement des Technologies Avancées (CDTA). BP n°17 Baba Hassen, Alger (Algeria)

    2015-03-30

    This paper presents the studies of mechanical behavior of MEMS cantilever beam made of poly-silicon material, using the coupling of three application modes (plane strain, electrostatics and the moving mesh) of COMSOL Multi-physics software. The cantilevers playing a key role in Micro Electro-Mechanical Systems (MEMS) devices (switches, resonators, etc) working under potential shock. This is why they require actuation under predetermined conditions, such as electrostatic force or inertial force. In this paper, we present mechanical behavior of a cantilever actuated by an electrostatic force. In addition to the simplification of calculations, the weight of the cantilever was not taken into account. Different parameters like beam displacement, electrostatics force and stress over the beam have been calculated by finite element method after having defining the geometry, the material of the cantilever model (fixed at one of ends but is free to move otherwise) and his operational space.

  15. Studying the mechanical behavior of a plastic, shock-resisting, antitank landmine.

    Science.gov (United States)

    Kirkpatrick Alberts, W C; Waxier, Roger; Sabatier, James M

    2006-12-01

    Modal behavior in landmines has recently become a topic of interest for acoustic landmine detection. It is well known that landmines exhibit mechanical resonance behavior that enhances the soil velocity over a buried landmine. Recent experimental work by Zagrai et al. [A. Zagrai, D. Donskoy, and A. Ekimov, J. Acoust. Soc. Am. 118 (6), 3619-3628 (2005)] demonstrates the existence of structural modes in several landmines. The work reported herein parallels the work of Zagrai et al. in studying the structural modes of the pressure plate of a plastic, cylindrically symmetric, antitank landmine. The pressure plate is considered to act as an elastically supported thin elastic plate. An observed perturbation of the first symmetric mode of the pressure plate is caused by the landmine's shock-resisting mechanism. This is validated by a lumped element model for the first symmetric mode coupled to the shock-resisting mechanism.

  16. Review of the mechanical and fracture behavior of perovskite lead-free ferroelectrics for actuator applications

    Science.gov (United States)

    Webber, Kyle G.; Vögler, Malte; Khansur, Neamul H.; Kaeswurm, Barbara; Daniels, John E.; Schader, Florian H.

    2017-06-01

    There has been considerable progress in the development of large strain lead-free perovskite ferroelectrics over the past decade. Under certain conditions, the electromechanical properties of some compositions now match or even surpass commercially available lead-containing materials over a wide temperature range, making them potentially attractive for non-resonant displacement applications. However, the phenomena responsible for the large unipolar strains and piezoelectric responses can be markedly different to classical ferroelectrics such as Pb(Zr,Ti)O3 and BaTiO3. Despite the promising electromechanical properties, there is little understanding of the mechanical properties and fracture behavior, which is crucial for their implementation into applications where they will be exposed to large electrical, mechanical, and thermal fields. This work discusses and reviews the current understanding of the mechanical behavior of large-strain perovskite lead-free ferroelectrics for use in actuators and provides recommendations for further work in this important field.

  17. Thermo-Mechanical Behavior of Bentonite Buffer in a Deep Geological HLW Repository

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S.; Cho, W. J.; Lee, J. O

    2008-08-15

    This work aims to investigate the influence of bentonite buffer and backfill, which will role as important engineered barriers, on the thermo-mechanical behaviors of a disposal system at a deep underground HLW repository. It will contribute to the disposal system development and performance assessment of the system. In this study, three-dimensional computer simulations were carried out with a consideration of the thermal and mechanical characteristics of the buffer and backfill for the investigation of the behavior of buffer and backfill under different disposal conditions. The understanding of the near field response to the variation of buffer and backfill properties will contribute to the development of an adequate buffer and backfill design in disposal conditions as well as the selection of a disposal site. The following conclusions could be drawn from the three-dimensional thermo-mechanical coupling analysis for investigating the possible influence of the bentonite buffer on the thermo-mechanical behavior around an underground repository, which is located at several hundred meters deep underground. o The bentonite swelling pressure can influence on the mechanical behavior of canister. Further detailed modeling is required in the future. o It is required to consider the water content and density of bentonite as important design parameters, because it was found that those influence the thermo-mechanical behavior of near field significantly. o A horizontal deposition hole and multi-level repository can results different maximum temperatures, stress concentration, and the required time for the maximum temperatures of canister, buffer, and rock compared to those of vertical deposition hole and single level repository. o Even though, the same laboratory results were used for driving the parameters for the plastic models used in the modeling, the mechanical behaviors were different. It is, therefore, required to use adequate plastic models for buffer and backfill

  18. Behavioral robustness: an emergent phenomenon by means of distributed mechanisms and neurodynamic determinacy.

    Science.gov (United States)

    Fernandez-Leon, Jose A

    2012-01-01

    Theoretical discussions and computational models of bio-inspired embodied and situated agents are introduced in this article capturing in simplified form the dynamical essence of robust, yet adaptive behavior. This article analyzes the general problem of how the dynamical coupling between internal control (brain), body and environment is used in the generation of specific behaviors. Based on the Evolutionary Robotics (ER) paradigm, four computational models are described to support discussions including descriptions on performance after a series of structural, sensorimotor or mutational perturbations, or are developed in the absence of them. Experimental results suggest that 'dynamic determinacy' - i.e. the continuous presence of a unique dynamical attractor that must be chased during functional behaviors - is a common dynamic phenomenon in the analyzed robust and adaptive agents. These agents show dynamical states that are definitely and unequivocally characterized via transient dynamics toward a unique, yet moving attractor at neural level for coherent actions. This determinacy emerges as a control strategy rooted on behavioral couplings and relies on mechanisms that are distributed on brain, body and environment. Different ways to induce further distribution of behavioral mechanisms are also discussed in this paper from a bio-inspired ER perspective.

  19. Importance of Age on the Dynamic Mechanical Behavior of Intertubular and Peritubular Dentin

    Science.gov (United States)

    Ryou, Heonjune; Romberg, Elaine; Pashley, David H.; Tay, Franklin R.; Arola, Dwayne

    2014-01-01

    An experimental evaluation of human coronal dentin was performed using nanoscopic Dynamic Mechanical Analysis (nanoDMA). The primary objectives were to quantify any unique changes in mechanical behavior of intertubular and peritubular dentin with age, and to evaluate the microstructure and mechanical behavior of the mineral deposited within the lumens. Specimens of coronal dentin were evaluated by nanoDMA using single indents and in scanning mode via scanning probe microscopy. Results showed that there were no significant differences in the storage modulus or complex modulus between the two age groups (18–25 versus 54–83 yrs) for either the intertubular or peritubular tissue. However, there were significant differences in the dampening behavior between the young and old dentin, as represented in the loss modulus and tanδ responses. For both the intertubular and peritubular components, the capacity for dampening was significantly lower in the old group. Scanning based nanoDMA showed that the tubules of old dentin exhibit a gradient in elastic behavior, with decrease in elastic modulus from the cuff to the center of tubules filled with newly deposited mineral. PMID:25498296

  20. Thermal effects in a mechanical model for pseudoelastic behavior of NiTi wires

    Directory of Open Access Journals (Sweden)

    Hugo Soul

    2007-12-01

    Full Text Available A mechanical model for pseudoelastic behavior of NiTi wires is proposed with the aim to predict the behavior of Shape Memory Alloys(SMA damping wire elements in model structures. We have considered at first a simple linearwise stress-strain relationship to describe the basic isothermal behavior of the SMA members. Then, this basic model is modified in order to include the effect of the strain rate. The model is based on detailed experimental characterization performed on a Ni rich NiTi superelastic wire which included the study of the localized character of the deformation and the local heat generation associated with the stress induced martensitic transformation occurring in these alloys. Heat conduction along the wire and heat interaction with the surroundings was also considered. In that way, the resulting local temperature field around the transformation front is assessed and its effect on the progression of the transformation is evaluated. It is shown how the simple mechanical model reproduces the global mechanical behavior, including the existence of a maximum in the damping capacity with the transformation rate.

  1. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites.

    Science.gov (United States)

    Wang, Z; Georgarakis, K; Nakayama, K S; Li, Y; Tsarkov, A A; Xie, G; Dudina, D; Louzguine-Luzgin, D V; Yavari, A R

    2016-04-12

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses.

  2. Aging and loading rate effects on the mechanical behavior of equine bone

    Science.gov (United States)

    Kulin, Robb M.; Jiang, Fengchun; Vecchio, Kenneth S.

    2008-06-01

    Whether due to a sporting accident, high-speed impact, fall, or other catastrophic event, the majority of clinical bone fractures occur under dynamic loading conditions. However, although extensive research has been performed on the quasi-static fracture and mechanical behavior of bone to date, few high-quality studies on the fracture behavior of bone at high strain rates have been performed. Therefore, many questions remain regarding the material behavior, including not only the loading-rate-dependent response of bone, but also how this response varies with age. In this study, tests were performed on equine femoral bone taken post-mortem from donors 6 months to 28 years of age. Quasi-static and dynamic tests were performed to determine the fracture toughness and compressive mechanical behavior as a function of age at varying loading rates. Fracture paths were then analyzed using scanning confocal and scanning-electron microscopy techniques to assess the role of various microstructural features on toughening mechanisms.

  3. Mechanical Shock Behavior of Environmentally-Benign Lead-free Solders

    Science.gov (United States)

    Yazzie, Kyle

    The mechanical behavior of Pb-free solder alloys is important, since they must maintain mechanical integrity under thermomechanical fatigue, creep, and mechanical shock conditions. Mechanical shock, in particular, has become an increasing concern in the electronics industry, since electronic packages can be subjected to mechanical shock by mishandling during manufacture or by accidental dropping. In this study, the mechanical shock behavior of Sn and Sn-Ag-Cu alloys was systematically analyzed over the strain rate range 10-3 -- 30 s-1 in bulk samples, and over 10-3 -- 12 s-1 on the single solder joint level. More importantly, the influences of solder microstructure and intermetallic compounds (IMC) on mechanical shock resistance were quantified. A thorough microstructural characterization of Sn-rich alloys was conducted using synchrotron x-ray computed tomography. The three-dimensional morphology and distribution of contiguous phases and precipitates was analyzed. A multiscale approach was utilized to characterize Sn-rich phases on the microscale with x-ray tomography and focused ion beam tomography to characterize nanoscale precipitates. A high strain rate servohydraulic test system was developed in conjunction with a modified tensile specimen geometry and a high speed camera for quantifying deformation. The effect of microstructure and applied strain rate on the local strain and strain rate distributions were quantified using digital image correlation. Necking behavior was analyzed using a novel mirror fixture, and the triaxial stresses associated with necking were corrected using a self-consistent method to obtain the true stress-true strain constitutive behavior. Fracture mechanisms were quantified as a function of strain rate. Finally, the relationship between solder microstructure and intermetallic compound layer thickness with the mechanical shock resistance of Sn-3.8Ag-0.7Cu solder joints was characterized. It was found that at low strain rates the dynamic

  4. Experimental research of mechanical behavior of porcine brain tissue under rotational shear stress.

    Science.gov (United States)

    Li, Gang; Zhang, Jianhua; Wang, Kan; Wang, Mingyu; Gao, Changqing; Ma, Chao

    2016-04-01

    The objective of this paper is to investigate mechanical behavior of porcine brain tissue with a series of rotational shear stress control experiments. To this end, several experiments including stress sweep tests, frequency sweep tests and quasi-static creep tests were designed and conducted with a standard rheometer (HAAKE RheoStress6000). The effects of the loading stress rates to mechanical properties of brain tissue were also studied in stress sweep tests. The results of stress sweep tests performed on the same brain showed that brain tissue had an obvious regional inhomogeneity and the mechanical damage occurred at the rotational shear stress of 10-15Pa. The experimental data from three different loading stress rates demonstrated that the mechanical behavior of porcine brain tissue was loading stress rate dependent. With the decrease of loading stress rate, a stiffer mechanical characteristic of brain tissue was observed and the occurrence of mechanical damage can be delayed to a higher stress. From the results of frequency sweep tests we found that brain tissue had almost completely elastic properties at high frequency area. The nonlinear creep response under the rotational shear stress of 1, 3, 5, 7 and 9Pa was shown in results of creep tests. A new nonlinear viscoelastic solid model was proposed for creep tests and matched well with the test data. Considering the regional differences, loading stress rates and test conditions effects, loss tangent tan δ in porcine brain tissue showed a high uniformity of 0.25-0.45.

  5. A multiphase mesostructure mechanics approach to the study of the fracture-damage behavior of concrete

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A multiphase mesostructure mechanical model is proposed to study the deformation and failure process of concrete considering its heterogeneity at the meso scopic level.Herein,concrete is taken as a type of three-component composite material composed of mortar matrix,aggregates and interfaces on the meso-scale.First,an efficient approach to the disposition of aggregates of concrete and a state matrix method to generate mesh coordinates for aggregates are proposed.Secondly,based on the nonlinear continuum damage mechanics,a meso-scale finite element model is presented with damage softening stress-strain relationship for describing the mechanical behavior of different components of concrete.In this method,heterogeneities of each component in the concrete are considered by assuming the material properties of three components conform to the Weibull distribution law.Finally,based on this multiphase meso-mechanics model,a simulation analysis of fracture behavior of a rock-fill concrete(RFC) beam is accomplished.The study includes experimental tests for determining basic mechanical parameters of three components of RFC and four-point flexural beam tests for verification of the model.It is preliminarily shown that the numerical model is applicable to studying failure mechanisms and process of concrete type material.

  6. Mechanical behavior of linear amorphous polymers: comparison between molecular dynamics and finite-element simulations.

    Science.gov (United States)

    Solar, Mathieu; Meyer, Hendrik; Gauthier, Christian; Fond, Christophe; Benzerara, Olivier; Schirrer, Robert; Baschnagel, Jörg

    2012-02-01

    This paper studies the rheology of weakly entangled polymer melts and films in the glassy domain and near the rubbery domain using two different methods: molecular dynamics (MD) and finite element (FE) simulations. In a first step, the uniaxial mechanical behavior of a bulk polymer sample is studied by means of particle-based MD simulations. The results are in good agreement with experimental data, and mechanical properties may be computed from the simulations. This uniaxial mechanical behavior is then implemented in FE simulations using an elasto-viscoelasto-viscoplastic constitutive law in a continuum mechanics (CM) approach. In a second step, the mechanical response of a polymer film during an indentation test is modeled with the MD method and with the FE simulations using the same constitutive law. Good agreement is found between the MD and CM results. This work provides evidence in favor of using MD simulations to investigate the local physics of contact mechanics, since the volume elements studied are representative and thus contain enough information about the microstructure of the polymer model, while surface phenomena (adhesion and surface tension) are naturally included in the MD approach.

  7. Explaining the Association between Early Adversity and Young Adults' Diabetes Outcomes: Physiological, Psychological, and Behavioral Mechanisms.

    Science.gov (United States)

    Wickrama, Kandauda A S; Bae, Dayoung; O'Neal, Catherine Walker

    2017-01-31

    Previous studies have documented that early adversity increases young adults' risk for diabetes resulting in morbidity and comorbidity with adverse health conditions. However, less is known about how inter-related physiological (e.g., body mass index [BMI]), psychological (e.g., depressive symptoms), and behavioral mechanisms (e.g., unhealthy eating and sedentary behavior) link early adversity to young adults' diabetes outcomes, although these mechanisms appear to stem from early stressful experiences. The current study tested the patterning of these longitudinal pathways leading to young adults' diabetes using a nationally representative sample of 13,286 adolescents (54% female) over a period of 13 years. The findings indicated that early adversity contributed to elevated BMI, depressive symptoms, and stress-related health behaviors. The impact of these linking mechanisms on hierarchical diabetes outcomes (i.e., prediabetes and diabetes) remained significant after taking their associations with each other into account, showing that these mechanisms operate concurrently. The findings emphasize the importance of early detection for risk factors of young adults' diabetes in order to minimize their detrimental health effects.

  8. Analysis of mechanical behaviors of big pipe roof for shallow buried large-span tunnel

    Institute of Scientific and Technical Information of China (English)

    Li Jian; Tan Zhongsheng; Yu Yu; Guo Xiaohong

    2013-01-01

    A series of researches on mechanical behaviors of big pipe roof for shallow large-span loess tunnel were carried out based on the Wenxiang tunnel in Zhengzhou-Xi’an Special Passenger Railway. The longitudinal de-formations of the pipe roofs were monitored and the mechanical behaviors of the pipe roofs were analyzed at the test section. A new double-parameter elastic foundation beam model for pipe roof in shallow tunnels was put for-ward in Wenxiang tunnel. The measured values and the calculation results agreed well with each other,revealing the force-deformation law of big pipe roof in loess tunnel:At about 15 m in front of the excavating face,the pipe roof starts to bear the load;at about 15 m behind the excavating face,the force of the pipe roof tends to be stabi-lized;the longitudinal deformation of the whole pipe roofs is groove-shaped distribution,and the largest force of pipe roofs is at the excavating face. Simultaneously,the results also indicate that mechanical behaviors of pipe roof closely relate to the location of the excavation face,the footage of the tunnelling cycle and the mechanics pa-rameters of pipe roof and rock. The conclusions can be reference for the design parameter optimization and the con-struction scheme selection of pipe roofs,and have been verified by the result of numerical analysis software FLAC3D and deformation monitoring.

  9. Contribution of collagen and elastin fibers to the mechanical behavior of an abdominal connective tissue.

    Science.gov (United States)

    Levillain, A; Orhant, M; Turquier, F; Hoc, T

    2016-08-01

    The linea alba is a complex structure commonly involved in hernia formation. Knowledge of its mechanical behavior is essential to design suitable meshes and reduce the risk of recurrence. The aim of this study was to investigate the relationships between the mechanical properties of the linea alba and the organization of collagen and elastin fibers. For that purpose, longitudinal and transversal samples were removed from four porcine and three human linea alba, to perform tensile tests under a biphotonic confocal microscope, in each direction. Microscopic observation revealed a tissue composed of two layers, made of transversal collagen fibers in the dorsal side and oblique collagen fibers in the ventral side. This particular architecture led to an anisotropic mechanical behavior, with higher stress in the transversal direction. During loading, oblique fibers of the ventral layer reoriented toward the tensile axis in both directions, while fibers of the dorsal layer remained in the transversal direction. This rotation of oblique fibers progressively increased the stiffness of the tissue and induced a non-linear stress-stretch relation. Elastin fibers formed a layer covering the collagen fibers and followed their movement, suggesting that they ensure their elastic recoil. All of these results demonstrated the strong relationships between the microstructure and the mechanical behavior of the linea alba.

  10. On the effect of marrow in the mechanical behavior and crush response of trabecular bone.

    Science.gov (United States)

    Halgrin, J; Chaari, F; Markiewicz, É

    2012-01-01

    The present paper focuses on the mechanical behavior analysis of bones at mesoscopic scale, paying a special attention to the trabecular bone and the bone marrow filling the porosities. Uni-axial quasi-static compression tests under unconfined conditions have been performed to identify the mechanical behavior of 46 trabecular bone samples. The bone marrow for 22 samples has been preserved to analyze the fluid flow effects on the crushing response. Although deformation patterns do not differ significantly, the average crush behavior of the trabecular bone shows an unexpected decrease of the mechanical properties when the marrow is kept in the sample (26% for the elastic modulus (E(a)), 38% for the maximum compressive stress (σ(max)) and 33% for the average stress (σ(mean))). An explanation is given by analyzing the contribution of the bone marrow viscosity which smooths the mechanical response. A numerical analysis on an idealized trabecula confirms that the marrow induces transverse pressure and extra local stress on trabeculae during its flow, causing the premature collapse of the trabecular network. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Cooperative grain boundary sliding at room temperature of a Zn-20.2%Al-1.8%Cu superplastic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Andrade, J.D. [Dept. de Materiales, Univ. Autonoma Metropolitana Unidad Azcapotzalco (Mexico); Mendoza-Allende, A.; Montemayor-Aldrete, J.A. [Inst. de Fisica, Univ. Nacional Autonoma de Mexico (Mexico); Torres-Villasenor, G. [Inst. de Investigacion en Materiales, Univ. Nacional Autonoma de Mexico (Mexico)

    2001-07-01

    By applying a new technique [1-2] which provides a mesoscopic coordinate system inscribed on the surface of a tensile specimen, with 371 {mu}m gage length for a Zn-20.2%Al-1.8%Cu superplastic alloy deformed at room temperature it is possible to show that: Deformation of the sample it is homogeneous at macroscopic level, but inhomogeneous at mesoscopical level. The inhomogeneity is ascribed to the sliding of grain blocks. For 28.5% of deformation the distribution function for the block sizes is described by: N(x) = 1.37 x{sup 3}exp(-3x/12.2 {mu}m), where, N(x) is the number of blocks of size x, inside an area of about 172 x 244 ({mu}m){sup 2}. (orig.)

  12. Experimental approach and micro-mechanical modeling of the mechanical behavior of irradiated zirconium alloys; Approche experimentale et modelisation micromecanique du comportement des alliages de zirconium irradies

    Energy Technology Data Exchange (ETDEWEB)

    Onimus, F

    2003-12-01

    Zirconium alloys cladding tubes containing nuclear fuel of the Pressurized Water Reactors constitute the first safety barrier against the dissemination of radioactive elements. Thus, it is essential to predict the mechanical behavior of the material in-reactor conditions. This study aims, on the one hand, to identify and characterize the mechanisms of the plastic deformation of irradiated zirconium alloys and, on the other hand, to propose a micro-mechanical modeling based on these mechanisms. The experimental analysis shows that, for the irradiated material, the plastic deformation occurs by dislocation channeling. For transverse tensile test and internal pressure test this channeling occurs in the basal planes. However, for axial tensile test, the study revealed that the plastic deformation also occurs by channeling but in the prismatic and pyramidal planes. In addition, the study of the macroscopic mechanical behavior, compared to the deformation mechanisms observed by TEM, suggested that the internal stress is higher in the case of irradiated material than in the case of non-irradiated material, because of the very heterogeneous character of the plastic deformation. This analysis led to a coherent interpretation of the mechanical behavior of irradiated materials, in terms of deformation mechanisms. The mechanical behavior of irradiated materials was finally modeled by applying homogenization methods for heterogeneous materials. This model is able to reproduce adequately the mechanical behavior of the irradiated material, in agreement with the TEM observations. (author)

  13. Direct observation of markovian behavior of the mechanical unfolding of individual proteins.

    Science.gov (United States)

    Cao, Yi; Kuske, Rachel; Li, Hongbin

    2008-07-01

    Single-molecule force-clamp spectroscopy is a valuable tool to analyze unfolding kinetics of proteins. Previous force-clamp spectroscopy experiments have demonstrated that the mechanical unfolding of ubiquitin deviates from the generally assumed Markovian behavior and involves the features of glassy dynamics. Here we use single molecule force-clamp spectroscopy to study the unfolding kinetics of a computationally designed fast-folding mutant of the small protein GB1, which shares a similar beta-grasp fold as ubiquitin. By treating the mechanical unfolding of polyproteins as the superposition of multiple identical Poisson processes, we developed a simple stochastic analysis approach to analyze the dwell time distribution of individual unfolding events in polyprotein unfolding trajectories. Our results unambiguously demonstrate that the mechanical unfolding of NuG2 fulfills all criteria of a memoryless Markovian process. This result, in contrast with the complex mechanical unfolding behaviors observed for ubiquitin, serves as a direct experimental demonstration of the Markovian behavior for the mechanical unfolding of a protein and reveals the complexity of the unfolding dynamics among structurally similar proteins. Furthermore, we extended our method into a robust and efficient pseudo-dwell-time analysis method, which allows one to make full use of all the unfolding events obtained in force-clamp experiments without categorizing the unfolding events. This method enabled us to measure the key parameters characterizing the mechanical unfolding energy landscape of NuG2 with improved precision. We anticipate that the methods demonstrated here will find broad applications in single-molecule force-clamp spectroscopy studies for a wide range of proteins.

  14. Thermo-mechanical Response and Damping Behavior of Shape Memory Alloy-MAX Phase Composites

    Science.gov (United States)

    Kothalkar, Ankush Dilip; Benitez, Rogelio; Hu, Liangfa; Radovic, Miladin; Karaman, Ibrahim

    2014-05-01

    NiTi/Ti3SiC2 interpenetrating composites that combine two unique material systems—a shape memory alloy (SMA) and a MAX phase—demonstrating two different pseudoelastic mechanisms, were processed using spark plasma sintering. The goal of mixing these two material systems was to enhance the damping behavior and thermo-mechanical response of the composite by combining two pseudoelastic mechanisms, i.e., reversible stress-induced martensitic transformation in SMA and reversible incipient kink band formation in MAX phase. Equal volume fractions of equiatomic NiTi and Ti3SiC2 were used. Microstructural characterization was conducted using scanning electron microscopy to study the distribution of NiTi, Ti3SiC2, and remnant porosity in the composite. Thermo-mechanical testing in the form of thermal cycles under constant stress levels was performed in order to characterize shape memory behavior and thereby introducing residual stresses in the composites. Evolution of two-way shape memory effect was studied and related to the presence of residual stresses in the composites. Damping behavior, implying the energy dissipation per loading-unloading cycle under increasing compressive stresses, of pure NiTi, pure Ti3SiC2, as-sintered, and thermo-mechanically cycled (TC) NiTi/Ti3SiC2 composites, was investigated and compared to the literature data. In this study, the highest energy dissipation was observed for the TC composite followed by the as-sintered (AS) composite, pure NiTi, and pure Ti3SiC2 when compared at the same applied stress levels. Both the AS and TC composites showed higher damping up to 200 MPa stress than any of the metal—MAX phase composites reported in the literature to date. The ability to enhance the performance of the composite by controlling the thermo-mechanical loading paths was further discussed.

  15. Transformational Leadership and Organizational Citizenship Behavior: A Meta-Analytic Test of Underlying Mechanisms.

    Science.gov (United States)

    Nohe, Christoph; Hertel, Guido

    2017-01-01

    Based on social exchange theory, we examined and contrasted attitudinal mediators (affective organizational commitment, job satisfaction) and relational mediators (trust in leader, leader-member exchange; LMX) of the positive relationship between transformational leadership and organizational citizenship behavior (OCB). Hypotheses were tested using meta-analytic path models with correlations from published meta-analyses (761 samples with 227,419 individuals overall). When testing single-mediator models, results supported our expectations that each of the mediators explained the relationship between transformational leadership and OCB. When testing a multi-mediator model, LMX was the strongest mediator. When testing a model with a latent attitudinal mechanism and a latent relational mechanism, the relational mechanism was the stronger mediator of the relationship between transformational leadership and OCB. Our findings help to better understand the underlying mechanisms of the relationship between transformational leadership and OCB.

  16. Progress on modelling of the thermo-mechanical behavior of the CLIC two-beam module

    CERN Document Server

    Raatikainen, R; Niinikoski, T; Riddone, G

    2011-01-01

    under study, imposes micrometer mechanical stability of the 2-m long two-beam modules, the shortest repetitive elements of the main linacs. These modules will be exposed to variable high power dissipation during operation resulting in mechanical distortions in and between module components. The stability of the CLIC module will be tested in laboratory conditions at CERN in a full-scale prototype module. In this paper, the FEA model developed for CLIC prototype module is described. The thermal and structural results for the new module configuration are presented considering the thermo-mechanical behavior of the CLIC collider in its primary operation modes. These results will be compared to the laboratory measurements to be done during 2011 and 2012 with the full-scale prototype module. The experimental results will allow for better understanding of the module behaviour and they will be propagated back to the present thermo-mechanical model.

  17. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues

    Directory of Open Access Journals (Sweden)

    Hye-Sun Yu

    2016-02-01

    Full Text Available Mechanical loading is recognized to play an important role in regulating the behaviors of cells in bone and surrounding tissues in vivo. Many in vitro studies have been conducted to determine the effects of mechanical loading on individual cell types of the tissues. In this review, we focus specifically on the use of the Flexercell system as a tool for studying cellular responses to mechanical stretch. We assess the literature describing the impact of mechanical stretch on different cell types from bone, muscle, tendon, ligament, and cartilage, describing individual cell phenotype responses. In addition, we review evidence regarding the mechanotransduction pathways that are activated to potentiate these phenotype responses in different cell populations.

  18. A simplified mesoscale model for predicting the mechanical behavior of stitched CFRP laminates

    Science.gov (United States)

    Li, Jun; Wang, Bo; Jiao, Guiqiong

    2017-06-01

    This paper presents a finite element (FE) analysis of the mechanical responses for stitched CFRP laminates under different mechanical loads. Firstly, the through-thickness stitch was simplified to z-pin like reinforcement with a uniform displacement constraint on the upper and lower surfaces of the laminate. Then, a mesoscale 3D representative volume element (RVE) of the stitched composite was proposed and modeled in the FE code ABAQUS, where the reinforcing stitch, composite layers and interfaces were built. A 3D Hashin damage model and built-in cohesive elements were respectively used to predict the mechanical failure of the stitch and the damageable behavior of cohesive interfaces. Simulation results reveal the progressive damage and rupture processes of the RVE under tensile and shear mechanical loads, and macroscopic nonlinear load-displacement responses of the mesoscale model are also captured.

  19. Transformational Leadership and Organizational Citizenship Behavior: A Meta-Analytic Test of Underlying Mechanisms

    Directory of Open Access Journals (Sweden)

    Christoph Nohe

    2017-08-01

    Full Text Available Based on social exchange theory, we examined and contrasted attitudinal mediators (affective organizational commitment, job satisfaction and relational mediators (trust in leader, leader-member exchange; LMX of the positive relationship between transformational leadership and organizational citizenship behavior (OCB. Hypotheses were tested using meta-analytic path models with correlations from published meta-analyses (761 samples with 227,419 individuals overall. When testing single-mediator models, results supported our expectations that each of the mediators explained the relationship between transformational leadership and OCB. When testing a multi-mediator model, LMX was the strongest mediator. When testing a model with a latent attitudinal mechanism and a latent relational mechanism, the relational mechanism was the stronger mediator of the relationship between transformational leadership and OCB. Our findings help to better understand the underlying mechanisms of the relationship between transformational leadership and OCB.

  20. The contributions of cognitive neuroscience and neuroimaging to understanding mechanisms of behavior change in addiction.

    Science.gov (United States)

    Morgenstern, Jon; Naqvi, Nasir H; Debellis, Robert; Breiter, Hans C

    2013-06-01

    In the last decade, there has been an upsurge of interest in understanding the mechanisms of behavior change (MOBC) and effective behavioral interventions as a strategy to improve addiction-treatment efficacy. However, there remains considerable uncertainty about how treatment research should proceed to address the MOBC issue. In this article, we argue that limitations in the underlying models of addiction that inform behavioral treatment pose an obstacle to elucidating MOBC. We consider how advances in the cognitive neuroscience of addiction offer an alternative conceptual and methodological approach to studying the psychological processes that characterize addiction, and how such advances could inform treatment process research. In addition, we review neuroimaging studies that have tested aspects of neurocognitive theories as a strategy to inform addiction therapies and discuss future directions for transdisciplinary collaborations across cognitive neuroscience and MOBC research.

  1. How media campaigns influence children's physical activity: expanding the normative mechanisms of the theory of planned behavior.

    Science.gov (United States)

    Paek, Hye-Jin; Oh, Hyun Jung; Hove, Thomas

    2012-01-01

    This study explicates mechanisms of media campaign effectiveness in the context of children's physical activity. The authors' model expands the theory of planned behavior by integrating injunctive and descriptive norms into its normative mechanism. Analysis of a 3-wave nationally representative evaluation survey among 1,623 tweens indicates that campaign exposure is significantly related, but only indirectly, to both physical activity intention and physical activity behavior. Instead, campaign exposure seems more strongly related to perceived behavioral control and attitudes toward physical activity. By contrast, perceived behavioral control and descriptive norms are strongly related to behavioral intention. The findings suggest that integrating normative mechanisms with the theory of planned behavior can improve efforts to predict and explain a health behavior.

  2. [Behavioral characteristics of nicotine seeking: a role of the nicotine-conditioned effects and other mechanisms].

    Science.gov (United States)

    Itasaka, Michio; Hironaka, Naoyuki; Miyata, Hisatsugu

    2015-06-01

    Nicotine dependence and its neural mechanisms have been well documented by pharmacological, behavioral and neuroscience studies. In this review, we introduce recent new findings in this theme, particularly on the role of nicotine -associated stimuli as non-pharmacological factors affecting maintaining/reinstating nicotine seeking. By using the techniques of drug self-administration and conditioned place preference, nicotine's specific property of forming seeking/taking behavior is well characterized, and the mechanisms of seeking/taking could be partly explained by discrete and/or contextual conditioned stimuli (dCS and cCS). After having the repeated Pavlovian conditioning in the training/conditioning sessions, CSs begin to play a key role for eliciting nicotine seeking behavior, with the activation of mesolimbic dopaminergic systems. In our study, intracranial self- stimulation (ICSS) was used to assess the mesolimbic dopamine activity. The nicotine-associated cCS also activated this neural system, which resulted in decreasing the ICSS threshold approximately 20% in the testing session under the cCS presentation. This finding would support the evidence of CS-induced incentive motivation for nicotine. According to the incentive salience hypothesis, the mesolimbic dopamine reflects the motivation elicited by incentives (CSs), and induces the drug seeking behavior, which is activated through amygdala--nucleus accumbens--medial prefrontal cortex circuit. Additionally, human brain imaging studies have revealed that tobacco- associated stimuli activate not only these regions, but also right temporo-parietal junction of human cortex, which is relevant to the visual attention. In summary, the above evidence shows that nicotine-conditioned stimuli might have powerful incentive salience and regulate nicotine seeking/taking behavior in animals and humans, though stress and nicotine-withdrawal could also enhance nicotine taking in the same way as other dependence -producing

  3. Prediction of anisotropic behavior of nano/micro composite based on damage mechanics with cell modeling.

    Science.gov (United States)

    Lee, Dock-Jin; Kim, Young-Jin; Kim, Moon-Ki; Choi, Jae-Boong; Chang, Yoon-Suk; Liu, Wing Kam

    2011-01-01

    New advanced composite materials have recently been of great interest. Especially, many researchers have studied on nano/micro composites based on matrix filled with nano-particles, nano-tubes, nano-wires and so forth, which have outstanding characteristics on thermal, electrical, optical, chemical and mechanical properties. Therefore, the need of numerical approach for design and development of the advanced materials has been recognized. In this paper, finite element analysis based on multi-resolution continuum theory is carried out to predict the anisotropic behavior of nano/micro composites based on damage mechanics with a cell modeling. The cell modeling systematically evaluates constitutive relationships from microstructure of the composite material. Effects of plastic anisotropy on deformation behavior and damage evolution of nano/micro composite are investigated by using Hill's 48 yield function and also compared with those obtained from Gurson-Tvergaard-Needleman isotropic damage model based on von Mises yield function.

  4. Anisotropic mechanical behavior of an injection molded short fiber reinforced thermoplastic

    Science.gov (United States)

    Lopez, Delphine; Thuillier, Sandrine; Bessières, Nicolas; Grohens, Yves

    2016-10-01

    A short fiber reinforced thermoplastic was injected into a rectangular mold, in order to prepare samples to characterize the mechanical behavior of the material. The injection process was simulated with Moldflow and a cutting pattern was deduced from the predicted fiber orientation, leading to samples with several well-defined orientations with respect to the injection direction. Monotonic tensile tests up to rupture, as well as complex cycles made of loading steps followed by relaxation steps at different strain levels were performed, in order to check the reproducibility for a given orientation. Moreover, the fiber orientation in the central part of the tensile samples was also analyzed with X-ray tomography. The results show that the mechanical behavior for each orientation (among 6) was rather reproducible, thus validating the cutting pattern.

  5. Mechanisms of odor-tracking: multiple sensors for enhanced perception and behavior

    Directory of Open Access Journals (Sweden)

    Alex Gomez-Marin

    2010-03-01

    Full Text Available Early in evolution, the ability to sense and respond to changing environments must have provided a critical survival advantage to living organisms. From bacteria and worms to flies and vertebrates, sophisticated mechanisms have evolved to enhance odor detection and localization. Here, we review several modes of chemotaxis. We further consider the relevance of a striking and recurrent motif in the organization of invertebrate and vertebrate sensory systems, namely the existence of two symmetrical olfactory sensors. By combining our current knowledge about the olfactory circuits of larval and adult Drosophila, we examine the molecular and neural mechanisms underlying robust olfactory perception and extend these analyses to recent behavioral studies addressing the relevance and function of bilateral olfactory input for gradient detection. Finally, using a comparative theoretical approach based on Braitenberg’s vehicles, we speculate about the relationships between anatomy, circuit architecture and stereotypical orientation behaviors.

  6. The Mechanical Behavior of Bone Cement in THR in the Presense of Cavities

    Directory of Open Access Journals (Sweden)

    A. Benouis

    2014-06-01

    Full Text Available In this work we analyze three-dimensionally using the finite element method, the level and the Von Mises stress equivalent distribution induced around a cavity and between two cavities located in the proximal and distal bone cement polymethylmethacrylate (PMMA. The effects of the position around two main axes (vertical and horizontal of the cavity with respect to these axes, of the cavity - cavity interdistance and of the type of loading (static on the mechanical behavior of cement orthopedic are highlighted. We show that the breaking strain of the cement is largely taken when the cement in its proximal-lateral part contains cavities very close adjacent to each other. This work highlights not only the effect of the density of cavities, in our case simulated by cavity-cavity interdistance, but also the nature of the activity of the patient (patient standing corresponding to static efforts on the mechanical behavior of cement.

  7. The effect of multiaxial stress state on creep behavior and fracture mechanism of P92 steel

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yuan; Xu, Hong, E-mail: xuhong@ncepu.edu.cn; Ni, Yongzhong; Lan, Xiang; Li, Hongyuan

    2015-06-11

    The creep experiments on plain and double U-typed notched specimens were conducted on P92 steel at 650 °C. The notch strengthening effect was found in the notched specimens. Fracture appearance observed by scanning electron microscopy revealed that dimpled fracture for relatively blunt notched specimen, and dimpled fracture doubled with intergranular brittle fracture for relatively sharp notched specimen, which meant that fracture mechanism of P92 steel altered due to the presence of the notch. Meanwhile, based on Norton–Bailey and Kachanov–Robotnov constitutive models, a modified model was proposed. Finite element simulations were carried out to investigate the effect of multiaxial stress state on the creep behavior, fracture mechanism and damage evolvement of P92 steel. The simulation results agreed well with the fracture behaviors observed experimentally.

  8. Non-destructive thermo-mechanical behavior assessment of glass-ceramics for dental applications

    Science.gov (United States)

    Kordatos, E. Z.; Abdulkadhim, Z.; Feteira, A. M.

    2017-05-01

    Every year millions of people seek dental treatment to either repair damaged, unaesthetic and dysfunctional teeth or replace missing natural teeth. Several dental materials have been developed to meet the stringent requirements in terms of mechanical properties, aesthetics and chemical durability in the oral environment. Glass-ceramics exhibit a suitable combination of these properties for dental restorations. This research is focused on the assessment of the thermomechanical behavior of bio-ceramics and particularly lithium aluminosilicate glass-ceramics (LAS glass-ceramics). Specifically, methodologies based on Infrared Thermography (IRT) have been applied in order the structure - property relationship to be evaluated. Non-crystallized, partially crystallized and fully crystallized glass-ceramic samples have been non-destructively assessed in order their thermo-mechanical behavior to be associated with their micro-structural features.

  9. Influence of Rubber Powders on Foaming Behavior and Mechanical Properties of Foamed Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    HE Yue

    2017-02-01

    Full Text Available Polypropylene/rubber powders composites with different kinds of rubber powders were foamed by injection molding machine equipped with volume-adjustable cavity. The effect of dispersity of rubber powders and crystallization behavior of composites on the foaming behavior and mechanical properties was investigated. The results show that the addition of rubber powders can improve the cell structure of foamed PP with fine and uniform cell distribution. And cell density and size of PP/PP-MAH/NBR foams are 7.64×106cell/cm3 and 29.78μm respectively, which are the best among these foams. Combining cell structures with mechanical properties, notch impact strength of PP/PP-MAH/CNBR composites increases approximately by 2.2 times while tensile strength is reduced just by 26% compared with those of the pure PP. This indicates that PP/PP-MAH/CNBR composites are ideal foamed materials.

  10. Toward the topology design of mechanisms that exhibit snap-through behavior

    DEFF Research Database (Denmark)

    Burns, T. E.; Sigmund, Ole

    2004-01-01

    approach for the design of mechanisms that experience more complex snap-through behavior. A multiphase design strategy is outlined, numerous significant challenges to this complex design process are discussed, and several examples are presented that demonstrate progress toward this goal. (C) 2004 Elsevier......Topology optimization has proven to be a powerful method for the conceptual design of structures and mechanisms. In previously published work, we concentrated on the development of numerical methods that accommodate the finite deformation and incorporated these analyses into the topology...... optimization. We demonstrated by relatively straightforward transversely loaded clamped-clamped beam examples that topology optimization can be used to design structures that experience snap-through behavior. Here, we focus our attention on the design problem formulation where the goal is to develop a general...

  11. Mechanical behavior of the U-anchor of super-CFRP rod under tensile loading

    OpenAIRE

    Djamaluddin, Rudy; yamaguchi, Kohei; Hino, Shinichi

    2014-01-01

    - A suitable anchoring system is required to anchor a CFRP tendon due to its sensitivity in lateral pressure. Recent developed anchors are still relying on lateral pressure in anchoring CFRP tendons. A new CFRP unit equipped with U-anchor at both end of the rod body without any jointing (namely of Super CFRP, S-CFRP) has been developed. This paper presents the mechanical behavior as well as failure mechanism of U-anchor under direct loading and loaded under embedded within concrete, respec...

  12. The effects of glycosaminoglycan degradation on the mechanical behavior of the posterior porcine sclera.

    Science.gov (United States)

    Murienne, Barbara J; Jefferys, Joan L; Quigley, Harry A; Nguyen, Thao D

    2015-01-01

    Pathological changes in scleral glycosaminoglycan (GAG) content and in scleral mechanical properties have been observed in eyes with glaucoma and myopia. The purpose of this study is to investigate the effect of GAG removal on the scleral mechanical properties to better understand the impact of GAG content variations in the pathophysiology of glaucoma and myopia. We measured how the removal of sulphated GAG (s-GAG) affected the hydration, thickness and mechanical properties of the posterior sclera in enucleated eyes of 6-9 month-old pigs. Measurements were made in 4 regions centered on the optic nerve head (ONH) and evaluated under 3 conditions: no treatment (control), after treatment in buffer solution alone, and after treatment in buffer containing chondroitinase ABC (ChABC) to remove s-GAGs. The specimens were mechanically tested by pressure-controlled inflation with full-field deformation mapping using digital image correlation (DIC). The mechanical outcomes described the tissue tensile and viscoelastic behavior. Treatment with buffer alone increased the hydration of the posterior sclera compared to controls, while s-GAG removal caused a further increase in hydration compared to buffer-treated scleras. Buffer-treatment significantly changed the scleral mechanical behavior compared to the control condition, in a manner consistent with an increase in hydration. Specifically, buffer-treatment led to an increase in low-pressure stiffness, hysteresis, and creep rate, and a decrease in high-pressure stiffness. ChABC-treatment on buffer-treated scleras had opposite mechanical effects than buffer-treatment on controls, leading to a decrease in low-pressure stiffness, hysteresis, and creep rate, and an increase in high-pressure stiffness and transition strain. Furthermore, s-GAG digestion dramatically reduced the differences in the mechanical behavior among the 4 quadrants surrounding the ONH as well as the differences between the circumferential and meridional

  13. Mechanical behavior of the mirror fusion test Facility superconducting magnet coils

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, J.A.

    1980-01-01

    The mechanical response to winding and electromagnetic loads of the Mirror Fusion Test Facility (MFTF) superconducting coil pack is presented. The 375-ton (3300 N) MFTF Yin-Yang magnet, presently the world's largest superconducting magnet, is scheduled for acceptance cold-testing in May of 1981. The assembly is made up of two identical coils which together contain over 15 miles (24 km) of superconductor wound in 58 consecutive layers of 24 turns each. Topics associated with mechanical behavior include physical properties of the coil pack and its components, winding pre-load effects, finite element analysis, magnetic load redistribution, and the design impact of predicted conductor motion.

  14. Mechanical Behavior of Free-Standing Fuel Cell Electrodes on Water Surface.

    Science.gov (United States)

    Kim, Sanwi; Kim, Jae-Han; Oh, Jong-Gil; Jang, Kyung-Lim; Jeong, Byeong-Heon; Hong, Bo Ki; Kim, Taek-Soo

    2016-06-22

    Fundamental understanding of the mechanical behavior of polymer electrolyte fuel cell electrodes as free-standing materials is essential to develop mechanically robust fuel cells. However, this has been a significant challenge due to critical difficulties, such as separating the pristine electrode from the substrate without damage and precisely measuring the mechanical properties of the very fragile and thin electrodes. We report the mechanical behavior of free-standing fuel cell electrodes on the water surface through adopting an innovative ice-assisted separation method to separate the electrode from decal transfer film. It is found that doubling the ionomer content in electrodes increases not only the tensile stress at the break and the Young's modulus (E) of the electrodes by approximately 2.1-3.5 and 1.7-2.4 times, respectively, but also the elongation at the break by approximately 1.5-1.7 times, which indicates that stronger, stiffer, and tougher electrodes are attained with increasing ionomer content, which have been of significant interest in materials research fields. The scaling law relationship between Young's modulus and density (ρ) has been unveiled as E ∼ ρ(1.6), and it is compared with other materials. These findings can be used to develop mechanically robust electrodes for fuel cell applications.

  15. Mechanical Properties and Transformation Behavior of NiTiNb Shape Memory Alloys

    Institute of Scientific and Technical Information of China (English)

    Liu Wei; Zhao Xinqing

    2009-01-01

    NiTiNb shape memory alloys have attracted much attention in pipe coupling or sealing system because of their large transformation hysteresis upon a proper pre-deformation. In order to clarify the effects of adding Nb on the mechanical properties as well as the transformation behavior of NiTiNb shape memory alloys, Ni_(47)Ti_(44)Nb_9 and Ni_(49.8)Ti_(45.2)Nb_5 alloys with different microstructures but with similar martensitic transformation start temperature, are prepared. Comparative studies on the microstructures, mechanical properties and transformation characteristics are conducted by means of scanning electron microscopy (SEM), phase transformation measurements and mechanical property tests. It is found that Ni_(47)Ti_(44)Nb_9 and Ni49.8Ti45.2Nb5 alloys possess similar transformation hysteresis in the as-annealed state. However, the presence of Nb and its status exerts important effects on the mechanical properties, especially the yield strength and the yield behavior of the alloys. Ni_(49.8)Ti_(45.2)Nb_5 alloy exhibits remarkable increase in the yield strength than the Ni_(47)Ti_(44)Nb_9 alloy. The transformation hysteresis of both alloys under pre-deformation is characterized and the relative mechanism is discussed.

  16. Preliminary study of mechanical behavior for Cr coated Zr-4 Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do-Hyoung; Kim, Hak-Sung [Hanyang Univ., Seoul (Korea, Republic of); Kim, Hyo-Chan; Yang, Yong-Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    To decrease the oxidation rate of Zr-based alloy components, many concepts of accident tolerant fuel (ATF) such as Mo-Zr cladding, SiC/SiCf cladding and iron-based alloy cladding are under development. One of the promised concept is the coated cladding which can remarkably increase the corrosion and wear resistance. Recently, KAERI is developing the Cr coated Zircaloy cladding as accident tolerance cladding. To coat the Cr powder on the Zircaloy, 3D laser coating technology has been employed because it is possible to make a coated layer on the tubular cladding surface by controlling the 3-diminational axis. Therefore, for this work, the mechanical integrity of Cr coated Zircaloy should be evaluated to predict the safety of fuel cladding during the operating or accident of nuclear reactor. In this work, the mechanical behavior of the Cr coated Zircaloy cladding has been studied by using finite element analysis (FEA). The ring compression test (RCT) of fuel cladding was simulated to evaluate the validity of mechanical properties of Zr-4 and Cr, which were referred from the literatures and experimental reports. In this work, the mechanical behavior of the Cr coated Zircaloy cladding has been studied by using finite element analysis (FEA). The ring compression test (RCT) of fuel cladding was simulated to evaluate the validity of mechanical properties of Zr-4 and Cr. The pellet-clad mechanical interaction (PCMI) properties of Cr coated Zr-4 cladding were investigated by thermo-mechanical finite element analysis (FEA) simulation. The mechanical properties of Zr-4 and Cr was validated by simulation of ring compression test (RCT) of fuel cladding.

  17. Multiaxial mechanical behavior of human fetal membranes and its relationship to microstructure.

    Science.gov (United States)

    Buerzle, W; Haller, C M; Jabareen, M; Egger, J; Mallik, A S; Ochsenbein-Koelble, N; Ehrbar, M; Mazza, E

    2013-08-01

    This study was directed to the measurement of the mechanical response of fetal membranes to physiologically relevant loading conditions. Characteristic mechanical parameters were determined and their relation to the microstructural constituents collagen and elastin as well as to the pyridinium cross-link concentrations analyzed. 51 samples from twelve fetal membranes were tested on a custom-built inflation device, which allows mechanical characterization within a multiaxial state of stress. Methods of nonlinear continuum mechanics were used to extract representative mechanical parameters. Established biochemical assays were applied for the determination of the collagen and elastin content. Collagen cross-link concentrations were determined by high-performance liquid chromatography measurements. The results indicate a distinct correlation between the mechanical parameters of high stretch stiffness and membrane tension at rupture and the biochemical data of collagen content and pyridinoline as well as deoxypyridinoline concentrations. No correlation was observed between the mechanical parameters and the elastin content. Moreover, the low stretch stiffness is, with a value of 105 ± 31 × 10(-3) N/ mm much higher for a biaxial state of stress compared to a uniaxial stress configuration. Determination of constitutive model equations leads to better predictive capabilities for a reduced polynomial hyperelastic model with only terms related to the second invariant, I 2, of the right Cauchy-Green deformation tensor. Relevant insights were obtained on the mechanical behavior of fetal membranes. Collagen and its cross-linking were shown to determine membrane's stiffness and strength for multiaxial stress states. Their nonlinear deformation behavior characterizes the fetal membranes as I 2 material.

  18. Mechanical behavior of Fiber Reinforced SiC/RBSN Ceramic Matrix Composites: Theory and Experiment

    Science.gov (United States)

    1991-01-01

    AD-A235 926 NASA AVSCOM Technical Memorandum 103688 Technical Report 91-C-004 Mechanical Behavior of Fiber Reinforced SiC/RBSN Ceramic Matrix Composites : Theory... CERAMIC MATRIX COMPOSITES : THEORY AND EXPERIMENT Abhisak Chulya* Department of Civil Engineering Cleveland State University Cleveland, Ohio 44115...tough and sufficiently stable continuous fiber- reinforced ceramic matrix composites (CMC) which can survive in oxidizing environ- ments at temperatures

  19. Effects of bituminous layer as backfill material on mechanical behavior in tunnel model

    OpenAIRE

    Moriyoshi, Akihiro; Takano, Shin-ei; Urata, Hiroyuki; Suzuki, Tetsuya; Yoshida, Takaki

    2001-01-01

    This paper describes the effects of bituminous material as a backfill material on mechanical behavior in model tunnel in laboratory. It is known that load spreading and relaxation of bituminous material are good properties. Then if we use bituminous material as a backfill material of tunnel, the tunnel will have waterproof, good load spreading property. We used new bituminous material (Aquaphalt) which can solidify in water. We conducted relaxation test in tension for new bituminous mat...

  20. Study of the mechanical behavior of cortical bone microstructure by the finite element method

    OpenAIRE

    Arango Villegas, Camila

    2016-01-01

    [EN] Cortical bone tissue is the responsible of giving support and structure to vertebrates. For that reason, understanding and analyzing its behavior is needed from each different hierarchical level that composes it. The lower the structural scale is, the greater the complexity and scarcity of studies in literature. These studies are relevant for understanding, preventing and solving important health problems that affect human beings. From a mechanical point of view is interesting to eval...

  1. Sensory gain outperforms efficient readout mechanisms in predicting attention-related improvements in behavior.

    Science.gov (United States)

    Itthipuripat, Sirawaj; Ester, Edward F; Deering, Sean; Serences, John T

    2014-10-01

    Spatial attention has been postulated to facilitate perceptual processing via several different mechanisms. For instance, attention can amplify neural responses in sensory areas (sensory gain), mediate neural variability (noise modulation), or alter the manner in which sensory signals are selectively read out by postsensory decision mechanisms (efficient readout). Even in the context of simple behavioral tasks, it is unclear how well each of these mechanisms can account for the relationship between attention-modulated changes in behavior and neural activity because few studies have systematically mapped changes between stimulus intensity, attentional focus, neural activity, and behavioral performance. Here, we used a combination of psychophysics, event-related potentials (ERPs), and quantitative modeling to explicitly link attention-related changes in perceptual sensitivity with changes in the ERP amplitudes recorded from human observers. Spatial attention led to a multiplicative increase in the amplitude of an early sensory ERP component (the P1, peaking ∼80-130 ms poststimulus) and in the amplitude of the late positive deflection component (peaking ∼230-330 ms poststimulus). A simple model based on signal detection theory demonstrates that these multiplicative gain changes were sufficient to account for attention-related improvements in perceptual sensitivity, without a need to invoke noise modulation. Moreover, combining the observed multiplicative gain with a postsensory readout mechanism resulted in a significantly poorer description of the observed behavioral data. We conclude that, at least in the context of relatively simple visual discrimination tasks, spatial attention modulates perceptual sensitivity primarily by modulating the gain of neural responses during early sensory processing. Copyright © 2014 the authors 0270-6474/14/3313384-15$15.00/0.

  2. A new isotropic cell for studying the thermo-mechanical behavior of unsaturated expansive clays

    CERN Document Server

    Tang, Anh-Minh; Barnel, Nathalie

    2007-01-01

    This paper presents a new suction-temperature controlled isotropic cell that can be used to study the thermo-mechanical behavior of unsaturated expansive clays. The vapor equilibrium technique is used to control the soil suction; the temperature of the cell is controlled using a thermostat bath. The isotropic pressure is applied using a volume/pressure controller that is also used to monitor the volume change of soil specimen. Preliminary experimental results showed good performance of the cell.

  3. Regular behaviors in SU(2) Yang—Mills classical mechanics

    Institute of Scientific and Technical Information of China (English)

    XuXiao-Ming

    1997-01-01

    In order to study regular behaviors in high-energy nucleon-nucleon collisions,a representation of the vector potential Aia is defined with respect to the (a,i)-dependence in the SU(2) Yang-Mills classical mechanics,Equations of the classical infraed field as well as effective potentials are derved for the elastic or inelastic collision of two plane waves in a three-mode model and the decay of an excited spherically-symmetric field.

  4. Remeshed smoothed particle hydrodynamics simulation of the mechanical behavior of human organs.

    Science.gov (United States)

    Hieber, Simone E; Walther, Jens H; Koumoutsakos, Petros

    2004-01-01

    In computer aided surgery the accurate simulation of the mechanical behavior of human organs is essential for the development of surgical simulators. In this paper we introduce particle based simulations of two different human organ materials modeled as linear viscoelastic solids. The constitutive equations for the material behavior are discretized using a particle approach based on the Smoothed Particle Hydrodynamics (SPH) method while the body surface is tracked using level sets. A key aspect of this approach is its flexibility which allows the simulation of complex time varying topologies with large deformations. The accuracy of the original formulation is significantly enhanced by using a particle reinitialization technique resulting in remeshed Smoothed Particle Hydrodynamics (rSPH). The mechanical parameters of the systems used in the simulations are derived from experimental measurements on human cadaver organs. We compare the mechanical behavior of liver- and kidney-like materials based on the dynamic simulations of a tensile test case. Moreover, we present a particle based reconstruction of the liver topology and its strain distribution under a small local load. Finally, we demonstrate a unified formulation of fluid structure interaction based on particle methods.

  5. Thermo-mechanical behavior and structure of melt blown shape-memory polyurethane nonwovens.

    Science.gov (United States)

    Safranski, David L; Boothby, Jennifer M; Kelly, Cambre N; Beatty, Kyle; Lakhera, Nishant; Frick, Carl P; Lin, Angela; Guldberg, Robert E; Griffis, Jack C

    2016-09-01

    New processing methods for shape-memory polymers allow for tailoring material properties for numerous applications. Shape-memory nonwovens have been previously electrospun, but melt blow processing has yet to be evaluated. In order to determine the process parameters affecting shape-memory behavior, this study examined the effect of air pressure and collector speed on the mechanical behavior and shape-recovery of shape-memory polyurethane nonwovens. Mechanical behavior was measured by dynamic mechanical analysis and tensile testing, and shape-recovery was measured by unconstrained and constrained recovery. Microstructure changes throughout the shape-memory cycle were also investigated by micro-computed tomography. It was found that increasing collector speed increases elastic modulus, ultimate strength and recovery stress of the nonwoven, but collector speed does not affect the failure strain or unconstrained recovery. Increasing air pressure decreases the failure strain and increases rubbery modulus and unconstrained recovery, but air pressure does not influence recovery stress. It was also found that during the shape-memory cycle, the connectivity density of the fibers upon recovery does not fully return to the initial values, accounting for the incomplete shape-recovery seen in shape-memory nonwovens. With these parameter to property relationships identified, shape-memory nonwovens can be more easily manufactured and tailored for specific applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The search for mechanisms of change in behavioral treatments for alcohol use disorders: a commentary.

    Science.gov (United States)

    Longabaugh, Richard

    2007-10-01

    Definitive results from efforts to identify mechanisms of change in behavioral treatments for alcohol use disorders have been elusive. The working hypothesis guiding this paper is that one of the reasons for this elusiveness is that the models we hypothesize to account for treatments effectiveness are unnecessarily restricted and too simple. This paper aims to accomplish 3 things. First, a typography for locating potential mediators of change will be presented. In the course of doing so, a nomenclature will be proposed with the hope that this will facilitate communications among alcohol treatment researchers studying mechanisms of change. Second, alternatives to the classic test of mediation of alcohol treatment effects will be considered and one such alternative described. Third, alternative ways of conceptualizing, constructing and analyzing variables to measure mediators will be suggested. It is hoped that this commentary will facilitate research on mechanisms of change in behavioral treatments for alcohol use disorders. Behavioral change is a complex process, and the models that we develop to account for this process need to reflect this complexity. Advances in statistical approaches for testing mediation, along with a better understanding as to how to use these tools should help in moving toward this goal.

  7. Social behavior of zebrafish: from synthetic images to biological mechanisms of shoaling.

    Science.gov (United States)

    Gerlai, Robert

    2014-08-30

    The zebrafish strikes a good balance between system complexity and practical simplicity and as a result it is becoming increasingly frequently utilized in biomedical research as a translational tool. Numerous human brain disorders are associated with abnormal social behavior and the zebrafish has been suggested for modeling such disorders. To start this line of research, however, one may need to first thoroughly examine the laboratory organism, zebrafish, and its features, social behavior in this case. Proper methods need be developed to induce and quantify social behavior. These paradigms may be able to open a window to the brain and facilitate the understanding of the biological mechanisms of social behavior and its abnormalities. This review is based on an oral paper presented at the last Measuring Behavior Conference, and as such it is mainly focused on research conducted in my own laboratory. Tracing the temporal progression of our own work, it discusses questions including what shoaling is, how it can be induced and measured and how it can be utilized in the modeling of certain human brain disorders, for example, alcohol induced abnormalities. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Mechanical cell-matrix feedback explains pairwise and collective endothelial cell behavior in vitro.

    Directory of Open Access Journals (Sweden)

    René F M van Oers

    2014-08-01

    Full Text Available In vitro cultures of endothelial cells are a widely used model system of the collective behavior of endothelial cells during vasculogenesis and angiogenesis. When seeded in an extracellular matrix, endothelial cells can form blood vessel-like structures, including vascular networks and sprouts. Endothelial morphogenesis depends on a large number of chemical and mechanical factors, including the compliancy of the extracellular matrix, the available growth factors, the adhesion of cells to the extracellular matrix, cell-cell signaling, etc. Although various computational models have been proposed to explain the role of each of these biochemical and biomechanical effects, the understanding of the mechanisms underlying in vitro angiogenesis is still incomplete. Most explanations focus on predicting the whole vascular network or sprout from the underlying cell behavior, and do not check if the same model also correctly captures the intermediate scale: the pairwise cell-cell interactions or single cell responses to ECM mechanics. Here we show, using a hybrid cellular Potts and finite element computational model, that a single set of biologically plausible rules describing (a the contractile forces that endothelial cells exert on the ECM, (b the resulting strains in the extracellular matrix, and (c the cellular response to the strains, suffices for reproducing the behavior of individual endothelial cells and the interactions of endothelial cell pairs in compliant matrices. With the same set of rules, the model also reproduces network formation from scattered cells, and sprouting from endothelial spheroids. Combining the present mechanical model with aspects of previously proposed mechanical and chemical models may lead to a more complete understanding of in vitro angiogenesis.

  9. Prediction of the "in vivo" mechanical behavior of biointegrable acrylic macroporous scaffolds.

    Science.gov (United States)

    Vikingsson, L; Antolinos-Turpin, C M; Gómez-Tejedor, J A; Gallego Ferrer, G; Gómez Ribelles, J L

    2016-04-01

    This study examines a biocompatible scaffold series of random copolymer networks P(EA-HEA) made of Ethyl Acrylate, EA, and 2-Hydroxyl Ethyl Acrylate, HEA. The P(EA-HEA) scaffolds have been synthesized with varying crosslinking density and filled with a Poly(Vinyl Alcohol), PVA, to mimic the growing cartilaginous tissue during tissue repair. In cartilage regeneration the scaffold needs to have sufficient mechanical properties to sustain the compression in the joint and, at the same time, transmit mechanical signals to the cells for chondrogenic differentiation. Mechanical tests show that the elastic modulus increases with increasing crosslinking density of P(EA-HEA) scaffolds. The water plays an important role in the mechanical behavior of the scaffold, but highly depends on the crosslinking density of the proper polymer. Furthermore, when the scaffold with hydrogel is tested it can be seen that the modulus increases with increasing hydrogel density. Even so, the mechanical properties are inferior than those of the scaffolds with water filling the pores. The hydrogel inside the pores of the scaffolds facilitates the expulsion of water during compression and lowers the mechanical modulus of the scaffold. The P(EA-HEA) with PVA shows to be a good artificial cartilage model with mechanical properties close to native articular cartilage.

  10. Mechanical Behavior of Low Porosity Carbonate Rock: From Brittle Creep to Ductile Creep.

    Science.gov (United States)

    Nicolas, A.; Fortin, J.; Gueguen, Y.

    2014-12-01

    Mechanical compaction and associated porosity reduction play an important role in the diagenesis of porous rocks. They may also affect reservoir rocks during hydrocarbon production, as the pore pressure field is modified. This inelastic compaction can lead to subsidence, cause casing failure, trigger earthquake, or change the fluid transport properties. In addition, inelastic deformation can be time - dependent. In particular, brittle creep phenomena have been deeply investigated since the 90s, especially in sandstones. However knowledge of carbonates behavior is still insufficient. In this study, we focus on the mechanical behavior of a 14.7% porosity white Tavel (France) carbonate rock (>98% calcite). The samples were deformed in a triaxial cell at effective confining pressures ranging from 0 MPa to 85 MPa at room temperature and 70°C. Experiments were carried under dry and water saturated conditions in order to explore the role played by the pore fluids. Two types of experiments have been carried out: (1) a first series in order to investigate the rupture envelopes, and (2) a second series with creep experiments. During the experiments, elastic wave velocities (P and S) were measured to infer crack density evolution. Permeability was also measured during creep experiments. Our results show two different mechanical behaviors: (1) brittle behavior is observed at low confining pressures, whereas (2) ductile behavior is observed at higher confining pressures. During creep experiments, these two behaviors have a different signature in term of elastic wave velocities and permeability changes, due to two different mechanisms: development of micro-cracks at low confining pressures and competition between cracks and microplasticity at high confining pressure. The attached figure is a summary of 20 triaxial experiments performed on Tavel limestone under different conditions. Stress states C',C* and C*' and brittle strength are shown in the P-Q space: (a) 20°C and dry

  11. Superplastic forming of Ti6Al4V alloy using ZrO_2-TiO_2 ceramic die with adjustable linear thermal expansion coefficient

    Institute of Scientific and Technical Information of China (English)

    JIANG Shao-song; ZHANG Kai-feng

    2009-01-01

    Firstly, the relation between the coefficient of thermal expansion(CTE) and the volume fraction of TiO_2 was investigated, and also the influence of relative density of ceramic on the CTE was studied. The results show that the volume fraction, of TiO_2 and the relative density both make influence on the CTE of ZrO_2-TiO_2 ceramic. According to the results, the ZrO_2-TiO_2(volume fraction of TiO_2 is 27%) ceramic die with the similar CTE (8.92×10~(-6)℃~(-1)) to Ti6Al4V was fabricated. Secondly, to evaluate the dimensional accuracy of the workpiece superplastically formed, the Ti6Al4V impression experiment was performed. The result shows that the dimensional inaccuracy of workpieee is 0.003. Thirdly, in order to evaluate the practicability, the experiment of superplastic forming Ti6Al4V using ZrO_2-TiO_2 cylinder ceramic die was carried out. The Ti6Al4V cylinder shows good shape retention and surface quality, and high dimensional accuracy. The ceramic dies seem to be adequate for superplastic forming the high accuracy Ti6Al4V,and the trials have confirmed the potential of the ZrO2-TiO2 ceramic die.

  12. Microstructure and property of 1.6% C-UHCS/40Cr joint after superplastic welding via interlayer%具有中间夹层的1.6%C-UHCS/40Cr超塑性焊接接头组织和性能

    Institute of Scientific and Technical Information of China (English)

    衡中皓; 张柯柯; 乔騻; 张占领; 张晓娇; 涂益民

    2012-01-01

    采用工业纯铁中间层,在非真空、无保护气氛条件下,进行1.6%C-UHCS/40Cr的超塑性焊接试验.试验结果表明,采用工业纯铁中间层能提高1.6%C-UHCS/40Cr超塑性焊接接头界面塑性变形能力,促进扩散,改善接头区组织性能.在预压应力56.6 MPa、焊接温度780℃、初始应变速率1.5×10-4/S的条件下,经15 min压接,接头强度可达560 MPa,比不加中间层的超塑性焊接接头强度提高了46%.%Since the superplastic welding of quenched 40Cr and thermo-mechanical processed 1.6% ultrahigh carbon steel(1.6%C-UHCS) is of great possibility.Conduct the superplastic welding experiment of 1.6%C-UHCS/40Cr via industrial pure iron interlayer without protection of vacuum or atmosphere.By means of modern physical and chemical detection means, analyze the joint mechanical performance,microstructure and defects of superplastic welded joints with and without interlayer.Study the improving effect of industrial pure iron on the joint as the interlayer.The results show that with interlayer,the joint's plastic deformation capacity was improved,diffusion was promoted and its joint microstructure was improved.When the prepressing stress is 56.6 Mpa.the welding temperature is 780 ℃the initial strain rate is 1.5×10-4/s,after 15 min welding,the joint strength can reach 560 Mpa,which is 46% more than that without interlayer.

  13. Ablation behavior and mechanism analysis of C/SiC composites

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2016-04-01

    Full Text Available Ablation is an erosive phenomenon with removal of material by a combination of thermo-mechanical, thermo-chemical, and thermo-physical factors with high temperature, pressure, and velocity of combustion flame. Materials with outstanding thermo-mechanical and thermo-chemical properties are required for future high-temperature components. C/SiC is a kind of great potential high-temperature structural material in aeronautics and astronautics with low specific weight, high specific strength, good thermal stability, oxidation resistance and excellent resistance to ablation. In this paper, the ablation phenomenon and mechanisms were summarized adequately. The ablated surface of C/SiC composites could be divided into three regions from center to external. In general, the higher the density, the lower the ablation rate; the lower the ablation temperature and less time, the lower the ablation rate, and the preparation methods also had a great influence on the ablation property. Thermo-physical and thermo-mechanical attacks were the main ablation behavior in the center region; oxidation was the main ablation behavior in the transition region and the border oxidation region.

  14. Experimental Investigation on Mechanical Behavior and Permeability Evolution of a Porous Limestone Under Compression

    Science.gov (United States)

    Han, B.; Xie, S. Y.; Shao, J. F.

    2016-09-01

    This paper presents an experimental investigation on the mechanical behavior and permeability evolution of a typical porous limestone, the Anstrude limestone. Hydrostatic and triaxial compression tests are first performed under drained condition to study the basic mechanical behavior of the porous rock. Permeability measurement under both hydrostatic and triaxial compression is carried out for investigating effects of stress state on the permeability evolution along the axial direction of sample. The obtained results allow to identifying two basic plastic deformation mechanisms, the plastic shearing and pore collapse, and their effects on the permeability evolution. Under low confining pressures, the permeability diminution in the elastic phase is controlled by deviatoric stress. After the onset of plastic shearing, the deviatoric stress induces a plastic volumetric dilatation and a permeability increase. When the deviatoric stress reaches the peak strength or after the onset of shear bands, the permeability slightly decreases. Under high confining pressures, the deviatoric stress also induces a permeability diminution before the onset of plastic pore collapse. After the onset of pore collapse, the deviatoric stress leads to a plastic volumetric compaction and permeability decrease. When the deviatoric stress reaches the onset of plastic shearing, the two plastic mechanisms are in competition, the permeability continuously decreases but with a reduced rate. Finally, after the compaction-dilatation transition, the plastic shearing dominates the deformation process while the pore collapse still controls the permeability evolution.

  15. Mechanical Behavior of Dowel-Type Joints Made of Wood Scrimber Composite.

    Science.gov (United States)

    He, Minjuan; Tao, Duo; Li, Zheng; Li, Maolin

    2016-07-15

    As a renewable building material with low embodied energy characteristics, wood has gained more and more attention in the green and sustainable building industry. In terms of material resource and physical properties, scrimber composite not only makes full use of fast-growing wood species, but also has better mechanical performance and less inherent variability than natural wood material. In this study, the mechanical behavior of bolted beam-to-column joints built with a kind of scrimber composite was investigated both experimentally and numerically. Two groups of specimens were tested under monotonic and low frequency cyclic loading protocols. The experimental results showed that the bolted joints built with scrimber composite performed well in initial stiffness, ductility, and energy dissipation. A three-dimensional (3D) non-linear finite element model (FEM) for the bolted beam-to-column joints was then developed and validated by experimental results. The validated model was further used to investigate the failure mechanism of the bolted joints through stress analysis. This study can contribute to the application of the proposed scrimber composite in structural engineering, and the developed FEM can serve as a useful tool to evaluate the mechanical behavior of such bolted beam-to-column joints with different configurations in future research.

  16. Mechanical Behavior of Dowel-Type Joints Made of Wood Scrimber Composite

    Directory of Open Access Journals (Sweden)

    Minjuan He

    2016-07-01

    Full Text Available As a renewable building material with low embodied energy characteristics, wood has gained more and more attention in the green and sustainable building industry. In terms of material resource and physical properties, scrimber composite not only makes full use of fast-growing wood species, but also has better mechanical performance and less inherent variability than natural wood material. In this study, the mechanical behavior of bolted beam-to-column joints built with a kind of scrimber composite was investigated both experimentally and numerically. Two groups of specimens were tested under monotonic and low frequency cyclic loading protocols. The experimental results showed that the bolted joints built with scrimber composite performed well in initial stiffness, ductility, and energy dissipation. A three-dimensional (3D non-linear finite element model (FEM for the bolted beam-to-column joints was then developed and validated by experimental results. The validated model was further used to investigate the failure mechanism of the bolted joints through stress analysis. This study can contribute to the application of the proposed scrimber composite in structural engineering, and the developed FEM can serve as a useful tool to evaluate the mechanical behavior of such bolted beam-to-column joints with different configurations in future research.

  17. Time-dependent mechanical behavior of human amnion: macroscopic and microscopic characterization.

    Science.gov (United States)

    Mauri, Arabella; Perrini, Michela; Ehret, Alexander E; De Focatiis, Davide S A; Mazza, Edoardo

    2015-01-01

    Characterizing the mechanical response of the human amnion is essential to understand and to eventually prevent premature rupture of fetal membranes. In this study, a large set of macroscopic and microscopic mechanical tests have been carried out on fresh unfixed amnion to gain insight into the time-dependent material response and the underlying mechanisms. Creep and relaxation responses of amnion were characterized in macroscopic uniaxial tension, biaxial tension and inflation configurations. For the first time, these experiments were complemented by microstructural information from nonlinear laser scanning microscopy performed during in situ uniaxial relaxation tests. The amnion showed large tension reduction during relaxation and small inelastic strain accumulation in creep. The short-term relaxation response was related to a concomitant in-plane and out-of-plane contraction, and was dependent on the testing configuration. The microscopic investigation revealed a large volume reduction at the beginning, but no change of volume was measured long-term during relaxation. Tension-strain curves normalized with respect to the maximum strain were highly repeatable in all configurations and allowed the quantification of corresponding characteristic parameters. The present data indicate that dissipative behavior of human amnion is related to two mechanisms: (i) volume reduction due to water outflow (up to ∼20 s) and (ii) long-term dissipative behavior without macroscopic deformation and no systematic global reorientation of collagen fibers.

  18. The buzz on caffeine in invertebrates: effects on behavior and molecular mechanisms

    Science.gov (United States)

    Mustard, Julie A.

    2014-01-01

    A number of recent studies from as diverse fields as plant-pollinator interactions, analyses of caffeine as an environmental pollutant, and the ability of caffeine to provide protection against neurodegenerative diseases have generated interest in understanding the actions of caffeine in invertebrates. This review summarizes what is currently known about the effects of caffeine on behavior and its molecular mechanisms in invertebrates. Caffeine appears to have similar effects on locomotion and sleep in both invertebrates and mammals. Furthermore, as in mammals, caffeine appears to have complex effects on learning and memory. However, the underlying mechanisms for these effects may differ between invertebrates and vertebrates. While caffeine’s ability to cause release of intracellular calcium stores via ryanodine receptors and its actions as a phosphodiesterase inhibitor have been clearly established in invertebrates, its ability to interact with invertebrate adenosine receptors remains an important open question. Initial studies in insects and mollusks suggest an interaction between caffeine and the dopamine signaling pathway; more work needs to be done to understand the mechanisms by which caffeine influences signaling via biogenic amines. As of yet, little is known about whether other actions of caffeine in vertebrates, such as its effects on GABAA and glycine receptors, are conserved. Furthermore, the pharmacokinetics of caffeine remains to be elucidated. Overall behavioral responses to caffeine appear to be conserved amongst organisms; however, we are just beginning to understand the mechanisms underlying its effects across animal phyla. PMID:24162934

  19. Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Bustamante, R. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No. 120, C.P. 31109 Chihuahua, Chih. (Mexico); Bolaños-Morales, D.; Bonilla-Martínez, J. [Universidad Autónoma de Chihuahua (UACH), Facultad de Ingeniería, Circuito No. 1 Nuevo Campus Universitario, C.P. 31125 Chihuahua, Chih. (Mexico); Estrada-Guel, I. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No. 120, C.P. 31109 Chihuahua, Chih. (Mexico); Martínez-Sánchez, R., E-mail: roberto.martinez@cimav.edu.mx [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No. 120, C.P. 31109 Chihuahua, Chih. (Mexico)

    2014-12-05

    Highlights: • Pure aluminum was reinforced with graphene-platelets by using mechanical milling. • The composites were studied after sintering condition. • Milling time and graphene-platelet enhance the mechanical behavior of the composites. - Abstract: Graphene can be considered as an ideal reinforcement for the production of composites due to its outstanding mechanical properties. These characteristics offer an increased opportunity for their study in the production of metal matrix composites (MMCs). In this research, the studied composites were produced by mechanical alloying (MA). The employed milling times were of 1, 3 and 5 h. GNPs were added in 0.25, 0.50 and 1.0 wt% into an aluminum powder matrix. Milled powders were cold consolidated and subsequently sintered. Composites were microstructurally characterized with Raman spectroscopy and electron microscopy and X-ray diffraction. The hardness behavior in composites was evaluated with a Vickers micro-hardness test. A homogeneous dispersion of graphene during MA and the proper selection of sintering conditions were considered to produce optimized composites. The obtained results with electron microscopy indicate a homogeneous dispersion of GNPs into the aluminum matrix. Analyses showed GNPs edges where the structure of the graphene layers conserved after MA is observed.

  20. Mechanical behaviors of multi-filament twist superconducting strand under tensile and cyclic loading

    Science.gov (United States)

    Wang, Xu; Li, Yingxu; Gao, Yuanwen

    2016-01-01

    The superconducting strand, serving as the basic unit cell of the cable-in-conduit-conductors (CICCs), is a typical multi-filament twist composite which is always subjected to a cyclic loading under the operating condition. Meanwhile, the superconducting material Nb3Sn in the strand is sensitive to strain frequently relating to the performance degradation of the superconductivity. Therefore, a comprehensive study on the mechanical behavior of the strand helps understanding the superconducting performance of the strained Nb3Sn strands. To address this issue, taking the LMI (internal tin) strand as an example, a three-dimensional structural finite element model, named as the Multi-filament twist model, of the strand with the real configuration of the LMI strand is built to study the influences of the plasticity of the component materials, the twist of the filament bundle, the initial thermal residual stress and the breakage and its evolution of the filaments on the mechanical behaviors of the strand. The effective properties of superconducting filament bundle with random filament breakage and its evolution versus strain are obtained based on the damage theory of fiber-reinforced composite materials proposed by Curtin and Zhou. From the calculation results of this model, we find that the occurrence of the hysteresis loop in the cyclic loading curve is determined by the reverse yielding of the elastic-plastic materials in the strand. Both the initial thermal residual stress in the strand and the pitch length of the filaments have significant impacts on the axial and hysteretic behaviors of the strand. The damage of the filaments also affects the axial mechanical behavior of the strand remarkably at large axial strain. The critical current of the strand is calculated by the scaling law with the results of the Multi-filament twist model. The predicted results of the Multi-filament twist model show an acceptable agreement with the experiment.

  1. Mechanical behaviors of hyberbranched epoxy toughened bisphenol F epoxy resin for cryogenic applications

    Science.gov (United States)

    Li, Jingwen; Wu, Zhixiong; Huang, Chuanjun; Huang, Rongjin; Li, Laifeng

    2014-01-01

    Epoxy resins have been widely employed in cryogenic engineering fields. In this work, bisphenol F epoxy resin was modified by an aromatic polyester hyperbranched epoxy resin (HTDE-2). Mechanical behaviors of the modified epoxy resins in terms of tensile properties and impact property were studied at both room and cryogenic temperatures. Moreover, the toughening mechanism was discussed by fracture surface morphology analysis. The results demonstrated that, the mechanical properties of composites initially increased until reaches the maximum value with increasing the mass content of the HTDE-2, and then decreased at both room temperature (RT) and 77K. Especially, the impact strength at 77 K was improved 40.7% compared with the pure epoxy matrix when 10 wt% HTDE-2 was introduced. The findings suggest that the HTDE-2 will be an effective toughener for the brittle bisphenol F epoxy resin for cryogenic applications.

  2. Effect of Moisture Absorption Behavior on Mechanical Properties of Basalt Fibre Reinforced Polymer Matrix Composites

    Directory of Open Access Journals (Sweden)

    Amuthakkannan Pandian

    2014-01-01

    Full Text Available The study of mechanical properties of fibre reinforced polymeric materials under different environmental conditions is much important. This is because materials with superior ageing resistance can be satisfactorily durable. Moisture effects in fibre reinforced plastic composites have been widely studied. Basalt fibre reinforced unsaturated polyester resin composites were subjected to water immersion tests using both sea and normal water in order to study the effects of water absorption behavior on mechanical properties. Composites specimens containing woven basalt, short basalt, and alkaline and acid treated basalt fibres were prepared. Water absorption tests were conducted by immersing specimens in water at room temperature for different time periods till they reached their saturation state. The tensile, flexural, and impact properties of water immersed specimens were conducted and compared with dry specimens as per the ASTM standard. It is concluded that the water uptake of basalt fibre is considerable loss in the mechanical properties of the composites.

  3. Thermo-Mechanical Behavior of the Continuous Casting Bloom in the Heavy Reduction Process

    Science.gov (United States)

    Ji, Cheng; Wu, Chen-hui; Zhu, Miao-yong

    2016-08-01

    A two-stage sequential heavy reduction (HR) method, in which the reduction amount was increased both before and after the solidification end, is presented to simultaneously improve the homogeneity and compactness of the continuous casting bloom. With bearing steel GCr15 chosen as the specific research steel, a three-dimensional thermal-mechanical finite element model was developed to simulate and analyze the thermal and mechanical behaviors of the continuous casting bloom during the HR process. In order to ensure the accuracy of the simulation, the constitutive model parameters were derived from the experimental results. The predicted temperature distribution and shell thickness were verified using a thermal infrared camera and nail shooting results, respectively. The real measured relationship between the HR pressure and amount were applied to verify the mechanical model. The explorative application results showed that the quality of the bloom center and compactness of rolled bars have both been significantly improved after the HR was applied.

  4. Effect of Different Parameters on Mechanical and Erosion Wear Behavior of Bamboo Fiber Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    Anu Gupta

    2011-01-01

    Full Text Available The application of natural fibers as reinforcement in polymer composites has been continuously growing during the last few decades. These composites find diverse applications in hostile environment where they are exposed to external attacks such as solid particle erosion. Also, in many respects, the mechanical properties of different polymer composites are their most important characteristics. Therefore, improvement of the erosion resistance and mechanical behavior of polymer composites are the prime requirements in their applications. Bamboo fiber which is rich in cellulose, relatively inexpensive, and abundantly available has the potential for reinforcement in polymers. To this end, an attempt has been made in this paper not only to study the utilization potential of bamboo fiber in polymer composites but also to study the effect of various parameters on mechanical and erosion wear performance of bamboo fiber reinforced epoxy composites.

  5. Experiment research on mechanical behavior of the aluminum laminate in the low-high temperature

    Institute of Scientific and Technical Information of China (English)

    LIN Guo-chang; XIE Zhi-min; WAN Zhi-min; DU Xing-wen

    2007-01-01

    Aluminum laminate is one kind of the rigidizable composite materials and plays an important role in construction of the inflatable space structure ( ISS), which has potential application in space in the future. But the study of the predecessors mainly focuses on the research of the mechanical behavior in the room temperature,for this reason, mechanical properties of the aluminum laminate in low-high temperature have been studied in this paper. The failure mechanism of the aluminum laminate is also analyzed in the microscopic view by JCXA - T33electron probe. The results show that the temperature has significant influence on the strength and Young's modulus of the aluminum laminate. With the increase of temperature, both the strength and Young's modulus of the aluminum laminate decrease. A model between Young's modulus of the aluminum laminate and temperatures is obtained by using Arrhenius equation. The predicted values by the model agree well with the experiment values.

  6. Asymmetric flexural behavior from bamboo's functionally graded hierarchical structure: underlying mechanisms.

    Science.gov (United States)

    Habibi, Meisam K; Samaei, Arash T; Gheshlaghi, Behnam; Lu, Jian; Lu, Yang

    2015-04-01

    As one of the most renewable resources on Earth, bamboo has recently attracted increasing interest for its promising applications in sustainable structural purposes. Its superior mechanical properties arising from the unique functionally-graded (FG) hierarchical structure also make bamboo an excellent candidate for bio-mimicking purposes in advanced material design. However, despite its well-documented, impressive mechanical characteristics, the intriguing asymmetry in flexural behavior of bamboo, alongside its underlying mechanisms, has not yet been fully understood. Here, we used multi-scale mechanical characterizations assisted with advanced environmental scanning electron microscopy (ESEM) to investigate the asymmetric flexural responses of natural bamboo (Phyllostachys edulis) strips under different loading configurations, during "elastic bending" and "fracture failure" stages, with their respective deformation mechanisms at microstructural level. Results showed that the gradient distribution of the vascular bundles along the thickness direction is mainly responsible for the exhibited asymmetry, whereas the hierarchical fiber/parenchyma cellular structure plays a critical role in alternating the dominant factors for determining the distinctly different failure mechanisms. A numerical model has been likewise adopted to validate the effective flexural moduli of bamboo strips as a function of their FG parameters, while additional experiments on uniaxial loading of bamboo specimens were performed to assess the tension-compression asymmetry, for further understanding of the microstructure evolution of bamboo's outer and innermost layers under different bending states. This work could provide insights to help the processing of novel bamboo-based composites and enable the bio-inspired design of advanced structural materials with desired flexural behavior.

  7. The coupled bio-chemo-electro-mechanical behavior of glucose exposed arterial elastin

    Science.gov (United States)

    Zhang, Yanhang; Li, Jiangyu; Boutis, Gregory S.

    2017-04-01

    Elastin, the principle protein component of the elastic fiber, is a critical extracellular matrix (ECM) component of the arterial wall providing structural resilience and biological signaling essential in vascular morphogenesis and maintenance of mechanical homeostasis. Pathogenesis of many cardiovascular diseases have been associated with alterations of elastin. As a long-lived ECM protein that is deposited and organized before adulthood, elastic fibers can suffer from cumulative effects of biochemical exposure encountered during aging and/or disease, which greatly compromise their mechanical function. This review article covers findings from recent studies of the mechanical and structural contribution of elastin to vascular function, and the effects of biochemical degradation. Results from diverse experimental methods including tissue-level mechanical characterization, fiber-level nonlinear optical imaging, piezoelectric force microscopy, and nuclear magnetic resonance are reviewed. The intriguing coupled bio-chemo-electro-mechanical behavior of elastin calls for a multi-scale and multi-physical understanding of ECM mechanics and mechanobiology in vascular remodeling.

  8. Interactions between connected half-sarcomeres produce emergent mechanical behavior in a mathematical model of muscle.

    Directory of Open Access Journals (Sweden)

    Kenneth S Campbell

    2009-11-01

    Full Text Available Most reductionist theories of muscle attribute a fiber's mechanical properties to the scaled behavior of a single half-sarcomere. Mathematical models of this type can explain many of the known mechanical properties of muscle but have to incorporate a passive mechanical component that becomes approximately 300% stiffer in activating conditions to reproduce the force response elicited by stretching a fast mammalian muscle fiber. The available experimental data suggests that titin filaments, which are the mostly likely source of the passive component, become at most approximately 30% stiffer in saturating Ca2+ solutions. The work described in this manuscript used computer modeling to test an alternative systems theory that attributes the stretch response of a mammalian fiber to the composite behavior of a collection of half-sarcomeres. The principal finding was that the stretch response of a chemically permeabilized rabbit psoas fiber could be reproduced with a framework consisting of 300 half-sarcomeres arranged in 6 parallel myofibrils without requiring titin filaments to stiffen in activating solutions. Ablation of inter-myofibrillar links in the computer simulations lowered isometric force values and lowered energy absorption during a stretch. This computed behavior mimics effects previously observed in experiments using muscles from desmin-deficient mice in which the connections between Z-disks in adjacent myofibrils are presumably compromised. The current simulations suggest that muscle fibers exhibit emergent properties that reflect interactions between half-sarcomeres and are not properties of a single half-sarcomere in isolation. It is therefore likely that full quantitative understanding of a fiber's mechanical properties requires detailed analysis of a complete fiber system and cannot be achieved by focusing solely on the properties of a single half-sarcomere.

  9. Interactions between connected half-sarcomeres produce emergent mechanical behavior in a mathematical model of muscle.

    Science.gov (United States)

    Campbell, Kenneth S

    2009-11-01

    Most reductionist theories of muscle attribute a fiber's mechanical properties to the scaled behavior of a single half-sarcomere. Mathematical models of this type can explain many of the known mechanical properties of muscle but have to incorporate a passive mechanical component that becomes approximately 300% stiffer in activating conditions to reproduce the force response elicited by stretching a fast mammalian muscle fiber. The available experimental data suggests that titin filaments, which are the mostly likely source of the passive component, become at most approximately 30% stiffer in saturating Ca2+ solutions. The work described in this manuscript used computer modeling to test an alternative systems theory that attributes the stretch response of a mammalian fiber to the composite behavior of a collection of half-sarcomeres. The principal finding was that the stretch response of a chemically permeabilized rabbit psoas fiber could be reproduced with a framework consisting of 300 half-sarcomeres arranged in 6 parallel myofibrils without requiring titin filaments to stiffen in activating solutions. Ablation of inter-myofibrillar links in the computer simulations lowered isometric force values and lowered energy absorption during a stretch. This computed behavior mimics effects previously observed in experiments using muscles from desmin-deficient mice in which the connections between Z-disks in adjacent myofibrils are presumably compromised. The current simulations suggest that muscle fibers exhibit emergent properties that reflect interactions between half-sarcomeres and are not properties of a single half-sarcomere in isolation. It is therefore likely that full quantitative understanding of a fiber's mechanical properties requires detailed analysis of a complete fiber system and cannot be achieved by focusing solely on the properties of a single half-sarcomere.

  10. A study of hyperelastic models for predicting the mechanical behavior of extensor apparatus.

    Science.gov (United States)

    Elyasi, Nahid; Taheri, Kimia Karimi; Narooei, Keivan; Taheri, Ali Karimi

    2017-01-16

    In this research, the nonlinear elastic behavior of human extensor apparatus was investigated. To this goal, firstly the best material parameters of hyperelastic strain energy density functions consisting of the Mooney-Rivlin, Ogden, invariants, and general exponential models were derived for the simple tension experimental data. Due to the significance of stress response in other deformation modes of nonlinear models, the calculated parameters were used to study the pure shear and balance biaxial tension behavior of the extensor apparatus. The results indicated that the Mooney-Rivlin model predicts an unstable behavior in the balance biaxial deformation of the extensor apparatus, while the Ogden order 1 represents a stable behavior, although the fitting of experimental data and theoretical model was not satisfactory. However, the Ogden order 6 model was unstable in the simple tension mode and the Ogden order 5 and general exponential models presented accurate and stable results. In order to reduce the material parameters, the invariants model with four material parameters was investigated and this model presented the minimum error and stable behavior in all deformation modes. The ABAQUS Explicit solver was coupled with the VUMAT subroutine code of the invariants model to simulate the mechanical behavior of the central and terminal slips of the extensor apparatus during the passive finger flexion, which is important in the prediction of boutonniere deformity and chronic mallet finger injuries, respectively. Also, to evaluate the adequacy of constitutive models in simulations, the results of the Ogden order 5 were presented. The difference between the predictions was attributed to the better fittings of the invariants model compared with the Ogden model.

  11. A laboratory study on the MSW mechanical behavior in triaxial apparatus.

    Science.gov (United States)

    Karimpour-Fard, Mehran; Machado, Sandro Lemos; Shariatmadari, Nader; Noorzad, Ali

    2011-08-01

    Shear strength characterization of MSW materials is a mandatory task when performing analyses related to landfill design and landfill geometry improvements. Despite the considerable amount of research focusing on MSW mechanical behavior there remain certain aspects which are not completely understood and deserve attention in particular the case of the undrained behavior of MSW. This paper presents the results of a comprehensive laboratory testing program using a large-scale triaxial apparatus at the Federal University of Bahia, Salvador, Brazil. The effect of factors such as confining pressure, unit weight, fiber content, rate of loading and over-consolidation on the MSW mechanical response were investigated. Tested samples presented typical MSW shear/strain curves (concave upward) in all the tests, despite the pore water pressure reaching levels almost equal to the confining pressure. The obtained results show that increasing confining stress, unit weight, loading rate, fiber content and over-consolidation lead to an increase in the MSW shear strength. The importance of the fibrous components in the waste behavior is highlighted and graphs showing the variation of the MSW shear strength with fiber content in different drainage conditions are shown. The authors believe these results could be of interest to many companies, especially considering the new trend of plastic material recycling (prior landfilling) for energy recovery purposes.

  12. Anisotropic and Mechanical Behavior of 22MnB5 in Hot Stamping Operations

    Science.gov (United States)

    Turetta, A.; Bruschi, S.; Ghiotti, A.

    2007-04-01

    The hot stamping of quenchable High Strength Steels offers the possibility of weight reduction in structural components maintaining the safety requirements together with enhanced accuracy and formability of sheets. The proper design of this technology requires a deep understanding of material behavior during the entire process chain, in terms of microstructural evolution and mechanical properties at elevated temperatures, in order to perform reliable FE simulations and obtain the desired characteristic on final parts. In particular, the analysis of technical-scientific literature shows that accurate data on material rheological behavior are difficult to find; while the lack of knowledge about anisotropic behavior at elevated temperatures is even more evident. To overcome these difficulties, a new experimental set-up was developed to reproduce the thermo-mechanical conditions of the industrial process and evaluate the influence of temperature and strain rate on 22MnB5 flow curves through uniaxial tensile tests; an optical strain measurement system was utilized to evaluate the effective strain after necking. From the same data, plastic anisotropy evolution was determined by means of a specially developed procedure. The influence of different cooling rates was taken into account and the rheological properties were correlated with microstructural changes occurring during deformation, previously evaluated through a dilatometric analysis performed in the same range of temperatures.

  13. Theoretical models to predict the mechanical behavior of thick composite tubes

    Directory of Open Access Journals (Sweden)

    Volnei Tita

    2012-02-01

    Full Text Available This paper shows theoretical models (analytical formulations to predict the mechanical behavior of thick composite tubes and how some parameters can influence this behavior. Thus, firstly, it was developed the analytical formulations for a pressurized tube made of composite material with a single thick ply and only one lamination angle. For this case, the stress distribution and the displacement fields are investigated as function of different lamination angles and reinforcement volume fractions. The results obtained by the theoretical model are physic consistent and coherent with the literature information. After that, the previous formulations are extended in order to predict the mechanical behavior of a thick laminated tube. Both analytical formulations are implemented as a computational tool via Matlab code. The results obtained by the computational tool are compared to the finite element analyses, and the stress distribution is considered coherent. Moreover, the engineering computational tool is used to perform failure analysis, using different types of failure criteria, which identifies the damaged ply and the mode of failure.

  14. Signaling mechanisms and behavioral function of the mouse basal vomeronasal neuroepithelium

    Directory of Open Access Journals (Sweden)

    Anabel ePérez-Gómez

    2014-11-01

    Full Text Available The vomeronasal organ (VNO is a sensory organ that is found in most terrestrial vertebrates and that is principally implicated in the detection of pheromones. The VNO contains specialized sensory neurons organized in a pseudostratified neuroepithelium that recognize chemical signals involved in initiating innate behavioral responses. In rodents, the VNO neuroepithelium is segregated into two distinct zones, apical and basal. The molecular mechanisms involved in ligand detection by apical and basal VNO sensory neurons differ extensively. These two VNO subsystems express different subfamilies of vomeronasal receptors and signaling molecules, detect distinct chemosignals, and project to separate regions of the accessory olfactory bulb (AOB. The roles that these olfactory subdivisions play in the control of specific olfactory-mediated behaviors are largely unclear. However, analysis of mutant mouse lines for signal transduction components together with identification of defined chemosensory ligands has revealed a fundamental role of the basal part of the mouse VNO in mediating a wide range of instinctive behaviors, such as aggression, predator avoidance, and sexual attraction. Here we will compare the divergent functions and synergies between the olfactory subsystems and consider new insights in how higher neural circuits are defined for the initiation of instinctive behaviors.

  15. Action mechanisms for social cognition: behavioral and neural correlates of developing Theory of Mind.

    Science.gov (United States)

    Bowman, Lindsay C; Thorpe, Samuel G; Cannon, Erin N; Fox, Nathan A

    2016-08-29

    Many psychological theories posit foundational links between two fundamental constructs: (1) our ability to produce, perceive, and represent action; and (2) our ability to understand the meaning and motivation behind the action (i.e. Theory of Mind; ToM). This position is contentious, however, and long-standing competing theories of social-cognitive development debate roles for basic action-processing in ToM. Developmental research is key to investigating these hypotheses, but whether individual differences in neural and behavioral measures of motor action relate to social-cognitive development is unknown. We examined 3- to 5-year-old children's (N = 26) EEG mu-desynchronization during production of object-directed action, and explored associations between mu-desynchronization and children's behavioral motor skills, behavioral action-representation abilities, and behavioral ToM. For children with high (but not low) mu-desynchronization, motor skill related to action-representation abilities, and action-representation mediated relations between motor skill and ToM. Results demonstrate novel foundational links between action-processing and ToM, suggesting that basic motor action may be a key mechanism for social-cognitive development, thus shedding light on the origins and emergence of higher social cognition.

  16. Action mechanisms for social cognition: behavioral and neural correlates of developing Theory of Mind

    Science.gov (United States)

    Bowman, Lindsay C.; Thorpe, Samuel G.; Cannon, Erin N.; Fox, Nathan A.

    2016-01-01

    Many psychological theories posit foundational links between two fundamental constructs: (1) our ability to produce, perceive, and represent action; and (2) our ability to understand the meaning and motivation behind the action (i.e. Theory of Mind; ToM). This position is contentious, however, and long-standing competing theories of social-cognitive development debate roles for basic action-processing in ToM. Developmental research is key to investigating these hypotheses, but whether individual differences in neural and behavioral measures of motor action relate to social-cognitive development is unknown. We examined 3- to 5-year-old children’s (N = 26) EEG mu-desynchronization during production of object-directed action, and explored associations between mu-desynchronization and children’s behavioral motor skills, behavioral action-representation abilities, and behavioral ToM. For children with high (but not low) mu-desynchronization, motor skill related to action-representation abilities, and action-representation mediated relations between motor skill and ToM. Results demonstrate novel foundational links between action-processing and ToM, suggesting that basic motor action may be a key mechanism for social-cognitive development, thus shedding light on the origins and emergence of higher social cognition. PMID:27573916

  17. Dynamic mechanical behavior and the constitutive model of concrete subjected to impact loadings

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the theory of consecutive damage mechanics, micro-mechanics, statis-tics and the visco-plastic constitutive equation of Perzyna, a coupled model of damage and plasticity is developed to describe the complex behavior of concrete subjected to impact loadings. In this model, some suppositions about deformation of the material and evolution of the damage are made. First, concrete is macro-scopically assumed to be homogeneous and consecutive, while it is microscopi-cally filled with large amounts of micro-crack and micro-void defects. Second, the damage evolution of the micro-cracks is caused by the nucleation, growth and coalescence of the micro-cracks due to the interior tensile stress in concrete, which leads to a degradation in the strength and stiffness of concrete. Third, compaction of concrete is physically a collapse of the material micro-void. It pro-duces irreversible plastic strains in the material and, at the same time, an increase in the bulk modulus. Fourth, there is no interaction between the micro-crack and the micro-void. Last, when the damage reaches a critical value, the concrete may fail totally. The model parameters for concrete are determined by plate impact ex-periments. The model predictions fit the experimental results well. So the model can be used to simulate the dynamic mechanical behavior of concrete under impact loadings.

  18. A Study on Mechanical behavior of Tensile Specimen Fabricated by Laser Cutting

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y. G.; Kim, G. S.; Baik, S. J.; Baek, S. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The mechanical testing data are required for the assessment of dry storage of the spent nuclear fuel. Laser cutting system could be useful tools for material processing such as cutting in radioactive environment due to non-contact nature, ease in handling and the laser cutting process is most advantageous, offering the narrow kerf width and heat affected zone by using small beam spot diameter. The feasibility of the laser cutting system was demonstrated for the fabrication of various types of the unirradiated cladding with and without oxide layer on the specimens. In the present study, the dimensional measurement and tensile test were conducted to investigate the mechanical behavior of the axial tensile test specimens depending on the material processing methods in a hot cell at IMEF (Irradiated Materials Examination Facility) of KAERI. Laser cutting system was used to fabricate the tensile test specimens, and the mechanical behavior was investigated using the dimensional measurement and tensile test. It was shown that the laser beam machining could be a useful tool to fabricate the specimens and this technique will be developed for the fabrication of various types of irradiated specimens in a hotcell.

  19. Thermal-Hydrologic-Mechanical Behavior of Single Fractures in EGS Reservoirs

    Science.gov (United States)

    Zyvoloski, G.; Kelkar, S.; Yoshioka, K.; Rapaka, S.

    2010-12-01

    Enhanced Geothermal Systems (EGS) rely on the creation a connected fracture system or the enhancement of existing (natural) fractures by hydraulic and chemical treatments. EGS studies at Fenton Hill (New Mexico, USA) and Hijiori (Japan) have revealed that only a limited number of fractures contribute to the effective heat transfer surface area. Thus, the economic viability of EGS depends strongly on the creation and spacing of single fractures in order to efficiently mine heat from given volume of rock. Though there are many similarities between EGS and natural geothermal reservoirs, a major difference between the reservoir types is the (typically) high pumping pressures and induced thermal stresses at the injection wells of an EGS reservoir. These factors can be responsible for fracture dilation/extension and thermal short circuiting and depend strongly on the surrounding state of stress in the reservoir and mechanical properties. We will present results from our study of the thermal-hydrologic-mechanical (THM) behavior of a single fracture in a realistic subsurface stress field. We will show that fracture orientation, the stress environment, fracture permeability structure, and the relationship between permeability changes in a fracture resulting from mechanical displacement are all important when designing and managing an EGS reservoir. Lastly, we present a sensitivity analysis of the important parameters that govern fracture behavior with respect to field measurements. Temperature in high permeability fracture in an EGS reservoir

  20. Mechanical Behavior of the Near-field Host Rock Surrounding Excavations

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, Sharad M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Robinson, Bruce Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-09

    This report is being prepared under the FY14 activity FT-14LA0818069, Mechanical and Hydrological Behavior of the Near-Field Host Rock Surrounding Excavations, and fulfills the Los Alamos National Laboratory deliverable M4FT-14LA08180610, which in PICS:NE is titled “Draft report, Test Plan for Mechanical and Hydrological Behavior of the Near-field Host Rock Surrounding Excavations.” Since the report is an intermediate deliverable intended as input to the eventual test plan for this test, rather than being an actual test plan, the activity title is used as the title of this document to avoid confusion as to the contents in the report. This report summarizes efforts to simulate mechanical processes occurring within a hypothetical high-level waste (HLW) repository in bedded salt. The report summarizes work completed since the last project deliverable, “Coupled model for heat and water transport in a high level waste repository in salt “, a Level 2 milestone submitted to DOE in September 2013 (Stauffer et al., 2013).

  1. Dynamic mechanical behavior and the constitutive model of concrete subjected to impact loadings

    Institute of Scientific and Technical Information of China (English)

    NING JianGuo; LIU HaiFeng; SHANG Lin

    2008-01-01

    Based on the theory of consecutive damage mechanics, micro-mechanics, statis-tics and the visco-plastic constitutive equation of Perzyna, a coupled model of damage and plasticity is developed to describe the complex behavior of concrete subjected to impact Ioadings. In this model, some suppositions about deformation of the material and evolution of the damage are made. First, concrete is macro-scopically assumed to be homogeneous and consecutive, while it is microscopi-cally filled with large amounts of micro-crack and micro-void defects. Second, the damage evolution of the micro-cracks is caused by the nucleation, growth and coalescence of the micro-cracks due to the interior tensile stress in concrete, which leads to a degradation in the strength and stiffness of concrete. Third, compaction of concrete is physically a collapse of the material micro-void. It pro-duces irreversible plastic strains in the material and, at the same time, an increase in the bulk modulus. Fourth, there is no interaction between the micro-crack and the micro-void. Last, when the damage reaches a critical value, the concrete may fail totally. The model parameters for concrete are determined by plate impact ex-periments. The model predictions fit the experimental results well. So the model can be used to simulate the dynamic mechanical behavior of concrete under impact loadings.

  2. Effect of Thermal Crosslink Conditions on Dynamic Mechanical Behaviors of Flexible Epoxy

    Institute of Scientific and Technical Information of China (English)

    DAI Ping; WANG Yanbing; HUANG Zhixiong

    2008-01-01

    The dynamic mechanical behavior of a new kind of flexible epoxy FE-1,which was crosslinked under four different thermal crosslink conditions,was studied.Dynamic mechanical measurement was carried out from 10 ℃ to 120 ℃,and loss factor,tan δ and the storage modulus as functions of temperature were presented under five different frequencies of 0.1 Hz,1 Hz,5 Hz,50 Hz and 100 Hz.The experimental results show that temperature has dramatic effects on the dynamic mechanical behavior of flexible epoxy.Compared with other common available epoxy,the flexible epoxy has higher loss factor over broad frequency and common temperature range.Activation energy corresponding to glass transition process of FE-1 was calculated from the temperature corresponding to tan δmax values,obtained at different measurement frequencies.The maximum value of loss factor is 0.75 and the Tg varies from 6 ℃ to 50 ℃,indicating the flexible epoxy can be used as damping polymer materials at common temperature or frequency range.

  3. Influence of superstructure geometry on the mechanical behavior of zirconia implant abutments: a finite element analysis.

    Science.gov (United States)

    Geringer, Alexander; Diebels, Stefan; Nothdurft, Frank P

    2014-12-01

    To predict the clinical performance of zirconia abutments, it is crucial to examine the mechanical behavior of different dental implant-abutment connection configurations. The international standard protocol for dynamic fatigue tests of dental implants (ISO 14801) allows comparing these configurations using standardized superstructure geometries. However, from a mechanical point of view, the geometry of clinical crowns causes modified boundary conditions. The purpose of this finite element (FE) study was to evaluate the influence of the superstructure geometry on the maximum stress values of zirconia abutments with a conical implant-abutment connection. Geometry models of the experimental setup described in ISO 14801 were generated using CAD software following the reconstruction of computerized tomography scans from all relevant components. These models served as a basis for an FE simulation. To reduce the numerical complexity of the FE model, the interaction between loading stamp and superstructure geometry was taken into account by defining the boundary conditions with regard to the frictional force. The results of the FE simulations performed on standardized superstructure geometry and anatomically shaped crowns showed a strong influence of the superstructure geometry and related surface orientations on the mechanical behavior of the underlying zirconia abutments. In conclusion, ISO testing of zirconia abutments should be accompanied by load-bearing capacity testing under simulated clinical conditions to predict clinical performance.

  4. Phase Evolution and Mechanical Behavior of the Semi-Solid SIMA Processed 7075 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Behzad Binesh

    2016-02-01

    Full Text Available Microstructural and mechanical behaviors of semi-solid 7075 aluminum alloy were investigated during semi-solid processing. The strain induced melt activation (SIMA process consisted of applying uniaxial compression strain at ambient temperature and subsequent semi-solid treatment at 600–620 °C for 5–35 min. Microstructures were characterized by scanning electron microscope (SEM, energy dispersive spectroscopy (EDS, and X-ray diffraction (XRD. During the isothermal heating, intermetallic precipitates were gradually dissolved through the phase transformations of α-Al + η (MgZn2 → liquid phase (L and then α-Al + Al2CuMg (S + Mg2Si → liquid phase (L. However, Fe-rich precipitates appeared mainly as square particles at the grain boundaries at low heating temperatures. Cu and Si were enriched at the grain boundaries during the isothermal treatment while a significant depletion of Mg was also observed at the grain boundaries. The mechanical behavior of different SIMA processed samples in the semi-solid state were investigated by means of hot compression tests. The results indicated that the SIMA processed sample with near equiaxed microstructure exhibits the highest flow resistance during thixoforming which significantly decreases in the case of samples with globular microstructures. This was justified based on the governing deformation mechanisms for different thixoformed microstructures.

  5. Investigation on the Tribological Behavior and Wear Mechanism of Five Different Veneering Porcelains.

    Directory of Open Access Journals (Sweden)

    Jie Min

    Full Text Available The primary aim of this research was to investigate the wear behavior and wear mechanism of five different veneering porcelains.Five kinds of veneering porcelains were selected in this research. The surface microhardness of all the samples was measured with a microhardness tester. Wear tests were performed on a ball-on-flat PLINT fretting wear machine, with lubrication of artificial saliva at 37°C. The friction coefficients were recorded by the testing system. The microstructure features, wear volume, and damage morphologies were recorded and analyzed with a confocal laser scanning microscope and a scanning electron microscope. The wear mechanism was then elucidated.The friction coefficients of the five veneering porcelains differ significantly. No significant correlation between hardness and wear volume was found for these veneering porcelains. Under lubrication of artificial saliva, the porcelain with higher leucite crystal content exhibited greater wear resistance. Additionally, leucite crystal size and distribution in glass matrix influenced wear behavior. The wear mechanisms for these porcelains were similar: abrasive wear dominates the early stage, whereas delamination was the main damage mode at the later stage. Furthermore, delamination was more prominent for porcelains with larger crystal sizes.Wear compatibility between porcelain and natural teeth is important for dental restorative materials. Investigation on crystal content, size, and distribution in glass matrix can provide insight for the selection of dental porcelains in clinical settings.

  6. Factors affecting the mechanical behavior of collagen hydrogels for skin tissue engineering.

    Science.gov (United States)

    Pensalfini, Marco; Ehret, Alexander E; Stüdeli, Silvia; Marino, Daniela; Kaech, Andres; Reichmann, Ernst; Mazza, Edoardo

    2016-12-09

    The effect of the production factors yielding a functional dermal substitute was investigated by means of monotonic and cyclic uniaxial tensile tests, as well as electron microscopy visualizations. The role of (i) plastic compression, (ii) product incubation, and (iii) cell permanence in the collagenous matrix in order to achieve a skin-like behavior were characterized in terms of material and structural stiffness, in-plane kinematics, and cyclic response, as well as pore size and network density. The plastic compression resulted in a denser and stiffer material, while no corresponding change was observed in the behavior of the entire structure. This was related to the progressive reduction in product thickness and amount of excess water, rather than to formation of new crosslinks between fibers. Contrary, irrespective of the presence of human fibroblasts, the product incubation induced both material and structural stiffening, indicating the formation of a denser network. These results were confirmed by similar evolutions in the construct in-plane kinematics and cyclic stress reduction. Finally, comparison of constructs incubated in different culture media indicated a determinant contribution of the biochemical environment, rather than of the seeded cells, to the achieved mechanical properties. The observed features are relevant in terms of mechanical biocompatibility of the implant and might direct future optimizations of the production process in order to rapidly attain the desired mechanical properties.

  7. Automated Quantification of the Impact of Defects on the Mechanical Behavior of Deoxyribonucleic acid Origami Nanoplates.

    Science.gov (United States)

    Liang, Bowen; Nagarajan, Anand; Hudoba, Michael W; Alvarez, Ricardo; Castro, Carlos E; Soghrati, Soheil

    2017-04-01

    Deoxyribonucleic acid (DNA) origami is a method for the bottom-up self-assembly of complex nanostructures for applications, such as biosensing, drug delivery, nanopore technologies, and nanomechanical devices. Effective design of such nanostructures requires a good understanding of their mechanical behavior. While a number of studies have focused on the mechanical properties of DNA origami structures, considering defects arising from molecular self-assembly is largely unexplored. In this paper, we present an automated computational framework to analyze the impact of such defects on the structural integrity of a model DNA origami nanoplate. The proposed computational approach relies on a noniterative conforming to interface-structured adaptive mesh refinement (CISAMR) algorithm, which enables the automated transformation of a binary image of the nanoplate into a high fidelity finite element model. We implement this technique to quantify the impact of defects on the mechanical behavior of the nanoplate by performing multiple simulations taking into account varying numbers and spatial arrangements of missing DNA strands. The analyses are carried out for two types of loading: uniform tensile displacement applied on all the DNA strands and asymmetric tensile displacement applied to strands at diagonal corners of the nanoplate.

  8. Numerical investigation of the influence of pattern topology on the mechanical behavior of PEGDA hydrogels.

    Science.gov (United States)

    Jin, Tao; Stanciulescu, Ilinca

    2017-02-01

    Poly(ethylene glycol) diacrylate (PEGDA) hydrogels can be potentially used as scaffold material for tissue engineered heart valves (TEHVs) due to their good biocompatibility and biomechanical tunability. The photolithographic patterning technique is an effective approach to pattern PEGDA hydrogels to mimic the mechanical behavior of native biological tissues that are intrinsically anisotropic. The material properties of patterned PEGDA hydrogels largely depend on the pattern topology. In this paper, we adopt a newly proposed computational framework for fibrous biomaterials to numerically investigate the influence of pattern topology, including pattern ratio, orientation and waviness, on the mechanical behavior of patterned PEGDA hydrogels. The material parameters for the base hydrogel and the pattern stripes are directly calibrated from published experimental data. Several experimental observations reported in the literature are captured in the simulation, including the nonlinear relationship between pattern ratio and material linear modulus, and the decrease of material anisotropy when pattern ratio increases. We further numerically demonstrate that a three-region (toe-heel-linear) stress-strain relationship typically exhibited by biological tissues can be obtained by tuning the pattern waviness and the relative stiffness between the base hydrogel and pattern stripes. The numerical strategy and simulation results presented here can provide helpful guidance to optimize pattern design of PEGDA hydrogels toward the targeted material mechanical properties, therefore advance the development of TEHVs.

  9. Nanotribological Behavior of Carbon Based Thin Films: Friction and Lubricity Mechanisms at the Nanoscale

    Directory of Open Access Journals (Sweden)

    Costas A. Charitidis

    2013-04-01

    Full Text Available The use of materials with very attractive friction and wear properties has raised much attention in research and industrial sectors. A wide range of tribological applications, including rolling and sliding bearings, machining, mechanical seals, biomedical implants and microelectromechanical systems (MEMS, require thin films with high mechanical strength, chemical inertness, broad optical transparency, high refractive index, wide bandgap excellent thermal conductivity and extremely low thermal expansion. Carbon based thin films like diamond, diamond-like carbon, carbon nitride and cubic boron nitride known as “super-hard” material have been studied thoroughly as the ideal candidate for tribological applications. In this study, the results of experimental and simulation works on the nanotribological behavior of carbon films and fundamental mechanisms of friction and lubricity at the nano-scale are reviewed. The study is focused on the nanomechanical properties and analysis of the nanoscratching processes at low loads to obtain quantitative analysis, the comparison obtain quantitative analysis, the comparison of their elastic/plastic deformation response, and nanotribological behavior of the a-C, ta-C, a-C:H, CNx, and a-C:M films. For ta-C and a-C:M films new data are presented and discussed.

  10. Mechanical behavior of confined self-compacting reinforced concrete circular columns under concentric axial loading

    Directory of Open Access Journals (Sweden)

    Fouad Khairallah

    2013-12-01

    Full Text Available While there is abundant research information on ordinary confined concrete, there are little data on the behavior of Self-Compacting Concrete (SCC under such condition. Due to higher shrinkage and lower coarse aggregate content of SCC compared to that of Normal Concrete (NC, its composite performance under confined conditions needs more investigation. This paper has been devoted to investigate and compare the mechanical behavior of confined concrete circular columns cast with SCC and NC under concentric axial loading. The parameters affecting are including concrete compressive strength and confinement configuration. Twenty column specimens were casted and confined using four confinement techniques, CFRP wrap, FRP tube, GFRP wrap, and spiral steel hoops. The performance of the tested column specimens is evaluated based on mode of failure, load–displacement curve, stress–strain characteristics, ultimate strength, ductility, and degree of confinement.

  11. Materials science. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration.

    Science.gov (United States)

    Lee, Jae-Hwang; Loya, Phillip E; Lou, Jun; Thomas, Edwin L

    2014-11-28

    Multilayer graphene is an exceptional anisotropic material due to its layered structure composed of two-dimensional carbon lattices. Although the intrinsic mechanical properties of graphene have been investigated at quasi-static conditions, its behavior under extreme dynamic conditions has not yet been studied. We report the high-strain-rate behavior of multilayer graphene over a range of thicknesses from 10 to 100 nanometers by using miniaturized ballistic tests. Tensile stretching of the membrane into a cone shape is followed by initiation of radial cracks that approximately follow crystallographic directions and extend outward well beyond the impact area. The specific penetration energy for multilayer graphene is ~10 times more than literature values for macroscopic steel sheets at 600 meters per second.

  12. The Mechanical Behavior Of A Nylon Seat Belt Exposed To Cyclical Loads: A Numerical Approach

    Directory of Open Access Journals (Sweden)

    Lucas Nogueira Assis,

    2015-09-01

    Full Text Available This work aims to study the mechanical behavior of a nylon seat belt when it is exposed to cyclical loads through the Finite Element Methods. This work used as base the brazilian regulamentoy standard ABNT NBR 7337:2011 to create the virtual model of the seat belt, with the following dimensions: 1.20mm thick, 48mm width and 250mm length. The next step was to import this CAD model to ANSYS 14.5 software, to create the correct material model for this case and apply the correct boundary conditions in order to analyze its behavior under a load that varies from 0 to 2000 N at a 10 Hz frequency. The final step was to analyze this numerical results that referring to this component under these conditions.

  13. Influence of niobium solutes on the mechanical behavior of nickel during hot working

    Energy Technology Data Exchange (ETDEWEB)

    Matougui, N., E-mail: NedjouaMAATOUGUI@yahoo.fr [École nationale supérieure des mines de Saint-Étienne (ENSMSE), Laboratoire Georges Friedel UMR CNRS 5307, Centre for Materials Science and Mechanical Engineering (SMS Centre), RMT Department, 158 cours Fauriel, F–42023 ST ETIENNE CEDEX 2 (France); Mechanics of Materials and Plant Maintenance Research Laboratory (LR3MI), Badji-Mokhtar-Annaba University, P.O. Box 12, 23000 Annaba (Algeria); Piot, D., E-mail: piot@emse.fr [École nationale supérieure des mines de Saint-Étienne (ENSMSE), Laboratoire Georges Friedel UMR CNRS 5307, Centre for Materials Science and Mechanical Engineering (SMS Centre), RMT Department, 158 cours Fauriel, F–42023 ST ETIENNE CEDEX 2 (France); Fares, M.L., E-mail: FARES.Lamine@Univ-Annaba.org [Mechanics of Materials and Plant Maintenance Research Laboratory (LR3MI), Badji-Mokhtar-Annaba University, P.O. Box 12, 23000 Annaba (Algeria); Montheillet, F., E-mail: Frank.MONTHEILLET@Mines-StEtienne.fr [École nationale supérieure des mines de Saint-Étienne (ENSMSE), Laboratoire Georges Friedel UMR CNRS 5307, Centre for Materials Science and Mechanical Engineering (SMS Centre), RMT Department, 158 cours Fauriel, F–42023 ST ETIENNE CEDEX 2 (France); Semiatin, S.L., E-mail: Lee.SEMIATIN@WPAFB.AF.mil [Air Force Research Laboratory, AFRL/RX, Wright-Patterson Air Force Base, OH 45433-7817 (United States)

    2013-12-01

    An experimental program was performed to determine the rheology and influence of niobium additions to high-purity nickel on dynamic-recrystallization behavior during hot working. Various high-purity alloys were prepared (pure Ni and Ni–0.01, 0.1, 1, 2, 5 and 10 wt% Nb) and deformed to high strains by hot torsion to characterize the mechanical behavior within the temperature range from 800 to 1000 °C at (von Mises equivalent) strain rates of 0.03, 0.1 and 0.3 s{sup −1}. A simple analytical method was proposed for predicting the strain-hardening and dynamic-recovery parameters in the classical Yoshie–Laasraoui–Jonas equation. By the means, the effect of niobium solutes on plastic flow was determined, thus enabling a reasonable fit for the flow curves for the entire range of solid solution Ni–Nb alloys.

  14. Proximate mechanism of behavioral manipulation of an orb-weaver spider host by a parasitoid wasp

    Science.gov (United States)

    Gonzaga, Marcelo Oliveira; de Oliveira, Leandro Licursi; Sperber, Carlos Frankl

    2017-01-01

    Some ichneumonid wasps induce modifications in the web building behavior of their spider hosts to produce resistant “cocoon” webs. These structures hold and protect the wasp’s cocoon during pupa development. The mechanism responsible for host manipulation probably involves the inoculation of psychotropic chemicals by the parasitoid larva during a specific developmental period. Recent studies indicate that some spiders build cocoon webs similar to those normally built immediately before ecdysis, suggesting that this substance might be a molting hormone or a precursor chemical of this hormone. Here, we report that Cyclosa spider species exhibiting modified behavior presented higher 20-OH-ecdysone levels than parasitized spiders acting normally or unparasitized individuals. We suggest that the lack of control that spiders have when constructing modified webs can be triggered by anachronic activation of ecdysis. PMID:28158280

  15. Multilayer Roll-Bonded Sandwich: Processing, Mechanical Performance, and Bioactive Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Palkowski H.; Stanic V.; Carrado, A.

    2012-03-30

    Multifunctionality and improving the properties of materials make it necessary to use hybrid systems such as combinations of metals with polymers. Their applications can be found in all areas where light weight and improved and adapted mechanical properties as well as high functionality are needed. Moreover, tailored types of hybrids can be interesting for biomedical applications, as under specific conditions they show, e.g., good strength combined with high elasticity. Herein, we present preliminary tests on the biomimetic behavior of AISI SS316L/polypropylene copolymer/AISI SS316L sandwich. Biomimetic coatings were produced by inducing a calcium phosphate layer in a way similar to the process of natural bone formation. Knowledge of the formability of three-layered sandwich sheets and their biomimetic behavior is presented.

  16. Electro-mechanical behaviors of composite superconducting strand with filament breakage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Gao, Yuanwen, E-mail: ywgao@lzu.edu.cn [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Zhou, Youhe [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2016-10-15

    Highlights: • The electromechanical behaviors of the superconducting (SC) strand are investigated. • A 3D FEM model for bending behaviors and electric properties of strand is developed. • The influence of breakage of filaments on the critical current of SC strand is calculated. • The impact of current transfer length on the electric properties of SC strand is discussed. - Abstract: The bending behaviors of superconducting strand with typical multi-filament twist configuration are investigated based on a three-dimensional finite element method (FEM) model, named as the Multi-filament twist model, of the strand. In this 3D FEM model, the impacts of initial thermal residual stress, filament-breakage and its evaluation are taken into accounts. The mechanical responses of the strand under bending load are studied with the factors taken into consideration one by one. The distribution of the damage of the filaments and its evolution and the movement of the neutral axis caused by it are studied and displayed in detail. Besides, taking the advantages of the Multi-filament twist model, the normalized critical current of the strand under bending load is also calculated based on the invariant temperature and field strain functions. In addition, the non-negligible influences of the pitch length of the filaments on both the mechanical behaviors and the normalized critical current are discussed. The stress-strain characteristics of the strand under tensile load and the normalized critical current of it under axial and bending loads resulting from the Multi-filament twist model show good agreement with the experimental data.

  17. Ventral tegmental area cholinergic mechanisms mediate behavioral responses in the forced swim test.

    Science.gov (United States)

    Addy, N A; Nunes, E J; Wickham, R J

    2015-07-15

    Recent studies revealed a causal link between ventral tegmental area (VTA) phasic dopamine (DA) activity and pro-depressive and antidepressant-like behavioral responses in rodent models of depression. Cholinergic activity in the VTA has been demonstrated to regulate phasic DA activity, but the role of VTA cholinergic mechanisms in depression-related behavior is unclear. The goal of this study was to determine whether pharmacological manipulation of VTA cholinergic activity altered behavioral responding in the forced swim test (FST) in rats. Here, male Sprague-Dawley rats received systemic or VTA-specific administration of the acetylcholinesterase inhibitor, physostigmine (systemic; 0.06 or 0.125mg/kg, intra-cranial; 1 or 2μg/side), the muscarinic acetylcholine receptor (AChR) antagonist scopolamine (2.4 or 24μg/side), or the nicotinic AChR antagonist mecamylamine (3 or 30μg/side), prior to the FST test session. In control experiments, locomotor activity was also examined following systemic and intra-cranial administration of cholinergic drugs. Physostigmine administration, either systemically or directly into the VTA, significantly increased immobility time in FST, whereas physostigmine infusion into a dorsal control site did not alter immobility time. In contrast, VTA infusion of either scopolamine or mecamylamine decreased immobility time, consistent with an antidepressant-like effect. Finally, the VTA physostigmine-induced increase in immobility was blocked by co-administration with scopolamine, but unaltered by co-administration with mecamylamine. These data show that enhancing VTA cholinergic tone and blocking VTA AChRs has opposing effects in FST. Together, the findings provide evidence for a role of VTA cholinergic mechanisms in behavioral responses in FST.

  18. Comparison of dispersion behavior of agglomerated particles in liquid between ultrasonic irradiation and mechanical stirring.

    Science.gov (United States)

    Sumitomo, Syunsuke; Koizumi, Hayato; Uddin, Md Azhar; Kato, Yoshiei

    2018-01-01

    The particle dispersion behavior was compared for ultrasonic irradiation and mechanical stirring. The experiment and calculation were carried out with polymethylmethacrylate (PMMA) particles. The dispersion rate of the agglomerated particles increased with the decreasing ultrasonic frequency and the increasing electric power, whereas it increased with the increasing rotation speed for the mechanical stirring. The temporal change in the particle dispersion proceeded stably after passage of a long time. The dispersion of the ultrasonic irradiation was suggested to occur by the erosion from the surface of the cluster one by one due to the bulk cavitation as well as the division into smaller particles because of the inner cavitation, and that of the mechanical stirring mainly by the division into smaller clusters due to the shear stress flow. Based on the experimental results, mathematical models for the ultrasonic irradiation and mechanical stirring were developed with the dispersion and agglomeration terms and the calculation of the temporal change in the total cluster number at the different operational factors agreed with the experiments. The dispersion efficiency of the ultrasonic irradiation was larger than that of the mechanical stirring at the lower input power, but it was reversed at the higher input power. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Interventions to Reduce College Student Drinking: State of the Evidence for Mechanisms of Behavior Change

    Science.gov (United States)

    Reid, Allecia E.; Carey, Kate B.

    2015-01-01

    Interventions to reduce college student drinking, although efficacious, generally yield only small effects on behavior change. Examining mechanisms of change may help to improve the magnitude of intervention effects by identifying effective and ineffective active ingredients. Informed by guidelines for establishing mechanisms of change, we conducted a systematic review of alcohol interventions for college students to identify (a) which constructs have been examined and received support as mediators, (b) circumstances that enhance the likelihood of detecting mediation, and (c) the extent of evidence for mechanisms of change. We identified 61 trials that examined 22 potential mediators of intervention efficacy. Descriptive norms consistently mediated normative feedback interventions. Motivation to change consistently failed to mediate motivational interviewing interventions. Multiple active ingredient interventions were not substantially more likely to find evidence of mediation than single ingredient interventions. Delivering intervention content remotely reduced likelihood of finding support for mediation. With the exception of descriptive norms, there is inadequate evidence for the psychosocial constructs purported as mechanisms of change in the college drinking literature. Evidence for mechanisms will be yielded by future studies that map all active ingredients to targeted psychosocial outcomes and that assess potential mediators early, inclusively, and at appropriate intervals following interventions. PMID:26164065

  20. Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors

    Science.gov (United States)

    Karahan, Aydın; Buongiorno, Jacopo

    2010-01-01

    An engineering code to model the irradiation behavior of UO2-PuO2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named fuel engineering and structural analysis tool (FEAST-OXIDE). FEAST-OXIDE has several modules working in coupled form with an explicit numerical algorithm. These modules describe: (1) fission gas release and swelling, (2) fuel chemistry and restructuring, (3) temperature distribution, (4) fuel-clad chemical interaction and (5) fuel-clad mechanical analysis. Given the fuel pin geometry, composition and irradiation history, FEAST-OXIDE can analyze fuel and cladding thermo-mechanical behavior at both steady-state and design-basis transient scenarios. The code was written in FORTRAN-90 program language. The mechanical analysis module implements the LIFE algorithm. Fission gas release and swelling behavior is described by the OGRES and NEFIG models. However, the original OGRES model has been extended to include the effects of joint oxide gain (JOG) formation on fission gas release and swelling. A detailed fuel chemistry model has been included to describe the cesium radial migration and JOG formation, oxygen and plutonium radial distribution and the axial migration of cesium. The fuel restructuring model includes the effects of as-fabricated porosity migration, irradiation-induced fuel densification, grain growth, hot pressing and fuel cracking and relocation. Finally, a kinetics model is included to predict the clad wastage formation. FEAST-OXIDE predictions have been compared to the available FFTF, EBR-II and JOYO databases, as well as the LIFE-4 code predictions. The agreement was found to be satisfactory for steady-state and slow-ramp over-power accidents.

  1. NUMERICAL SIMULATION FOR MECHANICAL BEHAVIOR OF U10MO MONOLITHIC MINIPLATES FOR RESEARCH AND TEST REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Hakan Ozaltun & Herman Shen

    2011-11-01

    This article presents assessment of the mechanical behavior of U-10wt% Mo (U10Mo) alloy based monolithic fuel plates subject to irradiation. Monolithic, plate-type fuel is a new fuel form being developed for research and test reactors to achieve higher uranium densities within the reactor core to allow the use of low-enriched uranium fuel in high-performance reactors. Identification of the stress/strain characteristics is important for understanding the in-reactor performance of these plate-type fuels. For this work, three distinct cases were considered: (1) fabrication induced residual stresses (2) thermal cycling of fabricated plates; and finally (3) transient mechanical behavior under actual operating conditions. Because the temperatures approach the melting temperature of the cladding during the fabrication and thermal cycling, high temperature material properties were incorporated to improve the accuracy. Once residual stress fields due to fabrication process were identified, solution was used as initial state for the subsequent simulations. For thermal cycling simulation, elasto-plastic material model with thermal creep was constructed and residual stresses caused by the fabrication process were included. For in-service simulation, coupled fluid-thermal-structural interaction was considered. First, temperature field on the plates was calculated and this field was used to compute the thermal stresses. For time dependent mechanical behavior, thermal creep of cladding, volumetric swelling and fission induced creep of the fuel foil were considered. The analysis showed that the stresses evolve very rapidly in the reactor. While swelling of the foil increases the stress of the foil, irradiation induced creep causes stress relaxation.

  2. SIMULATIONS OF MECHANICAL BEHAVIOR OF POLYCRYSTALLINE COPPER WITH NANO-TWINS

    Institute of Scientific and Technical Information of China (English)

    Bo Wu; Yueguang Wei

    2008-01-01

    Mechanical behavior and microstructure evolution of polycrystalline copper with nano-twins were investigated in the present work by finite element simulations.The fracture of grain boundaries axe described by a cohesive interface constitutive model based on the strain gradient plasticity theory.A systematic study of the strength and ductility for different grain sizes and twin lamellae distributions is performed.The results show that the material strength and ductility strongly depend on the grain size and the distribution of twin lamellae microstructures in the polycrystalline copper.

  3. Mechanical behavior of carbon nanotubes in the rippled and buckled phase

    Science.gov (United States)

    Jackman, H.; Krakhmalev, P.; Svensson, K.

    2015-02-01

    We have studied the mechanical behavior of multi-walled carbon nanotubes for bending strains beyond the onset for rippling and buckling. We found a characteristic drop in the bending stiffness at the rippling and buckling onset and the relative retained stiffness was dependent on the nanotube dimensions and crystallinity. Thin tubes are more prone to buckle, where some lose all of their bending stiffness, while thicker tubes are more prone to ripple and on average retain about 20% of their bending stiffness. In defect rich tubes, the bending stiffness is very low prior to rippling, but these tubes retain up to 70% of their initial bending stiffness.

  4. Mechanical Properties and Friction/Wear Behavior of Copper Alloyed Powder Composites

    Institute of Scientific and Technical Information of China (English)

    DENG Chen-hong; CHEN Guang-zhi; GE Qi-lu

    2005-01-01

    Copper alloyed powder composites containing nanoparticles were developed by hot pressing. Effects of nanoscale activated sintering aid and fine ceramic particles Al2O3 on hardness, working quality, and behaviors of friction and wear of the composites have been studied, compared with the composites including microscale activated sintering aid and microscale ceramic particles. The microstructures of the samples were analyzed by SEM. The results show that the materials with nanoscale sintering aid and fine ceramic particles have better mechanical properties and abrasive resistance than the materials with microscale activated sintering aid and microceramic particles. Moreover, element mutual transfer occurs between samples (strip) and abrasive wheel (ring).

  5. Influence of Pseudoelasticity on Mechanical Behavior of TiNi Alloy under Dynamic Impact Loading

    Institute of Scientific and Technical Information of China (English)

    Xu Renbo; Cui Lishan; Zheng Yanjun; Chen Hongling

    2007-01-01

    The mechanical behavior of TiNi alloy and Cr12MoV alloy under dynamic impact loading was investigated with a self-made impact testing system. The real-time contact force was measured with a piezoelectric force sensor and digital signal processing system during impact. Equations for predicting instantaneous velocity and displacement were presented. The results showed that the TiNi alloy exhibited a plateau of maximum contact force with increasing impact height. At the plateau stage,TiNi alloy in the parent phase can absorb impact energy and keep the maximum contact force nearly identical due to its pseudoelasticity.

  6. Trends in dislocation core structures and mechanical behavior in B2 aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Vailhe, C.; Farkas, D. [Virginia Polytechnic Inst., Blacksburg, VA (United States). Dept. of Materials Science and Engineering

    1995-08-01

    In an effort to understand the deformation mechanism in high temperature B2 intermetallics, atomistic simulations were carried out for dislocation cores in a series of compounds exhibiting the B2 structure (FeAl, NiAl, CoAl). A comparison was made on the basis of core structures, dislocation splittings and Peierls stress values. The (110) and (112) {gamma} surfaces were computed for these three compounds. The importance of the APB values and the maximum shear faults for explaining the dislocation behavior is discussed.

  7. Research on Mechanical Behaviors of Micro-crystal Muscovite/UHMWPE Composites to Impact Loading

    Directory of Open Access Journals (Sweden)

    Hu Huarong

    2016-01-01

    Full Text Available UHMWPE composites were prepared by hot pressing process with micro-crystal muscovite as reinforced particulates. The mechanical behaviors of composites to impact loading was evaluated by split Hopkinson bar. The results demonstrated that dynamic yield stress and failure stress of UHMWPE composites were gradually increased when the filling amount was less than 20%; when the filling content of muscovite was around 15%, the energy absorption efficiency of the composite reaches maximum value. It was also found that when strain rate within 3200/s, the dynamic yield stress, failure stress and energy absorption efficiency of UHMWPE composites increased with the increase of strain rate and display strain rate enhancement effect.

  8. The changing brain--insights into the mechanisms of neural and behavioral adaptation to the environment

    DEFF Research Database (Denmark)

    Bergersen, L H; Bramham, C R; Hugdahl, K

    2013-01-01

    of the Symposium presentations was the mechanisms by which animals adapt to their environment. The symposium speakers--Michael Greenberg, Erin Schuman, Chiara Cirelli, Michael Meaney, Catherine Dulac, Hopi Hoekstra, and Stanislas Dehaene--covered topics ranging from the molecular and cellular levels to the systems...... level and behavior. Thus a single amino acid change in a transcriptional repressor can disrupt gene regulation through neural activity (Greenberg). Deep sequencing analysis of the neuropil transcriptome indicates that a large fraction of the synaptic proteome is synthesized in situ in axons...

  9. Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Vijay [Univ. of Cincinnati, OH (United States); Carroll, Laura [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sham, Sam [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-06

    This research project, which includes collaborators from INL and ORNL, focuses on the study of alloy 617 and alloy 800H that are candidates for applications as intermediate heat exchangers in GEN IV nuclear reactors, with an emphasis on the effects of grain size, grain boundaries and second phases on the creep properties; the mechanisms of dislocation creep, diffusional creep and cavitation; the onset of tertiary creep; and theoretical modeling for long-term predictions of materials behavior and for high temperature alloy design.

  10. Conceptual model and economic experiments to explain nonpersistence and enable mechanism designs fostering behavioral change.

    Science.gov (United States)

    Djawadi, Behnud Mir; Fahr, René; Turk, Florian

    2014-12-01

    Medical nonpersistence is a worldwide problem of striking magnitude. Although many fields of studies including epidemiology, sociology, and psychology try to identify determinants for medical nonpersistence, comprehensive research to explain medical nonpersistence from an economics perspective is rather scarce. The aim of the study was to develop a conceptual framework that augments standard economic choice theory with psychological concepts of behavioral economics to understand how patients' preferences for discontinuing with therapy arise over the course of the medical treatment. The availability of such a framework allows the targeted design of mechanisms for intervention strategies. Our conceptual framework models the patient as an active economic agent who evaluates the benefits and costs for continuing with therapy. We argue that a combination of loss aversion and mental accounting operations explains why patients discontinue with therapy at a specific point in time. We designed a randomized laboratory economic experiment with a student subject pool to investigate the behavioral predictions. Subjects continue with therapy as long as experienced utility losses have to be compensated. As soon as previous losses are evened out, subjects perceive the marginal benefit of persistence lower than in the beginning of the treatment. Consequently, subjects start to discontinue with therapy. Our results highlight that concepts of behavioral economics capture the dynamic structure of medical nonpersistence better than does standard economic choice theory. We recommend that behavioral economics should be a mandatory part of the development of possible intervention strategies aimed at improving patients' compliance and persistence behavior. Copyright © 2014 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  11. A perspectival version of the modal interpretation of quantum mechanics and the origin of macroscopic behavior

    CERN Document Server

    Béné, G J; Bene, Gyula; Dieks, Dennis

    2001-01-01

    We study the process of observation (measurement), within the framework of a `perspectival' (`relational', `relative state') version of the modal interpretation of quantum mechanics. We show that if we assume certain features of discreteness and determinism in the operation of the measuring device (which could be a part of the observer's nerve system), this gives rise to classical characteristics of the observed properties, in the first place to spatial localization. We investigate to what extent semi-classical behavior of the object system itself (as opposed to the observational system) is needed for the emergence of classicality. Decoherence is an essential element in the mechanism of observation that we assume, but it turns out that in our approach no environment-induced decoherence on the level of the object system is required for the emergence of classical properties.

  12. Behavioral Effects of Upper Respiratory Tract Illnesses: A Consideration of Possible Underlying Cognitive Mechanisms

    Directory of Open Access Journals (Sweden)

    Andrew P. Smith

    2012-03-01

    Full Text Available Previous research has shown that both experimentally induced upper respiratory tract illnesses (URTIs and naturally occurring URTIs influence mood and performance. The present study investigated possible cognitive mechanisms underlying the URTI-performance changes. Those who developed a cold (N = 47 had significantly faster, but less accurate, performance than those who remained healthy (N = 54. Illness had no effect on manipulations designed to influence encoding, response organisation (stimulus-response compatilibility or response preparation. Similarly, there was no evidence that different components of working memory were impaired. Overall, the present research confirms that URTIs can have an effect on performance efficiency. Further research is required to identify the physiological and behavioral mechanisms underlying these effects.

  13. Gelation Behaviors and Mechanism of Silk Fibroin According to the Addition of Nitrate Salts

    Directory of Open Access Journals (Sweden)

    Dong Su Im

    2016-10-01

    Full Text Available Silk fibroin (SF is a typical fibrous protein that is secreted by silkworms and spiders. It has been used in a variety of areas, and especially for tissue-engineering scaffolds, due to its sound processability, mechanical properties, biodegradability, and biocompatibility. With respect to gelation, the SF gelation time is long in aqueous solutions, so a novel approach is needed to shorten this time. The solubility of regenerated SF is sound in formic acid (FA, which is a carboxylic acid of the simplest structure. In this study, SF was dissolved in formic acid, and the addition of salts then induced a rapid gelation that accompanied a solution-color change. Based on the gelation behaviors of the SF solution according to different SF and salt concentrations, the gelation mechanism was investigated.

  14. Progress in understanding the mechanical behavior of pressure-vessel materials at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, R.W.; Brinkman, C.R.

    1981-01-01

    Progress during the 1970's on the production of high-temperature mechanical properties data for pressure vessel materials was reviewed. The direction of the research was toward satisfying new data requirements to implement advances in high-temperature inelastic design methods. To meet these needs, servo-controlled testing machines and high-resolution extensometry were developed to gain more information on the essential behavioral features of high-temperature alloys. The similarities and differences in the mechanical response of various pressure vessel materials were identified. High-temperature pressure vessel materials that have received the most attention included Type 304 stainless steel, Type 316 stainless steel, 2 1/4 Cr-1 Mo steel, alloy 800H, and Hastelloy X.

  15. Numerical Investigation on the Thermo-mechanical Behavior of a Quadratic Cross Section Pile Heat Exchanger

    DEFF Research Database (Denmark)

    Pagola, Maria Alberdi; Madsen, Søren; Jensen, Rasmus Lund

    2017-01-01

    and shaft resistances; ii) the maximum upward/downward displacements. A one-year time span is considered under operational and extreme thermal boundary conditions. The results show that a typical geothermal utilization of the energy foundation does not generate significant structural implications...... and, therefore, there is a need to develop guidelines to design them properly. This paper contributes by studying the thermo-mechanical behavior of the precast piles which are 15-meter long and have a quadratic cross section and a W-shape pipe heat exchanger. This article aims to numerically assess...... on the geotechnical capacity of a single energy pile. However, ground thermal loads need to be considered in the design phase to account for potential extreme temperature changes, which could generate thermal stresses that equalize the mechanically generated ones....

  16. Mechanical and microstructural behavior of brazed aluminum / stainless steel mixed joints

    Science.gov (United States)

    Fedorov, V.; Weis, S.; Wagner, G.

    2016-03-01

    There is a requirement to combine different materials such as aluminum and stainless steel in industrial applications like automotive heat exchangers. Brazing offers the possibility to reduce the joining temperature in comparison to welding due to the lower liquidus temperature of the fillers. In the present work, the mechanical and microstructural behavior of aluminum / stainless steel mixed joints is investigated. The specimens are produced by induction brazing using an AlSi10filler and a non-corrosive flux. To evaluate the mechanical properties of the joints, tensile tests at elevated temperatures are carried out. Additionally, long-term thermal exposure experiments are done in order to investigate the changes in the microstructure.

  17. Comparison of the elastic coefficients and Calculation Models of the Mechanical Behavior one- Dimensional Composites

    Directory of Open Access Journals (Sweden)

    Saleh Alsubari

    2011-09-01

    Full Text Available In this paper, we present the mechanical models that are devoted to the elastic properties of one-dimensional composite. We have compared the equivalent coefficients of one-dimensional composite, resulting from different models. The validation of the results was made through effective experiments on a one-dimensional composite consisting of fibers of alumina and a matrix of aluminum. This study allows us to better assess the rigidity of composite structures, and the results of calculation of the mechanical behavior, resulting from each model. It appears that the finite element model is the best suited to the approach of a refined conception. For more insurance, we have chosen to make our calculations by finite element in the three-dimensional case, using the technique of homogenization by asymptotic development.

  18. The Impact of Cracked Microparticles on the Mechanical and the Fracture Behavior of Particulate Composite

    Directory of Open Access Journals (Sweden)

    Waleed K. Ahmed

    2015-10-01

    Full Text Available In this investigation a metallic composite with a cracked micro has been investigated using finite element method. Particulate reinforced composite is one of the most favorite composite due to it quit isotopic properties. While being in metallic status, the micro particles may be subjected to deterioration which lead to crack embedded initiation within the micro particle. This crack lead to degradation in the mechanical as well as the fracture behavior in the composite. Mechanical characteristics through estimating the stiffness of the composite has been studied for intact and cracked particles as well as for the fractured particles. It has been found that as long as the crack propagates in the micro particle, there is reduction in the composite stiffness and increases in the stress intensity factor (SIF.

  19. Analysis of mechanical behavior of soft rocks and stability control in deep tunnels

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    2014-06-01

    Full Text Available Due to the weakness in mechanical properties of chlorite schist and the high in situ stress in Jinping II hydropower station, the rock mass surrounding the diversion tunnels located in chlorite schist was observed with extremely large deformations. This may significantly increase the risk of tunnel instability during excavation. In order to assess the stability of the diversion tunnels laboratory tests were carried out in association with the petrophysical properties, mechanical behaviors and water-weakening properties of chlorite schist. The continuous deformation of surrounding rock mass, the destruction of the support structure and a large-scale collapse induced by the weak chlorite schist and high in situ stress were analyzed. The distributions of compressive deformation in the excavation zone with large deformations were also studied. In this regard, two reinforcement schemes for the excavation of diversion tunnel bottom section were proposed accordingly. This study could offer theoretical basis for deep tunnel construction in similar geological conditions.

  20. Gelation Behaviors and Mechanism of Silk Fibroin According to the Addition of Nitrate Salts.

    Science.gov (United States)

    Im, Dong Su; Kim, Min Hee; Yoon, Young Il; Park, Won Ho

    2016-10-10

    Silk fibroin (SF) is a typical fibrous protein that is secreted by silkworms and spiders. It has been used in a variety of areas, and especially for tissue-engineering scaffolds, due to its sound processability, mechanical properties, biodegradability, and biocompatibility. With respect to gelation, the SF gelation time is long in aqueous solutions, so a novel approach is needed to shorten this time. The solubility of regenerated SF is sound in formic acid (FA), which is a carboxylic acid of the simplest structure. In this study, SF was dissolved in formic acid, and the addition of salts then induced a rapid gelation that accompanied a solution-color change. Based on the gelation behaviors of the SF solution according to different SF and salt concentrations, the gelation mechanism was investigated.

  1. Microstructure and Mechanical Behavior of 17-4 Precipitation Hardenable Steel Processed by Selective Laser Melting

    Science.gov (United States)

    Rafi, H. Khalid; Pal, Deepankar; Patil, Nachiket; Starr, Thomas L.; Stucker, Brent E.

    2014-12-01

    The mechanical behavior and the microstructural evolution of 17-4 precipitation hardenable (PH) stainless steel processed using selective laser melting have been studied. Test coupons were produced from 17-4 PH stainless steel powder in argon and nitrogen atmospheres. Characterization studies were carried out using mechanical testing, optical microscopy, scanning electron microscopy, and x-ray diffraction. The results show that post-process heat treatment is required to obtain typically desired tensile properties. Columnar grains of smaller diameters (<2 µm) emerged within the melt pool with a mixture of martensite and retained austenite phases. It was found that the phase content of the samples is greatly influenced by the powder chemistry, processing environment, and grain diameter.

  2. Analysis of mechanical behavior of soft rocks and stability control in deep tunnels

    Institute of Scientific and Technical Information of China (English)

    Hui Zhou; Chuanqing Zhang; Zhen Li; Dawei Hu; Jing Hou

    2014-01-01

    Due to the weakness in mechanical properties of chlorite schist and the high in situ stress in Jinping II hydropower station, the rock mass surrounding the diversion tunnels located in chlorite schist was observed with extremely large deformations. This may significantly increase the risk of tunnel instability during excavation. In order to assess the stability of the diversion tunnels laboratory tests were carried out in association with the petrophysical properties, mechanical behaviors and water-weakening properties of chlorite schist. The continuous deformation of surrounding rock mass, the destruction of the support structure and a large-scale collapse induced by the weak chlorite schist and high in situ stress were analyzed. The distributions of compressive deformation in the excavation zone with large deformations were also studied. In this regard, two reinforcement schemes for the excavation of diversion tunnel bottom section were proposed accordingly. This study could offer theoretical basis for deep tunnel construction in similar geological conditions.

  3. Mechanical behavior of LC4 alloy in semisolid state at high volume fractions of solid

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The mechanical behavior of LC4 alloy in the semisolid state at high volume fractions of solid has been studied through unconstrictive compressing test. The results show that peak stress mainly depends on grain boundary's cohesion and instantaneous strain rate sensitivity in the semisolid state, which is similar to that in the solid state. Analyses on microstructures and status of compressive stress of specimen demonstrate that segregation of liquid-solid phase is mainly affected by strain rate and deformation temperature. There are mainly two kinds of flow in liquid phase: either from the region with relatively large hydrostatic compressive stress to the region with relatively small hydrostatic compressive stress or from the grain boundaries perpendicular to the compression axis to the grain boundaries with a certain directional angle to the compression direction. Based on the above results, compressive deformation mechanism mainly depends on deformation temperature, strain rate and stress state.

  4. Mechanical behavior of glass fiber polyester hybrid composite filled with natural fillers

    Science.gov (United States)

    Gupta, G.; Gupta, A.; Dhanola, A.; Raturi, A.

    2016-09-01

    Now-a-days, the natural fibers and fillers from renewable natural resources offer the potential to act as a reinforcing material for polymer composite material alternative to the use of synthetic fiber like as; glass, carbon and other man-made fibers. Among various natural fibers and fillers like banana, wheat straw, rice husk, wood powder, sisal, jute, hemp etc. are the most widely used natural fibers and fillers due to its advantages like easy availability, low density, low production cost and reasonable physical and mechanical properties This research work presents the effect of natural fillers loading with 5%, 10% and 15% on mechanical behavior of polyester based hybrid composites. The result of test depicted that hybrid composite has far better properties than single fibre glass reinforced composite under impact and flexural loads. However it is found that the hybrid composite have better strength as compared to single glass fibre composites.

  5. Mechanical Behavior of a Glass-fiber Reinforced Composite to Steel Joint for Ships

    Institute of Scientific and Technical Information of China (English)

    Xiaowen Li; Ping Li; Zhuang Lin; Dongmei Yang

    2015-01-01

    The use of a glass-fiber reinforced composite in marine structures is becoming more common, particularly due to the potential weight savings. The mechanical response of the joint between a glass-fiber reinforced polymer (GRP) superstructure and a steel hull formed is examined and subsequently modified to improve performance through a combined program of modeling and testing. A finite-element model is developed to predict the response of the joint. The model takes into account the contact at the interface between different materials, progressive damage, large deformation theory, and a non-linear stress-strain relationship. To predict the progressive failure, the analysis combines Hashin failure criteria and maximum stress failure criteria. The results show stress response has a great influence on the strength and bearing of the joint. The Balsawood-steel interface is proved to be critical to the mechanical behavior of the joint. Good agreement between experimental results and numerical predictions is observed.

  6. Mechanical behavior of tungsten–vanadium–lanthana alloys as function of temperature

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, T., E-mail: teresa.palacios@mater.upm.es [Departamento de Ciencia de Materiales-CISDEM, Universidad Politécnica de Madrid, E.T.S.I. Caminos, Canales y Puertos, C/Professor Aranguren s/n, 28040 Madrid (Spain); Pastor, J.Y. [Departamento de Ciencia de Materiales-CISDEM, Universidad Politécnica de Madrid, E.T.S.I. Caminos, Canales y Puertos, C/Professor Aranguren s/n, 28040 Madrid (Spain); Aguirre, M.V. [Departamento de Tecnologías Especiales Aplicadas a la Aeronáutica, Universidad Politécnica de Madrid, E.I. Aeronáutica y del Espacio, 28040 Madrid (Spain); Martín, A. [Departamento de Ciencia de Materiales-CISDEM, Universidad Politécnica de Madrid, E.T.S.I. Caminos, Canales y Puertos, C/Professor Aranguren s/n, 28040 Madrid (Spain); Monge, M.A.; Muñóz, A.; Pareja, R. [Departamento de Física, Universidad Carlos III de Madrid, Leganés (Spain)

    2013-11-15

    The mechanical behavior of three tungsten (W) alloys with vanadium (V) and lanthana (La{sub 2}O{sub 3}) additions (W–4%V, W–1%La{sub 2}O{sub 3}, W–4%V–1%La{sub 2}O{sub 3}) processed by hot isostatic pressing (HIP) have been compared with pure-W to analyze the influence of the dopants. Mechanical characterization was performed by three point bending (TPB) tests in an oxidizing air atmosphere and temperature range between 77 (immersion tests in liquid nitrogen) and 1273 K, through which the fracture toughness, flexural strength, and yield strength as function of temperature were obtained. Results show that the V and La{sub 2}O{sub 3} additions improve the mechanical properties and oxidation behavior, respectively. Furthermore, a synergistic effect of both dopants results in an extraordinary increase of the flexure strength, fracture toughness and resistance to oxidation compared to pure-W, especially at higher temperatures. In addition, a new experimental method was developed to obtain a very small notch tip radius (around 5–7 μm) and much more similar to a crack through the use of a new machined notch. The fracture toughness results were lower than those obtained with traditional machining of the notch, which can be explained with electron microscopy, observations of deformation in the rear part of the notch tip. Finally, scanning electron microscopy (SEM) examination of the microstructure and fracture surfaces was used to determine and analyze the relationship between the macroscopic mechanical properties and the micromechanisms of failure involved, depending on the temperature and the dispersion of the alloy.

  7. Characterization of Tensile Mechanical Behavior of MSCs/PLCL Hybrid Layered Sheet

    Directory of Open Access Journals (Sweden)

    Azizah Intan Pangesty

    2016-06-01

    Full Text Available A layered construct was developed by combining a porous polymer sheet and a cell sheet as a tissue engineered vascular patch. The primary objective of this study is to investigate the influence of mesenchymal stem cells (MSCs sheet on the tensile mechanical properties of porous poly-(l-lactide-co-ε-caprolactone (PLCL sheet. The porous PLCL sheet was fabricated by the solid-liquid phase separation method and the following freeze-drying method. The MSCs sheet, prepared by the temperature-responsive dish, was then layered on the top of the PLCL sheet and cultured for 2 weeks. During the in vitro study, cellular properties such as cell infiltration, spreading and proliferation were evaluated. Tensile test of the layered construct was performed periodically to characterize the tensile mechanical behavior. The tensile properties were then correlated with the cellular properties to understand the effect of MSCs sheet on the variation of the mechanical behavior during the in vitro study. It was found that MSCs from the cell sheet were able to migrate into the PLCL sheet and actively proliferated into the porous structure then formed a new layer of MSCs on the opposite surface of the PLCL sheet. Mechanical evaluation revealed that the PLCL sheet with MSCs showed enhancement of tensile strength and strain energy density at the first week of culture which is characterized as the effect of MSCs proliferation and its infiltration into the porous structure of the PLCL sheet. New technique was presented to develop tissue engineered patch by combining MSCs sheet and porous PLCL sheet, and it is expected that the layered patch may prolong biomechanical stability when implanted in vivo.

  8. Effect of Water on the Thermo-Mechanical Behavior of Carbon Cloth Phenolic

    Science.gov (United States)

    Sullivan, Roy M.; Stokes, Eric; Baker, Eric H.

    2011-01-01

    The results of thermo-mechanical experiments, which were conducted previously by one of the authors, are reviewed. The strain in the direction normal to the fabric plane was measured as a function of temperature for a variety of initial moisture contents and heating rates. In this paper, the general features of the thermo-mechanical response are discussed and the effect of heating rate and initial moisture content are highlighted. The mechanical interaction between the phenolic polymer and water trapped within its free volumes as the polymer is heated to high temperatures is discussed. An equation for the internal stresses which are generated within the polymer due to trapped water is obtained from the total stress expression for a binary mixture of polymer and water. Numerical solutions for moisture diffusion in the thermo-mechanical experiments were performed and the results of these solutions are presented. The results of the moisture diffusion solutions help to explain the effects of heating rate and moisture content on the strain behavior normal to the fabric plane.

  9. Investigation of the dynamic mechanical behavior of polyetheretherketone (PEEK) in the high stress tensile regime

    Science.gov (United States)

    Berer, M.; Major, Z.; Pinter, G.; Constantinescu, D. M.; Marsavina, L.

    2014-11-01

    Due to its outstanding mechanical performance both in static and dynamic loading and its resistance up to very high temperatures, Polyetheretherketone (PEEK) has attracted many practical applications. The loaded contact state for the application of PEEK rolls as bearing elements was recently analyzed by the corresponding author. High irreversible deformations on the mantle side were caused by the rolling contact and thus the rolling performance is supposed to be strongly affected by the dynamic mechanical properties of this irreversibly deformed material. Tensile fatigue tests at various stress levels up to the thermally dominated fatigue regime were conducted in order to get information regarding the dynamic mechanical material behavior at high stress regimes. Two types of PEEK (annealed and untreated) were investigated and two load ratios, R, were used (0.1 and 0.5). During the fatigue tests extensometer strain, load and surface temperature were recorded and a quantitative hysteresis loop analysis with calculated secant modulus and dynamic modulus was performed. Furthermore, the concept of isocyclic stress-strain diagrams was applied to enlarge and confirm the results obtained from the hysteresis loop analysis. A sharp transition between thermally dominated and mechanically dominated fatigue regimes was found for both PEEK types (annealed and untreated) and for both load ratios. Moreover, the annealed PEEK was stiffer in the tensile fatigue tests than the untreated material. Both examined PEEK types showed distinct hardening throughout the fatigue tests which made them "more elastic" (higher stiffness and less damping).

  10. Investigating the underlying mechanisms of aberrant behaviors in bipolar disorder from patients to models

    Science.gov (United States)

    van Enkhuizen, Jordy; Geyer, Mark A.; Minassian, Arpi; Perry, William; Henry, Brook L.; Young, Jared W.

    2015-01-01

    Psychiatric patients with bipolar disorder suffer from states of depression and mania, during which a variety of symptoms are present. Current treatments are limited and neurocognitive deficits in particular often remain untreated. Targeted therapies based on the biological mechanisms of bipolar disorder could fill this gap and benefit patients and their families. Developing targeted therapies would benefit from appropriate animal models which are challenging to establish, but remain a vital tool. In this review, we summarize approaches to create a valid model relevant to bipolar disorder. We focus on studies that use translational tests of multivariate exploratory behavior, sensorimotor gating, decision-making under risk, and attentional functioning to discover profiles that are consistent between patients and rodent models. Using this battery of translational tests, similar behavior profiles in bipolar mania patients and mice with reduced dopamine transporter activity have been identified. Future investigations should combine other animal models that are biologically relevant to the neuropsychiatric disorder with translational behavioral assessment as outlined here. This methodology can be utilized to develop novel targeted therapies that relieve symptoms for more patients without common side effects caused by current treatments. PMID:26297513

  11. Mood disorders in Huntington's disease: from behavior to cellular and molecular mechanisms.

    Science.gov (United States)

    Pla, Patrick; Orvoen, Sophie; Saudou, Frédéric; David, Denis J; Humbert, Sandrine

    2014-01-01

    Huntington's disease (HD) is a neurodegenerative disorder that is best known for its effect on motor control. Mood disturbances such as depression, anxiety, and irritability also have a high prevalence in patients with HD, and often start before the onset of motor symptoms. Various rodent models of HD recapitulate the anxiety/depressive behavior seen in patients. HD is caused by an expanded polyglutamine stretch in the N-terminal part of a 350 kDa protein called huntingtin (HTT). HTT is ubiquitously expressed and is implicated in several cellular functions including control of transcription, vesicular trafficking, ciliogenesis, and mitosis. This review summarizes progress in efforts to understand the cellular and molecular mechanisms underlying behavioral disorders in patients with HD. Dysfunctional HTT affects cellular pathways that are involved in mood disorders or in the response to antidepressants, including BDNF/TrkB and serotonergic signaling. Moreover, HTT affects adult hippocampal neurogenesis, a physiological phenomenon that is implicated in some of the behavioral effects of antidepressants and is linked to the control of anxiety. These findings are consistent with the emerging role of wild-type HTT as a crucial component of neuronal development and physiology. Thus, the pathogenic polyQ expansion in HTT could lead to mood disorders not only by the gain of a new toxic function but also by the perturbation of its normal function.

  12. Mood disorders in Huntington’s disease: from behavior to cellular and molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Patrick ePla

    2014-04-01

    Full Text Available Huntington’s disease (HD is a neurodegenerative disorder that is best known for its effect on motor control. Mood disturbances such as depression, anxiety, and irritability also have a high prevalence in patients with HD, and often start before the onset of motor symptoms. Various rodent models of HD recapitulate the anxiety/depressive behavior seen in patients. HD is caused by an expanded polyglutamine stretch in the N-terminal part of a 350 kDa protein called huntingtin (HTT. HTT is ubiquitously expressed and is implicated in several cellular functions including control of transcription, vesicular trafficking, ciliogenesis, and mitosis. This review summarizes progress in efforts to understand the cellular and molecular mechanisms underlying behavioral disorders in patients with HD. Dysfunctional HTT affects cellular pathways that are involved in mood disorders or in the response to antidepressants, including BDNF/TrkB and serotonergic signaling. Moreover, HTT affects adult hippocampal neurogenesis, a physiological phenomenon that is implicated in some of the behavioral effects of antidepressants and is linked to the control of anxiety. These findings are consistent with the emerging role of wild-type HTT as a crucial component of neuronal development and physiology. Thus, the pathogenic polyQ expansion in HTT could lead to mood disorders not only by the gain of a new toxic function but also by the perturbation of its normal function.

  13. Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet.

    Science.gov (United States)

    Stella, John A; Liao, Jun; Sacks, Michael S

    2007-01-01

    . The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet. Journal of Biomechanical Engineering 129 (1), 78-87], we speculate that the mechanisms underlying this quasi-elastic behavior may be attributed to inter-fibrillar structures unique to valvular tissues. These mechanisms are an important functional aspect of native valvular tissues, and are likely critical to improve our understanding of valvular disease and help guide the development of valvular tissue engineering and surgical repair.

  14. Mechanical and chemical behavior of intergranular fluids in nonhydrostatically stressed rocks at low temperature

    Institute of Scientific and Technical Information of China (English)

    刘亮明; 彭省临

    2001-01-01

    Intergranular fluids within the nonhydrostatically stressed solids are a sort of important fluids in the crust. Research on the mechanical and chemical behavior of the intergranular fluids in nonhydrostatically stressed rocks at low temperature is a key for understanding deformation and syntectonic geochemical processes in mid to shallow crust. Theoretically, it is suggested that the fluid film sandwiched between solid grains is one of the main states of intergranular fluids in the nonhydrostatically stressed solids. Their superthin thickness makes the fluid films have the mechanical and chemical behavior very different from the common fluids. Because of hydration force, double-layer repulsive force or osmotic pressure due to double-layer, the fluid films can transmit nonhydrostatic stress. The solid minerals-intergranular fluids interaction and mass transfer by intergranular fluids is stress-related, because the stress in solid minerals can enhance the free energy of solid matter on the interfaces. The thermodynamic and kinetic equations for the simple case of stress induced processes are derived.

  15. Mechanical Behavior of Carbon Nanotubes Filled With Metal Nanowires By Atomistic Simulations

    Science.gov (United States)

    Danailov, Daniel; Keblinski, Pawel; Pulickel, Ajayan; Nayak, Saroj

    2002-03-01

    Using molecular dynamics simulations we studied mechanical behavior of (10,10) carbon nanotubes filled with a crystalline fcc metal wires. The interatomic interactions were described by a combination of Terfoff’s bond-order potential for carbon, embedded atom method (EAM) potential for metal and pair potential for carbon-metal interactions. The elastic properties, as well as failure mechanism were determined by simulating three point bending test, by pressing the center and the ends of relatively long tube in determined relatively small ring areas. We observed that following elastic response, at larger deformation, the metal wire yields well before the carbon bonding is affected. The behavior of filled tubes was compared with that of hollow tubes. Interesting is thet the hollow carbon (10,10) nanotube is more strong elastically than the same tube filled with Au-metal nanowire. We also simulated indentation of filled tubes residing on a hard flat surface. Similarly as in the bending test, metal wire yields first, is cut in between hard cylinder and hard plane and pushed away from under the indenter. Upon further increase of the indentation force, carbon tube is broken and forms two open ends that are rapidly zipped around the cut metal wire. Remarkably, the shape of the zipped tube ends strong depend of the speed of the punching of the tube. This result imply a possibility of designing tubes with various closed end shapes with applicationusing in the nanoscale manipulation procedures used for production.

  16. Effect of Indium Content on the Microstructure, Mechanical Properties and Corrosion Behavior of Titanium Alloys

    Directory of Open Access Journals (Sweden)

    Mi-Kyung Han

    2015-05-01

    Full Text Available Ti-xIn (x = 0, 5, 10, 15 and 20 wt% alloys were prepared to investigate the effect of indium on the microstructure, mechanical properties, and corrosion behavior of titanium with the aim of understanding the relationship between phase/microstructure and various properties of Ti-xIn alloys. The Ti-xIn alloys exhibited a lamellar α-Ti structure at an indium content of up to 20 wt%. High-resolution TEM images of the Ti-xIn alloys revealed that all the systems contained a fine, acicular martensitic phase, which showed compositional fluctuations at the nanoscopic level. The mechanical properties and corrosion behavior of Ti-xIn alloys were sensitive to the indium content. The Vickers hardness increased as the In content increased because of solid solution strengthening. The Ti-xIn alloys exhibited superior oxidation resistance compared to commercially pure Ti (cp-Ti. Electrochemical results showed that the Ti-xIn alloys exhibited a similar corrosion resistance to cp-Ti. Among the alloys tested, Ti-10In showed a potential for use as a dental material.

  17. Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers.

    Science.gov (United States)

    Koosha, Mojtaba; Mirzadeh, Hamid

    2015-09-01

    Electrospinning process has been widely used to produce nanofibers from polymer blends. Poly(vinyl alcohol) (PVA) and chitosan (CS) have numerous biomedical applications such as wound healing and tissue engineering. Nanofibers of CS/PVA have been prepared by many works, however, a complete physicochemical and mechanical characterization as well as cell behavior has not been reported. In this study, PVA and CS/PVA blend solutions in acetic acid 70% with different volume ratios (30/70, 50/50, and 70/30) were electrospun in constant electrospinning process parameters. The structure and morphology of nanofibrous mats were characterized by SEM, FTIR, and XRD methods. The best nanofibrous mat was achieved from the CS/PVA 30/70 blend solution regarding the electrospinning throughput. The dynamic mechanical thermal analysis (DMTA) of PVA and CS/PVA 30/70 nanofibrous mats were measured which were not considered in the previous studies. DMTA results in accordance to the DSC analysis approved the partial compatibility between the two polymers, while a single glass transition temperature was not observed for the blend. The tensile strength of PVA and CS/PVA nanofibers were also reported. Results of cell behavior study indicated that the heat stabilized nanofibrous mat CS/PVA 30/70 was able to support the attachment and proliferation of the fibroblast cells.

  18. Effect of formulation of alginate beads on their mechanical behavior and stiffness

    Institute of Scientific and Technical Information of China (English)

    Eng-Seng Chan; Tek-Kaun Lim; Wan-Ping Voo; Ravindra Pogaku; Beng Ti Tey; Zhibing Zhang

    2011-01-01

    The aim of this work was to determine the effect of formulation of alginate beads on their mechanical behavior and stiffness when compressed at high speed. The alginate beads were formulated using different types and concentrations of alginate and gelling cations and were produced using an extrusiondripping method. Single wet beads were compressed at a speed of 40 mm/min, and their elastic limits were investigated, and the corresponding force versus displacement data were obtained. The Young's moduli of the beads were determined from the force versus displacement data using the Hertz's contact mechanics theory. The alginate beads were found to exhibit plastic behavior when they were compressed beyond 50% with the exception of copper-alginate beads for which yield occured at lower deformation.Alginate beads made of higher guluronic acid contents and gelling cations of higher chemical affinity were found to have greater stiffness. Increasing the concentration of alginate and gelling ions also generated a similar effect. At such a compression speed, the values of Young's modulus of the beads were found to be in the range between 250 and 900 kPa depending on the bead formulation.

  19. Chitosan/bentonite bionanocomposites: morphology and mechanical behavior; Bionanocompositos quitosana/bentonita: morfologia e comportamento mecanico

    Energy Technology Data Exchange (ETDEWEB)

    Braga, C.R.C.; Melo, F.M.A. de [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Programa de Pos-graduacao em Ciencia e Engenharia de Materiais; Vitorino, I.F. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Ciencia e Engenharia de Materiais; Fook, M.V.L.; Silva, S.M.L., E-mail: suedina@dema.ufcg.edu.b [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais

    2010-07-01

    This study chitosan/bentonite bionanocomposite films were prepared by solution intercalation process, seeking to investigate the effect of the chitosan/bentonite ratio (5/1 e 10/1) on the morphology and mechanical behavior of the bionanocomposites. It was used as nanophase, Argel sodium bentonite (AN), was provided by Bentonit Uniao Nordeste-BUN (Campina Grande, Brazil) and as biopolymer matrix the chitosan of low molecular weight and degree of deacetylation of 86,7% was supplied by Polymar (Fortaleza, Brazil). The bionanocomposites was investigated by X-ray diffraction and tensile properties. According to the results, the morphology and the mechanical behavior of the bionanocomposite was affected by the ratio of chitosan/bentonite. The chitosan/bentonite ratio (5/1 and 10/1) indicated the formation of an intercalated nanostructure and of the predominantly exfoliated nanostructure, respectively. And the considerable increases in the resistance to the traction were observed mainly for the bionanocomposite with predominantly exfoliated morphology. (author)

  20. Electro-mechanical behaviors of composite superconducting strand with filament breakage

    Science.gov (United States)

    Wang, Xu; Gao, Yuanwen; Zhou, Youhe

    2016-10-01

    The bending behaviors of superconducting strand with typical multi-filament twist configuration are investigated based on a three-dimensional finite element method (FEM) model, named as the Multi-filament twist model, of the strand. In this 3D FEM model, the impacts of initial thermal residual stress, filament-breakage and its evaluation are taken into accounts. The mechanical responses of the strand under bending load are studied with the factors taken into consideration one by one. The distribution of the damage of the filaments and its evolution and the movement of the neutral axis caused by it are studied and displayed in detail. Besides, taking the advantages of the Multi-filament twist model, the normalized critical current of the strand under bending load is also calculated based on the invariant temperature and field strain functions. In addition, the non-negligible influences of the pitch length of the filaments on both the mechanical behaviors and the normalized critical current are discussed. The stress-strain characteristics of the strand under tensile load and the normalized critical current of it under axial and bending loads resulting from the Multi-filament twist model show good agreement with the experimental data.