WorldWideScience

Sample records for superpave asphalt binder

  1. Validity of multiple stress creep recovery (MSCR) test for DOTD asphalt binder specification : technical summary.

    Science.gov (United States)

    2017-09-01

    Higher traffic coupled with heavier loads led the asphalt industry to introduce polymer-modified binders to enhance the durability and strength of hot mix asphalt (HMA) pavements. When the Superpave Performance Graded (PG) binder specification (AASHT...

  2. Analysis of the multiple stress creep recovery asphalt binder test and specifications for use in Indiana.

    Science.gov (United States)

    2016-03-01

    The Superpave specifications and equipment, introduced in 1993, represented a major advancement with respect to offering a better : understanding of the behavior and characteristics of asphalt binders based on their rheological properties. However, t...

  3. Natural asphalt modified binders used for high stiffness modulus asphalt concrete

    Science.gov (United States)

    Bilski, Marcin; Słowik, Mieczysław

    2018-05-01

    This paper presents a set of test results supporting the possibility of replacing, in Polish climate conditions, hard road 20/30 penetration grade bitumen used in the binder course and/or base course made of high stiffness modulus asphalt concrete with binders comprising of 35/50 or 50/70 penetration grade bitumens and additives in the form of natural Gilsonite or Trinidad Epuré asphalts. For the purpose of comparing the properties of the discussed asphalt binders, values of the Performance Grade have been determined according to the American Superpave system criteria.

  4. Production and performance of desulfurized rubber asphalt binder

    Directory of Open Access Journals (Sweden)

    Yanping Sheng

    2017-05-01

    Full Text Available Asphalt rubber binder typically exhibits disadvantages like segregation and high viscosity; however, this can be improved by the incorporation of desulfurized rubber powder. This study examined the swelling principle of desulfurized rubber asphalt (DRA. In addition, it evaluated the performance of DRA fabricated with various rubber powder contents under different shear conditions and development time. Superpave binders tests, including Brookfield viscosity, dynamic shear rheometer (DSR and bending beam rheometer (BBR tests, were applied on three control binders (i.e., neat, 20 mesh asphalt rubber binder, 40 mesh asphalt rubber binder and a DRA binder. Binder testing results indicated that rubber powder swelled into the base binder and resulted in enhanced stability. Optimum performance of the DRA binder was achieved by adding 20% (by weight of rubber powder into the base binder at shear rate, shear temperature, shear time and development time of 7000 r/min, 170 °C, 60 min and 45 min, respectively. Modified ranges of production conditions were also provided to widen the application of DRA in field construction. It appeared that DRA binder benefited from the recovered plasticity and viscosity of the rubber and consequently, exhibited superior performance over the neat and conventional asphalt rubber binders. Preliminary mixture evaluation was also conducted and the DRA binder was found to significantly improve the mixture resistance to permanent deformation and water damage. Overall, the DAR binder is encouraged to be used as a modified binder for flexible pavements. Keywords: Desulfurized rubber asphalt, Swelling model, Production process, Asphalt performance, Rubber asphalt

  5. Rutting resistance of asphalt mixture with cup lumps modified binder

    Science.gov (United States)

    Shaffie, E.; Hanif, W. M. M. Wan; Arshad, A. K.; Hashim, W.

    2017-11-01

    Rutting is the most common pavement distress in pavement structures which occurs mainly due to several factors such as increasing of traffic volume, climatic conditions and also due to construction design errors. This failure reduced the service life of the pavement, reduced driver safety and increase cost of maintenance. Polymer Modified Binder has been observed for a long time in improving asphalt pavement performance. Research shows that the use of polymer in bituminous mix not only improve the resistance to rutting but also increase the life span of the pavement. This research evaluates the physical properties and rutting performance of dense graded Superpave-designed HMA mix. Two different types of dense graded Superpave HMA mix were developed consists of unmodified binder mix (UMB) and cup lumps rubber (liquid form) modified binder mix (CLMB). Natural rubber polymer modified binder was prepared from addition of 8 percent of cup lumps into binder. Results showed that all the mixes passed the Superpave volumetric properties criteria which indicate that these mixtures were good with respect to durability and flexibility. Furthermore, rutting results from APA rutting test was determined to evaluate the performance of these mixtures. The rutting result of CLMB demonstrates better resistance to rutting than those prepared using UMB mix. Addition of cup lumps rubber in asphalt mixture was found to be significant, where the cup lumps rubber has certainly improves the binder properties and enhanced its rutting resistance due to greater elasticity offered by the cup lumps rubber particles. It shows that the use of cup lumps rubber can significantly reduce the rut depth of asphalt mixture by 41% compared to the minimum rut depth obtained for the UMB mix. Therefore, it can be concluded that the cup lumps rubber is suitable to be used as a modifier to modified binder in order to enhance the properties of the binder and thus improves the performance of asphalt mixes.

  6. Performance Modification of Asphalt Binders using Thermoplastic Polymers

    Directory of Open Access Journals (Sweden)

    H. I. Al-Abdul Wahhab

    2004-12-01

    Full Text Available There is a need to improve the performance of asphalt binders to minimize stress cracking that occurs at low temperatures and plastic deformation at high temperatures. Importation of used asphalt-polymers from abroad, leads to an increase in the total construction cost as compared to the cost if the used polymers were of local origin. The main objective of this research was to modify locally produced asphalt. Ten polymers were identified as potential asphalt modifiers based on their physical properties and chemical composition. After preliminary laboratory evaluation for the melting point of these polymers, five polymers were selected for local asphalt modification. In the initial stage, required mixing time was decided based on the relation between shear loss modulus and mixing time .The optimum polymer content was selected based on Superpave binder performance grade specifications.The suitability of improvement was verified through the evaluation of permanent deformation and fatigue behavior of laboratory prepared asphalt concrete mixes. The results indicated that the rheological properties of the modified binders improved significantly with sufficient polymer content (3%. The aging properties of the modified binders were found to be dependent on the type of polymer.The fatigue life and resistance to permanent deformation were significantly improved due to enhanced binder rheological properties.  Thus, local asphalts can be modified using thermoplastic polymers.

  7. Aging of Rejuvenated Asphalt Binders

    Directory of Open Access Journals (Sweden)

    Mojtaba Mohammadafzali

    2017-01-01

    Full Text Available An important concern that limits the RAP content in asphalt mixtures is the fact that the aged binder that is present in the RAP can cause premature cracking. Rejuvenators are frequently added to high RAP mixtures to enhance the properties of the binder. There is no existing method to predict the longevity of a rejuvenated asphalt. This study investigated the aging of rejuvenated binders and compared their durability with that of virgin asphalt. Various samples with different types and proportions of RAP, virgin binder, and rejuvenator were aged by RTFO and three cycles of PAV. DSR and BBR tests were conducted to examine the high-temperature and low-temperature rheological properties of binders. Results indicated that the type and dosage of the rejuvenator have a great influence on the aging rate and durability of the binder. Some rejuvenators make the binder age slower, while others accelerate aging. These observations confirm the importance of evaluating the long-term aging of recycled binders. For this purpose, critical PAV time was proposed as a measure of binder’s longevity.

  8. Preparation and Properties of Asphalt Binders Modified by THFS Extracted From Direct Coal Liquefaction Residue

    Directory of Open Access Journals (Sweden)

    Jie Ji

    2017-11-01

    Full Text Available This paper aims to study the preparation and viscoelastic properties of asphalt binder modified by tetrahydrofuran soluble fraction (THFS extracted from direct coal liquefaction residue. The modified asphalt binders, which blended with SK-90 (control asphalt binder and 4%, 6%, 8% and 10% THFS (by weight of SK-90, were fabricated. The preparation process for asphalt binder was optimized in terms of the orthogonal array test strategy and gray correlation analysis results. The properties of asphalt binder were measured by applying Penetration performance grade and Superpave performance grade specifications. In addition, the temperature step and frequency sweep test in Dynamic Shear Rheometer were conducted to predict the rheological behavior, temperature and frequency susceptibility of asphalt binder. The test results suggested the optimal preparation process, such as 150 °C shearing temperature, 45 min shearing time and 4000 rpm shearing rate. Subsequently, the addition of THFS was beneficial in increasing the high-temperature properties but decreased the low-temperature properties and resistance to fatigue. The content analysis of THFS showed the percentage of 4~6% achieved a balance in the high-and-low temperature properties of asphalt binder. The asphalt binder with higher THFS content exhibited higher resistance to rutting and less sensitivity to frequency and temperature.

  9. Effects of Sasobit® content on the rheological characteristics of unaged and aged asphalt binders at high and intermediate temperatures

    Directory of Open Access Journals (Sweden)

    Ali Jamshidi

    2012-08-01

    Full Text Available This paper describes the rheological properties of PG64, PG70, and PG76 asphalt binders blended with different Sasobit® contents. The rheological properties of the Sasobit®-modified binders were characterized after being subjected to different aging conditions using the dynamic shear rheometer (DSR and rotational viscometer (RV according to SuperpaveTM test protocols. The results indicated that the characterization of aging in terms of the Aging Index (AI depends on the rheological property of the asphalt binder selected for use in evaluating aging, the amount of Sasobit®, the binder type, and the temperature range. Linear relationships between failure temperatures of unaged and short-term-aged asphalt were observed for three binder types. Design charts were developed to select the appropriate Sasobit® content as a function of temperature, taking into consideration the stiffening effects of Sasobit®, using the SuperpaveTM fatigue factor and asphalt mix construction temperatures.

  10. Performance prediction of hot mix asphalt from asphalt binders

    International Nuclear Information System (INIS)

    Hafeez, I.; Kamal, M.A.; Shahzad, Q.; Bashir, N.; Ahadi, M.R.

    2012-01-01

    Asphalt binder being a high weight hydrocarbon contains asphaltene and maltene and is widely used as cementing materials in the construction of flexible pavements. Its performance in hot mix asphalt also depends on combining with different proportions of aggregates. The main objective of this study was to characterize asphalt cement rheological behavior and to investigate the influence of asphalt on asphalt-aggregate mixtures prepared with virgin binders and using polymers. Binder rheology and mixtures stiffness were determined under a range of cyclic loadings and temperature conditions. Master curves were developed for the evaluation of relationship between parameters like complex modulus and phase angle at different frequencies. Horizontal shift factors were also computed to determine time and temperature response of binders and mixes. The results showed that the stiffness of both the binder and the mixes depends on temperature and frequency of load. Polymer modified binder is least susceptible to temperature variations as compared to other virgin asphalt cement. Performance of asphalt mixtures can be predicted from those of asphalt binders using the master curve technique. (author)

  11. Observation of asphalt binder microstructure with ESEM.

    Science.gov (United States)

    Mikhailenko, P; Kadhim, H; Baaj, H; Tighe, S

    2017-09-01

    The observation of asphalt binder with the environmental scanning electron microscope (ESEM) has shown the potential to observe asphalt binder microstructure and its evolution with binder aging. A procedure for the induction and identification of the microstructure in asphalt binder was established in this study and included sample preparation and observation parameters. A suitable heat-sampling asphalt binder sample preparation method was determined for the test and several stainless steel and Teflon sample moulds developed, finding that stainless steel was the preferable material. The magnification and ESEM settings conducive to observing the 3D microstructure were determined through a number of observations to be 1000×, although other magnifications could be considered. Both straight run binder (PG 58-28) and an air blown oxidised binder were analysed; their structures being compared for their relative size, abundance and other characteristics, showing a clear evolution in the fibril microstructure. The microstructure took longer to appear for the oxidised binder. It was confirmed that the fibril microstructure corresponded to actual characteristics in the asphalt binder. Additionally, a 'bee' micelle structure was found as a transitional structure in ESEM observation. The test methods in this study will be used for more comprehensive analysis of asphalt binder microstructure. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  12. Mechanical Properties of Warm Mix Asphalt Prepared Using Foamed Asphalt Binders : Executive Summary Report

    Science.gov (United States)

    2011-03-01

    Hot mix asphalt (HMA) is a mixture containing aggregates and asphalt binders prepared at specified : proportions. The aggregates and asphalt binder proportions are determined through a mix design : procedure such as the Marshall Mix Design or the Sup...

  13. Rubber modification of asphalt binders and mixes

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, G.; Hesp, S.A.M. [Queen`s Univ., Kingston, ON (Canada). Dept. of Chemistry

    1995-12-31

    The physical properties of asphalt binders and concrete, modified with waste rubber tire, were examined. In an experiment designed to address the concern of waste disposal of scrap rubber, a control asphalt, devulcanized rubber modified asphalt and a crumb rubber modified asphalt were used to make asphalt concrete mixes. The three mixes were subjected to a thermal stress test to determine their low temperature fracture temperatures and strengths. Results were discussed in terms of the binder material used. At high service temperatures, the addition of 10% devulcanized rubber was found to have no beneficial effect, whereas the addition of 10% 80 mesh crumb rubber produced a modest improvement in performance. At low temperatures, the addition of devulcanized rubber produced increased resistance to cracking up to 90%. The addition of 10% 80 mesh crumb rubber increased fracture toughness by a factor of 3.3 times. 12 refs., 3 tabs.

  14. Impact of the Superpave hot mix asphalt properties on its permanent deformation behavior

    Directory of Open Access Journals (Sweden)

    Qasim Zahra

    2018-01-01

    Full Text Available In Iraq, the severity of rutting has increased in asphalt pavements possibly due to the increase in truck axle loads, tyre pressure, and high pavement temperature in summer. As of late, Superpave has been accounted as an enhanced system for performance based design, analysis of asphalt pavement performance prediction for asphalt concrete mixes. In this research the development of permanent deformation in asphalt concrete under repeated loadings was investigated, Wheel-Tracking apparatus has been used in a factorial testing program during which 44 slab samples were tested to simulate actual pavement. The objectives of the present research include; investigating the main factors affecting rutting in asphalt concrete mixture, quantifying the effect of SBS polymer and steel reinforcement on asphalt concrete mixtures in addition to studying the effect of variables on the asphalt concrete mixes against moisture sensitivity. It has been determined that that increasing of compaction temperature from 110 to 150°C will decrease the permanent deformation by 20.5 and 15.6 percent for coarse and fine gradation control asphalt mixtures, respectively. While the permanent deformation decreases by 21.3 percent when the compaction temperature is increased from 110 to 150°C for coarse gradation SBS modified asphalt mixtures.

  15. Assessment of low temperature cracking in asphalt pavement mixes and rheological performance of asphalt binders

    Science.gov (United States)

    Sowah-Kuma, David

    Government spends a lot of money on the reconstruction and rehabilitation of road pavements in any given year due to various distresses and eventual failure. Low temperature (thermal) cracking, one of the main types of pavement distress, contributes partly to this economic loss, and comes about as a result of accumulated tensile strains exceeding the threshold tensile strain capacity of the pavement. This pavement distress leads to a drastic reduction of the pavement's service life and performance. In this study, the severity of low temperature (thermal) cracking on road pavements selected across the Province of Ontario and its predicted time to failure was assessed using the AASTHO Mechanistic-Empirical Pavement Design Guide (MEPDG) and AASHTOWARE(TM) software, with inputs such as creep compliance and tensile strength from laboratory test. Highway 400, K1, K2, Y1, Sasobit, Rediset LQ, and Rediset WMX were predicted to have a pavement in-service life above 15 years. Additionally, the rheological performance of the recovered asphalt binders was assessed using Superpave(TM) tests such as the dynamic shear rheometer (DSR) and bending beam rheometer (BBR). Further tests using modified standard protocols such as the extended bending beam rheometer (eBBR) (LS-308) test method and double-edge notched tension (DENT) test (LS-299) were employed to evaluate the failure properties associated with in service performance. The various rheological tests showed K1 to be the least susceptible to low temperature cracking compared to the remaining samples whiles Highway 24 will be highly susceptible to low temperature cracking. X-ray fluorescence (XRF) analysis was performed on the recovered asphalt binders to determine the presence of metals such as zinc (Zn) and molybdenum (Mo) believed to originate from waste engine oil, which is often added to asphalt binders. Finally, the severity of oxidative aging (hardening) of the recovered asphalt binders was also evaluated using the

  16. RELATIONSHIP BETWEEN FOAMING BEHAVIOR AND SURFACE ENERGY OF ASPHALT BINDER

    Directory of Open Access Journals (Sweden)

    Jian-ping Xu

    2017-12-01

    Full Text Available To solve the problem of insufficiency in microscopic performance of foamed asphalt binder, surface energy theory was utilized to analyze the foaming behavior and wettability of asphalt binder. Based on the surface energy theory, the Wilhelmy plate method and universal sorption device method were employed to measure the surface energy components of asphalt binders and aggregates, respectively. Combined with the traditional evaluation indictor for foamed asphalt, the relationship between the foaming property and surface energy of asphalt binder was analyzed. According to the surface energy components, the wettability of asphalt binder to aggregate was calculated to verify the performance of foamed asphalt mixture. Results indicate that the foaming behavior of asphalt will be influenced by surface energy, which will increase with the decline of surface energy. In addition, the surface energy of asphalt binder significantly influences the wettability of asphalt binder to aggregates. Meanwhile, there is an inversely proportional relationship between surface energy of asphalt binder and wettability. Therefore, it can be demonstrated that surface energy is a good indictor which can be used to evaluate the foaming behavior of the asphalt binder. And it is suggested to choose the asphalt binder with lower surface energy in the process of design of foamed asphalt mixture.

  17. Practical experiences with new types of highly modified asphalt binders

    Science.gov (United States)

    Špaček, Petr; Hegr, Zdeněk; Beneš, Jan

    2017-09-01

    As a result of steadily increasing traffic load on the roads in the Czech Republic, we should be focused on the innovative technical solutions, which will lead to extending the life time of asphalt pavements. One of these ways could be the future use of bitumen with a higher degree of polymer modification. This paper discusses experience with comparison of new highly polymer modified asphalt binder type with conventional polymer modified asphalt binder and unmodified binder with penetration grade 50/70. There are compared the results of various types laboratory tests of asphalt binders, as well as the results of asphalt mixtures laboratory tests. The paper also mentions the experience with workability and compactability of asphalt mixture with highly polymer modified asphalt binder during the realization of the experimental reference road section by the Skanska company in the Czech Republic.

  18. Determination of usable residual asphalt binder in RAP.

    Science.gov (United States)

    2009-01-01

    For current recycled mix designs, the Illinois Department of Transportation (IDOT) assumes 100% contribution of : working binder from Recycled Asphalt Pavement (RAP) materials when added to Hot Mix Asphalt (HMA). However, it is : unclear if this assu...

  19. Sustainable asphalt pavement: Application of slaughterhouse waste oil and fly ash in asphalt binder

    Science.gov (United States)

    Sanchez Ramos, Jorge Luis

    Increasing energy costs, lack of sufficient natural resources and the overwhelming demand for petroleum has stimulated the development of alternative binders to modify or replace petroleum-based asphalt binders. In the United States, the petroleum-based asphalt binder is mainly used to produce the Hot Mix Asphalt (HMA). There are approximately 4000 asphalt plants that make 500 million tons of asphalt binder valued at roughly 3 billion/year. The instability of the world's oil market has pushed oil prices to more than 80 per barrel in 2012, which increased the cost of asphalt binder up to $570 per ton. Therefore, there is a timely need to find alternative sustainable resources to the asphalt binder. This paper investigates the possibility of the partial replacement of the asphalt binder with slaughterhouse waste and/or fly ash. In order to achieve this objective, the asphalt binder is mixed with different percentages of waste oil and/or fly ash. In order to investigate the effect of these additives to the performance of the asphalt binder, a complete performance grade test performed on multiple samples. The results of the performance grade tests are compared with a control sample to observe how the addition of the waste oil and/or fly ash affects the sample. Considering the increasing cost and demand of asphalt, the use of slaughterhouse waste oil and/or fly ash as a partial replacement may result in environmental and monetary improvements in the transportation sector.

  20. Fatigue and fracture properties of aged binders in the context of reclaimed asphalt mixes.

    Science.gov (United States)

    2014-08-01

    Evidence in the literature indicates that the stiffness of the asphalt binder increases and ductility of the binder decreases : with oxidative aging. Typically for unmodified asphalt binders, increase in stiffness or decrease in ductility is regarded...

  1. Mechanical Properties of Warm Mix Asphalt Prepared Using Foamed Asphalt Binders

    Science.gov (United States)

    2011-03-01

    Warm mix asphalt (WMA) is a name given to a group of technologies that have the common purpose of reducing the viscosity : of the asphalt binders. This reduction in viscosity offers the advantage of producing asphalt-aggregate mixtures at lower mixin...

  2. Preparation of Flame Retardant Modified with Titanate for Asphalt Binder

    Directory of Open Access Journals (Sweden)

    Bo Li

    2014-01-01

    Full Text Available Improving the compatibility between flame retardant and asphalt is a difficult task due to the complex nature of the materials. This study explores a low dosage compound flame retardant and seeks to improve the compatibility between flame retardants and asphalt. An orthogonal experiment was designed taking magnesium hydroxide, ammonium polyphosphate, and melamine as factors. The oil absorption and activation index were tested to determine the effect of titanate on the flame retardant additive. The pavement performance test was conducted to evaluate the effect of the flame retardant additive. Oxygen index test was conducted to confirm the effect of flame retardant on flame ability of asphalt binder. The results of this study showed that the new composite flame retardant is more effective in improving the compatibility between flame retardant and asphalt and reducing the limiting oxygen index of asphalt binder tested in this study.

  3. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling

    Science.gov (United States)

    Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard

    2016-08-01

    Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.

  4. Rheological characterization of asphalt binders used in strain relief asphalt mixtures (SRAM)

    OpenAIRE

    Vasconcelos, Kamilla L.; Bariani Bernucci, Liedi Legi; Midori Takahashi, Marcia; Castelo-Branco, Verônica T. F.

    2017-01-01

    Abstract The use of ´interlayers´ that tolerate high tensile and shear strain that exists above cracks in deteriorated pavements is becoming an interesting solution to prevent reflective cracking. Recent advances in polymer technology have led to binders that can be used to produce interlayer mixtures with good mechanical properties. In this study, two polymer-modified asphalt binders were evaluated, both from the production of strain relief asphalt mixtures used as interlayers in the field. ...

  5. Fundamental evaluation of the interaction between RAS/RAP and virgin asphalt binders.

    Science.gov (United States)

    2017-08-01

    A comprehensive laboratory testing program was conducted in this research project to examine the blending between reclaimed asphalt pavement (RAP)/recycled asphalt shingles (RAS) and virgin asphalt binders and to evaluate the factors that may affect ...

  6. Effect of crumb rubber on asphaltic binder chemistry and rheology

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Cicero de S.; Tome, Luisa G.A.; Sant' ana, Hosiberto B.; Soares, Jorge B.; Soares, Sandra A. [University Federal of Ceara, Fortaleza, CE (Brazil)

    2008-07-01

    The use of the crumb rubber (CR) from scraps tires to modify asphalt binders (AB) at high temperature can improve significantly the performance grade, but the storage stability can be influenced after the mix of AB and CR or polymer. The major concern of asphalt binder with polymer and CR blends is their lack of stability during prolonged storage at high temperatures. The tendency to phase separation under quiescent conditions appears as an important limitation for the practical use of these blends. After the RTFOT and PAV process, the binder conventional and modified was analyzed in a Fourier Transform Infrared spectrometer (FTIR) for chemical characterization. After aging in RTFOT, the AB presented a larger degradation compared to the CR of RABC and RABC commercial. So, the crumb rubber contributed to the binder stability, acting as an antioxidant in the aging process. The dynamic mechanical properties of CR modify asphalts binder before and after graft has been characterized by use of dynamic shear rheometer (DSR) or advances rheology expanded system (ARES) of Rheometric Scientific. The difference in the viscoelastic parameters between the top and the bottom sections of the tube was measured. It has been found that the added content of CR has great effect on the rheological properties of the AB and its high temperature performance. It also has been confirmed that the RABC sample showed larger storage stability compared to the sample RABC commercial observed with viscoelastic parameters. As a consequence, the use CR and aromatic oil can be considered a suitable alternative for modification of binder in pavement. (author)

  7. The addition effects of macro and nano clay on the performance of asphalt binder

    Directory of Open Access Journals (Sweden)

    M. El-Shafie

    2012-12-01

    Full Text Available The study was carried out to explore the addition effect of macro and organically modified nanoclay on the physical and mechanical properties of asphalt binders. Both macroclay and modified nanoclay were blended in an asphalt binder in various percentages (starting from 2% to 8%. The blended asphalt binders were characterized using kinematic viscosity (C.st, softening point (°C, and penetration and compared with anunmodified binder. The tensile strength of the asphalt binders was also tested as a function of clay types and content%. The results of the study indicated an increase in softening point; kinematics viscosity and decrease in binder penetration. The tensile strength of modified clay binders was enhanced at all percentages by a comparison with both macroclay and unmodified binders. The best improvements in the modified binders were obtained with 6% nanoclay.

  8. Validity of multiple stress creep recovery (MSCR) test for DOTD asphalt binder specification : final report 564.

    Science.gov (United States)

    2017-09-01

    Numerous studies have shown that G*/Sin, the high temperature specification parameter for current Performance Graded (PG) asphalt binder is not adequate to reflect the rutting characteristics of polymer-modified binders. Consequently, many state De...

  9. Effects of Fiber Finish on the Performance of Asphalt Binders and Mastics

    Directory of Open Access Journals (Sweden)

    Bradley J. Putman

    2011-01-01

    Full Text Available The objective of this study was to determine the effects of finishes applied to polyester fibers on the properties of asphalt binders and mastics. Asphalt binders were mixed with finishes that were extracted from the fibers, and mastics were also made with binder and fibers (with and without finish to isolate the effects of the finish. The results indicated that crude source plays a significant role in how the fiber finish affects the binders and mastics. Additionally different finishes had different effects on binder properties. The major finding of this study is that different polyester fibers, even from the same manufacturer, may not necessarily perform the same in an asphalt mixture. It is important to use fibers that are compatible with the particular asphalt binder that is being used because of the significance of the binder source on the interaction between the finish and the binder.

  10. Validity of multiple stress creep recovery test for LADOTD asphalt binder specification.

    Science.gov (United States)

    2010-09-01

    The objectives of this research are to characterize the elastic response of various binders used by LADOTD to determine the feasibility of the Multiple Stress Creep Recovery (MSCR) test to be included in the LADOTD asphalt binder specification and to...

  11. Grade determination of crumb rubber-modified performance graded asphalt binder.

    Science.gov (United States)

    2013-08-01

    Due to particulates common in crumb rubber-modified asphalt binders, conventional PG grading using the Dynamic : Shear Rheometer (DSR) with a gap height of 1.0 mm may not be valid and in accordance with current specifications. : Asphalt binder testin...

  12. Evaluation of Thermal Oxidative Aging Effect on the Rheological Performance of Modified Asphalt Binders

    Science.gov (United States)

    Zhu, Cheng

    Modified asphalt binder, which is combined by base binder and additive modifier, has been implemented in pavement industry for more than 30 years. Recently, the oxidative aging mechanism of asphalt binder has been studied for several decades, and appreciable finding results of asphalt binder aging mechanism were achieved from the chemistry and rheological performance aspects. However, most of these studies were conducted with neat binders, the research of aging mechanism of modified asphalt binder was limited. Nowadays, it is still highly necessary to clarify how the asphalt binder aging happens with the modified asphalt binder, what is the effect of the different modifiers (additives) on the binder aging process, how the rheological performance changes under the thermal oxidative aging conditions and so on. The objective of this study was to investigate the effect of isothermal oxidative aging conditions on the rheological performance change of the modified and controlled asphalt binders. There were totally 14 different sorts of asphalt binders had been aged in the PAV pans in the air-force drafted ovens at 50°C, 60°C and 85°C for 0.5 day to 240 days. The Fourier-Transform Infrared Spectroscopy (FT-IR) and Dynamic Shear Rheometer (DSR) were used to perform the experiments. The analysis of rheological indices (Low shear viscosity-LSV, Crossover modulus-G*c, Glover-Rowe Parameter-G-R, DSR function-DSR Fn) as a function of carbonyl area (CA) was conducted. With the SBS modification, both of the hardening susceptibility of the rheological index-LSV and G-R decreases compared with the corresponding base binder. The TR increased the hardening susceptibility of all the rheological indexes. While for the G*c, SBS increases the slope of the most modified asphalt binders except A and B_TR_X series binders. The multiple linear regression statistical analysis results indicate that the oxidative aging conditions play an important role on the CA, and rheological performance

  13. Nanoscale study on water damage for different warm mix asphalt binders

    Directory of Open Access Journals (Sweden)

    Kefei Liu

    2016-11-01

    Full Text Available In order to analyze the water damage to different warm mix asphalt binders from the micro scale, five kinds of asphalt binders, 70#A base asphalt, sasobit warm mix asphalt, energy champion 120 °C (EC120 warm mix asphalt, aspha-min warm mix asphalt, sulfur-extended asphalt modifier (SEAM warm mix asphalt, under different conditions (dry/wet, original/aging are prepared for laboratory tests. The atomic force microscope (AFM is used to observe the surface properties and measure the adhesion force between the asphalt and the mineral aggregate. The obtained results show that under the dry condition aspha-min warm mix asphalt and SEAM warm mix asphalt show stronger adhesive ability with the mineral aggregate compared with other asphalt binders, but also have relatively large dispersion and fluctuation in the tested results; under the wet condition, aspha-min warm mix asphalt and SEAM warm mix asphalt show stronger water damage resistance ability. The EC120 warm mix asphalt and aspha-min warm mix asphalt are less sensitive to moist, and their corresponding adhesion force is less susceptible to the change of external moisture conditions, leading to a better ability to resist water erosion. The aging process significantly lowers the moisture erosion resistance ability, which further impairs the water damage resistance ability. The base asphalt is more sensitive to moisture and more vulnerable to water damage, no matter whether it is under original or aging conditions. The aging aspha-min warm mix asphalt has the least loss of adhesion force, the smallest dispersion of the tested adhesion force, the strongest water damage resistance ability, no matter it is dry or wet. Keywords: Road engineering, Warm mix asphalt, Moisture damage, Atomic force microscope, Microcosmic

  14. Comparative evaluation of an experimental binder in hot-mix asphalt: correlating the predicted performance of the binder with asphalt testing

    CSIR Research Space (South Africa)

    O'Connell, Johannes S

    2014-07-01

    Full Text Available The binder is an important constituent of an asphalt mix and it affects the overall performance of the mix, especially with regards to permanent deformation and fatigue cracking. The stiffest binder available from the Chevron refinery in the Western...

  15. Performance characterizations of asphalt binders and mixtures incorporating silane additive ZycoTherm

    Science.gov (United States)

    Hasan, Mohd Rosli Mohd; Hamzah, Meor Othman; Yee, Teh Sek

    2017-10-01

    Experimental works were conducted to evaluate the properties of asphalt binders and mixtures produced using a relatively new silane additive, named ZycoTherm. In this study, 0.1wt% ZycoTherm was blended with asphalt binder to enable production of asphalt mixture at lower than normal temperatures, as well as improve mix workability and compactability. Asphalt mixture performances towards pavement distresses in tropical climate region were also investigated. The properties of control asphalt binders (60/70 and 80/10 penetration grade) and asphalt binders incorporating 0.1% ZycoTherm were reported based on the penetration, softening point, rotational viscosity, complex modulus and phase angle. Subsequently, to compare the performance of asphalt mixture incorporating ZycoTherm with the control asphalt mixture, cylindrical samples were prepared at recommended temperatures and air voids depending on the binder types and test requirements. The samples were tested for indirect tensile strength (ITS), resilient modulus, dynamic creep, Hamburg wheel tracking and moisture induced damage. From compaction data using the Servopak gyratory compactor, specimen prepared using ZycoTherm exhibit higher workability and compactability compared to the conventional mixture. From the mixture performance test results, mixtures prepared with ZycoTherm showed comparable if not better performance than the control sample in terms of the resistance to moisture damage, permanent deformation and cracking.

  16. Design and Properties of Asphalt Concrete Mixtures Using Renewable Bioasphalt Binder

    Science.gov (United States)

    Setyawan, A.; Djumari; Irfansyah, P. A.; Shidiq, A. M.; Wibisono, I. S.; Fauzy, M. N.; Hadi, F. N.

    2017-02-01

    The needs of petroleum asphalt as materials for pavement is very large, while the petroleum classified as natural resources that cannot be renewable. As a result of petroleum dwindling and prices tend to be more expensive. So that requiring other alternative materials as a substitute for conventional asphalt derived from biomass or often called bioasphalt. This study aims to know the volumetric and Marshall characteristics on Asphalt Cement ( AC ) using the Damar asphalt modification to substitute 60/70 penetration asphalt as a binder. The volumetric and Marshall characteristic are porosity, density, flow, stability, and Marshall quotient. The characteristic of asphalt concrete at optimum bitumen content are compared to the conditions from highway agency 1987 and the general specification of asphalt concrete Bina Marga 2010 the third revision. The research uses experimental method in the laboratory with the samples made using the dasphalt modification as binder and incorporating the aggregate gradation no. VII SNI 03-1737-1989. The research is using 15 samples divided into 5 contents of damar asphalt, they are 5%, 5,5%, 6%, 6,5%, dan 7%. Tests carried out using Marshall test equipment to get the value of flow and stability and then be searched the value of optimum damar asphalt content. The result of asphalt concrete analysis using dasphalt modification as binder gives the value of optimum dasphalt content at 5,242%. The most characteristics already met the requirements and specifications.

  17. Continuation of superpave projects monitoring : [summary].

    Science.gov (United States)

    2011-01-01

    The Superpave mix design system, devised in : 1993 under the Strategic Highway Research : Program, represented a major change in design : and construction of asphalt mixtures. However, : current pavement design procedures and models : are based on th...

  18. Contributory Factors Related to Permanent Deformation of Hot Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Alaa Husein Abd

    2017-03-01

    Full Text Available Permanent deformation (Rutting of asphalt pavements which appears in many roads in Iraq, have caused a major impact on pavement performance by reducing the useful service life of pavement and creating services hazards for highway users. The main objective of this research is investigating the effect of some contributory factors related to permanent deformation of asphalt concrete mixture. To meet the objectives of this research, available local materials are used including asphalt binder, aggregates, mineral filler and modified asphalt binder. The Superpave mix design system was adopted with varying volumetric compositions. The Superpave Gyratory Compactor was used to compact 24 asphalt concrete cylindrical specimens. To collect the required data and investigate the development of permanent deformation in asphalt concrete under repeated loadings, Wheel-Tracking apparatus has been used in a factorial testing program during which 44 slab samples; with dimensions of 400×300×50 mm; were tested to simulate . actual pavement. Based on wheel-tracking test results, it has been concluded that increasing the compaction temperature from 110 to 150ºC caused a decreasing in permanent deformation by 20.5 and 15.6 percent for coarse and fine gradation control asphalt mixtures respectively. While the permanent deformation decreased about 21.3 percent when the compaction temperature is increased from 110 to 150ºC for coarse gradation asphalt mixtures modified with styrene butadiene styrene SBS with 3 percent by asphalt binder weight.

  19. Estudo de misturas asfálticas com ligante modificado pelo polímero EVA para pavimentos urbanos de Manaus - AM Study of asphalt mixtures containing a binder modified with EVA polymer for use in urban pavements in Manaus

    Directory of Open Access Journals (Sweden)

    Daniela M. G. D'Antona

    2011-01-01

    Full Text Available A presente pesquisa buscou soluções com materiais alternativos visando à construção de pavimentos urbanos para Manaus (AM com maior vida útil e condizente com as suas condições de serviço, em particular, o seu desempenho mecânico frente às temperaturas regionais. Estudou-se o ligante regional, CAP 50/70, misturado com 4% do polímero EVA, e como partícipe em compósitos asfálticos. A incorporação do mencionado polímero teve como objetivo melhorar suas propriedades reológicas e, por conseguinte, o comportamento mecânico desse compósito - concreto asfáltico, empregado como revestimento nas vias urbanas da Capital do Estado do Amazonas. Os ligantes (virgem e modificado foram caracterizados conforme a especificação da ANP e a metodologia Superpave. As misturas asfálticas foram avaliadas pelo ensaio de fluência por compressão axial, com carregamento dinâmico à temperatura de 40 ºC. O material asfáltico modificado com EVA (AMP EVA demonstrou melhores propriedades reológicas ou equivalentes ao asfalto convencional (REMAN, ao longo de todos os ensaios de caracterização. As misturas alternativas compostas com o CAP modificado (SEVA obtiveram desempenho mecânico superior ao de misturas com cimento asfáltico habitualmente comercializado na região (SMAN.In this research we investigated alternative materials to build urban pavements in Manaus, seeking for pavements with longer lifetime for usage and suitable mechanical properties to withstand the local temperatures. The asphaltic mixtures contained a regional binder, namely CAP 50/70, mixed with 4% of EVA polymer. The incorporation of the latter polymer was aimed at improving the rheological properties of asphaltic concrete used in roads in the Amazonas' capital. The asphalt binders (original and modified were characterized in accordance with the ANP (National Petroleum Agency specification and the Superpave methodology. The asphalt mixtures had their mechanical properties

  20. Experimental Investigation on Asphalt Binders Ageing Behavior and Rejuvenating Feasibility in Multicycle Repeated Ageing and Recycling

    Directory of Open Access Journals (Sweden)

    Yihua Nie

    2018-01-01

    Full Text Available Multicycle repeated utilization of reclaimed asphalt pavement (RAP is a quite recent development of sustainable pavement materials technology. To investigate ageing rules and recycling possibility of asphalt binders in repeatedly used asphalt mixture, virgin asphalt AH-70 samples were heated by the rolling thin film oven test (RTFOT at 163°C, respectively, for 40, 85, 180, 240, and 300 minutes to simulate different ageing degrees, and then the aged ones were rejuvenated by adding a self-made rejuvenator. This ageing and recycling process was repeated altogether for 5 cycles to simulate repeated use of RAP binders. In repeated recycling, rejuvenator contents for different cycle numbers or ageing durations were not the same, and the optimum ones were initially estimated by an empirical formula and finally obtained by comparative tests. Empirical rheological tests and the infrared spectral (IR analysis were done before and after each cycle of recycling. Results indicate that for impact on deterioration of asphalt binders, ageing time is more important than cycle number. Meanwhile, the asphalt after multicycle repeated ageing and recycling can be restored to the empirical rheological indices level of the virgin asphalt and meet specifications requirements.

  1. A Study of Moisture Damage in Plastomeric Polymer Modified Asphalt Binder Using Functionalized AFM Tips

    Directory of Open Access Journals (Sweden)

    Rafiqul Tarefder

    2011-12-01

    Full Text Available In this study, moisture damage in plastomeric polymer modified asphalt binder is investigated using Atomic Force Microscopy (AFM with chemically functionalized AFM tips. Four different percentages of plastomeric polymers and two antistripping agents such as Kling Beta and Lime are used to modify a base asphalt binder. Chemical functional groups such as -COOH, -CH3, -NH3, and –OH, that are commonly present in plastomeric polymer modified asphalt system, are used to functionalize the AFM tips. The force distance mode of AFM is used to measure the adhesion forces between a modified asphalt sample surface and the functionalized AFM tips. This enables the measurement of adhesion within an asphalt binder system. It is shown that the adhesion force values in dry sample changed substantially from that in wet conditioned samples. It is evident from this study that plastomeric modification does not help reduce moisture damage in asphalt. The percentage change in adhesion forces due to moisture is about 20 nN for the lime modified samples, and about 50 nN for the Kling Beta modified samples. This indicates that lime is more effective than Kling Beta for reducing moisture damage in plastomeric polymer modified asphalt.

  2. Evaluation of the rheological behavior of asphaltic binder modified with zeolite material

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, E.M. da; Sant' ana, Hosiberto B.; Soares, Sandra A.; Soares, Jorge B. [Federal University of Ceara, Fortaleza, CE (Brazil)

    2008-07-01

    Several new processes have been developed to reduce mixing and compaction temperatures of hot mix asphalt without sacrificing the quality of the resulting pavement. One of these processes utilizes the zeolite, a crystalline hydrated aluminum silicate. A laboratory study was conducted to determine the applicability of zeolite to improve the rheological and chemical behavior of an asphaltic binder. The synthetic asphaltic binder was produced with different zeolite contents (0,1; 0.3; and 0.5% w/w) by wet process. The rheological and chemical behavior was verified by Dynamic Shear Rheometer and Infrared Spectroscopy, respectively. The zeolite's chemical composition and morphology was studied by Dispersive X-ray Spectroscopy (EDX). Additionally, the scanning electron microscope (SEM) was utilized to establish the zeolite elemental composition. The results showed that investigated zeolite was classified as a sodium aluminum silicate and it was able to modify the rheological properties of the neat asphalt binder. The G*/sin{delta} parameter was affected by the zeolite presence, indicating better performance for the binders with zeolite. The results show that synthetic binders can partly replicate the rheological properties of conventional AB. Comparable complex modulus values was obtained. No significant difference was found in viscoelastic response, given by the phase angles as a function of both temperature and frequency. (author)

  3. Effects of Titanate Coupling Agent on Engineering Properties of Asphalt Binders and Mixtures Incorporating LLDPE-CaCO3 Pellet

    Directory of Open Access Journals (Sweden)

    Mohd Rosli Mohd Hasan

    2018-06-01

    Full Text Available This study was initiated to evaluate the performance of asphalt binders and mixtures incorporating linear low-density polyethylene- calcium carbonate (LLDPE-CaCO3 pellet, either with or without titanate coupling agent. The detailed manufacturing process of modifier pellets was displayed. The coupling agent was used to enhance the cross-linking between materials by means of winding up covalent bonds or molecule chains, thus improving the performance of composites. In the preparation of modified bitumen, the preheated asphalt binder was mixed with the modifiers using a high shear mixer at 5000 rpm rotational speed for 45 min. Experimental works were conducted to evaluate the performance of asphalt binders in terms of volatile loss, viscosity, rutting potential, and low temperature cracking. Meanwhile, the asphalt mixtures were tested using the flow number test and tensile strength ratio (TSR test. The addition of LLDPE-CaCO3 modifiers and coupling agent does not significantly affect the volatile loss of modified asphalt binders. The addition of modifiers and coupling agent has significantly improved the resistance to permanent deformation of asphalt binders. Even though, the addition of LLDPE-CaCO3 modifier and coupling agent remarkably increased the mixture stiffness that contributed to lower rutting potential, the resistance to low temperature cracking of asphalt binder was not adversely affected. The combination of 1% coupling agent with 3% PECC is optimum dosage for asphalt binder to have satisfactory performance in resistance to moisture damage and rutting.

  4. Effect of Co-Production of Renewable Biomaterials on the Performance of Asphalt Binder in Macro and Micro Perspectives.

    Science.gov (United States)

    Qu, Xin; Liu, Quan; Wang, Chao; Wang, Dawei; Oeser, Markus

    2018-02-06

    Conventional asphalt binder derived from the petroleum refining process is widely used in pavement engineering. However, asphalt binder is a non-renewable material. Therefore, the use of a co-production of renewable bio-oil as a modifier for petroleum asphalt has recently been getting more attention in the pavement field due to its renewability and its optimization for conventional petroleum-based asphalt binder. Significant research efforts have been done that mainly focus on the mechanical properties of bio-asphalt binder. However, there is still a lack of studies describing the effects of the co-production on performance of asphalt binders from a micro-scale perspective to better understand the fundamental modification mechanism. In this study, a reasonable molecular structure for the co-production of renewable bio-oils is created based on previous research findings and the observed functional groups from Fourier-transform infrared spectroscopy tests, which are fundamental and critical for establishing the molecular model of bio-asphalt binder with various biomaterials contents. Molecular simulation shows that the increase of biomaterial content causes the decrease of cohesion energy density, which can be related to the observed decrease of dynamic modulus. Additionally, a parameter of Flexibility Index is employed to characterize the ability of asphalt binder to resist deformation under oscillatory loading accurately.

  5. Effect of Co-Production of Renewable Biomaterials on the Performance of Asphalt Binder in Macro and Micro Perspectives

    Directory of Open Access Journals (Sweden)

    Xin Qu

    2018-02-01

    Full Text Available Conventional asphalt binder derived from the petroleum refining process is widely used in pavement engineering. However, asphalt binder is a non-renewable material. Therefore, the use of a co-production of renewable bio-oil as a modifier for petroleum asphalt has recently been getting more attention in the pavement field due to its renewability and its optimization for conventional petroleum-based asphalt binder. Significant research efforts have been done that mainly focus on the mechanical properties of bio-asphalt binder. However, there is still a lack of studies describing the effects of the co-production on performance of asphalt binders from a micro-scale perspective to better understand the fundamental modification mechanism. In this study, a reasonable molecular structure for the co-production of renewable bio-oils is created based on previous research findings and the observed functional groups from Fourier-transform infrared spectroscopy tests, which are fundamental and critical for establishing the molecular model of bio-asphalt binder with various biomaterials contents. Molecular simulation shows that the increase of biomaterial content causes the decrease of cohesion energy density, which can be related to the observed decrease of dynamic modulus. Additionally, a parameter of Flexibility Index is employed to characterize the ability of asphalt binder to resist deformation under oscillatory loading accurately.

  6. On the interfacial interaction between bituminous binders and mineral surfaces as present in asphalt mixtures

    NARCIS (Netherlands)

    Fischer, H.R.; Dillingh, E.C.; Hermse, C.G.M.

    2013-01-01

    The interfacial interaction between bituminous binders and several mineral surfaces of different chemical nature as present in asphalt mixtures has been investigated using atomic force microscopy. Several dry mineral surfaces display comparable wetting with respect to the different phases present in

  7. Use of rubber asphalt binder with graded aggregate for seal coats

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    It has been known that incorporating rubber particles into asphalt can improve highway pavement performance. This paper describes a test program on pavement construction using asphalts containing recycled rubber. During the summer 1978, eight test sections were constructed in parts of the Saskatchewan road system to evaluate seal coats using rubber-asphalt as a binder membrane and a graded aggregate as protective cover. Test sections were chosen to represent typical road surface types and different states of repair for each type. These types included prime subgrade, cold-mix on subgrade, primed granular base course, asphaltic concrete on granular base, and full depth asphaltic concrete. Problems with construction materials, techniques, and equipment are discussed. Performance and economics were evaluated to determine whether low cost cold mix and current seal coat surfaces could be replaced successfully and economically by this method of construction. It was shown that use of reclaimed rubber for rubberized asphalt seal coats on Saskatechewan highways is a practical construction application. The economic justification for rubber asphalt seals will be determined after a full assessment of performance. Initial indications are that Saskatchewan graded aggregates are a suitable cover material for the rubberized asphalt membranes used in the trials. 8 refs., 16 figs., 7 tabs.

  8. Thermo-mechanical properties improvement of asphalt binder by using methylmethacrylate/ethylene glycol dimethacrylate

    Directory of Open Access Journals (Sweden)

    A.A. Ragab

    2016-09-01

    Full Text Available Various polymer-modified asphalt compositions for paving and roofing applications are known since several years ago. The degree to which a polymer improves the asphalt’s properties depends on the compatibility of the polymer and the asphalt. Highly compatible polymers are more effective in providing property improvements. In this research, the influence of in situ polymerization of methylmethacrylate monomer with asphalt in presence of ethylene glycol dimethacrylate (EGDM as a crosslinker on the rheological and thermal properties of asphalt binder of type penetration grade 60/70 was studied. To achieve this aim, MMA/EGDM(MC in different ratios as 5, 10 and 15% (w/w were used to modify the thermo-mechanical properties of asphalt via forming chemical bond, and the changing in mechanical and thermal properties, of the mixes as well as the storage stability were studied. Also, the morphology (SEM, thermal characterization (TGA, dynamic mechanical analysis (DMA, bending and rheological tests were detected. The obtained experimental results revealed that the addition of MC causes both the rheological and thermal properties of the binder to improve and the prepared PMAs has high temperature susceptibility and low curing time. The improvement in the properties of the virgin asphalt will be effective in using this soft type in coating applications instead of highly expensive oxidized one.

  9. Performance evaluation of Louisiana superpave mixtures : tech summary.

    Science.gov (United States)

    2008-12-01

    The primary objective of this research was to evaluate the fundamental engineering : properties and mixture performance of Superpave hot mix asphalt (HMA) mixtures : in Louisiana through laboratory mechanistic tests, aggregate gradation analysis, and...

  10. Study on viscosity of conventional and polymer modified asphalt binders in steady and dynamic shear domain

    Science.gov (United States)

    Saboo, Nikhil; Singh, Bhupendra; Kumar, Praveen; Vikram, Durgesh

    2018-02-01

    This study focuses on evaluating the flow behavior of conventional and polymer modified asphalt binders in steady- and dynamic-shear domain, for a temperature range of 20-70 °C, using a Dynamic Shear Rheometer (DSR). Steady-shear viscosity and frequency sweep tests were carried out on two conventional (VG 10 and VG 30) and two polymer (SBS and EVA) modified asphalt binders. Applicability of the Cox-Merz principle was evaluated and complex viscosity master curves were analyzed at five different reference temperatures. Cross model was used to simulate the complex viscosity master curves at different temperatures. It was found that asphalt binders exhibited shear-thinning behavior at all the test temperatures. The critical shear rate increased with increase in temperature and was found to be lowest for plastomeric modified asphalt binder. The Cox-Merz principle was found to be valid in the zero-shear viscosity (ZSV) domain and deviated at higher frequency/shear rate for all the binders. Results from the study indicated that the ratio of ZSV can be successfully used as shift factors for construction of master curves at different reference temperatures. Cross model was found to be suitable in simulating the complex viscosity master curves at all the test temperatures. Analysis of model parameters indicated that a strong relationship exists between ZSV and the critical shear rate. ZSV and critical shear rate varied exponentially with temperature. This relationship was used to propose a simple equation for assessing the shift factors for construction of master curves.

  11. Implementation of nondestructive testing and mechanical performance approaches to assess low temperature fracture properties of asphalt binders

    Directory of Open Access Journals (Sweden)

    Salman Hakimzadeh

    2017-05-01

    Full Text Available In the present work, three different asphalt binders were studied to assess their fracture behavior at low temperatures. Fracture properties of asphalt materials were obtained through conducting the compact tension [C(T] and indirect tensile [ID(T] strength tests. Mechanical fracture tests were followed by performing acoustic emissions test to determine the “embrittlement temperature” of binders which was used in evaluation of thermally induced microdamages in binders. Results showed that both nondestructive and mechanical testing approaches could successfully capture low-temperature cracking behavior of asphalt materials. It was also observed that using GTR as the binder modifier significantly improved thermal cracking resistance of PG64-22 binder. The overall trends of AE test results were consistent with those of mechanical tests. Keywords: Thermal cracking, Indirect tensile strength test, Compact tension test, Nondestructive approach, Acoustic emission test, Embrittlement temperature

  12. Improving of Water Resistance of Asphalt Concrete Wearing Course Using Latex-Bitumen Binder

    Directory of Open Access Journals (Sweden)

    Siswanto Henri

    2017-01-01

    Full Text Available It is well known that presence of water in a bituminous mix is a critical factor which can lead to premature failure of flexible pavements. This requires solutions one of which is to formulate an asphalt mix that has a high resistance to moisture and one way to do this is to mix latex with the asphalt mix. The purpose of this experimental study was to investigate the effect of water on Marshall stability of asphalt concrete wearing course (ACWC made with a latex-bitumen binder. Latex-bitumen was mixed with aggregate and four levels of latex content were investigated in this study, namely, 0%, 2%, 4% and 6% respectively by weight of asphalt. Wet procces was used in the blending of mixtures. The procedure used to obtain the optimum binder contents conformed to the Marshall procedure (SNI 06-2489-1991. Six Marshall specimens at optimum binder content were prepared for each binder mix investigated. Three of six specimens from each group were tested under Marshall standards. The remaining specimens were tested by immersion in a bath at 60°C for 24 hours. The Marshall index of retained stability was used to evaluate the effect of water on the Marshall stability of ACWC. The results indicated that the addition of up to 4% latex to ACWC mix increased the retained Marshall stability, whereas the addition of latex above 4% decreased the retained stability of the mixture. The addition of 4% CRM significantly improved the retained stability of the mixture and was the best latex – ACWC mix.

  13. STUDY OF ASPHALT BINDER OIL RESIDUE AND MUNICIPAL SOLID WASTE ASH TO BE USED IN LOW TRAFFIC PAVEMENTS

    Directory of Open Access Journals (Sweden)

    Michéle Dal Toé Casagrande

    2014-12-01

    Full Text Available The great generation of urban solid has been a concern in several countries. This work presents a study with two materials: the asphalt binder oil residue accumulated in the bottom of asphalt tanks and the municipal solid waste ash, to be used, respectively, as a substitute of conventional binder in asphalt mixtures and for soil stabilization in pavements base layers. Were evaluated properties as the mechanical behavior of the mixtures through experimental tests. The results show the potential of incorporating these residues for low traffic roads, allowing the construction of low cost roads and an environmental use of the residue.

  14. Preparation Parameter Analysis and Optimization of Sustainable Asphalt Binder Modified by Waste Rubber and Diatomite

    Directory of Open Access Journals (Sweden)

    Hanbing Liu

    2018-01-01

    Full Text Available In this study, crumb rubber and diatomite were used to modify asphalt binder. Wet process was adopted as a preparation method, and the corresponding preparation process was determined firstly. The effects of six preparation parameters (crumb rubber concentration, diatomite concentration, shear time, shear speed, shear temperature, and storing time on properties of modified asphalt binder (penetration at 25°C, softening point, ductility, viscosity at 135°C, elastic recovery, and penetration index were investigated, and multiresponse optimization was conducted using the response surface method. The results revealed that softening points, viscosity, elastic recovery, and penetration index increase, while penetration and ductility decrease with the increase of crumb rubber concentration. Softening points, viscosity, and penetration index increase, while penetration and ductility decrease with the increase of diatomite concentration, which presents little influence on elastic recovery of binder. Shear temperature presented significant effects on penetration, softening point, viscosity, and ductility. Shear speed, shear time, and storing time have similar effects on binder properties because of their similar mechanism of action. Based on the model obtained from the response surface method, optimized preparation parameters corresponding to specific criteria can be determined, which possess favorable accuracy compared with experimental results.

  15. Experience with The Use of Warm Mix Asphalt Additives in Bitumen Binders

    Directory of Open Access Journals (Sweden)

    Cápayová Silvia

    2018-03-01

    Full Text Available In most European countries, Hot Mix Asphalt (HMA technology is still being used as the standard for the production and processing of bituminous mixtures. However, from the perspective of environmental acceptability, global warming and greenhouse gas production, Slovakia is making an effort to put into practice modern technology, which is characterized by lower energy consumption and reducing negative impacts on the environment. Warm mix asphalt technologies (WMA, which have been verified at the Department of Transportation Engineering laboratory, Faculty of Civil Engineering, Slovak University of Technology (FCE, SUT can provide the required mixture properties and can be used not only for the construction of new roads, but also for their renovation and reconstruction. The paper was created in cooperation with the Technical University of Ostrava, Czech Republic, which also deals with the addition of additives to asphalt mixtures and binders. It describes a comparison of the impact of some organic and chemical additives on the properties of commonly used bitumen binders in accordance with valid standards and technical regulations.

  16. Experience with The Use of Warm Mix Asphalt Additives in Bitumen Binders

    Science.gov (United States)

    Cápayová, Silvia; Unčík, Stanislav; Cihlářová, Denisa

    2018-03-01

    In most European countries, Hot Mix Asphalt (HMA) technology is still being used as the standard for the production and processing of bituminous mixtures. However, from the perspective of environmental acceptability, global warming and greenhouse gas production, Slovakia is making an effort to put into practice modern technology, which is characterized by lower energy consumption and reducing negative impacts on the environment. Warm mix asphalt technologies (WMA), which have been verified at the Department of Transportation Engineering laboratory, Faculty of Civil Engineering, Slovak University of Technology (FCE, SUT) can provide the required mixture properties and can be used not only for the construction of new roads, but also for their renovation and reconstruction. The paper was created in cooperation with the Technical University of Ostrava, Czech Republic, which also deals with the addition of additives to asphalt mixtures and binders. It describes a comparison of the impact of some organic and chemical additives on the properties of commonly used bitumen binders in accordance with valid standards and technical regulations.

  17. Effects of WMA Additive on the Rheological Properties of Asphalt Binder and High Temperature Performance Grade

    Directory of Open Access Journals (Sweden)

    Jiupeng Zhang

    2015-01-01

    Full Text Available Sasobit additives with different dosages were added into 70# and 90# virgin asphalt binders to prepare WMA binders. The rheological properties, including G∗ and δ, were measured by using DSR at the temperature ranging from 46°C to 70°C, and the effects of temperature, additive dosage and aging on G∗/sin⁡δ, critical temperature, and H-T PG were investigated. The results indicate that WMA additive improves G∗ but reduces δ, and the improvement on 70# virgin binder is more significant. G∗/sin⁡δ exponentially decreases with the increasing temperature but linearly increases with the increasing additive dosage. Aging effect weakens the interaction between binder and additive but significantly increases the binder’s viscosity; that is why G∗/sin⁡δ is higher after short-term aging. In addition, the critical temperature increases with the increasing additive dosage, and the additive dosage should be more than 3% and 5% to improve H-T PG by one grade for 70# and 90# virgin binder, respectively.

  18. On the interfacial interaction between bituminous binders and mineral surfaces as present in asphalt mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Hartmut R., E-mail: hartmut.fischer@tno.nl [TNO Technical Sciences, De Rondom 1, 5612 AP Eindhoven (Netherlands); Dillingh, E.C.; Hermse, C.G.M. [TNO Technical Sciences, De Rondom 1, 5612 AP Eindhoven (Netherlands)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Direct measurement of the contact angle between different phases of the microstructure of bitumen and aggregate surfaces of different chemical nature using AFM. Black-Right-Pointing-Pointer Common schema of adhesion of bitumen on aggregates via asphaltene precipitation. Black-Right-Pointing-Pointer Surface roughness/porosity more important than chemical nature for strength of adhesion between aggregate and bitumen. - Abstract: The interfacial interaction between bituminous binders and several mineral surfaces of different chemical nature as present in asphalt mixtures has been investigated using atomic force microscopy. Several dry mineral surfaces display comparable wetting with respect to the different phases present in the micro-structure of bitumen, regardless of differences in their chemical nature. The peri/catana-phase shows a preferential wetting due to adsorption of asphaltene aggregates to the mineral surfaces.

  19. On the interfacial interaction between bituminous binders and mineral surfaces as present in asphalt mixtures

    International Nuclear Information System (INIS)

    Fischer, Hartmut R.; Dillingh, E.C.; Hermse, C.G.M.

    2013-01-01

    Highlights: ► Direct measurement of the contact angle between different phases of the microstructure of bitumen and aggregate surfaces of different chemical nature using AFM. ► Common schema of adhesion of bitumen on aggregates via asphaltene precipitation. ► Surface roughness/porosity more important than chemical nature for strength of adhesion between aggregate and bitumen. - Abstract: The interfacial interaction between bituminous binders and several mineral surfaces of different chemical nature as present in asphalt mixtures has been investigated using atomic force microscopy. Several dry mineral surfaces display comparable wetting with respect to the different phases present in the micro-structure of bitumen, regardless of differences in their chemical nature. The peri/catana-phase shows a preferential wetting due to adsorption of asphaltene aggregates to the mineral surfaces.

  20. SUperior PERforming Asphalt PAVEments (SUPERPAVE)

    OpenAIRE

    Méndez, Rosalín

    2012-01-01

    El asfalto puede encontrarse en forma natural, como lagos o rocas de asfalto. Sin embargo, a pesar de la calidad del asfalto natural y su fásil explotación; el asfalto para fines industriales mayormente se obtiene como un producto de desecho de las refinerías petroleras, debido que es mucho más económico. El primer registro del uso del asfalto como material para la construcción de calles procede de Babilonia desde los años 625 y 604 A.C., en la región del Rey Naboppolassar. Desde entonces,...

  1. Evaluation of bio-materials’ rejuvenating effect on binders for high-reclaimed asphalt content mixtures

    Directory of Open Access Journals (Sweden)

    A. Jiménez del Barco-Carrión

    2017-07-01

    Full Text Available The interest in using bio-materials in pavement engineering has grown significantly over the last decades due to environmental concerns about the use of non-recoverable natural resources. In this paper, bio-materials are used together with Reclaimed Asphalt (RA to restore some of the properties of the aged bitumen present in mixtures with high RA content. For this purpose, two bio-materials are studied and compared to conventional and polymer modified bitumens. Blends of these materials with RA bitumen were produced and studied to simulate a 50% RA mixture. The rejuvenating effect of the two bio-materials on RA has been assessed and compared with the effect of the conventional binders. Apparent Molecular Weight Distribution of the samples (obtained by the ?-method and different rheological parameters were used for this purpose. Results revealed the power of bio-materials to rejuvenate RA bitumen, showing their capability to be used as fresh binders in high-RA content mixtures.

  2. Evaluation of bio-materials’ rejuvenating effect on binders for high-reclaimed asphalt content mixtures

    International Nuclear Information System (INIS)

    Jiménez del Barco-Carrión, A.; Pérez-Martínez, M.; Themeli, A.; Lo Presti, D.; Marsac, P.; Pouget, S.; Hammoum, F.; Chailleux, E.; Airey, G.D.

    2017-01-01

    The interest in using bio-materials in pavement engineering has grown significantly over the last decades due to environmental concerns about the use of non-recoverable natural resources. In this paper, bio-materials are used together with Reclaimed Asphalt (RA) to restore some of the properties of the aged bitumen present in mixtures with high RA content. For this purpose, two bio-materials are studied and compared to conventional and polymer modified bitumens. Blends of these materials with RA bitumen were produced and studied to simulate a 50% RA mixture. The rejuvenating effect of the two bio-materials on RA has been assessed and compared with the effect of the conventional binders. Apparent Molecular Weight Distribution of the samples (obtained by the ?-method) and different rheological parameters were used for this purpose. Results revealed the power of bio-materials to rejuvenate RA bitumen, showing their capability to be used as fresh binders in high-RA content mixtures. [es

  3. Effects of Asphalt Mix Design Properties on Pavement Performance: A Mechanistic Approach

    Directory of Open Access Journals (Sweden)

    Ahmad M. Abu Abdo

    2016-01-01

    Full Text Available The main objective of this study was to investigate the effects of hot mix asphalt material properties on the performance of flexible pavements via mechanistic approach. 3D Move Analysis software was utilized to determine rutting and cracking distresses in an asphalt concrete (AC layer. Fourteen different Superpave mixes were evaluated by utilizing results of the Dynamic Modulus (|E⁎| Test and the Dynamic Shear Modulus (|G⁎| Test. Results showed that with the increase of binder content, the tendency of rutting in AC layer increased. However, with the increase of binder content, the cracking of AC layer lessened. Furthermore, when different binder grades were evaluated, results showed that with the increase of the upper binder grade number, rutting decreased, and with the increase of the lower binder grade number, rutting increased. Furthermore, analysis showed that with the increase of the lower binder grade number, higher percent of bottom up cracks would result. As a result of the analysis, binder grade should not be solely considered for cracking in AC layer; binder content and aggregate structure play a big role. Finally, results illustrated that the mechanistic approach is a better tool to determine the performance of asphalt pavement than commonly used methods.

  4. Effect of treatment temperature on the microstructure of asphalt binders: insights on the development of dispersed domains.

    Science.gov (United States)

    Menapace, I; Masad, E; Bhasin, A

    2016-04-01

    This paper offers important insights on the development of the microstructure in asphalt binders as a function of the treatment temperature. Different treatment temperatures are useful to understand how dispersed domains form when different driving energies for the mobility of molecular species are provided. Small and flat dispersed domains, with average diameter between 0.02 and 0.70 μm, were detected on the surface of two binders at room temperature, and these domains were observed to grow with an increase in treatment temperature (up to over 2 μm). Bee-like structures started to appear after treatment at or above 100°C. Moreover, the effect of the binder thickness on its microstructure at room temperature and at higher treatment temperatures was investigated and is discussed in this paper. At room temperature, the average size of the dispersed domains increased as the binder thickness decreased. A hypothesis that conciliates current theories on the origin and development of dispersed domains is proposed. Small dispersed domains (average diameter around 0.02 μm) are present in the bulk of the binder, whereas larger domains and bee-like structures develop on the surface, following heat treatment or mechanical disturbance that reduces the film thickness. Molecular mobility and association are the key factors in the development of binder microstructure. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  5. Comparison of the effect of recycled crumb rubber and polymer concentration on the performance of binders for asphalt mixtures

    Directory of Open Access Journals (Sweden)

    Jiménez del Barco-Carrión, A.

    2016-09-01

    Full Text Available Crumb rubber modified binders are environmental-friendly alternatives to polymer modified bitumens in asphalt mixtures. This paper compares the performance of both types of binders with different modifier contents. Six binders were characterised by conventional tests and analysed using the UCL method. This method evaluates different properties of binders regarding their role in asphalt mixtures (cohesion, water and thermal sensitivity and resistance to ageing. Results showed that i crumb rubber concentration has to be higher than that of SBS-polymers in order to obtain a similar performance to that of SBS-polymer modified bitumen; ii crumb rubber modified binders are more stable than SBS-polymer modified binders in terms of modifier concentration; iii crumb rubber modified binders exhibited less water sensitivity and similar thermal and ageing susceptibility to SBS-polymer modified binders; iv linear relationships have been found between modifier concentration and the properties studied for both kind of binders.Los betunes modificados con polvo de neumático (PN son alternativas ambientalmente sostenibles a los betunes modificados con polímeros. Este artículo compara el comportamiento de ambos tipos de betunes con varios contenidos de modificador. Para ello, se caracterizaron seis betunes mediante ensayos convencionales y método UCL. Este método evalúa propiedades de ligantes para su uso en mezclas bituminosas (cohesión, sensibilidad al agua, térmica y al envejecimiento. Los resultados muestran que i la concentración de PN ha de ser más elevada que la de polímeros para obtener comportamiento semejante; ii los betunes con PN son más estables ante cambios en la concentración de modificador que los betunes con polímeros; iii los betunes con PN presentan menor sensibilidad al agua y equivalente susceptibilidad térmica y al envejecimiento que los betunes con polímeros; iv se encontraron buenos ajustes lineales entre la concentraci

  6. Investigation of the Physical and Molecular Properties of Asphalt Binders Processed with Used Motor Oils

    Directory of Open Access Journals (Sweden)

    Mohyeldin Ragab

    2015-01-01

    Full Text Available In this work we investigated the performance aspects of addition of used motor oils (UMO to neat and crumb rubber modified asphalts (CRMA and related that to the change of molecular size distribution of modified asphalt’s fractions; asphaltenes, saturates, naphthene aromatics, and polar aromatics. Based on the results of temperature sweep viscoelastic tests, addition of crumb rubber modifier (CRM alone or with UMO results in the formation of internal network within the modified asphalt. Based on the results of short and long term aged asphalts, the utilization of combination of UMO and CRM enhanced the aging behavior of asphalt. Bending beam rheometer was utilized to investigate the low temperature behavior of UMO modified asphalts. Based on those tests, the utilization of the UMO and CRM enhanced the low temperature properties of asphalts. Based on the results of the asphalt separation tests and the Gel Permeation Chromatography (GPC analysis, it was found that saturates and naphthene aromatics are the two asphalt fractions that have similar molecular size fractions as those of UMO. However, UMO only shifts the molecular sizes of saturates after interaction with asphalt. Results also show that polar aromatics pose higher molecular size structures than UMO.

  7. Investigation of the use of recycled polymer-modified asphalt in asphaltic concrete pavements.

    Science.gov (United States)

    2004-06-30

    This report presents issues associated with recycling polymer modified asphalt cements (PMACs), particularly blending aged PMAC with new PMAC. A styrene-butadiene-styrene (SBS) PMAC was selected and graded using the Superpave Performance Grading (PG)...

  8. Development of high stability hot mix asphalt concrete with hybrid binder

    Directory of Open Access Journals (Sweden)

    Toshiaki Hirato

    2014-12-01

    Full Text Available Cost reduction of public works projects has been desired due to severe financial circumstances. Therefore, asphalt pavement has been requested to extend its life. Semi-flexible pavement or epoxy asphalt pavement, which has high rutting resistance and oil resistance, may be applied to the place where these performances ae demanded. However, special technique is required in manufacturing and construction. In addition, these materials have also raised a problem that they cannot be recycled. Meanwhile, conventional asphalt pavement has several drawbacks. It is vulnerable to rutting caused by traffic load and damage caused by petroleum oils such as gasoline or motor oil. The materials used in asphalt mixtures were studied for improving the durability of asphalt mixture. A high stability asphalt concrete was developed which has equal or superior performance to semi-flexible pavement and epoxy asphalt pavement. In this paper, the process of selecting the substance and the characteristics evaluation of the developed mixtures ae described. Furthermore, an inspection result as well as follow-up survey of the performance of the developed mixtures obtained from trial and actual construction is shown.

  9. Development of an asphalt aging procedure to assess long-term binder performance

    KAUST Repository

    Juristyarini, Pramitha; Davison, Richard R.; Glover, Charles J.

    2011-01-01

    Nine asphalts, including seven Strategic Highway Research Program asphalts and two Texas asphalts, were aged at several conditions of temperature and oxygen pressure to develop an aging test. Values for a dynamic shear rheometer function, a combination of both elastic and viscous properties that serves as an indicator of susceptibility to age-related pavement cracking, were measured for both aged and unaged samples. Each aging condition was ranked and calibrated against environmental room aging (60°C, 1 atm air), used to simulate road aging. PAV thin-film aging at 90°C, 20 atm air for 32 hr best represented environmental room aging. © Taylor & Francis Group, LLC.

  10. Development of an asphalt aging procedure to assess long-term binder performance

    KAUST Repository

    Juristyarini, Pramitha

    2011-09-07

    Nine asphalts, including seven Strategic Highway Research Program asphalts and two Texas asphalts, were aged at several conditions of temperature and oxygen pressure to develop an aging test. Values for a dynamic shear rheometer function, a combination of both elastic and viscous properties that serves as an indicator of susceptibility to age-related pavement cracking, were measured for both aged and unaged samples. Each aging condition was ranked and calibrated against environmental room aging (60°C, 1 atm air), used to simulate road aging. PAV thin-film aging at 90°C, 20 atm air for 32 hr best represented environmental room aging. © Taylor & Francis Group, LLC.

  11. A comparative analysis of modified binders : original asphalts and materials extracted from existing pavements : technical summary.

    Science.gov (United States)

    2010-01-01

    The initial objective of this research was to develop procedures and standards for applying GPC as an analytical tool to define the percentage amounts of polymer modifiers in polymer modified asphalt cements soluble in eluting GPC solvents. Quantific...

  12. 0-6613 : evaluate binder and mixture aging for warm mix asphalt.

    Science.gov (United States)

    2013-08-01

    Warm mix asphalt (WMA) technologies employ reduced : mixing and placement temperatures, thereby allowing : reduced fuel consumption, enhanced compaction, : increased haul distances, and an extended paving : season. However, there have been issues of ...

  13. Evaluation of binder aging and its influence in aging of hot mix asphalt concrete : technical report.

    Science.gov (United States)

    2014-01-01

    TxDOT Project 0-6009 was a comprehensive interdisciplinary research effort that has developed the ability : to predict asphalt oxidative hardening over time and pavement depth, and the impact of this hardening on : mixture durability. The many interr...

  14. Evaluation of bitumen-rubber asphalt manufactured from modified binder at lower viscosity

    CSIR Research Space (South Africa)

    O'Connell, Johannes S

    2010-08-01

    Full Text Available In South Africa, crumb tyre-modified bitumen commnly known as bitumen-rubber binder has viscosity limits specified by the current edition of TG1: The Use of Modified Bituminous Binders in Road Construction. As the crumb rubber is 'digested...

  15. Influence of bitumen type on cracking resistance of asphalt mixtures used in pavement overlays

    Science.gov (United States)

    Jaskula, P.; Szydlowski, C.; Stienss, M.

    2018-05-01

    Cracking is one of the predominant distresses occurring in flexible pavements, especially in old pavements that were rehabilitated with an asphalt overlay. In such cases asphalt mixtures should be designed to ensure high resistance to reflective cracking because new asphalt layers are exposed to existing cracks of the old pavement. The nature of these cracks can be various (transverse, longitudinal as well as crazy cracking). One factor that minimizes this type of distress is the proper mix design process, which should involve selection of specific bitumen binder and mineral mix gradation. However, still there is no universally adopted laboratory test method that would allow to clearly assess resistance of asphalt mixtures to reflective cracking. This paper describes the usage of one of the devices developed to test asphalt mixtures in terms of such distress – Texas Overlay Tester. For this test, samples prepared in laboratory conditions (i.e. compacted with the use of Superpave Gyratory Compactor) as well as obtained in the field (by core drilling) can be used. The results are obtained not only quickly and easily, but also with sufficient repeatability. The described method characterizes both crack initiation and crack propagation properties of asphalt mixtures. In this work one type of mineral mixture was tested with 4 different types of bitumen (one neat bitumen, two ordinary polymer-modified and one polymer-modified with high polymer content). For selected cases extra additives (rubber and loose fibres) were also tested. In total, six asphalt mixtures were tested. A ranking of the used binders was created on the basis of the results in order to conclude which bitumen would ensure the best performance characteristics in terms of reflective cracking. The results have clearly shown that deliberate choice of the binder used in the asphalt mixture for the overlay will significantly improve its reflective cracking resistance or even fatigue resistance.

  16. Chemomechanics of Damage Accumulation and Damage-Recovery Healing in Bituminous Asphalt Binders

    NARCIS (Netherlands)

    Pauli, A.T.

    2014-01-01

    As a contribution to the development of mutli-scale multi-physics approaches to modelling pavement performance, the present thesis considers the topic of damage accumulation accompanied by damage recover self-healing of the bituminous asphalt phase of pavement systems. It is found insightful that by

  17. Creep recovery behaviour of bituminous binders - relevance to permanent deformation of asphalt pavements

    CSIR Research Space (South Africa)

    Mturi, GAJ

    2012-05-01

    Full Text Available different modifiers has expanded the range of PMBs to select from when designing pavements in order to avoid pavement deformation. The new binder selection criterion using the Multiple Stress Creep and Recovery (MSCR) protocol as per ASTM D7405 is meant...

  18. New insights into the effects of styrene-butadiene-styrene polymer modifier on the structure, properties, and performance of asphalt binder: The case of AP-5 asphalt and solvent deasphalting pitch

    Energy Technology Data Exchange (ETDEWEB)

    Nciri, Nader, E-mail: nader.nciri@koreatech.ac.kr [Department of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan-City, Chungnam-Province 330-708 (Korea, Republic of); Kim, Namho [Department of Architectural Engineering, Korea University of Technology and Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan-City, Chungnam-Province 330-708 (Korea, Republic of); Cho, Namjun, E-mail: njuncho@koreatech.ac.kr [Department of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan-City, Chungnam-Province 330-708 (Korea, Republic of)

    2017-06-01

    This paper deals with the poorly understood effects of styrene-butadiene-styrene (SBS) copolymer on the bitumen performance. It focuses on determining the impact of various concentrations (e.g., 0, 4, 8, and 12 wt. %) of SBS on the attributes of two types of asphalt namely AP-5 asphalt and solvent deasphalting (SDA) pitch. The unmodified and modified binders were investigated in terms of their chemical compositions, microstructures, thermo-analytical behaviors, and physical properties. The intricate chemical compositions were evaluated by elemental analysis and thin layer chromatography-ionization detection (TLC-FID). Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopies, scanning electron microscopy (SEM), and X-ray diffraction (XRD) were utilized to examine the microstructures. Whereas, thermal characteristics were evaluated by thermogravimetric analysis (TGA/DTGA) and differential scanning calorimetry (DSC). The physical behaviors were monitored through the softening point, penetration, viscosity, and ductility tests. The findings showed that the blending of asphalt with different amounts of SBS resulted into different rheological behaviors. This was reflected from the difference in the SARA (i.e., saturates, aromatics, resins, and asphaltenes) compositions and colloidal instability indexes of the modified asphalts. SEM exhibited a continuous asphalt phase with distributed SBS particles, a continuous polymer phase with distributed asphalt globules, or two interconnected continuous phases. FT-IR, {sup 1}H {sup 13}C NMR, and XRD data revealed that the AP-5 asphalt and SDA pitch experienced a number of distinct structural changes. TGA/DSC studies determined the occurrence of diverse events during thermal treatment. It is concluded that the degree of SBS modification depends strongly on SARA composition and polymer content. If the polymers are molded at higher concentrations along with aromatics-rich SDA pitches, then the mixtures

  19. Continuation of superpave projects monitoring.

    Science.gov (United States)

    2011-07-01

    This study involved the continuous monitoring of material properties and field performance of twelve Superpave project sections in Florida for the establishment of reasonable and effective mixture design guidelines and criteria, the identification an...

  20. Performance evaluation of Louisiana superpave mixtures.

    Science.gov (United States)

    2008-12-01

    This report documents the performance of Louisiana Superpave mixtures through laboratory mechanistic tests, mixture : volumetric properties, gradation analysis, and early field performance. Thirty Superpave mixtures were evaluated in this : study. Fo...

  1. A Comparative Life Cycle Assessment of Hot Mixes Asphalt Containing Bituminous Binder Modified with Waste and Virgin Polymers

    NARCIS (Netherlands)

    Oliveira dos Santos, Joao Miguel; Cerezo, Veronique; Soudani, Khedoudja; Bressi, Sara

    2018-01-01

    This paper presents the results of a life cycle assessment undertaken to compare the potential environmental impacts associated with the use of asphalt surface mixtures produced with polymer modified bitumen with those of a conventional asphalt surface mixture. Seven types of hot mix asphalt

  2. Field Monitoring of Experimental Hot Mix Asphalt Projects Placed in Massachusetts

    Science.gov (United States)

    2017-06-30

    Since 2000, Massachusetts has been involved with numerous field trials of experimental hot mix asphalt mixtures. These experimental mixtures included several pilot projects using the Superpave mixture design methodology, utilization of warm mix aspha...

  3. Evaluation of binder aging and its influence in aging of hot mix asphalt concrete : literature review and experimental design.

    Science.gov (United States)

    2009-02-01

    Binder oxidation in pavements and its impact on pavement performance has been addressed by : numerous laboratory studies of binder oxidation chemistry, reaction kinetics, and hardening and its impact on : mixture fatigue. Studies also have included s...

  4. Performance of asphalt mixture incorporating recycled waste

    Science.gov (United States)

    Hamid, Nor Baizura; Abdullah, Mohd Ezree; Sanik, Mohd Erwan; Mokhtar, Mardiha; Kaamin, Masiri; Raduan, Rasyidah; Ramli, Mohd Zakwan

    2017-12-01

    Nowadays, the amount of premix waste was increased every year, especially at the batching plants. Normally, the waste materials will be discarded without doing any innovative and effective research about those materials. This situation has become one of the global concerns due to the increasing number of premix waste produced every year. Therefore, the aim of this study is to evaluate the performance of hot mix asphalt (HMA) using premix waste on improving asphalt mixture fatigue behaviour. The method used in this study was Superpave mix design method. The sample conducted in this study were 0%, 10%, 20%, 30%, and 100% of premix waste respectively. For a binder test, the laboratory test conducted were penetration test, softening test and thin film oven test while for the performance test were resilient modulus test and indirect tensile fatigue test. From the laboratory test, the resilient modulus test was conducted with two different temperature which was 25°C and 40°C. The result from that test was 20% of premix waste had higher resilient modulus at that two different temperatures compared to another samples. From that test also shown that the sample at the lower temperature which was 25°C has higher resilient modulus compared to the temperature of 40°C. Indirect tensile fatigue test showed that the 30% of premix waste sample was suitable for the modified asphalt mixture with referring to the maximum deformation and strain for comparison control, 10%,20%, and 100% of premix waste samples. So, it can be concluded that premix waste inhibits great potential as road construction material and suitable for repeated traffic loading.

  5. Application of locally developed pavement temperature prediction algorithms in performance grade (PG) binder selection

    CSIR Research Space (South Africa)

    Denneman, E

    2007-07-01

    Full Text Available . Superior Performing Asphalt Pavements (SUPERPAVE): The product of the SHRP asphalt research program, Report no: SHRP-A-410, Strategic Highway Research Program, Washington. McGennis, R.B., Anderson, R.M., Kennedy, T.W., Solaimanian, M., 1995... international performance based specifications. Asphalt news, Vol. 19, Issue 2. Viljoen, A. W., 2001, Estimating Asphalt temperatures from air temperatures and basic sky parameters. Internal report, Transportek, CSIR, Pretoria. Williamson, R.H., and Kirby, W...

  6. Long-term aging of recycled binders : [summary].

    Science.gov (United States)

    2015-10-01

    At 80 million tons a year representing more than 80% of all milled asphalt pavement : asphalt paving is Americas most recycled material. Asphalt can be recycled in place, which is : very cost effective; however, aging of recycled binder ca...

  7. Design and evaluation of foamed asphalt base materials.

    Science.gov (United States)

    2013-05-01

    Foamed asphalt stabilized base (FASB) combines reclaimed asphalt pavement (RAP), recycled : concrete (RC), and/or graded aggregate base (GAB) with a foamed asphalt binder to produce a : partially stabilized base material. The objectives of this study...

  8. Durable Recycled Superpave Mixes in Kansas

    Science.gov (United States)

    2018-04-01

    The use of economical and environment-friendly recycled asphalt materials has become increasingly popular for asphalt pavement construction. In general, reclaimed asphalt pavement (RAP) and recycled asphalt shingles (RAS) are used in hot-mix asphalt ...

  9. A review of warm mix asphalt.

    Science.gov (United States)

    2008-12-01

    Warm Mix Asphalt (WMA) technology, recently developed in Europe, is gaining strong interest in the US. By : lowering the viscosity of asphalt binder and/or increasing the workability of mixture using minimal heat, WMA : technology allows the mixing, ...

  10. Multi-parametric characterization of mode I fracture toughness of asphalt concrete: Influence of void and RA contents, binder and aggregate types

    Directory of Open Access Journals (Sweden)

    Saannibe Ciryle Somé

    2018-05-01

    Full Text Available This study aims to evaluate the fracture toughness (KIc in mode I cracking using semi-circular bending test (SCB. Experiment has been performed to investigate the influence of bitumen grade (using P15/25 and P50/70 bitumens, reclaimed asphalt (RA content (using 0%, 20% and 40% RA contents and temperature (using −20 °C, −5 °C, 10 °C test temperatures, through ANOVA. Additional investigations have been performed: (i to evaluate the effect of the use of polymer modified bitumen (PMB, (ii to evaluate the effect compactness using 5% and 8% air void contents, (iii to evaluate the effect of aggregate type using siliceous-limestone and porphyry aggregates. The results show an important decrease in KIc when temperature increases from −5 °C to 10 °C and a slight decrease between −20 °C and −5 °C. The results also show that increasing RA content increases slightly the KIc. It was found from the ANOVA that the influent parameters can be ranked as follows: temperature, RA content and binder grade. The investigations show that PMB increases the KIc value than pure bitumens. Porphyry aggregates increase the KIc by about 16% than silica-limestone aggregates at low temperatures between −20 °C and −5 °C. However, this ranking is slightly inverted at 10 °C. In addition, KIc decreases by about 12% at 10 °C with an increase in air voids (by 5% to 8%. Void content effect is more significant at −5 °C and 10 °C, and negligible at −20 °C. Keywords: Fracture toughness, SCB, Bituminous mixture, Reclaimed asphalt

  11. A source mixing model to apportion PAHs from coal tar and asphalt binders in street pavements and urban aquatic sediments

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, M.J.; Depree, C.V. [National Institute of Water & Atmospheric Research, Hamilton (New Zealand)

    2010-12-15

    Present-day and more than 30 years old road and footpath pavements from Auckland, New Zealand were analysed for PAHs to test the hypothesis that coal tar based pavement binders contribute to unusually high PAH concentrations in adjacent stream and estuarine sediments Total PAH ({Sigma}{sub 28}PAH) concentrations in the dichloromethane-soluble fraction ('binder'), comprising 5-10% of pavement mass, were as high as 200 000 mg kg{sup -1}(10 000 mg kg{sup -1} in binder + aggregate) Older and deeper pavement layers were strongly pyrogenic, whereas pavement layers from recently sealed roads had a more petrogenic composition and more than 1000 times lower Sigma(28)PAH concentrations. Source identification analysis using three PAH isomer ratio pairs (benz(a)anthracene/(benz(a)anthracene + chrysene), benzo(a)pyrene/(benzo(a)pyrene + benzo(e)pyrene)), and indeno(1,2,3-cd)pyrene/(indeno(1,2,3-cd)pyrene + benzo(g,h,i)perylene) revealed low PAH (bitumen) pavements to have consistently lower isomer ratios than high PAH (coal tar) samples. A concentration-weighted mixing model, with coal tar and bitumen as source materials, explained more than 80% of the variance in isomer ratios and enveloped the entire PAH compositional and concentration range encountered PAH composition and concentrations in adjacent stream sediments ({gt} 15 mg kg{sup -1} dry weight) were consistent with diluted coal tar material as a principal PAH source. Due to the very high PAH concentrations of coal tar, a coal tar content of as little as 0.01% of total sediment mass can account for more than 90% of PAH concentrations in adjacent stream sediments.

  12. Scrap tire rubber as modifier of asphalt cement for use in road paving Borracha de pneus como modificador de cimentos asfálticos para uso em obras de pavimentação

    Directory of Open Access Journals (Sweden)

    Sandra Oda

    2001-05-01

    Full Text Available This work presents the results of a research on the technical feasibility of the use of asphalt-rubber binder by the asphalt paving industry. In Brazil more than 30 million tires a year are disposed of, mostly in inadequate sites, causing serious health and environmental problems. The effects of the main factors (rubber content, rubber particle size, temperature of mixture, reaction time on the behavior of asphalt-rubber binders are evaluated by traditional and Superpave Method tests, the latter based on certain fundamental properties directly related to field performance. Results of the statistical analysis of the factorial design of laboratory experiments show the most significant effect of rubber contents, or rather, that asphalt-rubber binder may increase the resistance against permanent deformation and fatigue crackingEste trabalho apresenta estudo sobre a incorporação de borracha de pneus em ligantes asfálticos utilizados em obras de pavimentação. Trata-se de uma alternativa para solucionar um grave problema ambiental, pois no Brasil, anualmente, são descartados mais de 30 milhões de pneus, dos quais a maior parte é disposta em locais inadequados, servindo para a procriação de vetores de doenças e representando risco de contaminação do meio-ambiente. Os efeitos dos principais fatores que condicionam o comportamento do ligante asfalto-borracha (teor e granulometria da borracha, temperatura de mistura, tempo de reação são avaliados através de ensaios tradicionais de caracterização de ligantes asfálticos e ensaios do Método Superpave, diretamente relacionadas ao desempenho dos pavimentos no campo. Os resultados da análise estatística evidenciam o efeito preponderante do teor de borracha e, principalmente, que o ligante asfalto-borracha pode aumentar a resistência ao acúmulo de deformação permanente e ao aparecimento de trincas por fadiga do revestimento

  13. Performance assessment of warm mix asphalt (WMA) pavements.

    Science.gov (United States)

    2009-09-01

    Warm Mix Asphalt (WMA) is a new technology that was introduced in Europe in 1995. WMA offers several advantages over : conventional asphalt concrete mixtures, including: reduced energy consumption, reduced emissions, improved or more uniform : binder...

  14. Utilizing Lab Tests to Predict Asphalt Concrete Overlay Performance

    Science.gov (United States)

    2017-12-01

    A series of five experimental projects and three demonstration projects were constructed to better understand the performance of pavement overlays using various levels of asphalt binder replacement (ABR) from reclaimed asphalt pavement (RAP), recycle...

  15. MODELACIÓN DE UNA ESTRUCTURA DE PAVIMENTO UTILIZANDO LOS MÓDULOS DINÁMICOS OBTENIDOS EN LABORATORIO APLICANDO LAS METODOLOGÍAS MARSHALL Y SUPERPAVE MODELING OF A PAVEMENT STRUCTURE USING DYNAMIC MODULES OBTAINED IN A LABORATORY APPLYING MARSHALL AND SUPERPAVE METHODOLOGIES

    Directory of Open Access Journals (Sweden)

    Carlos Rodolfo Marín Uribe

    2007-07-01

    Full Text Available El programa SHRP (Strategic Higway Research Program a través del nuevo método de diseño de mezclas asfálticas en caliente 'Superpave', ha impulsado el desarrollo de investigaciones con el fin de obtener mezclas asfálticas más durables, resistentes y en general, que muestren un comportamiento superior como su nombre lo indica. Entonces, es importante conocer los estados de esfuerzos y deformaciones que se producen al modelar una estructura de pavimento con capas de rodadura, compuestas con mezclas asfálticas diseñadas por métodos distintos (Marshall y Superpave y, por supuesto, con una caracterización dinámica diferente (leyes de fatiga, módulos dinámicos y respuesta al ahuellamiento. Esta modelación permite tener una idea general de la capacidad estructural para soportar el tránsito durante su vida útil representada en el valor de N (Número de ejes equivalentes de carga y quizá obtener algunos indicios de posibles ahorros en costos de conservación de los pavimentos, razones fundamentales para apoyar e incentivar la implementación del método Superpave como nuevo diseño de las mezclas asfálticas en caliente.The SHRP (Strategic Highway Research Program through the new design method of hot asphalt mixtures 'Superpave' has promoted the development of researches in order to get more durable and resistant asphalt mixtures that show a superior performance. Then, it is important to know the effort and deformation condition that are produced when modeling a pavement structure with asphalt layers made up of asphalt mixtures designed with different methods (Marshall and Superpave and therefore, with a different dynamic characterization (fatigue laws, dynamic modules, and deterioration answers. This modeling allows us to have a general idea of the structural capacity to endure traffic throughout its life cycle represented by N value (Number of equivalent loads axis and perhaps to obtain some hints of possible savings in pavement

  16. Application of mechanistic empirical approach to predict rutting of superpave mixtures in Iraq

    Directory of Open Access Journals (Sweden)

    Qasim Zaynab

    2018-01-01

    Full Text Available In Iraq rutting is considered as a real distress in flexible pavements as a result of high summer temperature, and increased axle loads. This distress majorly affects asphalt pavement performance, lessens the pavement useful service life and makes serious hazards for highway users. Performance of HMA mixtures against rutting using Mechanistic- Empirical approach is predicted by considering Wheel-Tracking test and employing the Superpave mix design requirements. Roller Wheel Compactor has been locally manufactured to prepare slab specimens. In view of study laboratory outcomes that are judged to be simulative of field loading conditions, models are developed for predicting permanent strain of compacted samples of local asphalt concrete mixtures after considering the stress level, properties of local material and environmental impacts variables. All in all, laboratory results were produced utilizing statistical analysis with the aid of SPSS software. Permanent strain models for asphalt concrete mixtures were developed as a function of: number of passes, temperature, asphalt content, viscosity, air voids and additive content. Mechanistic Empirical design approach through the MnPAVE software was applied to characterize rutting in HMA and to predict allowable number of loading repetitions of mixtures as a function of expected traffic loads, material properties, and environmental temperature.

  17. Use of Adhesion Promoters in Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Cihlářová Denisa

    2018-03-01

    Full Text Available The purpose of asphalt binder as a significant binder in road constructions is to permanently bind aggregates of different compositions and grain sizes. The asphalt binder itself does not have suitable adhesiveness, so after a period of time, bare grains can appear. This results in a gradual separation of the grains from an asphalt layer and the presence of potholes in a pavement. Adhesion promoters or adhesive agents are important and proven promoters in practice. They are substances mainly based on the fatty acids of polyamides which should increase the reliability of the asphalt’s binder adhesion to the aggregates, thus increasing the lifetime period of the asphalt mixture as well as its resistance to mechanical strain. The amount of a promoter or agent added to the asphalt mixture is negligible and constitutes about 0.3% of the asphalt’s binder weight. Nevertheless, even this quantity significantly increases the adhesive qualities of an asphalt binder. The article was created in cooperatation with the Slovak University of Technology, in Bratislava, Slovakia, and focuses on proving the new AD2 adhesive additive and comparing it with the Addibit and Wetfix BE promoters used on aggregates from the Skuteč - Litická and Bystřec quarries.

  18. Low temperature rheological properties of asphalt mixtures containing different recycled asphalt materials

    Directory of Open Access Journals (Sweden)

    Ki Hoon Moon

    2017-01-01

    Full Text Available Reclaimed Asphalt Pavement (RAP and Recycled Asphalt Shingles (RAS are valuable materials commonly reused in asphalt mixtures due to their economic and environmental benefits. However, the aged binder contained in these materials may negatively affect the low temperature performance of asphalt mixtures. In this paper, the effect of RAP and RAS on low temperature properties of asphalt mixtures is investigated through Bending Beam Rheometer (BBR tests and rheological modeling. First, a set of fourteen asphalt mixtures containing RAP and RAS is prepared and creep stiffness and m-value are experimentally measured. Then, thermal stress is calculated and graphically and statistically compared. The Huet model and the Shift-Homothety-Shift in time-Shift (SHStS transformation, developed at the École Nationale des Travaux Publics de l'État (ENTPE, are used to back calculate the asphalt binder creep stiffness from mixture experimental data. Finally, the model predictions are compared to the creep stiffness of the asphalt binders extracted from each mixture, and the results are analyzed and discussed. It is found that an addition of RAP and RAS beyond 15% and 3%, respectively, significantly change the low temperature properties of asphalt mixture. Differences between back-calculated results and experimental data suggest that blending between new and old binder occurs only partially. Based on the recent finding on diffusion studies, this effect may be associated to mixing and blending processes, to the effective contact between virgin and recycled materials and to the variation of the total virgin-recycled thickness of the binder film which may significantly influence the diffusion process. Keywords: Reclaimed Asphalt Pavement (RAP, Recycled Asphalt Shingles (RAS, Thermal stress, Statistical comparison, Back-calculation, Binder blending

  19. A review of asphalt and asphalt mixture aging

    Directory of Open Access Journals (Sweden)

    Wilmar Darío Fernández-Gómez

    2013-01-01

    Full Text Available This paper presents an extensive review of the pertinent literature regarding asphalt and asphalt mixture Aging. Aging affects flexible pavement performance and is produced by intrinsic and extrinsic variables as well as exposure time. Intrinsic variables include asphalt and aggregate properties, a mixture’s asphalt content, binder film thickness and air void content; extrinsic variables are associated with production (short-term aging and exposure to environmental field conditions (long-term aging. Taken together, both variables demonstrate that aging results from three distinct mechanisms: volatilisation, oxidation and steric hardening. Temperature, pressure and photo degradation treatments are used to simulate aging in the laboratory and empirical and semi-empirical models are created to represent and study aging. Aging increases asphalt complex modulus and decreases the phase angle. Mixtures become stiffer while fatigue life becomes reduced. Carbonyl and sulfoxide group formation in asphalt are often studied as such chemical changes show oxidation in aged asphalts. The prevailing models used to predict asphalt aging are discussed, though more comprehensive research into asphalt aging is still needed.

  20. Properties of Direct Coal Liquefaction Residue Modified Asphalt Mixture

    Directory of Open Access Journals (Sweden)

    Jie Ji

    2017-01-01

    Full Text Available The objectives of this paper are to use Direct Coal Liquefaction Residue (DLCR to modify the asphalt binders and mixtures and to evaluate the performance of modified asphalt mixtures. The dynamic modulus and phase angle of DCLR and DCLR-composite modified asphalt mixture were analyzed, and the viscoelastic properties of these modified asphalt mixtures were compared to the base asphalt binder SK-90 and Styrene-Butadiene-Styrene (SBS modified asphalt mixtures. The master curves of the asphalt mixtures were shown, and dynamic and viscoelastic behaviors of asphalt mixtures were described using the Christensen-Anderson-Marasteanu (CAM model. The test results show that the dynamic moduli of DCLR and DCLR-composite asphalt mixtures are higher than those of the SK-90 and SBS modified asphalt mixtures. Based on the viscoelastic parameters of CAM models of the asphalt mixtures, the high- and low-temperature performance of DLCR and DCLR-composite modified asphalt mixtures are obviously better than the SK-90 and SBS modified asphalt mixtures. In addition, the DCLR and DCLR-composite modified asphalt mixtures are more insensitive to the frequency compared to SK-90 and SBS modified asphalt mixtures.

  1. Analysis of the usage of rubberized asphalt in hot mix asphalt using Reclaimed Asphalt Pavement (RAP)

    Science.gov (United States)

    Dwidarma Nataadmadja, Adelia; Prahara, Eduardi; Sumbung, Pierre Christian

    2017-12-01

    There has been an increasing demand in using more environmentally friendly materials in pavement construction. One of the alternative materials that have been widely used is the Reclaimed Asphalt Pavement (RAP) aggregates. The RAP aggregates are derived from the crushed and screened pavement materials that contain asphalt and aggregates. This material is usually combined with natural aggregates and virgin asphalt binder to construct a new pavement. There have been numerous positive feedbacks in using this material although RAP aggregates also have certain weaknesses, such as questionable interaction between virgin and recycled materials and increased stiffness of RAP binder. Moreover, there has been a push on using rubber as an additive to asphalt binder to improve the welfare of rubber farmers. This research combines the usage of both latex and RAP as the ingredients to design hot mix asphalt (HMA) as latex could help in improving the flexibility of HMA and the interaction between the virgin and recycled materials. The main objective of this research is to find a suitable percentage of RAP aggregates to be used in HMA with certain percentage of latex as the binder additive.

  2. SGC Tests for Influence of Material Composition on Compaction Characteristic of Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Qun Chen

    2013-01-01

    Full Text Available Compaction characteristic of the surface layer asphalt mixture (13-type gradation mixture was studied using Superpave gyratory compactor (SGC simulative compaction tests. Based on analysis of densification curve of gyratory compaction, influence rules of the contents of mineral aggregates of all sizes and asphalt on compaction characteristic of asphalt mixtures were obtained. SGC Tests show that, for the mixture with a bigger content of asphalt, its density increases faster, that there is an optimal amount of fine aggregates for optimal compaction and that an appropriate amount of mineral powder will improve workability of mixtures, but overmuch mineral powder will make mixtures dry and hard. Conclusions based on SGC tests can provide basis for how to adjust material composition for improving compaction performance of asphalt mixtures, and for the designed asphalt mixture, its compaction performance can be predicted through these conclusions, which also contributes to the choice of compaction schemes.

  3. Asphalt Mixture for the First Asphalt Concrete Directly Fastened Track in Korea

    Directory of Open Access Journals (Sweden)

    Seong-Hyeok Lee

    2015-01-01

    Full Text Available The research has been initiated to develop the asphalt mixtures which are suitable for the surface of asphalt concrete directly fastened track (ADFT system and evaluate the performance of the asphalt mixture. Three aggregate gradations which are upper (finer, medium, and below (coarser. The nominal maximum aggregate size of asphalt mixture was 10 mm. Asphalt mixture design was conducted at 3 percent air voids using Marshall mix design method. To make impermeable asphalt mixture surface, the laboratory permeability test was conducted for asphalt mixtures of three different aggregate gradations using asphalt mixture permeability tester. Moisture susceptibility test was conducted based on AASHTO T 283. The stripping percentage of asphalt mixtures was measured using a digital camera and analyzed based on image analysis techniques. Based on the limited research results, the finer aggregate gradation is the most suitable for asphalt mixture for ADFT system with the high TSR value and the low stripping percentage and permeable coefficient. Flow number and beam fatigue tests for finer aggregate asphalt mixture were conducted to characterize the performance of asphalt mixtures containing two modified asphalt binders: STE-10 which is styrene-butadiene-styrene (SBS polymer and ARMA which is Crum rubber modified asphalt. The performance tests indicate that the STE-10 shows the higher rutting life and fatigue life.

  4. Evaluation of bio-materials’ rejuvenating effect on binders for high-reclaimed asphalt content mixtures; Evaluación del efecto rejuvenecedor de bio-materiales sobre ligantes para mezclas con alto contenido de asfalto recuperado

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez del Barco-Carrión, A.; Pérez-Martínez, M.; Themeli, A.; Lo Presti, D.; Marsac, P.; Pouget, S.; Hammoum, F.; Chailleux, E.; Airey, G.D.

    2017-07-01

    The interest in using bio-materials in pavement engineering has grown significantly over the last decades due to environmental concerns about the use of non-recoverable natural resources. In this paper, bio-materials are used together with Reclaimed Asphalt (RA) to restore some of the properties of the aged bitumen present in mixtures with high RA content. For this purpose, two bio-materials are studied and compared to conventional and polymer modified bitumens. Blends of these materials with RA bitumen were produced and studied to simulate a 50% RA mixture. The rejuvenating effect of the two bio-materials on RA has been assessed and compared with the effect of the conventional binders. Apparent Molecular Weight Distribution of the samples (obtained by the ?-method) and different rheological parameters were used for this purpose. Results revealed the power of bio-materials to rejuvenate RA bitumen, showing their capability to be used as fresh binders in high-RA content mixtures. [Spanish] El interés en la utilización de bio-materiales en ingeniería de pavimentos ha crecido significantemente en las últimas décadas debido a la conciencia ambiental sobre el uso de recursos naturales no renovables. En este artículo, se utilizan bio-materiales para recuperar las propiedades iniciales del betún envejecido presente en mezclas con alto contenido de asfalto reciclado (RA). Para ello, se ha estudiado y comparado el comportamiento de dos bio-materiales con betunes convencionales y betunes modificados con polímeros. Con este objetivo, se fabricaron mezclas de bio-materiales y betún reciclado simulando mezclas asfálticas con 50% de contenido de reciclado. El efecto rejuvenecedor de los bio-materiales se ha evaluado y comparado con el efecto rejuvenecedor de ligantes convencionales mediante el cálculo de las distribuciones de peso molecular aparente y diferentes pará-metro reológicos. Los resultados muestran el poder rejuvenecedor de los bio-materiales, poniendo de

  5. Thermodynamics between RAP/RAS and virgin aggregates during asphalt concrete production : a literature review.

    Science.gov (United States)

    2015-09-01

    In hot-mix asphalt (HMA) plants, virgin aggregates are heated and dried separately before being mixed with : RAP/RAS and virgin asphalt binder. RAP/RAS materials are not heated or dried directly by a burner to avoid : burning of aged binder coating o...

  6. Development of bio-based polymers for use in asphalt.

    Science.gov (United States)

    2014-02-01

    Asphalt binder is typically modified with poly type (styrene-butadiene-styrene or SBS) polymers to improve its rheological properties and performance grade. The elastic and principal component of SBS polymers is butadiene. For the last decade, butadi...

  7. Solar Radiation effect on the bituminous binder

    International Nuclear Information System (INIS)

    Tadeo Rico, A.; Torres Perez, A.

    2010-01-01

    Asphalt, used as binder in road construction, becomes more brittle and harder during working life on the surface of the road pavement, conducting toward their deterioration. This is caused by the oxidation of the molecular functional groups of the asphalt molecular structure. Moreover, it is observed that ultraviolet radiation increases the oxidation process. However, the effect of solar light on the asphalt degradation has been poorly researched. The aim of this work is to study asphalt ageing caused by effect of solar radiation, by using standard test. Four commercial asphalts from different companies were selected: two with penetration number 50/70, and the other two polymer modified asphalts. From each of the asphalts forty samples were taken off and placed in four different aging conditions of temperature and radiation for a period ranging from 40 to 500 days. Ring and Ball test, and Fraass breaking Point test, were used to analyse the changes of asphalt properties after exposition to solar radiation. The results of the four analyzed asphalts showed a distinct behaviour; not only in the test temperature increase but also in the rate. Another experiment was carried out. Samples from a hot mix asphalt batch were placed under solar radiation, and were compacted by the Marshall procedure after increasing periods of time. Density and resistance to plastic flow using Marshall Apparatus were measured. Results showed an increase in the stability of samples under radiation. Both experiments show that the solar radiation is enough to cause changes in the asphalt molecular structure due to oxidation. So that, the study of the effect of the solar radiation on the asphalt properties could be a good tool to asses the performances of asphalt pavement. (Author) 26 refs.

  8. Characterization of crumbe rubber and modified asphalt from brazilian petroleum; Caracterizacao de borracha de pneu moido e de asfalto modificado oriundo de petroleo brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Expedito F. dos; Feitosa, Judith P.A. [Ceara Univ., Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica]. E-mail: judith@dqoi.ufc.br, expeditoflavio@uol.com.br; Soares, Jorge B. [Ceara Univ., Fortaleza, CE (Brazil). Dept. de Engenharia de Transporte; Leite, Leni F.M. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2003-07-01

    Initially it was made an evaluation of the thermal behavior, grain composition and elastomer content of a crumb rubber sample. It was verified a thermal resistance of the crumb rubber and an elastomer content ranging from 56 to 68 %. The asphalt binders were obtained from Brazilian CAP (Fazenda Alegre, State of Espirito Santo) and blended with crumb rubber from 2 to 22 %. The asphalt binder presented smaller penetration than pure CAP. The pure asphalt and binder was aged by the RTFOT system. It was observed a C=O band due oxidation. In the asphalt binder with 2 and 5 % of crumb rubber was verified a smaller effect of the oxygen than in the pure asphalt, which suggests larger aging resistance. Apparent viscosity analysis showed that the pure asphalt has a Newtonian behavior in temperature higher than 150 deg C, while a pseudoplastic behavior of the asphalt binder increases with crumb rubber concentration. (author)

  9. Pilot instrumentation of a Superpave test section at the Kansas Accelerated Testing laboratory

    Science.gov (United States)

    2003-04-01

    Two Superpave test sections were constructed at the Kansas Accelerated Testing Laboratory (K-ATL) with 12.5 mm (2 in) nominal maximum size Superpave mixture (SM-2A) with varying percentages (15 and 30 percent) of river sand. A 150 kN (34 kip) tandem ...

  10. The Effect of Aging on the Cracking Resistance of Recycled Asphalt

    Directory of Open Access Journals (Sweden)

    Mojtaba Mohammadafzali

    2017-01-01

    Full Text Available Fatigue cracking is an important concern when a high percentage of Reclaimed Asphalt Pavement (RAP is used in an asphalt mixture. The aging of the asphalt binder reduces its ductility and makes the pavement more susceptible to cracking. Rejuvenators are often added to high-RAP mixtures to enhance their performance. The aging of a rejuvenated binder is different from virgin asphalt. Therefore, the effect of aging on a recycled asphalt mixture can be different from its effect on a new one. This study evaluated the cracking resistance of 100% recycled asphalt binders and mixtures and investigated the effect of aging on this performance parameter. The cracking resistance of the binder samples was tested by a Bending Beam Rheometer. An accelerated pavement weathering system was used to age the asphalt mixtures and their cracking resistance was evaluated by the Texas Overlay Test. The results from binder and mixture tests mutually indicated that rejuvenated asphalt has a significantly better cracking resistance than virgin asphalt. Rejuvenated mixtures generally aged more rapidly, and the rate of aging was different for different rejuvenators.

  11. Rheological characteristics of synthetic road binders

    Energy Technology Data Exchange (ETDEWEB)

    Gordon D. Airey; Musarrat H. Mohammed; Caroline Fichter [University of Nottingham, Nottingham (United Kingdom)

    2008-08-15

    This paper deals with the synthesis of polymer binders from monomers that could in future be derived from renewable resources. These binders consist of polyethyl acrylate (PEA) of different molecular weight, polymethyl acrylate (PMA) and polybutyl acrylate (PBA), which were synthesised from ethyl acrylate, methyl acrylate and butyl acrylate, respectively, by atom transfer radical polymerization (ATRP). The fundamental rheological properties of these binders were determined by means of a dynamic shear rheometer (DSR) using a combination of temperature and frequency sweeps. The results indicate that PEA has rheological properties similar to that of 100/150 penetration grade bitumen, PMA similar rheological properties to that of 10/20 penetration grade bitumen, while PBA, due to its highly viscous nature and low complex modulus, cannot be used on its own as an asphalt binder. The synthetic binders were also combined with conventional penetration grade bitumen to produce a range of bitumen-synthetic polymer binder blends. These blends were batched by mass in the ratio of 1:1 or 3:1 and subjected to the same DSR rheological testing as the synthetic binders. The blends consisting of a softer bitumen (70/100 pen or 100/150 pen) with a hard synthetic binder (PMA) tended to be more compatible and therefore stable and produced rheological properties that combined the properties of the two components. The synthetic binders and particularly the extended bitumen samples (blends) produced rheological properties that showed similar characteristics to elastomeric SBS PMBs. 30 refs., 12 figs., 2 tabs.

  12. Introductory asphalt technology; Nyumon asphalt gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Muroga, G. [Mitsubishi Oil Co. Ltd., Tokyo (Japan)

    1994-12-28

    The type and applications, manufacturing method, characteristics, road pavement etc. of asphalt were introduced. Among the petroleum asphalts, straight asphalt is used for road pavement,industry, and combustion, while blown asphalt is mainly used for the waterproofness of a building. Also, the demand for modified asphalt where rubber or thermoplastic elastomer was mixed is increasing. Straight asphalt is obtained by allowing atmospheric distillation tower bottom oil to be subjected to reduced pressure distillation and drawing reduced pressure gas oil and lubrication oil cut. Blown asphalt is produced by the oxidation dehydrogeneration and condensation polymerization reaction of soft straight asphalt. Rheology characteristics of asphalt are expressed by stiffness, relaxation elastic modulus, complex elastic modulus, etc. Also, asphalt has high electrical dielectric properties. Asphalt pavement has functions for dispersing traffic load and then transferring it to a lower layer, for resisting wear and cracking, and for preventing penetration of rainwater. 30 refs., 5 figs., 4 tabs.

  13. Properties of sulfur-extended asphalt concrete

    Directory of Open Access Journals (Sweden)

    Gladkikh Vitaliy

    2016-01-01

    Full Text Available Currently, increased functional reliability of asphalt concrete coatings associated with various modifying additives that improve the durability of pavements. Promising builder is a technical sulfur. Asphalt concrete, made using a complex binder consisting of petroleum bitumen and technical sulfur, were calledsSulfur-Extended Asphalt Concrete. Such asphalt concrete, due to changes in the chemical composition of particulate and bitumen, changes the intensity of the interaction at the interface have increased rates of physical and mechanical properties. There was a lack of essential knowledge concerning mechanical properties of the sulfur-bituminous concrete with such an admixture; therefore, we had carried out the necessary examination. It is revealed that a new material satisfies local regulations in terms of compressive and tensile strength, shear resistance, and internal friction.

  14. COMPARACIÓN DE MÓDULOS DINÁMICOS DE PROBETAS ELABORADAS POR EL MÉTODO MARSHALL Y POR EL MÉTODO SUPERPAVE

    Directory of Open Access Journals (Sweden)

    Carlos Rodolfo Marín Uribe

    2007-01-01

    Full Text Available En el mundo se han emprendido grandes campañas para mejorar el comportamiento de las mezclas asfálticas; entre ellas, está la liderada por los Estados Unidos denominado 'Programa estratégico de investigación en carreteras (SHRP' en la que se desarrollan nuevos ensayos para medir las propiedades de los materiales que constituyen las mezclas y para las mezclas como material de construcción. Uno de los productos finales de SHRP es el sistema Superpave (pavimentos asfálticos con comportamiento superior. En Colombia, en 1996, se modificaron las especificaciones de construcción de carreteras, introduciendo exigencias en el control de los procesos constructivos, pero sin modificar de manera apreciable lo que al diseño de mezclas en caliente se refiere. En este artículo se muestran los resultados de una investigación donde se pretendió profundizar en uno de los tantos aspectos que intervienen en el desempeño de las mezclas asfálticas que se fabrican en Colombia, y es precisamente el de diseño de la mezcla, porque se considera que en esta etapa se pueden analizar de forma más completa los materiales constitutivos y las mezclas mismas para predecir con mayor certeza el desempeño en obra, bajo unas condiciones determinadas de tránsito, clima y apoyo estructural. Es así como se realiza la comparación de los módulos dinámicos obtenidos de probetas de mezcla asfáltica elaborados por dos metodologías distintas, la Marshall y la Superpave; la primera, tradicional en Colombia, y la segunda, una propuesta innovadora en el mundo sin tener acogida aún en nuestro país.All over the world, major programs have been carried out in order to improve the behavior of asphalt mixtures. Among them is the one led by the United States called 'Strategic Highway Research Program (SHRP' which develops new tests to measure the properties of the materials that constitute the mixture and for the mixtures, such as construction materials. One of SHRP's final

  15. Thermal Properties of Asphalt Mixtures Modified with Conductive Fillers

    Directory of Open Access Journals (Sweden)

    Byong Chol Bai

    2015-01-01

    Full Text Available This paper investigates the thermal properties of asphalt mixtures modified with conductive fillers used for snow melting and solar harvesting pavements. Two different mixing processes were adopted to mold asphalt mixtures, dry- and wet-mixing, and two conductive fillers were used in this study, graphite and carbon black. The thermal conductivity was compared to investigate the effects of asphalt mixture preparing methods, the quantity, and the distribution of conductive filler on thermal properties. The combination of conductive filler with carbon fiber in asphalt mixture was evaluated. Also, rheological properties of modified asphalt binders with conductive fillers were measured using dynamic shear rheometer and bending beam rheometer at grade-specific temperatures. Based on rheological testing, the conductive fillers improve rutting resistance and decrease thermal cracking resistance. Thermal testing indicated that graphite and carbon black improve the thermal properties of asphalt mixes and the combined conductive fillers are more effective than the single filler.

  16. Nanosized carbon modifier used to control plastic deformations of asphalt concrete

    Science.gov (United States)

    Vysotskaya, M. A.; Shekhovtsova, S. Yu; Barkovsky, D. V.

    2018-03-01

    Aspects related to plastic track, the formation of which directly depends on the properties of the binder in the composition of asphalt concrete, are considered in this article. The effect of primary carbon nanomaterials on the quality of polymer and bitumen binder in comparison with the traditional binder including cross-linking agent is evaluated. The influence of binders on the resistance to the track formation of type B asphalt concrete is studied. To quantify the service life of surfacing, a calculation method based on the criteria for the resistance of surfacing material to plastic deformations is used.

  17. Characteristics Buton Natural Asphalt-Rubber (BNA-R on the Performance Improvement of Warm Mix Asphalt Using Natural Zeolite

    Directory of Open Access Journals (Sweden)

    Wahjuningsih Nurul

    2018-01-01

    Full Text Available The decrease in the ability of service of pavement can be caused by the durability factor in the pavement layer in receiving heavy traffic load and the temperature of the pavement. Permanent deformation is one of the criteria of failure of asphalt mixture. Performance assessment of the asphalt mixture can be observed from the rheological properties of asphalt binder. The use of BNA-R in this study is intended to modify the characteristics of bitumen penetration grade 60 / 70 used in warm mix asphalt. Warm mix asphalt with lower temperatures of mixing and compaction than conventional asphalt mixtures was chosen because it is more environmentally friendly. To reduce the temperature in this warm asphalt technology is achieved by using natural zeolite. Both of these materials are local materials that are widely available in Indonesia. The rheology of asphalt 60/70 modified with BNA-R indicates that the addition of BNA-R in the base asphalt increase the complex modulus value and decrease the phase angle value. These values were related to the performance of mixture in the permanent deformation criteria. Reducing the temperature of mixing and compaction should be balanced with modifying the asphalt binder used. Rutting due to permanent deformation can resulted in inconvenience to the passengers and can lead to high costs of road maintenance. To determine the permanent deformation of asphalt mix with material combinations was performed through the wheel tracking test machine with 3,780 cycles for 3 hours. The results shows that after test track over 7 thousand passes have seen permanent deformation characteristics of asphalt concrete mixture with a variation of the characteristics of bitumen.

  18. Characteristics Buton Natural Asphalt-Rubber (BNA-R) on the Performance Improvement of Warm Mix Asphalt Using Natural Zeolite

    Science.gov (United States)

    Wahjuningsih, Nurul; Pranowo Hadiwardoyo, Sigit; Jachrizal Sumabrata, R.

    2018-03-01

    The decrease in the ability of service of pavement can be caused by the durability factor in the pavement layer in receiving heavy traffic load and the temperature of the pavement. Permanent deformation is one of the criteria of failure of asphalt mixture. Performance assessment of the asphalt mixture can be observed from the rheological properties of asphalt binder. The use of BNA-R in this study is intended to modify the characteristics of bitumen penetration grade 60 / 70 used in warm mix asphalt. Warm mix asphalt with lower temperatures of mixing and compaction than conventional asphalt mixtures was chosen because it is more environmentally friendly. To reduce the temperature in this warm asphalt technology is achieved by using natural zeolite. Both of these materials are local materials that are widely available in Indonesia. The rheology of asphalt 60/70 modified with BNA-R indicates that the addition of BNA-R in the base asphalt increase the complex modulus value and decrease the phase angle value. These values were related to the performance of mixture in the permanent deformation criteria. Reducing the temperature of mixing and compaction should be balanced with modifying the asphalt binder used. Rutting due to permanent deformation can resulted in inconvenience to the passengers and can lead to high costs of road maintenance. To determine the permanent deformation of asphalt mix with material combinations was performed through the wheel tracking test machine with 3,780 cycles for 3 hours. The results shows that after test track over 7 thousand passes have seen permanent deformation characteristics of asphalt concrete mixture with a variation of the characteristics of bitumen.

  19. Mechanistic and Economical Characteristics of Asphalt Rubber Mixtures

    Directory of Open Access Journals (Sweden)

    Mena I. Souliman

    2016-01-01

    Full Text Available Load associated fatigue cracking is one of the major distress types occurring in flexible pavement systems. Flexural bending beam fatigue laboratory test has been used for several decades and is considered to be an integral part of the new superpave advanced characterization procedure. One of the most significant solutions to prolong the fatigue life for an asphaltic mixture is to utilize flexible materials as rubber. A laboratory testing program was performed on a conventional and Asphalt Rubber- (AR- gap-graded mixtures to investigate the impact of added rubber on the mechanical, mechanistic, and economical attributes of asphaltic mixtures. Strain controlled fatigue tests were conducted according to American Association of State Highway and Transportation Officials (AASHTO procedures. The results from the beam fatigue tests indicated that the AR-gap-graded mixtures would have much longer fatigue life compared with the reference (conventional mixtures. In addition, a mechanistic analysis using 3D-Move software coupled with a cost analysis study based on the fatigue performance on the two mixtures was performed. Overall, analysis showed that AR modified asphalt mixtures exhibited significantly lower cost of pavement per 1000 cycles of fatigue life per mile compared to conventional HMA mixture.

  20. Plastic Bottles Waste Utilization as Modifier for Asphalt Mixture Production

    Directory of Open Access Journals (Sweden)

    Jan Hakeem

    2017-01-01

    Full Text Available Plastic Bottles was used as the polymeric waste to investigate performance of asphalt mixture Aggregates obtained from Margalla, Burhan and Karak quarries. 12 samples were prepared for conventional asphalt mixtures and 48 samples were prepared for PB modified asphalt mixture of each quarries at various proportions of PB waste. The PB used for modification according to wet process are 15%, 20%, 25% and 30% by weight of Optimum Bitumen Content (OBC. OBC of 4.2 % was concluded for conventional asphalt mixtures. The stability and flow values of the conventional and modified Asphalt Mixture were compared. The average Stability of the modified Margalla asphalt mixtures when 15% PB was used was much higher as compared to conventional asphalt mixtures. But when PB was used beyond 15%, the Marshall stability showed a decreasing trend for Margalla aggregates, increasing trend for Karak aggregates and decreasing trend for Burhan aggregates. This decline in stability is attributed to a decline in interlocking of aggregates due to lubricating effect. The corresponding flow for the Modified asphalt mixtures first showed a decreasing trend for Margalla aggregates at 15% PB modification but beyond 15%, an increasing trend in flow as compared to conventional asphalt mixtures The decrease in flow or increase in Marshall Stability is attributed to improvement in interlocking and decline in flow or stability is attributed to a decline in interlocking offered by binder and PB coated aggregate particles in modified asphalt.

  1. Effect of nanosilica particles on polypropylene polymer modified asphalt mixture performance

    Directory of Open Access Journals (Sweden)

    Nura Bala

    2018-06-01

    Full Text Available The current study was conducted to investigate the effect of nanosilica particles on the performance characteristics of polymer modified asphalt binders. In this study, control 80/100 binder were modified with polypropylene polymer and nanosilica particles at concentration of 0%–4%. Both nanosilica particles and polypropylene polymer were added by weight of total bitumen content. The asphalt performance tests flexural four point beam fatigue test, indirect tensile strength, indirect tensile stiffness modulus and draindown tests are conducted to evaluate the effect of nanosilica particles. The results of the study shows that nanosilica particles improves the fatigue properties of polypropylene polymer modified binder. This indicates that nanosilica particles have significant effect on improving the performance properties of polymer modified binders. Also, the result reveals that thermoplastic polymer polypropylene with nanosilica particles when used as bitumen modifiers improve the performance and durability of asphalt mixtures. Keywords: Polypropylene, Fatigue cracking, Stiffness modulus, Modified asphalt, Draindown

  2. Lectin binders

    International Nuclear Information System (INIS)

    Rudiger, H.; Gebauer, G.; Gansera, R.; Schurz, H.; Schimpl, A.

    1982-01-01

    Lectins are widely distributed in the plant kingdom, many of them being well characterized in their chemical structure and the effects they have on alien biological systems such as erythrocytes or lymphocytes. The biological function of plant lectins remains speculative. We therefore inspected plant extracts from components which might bind specifically to the lectin from the respective plant. Single proteins (lectin binders) could be isolated from each plant extract. The interaction of these proteins with lectins was demonstrated and qualified by several methods. Similar to the lectins, the lectin binders are localized in the cytoplasm in contrast to them, however, they persist during germination and plant growth. Their precise role in the plant is not known, but they are likely to be associated with lectins not only in vitro but also in vivo. They also interact with alien cells, and are able to stimulate mitosis in murine lymphocytes. Some lectin binders act specifically on B lymphocytes, leaving T cells uninfluenced

  3. Efeito da adição de material vegetal (fibra da castanha de cutia e polímero (SBS nas propriedades do ligante asfáltico (CAP 50/70 Effect of addition of plant material (fiber of cutia chesnut and polymer (SBS on the properties of asphalt binder (CAP 50/70

    Directory of Open Access Journals (Sweden)

    Tayana M. F. Cunha

    2012-01-01

    Full Text Available Tendo em vista a necessidade do mercado brasileiro por ligantes que minimizem a prematura falência estrutural dos revestimentos nas vias urbanas, a modificação do cimento asfáltico de petróleo (CAP 50/70 constitui uma excelente opção tecnológica. Nesta pesquisa utilizou-se 2% p/p do copolímero de estireno-butadieno-estireno (SBS e 2% p/p de fibra natural da casca dos frutos de Couepia edulis (Prance, conhecida como castanha de cutia, material vegetal com característica de reforço e biodisponibilidade na região Amazônica. Os efeitos oxidativos e térmicos, bem como as características físicas dos materiais asfálticos modificados, foram estudados e comparados ao ligante convencional, utilizando-se ensaios estabelecidos pela Agência Nacional de Petróleo, Gás Natural e Biocombustíveis (ANP e análise térmica - termogravimetria (TG, a fim de determinar as propriedades de degradação e estabilização térmica. Os resultados para os ligantes modificados, confrontados ao ligante tradicional, apresentaram: maior resistência ao envelhecimento, melhorias evidenciadas pelo aumento da consistência, ponto de amolecimento, além da excelente estabilidade térmica em toda faixa de temperatura de utilização (10 ºC a 80 ºC e aplicação (130 ºC a 170 ºC dos cimentos asfálticos de petróleo, fornecendo uma opção ao pavimento regional.There is a need in the Brazilian market for asphalt binders that minimize premature structural failure of the coatings on urban roads, and the modification of asphalt cement oil (CAP 50/70 is an excellent option. In this research we used 2% w/w of the styrene - butadiene-styrene (SBS copolymer and 2% w/w of natural fiber from Couepia edulis (Prance, known as cutia chesnut, which is a plant from the Amazon region with strengthening properties. The oxidative and thermal effects, as well as the physical characteristics of the asphalt modified materials, were studied and compared to the conventional binder

  4. Asphalt cement poisoning

    Science.gov (United States)

    ... petroleum material that hardens when it cools. Asphalt cement poisoning occurs when someone swallows asphalt. If hot ... found in: Road paving materials Roofing materials Tile cements Asphalt may also be used for other purposes.

  5. The effect of long-term oxidation on the rheological properties of polymer modified asphalts

    Energy Technology Data Exchange (ETDEWEB)

    Yonghong Ruan; Richard R. Davison; Charles J. Glover [Texas A & M University, College Station, TX (United States). Department of Chemical Engineering

    2003-10-01

    The effect of long-term aging on rheological properties of polymer modified asphalt binders was studied. Modifiers included diblock poly(styrene-b-butadiene) rubber, triblock poly(styrene-b-butadiene-b-styrene), and tire rubber. Asphalt aging was carried out either at 60{sup o}C in a controlled environmental room or at 100{sup o}C in a pressure aging vessel (AASHTO Provisional Standards, 1993). Both dynamic shear properties and extensional properties were investigated. Polymer modification resulted in increased asphalt complex modulus at high temperatures, decreased asphalt complex modulus at low temperatures, broadened relaxation spectra, and improved ductility. Oxidative aging decreased asphalt temperature susceptibility, damaged the polymer network in binders, further broadened the relaxation spectrum, and diminished polymer effectiveness in improving asphalt ductility. 27 refs., 8 figs., 3 tabs.

  6. About Coloured Cold Asphaltic Mixtures

    Directory of Open Access Journals (Sweden)

    Loredana Judele

    2008-01-01

    Full Text Available The first coloured bitumen was obtained by using bitumen from Peru and then bitumen from the Middle East, with a low content of asphaltenes, also called "colourable" bitumens. The colours obtained by adding iron oxides led nevertheless to dark colours, due to the presence of asphaltenes. Nowadays the coloured asphalt is obtained from synthesis binders with translucent aspect. The colours are obtained by adding inorganic pigments, mainly iron oxide for red, chromic oxide for green, titanic dioxide for white. The properties and behaviour of the coloured bitumen during its lifetime are comparable with the ones of classic bitumen, sometimes even better.

  7. Performance Evaluation of Stone Mastic Asphalt and Hot Mix Asphalt Mixtures Containing Recycled Concrete Aggregate

    Directory of Open Access Journals (Sweden)

    Mohammad Saeed Pourtahmasb

    2014-01-01

    Full Text Available Environmental and economic considerations have encouraged civil engineers to find ways to reuse recycled materials in new constructions. The current paper presents an experimental research on the possibility of utilizing recycled concrete aggregates (RCA in stone mastic asphalt (SMA and hot mix asphalt (HMA mixtures. Three categories of RCA in various percentages were mixed with virgin granite aggregates to produce SMA and HMA specimens. The obtained results indicated that, regardless of the RCA particular sizes, the use of RCA to replace virgin aggregates increased the needed binder content in the asphalt mixtures. Moreover, it was found that even though the volumetric and mechanical properties of the asphalt mixtures are highly affected by the sizes and percentages of the RCA but, based on the demands of the project and traffic volume, utilizing specific amounts of RCA in both types of mixtures could easily satisfy the standard requirements.

  8. Implementation of the SuperPave IDT Analysis Procedure

    DEFF Research Database (Denmark)

    Du, Guangli

    Cracking is one of the most severe distress modes of asphalt pavements. Thus characterizing the fracture resistance properties of asphalt mixtures is the key issue for improving the performance related mixture design. The present master thesis project addresses the implementation of the theoretical...

  9. Asphalt Pavement Aging and Temperature Dependent Properties Using Functionally Graded Viscoelastic Model

    Science.gov (United States)

    Dave, Eshan V.

    2009-01-01

    Asphalt concrete pavements are inherently graded viscoelastic structures. Oxidative aging of asphalt binder and temperature cycling due to climatic conditions being the major cause of non-homogeneity. Current pavement analysis and simulation procedures dwell on the use of layered approach to account for these non-homogeneities. The conventional…

  10. Evaluation of the performance of aggregate in hot-mix asphalt

    CSIR Research Space (South Africa)

    Komba, Julius J

    2014-07-01

    Full Text Available The overall performance of an asphalt mix is dependent on, amongst others, the properties of the constituent materials, which include aggregate, binder and filler. The aggregate for production of asphalt mixes is usually sourced from a quarry, which...

  11. State of the Art Study on Aging of Asphalt Mixtures and Use of Antioxidant Additives

    Directory of Open Access Journals (Sweden)

    Okan Sirin

    2018-01-01

    Full Text Available The detrimental effects of hardening in asphalt pavements were first recognized by pioneering pavement engineers in the 1900s and have been studied extensively during the last 70 years. This hardening process, referred to as asphalt aging, is generally defined as change in the rheological properties of asphalt binders/mixtures due to changes in chemical composition during construction and its service life period. Aging causes the asphalt material to stiffen and embrittle, which affects the durability and leads to a high potential for cracking. This paper presents the state of the art on asphalt and asphalt mixture aging and use of antioxidant additives to retard the aging. A picture of complex molecular structure of asphalt and its changes due to atmospheric condition and various protocols used to simulate aging in laboratory environment are also discussed. Emphasis is given on recent studies on simulation of aging of asphalt mixtures as there has been limited research on mixtures compared to the asphalt binder. Finally, this paper presents the application of antiaging techniques and its mechanism, use of various types of antioxidant additives to retard aging of asphalt and, hence, improve the performance of asphalt pavements.

  12. Asphalt concrete modified by rubber crumbs in transport construction.

    Science.gov (United States)

    Duhovny, G. S.; Karpenko, AV

    2018-03-01

    High-temperature and low-temperature characteristics of the rubber-bitumen binder and rubber asphalt concrete based on it are researched. The determination method of binder’s low-temperature characteristics is offered. The estimation of binder’s and pavement’s stability against technological and operational aging is evaluated. Estimation of environmental and economic aspects of using rubber crumbs is made. The possibility of using rubber crumbs as modifier of organic binder for production of asphalt concrete on its base is justified.

  13. Viscoelastic behaviour of cold recycled asphalt mixes

    Science.gov (United States)

    Cizkova, Zuzana; Suda, Jan

    2017-09-01

    Behaviour of cold recycled mixes depends strongly on both the bituminous binder content (bituminous emulsion or foamed bitumen) and the hydraulic binder content (usually cement). In the case of cold recycled mixes rich in bitumen and with low hydraulic binder content, behaviour is close to the viscoelastic behaviour of traditional hot mix asphalt. With decreasing bituminous binder content together with increasing hydraulic binder content, mixes are characteristic with brittle behaviour, typical for concrete pavements or hydraulically bound layers. The behaviour of cold recycled mixes with low content of both types of binders is similar to behaviour of unbound materials. This paper is dedicated to analysing of the viscoelastic behaviour of the cold recycled mixes. Therefore, the tested mixes contained higher amount of the bituminous binder (both foamed bitumen and bituminous emulsion). The best way to characterize any viscoelastic material in a wide range of temperatures and frequencies is through the master curves. This paper includes interesting findings concerning the dependency of both parts of the complex modulus (elastic and viscous) on the testing frequency (which simulates the speed of heavy traffic passing) and on the testing temperature (which simulates the changing climate conditions a real pavement is subjected to).

  14. Dynamic modulus of nanosilica modified porous asphalt

    Science.gov (United States)

    Arshad, A. K.; Masri, K. A.; Ahmad, J.; Samsudin, M. S.

    2017-11-01

    Porous asphalt (PA) is a flexible pavement layer with high interconnected air void contents and constructed using open-graded aggregates. Due to high temperature environment and increased traffic volume in Malaysia, PA may have deficiencies particularly in rutting and stiffness of the mix. A possible way to improve these deficiencies is to improve the asphalt binder used. Binder is normally modified using polymer materials to improve its properties. However, nanotechnology presently is being gradually used for asphalt modification. Nanosilica (NS), a byproduct of rice husk and palm oil fuel ash is used as additive in this study. The aim of this study is to enhance the rutting resistance and stiffness performance of PA using NS. This study focused on the performance of PA in terms of dynamic modulus with the addition of NS modified binder to produce better and more durable PA. From the result of Dynamic SPT Test, it shows that the addition of NS was capable in enhancing the stiffness and rutting resistance of PA. The addition of NS also increase the dynamic modulus value of PA by 50%.

  15. Comparison of influence of ageing on low-temperature characteristics of asphalt mixtures

    Science.gov (United States)

    Vacková, Pavla; Valentin, Jan; Benešová, Lucie

    2017-09-01

    Ability of relaxation of asphalt mixtures and thus its resilience to climate change and traffic load is decreasing by influence of aging - in this case aging of bituminous binder. Binder exposed to climate and UV ages and becomes more fragile and susceptible to damage. The results of the research presented in this paper are aimed to finding a correlation between low-temperature properties of referential and aged asphalt mixture specimens and characteristics (not low-temperature) of bituminous binders. In this research there were used conventional road binders, commonly used modified binders and binders additionally modified in the laboratory. The low-temperature characteristics were determined by strength flexural test, commonly used in the Czech Republic for High Modulus Asphalt Mixtures (TP 151), and semi-cylindrical bending test (EN 12697-44). Both of the tests were extended by specimens exposed to artificial long-term aging (EN 12697-52) - storing at 85° C for 5 days. The results were compared with characteristics of binders for finding a suitable correlation between characteristics of binders and asphalt mixtures.

  16. Improving Asphalt Mixtures Performance by Mitigating Oxidation Using Anti-Oxidants Additives

    Science.gov (United States)

    Dessouky, Samer; Diaz, Manuel

    Polymer modified additives are typically used to improve rheological properties of asphalt binder as well as mechanical properties of asphalt concrete mix. In this study, polymer-modified binder PG70-22 is mixing with two co-polymers enhanced with anti-oxidant agents namely; Solution Styrene-Butadiene Rubber (SSBR) and Solution Ethylene-Butylene/Styrene (SEBS). The objective of this study is to characterize the effect of those additives into the rheological properties of the asphalt binder using temperature sweep test and mechanical properties of asphalt mixes. The aging index is determined to evaluate the role of additives to reduce brittleness after aging of the binder. The performance of asphalt mixes were characterized by Hamburg Wheel Tracking Test for moisture damage, Beam Fatigue Test for fatigue properties and Flow Number Test for rutting performance. It is found that the asphalt mixes with enhanced binders are improving its rutting and moisture resistance but decreased its fatigue life compared to the control mix.

  17. Performance of asphaltic concrete incorporating styrene butadiene rubber subjected to varying aging condition

    Science.gov (United States)

    Salah, Faisal Mohammed; Jaya, Ramadhansyah Putra; Mohamed, Azman; Hassan, Norhidayah Abdul; Rosni, Nurul Najihah Mad; Mohamed, Abdullahi Ali; Agussabti

    2017-12-01

    The influence of styrene butadiene rubber (SBR) on asphaltic concrete properties at different aging conditions was presented in this study. These aging conditions were named as un-aged, short-term, and long-term aging. The conventional asphalt binder of penetration grade 60/70 was used in this work. Four different levels of SBR addition were employed (i.e., 0 %, 1 %, 3 %, and 5 % by binder weight). Asphalt concrete mixes were prepared at selected optimum asphalt content (5 %). The performance was evaluated based on Marshall Stability, resilient modulus, and dynamic creep tests. Results indicated the improving stability and permanent deformation characteristics that the mixes modified with SBR polymer have under aging conditions. The result also showed that the stability, resilient modulus, and dynamic creep tests have the highest rates compared to the short-term aging and un-aged samples. Thus, the use of 5 % SBR can produce more durable asphalt concrete mixtures with better serviceability.

  18. Impact of Modificated Asphalt Mixtures on Paving Functioning and Environment

    Directory of Open Access Journals (Sweden)

    Gediminas Gribulis

    2016-10-01

    Full Text Available Atmospheric pollution began to increase in the beginning of 19th century, when the global economy and industrial development started the signal grow. The current problem of global warming is partly related with emission of carbon dioxide (CO2 to environment, which one of the sources are industrial production companies. Warm asphalt mix is usually used in the practice of Lithuania and the world for equipment of road paving. These mixes are produced in specialized asphalt mixers where stone dosing, drying and its mixing with bituminous binders are performed. The temperature of produced hot asphalt mix in mixer reach 150–180 °C and 120–160 °C of mixture laying on the road. Various pollutants, carbon dioxide, formaldehydes, and other are spread to the environment. The carried out researches in Lithuania and the world have showed that while using special additives it is possible to reduce the temperatures of warm asphalt production and laying on the road. Such reduction of temperature helps not to worsen the quality of asphalt layer, to lower the emission of pollutants to environment, to improve the conditions of road workers and to economically use the gas for production of asphalt mixes. Production technologies of different asphalt mixes, their advantages and disadvantages, and results of laboratory tests are analyzed in this article. Equipment samples of experimental road sections, using the warm mixing asphalt mixtures are given.

  19. Modification of Iraqi Asphalt 40/50 Properties Using Saw Dust (SD and Natural Rubber Latex

    Directory of Open Access Journals (Sweden)

    Rusul l M. Darwesh

    2018-04-01

    Full Text Available The aim of this research is to enhance the fundamental properties for asphalt binder as those spec-ifications relate to performance of asphalt mixtures. In this paper studied the effect of add (2, 4 % SD in different sizes and (3, 5 and 7% Natural rubber latex to the straight asphalt 40/50 produced from Al-Dura refinery at 160C, it was added each additive separately and then added together to asphalt in same temperature, then tested physically and mechanically according to the American Society for Testing and Materials (ASTM, the result showed largely improvement.

  20. An evaluation of the efficiency of compartmented alginate fibres encapsulating a rejuvenator as an asphalt pavement healing system

    NARCIS (Netherlands)

    Tabaković, Amir; Karač, Aleksandar; Schlangen, H.E.J.G.

    2017-01-01

    This paper explores the potential methods for evaluating a healing system for asphalt pavements. The healing system under investigation involves compartmented calcium-alginate fibres encapsulating an asphalt binder healing agent (rejuvenator). This system presents a novel method of incorporating

  1. Ageing evolution of foamed warm mix asphalt combined with reclaimed asphalt pavement

    International Nuclear Information System (INIS)

    Perez-Martinez, M.; Marsac, P.; Gabet, T.; Pouget, S.; Hammoum, F.

    2017-01-01

    The combination of high rates of reclaimed asphalt pavement (RAP) and warm mix asphalt (WMA) technologies is still ambiguous in terms of durability. With the aim of clarifying this issue, a study comparing a hot mix asphalt with a WMA prepared using the foaming process technology. Both mixes contain 50% of RAP and are submitted to a laboratory ageing procedure. The long term related performance of the mixtures is compared by means of complex modulus and fatigue testing. Penetration and ring and ball tests are undertaken on the recovered bitumens, as well as the ageing evolution, characterised by the Fourier Transform Infrared analysis. Finally, the Apparent Molecular Weight Distribution (AMWD) of the binders is calculated from rheological measurements using the δ-method. Results show a relation between ageing evolution and mechanical performance. After ageing, the overall tendencies are similar for both processes. [es

  2. USE OF CRUMB RUBBER FROM USED CAR TIRES IN MINERAL ASPHALT MIXES

    Directory of Open Access Journals (Sweden)

    Andrzej Plewa

    2014-11-01

    Full Text Available With the development of the automotive industry the disposal of used tires is constantly growing problem. Storage of waste rubber is associated with a very long period of decomposition of rubber in the natural conditions. Simultaneously new technologies are developed every year, which in the future may significantly promote recycling of this type of materials. The crumb rubbery modification of the road bitumen is the one of the environmentally safe solutions of rubbery decomposition. Improvement of resistance of the crumb rubbery modification of the road asphalt mixtures is the very important ecological aspect of the future. The article presents the results of research on the fatigue life resistance of asphalt concretes AC16P and AC22P with asphalt-rubber binders. The above analyses have been based on the results of tests of fatigue life of mineral-rubber-asphalt mixes determined by the method of prismatic four-point bending (4PB-PR. Mineral-rubber -asphalt mixes have been diversified according to the amount of the additive of rubber fines in asphalt-rubber binder. On the basis of the test results have been proven improvements functional properties mineral-rubber-asphalt mixes compared with mineral-asphalt mixes with unmodified asphalt.

  3. Effect of Material Composition and Environmental Condition on Thermal Characteristics of Conductive Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Pan Pan

    2017-02-01

    Full Text Available Conductive asphalt concrete with high thermal conductivity has been proposed to improve the solar energy collection and snow melting efficiencies of asphalt solar collector (ASC. This paper aims to provide some insight into choosing the basic materials for preparation of conductive asphalt concrete, as well as determining the evolution of thermal characteristics affected by environmental factors. The thermal properties of conductive asphalt concrete were studied by the Thermal Constants Analyzer. Experimental results showed that aggregate and conductive filler have a significant effect on the thermal properties of asphalt concrete, while the effect of asphalt binder was not evident due to its low proportion. Utilization of mineral aggregate and conductive filler with higher thermal conductivity is an efficient method to prepare conductive asphalt concrete. Moreover, change in thermal properties of asphalt concrete under different temperature and moisture conditions should be taken into account to determine the actual thermal properties of asphalt concrete. There was no noticeable difference in thermal properties of asphalt concrete before and after aging. Furthermore, freezing–thawing cycles strongly affect the thermal properties of conductive asphalt concrete, due to volume expansion and bonding degradation.

  4. Adhesion Evaluation of Asphalt-Aggregate Interface Using Surface Free Energy Method

    Directory of Open Access Journals (Sweden)

    Jie Ji

    2017-02-01

    Full Text Available The influence of organic additives (Sasobit and RH and water on the adhesion of the asphalt-aggregate interface was studied according to the surface free energy theory. Two asphalt binders (SK-70 and SK-90, and two aggregate types (limestone and basalt were used in this study. The sessile drop method was employed to test surface free energy components of asphalt, organic additives and aggregates. The adhesion models of the asphalt-aggregate interface in dry and wet conditions were established, and the adhesion work was calculated subsequently. The energy ratios were built to evaluate the effect of organic additives and water on the adhesiveness of the asphalt-aggregate interface. The results indicate that the addition of organic additives can enhance the adhesion of the asphalt-aggregate interface in dry conditions, because organic additives reduced the surface free energy of asphalt. However, the organic additives have hydrophobic characteristics and are sensitive to water. As a result, the adhesiveness of the asphalt-aggregate interface of the asphalt containing organic additives in wet conditions sharply decreased due to water damage to asphalt and organic additives. Furthermore, the compatibility of asphalt, aggregate with organic additive was noted and discussed.

  5. Using ESEM to analyze the microscopic property of basalt fiber reinforced asphalt concrete

    Directory of Open Access Journals (Sweden)

    Chunmei Gao

    2018-07-01

    Full Text Available The basalt fiber staggered distribution in the asphalt concrete matrix and the bonding situation between asphalt are analyzed by images collected using field emission environmental scanning electron microscope (ESEM test equipment. The results show that bonding of the fiber and the asphalt binder is very good and there is a strong binding force of chemical bonding connections between the two; the lipophilicity of basalt fiber is very good, the wrapped cover ability of asphalt for fiber is very strong; basalt fiber forms the local space network structure in the asphalt concrete matrix, effectively overcome the relative slip between the particles, connect the damaged parts into a whole; basalt fiber across internal micropores, and the internal defects in material can be remedied. At the same time, crack resistance mechanism of the fiber to internal micro cracks is qualitatively explained according to the magnitude of the stress intensity factor Kf. Keywords: Road engineering, Asphalt concrete, Basalt fiber, Microscopic analysis

  6. Fracture resistance of asphalt concrete modified with crumb rubber at low temperatures

    Directory of Open Access Journals (Sweden)

    A. Razmi

    2018-05-01

    Full Text Available The main objective of this study is to obtain fracture toughness of asphalt concrete modified by Crumb Rubber (CR and Sasobit at low temperatures. First, Bending Beam Rheometer (BBR test was performed on unmodified binder (binder 60/70, binder 60/70 + 3%Sasobit and 20%CR + 3%Sasobit modified asphalt binder to find how each modifier affect asphalt binder stiffness and relaxation rate at low temperatures. Mixed mode I/II fracture tests were conducted by cracked Semi-Circular Bending (SCB specimens and the critical stress intensity factors were calculated for pure mode I, mixed mode I/II and pure mode II conditions. Results of BBR tests indicated that 20%CR + 3%Sasobit reduces stiffness and the m-value increase at low temperatures. As a result, 20%CR + 3%Sasobit has positive effect on low temperatures performance by improving thermal cracking resistance. Also, according to the fracture toughness test results, the Warm Mix Asphalt (WMA mixture containing 20% CR, shows higher resistance against crack growth than WMA mixture. It was found that mixed mode I/II can be more detrimental than pure mode I and II conditions. Keywords: Crumb rubber, Asphalt concrete, Bending Beam Rheometer, Fracture resistance, Semi-circular bending test

  7. Qualitative criteria and thresholds for low noise asphalt mixture design

    Science.gov (United States)

    Vaitkus, A.; Andriejauskas, T.; Gražulytė, J.; Šernas, O.; Vorobjovas, V.; Kleizienė, R.

    2018-05-01

    Low noise asphalt pavements are cost efficient and cost effective alternative for road traffic noise mitigation comparing with noise barriers, façade insulation and other known noise mitigation measures. However, design of low noise asphalt mixtures strongly depends on climate and traffic peculiarities of different regions. Severe climate regions face problems related with short durability of low noise asphalt mixtures in terms of considerable negative impact of harsh climate conditions (frost-thaw, large temperature fluctuations, hydrological behaviour, etc.) and traffic (traffic loads, traffic volumes, studded tyres, etc.). Thus there is a need to find balance between mechanical and acoustical durability as well as to ensure adequate pavement skid resistance for road safety purposes. Paper presents analysis of the qualitative criteria and design parameters thresholds of low noise asphalt mixtures. Different asphalt mixture composition materials (grading, aggregate, binder, additives, etc.) and relevant asphalt layer properties (air void content, texture, evenness, degree of compaction, etc.) were investigated and assessed according their suitability for durable and effective low noise pavements. Paper concluded with the overview of requirements, qualitative criteria and thresholds for low noise asphalt mixture design for severe climate regions.

  8. Evaluation of factors that affect rutting resistance of asphalt mixes by orthogonal experiment design

    Directory of Open Access Journals (Sweden)

    Guilian Zou

    2017-05-01

    Full Text Available Rutting has been one of the major distresses observed on asphalt pavement in China, due to increasing traffic volume, heavy axle load, continuous hot weather, etc., especially in long-steep-slope section, bus stops, etc. Many factors would affect rutting resistance of asphalt pavement, including material properties, climatic condition, traffic volumes, speed, and axle types, and construction quality.The orthogonal experimental design method was used in this study to reduce the number of tests required, without comprising the validity of the test results. The testing variables and their levels were selected according to investigations and field test results. Effects of various factors on asphalt pavement rutting performance were evaluated, including the asphalt binders, mixture type (aggregate gradation, axle load, vehicle speed and temperature.In this study, the wheel tracking test was used to evaluate rutting performance, as represented by the parameter Dynamic Stability (DS, of the various asphalt mixes. Test results were analyzed using range analysis and analysis of variance (ANOVA. All four factors evaluated in this study had significant effects on pavement rutting performance. The ranking of the significance was asphalt mixture type, temperature, loading frequency, and tire-pavement contact pressure. Asphalt mixture type was the most important factor that affects rutting resistance. Within the asphalt mixtures, asphalt binder had significant effects on rutting performance of mixes more than aggregate gradation. Rutting resistance of SBS modified asphalt mixes was significantly better than neat asphalt mixes, and skeleton dense structure mixes were better than suspended dense structure mixes. Keywords: Asphalt mixes, Rutting resistance, Effect factor, Orthogonal experiment design

  9. Synthesis and Characterization of New ‎Copolymers as Asphalt Additives

    Directory of Open Access Journals (Sweden)

    Firyal M. ‎ A

    2017-12-01

    Full Text Available Rheological properties of asphalt S50  were improved by adding different prepared copolymers as additives with high homogeneity of asphalts  samples.  Three types of copolymers were prepared  Poly  (Indene –Co- maleic anhydride(A1 Poly (Acrylonitrile –Co- Maleic anhydride (A2 and Poly (Dipentine –Co-Maleic anhydride (A3, the cross linking of (A3 to (A3d. by using sulfur.              These copolymers  were designed by inserting Maleic anhydride as  rings  containing through backbone of polymer chains to be high potentially to react with water to protect the crack of pavement .And moisture with inhibit bonding of crack of pavement, Many factors should be considered when prepared the additives to enhanced performance to be convenience cost, beneficial thermal safety ,   extended life of the asphalt, preparing conditions which gave high thermal resistance with more stabilities, all these prepared copolymer have been characterized by FTIR and H-NMR spectroscopies .Intrinsic viscosities were calculated. softening point and penetration were observed for all asphalts blends which were  compared with the  asphalt samples, which gave high thermal resistance with more stabilities.                                          The results  showed high properties of these blends when  compared with the original asphalt. The physical properties of a specific polymers are determined by the sequence and chemical structure , When polymers are added to asphalt , the properties of the modified asphalt cement depend on polymer characteristic of asphalt and compatibility of polymer with asphalt. All these prepared copolymers were tested by softening points and penetration for all  asphalt blends which were compared with the asphalt sample. All the Improvements made by adding polymers to asphalt included the Increasing the viscosity of the binder service, the thermal susceptibility of the binder

  10. Prediction of Asphalt Creep Compliance Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Zofka A.

    2012-06-01

    Full Text Available Creep compliance of the hot-mix asphalt (HMA is a primary input of the pavement thermal cracking prediction model in the recently developed Mechanistic-Empirical Pavement Design Guide (M-EPDG in the US. The HMA creep compliance is typically determined from the Indirect Tension (IDT tests and requires complex experimental setup. On the other hand, creep compliance of asphalt binders is determined from a relatively simple three- point bending test performed in the Bending Beam Rheometer (BBR device. This paper discusses a process of training an Artificial Neural Network (ANN to correlate the creep compliance values obtained from the IDT with those from an innovative approach of testing HMA beams in the BBR. In addition, ANNs are also trained to predict HMA creep compliance from the creep compliance of asphalt binder and vice versa using the BBR setup. All trained ANNs exhibited a very high correlation of 97 to 99 percent between predicted and measured values. The binder creep compliance curves built on the ANN-predicted values also exhibited good correlation with those obtained from laboratory experiments. However, the simulation of trained ANNs on the independent dataset produced a significant deviation from the expected values which was most likely caused by the differences in material composition, such as aggregate type and gradation, presence of recycled additives, and binder type.

  11. Performance Evaluation of Hot Mix Asphalt with Different Proportions of RAP Content

    Directory of Open Access Journals (Sweden)

    Kamil Arshad Ahmad

    2018-01-01

    Full Text Available Reclaimed Asphalt Pavement (RAP is old asphalt pavement that has been removed from a road by milling or full depth removal. The use of RAP in hot mix asphalt (HMA eliminates the need to dispose old asphalt pavements and conserves asphalt binders and aggregates, resulting in significant cost savings and benefits to society. This paper presents a study on HMA with different RAP proportions carried out to evaluate the volumetric properties and performance of asphalt mixes containing different proportions of RAP. Marshall Mix Design Method was used to produce control mix (0% RAP and asphalt mixes containing 15% RAP, 25% RAP and 35% RAP in accordance with Specifications for Road Works of Public Works Department, Malaysia for AC14 dense graded asphalt gradation. Volumetric analysis was performed to ensure that the result is compliance with specification requirements. The resilient modulus test was performed to measure the stiffness of the mixes while the Modified Lottman test was conducted to evaluate the moisture susceptibility of these mixes. The Hamburg wheel tracking test was used to evaluate the rutting performance of these mixes. The results obtained showed that there were no substantial difference in Marshall Properties, moisture susceptibility, resilient modulus and rutting resistance between asphalt mixes with RAP and the control mix. The test results indicated that recycled mixes performed as good as the performance of conventional HMA in terms of moisture susceptibility and resilient modulus. It is recommended that further research be carried out for asphalt mixes containing more than 35% RAP material.

  12. Performance Evaluation of Hot Mix Asphalt with Different Proportions of RAP Content

    Science.gov (United States)

    Kamil Arshad, Ahmad; Awang, Haryati; Shaffie, Ekarizan; Hashim, Wardati; Rahman, Zanariah Abd

    2018-03-01

    Reclaimed Asphalt Pavement (RAP) is old asphalt pavement that has been removed from a road by milling or full depth removal. The use of RAP in hot mix asphalt (HMA) eliminates the need to dispose old asphalt pavements and conserves asphalt binders and aggregates, resulting in significant cost savings and benefits to society. This paper presents a study on HMA with different RAP proportions carried out to evaluate the volumetric properties and performance of asphalt mixes containing different proportions of RAP. Marshall Mix Design Method was used to produce control mix (0% RAP) and asphalt mixes containing 15% RAP, 25% RAP and 35% RAP in accordance with Specifications for Road Works of Public Works Department, Malaysia for AC14 dense graded asphalt gradation. Volumetric analysis was performed to ensure that the result is compliance with specification requirements. The resilient modulus test was performed to measure the stiffness of the mixes while the Modified Lottman test was conducted to evaluate the moisture susceptibility of these mixes. The Hamburg wheel tracking test was used to evaluate the rutting performance of these mixes. The results obtained showed that there were no substantial difference in Marshall Properties, moisture susceptibility, resilient modulus and rutting resistance between asphalt mixes with RAP and the control mix. The test results indicated that recycled mixes performed as good as the performance of conventional HMA in terms of moisture susceptibility and resilient modulus. It is recommended that further research be carried out for asphalt mixes containing more than 35% RAP material.

  13. Modified asphalt; Kairyo asphalt ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Takarabe, A. [Mitsubishi Oil Co. Ltd., Tokyo (Japan)

    1994-12-28

    Modified asphalt in the area of road pavement in the relation of measures against flow on a road surface was introduced. The condition of road damage includes the print of a wheel, crack, and wear and semi-blown asphalt whose deformation is difficult even if temperature is increased to approximately 60 {degree}C and asphalt with rubber and resin are used to prevent these. The semi-blown asphalt is obtained by adding cut-back material to the normal asphalt, heating it, blowing air into it, and then oxidizing and polymerizing it, is harder and is more elastic than the normal asphalt, and has smaller viscosity change due to temperature change. The viscosity at 60 {degree}C was determined to be 10000{plus_minus}2000 poise according to the relationship between viscosity and crack using a large-scale execution experiment. The asphalt with rubber and resin is formed by adding modified material of styrene - butadiene copolymer and by adding thermoplastic elastomer and the former is used for preventing slide and the latter is used for preventing flow and wear. 10 refs., 6 figs., 2 tabs.

  14. Asphalt emulsion; Asphalt nyuzai ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T. [Toa Doro Kogyo Co. Ltd., Tokyo (Japan)

    1994-12-28

    The emulsification, manufacture, type, applications, etc. of asphalt emulsion were introduced. The emulsification of asphalt is obtained by mixing heated asphalt into an emulsification liquid where emulsifier is added to water and then agitating it. The emulsifier has both hydrophilic and lipophilic parts in the same molecule, prevents collision between asphalt particles after being arranged properly on the surface of asphalt particles, and prevent separation into water and asphalt. The emulsion is available for penetration and for mixing depending on applications and can be classified into cation emulsion, anion emulsion, and nonionic emulsion according to the property. The emulsion is mainly applied to road pavement, reaching approximately 90 % of the total manufactured emulsion. It is also used for other areas such as the filler of a slab race of each bullet train of Sanyo, Tohoku, and Jyoetsu and is also applied to the formation of a water-proof layer by spraying a high-concentration emulsion with rubber, agricultural water channels using asphalt emulsion and nonwoven cloth, etc. in civil engineering and agricultural fields. 2 refs., 13 figs., 8 tabs.

  15. Warm mix asphalt: Chemical additives’ effects on bitumen properties and limestone aggregates mixture compactibility

    Directory of Open Access Journals (Sweden)

    Raul Pereira

    2018-05-01

    Full Text Available Asphalt industries consume large amounts of fuels and emit pollutant gases into the atmosphere. Warm mix asphalt is the most recognized way to minimize these negative impacts, which have given rise to numerous issues related to their performance and the materials used. In this study, the basic and rheological properties of three different bituminous binders, modified with two different chemical additives, were evaluated, determining their behaviour and susceptibility to modification. The results showed that, although chemical additives do not affect the binder by reducing its viscosity, they act on the mixture, allowing to improve its compactability and, consequently, reduce the required production and compaction temperatures. Keywords: Warm mix asphalt, Bitumen, Chemical additives, Behaviour, Additive-binder interaction, Road pavements

  16. Solar Radiation effect on the bituminous binder; Efecto de la radiacion solar sobre el ligante bituminoso

    Energy Technology Data Exchange (ETDEWEB)

    Tadeo Rico, A.; Torres Perez, A.

    2010-07-01

    Asphalt, used as binder in road construction, becomes more brittle and harder during working life on the surface of the road pavement, conducting toward their deterioration. This is caused by the oxidation of the molecular functional groups of the asphalt molecular structure. Moreover, it is observed that ultraviolet radiation increases the oxidation process. However, the effect of solar light on the asphalt degradation has been poorly researched. The aim of this work is to study asphalt ageing caused by effect of solar radiation, by using standard test. Four commercial asphalts from different companies were selected: two with penetration number 50/70, and the other two polymer modified asphalts. From each of the asphalts forty samples were taken off and placed in four different aging conditions of temperature and radiation for a period ranging from 40 to 500 days. Ring and Ball test, and Fraass breaking Point test, were used to analyse the changes of asphalt properties after exposition to solar radiation. The results of the four analyzed asphalts showed a distinct behaviour; not only in the test temperature increase but also in the rate. Another experiment was carried out. Samples from a hot mix asphalt batch were placed under solar radiation, and were compacted by the Marshall procedure after increasing periods of time. Density and resistance to plastic flow using Marshall Apparatus were measured. Results showed an increase in the stability of samples under radiation. Both experiments show that the solar radiation is enough to cause changes in the asphalt molecular structure due to oxidation. So that, the study of the effect of the solar radiation on the asphalt properties could be a good tool to asses the performances of asphalt pavement. (Author) 26 refs.

  17. Improving Asphalt Mixture Performance by Partially Replacing Bitumen with Waste Motor Oil and Elastomer Modifiers

    Directory of Open Access Journals (Sweden)

    Sara Fernandes

    2017-08-01

    Full Text Available The environmental concern about waste generation and the gradual decrease of oil reserves has led the way to finding new waste materials that may partially replace the bitumens used in the road paving industry. Used motor oil from vehicles is a waste product that could answer that demand, but it can also drastically reduce the viscosity, increasing the asphalt mixture’s rutting potential. Therefore, polymer modification should be used in order to avoid compromising the required performance of asphalt mixtures when higher amounts of waste motor oil are used. Thus, this study was aimed at assessing the performance of an asphalt binder/mixture obtained by replacing part of a paving grade bitumen (35/50 with 10% waste motor oil and 5% styrene-butadiene-styrene (SBS as an elastomer modifier. A comparison was also made with the results of a previous study using a blend of bio-oil from fast pyrolysis and ground tire rubber modifier as a partial substitute for usual PG64-22 bitumen. The asphalt binders were tested by means of Fourier infrared spectra and dynamic shear rheology, namely by assessing their continuous high-performance grade. Later, the water sensitivity, fatigue cracking resistance, dynamic modulus and rut resistance performance of the resulting asphalt mixtures was evaluated. It was concluded that the new binder studied in this work improves the asphalt mixture’s performance, making it an excellent solution for paving works.

  18. Reinforcement of Recycled Foamed Asphalt Using Short Polypropylene Fibers

    Directory of Open Access Journals (Sweden)

    Yongjoo Kim

    2013-01-01

    Full Text Available This paper presents the reinforcing effects of the inclusion of short polypropylene fibers on recycled foamed asphalt (RFA mixture. Short polypropylene fibers of 10 mm length with a 0.15% by weight mixing ratio of the fiber to the asphalt binder were used. The Marshall stability test, the indirect tensile strength test, the resilient modulus test, and wheel tracking test of the RFA mixtures were conducted. The test results were compared to find out the reinforcing effects of the inclusion of the fiber and the other mixtures, which included the conventional recycled foamed asphalt (RFA mixtures; the cement reinforced recycled foamed asphalt (CRFA mixtures; the semihot recycled foamed asphalt (SRFA mixtures; and recycled hot-mix asphalt (RHMA mixtures. It is found that the FRFA mixture shows higher Marshall stability than the RFA and SRFA mixtures, higher indirect tensile strength than the RFA mixture, and higher rut resistance than the RFA, SRFA, and RHMA mixtures as seen from the wheel tracking test.

  19. Anionic surface binders

    OpenAIRE

    Aljaž-Rožič Mateja; Hočevar Nežka

    2004-01-01

    The MELAMIN Chemical Factory in Kočevje manufactures synthetic resins and binders for the paper industry. Binders based on AKD (alkyl ketene dimer) are produced which are used for binding paper and cardboard in the range of neutral and partially basic pH. Cationic and, lately, anionic binders are mostly used for the bulk binding of paper and board. The possibility of using AKD binders on paper or board surfaces is presented. In this case partially cationic AKD binders may be applied. When opt...

  20. Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks

    Directory of Open Access Journals (Sweden)

    Luciano Pivoto Specht

    2007-03-01

    Full Text Available It is of a great importance to know binders' viscosity in order to perform handling, mixing, application processes and asphalt mixes compaction in highway surfacing. This paper presents the results of viscosity measurement in asphalt-rubber binders prepared in laboratory. The binders were prepared varying the rubber content, rubber particle size, duration and temperature of mixture, all following a statistical design plan. The statistical analysis and artificial neural networks were used to create mathematical models for prediction of the binders viscosity. The comparison between experimental data and simulated results with the generated models showed best performance of the neural networks analysis in contrast to the statistic models. The results indicated that the rubber content and duration of mixture have major influence on the observed viscosity for the considered interval of parameters variation.

  1. Experimental investigation of asphalt mixture containing Linz-Donawitz steel slag

    Directory of Open Access Journals (Sweden)

    Jens Groenniger

    2017-08-01

    Full Text Available Standard asphalt mixtures for road infrastructures consist of natural aggregate and bitumen. A number of research efforts have successfully investigated the possibility of replacing the conventional aggregate skeleton with industrial by-products such as slag originating from steel production process. However, little is known on the effect of steel slag on the mixtures performance properties such as resistance to low-temperature cracking and to permanent deformation, stiffness and fatigue. This paper presents a comprehensive investigation on the fundamental performance properties of different types of asphalt mixtures prepared with 100% LD slag aggregate and a conventional asphalt mixture containing natural Gabbro aggregate. Sophisticated testing methods were used to evaluate the key performance parameters for the set of asphalt mixtures investigated. In this study, low temperature cracking was addressed through thermal stress restrained specimen tests. Penetration tests and cyclic compression tests were used to evaluate the response of asphalt binder and asphalt mixture to permanent deformation due repeated loading, respectively. The cyclic indirect tensile test was selected for investigating both stiffness properties and fatigue resistance. For this purpose the complex stiffness modulus was measured to quantify material stiffness under different temperature and loading conditions providing information on the visco-elasto-plastic material behavior. Fatigue tests were used to determine the progressive and localized material damage caused by cyclic loading. The experimental results indicate that asphalt mixtures prepared with LD slag are suitable for asphalt pavement construction and that in most cases they perform better than conventional asphalt mixtures prepared with Gabbro aggregate.

  2. Asphalt in Pavement Maintenance.

    Science.gov (United States)

    Asphalt Inst., College Park, MD.

    Maintenance methods that can be used equally well in all regions of the country have been developed for the use of asphalt in pavement maintenance. Specific information covering methods, equipment and terminology that applies to the use of asphalt in the maintenance of all types of pavement structures, including shoulders, is provided. In many…

  3. Identification of laboratory techniques to optimize Superpave HMA surface friction characteristics : final report, April 2010.

    Science.gov (United States)

    2010-04-15

    Wet pavement friction is known to be one of the most important roadway safety parameters. In this : research, frictional properties of flexible (asphalt) pavements were investigated. : As a part of this study, a laboratory device to polish asphalt sp...

  4. Modelling and Laboratory Studies on the Adhesion Fatigue Performance for Thin-Film Asphalt and Aggregate System

    Directory of Open Access Journals (Sweden)

    Dongsheng Wang

    2014-01-01

    Full Text Available Adhesion between asphalt and aggregate plays an important role in the performance of asphalt mixtures. A low-frequency adhesion fatigue test was proposed in this paper to study the effect of environment on the asphalt-aggregate adhesion system. The stress-based fatigue model had been utilized to describe the fatigue behavior of thin-film asphalt and aggregate system. The factors influencing the adhesion fatigue performance were also investigated. Experiment results show that asphalt has more important effect on the adhesion performance comparing with aggregate. Basalt, which is regarded as hydrophobic aggregates with low silica content, has better adhesion performance to asphalt binder when compared with granite. The effects of aging on the adhesion fatigue performance are different for PG64-22 and rubber asphalt. Long-term aging is found to reduce the adhesion fatigue lives for rubber asphalt and aggregate system, while the effect of long-term aging for aggregate and PG64-22 binder system is positive. Generally the increased stress amplitude and test temperature could induce greater damage and lead to less fatigue lives for adhesion test system.

  5. Comparison of renewable oil, recycled oil, and commercial rejuvenating agent derived from crude oil in paving asphalt modification[Includes the CSCE forum on professional practice and career development : 1. international engineering mechanics and materials specialty conference : 1. international/3. coastal, estuarine and offshore engineering specialty conference : 2. international/8. construction specialty conference

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, C.; Ho, S.; Zanzotto, L. [Calgary Univ., AB (Canada). Schulich School of Engineering

    2009-07-01

    The asphalt industry relies heavily on crude oil. In response to increasing oil prices, there have been efforts to save money on asphalt by taking harder asphalts, such as recycled asphalt pavement (RAP), and softening them with rejuvenating agents. For asphalt that is to be used in cold climates, softer asphalts are preferred because they will perform better under extreme cold conditions without cracking. This study compared the performance, economic benefits, and environmental benefits of renewable materials, recycled oil and a commercially used rejuvenating agent derived from crude oil. Different oily materials including margarine, Cyclogen L (a crude oil-derived material), a vegetable wax, and recycled cooking oil were used to modify paving asphalt. Their effectiveness at improving the superpave low-temperature performance grade was compared. The samples were all tested using the 2008 AASHTO M320 procedures. The high temperature grades were determined using the dynamic shear rheometer test, and the low-temperature grades were determined using the bending beam rheometer test. The 3 varieties of margarine that were tested were able to improve the low-temperature grade, but they caused a greater depreciation of the high-temperature performance grade than the other materials, and were much more expensive. The best candidate for an effective, economic asphalt softening agent was found to be the recycled cooking oil. It out-performed the Cyclogen L oil in terms of improving the low- temperature performance grade, and was less expensive. 12 refs., 4 tabs., 6 figs.

  6. Characterization of long term field aging of polymer modified bitumen in porous asphalt

    NARCIS (Netherlands)

    Vliet, D. van; Erkens, S.; Leegwater, G.A.

    2012-01-01

    The effect of long term field aging on different types of polymer modified binders used in two-layer porous asphalt is studied using different test methods. Chemical and rheological tests are performed on samples taken from road sections at different moments in time in search of trends in long term

  7. Performance evaluation of stone matrix asphalt using indonesian natural rock asphalt as stabilizer

    Directory of Open Access Journals (Sweden)

    Nyoman Suaryana

    2016-09-01

    Full Text Available One type of road pavement material which is developed to be more resistant to permanent deformation is the SMA (Stone Matrix Asphalt. Utilization of the SMA mix in Indonesia has constraints in gain stabilizer and also difficulty to comply the gradations, mainly because it needs a relatively large amount of filler. Alternative of local materials that can be used is asbuton (natural rock asphalt from Buton Island. Asbuton is expected to act as a stabilizer and simultaneously provides an additional filler. The objective of this research is to evaluate the performance of the SMA that uses the asbuton. The methodology used in this research is the experimental method, its starts from material testing, design mix and performance testing that includes dynamic modulus, permanent deformation and fatigue resistance. The results obtained showed asbuton can prevent asphalt draindown as well as increase the proportion of filler. Draindown asphalt can be prevented by using binder absorbers with fiber cellulose and viscosity boosters with asbuton. Asbuton (LGA 50/25 can behave as a stabilizer as well as cellulose fiber. Addition of asbuton also improves the performance of the SMA mix, as shown with increase in the value of dynamic stability. In terms of resistance to fatigue, SMA with cellulosa as stabilizer and SMA with asbuton as stabilizer, relatively have the same performance. Master curve of dynamic modulus indicates SMA with asbuton as stabilizer is relatively stiffer at high temperatures (more than 4.4 °C, but relatively less stiff (less brittle at low temperatures. Keywords: Stone matrix asphalt, Asbuton, Draindown, Dynamic modulus, Permanent deformation

  8. The mechanical behavior of two warm-mix asphalts

    Directory of Open Access Journals (Sweden)

    H. A. Rondón-Quintana

    2016-09-01

    Full Text Available This paper presents results stemming from a comparative experimental analysis of two warm-mix asphalts (WMA and a dense-graded hot-mix asphalt (HMA. In order to evaluate asphalt mixture behavior, physical and rheological tests were conducted, including tests on resilient modulus, resistance to moisture-induced damage, resistance to fatigue and resistance to permanent deformation. Samples studied were subjected to short (STOA and long-term (LTOA aging. As far as asphalt mixture composition is concerned, the same particle size distribution and coarse aggregate were employed for both mixture types. The control HMA mixture was produced with AC 60-70, and the WMAs used the same asphalt cement modified with two chemical additives (Rediset WMX® and Cecabase RT®. The modified mixtures exhibited better resistance to permanent deformation, aging and moisture-induced damage (versus the control mixture. Likewise, WMAs generally saw increased fatigue resistance under controlled-stress loading, which rheological characterization showed is mainly attributable to binder additives and their concomitant modifications.

  9. Significance of Fines in Hot Mix Asphalt Synthesis

    Directory of Open Access Journals (Sweden)

    Kalaitzaki Elvira

    2017-07-01

    Full Text Available According to their size, aggregates are classified in coarse grained, fine grained, and fines. The determination of fines content in aggregate materials is very simple and is performed through the aggregate washing during the sieving procedure to define the gradation curve. The very fine material consists of grains having a size lower than 63 μm. The presence of fines directly influences the composition and performance of concrete and asphalt mixtures (e.g. asphalt content, elasticity, fracture. The strength and load carrying capacity of hot mix asphalt (HMA results from the aggregate framework created through particle-particle contact and interlock. Fines or mineral filler have a role in HMA. The coarse aggregate framework is filled by the sand-sized material and finally by the mineral filler. At some point, the smallest particles lose contact becoming suspended in the binder not having the particle-particle contact that is created by the larger particles. The overall effect of mineral filler in hot mix asphalt specimens has been investigated through a series of laboratory tests. It is clear that a behaviour influenced by the adherence of fines to asphalt film has been developed. The optimum bitumen content requirement in case of stone filler is almost the same as that for fly ash. It has been found that the percentage of fly ash filler is crucial if it exceeds approximately a value of 4%.

  10. UTILIZATION OF WASTE PLASTIC BOTTLES IN ASPHALT MIXTURE

    Directory of Open Access Journals (Sweden)

    TAHER BAGHAEE MOGHADDAM

    2013-06-01

    Full Text Available Nowadays, large amounts of waste materials are being produced in the world. One of the waste materials is plastic bottle. Generating disposable plastic bottles is becoming a major problem in many countries. Using waste plastic as a secondary material in construction projects would be a solution to overcome the crisis of producing large amount of waste plastics in one hand and improving the structure’s characteristics such as resistance against cracking on the other hand. This study aimed to investigate the effects of adding plastic bottles in road pavement. Marshall properties as well as specific gravity of asphalt mixture containing different percentages of plastic bottles were evaluated. Besides, Optimum Asphalt Content (OAC was calculated for each percentages of plastic bottles used in the mix. The stiffness and fatigue characteristics of mixture were assessed at OAC value. Results showed that the stability and flow values of asphalt mixture increased by adding waste crushed plastic bottle into the asphalt mixture. Further, it was shown that the bulk specific gravity and stiffness of mixtures increased by adding lower amount of plastic bottles; however, adding higher amounts of plastic resulted in lower specific gravity and mix stiffness. In addition, it was concluded that the mixtures containing waste plastic bottles have lower OAC values compared to the conventional mixture, and this may reduce the amount of asphalt binder can be used in road construction projects. Besides, the mixtures containing waste plastic showed significantly greater fatigue resistance than the conventional mixture.

  11. Partial substitution of asphalt pavement with modified sulfur

    Directory of Open Access Journals (Sweden)

    E.R. Souaya

    2015-12-01

    Full Text Available The use of sulfur in pavement laying was developed in 1980 but it was restricted in the late 19th century due to its environmental problems and its high reactivity toward oxidation processes which give sulfuric acid products that are capable of destroying the asphalt mixture. The study involved the conversion of elemental sulfur to a more stable modified one using a combination of byproducts of olefin hydrocarbons that were obtained from petroleum fractional distillates and cyclic hydrocarbon bituminous residue at 145 °C. The changes in the structural characteristics and morphology of prepared modified sulfur were studied using XRD and SEM respectively. Also DSC curves help us to elucidate the changes in sulfur phases from α-orthorhombic to β-mono clinic structure. The technique of nanoindentation helps us to compare the mechanical properties of modified and pure sulfur including modulus of elasticity and hardness. The hot mixture asphalt designs were prepared according to the Marshall Method in which the asphalt binder content was partially substituted with 20%, 30%, 40%, and 50% modified sulfur. The mechanical properties were measured including Marshall Stability, flow, air voids, and Marshall Stiffness. From the overall study, the results indicated that asphalt could partially be substituted with modified sulfur with no significant deleterious effect on performance and durability of hot mixed asphalt.

  12. Laboratory investigation of the performances of cement and fly ash modified asphalt concrete mixtures

    Directory of Open Access Journals (Sweden)

    Suched Likitlersuang

    2016-09-01

    Full Text Available The influence of filler materials on volumetric and mechanical performances of asphalt concrete was investigated in this study. The AC60/70 asphalt binder incorporating with cement and fly ash as filler materials was mixed with limestone following the Marshall mix design method. The filler contents of cement and/or fly ash were varied. The non-filler asphalt concrete mixtures of the AC60/70 and the polymer modified asphalt were prepared for the purpose of comparison. The investigation programme includes the indirect tensile test, the resilient modulus test and the dynamic creep test. The tests are conducted under the humid temperate environments. All tests were then carried out under standard temperature (25 °C and high temperature (55 °C by using a controlled temperature chamber via the universal testing machine. The wet-conditioned samples were prepared to investigate the moisture susceptibility. Results show that cement and/or fly ash were beneficial in terms of improved strength, stiffness and stripping resistance of asphalt mixture. In addition, the combined use of cement and fly ash can enhance rutting resistance at wet and high temperature conditions. The results indicate that the strength, stiffness and moisture susceptibility performances of the asphalt concrete mixtures improved by filler are comparable to the performance of the polymer modified asphalt mixture. Keywords: Asphalt concrete, Filler, Resilient modulus, Dynamic creep test, Moisture susceptibility

  13. MODIFIED GYPSUM BINDER

    Directory of Open Access Journals (Sweden)

    KONDRATEVA N. V.

    2017-02-01

    Full Text Available Summary. Statement of the problem. A disadvantage of the gypsum binder is the limited water resistance of products that historically led to the use of gypsum products mostly for internal construction and finishing works. To regulate the process of hydration and structure formation of the use of chemical additives that are introduced with the mixing water or in the production of the binder. As a rule, substances that increase the solubility of the gypsum binder referred to as the hardening accelerator, and substances which retard the solubility of the inhibitors of hardening of the mixture. Most accelerators and retarders hardening affect adversely on the final strength of the mixture. More effective impact on gypsum binder additives have plasticizers. The purpose of the article. Getting gypsum binder modified with the aim of improving its water resistance and improvement of some technological factors (the time of hardening, water gypsum ratio, etc. would reduce its shortcomings and expand the scope of application of the binder. Conclusion. The result of the research reviewed changes in the basic properties of the gypsum binder with the introduction of additives, plasticizers, and selected the most effective supplements to significantly reduce water gypsum ratio, to improve strength properties and to obtain gypsum binder more dense structure.

  14. Asphalt chemical fractionation

    International Nuclear Information System (INIS)

    Obando P, Klever N.

    1998-01-01

    Asphalt fractionation were carried out in the Esmeraldas Oil Refinery using n-pentane, SiO 2 and different mixture of benzene- methane. The fractions obtained were analyzed by Fourier's Transformed Infrared Spectrophotometry (FTIR)

  15. Cookbook for rheological models - asphalt binders : final report.

    Science.gov (United States)

    2016-05-01

    Rheology is defined as the science of the deformation and flow of matter (Hackley and Ferraris, : 2001). The measurement of rheological properties of matter has become very important in various : fields, especially the construction industry, where pr...

  16. Valorization of vinasse as binder modifier in asphalt mixtures

    Directory of Open Access Journals (Sweden)

    Mª José Martínez-Echevarría-Romero

    2015-01-01

    Full Text Available La reutilización de los residuos derivados de los procesos industriales se ha convertido en uno de los objetivos prioritarios de carácter ambiental en la investigación científica y técnica. En el sector de la construcción, se pueden aprovechar materiales residuales de otros procesos en sustitución de materias primas. Este artículo presenta los resultados de un estudio desarrollado con el objetivo de valorizar la vinaza residual del proceso de fabricación de etanol a partir de biomasa, como material modificante del betún utilizado en las mezclas bituminosas. Se han fabricado cuatro mezclas bituminosas tipo AC-16S (1: Betún 50/70, 2: Betún 50/70 + 10%vinaza, 3: Betún-caucho, 4: Betún-caucho + 10%vinaza y se han realizado ensayos de caracterización como son sensibilidad al agua, resistencia a las deformaciones plásticas, rigidez y fatiga.Los resultados muestran que las mezclas modificadas con vinaza mejoran el comportamiento mecánico de la mezcla AC-16 S y contribuye a la revalorización del residuo.

  17. An In-Depth Investigation into the Physicochemical, Thermal, Microstructural, and Rheological Properties of Petroleum and Natural Asphalts

    Directory of Open Access Journals (Sweden)

    Nader Nciri

    2016-10-01

    Full Text Available Over the last decade, unexpected and sudden pavement failures have occurred in several provinces in South Korea. Some of these failures remain unexplained, further illustrating the gaps in our knowledge about binder chemistry. To prevent premature pavement distress and enhance road performance, it is imperative to provide an adequate characterization of asphalt. For this purpose, the current research aims at inspecting the chemistry, microstructure, thermal, and physico-rheological properties of two types of asphalt, namely petroleum asphalt (PA and natural asphalt (NA. The binders were extensively investigated by using elemental analysis, thin-layer chromatography with flame ionization detection (TLC-FID, matrix-assisted laser desorption ionization time-of-fight mass spectroscopy (MALDI-TOF-MS, Fourier transform infrared spectroscopy (FT-IR, Raman spectroscopy (RS, Nuclear magnetic resonance spectroscopy (1H-NMR, ultraviolet and visible spectroscopy (UV-VIS, X-ray diffraction (XRD, scanning electron microscopy (SEM, thermogravimetric analysis (TGA, differential scanning calorimetry (DSC, penetration, softening point, ductility, and viscosity tests. The findings of this research have revealed the distinct variations between the chemical compositions, microstructures, and thermo-rheological properties of the two asphalts and provided valuable knowledge into the characteristics of the binders. Such insight has been effective in predicting the performance or distress of road pavement. This paper will, therefore, be of immediate interest to materials engineers in state highway agencies and asphalt industries.

  18. Warm mix asphalt : final report.

    Science.gov (United States)

    2014-11-01

    The performance of pavements constructed using warm mix asphalt (WMA) technology were : compared to the performance of conventional hot mix asphalt (HMA) pavements placed on the : same project. Measurements of friction resistance, rutting/wear, ride ...

  19. Mechanistic Evaluation of the Effect of Calcium Carbide Waste on Properties of Asphalt Mixes

    Directory of Open Access Journals (Sweden)

    N. Isa

    2018-03-01

    Full Text Available Calcium Carbide Waste (CCW was used as an alternative to traditional Portland cement mineral filler in hot mix asphalt concrete to rid its disposal problem. Its effect on mechanical properties of hot mix asphalt was assessed using the Marshall method of mix design. Using the optimum bitumen content determined from Marshall Test, Portland cement used as mineral filler was partially replaced with 0, 10, 20, 30, 40 and 50% CCW by dry weight. Results of tests indicated an increase in stability, voids in mineral aggregates, Marshall Stiffness and reduction in flow, unit weight, voids filled with binder when the percentage of CCW increases. Based on results of tests, partial replacement of Portland cement with 40% CCW could be used in asphalt production. This will ensure economy in asphalt production and promote disposal of CCW which constitute environmental hazards.

  20. Evaluating the Superpave Option in Unified Facilities Guide Specification 32-12-15.13, Hot Mix Asphalt Airfield Paving

    Science.gov (United States)

    2014-06-01

    M249 5.47 2.291 2.381 3.8 12.8 70.6 5,132 18 M250 5.47 2.283 2.381 4.1 13.2 68.7 5,678 19 M251 5.47 2.287 2.381 4.0 13.0 69.4 5,534 16 M252 5.47...71 143.0 M250 5.47 1179.60 664.10 1180.7 0 516.60 2.28 2.38 4.12 13.15 68.70 142.48 M251 5.47 1158.4 652.3 1158.9 506.6 2.287 2.381 4.0 13.0 69

  1. Rutting and Fatigue Cracking Resistance of Waste Cooking Oil Modified Trinidad Asphaltic Materials

    Directory of Open Access Journals (Sweden)

    Rean Maharaj

    2015-01-01

    Full Text Available The influence of waste cooking oil (WCO on the performance characteristics of asphaltic materials indigenous to Trinidad, namely, Trinidad Lake Asphalt (TLA, Trinidad Petroleum Bitumen (TPB, and TLA : TPB (50 : 50 blend, was investigated to deduce the applicability of the WCO as a performance enhancer for the base asphalt. The rheological properties of complex modulus (G∗ and phase angle (δ were measured for modified base asphalt blends containing up to 10% WCO. The results of rheology studies demonstrated that the incremental addition of WCO to the three parent binders resulted in incremental decreases in the rutting resistance (decrease in G∗/sinδ values and increases in the fatigue cracking resistance (decrease in G∗sinδ value. The fatigue cracking resistance and rutting resistance for the TLA : TPB (50 : 50 blends were between those of the blends containing pure TLA and TPB. As operating temperature increased, an increase in the resistance to fatigue cracking and a decrease in the rutting resistance were observed for all of the WCO modified asphaltic blends. This study demonstrated the capability to create customized asphalt-WCO blends to suit special applications and highlights the potential for WCO to be used as an environmentally attractive option for improving the use of Trinidad asphaltic materials.

  2. Caltrans use of scrap tires in asphalt rubber products: a comprehensive review

    Directory of Open Access Journals (Sweden)

    Haiping Zhou

    2014-02-01

    Full Text Available The California Department of Transportation (Caltrans has been using scrap tire rubber in asphalt pavements since the 1970s in chip seals and the 1980s in rubberized hot mix asphalt(RHMA. Both the wet (field blend and dry processes were used in early trials. Caltrans has also used rubber modified binders containing both crumb rubber modifier and polymer modifier that could be manufactured at a refinery facility, a terminal blend wet process. Since the beginning of this century, Caltrans increased the use of scrap tire rubber in paving projects and invested considerable resources in developing technically sound, cost effective, and environmentally friendly strategies for using scrap tire rubber in roadway applications. By the end of year 2010, approximately 31%of all hot mix asphalt (HMA placed by Caltrans was rubberized HMA, roughly 1.2 million tons. Caltrans efforts in using asphalt rubber products were also demonstrated in its research and technology development. These included the construction of two full-scale field experiments, five warranty projects, and an accelerated pavement study using a heavy vehicle simulator. Additionally, terminal blend asphalt rubber and rubberized warm mix asphalts began to be experimented on trial basis. This paper provides a comprehensive review of Caltrans experience over four decades with asphalt rubber products. Current practices and future outlook are also discussed.

  3. Developing the elastic modulus measurement of asphalt concrete using the compressive strength test

    Science.gov (United States)

    Setiawan, Arief; Suparma, Latif Budi; Mulyono, Agus Taufik

    2017-11-01

    Elastic modulus is a fundamental property of an asphalt mixture. An analytical method of the elastic modulus is needed to determine the thickness of flexible pavement. It has a role as one of the input values on a stress-strain analysis in the finite element method. The aim of this study was to develop the measurement of the elastic modulus by using compressive strength testing. This research used a set of specimen mold tool and Delta Dimensi software to record strain changes occurring in the proving ring of compression machine and the specimens. The elastic modulus of the five types of aggregate gradation and 2 types of asphalt were measured at optimum asphalt content. Asphalt Cement 60/70 and Elastomer Modified Asphalt (EMA) were used as a binder. Manufacturing success indicators of the specimens used void-in-the-mix (VIM) 3-5 % criteria. The success rate of the specimen manufacturing was more than 76%. Thus, the procedure and the compressive strength test equipment could be used for the measurement of the elastic modulus. The aggregate gradation and asphalt types significantly affected the elastic modulus of the asphalt concrete.

  4. Evaluation of the chemical modifications in petroleum asphalt cement with the addition of polypropylene

    International Nuclear Information System (INIS)

    Marcondes, C.P.; Sales, M.J.A.; Resck, I.S.; Farias, M.M.; Souza, M.V.R.

    2010-01-01

    Studies show that the common distress mode in the Brazilian highway network are fatigue cracks and plastic deformation, which are associated with the type of material used in the pavement layers, structural project, excessive traffic load and weathering. To minimize these defects, research on modifiers such as polymers, added to asphalt binders have been developed to provide physical, chemical and rheological improvement. This paper investigates chemical modifications of the binders with the addition of PP by FTIR, NMR and DSC. FTIR spectra of pure and modified binder showed no differences in absorption. NMR analysis showed no strong chemical bonds between the binder and PP. DSC curve of PP showed a melting temperature of 160 deg C (ΔH = 94J/g) and the pure binder presented an endothermic transition between 20 and 40 deg C (ΔH = 2J/g). In the DSC curves of mixtures, these transitions are not significant, indicating possible interactions between asphalt binder and PP. (author)

  5. Long-term aging of recycled binders.

    Science.gov (United States)

    2015-07-01

    Asphalt pavement is Americas most recycled material. Eighty million tons of asphalt, nearly 80% of all milled asphalt pavement, : is recycled every year [1]. To effectively maintain its 40,000 miles of paved roads, the Florida Department of Transp...

  6. Moisture Sensitivity of Crumb Rubber Modified Modifier Warm Mix Asphalt Additive for Two Different Compaction Temperatures

    Science.gov (United States)

    Bilema, Munder A.; Aman, Mohamad Y.; Hassan, Norhidayah A.; Ahmad, Kabiru A.; Elghatas, Hamza M.; Radwan, Ashraf A.; Shyaa, Ahmed S.

    2018-04-01

    Crumb rubber obtained from scrap tires has been incorporated with asphalt binder to improve the performance of asphalt mixtures in the past decades. Pavements containing crumb-rubber modified (CRM) binders present one major drawback: larger amounts of greenhouse gas emissions are produced as there is rise in the energy consumption at the asphalt plant due to the higher viscosity of these type of binders compared with a conventional mixture. The objective of this paper is to calculate the optimum bitumen content for each percentage and evaluate the moisture sensitivity of crumb rubber modified asphalt at two different compacting temperatures. In this study, crumb rubber modified percentages was 0%, 5%, 10% and 15% from the binder weight, with adding 1.5% warm mix asphalt additive (Sasobit) and crush granite aggregate of 9.5mm Nominal maximum size was used after assessing its properties. Ordinary Portland Cement (OPC) used by 2% from fine aggregate. The wet method was using to mix the CRM with bitumen, the CRM conducted at 177°C for 30 min with 700rpm and Sasobit conducted at 120°C for 10 min with 1000rpm. As a result, from this study the optimum bitumen content (OBC) was increased with increased crumb rubber content. For performance test, it was conducted using the AASHTO T283 (2007): Resistance of Compacted Bituminous Mixture to Moisture-Induced Damage. The result was as expected and it was within the specification of the test, the result show that the moisture damage increased with increased the crumb rubber content but it is not exceeding the limit of specification 80% for indirect tension strength ratio (ITSR). For the temperature was with lowing the temperature the moisture damage increased.

  7. Cost-benefit analysis of the construction of different flexible pavement structures considering the axle load and type of binder

    Directory of Open Access Journals (Sweden)

    Lucas Dotto Bueno

    2016-08-01

    Full Text Available The status of Brazilian highways reflects a deficient pavement performance when they are subjected to loadings imposed by heavy traffic. Current legislation, as enacted by Contran (National Traffic Council, has increased the axle weight limit for cargo vehicles by up to 10%. Therefore, the aim of this study was to determine a cost-benefit ratio by using different types of structures, asphalt binders and load intensities. Typical pavements were determined and then analyzed by the software AEMC (SisPav to obtain the horizontal tensile strain (εt values at the bottom of the asphalt concrete layer and, later, the NFATIGUE value. It was found that the increase in weight, within values covered by legislation, might result in a reduction of approximately 50% in the NFATIGUE value for the pavement structures analyzed. As for economic impact, the same weight increase caused a mean increase of 120% in the cost of repeated loading on pavement structures (R$ NFATIGUE-1. It was also observed that structures with more robust asphalt concrete layers can provide the best R$ NFATIGUE-1 ratios. The best results for granular materials were found with thinner layers, associated with a thicker coating. The benefits of modified binders were shown by the analyses of the best structural options: both the polymer-modified binder and the rubber asphalt binder offer significant structural and economic improvements to the structure.

  8. Effect of new type of synthetic waxes on reduced production and compaction temperature of asphalt mixture with reclaimed asphalt

    Science.gov (United States)

    Valentová, Tereza; Benešová, Lucie; Mastný, Jan; Valentin, Jan

    2017-09-01

    Lower mixing and paving temperatures of asphalt mixtures, which are an important issue in recent years, with respect to increased energy demand of civil engineering structures during their processing, allow reduction of this demand and result in minimized greenhouse gas production. In present time, there are many possibilities how to achieve reduction of production temperature during the mixing and paving of an asphalt mixture. The existing solutions distinguish in target operating temperature behaviour which has to be achieved in terms of good workability. This paper is focused on technical solutions based on use of new types of selected synthetic and bio-based waxes. In case of bio-based additive sugar cane wax was used, which is free of paraffins and is reclaimed as waste product during processing of sugar cane. The used waxes are added to bituminous binder in form of free-flowing granules or fine-grained powder. Synthetic waxes are represented by new series of Fischer-Tropsch wax in form of fine granules as well as by polyethylene waxes in form of fine-grained powder or granules. Those waxes were used to modify a standard paving grade bitumen dosed into asphalt mixture of ACsurf type containing up to 30 % of reclaimed asphalt (RA).

  9. Oxidation hardening kinetics of the rheological function G'/('/G') in asphalts

    KAUST Repository

    Juristyarini, Pramitha; Davison, Richard R.; Glover, Charles J.

    2011-01-01

    The authors used 9 asphalts oxidized at various temperatures and pressures to determine the hardening kinetics for the DSR function, an easily measured and meaningful surrogate for 15C ductility that relates well to age-related binder deterioration. For each asphalt, there is a rapid initial period that slows to a constant rate period. This constant rate period can be represented by carbonyl formation (oxidation) rate times a hardening susceptibility (HS). For the DSR function and viscosity, the HS and initial jump were pressure-but not temperature-dependent. The DSR function initial jump was relatively higher than the viscosity initial jump. © 2011 Taylor & Francis Group, LLC.

  10. Oxidation hardening kinetics of the rheological function G'/('/G') in asphalts

    KAUST Repository

    Juristyarini, Pramitha

    2011-07-29

    The authors used 9 asphalts oxidized at various temperatures and pressures to determine the hardening kinetics for the DSR function, an easily measured and meaningful surrogate for 15C ductility that relates well to age-related binder deterioration. For each asphalt, there is a rapid initial period that slows to a constant rate period. This constant rate period can be represented by carbonyl formation (oxidation) rate times a hardening susceptibility (HS). For the DSR function and viscosity, the HS and initial jump were pressure-but not temperature-dependent. The DSR function initial jump was relatively higher than the viscosity initial jump. © 2011 Taylor & Francis Group, LLC.

  11. Influence of Temperature Upon Permanent Deformation Parameters of Asphalt Concrete Mixes

    Directory of Open Access Journals (Sweden)

    Amjad Hamad Albayati

    2017-07-01

    Full Text Available The performance of asphalt concrete pavement has affected by many factors, the temperature is the most important environmental one which has a large effect on the structural behavior of flexible pavement materials. The main cause of premature failure of pavement is the rutting, Due to the viscoelastic nature of the asphalt cement, rutting is more pronounced in hot climate areas because the viscosity of the asphalt binder which is inversely related to rutting is significantly reduced with the increase in temperature resulting in a more rut susceptible paving mixtures. The objective of this study is to determine the effect of temperatures variations on the permanent deformation parameters (permanent strain (p, intercept (a, slope (b, Alpha and Mu as well as resilient strain (r and resilient modulus (Mr. To achieve this objective, one aggregate gradation with 12.5mm nominal maximum size, two grades of asphalt cements (40-50 and 60-70 brought form Al- Daurah refinery, limestone dust filler has been used to prepare the asphalt concrete mixtures. 30 Marshall specimens were prepared to determine the optimum asphalt cement content. Thereafter, 30 cylindrical asphalt concrete specimens (102mm in diameter and 203 mm in height are prepared in optimum asphalt cement and optimum ±0.5 percent. The prepared specimens were used in uniaxial repeated load test to evaluate the permanent deformation parameters of asphalt concrete mixes under the following testing temperature (5, 15, 25, 40 and 60c. The test result analyses appeared that Mr is decrease 51 percent when temperature increased from 5 c to 25 c and then decrease 22 percent with further increase in temperature from 25 c to 60 c. Also, the Alpha value decreases by a factor of 1.25 and 1.13 when temperature increases from 5 c to 25 c and 25 c to 60 c, espectively. Finally, statistical models were developed to predict the Alpha and Mu parameters of permanent deformation.

  12. Seal coat binder performance specifications.

    Science.gov (United States)

    2013-11-01

    Need to improve seal coat binder specs: replace empirical tests (penetration, ductility) with : performance-related tests applicable to both : unmodified and modified binders; consider temperatures that cover entire in service : range that are tied t...

  13. Dismantling of asphalt and recycling road materials in asphalt layers

    OpenAIRE

    Antunes, M. L.; Batista, F. A.

    2009-01-01

    Este registo pertence ao Repositório Científico do LNEC The interest of recycling of asphalt and other road materials for pavement construction and rehabilitation has been generally growing in Portugal, for the last 15 years. After some occasional demonstration projects dealing with hot and cold in situ recycling of asphalt layers, the first significant experiences with cold in situ recycling and hot mix plant recycling of asphalt applied in full scale rehabilitation projects, ...

  14. Characterization of effects of thermal property of aggregate on the carbon footprint of asphalt industries in China

    Directory of Open Access Journals (Sweden)

    Ali Jamshidi

    2017-04-01

    Full Text Available In this study, the effects of the thermal properties of asphalt binders and aggregate materials were characterized in terms of the specific heat capacity (C for energy consumption and environmental footprints of hot mix asphalt (HMA and warm mix asphalt (WMA. Asphalt mixes produced using low-C aggregate are found to be more energy-efficient and environmental friendly, irrespective of the binder type and construction technology. Therefore, different fractions of aggregate blends were replaced with the aggregate provided from a low-C source or sustainable source. Analysis of energy consumption clearly indicated that the specific energy and environmental footprints decrease linearly as the low-C aggregate content increases. The amount of energy saving realized in the asphalt industries by the use of low-C aggregate is significant on a national scale in China. In this regard, China was chosen as a case study. Analysis of fuel requirement clearly indicated that the production of WMA using high thermal sensitivity aggregate can yield significant energy saving sufficient to fuel 44,007 to 664,880 Chinese households per year. Therefore, use of low C aggregate in asphalt mix production can be adopted as a strategy to produce WMA and HMA.

  15. Use of emulsion for warm mix asphalt

    Directory of Open Access Journals (Sweden)

    Mahabir Panda

    2017-06-01

    Full Text Available Due to increase in energy costs and emission problems in hot mix asphalt usually used, it brought a great interest to the researchers to develop the warm mix technology for pavement constructions. Commonly known as warm mix asphalt (WMA, it is a typical method in the bituminous paving technology, which allows production and placement of bituminous mixes at lower temperatures than that used for hot mix asphalt (HMA. The WMA involves an environmental friendly production process that utilises organic additives, chemical additives and water based technologies. The organic and chemical additives are normally very costly and still involve certain amount of environmental issues. These factors motivated the authors to take up this technology using simple, environment friendly and somewhat cost effective procedure. In this study, an attempt has been made to prepare warm mixes by first pre-coating the aggregates with medium setting bitumen emulsion (MS and then mixing the semi-coated aggregates with VG 30 bitumen at a lower temperature than normally required. After a number of trials it was observed that mostly three mixing temperatures, namely temperatures 110 °C, 120 °C and 130 °C were appropriate to form the bituminous mixes with satisfactory homogeneity and consistency and as such were maintained throughout this study. Marshall samples for paving mixes were prepared using this procedure for dense bituminous macadam (DBM gradings as per the specifications of Ministry of Road Transport and Highways (MORTH and subsequently Marshall properties of the resultant mixes were studied with the main objective of deciding the different parameters that were considered for development of appropriate warm mix asphalt. In this study it has been observed that out of three mixing temperatures tried, the mixes prepared at 120 °C with bitumen-emulsion composition of 80B:20E for DBM warm mix, offer highest Marshall stability and highest indirect tensile strength

  16. Acoustic Properties of Absorbent Asphalts

    Science.gov (United States)

    Trematerra, Amelia; Lombardi, Ilaria

    2017-08-01

    Road traffic is one of the greater cause of noise pollution in urban centers; a prolonged exposure to this source of noise disturbs populations subjected to it. In this paper is reported a study on the absorbent coefficients of asphalt. The acoustic measurements are carried out with a impedance tube (tube of Kundt). The sample are measured in three conditions: with dry material (traditional), “wet” asphalt and “dirty” asphalt.

  17. Utilization of Ripe Coconut Fiber in Stone Matrix Asphalt Mixes

    Directory of Open Access Journals (Sweden)

    Mahabir Panda

    2013-12-01

    Full Text Available Stone Matrix Asphalt (SMA is a gap graded mix; characterized by higher proportion of coarse aggregate, lower proportion of middle size aggregate and higher proportion of mineral filler. In the present laboratory study, commonly available one conventional VG 30 bitumen and another modified binder, namely CRMB 60 have been used along with a non-conventional natural fiber, namely coconut fiber which is abundantly available in India to provide improved engineering properties and at the same time preventing the usual draining of binder in SMA. The role of a particular binder and fiber with respect to their concentrations in the mix is studied for various engineering properties. Marshall procedure has been followed to determine the optimum binder and optimum fiber contents and also to study the relative advantages of fiber addition in the SMA mixtures. Thereafter, the engineering properties under both static as well as repeated load conditions and moisture susceptibility characteristics have been studied. It is observed that only a marginal 0.3% coconut fiber addition brings significant improvement in the engineering properties of SMA mixes.

  18. The Comparison of Engineering Properties Between Single and Double Layer Porous Asphalt made of Packing Gradation

    Directory of Open Access Journals (Sweden)

    Hardiman M. Y

    2008-01-01

    Full Text Available is paper presents the comparison of engineering properties between single and double layer porous asphalt (SLPA and DLPA made of packing gradation. Three nominal maximum aggregate sizes (NMAS were tested each made up of 10, 14, and 20 mm for SLPA. While for the DLPA with 30, 20, and 15 mm top layer are made of 10 and 14 mm NMAS, with a base layer of 20 mm NMAS. Total thickness of all mixes is 70 mm. Binders used are 60/70 penetration base bitumen and polymer binder styrene-butadiene-styrene (SBS. The result shows that the properties of SLPA mix namely permeability and resistance to abrasion loss decreases when the NMAS in SLPA decreases. The abrasion loss of DLPA mixes increases when the porous asphalt top layer thickness decreases, while drainage time value decreases. However, SLPA with 20 mm NMAS exhibits higher abrasion loss compared to all DLPA mixes.

  19. Characteristics and applications of high-performance fiber reinforced asphalt concrete

    Science.gov (United States)

    Park, Philip

    developed model is formulated in finite strain for asphalt binder and in infinitesimal strain for asphalt concrete. Comparisons to published test data show that the model is capable of modeling behavior over a wide range of stress, temperature and strain rate conditions. The performance of asphalt plug joints (APJ) which are used as expansion joints in bridges is investigated. The study sheds light on the reasons for premature APJ failures observed in the field, based on which improved joint details are proposed.

  20. Performance Evaluation of Asphalt Modified with Municipal Wastes for Sustainable Pavement Construction

    Directory of Open Access Journals (Sweden)

    Muhammad Nasir Amin

    2016-09-01

    Full Text Available The severe hot temperature and high traffic loadings in the Kingdom of Saudi Arabia (KSA are causing distress in flexible pavements within a few years of service. Secondly, the conventional bitumen extracted from Saudi oil refineries have a performance grade of 64-10 (PG 64-10, which does not meet the SuperPave performance grade requirement for most of the KSA’s regions. In order to improve the performance grade of bitumen, different percentages of municipal wastes (plastic and crumb rubber were used as bitumen additives. The performance of bitumen at low, intermediate, and high temperatures was evaluated. This is important as the waste production is rising significantly due to the fast urbanization and high population growth in the KSA. Particularly, when there are very few ways of recycling these wastes (municipal, as well as industrial, which in fact have great impact on the environment. High-density polyethylene (HDP, low-density polyethylene (LDP, and crumb rubber (CR with 5%, 10%, and 15% by weight of bitumen, were mixed with the base bitumen (PG 64-10. Rotational viscometer (RV, dynamic shear rheometer (DSR, and bending beam rheometer (BBR were used to evaluate the viscosity, rutting, fatigue, and low-temperature behavior of base and modified binders. The test results indicated that the rutting (permanent deformation and fatigue resistance were significantly improved in modified binders due to the improvement in the visco-elastic properties.

  1. Mechanical Performance of Asphalt Mortar Containing Hydrated Lime and EAFSS at Low and High Temperatures.

    Science.gov (United States)

    Moon, Ki Hoon; Falchetto, Augusto Cannone; Wang, Di; Riccardi, Chiara; Wistuba, Michael P

    2017-07-03

    In this paper, the possibility of improving the global response of asphalt materials for pavement applications through the use of hydrated lime and Electric Arc-Furnace Steel Slag (EAFSS) was investigated. For this purpose, a set of asphalt mortars was prepared by mixing two different asphalt binders with fine granite aggregate together with hydrated lime or EAFSS at three different percentages. Bending Beam Rheometer (BBR) creep tests and Dynamic Shear Rheometer (DSR) complex modulus tests were performed to evaluate the material response both at low and high temperature. Then, the rheological Huet model was fitted to the BBR creep results for estimating the impact of filler content on the model parameters. It was found that an addition of hydrated lime and EAFSS up to 10% and 5%, respectively, results in satisfactory low-temperature performance with a substantial improvement of the high-temperature behavior.

  2. Mechanical Performance of Asphalt Mortar Containing Hydrated Lime and EAFSS at Low and High Temperatures

    Directory of Open Access Journals (Sweden)

    Ki Hoon Moon

    2017-07-01

    Full Text Available In this paper, the possibility of improving the global response of asphalt materials for pavement applications through the use of hydrated lime and Electric Arc-Furnace Steel Slag (EAFSS was investigated. For this purpose, a set of asphalt mortars was prepared by mixing two different asphalt binders with fine granite aggregate together with hydrated lime or EAFSS at three different percentages. Bending Beam Rheometer (BBR creep tests and Dynamic Shear Rheometer (DSR complex modulus tests were performed to evaluate the material response both at low and high temperature. Then, the rheological Huet model was fitted to the BBR creep results for estimating the impact of filler content on the model parameters. It was found that an addition of hydrated lime and EAFSS up to 10% and 5%, respectively, results in satisfactory low-temperature performance with a substantial improvement of the high-temperature behavior.

  3. Marshall properties of asphalt concrete using crumb rubber modified of motorcycle tire waste

    Science.gov (United States)

    Siswanto, Henri; Supriyanto, Bambang; Pranoto, Chandra, Pria Rizky; Hakim, Arief Rahman

    2017-09-01

    The aim of this study is to explain the effect of Crumb Rubber Modified (CRM) of motorcycle tire waste on Marshall properties of asphalt mix. Two types of aggregate gradation, asphalt concrete wearing course (ACWC) and asphalt concrete base (ACB), and CRM passing #50 sieve size were used. Seven levels of CRM content were investigated in this study, namely 0%, 0.5%, 1%, 1.5%, 3%, 4.5%, and 6% by weight of aggregate. Marshall test is conducted on Marshall specimens. The specimens are tested in their optimum binder content (OBC). The results indicate that CRM addition of motorcycle tire waste increases the Marshall stability of the both mix, ACWC and ACB. In addition, 1% CRM addition of motorcycle tire waste of the total mix weight is the best mix.

  4. Property Analysis of Exfoliated Graphite Nanoplatelets Modified Asphalt Model Using Molecular Dynamics (MD Method

    Directory of Open Access Journals (Sweden)

    Hui Yao

    2017-01-01

    Full Text Available This Molecular Dynamics (MD simulation paper presents a physical property comparison study between exfoliated graphite nanoplatelets (xGNP modified and control asphalt models, including density, glass transition temperature, viscosity and thermal conductivity. The three-component control asphalt model consists of asphaltenes, aromatics, and saturates based on previous references. The xGNP asphalt model was built by incorporating an xGNP and control asphalt model and controlling mass ratios to represent the laboratory prepared samples. The Amber Cornell Extension Force Field (ACEFF was used with assigned molecular electro-static potential (ESP charge from NWChem analysis. After optimization and ensemble relaxation, the properties of the control and xGNP modified asphalt models were computed and analyzed using the MD method. The MD simulated results have a similar trend as the test results. The property analysis showed that: (1 the density of the xGNP modified model is higher than that of the control model; (2 the glass transition temperature of the xGNP modified model is closer to the laboratory data of the Strategic Highway Research Program (SHRP asphalt binders than that of the control model; (3 the viscosities of the xGNP modified model at different temperatures are higher than those of the control model, and it coincides with the trend in the laboratory data; (4 the thermal conductivities of the xGNP modified asphalt model are higher than those of the control asphalt model at different temperatures, and it is consistent with the trend in the laboratory data.

  5. Changes of Properties of Bitumen Binders by Additives Application

    Science.gov (United States)

    Remišová, Eva; Holý, Michal

    2017-10-01

    Requirements for properties of bituminous binders are determined in the European standards. The physico-chemical behaviour of bitumen depends on its colloidal structure (asphaltenes dispersed into an oily matrix constituted by saturates, aromatics and resins) that depends primarily on its crude source and processing. Bitumen properties are evaluated by group composition, elementary analysis, but more often conventional or functional tests. Bitumen for road uses is assessed according to the physical characteristics. For the purpose of improving the qualitative properties of bitumen and asphalts the additives are applied e.g. to increase elasticity, improving the heat stability, improving adhesion to aggregate, to decrease viscosity, increasing the resistance to aging, to prevent binder drainage from the aggregate surface, etc. The objective of presented paper is to assess and compare effect of additives on properties of bitumen binders. In paper, the results of bitumen properties, penetration, softening point, and dynamic viscosity of two paving grade bitumen 35/50, 50/70 and polymer modified bitumen PmB 45/80-75 are analyzed and also the changes of these properties by the application of selected additives (Sasobit, Licomont BS100, Wetfix BE and CWM) to improve adhesion to aggregate and improve workability. Measurements of properties have been performed according to the relevant European standards. The laboratory tests showed significantly increasing the softening point of paving grade bitumen 50/70 and 35/50 by 13 to 45°C. The effect of various additives on bitumen softening point is different. Penetration varies according to type of bitumen and type of used additive. The penetration values of modified bitumen PmB 45/80-75 with additives Sasobit and Licomont BS100 show increase of bitumen stiffness of 16 0.1mm and a shift in the gradation. The changes in penetration and in softening point significantly shown when calculating on Penetration index as a parameter of

  6. Recovery of asphalt from bituminous minerals

    Energy Technology Data Exchange (ETDEWEB)

    Jossinet, J

    1881-12-31

    A process is disclosed for the recovery of asphalt from bituminous minerals, consisting in that the mineral is extracted with mineral oil, which is recovered by distilling the raw asphalt and distilling the solution to obtain on the one hand the liquid oil contained in the raw asphalt for use in the extraction and on the other hand distilled asphalt.

  7. Effects of asphalt rejuvenator on thermal and mechanical properties on oxidized hot mixed asphalt pavements

    Science.gov (United States)

    Farace, Nicholas A.; Buttlar, William G.; Reis, Henrique

    2016-04-01

    The utilization of asphalt rejuvenator, and its effectiveness for restoring thermal and mechanical properties was investigated via Disk-shaped Compact Tension (DC(T)) and acoustic emission (AE) testing for determining mechanical properties and embrittlement temperatures of the mixtures. During the DC(T) testing the fracture energies and peak loads were used to measure the resistance of the rejuvenated asphalt to low temperature cracking. The AE testing monitored the acoustic emission activity while the specimens were cooled from room temperature to -40 °C to estimate the temperature at which thermal cracking began (i.e. the embrittlement temperature). First, a baseline response was obtained by obtaining the mechanical and thermal response of virgin HMA samples and HMA samples that had been exposed to oxidative aging for 36 hours at 135°C. The results showed the virgin samples had much higher peak loads and fracture energies than the 36 hours aged samples. Acoustic Emission showed similar results with the virgin samples having embrittlement temperatures 10 °C cooler than the 36 hours aged specimens. Then, overaged for 36 hours specimens were treated different amounts of rejuvenator (10%, 15%, and 20% by weight of binder content) and left to dwell for increased amount of time periods varying from one to eight weeks. It was observed that the AE results showed an improvement of embrittlement temperature with increasing with the dwell times. The 8 weeks specimens had cooler embrittlement temperatures than the virgin specimens. Finally, the low temperature effects on fracture energy and peak load of the rejuvenated asphalt was investigated. Rejuvenator was applied (10% by weight of binder) to specimens aged 36 hours at 135 °C, and the dwell time was varied from 1 to 4 weeks. The results showed that the peak loads were restored to levels of the virgin specimens, and the fracture energies improved to levels beyond that of the virgin specimens. The results also showed a

  8. Microstructural and rheological analysis of fillers and asphalt mastics

    International Nuclear Information System (INIS)

    Geber, R; Simon, A; Kocserha, I; Buzimov, A

    2017-01-01

    Pavements are made of different grades of mineral aggregates and organic binder. The aggregates are sorted in different sizes and different amount which are mixed together with bitumen. The finest mineral fraction (d<0.063 mm) is called filler. This component has an important role in asphalt mixture - it fills the gaps between the aggregates and if mixed with bitumen (which is called asphalt mastics) it sticks the larger particles together. Particle size, microstructure and surface properties of fillers highly affect the cohesion with bitumen, therefore the aim of our research was to investigate the microstructure of mineral fillers (limestone, dolomite) which are used in Hungarian road constructions with the use of different techniques (particle size distribution, scanning electronmicroscopy tests, mercury intrusion porosimetry, BET specific surface tests, determination of hydrophobicity). After the tests of fillers, asphalt mastics were prepared and rheological examinations were obtained. These examinations served to observe the interaction and the effect of fillers. The stiffening effect of fillers and the causes of rutting were also investigated. Based on our results, it can be stated that particle size, hydrophobic properties and the amount of fillers highly affect the rheological properties of mastics. (paper)

  9. Advances in alternative cementitious binders

    International Nuclear Information System (INIS)

    Juenger, M.C.G.; Winnefeld, F.; Provis, J.L.; Ideker, J.H.

    2011-01-01

    There is a burgeoning interest in the development, characterization, and implementation of alternatives to Portland cement as a binder in concrete. The construction materials industry is under increasing pressure to reduce the energy used in production of Portland cement clinker and the associated greenhouse gas emissions. Further, Portland cement is not the ideal binder for all construction applications, as it suffers from durability problems in particularly aggressive environments. Several alternative binders have been available for almost as long as Portland cement, yet have not been extensively used, and new ones are being developed. In this paper, four promising binders available as alternatives to Portland cement are discussed, namely calcium aluminate cement, calcium sulfoaluminate cement, alkali-activated binders, and supersulfated cements. The history of the binders, their compositions and reaction mechanisms, benefits and drawbacks, unanswered questions, and primary challenges are described.

  10. Alabama warm mix asphalt field study : final report.

    Science.gov (United States)

    2010-05-01

    The Alabama Department of Transportation hosted a warm mix asphalt field demonstration in August 2007. The warm mix asphalt technology demonstrated was Evotherm Dispersed Asphalt Technology. The WMA and hot mix asphalt produced for the demonstration ...

  11. Evaluation of Different Mineral Filler Aggregates for Asphalt Mixtures

    Science.gov (United States)

    Wasilewska, Marta; Małaszkiewicz, Dorota; Ignatiuk, Natalia

    2017-10-01

    Mineral filler aggregates play an important role in asphalt mixtures because they fill voids in paving mix and improve the cohesion of asphalt binder. Limestone powder containing over 90% of CaCO3 is the most frequently used type of filler. Waste material from the production of coarse aggregate can be successfully used as a mineral filler aggregate for hot asphalt concrete mixtures as the limestone powder replacement. This paper presents the experimental results of selected properties of filler aggregates which were obtained from rocks with different mineral composition and origin. Five types of rocks were used as a source of the mineral filler aggregate: granite, gabbro, trachybasalt, quartz sandstone and rocks from postglacial deposits. Limestone filler was used in this study as the reference material. The following tests were performed: grading (air jet sieving), quality of fines according to methylene blue test, water content by drying in a ventilated oven, particle density using pyknometer method, Delta ring and ball test, Bitumen Number, fineness determined as Blaine specific surface area. Mineral filler aggregates showed significant differences when they were mixed with bitumen and stiffening effect in Delta ring and ball test was evaluated. The highest values were achieved when gabbro and granite fillers were used. Additionally, Scanning Electron Microscopy (SEM) analysis of grain shape and size was carried out. Significant differences in grain size and shape were observed. The highest non-homogeneity in size was determined for quartz sandstone, gabbro and granite filler. Their Blaine specific surface area was lower than 2800 cm2/g, while for limestone and postglacial fillers with regular and round grains it exceeded 3000 cm2/g. All examined mineral filler aggregates met requirements of Polish National Specification WT-1: 2014 and could be used in asphalt mixtures.

  12. Development of superior asphalt recycling agents. Phase 1, Technical feasibility. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bullin, J.A.; Davison, R.R.; Glover, C.J.; Chaffin, J.; Liu, M.; Madrid, R.

    1997-07-01

    After an introduction and a literature survey in Chap. 1, Chap. 2 describes the tasks, together with objectives and important results obtained for each task throughout the entire project. Chaps. 3 thru 7 detail work in developing a qualitative and quantitative knowledge of asphalt oxidation, composition dependence of asphalt properties, and guidelines for producing superior asphalt binders through composition control. They also detail the development of a kinetic model for asphalt oxidative aging and present an understanding of the composition dependence of asphalt oxidation as well as other performance-related properties. Chaps. 8 and 9 compare the aging performance of recycled blends produced using commercial recycling agents and industrial supercritical fractions as rejuvenating agents. Oxidative aging of the recycled blends were evaluated along with the performance of the recycled blends in terms of the strategic highway research program performance grading procedure. Chap. 10 summarizes the work completed in the areas of processing schemes development, projection updates, and scale-up and commercialization plans.

  13. Impact of Aggregate Gradation and Filler Type on Marshall Properties of Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    saad I. Sarsam

    2015-09-01

    Full Text Available As asphalt concrete wearing course (ACWC is the top layer in the pavement structure, the material should be able to sustain stresses caused by direct traffic loading. The objective of this study is to evaluate the influence of aggregate gradation and mineral filler type on Marshall Properties. A detailed laboratory study is carried out by preparing asphalt mixtures specimens using locally available materials including asphalt binder (40-50 penetration grade, two types of aggregate gradation representing SCRB and ROAD NOTE 31 specifications and two types of mineral filler including limestone dust and coal fly ash. Four types of mixtures were prepared and tested. The first type included SCRB specification and limestone dust, the second type included SCRB specification and coal fly ash, the third types included ROAD NOTE 31 specification and limestone dust and the fourth type included ROAD NOTE 31 specification and coal fly ash. The optimum asphalt content of each type of mixtures was determined using Marshall Method of mix design. 60 specimen were prepared and tested with dimension of 10.16 cm in diameter and 6.35 cm in height. Results of this study indicated that aggregate gradation and filler type have a significant effect on optimum asphalt content and Marshall Properties. From the experimental data, it was observed that the value of Marshall Stability is comparatively higher when using fly ash as filler as compared to limestone dust.

  14. Analysis of asphalt mix surface-tread rubber interaction by using finite element method

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Srirangam

    2017-08-01

    Full Text Available The surface texture of the pavement plays a very important role in driving the frictional properties at the tire rubber-pavement interface. Particularly, the hysteretic friction due to viscoelastic deformations of rubber depends mainly on the pavement surface texture. In the present paper, the effect of micromechanical pavement surface morphology on rubber block friction was brought in by comparing the friction results for three different asphalt mix morphological surfaces, named stone mastic asphalt (SMA, ultra-thin surfacing (UTS and porous asphalt (PA. The asphalt surface morphologies of these mixes were captured by using an X-ray tomographer, from which the resulting images micromechanical finite element (FE meshes for SMA, UTS and PA pavements were developed by means of the SimpleWare software. In the FE model, the rubber and asphalt binder were modeled as viscoelastic (VE materials and the formulation was given in the large deformation framework. FE simulations were then carried out by using contact algorithm between rubber and the road surface. It was observed that the rubber friction inversely varies with the sliding speed and positively varies with the pressure for all the pavement morphological and stiffness conditions. Furthermore, it was observed that the highly porous pavement surface results in large dissipation of energy, hence, large rubber friction which shows that the mix characteristics of pavements have a significant effect on rubber friction.

  15. Evaluation of Asphalt Mixture Low-Temperature Performance in Bending Beam Creep Test.

    Science.gov (United States)

    Pszczola, Marek; Jaczewski, Mariusz; Rys, Dawid; Jaskula, Piotr; Szydlowski, Cezary

    2018-01-10

    Low-temperature cracking is one of the most common road pavement distress types in Poland. While bitumen performance can be evaluated in detail using bending beam rheometer (BBR) or dynamic shear rheometer (DSR) tests, none of the normalized test methods gives a comprehensive representation of low-temperature performance of the asphalt mixtures. This article presents the Bending Beam Creep test performed at temperatures from -20 °C to +10 °C in order to evaluate the low-temperature performance of asphalt mixtures. Both validation of the method and its utilization for the assessment of eight types of wearing courses commonly used in Poland were described. The performed test indicated that the source of bitumen and its production process (and not necessarily only bitumen penetration) had a significant impact on the low-temperature performance of the asphalt mixtures, comparable to the impact of binder modification (neat, polymer-modified, highly modified) and the aggregate skeleton used in the mixture (Stone Mastic Asphalt (SMA) vs. Asphalt Concrete (AC)). Obtained Bending Beam Creep test results were compared with the BBR bitumen test. Regression analysis confirmed that performing solely bitumen tests is insufficient for comprehensive low-temperature performance analysis.

  16. Effect of Natural Sand Percentages on Fatigue Life of Asphalt Concrete Mixture

    Directory of Open Access Journals (Sweden)

    Nahla Yassub Ahmed

    2016-03-01

    Full Text Available The design of a flexible pavement requires the knowledge of the material properties which are characterized by stiffness and fatigue resistance. The fatigue resistance relates the number of load cycles to failure with the strain level applied to the asphalt mixture. The main objective of this research is the evaluation of the fatigue life of asphalt mixtures by using two types of fine aggregate having different percentages. In this study, two types of fine aggregate were used natural sand (desert sand and crushed sand. The crushed sand was replaced by natural sand (desert sand with different percentages (0%, 25%, 75% and 100% by the weight of the sand (passing sieve No.8 and retained on sieve No.200 and one type of binder (40/50 penetration from Al-Daurah refinery. The samples of beams were tested by four point bending beam fatigue test at the control strain mode (250, 500 and 750 microstrain while the loading frequency (5Hz and testing temperature (20oC according to (AASHTO T321. The experimental work showed that fatigue life (Nf and initial flexural stiffness increased when control strain decreased for asphalt mixtures. Acceptable fatigue life at 750 microstrain was obtained with asphalt concrete mixtures containing 100% crushed sand as well as asphalt concrete contained 25% natural sand. The asphalt concrete contained 100% and 75% of natural sand exhibited high fatigue life at low level of microstrain (250. The main conclusion of this study found that best proportion of natural sand to be added to an asphaltic concrete mixture is falling within the range (0% and 25% by weight of fraction (passing No.8 and retained on No.200 sieve .

  17. Investigation of porous asphalt microstructure using optical and electron microscopy.

    Science.gov (United States)

    Poulikakos, L D; Partl, M N

    2010-11-01

    Direct observations of porous asphalt concrete samples in their natural state using optical and electron microscopy techniques led to useful information regarding the microstructure of two mixes and indicated a relationship between microstructure and in situ performance. This paper presents evidence that suboptimal microstructure can lead to premature failure thus making a first step in defining well or suboptimal performing pavements with a bottom-up approach (microstructure). Laboratory and field compaction produce different samples in terms of the microstructure. Laboratory compaction using the gyratory method has produced more microcracks in mineral aggregates after the binder had cooled. Well-performing mixes used polymer-modified binders, had a more homogeneous void structure with fewer elongated voids and better interlocking of the aggregates. Furthermore, well-performing mixes showed better distribution of the mastic and better coverage of the aggregates with bitumen. Low vacuum scanning electron microscopy showed that styrene butadiene styrene polymer modification in binder exists in the form of discontinuous globules and not continuous networks. A reduction in the polymer phase was observed as a result of aging and in-service use. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.

  18. New Hampshire binder and mix review.

    Science.gov (United States)

    2012-08-01

    This review was initiated to compare relative rut testing and simple performance tests (now known as Asphalt Mix : Performance Tests) for the New Hampshire inch mix with 15% Recycled Asphalt Pavement (RAP). The tested mixes were : made from ...

  19. Hydrogenizing oils, asphalts, etc

    Energy Technology Data Exchange (ETDEWEB)

    1925-03-14

    The hydrogenation of carbonaceous solids in presence of combined sulfur, e.g., sulfides as described in the parent specification is applied to the treatment of rock oils, shale oils, resins, ozokerite, asphalt, and the like, or fractions, residues, or acid sludge or other conversion products thereof, alone or mixed. Preferably the hydrogen or other reducing gas is in excess and under pressure, and is either circuited or led through a series of treatment vessels, hydrogen being added for that used. In an example, residues from American crude oil are passed continuously with hydrogen at 200 atmospheres and 450 to 500/sup 0/C over pressed precipitated cobalt sulfide, the issuing gases being cooled to condense the light oil produced.

  20. Investigation of Warm Mix Asphalt (WMA) Technologies and Increased Percentages of Reclaimed Asphalt Pavement (RAP) in Asphalt Mixtures

    Science.gov (United States)

    2011-04-01

    The implementation of warm-mix asphalt (WMA) is becoming more widespread with a growing number of contractors utilizing various WMA technologies. Early research suggests WMA may be more susceptible to moisture damage than traditional hot-mix asphalt ...

  1. Multiscale imaging and characterization of the effect of mixing temperature on asphalt concrete containing recycled components.

    Science.gov (United States)

    Cavalli, M C; Griffa, M; Bressi, S; Partl, M N; Tebaldi, G; Poulikakos, L D

    2016-10-01

    When producing asphalt concrete mixture with high amounts of reclaimed asphalt pavement (RAP), the mixing temperature plays a significant role in the resulting spatial distribution of the components as well as on the quality of the resulting mixture, in terms of workability during mixing and compaction as well as in service mechanical properties. Asphalt concrete containing 50% RAP was investigated at mixing temperatures of 140, 160 and 180°C, using a multiscale approach. At the microscale, using energy dispersive X-ray spectroscopy the RAP binder film thickness was visualized and measured. It was shown that at higher mixing temperatures this film thickness was reduced. The reduction in film thickness can be attributed to the loss of volatiles as well as the mixing of RAP binder with virgin binder at higher temperatures. X-ray computer tomography was used to characterize statistically the distribution of the RAP and virgin aggregates geometric features: volume, width and shape anisotropy. In addition using X-ray computer tomography, the packing and spatial distribution of the RAP and virgin aggregates was characterized using the nearest neighbour metric. It was shown that mixing temperature may have a positive effect on the spatial distribution of the aggregates but did not affect the packing. The study shows a tendency for the RAP aggregates to be more likely distributed in clusters at lower mixing temperatures. At higher temperatures, they were more homogeneously distributed. This indicates a higher degree of blending both at microscale (binder film) and macroscale (spatial distribution) between RAP and virgin aggregates as a result of increasing mixing temperatures and the ability to quantify this using various imaging techniques. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  2. Arrangement for the measurement of the quantity of asphalt in an asphaltic compound

    International Nuclear Information System (INIS)

    Noma, I.; Taniguchi, K.

    1978-01-01

    The arrangement for the measurement of the quantity of asphalt in an asphaltic compound in an apparatus for the mixture of asphalt components and an aggregate for the formation of an asphaltic compound characterized by the inclusion of a member for the transmission of a neutron beam which reacts with the hydrogen atoms in the asphaltic compound in such a way that the energy of a neutron beam is adsorbed; a continuous transport device feeds a continuous supply of the asphalt compound past the neutron beam; a member responds to an automatic detector for the quantity of asphaltic components in the asphaltic compound and provides an adjustment so that the quantity [of asphaltic components in asphaltic compound] may be held at a constant value. (G.C.)

  3. Controlling conductivity of asphalt concrete with graphite.

    Science.gov (United States)

    2014-08-01

    Electrically conductive asphalt concrete has a huge potential for various multifunctional applications such as : self-healing, self-sensing, and deicing. In order to utilize the full spectrum of applications of electrically conductive : asphalt compo...

  4. Constructing better roads with asphalt rubber

    Directory of Open Access Journals (Sweden)

    Pais Jorge C.

    2015-12-01

    Full Text Available Brazilians mixtures containing asphalt rubber were evaluated by mechanical laboratory tests. A conventional mixture with asphalt CAP-50/70 was produced as a mixture control. With the aim of compare the Brazilians mixtures performance, a Portuguese asphalt rubber mixture was tested as well. The testing set involved the determination of the mechanical properties, fatigue and permanent deformation, of asphalt rubber produced by wet process through two different systems: continuous blend and terminal blend. The asphalt rubber morphology was evaluated in order to determine the compatibility of the systems. The asphalt rubber mixtures exhibit good resistance to permanent deformation and prolonged fatigue life in relation to mixture control. Therefore it is concluded that the application of asphalt rubber alters the characteristics of asphalt mixture in a very beneficial way.

  5. Radiosotopic assay and binder therefor

    International Nuclear Information System (INIS)

    Caston, J.D.; Kamen, B.A.

    1976-01-01

    A rapid and less costly radioisotopic assay for measuring the concentration of folate in blood serum is described. This procedure utilizes 3 H-pteroylmonoglutamate, unlabeled 5-methyltetrahydrofolic acid, and a partially purified folate binder, such as for example a folate binder extracted from hog kidney. The procedure involves radioisotopically relating the bound amounts of a labeled folate and a known folate at various concentrations of the known folate in a system containing a predetermined amount of the labeled folate, a predetermined amount of the binder factor for the folates, and a predetermined amount of defolated test serum. 16 claims, 8 drawing figures

  6. VISCOELASTIC STRUCTURAL MODEL OF ASPHALT CONCRETE

    Directory of Open Access Journals (Sweden)

    V. Bogomolov

    2016-06-01

    Full Text Available The viscoelastic rheological model of asphalt concrete based on the generalized Kelvin model is offered. The mathematical model of asphalt concrete viscoelastic behavior that can be used for calculation of asphalt concrete upper layers of non-rigid pavements for strength and rutting has been developed. It has been proved that the structural model of Burgers does not fully meet all the requirements of the asphalt-concrete.

  7. The crack growth mechanism in asphaltic mixes

    NARCIS (Netherlands)

    Jacobs, M.M.J.; Hopman, P.C.; Molenaar, A.A.A.

    1995-01-01

    The crack growth mechanism in asphalt concrete (Ac) mixes is studied. In cyclic tests on several asphaltic mixes crack growth is measured, both with crack foils and with cOD-gauges. It is found that crack growth in asphaltic mixes is described by three processes which are parallel in time: cohesive

  8. Induction Healing of Porous Asphalt Concrete

    NARCIS (Netherlands)

    Liu, Q.

    2012-01-01

    Porous asphalt shows excellent performance in both noise reduction and water drainage. Although porous asphalt has these great qualities, its service life is much shorter (sometimes only half) compared to dense graded asphalt roads. Ravelling, which is the loss of aggregate particles from the

  9. Evaluation of recycled asphaltic concrete : final report.

    Science.gov (United States)

    1977-01-01

    This report describes a project in which approximately 6,200 tons (5,630 Mg) of asphaltic concrete were recycled through a conventional asphalt batch plant. During the construction of the project, a buildup of asphalt-coated fines occurred in the dry...

  10. Characterization of asphalt treated base course material

    Science.gov (United States)

    2010-06-01

    Asphalt-treated bases are often used in new pavements; the materials are available and low-cost, but there is little data on how these materials perform in cold regions. : This study investigated four ATB types (hot asphalt, emulsion, foamed asphalt,...

  11. Rheological Characterization of Warm-Modified Asphalt Mastics Containing Electric Arc Furnace Steel Slags

    Directory of Open Access Journals (Sweden)

    M. Pasetto

    2016-01-01

    Full Text Available The environmental sustainability of road materials and technologies plays a key role in pavement engineering. In this sense, the use of Warm Mix Asphalt (WMA, that is, a modified asphalt concrete that can be produced and applied at lower temperature, is considered an effective solution leading to environmental and operational benefits. The environmental sustainability of WMA can be further enhanced with the inclusion of steel slag in partial substitution of natural aggregates. Nevertheless, such innovative material applied at lower temperatures containing warm additives and steel slag should be able to guarantee at least the same performance of traditional hot mix asphalts, thus assuring acceptable mechanical properties and durability. Therefore, the purpose of this study is to investigate the rheological behaviour of bituminous mastics obtained combining a warm-modified binder and a filler (material passing to 0.063 mm coming from electric arc furnace steel slag. To evaluate the influence of both warm additive and steel slag, a plain binder and limestone filler were also used for comparison purposes. Complex modulus and permanent deformation resistance of bitumens and mastics were assessed using a dynamic shear rheometer. Experimental results showed that steel slag warm mastics assure enhanced performance demonstrating promising applicability.

  12. Testing of Binders Toxicological Effects

    Science.gov (United States)

    Strokova, V.; Nelyubova, V.; Rykunova, M.

    2017-11-01

    The article presents the results of a study of the toxicological effect of binders with different compositions on the vital activity of plant and animal test-objects. The analysis of the effect on plant cultures was made on the basis of the phytotesting data. The study of the effect of binders on objects of animal origin was carried out using the method of short-term testing. Based on the data obtained, binders are ranked according to the degree of increase in the toxic effect: Gypsum → Portland cement → Slag Portland cement. Regardless of the test-object type, the influence of binders is due to the release of various elements (calcium ions or heavy metals) into the solution. In case of plant cultures, the saturation of the solution with elements has a positive effect (there is no inhibitory effect), and in case of animal specimens - an increase in the toxic effect.

  13. Investigation on Tensile Strength Ratio (TSR Specimen to Predict Moisture Sensitivity of Asphalt Pavements Mixture and Using Polymer to Reduce Moisture Damage

    Directory of Open Access Journals (Sweden)

    Mohammed Aziz Hameed Al-Shaybani

    2017-05-01

    Full Text Available Moisture damage of asphalt concrete is defined as losing the strength and Permanence caused by the active presence of moisture.The most common technique to reduce moisture damage is using modifiers with the asphalt binder or the aggregate.The goal of this study was to explore the effect of various modifiers of polymer on the moisture susceptibility mixture of asphaltic concrete pavement. Modifiers included in this research selected two kinds of polymers Crumb Rubber No 50 (CR No 50 and Methyl Methacrylates (MMA(which are available in the local markets in Iraq and have been used in three percentages for each type. These percentages are (5, 10 and 15% for (CR No 50 and (2.5, 5 and 7.5(% for (MMA.Each type of these polymers is blended with asphalt by wet process at constant blending times for a suitable range of temperatures. The experimental works showed that all polymers modified mixtures have indirect tensile strength higher than control asphalt mixtures, its about (2-15 %, dependent on different type of polymer and polymer concentration under predicted suitable blending time.Test results of indirect tensile strength indicated betterment in modifying the proprieties of mixture, the increased resistance mixture of asphalt concrete pavement versus moisture damage, and reduced the effect of water on asphalt concrete properties. The final result is the addition of (10% CR No 50 and (5% MMA to asphalt mixtures showed an improved mixture of asphalt concrete properties and produced strong mixtures for road construction.One model is predicted for tensile strength ratio [TSR]to estimate the effects of polymer modification on moisture susceptibility mixture of asphalt concrete.

  14. Initiative assessment of asphalt works

    International Nuclear Information System (INIS)

    Rikheim, Bente; Kjerschow, Einar

    2003-01-01

    Several asphalt works are utilizing heat from combustion of used oil for drying and heating of rock material in the production of asphalt. According to new regulations on combustion of waste, used oil is to be regarded as waste and subject to emission requirements according to the combustion regulations. Measurements show that emissions of CO, dust, dioxins, TOC and SO 2 exceed the limits set by the regulations. To conform to the regulations these asphalt works must improve their combustion technique. However, such measures may lead to increased formation of NOx. It is recommended that a combustion chamber for drying of rock material should be used in order to reduce the emissions of CO and TOC concentrations. The concentration of SO 2 may be reduced by dry cleaning by means of injection of lime. In the same way, active carbon is injected to remove dioxins. The asphalt works must be outfitted with measuring equipment that monitors and records certain operation and control parameters and some emission to air parameters. Periodic measurements are to be done of heavy metals and dioxins. It is estimated that the measures necessary to make the asphalt works comply with the regulations will cost about NOK 4 530 000 in investment per plant and that the operation expenses will increase by NOK 700 000 per year per plant. This includes maintenance, control etc

  15. Modelling of Asphalt Concrete Stiffness in the Linear Viscoelastic Region

    Science.gov (United States)

    Mazurek, Grzegorz; Iwański, Marek

    2017-10-01

    Stiffness modulus is a fundamental parameter used in the modelling of the viscoelastic behaviour of bituminous mixtures. On the basis of the master curve in the linear viscoelasticity range, the mechanical properties of asphalt concrete at different loading times and temperatures can be predicted. This paper discusses the construction of master curves under rheological mathematical models i.e. the sigmoidal function model (MEPDG), the fractional model, and Bahia and co-workers’ model in comparison to the results from mechanistic rheological models i.e. the generalized Huet-Sayegh model, the generalized Maxwell model and the Burgers model. For the purposes of this analysis, the reference asphalt concrete mix (denoted as AC16W) intended for the binder coarse layer and for traffic category KR3 (5×105 controlled strain mode. The fixed strain level was set at 25με to guarantee that the stiffness modulus of the asphalt concrete would be tested in a linear viscoelasticity range. The master curve was formed using the time-temperature superposition principle (TTSP). The stiffness modulus of asphalt concrete was determined at temperatures 10°C, 20°C and 40°C and at loading times (frequency) of 0.1, 0.3, 1, 3, 10, 20 Hz. The model parameters were fitted to the rheological models using the original programs based on the nonlinear least squares sum method. All the rheological models under analysis were found to be capable of predicting changes in the stiffness modulus of the reference asphalt concrete to satisfactory accuracy. In the cases of the fractional model and the generalized Maxwell model, their accuracy depends on a number of elements in series. The best fit was registered for Bahia and co-workers model, generalized Maxwell model and fractional model. As for predicting the phase angle parameter, the largest discrepancies between experimental and modelled results were obtained using the fractional model. Except the Burgers model, the model matching quality was

  16. Evaluation of the chemical modifications in petroleum asphalt cement with the addition of polypropylene; Avaliacao das modificacoes quimicas no cimento asfaltico de petroleo com a adicao de polipropileno

    Energy Technology Data Exchange (ETDEWEB)

    Marcondes, C.P.; Sales, M.J.A.; Resck, I.S., E-mail: mjsales@unb.b [Universidade de Brasilia (LabPol/UnB), DF (Brazil). Inst. de Quimica. Lab. de Pesquisa em Polimeros; Farias, M.M.; Souza, M.V.R. [Universidade de Brasilia (UnB), DF (Brazil). Dept. de Engenharia Civil e Ambiental

    2010-07-01

    Studies show that the common distress mode in the Brazilian highway network are fatigue cracks and plastic deformation, which are associated with the type of material used in the pavement layers, structural project, excessive traffic load and weathering. To minimize these defects, research on modifiers such as polymers, added to asphalt binders have been developed to provide physical, chemical and rheological improvement. This paper investigates chemical modifications of the binders with the addition of PP by FTIR, NMR and DSC. FTIR spectra of pure and modified binder showed no differences in absorption. NMR analysis showed no strong chemical bonds between the binder and PP. DSC curve of PP showed a melting temperature of 160 deg C ({Delta}H = 94J/g) and the pure binder presented an endothermic transition between 20 and 40 deg C ({Delta}H = 2J/g). In the DSC curves of mixtures, these transitions are not significant, indicating possible interactions between asphalt binder and PP. (author)

  17. Waterproofing improvement of radioactive waste asphalt solid

    International Nuclear Information System (INIS)

    Adachi, Katsuhiko; Yamaguchi, Takashi; Ikeoka, Akira.

    1981-01-01

    Purpose: To improve the waterproofing of asphalt solid by adding an alkaline earth metal salt and, further, paraffin, into radioactive liquid waste when processing asphalt solidification of the radioactive liquid waste. Method: Before processing molten asphalt solidification of radioactive liquid waste, soluble salts of alkaline earth metal such as calcium chloride, magnesium chloride, or the like is added to the radioactive liquid waste. Paraffin having a melting point of higher than 60 0 C, for example, is added to the asphalt, and waterproofing can be remarkably improved. The waste asphalt solid thus fabricated can prevent the swelling thereof, and can improve its waterproofing. (Yoshihara, H.)

  18. Thermal behavior of asphalt cements

    International Nuclear Information System (INIS)

    Claudy, P.M.; Letoffe, J.M.; Martin, D.; Planche, J.P.

    1998-01-01

    Asphalt cements are highly complex mixtures of hydrocarbon molecules whose thermal behavior is of prime importance for petroleum and road industry. From DSC, the determination of several thermal properties of asphalts is given, e.g. glass-transition temperature and crystallized fraction content.The dissolution of a pure n-paraffin C n H 2n+2 in an asphalt, as seen by DSC, should be a single peak. For 20 g of these glasses change with time and temperature. The formation of the crystallized phases is superposed to the enthalpic relaxation of the glasses, making a kinetic study very difficult. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. Potential of Waste Oyster Shells as a Novel Biofiller for Hot-Mix Asphalt

    Directory of Open Access Journals (Sweden)

    Nader Nciri

    2018-03-01

    Full Text Available This paper reports the use of waste oyster shells as a novel biofiller for hot-mix asphalt (HMA pavement applications. The effects of different fractions (e.g., 0, 5, 10, 15 wt % of oyster shell powder (OSP on the bitumen performance were investigated. The chemical properties of unfilled and OSP-filled asphalts were characterized by means of thin layer chromatography-ionization detection (TLC-FID, Fourier transform-infrared spectroscopy (FT-IR, X-ray diffraction (XRD, and scanning electron microscopy (SEM. Thermal characteristics were examined by thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. Physical and rheological properties were assessed through penetration, softening point, ductility, and dynamic shear rheometer (DSR tests. Results showed that OSP addition increased the resins content, as well as the stiffness of blends. No obvious reactions have occurred between the filler and the asphalt. A higher dose of OSP altered the morphology of the binder, whereas lower and intermediate doses improved its thermal stability and enhanced its low-temperature, rutting, and fatigue performances with respect to the plain asphalt. Overall, the waste oyster shells could be used as filler substitute, not only to improve the quality of road pavements but also to reduce the cost of their construction and solve the waste disposal problems.

  20. Aging Influence on Fatigue Characteristics of RAC Mixtures Containing Warm Asphalt Additives

    Directory of Open Access Journals (Sweden)

    Feipeng Xiao

    2010-01-01

    Full Text Available Aging is an important factor to affect the long-term performance of asphalt pavement. The fatigue life of a typical warm mix asphalt (WMA is generally related to various factors of rheological and mechanical properties of the mixture. The study of the fatigue behavior of the specific rubberized WMA is helpful in recycling the scrap tires and saving energy in terms of the conventional laboratory aging process. This study explores the utilization of the conventional fatigue analysis approach in investigating the cumulative dissipated, stiffness, and fatigue life of rubberized asphalt concrete mixtures containing the WMA additive after a long-term aging process. The aged beams were made with one rubber type (−40 mesh ambient crumb rubber, two aggregate sources, two WMA additives (Asphamin and Sasobit, and tested at 5 and 20ºC. A total of 55 aged fatigue beams were tested in this study. The test results indicated that the addition of crumb rubber extends the fatigue resistance of asphalt binder while WMA additive exhibits a negative effect. The study indicated that the WMA additive generally has an important influence on fatigue life. In addition, test temperature and aggregate source play an important role in determining the cumulative dissipated energy, stiffness, and fatigue life of an aged mixture.

  1. Analysis of the dispersion of air pollutants from a factory Asphalt in Nuevo Vallarta, Nay., Mex

    Science.gov (United States)

    Carrillo-Gonzalez, F. M.; Gaitán-Rodríguez, M.; Cornejo-López, V. M.; Morales-Hernández, J. C.

    2013-12-01

    An asphalt factory has operated intermittently near the urban area of Nuevo Vallarta on Banderas Bay, Nayarit, Mex. This factory has emissions that can affect the health of people living in the colonies nearest are Valle Dorado and San Vicente. The dispersion of emissions depends on the wind (sea breeze-land breeze) and the roof of the inversion, these phenomena determined by the density and temperature of the lower layers of the atmosphere. Asphalts are dark colored binder materials, formed by a complex non-volatile hydrocarbon chains and high molecular weight. Asphalts are produced from petroleum, but by a process of evaporation of the volatiles, leaving the asphalt alone. Therefore, the material emitted by the fireplace are mainly low molecular weight hydrocarbons known as polycyclic aromatic hydrocarbons (PAHs). The Emergency Response Guide 2008 developed by various agencies in Canada, U.S. and Mexico mentions that the hydrocarbon gas can have health effects. Animal studies have shown that PAHs can cause harmful effects to the skin, body fluids and some PAHs are carcinogenic. An analysis of the wind field, monthly and seasonal averages for the years 2010 and 2011, recorded in AWS administered by the CEMCO and other stations located near the study area.

  2. Modeling of asphalt by means of discrete element method – an initial study

    DEFF Research Database (Denmark)

    Feng, Huan; Hededal, Ole; Stang, Henrik

    of conducting time-consuming and lab-costly procedures. The use of numerical models, capable of reducing greatly the testing cost, has shown great potential in characterizing asphalt-aggregate mixtures for both material evaluation and structural design purposes, [1],[2]. Discrete element method (DEM) is one...... – will be applied. The work presented here will focus on the discrete element method as a tool for modelling composite materials, i.e. determination of a representative volume; boundary conditions; characterisation of the components mastic (binder + filler) and aggregates; and establishment of virtual test samples....... Results from initial tests will be presented and the future development of the model towards characterising asphalt from its composition will be outlined....

  3. Effect of using of reclaimed asphalt and/or lower temperature asphalt on the availability of the road network

    NARCIS (Netherlands)

    Nicholls, C.; Wayman, M.; Mollenhauer, K.; McNally, C.; Tabakovic, A.; Varveri, A.; Cassidy, S.; Shahmohammadi, R.; Taylor, R.

    2015-01-01

    The use of reclaimed asphalt, secondary component materials and/or additives and lower temperature asphalt are being increasingly used in order to improve the sustainability of asphalt production. The use of reclaimed asphalt reduces the need for virgin materials whilst lower temperature asphalts

  4. Yttria hydroxy-salt binders

    International Nuclear Information System (INIS)

    Holcombe, C.E. Jr.

    1978-01-01

    Binder phase (primarily chloride or nitrate) formation was examined in YX 3 --NaOH--H 2 O, Y 2 O 3 --acid--H 2 O, and Y 2 O 3 --salt--H 2 O systems. The cementitious phase consisted mostly of plate- (or needle-) shaped hydroxy salts of the general formula Y 2 (OH)/sub 6-m/X/sub m/ nH 2 O, where m and n normally equal one. These binders were examined by x-ray diffraction and thermal analysis techniques. Nitrate binders decompose to Y 2 O 3 by 600 0 C, whereas chloride binders form oxychlorides that sublime or convert to Y 2 O 3 after oxygen replacement of chlorine (in air) at > 1000 0 C. Although nitric and hydrochloric acid solutions form porous ( 2 O 3 powder, salt solutions (i.e., NH 4 NO 3 , Mg(NO 3 ) 2 , NH 4 Cl, and YCl 3 approx. = 6H 2 O) slow the reaction considerably (48 h to 4 weeks), allowing 70- to 80%-dense cements to form. The effects of formation conditions on physical properties of binders were studied. Examination of scandium and lanthanide oxides showed that several behave in the same way as yttria

  5. The Effect of Crumb Rubber Particle Size to the Optimum Binder Content for Open Graded Friction Course

    Directory of Open Access Journals (Sweden)

    Mohd Rasdan Ibrahim

    2014-01-01

    Full Text Available The main objective of this paper is to investigate the relations of rubber size, rubber content, and binder content in determination of optimum binder content for open graded friction course (OGFC. Mix gradation type B as specified in Specification for Porous Asphalt produced by the Road Engineering Association of Malaysia (REAM was used in this study. Marshall specimens were prepared with four different sizes of rubber, namely, 20 mesh size [0.841 mm], 40 mesh [0.42 mm], 80 mesh [0.177 mm], and 100 mesh [0.149 mm] with different concentrations of rubberised bitumen (4%, 8%, and 12% and different percentages of binder content (4%–7%. The appropriate optimum binder content is then selected according to the results of the air voids, binder draindown, and abrasion loss test. Test results found that crumb rubber particle size can affect the optimum binder content for OGFC.

  6. Mathematical Approach in Rheological Characterizing of Asphalt Emulsion Residues

    Directory of Open Access Journals (Sweden)

    Seong Hwan Cho

    2015-01-01

    Full Text Available Three different emulsion residues, such as SS1HP, HFE90, and SS-1VH (trackless, and a base asphalt binder (PG 64-22 are compared to characterize rheological properties by using DSR test. In order to capture the emulsion properties, different frequencies (from 1 to 100 rad/sec at a 10% constant shear rate and temperatures (from −45°C to 75°C with 15°C increments were applied. Then, a master curve for shear modulus was plotted for each emulsion. The transition of the HFE90 emulsion from viscous to elastic behavior occurs at lower temperatures, compared to the other materials. This emulsion is known for performing in a wider temperature range as shown in the results. The trackless emulsion presents an elastic behavior at intermediate temperatures. This product is known as having very fast setting and high resistance to shear stresses. The trackless emulsion presents the highest viscous and elastic modulus, followed by the PG 64-22 binder, SS1HP, and HFE90 emulsion. Shear strength test results show a behavior between trackless emulsion and SS1HP similar to the frequency sweep test results performed by DSR.

  7. Cold in-place recycling characterization framework for single or multiple component binder systems

    Science.gov (United States)

    Cox, Benjamin C.

    Cold in-place recycling (CIR) is a pavement rehabilitation technique which has gained momentum in recent years. This momentum is due partly to its economic and sustainability characteristics, which has led to CIR market expansion. When pavement network deterioration is considered alongside increasing material costs, it is not beyond reason to expect demands on CIR to continue to increase. Historically, single component binder (SCB) systems, those with one stabilization binder (or two if the secondary binder dosage is 1% or less), have dominated the CIR market and could be considered the general state of practice. Common stabilization binders are either bituminous or cementitious. Two example SCB systems would be: 1) 3% portland cement, or 2) 3% asphalt emulsion with 1% hydrated lime. While traditional SCB systems have demonstrated positive economic and sustainability impacts, this dissertation focuses on multiple component binder (MCB) systems (bituminous and cementitious combined) which exhibit the potential to provide better overall economics and performance. Use of MCBs has the potential to alleviate SCB issues to some extent (e.g. cracking with cementitious SCBs, rutting with bituminous SCBs). Furthermore, to fairly represent both binders in an MCB system a universal design method which can accommodate multiple binder types is needed. The main objectives of this dissertation are to develop a universal CIR design framework and, using this framework, characterize multiple SCB and MCB systems. Approximately 1500 CIR specimens were tested herein along with approximately 300 asphalt concrete specimens which serve as a reference data set for CIR characterization. A case study of a high-traffic Mississippi CIR project which included cement SCB and emulsion SCB sections is also presented to support laboratory efforts. Individual components needed to comprise a universal design framework, such as curing protocols, were developed. SCB and MCB characterization indicated

  8. Routine Testing of Bitumen Binders

    Science.gov (United States)

    Holý, Michal; Remišová, Eva

    2017-12-01

    The quality of bituminous binders used in the construction and maintenance of road surfaces is currently assessed by empirical testing based on obtaining one value for specific boundary conditions, which were designed about 100 years ago. Basic empirical tests include the softening point and penetration, but the practice shows that these tests appear to be inadequate. The evaluation of changes of bitumen properties during the production and paving process of bituminous mixture is also important. The paper points out how the "traditional" tests as softening point and penetration and viscosity are sufficient to evaluate properties of bitumen binders.

  9. Effect of Carbon Black Nanoparticles from the Pyrolysis of Discarded Tires on the Performance of Asphalt and its Mixtures

    Directory of Open Access Journals (Sweden)

    Chuangmin Li

    2018-04-01

    Full Text Available It is of great benefit to the environment and the economy to use discarded tires pyrolysis carbon black (TPCB nanoparticles as a modifier for asphalt binders. A base asphalt binder with 60/80 penetration (GF-70 was selected to prepare the TPCB-modified asphalt binder (TPCB/GF-70 with a 15% dosage of TPCB by the melt blending method. The test instruments, such as Fourier transform infrared spectroscopy, laser particle size analyzer, and thermogravimetric analyzer, were used to study the characteristics of TPCB. The physical performance of GF-70 and TPCB/GF-70 were tested and the rheological properties were also tested with a dynamic shear rheometer to investigate TPCB’s effect on the performance of GF-70. In addition, the aromatic hydrocarbon oil (AHO was used as the softening agent for TPCB/GF-70. The pavement performance of AC-13 and AC-20 was studied to evaluate the comprehensive effect of TPCB and AHO on the pavement performance of asphalt mixtures. Results show that a 15% dosage of TPCB can significantly improve the anti-rutting performance of GF-70, and decrease the low-temperature performance of GF-70 within one PG grade. AHO can obviously improve the low-temperature performance of TPCB/GF-70, but does not significantly decrease the high-temperature performance. With the addition of AHO and a 0.1% higher oil aggregate ratio, TPCB tends to significantly improve the anti-rutting performance and the low-temperature performance of TPCB-modified mixtures; the moisture stability of TPCB and AHO composite modified mixtures satisfies the requirement of water stability.

  10. Process of preparing asphalt bodies, etc

    Energy Technology Data Exchange (ETDEWEB)

    Klever, H W

    1924-05-03

    A process for the preparation of asphaltic bodies is characterized in that bituminous minerals such as oil-shale, coal, etc. are submitted to a heating process, with or without pressure, which is so mild that asphaltic bodies result and petroleum and tar oils are formed only in small amounts, and that the asphaltic bodies are used either together with the mineral constituents or after filtration from the latter.

  11. Operational properties of nanomodified stone mastic asphalt

    OpenAIRE

    Inozemtsev Sergey Sergeevich; Korolev Evgeniy Valer’evich

    2015-01-01

    In order to prolong the lifetime and to improve the quality of pavements made of asphalt concrete it is necessary to apply innovative solutions in the process of design of such building materials. In order to solve the problem of low durability of asphalt concrete a modifier was proposed, which consists of diatomite, iron hydroxide sol (III) and silica sol. Application of the diatomite with nanoscale layer of nanomodifier allows getting a stone mastic asphalt, which has high values of physica...

  12. Heat-resistant inorganic binders.

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich,

    2017-04-01

    Full Text Available The authors consider some aspects of production of inorganic heat-resistant composite materials in which new classes of inorganic binders - the basic salts of various metals – are applied. The possibility to use hydroxochlorides and hydroxonitrates of aluminum, zirconium, chromium and a number of other metals as the binder has been shown. The main products of the thermal decomposition of all types of binders discussed in this paper are nano-dispersed highly refractory oxides. Increased pressure in the manufacture of these materials shifts the position of the minimum of the dependence «production strength – production temperature» in the direction of low temperatures. This effect is caused by decreased film thickness of the binder located between filler particles and hence by increased rate of transfer of the matter to the interface and by facilitated sintering process. Materials based on the systems containing chromium and some other elements in transitional oxidation states are colour. For this reason, they have the worst thermal conductivity under the same heat resistance compared to colorless materials.

  13. The Influence of Wall Binders

    DEFF Research Database (Denmark)

    Rose, Jørgen

    1997-01-01

    This report is an analysis of the thermal bridge effects that occur in wall binders in masonry buildings. The effects are analyzed using a numerical calculation programme.The results are compared to the values given in the danish standard, DS418....

  14. Final Rule to Reduce Toxic Air Emissions from Asphalt Processing and Asphalt Roofing Manufacturing Facilities Fact Sheet

    Science.gov (United States)

    This page contains a February 2003 fact sheet with information regarding the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Asphalt Processing and Asphalt Roofing Manufacturing.

  15. Modified asphalt for pavements; Hosoyo kaishitsu asufuaruto ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Tsukagoshi, T. [Nippon Oil Co. Ltd., Yokohama (Japan)

    1997-10-01

    Modified asphalt has been used widely in such applications as countermeasure against rutting, countermeasure against wear caused by tire chains in snowy and cold areas, or bridge deck pavement. Features of various kinds of modified asphalt, standards, and standard properties are introduced. Modified asphalt containing natural asphalt is used for steel plate deck pavement. Semi-blown asphalt is used when emphasis must be given to the countermeasure for flowing resistance of asphalt pavement. Features and standards of asphalt containing rubber, thermoplastic elastomer, and thermoplastic resin are described. Asphalt containing heat-setting resin shows excellent characteristics, which other types of modified asphalt do not possess, in the laboratory resistance test for fatigue, flowing, and wear. Change in the history of modified asphalt in Japan from the initial stage to the present are explained and shown in a table together with time and phenomena, and the change in the production of modified asphalt is shown. 15 refs., 5 figs., 5 tabs.

  16. Process of coagulating asphalts, etc

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, J A; Pfersch, G

    1931-03-28

    The present invention has for its object a process of deasphaltizing and deparaffining applicable to mixtures of hydrocarbons such as crude mineral oils and tars obtained under the influence of heat from shales, lignites, peats, and similar products, to natural bitumens and those obtained by extraction with organic solvents and also all those derived from the substances, the process in question having the following characteristics: the coagulation or the precipitation of the asphaltic material, the resinous material, and the asphaltic and resinous material, which is found in the colloidal state or any other state in the substances given above, is obtained by the addition of a small amount of solvent and of acids or mixtures of acids.

  17. Regional implementation of warm mix asphalt.

    Science.gov (United States)

    2014-09-01

    Asphalt is used in over 94 percent of all paved roadways in the United States. The ability to reduce its cost and emissions : while improving its performance has benefits that could potentially change the direction the asphalt industry moves toward i...

  18. Laboratory evaluation of warm mix asphalt.

    Science.gov (United States)

    2011-09-14

    "Hot Mix Asphalt (HMA) has been traditionally produced at a discharge temperature of between : 280F (138C) and 320 F (160C), resulting in high energy (fuel) costs and generation of greenhouse : gases. The goal for Warm Mix Asphalt (WMA) is to...

  19. Hot Mix Asphalt Recycling : Practices and Principles

    NARCIS (Netherlands)

    Mohajeri, M.

    2015-01-01

    Hot mix asphalt recycling has become common practice all over the world since the 1970s because of the crisis in oil prices. In the Netherlands, hot recycling has advanced to such an extent that in most of the mixtures more than 50% of reclaimed asphalt (RA) is allowed. These mixtures with such a

  20. Mix Proportion Design of Asphalt Concrete

    Science.gov (United States)

    Wu, Xianhu; Gao, Lingling; Du, Shoujun

    2017-12-01

    Based on the gradation of AC and SMA, this paper designs a new type of anti slide mixture with two types of advantages. Chapter introduces the material selection, ratio of ore mixture ratio design calculation, and determine the optimal asphalt content test and proportioning design of asphalt concrete mix. This paper introduces the new technology of mix proportion.

  1. Asphalt dust waste material as a paste volume in developing sustainable self compacting concrete (SCC)

    Science.gov (United States)

    Ismail, Isham; Shahidan, Shahiron; Bahari, Nur Amira Afiza Saiful

    2017-12-01

    Self-compacting concrete (SCC) mixtures are usually designed to have high workability during the fresh state through the influence of higher volumes of paste in concrete mixtures. Asphalt dust waste (ADW) is one of disposed materials obtained during the production of asphalt premix. These fine powder wastes contribute to environmental problems today. However, these waste materials can be utilized in the development of sustainable and economical SCC. This paper focuses on the preliminary evaluations of the fresh properties and compressive strength of developed SCC for 7 and 28 days only. 144 cube samples from 24 mixtures with varying water binder ratios (0.2, 0.3 and 0.4) and ADW volume (0% to 100%) were prepared. MD940 and MD950 showed a satisfactory performance for the slump flow, J-Ring, L-Box and V-Funnel tests at fresh state. The compressive strength after 28 days for MD940 and MD950 was 36.9 MPa and 28.0 MPa respectively. In conclusion, the use of ADW as paste volume should be limited and a higher water binder ratio will significantly reduce the compressive strength.

  2. Advanced evaluation of asphalt mortar for induction healing purposes

    NARCIS (Netherlands)

    Apostolidis, P.; Liu, X.; Scarpas, Athanasios; Kasbergen, C.; van de Ven, M.F.C.

    2016-01-01

    Induction heating technique is an innovative asphalt pavement maintenance method that is applied to inductive asphalt concrete mixes in order to prevent the formation of macro-cracks by increasing locally the temperature of asphalt. The development of asphalt mixes with improved electrical and

  3. Latex improvement of recycled asphalt pavement

    Science.gov (United States)

    Drennon, C.

    1982-08-01

    The performance of a single unmodified milled recycled asphalt concrete was compared to milled asphalt concrete modified by addition of three types of rubber latex. Latex was added at 2, 3, 5, and 8 percent latex by weight of asphalt in the asphalt concrete. Lattices used were a styrene butadiene (SBR), a natural rubber (NR), an acrylonitrile butadiene (NBR), and four varieties of out of specification SBR lattices. Marshall tests, while indecisive, showed a modest improvement in properties of SBR and NR added material at 3 and 5 percent latex. Addition of NBR latex caused deterioration in Marshall stability and flow over that of control. Repeated load tests were run using the indirect tensile test, analyzed by the VESYS program, which computes life of pavements. Repeated load tests showed improvement in asphalt concrete life when 3 and 5 percent SBR was added. Improvement was also shown by the out of specification SBR.

  4. Twin screw wet granulation: Binder delivery.

    Science.gov (United States)

    Saleh, Mohammed F; Dhenge, Ranjit M; Cartwright, James J; Hounslow, Michael J; Salman, Agba D

    2015-06-20

    The effects of three ways of binder delivery into the twin screw granulator (TSG) on the residence time, torque, properties of granules (size, shape, strength) and binder distribution were studied. The binder distribution was visualised through the transparent barrel using high speed imaging as well as quantified using offline technique. Furthermore, the effect of binder delivery and the change of screw configuration (conveying elements only and conveying elements with kneading elements) on the surface velocity of granules across the screw channel were investigated using particle image velocimetry (PIV). The binder was delivered in three ways; all solid binder incorporated with powder mixture, 50% of solid binder mixed with powder mixture and 50% mixed with water, all the solid binder dissolved in water. Incorporation of all solid binder with powder mixture resulted in the relatively longer residence time and higher torque, narrower granule size distribution, more spherical granules, weaker big-sized granules, stronger small-sized granules and better binder distribution compared to that in other two ways. The surface velocity of granules showed variation from one screw to another as a result of uneven liquid distribution as well as shown a reduction while introducing the kneading elements into the screw configuration. Copyright © 2015. Published by Elsevier B.V.

  5. Development of a stress-mode sensitive viscoelastic constitutive relationship for asphalt concrete: experimental and numerical modeling

    Science.gov (United States)

    Karimi, Mohammad M.; Tabatabaee, Nader; Jahanbakhsh, H.; Jahangiri, Behnam

    2017-08-01

    Asphalt binder is responsible for the thermo-viscoelastic mechanical behavior of asphalt concrete. Upon application of pure compressive stress to an asphalt concrete specimen, the stress is transferred by mechanisms such as aggregate interlock and the adhesion/cohesion properties of asphalt mastic. In the pure tensile stress mode, aggregate interlock plays a limited role in stress transfer, and the mastic phase plays the dominant role through its adhesive/cohesive and viscoelastic properties. Under actual combined loading patterns, any coordinate direction may experience different stress modes; therefore, the mechanical behavior is not the same in the different directions and the asphalt specimen behaves as an anisotropic material. The present study developed an anisotropic nonlinear viscoelastic constitutive relationship that is sensitive to the tension/compression stress mode by extending Schapery's nonlinear viscoelastic model. The proposed constitutive relationship was implemented in Abaqus using a user material (UMAT) subroutine in an implicit scheme. Uniaxial compression and indirect tension (IDT) testing were used to characterize the viscoelastic properties of the bituminous materials and to calibrate and validate the proposed constitutive relationship. Compressive and tensile creep compliances were calculated using uniaxial compression, as well as IDT test results, for different creep-recovery loading patterns at intermediate temperature. The results showed that both tensile creep compliance and its rate were greater than those of compression. The calculated deflections based on these IDT test simulations were compared with experimental measurements and were deemed acceptable. This suggests that the proposed viscoelastic constitutive relationship correctly demonstrates the viscoelastic response and is more accurate for analysis of asphalt concrete in the laboratory or in situ.

  6. Evaluation of Moisture Damage and Stripping of Asphalt Concrete Prepared With New Additives of Polymer Modified Bitumen

    Directory of Open Access Journals (Sweden)

    Basim H. Al-Humeidawi

    2016-03-01

    Full Text Available The moisture induced damage and stripping are two of common reasons of premature failure of flexible pavement. The current research involved an extensive experimental investigation on two types of polymers (Novolac and PVA as modifiers in order to produce Polymer Modified Bitumen (PMB. Different ratios of both additives were investigated for rheological properties of binder and mechanical properties of Hot Mix Asphalt (HMA. The rheological properties of PMB were evaluated by penetration, softening point, ductility and thin film oven tests. The mechanical properties of HMA were assessed by Marshall Stability test, Retained Marshall Stability test, indirect tensile strength test, Tensile Strength Ratio (TSR, and striping test. The results of tests showed that the Novolac modifier improves the cohesion properties of binder and the adhesion of binder to aggregate. The PVA modifier mainly improves the adhesion of binder to aggregate with less degree of that of using Novolac. Both modifiers significantly improve moisture sensitivity and decrease the stripping of HMA. Also, the results showed that the addition of 2% of Novolac to binder to produce PMB represents the optimum option. The HMA with PMB Novolac 2% improves the Marshall Stability, Retained Marshall Stability, and TSR by 45%, 14% and 44% respectively. The very small amount of these additives compared with mix components and their reasonable price make them a superior and practical solution for premature failure of flexible pavement.

  7. Investigation of statistical relationship between dynamic modulus and thermal strength of asphalt concrete

    International Nuclear Information System (INIS)

    Qadir, A.; Gular, M.

    2011-01-01

    Dynamic modulus is a performance indicator for asphalt concrete and is used to qualify asphalt mixtures based on stress-strain characteristics under repeated loading. Moreover, the low temperature cracking of asphalt concrete mixes are measured in terms of fracture strength and fracture temperature. Dynamic modulus test was selected as one of the simple performance tests in the AASHTO 2002 guidelines to rate mixtures according to permanent deformation performance. However, AASHTO 2002 guidelines is silent in relating dynamic modulus values to low temperature cracking, probably because of weak correlations reported between these two properties. The present study investigates the relation between these two properties under the influence of aggregate type and mix gradation. Mixtures were prepared with two types of aggregate and gradations, while maintaining the binder type and air voids constant. The mixtures were later tested for dynamic modulus and fracture strength using thermal stress restrained specimen test (TSRST). Results indicate that there exists a fair correlation between the thermal fracture strength and stiffness at a selected test temperature and frequency level. These correlations are highly dependent upon the type of aggregate and mix gradation. (author)

  8. Advanced self-healing asphalt composites in the pavement performance field: mechanisms at the nano level and new repairing methodologies.

    Science.gov (United States)

    Agzenai, Yahya; Pozuelo, Javier; Sanz, Javier; Perez, Ignacio; Baselga, Juan

    2015-01-01

    In an effort to give a global view of this field of research, in this mini-review we highlight the most recent publications and patents focusing on modified asphalt pavements that contain certain reinforcing nanoparticles which impart desirable thermal, electrical and mechanical properties. In response to the increasing cost of asphalt binder and road maintenance, there is a need to look for alternative technologies and new asphalt composites, able to self-repair, for preserving and renewing the existing pavements. First, we will focus on the self-healing property of asphalt, the evidences that support that healing takes place immediately after the contact between the faces of a crack, and how the amount of healing can be measured in both the laboratory and the field. Next we review the hypothetical mechanisms of healing to understand the material behaviour and establish models to quantify the damage-healing process. Thereafter, we outline different technologies, nanotechnologies and methodologies used for self-healing paying particular attention to embedded micro-capsules, new nano-materials like carbon nanotubes and nano-fibres, ionomers, and microwave and induction heating processes.

  9. Electrical and mechanical properties of asphalt concrete containing conductive fibers and fillers

    NARCIS (Netherlands)

    Wang, H.; Yang, Jun; Liao, Hui; Chen, Xianhua

    2016-01-01

    Electrically conductive asphalt concrete has the potential to satisfy multifunctional applications. Designing such asphalt concrete needs to balance the electrical and mechanical performance of asphalt concrete. The objective of this study is to design electrically conductive asphalt concrete

  10. Binder effect on seashell structure

    Science.gov (United States)

    Kamarudin, Kamarul Azhar; Hatta, Mohamed Nasrul Mohamed; Baba, Noor Wahida Ab; Hussin, Rosniza; Ismail, Al Emran

    2017-10-01

    Self-protection or known as defensive covering can be alluded to something that can secure body, building, or vehicles from harm or assault. As the evolution going on, the material utilized as a part of plate armour continue changing, from steel, Kevlar, ceramic and the materials that can give better impact and benefit to the user. A study has been led to distinguish either seashell can be one of the fundamental source to produce protective material due to the properties of seashell that consist of calcium chloride. Seashell is crushed and chipped using variable speed rotor mill and is compressed into specimen shape followed the ASTM C1211-13. Three different samples is tested made from seashells that mix with three different binder i.e. water, kaolin and polyethylene glycol (PEG) each. The specimens then were sintered at elevated controlled temperature 400°C before run for three point bending test to determine their mechanical properties results. Result shows that specimen with water gives highest value for Young's modulus and ultimate strength compared to sample with binder of kaolin and PEG. This proved that seashell powder remain intact even at higher temperature.

  11. Alternative binder for copper concentrate briquetting

    Directory of Open Access Journals (Sweden)

    J. Łabaj

    2015-10-01

    Full Text Available In the paper, results of investigations on the use of new, alternative binder, based on technical grade glycerine and higher alcohols, for copper matte briquetting are presented. The use of alternative binder yields briquettes that show better drop and compressive strength properties compared with briquettes produced using traditional, sulphite lye binding material.

  12. On the microstructure of bituminous binders

    NARCIS (Netherlands)

    Fischer, H.R.; Dillingh, E.C.; Hermse, C.G.M.

    2014-01-01

    The objective of this work is to study the common features and the evolution of microstructures of bituminous binders regardless of their grade (PEN 10/20 to 160/220) and source/origin using the atomic force microscope operated in phase contrast mode. All bituminous binders show the same

  13. Method of reprocessing radioactive asphalt solidification products

    International Nuclear Information System (INIS)

    Nakaya, Iwao; Murakami, Tadashi; Miyake, Takafumi; Inagaki, Yuzo.

    1986-01-01

    Purpose: To obtain heat-stable solidification products and decrease the total volume thereof by modifying the solidified form by the reprocessing of existent radioactive asphalt solidification products. Method: Radioactive asphalt solidification products are heated into a fluidized state. Then, incombustible solvents such as perchloroethylene or trichloroethylene are added to a dissolving tank to gradually dissolve the radioactive asphalt solidification products. Thus, organic materials such as asphalts are transferred into the solvent layer, while inorganic materials containing radioactive materials remain as they are in the separation tank. Then, the inorganic materials containing the radioactive materials are taken out and then solidified, for example, by converting them into a rock or glass form. (Kawakami, Y.)

  14. Evaluation of asphalt treated permeable base.

    Science.gov (United States)

    2013-12-01

    III : Tec : hnical : Report Documentation Page : 1. Report No. : 2. Government Accession : No. : 3. Recipient's Catalog No : . : 201 : 3 : - : 09 : - : - : - : - : - : - : 4. Title and Subtitle : 5. Report Date : Evaluation of Asphalt Treated Permeab...

  15. Fatigue Behavior of Modified Asphalt Concrete Pavement

    Directory of Open Access Journals (Sweden)

    saad I. Sarsam

    2016-02-01

    Full Text Available Fatigue cracking is the most common distress in road pavement. It is mainly due to the increase in the number of load repetition of vehicles, particularly those with high axle loads, and to the environmental conditions. In this study, four-point bending beam fatigue testing has been used for control and modified mixture under various micro strain levels of (250 μƐ, 400 μƐ, and 750 μƐ and 5HZ. The main objective of the study is to provide a comparative evaluation of pavement resistance to the phenomenon of fatigue cracking between modified asphalt concrete and conventional asphalt concrete mixes (under the influence of three percentage of Silica fumes 1%, 2%, 3% by the weight of asphalt content, and (changing in the percentage of asphalt content by (0.5% ± from the optimum. The results show that when Silica fumes content was 1%, the fatigue life increases by 17%, and it increases by 46% when Silica fumes content increases to 2%, and that fatigue life increases to 34 % when Silica fumes content increases to 3% as compared with control mixture at (250 μƐ, 20°C and optimum asphalt content. From the results above, we can conclude the optimum Silica fumes content was 2%. When the asphalt content was 4.4%, the fatigue life has increased with the use of silica fumes by (50%, when asphalt content was 5.4%, the additives had led to increasing the fatigue life by (69%, as compared with the conventional asphalt concrete pavement.

  16. The use of polymer modified asphalt binder for high friction thin lift overlays in Connecticut.

    Science.gov (United States)

    2014-09-01

    Controlling the frictional characteristics of a roadway is of paramount importance when considering highway safety. Several state highway agencies specify a friction wearing course to be used in high profile or high accident prone areas. The Connecti...

  17. Operational properties of nanomodified stone mastic asphalt

    Directory of Open Access Journals (Sweden)

    Inozemtsev Sergey Sergeevich

    2015-03-01

    Full Text Available In order to prolong the lifetime and to improve the quality of pavements made of asphalt concrete it is necessary to apply innovative solutions in the process of design of such building materials. In order to solve the problem of low durability of asphalt concrete a modifier was proposed, which consists of diatomite, iron hydroxide sol (III and silica sol. Application of the diatomite with nanoscale layer of nanomodifier allows getting a stone mastic asphalt, which has high values of physical and mechanical properties and allows refusing from expensive stabilizing additive. Mineral filler was replaced by diatomite, which has been modified by iron hydroxide sol (III and silica sol. Modified diatomite allows sorption of bitumen and increase the cohesive strength and resistance to shear at positive temperatures. The modified asphalt has higher resistance to rutting at high temperature, abrasion resistance at low temperature and impact of climatic factors: alternate freezing and thawing, wetting-drying, UV and IR radiations. It is achieved by formation of solid and dense bitumen film at the phase interface and controlling the content of light fractions of the bitumen. The modifier consists of sol of iron hydroxide, which blocks the oxidation and polymerization of bitumen during operation. The proposed material allows controlling the initial structure formation of stone mastic asphalt. It was shown that modern test methods allow assessing the durability of asphalt in the design phase compositions.

  18. Effects of reclaimed asphalt pavement on indirect tensile strength test of conditioned foamed asphalt mix

    International Nuclear Information System (INIS)

    Katman, Herda Yati; Norhisham, Shuhairy; Ismail, Norlela; Ibrahim, Mohd Rasdan; Matori, Mohd Yazip

    2013-01-01

    This paper presents the results of Indirect Tensile Strength (ITS) Test for samples prepared with reclaimed asphalt pavement (RAP). Samples were conditioned in water at 25°C for 24 hours prior to testing. Results show that recycled aggregate from reclaimed asphalt pavement performs as well as virgin aggregate.

  19. Durability of European Asphalt Mixtures Containing Reclaimed Asphalt and Warm-Mix Additives

    NARCIS (Netherlands)

    Varveri, A.; Avgerinopoulos, S.; Scarpas, Athanasios

    2016-01-01

    This paper investigates the moisture susceptibility of European asphalt mixtures (SMA) containing reclaimed asphalt (RA) and warm mix (WMA) additives. Test sections of a typical SMA mixture have been laid, from which cylindrical samples were cored and utilized for laboratory testing. Four variants

  20. Electron beam hardened paint binder

    International Nuclear Information System (INIS)

    Johnson, O.B.; Labana, S.S.

    1976-01-01

    The invention concerns a paint binder hardened by the effect of electron beams (0.1-100 Mrad/sec). It consists of a dispersion of (A) an ethylenic unsaturated material in (B) at least one vinyl monomer. The component (A) in a reaction product of degraded rubber particles (0.1-4 μm) and an ethylenic unsaturated component with a reactive epoxy, hydroxy or carboxy group which is bonded to the rubber particles by ester or urethane compounds. The rubber particles possess a nucleus and a cross-linked elastomeric acryl polymer, an outer shell with reactive groups and an intermediate layer formed by the monomers of the nucleus and the shell. The manner of production is described in great detail and supplemented by 157 examples. The coatings are suitable to coat articles which will be subject to deformation. (UWI) [de

  1. Resistance to minor groove binders.

    Science.gov (United States)

    Colmegna, Benedetta; Uboldi, Sarah; Erba, Eugenio; D'Incalci, Maurizio

    2014-03-01

    In this paper multiple resistance mechanisms to minor groove binders (MGBs) are overviewed. MGBs with antitumor properties are natural products or their derivatives and, as expected, they are all substrates of P-glycoprotein (P-gp). However, a moderate expression of P-gp does not appear to reduce the sensitivity to trabectedin, the only MGB so far approved for clinical use. Resistance to this drug is often related to transcriptional mechanisms and to DNA repair pathways, particularly defects in transcription-coupled nucleotide excision repair (TC-NER). Therefore tumors resistant to trabectedin may become hypersensitive to UV rays and other DNA damaging agents acting in the major groove, such as Platinum (Pt) complexes. If this is confirmed in clinic, that will provide the rationale to combine trabectedin sequentially with Pt derivates.

  2. Experimental studies of biodegradation of asphalt by microorganisms

    International Nuclear Information System (INIS)

    Mine, Tatsuya; Mihara, Morihiro; Ooi, Takao; Lin, Kong-hua; Kawakami, Yasushi

    2000-04-01

    On the geological disposal system of the radioactive wastes, the activities of the microorganisms that could degrade the asphalt might be significant for the assessment of the system performance. As the main effects of the biodegradation of the asphalt, the fluctuation of leaching behavior of the nuclides included in asphalt waste has been indicated. In this study, the asphalt biodegradation test was carried out. The microorganism of which asphalt degradation ability was comparatively higher under aerobic condition and anaerobic condition was used. The asphalt biodegradation rate was calculated and it was evaluated whether the asphalt biodegradation in this system could occur. The results show that the asphalt biodegradation rate under anaerobic and high alkali condition will be 300 times lower than under aerobic and neutral pH. (author)

  3. Preparation and rheological behavior of polymer-modified asphalts

    Science.gov (United States)

    Yousefi, Ali Akbar

    1999-09-01

    Different materials and methods were used to prepare and stabilize polymer-modified asphalts. Addition of thermoplastic elastomers improved some technically important properties of asphalt. Due to inherent factors like large density difference between asphalt and polyethylene, many physical methods in which the structure of asphalt is unchanged, failed to stabilize this system. The effect of addition of copolymers and a pyrolytic oil residue derived from used tire rubber were also studied and found to be ineffective on the storage stability of the polymer-asphalt emulsions while high and moderate temperature properties of the asphalt were found to be improved. Finally, the technique of catalytic grafting of polymer on the surface of high-density particles (e.g. carbon black) was used to balance the large density difference between asphalt and polymer. The resulting polymer-asphalts were stable at high temperatures and showed enhanced properties at low and high temperatures.

  4. Investigating the creep properties of asphaltic concrete containing ...

    Indian Academy of Sciences (India)

    Hasan Taherkhani

    2018-03-10

    Mar 10, 2018 ... A three-stage model, developed was fitted to the dynamic ... This indicates that the rutting resistance of such asphalt ... drug delivery [23]. .... Different mathematical ... viour of asphaltic materials and prediction of flow number. A.

  5. Comparison of winter temperature profiles in asphalt and concrete pavements.

    Science.gov (United States)

    2014-06-01

    The objectives of this research were to 1) determine which pavement type, asphalt or concrete, has : higher surface temperatures in winter and 2) compare the subsurface temperatures under asphalt and : concrete pavements to determine the pavement typ...

  6. Terrestrial radiation level in selected asphalt plants in Port Harcourt ...

    African Journals Online (AJOL)

    Terrestrial radiation level in selected asphalt plants in Port Harcourt, Nigeria. ... An environmental radiation survey in asphalt processing plants in Rivers State was been carried out ... Therefore the results show significant radiological risk.

  7. Appropriate models for estimating stresses and strains in asphalt layers

    CSIR Research Space (South Africa)

    Jooste, FJ

    1998-09-01

    Full Text Available The broad objective is to make recommendations for appropriate modelling procedures to be used in the structural design of asphalt layers. Findings of this investigation are intended to be used in refining and validating existing asphalt pavement...

  8. Asphalt mix characterization using dynamic modulus and APA testing.

    Science.gov (United States)

    2005-11-01

    final report summarizes two research efforts related to asphalt mix characterization: dynamic modulus and Asphalt Pavement Analyzer testing. One phase of the research consisted of a laboratory-based evaluation of dynamic modulus of Oregon dense-grade...

  9. Investigation of warm-mix asphalt using Iowa aggregates.

    Science.gov (United States)

    2011-04-01

    The implementation of warm-mix asphalt (WMA) is becoming more widespread with a growing number of contractors utilizing various WMA technologies. Early research suggests WMA may be more susceptible to moisture damage than traditional hot-mix asphalt ...

  10. Effects of preparation process on performance of rubber modified asphalt

    Science.gov (United States)

    Liu, Hanbing; Luo, Guobao; Wang, Xianqiang; Jiao, Yubo

    2015-06-01

    The rational utilization of waste rubber tire is essential for the environmental protection. Utilizing rubber particles to modify asphalt can not only improve asphalt performance, but also help the recycling of waste materials. Considering the effect of different preparation process parameters on the performance of rubber modified asphalt, this paper analyzes the effects of the shear temperature, shear time and shear rate on the performance of rubber modified asphalt, and provided a reference for its preparation.

  11. Fugitive binder for nuclear fuel materials

    International Nuclear Information System (INIS)

    Gallivan, T.J.

    1980-01-01

    A compound consisting of ammonium cations and carbonate, bicarbonate, or carbamate anions, or a mixture of such compounds, is useful as a binder for uranium dioxide fuel pellets for which it is desired to maintain a certain degree of porosity, uniformity of pore size, a lack of interconnections between the pores, and the shape or configuration of the base material particles in the final article after sintering. Upon heating, these binders decompose into gases and leave substantially no impurities. A process for sintering green nuclear fuel pellets using these binders is provided. (LL)

  12. Field Control and Performance of Asphalt Mixtures Containing Greater than 25 Percent Reclaimed Asphalt Pavement : Draft Final Report

    Science.gov (United States)

    2018-02-02

    The Alabama Department of Transportation (ALDOT) and other highway agencies are interested in utilization of higher percentages of reclaimed asphalt pavement (RAP) in asphalt mixtures. There are a number of research studies at both state and national...

  13. State of the art: Asphalt for airport pavement surfacing

    Directory of Open Access Journals (Sweden)

    Greg White

    2018-01-01

    Full Text Available Airport runways and taxiways are commonly comprised of a flexible pavement with an asphalt surface. Marshall-designed asphalt with sawn grooves is the most frequent airport asphalt surface material. However, some airports have adopted alternate asphalt mixtures for improved resistance to shear stress and for increased surface texture, allowing grooving to be avoided. Of the alternate asphalt mixtures, stone mastic asphalt is the most commonly reported. Resistance to shear stress is a critical performance requirement for airport surface asphalt. Shear stress resistance minimises the risk of rutting, shoving and groove closure. However, fracture resistance must not be ignored when developing even more shear resistance asphalt mixtures. Significant distress in airport asphalt surfaces, compliant with the traditional prescriptive specification, has increased interest in a performance-based airport asphalt specification. Commonly reported distresses include groove closure in slow moving aircraft areas and shearing in heavy aircraft braking zones. Development of reliable performance-indicative test methods is expected in the future and will enable warranted performance-based asphalt mixture design for airport surfaces. Keywords: Airport, Pavement, Asphalt, Surface

  14. Effect of heat treatment temperature on binder thermal conductivities

    International Nuclear Information System (INIS)

    Wagner, P.

    1975-12-01

    The effect of heat treatment on the thermal conductivities of a pitch and a polyfurfuryl alcohol binder residue was investigated. Graphites specially prepared with these two binders were used for the experiments. Measured thermal conductivities were treated in terms of a two-component system, and the binder thermal conductivities were calculated. Both binder residues showed increased thermal conductivity with increased heat treatment temperature

  15. Alkali-activated binders: a review : part 2. about materials and binders manufacture

    OpenAIRE

    Torgal, Fernando Pacheco; Gomes, J. P. Castro; Jalali, Said

    2008-01-01

    This paper summarizes current knowledge about alkali-activated binders, by reviewing previously published work. As it is shown in Part 1, alkali-activated binders have emerged as an alternative to (ordinary Portland cement) OPC binders, which seem to have superior durability and environmental impact. The subjects of Part 2 of this paper are prime materials, alkaline activators, additives, curing type and constituents mixing order. Practical problems and theoretical questions are discussed. To...

  16. Comparison of Witczak NCHRP 1-40D & Hirsh dynamic modulus models based on different binder characterization methods: a case study

    Directory of Open Access Journals (Sweden)

    Khattab Ahmed M.

    2017-01-01

    Full Text Available The Pavement ME Design method considers the hot mix asphalt (HMA dynamic modulus (E* as the main mechanistic property that affects pavement performance. For the HMA, E* can be determined directly by laboratory testing (level 1 or it can be estimated using predictive equations (levels 2 and 3. Pavement-ME Design introduced the NCHRP1-40D model as the latest model for predicting E* when levels 2 or 3 HMA inputs are used. This study focused on utilizing laboratory measured E* data to compare NCHRP1-40D model with Hirsh model. This comparison included the evaluation of the binder characterization level as per Pavement ME Design and its influence on the performance of these models. E*tests were conducted in the laboratory on 25 local mixes representing different road construction projects in the kingdom of Saudi Arabia. The main tests for the mix binders were dynamic Shear Rheometer (DSR and Brookfield Rotational Viscometer (RV. Results showed that both models with level 3 binder data produced very similar accuracy. The highest accuracy and lowest bias for both models occurred with level 3 binder data. Finally, the accuracy of prediction and level of bias for both models were found to be a function of the binder input level.

  17. Assessment of The Asphalt Produced in Some Factories of Asphalt in Al-Hilla City

    Directory of Open Access Journals (Sweden)

    Mohammed Karem Abd

    2018-02-01

    Full Text Available The purpose of this study is to present an evaluation of  the properties and characteristics of asphalt concrete of several hot mix asphalt (HMA from five factories in Al-Hilla city. The research is divided into two parts. The first part included the laboratory analysis of samples. The second part is evaluation of results according to standard specifications.      The test results included (Asphalt content percent, stability, creep compliance, voids ratio, density, flow, crushed aggregate percent, Loss Angless abrasion and SO3 percent.The results of laboratorial tests indicated that all properties of asphalt mixes were susceptible and possible to be used in the asphaltic roads. The mixes types prepared and tested according to Marshall method. The values of Marshall stability, creep and density are (9.4, 5.4, 9.8, 9, 8.6, (2.5, 2.7, 2.7, 2.6, 2.3 and (2.334, 2.336, 2.337, 2.333, 2.338 with asphalt content between (4.2 to 4.6 % for all asphalt mixes of different factories.

  18. Evaluating The Performance of Asphalt Concrete Mixes by Utilizing Carbon Black as Asphalt Modifier

    Directory of Open Access Journals (Sweden)

    Aliaa Faleh Al.ani

    2018-02-01

    Full Text Available Carbon black produced from several factories in Iraq is expected to provide a reinforcing agent for asphalt paving materials. Carbon black has many characteristics that distinguish  it from conventional mineral fillers, as well as their different function in pavement mixtures. Theory and exercise advanced  in the inclusive utilize of carbon black as a reinforcing agent for rubber has led to concept of asphalt reinforcement. The very fine particles of micro filler added in different contents will be dispersed in asphalt cement improving the mechanical properties of asphalt concrete mixes. In this Four percentages rates were utilized; 0, 3, 6, and 9 percent adding to asphalt grade (60-70. Mixes of asphalt concrete were destined at their optimum asphalt content (OAC then experienced to assess their engineering characteristics that contain moisture of damage, permanent deformation, modulus of resilient and characteristics of fatigue. These characteristics have been assessed utilizing indirect tensile strength, uniaxial repeated loading and repeated flexural beam tests. Mixtures improved with carbon black were existed to have amended permanent deformation and fatigue characteristics, else exhibited high resilient modulus and lower moisture susceptibility. Result showed that a rate changed from 3 to 9 percent has shown an increase in resilient modulus for increment of carbon black and modulus of resilient for mixes with 9 percent carbon black was 1.4 times that for mixes with 0 percent carbon black. The altering of carbon black from a range (3-9 percent has modified the fatigue property of the asphalt concrete mixes as determined by flexural test, Significantly, to modify the asphalt concrete manner taken the  percent of carbon black 6, and to produce the mixes more durable , higher resistance to distresses by adding the local knowledge.

  19. Influence of reclaimed asphalt with polymer modified bitumen on properties of different asphalts for a wearing course

    NARCIS (Netherlands)

    Komačka, J.; Remišová, E.; Liu, G.; Leegwater, G.; Nielsen, E.

    2014-01-01

    A laboratory investigation was performed to study the effect of reclaimed asphalt with polymer modified bitumen on the properties describing asphalt performance. Three types of asphalts used for wearing courses in Europe (SMA 11, AC 11 and PA 8) were investigated. Five combinations of reclaimed

  20. Nominal completion for rewrite systems with binders

    OpenAIRE

    Fernández, Maribel; Rubio Gimeno, Alberto

    2012-01-01

    We design a completion procedure for nominal rewriting systems, based on a generalisation of the recursive path ordering to take into account alpha equivalence. Nominal rewriting generalises first-order rewriting by providing support for the specification of binding operators. Completion of rewriting systems with binders is a notably difficult problem; the completion procedure presented in this paper is the first to deal with binders in rewrite rules. Peer Reviewed

  1. Using mine waste mud to produce environmentally friendly new binders

    OpenAIRE

    Torgal, Fernando Pacheco; Gomes, J. P. Castro; Jalali, Said

    2007-01-01

    It is now accepted that new binders, such as alkali-activated binders, are needed to replace portland cement for enhanced environmental and durability performance. Alkali-activated binders have emerged as an alternative to (ordinary portland cement ) OPC binders, which seem to have superior durability and environmental impact.This paper reports results of a research project on the development of an alkali-activated binders using mineral waste mud from the Panasqueira tungsten mine in Portugal...

  2. Evaluation of rubber modified asphalt demonstration projects

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    As part of the Ontario Government's medium-term scrap tire management strategy, 11 rubber modified asphalt demonstration projects were funded or completed, with 13 additional projects from small to large (1,500-65,000 passenger tire equivalents) approved for the 1993 paving season. This report presents the results of an August to November 1993 study of the 11 demonstration projects. The evaluation included a description of the technology; technical review of the projects; economic analysis; review of the environmental literature; environmental review of the projects; comparison of the projects with similar ones in other jurisdictions; and recommendations. Detailed information on asphalt technology is included in an appendix.

  3. Hot Mix Asphalt Recycling: Practices and Principles

    OpenAIRE

    Mohajeri, M.

    2015-01-01

    Hot mix asphalt recycling has become common practice all over the world since the 1970s because of the crisis in oil prices. In the Netherlands, hot recycling has advanced to such an extent that in most of the mixtures more than 50% of reclaimed asphalt (RA) is allowed. These mixtures with such a high RA content are produced in a batch plant to which a parallel drum is attached. In this drum RA is pre-heated to approximately 130°C. Since 2007 another hot mix recycling techniques became availa...

  4. Sensitivity analysis of longitudinal cracking on asphalt pavement using MEPDG in permafrost region

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    2015-02-01

    Full Text Available Longitudinal cracking is one of the most important distresses of asphalt pavement in permafrost regions. The sensitivity analysis of design parameters for asphalt pavement can be used to study the influence of every parameter on longitudinal cracking, which can help optimizing the design of the pavement structure. In this study, 20 test sections of Qinghai–Tibet Highway were selected to conduct the sensitivity analysis of longitudinal cracking on material parameter based on Mechanistic-Empirical Pavement Design Guide (MEPDG and single factorial sensitivity analysis method. Some computer aided engineering (CAE simulation techniques, such as the Latin hypercube sampling (LHS technique and the multiple regression analysis are used as auxiliary means. Finally, the sensitivity spectrum of material parameter on longitudinal cracking was established. The result shows the multiple regression analysis can be used to determine the remarkable influence factor more efficiently and to process the qualitative analysis when applying the MEPDG software in sensitivity analysis of longitudinal cracking in permafrost regions. The effect weights of the three parameters on longitudinal cracking in descending order are air void, effective binder content and PG grade. The influence of air void on top layer is bigger than that on middle layer and bottom layer. The influence of effective asphalt content on top layer is bigger than that on middle layer and bottom layer, and the influence of bottom layer is slightly bigger than middle layer. The accumulated value of longitudinal cracking on middle layer and bottom layer in the design life would begin to increase when the design temperature of PG grade increased.

  5. Volumetric characteristics and compactability of asphalt rubber mixtures with organic warm mix asphalt additives

    Directory of Open Access Journals (Sweden)

    A. M. Rodríguez-Alloza

    2017-04-01

    Full Text Available Warm Mix Asphalt (WMA refers to technologies that reduce manufacturing and compaction temperatures of asphalt mixtures allowing lower energy consumption and reducing greenhouse gas emissions from asphalt plants. These benefits, combined with the effective reuse of a solid waste product, make asphalt rubber (AR mixtures with WMA additives an excellent environmentally-friendly material for road construction. The effect of WMA additives on rubberized mixtures has not yet been established in detail and the lower mixing/compaction temperatures of these mixtures may result in insufficient compaction. In this sense, the present study uses a series of laboratory tests to evaluate the volumetric characteristics and compactability of AR mixtures with organic additives when production/compaction temperatures are decreased. The results of this study indicate that the additives selected can decrease the mixing/compaction temperatures without compromising the volumetric characteristics and compactability.

  6. Volumetric characteristics and compactability of asphalt rubber mixtures with organic warm mix asphalt additives

    International Nuclear Information System (INIS)

    Rodríguez-Alloza, A.M.; Gallego, J.

    2017-01-01

    Warm Mix Asphalt (WMA) refers to technologies that reduce manufacturing and compaction temperatures of asphalt mixtures allowing lower energy consumption and reducing greenhouse gas emissions from asphalt plants. These benefits, combined with the effective reuse of a solid waste product, make asphalt rubber (AR) mixtures with WMA additives an excellent environmentally-friendly material for road construction. The effect of WMA additives on rubberized mixtures has not yet been established in detail and the lower mixing/compaction temperatures of these mixtures may result in insufficient compaction. In this sense, the present study uses a series of laboratory tests to evaluate the volumetric characteristics and compactability of AR mixtures with organic additives when production/compaction temperatures are decreased. The results of this study indicate that the additives selected can decrease the mixing/compaction temperatures without compromising the volumetric characteristics and compactability. [es

  7. Carbon fiber reinforced asphalt concrete

    International Nuclear Information System (INIS)

    Jahromi, Saeed G.

    2008-01-01

    Fibers are often used in the manufacture of other materials. For many years, they have been utilized extensively in numerous applications in civil engineering. Fiber-reinforcement refers to incorporating materials with desired properties within some other materials lacking those properties. Use of fibers is not a new phenomenon, as the technique of fiber-reinforced bitumen began early as 1950. In all industrialized countries today, nearly all concretes used in construction are reinforced. A multitude of fibers and fiber materials are being introduced in the market regularly. The present paper presents characteristics and properties of carbon fiber-reinforced asphalt mixtures, which improve the performance of pavements. To evaluate the effect of fiber contents on bituminous mixtures, laboratory investigations were carried out on the samples with and without fibers. During the course of this study, various tests were undertaken, applying Marshall Test indirect tensile test, creep test and resistance to fatigue cracking by using repeated load indirect tensile test. Carbon fiber exhibited consistency in results and as such it was observed that the addition of fiber does affect the properties of bituminous mixtures, i.e. an increase in its stability and decrease in the flow value as well as an increase in voids in the mix. Results indicate that fibers have the potential to resist structural distress in pavement, in the wake of growing traffic loads and thus improve fatigue by increasing resistance to cracks or permanent deformation. On the whole, the results show that the addition of carbon fiber will improve some of the mechanical properties like fatigue and deformation in the flexible pavement. (author)

  8. Understanding asphalt compaction: An action research strategy

    NARCIS (Netherlands)

    Miller, Seirgei Rosario; ter Huerne, Henderikus L.; Doree, Andries G.; Amaratunga, Dilanthi

    2007-01-01

    In Hot Mix Asphalt (HMA) construction, rollers provide the compaction energy required to produce a specified density. However, little is known about the heuristics used by the roller operators. This study forms part of a larger action research project focussing on the improvement of the HMA paving

  9. Interfacial debonding of ice-asphalt concrete

    Energy Technology Data Exchange (ETDEWEB)

    Tazawa, E.; Mizoue, Y. (Hiroshima Univ., Hiroshima (Japan)); Kojima, T. (Hitachi Chemical Co. Ltd., Tokyo (Japan))

    1992-09-20

    Series of experimental investigations were carried out to clarify the bonding mechanism between ice and asphalt and to develop a new technique to reduce bonding resistance. The surface bonding resistance was measured by three methods and the main variables taken into consideration have been surface energy, surface roughness and stiffness of asphalt. Surface energy was varied by using various water repellents and the stiffness of the concrete was varied by mixing rubber particles. Correlations of the three variables were studied and the following results have been obtained. Decreasing of surface energy and increasing of deformability of asphalt concrete has been the effective method to decrease the bonding between ice and asphalt. For the case of water repellent coated surface, shear debonding strength has been linearly related to the energy required for debonding by dynamic tension and the shear debonding strength has decreased with the decrease in roughness of pavement. In the case of surface without using repellent, shear debonding strength has not been influenced by surface energy and roughness of pavement. 6 refs., 16 figs., 7 tabs.

  10. Extending the Lifespan of Porous Asphalt Concrete

    NARCIS (Netherlands)

    Zhang, Y.

    2015-01-01

    Porous Asphalt (PA) concrete is widely used as a surfacing layer on highways in the Netherlands. The service life of PA wearing courses is limited because of the fact that it is vulnerable to raveling. The possibilities of applying preventive maintenance to PA wearing courses by means of spraying

  11. Application of Conductive Materials to Asphalt Pavement

    Directory of Open Access Journals (Sweden)

    Hai Viet Vo

    2017-01-01

    Full Text Available Snow-melting pavement technique is an advanced preservation method, which can prevent the forming of snow or ice on the pavement surface by increasing the temperature using an embedded heating system. The main scope of this study is to evaluate the impact of conductive additives on the heating efficiency. The electrical resistivity and thermal conductivity were considered to investigate effects of conductive additives, graphite, and carbon fibers on the snow-melting ability of asphalt mixtures. Also, the distribution of the conductive additives within the asphalt concrete body was investigated by microstructural imaging. An actual test was applied to simulate realistic heating for an asphalt concrete mixture. Thermal testing indicated that graphite and carbon fibers improve the snow-melting ability of asphalt mixes and their combination is more effective than when used alone. As observed in the microstructural image, carbon fibers show a long-range connecting effect among graphite conductive clusters and gather in bundles when added excessively. According to the actual test, adding the conductive additives helps improve snow-melting efficiency by shortening processing time and raising the surface temperature.

  12. Steady-State Creep of Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Alibai Iskakbayev

    2017-02-01

    Full Text Available This paper reports the experimental investigation of the steady-state creep process for fine-grained asphalt concrete at a temperature of 20 ± 2 °С and under stress from 0.055 to 0.311 MPa under direct tension and was found to occur at a constant rate. The experimental results also determined the start, the end point, and the duration of the steady-state creep process. The dependence of these factors, in addition to the steady-state creep rate and viscosity of the asphalt concrete on stress is satisfactorily described by a power function. Furthermore, it showed that stress has a great impact on the specific characteristics of asphalt concrete: stress variation by one order causes their variation by 3–4.5 orders. The described relations are formulated for the steady-state of asphalt concrete in a complex stressed condition. The dependence is determined between stress intensity and strain rate intensity.

  13. Study of Antiultraviolet Asphalt Modifiers and Their Antiageing Effects

    Directory of Open Access Journals (Sweden)

    Jinxuan Hu

    2017-01-01

    Full Text Available Ultraviolet (UV radiation causes serious ageing problems on pavement surface. In recent years, different UV blocking materials have been used as modifiers to prevent asphalt ageing during the service life of the pavement. In this study, three different materials have been used as modifiers in base asphalt to test their UV blocking effects: layered double hydroxides (LDHs, organomontmorillonite (OMMT, and carbon black (CB. UV ageing was applied to simulate the ageing process and softening point, penetration, ductility, DSR (Dynamic Shear Rheometer test, and Fourier Transform Infrared Spectroscopy (FTIR test were conducted to evaluate the anti-UV ageing effects of the three UV blocking modifiers. Physical property tests show that base asphalt was influenced more seriously by UV radiation compared to the modified asphalt. DSR test results indicate that the complex modulus of asphalt before UV ageing is increased because of modifiers, while the complex modulus of base asphalt after UV ageing is higher than that of the modified asphalt, which shows that the UV blocking modifiers promote the antiageing effects of asphalt. FTIR test reveals that the increment of carbonyl groups and sulfoxide groups of modified asphalt is less than that in base asphalt. Tests indicate the best UV blocking effect results for samples with LDHs and the worst UV blocking effect results for samples with CB.

  14. Quantitative evaluation of rejuvenators to restore embrittlement temperatures in oxidized asphalt mixtures using acoustic emission

    Science.gov (United States)

    Sun, Zhe; Farace, Nicholas; Arnold, Jacob; Behnia, Behzad; Buttlar, William G.; Reis, Henrique

    2015-03-01

    Towards developing a method capable to assess the efficiency of rejuvenators to restore embrittlement temperatures of oxidized asphalt binders towards their original, i.e., unaged values, three gyratory compacted specimens were manufactured with mixtures oven-aged for 36 hours at 135 °C. In addition, one gyratory compacted specimen manufactured using a short-term oven-aged mixture for two hours at 155 °C was used for control to simulate aging during plant production. Each of these four gyratory compacted specimens was then cut into two cylindrical specimen 5 cm thick for a total of six 36-hour oven-aged specimens and two short term aging specimens. Two specimens aged for 36 hours and the two short-term specimens were then tested using an acoustic emission approach to obtain base acoustic emission response of short-term and severely-aged specimens. The remaining four specimens oven-aged for 36 hours were then treated by spreading their top surface with rejuvenator in the amount of 10% of the binder by weight. These four specimens were then tested using the same acoustic emission approach after two, four, six, and eight weeks of dwell time. It was observed that the embrittlement temperatures of the short-term aged and severely oven-aged specimens were -25 °C and - 15 °C, respectively. It was also observed that after four weeks of dwell time, the rejuvenator-treated samples had recuperated the original embrittlement temperatures. In addition, it was also observed that the rejuvenator kept acting upon the binder after four weeks of dwell time; at eight weeks of dwell time, the specimens had an embrittlement temperature about one grade cooler than the embrittlement temperature corresponding to the short-term aged specimen.

  15. Evaluation of hybrid binder for use in surface mixtures in Florida : final report, June 2009.

    Science.gov (United States)

    2009-06-01

    Binder and mixture tests were performed to evaluate the relative performance of a PG 67-22 base binder and six other commercially available binders produced by modifying the same base binder with the following modifiers: one Styrene Butadiene Styrene...

  16. Studies on The Renewability of Polymeric Binders for Foundry

    Directory of Open Access Journals (Sweden)

    Grabowska B.

    2012-09-01

    Full Text Available In this paper the results of studies of polymeric binders on the example of the new BioCo2 binder, including the problem of its renewability, are presented. The results of structural studies (FT-IR for the BioCo2 binder before and after crosslinking, and bending strength tests Rg u fresh and renewed cured molding sands with BioCo2 binder are discussed. The cross-linking binder and curring of moulding sand was carried out by physical agents (microwave radiation, temperature. On the basis of obtained results was shown that it is possible to restore the initial properties of the adhesive of BioCo2 binder. The initial properties of moulding sand can be achieved, after the cross-linking binders and after curing in the moulding sands with bioCo2 binder , by supplementing the moulding sand composition by the appropriate amount of water.

  17. Texas cracking performance prediction, simulation, and binder recommendation.

    Science.gov (United States)

    2014-10-01

    Recent studies show some mixes with softer binders used outside of Texas (e.g., Minnesotas Cold Weather Road Research Facility mixes) have both good rutting and cracking performance. However, the current binder performance grading (PG) system fail...

  18. Rheo-mechanical model for self-healing asphalt pavement

    International Nuclear Information System (INIS)

    Gömze, A L; Gömze, L N

    2017-01-01

    Examining the rheological properties of different asphalt mixtures at different temperatures, pressures and deformation conditions on the combined rheo-tribometers the authors have found that the generally used Burgers-model doesn’t explain the deformation properties of asphalt mixtures and pavements under loading forces and loading pressures. To understand better the rheological and deformation properties of such complex materials like asphalt mixtures and pavements the authors used Malvern Mastersizer X laser granulometer, Bruker D8 Advance X-ray diffractometer, Hitachi TM 1000 Scanning Elektronmicroscope, Tristar 3000 specific surface tester and the combined rheo-tribometer developed and patented by the authors. After the complex investigation of different asphalt mixtures the authors have found a new, more complex rheological model for the asphalts including self-healing asphalt pavements. (paper)

  19. Performance of Recycled Porous Hot Mix Asphalt with Gilsonite Additive

    Directory of Open Access Journals (Sweden)

    Ludfi Djakfar

    2015-01-01

    Full Text Available The objective of the study is to evaluate the performance of porous asphalt using waste recycled concrete material and explore the effect of adding Gilsonite to the mixture. As many as 90 Marshall specimens were prepared with varied asphalt content, percentage of Gilsonite as an additive, and proportioned recycled and virgin coarse aggregate. The test includes permeability capability and Marshall characteristics. The results showed that recycled concrete materials seem to have a potential use as aggregate in the hot mix asphalt, particularly on porous hot mix asphalt. Adding Gilsonite at ranges 8–10% improves the Marshall characteristic of the mix, particularly its stability, without decreasing significantly the permeability capability of the mix. The use of recycled materials tends to increase the asphalt content of the mix at about 1 to 2% higher. With stability reaching 750 kg, the hot mix recycled porous asphalt may be suitable for use in the local roads with medium vehicle load.

  20. Biodegradable materials as binders for IVth generation moulding sands

    OpenAIRE

    K. Major-Gabry

    2015-01-01

    This paper focuses on the possibility of using the biodegradable materials as binders (or parts of binders?compositions) for foundry moulding and core sands. Results showed that there is a great possibility of using available biodegradable materials as foundry moulding sand binders. Using biodegradable materials as partial content of new binders, or additives to moulding sands may not only decrease the toxicity and increase reclamation ability of tested moulding sands, but also accelerate the...

  1. Fatigue behaviour of bituminous materials : from binders to mixes

    OpenAIRE

    SOENEN, H; DE LA ROCHE, C; REDELIUS, P

    2003-01-01

    Test procedures, aiming at measuring fatigue directly on bituminous binders, are increasingly used. The purpose of this paper is to investigate the relevance of this type of binder fatigue tests and to compare the results with laboratory fatigue properties of the corresponding mixes, using one mix composition for all binders, and similar fatigue tests conditions. Eight binders were selected, derived from two crude sources, including an oxidised and two polymer modified samples. All fatigue te...

  2. Field testing of asphalt-emulsion radon-barrier system

    International Nuclear Information System (INIS)

    Hartley, J.N.; Freeman, H.D.; Baker, E.G.; Elmore, M.R.; Nelson, D.A.; Voss, C.F.; Koehmstedt, P.L.

    1981-09-01

    Three years of laboratory and field testing have demonstrated that asphalt emulsion seals are effective radon diffusion barriers. Both laboratory and field tests in 1979, 1980 and 1981 have shown that an asphalt emulsion seal can reduce radon fluxes by greater than 99.9%. The effective diffusion coefficient for the various asphalt emulsion admix seals averages about 10 -6 cm 2 /s. The 1981 joint field test is a culmination of all the technology developed to date for asphalt emulsion radon barrier systems. Preliminary results of this field test and the results of the 1980 field test are presented. 18 figures, 6 tables

  3. Physical and rheological properties of Titanium Dioxide modified asphalt

    Science.gov (United States)

    Buhari, Rosnawati; Ezree Abdullah, Mohd; Khairul Ahmad, Mohd; Chong, Ai Ling; Haini, Rosli; Khatijah Abu Bakar, Siti

    2018-03-01

    Titanium Dioxide (TiO2) has been known as a useful photocatalytic material that is attributed to the several characteristics includes high photocatalytic activity compared with other metal oxide photocatalysts, compatible with traditional construction materials without changing any original performance. This study investigates the physical and rheological properties of modified asphalt with TiO2. Five samples of asphalt with different concentration of TiO2 were studied, namely asphalt 2%, 4%, 6% 8% and 10% TiO2. The tests includes are penetration, softening point, ductility, rotational viscosity and dynamic shear rheometer (DSR) test. From the results of this study, it is noted that addition of TiO2 has significant effect on the physical properties of asphalt. The viscosity tests revealed that asphalt 10% TiO2 has good workability among with reducing approximately 15°C compared to base asphalt. Based on the results from DSR measurements, asphalt 10% TiO2 has reduced temperature susceptibility and increase stiffness and elastic behaviour in comparison to base asphalt. As a result, TiO2 can be considered to be an additive to modify the properties of asphalt.

  4. Alkaline Activator Impact on the Geopolymer Binders

    Science.gov (United States)

    Błaszczyński, Tomasz Z.; Król, Maciej R.

    2017-10-01

    Concrete structures are constantly moving in the direction of improving the durability. Durability depends on many factors, which are the composition of concrete mix, the usage of additives and admixtures and the place, where material will work and carry the load. The introduction of new geopolymer binders for geopolymer structures adds a new aspect that is type of used activator. This substance with strongly alkaline reaction is divided because of the physical state, the alkaline degree and above all the chemical composition. Taking into account, that at present the geopolymer binders are made essentially from waste materials or by-products from the combustion of coal or iron ore smelting, unambiguous determination of the effect of the activator on the properties of the geopolymer material requires a number of trials, researches and observation. This paper shows the influence of the most alkaline activators on the basic parameters of the durability of geopolymer binders. In this study there were used highly alkaline hydroxides, water glasses and granules, which are waste materials in a variety of processes taking place in chemical plants. As the substrate of geopolymer binders there were used fly ash which came from coal and high calcareous ash from the burning of lignite.

  5. Fugitive binder for nuclear fuel materials

    International Nuclear Information System (INIS)

    Gallivan, T.J.

    1977-01-01

    A process for fabricating a body of a nuclear fuel material has the steps of admixing the nuclear fuel material in powder form wih a binder of a compound or its hydration products containing ammonium cations and anions selected from the group consisting of carbonate anions, bicarbonate anions, carbamate anions and mixtures of such anions, forming the resulting mixture into a green body such as by die pressing, heating the green body to decompose substantially all of the binder into gases, further heating the body to produce a sintered body, and cooling the sintered body in a controlled atmosphere. Preferred binders used in the practice of this invention include ammonium bicarbonate, ammonium carbonate, ammonium bicarbonate carbamate, ammonium sesquicarbonate, ammonium carbamate and mixtures thereof. This invention includes a composition of matter in the form of a compacted structure suitable for sintering comprising a mixture of a nuclear fuel material and a binder of a compound or its hydration products containing ammonium cations and anions selected from the group consisting of carbonate anions, bicarbonate anions, carbamate anions and mixtures of such anions. 9 claims, 4 figures

  6. Efficiency of Composite Binders with Antifreezing Agents

    Science.gov (United States)

    Ogurtsova, Y. N.; Zhernovsky, I. V.; Botsman, L. N.

    2017-11-01

    One of the non-heating methods of cold-weather concreting is using concretes hardening at negative temperatures. This method consists in using chemical additives which reduce the freezing temperature of the liquid phase and provide for concrete hardening at negative temperatures. The non-heating cold-weather concreting, due to antifreezing agents, allows saving heat and electric energy at the more flexible work performance technology. At selecting the antifreezing components, the possibility of concreting at temperatures up to minus 20 °C and combination with a plasticizer contained in the composite binder were taken into account. The optimal proportions of antifreezing and complex agents produced by MC-Bauchemie Russia for fine-grained concretes were determined. So, the introduction of antifreezing and complex agents allows obtaining a structure of composite characteristic for cement stone in the conditions of below zero temperatures at using different binders; the hydration of such composite proceeded naturally. Low-water-demand binders (LWDB) based composites are characterized by a higher density and homogeneity due to a high dispersity of a binder and its complicated surface providing for a lot of crystallization centers. LWDB contains small pores keeping water in a liquid form and promoting a more complete hydration process.

  7. Effects of reclaimed asphalt pavement on indirect tensile strength test of foamed asphalt mix tested in dry condition

    International Nuclear Information System (INIS)

    Katman, Herda Yati; Norhisham, Shuhairy; Ismail, Norlela; Ibrahim, Mohd Rasdan; Matori, Mohd Yazip

    2013-01-01

    Indirect tensile strength (ITS) test was conducted to analyse strength of the foamed asphalt mixes incorporating reclaimed asphalt pavement. Samples were tested for ITS after cured in the oven at 40°C for 72 hours. This testing condition known as dry condition or unconditioned. Laboratory results show that reclaimed asphalt pavement (RAP) contents insignificantly affect the ITS results. ITS results significantly affected by foamed bitumen contents.

  8. Optical microtopographic inspection of asphalt pavement surfaces

    Science.gov (United States)

    Costa, Manuel F. M.; Freitas, E. F.; Torres, H.; Cerezo, V.

    2017-08-01

    Microtopographic and rugometric characterization of surfaces is routinely and effectively performed non-invasively by a number of different optical methods. Rough surfaces are also inspected using optical profilometers and microtopographer. The characterization of road asphalt pavement surfaces produced in different ways and compositions is fundamental for economical and safety reasons. Having complex structures, including topographically with different ranges of form error and roughness, the inspection of asphalt pavement surfaces is difficult to perform non-invasively. In this communication we will report on the optical non-contact rugometric characterization of the surface of different types of road pavements performed at the Microtopography Laboratory of the Physics Department of the University of Minho.

  9. Finite element simulation of asphalt fatigue testing

    DEFF Research Database (Denmark)

    Ullidtz, Per; Kieler, Thomas Lau; Kargo, Anders

    1997-01-01

    The traditional interpretation of fatigue tests on asphalt mixes has been in terms of a logarithmic linear relationship between the constant stress or strain amplitude and the number of load repetitions to cause failure, often defined as a decrease in modulus to half the initial value...... damage mechanics.The paper describes how continuum damage mechanics may be used with a finite element program to explain the progressive deterioration of asphalt mixes under laboratory fatigue testing. Both constant stress and constant strain testing are simulated, and compared to the actual results from...... three point and four point fatigue test on different mixes. It is shown that the same damage law, based on energy density, may be used to explain the gradual deterioration under constant stress as well as under constant strain testing.Some of the advantages of using this method for interpreting fatigue...

  10. Ageing evolution of foamed warm mix asphalt combined with reclaimed asphalt pavement; Evolución del envejecimiento en mezclas espumadas semicalientes con áridos reciclados

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Martinez, M.; Marsac, P.; Gabet, T.; Pouget, S.; Hammoum, F.

    2017-07-01

    The combination of high rates of reclaimed asphalt pavement (RAP) and warm mix asphalt (WMA) technologies is still ambiguous in terms of durability. With the aim of clarifying this issue, a study comparing a hot mix asphalt with a WMA prepared using the foaming process technology. Both mixes contain 50% of RAP and are submitted to a laboratory ageing procedure. The long term related performance of the mixtures is compared by means of complex modulus and fatigue testing. Penetration and ring and ball tests are undertaken on the recovered bitumens, as well as the ageing evolution, characterised by the Fourier Transform Infrared analysis. Finally, the Apparent Molecular Weight Distribution (AMWD) of the binders is calculated from rheological measurements using the δ-method. Results show a relation between ageing evolution and mechanical performance. After ageing, the overall tendencies are similar for both processes. [Spanish] El comportamiento de mezclas asfálticas semicalientes (WMA) con alto contenido de material reciclado (RAP) es aún incierto a largo plazo. Por este motivo, en este estudio se compara el envejecimiento una mezcla caliente convencional y una mezcla espumada semicaliente con 50% de RAP. Ambas mezclas han sido sometidas a un proceso de envejecimiento en laboratorio. La respuesta a largo plazo se ha comparado a través de los ensayos de módulo de rigidez y de fatiga. En los betunes recuperados se han llevado a cabo los ensayos de penetración y anillo-bola, así como el seguimiento del envejecimiento a través del análisis de infrarrojos. Finalmente, la distribución de peso molecular aparente (AMWD) de los betunes se ha calculado a través de medidas reológicas usando el “δ-method”. En los resultados se observa una relación entre la evolución del envejecimiento y su respuesta mecánica, donde la tendencia general es similar para ambas técnicas.

  11. Present status and future of various rubber materials. ; Asphalt. Kakushu gomu zairyo no genjo to kongo. ; Asphalt

    Energy Technology Data Exchange (ETDEWEB)

    Wakisaka, S. (Toa Doro Kogyo Co. Ltd., Tokyo (Japan))

    1991-12-15

    Asphalt is obtained at a rate of about 25 Kg per 1 Kl of oil and is produced at about 5 million tons per annum in Japan, 80 % of which is now used for the pavement of road. The purpose of this study is to examine the possibilities of developing new applications of asphalt to the anti-vibration, vibration-control and anti-noise materials, though its uses have already been diversified in fields other than for road paving, due to excellent performance regardless of cheap cost. In the paper, firstly, under a title of what is asphalt, the history, the composition and internal structure of asphalt were considered. Secondly, the dynamic characteristics of asphalt were considered. And lastly, under a title of the application of asphalt, examples of the application of asphalt to anti-noise materials were examined in the field of architecture, automobile and civil engineering respectively. Especially, in the field of civil engineering, improvements of flexibility and vibration-control by using the cement asphalt mortar (CAM) in the anti-vibration A-type slab track for railway, and also anti-noise and anti-vibration technologies applied to the road pavement body by using the ferrite asphalt were reviewed. 11 refs., 10 figs., 8 tabs.

  12. Active carbon production from modified asphalt

    International Nuclear Information System (INIS)

    Fadhi, A.B.

    2006-01-01

    A granular activated carbons (GACs) have been prepared from some local raw materials such as Qiayarah asphalt (QA) after some modification treatments of this asphalt by various ratios of its original constituents (asphaltenes and maltens) at 180 degree C. Thermal carbonization method by sulfur and steam physical activation have been used for AC preparation. The carbons thus prepared were characterized in the term of iodine, methylene blue (MB), P-nitro phenol (PNP) and CCl4 adsorption. The BET surface area of the prepared ACs has been estimated via a calibration curve between iodine numbers and surface area determined from N2 adsorption isotherm from previous studies, also, the surface area of the prepared ACs were determined through another methods such as retention method by ethylene glycol mono ethyl ether (EGME), adsorption from vapor phase using acetone vapor and adsorption from solution method using PNP and MB as solutes. The results referred to the success of modification method for preparing ACs of good micro porosity as compared with the AC from the untreated asphalt as well as the commercial sample. (author)

  13. Rapid Radiochemical Methods for Asphalt Paving Material ...

    Science.gov (United States)

    Technical Brief Validated rapid radiochemical methods for alpha and beta emitters in solid matrices that are commonly encountered in urban environments were previously unavailable for public use by responding laboratories. A lack of tested rapid methods would delay the quick determination of contamination levels and the assessment of acceptable site-specific exposure levels. Of special concern are matrices with rough and porous surfaces, which allow the movement of radioactive material deep into the building material making it difficult to detect. This research focuses on methods that address preparation, radiochemical separation, and analysis of asphalt paving materials and asphalt roofing shingles. These matrices, common to outdoor environments, challenge the capability and capacity of very experienced radiochemistry laboratories. Generally, routine sample preparation and dissolution techniques produce liquid samples (representative of the original sample material) that can be processed using available radiochemical methods. The asphalt materials are especially difficult because they do not readily lend themselves to these routine sample preparation and dissolution techniques. The HSRP and ORIA coordinate radiological reference laboratory priorities and activities in conjunction with HSRP’s Partner Process. As part of the collaboration, the HSRP worked with ORIA to publish rapid radioanalytical methods for selected radionuclides in building material matrice

  14. Phenomena during thermal removal of binders

    Science.gov (United States)

    Hrdina, Kenneth Edward

    The research presented herein has focused on debinding of an ethylene copolymer from a SiC based molded ceramic green body. Examination of the binder burnout process was carried out by breaking down the process into two distinct regions: those events which occur before any weight loss begins, and those events occurring during binder removal. Below the temperature of observed binder loss (175sp°C), both reversible and irreversible displacement was observed to occur. The displacement was accounted for by relaxation of molding stresses, thermal expansion of the system, and melting of the semicrystalline copolymer occurring during heating. Upon further heating the binder undergoes a two stage thermal degradation process. In the first stage, acetic acid is the only degradation product formed, as determined by GC/MS analysis. In this stage, component shrinkage persisted and it was found that one unit volume of shrinkage corresponded with one unit volume of binder removed, indicating that no porosity developed. The escaping acetic acid effluents must diffuse through liquid polymer filled porous regions to escape. The gas pressure of the acetic acid species produced in the first stage of the thermal degradation may exceed the ambient pressure promoting bubble formation. Controlling the heating rate of the specimen maintains the gas pressure below the bubbling threshold and minimizes the degradation time. Experiments have determined the kinetics of the reaction in the presence of the high surface area (10-15msp2/g) ceramic powder and then verified that acetic acid was diffusing through the polymer phase to the specimen surface where evaporation is taking place. The sorption method measured the diffusivity and activity of acetic acid within the filled ceramic system within a TGA. These data were incorporated into a Fickian type model which included the rate of generation of the diffusing species. The modeling process involved prediction of the bloating temperature as a

  15. Effects of conductive fillers on temperature distribution of asphalt pavements

    International Nuclear Information System (INIS)

    Chen Mingyu; Wu Shaopeng; Zhang Yuan; Wang Hong

    2010-01-01

    The sun provides a cheap and abundant source of clean and renewable energy. Solar cells have been used to capture this energy and generate electricity. A more useful form of the solar cell would be asphalt pavements, which get heated up by solar radiation. Graphite powders are utilized as thermal conductive fillers to make an asphalt collector conductive so as to improve the efficiency of the asphalt collector. Accounting for the important application conditions and evaluating the effects of the heat conductive materials and the solar energy absorbability of the conductive asphalt collector, a finite element model has been developed to predict temperature distributions in the conductive asphalt solar collector. In this study, an experimental validation exercise was conducted using the measured data taken from full-depth asphalt slabs. Validation results showed that the model can satisfactorily predict the temperature distributions in asphalt concrete slabs. The optimal depth is 25-50 mm for placing pipes that serve as the heat exchanger. Meanwhile, the effect of the surroundings on the solar energy potential of the asphalt collector was noticeable.

  16. Characterization of Failure and Permanent Deformation Behaviour of Asphalt Concrete

    NARCIS (Netherlands)

    Wang, J.G.

    2015-01-01

    Asphalt concrete is a viscoelastic material consisting of aggregates, filler and bitumen. The response of asphalt concrete is highly dependent on temperature, loading rate and confining pressure. Permanent deformation is one of the most important distresses developing during the flexible pavement

  17. Crack repair of asphalt concrete with induction energy

    NARCIS (Netherlands)

    García, A.; Schlangen, E.; Ven, M. van de; Vliet, D. van

    2011-01-01

    It is well known that the healing rates of asphalt courses increase with the temperature. A new method, induction heating, is used in this paper to increase the lifetime of asphalt concrete pavements. Mastic will be first made electrically conductive by the addition of conductive fibers. Then it

  18. Estimation of fatigue characteristics of asphaltic mixes using simple tests

    NARCIS (Netherlands)

    Medani, T.O.; Molenaar, A.A.A.

    2000-01-01

    A simplified procedure for estimation of fatigue characteristics of asphaltic mixes is presented. The procedure requires the determination of the so-called master curve (Le. the relationship between the mix stiffness, the loading time and the temperature), the asphalt properties and the mix

  19. 7 CFR 2902.36 - Concrete and asphalt release fluids.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Concrete and asphalt release fluids. 2902.36 Section... PROCUREMENT Designated Items § 2902.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete or...

  20. Including asphalt cooling and rolling regimes in laboratory compaction procedures

    NARCIS (Netherlands)

    Bijleveld, Frank; Doree, Andries G.; Kim,

    2014-01-01

    Given the various changes occurring in the asphalt construction industry, improved process and quality control is becoming essential. The significance of appropriate rolling and compaction for the quality of asphalt is widely acknowledged and vital for improved process control. But what constitutes

  1. Application of waste tires to asphalt pavement. Improvement of adhesion of asphalt with rubber particles; Haitaiya no asphalt hoso eno tekiyo. Asphalt to gomu ryushi no fuchakusei no kairyo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Nakaoka, I. [Kansai Electric Power Co. Inc., Osaka (Japan)

    1994-10-10

    With an objective to apply waste tires to asphalt pavement, an experiment was carried out to improve adhesion of asphalt with rubber particles by using polymers. The state of interface on rubber particle and asphalt mixture was observed by a scanning electron microscope. As a result, it was found that the surface of untreated rubber particles is not bonded with the asphalt, but polymer treated mixture was found to have the affinity of rubber particles with asphalt improved. Tensile bonding strength was tested on rubber plates and asphalt. The result revealed that the polymer-reformed mixture has two times as large tensile bonding strength as that of the untreated mixture. With regard to the characters of asphalt mixture mixed with rubber particles, the stability shows a decreasing trend as compared with the standard asphalt concrete, but presents an excellent performance in wear. The fluidity resistance value is inferior to the standard, but not as great as presenting a problem under normal using environment, where its applicability as a road paving material was verified. 4 figs., 2 tabs.

  2. Hanford Permanent Isolation Barrier Program: Asphalt technology development

    International Nuclear Information System (INIS)

    Freeman, H.D.; Romine, R.A.

    1994-11-01

    An important component of the Hanford Permanent Isolation Barrier is the use of a two-layer composite asphalt system, which provides backup water diversion capabilities if the primary capillary barrier fails to meet infiltration goals. Because of asphalt's potential to perform to specification over the 1000-year design life criterion, a composite asphalt barrier (HMAC/fluid-applied polymer-modified asphalt) is being considered as an alternative to the bentonite clay/high density poly(ethylene) barriers for the low-permeability component of the Hanford Permanent Isolation Barrier. The feasibility of using asphalt as a long-term barrier is currently being studied. Information that must be known is the ability of asphalt to retain desirable physical properties over a period of 1000 years. This paper presents the approach for performing accelerated aging tests and evaluating the performance of samples under accelerated conditions. The results of these tests will be compared with asphalt artifact analogs and the results of modeling the degradation of the selected asphalt composite to make life-cycle predictions

  3. Regional implementation of warm mix asphalt : [tech summary].

    Science.gov (United States)

    2014-09-01

    Asphalt is used in over 94 percent of all paved roadways in the United States. The ability to reduce its cost and : emissions while improving its performance has bene ts that could potentially change the direction the asphalt : industry moves in t...

  4. Induction healing of asphalt mixes with steel slag

    NARCIS (Netherlands)

    Apostolidis, P.; Liu, X.; Wang, H.; van de Ven, M.F.C.; Scarpas, Athanasios

    2018-01-01

    Asphaltic mixes are self-healing materials since they have the capacity to close internal microcracks at higher temperatures or under external force. To trigger their self-healing, asphalt mixes modified with inductive agents can be heated and in that way healed through applying alternating magnetic

  5. Advanced Experimental Evaluation of Asphalt Mortar for Induction Healing Purposes

    NARCIS (Netherlands)

    Apostolidis, P.; Liu, X.; Scarpas, Athanasios; van Bochove, G; van de Ven, M.F.C.

    2016-01-01

    This paper studied the induction heating and healing capacity of asphalt mortar by adding electrically conductive additives (e.g. iron powder and steel fibers), and examined the influence of different combinations of them on the mechanical response of asphalt mortars. Induction heating technique is

  6. Composite binders for concrete with reduced permeability

    International Nuclear Information System (INIS)

    Fediuk, R; Yushin, A

    2016-01-01

    Composite binder consisting of cement (55%), acid fly ash (40%) and limestone (5%) has been designed. It is obtained by co-milling to a specific surface of 550 kg/m 2 , it has an activity of 77.3 MPa and can produce a more dense cement stone structure. Integrated study revealed that the concrete on the composite binder basis provides an effective diffusion coefficient D. So we can conclude that the concrete layer protects buildings from toxic effects of expanded polystyrene. Low water absorption of the material (2.5% by weight) is due to the structure of its cement stone pore space. Besides lime powder prevents the penetration of moisture, reduces water saturation of the coverage that has a positive effect on useful life period. It also explains rather low water vapor permeability of the material - 0.021 mg/(m- hour-Pa). (paper)

  7. Recycling of Reclaimed Asphalt Pavement in Portland Cement Concrete

    Directory of Open Access Journals (Sweden)

    Salim Al-Oraimi

    2009-06-01

    Full Text Available Reclaimed Asphalt Pavement (RAP is the result of removing old asphalt pavement material. RAP consists of high quality well-graded aggregate coated with asphalt cement. The removal of asphalt concrete is done for reconstruction purposes, resurfacing, or to obtain access to buried utilities. The disposal of RAP represents a large loss of valuable source of high quality aggregate. This research investigates the properties of concrete utilizing recycled reclaimed asphalt pavement (RAP. Two control mixes with normal aggregate were designed with water cement ratios of 0.45 and 0.5. The control mixes resulted in compressive strengths of 50 and 33 MPa after 28 days of curing. The coarse fraction of RAP was used to replace the coarse aggregate with 25, 50, 75, and 100% for both mixtures. In addition to the control mix (0%, the mixes containing RAP were evaluated for slump, compressive strength, flexural strength, and modulus of elasticity. Durability was evaluated using surface absorption test.

  8. Solvolytic Degradation of Polymeric Propellant Binders

    Science.gov (United States)

    1975-06-01

    propcllant! can be -carried, ou-t pi_,th surpriising jease- in- 60 -_ sca-le’.with- subsequenzr recovery -of constitu - s -in- high - yield -. the. kilproach...distillation of the ammonia yields about 84% -recovery of tile ammonium chloride. The aluminum powder remains behind in the degradedfpolyuruthane gel...msolvent. .n his experiment a 0.14- g- sample of -binder I having,, z, 50-80 mesh particle size was placed in a Soxhlet apparatus and the extraction

  9. Utilization of recycled asphalt concrete with warm mix asphalt and cost-benefit analysis.

    Directory of Open Access Journals (Sweden)

    Julide Oner

    Full Text Available The asphalt paving industries are faced with two major problems. These two important challenges are generated with an increase in demand for environmentally friendly paving mixtures and the problem of rapidly rising raw materials. Recycling of reclaimed asphalt pavement (RAP is a critical necessity to save precious aggregates and reduce the use of costly bitumen. Warm Mix Asphalt (WMA technology provides not only the option of recycling asphalt pavement at a lower temperature than the temperature maintained in hot mixtures but also encourages the utilization of RAP and therefore saves energy and money. This paper describes the feasibility of utilizing three different WMA additives (organic, chemical and water containing at recommended contents with different percentages of RAP. The mechanical properties and cost-benefit analysis of WMA containing RAP have been performed and compared with WMA without RAP. The results indicated that, 30%, 10% and 20% can be accepted as an optimum RAP addition related to organic, chemical and water containing additives respectively and organic additive with 30% RAP content has an appreciable increase in tensile strength over the control mix. It was also concluded that the RAP with WMA technology is the ability to reduce final cost compared to HMA and WMA mixtures.

  10. Utilization of recycled asphalt concrete with warm mix asphalt and cost-benefit analysis.

    Science.gov (United States)

    Oner, Julide; Sengoz, Burak

    2015-01-01

    The asphalt paving industries are faced with two major problems. These two important challenges are generated with an increase in demand for environmentally friendly paving mixtures and the problem of rapidly rising raw materials. Recycling of reclaimed asphalt pavement (RAP) is a critical necessity to save precious aggregates and reduce the use of costly bitumen. Warm Mix Asphalt (WMA) technology provides not only the option of recycling asphalt pavement at a lower temperature than the temperature maintained in hot mixtures but also encourages the utilization of RAP and therefore saves energy and money. This paper describes the feasibility of utilizing three different WMA additives (organic, chemical and water containing) at recommended contents with different percentages of RAP. The mechanical properties and cost-benefit analysis of WMA containing RAP have been performed and compared with WMA without RAP. The results indicated that, 30%, 10% and 20% can be accepted as an optimum RAP addition related to organic, chemical and water containing additives respectively and organic additive with 30% RAP content has an appreciable increase in tensile strength over the control mix. It was also concluded that the RAP with WMA technology is the ability to reduce final cost compared to HMA and WMA mixtures.

  11. THE FATIGUE DURABILITY OF THE MODIFIED ASPHALT CONCRETE UNDER THE EFFECT OF INTENSIVE TRAFFIC LOADS

    Directory of Open Access Journals (Sweden)

    Yuri KALGIN

    2016-06-01

    Full Text Available The problem of prediction of the service life of asphalt concrete surface constructed with modified asphalt concrete application onto a traffic lane is examined. Asphalt concrete behaviour in road surface under the traffic loads was analysed. There were shown The results of experiments and their mathematical analysis of the assessment of standard and modified cold asphalt concrete fatigue life on road surface were shown. The service life of an asphalt concrete surface covered with standard and modified cold asphalt concrete is examined. The prediction has been received with an account of stress relaxation processes in asphalt concrete pavement and unevenness of traffic load application.

  12. Colloid Zirconia Binder of Improved Wetting Properties

    Directory of Open Access Journals (Sweden)

    Grażyna Para

    2012-03-01

    Full Text Available Physicochemical properties of colloid zirconia aqueous sol, used as a binder in the investment casting industry, werethoroughly determined. The size of the particles was determined by dynamic light scattering, and the zeta potential of theparticles was measured by microelectrophoresis. The average size of the particles was 13 nm and the zeta potential waspositive, equal to 30 mV. The size distribution of particles deposited on mica surface was also determined using AFMmeasurements. The wetting properties of the binder suspension were determined for the paraffin/air interface using the shapeanalysis of pendant and sessile drops. The perfluorononanoic acid (PFNA, an anionic surfactant, the non-ionic fluorinatedsurfactants Zonyl FSO-100 and Rokafenol RN8, and the mixtures of the surfactants were studied. Our investigations showedthat the Zonyl-FSO surfactant and its mixture with Rokafenol effectively reduced the dynamic contact angle from the initialvalue of 94° to the value of 30°. Such low contact angles represent an essential improvement of zirconia binder wettability,thus widen the range of applicability in investment casting of finely shaped details.

  13. The Adequacy of Phosphorus Binder Prescriptions Among American Hemodialysis Patients

    Science.gov (United States)

    Huml, Anne M.; Sullivan, Catherine M.; Leon, Janeen B.; Sehgal, Ashwini R.

    2013-01-01

    Because hemodialysis treatment has a limited ability to remove phosphorus, dialysis patients must restrict dietary phosphorus intake and use phosphorus binding medication. Among patients with restricted dietary phosphorus intake (1000 mg/d), phosphorus binders must bind about 250 mg of excess phosphorus per day and among patients with more typical phosphorus intake (1500 mg/d), binders must bind about 750 mg per day. To determine the phosphorus binding capacity of binder prescriptions among American hemodialysis patients, we undertook a cross-sectional study of a random sample of in-center chronic hemodialysis patients. We obtained data for one randomly selected patient from 244 facilities nationwide. About one-third of patients had hyperphosphatemia (serum phosphorus level > 5.5 mg/dL). Among the 224 patients prescribed binders, the mean phosphorus binding capacity was 256 mg/d (SD 143). 59% of prescriptions had insufficient binding capacity for restricted dietary phosphorus intake, and 100% had insufficient binding capacity for typical dietary phosphorus intake. Patients using two binders had a higher binding capacity than patients using one binder (451 vs. 236 mg/d, p phosphorus balance. Use of two binders results in higher binder capacity. Further work is needed to understand the impact of binder prescriptions on mineral balance and metabolism and to determine the value of substantially increasing binder prescriptions. PMID:23013171

  14. Effect of adding of the styrene-butadiene-styrene (SBS) copolymer in chemical and rheological properties of the brazilian asphalt; Efeito da adicao de SBS nas propriedades quimicas e reologicas de asfalto oriundo de petroleo brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Lucena, M.C.C.; Soares, S.A. [Ceara Univ., Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica]. E-mail: mccl@dqoi.ufc.br; sas@ufc.br; Soares, J.B. [Ceara Univ., Fortaleza, CE (Brazil). Dept. de Engenharia de Transportes]. E-mail: jsoares@det.ufc.br

    2003-07-01

    Chemical and rheological characterization of the asphalt cement (AC) from the Fazenda Alegre petroleum, and the effect of adding 4.5% of the styrene-butadiene-styrene (SBS) copolymer were investigated. Structural characteristics were analyzed by infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). A structure similar to the Arabian and Venezuelan petroleum was observed. The simulated aging led to structural modification noticed by the increment in the carbonyl and sulphoxide groups. Thermogravimetry (TGA) showed that SBS did not affect the AC thermal decomposition at both inert and oxidative atmosphere. However, the differential scanning calorimetry (DSC) showed a decrease in the glass transition temperature of the material when SBS was added. The effect of SBS on the absolute viscosity revealed that SBS is not an inert additive and causes an increase in viscosity, in a nonlinear fashion. The commonly found Newtonian behavior of asphalt binders under high temperatures was also found on the SBS modified binder. Dynamic mechanical tests have shown that SBS increases the binder performance grade. (author)

  15. Evaluation of the Pavement Quality Indicator (PQI for the on-site density measurement of asphalt emulsion mixes

    Directory of Open Access Journals (Sweden)

    Martínez-Echevarría, M. J.

    2013-03-01

    Full Text Available The Pavement Quality Indicator (PQI is a non-nuclear gauge used for the on-site density measurement of asphalt pavements without the need to extract core samples. Previous studies of hot asphalt mixes found that PQI density readings were very similar to laboratory density measurements of pavement cores. This paper describes the first stage of a research project whose objective is to analyze PQI density measurements of mixes manufactured with an asphalt emulsion binder. The PQI density variability for such mixes was verified and compared with the results obtained with other on-site methods for measuring pavement density.

    El equipo Pavement Quality Indicator es un dispositivo para la determinación de densidad in situ en pavimentos asfálticos sin extracción de testigos. Las experiencias con este equipo en mezclas bituminosas en caliente, recogidas en diferentes fuentes bibliográficas, muestran que las densidades medidas in situ con el PQI son muy similares a las obtenidas mediante la extracción de testigos. En este artículo se expone la primera etapa de un proyecto de investigación que tiene por objeto analizar los resultados de mediciones efectuadas con PQI en mezclas bituminosas donde se utiliza emulsión asfáltica como ligante. Se comprueba la variabilidad de la densidad obtenida con el equipo para este tipo de mezclas, y se comparan los resultados con otros métodos de medida de densidad in situ.

  16. Validation of a dynamic modulus predictive equation on the basis of spanish asphalt concrete mixtures

    Directory of Open Access Journals (Sweden)

    Mateos, A.

    2015-03-01

    Full Text Available Dynamic modulus is defined as the ratio of peak cyclic stress to peak cyclic strain under harmonic loading. It is one of the most important properties of asphalt mixtures, since it determines the strain response characteristics as a function of loading rate and temperature. Different simplified models exist that can predict this variable from mixture composition and binder rheological data, with Witczak and Hirsh models being the most widely accepted. These models have been evaluated in the present study, on the basis of 352 data points from eight asphalt concrete mixtures that were tested between −5 and 60 °C. A new model is also formulated which improves predictions of the previous ones for Spanish mixtures, even though it is a relatively simple equation that requires very limited binder rheological data compared to Witczak and Hirsch models.El módulo dinámico es la relación entre los picos de tensión y deformación bajo carga armónica. Es una de las propiedades más importantes de las mezclas bituminosas, ya que determina la respuesta deformacional en función de la velocidad de carga y la temperatura. Existen diferentes modelos simplificados que permiten predecir esta variable a partir de la composición de la mezcla y de las características reológicas del betún, siendo los de Witczak y el de Hirsch los más ampliamente aceptados. Dichos modelos han sido evaluados en el presente estudio a partir de 352 puntos procedentes de ocho mezclas tipo hormigón bituminoso que fueron ensayadas entre −5 y 60 °C. Así mismo, se ha formulado un nuevo modelo que mejora las predicciones de los anteriores para las mezclas españolas, aun tratándose de una ecuación relativamente simple que requiere una mínima información reológica del betún en comparación con los modelos de Witczak y Hirsch.

  17. Characterisation of Asphalt Concrete Using Nanoindentation.

    Science.gov (United States)

    Barbhuiya, Salim; Caracciolo, Benjamin

    2017-07-18

    In this study, nanoindentation was conducted to extract the load-displacement behaviour and the nanomechanical properties of asphalt concrete across the mastic, matrix, and aggregate phases. Further, the performance of hydrated lime as an additive was assessed across the three phases. The hydrated lime containing samples have greater resistance to deformation in the mastic and matrix phases, in particular, the mastic. There is strong evidence suggesting that hydrated lime has the most potent effect on the mastic phase, with significant increase in hardness and stiffness.

  18. Modified binders on the basis of flotation tailings

    Science.gov (United States)

    Shapovalov, N. A.; Zagorodnyuk, L. Kh; Shchekina, A. Yu; Gorodov, A. I.

    2018-03-01

    The article proposes compositions of efficient modified composite binders on the basis of portland cement and flotation tailings; the new binders attain the ultimate compressive stress that is twice as high as that of the cement stone. At that, use of annually growing volume of flotation tailings in the production of the composite binder is a rational way for recycling this type of waste and allows saving the planet's natural resources.

  19. Screening of Low Clinker Binders, Compressive Strength and Chloride Ingress

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; De Weerdt, Klaartje; Garzón, Sergio Ferreiro

    2017-01-01

    This paper reports an initial screening of potential new binders for concrete with reduced CO2-emission. Mortars cured saturated for 90 days are compared with regard to a) compressive strength of mortars with similar water-to-binder ratio, and b) chloride ingress in similar design strength mortar...... compromising the 90 days compressive strength and resistance to chloride ingress in marine exposure by using selected alternative binders....

  20. Application of Microwaves for Binder Content Assessment in Moulding Sands

    Directory of Open Access Journals (Sweden)

    Nowak D.

    2012-09-01

    Full Text Available The paper presents results of preliminary examinations on possibility of determining binder content in traditional moulding sands with the microwave method. The presented measurements were carried-out using a special stand, the so-called slot line. Binder content in the sandmix was determined by measurements of absorption damping Ad and insertion losses IL of electromagnetic wave. One of main advantages of the suggested new method of binder content measurement is short measuring time.

  1. Evaluation of warm mix technologies for use in asphalt rubber - asphaltic concrete friction courses (AR\\0x2010ACFC) : final report.

    Science.gov (United States)

    2016-07-01

    The objective of this research project was to determine whether warm mix asphalt (WMA) technologies can be : used by the Arizona Department of Transportation (ADOT) for the production of an asphalt rubberasphaltic : concrete friction course (AR...

  2. Sol-gel additive for systems with inorganic binders

    International Nuclear Information System (INIS)

    Akstinat, M.; Antenen, D.; Suter, W.

    1996-01-01

    A sol-gel additive for inorganic binder systems and sol-gel process for producing air-placed concrete and mortar by using such sol-gel additives are disclosed. Sol-gel additives for gel-derived inorganic binder systems (for example plaster, cement, lime, special slags, etc.) marked improve the consistency of such binder systems during processing or allow their consistency to be regulated. In addition, these sol-gel additives regulate setting times and substantially improve durability (chemical resistance, reduced permeability) and the mechanical properties of the set binder system. (author)

  3. Sustainable binders for concrete: A structured approach from waste screening to binder composition development

    NARCIS (Netherlands)

    Vinai, R.; Panagiotopoulou, C.; Soutsos, M.; Taxiarchou, M.; Zervaki, M.; Valcke, S.L.A.; Ligero, V.C.; Couto, S.; Gupta, A.; Pipilikaki, P.; Alvarez, I.L.; Coelho, D.; Branquinho, J.

    2015-01-01

    Worldwide, the building sector requires the production of 4 billion tonnes of cement annually, consuming more than 40% of global energy. Alkali activated “cementless” binders have recently emerged as a novel eco-friendly construction material with a promising potential to replace ordinary Portland

  4. Nanobodies and recombinant binders in cell biology

    Science.gov (United States)

    Helma, Jonas; Cardoso, M. Cristina; Muyldermans, Serge

    2015-01-01

    Antibodies are key reagents to investigate cellular processes. The development of recombinant antibodies and binders derived from natural protein scaffolds has expanded traditional applications, such as immunofluorescence, binding arrays, and immunoprecipitation. In addition, their small size and high stability in ectopic environments have enabled their use in all areas of cell research, including structural biology, advanced microscopy, and intracellular expression. Understanding these novel reagents as genetic modules that can be integrated into cellular pathways opens up a broad experimental spectrum to monitor and manipulate cellular processes. PMID:26056137

  5. Nanobodies and recombinant binders in cell biology.

    Science.gov (United States)

    Helma, Jonas; Cardoso, M Cristina; Muyldermans, Serge; Leonhardt, Heinrich

    2015-06-08

    Antibodies are key reagents to investigate cellular processes. The development of recombinant antibodies and binders derived from natural protein scaffolds has expanded traditional applications, such as immunofluorescence, binding arrays, and immunoprecipitation. In addition, their small size and high stability in ectopic environments have enabled their use in all areas of cell research, including structural biology, advanced microscopy, and intracellular expression. Understanding these novel reagents as genetic modules that can be integrated into cellular pathways opens up a broad experimental spectrum to monitor and manipulate cellular processes. © 2015 Helma et al.

  6. Asphalt Concrete for Cold Regions, A Comparative Laboratory Study and Analysis of Mixtures Containing Soft and Hard Grades of Asphalt Cement,

    Science.gov (United States)

    1980-01-01

    Justification January 1980 BY Distribution Availabilit CodesIAvail an~d/or Dist special Prepa red for DIRECTORATE OF MILITARY PROGRAMS OFFICE, CHIEF OF...of water on the resilient modulus of asphalt treated mixes. Proecedinfp 4. Asphalt concrete mixes using the Tilton aggregates Association of Asphalt

  7. Mathematical and experimental investigations of modeling, simulation and experiment to promote the life-cycle of polymer modified asphalt.

    Science.gov (United States)

    2014-07-01

    The formulation of constitutive equations for asphaltic pavement is based on rheological models which include the asphalt mixture, additives, and the bitumen. In terms of the asphalt, the rheology addresses the flow and permanent deformation in time,...

  8. 40 CFR 427.30 - Applicability; description of the asbestos paper (starch binder) subcategory.

    Science.gov (United States)

    2010-07-01

    ... asbestos paper (starch binder) subcategory. 427.30 Section 427.30 Protection of Environment ENVIRONMENTAL... Asbestos Paper (Starch Binder) Subcategory § 427.30 Applicability; description of the asbestos paper... asbestos paper (starch binder). ...

  9. Storm Water General Permit 3 for Rock and Asphalt

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — General permit #3 for storm water discharges associated with industrial activity for Asphalt Plants, Concrete Batch Plants, Rock Crushing Plants and Construction...

  10. Occupational Renal Dysfunction Among Asphalt Workers In Sharkia ...

    African Journals Online (AJOL)

    : An Epidemiological Study. ... Zagazig Journal of Occupational Health and Safety ... Abstract. Background: Occupational exposure to bitumen fumes emitted during hot application of asphalt carries the risk of exposure to significant amount of ...

  11. Quality control of recycled asphaltic concrete : final report.

    Science.gov (United States)

    1982-07-01

    This study examined the variations found in recycled asphaltic concrete mix based upon plant quality control data and verification testing. The data was collected from four recycled hot-mix projects constructed in 1981. All plant control and acceptan...

  12. Characteristic Asphalt Concrete Wearing Course (ACWC) Using Variation Lime Filler

    Science.gov (United States)

    Permana, R. A.; Pramesti, F. P.; Setyawan, A.

    2018-03-01

    This research use of lime filler Sukaraja expected add durability layers of concrete pavement is asphalt damage caused by the weather and load traffic. This study attempts to know how much value characteristic Marshall on a mixture of concrete asphalt using lime filler. This research uses experimental methods that is with a pilot to get results, thus will look filler utilization lime on construction concrete asphalt variation in filler levels 2 %, 3 %, 4 %.The results showed that the use of lime filler will affect characteristic a mixture of concrete asphalt. The more filler chalk used to increase the value of stability. On the cretaceous filler 2 % value of stability is 1067,04 kg. When lime filler levels added to the levels of filler 4 %, the value of stability increased to 1213,92 kg. The flexibility increased the number of filler as levels lime 2 % to 4 % suggests that are conducted more stiff mix.

  13. Density measurement verification for hot mix asphalt concrete pavement construction.

    Science.gov (United States)

    2010-06-01

    Oregon Department of Transportation (ODOT) requires a minimum density for the construction of dense-graded hot mix asphalt concrete (HMAC) pavements to ensure the likelihood that the pavement will not experience distresses that reduce the expected se...

  14. Density measurement verification for hot mixed asphalt concrete pavement construction.

    Science.gov (United States)

    2010-06-01

    Oregon Department of Transportation (ODOT) requires a minimum density for the construction of dense-graded hot mix asphalt concrete (HMAC) pavements to ensure the likelihood that the pavement will not experience distresses that reduce the expected se...

  15. Improving DMS 9210 requirements for limestone rock asphalt - final report.

    Science.gov (United States)

    2015-03-01

    Limestone Rock Asphalt (LRA) mixtures have been produced and placed for several decades using : specification requirements currently listed under DMS 9210. Several districts have had placement issues : and premature failures at the beginning of 2010....

  16. Connecticut warm mix asphalt (WMA) pilot projects 2010 and 2011.

    Science.gov (United States)

    2014-06-01

    WMA overlays were placed in several pilot projects in Connecticut during the 2010 and 2011 construction : seasons. These technologies included Sasobit, Evotherm, Advera, Double-Barrel Green foamed : asphalt as well as SonneWarmix. The res...

  17. Implementation of warm-mix asphalt mixtures in Nebraska pavements.

    Science.gov (United States)

    2012-07-01

    The primary objective of this research is to evaluate the feasibility of several WMA mixtures as potential asphalt paving : mixtures for Nebraska pavements. To that end, three well-known WMA additives (i.e., Sasobit, Evotherm, and Advera : synthetic ...

  18. Performance of Virginia's warm-mix asphalt trial sections.

    Science.gov (United States)

    2010-02-01

    Three trial sections using two warm-mix asphalt (WMA) technologies were constructed in various locations in Virginia in 2006, and experiences with these trial sections were used in the development of the Virginia Department of Transportation's specia...

  19. Investigation of warm-mix asphalt for Iowa roadways.

    Science.gov (United States)

    2013-09-01

    Phase II of this study further evaluated the performance of plant-produced warm-mix asphalt (WMA) mixes by conducting : additional mixture performance tests at a broader range of temperatures, adding additional pavements to the study, comparing : vir...

  20. Assessment of Quality of Asphalt Concrete used in Road ...

    African Journals Online (AJOL)

    OLUWASOGO

    subjected to bitumen extraction and sieve analysis, hot mix Marshall Stability and flow tests, penetration and ... asphalt concrete as well as other structures of the flexible pavement. ... High-quality road networks are very important to the.

  1. Risk management of low air void asphalt concrete mixtures.

    Science.gov (United States)

    2013-07-01

    Various forms of asphalt pavement distress, such as rutting, shoving and bleeding, can be attributed, in many cases, to low air voids in : the mixtures during production and placement. The occurrence of low air void contents during plant production m...

  2. Towards analytical mix design for large-stone asphalt mixes.

    CSIR Research Space (South Africa)

    Rust, FC

    1992-08-01

    Full Text Available This paper addresses the development of an analytically based design procedure for large-aggregate asphalt and its application in thirteen trial sections. The physical and engineering properties of the various materials are discussed and related...

  3. Building Asphalt Pavement with SBS-based Compound Added Using a Dry Process in Greenland

    DEFF Research Database (Denmark)

    Lee, Hosin; Kim, Yongjoo; Geisler, Nivi

    2009-01-01

    PMA where it is formulated to melt and blend with asphalt quickly during a batch mixing process. The main objectives of this study are to (1) build asphalt pavement using asphalt mixtures with SBS-based compound added using a “dry” process at the batch plant and (2) evaluate its performance under......-based compound seemed to affect the asphalt mix to become more flexible under the heavy loads. By adding SBS-based compound to asphalt mixtures using a “dry” process, it is expected that the pavement would become more resistant to rutting than a typical asphalt mixture used in Greenland while enduring its arctic...

  4. The Influence of Moisture on the Performance of Polymer Fibre-Reinforced Asphalt Mixture

    Directory of Open Access Journals (Sweden)

    Kamaruddin Ibrahim

    2016-01-01

    Full Text Available A number of researches have been done worldwide to evaluate the damage caused by water in bituminous pavements. The use of the retained strength ratios obtained from laboratory moisture damage tests is a useful tool in making quantitative predictions of the related damage caused by water. This study involved laboratory work on the effect of water on the performance of bituminous mixtures. Comparisons are made between the performances of Hot-rolled Asphalt (HRA bituminous mixtures containing base bitumen of 50 pen grade to that of a polymer-fibre reinforced HRA mixture. Two types of polymer fibre were studied, namely polypropylene and polyester and these fibre were added in different concentrations in the bituminous mixtures. Changes in both the cohesive properties of the bitumen and the adhesion of the bitumen to the aggregate surface were observed as a result of exposing the bituminous mixtures to moisture. The effect of polymer fibre reinforcement in bituminous mixtures helps reduce the level of moisture damage. This was evident in the lower moisture susceptibility achieved in the polymer fibre reinforced bituminous mixtures as compared to the control mixture. The additional bitumen in the fibre reinforced mixtures also afforded an increased film thickness on the aggregate particles, thus affording additional protection of the mixtures from moisture. The reinforcement of polymer fibres in bituminous mixtures also acts to decrease the moisture sensitivity of the bitumen to aggregate bonding. This may be due to the strengthening of the wetted binder matrix that helps promote both adhesion and cohesion retention.

  5. Value-added utilisation of recycled concrete in hot-mix asphalt.

    Science.gov (United States)

    Wong, Yiik Diew; Sun, Darren Delai; Lai, Dickson

    2007-01-01

    The feasibility of partial substitution of granite aggregate in hot-mix asphalt (HMA) with waste concrete aggregate was investigated. Three hybrid HMA mixes incorporating substitutions of granite fillers/fines with 6%, 45% untreated, and 45% heat-treated concrete were evaluated by the Marshall mix design method; the optimum binder contents were found to be 5.3%, 6.5% and 7.0% of grade Pen 60/70 bitumen, respectively. All three hybrid mixes satisfied the Marshall criteria of the Singapore Land Transport Authority (LTA) W3B wearing course specification. The hybrid mix with 6% concrete fillers gave comparable resilient modulus and creep resistance as the conventional W3B mix, while hybrid mixes with higher concrete substitutions achieved better performance. X-ray diffraction (XRD) showed the distinct presence of free lime in the heat-treated concrete, while the scanning electron microscope (SEM) provided an in-depth perspective of the concrete grains in the HMA matrix. The results suggest feasible use of waste concrete as partial aggregate substitution in HMA.

  6. Mechanical Behaviour of Soil Improved by Alkali Activated Binders

    Directory of Open Access Journals (Sweden)

    Enza Vitale

    2017-11-01

    Full Text Available The use of alkali activated binders to improve engineering properties of clayey soils is a novel solution, and an alternative to the widely diffused improvement based on the use of traditional binders such as lime and cement. In the paper the alkaline activation of two fly ashes, by-products of coal combustion thermoelectric power plants, has been presented. These alkali activated binders have been mixed with a clayey soil for evaluating the improvement of its mechanical behaviour. One-dimensional compression tests on raw and treated samples have been performed with reference to the effects induced by type of binder, binder contents and curing time. The experimental evidences at volume scale of the treated samples have been directly linked to the chemo-physical evolution of the binders, investigated over curing time by means of X Ray Diffraction. Test results showed a high reactivity of the alkali activated binders promoting the formation of new mineralogical phases responsible for the mechanical improvement of treated soil. The efficiency of alkali activated binders soil treatment has been highlighted by comparison with mechanical performance induced by Portland cement.

  7. Evaluation of binder and disintegrant properties of starch derived ...

    African Journals Online (AJOL)

    The aim of the study was to formulate metronidazole tablets using starch from Xanthosoma sagittifolium as binder and disintegrant in metronidazole tablets. Metronidazole tablets were produced by wet granulation method using X. sagittifolium starch as binder at concentrations of 5, 10, 15 and 20% w/w, and as disintegrant ...

  8. Role of binder in the synthesis of titania membrane

    Indian Academy of Sciences (India)

    The synthesis of titania membrane through sol–gel route involves hydrolysis of alkoxide, peptization of hydrous oxide of titanium to obtain a sol, adjustment of the sol viscosity by including a binder and filtration of the viscous sol through a microporous support, gelation and sintering to desired temperature. The binder plays ...

  9. Mortar and concrete based on calcium sulphate binders

    NARCIS (Netherlands)

    Bakker, J.J.F.; Brouwers, H.J.H.; Fischer, H.B

    2006-01-01

    In this study both hemi-hydrate and anhydrite are tested as calcium sulphate binders for structural mortar and concrete. The advantage of using calcium sulphates instead of cement as a binder is the fact that the production of calcium sulphate is more environmental friendly than that of cement. For

  10. Assessment of Asphalt Concrete Reinforcement Grid in Flexible Pavements

    Science.gov (United States)

    2016-05-01

    successfully used as interlayers include asphalt rubber and geotextiles, and the applica- tion of recycling techniques to rework the upper 2–4 in. of the...from a set of weights dropped from increasingly greater predetermined heights onto a rubber buffer system connected to a 12 in. diameter segmented...pavement temperature at depth, IR = the infrared pavement surface temperature (°C), D = the asphalt depth to estimate the temperature (mm), 1

  11. DURABILITY OF ASPHALT CONCRETE MIXTURES USING DOLOMITE AGGREGATES

    Directory of Open Access Journals (Sweden)

    Imad Al-Shalout

    2015-12-01

    Full Text Available This study deals with the durability of asphalt concrete, including the effects of different gradations, compaction temperatures and immersion time on the durability potential of mixtures. The specific objectives of this study are: to investigate the effect of compaction temperature on the mechanical properties of asphalt concrete mixtures; investigate the effect of bitumen content and different aggregate gradations on the durability potential of bituminous mixtures.

  12. Laboratory Evaluation of Ground Tire Rubber in Stone Mastic Asphalt

    Directory of Open Access Journals (Sweden)

    R. Muniandy

    2004-12-01

    Full Text Available Stone mastic asphalt (SMA is a gap-graded mix whereby stiffer asphalt cement is required to bind the stone matrix or arrangement of stones together. Although various asphalt additives are traditionally available, the use of rubber crumbs in SMA is still a new rresearch endeavor. Many countries around the world are facing serious problems on what to do with reject or discarded tires. In the present study, commercial truck tires, containing 70% natural rubber, were ground and pre-blended in 80-100 penetration asphalt for use in SMA mixtures. An assessment was made of the laboratory performance of rubberized SMA in terms of stability, resilent modulus, dynamic creep and tensile strength ratio. It was observed that the performance of SMA with ground tire rubber was for superior as compared to SMA mix with unmodified asphalt. Sulfur and Styrene Butadeline Rubber (SBR were used in rubberized SMA mixes as additives to test the sensitivity of SMA mixtures. As standard practice a 0.3% newly developed cellulose oil palm fiber was used in SMA to minimize the asphalt drain-down effects.

  13. Performance of Hot Asphalt Mixtures Containing Plastic Bottles as Additive

    Directory of Open Access Journals (Sweden)

    Jan Hakeem

    2017-01-01

    Full Text Available This study focuses on evaluating the resistance of polymer modified asphalt mixes and the role played by asphalt in the realm of construction is undeniably important. Addition of polymers(PB as additives to asphalt helps to improve the strength and water repellent property of the mix and as well as helps environment in various ways and at the same time, analyzing its lower maintenance activities and service life is most important. The use of inexpensive polymers, in this case, waste polymers has without any doubt proven to be the most convenient way of reducing the cost of construction and at the same time maintaining quality. The main resolve for this research was to establish the effects of the use of plastic bottles on hot asphalt and its mixtures. In order to put this into perspective, varying percentages of asphalt mixtures were calculated and subjected to laboratory tests. The two-factor variance analysis (ANOVA was conducted to determine the significance at various confidence limits. The results indicate that the inclusion of Polyethylene Terephthalate (PET had a particularly substantial effect on the properties of asphalt. Consequently, it can encourage the re-utilization of waste in the manufacturing industry in an ecologically friendly and cost-effective way.

  14. The use of waste materials in asphalt concrete mixtures.

    Science.gov (United States)

    Tuncan, Mustafa; Tuncan, Ahmet; Cetin, Altan

    2003-04-01

    The purpose of this study was to investigate (a) the effects of rubber and plastic concentrations and rubber particle sizes on properties of asphalt cement, (b) on properties of asphalt concrete specimens and (c) the effects of fly ash, marble powder, rubber powder and petroleum contaminated soil as filler materials instead of stone powder in the asphalt concrete specimens. One type of limestone aggregate and one penetration-graded asphalt cement (75-100) were used. Three concentrations of rubber and plastic (i.e. 5%, 10% and 20% of the total weight of asphalt cement), three rubber particle sizes (i.e. No. 4 [4.75mm] - 20 [0.85 mm], No. 20 [0.85mm] - 200 [0.075mm] and No. 4 [4.75mm] - 200 [0.075mm]) and one plastic particle size (i.e. No. 4 [4.75mm] - 10 [2.00mm]) were also used. It was found that while the addition of plastic significantly increased the strength of specimens, the addition of rubber decreased it. No. 4 [4.75mm] - 200 [0.075mm] rubber particles showed the best results with respect to the indirect tensile test. The Marshall stability and indirect tensile strength properties of plastic modified specimens increased. Marble powder and fly ash could be used as filler materials instead of stone powder in the asphalt concrete pavement specimens.

  15. Adjusting Asphalt Mixes for Increased Durability and Implementation of a Performance Tester to Evaluate Fatigue Cracking of Asphalt

    Science.gov (United States)

    2018-01-17

    Cracking is a common failure mechanism in asphalt concrete pavement structures. It is one of the main reasons for large road maintenance and rehabilitation expenditures, as well as reduced user comfort and increased fuel consumption due to high road ...

  16. Rutting based evaluation of asphalt mixes

    International Nuclear Information System (INIS)

    Khan, K.M.

    2012-01-01

    Pavement rutting is one of the most common and destructive pavement distresses being observed in flexible pavements, which is primarily due to a-x-le loads that exceed legal limit and high ambient temperatures, and also poor mix design is one of the cause of rutting. The drastic increase in traffic volume during last few decades has resulted in premature pavement fillers of almost the whole road structure in Pakistan. In this scenario it is the time to investigate this problem and propose appropriate solution. Physical properties of aggregates and bitumen were evaluated in the laboratory. Mechanical Properties of three mixes. i.e., Marshall, Super pave and Stone Mastic Asphalt (SMA) were evaluated by performing creep test. indirect tensile test and dynamic modulus in order to compare the performance of mixes under prevailing load and environmental conditions of Pakistan. The study revealed that Super pave mixes performed better than Marshall and SMA. (author)

  17. Correlation between multiple stress creep recovery (MSCR) results and polymer modification of binder.

    Science.gov (United States)

    2013-09-01

    Nationwide traffic loads are increasing, pushing conventional asphalt to its limit. In New Jersey matters are made : worse by the heavy use of the Northeast Corridor. Polymer modification of asphalt, which can improve both low and high : performance,...

  18. Development of a green binder system for paper products.

    Science.gov (United States)

    Flory, Ashley R; Vicuna Requesens, Deborah; Devaiah, Shivakumar P; Teoh, Keat Thomas; Mansfield, Shawn D; Hood, Elizabeth E

    2013-03-26

    It is important for industries to find green chemistries for manufacturing their products that have utility, are cost-effective and that protect the environment. The paper industry is no exception. Renewable resources derived from plant components could be an excellent substitute for the chemicals that are currently used as paper binders. Air laid pressed paper products that are typically used in wet wipes must be bound together so they can resist mechanical tearing during storage and use. The binders must be strong but cost-effective. Although chemical binders are approved by the Environmental Protection Agency, the public is demanding products with lower carbon footprints and that are derived from renewable sources. In this project, carbohydrates, proteins and phenolic compounds were applied to air laid, pressed paper products in order to identify potential renewable green binders that are as strong as the current commercial binders, while being organic and renewable. Each potential green binder was applied to several filter paper strips and tested for strength in the direction perpendicular to the cellulose fibril orientation. Out of the twenty binders surveyed, soy protein, gelatin, zein protein, pectin and Salix lignin provided comparable strength results to a currently employed chemical binder. These organic and renewable binders can be purchased in large quantities at low cost, require minimal reaction time and do not form viscous solutions that would clog sprayers, characteristics that make them attractive to the non-woven paper industry. As with any new process, a large-scale trial must be conducted along with an economic analysis of the procedure. However, because multiple examples of "green" binders were found that showed strong cross-linking activity, a candidate for commercial application will likely be found.

  19. Development of a green binder system for paper products

    Science.gov (United States)

    2013-01-01

    Background It is important for industries to find green chemistries for manufacturing their products that have utility, are cost-effective and that protect the environment. The paper industry is no exception. Renewable resources derived from plant components could be an excellent substitute for the chemicals that are currently used as paper binders. Air laid pressed paper products that are typically used in wet wipes must be bound together so they can resist mechanical tearing during storage and use. The binders must be strong but cost-effective. Although chemical binders are approved by the Environmental Protection Agency, the public is demanding products with lower carbon footprints and that are derived from renewable sources. Results In this project, carbohydrates, proteins and phenolic compounds were applied to air laid, pressed paper products in order to identify potential renewable green binders that are as strong as the current commercial binders, while being organic and renewable. Each potential green binder was applied to several filter paper strips and tested for strength in the direction perpendicular to the cellulose fibril orientation. Out of the twenty binders surveyed, soy protein, gelatin, zein protein, pectin and Salix lignin provided comparable strength results to a currently employed chemical binder. Conclusions These organic and renewable binders can be purchased in large quantities at low cost, require minimal reaction time and do not form viscous solutions that would clog sprayers, characteristics that make them attractive to the non-woven paper industry. As with any new process, a large-scale trial must be conducted along with an economic analysis of the procedure. However, because multiple examples of “green” binders were found that showed strong cross-linking activity, a candidate for commercial application will likely be found. PMID:23531016

  20. Investigation on performances of asphalt mixtures made with Reclaimed Asphalt Pavement: Effects of interaction between virgin and RAP bitumen

    Directory of Open Access Journals (Sweden)

    Luca Noferini

    2017-07-01

    Full Text Available According to most recent surveys, the European area produced 265 mil tonnes of asphalt for road applications in 2014. In the same year, the amount of available RAP was more than 50 mil tonnes. The use of RAP in new blended mixes reduces the need of neat bitumen, making RAP recycling economically attractive. Despite the economic and environmental benefits, road authorities tend to limit the use of RAP in asphalt mixes due to uncertainty about field performances. The present study focuses on the interaction between neat and RAP bitumen in asphalt mixes made with different RAP content. The effects of RAP on physical and rheological properties of the final bituminous blend were investigated. This study is part of a wider research, where a specific type of asphalt mixture was produced with different RAP contents being 10%, 20% and 30% by mass of the mix. Bitumen was extracted and recovered from asphalt mixes, then it was subjected to the following laboratory tests: standard characterization, dynamic viscosity and rheological analysis with DSR. Findings showed that the effects of RAP bitumen on the final blend varied in proportion to RAP content. A threshold value of RAP content was found, below which bitumen was not subjected to significant changes in physical and rheological properties. Practical implications on production methods and paving of RAP mixes are also proposed. Keywords: Reclaimed Asphalt Pavement (RAP, Recycling, Bitumen blending, Bitumen rheology

  1. Dilatometric examination of moulds with plaster binder

    Directory of Open Access Journals (Sweden)

    M. Nadolski

    2011-01-01

    Full Text Available Investigations concerning thermal expansion of moulding materials with plaster binder have been performed for two mixture compositionsof Authors’ own design, as well as for the material used in jewellery industry under the Prima-Cast trade name, and for ThermoMold 1200moulding material. The results of dilatometric examinations of these materials, carried out within the temperature range from about 20°Cto 650°C by means of the DA-3 automatic dilatometer, have been compared. An analysis of this comparison has revealed that it is thematrix composition which is decisive for the magnitude of dimensional changes of moulds, and that applying components which do notexhibit polymorphic transformations reduces dimensional changes of a mould during its thermal treatment.

  2. Effect of binder properties on electrochemical performance for silicon-graphite anode: Method and application of binder screening

    International Nuclear Information System (INIS)

    Yim, Taeeun; Choi, Soo Jung; Jo, Yong Nam; Kim, Tae-Hyun; Kim, Ki Jae; Jeong, Goojin; Kim, Young-Jun

    2014-01-01

    Highlights: • Binder properties are systematically characterized to estimate their suitability. • Interpretation of binder properties in connection with binding affinity, electrode properties, and degree of phase separation in slurry. • According to the screening results, hybridization of poly(acrylic acid) and poly(amide imide) is recommended. • The modified binder showed improved cycle performance based on enhanced binder properties. - Abstract: With increasing demand for lithium-ion batteries (LIBs) with high energy density, silicon-based negative electrode material has attracted much interest because of its high specific capacity. Practical utilization of Si remains unattainable, however, owing to severe volume expansion in the electrode, resulting in a loss of the electrical Si network, which is directly connected to drastic capacity fading of the cell. Therefore, there have been systematic studies on the characterization of fundamental binder properties to estimate the suitability of various binder materials. The binder properties are subdivided into mechanical and adhesion characteristics, electrode properties (rigidity and recovery), and phase separation behavior of slurry to correlate with the electrochemical performance and practical acceptance of candidate materials. Systematic screening showed that hybridization of poly(acrylic acid) (PAA) and poly(amide imide) (PAI) could complement each other's properties and the hybridized PAA–PAI was synthesized by a one-step, acid-catalyzed reaction. The PAA–PAI hybrid showed enhancement in overall properties as a result of co-polymerization and exhibited remarkable cycling performance after 300 cycles. Based on these results, it can be concluded that an understanding of binder characteristics provides useful insight into the search for a more efficient binder material, and fine tuning of fundamental binder properties through screening will be advantageous to the construction of more efficient LIB

  3. Mechanical characterization of porous asphalt mixes modified with fatty acid amides -FAA-

    Directory of Open Access Journals (Sweden)

    Vanessa Senior Arrieta

    2017-01-01

    Full Text Available Porous asphalt mixes (PAM, form a special road surface for asphalt pavement structures, have a special particle size distribution that lets infiltrate to the runoff storm water through of it because of its voids content about 20 %. Many researchers conducted studies and have concluded that the use of modified asphalts is completely necessary to design PAM. Organic and chemical additives and special procedures as foamed asphalt have enhanced the performance of PAM, during their service life. This paper is focused on the mechanical characterization of PAM and how the asphalt modified with fatty acid amides, influenced on their behavior and performance. Based on an experimental methodology with laboratory tests aimed at establishing a comparison between porous asphalt mixes, using for its design and production a penetration 60-70 pure asphalt and another one asphalt modified with fatty acid amides.

  4. Assessment of asphalt concrete reinforcement grid in flexible pavements : final report.

    Science.gov (United States)

    2016-05-01

    This report investigated the application of accepted methods of pavement structural evaluation to independently assess the potential structural benefit of asphalt geogrid reinforcement of an operational flexible highway pavement. The asphalt interlay...

  5. Quantifying Asphalt Emulsion-Based Chip Seal Curing Times Using Electrical Resistance Measurements.

    Science.gov (United States)

    2017-04-15

    Chip sealing typically consists of covering a pavement surface with asphalt emulsion into which aggregate chips are embedded. The asphalt emulsion cures through the evaporation of water, thus providing mechanical strength to adhere to the pavement wh...

  6. 0-6686 : improving DMS 9210 requirements for limestone rock asphalt : [project summary].

    Science.gov (United States)

    2013-08-01

    Limestone rock asphalt (LRA) mixtures have : been produced and placed for several decades : using specification requirements currently listed : under DMS 9210, Limestone Rock Asphalt (LRA). : Several Texas Department of Transportation : (TxDOT) distr...

  7. Performance Assessment of Warm Mix Asphalt (WMA) Pavements : Executive Summary Report

    Science.gov (United States)

    2009-09-01

    Warm Mix Asphalt (WMA) is a new technology which was : introduced in 1995 in Europe. WMA is gaining attention all : over the world because it offers several advantages over : conventional asphalt concrete mixes. The benefits include: : (1) Reduced en...

  8. Performance Measures of Warm Asphalt Mixtures for Safe and Reliable Freight Transportation

    Science.gov (United States)

    2009-04-01

    Warm mix asphalt (WMA) is an emerging technology that can allow asphalt to flow at a lower temperature for mixing, placing and compaction. The advantages of WMA include reduced fuel consumption, less carbon dioxide emission, longer paving season, lon...

  9. Pavement service life extension due to asphalt surface treatment interlayer : research project capsule.

    Science.gov (United States)

    2016-07-01

    The Louisiana Department of Transportation and Development (DOTD) has been : using asphalt surface treatment (AST) interlayers over soil cement base courses : as a means to mitigate shrinkage cracks from reflecting through the asphaltic : concrete (A...

  10. In-Place Recycling and Reclamation of Asphaltic Concrete Pavements in Kentucky

    Science.gov (United States)

    2017-11-01

    Full-depth reclamation has been defined by the Asphalt Recycling and Reclaiming Association as a rehabilitation technique in which the full thickness of the asphalt pavement and a predetermined portion of the underlying material (base, subbase, an...

  11. Improving Quality Control of Asphalt Pavement with RAP Using a Portable Infrared Spectroscopy Device

    Science.gov (United States)

    2016-04-01

    This project has investigated the effectiveness of a Portable Infrared Spectrometer (PIRS) device in estimating percent of Reclaimed Asphalt Pavement (RAP) and its contribution into oxidative aging of a new asphalt mixture immediately after productio...

  12. The road that's taken : Alberta's bitumen and the world of asphalt

    International Nuclear Information System (INIS)

    Bentein, J.

    2009-01-01

    Approximately one third of the bitumen produced by the oil sands industry in Canada is used as asphalt in roads and roofing materials. Crude oils used for asphalt production require very little refining. The asphalt market has become a key profit centre for some Cold Lake operators. Imperial Oil has established a research centre devoted to asphalt production at its Sarnia-based refinery. A decline in heavy oil supplies from Mexico and Venezuela has left Canada with a larger margin of the asphalt market. Industry leaders predict that demand for asphalt products will grow by 2.6 per cent per year. A sharp increase in asphalt prices led to many construction delays in 2007. Trials are now being conducted on a new warm mix paving technology that allows users to lower the temperature of asphalt by 20 to 30 degrees C when paving. 2 figs

  13. Evaluation of cement and fly ash treated recycled asphalt pavement and aggregates for base construction.

    Science.gov (United States)

    2011-12-01

    Many entities currently use recycled asphalt pavement (RAP) and other aggregates as base material, temporary haul roads, : and, in the case of RAP, hot mix asphalt construction. Several states currently allow the use of RAP combined with cement : for...

  14. A Review of the Application of Zeolite Materials in Warm Mix Asphalt Technologies

    Directory of Open Access Journals (Sweden)

    Agnieszka Woszuk

    2017-03-01

    Full Text Available Among warm mix asphalt (WMA technologies, asphalt foaming techniques offer high potential in terms of decreasing production temperature. Reluctance of manufacturers to introduce this technology is connected with the concerns of a large investment costs. However, there are known additives which, through asphalt foaming, allow a decrease in temperatures by approximately 30 °C; the use of these additives do not involve expensive investment in order to change the asphalt mix production method. These additives are zeolites, that is, minerals of the aluminosilicate group, the crystalline structure of which contains water bound in a specific way. Its release, at mix asphalt production temperatures, causes asphalt foaming. It is currently known that zeolites can be used in WMA, including natural and synthetic zeolites obtained using chemical reagents and waste. This review presents the results of studies of WMA technology, including the effects of zeolite addition on asphalt properties and mix asphalt, as well as related environmental, economic, and technological benefits.

  15. Performance of Hot Mix Asphalt Mixture Incorporating Kenaf Fibre

    Science.gov (United States)

    Hainin, M. R.; Idham, M. K.; Yaro, N. S. A.; Hussein, S. O. A. E.; Warid, M. N. M.; Mohamed, A.; Naqibah, S. N.; Ramadhansyah, P. J.

    2018-04-01

    Kenaf fibre has been recognised to increase the strength of concrete, but its application in asphalt concrete is still unanswered. This research investigated the performance of Hot Mix Asphalt (HMA) incorporated with different percentages of kenaf fibre (0.1 %, 0.2% and 0.3% by weight of dry aggregate) in term of resilient modulus, rutting performance using Asphalt Pavement analyser (APA) and moisture damage using the Modified Lottman test (AASHTO-T283). The fibre was interweaved to a diameter of about 5-10 mm and length of 30 mm which is three times the nominal maximum aggregate size used in the mix. Asphaltic mixtures of asphalt concrete (AC) 10 were prepared and compacted using Marshall compactor which were subsequently tested to evaluate the resilient modulus and moisture susceptibility. Twelve cylindrical specimens (150mm diameter) from AC10, two control samples with two modified ones for each percentage of kenaf fibres compacted using Gyratory compactor were used for rutting test using APA. The laboratory results reveal that the addition of kenaf fibres slightly reduce the resilient modulus of the mixes and that asphaltic mix with 0.3% kenaf fibre can mitigate both rutting and moisture damage which makes the pavement more sustain to the loads applied even in the presence of water. 0.3% kenaf fibre content is considered to be the optimal content which had the least rut depth and the highest TSR of 81.07%. Based on grid analysis, addition of 0.3% kenaf fibre in asphaltic concrete was recommended in modifying the samples.

  16. Asphalt Roofing Shingles Into Energy Project Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, Rex, PE

    2008-04-28

    Based on a widely cited September, 1999 report by the Vermont Agency of Natural Resources, nearly 11 million tons of asphalt roofing shingle wastes are produced in the United States each year. Recent data suggests that the total is made up of about 9.4 million tons from roofing tear-offs and about 1.6 million tons from manufacturing scrap. Developing beneficial uses for these materials would conserve natural resources, promote protection of the environment and strengthen the economy. This project explored the feasibility of using chipped asphalt shingle materials in cement manufacturing kilns and circulating fluidized bed (CFB) boilers. A method of enhancing the value of chipped shingle materials for use as fuel by removing certain fractions for use as substitute raw materials for the manufacture of new shingles was also explored. Procedures were developed to prevent asbestos containing materials from being processed at the chipping facilities, and the frequency of the occurrence of asbestos in residential roofing tear-off materials was evaluated. The economic feasibility of each potential use was evaluated based on experience gained during the project and on a review of the well established use of shingle materials in hot mix asphalt. This project demonstrated that chipped asphalt shingle materials can be suitable for use as fuel in circulating fluidized boilers and cement kilns. More experience would be necessary to determine the full benefits that could be derived and to discover long term effects, but no technical barriers to full scale commercial use of chipped asphalt shingle materials in these applications were discovered. While the technical feasibility of various options was demonstrated, only the use of asphalt shingle materials in hot mix asphalt applications is currently viable economically.

  17. Carbon nanotube reinforced metal binder for diamond cutting tools

    DEFF Research Database (Denmark)

    Sidorenko, Daria; Mishnaevsky, Leon; Levashov, Evgeny

    2015-01-01

    The potential of carbon nanotube reinforcement of metallic binders for the improvement of quality and efficiency of diamond cutting wheels is studied. The effect of multi-walled carbon nanotube (MWCNT) reinforcement on the mechanical properties i.e. hardness, Young modulus, strength and deformation...... of grain size of the structural constituents of the binder, what in turn leads to the improved simultaneously hardness, Young modulus, plastic extension, bending strength and performances of the metallic binders. Comparing service properties of diamond end-cutting drill bits with and without MWCNT one...

  18. Solidification of low-level wastes by inorganic binder

    International Nuclear Information System (INIS)

    Sasaki, M.T.; Shimojo, M.; Suzuki, K.; Kajikawa, A.; Karasawa, Y.

    1995-01-01

    The use of an alkali activated slag binder has been studied for solidification and stabilization of low-level wastes in nuclear power stations and spent fuel processing facilities. The activated slag effectively formed waste products having good physical properties with high waste loading for sodium sulfate, sodium nitrate, calcium pyrophosphate/phosphate and spent ion-exchange resins. Moreover, the results of the study suggest the slag has the ability to become a common inorganic binder for the solidification of various radioactive wastes. This paper also describes the fixation of radionuclides by the activated slag binder

  19. Cationic fluorinated polymer binders for microbial fuel cell cathodes

    KAUST Repository

    Chen, Guang; Wei, Bin; Logan, Bruce E.; Hickner, Michael A.

    2012-01-01

    Fluorinated quaternary ammonium-containing polymers were used as catalyst binders in microbial fuel cell (MFC) cathodes. The performance of the cathodes was examined and compared to NAFION ® and other sulfonated aromatic cathode catalyst binders using linear sweep voltammetry (LSV), impedance spectroscopy, and performance tests in single chamber air-cathode MFCs. The cathodes with quaternary ammonium functionalized fluorinated poly(arylene ether) (Q-FPAE) binders showed similar current density and charge transfer resistance (R ct) to cathodes with NAFION ® binders. Cathodes containing either of these fluorinated binders exhibited better electrochemical responses than cathodes with sulfonated or quaternary ammonium-functionalized RADEL ® poly(sulfone) (S-Radel or Q-Radel) binders. After 19 cycles (19 d), the power densities of all the MFCs declined compared to the initial cycles due to biofouling at the cathode. MFC cathodes with fluorinated polymer binders (1445 mW m -2, Q-FPAE-1.4-H; 1397 mW m -2, Q-FPAE-1.4-Cl; 1277 mW m -2, NAFION ®; and 1256 mW m -2, Q-FPAE-1.0-Cl) had better performance than those with non-fluorinated polymer binders (880 mW m -2, S-Radel; 670 mW m -2, Q-Radel). There was a 15% increase in the power density using the Q-FPAE binder with a 40% higher ion exchange capacity (Q-FPAE-1.4-H compared to Q-FPAE-1.0-Cl) after 19 cycles of operation, but there was no effect on the power production due to counter ions in the binder (Cl -vs. HCO 3 -). The highest-performance cathodes (NAFION ® and Q-FPAE binders) had the lowest charge transfer resistances (R ct) in fresh and in fouled cathodes despite the presence of thick biofilms on the surface of the electrodes. These results show that fluorinated binders may decrease the penetration of the biofilm and associated biopolymers into the cathode structure, which helps to combat MFC performance loss over time. © 2012 The Royal Society of Chemistry.

  20. Preparation and Performance of Asphalt Compound Modified with Waste Crumb Rubber and Waste Polyethylene

    Directory of Open Access Journals (Sweden)

    Yuqiao Yang

    2016-01-01

    Full Text Available Three kinds of modified asphalt were prepared by adding waste crumb rubber (WCR, waste polyethylene (WPE, and WCR/WPE to base asphalt, respectively. The influence of different doses on the performance of modified asphalt, such as 25°C penetration, softening point, 5°C ductility, and 135°C, 165°C viscosity, was studied, and the modification mechanism of modified asphalt was discussed through the fluorescence microscope. As the waterproofing materials, the waterproofness of WCR/WPE compound modified asphalt was tested. The results show that the WPE modified asphalt has excellent resistance to high temperature and WCR modified asphalt has good low temperature resistance. The resistance to deformation ability of WPE modified asphalt is better than that of the WCR modified asphalt. The 135°C viscosity of compound modified asphalt is better than that of WPE and WCR modified asphalt. In addition, the waterproofness of compound modified asphalt using waterproofing materials is better than that of common waterproofing materials.

  1. Specifications and Construction Methods for Asphalt Concrete and Other Plant-Mix Types, 3rd Edition.

    Science.gov (United States)

    Asphalt Inst., College Park, MD.

    The purpose of this publication is to assist engineers in the analysis, design and control of paving projects that use asphalt concrete and other asphalt plant-mixes. The scope of this new third edition has been enlarged, and changes necessitated by advances in asphalt technology have been incorporated. Chapters I and II and Appendices A and B…

  2. Survey of microbial degradation of asphalts with notes on relationship to nuclear waste management

    International Nuclear Information System (INIS)

    ZoBell, C.E.; Molecke, M.A.

    1978-12-01

    A survey has been made of the microbial degradation of asphalts. Topics covered include chemical and physical properties of asphalts, their chemical stability, methods of demonstrating their microbial degradation, and environmental extremes for microbial activity based on existing literature. Specific concerns for the use of asphalt in nuclear waste management, plus potential effects and consequences thereof are discussed. 82 references

  3. Visualizing asphalt roller trajectories in context: acquiring, processing, and representing sensor readings

    NARCIS (Netherlands)

    Vasenev, Alexandr

    2015-01-01

    The asphalt compaction process relies heavily on the skills and knowledge of roller operators who act alongside other stakeholders involved in asphalt paving. It is essential that these construction specialists: (1) are adequately informed about the initial temperature distribution of the asphalt

  4. The first engineered self-healing asphalt road : How is it performing?

    NARCIS (Netherlands)

    Liu, Q.; Schlangen, H.E.J.G.; Van Bochove, G.

    2013-01-01

    Porous asphalt shows excellent performance in both noise reduction and water drainage. Although porous asphalt has these great qualities, its service life is much shorter (sometimes only half) compared to dense graded asphalt roads. Ravelling, which is the loss of aggregate particles from the

  5. On the representative volume element of asphalt concrete at low temperature

    Science.gov (United States)

    Marasteanu, Mihai; Cannone Falchetto, Augusto; Velasquez, Raul; Le, Jia-Liang

    2016-08-01

    The feasibility of characterizing asphalt mixtures' rheological and failure properties at low temperatures by means of the Bending Beam Rheometer (BBR) is investigated in this paper. The main issue is the use of thin beams of asphalt mixture in experimental procedures that may not capture the true behavior of the material used to construct an asphalt pavement.

  6. Basic Performance of Fibre Reinforced Asphalt Concrete with Reclaimed Asphalt Pavement Produced In Low Temperatures with Foamed Bitumen

    Science.gov (United States)

    Chomicz-Kowalska, Anna; Iwański, Mateusz M.; Mrugała, Justyna

    2017-10-01

    During the reconstruction of road pavements, the reclaimed asphalt pavement (RAP), which is obtained through milling of the worn out existing asphalt, is commonly used for producing new base courses in cold recycling processes. Two of these techniques are most popular: one using mineral-cement-emulsion mixes and one utilizing mineral cement mixes with foamed bitumen. Additionally, some amounts of RAP can be incorporated into traditional hot mix asphalt. The demand for energy efficient and environmentally friendly solutions however, results in a need for development of new techniques that would result in cheaper and more reliable solutions with smaller carbon footprint. The reduction of processing temperatures with simultaneous incorporation of reclaimed material is the most efficient way of obtaining these objectives, but it often results in the overall decrease of bituminous mix quality. The paper presents the possibility of using RAP for producing asphalt concrete in warm mix asphalt (WMA) production process by the use of foamed bitumen modified with Fischer-Tropsch synthetic wax and polymer-basalt fibers. Additionally, a series of reference mixtures were produced to investigate the effects of the additives and of the warm process. The carried out analyses and tests shown that the experimental warm mix asphalt produced with RAP and foamed bitumen returned satisfactory performance. The introduction of synthetic F-T wax in the warm foam bitumen mixes resulted in a significantly improved compaction levels and moisture and frost resistance and the addition of polymer-basalt fibers has further improved the permanent deformation resistance of the mixes. All of the designed and tested mixes have fulfilled the requirements for binding course asphalt concrete with medium traffic loads.

  7. Laboratory Measurements of Particulate Matter Concentrations from Asphalt Pavement Abrasion

    Directory of Open Access Journals (Sweden)

    Fullová Daša

    2016-12-01

    Full Text Available The issue of emissions from road traffic is compounded by the fact that the number of vehicles and driven kilometres increase each year. Road traffic is one of the main sources of particulate matter and traffic volume is still increasing and has unpleasant impact on longevity of the pavements and the environment. Vehicle motions cause mechanical wearing of the asphalt pavement surface - wearing course by vehicle tyres. The contribution deals with abrasion of bituminous wearing courses of pavements. The asphalt mixtures of wearing courses are compared in terms of mechanically separated particulate matter. The samples of asphalt mixtures were rutted in wheel tracking machine. The particulate matter measurements were performed in laboratory conditions. The experimental laboratory measurements make it possible to sample particulates without contamination from exhaust emissions, abraded particles from vehicles, resuspension of road dust and climate affects. The contribution offers partial results of measurements on six trial samples of asphalt mixtures with different composition. It presents particulate matter morphology and the comparison of rutted asphalt samples in terms of PM mass concentrations and chemical composition.

  8. Laboratory Evaluation of Aging Behaviour of SBS Modified Asphalt

    Directory of Open Access Journals (Sweden)

    Jie Wang

    2017-01-01

    Full Text Available To study the effect of aging SBS modified asphalt on the performance of asphalt pavement, aging at various times and temperatures was conducted with thin film oven, and then tests were made about the penetration, softening point, ductility, viscosity, toughness, and fluorescence microscopy of modified asphalt with different aging levels. The results show that, with the increasing of aging time, the penetration and ductility of modified asphalt decrease while its softening point and viscosity increase, and the variation trend of the toughness and tenacity is related to the aging temperature; the aging dynamic model with viscosity as parameter can well characterize the aging process of modified asphalt; at microlevel, with the decreasing of SBS particle size, the uniformity of particle size is better. Analysis of macroscopic properties, microscopic characteristics, and significance shows that the SBS particle area ratio has a significant correlation with tenacity as the aging temperature changes. When the aging temperature is 163°C, the SBS particle area ratio still has a significant correlation with tenacity as the aging time changes.

  9. Experimental Study on Color Durability of Color Asphalt Pavement

    Science.gov (United States)

    Ning, Shi; Huan, Su

    2017-06-01

    Aiming at the poor Color durability and the lack of research on Color asphalt pavement, spraying an anti-tire trace seal resin emulsion on the surface, a Color durable asphalt pavement was proposed. After long-term rolling and long-term aging test, the Color durability was evaluated by RGB function in Photoshop and trace residue rate formula. Test results proved that the Evaluation method was simple and effective. After long-term rolling, the Color of the road surface tends to a constant value. Spraying the emulsion on the road surface can resist tire traces. After long-term aging test, the resistance to tire traces was increased by 26.6% compared with the conventional type, while the former was 44.1% higher than the latter without long-term aging. The Color durable asphalt pavement can effectively improve the ability of Color asphalt pavement to resist tire traces, and significantly improve the Color durability of Color asphalt pavement.

  10. Aging test results of an asphalt membrane liner

    International Nuclear Information System (INIS)

    Buelt, J.L.; Barnes, S.M.

    1983-07-01

    The objective of the asphalt aging study described in this report was to determine the expected performance lifetime of a catalytically airblown asphalt membrane as a seepage barrier for inactive uranium mill tailings. The study, conducted by Pacific Northwest Laboratory for the Department of Energy's Uranium Mill Tailings Remedial Action Program, showed through chemical compatibility tests that the asphalt membrane is well suited for this purpose. The chemical compatibility tests were designed to accelerate the aging reactions in the asphalt and to determine the accelerated aging effect. Higher temperatures and oxygen concentrations proved to be effective acceleration parameters. By infrared spectral analysis, the asphalt was determined to have undergone 7 years of equivalent aging in a 3-month period when exposed to 40 0 C and 1.7 atm oxygen pressure. However, the extent of aging was limited to a maximum penetration of 0.5% of the total liner thickness. It was concluded that the liner could be expected to be effective as a seepage barrier for at least 1000 years before the entire thickness of the liner would be degraded

  11. The Utilization of Graphene Oxide in Traditional Construction Materials: Asphalt

    Directory of Open Access Journals (Sweden)

    Wenbo Zeng

    2017-01-01

    Full Text Available In the advanced research fields of solar cell and energy storing materials, graphene and graphene oxide (GO are two of the most promising materials due to their high specific surface area, and excellent electrical and physical properties. However, they was seldom studied in the traditional materials because of their high cost. Nowadays, graphene and GO are much cheaper than before with the development of production technologies, which provides the possibility of using these extraordinary materials in the traditional construction industry. In this paper, GO was selected as a nano-material to modify two different asphalts. Then a thin film oven test and a pressure aging vessel test were applied to simulate the aging of GO-modified asphalts. After thermal aging, basic physical properties (softening point and penetration were tested for the samples which were introduced at different mass ratios of GO (1% and 3% to asphalt. In addition, rheological properties were tested to investigate how GO could influence the asphalts by dynamic shearing rheometer tests. Finally, some interesting findings and potential utilization (warm mixing and flame retardants of GO in asphalt pavement construction were explained.

  12. The Utilization of Graphene Oxide in Traditional Construction Materials: Asphalt.

    Science.gov (United States)

    Zeng, Wenbo; Wu, Shaopeng; Pang, Ling; Sun, Yihan; Chen, Zongwu

    2017-01-07

    In the advanced research fields of solar cell and energy storing materials, graphene and graphene oxide (GO) are two of the most promising materials due to their high specific surface area, and excellent electrical and physical properties. However, they was seldom studied in the traditional materials because of their high cost. Nowadays, graphene and GO are much cheaper than before with the development of production technologies, which provides the possibility of using these extraordinary materials in the traditional construction industry. In this paper, GO was selected as a nano-material to modify two different asphalts. Then a thin film oven test and a pressure aging vessel test were applied to simulate the aging of GO-modified asphalts. After thermal aging, basic physical properties (softening point and penetration) were tested for the samples which were introduced at different mass ratios of GO (1% and 3%) to asphalt. In addition, rheological properties were tested to investigate how GO could influence the asphalts by dynamic shearing rheometer tests. Finally, some interesting findings and potential utilization (warm mixing and flame retardants) of GO in asphalt pavement construction were explained.

  13. [Phosphate binders in chronic kidney disease: the positions of sevelamer].

    Science.gov (United States)

    Fomin, V V; Shilov, E M; Svistunov, A A; Milovanov, Iu S

    2013-01-01

    The paper shows the role of phosphate binders in the correction of phosphorus and calcium metabolic disturbances in chronic kidney disease. The results of clinical trials demonstrating the efficacy and safety of sevelamer are discussed.

  14. effects of different grain starches as feed binders for

    African Journals Online (AJOL)

    users

    KEY WORDS: Grain Starches; Feed Binder, AQUA-Feed, Pelletability Water ... in their incorporation in on farm aqua feed and thus. 19 ..... International Seminar on Advanced Extrusion. Technology in Food Application, Sao Paulo. Brazil pp.

  15. Effect of starch binder on charcoal briquette properties

    Science.gov (United States)

    Borowski, Gabriel; Stępniewski, Witold; Wójcik-Oliveira, Katarzyna

    2017-10-01

    The paper shows the results of a study on the effect of starch binder on the mechanical, physical and burning properties of charcoal briquettes. Two types of binders were repeatedly used to make briquettes of native wheat starch and modified wheat starch, at 8% of the whole. Briquetting was performed in a roller press unit, and pillow-shaped briquettes were made. The moisture of the mixed material ranged from 28 to 32%. The product, whether the former or the latter, was characterized by very good mechanical properties and satisfactory physical properties. Moreover, the type of starch binder had no effect on toughness, calorific heating value, volatiles, fixed carbon content and ash content. However, the combustion test showed quite different burning properties. As briquettes should have short firing up time and lower smokiness, as well as high maximum temperature and long burning time, we have concluded that briquettes with native wheat starch as a binder are more appropriate for burning in the grill.

  16. (Methacrylic Acid-Co-Divinylbenzene) Resin as Filler- Binder for ...

    African Journals Online (AJOL)

    Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand. Abstract ... Methods: Powder properties of PMD and MCC were characterized. Tablets ... with the widely used filler-binder, ... Gravimetric swelling was determined by.

  17. Performance of Asphalt Concrete Wearing Course (AC-WC) Utilizing Reclaimed Asphalt Pavement from Cold Milling Bound with 80/100 Pen Asphalt

    Science.gov (United States)

    Thanya, I. N. A.; Suweda, I. W.; Putra, G. K.

    2018-03-01

    Demands on natural aggregate materials for road pavement can be reduced by utilizing reclaimed asphalt pavement (RAP). This research was aimed at evaluating the performance of AC-WC mixture using RAP materials from cold milling, bound with 80/100 pen asphalt. The RAP aggregate gradation was adjusted by adding the required amount of natural aggregates to meet the specification in Indonesia. The RAP and added aggregates were hotmixed and compacted with Marshall hummer at 2×75 blows. The asphalt content were varied. It was found that the optimum asphalt content was 6.05 % with the following Marshall characteristics: stability 1237.08 kg; flow 3.36 mm; Marshall quotient 324,73kg/mm; void in mix (VIM) 3,360%; void in mineral aggregate (VMA) 15.103; and void filled with bitumen (VFB) 77.759% and residual stability 91.04; all met the Indonesian specification. The cantabro abration loss (CAL) at 30°C was 9,02%. The indirect tensile stiffness modulus (ITSM) at 20 °C was 7961.4 MPa; dynamic creep with 100 kPa pressure at 40°C gave slope 0.0112 microsstrain/pulse which is suitable for heavy load traffic. The fatigue test results was obtained at increased stress level, i.e. at 900, 1100, and 1300 kPa. Based on the equation derived from the fatigue strain and repeated loading relationship, at 100 microstrain (με) the repeated load was 434,661.58 times, and at one million (106) repeated loading, the samples could withstand strain of 92,38 microstrain. The performance of the samples were overall better than AC-WC mixture using virgin aggregates bound with 60/70 pen asphalt.

  18. An Open Challenge Problem Repository for Systems Supporting Binders

    OpenAIRE

    Felty, A.; Momigliano, A.; Pientka, B.

    2015-01-01

    A variety of logical frameworks support the use of higher-order abstract syntax in representing formal systems; however, each system has its own set of benchmarks. Even worse, general proof assistants that provide special libraries for dealing with binders offer a very limited evaluation of such libraries, and the examples given often do not exercise and stress-test key aspects that arise in the presence of binders. In this paper we design an open repository ORBI (Open challenge problem Repo...

  19. Neutral hydrophilic cathode catalyst binders for microbial fuel cells

    KAUST Repository

    Saito, Tomonori

    2011-01-01

    Improving oxygen reduction in microbial fuel cell (MFC) cathodes requires a better understanding of the effects of the catalyst binder chemistry and properties on performance. A series of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) polymers with systematically varying hydrophilicity were designed to determine the effect of the hydrophilic character of the binder on cathode performance. Increasing the hydrophilicity of the PS-b-PEO binders enhanced the electrochemical response of the cathode and MFC power density by ∼15%, compared to the hydrophobic PS-OH binder. Increased cathode performance was likely a result of greater water uptake by the hydrophilic binder, which would increase the accessible surface area for oxygen reduction. Based on these results and due to the high cost of PS-b-PEO, the performance of an inexpensive hydrophilic neutral polymer, poly(bisphenol A-co-epichlorohydrin) (BAEH), was examined in MFCs and compared to a hydrophilic sulfonated binder (Nafion). MFCs with BAEH-based cathodes with two different Pt loadings initially (after 2 cycles) had lower MFC performance (1360 and 630 mW m-2 for 0.5 and 0.05 mg Pt cm-2) than Nafion cathodes (1980 and 1080 mW m -2 for 0.5 and 0.05 mg Pt cm-2). However, after long-term operation (22 cycles, 40 days), power production of each cell was similar (∼1200 and 700-800 mW m-2 for 0.5 and 0.05 mg Pt cm-2) likely due to cathode biofouling that could not be completely reversed through physical cleaning. While binder chemistry could improve initial electrochemical cathode performance, binder materials had less impact on overall long-term MFC performance. This observation suggests that long-term operation of MFCs will require better methods to avoid cathode biofouling. © 2011 The Royal Society of Chemistry.

  20. Novel Binders and Methods for Agglomeration of Ore

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-12-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking. This project has identified several acid-resistant binders and agglomeration procedures that can be used for improving the energy efficiency of heap leaching, by preventing the ''ponding'' and ''channeling'' effects that currently cause reduced recovery and extended leaching cycle times. Methods have also been developed for iron ore

  1. Laboratorium Study of Asphalt Starbit E-55 Polymer Modified Application on Asphalt Concrete Wearing Course (Ac-Wc

    Directory of Open Access Journals (Sweden)

    Damianus Kans Pangaraya

    2015-09-01

    Full Text Available The conventional asphalt road has almost been considered fail to serve the transportation needs. It is indicated by the occurrence of premature damage which is caused by vehicle load and climate. Starbit E-55, the polymer modified bitumen, is formulated to meet the requirement of transport development. Considering those needs, it is important to investigate the feasibility level of that modified bitumen as alternate asphalt instead of the conventional one. This research began with the measurement of the properties of hard layered AC-WC Starbit E-55, then comparing the result to 60/70 penetration of Pertamina asphalt. The next step is then, to determine the converted value so as to be close to that of Pertamina (60/70 penetration. This step is conducted by applying durability and ITS tests on the mixture. Result of the tests showed that hard layered AC-WC Starbit E-55 has better characteristic at 5.7% optimum level asphalt and 6.4% of Pertamina asphalt (60/70 penetration. Starbit E-55 converted level within hard-layered ACWC is 5.6%. The performance test result on immersion with variance of 1, 3, 5, 7 and 14 days shows that durability value of Starbit E-55 AC-WC has better performance. During the process, Starbit E-55 required 15.38% higher energy consumption.

  2. Investigation of Asphalt Mixture Creep Behavior Using Thin Beam Specimens

    International Nuclear Information System (INIS)

    Zofka, Adam; Marasteanu, Mihai; Turos, Mugur

    2008-01-01

    The asphalt pavement layer consists of two or more lifts of compacted asphalt mixture; the top of the layer is also exposed to aging, a factor that significantly affects the mixture properties. The current testing specifications use rather thick specimens that cannot be used to investigate the gradual change in properties with pavement depth. This paper investigates the feasibility of using the 3-point bending test with thin asphalt mixture beams (127x12.7x6.35 mm) to determine the low-temperature creep compliance of the mixtures. Several theoretical and semi-empirical models, from the theory of composites, are reviewed and evaluated using numerical and experimental data. Preliminary results show that this method can be used for low-temperature mixture characterization but several crucial factors need further inspection and interpretation

  3. Effect of ageing on porosity of hot mix asphalt

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, M.F.A.S. [Dept. de Estradas de Rodagem de Minas Gerais (DER/MG), Belo Horizonte, MG (Brazil); Lins, V.F.C. [Universidade Federal de Minas Gerais (UFMG), MG (Brazil). Dept. de Engenharia Quimica], e-mail: vlins@deq.ufmg.br; Pasa, V.M.D. [Universidade Federal de Minas Gerais (UFMG), MG (Brazil). Dept. de Quimica

    2011-01-15

    Asphalt ageing due to the action of solar radiation must be considered in the study of the performance of asphalt pavement, especially in Brazil because of its geographical characteristics. The aim of this work is to study asphalt ageing caused by the effect of xenon radiation, by using weathering tests. Sample degradation was evaluated by using Fourier transform infrared spectroscopy (FTIR). The results of FTIR indicated an oxidation process of the material, which occurred during exposure in the xenon arc chamber. The area ratio related to the bands of the aliphatic CH/OH and CH/C=O groups and those of the Si-O-Si/OH groups of bitumen decreased after exposure to xenon radiation. The samples were analyzed by using X-ray fluorescence (XRF) and scanning electron microscopy (SEM). The porosity of the samples before and after ageing was measured by using the SEM micrographs and the image software Quantikov. (author)

  4. Asphalt emulsion sealing of uranium mill tailings. 1980 annual report

    International Nuclear Information System (INIS)

    Hartley, J.N.; Koehmstedt, P.L; Esterl, D.J.; Freeman, H.D.; Buelt, J.L.; Nelson, D.A.; Elmore, M.R.

    1981-05-01

    Studies of asphalt emulsion sealants conducted by the Pacific Northwest Laboratory have demonstrated that the sealants are effective in containing radon and other potentially hazardous material within uranium tailings. The laboratory and field studies have further demonstrated that radon exhalation from uranium tailings piles can be reduced by greater than 99% to near background levels. Field tests at the tailings pile in Grand Junction, Colorado, confirmed that an 8-cm admix seal containing 22 wt% asphalt could be effectively applied with a cold-mix paver. Other techniques were successfully tested, including a soil stabilizer and a hot, rubberized asphalt seal that was applied with a distributor truck. After the seals were applied and compacted, overburden was applied over the seal to protect the seal from ultraviolet degradation

  5. Asphalt emulsion sealing of uranium mill tailings. 1979 annual report

    International Nuclear Information System (INIS)

    Hartley, J.N.; Koehmstedt, P.L.; Esterl, D.J.; Freeman, H.D.

    1980-06-01

    Uranium mill tailings are a source of low-level radiation and radioactive materials that may be released into the environment. Stabilization or disposal of these tailings in a safe and environmentally sound way is necessary to minimize radon exhalation and other radioactive releases. One of the most promising concepts for stabilizing uranium tailings is being investigated at the Pacific Northwest Laboratory: the use of asphalt emulsion to contain radon and other potentially hazardous materials in uranium tailings. Results of these studies indicate that radon flux from uranium tailings can be reduced by greater than 99% by covering the tailings with an asphalt emulsion that is poured on or sprayed on (3.0 to 7.0 mm thick), or mixed with some of the tailings and compacted to form an admixture seal (2.5 to 15.2 cm) containing 18 wt % residual asphalt

  6. Hanford Permanent Isolation Barrier Program: Asphalt technology test plan

    International Nuclear Information System (INIS)

    Freeman, H.D.; Romine, R.A.

    1994-05-01

    The Hanford Permanent Isolation Barriers use engineered layers of natural materials to create an integrated structure with backup protective features. The objective of current designs is to develop a maintenance-free permanent barrier that isolates wastes for a minimum of 1000 years by limiting water drainage to near-zero amounts. Asphalt is being used as an impermeable water diversion layer to provide a redundant layer within the overall barrier design. Data on asphalt barrier properties in a buried environment are not available for the required 100-year time frame. The purpose of this test plan is to outline the activities planned to obtain data with which to estimate performance of the asphalt layers

  7. Hanford Permanent Isolation Barrier Program: Asphalt technology test plan

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Romine, R.A.

    1994-05-01

    The Hanford Permanent Isolation Barriers use engineered layers of natural materials to create an integrated structure with backup protective features. The objective of current designs is to develop a maintenance-free permanent barrier that isolates wastes for a minimum of 1000 years by limiting water drainage to near-zero amounts. Asphalt is being used as an impermeable water diversion layer to provide a redundant layer within the overall barrier design. Data on asphalt barrier properties in a buried environment are not available for the required 100-year time frame. The purpose of this test plan is to outline the activities planned to obtain data with which to estimate performance of the asphalt layers.

  8. Stability and Volumetric Properties of Asphalt Mixture Containing Waste Plastic

    Directory of Open Access Journals (Sweden)

    Abd Kader Siti Aminah

    2017-01-01

    Full Text Available The objectives of this study are to determine the optimum bitumen content (OBC for every percentage added of waste plastics in asphalt mixtures and to investigate the stability properties of the asphalt mixtures containing waste plastic. Marshall stability and flow values along with density, air voids in total mix, voids in mineral aggregate, and voids filled with bitumen were determined to obtain OBC at different percentages of waste plastic, i.e., 4%, 6%, 8%, and 10% by weight of bitumen as additive. Results showed that the OBC for the plastic-modified asphalt mixtures at 4%, 6%, 8%, and 10% are 4.98, 5.44, 5.48, and 5.14, respectively. On the other hand, the controlled specimen’s shows better volumetric properties compared to plastic mixes. However, 4% additional of waste plastic indicated better stability than controlled specimen.

  9. Laboratory evaluation of resistance to moisture damage in asphalt mixtures

    Directory of Open Access Journals (Sweden)

    Ahmed Ebrahim Abu El-Maaty Behiry

    2013-09-01

    Full Text Available Moisture damage in asphalt mixtures refers to loss in strength and durability due to the presence of water. Egypt road network is showing severe deterioration such as raveling and stripping because the bond between aggregates and asphalt film is broken due to water intrusion. To minimize moisture damage, asphalt mixes are investigated to evaluate the effect of air voids, degree of saturation, media of attack and the conditioning period. Two medias of attack are considered and two anti-stripping additives are used (hydrated lime and Portland cement. The retained Marshall stability and tensile strength ratio are calculated to determine the resistance to moisture damage. The results showed that both lime and cement could increase Marshall stability, resilient modulus, tensile strength and resistance to moisture damage of mixtures especially at higher condition periods. Use of hydrated lime had better results than Portland cement.

  10. Deformation Parameters and Fatigue of the Recycled Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Šrámek Juraj

    2015-12-01

    Full Text Available The deformational properties of asphalt mixtures measured by dynamic methods and fatigue allow a design the road to suit the expected traffic load. Quality of mixtures is also expressed by the resistance to permanent deformation. Complex modulus of stiffness and fatigue can reliably characterize the proposed mixture of asphalt pavement. The complex modulus (E* measurement of asphalt mixtures are carried out in laboratory of Department of Construction Management at University of Žilina by two-point bending test method on trapezoid-shaped samples. Today, the fatigue is verified on trapezoid-shaped samples and is assessed by proportional strain at 1 million cycles (ε6. The test equipment and software is used to evaluate fatigue and deformation characteristics.

  11. Evaluation of wettability of binders used in moulding sands

    Directory of Open Access Journals (Sweden)

    Hutera B.

    2007-01-01

    Full Text Available Binders used in moulding sand have the differential properties. One of the main parameters influencing on moulding sand properties is wettability of the sand grain by binding material. In the article some problems concerned with wettability evaluation have been presented and the importance of this parameter for quantity description of process occurring in system: binder- sand grain has been mentioned. The procedure of wetting angle measurement and operation of prototype apparatus for wettability investigation of different binders used in moulding sand have been described, as well as the results of wetting angle measurement for different binders at different conditions. The addition of little amount of proper diluent to binder results in the state of equilibrium reached almost immediately. Such addition can also reduce the value of equilibrium contact angle. The uniform distribution of binder on the surface of the sand grains and reducing of the required mixing time can be obtained. It has also a positive effect on the moulding sand strength.

  12. Protein kinase activity associated with the corticosteroid binder IB

    International Nuclear Information System (INIS)

    Vujicic, M.; Djordjevic-Markovic, R.; Radic, O.; Krstic, M.; Kanazir, D.

    1997-01-01

    The physiological effects elicited by glucocorticoids are mediated via glucocorticoid receptors (GR). Analysis of specific glucocorticoid binding to radioactively labelled [ 3 H] triamcinolone acetonide in rat liver cytosol and analysis by ion exchange chromatography have revealed the presence of two distinct molecular species. The major form, designated as binder II appears to correspond to the well characterized glucocorticoid receptor by virtue of its size, charge, steroid binding characteristics and ability to bind to DNA.The second form, designated as corticosteroid binder IB, is a minor binding component in the liver. The binder IB differs from the binder II receptor by virtue of its lower molecular weight and its elution in the pre gradient of DEAE-Sephadex A-50 column which retains the un activated binder II receptor complexes. We examined the kinase activity of partially purified corticosteroid binder IB. Using (γ 3 2 P) ATP we detected kinase activity associated with the IB fraction from the rat liver. This kinase phosphorylate mixed histones and and dose not phosphorylate IB protein in vitro. The kinase activity is completely inhibited by the addition of Mg 2 + ions and is partially inhibited by the addition of Ca 2 +ions. (author)

  13. NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE

    Energy Technology Data Exchange (ETDEWEB)

    S.K. Kawatra; T.C. Eisele; J.A. Gurtler; C.A. Hardison; K. Lewandowski

    2004-04-01

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking.

  14. Binder-Free and Carbon-Free Nanoparticle Batteries: A Method for Nanoparticle Electrodes without Polymeric Binders or Carbon Black

    KAUST Repository

    Ha, Don-Hyung; Islam, Mohammad A.; Robinson, Richard D.

    2012-01-01

    In this work, we have developed a new fabrication method for nanoparticle (NP) assemblies for Li-ion battery electrodes that require no additional support or conductive materials such as polymeric binders or carbon black. By eliminating

  15. Rutting Prediction in Asphalt Pavement Based on Viscoelastic Theory

    Directory of Open Access Journals (Sweden)

    Nahi Mohammed Hadi

    2016-01-01

    Full Text Available Rutting is one of the most disturbing failures on the asphalt roads due to the interrupting it is caused to the drivers. Predicting of asphalt pavement rutting is essential tool leads to better asphalt mixture design. This work describes a method of predicting the behaviour of various asphalt pavement mixes and linking these to an accelerated performance testing. The objective of this study is to develop a finite element model based on viscoplastic theory for simulating the laboratory testing of asphalt mixes in Hamburg Wheel Rut Tester (HWRT for rutting. The creep parameters C1, C2 and C3 are developed from the triaxial repeated load creep test at 50°C and at a frequency of 1 Hz and the modulus of elasticity and Poisson’ s ratio determined at the same temperature. Viscoelastic model (creep model is adopted using a FE simulator (ANSYS in order to calculate the rutting for various mixes under a uniform loading pressure of 500 kPa. An eight-node with a three Degrees of Freedom (UX, UY, and UZ Element is used for the simulation. The creep model developed for HWRT tester was verified by comparing the predicted rut depths with the measured one and by comparing the rut depth with ABAQUS result from literature. Reasonable agreement can be obtained between the predicted rut depths and the measured one. Moreover, it is found that creep model parameter C1 and C3 have a strong relationship with rutting. It was clear that the parameter C1 strongly influences rutting than the parameter C3. Finally, it can be concluded that creep model based on finite element method can be used as an effective tool to analyse rutting of asphalt pavements.

  16. Final environmental and regulatory assessment of using asphalt as a sealant in mine shafts

    International Nuclear Information System (INIS)

    1987-01-01

    This report discusses the properties of asphalt, the current regulatory status governing asphalt and future regulatory implications which may be pertinent in using asphalt as a waterproof shaft sealant. An understanding of the inherent organic composition of asphalt, an increase in the number of health and environmental research publications conducted on asphalt and an examination of the apparent trend of regulatory agencies toward more stringent environmental regulation governing the use of organic materials suggests asphalt could become regulated at a future time. This would only occur, however, if asphalt was found to conform to the present regulatory definitions of pollutants, contaminants or hazardous substances or if asphalt was included on a regulated substance list. In this regard, the study points out that asphalt contains very low levels of hazardous poly-nuclear aromatics (PNA's). These levels are significantly lower than the levels present in coal tars, a substance known to contain high levels of hazardous PNA's. Asphalt, however, has the inherent potential of producing higher concentrations of PNA's if the adverse condition of cracking should occur during the refinery production stage or on-site preparation of the asphalt. Also, unless existing control technology is applied, emission levels of sulfur dioxide, carbon monoxide, particulates and volatile organic carbons from the on-site preparation facilities could approach the permissible health standard levels of EPA. The study indicates, however, that available literature is limited on these issues

  17. UJI FISIK PAKAN IKAN YANG MENGGUNAKAN BINDER TEPUNG GAPLEK PHYSICAL TEST OF FISH FEED USING CASSAVA FLOUR BINDER

    Directory of Open Access Journals (Sweden)

    Dini Siswani Mulia

    2017-03-01

    Full Text Available Pakan ikan dibuat selain memiliki kandungan nutrisi yang sesuai dengan kebutuhan ikan budidaya, juga secara fisik harus kompak dan stabil di dalam air. Kelemahan yang sering terjadi, sebagian besar kandungan nutrisi sudah terpenuhi tetapi pakan mudah tenggelam di dalam air dan cepat terurai sebelum semuanya dimakan ikan. Langkah strategis adalah menambahkan binder (bahan perekat dalam pembuatan pakan ikan agar bahan pakan tercampur dengan baik, kompak, serta memiliki daya apung yang baik pula. Salah satu bahan yang berpotensi sebagai binder pakan ikan adalah tepung gaplek. Penelitian ini bertujuan untuk mengkaji uji fisik pakan ikan yang menggunakan binder tepung gaplek. Metode penelitian menggunakan metode eksperimen dengan rancangan acak lengkap (RAL 4 perlakuan dan 4 kali ulangan, yaitu P0 : pakan komersial (kontrol; P1 : pakan dengan binder tepung gaplek 5 %; P2 : pakan dengan binder tepung gaplek 7,5 %; dan P3 : pakan dengan binder tepung gaplek 10%. Bahan baku pakan adalah tepung bulu ayam yang difermentasi dengan Bacillus licheniformis B2560, ampas tahu yang difermentasi dengan Aspergillus niger, dan tepung ikan rucah. Parameter yang diamati adalah uji fisik pakan ikan meliputi daya apung, tingkat kekerasan, tingkat homogenitas, dan kecepatan pecah pakan ikan serta sebagai data pendukung adalah kadar protein dan kadar air pakan ikan. Parameter uji fisik pakan ikan dianalisis dengan menggunakan Analysis of Variance (ANOVA dan Duncan Multiple Range Test (DMRT dengan taraf uji 5%, sedangkan data kadar protein dan kadar air dianalisis secara deskriptif. Hasil penelitian menunjukkan bahwa perlakuan pemberian binder tepung gaplek berpengaruh nyata terhadap hasil uji fisik pakan ikan. Perlakuan dengan binder tepung gaplek dengan konsentrasi 10% memiliki kualitas pakan yang paling baik dan mampu menyamai kualitas pakan komersial. Kadar protein yang dihasilkan pakan uji dapat memenuhi kriteria kebutuhan nutrisi pakan yang berkualitas, yaitu

  18. Automated titration method for use on blended asphalts

    Science.gov (United States)

    Pauli, Adam T [Cheyenne, WY; Robertson, Raymond E [Laramie, WY; Branthaver, Jan F [Chatham, IL; Schabron, John F [Laramie, WY

    2012-08-07

    A system for determining parameters and compatibility of a substance such as an asphalt or other petroleum substance uses titration to highly accurately determine one or more flocculation occurrences and is especially applicable to the determination or use of Heithaus parameters and optimal mixing of various asphalt stocks. In a preferred embodiment, automated titration in an oxygen gas exclusive system and further using spectrophotometric analysis (2-8) of solution turbidity is presented. A reversible titration technique enabling in-situ titration measurement of various solution concentrations is also presented.

  19. An investigation of waste foundry sand in asphalt concrete mixtures.

    Science.gov (United States)

    Bakis, Recep; Koyuncu, Hakan; Demirbas, Ayhan

    2006-06-01

    A laboratory study regarding the reuse of waste foundry sand in asphalt concrete production by replacing a certain portion of aggregate with WFS was undertaken. The results showed that replacement of 10% aggregates with waste foundry sand was found to be the most suitable for asphalt concrete mixtures. Furthermore, the chemical and physical properties of waste foundry sand were analysed in the laboratory to determine the potential effect on the environment. The results indicated that the investigated waste foundry sand did not significantly affect the environment around the deposition

  20. SYSTEM FOR CONTROLLING ELECTRIC DRIVE OF ASPHALT CONCRETE MIXING PLANT

    Directory of Open Access Journals (Sweden)

    A. S. Surmak

    2005-01-01

    Full Text Available It is proposed to evaluate quality of asphalt concrete mixture through definition of current component variable of a drive motor and measurement of its derivative sign. In order to carry out final determination of mixture uniformity a transducer on the basis of a nuclear magnetic resonance is applied. Block diagram of the system is presented and algorithm of its operation is given in the paper. In addition to improvement of the finished product quality the application of the system makes it possible to reduce bitumen consumption used for production of asphalt concrete.

  1. The Spontaneous Combustion of Railway Ties and Asphalt Shingles

    Science.gov (United States)

    Leslie, Geoffrey

    Many Low Carbon Fuels (LCFs) present unknown spontaneous combustion risks, which must be quantified before their use as fossil fuel replacements. Wood and coal spontaneous combustion is well understood; however, LCFs weather, and subsequent chemical changes could affect their spontaneous combustion properties. LCF spontaneous combustion could lead to accidental fires with possible loss of life, limb and property. The spontaneous combustion risks of two LCFs, discarded creosote-treated wooden railway ties and roofing asphalt shingles, were investigated with calorimetry and heat transfer experiments. Chemical changes due to weathering were studied with pyrolysis-Gas Chromatography/Mass Spectrometry (py-GC/MS). Creosote-treated wooden railway tie dust, roofing asphalt shingle particles, poplar wood pellets, and petroleum coke self-heating were studied with isothermal calorimetry. Railway tie dust and asphalt shingle heat transfer were characterized with a guarded hot plate. Petroleum coke self-heating was consistent with coal, while both poplar pellets and railway tie dust were found to be more reactive compared to oven test results of similar materials. The observed increase in reactivity was probably a result of significant moisture contenint in the pellet and railway tie dust. Critical conditions for spontaneous combustion were evaluated with the Frank-Kamenetskii parameter, assuming an ambient temperature of 40°C and constant moisture content. Kamenetskii calculations indicate that a 1.6 m cube of railway tie dust, or a 58 m cube of asphalt particles, would be unstable and combust. LCF chemistry may have been affected by weathering, which would cause chemical changes that affect their spontaneous combustion properties. Therefore, railway tie wood and roofing asphalt shingle chemistry were investigated by identifying products of 250° and 550°C pyrolysis with py-GC/MS. Railway tie wood pyrolyzates did not show signs of weathering; in contrast, asphalt pyrolysis

  2. Numerical simulation on the thermal response of heat-conducting asphalt pavements

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hong; Wu Shaopeng; Chen Mingyu; Zhang Yuan, E-mail: wusp@whut.edu.c [Key Laboratory of Silicate Materials Science and Engineering, Ministry of Education, Wuhan University of Technology, Wuhan 430070 (China)

    2010-05-01

    Using asphalt pavements as a solar collector is a subject of current interest all over the world because the sun provides a cheap and abundant source of clean and renewable energy, which can be captured by black asphalt pavements. A heat-conducting device is designed to absorb energy from the sun. In order to validate what parameters are critical in the asphalt collector, a finite element model is developed to predict the thermal response of the heat-conducting device compared to the conventional asphalt mixture. Some factors that may affect the asphalt pavement collector are considered, including the coefficient of heat conductivity of the asphalt pavement, the distance between pipes with the medium, water, and the pipe's diameter. Ultimately, the finite element model can provide pavement engineers with an efficient computational tool that can be a guide to the conductive asphalt solar collector's experiment in the laboratory.

  3. Numerical simulation on the thermal response of heat-conducting asphalt pavements

    International Nuclear Information System (INIS)

    Wang Hong; Wu Shaopeng; Chen Mingyu; Zhang Yuan

    2010-01-01

    Using asphalt pavements as a solar collector is a subject of current interest all over the world because the sun provides a cheap and abundant source of clean and renewable energy, which can be captured by black asphalt pavements. A heat-conducting device is designed to absorb energy from the sun. In order to validate what parameters are critical in the asphalt collector, a finite element model is developed to predict the thermal response of the heat-conducting device compared to the conventional asphalt mixture. Some factors that may affect the asphalt pavement collector are considered, including the coefficient of heat conductivity of the asphalt pavement, the distance between pipes with the medium, water, and the pipe's diameter. Ultimately, the finite element model can provide pavement engineers with an efficient computational tool that can be a guide to the conductive asphalt solar collector's experiment in the laboratory.

  4. Effect of moisture and freeze-thaw on mechanical properties of CRM asphalt mixture

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nak-Seok; Cho, Kee-Ju [Kyonggi University, Suwon(Korea)

    2000-06-30

    This paper presents the experimental test results on moisture and freeze-thaw resistance of hot mix crumb rubber modified (CRM) asphalt concrete mixture. To compare the differences in mechanical properties of conventional and CRM asphalt concretes, various tests were conducted under different moisture conditions and freeze-thaw cycles. Marshall mix design was also performed to determine the optimum asphalt contents for the both asphalt concrete mixtures. Test results revealed that the moisture and freeze-thaw resistance of CRM asphalt mixture was superior to the conventional asphalt concrete. As a result, it is considered that the utilization of waste tires in asphalt pavements has the potential of minimizing the damage due to the moisture and freeze-thaw. (author). 9 refs., 4 tabs., 8 figs.

  5. Progresses in irradiating SBS for road asphalt applications

    International Nuclear Information System (INIS)

    Li Linfan; Xie Leidong; Fu Haiying; Li Yintao; Yu Min; Sheng Kanglong; Yao Side

    2006-01-01

    Technical developments at SINAP to improve properties of SBS, a styrene-butadiene- styrene copolymer, for road asphalt applications are reviewed. In an attempt to better solve problems related to undesirable compatibility of SBS to asphalt components, we proposed a new method to modify the SBS molecular chains with ionizing radiations through radiation graft copolymerization and radiation crosslinking. Grafting a monomer with polar functional groups onto SBS molecules improves compatibility of SBS to polar components of asphalt, hence enhanced storage stability of the polymer modified asphalt (PMA), while crosslinks of SBS molecular chains endues increased physical properties to the PMA. Mechanisms of the radiation effects were studied with a series of SBS samples irradiated by 60 Co γ-rays or electron beams. The PMA and macadam-blended PMA samples showed higher performance than the control, i.e. SBS-modified asphalt by conventional approaches. The results can be summarized as follows. 1. The grafted SBS enhances thermostability of saturates and aromatics, the two asphalt components that exhibit the biggest SBS-swelling effect. The resins of asphalt, however, can hardly be absorbed by SBS, and the SBS is in a phase-separation status with the resins. Therefore, it is crucial to strengthen reactions between SBS and the resins to obtain stable and high quality PMA. 2. SBS molecular chains can be crosslinked with irradiation of a few tens of kGy. The crosslinking effect was evidenced by increased molecular weight of SBS and wider distribution of the molecular weight in GPC measurement of the irradiated SBS samples, and by decreased activation energy of viscosity in rheological measurement, in which the storage modulus G' increased and the loss modulus G' declined with increasing doses, indicating a larger elastic component and smaller viscous component in the irradiated SBS. Correspondingly, temperature sensitivity of the irradiated SBS reduced. Blended with SBS

  6. FINELY DISPERSED COMPOSITE BINDER FOR REINFORCING SOILS BY INJECTION METHOD

    Directory of Open Access Journals (Sweden)

    Kharchenko Igor Yakovlevich

    2017-11-01

    Full Text Available Subject: we consider the problem of supplying the construction industry, in particular underground construction, with mineral binder for diluted aqueous suspensions that meet the requirements for reinforcement of low-strength sand and clastic soils by injections into the reinforced soil mass. Research objectives: substantiating possibility of using amorphous biosilica in combination with carbide sludge, whose particles size does not exceed 10 mm on average, as a binder for aqueous suspensions being injected. Materials and methods: as raw materials we used: common construction hydrated lime from “Stroimaterialy” JSC, Belgorod, hydrated lime in the form of carbide sludge from the dumps of Protvino plant (carbide sludge, hereafter, active mineral admixture biosilica from the group of companies “DIAMIX” and a plasticizer Sika viscocrete 5 new. Test methods are in accordance with applicable standards. To obtain samples of impregnated soils, a specially developed technique was used in the form of a unidirectional model. Results: properties of the composite binder prepared with different compositions are presented. The optimal component ratios are determined. The following properties of aqueous suspensions are studied: conditional viscosity, sedimentation and penetrating ability. Conditional viscosity is no more than 40 sec on average. Sedimentation does not exceed 1.2 %. Soil-concrete obtained by injection of a dilute aqueous suspension based on this composite binder has a compressive strength in the range from 4.44 to 12.5 MPa. Conclusions: utilization of finely dispersed composite mineral binder, which is based on interaction of amorphous silica with calcium hydroxide, as a binder for high penetration aqueous suspensions has been substantiated. This binder is not inferior to foreign analogues in terms of its strength and technological parameters and can be used for reinforcement of loose and low-strength soils. In case of using carbide

  7. Investigation of synergistic effects of warm mix asphalt and high fractionated reclaimed asphalt for safe, environmentally sustainable highway.

    Science.gov (United States)

    2013-11-01

    To increase RAP materials by up to 75% by binder replacement, a fractionation method was applied to the RAP stockpile by : discarding RAP materials passing No. 16 sieve. This fractionation method was effective in improving volumetric properties : of ...

  8. Effect of Particulates Generated from Asphalt Production on the ...

    African Journals Online (AJOL)

    PROF HORSFALL

    in air, including dust, soot, dirt, smoke and liquid droplets. Particulate matter is of localized importance near roads, cement works, and other industrial areas. Apart from screening out sunlight, dust on leaf blocks stomata and lowers their conductants to Carbon iv oxide (Jitin and Manish, 2014). Asphalt, which is also referred ...

  9. The adoption of innovative asphalt equipment in road construction

    NARCIS (Netherlands)

    Habets, M.J.M.; Voordijk, Johannes T.; van der Sijde, Peter

    2011-01-01

    Purpose – The purpose of this paper is to provide insight into the adoption process of innovative asphalt equipment in road construction and how the level of knowledge as characterised by the level of education in the companies affects this process. The emphasis is on equipment used for transporting

  10. Steel slag in hot mix asphalt concrete : final report

    Science.gov (United States)

    2000-04-01

    In September 1994, steel slag test and control sections were constructed in Oregon to evaluate the use of steel slag in hot mix asphalt concrete (HMAC). This report covers the construction and five-year performance of a pavement constructed with 30% ...

  11. Using waste plastic bottles as additive for stone mastic asphalt

    International Nuclear Information System (INIS)

    Ahmadinia, Esmaeil; Zargar, Majid; Karim, Mohamed Rehan; Abdelaziz, Mahrez; Shafigh, Payam

    2011-01-01

    Highlights: → The PET increased the stiffness level of the mixture improving its resistance level against permanent deformation. → The effects of waste PET on Marshall Stability, air void and bulk specific gravity of the mixture are significant. → The appropriate amount of PET was found to be 6% by weight of bitumen. -- Abstract: Currently, polymer modified asphalt mixture is a relatively costly mixture for paving roads. One way to reduce the cost of such constructions and rendering them more convenient is by using inexpensive polymers, i.e. waste polymers. The main purpose of this research is to determine the effect of incorporating waste plastic bottles (Polyethylene Terephthalate (PET)) on the engineering properties of stone mastic asphalt (SMA) mixture. The volumetric and mechanical properties of asphalt mixes that include various percentages of PET (0%, 2%, 4%, 6%, 8% and 10%) were calculated and assessed with laboratory tests. The appropriate amount of PET was found to be 6% by weight of bitumen. The outcomes were statistically analysed and the determination of the significance at certain confidence limits was performed with the two factor variance analysis (ANOVA). Moreover, some studies conducted on polyethylene modified asphalt mixture have also been taken into consideration in this paper. The results show that the addition of PET has a significant positive effect on the properties of SMA and it can promote the re-use of waste material in industry in an environmentally friendly and economical way.

  12. Aggregate packing characteristics of good and poor performing asphalt mixes

    CSIR Research Space (South Africa)

    Denneman, E

    2007-07-01

    Full Text Available The aggregate structure of the compacted mix is a determining factor for the performance of Hot-Mix Asphalt (HMA). In this paper, the grading characteristics of good and poor performing HMA mixes are explored using the concepts of the Bailey method...

  13. LABORATORY EVALUATION OF COMPACTABILITY AND PERFORMANCE OF WARM MIX ASPHALT

    Directory of Open Access Journals (Sweden)

    Allex Eduardo Álvarez Lugo

    Full Text Available Warm mix asphalt (WMA is the term used to describe the set of technologies that allow fabrication of asphalt mixtures at lower temperatures than those specified for conventional hot mix asphalt (HMA. This temperature reduction leads to advantages, compared to construction of HMA, that include energy savings, reduced emissions, and safer working conditions. However, WMA is a relatively new technology and several aspects are still under evaluation. This paper assesses some of these aspects including laboratory compactability and its relation to mixture design, and performance of WMA (i.e., permanent deformation and cracking resistance fabricated with three WMA additives, namely Advera®, Sasobit®, and Evotherm®. Corresponding results showed better or equivalent laboratory compactability for the WMA, as compared to that of the HMA used as reference (or control-HMA, leading to smaller optimum asphalt contents selected based on a specific target density (i.e., 96%. In terms of performance, inclusion of the WMA additives led to decrease the mixture resistance to permanent deformation, although the mixture resistance to cracking can remain similar or even improve as compared to that of the control-HMA.

  14. Characterization of Brazilian asphalt using X-ray diffraction

    International Nuclear Information System (INIS)

    Cardoso, Edson R.; Pinto, Nivia G.V.; Almeida, Ana P.G.; Braz, Delson; Lopes, Ricardo T.; Barroso, Regina C.; Motta, Laura M.G.

    2007-01-01

    Asphalt is a sticky, black and highly viscous liquid or semi-solid that is presented in most crude petroleum and in some natural deposits. The X ray diffraction can give valuable information over the characteristics of a material. Thus, the X-ray diffraction (XRD) method was employed to investigate parameters that characterize and differentiate asphalt groups (Boscan, CAP20, CAP40, CAP50/60, CAP50/70 and CAP85/100). The scattering measurements were carried out in θ-2θ reflection geometry using a powder diffractometer Shimadzu XRD-6000 at the Nuclear Instrumentation Laboratory, Brazil. Scans were typically done from 8 deg to 28 deg every 0.05. The parameters analyzed were: FWHM, peak area, peak center, peak height, left half width and right half width. Thus, in this study, scattering profiles from different asphalt groups were carefully measured in order to establish characteristic signatures of these materials. The results indicate that by using three parameters (peak centroid, peak area and peak intensity) it is possible to characterize and differentiate the asphalt. (author)

  15. Field and laboratory investigation of warm mix asphalt in Texas.

    Science.gov (United States)

    2010-07-01

    During the first half of this research study, TxDOT had only placed 1000 tons of warm mix asphalt : (WMA) as part of a demonstration project. By the end of this three year study, TxDOT had placed more : than 1,000,000 tons of WMA and allowed its use ...

  16. Asphalt Concrete Mixtures: Requirements with regard to Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Jan Mikolaj

    2015-01-01

    Full Text Available Design of asphalt concrete, required properties of constituent materials and their mixing ratios, is of tremendous significance and should be implemented with consideration given to the whole life cycle of those materials and the final construction. Conformity with requirements for long term performance of embedded materials is the general objective of the Life Cycle Assessment (LCA. Therefore, within the assessment, material properties need to be evaluated with consideration given to the whole service life—from the point of embedding in the construction until their disposal or recycling. The evaluation focuses on verification of conformity with criteria set for these materials and should guarantee serviceability and performance during their whole service life. Recycling and reuse of asphalt concrete should be preferred over disposal of the material. This paper presents methodology for LCA of asphalt concrete. It was created to ensure not only applicability of the materials in the initial stage, at the point of their embedding, but their suitability in terms of normatively prescribed service performance of the final construction. Methods described and results are presented in a case study for asphalt mixture AC 11; I design.

  17. Nondestructive evaluation of warm mix asphalt through resonant column testing.

    Science.gov (United States)

    2014-02-01

    Non-destructive testing has been used for decades to characterize engineering properties of hot-mix asphalt. Among such tests is the resonant column (RC) test, which is commonly used to characterize soil materials. The resonant column device at Penn ...

  18. The Acoustical Durability of Thin Noise Reducing Asphalt Layers

    Directory of Open Access Journals (Sweden)

    Cedric Vuye

    2016-05-01

    Full Text Available Within the context of the European Noise Directive, traffic noise action plans have been established. One of those actions is to deepen the knowledge about low noise roads, as they are considered the most cost-efficient measure for traffic noise abatement. Therefore, ten test sections were installed in May 2012 in Belgium, with the objective of integrating Thin noise-reducing Asphalt Layers (TAL in the Flemish road surface policy in a later stage. Eight test sections are paved with TAL with a thickness of a maximum of 30 mm and a maximum content of accessible voids of 18%. The other two sections consist of a Double-layer Porous Asphalt Concrete (DPAC and a Stone Mastic Asphalt (SMA-10 as a reference section. The acoustical quality of the asphalt surfaces has been monitored in time using Statistical Pass-By (SPB and Close-ProXimity (CPX measurements up to 34 months after construction. Texture measurements performed with a laser profilometer are linked to the noise measurement results. Very promising initial noise reductions were found, up to 6 dB(A, but higher than expected acoustic deterioration rates and the presence of raveling led to noise reductions of a max. of 1 dB(A after almost three years. It is shown that the construction process itself has a large influence on the acoustical quality over time.

  19. Effect of Waste Plastic as Bitumen Modified in Asphalt Mixture

    Directory of Open Access Journals (Sweden)

    Abdullah Mohd Ezree

    2017-01-01

    Full Text Available The objectives of this study are to investigate the engineering properties of the asphalt mixtures containing waste plastic at different percentages i.e. 4%, 6%, 8%, and 10% by weight of bitumen. The experimental tests performed in the study were stability, tensile strength, resilient modulus and dynamic creep test. Results showed that the mixture with 4% plastic has the highest stability (184kN. However, the stability slightly decreases with the increase of plastic additive. On the other hand, the highest tensile strength among the modified asphaltic concrete is 1049kPa (8% plastic added. The modified asphalt mixture with 8% plastic has the highest resilient modulus, which is 3422 MPa (25°C and 494Mpa (40°C. Where the highest creep modulus recorded is 73.30Mpa at 8% plastic added. It can be concluded that the addition of 8% plastic gave the highest value properties of asphalt mixture. Finally, it can be said that 8% plastic is the optimum value adding.

  20. Asphalt and Wood Shingling. Roofing Workbook and Tests.

    Science.gov (United States)

    Brown, Arthur

    This combination workbook and set of tests contains materials on asphalt and wood shingling that have been designed to be used by those studying to enter the roofing and waterproofing trade. It consists of seven instructional units and seven accompanying objective tests. Covered in the individual units are the following topics: shingling…

  1. Thermal segregation of asphalt material in road repair

    Directory of Open Access Journals (Sweden)

    Juliana Byzyka

    2017-08-01

    Full Text Available This paper presents results from a field study of asphaltic pavement patching operations performed by three different contractors working in a total of ten sites. It forms part of an ongoing research programme towards improving the performance of pothole repairs. Thermal imaging technology was used to record temperatures of the patching material throughout the entire exercise, from the stage of material collection, through transportation to repair site, patch forming, and compaction. Practical complications occurring during patch repairs were also identified. It was found that depending on the weather conditions, duration of the travel and poor insulation of the transported hot asphalt mix, its temperature can drop as high as 116.6 °C over the period that the reinstatement team travel to the site and prepare the patch. This impacting is on the durability and performance of the executed repairs. Cold spots on the asphalt mat and temperature differentials between the new hot-fill asphalt mix and existing pavement were also identified as poorly compacted areas that were prone to premature failure. For example, over the five-minute period, the temperature at one point reduced by 33% whereas the temperatures of nearby areas decreased by 65% and 71%. A return visit to the repair sites, three months later, revealed that locations where thermal segregation was noted, during the patching operation, had failed prematurely.

  2. Design tool for the thermal energy potential of asphalt pavements

    NARCIS (Netherlands)

    Loomans, M.G.L.C.; Oversloot, H.P.; Bondt, A. de; Jansen, R.; Rij, H. van

    2003-01-01

    This paper describes the development of a design tool for the calculation of the thermal energy potential of a so-called asphalt collector. Two types of numerical models have been developed and validated against experimental results from a full-scale test-site. The validation showed to be a tedious

  3. Direct Tensile Test to Assess Healing in Asphalt

    NARCIS (Netherlands)

    Leegwater, G.A.; Scarpas, Athanasios; Erkens, Sandra

    2016-01-01

    Asphalt concrete has the advantageous ability to heal. During rest
    periods, damage present In the material is restored to a certain extent.
    Healing of the material can be observed in iis regaining of strength
    and stiffness after rest periods. In this paper, a new test method is

  4. Direct tensile test to assess healing in asphalt

    NARCIS (Netherlands)

    Leegwater, G.A.; Scarpas, T.; Erkens, S.

    2016-01-01

    Asphalt concrete has the advantageous ability to heal. During rest periods, damage present in the material is restored to a certain extent. Healing of the material can be observed in its regaining of strength and stiffness after rest periods. In this paper, a new test method is presented. It was

  5. Improvement of the asphalt-waste products in leachability

    International Nuclear Information System (INIS)

    Matsuzuru, Hideo; Fojiri, Shigeru; Moriyama, Noboru

    1980-05-01

    To improve in leachability of the asphalt products containing evaporator residue from BWR, a method of reducing the swelling of asphalt products, which is a major cause for increasing the leachability, has been developed. Leachability of the resultant asphalt products was examined by IAEA's method. The reduction of swelling is achieved successfully by addition of an equivalent quantity of calcium chloride to the sodium sulfate contained in the residue; the sodium sulfate is converted to calcium sulfate and sodium chloride. The specimen (Asphalt/Na 2 SO 4 : 0.5) prepared by this improved method shows little swelling when immersed in water. The specimen without addition of calcium chloride gives a cumulative leaching fraction of about 0.65 for 137 Cs and 0.20 for 60 Co in 30 days. On the contrary, the corresponding values in about 100 days of the specimen with calcium chloride added are 5 x 10 -4 and 1 x 10 -4 for 137 Cs and 60 Co, respectively. These results indicate that the method is promising for reducing the leachability. Coating of the specimen surface with a fresh bitumen further reduces the leachability to a negligibly small value. (author)

  6. Investigation of Induction Heating in Asphalt Mortar: Numerical Approach

    NARCIS (Netherlands)

    Apostolidis, P.; Liu, X.; Scarpas, Athanasios; van de Ven, M.F.C.; van Bochove, G

    2016-01-01

    The research reported in this paper focuses on utilization of advanced finite-element analyses (COMSOL) for the design and assessment of the induction heating capacity of asphalt mortar by adding electrically conductive additives (e.g., steel fibers), and to understand the factors that influence the

  7. Investigation of asphalt core-plinth connection in embankment dams

    Directory of Open Access Journals (Sweden)

    Weibiao Wang

    2017-12-01

    Full Text Available The asphalt core itself is a no-joint water barrier in embankment dams and is connected to the concrete plinth on the bottom of the core. A reliable asphalt core-plinth connection is crucial and must remain watertight when the core deforms due to deformations in the embankment and foundation and due to reservoir water pressure. A large number of tension tests were conducted to determine the best ratios, joint thickness and suitable additives for the sandy asphalt mastic (SAM mix used for the connection. With the ratios of bitumen to filler to sand of 20%:35%:45% and by adding 4% SBS in the bitumen, one got a very suitable composition for the asphalt core-plinth connection in tensile conditions. Model tests were conducted to study the connection behavior when subjected to large shear displacements and high water pressure. The joint model test results indicate that the plane-surface plinth, curved-surface plinth, and plinth with or without copper water-stop showed no significant difference for the connection in the joint shear behavior. However, plinth with copper water-stop is suggested to enhance its tensile and shear behavior.

  8. Leaching of organic contaminants from storage of reclaimed asphalt pavement.

    Science.gov (United States)

    Norin, Malin; Strömvall, A M

    2004-03-01

    Recycling of asphalt has been promoted by rapid increases in both the use and price of petroleum-based bitumen. Semi-volatile organic compounds in leachates from reclaimed asphalt pavement, measured in field samples and in laboratory column test, were analysed through a GC/MS screen-test methodology. Sixteen PAH (polyaromatic hydrocarbons) were also analysed in leachates from the column study. The highest concentrations of semi-volatile compounds, approximately 400 microg l(-1), were measured in field samples from the scarified stockpile. Naphthalene, butylated hydroxytoluene (BHT) and dibutyl phthalate (DBP) were the most dominant of the identified semi-volatiles. The occurrence of these compounds in urban groundwater, also indicate high emission rates and persistent structures of the compounds, making them potentially hazardous. Car exhausts, rubber tires and the asphalt material itself are all probable emission sources, determined from the organic contaminants released from the stockpiles. The major leaching mechanism indicated was dissolution of organic contaminants from the surface of the asphalt gravels. In the laboratory column test, the release of high-molecular weight and more toxic PAH was higher in the leachates after two years than at the commencement of storage. The concentrations of semi-volatiles in leachates, were also several times lower than those from the field stockpile. These results demonstrate the need to follow up laboratory column test with real field measurements.

  9. Performance analysis of flexible DSSC with binder addition

    Energy Technology Data Exchange (ETDEWEB)

    Muliani, Lia; Hidayat, Jojo; Anggraini, Putri Nur, E-mail: putri.nur.anggraini@gmail.com [Research Center for Electronics and Telecommunications Indonesian Institute of Sciences (PPET-LIPI) Kampus LIPI, Jl. Sangkuriang, Bandung 40135 (Indonesia)

    2016-04-19

    Flexible DSSC is one of modification of DSSC based on its substrate. Operating at low temperature, flexible DSSC requires a binder to improve particles interconnection. This research was done to compare the morphology and performance of flexible DSSC that was produced with binder-added and binder-free. TiO{sub 2} powder, butanol, and HCl were mixed for preparation of TiO{sub 2} paste. Small amount of titanium isopropoxide as binder was added into the mixture. TiO{sub 2} paste was deposited on ITO-PET plastic substrate with area of 1x1 cm{sup 2} by doctor blade method. Furthermore, SEM, XRD, and BET characterization were done to analyze morphology and surface area of the TiO{sub 2} photoelectrode microstructures. Dyed TiO{sub 2} photoelectrode and platinum counter electrode were assembled and injected by electrolyte. In the last process, flexible DSSCs were illuminated by sun simulator to do J-V measurement. As a result, flexible DSSC containing binder showed higher performance with photoconversion efficiency of 0.31%.

  10. ARBOLITCONCRETE ON SILICATESODIUM COMPOSITE BINDER AND SCRAPS OF VINE

    Directory of Open Access Journals (Sweden)

    Z. A. Manturov

    2016-01-01

    Full Text Available Aim.The results of experimental studies produce siliсatеsodium composite binder of calcareous stone sawing waste, anhydrous sodium silicate, and based on them wood concrete using as an organic filler vine cuttings for the production of heat-insulating, heat-insulating, structural and structural wall material.Methods.The main technological operations of the developed arbalitconcrete are given : preparation of a composite binder; production of organic filler from the vine; preparation of arbolit concrete mass; formation of arbolit concrete mass; low-temperature treatment (drying.Results. It is found that the composite binder derived from waste stone sawing and anhydrous sodium silicate at their joint fine grinding (Ssp = 3000 cm2 / g, acquires binding properties and with the appropriate seal and heat treatment hardens and gains strength characteristics sufficient for making arbolitconcrete using crushed vine.Conclusion. It was determined that arbolitobeton obtained on the basis of the crushed vine and silikatnatrievogo composite binder strength exceeds arbolitobetona from other types of binders and organic fillers of vegetable origin.

  11. Novel Binders and Methods for Agglomeration of Ore

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Kawatra; T. C. Eisele; J. A. Gurtler; K. Lewandowski

    2005-09-30

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.

  12. Novel Binders and Methods for Agglomeration of Ore

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-03-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.

  13. Adherence to phosphate binders in hemodialysis patients: prevalence and determinants.

    Science.gov (United States)

    Van Camp, Yoleen P M; Vrijens, Bernard; Abraham, Ivo; Van Rompaey, Bart; Elseviers, Monique M

    2014-12-01

    Phosphate control is a crucial treatment goal in end-stage renal disease, but poor patient adherence to phosphate binder therapy remains a challenge. This study aimed to estimate the extent of phosphate binder adherence in hemodialysis patients and to identify potential determinants. Phosphate binder adherence was measured blindly in 135 hemodialysis patients for 2 months using the medication event monitoring system. Patient data, gathered at inclusion through medical records, ad hoc questionnaires and the short form (SF)-36 health survey, included: (1) demographics, (2) perceived side-effects, belief in benefit, self-reported adherence to the therapy, (3) knowledge about phosphate binder therapy, (4) social support, and (5) quality of life (SF-36). Phosphatemia data was collected from charts. 'Being adherent' was defined as missing adherent' as missing adherent. Over the entire 8-week period, 22 % of patients were totally adherent. Mean phosphatemia levels were 0.55 mg/dl lower in adherent than nonadherent patients (4.76 vs. 5.31 mg/dl). Determinants for being totally adherent were living with a partner, higher social support (both were interrelated) and higher physical quality of life. Experiencing intake-related inconvenience negatively affected adherence. The social support and quality of life physical score explained 26 % of the variance in adherence. Phosphate binder nonadherence remains a major problem. Interventions should aim, at least, to improve social support. With few associated factors found and yet low adherence, an individualized approach seems indicated.

  14. Effect of the weather in the aging of asphalts by XRD

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Edson da R.; Braz, Delson; Lopes, Ricardo T., E-mail: ecardoso@lin.ufrj.b [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Motta, Laura M.G. da, E-mail: Laura@coc.ufrj.b [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Construcao Civil/Geotecnia; Barroso, Regina C., E-mail: cely@uerj.b [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Fisica

    2009-07-01

    Asphalt is a sticky, black and highly viscous liquid or semi-solid that is presented in most crude petroleum and in some natural deposits. As is well known, asphalt has been the preferential choice in pavement construction since excellent utility of pavement, however, as other organic substances, it is also subjected to aging phenomena evolving with time. Asphalt aging is one of the principal factors causing deterioration of asphalt pavements. The photodegradation of asphalts must be considered in the study of the performance of asphalt pavement, especially in geographical regions where high solar radiation intensity occurs. It has an important influence in asphalt aging in tropical places as Brazil. Many methods have been applied to simulate aging of bitumen. It was just a simulation but not real aging asphalt. In this study we submitted the asphalt to the weather as sun and rain. Periodically, during 430 days, the XRD profiles were done and the results analyzed. The scattering measurements were carried out in 0-20 reflection geometry using a powder diffractometer Shimadzu XRD-6000. Scans were typically done from 8 deg to 28 deg every 0.05 deg. The parameters FWHM and peak centroid were analyzed. From 0 until 180 days the aging was faster. The peaks were marked and analyzed with the pass of time. The crystallinity of asphalt increase with weather exposition. Some angles of profiles changed the position indicating change of atomics plans. (author)

  15. Some Properties of Emulsified Asphalt Paving Mixture at Iraqi Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Shakir.A.Al-Mishhadani* Hasan.H.Al-Baid

    2014-04-01

    Full Text Available Cold emulsified asphalt mixture is generally a mix made of emulsified asphalt withaggregate. Emulsified asphalt is manufactured from base asphalt, emulsifier agent and waterwith approximate percentage of 40% to 75% asphalt, 0.1% to 2.5% emulsifier and 25% to60% water plus some minor components. This study aims to use the cold emulsified asphaltmixtures for road construction and maintenance in Iraq as an alternative to the hot asphaltmixtures, due to its economical, practical and environmental advantages. This studyfocusedto test and evaluates the emulsified asphalt material properties to be used as paving mixture.The tested properties of emulsified asphalt mixture were bulk density, air voids, dry Marshallstability, wet Marshall stability, retained Marshall stability, flow tests and compared with thecommon used specification.The results indicate that the emulsified asphalt type cationic slowsetting low viscosity (CSS-1 is very suitable with quartz type of aggregate from Al-Nibaayquarry. From many trial mixes it is found that the best percentages of initial residual bitumencontent to produced adequateresults for coating test ,mixing ,compaction ,curing and Marshallstability were ranged from (2.5%, 3%,3.5%,4% and 4.5%, andthe optimum percentage is(3.5%.Finally it can be conducted that the emulsified asphalt mixture is a suitable alternativemixture to the hot asphalt mixture for road construction and maintenance in Iraq.  

  16. Some Properties of Emulsified Asphalt Paving Mixture at Iraqi Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Shakir.A.Al-Mishhadani

    2014-02-01

    Full Text Available Cold emulsified asphalt mixture is generally a mix made of emulsified asphalt withaggregate. Emulsified asphalt is manufactured from base asphalt, emulsifier agent and waterwith approximate percentage of 40% to 75% asphalt, 0.1% to 2.5% emulsifier and 25% to60% water plus some minor components. This study aims to use the cold emulsified asphaltmixtures for road construction and maintenance in Iraq as an alternative to the hot asphaltmixtures, due to its economical, practical and environmental advantages. This studyfocusedto test and evaluates the emulsified asphalt material properties to be used as paving mixture.The tested properties of emulsified asphalt mixture were bulk density, air voids, dry Marshallstability, wet Marshall stability, retained Marshall stability, flow tests and compared with thecommon used specification.The results indicate that the emulsified asphalt type cationic slowsetting low viscosity (CSS-1 is very suitable with quartz type of aggregate from Al-Nibaayquarry. From many trial mixes it is found that the best percentages of initial residual bitumencontent to produced adequateresults for coating test ,mixing ,compaction ,curing and Marshallstability were ranged from (2.5%, 3%,3.5%,4% and 4.5%, andthe optimum percentage is(3.5%.Finally it can be conducted that the emulsified asphalt mixture is a suitable alternativemixture to the hot asphalt mixture for road construction and maintenance in Iraq.

  17. Effect of the weather in the aging of asphalts by XRD

    International Nuclear Information System (INIS)

    Cardoso, Edson da R.; Braz, Delson; Lopes, Ricardo T.; Motta, Laura M.G. da; Barroso, Regina C.

    2009-01-01

    Asphalt is a sticky, black and highly viscous liquid or semi-solid that is presented in most crude petroleum and in some natural deposits. As is well known, asphalt has been the preferential choice in pavement construction since excellent utility of pavement, however, as other organic substances, it is also subjected to aging phenomena evolving with time. Asphalt aging is one of the principal factors causing deterioration of asphalt pavements. The photodegradation of asphalts must be considered in the study of the performance of asphalt pavement, especially in geographical regions where high solar radiation intensity occurs. It has an important influence in asphalt aging in tropical places as Brazil. Many methods have been applied to simulate aging of bitumen. It was just a simulation but not real aging asphalt. In this study we submitted the asphalt to the weather as sun and rain. Periodically, during 430 days, the XRD profiles were done and the results analyzed. The scattering measurements were carried out in 0-20 reflection geometry using a powder diffractometer Shimadzu XRD-6000. Scans were typically done from 8 deg to 28 deg every 0.05 deg. The parameters FWHM and peak centroid were analyzed. From 0 until 180 days the aging was faster. The peaks were marked and analyzed with the pass of time. The crystallinity of asphalt increase with weather exposition. Some angles of profiles changed the position indicating change of atomics plans. (author)

  18. Evaluation of permanent deformation and durability of epoxidized natural rubber modified asphalt mix

    Science.gov (United States)

    Al-Mansob, Ramez A.; Ismail, Amiruddin; Rahmat, Riza Atiq O. K.; Nazri Borhan, Muhamad; Alsharef, Jamal M. A.; Albrka, Shaban Ismael; Rehan Karim, Mohamed

    2017-09-01

    The road distresses have caused too much in maintenance cost. However, better understandings of the behaviours and properties of asphalt, couples with greater development in technology, have allowed paving technologists to examine the benefits of introducing additives and modifiers. As a result, modifiers such as polymers are the most popular modifiers used to improve the performance of asphalt mix. This study was conducted to investigate the use of epoxidized natural rubber (ENR) to be mixed with asphalt mix. Tests were conducted to investigate the performance characteristics of ENR-asphalt mixes, where the mixes were prepared according to the wet process. Mechanical testing on the ENR-asphalt mixes have demonstrated that the asphalt mix permanent deformation performance at high temperature was found to be improved compared to the base mixes. However, the durability studies have indicated that ENR-asphalt mixes are slightly susceptible with the presence of moisture. The durability of the ENR-asphalt mixes were found to be enhanced in term of permanent deformation at high and intermediate temperatures compared to the base asphalt mixes. As conclusion, asphalt pavement performance can be enhanced by using ENR as modifier to face the major road distresses.

  19. Influence of the Microwave Heating Time on the Self-Healing Properties of Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Jose Norambuena-Contreras

    2017-10-01

    Full Text Available This paper aims to evaluate the influence of the microwave heating time on the self-healing properties of fibre-reinforced asphalt mixtures. To this purpose, self-healing properties of dense asphalt mixtures with four different percentages of steel wool fibres were evaluated as the three-point bending strength before and after healing via microwave heating at four different heating times. Furthermore, the thermal behaviour of asphalt mixtures during microwave heating was also evaluated. With the aim of quantifying the efficiency of the repair process, ten damage-healing cycles were done in the test samples. In addition, self-healing results were compared with the fibre spatial distribution inside asphalt samples evaluated by CT-scans. Crack-size change on asphalt samples during healing cycles was also evaluated through optical microscopy. It was found that the heating time is the most influential variable on the healing level reached by the asphalt mixtures tested by microwave radiation. CT-Scans results proved that fibre spatial distribution into the asphalt mixtures play an important role in the asphalt healing level. Finally, it was concluded that 40 s was the optimum heating time to reach the highest healing levels with the lowest damage on the asphalt samples, and that heating times over 30 s can seal the cracks, thus achieving the self-healing of asphalt mixtures via microwave heating.

  20. Evaluation system for CO2 emission of hot asphalt mixture

    Directory of Open Access Journals (Sweden)

    Bo Peng

    2015-04-01

    Full Text Available The highway construction industry plays an important role in economic and development, but is also a primary source of carbon emission. Accordingly, with the global climate change, energy conservation and reduction of carbon emissions have become critical issues in the highway construction industry. However, to date, a model for the highway construction industry has not been established. Hence, to implement a low-carbon construction model for highways, this study divided asphalt pavement construction into aggregate stacking, aggregate supply, and other stages, and compiled a list of energy consumption investigation. An appropriate calculation model of CO2 emission was then built. Based on the carbon emission calculation model, the proportion of carbon emissions in each stage was analyzed. The analytic hierarchy process was used to establish the system of asphalt pavement construction with a judgment matrix, thereby enabling calculation of the weight coefficient of each link. In addition, the stages of aggregate heating, asphalt heating, and asphalt mixture mixing were defined as key stages of asphalt pavement construction. Carbon emissions at these stages accounted for approximately 90% of the total carbon emissions. Carbon emissions at each stage and their impact on the environment were quantified and compared. The energy saving construction schemes as well as the environmental and socioeconomic benefits were then proposed. Through these schemes, significant reductions in carbon emissions and costs can be achieved. The results indicate that carbon emissions reduce by 32.30% and 35.93%, whereas costs reduce by 18.58% and 6.03%. The proposed energy-saving and emission reduction scheme can provide a theoretical basis and technical support for the development of low-carbon highway construction.