WorldWideScience

Sample records for supernova sn ic

  1. SN 2017dio: A Type-Ic Supernova Exploding in a Hydrogen-rich Circumstellar Medium

    Science.gov (United States)

    Kuncarayakti, Hanindyo; Maeda, Keiichi; Ashall, Christopher J.; Prentice, Simon J.; Mattila, Seppo; Kankare, Erkki; Fransson, Claes; Lundqvist, Peter; Pastorello, Andrea; Leloudas, Giorgos; Anderson, Joseph P.; Benetti, Stefano; Bersten, Melina C.; Cappellaro, Enrico; Cartier, Régis; Denneau, Larry; Della Valle, Massimo; Elias-Rosa, Nancy; Folatelli, Gastón; Fraser, Morgan; Galbany, Lluís; Gall, Christa; Gal-Yam, Avishay; Gutiérrez, Claudia P.; Hamanowicz, Aleksandra; Heinze, Ari; Inserra, Cosimo; Kangas, Tuomas; Mazzali, Paolo; Melandri, Andrea; Pignata, Giuliano; Rest, Armin; Reynolds, Thomas; Roy, Rupak; Smartt, Stephen J.; Smith, Ken W.; Sollerman, Jesper; Somero, Auni; Stalder, Brian; Stritzinger, Maximilian; Taddia, Francesco; Tomasella, Lina; Tonry, John; Weiland, Henry; Young, David R.

    2018-02-01

    SN 2017dio shows both spectral characteristics of a type-Ic supernova (SN) and signs of a hydrogen-rich circumstellar medium (CSM). Prominent, narrow emission lines of H and He are superposed on the continuum. Subsequent evolution revealed that the SN ejecta are interacting with the CSM. The initial SN Ic identification was confirmed by removing the CSM interaction component from the spectrum and comparing with known SNe Ic and, reversely, adding a CSM interaction component to the spectra of known SNe Ic and comparing them to SN 2017dio. Excellent agreement was obtained with both procedures, reinforcing the SN Ic classification. The light curve constrains the pre-interaction SN Ic peak absolute magnitude to be around {M}g=-17.6 mag. No evidence of significant extinction is found, ruling out a brighter luminosity required by an SN Ia classification. These pieces of evidence support the view that SN 2017dio is an SN Ic, and therefore the first firm case of an SN Ic with signatures of hydrogen-rich CSM in the early spectrum. The CSM is unlikely to have been shaped by steady-state stellar winds. The mass loss of the progenitor star must have been intense, \\dot{M}∼ 0.02{({ε }{{H}α }/0.01)}-1 ({v}{wind}/500 km s‑1) ({v}{shock}/10,000 km s‑1)‑3 M ⊙ yr‑1, peaking at a few decades before the SN. Such a high mass-loss rate might have been experienced by the progenitor through eruptions or binary stripping. Based on observations made with the NOT, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. This work is based (in part) on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile as part of PESSTO, (the Public ESO Spectroscopic Survey for Transient Objects Survey) ESO program 188.D-3003, 191.D-0935, 197.D-1075. Based on observations made with the Liverpool Telescope operated on the

  2. SN 2009bb: A PECULIAR BROAD-LINED TYPE Ic SUPERNOVA ,

    International Nuclear Information System (INIS)

    Pignata, Giuliano; Stritzinger, Maximilian; Phillips, M. M.; Morrell, Nidia; Boldt, Luis; Campillay, Abdo; Contreras, Carlos; Gonzalez, Sergio; Krzeminski, Wojtek; Roth, Miguel; Salgado, Francisco; Soderberg, Alicia; Mazzali, Paolo; Anderson, J. P.; Folatelli, Gaston; Foerster, Francisco; Hamuy, Mario; Maza, Jose; Levesque, Emily M.; Rest, Armin

    2011-01-01

    Ultraviolet, optical, and near-infrared photometry and optical spectroscopy of the broad-lined Type Ic supernova (SN) 2009bb are presented, following the flux evolution from -10 to +285 days past B-band maximum. Thanks to the very early discovery, it is possible to place tight constraints on the SN explosion epoch. The expansion velocities measured from near maximum spectra are found to be only slightly smaller than those measured from spectra of the prototype broad-lined SN 1998bw associated with GRB 980425. Fitting an analytical model to the pseudobolometric light curve of SN 2009bb suggests that 4.1 ± 1.9 M sun of material was ejected with 0.22 ± 0.06 M sun of it being 56 Ni. The resulting kinetic energy is 1.8 ± 0.7 x 10 52 erg. This, together with an absolute peak magnitude of M B = -18.36 ± 0.44, places SN 2009bb on the energetic and luminous end of the broad-lined Type Ic (SN Ic) sequence. Detection of helium in the early time optical spectra accompanied with strong radio emission and high metallicity of its environment makes SN 2009bb a peculiar object. Similar to the case for gamma-ray bursts (GRBs), we find that the bulk explosion parameters of SN 2009bb cannot account for the copious energy coupled to relativistic ejecta, and conclude that another energy reservoir (a central engine) is required to power the radio emission. Nevertheless, the analysis of the SN 2009bb nebular spectrum suggests that the failed GRB detection is not imputable to a large angle between the line-of-sight and the GRB beamed radiation. Therefore, if a GRB was produced during the SN 2009bb explosion, it was below the threshold of the current generation of γ-ray instruments.

  3. Supernova 2008J: early time observations of a heavily reddened SN 2002ic-like transient

    DEFF Research Database (Denmark)

    Taddia, F.; Stritzinger, M. D.; Phillips, M. M.

    2012-01-01

    Aims: We provide additional observational evidence that some Type Ia supernovae (SNe Ia) show signatures of circumstellar interaction (CSI) with hydrogen-rich material. Methods: Early phase optical and near-infrared (NIR) light curves and spectroscopy of SN 2008J obtained by the Carnegie Supernova...... that their CSI emissions are similarly robust. The high-resolution spectrum reveals narrow emission lines produced from un-shocked gas characterized by a wind velocity of ~50 km s-1. We conclude that SN 2008J best matches an explosion of a SN Ia that interacts with its CSM....

  4. SN 2016coi/ASASSN-16fp: An example of residual helium in a type Ic supernova?

    Science.gov (United States)

    Prentice, S. J.; Ashall, C.; Mazzali, P. A.; Zhang, J.-J.; James, P. A.; Wang, X.-F.; Vinkó, J.; Percival, S.; Short, L.; Piascik, A.; Huang, F.; Mo, J.; Rui, L.-M.; Wang, J.-G.; Xiang, D.-F.; Xin, Y.-X.; Yi, W.-M.; Yu, X.-G.; Zhai, Q.; Zhang, T.-M.; Hosseinzadeh, G.; Howell, D. A.; McCully, C.; Valenti, S.; Cseh, B.; Hanyecz, O.; Kriskovics, L.; Pál, A.; Sárneczky, K.; Sódor, Á.; Szakáts, R.; Székely, P.; Varga-Verebélyi, E.; Vida, K.; Bradac, M.; Reichart, D. E.; Sand, D.; Tartaglia, L.

    2018-05-01

    The optical observations of Ic-4 supernova (SN) 2016coi/ASASSN-16fp, from ˜2 to ˜450 days after explosion, are presented along with analysis of its physical properties. The SN shows the broad lines associated with SNe Ic-3/4 but with a key difference. The early spectra display a strong absorption feature at ˜5400 Åwhich is not seen in other SNe Ic-3/4 at this epoch. This feature has been attributed to HeIin the literature. Spectral modelling of the SN in the early photospheric phase suggests the presence of residual He in a C/O dominated shell. However, the behaviour of the HeIlines is unusual when compared with He-rich SNe, showing relatively low velocities and weakening rather than strengthening over time. The SN is found to rise to peak ˜16 d after core-collapse reaching a bolometric luminosity of Lp ˜ 3 × 1042 erg s-1. Spectral models, including the nebular epoch, show that the SN ejected 2.5 - 4 M⊙of material, with ˜1.5 M⊙below 5000 km s-1, and with a kinetic energy of (4.5 - 7) × 1051 erg. The explosion synthesised ˜0.14 M⊙of 56Ni. There are significant uncertainties in E(B - V)host and the distance however, which will affect Lp and MNi. SN 2016coi exploded in a host similar to the Large Magellanic Cloud (LMC) and away from star-forming regions. The properties of the SN and the host-galaxy suggest that the progenitor had MZAMS of 23 - 28 M⊙and was stripped almost entirely down to its C/O core at explosion.

  5. SN 2010ay IS A LUMINOUS AND BROAD-LINED TYPE Ic SUPERNOVA WITHIN A LOW-METALLICITY HOST GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, N. E.; Soderberg, A. M.; Foley, R. J.; Chornock, R.; Chomiuk, L.; Berger, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Valenti, S.; Smartt, S.; Botticella, M. T. [Astrophysics Research Centre, School of Maths and Physics, Queen' s University, Belfast BT7 1NN (United Kingdom); Hurley, K. [Space Sciences Laboratory, University of California Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Barthelmy, S. D.; Gehrels, N.; Cline, T. [NASA Goddard Space Flight Center, Code 661, Greenbelt, MD 20771 (United States); Levesque, E. M. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Narayan, G. [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Briggs, M. S.; Connaughton, V. [CSPAR, University of Alabama in Huntsville, Huntsville, AL (United States); Terada, Y. [Department of Physics, Saitama University, Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama 338-8570 (Japan); Golenetskii, S.; Mazets, E., E-mail: nsanders@cfa.harvard.edu [Ioffe Physico-Technical Institute, Laboratory for Experimental Astrophysics, 26 Polytekhnicheskaya, St. Petersburg 194021 (Russian Federation); and others

    2012-09-10

    We report on our serendipitous pre-discovery detection and follow-up observations of the broad-lined Type Ic supernova (SN Ic) 2010ay at z = 0.067 imaged by the Pan-STARRS1 3{pi} survey just {approx}4 days after explosion. The supernova (SN) had a peak luminosity, M{sub R} Almost-Equal-To -20.2 mag, significantly more luminous than known GRB-SNe and one of the most luminous SNe Ib/c ever discovered. The absorption velocity of SN 2010ay is v{sub Si} Almost-Equal-To 19 Multiplication-Sign 10{sup 3} km s{sup -1} at {approx}40 days after explosion, 2-5 times higher than other broad-lined SNe and similar to the GRB-SN 2010bh at comparable epochs. Moreover, the velocity declines {approx}2 times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of {sup 56}Ni, M{sub Ni} = 0.9 M{sub Sun }. Applying scaling relations to the light curve, we estimate a total ejecta mass, M{sub ej} Almost-Equal-To 4.7 M{sub Sun }, and total kinetic energy, E{sub K} Almost-Equal-To 11 Multiplication-Sign 10{sup 51} erg. The ratio of M{sub Ni} to M{sub ej} is {approx}2 times as large for SN 2010ay as typical GRB-SNe and may suggest an additional energy reservoir. The metallicity (log (O/H){sub PP04} + 12 = 8.19) of the explosion site within the host galaxy places SN 2010ay in the low-metallicity regime populated by GRB-SNe, and {approx}0.5(0.2) dex lower than that typically measured for the host environments of normal (broad-lined) SNe Ic. We constrain any gamma-ray emission with E{sub {gamma}} {approx}< 6 Multiplication-Sign 10{sup 48} erg (25-150 keV), and our deep radio follow-up observations with the Expanded Very Large Array rule out relativistic ejecta with energy E {approx}> 10{sup 48} erg. We therefore rule out the association of a relativistic outflow like those that accompanied SN 1998bw and traditional long-duration gamma-ray bursts (GRBs), but we place less

  6. The Broad-Lined Type Ic SN 2012ap and the Nature of Relativistic Supernovae Lacking a Gamma-Ray Burst Detection

    Science.gov (United States)

    Milisavljevic, D.; Margutti, R.; Parrent, J. T.; Soderberg, A. M.; Fesen, R. A.; Mazzali, P.; Maeda, K.; Sanders, N. E.; Cenko, S. B.; Silverman, J. M.

    2014-01-01

    We present ultraviolet, optical, and near-infrared observations of SN2012ap, a broad-lined Type Ic supernova in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst signature. Photometry and spectroscopy follow the flux evolution from -13 to +272 days past the B-band maximum of -17.4 +/- 0.5 mag. The spectra are dominated by Fe II, O I, and Ca II absorption lines at ejecta velocities of v approx. 20,000 km s(exp. -1) that change slowly over time. Other spectral absorption lines are consistent with contributions from photospheric He I, and hydrogen may also be present at higher velocities (v approx. greater than 27,000 km s(exp. -1)). We use these observations to estimate explosion properties and derive a total ejecta mass of 2.7 Solar mass, a kinetic energy of 1.0×1052 erg, and a (56)Ni mass of 0.1-0.2 Solar mass. Nebular spectra (t > 200 d) exhibit an asymmetric double-peaked [O I] lambda lambda 6300, 6364 emission profile that we associate with absorption in the supernova interior, although toroidal ejecta geometry is an alternative explanation. SN2012ap joins SN2009bb as another exceptional supernova that shows evidence for a central engine (e.g., black-hole accretion or magnetar) capable of launching a non-negligible portion of ejecta to relativistic velocities without a coincident gamma-ray burst detection. Defining attributes of their progenitor systems may be related to notable properties including above-average environmental metallicities of Z approx. greater than Solar Z, moderate to high levels of host-galaxy extinction (E(B -V ) > 0.4 mag), detection of high-velocity helium at early epochs, and a high relative flux ratio of [Ca II]/[O I] > 1 at nebular epochs. These events support the notion that jet activity at various energy scales may be present in a wide range of supernovae.

  7. THE BROAD-LINED Type Ic SN 2012ap AND THE NATURE OF RELATIVISTIC SUPERNOVAE LACKING A GAMMA-RAY BURST DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Milisavljevic, D.; Margutti, R.; Parrent, J. T.; Soderberg, A. M.; Sanders, N. E.; Kamble, A.; Chakraborti, S.; Drout, M. R.; Kirshner, R. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Fesen, R. A. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Mazzali, P. [Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5RF (United Kingdom); Maeda, K. [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Silverman, J. M. [University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Filippenko, A. V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Pickering, T. E. [Southern African Large Telescope, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Kawabata, K. [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Hattori, T. [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Hsiao, E. Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Stritzinger, M. D., E-mail: dmilisav@cfa.harvard.edu [Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C (Denmark); and others

    2015-01-20

    We present ultraviolet, optical, and near-infrared observations of SN 2012ap, a broad-lined Type Ic supernova in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst signature. Photometry and spectroscopy follow the flux evolution from –13 to +272 days past the B-band maximum of –17.4 ± 0.5 mag. The spectra are dominated by Fe II, O I, and Ca II absorption lines at ejecta velocities of v ≈ 20,000 km s{sup –1} that change slowly over time. Other spectral absorption lines are consistent with contributions from photospheric He I, and hydrogen may also be present at higher velocities (v ≳ 27,000 km s{sup –1}). We use these observations to estimate explosion properties and derive a total ejecta mass of ∼2.7 M {sub ☉}, a kinetic energy of ∼1.0 × 10{sup 52} erg, and a {sup 56}Ni mass of 0.1-0.2 M {sub ☉}. Nebular spectra (t > 200 days) exhibit an asymmetric double-peaked [O I] λλ6300, 6364 emission profile that we associate with absorption in the supernova interior, although toroidal ejecta geometry is an alternative explanation. SN 2012ap joins SN 2009bb as another exceptional supernova that shows evidence for a central engine (e.g., black hole accretion or magnetar) capable of launching a non-negligible portion of ejecta to relativistic velocities without a coincident gamma-ray burst detection. Defining attributes of their progenitor systems may be related to notable observed properties including environmental metallicities of Z ≳ Z {sub ☉}, moderate to high levels of host galaxy extinction (E(B – V) > 0.4 mag), detection of high-velocity helium at early epochs, and a high relative flux ratio of [Ca II]/[O I] >1 at nebular epochs. These events support the notion that jet activity at various energy scales may be present in a wide range of supernovae.

  8. GRB 161219B / SN 2016jca: A low-redshift gamma-ray burst supernova powered by radioactive heating

    DEFF Research Database (Denmark)

    Cano, Z.; Izzo, L.; De Ugarte Postigo, A.

    2017-01-01

    Since the first discovery of a broad-lined type Ic supernova (SN) with a long-duration gamma-ray burst (GRB) in 1998, fewer than fifty gamma-ray burst supernovae (GRB-SNe) have been discovered. The intermediate-luminosity Swift GRB 161219B and its associated supernova SN 2016jca, which occurred a...

  9. A GRB and Broad-lined Type Ic Supernova from a Single Central Engine

    Science.gov (United States)

    Barnes, Jennifer; Duffell, Paul C.; Liu, Yuqian; Modjaz, Maryam; Bianco, Federica B.; Kasen, Daniel; MacFadyen, Andrew I.

    2018-06-01

    Unusually high velocities (≳0.1c) and correspondingly high kinetic energies have been observed in a subset of Type Ic supernovae (so-called “broad-lined Ic” supernovae; SNe Ic-BL), prompting a search for a central engine model capable of generating such energetic explosions. A clue to the explosion mechanism may lie in the fact that all supernovae that accompany long-duration gamma-ray bursts (GRBs) belong to the SN Ic-BL class. Using a combination of two-dimensional relativistic hydrodynamics and radiation transport calculations, we demonstrate that the central engine responsible for long GRBs can also trigger an SN Ic-BL. We find that a reasonable GRB engine injected into a stripped Wolf–Rayet progenitor produces a relativistic jet with energy ∼1051 erg, as well as an SN whose synthetic light curves and spectra are fully consistent with observed SNe Ic-BL during the photospheric phase. As a result of the jet’s asymmetric energy injection, the SN spectra and light curves depend on viewing angle. The impact of viewing angle on the spectrum is particularly pronounced at early times, while the viewing-angle dependence for the light curves (∼10% variation in bolometric luminosity) persists throughout the photospheric phase.

  10. Discovery of 11 ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Cacella, P.; Stone, G.; Fernandez, J. M.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Nicholls, B.; Post, R. S.

    2018-05-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from 14-cm telescopes in Hawaii, Texas, South Africa, and Chile, we discovered several new transient sources.

  11. PTF 12gzk—A rapidly declining, high-velocity type Ic radio supernova

    Energy Technology Data Exchange (ETDEWEB)

    Horesh, Assaf; Kulkarni, Shrinivas R. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Corsi, Alessandra [Department of Physics, The George Washington University, 725 21st Street, NW, Washington, DC 20052 (United States); Frail, Dale A. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States); Cenko, S. Bradley [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Ben-Ami, Sagi; Gal-Yam, Avishay; Yaron, Ofer; Arcavi, Iair; Ofek, Eran O. [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Kasliwal, Mansi M. [Carnegie Institution for Science, Department of Terrestrial Magnetism, 5241 Broad Branch Road, Washington, DC 20008 (United States)

    2013-11-20

    Only a few cases of Type Ic supernovae (SNe) with high-velocity ejecta (≥0.2 c) have been discovered and studied. Here, we present our analysis of radio and X-ray observations of the Type Ic SN PTF 12gzk. The radio emission declined less than 10 days after explosion, suggesting SN ejecta expanding at high velocity (∼0.3 c). The radio data also indicate that the density of the circumstellar material (CSM) around the supernova is lower by a factor of ∼10 than the CSM around normal Type Ic SNe. PTF 12gzk may therefore be an intermediate event between a 'normal' SN Ic and a gamma-ray-burst-SN-like event. Our observations of this rapidly declining radio SN at a distance of 58 Mpc demonstrates the potential to detect many additional radio SNe, given the new capabilities of the Very Large Array (improved sensitivity and dynamic scheduling), which are currently missed, leading to a biased view of radio SNe Ic. Early optical discovery followed by rapid radio observations would provide a full description of the ejecta velocity distribution and CSM densities around stripped massive star explosions as well as strong clues about the nature of their progenitor stars.

  12. PTF 12gzk—A rapidly declining, high-velocity type Ic radio supernova

    International Nuclear Information System (INIS)

    Horesh, Assaf; Kulkarni, Shrinivas R.; Corsi, Alessandra; Frail, Dale A.; Cenko, S. Bradley; Ben-Ami, Sagi; Gal-Yam, Avishay; Yaron, Ofer; Arcavi, Iair; Ofek, Eran O.; Kasliwal, Mansi M.

    2013-01-01

    Only a few cases of Type Ic supernovae (SNe) with high-velocity ejecta (≥0.2 c) have been discovered and studied. Here, we present our analysis of radio and X-ray observations of the Type Ic SN PTF 12gzk. The radio emission declined less than 10 days after explosion, suggesting SN ejecta expanding at high velocity (∼0.3 c). The radio data also indicate that the density of the circumstellar material (CSM) around the supernova is lower by a factor of ∼10 than the CSM around normal Type Ic SNe. PTF 12gzk may therefore be an intermediate event between a 'normal' SN Ic and a gamma-ray-burst-SN-like event. Our observations of this rapidly declining radio SN at a distance of 58 Mpc demonstrates the potential to detect many additional radio SNe, given the new capabilities of the Very Large Array (improved sensitivity and dynamic scheduling), which are currently missed, leading to a biased view of radio SNe Ic. Early optical discovery followed by rapid radio observations would provide a full description of the ejecta velocity distribution and CSM densities around stripped massive star explosions as well as strong clues about the nature of their progenitor stars.

  13. Optical photometry and spectroscopy of the low-luminosity, broad-lined Ic supernova iPTF15dld

    DEFF Research Database (Denmark)

    Pian, E.; Tomasella, L.; Cappellaro, E.

    2017-01-01

    Core-collapse stripped-envelope supernova (SN) explosions reflect the diversity of physical parameters and evolutionary paths of their massive star progenitors. We have observed the Type Ic SN iPTF15dld (z = 0.047), reported by the Palomar Transient Factory. Spectra were taken starting 20 rest-frame...

  14. The ASAS-SN bright supernova catalogue - III. 2016

    DEFF Research Database (Denmark)

    Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.

    2017-01-01

    This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m(peak)d......This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m(peak)d...

  15. Discovery of Ten ASAS-SN Supernovae

    Science.gov (United States)

    Nicholls, B.; Brimacombe, J.; Kiyota, S.; Stone, G.; Cruz, I.; Trappett, D.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.

    2018-03-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the "Leavitt" telescope in Fort Davis, Texas, the "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  16. Discovery of 11 ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Fernandez, J. M.; Stone, G.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Nicholls, B.

    2018-04-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the "Leavitt" telescope in Fort Davis, Texas, the "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  17. A SPECTROSCOPICALLY NORMAL TYPE Ic SUPERNOVA FROM A VERY MASSIVE PROGENITOR

    International Nuclear Information System (INIS)

    Valenti, Stefano; Pastorello, Andrea; Benetti, Stefano; Cappellaro, Enrico; Tomasella, Lina; Turatto, Massimo; Taubenberger, Stefan; Aramyan, Levon; Botticella, Maria Teresa; Fraser, Morgan; Smartt, Stephen J.; Magill, Lindsay; Kotak, Rubina; Wright, Darryl E.; Elias-Rosa, Nancy; Ergon, Mattias; Sollerman, Jesper; Magnier, Eugene; Price, Paul A.

    2012-01-01

    We present observations of the Type Ic supernova (SN Ic) 2011bm spanning a period of about one year. The data establish that SN 2011bm is a spectroscopically normal SN Ic with moderately low ejecta velocities and with a very slow spectroscopic and photometric evolution (more than twice as slow as SN 1998bw). The Pan-STARRS1 retrospective detection shows that the rise time from explosion to peak was ∼40 days in the R band. Through an analysis of the light curve and the spectral sequence, we estimate a kinetic energy of ∼7-17 foe and a total ejected mass of ∼7-17 M ☉ , 5-10 M ☉ of which is oxygen and 0.6-0.7 M ☉ is 56 Ni. The physical parameters obtained for SN 2011bm suggest that its progenitor was a massive star of initial mass 30-50 M ☉ . The profile of the forbidden oxygen lines in the nebular spectra shows no evidence of a bi-polar geometry in the ejected material.

  18. SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL

    International Nuclear Information System (INIS)

    Inserra, C.; Smartt, S. J.; Jerkstrand, A.; Fraser, M.; Wright, D.; Smith, K.; Chen, T.-W.; Kotak, R.; Nicholl, M.; Valenti, S.; Pastorello, A.; Benetti, S.; Bresolin, F.; Kudritzki, R. P.; Burgett, W. S.; Chambers, K. C.; Flewelling, H.; Botticella, M. T.; Ergon, M.; Fynbo, J. P. U.

    2013-01-01

    We report extensive observational data for five of the lowest redshift Super-Luminous Type Ic Supernovae (SL-SNe Ic) discovered to date, namely, PTF10hgi, SN2011ke, PTF11rks, SN2011kf, and SN2012il. Photometric imaging of the transients at +50 to +230 days after peak combined with host galaxy subtraction reveals a luminous tail phase for four of these SL-SNe. A high-resolution, optical, and near-infrared spectrum from xshooter provides detection of a broad He I λ10830 emission line in the spectrum (+50 days) of SN2012il, revealing that at least some SL-SNe Ic are not completely helium-free. At first sight, the tail luminosity decline rates that we measure are consistent with the radioactive decay of 56 Co, and would require 1-4 M ☉ of 56 Ni to produce the luminosity. These 56 Ni masses cannot be made consistent with the short diffusion times at peak, and indeed are insufficient to power the peak luminosity. We instead favor energy deposition by newborn magnetars as the power source for these objects. A semi-analytical diffusion model with energy input from the spin-down of a magnetar reproduces the extensive light curve data well. The model predictions of ejecta velocities and temperatures which are required are in reasonable agreement with those determined from our observations. We derive magnetar energies of 0.4 ∼ 51 erg) ∼ ej (M ☉ ) ∼< 8.6. The sample of five SL-SNe Ic presented here, combined with SN 2010gx—the best sampled SL-SNe Ic so far—points toward an explosion driven by a magnetar as a viable explanation for all SL-SNe Ic.

  19. Discovery of 7 ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Castro, N.; Clocchiatti, A.; Stone, G.; Nicholls, B.; Fernandez, J. M.; Cacella, P.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Bock, G.

    2018-06-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  20. Discovery of 9 ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Castro, N.; Clocchiatti, A.; Cacella, P.; Wiethoff, W.; Krannich, G.; Stone, G.; Kiyota, S.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Bock, G.

    2018-05-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  1. Discovery of 8 ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Kiyota, S.; Wiethoff, W.; Stone, G.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Bock, G.

    2018-06-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  2. Discovery of Six ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Stone, G.; Kiyota, S.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Bock, G.; Cornect, R.

    2018-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  3. Discovery of 8 ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Tomasella, Lina; Krannich, G.; Stone, G.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Nicholls, B.; Cacella, P.; Kiyota, S.

    2018-05-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  4. Discovery of Eight ASAS-SN Supernovae

    Science.gov (United States)

    Stone, G.; Brimacombe, J.; Cacella, P.; Farfan, R. G.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Trappett, D.

    2018-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  5. Discovery of Four ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Kiyota, S.; Cruz, I.; Stone, G.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.

    2018-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  6. Discovery of Nine ASAS-SN Supernovae

    Science.gov (United States)

    Cacella, P.; Brimacombe, J.; Fernandez, J. M.; Kiyota, S.; Krannich, G.; Koff, R. A.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Aslan, L.; Bock, G.; Stone, G.

    2018-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  7. Discovery of Five ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Stone, G.; Kiyota, S.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.

    2018-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  8. INTEGRAL FIELD SPECTROSCOPY OF SUPERNOVA EXPLOSION SITES: CONSTRAINING THE MASS AND METALLICITY OF THE PROGENITORS. I. TYPE Ib AND Ic SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Kuncarayakti, Hanindyo; Maeda, Keiichi [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Doi, Mamoru; Morokuma, Tomoki; Hashiba, Yasuhito [Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Aldering, Greg [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Arimoto, Nobuo [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Pereira, Rui [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, 4 Rue Enrico Fermi, F-69622 Villeurbanne Cedex (France); Usuda, Tomonori, E-mail: hanindyo.kuncarayakti@ipmu.jp [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States)

    2013-08-01

    Integral field spectroscopy of 11 Type Ib/Ic supernova (SN Ib/Ic) explosion sites in nearby galaxies has been obtained using UH88/SNIFS and Gemini-N/GMOS. The use of integral field spectroscopy enables us to obtain both spatial and spectral information about the explosion site, enabling the identification of the parent stellar population of the SN progenitor star. The spectrum of the parent population provides metallicity determination via strong-line method and age estimation obtained via comparison with simple stellar population models. We adopt this information as the metallicity and age of the SN progenitor, under the assumption that it was coeval with the parent stellar population. The age of the star corresponds to its lifetime, which in turn gives the estimate of its initial mass. With this method we were able to determine both the metallicity and initial (zero-age main sequence) mass of the progenitor stars of SNe Ib and Ic. We found that on average SN Ic explosion sites are more metal-rich and younger than SN Ib sites. The initial mass of the progenitors derived from parent stellar population age suggests that SN Ic has more massive progenitors than SN Ib. In addition, we also found indication that some of our SN progenitors are less massive than {approx}25 M{sub Sun }, indicating that they may have been stars in a close binary system that have lost their outer envelope via binary interactions to produce SNe Ib/Ic, instead of single Wolf-Rayet stars. These findings support the current suggestions that both binary and single progenitor channels are in effect in producing SNe Ib/Ic. This work also demonstrates the power of integral field spectroscopy in investigating SN environments and active star-forming regions.

  9. Shocked molecular hydrogen in the supernova remnant IC 443

    International Nuclear Information System (INIS)

    Burton, M.G.; Brand, P.W.J.L.; Webster, A.S.

    1988-01-01

    Emission from the υ = 1-0 S(1) line of molecular hydrogen has been mapped over a section of the supernova remnant IC 443. The emission originates in a sinuous ridge where the expanding shell of the SNR is interacting with a molecular cloud. The relative intensities of the 1-0 S(1), 1-0 S(0) and 2-1 S(1) lines at 2.1-2.2 μm were measured and found to be characteristic of shock-excitation of the gas. The ridge shows bright spots which are possibly density enhancements in the molecular cloud. The total luminosity of the molecular hydrogen lines in the mapped region is estimated to be about 1000 times the solar luminosity, making IC 443 one of the most luminous galactic molecular hydrogen sources yet detected. (author)

  10. The ASAS-SN bright supernova catalogue - III. 2016

    Science.gov (United States)

    Holoien, T. W.-S.; Brown, J. S.; Stanek, K. Z.; Kochanek, C. S.; Shappee, B. J.; Prieto, J. L.; Dong, Subo; Brimacombe, J.; Bishop, D. W.; Bose, S.; Beacom, J. F.; Bersier, D.; Chen, Ping; Chomiuk, L.; Falco, E.; Godoy-Rivera, D.; Morrell, N.; Pojmanski, G.; Shields, J. V.; Strader, J.; Stritzinger, M. D.; Thompson, Todd A.; Woźniak, P. R.; Bock, G.; Cacella, P.; Conseil, E.; Cruz, I.; Fernandez, J. M.; Kiyota, S.; Koff, R. A.; Krannich, G.; Marples, P.; Masi, G.; Monard, L. A. G.; Nicholls, B.; Nicolas, J.; Post, R. S.; Stone, G.; Wiethoff, W. S.

    2017-11-01

    This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (mpeak ≤ 17), spectroscopically confirmed supernovae discovered in 2016. We then gather the near-infrared through ultraviolet magnitudes of all host galaxies and the offsets of the supernovae from the centres of their hosts from public data bases. We illustrate the results using a sample that now totals 668 supernovae discovered since 2014 May 1, including the supernovae from our previous catalogues, with type distributions closely matching those of the ideal magnitude limited sample from Li et al. This is the third of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.

  11. STAR FORMATION ASSOCIATED WITH THE SUPERNOVA REMNANT IC443

    International Nuclear Information System (INIS)

    Xu Jinlong; Wang Junjie; Miller, Martin

    2011-01-01

    We have performed submillimeter and millimeter observations in CO lines toward supernova remnant (SNR) IC443. The CO molecular shell coincides well with the partial shell of the SNR detected in radio continuum observations. Broad emission lines and three 1720 MHz OH masers were detected in the CO molecular shell. The present observations have provided further evidence in support of the interaction between the SNR and the adjoining molecular clouds (MCs). The total mass of the MCs is 9.26 x 10 3 M sun . The integrated CO line intensity ratio (R I CO(3-2) /I CO(2-1) ) for the whole MC is between 0.79 and 3.40. The average value is 1.58, which is much higher than previous measurements of individual Galactic MCs. Higher line ratios imply that shocks have driven into the MCs. We conclude that high R I CO(3-2) /I CO(2-1) is identified as a good signature of the SNR-MC interacting system. Based on the IRAS Point Source Catalog and the Two Micron All Sky Survey near-infrared database, 12 protostellar object and 1666 young stellar object (YSO) candidates (including 154 classical T Tauri stars and 419 Herbig Ae/Be stars) are selected. In the interacting regions, the significant enhancement of the number of protostellar objects and YSOs indicates the presence of some recently formed stars. After comparing the characteristic timescales of star formation with the age of IC443, we conclude that the protostellar objects and YSO candidates are not triggered by IC443. For the age of the stellar winds shell, we have performed our calculation on the basis of a stellar wind shell expansion model. The results and analysis suggest that the formation of these stars may be triggered by the stellar winds of the IC443 progenitor.

  12. Optical observations of the type Ic supernova 2007gr in NGC 1058

    International Nuclear Information System (INIS)

    Chen, Juncheng; Wang, Xiaofeng; Li, Junzheng; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Filippenko, Alexei V.; Li, Weidong; Chornock, Ryan; Steele, Thea

    2014-01-01

    We present extensive optical observations of the normal Type Ic supernova (SN) 2007gr, spanning from about one week before maximum light to more than one year thereafter. The optical light and color curves of SN 2007gr are very similar to those of the broad-lined Type Ic SN 2002ap, but the spectra show remarkable differences. The optical spectra of SN 2007gr are characterized by unusually narrow lines, prominent carbon lines, and slow evolution of the line velocity after maximum light. The earliest spectrum (taken at t = –8 days) shows a possible signature of helium (He I λ5876 at a velocity of ∼19,000 km s –1 ). Moreover, the larger intensity ratio of the [O I] λ6300 and λ6364 lines inferred from the early nebular spectra implies a lower opacity of the ejecta shortly after the explosion. These results indicate that SN 2007gr perhaps underwent a less energetic explosion of a smaller-mass Wolf-Rayet star (∼8-9 M ☉ ) in a binary system, as favored by an analysis of the progenitor environment through pre-explosion and post-explosion Hubble Space Telescope images. In the nebular spectra, asymmetric double-peaked profiles can be seen in the [O I] λ6300 and Mg I] λ4571 lines. We suggest that the two peaks are contributed by the blueshifted and rest-frame components. The similarity in velocity structure and the different evolution of the strength of the two components favor an aspherical explosion with the ejecta distributed in a torus or disk-like geometry, but inside the ejecta the O and Mg have different distributions.

  13. Optical observations of the type Ic supernova 2007gr in NGC 1058

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Juncheng; Wang, Xiaofeng; Li, Junzheng [Physics Department and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing 100084 (China); Ganeshalingam, Mohan; Silverman, Jeffrey M.; Filippenko, Alexei V.; Li, Weidong; Chornock, Ryan; Steele, Thea, E-mail: cjc09@mails.tsinghua.edu.cn, E-mail: wang_xf@mail.tsinghua.edu.cn [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2014-08-01

    We present extensive optical observations of the normal Type Ic supernova (SN) 2007gr, spanning from about one week before maximum light to more than one year thereafter. The optical light and color curves of SN 2007gr are very similar to those of the broad-lined Type Ic SN 2002ap, but the spectra show remarkable differences. The optical spectra of SN 2007gr are characterized by unusually narrow lines, prominent carbon lines, and slow evolution of the line velocity after maximum light. The earliest spectrum (taken at t = –8 days) shows a possible signature of helium (He I λ5876 at a velocity of ∼19,000 km s{sup –1}). Moreover, the larger intensity ratio of the [O I] λ6300 and λ6364 lines inferred from the early nebular spectra implies a lower opacity of the ejecta shortly after the explosion. These results indicate that SN 2007gr perhaps underwent a less energetic explosion of a smaller-mass Wolf-Rayet star (∼8-9 M{sub ☉}) in a binary system, as favored by an analysis of the progenitor environment through pre-explosion and post-explosion Hubble Space Telescope images. In the nebular spectra, asymmetric double-peaked profiles can be seen in the [O I] λ6300 and Mg I] λ4571 lines. We suggest that the two peaks are contributed by the blueshifted and rest-frame components. The similarity in velocity structure and the different evolution of the strength of the two components favor an aspherical explosion with the ejecta distributed in a torus or disk-like geometry, but inside the ejecta the O and Mg have different distributions.

  14. EVIDENCE FOR A COMPACT WOLF-RAYET PROGENITOR FOR THE TYPE Ic SUPERNOVA PTF 10vgv

    Energy Technology Data Exchange (ETDEWEB)

    Corsi, A. [LIGO laboratory, California Institute of Technology, MS 100-36, Pasadena, CA 91125 (United States); Ofek, E. O.; Gal-Yam, A.; Arcavi, I.; Ben-Ami, S.; Rabinak, I. [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Frail, D. A. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States); Poznanski, D. [School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Mazzali, P. A. [INAF-Osservatorio Astronomico, vicolo dellOsservatorio, 5, I-35122 Padova (Italy); Kulkarni, S. R.; Kasliwal, M. M.; Horesh, A. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Cenko, S. B.; Filippenko, A. V.; Kleiser, I. K. W.; Silverman, J. M. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Fox, D. B.; Howell, J. L. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Nakar, E. [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Sari, R., E-mail: corsi@caltech.edu [Racah Institute for Physics, Hebrew University, Jerusalem 91904 (Israel); and others

    2012-03-15

    We present the discovery of PTF 10vgv, a Type Ic supernova (SN) detected by the Palomar Transient Factory, using the Palomar 48 inch telescope (P48). R-band observations of the PTF 10vgv field with P48 probe the SN emission from its very early phases (about two weeks before R-band maximum) and set limits on its flux in the week prior to the discovery. Our sensitive upper limits and early detections constrain the post-shock-breakout luminosity of this event. Via comparison to numerical (analytical) models, we derive an upper-limit of R {approx}< 4.5 R{sub Sun} (R {approx}< 1 R{sub Sun }) on the radius of the progenitor star, a direct indication in favor of a compact Wolf-Rayet star. Applying a similar analysis to the historical observations of SN 1994I yields R {approx}< 1/4 R{sub Sun} for the progenitor radius of this SN.

  15. Physics, SN1987A, and the next nearby supernova

    International Nuclear Information System (INIS)

    Burrows, A.

    1989-01-01

    The scientific community has extracted quite a bit of information from SN1987A, some of it enduring. I will summarize what I believe we learned, what we did not learn, and what we can learn about supernovae, neutrinos, and particle physics when the next galactic supernova explodes onto the news

  16. Hydrodynamical models of supernova SN 1987 A in the LMC

    International Nuclear Information System (INIS)

    Grassberg, E.K.; Imshennik, V.S.; Nadezhin, D.K.; Utrobin, V.P.

    1987-01-01

    It is shown that the properties of SN 1987A in LMC can be described well by hydrodynamical models of explosions of compact massive stars. In accordance with these models, the mass of the expelled envelope the presupernova radius and the total energy of explosion are evaluated for SN 1987A to be ∼ 16M Sun , ∼ 30R Sun , and ∼ 3.10 51 erg, respectively. The progenitor of supernova remnant Cas A may be considered as the prototype to the SN 1987A in our own Galaxy. In other galaxies, this subtype of supernovae can be represented by SN 1948B in NGC6946. If energy of explosion transfers from collapsed core of the star to the envelope within timescale less than 1 hour, then delay Δt ∼ 3 hours between the neutrino pulse and the steep rise of optical luminosity of SN 1987A does not contradict with scenario of explosions of compact massive stars

  17. Supernova mechanisms: Before and after SN1987a

    International Nuclear Information System (INIS)

    Kahana, S.H.

    1987-01-01

    The impact of SN1987a on theoretical studies of the specific mechanism generating Type II supernovae is examined. The explosion energy extracted from analysis of the light curve for SN 1987a is on the edge of distinguishing between a prompt explosion from a hydrodynamic shock and a delayed, neutrino-induced, explosion. The detection of neutrinos from 1987a is also reanalyzed. 30 refs., 2 tabs

  18. XRF 100316D/SN 2010bh AND THE NATURE OF GAMMA-RAY BURST SUPERNOVAE

    International Nuclear Information System (INIS)

    Cano, Z.; Bersier, D.; Guidorzi, C.; Kobayashi, S.; Melandri, A.; Mundell, C. G.; Levan, A. J.; Tanvir, N. R.; Wiersema, K.; D'Avanzo, P.; Margutti, R.; Fruchter, A. S.; Garnavich, P.; Gomboc, A.; Kopac, D.; Gorosabel, J.; Kasen, D.; Mazzali, P. A.; Nugent, P. E.; Pian, E.

    2011-01-01

    We present ground-based and Hubble Space Telescope optical and infrared observations of Swift XRF 100316D/SN 2010bh. It is seen that the optical light curves of SN 2010bh evolve at a faster rate than the archetype gamma-ray burst supernova (GRB-SN) 1998bw, but at a similar rate to SN 2006aj, an SN that was spectroscopically linked with XRF 060218, and at a similar rate to the non-GRB associated Type Ic SN 1994I. We estimate the rest-frame extinction of this event from our optical data to be E(B - V) = 0.18 ± 0.08 mag. We find the V-band absolute magnitude of SN 2010bh to be M V = -18.62 ± 0.08, which is the faintest peak V-band magnitude observed to date for spectroscopically confirmed GRB-SNe. When we investigate the origin of the flux at t - t 0 = 0.598 days, it is shown that the light is not synchrotron in origin, but is likely coming from the SN shock breakout. We then use our optical and infrared data to create a quasi-bolometric light curve of SN 2010bh, which we model with a simple analytical formula. The results of our modeling imply that SN 2010bh synthesized a nickel mass of M Ni ∼ 0.1 M sun , ejected M ej ∼ 2.2 M sun , and has an explosion energy of E k ∼ 1.4 x 10 52 erg. Thus, while SN 2010bh is an energetic explosion, the amount of nickel created during the explosion is much less than that of SN 1998bw and only marginally more than SN 1994I. Finally, for a sample of 22 GRB-SNe we check for a correlation between the stretch factors and luminosity factors in the R band and conclude that no statistically significant correlation exists.

  19. Neutrino properties and supernova SN1987a

    International Nuclear Information System (INIS)

    Nussinov, S.

    1989-01-01

    The use of SN1987a to indicate how limits on neutrino properties can be deduced from the observed neutrino signals is shown. Bounds on possible deviations from relativity are briefly considered. The possible evidence for a half-millisecond pulsar in the SN remnant and on speculative attempts at finding the same periodicity in the neutrino signal are commented on. 37 refs

  20. DISCOVERY OF THE BROAD-LINED TYPE Ic SN 2013cq ASSOCIATED WITH THE VERY ENERGETIC GRB 130427A

    Energy Technology Data Exchange (ETDEWEB)

    Xu, D.; Krühler, T.; Hjorth, J.; Malesani, D.; Fynbo, J. P. U.; Watson, D. J.; Geier, S. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 København Ø (Denmark); De Ugarte Postigo, A.; Thöne, C. C.; Sánchez-Ramírez, R. [Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía s/n, E-18008 Granada (Spain); Leloudas, G. [The Oskar Klein Centre, Department of Physics, Stockholm University, AlbaNova, SE-10691 Stockholm (Sweden); Cano, Z.; Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, IS-107 Reykjavik (Iceland); Schulze, S. [Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Kaper, L. [Astronomical Institute Anton Pannekoek, University of Amsterdam, Science Park 904, NL-1098 XH Amsterdam (Netherlands); Sollerman, J. [The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm (Sweden); Cabrera-Lavers, A. [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Cao, C. [Department of Space Science and Physics, Shandong University at Weihai, Weihai, Shandong 264209 (China); Covino, S. [INAF/Brera Astronomical Observatory, via Bianchi 46, I-23807 Merate (Italy); Flores, H., E-mail: dong@dark-cosmology.dk [Laboratoire Galaxies Etoiles Physique et Instrumentation, Observatoire de Paris, 5 place Jules Janssen, F-92195 Meudon (France); and others

    2013-10-20

    Long-duration gamma-ray bursts (GRBs) at z < 1 are found in most cases to be accompanied by bright, broad-lined Type Ic supernovae (SNe Ic-BL). The highest-energy GRBs are mostly located at higher redshifts, where the associated SNe are hard to detect observationally. Here, we present early and late observations of the optical counterpart of the very energetic GRB 130427A. Despite its moderate redshift, z = 0.3399 ± 0.0002, GRB 130427A is at the high end of the GRB energy distribution, with an isotropic-equivalent energy release of E{sub iso} ∼ 9.6 × 10{sup 53} erg, more than an order of magnitude more energetic than other GRBs with spectroscopically confirmed SNe. In our dense photometric monitoring, we detect excess flux in the host-subtracted r-band light curve, consistent with that expected from an emerging SN, ∼0.2 mag fainter than the prototypical SN 1998bw. A spectrum obtained around the time of the SN peak (16.7 days after the GRB) reveals broad undulations typical of SNe Ic-BL, confirming the presence of an SN, designated SN 2013cq. The spectral shape and early peak time are similar to those of the high expansion velocity SN 2010bh associated with GRB 100316D. Our findings demonstrate that high-energy, long-duration GRBs, commonly detected at high redshift, can also be associated with SNe Ic-BL, pointing to a common progenitor mechanism.

  1. Discovery of Six ASAS-SN Supernova Candidates

    Science.gov (United States)

    Brimacombe, J.; Stone, G.; Vallely, P.; Stanek, K. Z.; Brown, J. S.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Conseil, E.

    2018-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  2. XRF 100316D/SN 2010bh and the nature of gamma-ray burst supernovae

    NARCIS (Netherlands)

    Cano, Z.; Bersier, D.; Guidorzi, C.; Kobayashi, S.; Levan, A.J.; Tanvir, N.R.; Wiersema, K.; D'Avanzo, P.; Fruchter, A.S.; Garnavich, P.; Gomboc, A.; Gorosabel, J.; Kasen, D.; Kopač, D.; Margutti, R.; Mazzali, P.A.; Melandri, A.; Mundell, C.G.; Nugent, P.E.; Pian, E.; Smith, R.J.; Steele, I.; Wijers, R.A.M.J.; Woosley, S.E.

    2011-01-01

    We present ground-based and Hubble Space Telescope optical and infrared observations of Swift XRF 100316D/SN 2010bh. It is seen that the optical light curves of SN 2010bh evolve at a faster rate than the archetype gamma-ray burst supernova (GRB-SN) 1998bw, but at a similar rate to SN 2006aj, an SN

  3. INTERACTION BETWEEN THE BROAD-LINED TYPE Ic SUPERNOVA 2012ap AND CARRIERS OF DIFFUSE INTERSTELLAR BANDS

    International Nuclear Information System (INIS)

    Milisavljevic, Dan; Margutti, Raffaella; Crabtree, Kyle N.; Soderberg, Alicia M.; Sanders, Nathan E.; Drout, Maria R.; Kamble, Atish; Chakraborti, Sayan; Kirshner, Robert P.; Foster, Jonathan B.; Fesen, Robert A.; Parrent, Jerod T.; Pickering, Timothy E.; Cenko, S. Bradley; Silverman, Jeffrey M.; Marion, G. H. Howie; Vinko, Jozsef; Filippenko, Alexei V.; Mazzali, Paolo; Maeda, Keiichi

    2014-01-01

    Diffuse interstellar bands (DIBs) are absorption features observed in optical and near-infrared spectra that are thought to be associated with carbon-rich polyatomic molecules in interstellar gas. However, because the central wavelengths of these bands do not correspond to electronic transitions of any known atomic or molecular species, their nature has remained uncertain since their discovery almost a century ago. Here we report on unusually strong DIBs in optical spectra of the broad-lined Type Ic supernova SN 2012ap that exhibit changes in equivalent width over short (≲ 30 days) timescales. The 4428 Å and 6283 Å DIB features get weaker with time, whereas the 5780 Å feature shows a marginal increase. These nonuniform changes suggest that the supernova is interacting with a nearby source of DIBs and that the DIB carriers possess high ionization potentials, such as small cations or charged fullerenes. We conclude that moderate-resolution spectra of supernovae with DIB absorptions obtained within weeks of outburst could reveal unique information about the mass-loss environment of their progenitor systems and provide new constraints on the properties of DIB carriers

  4. INTERACTION BETWEEN THE BROAD-LINED TYPE Ic SUPERNOVA 2012ap AND CARRIERS OF DIFFUSE INTERSTELLAR BANDS

    Energy Technology Data Exchange (ETDEWEB)

    Milisavljevic, Dan; Margutti, Raffaella; Crabtree, Kyle N.; Soderberg, Alicia M.; Sanders, Nathan E.; Drout, Maria R.; Kamble, Atish; Chakraborti, Sayan; Kirshner, Robert P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Foster, Jonathan B. [Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06520 (United States); Fesen, Robert A.; Parrent, Jerod T. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Lab, Hanover, NH 03755 (United States); Pickering, Timothy E. [Southern African Large Telescope, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Silverman, Jeffrey M.; Marion, G. H. Howie; Vinko, Jozsef [University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Mazzali, Paolo [Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5RF (United Kingdom); Maeda, Keiichi, E-mail: dmilisav@cfa.harvard.edu [Department of Astronomy, Kyoto University Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); and others

    2014-02-10

    Diffuse interstellar bands (DIBs) are absorption features observed in optical and near-infrared spectra that are thought to be associated with carbon-rich polyatomic molecules in interstellar gas. However, because the central wavelengths of these bands do not correspond to electronic transitions of any known atomic or molecular species, their nature has remained uncertain since their discovery almost a century ago. Here we report on unusually strong DIBs in optical spectra of the broad-lined Type Ic supernova SN 2012ap that exhibit changes in equivalent width over short (≲ 30 days) timescales. The 4428 Å and 6283 Å DIB features get weaker with time, whereas the 5780 Å feature shows a marginal increase. These nonuniform changes suggest that the supernova is interacting with a nearby source of DIBs and that the DIB carriers possess high ionization potentials, such as small cations or charged fullerenes. We conclude that moderate-resolution spectra of supernovae with DIB absorptions obtained within weeks of outburst could reveal unique information about the mass-loss environment of their progenitor systems and provide new constraints on the properties of DIB carriers.

  5. Neutrino spectrum from SN 1987A and from cosmic supernovae

    International Nuclear Information System (INIS)

    Yueksel, Hasan; Beacom, John F.

    2007-01-01

    The detection of neutrinos from SN 1987A by the Kamiokande-II and Irvine-Michigan-Brookhaven detectors provided the first glimpse of core collapse in a supernova, complementing the optical observations and confirming our basic understanding of the mechanism behind the explosion. One long-standing puzzle is that, when fitted with thermal spectra, the two independent detections do not seem to agree with either each other or typical theoretical expectations. We assess the compatibility of the two data sets in a model-independent way and show that they can be reconciled if one avoids any bias on the neutrino spectrum stemming from theoretical conjecture. We reconstruct the neutrino spectrum from SN 1987A directly from the data through nonparametric inferential statistical methods and present predictions for the diffuse supernova neutrino background based on SN 1987A data. We show that this prediction cannot be too small (especially in the 10-18 MeV range), since the majority of the detected events from SN 1987A were above 18 MeV (including 6 events above 35 MeV), suggesting an imminent detection in operational and planned detectors

  6. Supernovae

    International Nuclear Information System (INIS)

    Petschek, A.

    1990-01-01

    This book offers papers incorporating the latest results and understanding about supernovae, including SN1987A. There are several chapters reviewing all the radio through infrared, visible, and ultraviolet to X-rays and gamma-rays but also neutrinos. Other chapters deal with the classification of supernovae, depending on their spectra and light curves. Three chapters treat supernovae theory, including an idea of a fractal burning front and another on the behavior of neutron stars

  7. Related Progenitor Models for Long-duration Gamma-Ray Bursts and Type Ic Superluminous Supernovae

    Science.gov (United States)

    Aguilera-Dena, David R.; Langer, Norbert; Moriya, Takashi J.; Schootemeijer, Abel

    2018-05-01

    We model the late evolution and mass loss history of rapidly rotating Wolf–Rayet stars in the mass range 5 M ⊙…100 M ⊙). We find that quasi-chemically homogeneously evolving single stars computed with enhanced mixing retain very little or no helium and are compatible with Type Ic supernovae. The more efficient removal of core angular momentum and the expected smaller compact object mass in our lower-mass models lead to core spins in the range suggested for magnetar-driven superluminous supernovae. Our higher-mass models retain larger specific core angular momenta, expected for long-duration gamma-ray bursts in the collapsar scenario. Due to the absence of a significant He envelope, the rapidly increasing neutrino emission after core helium exhaustion leads to an accelerated contraction of the whole star, inducing a strong spin-up and centrifugally driven mass loss at rates of up to {10}-2 {M}ȯ {yr}}-1 in the last years to decades before core collapse. Because the angular momentum transport in our lower-mass models enhances the envelope spin-up, they show the largest relative amounts of centrifugally enforced mass loss, i.e., up to 25% of the expected ejecta mass. Our most massive models evolve into the pulsational pair-instability regime. We would thus expect signatures of interaction with a C/O-rich circumstellar medium for Type Ic superluminous supernovae with ejecta masses below ∼10 M ⊙ as well as for the most massive engine-driven explosions with ejecta masses above ∼30 M ⊙. Signs of such interaction should be observable at early epochs of the supernova explosion; they may be related to bumps observed in the light curves of superluminous supernovae, or to the massive circumstellar CO-shell proposed for Type Ic superluminous supernova Gaia16apd.

  8. PTF11mnb: First analog of supernova 2005bf. Long-rising, double-peaked supernova Ic from a massive progenitor

    Science.gov (United States)

    Taddia, F.; Sollerman, J.; Fremling, C.; Karamehmetoglu, E.; Quimby, R. M.; Gal-Yam, A.; Yaron, O.; Kasliwal, M. M.; Kulkarni, S. R.; Nugent, P. E.; Smadja, G.; Tao, C.

    2018-01-01

    Aims: We study PTF11mnb, a He-poor supernova (SN) whose light curves resemble those of SN 2005bf, a peculiar double-peaked stripped-envelope (SE) SN, until the declining phase after the main peak. We investigate the mechanism powering its light curve and the nature of its progenitor star. Methods: Optical photometry and spectroscopy of PTF11mnb are presented. We compared light curves, colors and spectral properties to those of SN 2005bf and normal SE SNe. We built a bolometric light curve and modeled this light curve with the SuperNova Explosion Code (SNEC) hydrodynamical code explosion of a MESA progenitor star and semi-analytic models. Results: The light curve of PTF11mnb turns out to be similar to that of SN 2005bf until 50 d when the main (secondary) peaks occur at -18.5 mag. The early peak occurs at 20 d and is about 1.0 mag fainter. After the main peak, the decline rate of PTF11mnb is remarkably slower than what was observed in SN 2005bf, and it traces well the 56Co decay rate. The spectra of PTF11mnb reveal a SN Ic and have no traces of He unlike in the case of SN Ib 2005bf, although they have velocities comparable to those of SN 2005bf. The whole evolution of the bolometric light curve is well reproduced by the explosion of a massive (Mej = 7.8 M⊙), He-poor star characterized by a double-peaked 56Ni distribution, a total 56Ni mass of 0.59 M⊙, and an explosion energy of 2.2 × 1051 erg. Alternatively, a normal SN Ib/c explosion (M(56Ni) = 0.11 M⊙, EK = 0.2 × 1051 erg, Mej = 1 M⊙) can power the first peak while a magnetar, with a magnetic field characterized by B = 5.0 × 1014 G, and a rotation period of P = 18.1 ms, provides energy for the main peak. The early g-band light curve can be fit with a shock-breakout cooling tail or an extended envelope model from which a radius of at least 30 R⊙ is obtained. Conclusions: We presented a scenario where PTF11mnb was the explosion of a massive, He-poor star, characterized by a double-peaked 56Ni

  9. Measurements of the diameter of the supernova SN 1987A

    International Nuclear Information System (INIS)

    Karovska, M.; Nisenson, P.; Standley, C.; Heathcote, S.R.

    1991-01-01

    Speckle interferometric measurements of the angular diameter of SN 1987A in the Large Magellanic Cloud, obtained at 664 days after the outburst are presented. Diameters were estimated with milliarcsec precision at 657 nm and 550 nm by fitting model visibility functions to the data corresponding to different intensity distributions for the supernova disk. Measurements made assuming a uniform intensity distribution were compared to the uniform disk measurements obtained from 30 days after the explosion. Diameter measurements obtained near the center of the H-alpha line are consistent with homologous expansion of the supernova shell with a mean velocity of 2850 km/s. The linear least-squares fit to the measurements obtained at other wavelengths from 260 days after the explosion yielded a somewhat lower mean expansion velocity. 8 refs

  10. The GRB 060218/SN 2006aj event in the context of other gamma-ray burst supernovae

    DEFF Research Database (Denmark)

    Ferrero, P.; Kann, D. A.; Zeh, A.

    2006-01-01

    Gamma rays: bursts: X-rays: individuals: GRB 060218, supernovae: individual: SN 2006aj Udgivelsesdato: Oct.......Gamma rays: bursts: X-rays: individuals: GRB 060218, supernovae: individual: SN 2006aj Udgivelsesdato: Oct....

  11. Electromigration in 3D-IC scale Cu/Sn/Cu solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Cheng-En, E-mail: ceho1975@hotmail.com; Lee, Pei-Tzu; Chen, Chih-Nan; Yang, Cheng-Hsien

    2016-08-15

    The electromigration effect on the three-dimensional integrated circuits (3D-IC) scale solder joints with a Cu/Sn(25–50 μm)/Cu configuration was investigated using a field-emission scanning electron microscope (FE–SEM) combined with electron backscatter diffraction (EBSD) analysis system. Electron current stressing for a few days caused the pronounced accumulation of Cu{sub 6}Sn{sub 5} in specific Sn grain boundaries (GBs). The EBSD analysis indicated that both the β-Sn crystallographic orientation and GB orientation play dominant roles in this accumulation. The dependencies of the Cu{sub 6}Sn{sub 5} accumulation on the two above factors (i.e., Sn grain orientation and GB orientation) can be well rationalized via a proposed mathematic model based on the Huntington and Grone's electromigration theory with the Cu anisotropic diffusion data in a β-Sn lattice. - Highlights: • Anisotropic Cu electromigration in the 3D-IC scale microelectronic solder joints. • Pronounced accumulation of Cu{sub 6}Sn{sub 5} intermetallic in specific Sn grain boundaries. • A linear dependence of Cu{sub 6}Sn{sub 5} accumulation over the current stressing time. • β-Sn and grain boundary orientations are the dominant factors in Cu{sub 6}Sn{sub 5} accumulation.

  12. Stripped-envelope supernova SN 2004dk is now interacting with hydrogen-rich circumstellar material

    Science.gov (United States)

    Mauerhan, Jon C.; Filippenko, Alexei V.; Zheng, WeiKang; Brink, Thomas; Graham, Melissa L.; Shivvers, Isaac; Clubb, Kelsey

    2018-05-01

    The dominant mechanism and time scales over which stripped-envelope supernovae (SNe) progenitor stars shed their hydrogen envelopes are uncertain. Observations of Type Ib and Ic SNe at late phases could reveal the optical signatures of interaction with distant circumstellar material (CSM) providing important clues on the origin of the necessary pre-SN mass loss. We report deep late-time optical spectroscopy of the Type Ib explosion SN 2004dk 4684 days (13 years) after discovery. We detect strong Hα emission with an intermediate line width of ˜400 km s-1 and luminosity ˜2.5 × 1039 erg s-1, signaling that the SN blast wave has caught up with the hydrogen-rich CSM lost by the progenitor system. The line luminosity is the highest ever reported for a SN at this late stage. Prominent emission features of He I, Fe, and Ca are also detected. The spectral characteristics are consistent with CSM energized by the forward shock, and resemble the late-time spectra of the persistently interacting Type IIn SNe 2005ip and 1988Z. We suggest that the onset of interaction with H-rich CSM was associated with a previously reported radio rebrightening at ˜1700 days. The data indicate that the mode of pre-SN mass loss was a relatively slow dense wind that persisted millennia before the SN, followed by a short-lived Wolf-Rayet phase that preceded core-collapse and created a cavity within an extended distribution of CSM. We also present new spectra of SNe 2014C, PTF11iqb, and 2009ip, all of which also exhibit continued interaction with extended CSM distributions.

  13. SN REFSDAL: CLASSIFICATION AS A LUMINOUS AND BLUE SN 1987A-LIKE TYPE II SUPERNOVA

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, P. L.; Filippenko, A. V.; Graham, M. L. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Brammer, G.; Strolger, L.-G.; Riess, A. G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Selsing, J.; Hjorth, J.; Christensen, L. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Foley, R. J. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, IL 61801 (United States); Rodney, S. A. [Department of Physics and Astronomy, University of South Carolina, 712 Main St., Columbia, SC 29208 (United States); Treu, T. [University of California, Los Angeles, CA 90095 (United States); Steidel, C. C.; Strom, A.; Zitrin, A. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Schmidt, K. B.; McCully, C. [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States); Bradač, M. [University of California, Davis, 1 Shields Avenue, Davis, CA 95616 (United States); Jha, S. W. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Graur, O., E-mail: pkelly@astro.berkeley.edu [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States); and others

    2016-11-10

    We have acquired Hubble Space Telescope (HST) and Very Large Telescope near-infrared spectra and images of supernova (SN) Refsdal after its discovery as an Einstein cross in fall 2014. The HST light curve of SN Refsdal has a shape consistent with the distinctive, slowly rising light curves of SN 1987A-like SNe, and we find strong evidence for a broad H α P-Cygni profile and Na I D absorption in the HST grism spectrum at the redshift ( z = 1.49) of the spiral host galaxy. SNe IIn, largely powered by circumstellar interaction, could provide a good match to the light curve of SN Refsdal, but the spectrum of a SN IIn would not show broad and strong H α and Na I D absorption. From the grism spectrum, we measure an H α expansion velocity consistent with those of SN 1987A-like SNe at a similar phase. The luminosity, evolution, and Gaussian profile of the H α emission of the WFC3 and X-shooter spectra, separated by ∼2.5 months in the rest frame, provide additional evidence that supports the SN 1987A-like classification. In comparison with other examples of SN 1987A-like SNe, photometry of SN Refsdal favors bluer B - V and V - R colors and one of the largest luminosities for the assumed range of potential magnifications. The evolution of the light curve at late times will provide additional evidence about the potential existence of any substantial circumstellar material. Using MOSFIRE and X-shooter spectra, we estimate a subsolar host-galaxy metallicity (8.3 ± 0.1 dex and <8.4 dex, respectively) near the explosion site.

  14. SN 2008iy: An Unusual Type IIn Supernova with an Enduring 400 Day Rise Time

    OpenAIRE

    Miller, A. A.; Silverman, J. M.; Butler, N. R.; Bloom, J. S.; Chornock, R.; Filippenko, A. V.; Ganeshalingam, M.; Klein, C. R.; Li, W.; Nugent, P. E.; Smith, N.; Steele, T. N.

    2009-01-01

    We present spectroscopic and photometric observations of the Type IIn supernova (SN) 2008iy. SN 2008iy showed an unprecedentedly long rise time of ~400 days, making it the first SN to take significantly longer than 100 days to reach peak optical luminosity. The peak absolute magnitude of SN 2008iy was M_r ~ -19.1 mag, and the total radiated energy over the first ~700 days was ~2 x 10^50 erg. Spectroscopically, SN 2008iy is very similar to the Type IIn SN 1988Z at late times, and, like SN 1988...

  15. The Peculiar SN 2005hk: Do Some Type Ia Supernovae Explode As Deflagrations?

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.M.; Li, W.; Frieman, J.A.; Blinnikov, S.I.; DePoy, D.; Prieto, J.L.; Milne, P.; Contreras, C.; Folatelli, Gaston; Morrell, N.; Hamuy, M.; Suntzeff, N.B.; Roth, M.; Gonzalez, S.; Krzeminski, W.; Filippenko, A.V.; Freedman, W.L.; Chornock, R.; Jha, S.; Madore, B.F.; Persson, S.E.; /Las Campanas Observ. /UC, Berkeley, Astron. Dept.

    2006-11-14

    We present extensive u{prime}g{prime}r{prime}i{prime} BV RIY JHK{sub s} photometry and optical spectroscopy of SN 2005hk. These data reveal that SN 2005hk was nearly identical in its observed properties to SN 2002cx, which has been called 'the most peculiar known type Ia supernova'. Both supernovae exhibited high ionization SN 1991T-like pre-maximum spectra, yet low peak luminosities like SN 1991bg. The spectra reveal that SN 2005hk, like SN 2002cx, exhibited expansion velocities that were roughly half those of typical type Ia supernovae. The R and I light curves of both supernovae were also peculiar in not displaying the secondary maximum observed for normal type Ia supernovae. Our Y JH photometry of SN 2005hk reveals the same peculiarity in the near-infrared. By combining our optical and near-infrared photometry of SN 2005hk with published ultraviolet light curves obtained with the Swift satellite, we are able to construct a bolometric light curve from {approx} 10 days before to {approx}60 days after B maximum. The shape and unusually low peak luminosity of this light curve, plus the low expansion velocities and absence of a secondary maximum at red and near-infrared wavelengths, are all in reasonable agreement with model calculations of a 3D deflagration which produces {approx} 0.25 M{sub {circle_dot}} of {sup 56}Ni.

  16. Physical Conditions in Shocked Interstellar Gas Interacting with the Supernova Remnant IC 443

    Science.gov (United States)

    Ritchey, Adam M.; Federman, Steven Robert; Jenkins, Edward B.; Caprioli, Damiano; Wallerstein, George

    2018-06-01

    We present the results of a detailed investigation into the physical conditions in interstellar material interacting with the supernova remnant IC 443. Our analysis is based on an examination of high-resolution HST/STIS spectra of two stars probing predominantly neutral gas located both ahead of and behind the supernova shock front. The pre-shock neutral gas is characterized by densities and temperatures typical of diffuse interstellar clouds, while the post-shock material exhibits a range of more extreme physical conditions, including high temperatures (>104 K) in some cases, which may require a sudden heating event to explain. The ionization level is enhanced in the high-temperature post-shock material, which could be the result of enhanced radiation from shocks or from an increase in cosmic-ray ionization. The gas-phase abundances of refractory elements are also enhanced in the high-pressure gas, suggesting efficient destruction of dust grains by shock sputtering. Observations of highly-ionized species at very high velocity indicate a post-shock temperature of 107 K for the hot X-ray emitting plasma of the remnant’s interior, in agreement with studies of thermal X-ray emission from IC 443.

  17. INTERACTING SUPERNOVAE AND SUPERNOVA IMPOSTORS: SN 2009ip, IS THIS THE END?

    International Nuclear Information System (INIS)

    Pastorello, A.; Cappellaro, E.; Benetti, S.; Inserra, C.; Smartt, S. J.; Fraser, M.; Pignata, G.; Takáts, K.; Bufano, F.; Valenti, S.; Benitez, S.; Botticella, M. T.; Brimacombe, J.; Cellier-Holzem, F.; Costado, M. T.; Cupani, G.; Curtis, I.; Elias-Rosa, N.; Ergon, M.; Fynbo, J. P. U.

    2013-01-01

    We report the results of a three-year-long dedicated monitoring campaign of a restless luminous blue variable (LBV) in NGC 7259. The object, named SN 2009ip, was observed photometrically and spectroscopically in the optical and near-infrared domains. We monitored a number of erupting episodes in the past few years, and increased the density of our observations during eruptive episodes. In this paper, we present the full historical data set from 2009 to 2012 with multi-wavelength dense coverage of the two high-luminosity events between 2012 August and September. We construct bolometric light curves and measure the total luminosities of these eruptive or explosive events. We label them the 2012a event (lasting ∼50 days) with a peak of 3 × 10 41 erg s –1 , and the 2012b event (14 day rise time, still ongoing) with a peak of 8 × 10 42 erg s –1 . The latter event reached an absolute R-band magnitude of about –18, comparable to that of a core-collapse supernova (SN). Our historical monitoring has detected high-velocity spectral features (∼13,000 km s –1 ) in 2011 September, one year before the current SN-like event. This implies that the detection of such high-velocity outflows cannot, conclusively, point to a core-collapse SN origin. We suggest that the initial peak in the 2012a event was unlikely to be due to a faint core-collapse SN. We propose that the high intrinsic luminosity of the latest peak, the variability history of SN 2009ip, and the detection of broad spectral lines indicative of high-velocity ejecta are consistent with a pulsational pair-instability event, and that the star may have survived the last outburst. The question of the survival of the LBV progenitor star and its future fate remain open issues, only to be answered with future monitoring of this historically unique explosion.

  18. Photometry of SN 2002ic and implications for the progenitor mass-loss history

    International Nuclear Information System (INIS)

    Wood-Vasey, W.M.; Wang, L.; Aldering, G.

    2004-01-01

    We present new pre-maximum and late-time optical photometry of the Type Ia/IIn supernova 2002ic. These observations are combined with the published V-band magnitudes of Hamuy et al. (2003) and the VLT spectrophotometry of Wang et al. (2004) to construct the most extensive light curve to date of this unusual supernova. The observed flux at late time is significantly higher relative to the flux at maximum than that of any other observed Type Ia supernova and continues to fade very slowly a year after explosion. Our analysis of the light curve suggests that a non-Type Ia supernova component becomes prominent ∼20 days after explosion. Modeling of the non-Type Ia supernova component as heating from the shock interaction of the supernova ejecta with pre-existing circumstellar material suggests the presence of a ∼1.7 x 1015 cm gap or trough between the progenitor system and the surrounding circumstellar material. This gap could be due to significantly lower mass-loss ∼15 (nu omega /10 km/s) -1 years prior to explosion or evacuation of the circumstellar material by a low-density fast wind. The latter is consistent with observed properties of proto-planetary nebulae and with models of white-dwarf + asymptotic giant branch star progenitor systems with the asymptotic giant branch star in the proto-planetary nebula phase

  19. RADIO EMISSION FROM SN 1994I IN NGC 5194 (M 51): THE BEST-STUDIED TYPE Ib/c RADIO SUPERNOVA

    International Nuclear Information System (INIS)

    Weiler, Kurt W.; Panagia, Nino; Stockdale, Christopher; Rupen, Michael; Sramek, Richard A.; Williams, Christopher L.

    2011-01-01

    We present the results of detailed monitoring of the radio emission from the Type Ic supernova SN 1994I from three days after optical discovery on 1994 March 31 until eight years later at age 2927 days on 2002 April 5. The data were mainly obtained using the Very Large Array at the five wavelengths of λλ1.3, 2.0, 3.6, 6.2, and 21 cm and from the Cambridge 5 km Ryle Telescope at λ2.0 cm. Two additional measurements were obtained at millimeter wavelengths. This data set represents the most complete, multifrequency radio observations ever obtained for a Type Ib/c supernova. The radio emission evolves regularly in both time and frequency and is well described by established supernova emission/absorption models. It is the first radio supernova with sufficient data to show that it is clearly dominated by the effects of synchrotron self-absorption at early times.

  20. SN 2009kn - the twin of the Type IIn supernova 1994W

    DEFF Research Database (Denmark)

    Kankare, E.; Ergon, M.; Bufano, F.

    2012-01-01

    We present an optical and near-infrared photometric and spectroscopic study of supernova (SN) 2009kn spanning ~1.5 yr from the discovery. The optical spectra are dominated by the narrow (full width at half-maximum ~1000 km s^-1) Balmer lines distinctive of a Type IIn SN with P Cygni profiles. Con...

  1. The Transition of a Type IIL Supernova into a Supernova Remnant: Late-time Observations of SN 2013by

    Energy Technology Data Exchange (ETDEWEB)

    Black, C. S.; Fesen, R. A. [6127 Wilder Lab, Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Milisavljevic, D.; Patnaude, D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Margutti, R. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Parker, S. [Parkdale Observatory, 225 Warren Road, RDl Oxford, Canterbury 7495 (New Zealand)

    2017-10-10

    We present early-time Swift and Chandra X-ray data along with late-time optical and near-infrared observations of SN 2013by, a Type IIL supernova (SN) that occurred in the nearby spiral galaxy ESO 138−G10 ( D ∼ 14.8 Mpc). Optical and NIR photometry and spectroscopy follow the late-time evolution of the SN from days +89 to +457 post maximum brightness. The optical spectra and X-ray light curves are consistent with the picture of an SN having prolonged interaction with circumstellar material (CSM) that accelerates the transition from SN to supernova remnant (SNR). Specifically, we find SN 2013by’s H α profile exhibits significant broadening (∼10,000 km s{sup −1}) on day +457, the likely consequence of high-velocity, H-rich material being excited by a reverse shock. A relatively flat X-ray light curve is observed that cannot be modeled using Inverse Compton scattering processes alone, but requires an additional energy source most likely originating from the SN-CSM interaction. In addition, we see the first overtone of CO emission near 2.3 μ m on day +152, signaling the formation of molecules and dust in the SN ejecta and is the first time CO has been detected in a Type IIL SN. We compare SN 2013by with Type IIP SNe, whose spectra show the rarely observed SN-to-SNR transition in varying degrees and conclude that Type IIL SNe may enter the remnant phase at earlier epochs than their Type IIP counterparts.

  2. GAMMA RAYS FROM TYPE Ia SUPERNOVA SN 2014J

    International Nuclear Information System (INIS)

    Churazov, E.; Sunyaev, R.; Grebenev, S.; Isern, J.; Bikmaev, I.; Bravo, E.; Chugai, N.; Jean, P.; Knödlseder, J.; Lebrun, F.; Kuulkers, E.

    2015-01-01

    The whole set of INTEGRAL observations of Type Ia supernova SN 2014J, covering the period 19–162 days after the explosion, has been analyzed. For spectral fitting the data are split into early and late periods covering days 19–35 and 50–162, respectively, optimized for 56 Ni and 56 Co lines. As expected for the early period, much of the gamma-ray signal is confined to energies below ∼200 keV, while for the late period it is strongest above 400 keV. In particular, in the late period, 56 Co lines at 847 and 1248 keV are detected at 4.7σ and 4.3σ, respectively. The light curves in several representative energy bands are calculated for the entire period. The resulting spectra and light curves are compared with a subset of models. We confirm our previous finding that the gamma-ray data are broadly consistent with the expectations for canonical one-dimensional models, such as delayed detonation or deflagration models for a near-Chandrasekhar mass white dwarf. Late optical spectra (day 136 after the explosion) show rather symmetric Co and Fe line profiles, suggesting that, unless the viewing angle is special, the distribution of radioactive elements is symmetric in the ejecta

  3. DISCOVERY OF TWO SUPERNOVAE IN THE NUCLEAR REGIONS OF THE LUMINOUS INFRARED GALAXY IC 883

    Energy Technology Data Exchange (ETDEWEB)

    Kankare, E.; Mattila, S.; Takalo, A. [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Vaeisaelaentie 20, FI-21500 Piikkioe (Finland); Ryder, S. [Australian Astronomical Observatory, P.O. Box 296, Epping, NSW 1710 (Australia); Vaeisaenen, P. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935 (South Africa); Alberdi, A.; Perez-Torres, M.-A.; Romero-Canizales, C. [Instituto de Astrofsica de Andalucia, IAA-CSIC, Apartado 3004, 18080 Granada (Spain); Alonso-Herrero, A.; Colina, L. [Departamento de Astrofisica, Centro de Astrobiologia, CSIC/INTA, Carretera de Torrejon a Ajalvir, km 4, 28850, Torrejon de Ardoz, Madrid (Spain); Efstathiou, A. [School of Sciences, European University Cyprus, Diogenes Street, Engomi, 1516 Nicosia (Cyprus); Kotilainen, J. [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Vaeisaelaentie 20, FI-21500 Piikkioe (Finland); Melinder, J., E-mail: erkki.kankare@utu.fi [Department of Astronomy, Oskar Klein Centre, Stockholm University, AlbaNova University Centre, 106 91 Stockholm (Sweden)

    2012-01-10

    We report the discovery of two consecutive supernovae (SNe), 2010cu and 2011hi, located at 0.''37 (180 pc) and 0.''79 (380 pc) projected distance, respectively, from the center of the K-band nucleus of the luminous infrared galaxy (LIRG) IC 883. The SNe were discovered in an ongoing near-infrared K-band search for core-collapse SNe in such galaxies using the ALTAIR/NIRI adaptive optics system with laser guide star at the Gemini-North Telescope. These are thus the closest SNe yet discovered to an LIRG nucleus in optical or near-infrared wavelengths. The near-infrared light curves and colors of both SNe are consistent with core-collapse events. Both SNe seem to suffer from relatively low host galaxy extinction suggesting that regardless of their low projected galactocentric distances, they are not deeply buried in the nuclear regions of the host galaxy.

  4. Aspherical supernovae

    International Nuclear Information System (INIS)

    Kasen, Daniel Nathan

    2004-01-01

    Although we know that many supernovae are aspherical, the exact nature of their geometry is undetermined. Because all the supernovae we observe are too distant to be resolved, the ejecta structure can't be directly imaged, and asymmetry must be inferred from signatures in the spectral features and polarization of the supernova light. The empirical interpretation of this data, however, is rather limited--to learn more about the detailed supernova geometry, theoretical modeling must been undertaken. One expects the geometry to be closely tied to the explosion mechanism and the progenitor star system, both of which are still under debate. Studying the 3-dimensional structure of supernovae should therefore provide new break throughs in our understanding. The goal of this thesis is to advance new techniques for calculating radiative transfer in 3-dimensional expanding atmospheres, and use them to study the flux and polarization signatures of aspherical supernovae. We develop a 3-D Monte Carlo transfer code and use it to directly fit recent spectropolarimetric observations, as well as calculate the observable properties of detailed multi-dimensional hydrodynamical explosion simulations. While previous theoretical efforts have been restricted to ellipsoidal models, we study several more complicated configurations that are tied to specific physical scenarios. We explore clumpy and toroidal geometries in fitting the spectropolarimetry of the Type Ia supernova SN 2001el. We then calculate the observable consequences of a supernova that has been rendered asymmetric by crashing into a nearby companion star. Finally, we fit the spectrum of a peculiar and extraordinarily luminous Type Ic supernova. The results are brought to bear on three broader astrophysical questions: (1) What are the progenitors and the explosion processes of Type Ia supernovae? (2) What effect does asymmetry have on the observational diversity of Type Ia supernovae, and hence their use in cosmology? (3) And

  5. On the Possibility of Fast Radio Bursts from Inside Supernovae: The Case of SN 1986J

    Science.gov (United States)

    Bietenholz, Michael F.; Bartel, Norbert

    2017-12-01

    We discuss the possibility of obtaining fast radio bursts (FRBs) from the interior of supernovae, in particular SN 1986J. Young neutron stars are involved in many of the possible scenarios for the origin of FRBs, and it has been suggested that the high dispersion measures observed in FRBs might be produced by the ionized material in the ejecta of associated supernovae. Using VLA and VLBI measurements of the Type IIn SN 1986J, which has a central compact component not seen in other supernovae, we can directly observe for the first time radio signals, which originate in the interior of a young (∼30 year old) supernova. We show that at an age of 30 years, any FRB signal at ∼1 GHz would still be largely absorbed by the ejecta. By the time the ejecta have expanded so that a 1 GHz signal would be visible, the internal dispersion measure due to the SN ejecta would be below the values typically seen for FRBs. The high dispersion measures seen for the FRBs detected so far could of course be due to propagation through the intergalactic medium provided that the FRBs are at distances much larger than that of SN 1986J, which is 10 Mpc. We conclude that if FRBs originate in Type II SNe/SNRs, they would likely not become visible until 60 ∼ 200 years after the SN explosion.

  6. Photometric type Ia supernova candidates from the three-year SDSS-II SN survey data

    Energy Technology Data Exchange (ETDEWEB)

    Sako, Masao; /Pennsylvania U.; Bassett, Bruce; /South African Astron. Observ. /Cape Town U., Dept. Math.; Connolly, Brian; /Pennsylvania U.; Dilday, Benjamin; /Las Cumbres Observ. /UC, Santa Barbara /Rutgers U., Piscataway; Cambell, Heather; /Portsmouth U., ICG; Frieman, Joshua A.; /Chicago U. /Chicago U., KICP /Fermilab; Gladney, Larry; /Pennsylvania U.; Kessler, Richard; /Chicago U. /Chicago U., KICP; Lampeitl, Hubert; /Portsmouth U., ICG; Marriner, John; /Fermilab; Miquel, Ramon; /Barcelona, IFAE /ICREA, Barcelona /Portsmouth U., ICG

    2011-07-01

    We analyze the three-year Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey data and identify a sample of 1070 photometric Type Ia supernova (SN Ia) candidates based on their multiband light curve data. This sample consists of SN candidates with no spectroscopic confirmation, with a subset of 210 candidates having spectroscopic redshifts of their host galaxies measured while the remaining 860 candidates are purely photometric in their identification. We describe a method for estimating the efficiency and purity of photometric SN Ia classification when spectroscopic confirmation of only a limited sample is available, and demonstrate that SN Ia candidates from SDSS-II can be identified photometrically with {approx}91% efficiency and with a contamination of {approx}6%. Although this is the largest uniform sample of SN candidates to date for studying photometric identification, we find that a larger spectroscopic sample of contaminating sources is required to obtain a better characterization of the background events. A Hubble diagram using SN candidates with no spectroscopic confirmation, but with host galaxy spectroscopic redshifts, yields a distance modulus dispersion that is only {approx}20%-40% larger than that of the spectroscopically confirmed SN Ia sample alone with no significant bias. A Hubble diagram with purely photometric classification and redshift-distance measurements, however, exhibits biases that require further investigation for precision cosmology.

  7. PHOTOMETRIC TYPE Ia SUPERNOVA CANDIDATES FROM THE THREE-YEAR SDSS-II SN SURVEY DATA

    International Nuclear Information System (INIS)

    Sako, Masao; Connolly, Brian; Gladney, Larry; Bassett, Bruce; Dilday, Benjamin; Cambell, Heather; Lampeitl, Hubert; Nichol, Robert C.; Frieman, Joshua A.; Kessler, Richard; Marriner, John; Miquel, Ramon; Schneider, Donald P.; Smith, Mathew; Sollerman, Jesper

    2011-01-01

    We analyze the three-year Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey data and identify a sample of 1070 photometric Type Ia supernova (SN Ia) candidates based on their multiband light curve data. This sample consists of SN candidates with no spectroscopic confirmation, with a subset of 210 candidates having spectroscopic redshifts of their host galaxies measured while the remaining 860 candidates are purely photometric in their identification. We describe a method for estimating the efficiency and purity of photometric SN Ia classification when spectroscopic confirmation of only a limited sample is available, and demonstrate that SN Ia candidates from SDSS-II can be identified photometrically with ∼91% efficiency and with a contamination of ∼6%. Although this is the largest uniform sample of SN candidates to date for studying photometric identification, we find that a larger spectroscopic sample of contaminating sources is required to obtain a better characterization of the background events. A Hubble diagram using SN candidates with no spectroscopic confirmation, but with host galaxy spectroscopic redshifts, yields a distance modulus dispersion that is only ∼20%-40% larger than that of the spectroscopically confirmed SN Ia sample alone with no significant bias. A Hubble diagram with purely photometric classification and redshift-distance measurements, however, exhibits biases that require further investigation for precision cosmology.

  8. Spectroscopic classification of PTSS-18ecg (SN 2018bhb) as a type Ia supernova around maximum

    Science.gov (United States)

    Zhang, Jujia; Ding, Xu; Wang, Xiaofeng; Li, Wenxiong; Li, Bin; Xu, Zhijian; Tan, Hanjie; Zhao, Haibin; Wang, Lifan; Li, Zhitong

    2018-05-01

    We obtained an optical spectrum (range 350-890 nm) of PTSS-18ecg (SN 2018bhb), discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT 2018 May 10.7 with the Li-Jiang 2.4 m telescope (LJT+YFOSC) at Li-Jiang Observatory of Yunnan Observatories.

  9. Toward the Understanding of the Physical Origin of Recombining Plasma in the Supernova Remnant IC 443

    Science.gov (United States)

    Matsumura, Hideaki; Tanaka, Takaaki; Uchida, Hiroyuki; Okon, Hiromichi; Tsuru, Takeshi Go

    2017-12-01

    We perform a spatially resolved spectroscopic analysis of X-ray emission from the supernova remnant (SNR) IC 443 with Suzaku. All of the spectra are well reproduced by a model consisting of a collisional ionization equilibrium (CIE) and two recombining plasma (RP) components. Although previous X-ray studies found an RP in the northeastern region, this is the first report on RPs in the other parts of the remnant. The electron temperature, kT e , of the CIE component is almost uniform at ∼0.2 keV across the remnant. The CIE plasma has metal abundances consistent with solar and is concentrated toward the rim of the remnant, suggesting that it is of shocked interstellar medium origin. The two RP components have different kT e : one in the range of 0.16–0.28 keV and the other in the range of 0.48–0.67 keV. The electron temperatures of both RP components decrease toward the southeast, where the SNR shock is known to be interacting with a molecular cloud. We also find the normalization ratio of the lower-kT e RP to higher-kT e RP components increases toward the southeast. Both results suggest the X-ray emitting plasma in the southeastern region is significantly cooled by some mechanism. One of the plausible cooling mechanisms is a thermal conduction between the hot plasma and the molecular cloud. If the cooling proceeds faster than the recombination timescale of the plasma, the same mechanism can account for the recombining plasma as well.

  10. Nearby Supernova Factory Observations of SN 2006D: On SporadicCarbon Signatures in Early Type Ia Supernova Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R.C.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey,S.; Baltay, C.; Baron, E.; Bauer, A.; Buton, C.; Bongard, S.; Copin, Y.; Gangler, E.; Gilles, S.; Kessler, R.; Loken, S.; Nugent, P.; Pain, R.; Parrent, J.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigaudier, G.; Runge, K.; Scalzo, R.; Smadja, G.; Wang, L.; Weaver, B.A.

    2006-10-12

    We present four spectra of the Type Ia supernova SN Ia 2006Dextending from -7 to +13 days with respect to B-band maximum. The spectrainclude the strongest signature of unburned material at photosphericvelocities observed in a SN Ia to date. The earliest spectrum exhibits CII absorption features below 14,000 km/s, including a distinctive C IIlambda 6580 absorption feature. The carbon signatures dissipate as the SNapproaches peak brightness. In addition to discussing implications ofphotospheric-velocity carbon for white dwarf explosion models, we outlinesome factors that may influence the frequency of its detection before andaround peak brightness. Two effects are explored in this regard,including depopulation of the C II optical levels by non-LTE effects, andline-of-sight effects resulting from a clumpy distribution of unburnedmaterial with low volume-filling factor.

  11. Spectroscopic Classification of SN 2017ghm as a Type Ia Supernova

    Science.gov (United States)

    Vinko, J.; Wheeler, J. C.; Wang, X.; Li, W.; Li, Z.; Xiang, D.; Rui, L.; Lin, H.; Xu, Z.; Li, B.; Zhao, H.; Wang, L.; Tan, H.; Zhang, J.

    2017-09-01

    An optical spectrum (range 360-680 nm) of SN 2017ghm (=PTSS-17uyml), discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), was obtained with the new "Low Resolution Spectrograph-2" (LRS2) on the 10m Hobby-Eberly Telescope at McDonald Observatory by S. Rostopchin on 2017 Aug 31.17 UT. The spectrum is consistent with that of a heavily reddened Type Ia supernova (with Av > 2.3 mag) around maximum light.

  12. Gamma-ray observations of supernovae SN1987A

    International Nuclear Information System (INIS)

    Souza, C.A.W.; Neri, J.A.C.F.; Jayanthi, U.B.

    1988-01-01

    Theoretical investigations of supernovae explosions predict a high emission of gamma rays (∼ 10 -2 photons.cm -2 .s -1 ) beginning around 300 days after explosion. A balloon-borne experiment was flown in October, 1987, to observe this emission. The payload carried 4 phoswich detectors of BGO/CsI and NaI/CsI with areas 169 cm 2 and 100 cm 2 , respectively. The detectors' sensitivity (for 10000 s at 3g/cm 3 with error bar of 3 σ) is about 10 -3 ∼ 10 -4 photons. cm -2 .s -1 at energies above 200 KeV. The detectors mounted on a stabilized platform observed the supernova for about 2 hours. The data are being analized for pulsations (≥ 0.5 ms) and gamma ray emission. Energy spectra and temporal analysis will be presented and discussed. (author) [pt

  13. Supernova SN1961v - an explosion of a very massive star

    International Nuclear Information System (INIS)

    Utrobin, V.P.

    1983-01-01

    An investigation of the outburst of the unique supernova SN1961v in the galaxy NGC 1058 is carried out. An analysis of hydrodynamical models of supernoVa outbursts and a comparison with a considerable body of observational data on SN1961v clearly show that the SN1961v phenomenon is an explosion of a very massive star-with the mass of 2000 M and radiUs of about 100 R that results in expelling the envelope with the kinetic energy of 1.8x10 52 erg. The light curve of SN1961v furnishes direct evidence for a heterogeneity of the presupernova interior. The chemical composition produced during the evolution of the very massive star and in the final eXplosion must have a number of the essential features. In particular, hydrogen has to be underabundant relative to the solar content and distributed in the specific manner through the star. At late stages from February 1963 to February 1967, the light curve of SN1961v may be accoUnted for as interaction of the expelled envelope with the stellar wind of presupernova

  14. Spectroscopic classification of SN 2018brz as a type Ia supernova before maximum

    Science.gov (United States)

    Galbany, Lluis; Lopez-Sanchez, Angel R.; Ascasibar, Yago; Fiegert, Kristin

    2018-05-01

    We report the spectroscopic classification of SN 2018brz (RA=08:33:22.27, DEC=-76:37:39.8) in an anonymous host galaxy. The candidate was discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN: Shappee et al. 2014) on UT 2018-05-15 at 16.5 mag. Observations were performed on the 4m Anglo-Australian Telescope at Siding Spring Observatory on 2018 May 19 9:15 UT, using Koala+AAOmega and Grisms 580V+1000R (3500-6000A and 6300-7300A).

  15. X-RAY AND RADIO EMISSION FROM TYPE IIn SUPERNOVA SN 2010jl

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Poonam [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune University Campus, Pune 411 007 (India); Chevalier, Roger A. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Chugai, Nikolai [Institute of Astronomy of Russian Academy of Sciences, Pyatnitskaya St. 48, 109017 Moscow (Russian Federation); Fransson, Claes [Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Soderberg, Alicia M., E-mail: poonam@ncra.tifr.res.in [Smithsonian Astrophysical Observatory, 60 Garden St., MS-20, Cambridge, MA 02138 (United States)

    2015-09-01

    We present all X-ray and radio observations of the Type IIn supernova SN 2010jl. The X-ray observations cover a period up to day 1500 with Chandra, XMM-Newton, NuSTAR, and Swift-X-ray Telescope (XRT). The Chandra observations after 2012 June, the XMM-Newton observation in 2013 November, and most of the Swift-XRT observations until 2014 December are presented for the first time. All the spectra can be fitted by an absorbed hot thermal model except for Chandra spectra on 2011 October and 2012 June when an additional component is needed. Although the origin of this component is uncertain, it is spatially coincident with the supernova and occurs when there are changes to the supernova spectrum in the energy range close to that of the extra component, indicating that the emission is related to the supernova. The X-ray light curve shows an initial plateau followed by a steep drop starting at day ∼300. We attribute the drop to a decrease in the circumstellar density. The column density to the X-ray emission drops rapidly with time, showing that the absorption is in the vicinity of the supernova. We also present Very Large Array radio observations of SN 2010jl. Radio emission was detected from SN 2010jl from day 570 onwards. The radio light curves and spectra suggest that the radio luminosity was close to its maximum at the first detection. The velocity of the shocked ejecta derived assuming synchrotron self-absorption is much less than that estimated from the optical and X-ray observations, suggesting that free–free absorption dominates.

  16. The curious case of SN 2011dn: A very peculiar type Ia supernova?

    Science.gov (United States)

    Rachubo, Alisa

    Type Ia supernovae (SNe Ia) are excellent cosmological distance indicators due to the uniformity in their light curves, which led to the major discovery of the accelerated expansion of the universe. However, SNe Ia are not so uniform as one may expect, as there are many peculiar SNe Ia that exhibit differences in their photometric and spectroscopic behavior from normal SNe Ia. One of the goals of supernova cosmology today is to produce a cleaner sample of SNe Ia without these peculiar SNe Ia. Here we consider SN 2011dn, a peculiar SN Ia candidate. In 2011, Salvo, et al. carried out a preliminary analysis of a subset of the data prescribed here, and identified spectral and photometric peculiarities in this object's evolution that warranted further analysis. Here, we present a complete re-reduction and reanalysis of B, V,R, and I photometry of SN 2011dn obtained at Mount Laguna Observatory, spanning from 7 days before maximum light in B to 88 days past maximum light. In addition, we also consider total flux spectra from 9 days before maximum light to 4 days after maximum light, along with ultraviolet (UV) photometry obtained with the Swift telescope. From SN 2011dn's optical spectra, we find that SN 2011dn most closely resembles a SN 1991T-like type Ia supernova ('91T-like SN Ia). Such SNe Ia are typically more luminous than normal SNe Ia, and possess broader (i.e., they decline less rapidly than normal from maximum light) light curves. Their Deltam15(B) (drop in B magnitude 15 days after maximum light) are typically significantly less than the canonical value of 1.1, and can be as low as 0.8. In the earlier preliminary analysis, Salvo et al. measured a surprisingly high Deltam15(B) value for SN 2011dn, of ˜ 1.1. Since SN 2011dn was embedded in UGC 11501 (its host galaxy), however, it is possible that some of the light from the host galaxy was included in the photometric aperture, resulting in inaccurate photometric measurements. Here, in order to better isolate the

  17. SN 2006bt: A PERPLEXING, TROUBLESOME, AND POSSIBLY MISLEADING TYPE Ia SUPERNOVA

    International Nuclear Information System (INIS)

    Foley, Ryan J.; Narayan, Gautham; Challis, Peter J.; Kirshner, Robert P.; Filippenko, Alexei V.; Silverman, Jeffrey M.; Steele, Thea N.

    2010-01-01

    SN 2006bt displays characteristics unlike those of any other known Type Ia supernova (SN Ia). We present optical light curves and spectra of SN 2006bt which demonstrate the peculiar nature of this object. SN 2006bt has broad, slowly declining light curves indicative of a hot, high-luminosity SN, but lacks a prominent second maximum in the i band as do low-luminosity SNe Ia. Its spectra are similar to those of low-luminosity SNe Ia, containing features that are only present in cool SN photospheres. Light-curve fitting methods suggest that SN 2006bt is reddened by a significant amount of dust; however, it occurred in the outskirts of its early-type host galaxy and has no strong Na D absorption in any of its spectra, suggesting a negligible amount of host-galaxy dust absorption. C II is possibly detected in our pre-maximum spectra, but at a much lower velocity than other elements. The progenitor was likely very old, being a member of the halo population of a galaxy that shows no signs of recent star formation. SNe Ia have been very successfully modeled as a one-parameter family, and this is fundamental to their use as cosmological distance indicators. SN 2006bt is a challenge to that picture, yet its relatively normal light curves allowed SN 2006bt to be included in cosmological analyses. We generate mock SN Ia data sets which indicate that contamination by similar objects will both increase the scatter of a SN Ia Hubble diagram and systematically bias measurements of cosmological parameters. However, spectra and rest-frame i-band light curves should provide a definitive way to identify and eliminate such objects.

  18. Detection of a Very Bright Source Close to the LMC Supernova SN 1987A: Erratum

    Science.gov (United States)

    Nisenson, P.; Papaliolios, C.; Karovska, M.; Noyes, R.

    1988-01-01

    In the Letter "Detection of a Very Bright Source Close to the LMC Supernova SN 1987A" by P. Nisenson, C. Papaliolios, M. Karovska, and R. Noyes (1987 Ap. J. [Letters], 320, L15), two of the figure labels for Figure 1 were inadvertently transposed in the production process. A corrected version of the figure appears as Plate L4. The Journal regrets the error.

  19. Spectroscopic Classification of SN 2018nt as a Reddened Type Ia Supernova

    Science.gov (United States)

    Vinko, J.; Szeged, U.; Wheeler, J. C.

    2018-02-01

    An optical spectrum (range 360-700 nm) of SN 2018nt (K2 C16-0043), was obtained with the "Low Resolution Spectrograph-2" (LRS2) on the 10m Hobby-Eberly Telescope at McDonald Observatory by S. Odewahn on 2018 Feb 05.20 UT. The spectrum is consistent with that of a heavily reddened Type Ia supernova (with Av > 2 mag) about 3 weeks after maximum light.

  20. Scattered-Light Echoes from the Historical Galactic Supernovae Cassiopeia A and Tycho (SN 1572)

    Energy Technology Data Exchange (ETDEWEB)

    Rest, A; Welch, D L; Suntzeff, N B; Oaster, L; Lanning, H; Olsen, K; Smith, R C; Becker, A C; Bergmann, M; Challis, P; Clocchiatti, A; Cook, K H; Damke, G; Garg, A; Huber, M E; Matheson, T; Minniti, D; Prieto, J L; Wood-Vasey, W M

    2008-05-06

    We report the discovery of an extensive system of scattered light echo arclets associated with the recent supernovae in the local neighborhood of the Milky Way: Tycho (SN 1572) and Cassiopeia A. Existing work suggests that the Tycho SN was a thermonuclear explosion while the Cas A supernova was a core collapse explosion. Precise classifications according to modern nomenclature require spectra of the outburst light. In the case of ancient SNe, this can only be done with spectroscopy of their light echo, where the discovery of the light echoes from the outburst light is the first step. Adjacent light echo positions suggest that Cas A and Tycho may share common scattering dust structures. If so, it is possible to measure precise distances between historical Galactic supernovae. On-going surveys that alert on the development of bright scattered-light echo features have the potential to reveal detailed spectroscopic information for many recent Galactic supernovae, both directly visible and obscured by dust in the Galactic plane.

  1. Scattered-Light Echoes from the Historical Galactic Supernovae Cassiopeia A and Tycho (SN 1572)

    International Nuclear Information System (INIS)

    Rest, A.; Welch, D.L.; Suntzeff, N.B.; Oaster, L.; Lanning, H.; Olsen, K.; Smith, R.C.; Becker, A.C.; Bergmann, M.; Challis, P.; Clocchiatti, A.; Cook, K.H.; Damke, G.; Garg, A.; Huber, M.E.; Matheson, T.; Minniti, D.; Prieto, J.L.; Wood-Vasey, W.M.

    2008-01-01

    We report the discovery of an extensive system of scattered light echo arclets associated with the recent supernovae in the local neighborhood of the Milky Way: Tycho (SN 1572) and Cassiopeia A. Existing work suggests that the Tycho SN was a thermonuclear explosion while the Cas A supernova was a core collapse explosion. Precise classifications according to modern nomenclature require spectra of the outburst light. In the case of ancient SNe, this can only be done with spectroscopy of their light echo, where the discovery of the light echoes from the outburst light is the first step. Adjacent light echo positions suggest that Cas A and Tycho may share common scattering dust structures. If so, it is possible to measure precise distances between historical Galactic supernovae. On-going surveys that alert on the development of bright scattered-light echo features have the potential to reveal detailed spectroscopic information for many recent Galactic supernovae, both directly visible and obscured by dust in the Galactic plane

  2. Hubble space telescope and ground-based observations of the type Iax supernovae SN 2005hk and SN 2008A

    International Nuclear Information System (INIS)

    McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Chornock, Ryan; Holtzman, Jon A.; Balam, David D.; Branch, David; Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong; Frieman, Joshua; Fynbo, Johan; Leloudas, Giorgos; Galbany, Lluis; Garnavich, Peter M.; Graham, Melissa L.; Hsiao, Eric Y.; Leonard, Douglas C.

    2014-01-01

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with n e ≳ 10 9 cm –3 . Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected 'infrared catastrophe', a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a 'complete deflagration' that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  3. Hubble space telescope and ground-based observations of the type Iax supernovae SN 2005hk and SN 2008A

    Energy Technology Data Exchange (ETDEWEB)

    McCully, Curtis; Jha, Saurabh W. [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Foley, Ryan J. [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Chornock, Ryan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Holtzman, Jon A. [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Balam, David D. [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Branch, David [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Frieman, Joshua [Kavli Institute for Cosmological Physics and Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Fynbo, Johan; Leloudas, Giorgos [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Galbany, Lluis [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Garnavich, Peter M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Graham, Melissa L. [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Leonard, Douglas C., E-mail: cmccully@physics.rutgers.edu [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); and others

    2014-05-10

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with n{sub e} ≳ 10{sup 9} cm{sup –3}. Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected 'infrared catastrophe', a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a 'complete deflagration' that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  4. Type Ia Supernova Light Curve Inference: Hierarchical Models for Nearby SN Ia in the Optical and Near Infrared

    Science.gov (United States)

    Mandel, Kaisey; Kirshner, R. P.; Narayan, G.; Wood-Vasey, W. M.; Friedman, A. S.; Hicken, M.

    2010-01-01

    I have constructed a comprehensive statistical model for Type Ia supernova light curves spanning optical through near infrared data simultaneously. The near infrared light curves are found to be excellent standard candles (sigma(MH) = 0.11 +/- 0.03 mag) that are less vulnerable to systematic error from dust extinction, a major confounding factor for cosmological studies. A hierarchical statistical framework incorporates coherently multiple sources of randomness and uncertainty, including photometric error, intrinsic supernova light curve variations and correlations, dust extinction and reddening, peculiar velocity dispersion and distances, for probabilistic inference with Type Ia SN light curves. Inferences are drawn from the full probability density over individual supernovae and the SN Ia and dust populations, conditioned on a dataset of SN Ia light curves and redshifts. To compute probabilistic inferences with hierarchical models, I have developed BayeSN, a Markov Chain Monte Carlo algorithm based on Gibbs sampling. This code explores and samples the global probability density of parameters describing individual supernovae and the population. I have applied this hierarchical model to optical and near infrared data of over 100 nearby Type Ia SN from PAIRITEL, the CfA3 sample, and the literature. Using this statistical model, I find that SN with optical and NIR data have a smaller residual scatter in the Hubble diagram than SN with only optical data. The continued study of Type Ia SN in the near infrared will be important for improving their utility as precise and accurate cosmological distance indicators.

  5. Highly reddened Type Ia supernova SN 2004ab: another case of anomalous extinction

    Science.gov (United States)

    Chakradhari, N. K.; Sahu, D. K.; Anupama, G. C.; Prabhu, T. P.

    2018-02-01

    We present optical photometric and spectroscopic data for supernova SN 2004ab, a highly reddened normal Type Ia supernova. The total reddening is estimated as E(B - V) = 1.70 ± 0.05 mag. The intrinsic decline-rate parameter Δm15(B)true is 1.27 ± 0.05, and the B-band absolute magnitude at maximum MB^{max} is -19.31 ± 0.25 mag. The host galaxy NGC 5054 is found to exhibit anomalous extinction with a very low value of RV = 1.41 ± 0.06 in the direction of SN 2004ab. The peak bolometric luminosity is derived as log L_bol^max = 43.10 ± 0.07 erg s-1. The photospheric velocity measured from the absorption minimum of the Si II λ6355 line shows a velocity gradient of \\dot{v} = 90 km s-1 d-1, indicating that SN 2004ab is a member of the high velocity gradient (HVG) subgroup. The ratio of the strengths of the Si II λ5972 and λ6355 absorption lines, R(Si II), is estimated as 0.37, while their pseudo-equivalent widths suggest that SN 2004ab belongs to the broad line (BL) type subgroup.

  6. Detection of a very bright source close to the LMC supernova SN 1987A

    Science.gov (United States)

    Nisenson, P.; Papaliolios, C.; Karovska, M.; Noyes, R.

    1987-01-01

    High angular resolution observations of the supernova in the Large Magellanic Cloud, SN 1987A, have revealed a bright source separated from the SN by approximately 60 mas with a magnitude difference of 2.7 at 656 nm (H-alpha). Speckle imaging techniques were applied to data recorded with the CfA two-dimensional photon counting detector on the CTIO 4 m telescope on March 25 and April 2 to allow measurements in H-alpha on both nights and at 533 nm and 450 nm on the second night. The nature of this object is as yet unknown, though it is almost certainly a phenomenon related to the SN.

  7. SN 2012au: A GOLDEN LINK BETWEEN SUPERLUMINOUS SUPERNOVAE AND THEIR LOWER-LUMINOSITY COUNTERPARTS

    International Nuclear Information System (INIS)

    Milisavljevic, Dan; Soderberg, Alicia M.; Margutti, Raffaella; Drout, Maria R.; Marion, G. Howie; Sanders, Nathan E.; Lunnan, Ragnhild; Chornock, Ryan; Berger, Edo; Foley, Ryan J.; Challis, Pete; Kirshner, Robert P.; Dittmann, Jason; Bieryla, Allyson; Kamble, Atish; Chakraborti, Sayan; Hsiao, Eric Y.; Fesen, Robert A.; Parrent, Jerod T.; Levesque, Emily M.

    2013-01-01

    We present optical and near-infrared observations of SN 2012au, a slow-evolving supernova (SN) with properties that suggest a link between subsets of energetic and H-poor SNe and superluminous SNe. SN 2012au exhibited conspicuous Type-Ib-like He I lines and other absorption features at velocities reaching ≈2 × 10 4 km s –1 in its early spectra, and a broad light curve that peaked at M B = –18.1 mag. Models of these data indicate a large explosion kinetic energy of ∼10 52 erg and 56 Ni mass ejection of M Ni ≈ 0.3 M ☉ on par with SN 1998bw. SN 2012au's spectra almost one year after explosion show a blend of persistent Fe II P-Cyg absorptions and nebular emissions originating from two distinct velocity regions. These late-time emissions include strong [Fe II], [Ca II], [O I], Mg I], and Na I lines at velocities ∼> 4500 km s –1 , as well as O I and Mg I lines at noticeably smaller velocities ∼ –1 . Many of the late-time properties of SN 2012au are similar to the slow-evolving hypernovae SN 1997dq and SN 1997ef, and the superluminous SN 2007bi. Our observations suggest that a single explosion mechanism may unify all of these events that span –21 ∼ B ∼< –17 mag. The aspherical and possibly jetted explosion was most likely initiated by the core collapse of a massive progenitor star and created substantial high-density, low-velocity Ni-rich material.

  8. SN 2012au: A GOLDEN LINK BETWEEN SUPERLUMINOUS SUPERNOVAE AND THEIR LOWER-LUMINOSITY COUNTERPARTS

    Energy Technology Data Exchange (ETDEWEB)

    Milisavljevic, Dan; Soderberg, Alicia M.; Margutti, Raffaella; Drout, Maria R.; Marion, G. Howie; Sanders, Nathan E.; Lunnan, Ragnhild; Chornock, Ryan; Berger, Edo; Foley, Ryan J.; Challis, Pete; Kirshner, Robert P.; Dittmann, Jason; Bieryla, Allyson; Kamble, Atish; Chakraborti, Sayan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Fesen, Robert A.; Parrent, Jerod T. [6127 Wilder Lab, Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Levesque, Emily M., E-mail: dmilisav@cfa.harvard.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); and others

    2013-06-20

    We present optical and near-infrared observations of SN 2012au, a slow-evolving supernova (SN) with properties that suggest a link between subsets of energetic and H-poor SNe and superluminous SNe. SN 2012au exhibited conspicuous Type-Ib-like He I lines and other absorption features at velocities reaching Almost-Equal-To 2 Multiplication-Sign 10{sup 4} km s{sup -1} in its early spectra, and a broad light curve that peaked at M{sub B} = -18.1 mag. Models of these data indicate a large explosion kinetic energy of {approx}10{sup 52} erg and {sup 56}Ni mass ejection of M{sub Ni} Almost-Equal-To 0.3 M{sub Sun} on par with SN 1998bw. SN 2012au's spectra almost one year after explosion show a blend of persistent Fe II P-Cyg absorptions and nebular emissions originating from two distinct velocity regions. These late-time emissions include strong [Fe II], [Ca II], [O I], Mg I], and Na I lines at velocities {approx}> 4500 km s{sup -1}, as well as O I and Mg I lines at noticeably smaller velocities {approx}< 2000 km s{sup -1}. Many of the late-time properties of SN 2012au are similar to the slow-evolving hypernovae SN 1997dq and SN 1997ef, and the superluminous SN 2007bi. Our observations suggest that a single explosion mechanism may unify all of these events that span -21 {approx}< M{sub B} {approx}< -17 mag. The aspherical and possibly jetted explosion was most likely initiated by the core collapse of a massive progenitor star and created substantial high-density, low-velocity Ni-rich material.

  9. INVERSE COMPTON X-RAY EMISSION FROM SUPERNOVAE WITH COMPACT PROGENITORS: APPLICATION TO SN2011fe

    International Nuclear Information System (INIS)

    Margutti, R.; Soderberg, A. M.; Chomiuk, L.; Milisavljevic, D.; Foley, R. J.; Slane, P.; Moe, M.; Chevalier, R.; Hurley, K.; Hughes, J. P.; Fransson, C.; Barthelmy, S.; Cummings, J.; Boynton, W.; Enos, H.; Fellows, C.; Briggs, M.; Connaughton, V.; Costa, E.; Del Monte, E.

    2012-01-01

    We present a generalized analytic formalism for the inverse Compton X-ray emission from hydrogen-poor supernovae and apply this framework to SN 2011fe using Swift X-Ray Telescope (XRT), UVOT, and Chandra observations. We characterize the optical properties of SN 2011fe in the Swift bands and find them to be broadly consistent with a 'normal' SN Ia, however, no X-ray source is detected by either XRT or Chandra. We constrain the progenitor system mass-loss rate M-dot -9 M ☉ yr -1 (3σ c.l.) for wind velocity v w = 100 km s –1 . Our result rules out symbiotic binary progenitors for SN 2011fe and argues against Roche lobe overflowing subgiants and main-sequence secondary stars if ∼> 1% of the transferred mass is lost at the Lagrangian points. Regardless of the density profile, the X-ray non-detections are suggestive of a clean environment (n CSM –3 ) for 2 × 10 15 ∼ 16 cm around the progenitor site. This is either consistent with the bulk of material being confined within the binary system or with a significant delay between mass loss and supernova explosion. We furthermore combine X-ray and radio limits from Chomiuk et al. to constrain the post-shock energy density in magnetic fields. Finally, we searched for the shock breakout pulse using gamma-ray observations from the Interplanetary Network and find no compelling evidence for a supernova-associated burst. Based on the compact radius of the progenitor star we estimate that the shock breakout pulse was likely not detectable by current satellites.

  10. Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star.

    Science.gov (United States)

    Nugent, Peter E; Sullivan, Mark; Cenko, S Bradley; Thomas, Rollin C; Kasen, Daniel; Howell, D Andrew; Bersier, David; Bloom, Joshua S; Kulkarni, S R; Kandrashoff, Michael T; Filippenko, Alexei V; Silverman, Jeffrey M; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard T; Maguire, Kate; Suzuki, Nao; Tarlton, James E; Pan, Yen-Chen; Bildsten, Lars; Fulton, Benjamin J; Parrent, Jerod T; Sand, David; Podsiadlowski, Philipp; Bianco, Federica B; Dilday, Benjamin; Graham, Melissa L; Lyman, Joe; James, Phil; Kasliwal, Mansi M; Law, Nicholas M; Quimby, Robert M; Hook, Isobel M; Walker, Emma S; Mazzali, Paolo; Pian, Elena; Ofek, Eran O; Gal-Yam, Avishay; Poznanski, Dovi

    2011-12-14

    Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.

  11. No Evidence of Circumstellar Gas Surrounding Type Ia Supernova SN 2017cbv

    Science.gov (United States)

    Ferretti, Raphael; Amanullah, Rahman; Bulla, Mattia; Goobar, Ariel; Johansson, Joel; Lundqvist, Peter

    2017-12-01

    Nearby type Ia supernovae (SNe Ia), such as SN 2017cbv, are useful events to address the question of what the elusive progenitor systems of the explosions are. Hosseinzadeh et al. suggested that the early blue excess of the light curve of SN 2017cbv could be due to the supernova ejecta interacting with a non-degenerate companion star. Some SN Ia progenitor models suggest the existence of circumstellar (CS) environments in which strong outflows create low-density cavities of different radii. Matter deposited at the edges of the cavities should be at distances at which photoionization due to early ultraviolet (UV) radiation of SNe Ia causes detectable changes to the observable Na I D and Ca II H&K absorption lines. To study possible narrow absorption lines from such material, we obtained a time series of high-resolution spectra of SN 2017cbv at phases between ‑14.8 and +83 days with respect to B-band maximum, covering the time at which photoionization is predicted to occur. Both narrow Na I D and Ca II H&K are detected in all spectra, with no measurable changes between the epochs. We use photoionization models to rule out the presence of Na I and Ca II gas clouds along the line of sight of SN 2017cbv between ∼8 × 1016–2 × 1019 cm and ∼1015–1017 cm, respectively. Assuming typical abundances, the mass of a homogeneous spherical CS gas shell with radius R must be limited to {M}{{H} {{I}}}{CSM}R/{10}17[{cm}])}2 {M}ȯ . The bounds point to progenitor models that deposit little gas in their CS environment.

  12. SUPERLUMINOUS SUPERNOVA SN 2015bn IN THE NEBULAR PHASE: EVIDENCE FOR THE ENGINE-POWERED EXPLOSION OF A STRIPPED MASSIVE STAR

    Energy Technology Data Exchange (ETDEWEB)

    Nicholl, M.; Berger, E.; Blanchard, P. K.; Challis, P.; Cowperthwaite, P. S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Margutti, R. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Chornock, R. [Astrophysical Institute, Department of Physics and Astronomy, 251B Clippinger Lab, Ohio University, Athens, OH 45701 (United States); Jerkstrand, A.; Smartt, S. J.; Inserra, C.; Kankare, E.; Maguire, K. [Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Arcavi, I.; Hosseinzadeh, G.; Howell, D. A. [Las Cumbres Observatory Global Telescope, 6740 Cortona Drive, Suite 102, Goleta, CA 93111 (United States); Chambers, K. C.; Magnier, E. A. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Chen, T.-W. [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstraße 1, D-85748, Garching (Germany); Gal-Yam, A. [Benoziyo Center for Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Mazzali, P. A., E-mail: matt.nicholl@cfa.harvard.edu [Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); and others

    2016-09-10

    We present nebular-phase imaging and spectroscopy for the hydrogen-poor superluminous supernova (SLSN) SN 2015bn, at redshift z = 0.1136, spanning +250–400 days after maximum light. The light curve exhibits a steepening in the decline rate from 1.4 mag (100 days){sup −1} to 1.7 mag (100 days){sup −1}, suggestive of a significant decrease in the opacity. This change is accompanied by a transition from a blue continuum superposed with photospheric absorption lines to a nebular spectrum dominated by emission lines of oxygen, calcium, and magnesium. There are no obvious signatures of circumstellar interaction or large {sup 56}Ni mass. We show that the spectrum at +400 days is virtually identical to a number of energetic SNe Ic such as SN 1997dq, SN 2012au, and SN 1998bw, indicating similar core conditions and strengthening the link between “hypernovae”/long gamma-ray bursts and SLSNe. A single explosion mechanism may unify these events that span absolute magnitudes of −22 < M {sub B} < −17. Both the light curve and spectrum of SN 2015bn are consistent with an engine-driven explosion ejecting 7–30 M {sub ⊙} of oxygen-dominated ejecta (for reasonable choices in temperature and opacity). A strong and relatively narrow O i λ 7774 line, seen in a number of these energetic events but not in normal supernovae, may point to an inner shell that is the signature of a central engine.

  13. Soft x-ray emission from the Lupus Loop and SN 1006 supernova remnants

    International Nuclear Information System (INIS)

    Winkler, P.F. Jr.; Hearn, D.R.; Richardson, J.A.; Behnken, J.M.

    1979-01-01

    X-ray maps of the Lupus region have been obtained in a raster scan observation from SAS 3. These show the Lupus Loop to be a faint, extended source of soft x-rays with a temperature about 2.5 x 10 6 K. The most prominent feature of the region is the A.D. 1006 supernova remnant, which is unexpectedly bright at 0.2--1.0 keV. One speculative interpretation of the low-energy flux from SN 1006 is as blackbody radiation from a hot neutron star

  14. X-ray characteristics of the Lupus Loop and SN1006 supernova remnants

    Energy Technology Data Exchange (ETDEWEB)

    Toor, A [California Univ., Livermore (USA). Lawrence Livermore Lab.

    1980-01-01

    The spatial extent of the Lupus Loop and spectra for the Lupus Loop and SN1006 supernova remnants have been determined with a rocket-borne payload. The Lupus Loop is an extended source of soft X-rays (approx. 300' diam) that shows a correlation between its brightest X-ray and radio-emission regions. Its spectrum is characterized by a temperature of 350 eV. Thus, the Lupus Loop appears similar to Vela X and Cygnus Loop, although much weaker. Emission from SN1006 is spatially unresolved and exhibits a harder spectrum than that of the Lupus Loop. All spectral data (0.2 100 keV) from our observation and previous observations are satisfactorily fit with a power law (index = 2.15). This spectral dependence suggests the possibility that a rotating neutron star is the underlying source of the radiated energy although such an interpretation appears inconsistent with the remnant's morphology.

  15. X-ray characteristics of the Lupus Loop and SN1006 supernova remnants

    International Nuclear Information System (INIS)

    Toor, A.

    1980-01-01

    The spatial extent of the Lupus Loop and spectra for the Lupus Loop and SN1006 supernova remnants have been determined with a rocket-borne payload. The Lupus Loop is an extended source of soft X-rays (approx. 300' diam) that shows a correlation between its brightest X-ray and radio-emission regions. Its spectrum is characterized by a temperature of 350 eV. Thus, the Lupus Loop appears similar to Vela X and Cygnus Loop, although much weaker. Emission from SN1006 is spatially unresolved and exhibits a harder spectrum than that of the Lupus Loop. All spectral data (0.2 100 keV) from our observation and previous observations are satisfactorily fit with a power law (index = 2.15). This spectral dependence suggests the possibility that a rotating neutron star is the underlying source of the radiated energy although such an interpretation appears inconsistent with the remnant's morphology. (orig.)

  16. LARGE-AREA [Fe II] LINE MAPPING OF THE SUPERNOVA REMNANT IC 443 WITH THE IRSF/SIRIUS

    Energy Technology Data Exchange (ETDEWEB)

    Kokusho, Takuma; Nagayama, Takahiro; Kaneda, Hidehiro; Ishihara, Daisuke [Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Lee, Ho-Gyu; Onaka, Takashi, E-mail: kokusho@u.phys.nagoya-u.ac.jp [Department of Astronomy, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2013-05-01

    We present the results of near-infrared (near-IR) [Fe II] line mapping of the supernova remnant IC 443 with IRSF/SIRIUS, using the two narrow-band filters tuned for the [Fe II] 1.257 {mu}m and [Fe II] 1.644 {mu}m lines. Covering a large area of 30' Multiplication-Sign 35', our observations reveal that [Fe II] filamentary structures exist all over the remnant, not only in an ionic shock shell, but also in a molecular shock shell and a central region inside the shells. With the two [Fe II] lines, we performed corrections for dust extinction to derive the intrinsic line intensities. We also obtained the intensities of thermal emission from the warm dust associated with IC 443, using the far- and mid-IR images taken with AKARI and Spitzer, respectively. As a result, we find that the [Fe II] line emission relative to the dust emission notably enhances in the inner central region. We discuss causes of the enhanced [Fe II] line emission, estimating the Fe{sup +} and dust masses.

  17. Two transitional type Ia supernovae located in the Fornax cluster member NGC 1404: SN 2007on and SN 2011iv

    Science.gov (United States)

    Gall, C.; Stritzinger, M. D.; Ashall, C.; Baron, E.; Burns, C. R.; Hoeflich, P.; Hsiao, E. Y.; Mazzali, P. A.; Phillips, M. M.; Filippenko, A. V.; Anderson, J. P.; Benetti, S.; Brown, P. J.; Campillay, A.; Challis, P.; Contreras, C.; Elias de la Rosa, N.; Folatelli, G.; Foley, R. J.; Fraser, M.; Holmbo, S.; Marion, G. H.; Morrell, N.; Pan, Y.-C.; Pignata, G.; Suntzeff, N. B.; Taddia, F.; Robledo, S. Torres; Valenti, S.

    2018-03-01

    We present an analysis of ultraviolet (UV) to near-infrared observations of the fast-declining Type Ia supernovae (SNe Ia) 2007on and 2011iv, hosted by the Fornax cluster member NGC 1404. The B-band light curves of SN 2007on and SN 2011iv are characterised by Δm15 (B) decline-rate values of 1.96 mag and 1.77 mag, respectively. Although they have similar decline rates, their peak B- and H-band magnitudes differ by 0.60 mag and 0.35 mag, respectively. After correcting for the luminosity vs. decline rate and the luminosity vs. colour relations, the peak B-band and H-band light curves provide distances that differ by 14% and 9%, respectively. These findings serve as a cautionary tale for the use of transitional SNe Ia located in early-type hosts in the quest to measure cosmological parameters. Interestingly, even though SN 2011iv is brighter and bluer at early times, by three weeks past maximum and extending over several months, its B - V colour is 0.12 mag redder than that of SN 2007on. To reconcile this unusual behaviour, we turn to guidance from a suite of spherical one-dimensional Chandrasekhar-mass delayed-detonation explosion models. In this context, 56Ni production depends on both the so-called transition density and the central density of the progenitor white dwarf. To first order, the transition density drives the luminosity-width relation, while the central density is an important second-order parameter. Within this context, the differences in the B - V colour evolution along the Lira regime suggest that the progenitor of SN 2011iv had a higher central density than SN 2007on. The photometry tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A58

  18. SPIRITS 15c and SPIRITS 14buu: Two Obscured Supernovae in the Nearby Star-forming Galaxy IC 2163

    International Nuclear Information System (INIS)

    Jencson, Jacob E.; Kasliwal, Mansi M.; Cao, Yi; Johansson, Joel; Contreras, Carlos; Castellón, Sergio; Morrell, Nidia; Phillips, Mark; Bond, Howard E.; Monson, Andrew J.; Masci, Frank J.; Helou, George; Cody, Ann Marie; Andrews, Jennifer E.; Bally, John; Green, Wayne; Fox, Ori D.; Gburek, Timothy; Gehrz, Robert D.; Hsiao, Eric

    2017-01-01

    SPitzer InfraRed Intensive Transients Survey—SPIRITS—is an ongoing survey of nearby galaxies searching for infrared (IR) transients with Spitzer /IRAC. We present the discovery and follow-up observations of one of our most luminous ( M [4.5] = −17.1 ± 0.4 mag, Vega) and reddest ([3.6] − [4.5] = 3.0 ± 0.2 mag) transients, SPIRITS 15c. The transient was detected in a dusty spiral arm of IC 2163 ( D ≈ 35.5 Mpc). Pre-discovery ground-based imaging revealed an associated, shorter-duration transient in the optical and near-IR (NIR). NIR spectroscopy showed a broad (≈8400 km s −1 ), double-peaked emission line of He i at 1.083 μ m, indicating an explosive origin. The NIR spectrum of SPIRITS 15c is similar to that of the Type IIb SN 2011dh at a phase of ≈200 days. Assuming an A V = 2.2 mag of extinction in SPIRITS 15c provides a good match between their optical light curves. The NIR light curves, however, show some minor discrepancies when compared with SN 2011dh, and the extreme [3.6]–[4.5] color has not been previously observed for any SN IIb. Another luminous ( M 4.5 = −16.1 ± 0.4 mag) event, SPIRITS 14buu, was serendipitously discovered in the same galaxy. The source displays an optical plateau lasting ≳80 days, and we suggest a scenario similar to the low-luminosity Type IIP SN 2005cs obscured by A V ≈ 1.5 mag. Other classes of IR-luminous transients can likely be ruled out in both cases. If both events are indeed SNe, this may suggest that ≳18% of nearby core-collapse SNe are missed by currently operating optical surveys.

  19. SPIRITS 15c and SPIRITS 14buu: Two Obscured Supernovae in the Nearby Star-forming Galaxy IC 2163

    Energy Technology Data Exchange (ETDEWEB)

    Jencson, Jacob E.; Kasliwal, Mansi M.; Cao, Yi [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Johansson, Joel [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Contreras, Carlos; Castellón, Sergio; Morrell, Nidia; Phillips, Mark [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Bond, Howard E.; Monson, Andrew J. [Dept. of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Masci, Frank J.; Helou, George [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Cody, Ann Marie [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Andrews, Jennifer E. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Bally, John; Green, Wayne [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Fox, Ori D. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Gburek, Timothy; Gehrz, Robert D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S. E., University of Minnesota, Minneapolis, MN 55455 (United States); Hsiao, Eric, E-mail: jj@astro.caltech.edu [Department of Physics, Florida State University, 77 Chieftain Way, Tallahassee, FL, 32306 (United States); and others

    2017-03-10

    SPitzer InfraRed Intensive Transients Survey—SPIRITS—is an ongoing survey of nearby galaxies searching for infrared (IR) transients with Spitzer /IRAC. We present the discovery and follow-up observations of one of our most luminous ( M {sub [4.5]} = −17.1 ± 0.4 mag, Vega) and reddest ([3.6] − [4.5] = 3.0 ± 0.2 mag) transients, SPIRITS 15c. The transient was detected in a dusty spiral arm of IC 2163 ( D ≈ 35.5 Mpc). Pre-discovery ground-based imaging revealed an associated, shorter-duration transient in the optical and near-IR (NIR). NIR spectroscopy showed a broad (≈8400 km s{sup −1}), double-peaked emission line of He i at 1.083 μ m, indicating an explosive origin. The NIR spectrum of SPIRITS 15c is similar to that of the Type IIb SN 2011dh at a phase of ≈200 days. Assuming an A {sub V} = 2.2 mag of extinction in SPIRITS 15c provides a good match between their optical light curves. The NIR light curves, however, show some minor discrepancies when compared with SN 2011dh, and the extreme [3.6]–[4.5] color has not been previously observed for any SN IIb. Another luminous ( M {sub 4.5} = −16.1 ± 0.4 mag) event, SPIRITS 14buu, was serendipitously discovered in the same galaxy. The source displays an optical plateau lasting ≳80 days, and we suggest a scenario similar to the low-luminosity Type IIP SN 2005cs obscured by A{sub V} ≈ 1.5 mag. Other classes of IR-luminous transients can likely be ruled out in both cases. If both events are indeed SNe, this may suggest that ≳18% of nearby core-collapse SNe are missed by currently operating optical surveys.

  20. Multi-dimensional simulations of the expanding supernova remnant of SN 1987A

    Energy Technology Data Exchange (ETDEWEB)

    Potter, T. M.; Staveley-Smith, L. [International center for Radio Astronomy Research (ICRAR) M468, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Reville, B. [Center for Plasma Physics, Queen' s University Belfast, University Road, Belfast BT7 1NN (United Kingdom); Ng, C.-Y. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Bicknell, G. V.; Sutherland, R. S. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 0200 (Australia); Wagner, A. Y., E-mail: tobympotter@gmail.com [Center for Computational Sciences, Tsukuba University, Tsukuba, Ibaraki, 305-8577 (Japan)

    2014-10-20

    The expanding remnant from SN 1987A is an excellent laboratory for investigating the physics of supernovae explosions. There is still a large number of outstanding questions, such as the reason for the asymmetric radio morphology, the structure of the pre-supernova environment, and the efficiency of particle acceleration at the supernova shock. We explore these questions using three-dimensional simulations of the expanding remnant between days 820 and 10,000 after the supernova. We combine a hydrodynamical simulation with semi-analytic treatments of diffusive shock acceleration and magnetic field amplification to derive radio emission as part of an inverse problem. Simulations show that an asymmetric explosion, combined with magnetic field amplification at the expanding shock, is able to replicate the persistent one-sided radio morphology of the remnant. We use an asymmetric Truelove and McKee progenitor with an envelope mass of 10 M {sub ☉} and an energy of 1.5 × 10{sup 44} J. A termination shock in the progenitor's stellar wind at a distance of 0.''43-0.''51 provides a good fit to the turn on of radio emission around day 1200. For the H II region, a minimum distance of 0.''63 ± 0.''01 and maximum particle number density of (7.11 ± 1.78) × 10{sup 7} m{sup –3} produces a good fit to the evolving average radius and velocity of the expanding shocks from day 2000 to day 7000 after explosion. The model predicts a noticeable reduction, and possibly a temporary reversal, in the asymmetric radio morphology of the remnant after day 7000, when the forward shock left the eastern lobe of the equatorial ring.

  1. Very-high-energy gamma-ray observations of the Type Ia Supernova SN 2014J with the MAGIC telescopes

    Science.gov (United States)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Arcaro, C.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Toyama, T.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.

    2017-06-01

    Context. In this work we present data from observations with the MAGIC telescopes of SN 2014J detected on January 21 2014, the closest Type Ia supernova since Imaging Air Cherenkov Telescopes started to operate. Aims: We aim to probe the possibility of very-high-energy (VHE; E ≥ 100 GeV) gamma rays produced in the early stages of Type Ia supernova explosions. Methods: We performed follow-up observations after this supernova (SN) explosion for five days, between January 27 and February 2 2014. We searched for gamma-ray signals in the energy range between 100 GeV and several TeV from the location of SN 2014J using data from a total of 5.5 h of observations. Prospects for observing gamma rays of hadronic origin from SN 2014J in the near future are also being addressed. Results: No significant excess was detected from the direction of SN 2014J. Upper limits at 95% confidence level on the integral flux, assuming a power-law spectrum, dF/dE ∝ E- Γ, with a spectral index of Γ = 2.6, for energies higher than 300 GeV and 700 GeV, are established at 1.3 × 10-12 and 4.1 × 10-13 photons cm-2 s-1, respectively. Conclusions: For the first time, upper limits on the VHE emission of a Type Ia supernova are established. The energy fraction isotropically emitted into TeV gamma rays during the first 10 days after the supernova explosion for energies greater than 300 GeV is limited to 10-6 of the total available energy budget ( 1051 erg). Within the assumed theoretical scenario, the MAGIC upper limits on the VHE emission suggest that SN 2014J will not be detectable in the future by any current or planned generation of Imaging Atmospheric Cherenkov Telescopes.

  2. Late-time spectral line formation in Type IIb supernovae, with application to SN 1993J, SN 2008ax, and SN 2011dh

    Science.gov (United States)

    Jerkstrand, A.; Ergon, M.; Smartt, S. J.; Fransson, C.; Sollerman, J.; Taubenberger, S.; Bersten, M.; Spyromilio, J.

    2015-01-01

    We investigate line formation processes in Type IIb supernovae (SNe) from 100 to 500 days post-explosion using spectral synthesis calculations. The modelling identifies the nuclear burning layers and physical mechanisms that produce the major emission lines, and the diagnostic potential of these. We compare the model calculations with data on the three best observed Type IIb SNe to-date - SN 1993J, SN 2008ax, and SN 2011dh. Oxygen nucleosynthesis depends sensitively on the main-sequence mass of the star and modelling of the [O I] λλ6300, 6364 lines constrains the progenitors of these three SNe to the MZAMS = 12-16 M⊙ range (ejected oxygen masses 0.3-0.9 M⊙), with SN 2011dh towards the lower end and SN 1993J towards the upper end of the range. The high ejecta masses from MZAMS ≳ 17 M⊙ progenitors give rise to brighter nebular phase emission lines than observed. Nucleosynthesis analysis thus supports a scenario of low-to-moderate mass progenitors for Type IIb SNe, and by implication an origin in binary systems. We demonstrate how oxygen and magnesium recombination lines may be combined to diagnose the magnesium mass in the SN ejecta. For SN 2011dh, a magnesium mass of 0.02-0.14 M⊙ is derived, which gives a Mg/O production ratio consistent with the solar value. Nitrogen left in the He envelope from CNO burning gives strong [N II] λλ6548, 6583 emission lines that dominate over Hα emission in our models. The hydrogen envelopes of Type IIb SNe are too small and dilute to produce any noticeable Hα emission or absorption after ~150 days, and nebular phase emission seen around 6550 Å is in many cases likely caused by [N II] λλ6548, 6583. Finally, the influence of radiative transport on the emergent line profiles is investigated. Significant line blocking in the metal core remains for several hundred days, which affects the emergent spectrum. These radiative transfer effects lead to early-time blueshifts of the emission line peaks, which gradually

  3. The X-Ray Light Curve of the Very Luminous Supernova SN 1978K in NGC 1313

    Science.gov (United States)

    Schlegel, Eric M.; Petre, R.; Colbert, E. J. M.

    1996-01-01

    We present the 0.5-2.0 keV light curve of the X-ray luminous supernova SN 1978K in NGC 1313, based on six ROSAT observations spanning 1990 July to t994 July. SN 1978K is one of a few supernovae or supernova remnants that are very luminous (˜1039-1040 ergs s-1) in the X-ray, optical, and radio bands, and the first, at a supernova age of 10-20 yr, for which sufficient data exist to create an X-ray light curve. The X-ray flux is approximately constant over the 4 yr sampled by our observations, which were obtained 12-16 yr after the initial explosion. Three models exist to explain the large X-ray luminosity: pulsar input, a reverse shock running back into the expanding debris of the supernova, and the outgoing shock crushing of cloudlets in the debris field. Based upon calculations of Chevalier & Fransson, a pulsar cannot provide sufficient energy to produce the soft X-ray luminosity. Based upon the models and the light curve to date, it is not possible to discern the evolutionary phase of the supernova.

  4. HIGH RESOLUTION 36 GHz IMAGING OF THE SUPERNOVA REMNANT OF SN 1987A

    International Nuclear Information System (INIS)

    Potter, T. M.; Staveley-Smith, L.; Zanardo, G.; Ng, C.-Y.; Gaensler, B. M.; Ball, Lewis; Kesteven, M. J.; Manchester, R. N.; Tzioumis, A. K.

    2009-01-01

    The aftermath of supernova (SN) 1987A continues to provide spectacular insights into the interaction between an SN blastwave and its circumstellar environment. We here present 36 GHz observations from the Australia Telescope Compact Array of the radio remnant of SN 1987A. These new images, taken in 2008 April and 2008 October, substantially extend the frequency range of an ongoing monitoring and imaging program conducted between 1.4 and 20 GHz. Our 36.2 GHz images have a diffraction-limited angular resolution of 0.''3-0.''4, which covers the gap between high resolution, low dynamic range VLBI images of the remnant and low resolution, high dynamic range images at frequencies between 1 and 20 GHz. The radio morphology of the remnant at 36 GHz is an elliptical ring with enhanced emission on the eastern and western sides, similar to that seen previously at lower frequencies. Model fits to the data in the Fourier domain show that the emitting region is consistent with a thick inclined torus of mean radius 0.''85, and a 2008 October flux density of 27 ± 6 mJy at 36.2 GHz. The spectral index for the remnant at this epoch, determined between 1.4 GHz and 36.2 GHz, is α = -0.83. There is tentative evidence for an unresolved central source with flatter spectral index.

  5. Supernovae 2016bdu and 2005gl, and their link with SN 2009ip-like transients: another piece of the puzzle

    DEFF Research Database (Denmark)

    Pastorello, A.; Kochanek, C. S.; Fraser, M.

    2018-01-01

    Supernova (SN) 2016bdu is an unusual transient resembling SN 2009ip. SN 2009ip-like events are characterized by a long-lasting phase of erratic variability which ends with two luminous outbursts a few weeks apart. The second outburst is significantly more luminous (about 3 mag) than the first. In...

  6. SN 2014J at M82 - I. A middle-class Type Ia supernova by all spectroscopic metrics

    Science.gov (United States)

    Galbany, L.; Moreno-Raya, M. E.; Ruiz-Lapuente, P.; González Hernández, J. I.; Méndez, J.; Vallely, P.; Baron, E.; Domínguez, I.; Hamuy, M.; López-Sánchez, A. R.; Mollá, M.; Catalán, S.; Cooke, E. A.; Fariña, C.; Génova-Santos, R.; Karjalainen, R.; Lietzen, H.; McCormac, J.; Riddick, F. C.; Rubiño-Martín, J. A.; Skillen, I.; Tudor, V.; Vaduvescu, O.

    2016-03-01

    We present the intensive spectroscopic follow up of the Type Ia supernova (SN Ia) 2014J in the starburst galaxy M82. Twenty-seven optical spectra have been acquired from 2014 January 22 to September 1 with the Isaac Newton and William Herschel Telescopes. After correcting the observations for the recession velocity of M82 and for Milky Way and host galaxy extinction, we measured expansion velocities from spectral line blueshifts and pseudo-equivalent width of the strongest features in the spectra, which gives an idea on how elements are distributed within the ejecta. We position SN 2014J in the Benetti, Branch et al. and Wang et al. diagrams. These diagrams are based on properties of the Si II features and provide dynamical and chemical information about the SN ejecta. The nearby SN 2011fe, which showed little evidence for reddening in its host galaxy, is shown as a reference for comparisons. SN 2014J is a border-line object between the Core-normal and Broad-line groups, which corresponds to an intermediate position between low-velocity gradient and high-velocity gradient objects. SN 2014J follows the R(Si II)-Δm15 correlation, which confirms its classification as a relatively normal SN Ia. Our description of the SN Ia in terms of the evolution of the pseudo-equivalent width of various ions as well as the position in the various diagrams put this specific SN Ia into the overall sample of SN Ia.

  7. PRE-DISCOVERY AND FOLLOW-UP OBSERVATIONS OF THE NEARBY SN 2009nr: IMPLICATIONS FOR PROMPT TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Khan, Rubab; Stanek, K. Z.; Beacom, J. F.; Szczygiel, D. M.; Mogren, K.; Eastman, J. D.; Martini, P.; Stoll, R.; Prieto, J. L.; Pojmanski, G.; Pilecki, B.

    2011-01-01

    We present photometric and spectroscopic observations of the Type Ia supernova SN 2009nr in UGC 8255 (z = 0.0122). Following the discovery announcement at what turned out to be 10 days after peak, we detected it at V ≅15.7 mag in data collected by the All-Sky Automated Survey (ASAS) North telescope 2 weeks prior to the peak, and then followed it up with telescopes ranging in aperture from 10 cm to 6.5 m. Using early photometric data available only from ASAS, we find that the supernova is similar to the overluminous Type Ia SN 1991T, with a peak at M V ≅ -19.6 mag, and a slow decline rate of Δm 15 (B) ≅ 0.95 mag. The early post-maximum spectra closely resemble those of SN 1991T, while the late-time spectra are more similar to those of normal Type Ia supernovae (SNe Ia). Interestingly, SN 2009nr has a projected distance of 13.0 kpc (∼4.3 disk scale lengths) from the nucleus of the small star-forming host galaxy UGC 8255. This indicates that the progenitor of SN 2009nr is not associated with a young stellar population, calling into question the conventional association of luminous SNe Ia with the 'prompt' component directly correlated with current star formation. The pre-discovery observation of SN 2009nr using ASAS demonstrates the science utility of high-cadence all sky surveys conducted using small telescopes for the discovery of nearby (d ∼< 50 Mpc) supernovae.

  8. Host galaxy spectra and consequences for supernova typing from the SDSS SN survey

    Energy Technology Data Exchange (ETDEWEB)

    Olmstead, Matthew D.; Brown, Peter J.; Brownstein, Joel R.; Dawson, Kyle S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Sako, Masao; Gupta, Ravi R. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Bassett, Bruce; Kunz, Martin [African Institute for Mathematical Sciences, 6 Melrose Road, Muizenberg, 7945 (South Africa); Bizyaev, Dmitry; Brinkmann, J.; Brewington, Howard; Ebelke, Garrett L. [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Campbell, Heather [Institute of Astronomy, Madingley Road, Cambridge CB4 0HA (United Kingdom); D' Andrea, Chris B.; Lampeitl, Hubert [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Frieman, Joshua A. [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Galbany, Lluís [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Garnavich, Peter [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Hlozek, Renee [Department of Astrophysics, Peyton Hall, 4 Ivy Lane, Princeton, NJ 08544 (United States); Jha, Saurabh W., E-mail: olmstead@physics.utah.edu [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); and others

    2014-04-01

    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey, this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of SN host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future analysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased toward lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  9. OGLE-2013-SN-079: A LONELY SUPERNOVA CONSISTENT WITH A HELIUM SHELL DETONATION

    International Nuclear Information System (INIS)

    Inserra, C.; Sim, S. A.; Smartt, S. J.; Nicholl, M.; Jerkstrand, A.; Chen, T.-W.; Wyrzykowski, L.; Fraser, M.; Blagorodnova, N.; Campbell, H.; Shen, K. J.; Gal-Yam, A.; Howell, D. A.; Valenti, S.; Maguire, K.; Mazzali, P.; Bersier, D.; Taubenberger, S.; Benitez-Herrera, S.; Elias-Rosa, N.

    2015-01-01

    We present observational data for a peculiar supernova discovered by the OGLE-IV survey and followed by the Public ESO Spectroscopic Survey for Transient Objects. The inferred redshift of z = 0.07 implies an absolute magnitude in the rest-frame I-band of M I ∼ –17.6 mag. This places it in the luminosity range between normal Type Ia SNe and novae. Optical and near infrared spectroscopy reveal mostly Ti and Ca lines, and an unusually red color arising from strong depression of flux at rest wavelengths <5000 Å. To date, this is the only reported SN showing Ti-dominated spectra. The data are broadly consistent with existing models for the pure detonation of a helium shell around a low-mass CO white dwarf and ''double-detonation'' models that include a secondary detonation of a CO core following a primary detonation in an overlying helium shell

  10. OGLE-2013-SN-079: A LONELY SUPERNOVA CONSISTENT WITH A HELIUM SHELL DETONATION

    Energy Technology Data Exchange (ETDEWEB)

    Inserra, C.; Sim, S. A.; Smartt, S. J.; Nicholl, M.; Jerkstrand, A.; Chen, T.-W. [Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Wyrzykowski, L. [University of Warsaw, Astronomical Observatory, Al. Ujazdowskie 400-478 Warszawa (Poland); Fraser, M.; Blagorodnova, N.; Campbell, H. [Institute of Astronomy, University of Cambridge, Madingley Road, CB3 0HA Cambridge (United Kingdom); Shen, K. J. [Department of Astronomy and Theoretical Astrophysics Center, University of California, Berkeley, CA 94720 (United States); Gal-Yam, A. [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Howell, D. A.; Valenti, S. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102 Goleta, CA 93117 (United States); Maguire, K. [European Southern Observatory for Astronomical Research in the Southern Hemisphere (ESO), Karl-Schwarzschild-Str. 2, 85748 Garching b. Munchen (Germany); Mazzali, P.; Bersier, D. [Astrophysics Research Institute, Liverpool John Moores University, Liverpool (United Kingdom); Taubenberger, S.; Benitez-Herrera, S. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany); Elias-Rosa, N., E-mail: c.inserra@qub.ac.uk [INAF - Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); and others

    2015-01-20

    We present observational data for a peculiar supernova discovered by the OGLE-IV survey and followed by the Public ESO Spectroscopic Survey for Transient Objects. The inferred redshift of z = 0.07 implies an absolute magnitude in the rest-frame I-band of M{sub I} ∼ –17.6 mag. This places it in the luminosity range between normal Type Ia SNe and novae. Optical and near infrared spectroscopy reveal mostly Ti and Ca lines, and an unusually red color arising from strong depression of flux at rest wavelengths <5000 Å. To date, this is the only reported SN showing Ti-dominated spectra. The data are broadly consistent with existing models for the pure detonation of a helium shell around a low-mass CO white dwarf and ''double-detonation'' models that include a secondary detonation of a CO core following a primary detonation in an overlying helium shell.

  11. High energy emission of supernova sn 1987a. Cosmic rays acceleration in mixed shocks

    International Nuclear Information System (INIS)

    Lehoucq, Roland

    1992-01-01

    In its first part, this research thesis reports the study of the high energy emission of the sn 1987 supernova, based on a Monte Carlo simulation of the transfer of γ photons emitted during disintegration of radioactive elements (such as "5"6Ni, "5"6Co, "5"7Co and "4"4Ti) produced during the explosion. One of the studied problems is the late evolution (beyond 1200 days) of light curvature which is very different when it is powered by the radiation of a central object or by radioactivity. The second part reports the study of acceleration of cosmic rays in two-fluid shock waves in order to understand the different asymmetries noticed in hot spots of extragalactic radio-sources. This work comprises the resolution of structure equations of a shock made of a conventional fluid and a relativistic one, in presence or absence of a magnetic field [fr

  12. SN 2015as: a low-luminosity Type IIb supernova without an early light-curve peak

    Science.gov (United States)

    Gangopadhyay, Anjasha; Misra, Kuntal; Pastorello, A.; Sahu, D. K.; Tomasella, L.; Tartaglia, L.; Singh, Mridweeka; Dastidar, Raya; Srivastav, S.; Ochner, P.; Brown, Peter J.; Anupama, G. C.; Benetti, S.; Cappellaro, E.; Kumar, Brajesh; Kumar, Brijesh; Pandey, S. B.

    2018-05-01

    We present results of the photometric (from 3 to 509 d post-explosion) and spectroscopic (up to 230 d post-explosion) monitoring campaign of the He-rich Type IIb supernova (SN) 2015as. The (B - V) colour evolution of SN 2015as closely resemble those of SN 2008ax, suggesting that SN 2015as belongs to the SN IIb subgroup that does not show the early, short-duration photometric peak. The light curve of SN 2015as reaches the B-band maximum about 22 d after the explosion, at an absolute magnitude of -16.82 ± 0.18 mag. At ˜75 d after the explosion, its spectrum transitions from that of a SN II to a SN Ib. P Cygni features due to He I lines appear at around 30 d after explosion, indicating that the progenitor of SN 2015as was partially stripped. For SN 2015as, we estimate a 56Ni mass of ˜0.08 M⊙ and ejecta mass of 1.1-2.2 M⊙, which are similar to the values inferred for SN 2008ax. The quasi-bolometric analytical light-curve modelling suggests that the progenitor of SN 2015as has a modest mass (˜0.1 M⊙), a nearly compact (˜0.05 × 1013 cm) H envelope on top of a dense, compact (˜2 × 1011 cm) and a more massive (˜1.2 M⊙) He core. The analysis of the nebular phase spectra indicates that ˜0.44 M⊙ of O is ejected in the explosion. The intensity ratio of the [Ca II]/[O I] nebular lines favours either a main-sequence progenitor mass of ˜15 M⊙ or a Wolf-Rayet star of 20 M⊙.

  13. Optical observations of the nearby galaxy IC342 with narrow band [SII] and hα filters. II - detection of 16 optically-identified supernova remnant candidates

    Directory of Open Access Journals (Sweden)

    Vučetić M.M.

    2015-01-01

    Full Text Available We present the detection of 16 optical supernova remnant (SNR candidates in the nearby spiral galaxy IC342. The candidates were detected by applying the [Sii]/Hα ratio criterion on observations made with the 2 m RCC telescope at Rozhen National Astronomical Observatory in Bulgaria. In this paper, we report the coordinates, diameters, Hα and [S ii] fluxes for 16 SNRs detected in two fields of view in the IC342 galaxy. Also, we estimate the contamination of total Hα flux from SNRs in the observed portion of IC342 to be 1.4%. This would represent the fractional error when the star formation rate (SFR for this galaxy is derived from the total galaxy’s Hα emission.

  14. New measurement of the period for the 4th ULX pulsar - the supernova impostor SN2010da in NGC 300

    Science.gov (United States)

    Grebenev, S. A.; Mereminskiy, I. A.

    2018-01-01

    Following the discovery (Atel #11158) of the new (fourth) ULX pulsar (in the peculiar supergiant X-ray binary known as the supernova impostor SN 2010da located in NGC 300, at a distance of 1.86 Mpc) we note that SWIFT/XRT observed this galaxy again on April 16, 2017, and detected the source still in a bright X-ray state.

  15. VizieR Online Data Catalog: Absorption velocities for 21 super-luminous SNe Ic (Liu+, 2017)

    Science.gov (United States)

    Liu, Y.-Q.; Modjaz, M.; Bianco, F. B.

    2018-04-01

    We have collected the spectra of all available super-luminous supernovae (SLSNe) Ic that have a date of maximum light published before April of 2016. These SLSNe Ic were mainly discovered and observed by the All-Sky Automated Survey for Supernovae (ASAS-SN), the Catalina Real-Time Transient Survey, the Dark Energy Survey (DES), the Hubble Space Telescope Cluster Supernova Survey, the Pan-STARRS1 Medium Deep Survey (PS1), the Public ESO Spectroscopic Survey of Transient Objects (PESSTO), the Intermediate Palomar Transient Factory (iPTF) as well as the Palomar Transient Factory (PTF), and the Supernova Legacy Survey (SNLS). See table 1. (2 data files).

  16. SN 2008jb: A 'LOST' CORE-COLLAPSE SUPERNOVA IN A STAR-FORMING DWARF GALAXY AT ∼10 Mpc

    International Nuclear Information System (INIS)

    Prieto, J. L.; Lee, J. C.; Drake, A. J.; Djorgovski, S. G.; McNaught, R.; Garradd, G.; Beacom, J. F.; Beshore, E.; Catelan, M.; Pojmanski, G.; Stanek, K. Z.; Szczygieł, D. M.

    2012-01-01

    We present the discovery and follow-up observations of SN 2008jb, a core-collapse supernova in the southern dwarf irregular galaxy ESO 302–14 (M B = –15.3 mag) at 9.6 Mpc. This nearby transient was missed by galaxy-targeted surveys and was only found in archival optical images obtained by the Catalina Real-time Transient Survey and the All-Sky Automated Survey. The well-sampled archival photometry shows that SN 2008jb was detected shortly after explosion and reached a bright optical maximum, V max ≅ 13.6 mag (M V,max ≅ –16.5). The shape of the light curve shows a plateau of ∼100 days, followed by a drop of ∼1.4 mag in the V band to a slow decline with an approximate 56 Co decay slope. The late-time light curve is consistent with 0.04 ± 0.01 M ☉ of 56 Ni synthesized in the explosion. A spectrum of the supernova obtained two years after explosion shows a broad, boxy Hα emission line, which is unusual for normal Type II-Plateau supernovae at late times. We detect the supernova in archival Spitzer and WISE images obtained 8-14 months after explosion, which show clear signs of warm (600-700 K) dust emission. The dwarf irregular host galaxy, ESO 302–14, has a low gas-phase oxygen abundance, 12 + log(O/H) = 8.2 (∼1/5 Z ☉ ), similar to those of the Small Magellanic Cloud and the hosts of long gamma-ray bursts and luminous core-collapse supernovae. This metallicity is one of the lowest among local (∼ 5 M ☉ for the star formation complex, assuming a single-age starburst. These properties are consistent with the expanding Hα supershells observed in many well-studied nearby dwarf galaxies, which are tell-tale signs of feedback from the cumulative effect of massive star winds and supernovae. The age estimated for the star-forming region where SN 2008jb exploded suggests a relatively high-mass progenitor star with an initial mass M ∼ 20 M ☉ and warrants further study. We discuss the implications of these findings in the study of core

  17. SN 2016jhj at redshift 0.34: extending the Type II supernova Hubble diagram using the standard candle method

    Science.gov (United States)

    de Jaeger, T.; Galbany, L.; Filippenko, A. V.; González-Gaitán, S.; Yasuda, N.; Maeda, K.; Tanaka, M.; Morokuma, T.; Moriya, T. J.; Tominaga, N.; Nomoto, K.; Komiyama, Y.; Anderson, J. P.; Brink, T. G.; Carlberg, R. G.; Folatelli, G.; Hamuy, M.; Pignata, G.; Zheng, W.

    2017-12-01

    Although Type Ia supernova cosmology has now reached a mature state, it is important to develop as many independent methods as possible to understand the true nature of dark energy. Recent studies have shown that Type II supernovae (SNe II) offer such a path and could be used as alternative distance indicators. However, the majority of these studies were unable to extend the Hubble diagram above redshift z = 0.3 because of observational limitations. Here, we show that we are now ready to move beyond low redshifts and attempt high-redshift (z ≳ 0.3) SN II cosmology as a result of new-generation deep surveys such as the Subaru/Hyper Suprime-Cam survey. Applying the 'standard candle method' to SN 2016jhj (z = 0.3398 ± 0.0002; discovered by HSC) together with a low-redshift sample, we are able to construct the highest-redshift SN II Hubble diagram to date with an observed dispersion of 0.27 mag (i.e. 12-13 per cent in distance). This work demonstrates the bright future of SN II cosmology in the coming era of large, wide-field surveys like that of the Large Synoptic Survey Telescope.

  18. ON THE RADIO POLARIZATION SIGNATURE OF EFFICIENT AND INEFFICIENT PARTICLE ACCELERATION IN SUPERNOVA REMNANT SN 1006

    Energy Technology Data Exchange (ETDEWEB)

    Reynoso, Estela M. [Instituto de Astronomia y Fisica del Espacio (IAFE), C. C. 67, Suc. 28, 1428 Buenos Aires (Argentina); Hughes, John P. [Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854-8019 (United States); Moffett, David A., E-mail: ereynoso@iafe.uba.ar, E-mail: jph@physics.rutgers.edu, E-mail: david.moffett@furman.edu [Department of Physics, Furman University, Greenville, SC 29613 (United States)

    2013-04-15

    Radio polarization observations provide essential information on the degree of order and orientation of magnetic fields, which themselves play a key role in the particle acceleration processes that take place in supernova remnants (SNRs). Here we present a radio polarization study of SN 1006, based on combined Very Large Array and Australia Telescope Compact Array observations at 20 cm that resulted in sensitive images with an angular resolution of 10 arcsec. The fractional polarization in the two bright radio and X-ray lobes of the SNR is measured to be 0.17, while in the southeastern sector, where the radio and non-thermal X-ray emission are much weaker, the polarization fraction reaches a value of 0.6 {+-} 0.2, close to the theoretical limit of 0.7. We interpret this result as evidence of a disordered, turbulent magnetic field in the lobes, where particle acceleration is believed to be efficient, and a highly ordered field in the southeast, where the acceleration efficiency has been shown to be very low. Utilizing the frequency coverage of our observations, an average rotation measure of {approx}12 rad m{sup -2} is determined from the combined data set, which is then used to obtain the intrinsic direction of the magnetic field vectors. While the orientation of magnetic field vectors across the SNR shell appear to be radial, a large fraction of the magnetic vectors lie parallel to the Galactic plane. Along the highly polarized southeastern rim, the field is aligned tangent to the shock, and therefore also nearly parallel to the Galactic plane. These results strongly suggest that the ambient field surrounding SN 1006 is aligned with this direction (i.e., from northeast to southwest) and that the bright lobes are due to a polar cap geometry. Our study establishes that the most efficient particle acceleration and generation of magnetic turbulence in SN 1006 is attained for shocks in which the magnetic field direction and shock normal are quasi-parallel, while

  19. ON THE RADIO POLARIZATION SIGNATURE OF EFFICIENT AND INEFFICIENT PARTICLE ACCELERATION IN SUPERNOVA REMNANT SN 1006

    International Nuclear Information System (INIS)

    Reynoso, Estela M.; Hughes, John P.; Moffett, David A.

    2013-01-01

    Radio polarization observations provide essential information on the degree of order and orientation of magnetic fields, which themselves play a key role in the particle acceleration processes that take place in supernova remnants (SNRs). Here we present a radio polarization study of SN 1006, based on combined Very Large Array and Australia Telescope Compact Array observations at 20 cm that resulted in sensitive images with an angular resolution of 10 arcsec. The fractional polarization in the two bright radio and X-ray lobes of the SNR is measured to be 0.17, while in the southeastern sector, where the radio and non-thermal X-ray emission are much weaker, the polarization fraction reaches a value of 0.6 ± 0.2, close to the theoretical limit of 0.7. We interpret this result as evidence of a disordered, turbulent magnetic field in the lobes, where particle acceleration is believed to be efficient, and a highly ordered field in the southeast, where the acceleration efficiency has been shown to be very low. Utilizing the frequency coverage of our observations, an average rotation measure of ∼12 rad m –2 is determined from the combined data set, which is then used to obtain the intrinsic direction of the magnetic field vectors. While the orientation of magnetic field vectors across the SNR shell appear to be radial, a large fraction of the magnetic vectors lie parallel to the Galactic plane. Along the highly polarized southeastern rim, the field is aligned tangent to the shock, and therefore also nearly parallel to the Galactic plane. These results strongly suggest that the ambient field surrounding SN 1006 is aligned with this direction (i.e., from northeast to southwest) and that the bright lobes are due to a polar cap geometry. Our study establishes that the most efficient particle acceleration and generation of magnetic turbulence in SN 1006 is attained for shocks in which the magnetic field direction and shock normal are quasi-parallel, while inefficient

  20. Supernova VLBI

    Science.gov (United States)

    Bartel, N.

    2009-08-01

    We review VLBI observations of supernovae over the last quarter century and discuss the prospect of imaging future supernovae with space VLBI in the context of VSOP-2. From thousands of discovered supernovae, most of them at cosmological distances, ˜50 have been detected at radio wavelengths, most of them in relatively nearby galaxies. All of the radio supernovae are Type II or Ib/c, which originate from the explosion of massive progenitor stars. Of these, 12 were observed with VLBI and four of them, SN 1979C, SN 1986J, SN 1993J, and SN 1987A, could be imaged in detail, the former three with VLBI. In addition, supernovae or young supernova remnants were discovered at radio wavelengths in highly dust-obscured galaxies, such as M82, Arp 299, and Arp 220, and some of them could also be imaged in detail. Four of the supernovae so far observed were sufficiently bright to be detectable with VSOP-2. With VSOP-2 the expansion of supernovae can be monitored and investigated with unsurpassed angular resolution, starting as early as the time of the supernova's transition from its opaque to transparent stage. Such studies can reveal, in a movie, the aftermath of a supernova explosion shortly after shock break out.

  1. SN 2013fs and SN 2013fr: exploring the circumstellar-material diversity in Type II supernovae

    Science.gov (United States)

    Bullivant, Christopher; Smith, Nathan; Williams, G. Grant; Mauerhan, Jon C.; Andrews, Jennifer E.; Fong, Wen-Fai; Bilinski, Christopher; Kilpatrick, Charles D.; Milne, Peter A.; Fox, Ori D.; Cenko, S. Bradley; Filippenko, Alexei V.; Zheng, WeiKang; Kelly, Patrick L.; Clubb, Kelsey I.

    2018-05-01

    We present photometry and spectroscopy of SN 2013fs and SN 2013fr in the first ˜100 d post-explosion. Both objects showed transient, relatively narrow H α emission lines characteristic of SNe IIn, but later resembled normal SNe II-P or SNe II-L, indicative of fleeting interaction with circumstellar material (CSM). SN 2013fs was discovered within 8 h of explosion; one of the earliest SNe discovered thus far. Its light curve exhibits a plateau, with spectra revealing strong CSM interaction at early times. It is a less luminous version of the transitional SN IIn PTF11iqb, further demonstrating a continuum of CSM interaction intensity between SNe II-P and SNe IIn. It requires dense CSM within 6.5 × 1014 cm of the progenitor, from a phase of advanced pre-SN mass loss beginning shortly before explosion. Spectropolarimetry of SN 2013fs shows little continuum polarization (˜0.5 per cent, consistent with zero), but noticeable line polarization during the plateau phase. SN 2013fr morphed from an SN IIn at early times to an SN II-L. After the first epoch, its narrow lines probably arose from host-galaxy emission, but the bright, narrow H α emission at early times may be intrinsic to the SN. As for SN 2013fs, this would point to a short-lived phase of strong CSM interaction if proven to be intrinsic, suggesting a continuum between SNe IIn and SNe II-L. It is a low-velocity SN II-L like SN 2009kr, but more luminous. SN 2013fr also developed an infrared excess at later times, due to warm CSM dust that requires a more sustained phase of strong pre-SN mass loss.

  2. Observational and theoretical spectra of supernovae

    Science.gov (United States)

    Wheeler, J. Craig; Swartz, Douglas A.; Harkness, Robert P.

    1993-05-01

    Progress in nuclear astrophysics by means of quantitative supernova spectroscopy is discussed with special concentration on type Ia, Ib and Ic and on SN 1987A. Spectral calculations continue to support an exploding C/O white dwarf as the best model of a SN Ia. Deflagration model W7 produces good maximum light spectra of SN Ia and seems to have a better composition distribution compared to delayed detonation models, but proper treatment of opacity remains a problem and the physical basis of SN Ia explosions is still not completely understood. All models for SN Ia predict large quantities of 56Co in the ejecta, but it is not clear that observations confirm this. Although the evolutionary origin of SN Ia remains uncertain, there is recent evidence that transfer of hydrogen in a binary system may be involved, as long suspected. There has been progress in comparing dynamical models with the optical/IR spectra of SN 1987A. The evolution of the [OI] λλ6300, 6364 feature and the presence of strong persistent HeI λ10 830 indicate that both the envelope and core material contribute substantially to the formation of emission lines in the nebular phase and that neither the core nor the envelope can be neglected. Blending with nearby hydrogen lines may affect both of these spectral features, thereby complicating the analysis of the lines. The effects of continuum transfer and photoionization have been included and are under study. The discrepancies between theoretical and observed spectra are due primarily to the one-dimensional hydrodynamic models. The spectral data are not consistent with the high density ``spike'' (in radial coordinate) of the core material that is predicted by all such models. Analysis of the light curves of SN Ib and SN Ic supernovae implies that there are significant differences in their physical properties. Some SN Ib have considerably more ejecta mass than SN Ic events. SN Ib require He-rich atmospheres to produce the observed strong optical lines of

  3. EmpiriciSN: Re-sampling Observed Supernova/Host Galaxy Populations Using an XD Gaussian Mixture Model

    Energy Technology Data Exchange (ETDEWEB)

    Holoien, Thomas W.-S.; /Ohio State U., Dept. Astron. /Ohio State U., CCAPP /KIPAC, Menlo Park /SLAC; Marshall, Philip J.; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC

    2017-05-11

    We describe two new open-source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program that uses Gaussian mixtures to perform density estimation of noisy data using extreme deconvolution (XD) algorithms. Additionally, it has functionality not available in other XD tools. It allows the user to select between the AstroML and Bovy et al. fitting methods and is compatible with scikit-learn machine learning algorithms. Most crucially, it allows the user to condition a model based on the known values of a subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model that is conditioned on known values of other parameters. EmpiriciSN is an exemplary application of this functionality, which can be used to fit an XDGMM model to observed supernova/host data sets and predict likely supernova parameters using a model conditioned on observed host properties. It is primarily intended to simulate realistic supernovae for LSST data simulations based on empirical galaxy properties.

  4. EmpiriciSN: Re-sampling Observed Supernova/Host Galaxy Populations Using an XD Gaussian Mixture Model

    Science.gov (United States)

    Holoien, Thomas W.-S.; Marshall, Philip J.; Wechsler, Risa H.

    2017-06-01

    We describe two new open-source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program that uses Gaussian mixtures to perform density estimation of noisy data using extreme deconvolution (XD) algorithms. Additionally, it has functionality not available in other XD tools. It allows the user to select between the AstroML and Bovy et al. fitting methods and is compatible with scikit-learn machine learning algorithms. Most crucially, it allows the user to condition a model based on the known values of a subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model that is conditioned on known values of other parameters. EmpiriciSN is an exemplary application of this functionality, which can be used to fit an XDGMM model to observed supernova/host data sets and predict likely supernova parameters using a model conditioned on observed host properties. It is primarily intended to simulate realistic supernovae for LSST data simulations based on empirical galaxy properties.

  5. RADIO AND X-RAY OBSERVATIONS OF SN 2006jd: ANOTHER STRONGLY INTERACTING TYPE IIn SUPERNOVA

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Poonam [Department of Physics, Royal Military College of Canada, Kingston, ON K7K 7B4 (Canada); Chevalier, Roger A.; Irwin, Christopher M. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Chugai, Nikolai [Institute of Astronomy of Russian Academy of Sciences, Pyatnitskaya Street 48, 109017 Moscow (Russian Federation); Fransson, Claes [Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Soderberg, Alicia M. [Smithsonian Astrophysical Observatory, 60 Garden Street, MS-20, Cambridge, MA 02138 (United States); Chakraborti, Sayan [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai 400005 (India); Immler, Stefan, E-mail: Poonam.Chandra@rmc.ca [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-08-20

    We report four years of radio and X-ray monitoring of the Type IIn supernova SN 2006jd at radio wavelengths with the Very Large Array, Giant Metrewave Radio Telescope, and Expanded Very Large Array; at X-ray wavelengths with Chandra, XMM-Newton, and Swift-XRT. We assume that the radio and X-ray emitting particles are produced by shock interaction with a dense circumstellar medium. The radio emission shows an initial rise that can be attributed to free-free absorption by cool gas mixed into the nonthermal emitting region; external free-free absorption is disfavored because of the shape of the rising light curves and the low gas column density inferred along the line of sight to the emission region. The X-ray luminosity implies a preshock circumstellar density {approx}10{sup 6} cm{sup -3} at a radius r {approx} 2 Multiplication-Sign 10{sup 16} cm, but the column density inferred from the photoabsorption of X-rays along the line of sight suggests a significantly lower density. The implication may be an asymmetry in the interaction. The X-ray spectrum shows Fe line emission at 6.9 keV that is stronger than is expected for the conditions in the X-ray emitting gas. We suggest that cool gas mixed into the hot gas plays a role in the line emission. Our radio and X-ray data both suggest the density profile is flatter than r{sup -2} because of the slow evolution of the unabsorbed emission.

  6. SN 2013ej IN M74: A LUMINOUS AND FAST-DECLINING TYPE II-P SUPERNOVA

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Fang [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Wang, Xiaofeng; Chen, Juncheng; Mo, Jun; Zhao, Xulin [Physics Department and Tsinghua Center for Astrophysics, Tsinghua University, Beijing 100084 (China); Zhang, Jujia [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Brown, Peter J. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A. and M. University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States); Zampieri, Luca [INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Pumo, Maria Letizia [INAF-Osservatorio Astronomico di Palermo “Giuseppe S. Vaiana,” Piazza del Parlamento 1, I-90134 Palermo (Italy); Zhang, Tianmeng, E-mail: huangfang@mail.bnu.edu.cn, E-mail: wang_xf@mail.tsinghua.edu.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2015-07-01

    We present extensive ultraviolet, optical, and near-infrared observations of the Type IIP supernova (SN IIP) 2013ej in the nearby spiral galaxy M74. The multicolor light curves, spanning from ∼8–185 days after explosion, show that it has a higher peak luminosity (i.e., M{sub V} ∼ −17.83 mag at maximum light), a faster post-peak decline, and a shorter plateau phase (i.e., ∼50 days) compared to the normal Type IIP SN 1999em. The mass of {sup 56}Ni is estimated as 0.02 ± 0.01 M{sub ⊙} from the radioactive tail of the bolometric light curve. The spectral evolution of SN 2013ej is similar to that of SN 2004et and SN 2007od, but shows a larger expansion velocity (i.e., v{sub Fe} {sub ii} ∼ 4600 km s{sup −1} at t ∼ 50 days) and broader line profiles. In the nebular phase, the emission of the Hα line displays a double-peak structure, perhaps due to the asymmetric distribution of {sup 56}Ni produced in the explosion. With the constraints from the main observables such as bolometric light curve, expansion velocity, and photospheric temperature of SN 2013ej, we performed hydrodynamical simulations of the explosion parameters, yielding the total explosion energy as ∼0.7× 10{sup 51} erg, the radius of the progenitor as ∼600 R{sub ⊙}, and the ejected mass as ∼10.6 M{sub ⊙}. These results suggest that SN 2013ej likely arose from a red supergiant with a mass of 12–13 M{sub ⊙} immediately before the explosion.

  7. SN 2013ej IN M74: A LUMINOUS AND FAST-DECLINING TYPE II-P SUPERNOVA

    International Nuclear Information System (INIS)

    Huang, Fang; Wang, Xiaofeng; Chen, Juncheng; Mo, Jun; Zhao, Xulin; Zhang, Jujia; Brown, Peter J.; Zampieri, Luca; Pumo, Maria Letizia; Zhang, Tianmeng

    2015-01-01

    We present extensive ultraviolet, optical, and near-infrared observations of the Type IIP supernova (SN IIP) 2013ej in the nearby spiral galaxy M74. The multicolor light curves, spanning from ∼8–185 days after explosion, show that it has a higher peak luminosity (i.e., M V ∼ −17.83 mag at maximum light), a faster post-peak decline, and a shorter plateau phase (i.e., ∼50 days) compared to the normal Type IIP SN 1999em. The mass of 56 Ni is estimated as 0.02 ± 0.01 M ⊙ from the radioactive tail of the bolometric light curve. The spectral evolution of SN 2013ej is similar to that of SN 2004et and SN 2007od, but shows a larger expansion velocity (i.e., v Fe ii  ∼ 4600 km s −1 at t ∼ 50 days) and broader line profiles. In the nebular phase, the emission of the Hα line displays a double-peak structure, perhaps due to the asymmetric distribution of 56 Ni produced in the explosion. With the constraints from the main observables such as bolometric light curve, expansion velocity, and photospheric temperature of SN 2013ej, we performed hydrodynamical simulations of the explosion parameters, yielding the total explosion energy as ∼0.7× 10 51 erg, the radius of the progenitor as ∼600 R ⊙ , and the ejected mass as ∼10.6 M ⊙ . These results suggest that SN 2013ej likely arose from a red supergiant with a mass of 12–13 M ⊙ immediately before the explosion

  8. OPTICAL OBSERVATIONS OF THE TYPE IA SUPERNOVA SN 2011fe IN M101 FOR NEARLY 500 DAYS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kaicheng; Wang, Xiaofeng; Zhao, Xulin; Chen, Jia; Chen, Juncheng; Huang, Fang; Mo, Jun; Rui, Liming; Song, Hao; Sai, Hanna; Li, Wenxiong [Physics Department and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing, 100084 (China); Zhang, JuJia; Bai, Jinming [Yunnan Astronomical Observatory of China, Chinese Academy of Sciences, Kunming, 650011 (China); Zhang, Tianmeng; Wu, Chao [National Astronomical Observatory of China, Chinese Academy of Sciences, Beijing, 100012 (China); Ganeshalingam, Mohan; Li, Weidong; Filippenko, Alexei V.; Zheng, Weikang [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Wang, Lifan, E-mail: wang_xf@mail.tsinghua.edu.cn [Physics and Astronomy Department, Texas A and M University, College Station, TX 77843 (United States)

    2016-03-20

    We present well-sampled optical observations of the bright Type Ia supernova (SN Ia) SN 2011fe in M101. Our data, starting from ∼16 days before maximum light and extending to ∼463 days after maximum, provide an unprecedented time series of spectra and photometry for a normal SN Ia. Fitting the early-time rising light curve, we find that the luminosity evolution of SN 2011fe follows a t{sup n} law, with the index n being close to 2.0 in the VRI bands but slightly larger in the U and B bands. Combining the published ultraviolet (UV) and near-infrared (NIR) photometry, we derive the contribution of UV/NIR emission relative to the optical. SN 2011fe is found to have stronger UV emission and reaches its UV peak a few days earlier than other SNe Ia with similar Δm{sub 15}(B), suggestive of less trapping of high-energy photons in the ejecta. Moreover, the U-band light curve shows a notably faster decline at late phases (t ≈ 100–300 days), which also suggests that the ejecta may be relatively transparent to UV photons. These results favor the notion that SN 2011fe might have a progenitor system with relatively lower metallicity. On the other hand, the early-phase spectra exhibit prominent high-velocity features (HVFs) of O i λ7773 and the Ca ii NIR triplet, but only barely detectable in Si ii 6355. This difference can be caused by either an ionization/temperature effect or an abundance enhancement scenario for the formation of HVFs; it suggests that the photospheric temperature of SN 2011fe is intrinsically low, perhaps owing to incomplete burning during the explosion of the white dwarf.

  9. EARLY RADIO AND X-RAY OBSERVATIONS OF THE YOUNGEST NEARBY TYPE Ia SUPERNOVA PTF 11kly (SN 2011fe)

    International Nuclear Information System (INIS)

    Horesh, Assaf; Kulkarni, S. R.; Carpenter, John; Kasliwal, Mansi M.; Ofek, Eran O.; Fox, Derek B.; Quimby, Robert; Gal-Yam, Avishay; Cenko, S. Bradley; De Bruyn, A. G.; Kamble, Atish; Wijers, Ralph A. M. J.; Van der Horst, Alexander J.; Kouveliotou, Chryssa; Podsiadlowski, Philipp; Sullivan, Mark; Maguire, Kate; Howell, D. Andrew; Nugent, Peter E.; Gehrels, Neil

    2012-01-01

    On 2011 August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby Type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starting about a day after the estimated explosion time. We present our analysis of the radio and X-ray observations, yielding the tightest constraints yet placed on the pre-explosion mass-loss rate from the progenitor system of this supernova. We find a robust limit of M-dot ∼ -8 (w/100 km s -1 ) M sun yr -1 from sensitive X-ray non-detections, as well as a similar limit from radio data, which depends, however, on assumptions about microphysical parameters. We discuss our results in the context of single-degenerate models for SNe Ia and find that our observations modestly disfavor symbiotic progenitor models involving a red giant donor, but cannot constrain systems accreting from main-sequence or sub-giant stars, including the popular supersoft channel. In view of the proximity of PTF11kly and the sensitivity of our prompt observations, we would have to wait for a long time (a decade or longer) in order to more meaningfully probe the circumstellar matter of SNe Ia.

  10. METAMORPHOSIS OF SN 2014C: DELAYED INTERACTION BETWEEN A HYDROGEN POOR CORE-COLLAPSE SUPERNOVA AND A NEARBY CIRCUMSTELLAR SHELL

    International Nuclear Information System (INIS)

    Milisavljevic, D.; Margutti, R.; Kamble, A.; Patnaude, D. J.; Raymond, J. C.; Challis, P.; Drout, M. R.; Grindlay, J. E.; Kirshner, R. P.; Lunnan, R.; Miller, G. F.; Parrent, J. T.; Sanders, N. E.; Eldridge, J. J.; Fong, W.; Bietenholz, M.; Chornock, R.; Fransson, C.; Fesen, R. A.; Mackey, J.

    2015-01-01

    We present optical observations of supernova SN 2014C, which underwent an unprecedented slow metamorphosis from H-poor type Ib to H-rich type IIn over the course of one year. The observed spectroscopic evolution is consistent with the supernova having exploded in a cavity before encountering a massive shell of the progenitor star’s stripped hydrogen envelope. Possible origins for the circumstellar shell include a brief Wolf–Rayet fast wind phase that overtook a slower red supergiant wind, eruptive ejection, or confinement of circumstellar material by external influences of neighboring stars. An extended high velocity Hα absorption feature seen in near-maximum light spectra implies that the progenitor star was not completely stripped of hydrogen at the time of core collapse. Archival pre-explosion Subaru Telescope Suprime-Cam and Hubble Space Telescope Wide Field Planetary Camera 2 images of the region obtained in 2009 show a coincident source that is most likely a compact massive star cluster in NGC 7331 that hosted the progenitor system. By comparing the emission properties of the source with stellar population models that incorporate interacting binary stars we estimate the age of the host cluster to be 30–300 Myr, and favor ages closer to 30 Myr in light of relatively strong Hα emission. SN 2014C is the best observed member of a class of core-collapse supernovae that fill the gap between events that interact strongly with dense, nearby environments immediately after explosion and those that never show signs of interaction. Better understanding of the frequency and nature of this intermediate population can contribute valuable information about the poorly understood final stages of stellar evolution

  11. METAMORPHOSIS OF SN 2014C: DELAYED INTERACTION BETWEEN A HYDROGEN POOR CORE-COLLAPSE SUPERNOVA AND A NEARBY CIRCUMSTELLAR SHELL

    Energy Technology Data Exchange (ETDEWEB)

    Milisavljevic, D.; Margutti, R.; Kamble, A.; Patnaude, D. J.; Raymond, J. C.; Challis, P.; Drout, M. R.; Grindlay, J. E.; Kirshner, R. P.; Lunnan, R.; Miller, G. F.; Parrent, J. T.; Sanders, N. E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA, 02138 (United States); Eldridge, J. J. [Department of Physics, University of Auckland, Private Bag 92019, Auckland (New Zealand); Fong, W. [Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Bietenholz, M. [Hartebeesthoek Radio Observatory, P.O. Box 443, Krugersdorp 1740 (South Africa); Chornock, R. [Astrophysical Institute, Department of Physics and Astronomy, 251B Clippinger Lab, Ohio University, Athens, OH 45701 (United States); Fransson, C. [Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE106 91 Stockholm (Sweden); Fesen, R. A. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Lab, Hanover, NH 03755 (United States); Mackey, J., E-mail: dmilisav@cfa.harvard.edu [Argelander-Institut für Astronomie, Auf dem Hgel 71, D-53121 Bonn (Germany); and others

    2015-12-20

    We present optical observations of supernova SN 2014C, which underwent an unprecedented slow metamorphosis from H-poor type Ib to H-rich type IIn over the course of one year. The observed spectroscopic evolution is consistent with the supernova having exploded in a cavity before encountering a massive shell of the progenitor star’s stripped hydrogen envelope. Possible origins for the circumstellar shell include a brief Wolf–Rayet fast wind phase that overtook a slower red supergiant wind, eruptive ejection, or confinement of circumstellar material by external influences of neighboring stars. An extended high velocity Hα absorption feature seen in near-maximum light spectra implies that the progenitor star was not completely stripped of hydrogen at the time of core collapse. Archival pre-explosion Subaru Telescope Suprime-Cam and Hubble Space Telescope Wide Field Planetary Camera 2 images of the region obtained in 2009 show a coincident source that is most likely a compact massive star cluster in NGC 7331 that hosted the progenitor system. By comparing the emission properties of the source with stellar population models that incorporate interacting binary stars we estimate the age of the host cluster to be 30–300 Myr, and favor ages closer to 30 Myr in light of relatively strong Hα emission. SN 2014C is the best observed member of a class of core-collapse supernovae that fill the gap between events that interact strongly with dense, nearby environments immediately after explosion and those that never show signs of interaction. Better understanding of the frequency and nature of this intermediate population can contribute valuable information about the poorly understood final stages of stellar evolution.

  12. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0

    Science.gov (United States)

    Kochanek, C. S.; Shappee, B. J.; Stanek, K. Z.; Holoien, T. W.-S.; Thompson, Todd A.; Prieto, J. L.; Dong, Subo; Shields, J. V.; Will, D.; Britt, C.; Perzanowski, D.; Pojmański, G.

    2017-10-01

    The All-Sky Automated Survey for Supernovae (ASAS-SN) is working toward imaging the entire visible sky every night to a depth of V˜ 17 mag. The present data covers the sky and spans ˜2-5 years with ˜100-400 epochs of observation. The data should contain some ˜1 million variable sources, and the ultimate goal is to have a database of these observations publicly accessible. We describe here a first step, a simple but unprecedented web interface https://asas-sn.osu.edu/ that provides an up to date aperture photometry light curve for any user-selected sky coordinate. The V band photometry is obtained using a two-pixel (16.″0) radius aperture and is calibrated against the APASS catalog. Because the light curves are produced in real time, this web tool is relatively slow and can only be used for small samples of objects. However, it also imposes no selection bias on the part of the ASAS-SN team, allowing the user to obtain a light curve for any point on the celestial sphere. We present the tool, describe its capabilities, limitations, and known issues, and provide a few illustrative examples.

  13. Generation of Cosmic rays in Historical Supernova Remnants

    Directory of Open Access Journals (Sweden)

    Sinitsyna V.Y.

    2013-06-01

    Full Text Available We present the results of observations of two types of Galactic supernova remnants with the SHALON mirror Cherenkov telescope of Tien-Shan high-mountain Observatory: the shell-type supernova remnants Tycho, Cas A and IC 443; plerions Crab Nebula, 3c58(SN1181 and Geminga (probably plerion. The experimental data have confirmed the prediction of the theory about the hadronic generation mechanism of very high energy (800 GeV - 100 TeV gamma-rays in Tycho's supernova remnant. The data obtainedsuggest that the very high energy gamma-ray emission in the objects being discussedis different in origin.

  14. No evidence for an early seventeenth-century Indian sighting of Kepler's supernova (SN1604)

    Science.gov (United States)

    van Gent, R. H.

    2013-03-01

    In a recent paper in this journal, Sule et al. (2011) argued that an early 17th-century Indian mural of the constellation Sagittarius with a dragon-headed tail indicated that the bright supernova of 1604 was also sighted by Indian astronomers. In this paper it will be shown that this identification is based on a misunderstanding of traditional Islamic astrological iconography and that the claim that the mural represents an early 17th-century Indian sighting of the supernova of 1604 has to be rejected.

  15. Rates and progenitors of type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Wood-Vasey, William Michael [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    analyzing the true sensitivity of a multi-epoch supernova search and finds a Type Ia supernova rate from z ~ 0.01-0.1 of rV = 4.26$+1.39 +0.10\\atop{-1.93 -0.10}$h3 x 10-4 SNe Ia/yr/Mpc3 from a preliminary analysis of a subsample of the SNfactory prototype search. Several unusual supernovae were found in the course of the SNfactory prototype search. One in particular, SN 2002ic, was the first SN Ia to exhibit convincing evidence for a circumstellar medium and offers valuable insight into the progenitors of Type Ia supernovae.

  16. Rates and progenitors of type Ia supernovae

    International Nuclear Information System (INIS)

    Wood-Vasey, William Michael

    2004-01-01

    analyzing the true sensitivity of a multi-epoch supernova search and finds a Type Ia supernova rate from z ∼ 0.01-0.1 of r V = 4.26 -1.93 -0.10 +1.39 +0.10 h 3 x 10 -4 SNe Ia/yr/Mpc 3 from a preliminary analysis of a subsample of the SNfactory prototype search. Several unusual supernovae were found in the course of the SNfactory prototype search. One in particular, SN 2002ic, was the first SN Ia to exhibit convincing evidence for a circumstellar medium and offers valuable insight into the progenitors of Type Ia supernovae

  17. SN 2013dh in NGC 5936 is probably a type Iax supernova

    Science.gov (United States)

    Jha, Saurabh W.; McCully, Curtis; Foley, Ryan J.; Cenko, S. Bradley; Zheng, WeiKang; Clubb, Kelsey I.; Shivvers, Isaac; Filippenko, Alexei V.; Tucker, Brad E.; Garnavich, Peter M.

    2013-06-01

    Further to CBET 3561 (Kumar et al. 2013; Cenko et al. 2013), we have analyzed spectra of SN 2013dh obtained on June 14.3 and June 17.3 UT with the Shane 3-m reflector (+ Kast spectrograph) at Lick Observatory. The observations continue to show that SN 2013dh has a blue continuum with relatively narrow (FWHM approximately 3000 km/s) Fe III absorption.

  18. Hubble Space Telescope and Ground-Based Observations of the Type Iax Supernovae SN 2005hk and SN 2008A

    Energy Technology Data Exchange (ETDEWEB)

    McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Chornock, Ryan; Holtzman, Jon A.; Balam, David D.; Branch, David; Filippenko, Alexei V.; Frieman, Joshua; Fynbo, Johan; Galbany, Lluis; Ganeshalingam, Mohan; Garnavich, Peter M.; Graham, Melissa L.; Hsiao, Eric Y.; Leloudas, Giorgos; Leonard, Douglas C.; Li, Weidong; Riess, Adam G.; Sako, Masao; Schneider, Donald P.; Silverman, Jeffrey M.; Sollerman, Jesper; Steele, Thea N.; Thomas, Rollin C.; Wheeler, J. Craig; Zheng, Chen

    2014-04-24

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with ne109 cm–3. Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected "infrared catastrophe," a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a "complete deflagration" that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  19. Broad-lined Supernova 2016coi with a Helium Envelope

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Masayuki [Department of Physics, Faculty of Science and Engineering, Konan University, Okamoto, Kobe, Hyogo 658-8501 (Japan); Nakaoka, Tatsuya; Kawabata, Miho [Department of Physical Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526 (Japan); Tanaka, Masaomi [National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Osawa, Mitaka, Tokyo 181-8588 (Japan); Maeda, Keiichi [Department of Astronomy, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Honda, Satoshi; Hosoya, Kensuke; Karita, Mayu; Morihana, Kumiko [Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, 407-2 Nishigaichi, Sayo-cho, Sayo, Hyogo 679-5313 (Japan); Hanayama, Hidekazu [Ishigakijima Astronomical Observatory, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 1024-1 Arakawa, Ishigaki, Okinawa 907-0024 (Japan); Morokuma, Tomoki [Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Imai, Masataka [Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi8, Kita-ku, Sapporo 060-0810 (Japan); Kinugasa, Kenzo [Nobeyama Radio Observatory, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 462-2 Nobeyama, Minamimaki, Minamisaku, Nagano 384-1305 (Japan); Murata, Katsuhiro L. [Department of Astrophysics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Nishimori, Takefumi; Gima, Hirotaka; Ito, Ayano; Morikawa, Yuto; Murakami, Kotone [Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065 (Japan); Hashimoto, Osamu, E-mail: yamanaka@center.konan-u.ac.jp [Gunma Astronomical Observatory, Takayama, Gunma 377-0702 (Japan); and others

    2017-03-01

    We present the early-phase spectra and the light curves of the broad-lined (BL) supernova (SN) 2016coi from t = 7 to 67 days after the estimated explosion date. This SN was initially reported as a BL Type SN Ic (SN Ic-BL). However, we found that spectra up to t = 12 days exhibited the He i λ 5876, λ 6678, and λ 7065 absorption lines. We show that the smoothed and blueshifted spectra of normal SNe Ib are remarkably similar to the observed spectrum of SN 2016coi. The line velocities of SN 2016coi were similar to those of SNe Ic-BL and significantly faster than those of SNe Ib. Analyses of the line velocity and light curve suggest that the kinetic energy and the total ejecta mass of SN 2016coi are similar to those of SNe Ic-BL. Together with BL SNe 2009bb and 2012ap, for which the detection of He i was also reported, these SNe could be transitional objects between SNe Ic-BL and SNe Ib, and be classified as BL Type “Ib” SNe (SNe “Ib”-BL). Our work demonstrates the diversity of the outermost layer in BL SNe, which should be related to the variety of the evolutionary paths.

  20. SN 2016X: a type II-P supernova with a signature of shock breakout from explosion of a massive red supergiant

    Science.gov (United States)

    Huang, F.; Wang, X.-F.; Hosseinzadeh, G.; Brown, P. J.; Mo, J.; Zhang, J.-J.; Zhang, K.-C.; Zhang, T.-M.; Howell, D.-A.; Arcavi, I.; McCully, C.; Valenti, S.; Rui, L.-M.; Song, H.; Xiang, D.-F.; Li, W.-X.; Lin, H.; Wang, L.-F.

    2018-04-01

    We present extensive ultraviolet (UV) and optical photometry, as well as dense optical spectroscopy, for type II Plateau (IIP) supernova SN 2016X that exploded in the nearby (˜15 Mpc) spiral galaxy UGC 08041. The observations span the period from 2 to 180 d after the explosion; in particular, the Swift UV data probably captured the signature of shock breakout associated with the explosion of SN 2016X. It shows very strong UV emission during the first week after explosion, with a contribution of ˜20-30 per cent to the bolometric luminosity (versus ≲15 per cent for normal SNe IIP). Moreover, we found that this supernova has an unusually long rise time of about 12.6 ± 0.5 d in the R band (versus ˜7.0 d for typical SNe IIP). The optical light curves and spectral evolution are quite similar to the fast-declining type IIP object SN 2013ej, except that SN 2016X has a relatively brighter tail. Based on the evolution of photospheric temperature as inferred from the Swift data in the early phase, we derive that the progenitor of SN 2016X has a radius of about 930 ± 70 R⊙. This large-size star is expected to be a red supergiant star with an initial mass of ≳19-20 M⊙ based on the mass-radius relation of the Galactic red supergiants, and it represents one of the most largest and massive progenitors found for SNe IIP.

  1. AMI-LA 15 GHz Observation of the Type IIP Supernova SN 2017eaw

    Science.gov (United States)

    Bright, Joe; Mooley, Kunal; Fender, Rob; Horesh, Assaf

    2017-05-01

    SN 2017eaw was discovered by Patrick Wiggins on 2017 May 14.24 and confirmed as a transient object (located in NGC 6946, at a distance of around 5.5 Mpc) in follow up observations from the McDonald observatory (ATel #10372).

  2. Spectroscopic Classification of SN 2018bgc (=ATLAS18nvs) as a Type Ia Supernova

    Science.gov (United States)

    Lin, Han; Wang, Xiaofeng; Xiang, Danfeng; Rui, Liming; Hu, Lei; Hu, Maokai; Zhang, Xinhan; Li, Xue; Zhang, Tianmeng; Zhang, Jujia

    2018-05-01

    We obtained an optical spectrum (range 385-855 nm) of SN 2018bgc(=ATLAS18nvs), discovered by ATLAS, on UT May 08.60 2018 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  3. Upper limits on the luminosity of the progenitor of type Ia supernova SN2014J

    DEFF Research Database (Denmark)

    Nielsen, M. T. B.; Gilfanov, M.; Bogdan, A.

    2014-01-01

    We analysed archival data of Chandra pre-explosion observations of the position of SN2014J in M82. No X-ray source at this position was detected in the data, and we calculated upper limits on the luminosities of the progenitor. These upper limits allow us to firmly rule out an unobscured supersof...

  4. Spectroscopic classification of SN 2018bsn as a type Ia supernova before the maximum

    Science.gov (United States)

    Zhang, Jujia; Ye, Kai; Xu, Zhijian; Li, Wenxiong; Wang, Xiaofeng; Mo, Jun; Tan, Hanjie; Zhang, Tianmeng

    2018-05-01

    We obtained an optical spectrum (range 350-890 nm) of SN 2018bsn, discovered by the Tsinghua-NAOC Transient Survey (TNTS), on UT May 17.7 2018 with the 2.4 m telescope (LJT + YFOSC) at Lijiang Observatory of Yunnan Observatories (YNAO).

  5. The Type II supernovae 2006V and 2006au: two SN 1987A-like events

    DEFF Research Database (Denmark)

    Taddia, F.; Stritzinger, M. D.; Sollerman, J.

    2012-01-01

    1987A. Methods. Optical and near-infrared (NIR) light curves, and optical spectroscopy of SNe 2006V and 2006au are presented. These observations are compared to those of SN 1987A, and are used to estimate properties of their progenitors. Results. Both objects exhibit a slow rise to maximum and light...

  6. Spectroscopic Classification of SN 2018bek as a Young Type II Supernova

    Science.gov (United States)

    Xiang, Danfeng; Wang, Xiaofeng; Zhang, Kaicheng; Li, Wenxiong; DerKacy, James; Baron, Eddie; Brink, Thomas; Zheng, Weikang; Filippenko, Alex; Lin, Han; Rui, Liming; Hu, Lei; Hu, Maokai; Zhang, Tianmeng; Zhang, Jujia

    2018-05-01

    We obtained a few optical spectra of SN 2018bek,discovered by Jaroslaw Grzegorzek,on UT May 05-09 2018 with the 3.5m telescope (+Dual Imaging Spectrograph) at the Apache Point Observatory, the 2.16-m telescope(+BFOSC) at Xinglong Observatory of NAOC, and the Lick 3.0-m telescope (+Kast) at Lick Observatory.

  7. Nurseries of Supernovae

    DEFF Research Database (Denmark)

    Frederiksen, Teddy

    Type Ia supernovae (SNe) have long been the gold standard for precision cosmology and after several decades of intense research the supernova (SN) community was in 2011 honored by giving the Nobel Prize in physics for the discovery of Dark Energy to the leaders of the two big SN collaborations: S...

  8. An Empirical Fitting Method for Type Ia Supernova Light Curves: A Case Study of SN 2011fe

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, WeiKang; Filippenko, Alexei V., E-mail: zwk@astro.berkeley.edu [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2017-03-20

    We present a new empirical fitting method for the optical light curves of Type Ia supernovae (SNe Ia). We find that a variant broken-power-law function provides a good fit, with the simple assumption that the optical emission is approximately the blackbody emission of the expanding fireball. This function is mathematically analytic and is derived directly from the photospheric velocity evolution. When deriving the function, we assume that both the blackbody temperature and photospheric velocity are constant, but the final function is able to accommodate these changes during the fitting procedure. Applying it to the case study of SN 2011fe gives a surprisingly good fit that can describe the light curves from the first-light time to a few weeks after peak brightness, as well as over a large range of fluxes (∼5 mag, and even ∼7 mag in the g band). Since SNe Ia share similar light-curve shapes, this fitting method has the potential to fit most other SNe Ia and characterize their properties in large statistical samples such as those already gathered and in the near future as new facilities become available.

  9. Supernova neutrinos

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In the first part of his in-depth article on the 1987 supernova, David Schramm of the University of Chicago and the NASA/Fermilab Astrophysics Centre reviewed the background to supernovae, the composition of massive stars and the optical history of SN 1987A, and speculated on what the 1987 remnant might be. In such a Type II supernova, gravitational pressure crushes the atoms of the star's interior producing neutron matter, or even a black hole, and releasing an intense burst of neutrinos. 1987 was the first time that physicists were equipped (but not entirely ready!) to intercept these particles, and in the second part of his article, David Schramm covers the remarkable new insights from the science of supernova neutrino astronomy, born on 23 February 1987

  10. SPECTROSCOPIC OBSERVATIONS OF SN 2012fr: A LUMINOUS, NORMAL TYPE Ia SUPERNOVA WITH EARLY HIGH-VELOCITY FEATURES AND A LATE VELOCITY PLATEAU

    International Nuclear Information System (INIS)

    Childress, M. J.; Scalzo, R. A.; Sim, S. A.; Tucker, B. E.; Yuan, F.; Schmidt, B. P.; Cenko, S. B.; Filippenko, A. V.; Silverman, J. M.; Contreras, C.; Hsiao, E. Y.; Phillips, M.; Morrell, N.; Jha, S. W.; McCully, C.; Anderson, J. P.; De Jaeger, T.; Forster, F.; Benetti, S.; Bufano, F.

    2013-01-01

    We present 65 optical spectra of the Type Ia SN 2012fr, 33 of which were obtained before maximum light. At early times, SN 2012fr shows clear evidence of a high-velocity feature (HVF) in the Si II λ6355 line that can be cleanly decoupled from the lower velocity ''photospheric'' component. This Si II λ6355 HVF fades by phase –5; subsequently, the photospheric component exhibits a very narrow velocity width and remains at a nearly constant velocity of ∼12,000 km s –1 until at least five weeks after maximum brightness. The Ca II infrared triplet exhibits similar evidence for both a photospheric component at v ≈ 12,000 km s –1 with narrow line width and long velocity plateau, as well as an HVF beginning at v ≈ 31,000 km s –1 two weeks before maximum. SN 2012fr resides on the border between the ''shallow silicon'' and ''core-normal'' subclasses in the Branch et al. classification scheme, and on the border between normal and high-velocity Type Ia supernovae (SNe Ia) in the Wang et al. system. Though it is a clear member of the ''low velocity gradient'' group of SNe Ia and exhibits a very slow light-curve decline, it shows key dissimilarities with the overluminous SN 1991T or SN 1999aa subclasses of SNe Ia. SN 2012fr represents a well-observed SN Ia at the luminous end of the normal SN Ia distribution and a key transitional event between nominal spectroscopic subclasses of SNe Ia.

  11. A Significantly off-center 56Ni Distribution for the Low-Luminosity Type Ia Supernova SN 2016brx from the 100IAS survey

    Science.gov (United States)

    Dong, Subo; Katz, Boaz; Kollmeier, Juna A.; Kushnir, Doron; Elias-Rosa, N.; Bose, Subhash; Morrell, Nidia; Prieto, J. L.; Chen, Ping; Kochanek, C. S.; Brandt, G. M.; Holoien, T. W.-S.; Gal-Yam, Avishay; Morales-Garoffolo, Antonia; Parker, Stuart; Phillips, M. M.; Piro, Anthony L.; Shappee, B. J.; Simon, Joshua D.; Stanek, K. Z.

    2018-06-01

    We present nebular-phase spectra of the Type Ia supernova (SN Ia) 2016brx, a member of the 1991bg-like subclass that lies at the faint end of the SN Ia luminosity function. Nebular spectra are available for only three other 1991bg-like SNe, and their Co line centers are all within ≲ 500 km/s of each other. In contrast, the nebular Co line center of SN 2016brx is blue-shifted by >1500 km/s compared to them and by ≈1200 km/s compared to the rest frame. This is a significant shift relative to the narrow nebular line velocity dispersion of ≲ 2000 km/s of these SNe. The large range of nebular line shifts implies that the 56Ni in the ejecta of SN 1991bg-like events is off-center by ˜1000 km/s rather than universally centrally confined as previously suggested. With the addition of SN 2016brx, the Co nebular line shapes of 1991bg-like objects appear to connect with the brighter SNe Ia that show double-peaked profiles, hinting at a continuous distribution of line profiles among SNe Ia. One class of models to produce both off-center and bi-modal 56Ni distributions is collisions of white dwarfs with unequal and equal masses.

  12. Interacting supernovae and supernova impostors

    Science.gov (United States)

    Tartaglia, Leonardo

    2016-02-01

    Massive stars are thought to end their lives with spectacular explosions triggered by the gravitational collapse of their cores. Interacting supernovae are generally attributed to supernova explosions occurring in dense circumstellar media, generated through mass-loss which characterisie the late phases of the life of their progenitors. In the last two decades, several observational evidences revealed that mass-loss in massive stars may be related to violent eruptions involving their outer layers, such as the luminous blue variables. Giant eruptions of extragalactic luminous blue variables, similar to that observed in Eta Car in the 19th century, are usually labelled 'SN impostors', since they mimic the behaviour of genuine SNe, but are not the final act of the life of the progenitor stars. The mechanisms producing these outbursts are still not understood, although the increasing number of observed cases triggered the efforts of the astronomical community to find possible theoretical interpretations. More recently, a number of observational evidences suggested that also lower-mass stars can experience pre-supernova outbursts, hence becoming supernova impostors. Even more interestingly, there is growing evidence of a connection among massive stars, their outbursts and interacting supernovae. All of this inspired this research, which has been focused in particular on the characterisation of supernova impostors and the observational criteria that may allow us to safely discriminate them from interacting supernovae. Moreover, the discovery of peculiar transients, motivated us to explore the lowest range of stellar masses that may experience violent outbursts. Finally, the quest for the link among massive stars, their giant eruptions and interacting supernovae, led us to study the interacting supernova LSQ13zm, which possibly exploded a very short time after an LBV-like major outburst.

  13. Analyzing the Largest Spectroscopic Data Set of Hydrogen-poor Super-luminous Supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yu-Qian; Modjaz, Maryam; Bianco, Federica B., E-mail: YL1260@nyu.edu, E-mail: mmodjaz@nyu.edu [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

    2017-08-10

    Super-luminous supernovae (SLSNe) are tremendously luminous explosions whose power sources and progenitors are highly debated. Broad-lined SNe Ic (SNe Ic-bl) are the only type of SNe that are connected with long-duration gamma-ray bursts (GRBs). Studying the spectral similarity and difference between the populations of hydrogen-poor SLSNe (SLSNe Ic) and of hydrogen-poor stripped-envelope core-collapse SNe, in particular SNe Ic and SNe Ic-bl, can provide crucial observations to test predictions of theories based on various power source models and progenitor models. In this paper, we collected all of the published optical spectra of 32 SLSNe Ic, 21 SNe Ic-bl, as well as 17 SNe Ic, quantified their spectral features, constructed average spectra, and compared them in a systematic way using new tools we have developed. We find that SLSNe Ic and SNe Ic-bl, including those connected with GRBs, have comparable widths for their spectral features and average absorption velocities at all phases. Thus, our findings strengthen the connection between SLSNe Ic and GRBs. In particular, SLSNe Ic have average Fe ii λ 5169 absorption velocities of −15,000 ± 2600 km s{sup −1} at 10 days after peak, which are higher than those of SNe Ic by ∼7000 km s{sup −1} on average. SLSNe Ic also have significantly broader Fe ii λ 5169 lines than SNe Ic. Moreover, we find that such high absorption and width velocities of SLSNe Ic may be hard to explain with the interaction model, and none of the 13 SLSNe Ic with measured absorption velocities spanning over 10 days has a convincing flat velocity evolution, which is inconsistent with the magnetar model in one dimension. Lastly, we compare SN 2011kl, the first SN connected with an ultra-long GRB, with the mean spectrum of SLSNe Ic and of SNe Ic-bl.

  14. Gravitational collapse and supernovae

    International Nuclear Information System (INIS)

    Lattimer, J.M.

    1989-01-01

    The collapse of the core of a massive star and the subsequent birth of a neutron star in a supernova explosion are discussed, and a model of the supernova mechanism is developed. The basic theory is then compared with the particular case of SN1987A, whose emitted neutrinos permitted the first direct test of the model. (author)

  15. Supernova will continue to glow

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    On the night of 23/24 February 1987 a new supernova called SN 1987A, was discovered. Within a few hours of the announcement of the discovery, the South African Astronomical Observatory (SAAO) began a series of observations. In this article, the importance of supernovae-exploding stars, and what the SAAO has discovered so far from SN 1987A are discussed

  16. Supernova hydrodynamics

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1981-01-01

    The explosion of a star supernova occurs at the end of its evolution when the nuclear fuel in its core is almost, or completely, consumed. The star may explode due to a small residual thermonuclear detonation, type I SN or it may collapse, type I and type II SN leaving a neutron star remnant. The type I progenitor should be thought to be an old accreting white dwarf, 1.4 M/sub theta/, with a close companion star. A type II SN is thought to be a massive young star 6 to 10 M/sub theta/. The mechanism of explosion is still a challenge to our ability to model the most extreme conditions of matter and hydrodynamics that occur presently and excessively in the universe. 39 references

  17. Type Ia Supernova Properties as a Function of the Distance to the Host Galaxy in the SDSS-II SN Survey

    Energy Technology Data Exchange (ETDEWEB)

    Galbany, Lluis [Institut de Fisica d' Altes Energies (IFAE), Barcelona (Spain); et al.

    2012-08-20

    We use type-Ia supernovae (SNe Ia) discovered by the SDSS-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host galaxy center, using the distance as a proxy for local galaxy properties (local star-formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light-curves using both MLCS2k2 and SALT2, and determine color (AV, c) and light-curve shape (delta, x1) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4-sigma level) finding is that the average fitted AV from MLCS2k2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that SNe in elliptical galaxies tend to have narrower light-curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.

  18. THE HIGH-METALLICITY EXPLOSION ENVIRONMENT OF THE RELATIVISTIC SUPERNOVA 2009bb

    International Nuclear Information System (INIS)

    Levesque, E. M.; Kewley, L. J.; Soderberg, A. M.; Foley, R. J.; Berger, E.; Torres, M. A. P.; Challis, P.; Kirshner, R. P.; Copete, A.; Chakraborti, S.; Ray, A.; Barthelmy, S. D.; Bietenholz, M. F.; Chandra, P.; Chaplin, V.; Connaughton, V.; Chevalier, R. A.; Fox, O.; Chugai, N.; Fransson, C.

    2010-01-01

    We investigate the environment of the nearby (d ∼ 40 Mpc) broad-lined Type Ic supernova (SN) 2009bb. This event was observed to produce a relativistic outflow likely powered by a central accreting compact object. While such a phenomenon was previously observed only in long-duration gamma-ray bursts (LGRBs), no LGRB was detected in association with SN 2009bb. Using an optical spectrum of the SN 2009bb explosion site, we determine a variety of interstellar medium properties for the host environment, including metallicity, young stellar population age, and star formation rate. We compare the SN explosion site properties to observations of LGRB and broad-lined SN Ic host environments on optical emission line ratio diagnostic diagrams. Based on these analyses, we find that the SN 2009bb explosion site has a metallicity between 1.7 Z sun and 3.5 Z sun , in agreement with other broad-lined SN Ic host environments and at odds with the low-redshift LGRB host environments and recently proposed maximum metallicity limits for relativistic explosions. We consider the implications of these findings and the impact that SN 2009bb's unusual explosive properties and environment have on our understanding of the key physical ingredient that enables some SNe to produce a relativistic outflow.

  19. LOSS Revisited. I. Unraveling Correlations between Supernova Rates and Galaxy Properties, as Measured in a Reanalysis of the Lick Observatory Supernova Search

    Energy Technology Data Exchange (ETDEWEB)

    Graur, Or [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Bianco, Federica B.; Huang, Shan; Modjaz, Maryam [CCPP, New York University, 4 Washington Place, New York, NY 10003 (United States); Shivvers, Isaac; Filippenko, Alexei V.; Li, Weidong [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Eldridge, J. J., E-mail: or.graur@cfa.harvard.edu [Department of Physics, University of Auckland, Private Bag 92019, Auckland (New Zealand)

    2017-03-10

    Most types of supernovae (SNe) have yet to be connected with their progenitor stellar systems. Here, we reanalyze the 10-year SN sample collected during 1998–2008 by the Lick Observatory Supernova Search (LOSS) in order to constrain the progenitors of SNe Ia and stripped-envelope SNe (SE SNe, i.e., SNe IIb, Ib, Ic, and broad-lined Ic). We matched the LOSS galaxy sample with spectroscopy from the Sloan Digital Sky Survey and measured SN rates as a function of galaxy stellar mass, specific star formation rate, and oxygen abundance (metallicity). We find significant correlations between the SN rates and all three galaxy properties. The SN Ia correlations are consistent with other measurements, as well as with our previous explanation of these measurements in the form of a combination of the SN Ia delay-time distribution and the correlation between galaxy mass and age. The ratio between the SE SN and SN II rates declines significantly in low-mass galaxies. This rules out single stars as SE SN progenitors, and is consistent with predictions from binary-system progenitor models. Using well-known galaxy scaling relations, any correlation between the rates and one of the galaxy properties examined here can be expressed as a correlation with the other two. These redundant correlations preclude us from establishing causality—that is, from ascertaining which of the galaxy properties (or their combination) is the physical driver for the difference between the SE SN and SN II rates. We outline several methods that have the potential to overcome this problem in future works.

  20. VizieR Online Data Catalog: Lick Observatory Supernova Search (LOSS) revisited (Graur+, 2017)

    Science.gov (United States)

    Graur, O.; Bianco, F. B.; Huang, S.; Modjaz, M.; Shivvers, I.; Filippenko, A. V.; Li, W.; Eldridge, J. J.

    2017-10-01

    Most types of supernovae (SNe) have yet to be connected with their progenitor stellar systems. Here, we reanalyze the 10-year SN sample collected during 1998-2008 by the Lick Observatory Supernova Search (LOSS; see Leaman+, 2011, J/MNRAS/412/1419) in order to constrain the progenitors of SNe Ia and stripped-envelope SNe (SE SNe, i.e., SNe IIb, Ib, Ic, and broad-lined Ic). We matched the LOSS galaxy sample with spectroscopy from the Sloan Digital Sky Survey (SDSS) and measured SN rates as a function of galaxy stellar mass, specific star formation rate, and oxygen abundance (metallicity). We find significant correlations between the SN rates and all three galaxy properties. The SN Ia correlations are consistent with other measurements, as well as with our previous explanation of these measurements in the form of a combination of the SN Ia delay-time distribution and the correlation between galaxy mass and age. The ratio between the SE SN and SN II rates declines significantly in low-mass galaxies. This rules out single stars as SE SN progenitors, and is consistent with predictions from binary-system progenitor models. Using well-known galaxy scaling relations, any correlation between the rates and one of the galaxy properties examined here can be expressed as a correlation with the other two. These redundant correlations preclude us from establishing causality-that is, from ascertaining which of the galaxy properties (or their combination) is the physical driver for the difference between the SE SN and SN II rates. We outline several methods that have the potential to overcome this problem in future works. (7 data files).

  1. The unprecedented metamorphosis of SN2014C: from a H-stripped explosion to a strongly interacting supernova

    Science.gov (United States)

    Margutti, Raffaella

    2015-09-01

    Mass loss in massive stars is one of the least understood yet fundamental aspects of stellar evolution. HOW and WHEN do massive stars lose their H-envelopes? This central question motivates this proposal. We request a modest investment of Chandra time over 3 years to map the unique situation of the interaction of a H-stripped SN2014C with a H-rich shell ejected by its progenitor star, as part of our extensive radio-to-gamma-ray follow-up. Our goal is to constrain the density profile and proximity of the ejected material, and hence the mass-loss history of the progenitor star. Unlike all other H-stripped SNe, the radio and X-ray emission of SN14C is still increasing at 400 days, giving us the unprecedented opportunity to constrain the epoch ejection of H-rich material in fine detail.

  2. What stars become supernovae

    International Nuclear Information System (INIS)

    Tinsley, B.M.

    1975-01-01

    A variety of empirical lines of evidence is assembled on the masses and stellar population types of stars that trigger supernova (SN) explosions. The main theoretical motivations are to determine whether type I supernovae (SN I) can have massive precursors, and whether there is an interval of stellar mass, between the masses of precursors of pulsars and white dwarfs, that is disrupted by carbon detonation. Statistical and other uncertainties in the empirical arguments are given particular attention, and are found to be more important than generally realized. Relatively secure conclusions include the following. Statistics of stellar birthrates, SN, pulsars, and SN remnants in the Galaxy show that SN II (or all SN) could arise from stars with masses greater than M/sub s/ where M/sub s/ approximately 49 to 12 M solar mass; the precursor mass range cannot be more closely defined from present data; nor can it be said whether all SN leave pulsars and/or extended radio remnants. Several methods of estimating the masses of stars that become white dwarfs are consistent with a lower limit, M/sub s/ greater than or equal to 5 M solar mass, so carbon detonation may indeed be avoided, although this conclusion is not secure. Studies of the properties of galaxies in which SN occur, and their distributions within galaxies, support the usual views that SN I have low-mass precursors (less than or equal to 5 M solar mass and typically less than or equal to 1 M solar mass) and SN II have massive precursors (greater than or equal to 5 M solar mass); the restriction of known SN II to Sc and Sb galaxies, to date, is shown to be consistent, statistically, with massive stars in other galaxies also dying as SN II. Possible implications of the peculiarities of some SN-producing galaxies are discussed. Suggestions are made for observational and theoretical studies that would help answer important remaining questions on the nature of SN precursors

  3. Astrophysical and terrestrial neutrinos in Supernova detectors

    International Nuclear Information System (INIS)

    Lagage, P.O.

    1985-09-01

    Supernova (SN) explosions are the place of very fundamental phenomena, whose privileged messengers are neutrinos. But such events are very rare. Then, SN detection has to be combined with other purposes. The recent developments of SN detectors have been associated with developments of underground particle physics (proton decay, monopoles ...). But here, I will restrict myself to discuss the possibilities for a supernova detector to be sensitive to other sources of neutrinos, astrophysical or terrestrial

  4. A Model of the Vela Supernova Remnant

    Science.gov (United States)

    Gvaramadze, Vasilii

    2000-10-01

    A model of the Vela supernova remnant (SNR) based on a cavity explosion of a supernova (SN) star is proposed. It is suggested that the general structure of the remnant is determined by the interaction of the SN blast wave with a massive shell created by the SN progenitor (15-20 M_solar) star. A possible origin of the nebula of hard X-ray emission detected around the Vela pulsar is discussed.

  5. Nearby supernova host galaxies from the CALIFA survey. II. Supernova environmental metallicity

    NARCIS (Netherlands)

    Galbany, L.; Stanishev, V.; Mourão, A. M.; Rodrigues, M.; Flores, H.; Walcher, C. J.; Sánchez, S. F.; García-Benito, R.; Mast, D.; Badenes, C.; González Delgado, R. M.; Kehrig, C.; Lyubenova, M.; Marino, R. A.; Mollá, M.; Meidt, S.; Pérez, E.; van de Ven, G.; Vílchez, J. M.

    2016-01-01

    The metallicity of a supernova progenitor, together with its mass, is one of the main parameters that can rule the progenitor's fate. We present the second study of nearby supernova (SN) host galaxies (0.005 ⊙) > 10 dex) by targeted searches. We neither found evidence that the metallicity at the SN

  6. Toward connecting core-collapse supernova theory with observations. I. Shock revival in a 15 M ☉ blue supergiant progenitor with SN 1987A energetics

    International Nuclear Information System (INIS)

    Handy, Timothy; Plewa, Tomasz; Odrzywołek, Andrzej

    2014-01-01

    We study the evolution of the collapsing core of a 15 M ☉ blue supergiant supernova progenitor from the core bounce until 1.5 s later. We present a sample of hydrodynamic models parameterized to match the explosion energetics of SN 1987A. We find the spatial model dimensionality to be an important contributing factor in the explosion process. Compared to two-dimensional (2D) simulations, our three-dimensional (3D) models require lower neutrino luminosities to produce equally energetic explosions. We estimate that the convective engine in our models is 4% more efficient in 3D than in 2D. We propose that the greater efficiency of the convective engine found in 3D simulations might be due to the larger surface-to-volume ratio of convective plumes, which aids in distributing energy deposited by neutrinos. We do not find evidence of the standing accretion shock instability or turbulence being a key factor in powering the explosion in our models. Instead, the analysis of the energy transport in the post-shock region reveals characteristics of penetrative convection. The explosion energy decreases dramatically once the resolution is inadequate to capture the morphology of convection on large scales. This shows that the role of dimensionality is secondary to correctly accounting for the basic physics of the explosion. We also analyze information provided by particle tracers embedded in the flow and find that the unbound material has relatively long residency times in 2D models, while in 3D a significant fraction of the explosion energy is carried by particles with relatively short residency times.

  7. A MISSING-LINK IN THE SUPERNOVA–GRB CONNECTION: THE CASE OF SN 2012ap

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborti, Sayan; Soderberg, Alicia; Kamble, Atish; Margutti, Raffaella; Milisavljevic, Dan; Dittmann, Jason [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chomiuk, Laura [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Yadav, Naveen; Ray, Alak [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005 (India); Hurley, Kevin [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, CA 94720 (United States); Bietenholz, Michael [Department of Physics and Astronomy, York University, 4700 Keele St., M3J 1P3 Ontario (Canada); Brunthaler, Andreas [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Pignata, Giuliano [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Pian, Elena [Scuola Normale Superiore, Piazza Dei Cavalieri 7—I-56126 Pisa (Italy); Mazzali, Paolo [Liverpool John Moores University, IC2, 146 Brownlow Hill, Liverpool (United Kingdom); Fransson, Claes [Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Bartel, Norbert [Hartebeesthoek Radio Astronomy Observatory, PO Box 443, Krugersdrop, 1740 (South Africa); Hamuy, Mario [Departamento de Astronoma, Universidad de Chile (Chile); Levesque, Emily [University of Colorado, C327A, Boulder, CO 80309 (United States); MacFadyen, Andrew, E-mail: schakraborti@fas.harvard.edu [New York University, 4 Washington Place, New York, NY 10003 (United States); and others

    2015-06-01

    Gamma-ray bursts (GRBs) are characterized by ultra-relativistic outflows, while supernovae are generally characterized by non-relativistic ejecta. GRB afterglows decelerate rapidly, usually within days, because their low-mass ejecta rapidly sweep up a comparatively larger mass of circumstellar material. However, supernovae with heavy ejecta can be in nearly free expansion for centuries. Supernovae were thought to have non-relativistic outflows except for a few relativistic ones accompanied by GRBs. This clear division was blurred by SN 2009bb, the first supernova with a relativistic outflow without an observed GRB. However, the ejecta from SN 2009bb was baryon loaded and in nearly free expansion for a year, unlike GRBs. We report the first supernova discovered without a GRB but with rapidly decelerating mildly relativistic ejecta, SN 2012ap. We discovered a bright and rapidly evolving radio counterpart driven by the circumstellar interaction of the relativistic ejecta. However, we did not find any coincident GRB with an isotropic fluence of more than one-sixth of the fluence from GRB 980425. This shows for the first time that central engines in SNe Ic, even without an observed GRB, can produce both relativistic and rapidly decelerating outflows like GRBs.

  8. A MISSING-LINK IN THE SUPERNOVA–GRB CONNECTION: THE CASE OF SN 2012ap

    International Nuclear Information System (INIS)

    Chakraborti, Sayan; Soderberg, Alicia; Kamble, Atish; Margutti, Raffaella; Milisavljevic, Dan; Dittmann, Jason; Chomiuk, Laura; Yadav, Naveen; Ray, Alak; Hurley, Kevin; Bietenholz, Michael; Brunthaler, Andreas; Pignata, Giuliano; Pian, Elena; Mazzali, Paolo; Fransson, Claes; Bartel, Norbert; Hamuy, Mario; Levesque, Emily; MacFadyen, Andrew

    2015-01-01

    Gamma-ray bursts (GRBs) are characterized by ultra-relativistic outflows, while supernovae are generally characterized by non-relativistic ejecta. GRB afterglows decelerate rapidly, usually within days, because their low-mass ejecta rapidly sweep up a comparatively larger mass of circumstellar material. However, supernovae with heavy ejecta can be in nearly free expansion for centuries. Supernovae were thought to have non-relativistic outflows except for a few relativistic ones accompanied by GRBs. This clear division was blurred by SN 2009bb, the first supernova with a relativistic outflow without an observed GRB. However, the ejecta from SN 2009bb was baryon loaded and in nearly free expansion for a year, unlike GRBs. We report the first supernova discovered without a GRB but with rapidly decelerating mildly relativistic ejecta, SN 2012ap. We discovered a bright and rapidly evolving radio counterpart driven by the circumstellar interaction of the relativistic ejecta. However, we did not find any coincident GRB with an isotropic fluence of more than one-sixth of the fluence from GRB 980425. This shows for the first time that central engines in SNe Ic, even without an observed GRB, can produce both relativistic and rapidly decelerating outflows like GRBs

  9. STRESS Counting Supernovae

    Science.gov (United States)

    Botticella, M. T.; Cappellaro, E.; Riello, M.; Greggio, L.; Benetti, S.; Patat, F.; Turatto, M.; Altavilla, G.; Pastorello, A.; Valenti, S.; Zampieri, L.; Harutyunyan, A.; Pignata, G.; Taubenberger, S.

    2008-12-01

    The rate of occurrence of supernovae (SNe) is linked to some of the basic ingredients of galaxy evolution, such as the star formation rate, the chemical enrichment and feedback processes. SN rates at intermediate redshift and their dependence on specific galaxy properties have been investigated in the Southern inTermediate Redshift ESO Supernova Search (STRESS). The rate of core collapse SNe (CC SNe) at a redshift of around 0.25 is found to be a factor two higher than the local value, whereas the SNe Ia rate remains almost constant. SN rates in red and blue galaxies were also measured and it was found that the SNe Ia rate seems to be constant in galaxies of different colour, whereas the CC SN rate seems to peak in blue galaxies, as in the local Universe.

  10. Supernovae Discovery Efficiency

    Science.gov (United States)

    John, Colin

    2018-01-01

    Abstract:We present supernovae (SN) search efficiency measurements for recent Hubble Space Telescope (HST) surveys. Efficiency is a key component to any search, and is important parameter as a correction factor for SN rates. To achieve an accurate value for efficiency, many supernovae need to be discoverable in surveys. This cannot be achieved from real SN only, due to their scarcity, so fake SN are planted. These fake supernovae—with a goal of realism in mind—yield an understanding of efficiency based on position related to other celestial objects, and brightness. To improve realism, we built a more accurate model of supernovae using a point-spread function. The next improvement to realism is planting these objects close to galaxies and of various parameters of brightness, magnitude, local galactic brightness and redshift. Once these are planted, a very accurate SN is visible and discoverable by the searcher. It is very important to find factors that affect this discovery efficiency. Exploring the factors that effect detection yields a more accurate correction factor. Further inquires into efficiency give us a better understanding of image processing, searching techniques and survey strategies, and result in an overall higher likelihood to find these events in future surveys with Hubble, James Webb, and WFIRST telescopes. After efficiency is discovered and refined with many unique surveys, it factors into measurements of SN rates versus redshift. By comparing SN rates vs redshift against the star formation rate we can test models to determine how long star systems take from the point of inception to explosion (delay time distribution). This delay time distribution is compared to SN progenitors models to get an accurate idea of what these stars were like before their deaths.

  11. No supernovae detected in two long-duration gamma-ray bursts.

    Science.gov (United States)

    Watson, D; Fynbo, J P U; Thöne, C C; Sollerman, J

    2007-05-15

    There is strong evidence that long-duration gamma-ray bursts (GRBs) are produced during the collapse of a massive star. In the standard version of the collapsar model, a broad-lined and luminous Type Ic core-collapse supernova (SN) accompanies the GRB. This association has been confirmed in observations of several nearby GRBs. Recent observations show that some long-duration GRBs are different. No SN emission accompanied the long-duration GRBs 060505 and 060614 down to limits fainter than any known Type Ic SN and hundreds of times fainter than the archetypal SN 1998bw that accompanied GRB 980425. Multi-band observations of the early afterglows, as well as spectroscopy of the host galaxies, exclude the possibility of significant dust obscuration. Furthermore, the bursts originated in star-forming galaxies, and in the case of GRB 060505, the burst was localized to a compact star-forming knot in a spiral arm of its host galaxy. We find that the properties of the host galaxies, the long duration of the bursts and, in the case of GRB 060505, the location of the burst within its host, all imply a massive stellar origin. The absence of an SN to such deep limits therefore suggests a new phenomenological type of massive stellar death.

  12. Summary of George Mason University SN1987A workshop

    International Nuclear Information System (INIS)

    van den Bergh, S.

    1990-01-01

    The author summaries studies of SN 1987A. This discussion focuses on how theories of core collapse in supernovae have been confirmed by observations of neutrinos produced by SN1987A and observations of the exponential tail of the light curve of SN1987A give strong support to the prediction that this phase of supernova light curves is powered by 56 Co decay

  13. Mass extinctions and supernova explosions

    OpenAIRE

    Korschinek, Gunther

    2016-01-01

    A nearby supernova (SN) explosion could have negatively influenced life on Earth, maybe even been responsible for mass extinctions. Mass extinction poses a significant extinction of numerous species on Earth, as recorded in the paleontologic, paleoclimatic, and geological record of our planet. Depending on the distance between the Sun and the SN, different types of threats have to be considered, such as ozone depletion on Earth, causing increased exposure to the Sun's ultraviolet radiation, o...

  14. Nucleosynthesis in Supernovae

    Science.gov (United States)

    Thielemann, Friedrich-Karl; Isern, Jordi; Perego, Albino; von Ballmoos, Peter

    2018-04-01

    We present the status and open problems of nucleosynthesis in supernova explosions of both types, responsible for the production of the intermediate mass, Fe-group and heavier elements (with the exception of the main s-process). Constraints from observations can be provided through individual supernovae (SNe) or their remnants (e.g. via spectra and gamma-rays of decaying unstable isotopes) and through surface abundances of stars which witness the composition of the interstellar gas at their formation. With a changing fraction of elements heavier than He in these stars (known as metallicity) the evolution of the nucleosynthesis in galaxies over time can be determined. A complementary way, related to gamma-rays from radioactive decays, is the observation of positrons released in β+-decays, as e.g. from ^{26}Al, ^{44}Ti, ^{56,57}Ni and possibly further isotopes of their decay chains (in competition with the production of e+e- pairs in acceleration shocks from SN remnants, pulsars, magnetars or even of particle physics origin). We discuss (a) the role of the core-collapse supernova explosion mechanism for the composition of intermediate mass, Fe-group (and heavier?) ejecta, (b) the transition from neutron stars to black holes as the final result of the collapse of massive stars, and the relation of the latter to supernovae, faint supernovae, and gamma-ray bursts/hypernovae, (c) Type Ia supernovae and their nucleosynthesis (e.g. addressing the ^{55}Mn puzzle), plus (d) further constraints from galactic evolution, γ-ray and positron observations. This is complemented by the role of rare magneto-rotational supernovae (related to magnetars) in comparison with the nucleosynthesis of compact binary mergers, especially with respect to forming the heaviest r-process elements in galactic evolution.

  15. SN2015bh: NGC2770's 4th supernova or a luminous blue variable on its way to a Wolf-Rayet star?

    DEFF Research Database (Denmark)

    Thone, C. C.; de Ugarte Postigo, A.; Leloudas, G.

    2017-01-01

    yr that experienced a possible terminal explosion as type IIn SN in 2015, named SN 2015bh. This possible SN (or " main event") had a precursor peaking similar to 40 days before maximum. The total energy release of the main event ;is similar to 1.8 X 10(49) erg, consistent with a ... 2015bh lies within a spiral arm of NGC2770 next to several small star-forming regions with a metallicity of similar to 0.5 solar and a stellar population age of 7-10 Myr. SN 2015bh shares many similarities with SN 2009ip and may form a new class of objects that exhibit outbursts a few decades prior...

  16. The dark energy survey Y1 supernova search: Survey strategy compared to forecasts and the photometric type Is SN volumetric rate

    Science.gov (United States)

    Fischer, John Arthur

    For 70 years, the physics community operated under the assumption that the expansion of the Universe must be slowing due to gravitational attraction. Then, in 1998, two teams of scientists used Type Ia supernovae to discover that cosmic expansion was actually acceler- ating due to a mysterious "dark energy." As a result, Type Ia supernovae have become the most cosmologically important transient events in the last 20 years, with a large amount of effort going into their discovery as well as understanding their progenitor systems. One such probe for understanding Type Ia supernovae is to use rate measurements to de- termine the time delay between star formation and supernova explosion. For the last 30 years, the discovery of individual Type Ia supernova events has been accelerating. How- ever, those discoveries were happening in time-domain surveys that probed only a portion of the redshift range where expansion was impacted by dark energy. The Dark Energy Survey (DES) is the first project in the "next generation" of time-domain surveys that will discovery thousands of Type Ia supernovae out to a redshift of 1.2 (where dark energy be- comes subdominant) and DES will have better systematic uncertainties over that redshift range than any survey to date. In order to gauge the discovery effectiveness of this survey, we will use the first season's 469 photometrically typed supernovee and compare it with simulations in order to update the full survey Type Ia projections from 3500 to 2250. We will then use 165 of the 469 supernovae out to a redshift of 0.6 to measure the supernovae rate both as a function of comoving volume and of the star formation rate as it evolves with redshift. We find the most statistically significant prompt fraction of any survey to date (with a 3.9? prompt fraction detection). We will also reinforce the already existing tension in the measurement of the delayed fraction between high (z > 1.2) and low red- shift rate measurements, where we find no

  17. Supernova models with slow energy pumping and galactic supernova remnants

    International Nuclear Information System (INIS)

    Utrobin, V.P.

    1978-01-01

    The study of supernova (SN) models with slow energy pumping is continued. At maximum luminosity the main characteristics of a SN are shown to be independent of the initial structure of the model. However, they depend on the mass Msub(e) of the envelope, and on the intensity of energy pumping Lsub(epsilon), with an increase of Msub(e) leading qualitatively to the same changes in the SN parameters as a decrease in Lsub(epsilon). A simple relationship connecting the important SN parameters is obtained. From the inflection of the color index B-V curve, the possibility of deriving the characteristic time of energy pumping with intensity Lsub(epsilon) approximately 10 44 erg s -1 is pointed out. The comparison of the extragalactic type I SN observations with the results of calculations leads to the estimate of Msub(e) approximately 0.3-0.7 solar masses. An investigation of the galactic type I SN remnants is carried out. The estimate of Msub(e) approximately 0.2-0.3 solar masses is obtained for the remnants of supernovae SN 1006, SN 1572, and SN 1604. It completely fits the results for the extragalactic type I SNs. The total initial mass of SN 1604 presupernova was shown to be at least about 7 solar masses. It was established that the Crab nebula resulted from the outburst of a peculiar SN. The unique properties of such SNs, including SN 1054, are due to the low intensity of energy pumping (Lsub(epsilon) approximately 10 42 erg s -1 ). The mass of the envelope of the Crab nebula is evaluated to be Msub(e) approximately 0.7 solar masses. (Auth.)

  18. Type Ia supernova rate studies from the SDSS-II Supernova Study

    Energy Technology Data Exchange (ETDEWEB)

    Dilday, Benjamin [Univ. of Chicago, IL (United States)

    2008-08-01

    The author presents new measurements of the type Ia SN rate from the SDSS-II Supernova Survey. The SDSS-II Supernova Survey was carried out during the Fall months (Sept.-Nov.) of 2005-2007 and discovered ~ 500 spectroscopically confirmed SNe Ia with densely sampled (once every ~ 4 days), multi-color light curves. Additionally, the SDSS-II Supernova Survey has discovered several hundred SNe Ia candidates with well-measured light curves, but without spectroscopic confirmation of type. This total, achieved in 9 months of observing, represents ~ 15-20% of the total SNe Ia discovered worldwide since 1885. The author describes some technical details of the SN Survey observations and SN search algorithms that contributed to the extremely high-yield of discovered SNe and that are important as context for the SDSS-II Supernova Survey SN Ia rate measurements.

  19. Review of speckle observations of Supernova 1987A

    International Nuclear Information System (INIS)

    Meikle, W.P.S.

    1988-01-01

    SN 1987A is sufficiently close to allow a unique examination of the morphology of a supernova, using speckle interferometry. Several groups [Center for Astrophysics (CfA); Imperial College (IC); Mount Stromlo and Siding Spring Observatories/Anglo-Australian Observatory (M/A)] have reported optical speckle observations. At Hα, both CfA and M/A have determined the angular extent of the emission, and reasonable agreement is obtained. The speckle-derived values are consistent with those obtained from line profiles. IC has also succeeded in resolving the supernova at Hα. At wavelengths other than Hα, at early epochs, angular diameters obtained by CfA are larger than those derived from photometric and spectroscopic measurements, possibly due to scattering effects. At later epochs, the diameters exhibit little variation between the wavelengths examined. CfA reports significant asymmetry in the late epoch data. Several attempts have been made to re-observe (at optical wavelengths) the companion object, but none have succeeded. The nature of this phenomenon is still controversial, but the evidence indicates that the companion was real, with emission from dust apparently being the least problematic explanation. Support for this may lie in IR speckle observations (Haute Provence/Lyon) which, on about day 115, indicated the presence of one or more resolved components at an angular displacement comparable to that of the optical companion. 39 refs., 1 fig., 1 tab

  20. Abundance Tomography of Type Ia Supernovae

    International Nuclear Information System (INIS)

    Stehle, M.; Mazzali, P.A.; Hillebrandt, W.

    2005-01-01

    An analysis of early time spectra of Type Ia Supernovae is presented. A new method to derive a detailed abundance distribution of the SN ejecta through comparison with synthetic spectra, called 'Abundance Tomography' is introduced and applied to the normal SN Ia 2002bo. Conclusions regarding the explosion mechanism are drawn

  1. Supernova explosions

    CERN Document Server

    Branch, David

    2017-01-01

    Targeting advanced students of astronomy and physics, as well as astronomers and physicists contemplating research on supernovae or related fields, David Branch and J. Craig Wheeler offer a modern account of the nature, causes and consequences of supernovae, as well as of issues that remain to be resolved. Owing especially to (1) the appearance of supernova 1987A in the nearby Large Magellanic Cloud, (2) the spectacularly successful use of supernovae as distance indicators for cosmology, (3) the association of some supernovae with the enigmatic cosmic gamma-ray bursts, and (4) the discovery of a class of superluminous supernovae, the pace of supernova research has been increasing sharply. This monograph serves as a broad survey of modern supernova research and a guide to the current literature. The book’s emphasis is on the explosive phases of supernovae. Part 1 is devoted to a survey of the kinds of observations that inform us about supernovae, some basic interpreta tions of such data, and an overview of t...

  2. Modelling the interaction of thermonuclear supernova remnants with circumstellar structures: the case of Tycho's supernova remnant

    NARCIS (Netherlands)

    Chiotellis, A.; Kosenko, D.; Schure, K.M.; Vink, J.; Kaastra, J.S.

    2013-01-01

    The well-established Type Ia remnant of Tycho's supernova (SN 1572) reveals discrepant ambient medium-density estimates based on either the measured dynamics or the X-ray emission properties. This discrepancy can potentially be solved by assuming that the supernova remnant (SNR) shock initially

  3. Smoking supernovae

    OpenAIRE

    Gomez, Haley Louise; Eales, Stephen Anthony; Dunne, L.

    2007-01-01

    The question ‘Are supernovae important sources of dust?’ is a contentious one. Observations with the Infrared Astronomical Satellite (IRAS) and the Infrared Space Observatory (ISO) only detected very small amounts of hot dust in supernova remnants. Here, we review observations of two young Galactic remnants with the Submillimetre Common User Bolometer Array (SCUBA), which imply that large quantities of dust are produced by supernovae. The association of dust with the Cassiopeia A remnant is i...

  4. THE HOST GALAXY OF THE SUPER-LUMINOUS SN 2010gx AND LIMITS ON EXPLOSIVE 56Ni PRODUCTION

    International Nuclear Information System (INIS)

    Chen, Ting-Wan; Smartt, Stephen J.; Kotak, Rubina; McCrum, Matt; Fraser, Morgan; Bresolin, Fabio; Kudritzki, Rolf-Peter; Pastorello, Andrea; Valenti, Stefano

    2013-01-01

    Super-luminous supernovae have a tendency to occur in faint host galaxies which are likely to have low mass and low metallicity. While these extremely luminous explosions have been observed from z = 0.1 to 1.55, the closest explosions allow more detailed investigations of their host galaxies. We present a detailed analysis of the host galaxy of SN 2010gx (z = 0.23), one of the best studied super-luminous type Ic supernovae. The host is a dwarf galaxy (M g = –17.42 ± 0.17) with a high specific star formation rate. It has a remarkably low metallicity of 12 + log (O/H) = 7.5 ± 0.1 dex as determined from the detection of the [O III] λ4363 line. This is the first reliable metallicity determination of a super-luminous stripped-envelope supernova host. We collected deep multi-epoch imaging with Gemini + GMOS between 240 and 560 days after explosion to search for any sign of radioactive 56 Ni, which might provide further insights on the explosion mechanism and the progenitor's nature. We reach griz magnitudes of m AB ∼ 26, but do not detect SN 2010gx at these epochs. The limit implies that any 56 Ni production was similar to or below that of SN 1998bw (a luminous type Ic SN that produced around 0.4 M ☉ of 56 Ni). The low volumetric rates of these supernovae (∼10 –4 of the core-collapse population) could be qualitatively matched if the explosion mechanism requires a combination of low-metallicity (below 0.2 Z ☉ ), high progenitor mass (>60 M ☉ ) and high rotation rate (fastest 10% of rotators).

  5. Binary progenitors of supernovae

    Science.gov (United States)

    Trimble, V.

    1984-12-01

    Among the massive stars that are expected to produce Type II, hydrogen-rich supernovae, the presence of a close companion can increase the main sequence mass needed to yield a collapsing core. In addition, due to mass transfer from the primary to the secondary, the companion enhances the stripping of the stellar hydrogen envelope produced by single star winds and thereby makes it harder for the star to give rise to a typical SN II light curve. Among the less massive stars that may be the basis for Type I, hydrogen-free supernovae, a close companion could be an innocent bystander to carbon detonation/deflagration in the primary. It may alternatively be a vital participant which transfers material to a white dwarf primary and drives it to explosive conditions.

  6. SN 2012fr

    DEFF Research Database (Denmark)

    Contreras, Carlos; Phillips, M. M.; Burns, Christopher R.

    2018-01-01

    We present detailed ultraviolet, optical, and near-infrared light curves of the Type Ia supernova (SN) 2012fr, which exploded in the Fornax cluster member NGC 1365. These precise high-cadence light curves provide a dense coverage of the flux evolution from -12 to +140 days with respect to the epo...

  7. Are superluminous supernovae and long GRBs the products of dynamical processes in young dense star clusters?

    Energy Technology Data Exchange (ETDEWEB)

    Van den Heuvel, E. P. J. [Astronomical Institute Anton Pannekoek, University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam (Netherlands); Portegies Zwart, S. F. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2013-12-20

    Superluminous supernovae (SLSNe) occur almost exclusively in small galaxies (Small/Large Magellanic Cloud (SMC/LMC)-like or smaller), and the few SLSNe observed in larger star-forming galaxies always occur close to the nuclei of their hosts. Another type of peculiar and highly energetic supernovae are the broad-line Type Ic SNe (SN Ic-BL) that are associated with long-duration gamma-ray bursts (LGRBs). Also these have a strong preference for occurring in small (SMC/LMC-like or smaller) star-forming galaxies, and in these galaxies LGRBs always occur in the brightest spots. Studies of nearby star-forming galaxies that are similar to the hosts of LGRBs show that these brightest spots are giant H II regions produced by massive dense young star clusters with many hundreds of O- and Wolf-Rayet-type stars. Such dense young clusters are also found in abundance within a few hundred parsecs from the nucleus of larger galaxies like our own. We argue that the SLSNe and the SNe Ic-BL/LGRBs are exclusive products of two types of dynamical interactions in dense young star clusters. In our model the high angular momentum of the collapsing stellar cores required for the engines of an SN Ic-BL results from the post-main-sequence mergers of dynamically produced cluster binaries with almost equal-mass components. The merger produces a critically rotating single helium star with sufficient angular momentum to produce an LGRB; the observed 'metal aversion' of LGRBs is a natural consequence of the model. We argue that, on the other hand, SLSNe could be the products of runaway multiple collisions in dense clusters, and we present (and quantize) plausible scenarios of how the different types of SLSNe can be produced.

  8. supernovae: Photometric classification of supernovae

    Science.gov (United States)

    Charnock, Tom; Moss, Adam

    2017-05-01

    Supernovae classifies supernovae using their light curves directly as inputs to a deep recurrent neural network, which learns information from the sequence of observations. Observational time and filter fluxes are used as inputs; since the inputs are agnostic, additional data such as host galaxy information can also be included.

  9. Hydrogen-Poor Core-Collapse Supernovae

    Science.gov (United States)

    Pian, Elena; Mazzali, Paolo A.

    Hydrogen-poor core-collapse supernovae (SNe) signal the explosive death of stars more massive than the progenitors of hydrogen-rich core-collapse supernovae, i.e., approximately in the range 15-50 M⊙ in main sequence. Since hydrogen-poor core-collapse supernovae include those that accompany gamma-ray bursts (GRBs), which were all rigorously identified with type Ic supernovae, their explosion energies cover almost two decades. The light curves and spectra are consequently very heterogeneous and often bear the signature of an asymmetric, i.e., aspherical, explosion. Asphericity is best traced by early-time (within days of the explosion) optical spectropolarimetry and by late-epoch (more than ˜ 100 days after explosion) low-resolution spectroscopy. While the relationship between hydrogen-poor core-collapse supernovae to hydrogen-poor super-luminous supernovae is not understood, a known case of association between an ultra-long gamma-ray burst and a very luminous hydrogen-poor supernova may help unraveling the connection. This is tantalizingly pointing to a magnetar powering source for both phenomena, although this scenario is still highly speculative. Host galaxies of hydrogen-poor supernovae are always star forming; in those of completely stripped supernovae and gamma-ray burst supernovae, the spatial distribution of the explosions follows the blue/ultraviolet light, with a correlation that is more than linear.

  10. SN 2009E

    DEFF Research Database (Denmark)

    Pastorello...[], A.; Pumo, M.L.; Navasardyan, H.

    2012-01-01

    . In this paper we investigate the properties of SN 2009E, which exploded in a relatively nearby spiral galaxy (NGC 4141) and that is probably the faintest 1987A-like supernova discovered so far. We also attempt to characterize this subgroup of core-collapse supernovae with the help of the literature and present...... observations which started about 2 months after the supernova explosion, highlight significant differences between SN 2009E and the prototypical SN 1987A. Modelling the data of SN 2009E allows us to constrain the explosion parameters and the properties of the progenitor star, and compare the inferred estimates...... 2009E ejected about 0.04 M⊙ of 56Ni, which is the smallest 56Ni mass in our sample of 1987A-like events. Modelling the observations with a radiation hydrodynamics code, we infer for SN 2009E a kinetic plus thermal energy of about 0.6 foe, an initial radius of ~7 × 1012 cm and an ejected mass of ~19 M...

  11. Supernova cosmology

    International Nuclear Information System (INIS)

    Leibundgut, B.

    2005-01-01

    Supernovae have developed into a versatile tool for cosmology. Their impact on the cosmological model has been profound and led to the discovery of the accelerated expansion. The current status of the cosmological model as perceived through supernova observations will be presented. Supernovae are currently the only astrophysical objects that can measure the dynamics of the cosmic expansion during the past eight billion years. Ongoing experiments are trying to determine the characteristics of the accelerated expansion and give insight into what might be the physical explanation for the acceleration. (author)

  12. Supernova models

    International Nuclear Information System (INIS)

    Woosley, S.E.; Weaver, T.A.

    1980-01-01

    Recent progress in understanding the observed properties of Type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the 56 Ni produced therein is reviewed. Within the context of this model for Type I explosions and the 1978 model for Type II explosions, the expected nucleosynthesis and gamma-line spectra from both kinds of supernovae are presented. Finally, a qualitatively new approach to the problem of massive star death and Type II supernovae based upon a combination of rotation and thermonuclear burning is discussed

  13. The Carnegie Supernova Project I. Methods to estimate host-galaxy reddening of stripped-envelope supernovae

    Science.gov (United States)

    Stritzinger, M. D.; Taddia, F.; Burns, C. R.; Phillips, M. M.; Bersten, M.; Contreras, C.; Folatelli, G.; Holmbo, S.; Hsiao, E. Y.; Hoeflich, P.; Leloudas, G.; Morrell, N.; Sollerman, J.; Suntzeff, N. B.

    2018-02-01

    We aim to improve upon contemporary methods to estimate host-galaxy reddening of stripped-envelope (SE) supernovae (SNe). To this end the Carnegie Supernova Project (CSP-I) SE SN photometry data release, consisting of nearly three dozen objects, is used to identify a minimally reddened sub-sample for each traditionally defined spectroscopic sub-type (i.e., SNe IIb, SNe Ib, SNe Ic). Inspection of the optical and near-infrared (NIR) colors and color evolution of the minimally reddened sub-samples reveals a high degree of homogeneity, particularly between 0 d to +20 d relative to B-band maximum. This motivated the construction of intrinsic color-curve templates, which when compared to the colors of reddened SE SNe, yields an entire suite of optical and NIR color excess measurements. Comparison of optical/optical vs. optical/NIR color excess measurements indicates the majority of the CSP-I SE SNe suffer relatively low amounts of reddening (i.e., E(B-V)host 0.20 mag) objects with the Fitzpatrick (1999, PASP, 111, 63) reddening law model provides robust estimates of the host visual-extinction AVhost and RVhost. In the case of the SE SNe with relatively low amounts of reddening, a preferred value of RVhost is adopted for each sub-type, resulting in estimates of AVhost through Fitzpatrick (1999) reddening law model fits to the observed color excess measurements. Our analysis suggests SE SNe reside in galaxies characterized by a range of dust properties. We also find evidence that SNe Ic are more likely to occur in regions characterized by larger RVhost values compared to SNe IIb/Ib and they also tend to suffer more extinction. The later finding is consistent with work in the literature suggesting SNe Ic tend to occur in regions of on-going star formation. Based on observations collected at Las Campanas Observatory.

  14. PISCO: The PMAS/PPak Integral-field Supernova Hosts Compilation

    Science.gov (United States)

    Galbany, L.; Anderson, J. P.; Sánchez, S. F.; Kuncarayakti, H.; Pedraz, S.; González-Gaitán, S.; Stanishev, V.; Domínguez, I.; Moreno-Raya, M. E.; Wood-Vasey, W. M.; Mourão, A. M.; Ponder, K. A.; Badenes, C.; Mollá, M.; López-Sánchez, A. R.; Rosales-Ortega, F. F.; Vílchez, J. M.; García-Benito, R.; Marino, R. A.

    2018-03-01

    We present the PMAS/PPak Integral-field Supernova hosts COmpilation (PISCO), which comprises integral field spectroscopy (IFS) of 232 supernova (SN) host galaxies that hosted 272 SNe, observed over several semesters with the 3.5 m telescope at the Calar Alto Observatory (CAHA). PISCO is the largest collection of SN host galaxies observed with wide-field IFS, totaling 466,347 individual spectra covering a typical spatial resolution of ∼380 pc. Focused studies regarding specific SN Ia-related topics will be published elsewhere; this paper aims to present the properties of the SN environments, using stellar population (SP) synthesis, and the gas-phase interstellar medium, providing additional results separating stripped-envelope SNe into their subtypes. With 11,270 H II regions detected in all galaxies, we present for the first time a statistical analysis of H II regions, which puts H II regions that have hosted SNe in context with all other star-forming clumps within their galaxies. SNe Ic are associated with environments that are more metal-rich and have higher EW(Hα) and higher star formation rate within their host galaxies than the mean of all H II regions detected within each host. This in contrast to SNe IIb, which occur in environments that are very different compared to other core-collapse SNe types. We find two clear components of young and old SPs at SNe IIn locations. We find that SNe II fast decliners tend to explode at locations where the ΣSFR is more intense. Finally, we outline how a future dedicated IFS survey of galaxies in parallel to an untargeted SN search would overcome the biases in current environmental studies.

  15. The nearby supernova factory

    International Nuclear Information System (INIS)

    Wood-Vasey, W.M.; Aldering, G.; Lee, B.C.; Loken, S.; Nugent, P.; Perlmutter, S.; Siegrist, J.; Wang, L.; Antilogus, P.; Astier, P.; Hardin, D.; Pain, R.; Copin, Y.; Smadja, G.; Gangler, E.; Castera, A.; Adam, G.; Bacon, R.; Lemonnier, J.-P.; Pecontal, A.; Pecontal, E.; Kessler, R.

    2004-01-01

    The Nearby Supernova Factory (SNfactory) is an ambitious project to find and study in detail approximately 300 nearby Type Ia supernovae (SNe Ia) at redshifts 0.03 < z < 0.08. This program will provide an exceptional data set of well-studied SNe in the nearby smooth Hubble flow that can be used as calibration for the current and future programs designed to use SNe to measure the cosmological parameters. The first key ingredient for this program is a reliable supply of Hubble-flow SNe systematically discovered in unprecedented numbers using the same techniques as those used in distant SNe searches. In 2002, 35 SNe were found using our test-bed pipeline for automated SN search and discovery. The pipeline uses images from the asteroid search conducted by the Near Earth Asteroid Tracking group at JPL. Improvements in our subtraction techniques and analysis have allowed us to increase our effective SN discovery rate to ∼12 SNe/month in 2003

  16. Supernova observations at McDonald Observatory

    International Nuclear Information System (INIS)

    Wheeler, J.C.

    1984-01-01

    The programs to obtain high quality spectra and photometry of supernovae at McDonald Observatory are reviewed. Spectra of recent Type I supernovae in NGC 3227, NGC 3625, and NGC 4419 are compared with those of SN 1981b in NGC 4536 to quantitatively illustrate both the homogeneity of Type I spectra at similar epochs and the differences in detail which will serve as a probe of the physical processes in the explosions. Spectra of the recent supernova in NGC 0991 give for the first time quantitative confirmation of a spectrally homogeneous, but distinct subclass of Type I supernovae which appears to be less luminous and to have lower excitation at maximum light than classical Type I supernovae

  17. Supernova neutrino detection in LZ

    Science.gov (United States)

    Khaitan, D.

    2018-02-01

    In the first 10 seconds of a core-collapse supernova, almost all of its progenitor's gravitational potential, O(1053 ergs), is carried away in the form of neutrinos. These neutrinos, with O(10 MeV) kinetic energy, can interact via coherent elastic neutrino-nucleus scattering (CEνNS) depositing O(1 keV) in detectors. In this work we describe the performances of low-background dark matter detectors, such as LUX-ZEPLIN (LZ), optimized for detecting low-energy depositions, in detecting these neutrino interactions. For instance, a 27 Msolar supernova at 10 kpc is expected to produce ~350 neutrino interactions in the 7-tonne liquid xenon active volume of LZ. Based on the LS220 EoS neutrino flux model for a SN, the Noble Element Simulation Technique (NEST), and predicted CEνNS cross-sections for xenon, to study energy deposition and detection of SN neutrinos in LZ. We simulate the response of the LZ data acquisition system (DAQ) and demonstrate its capability and limitations in handling this interaction rate. We present an overview of the LZ detector, focusing on the benefits of liquid xenon for supernova neutrino detection. We discuss energy deposition and detector response simulations and their results. We present an analysis technique to reconstruct the total number of neutrinos and the time of the supernova core bounce.

  18. A statistical analysis of angular distribution of neutrino events observed in Kamiokande II and IMB detectors from supernova SN 1987 A

    International Nuclear Information System (INIS)

    Krivoruchenko, M.I.

    1989-01-01

    A detailed statistical analysis of angular distribution of neutrino events observed in Kamiokande II and IMB detectors on UT 07:35, 2/23'87 is carried out. Distribution functions of the mean scattering angles in the reaction anti υ e p→e + n and υe→υe are constructed with account taken of the multiple Coulomb scattering and the experimental angular errors. The Smirnov and Wald-Wolfowitz run tests are used to test the hypothesis that the angular distributions of events from the two detectors agree with each other. We test with the use of the Kolmogorov and Mises statistical criterions the hypothesis that the recorded events all represent anti υ e p→e + n inelastic scatterings. Then the Neyman-Pearson test is applied to each event in testing the hypothesis anti υ e p→e + n against the alternative υe→υe. The hypotheses that the number of elastic events equals s=0, 1, 2, ... against the alternatives s≠0, 1, 2, ... are tested on the basis of the generalized likelihood ratio criterion. The confidence intervals for the number of elastic events are also constructed. The current supernova models fail to give a satisfactory account of the angular distribution data. (orig.)

  19. Radio emission from supernovae. I. One to twelve year old supernovae

    International Nuclear Information System (INIS)

    Weiler, K.W.; Panagia, N.; Sramek, R.A.; Van Der Hulst, J.M.; Roberts, M.S.

    1989-01-01

    All recorded optical supernovae brighter than 14.0 mag from SN 1970A to SN 1981A were observed in May 1982 using VLA at 6 cm. Apart from the known radio supernovae (SN 1970G, SN 1979C, and SN 1980K), radio emissions were not detected from any of the objects to a limit of about 0.5 mJy. Limits on mass-loss rates from the presupernova systems are established. It is found that Type Ia Sns originate in systems which contain very little circumstellar material at the time of explosion. These systems are very different from those which originate Type Ib Sns. With some exceptions, Type II SNs originate with the high presupernova mass-loss rates expected from red supergiant progenitors with original main-sequence masses greater than about 8 solar masses. 16 references

  20. iPTF17cw: An Engine-driven Supernova Candidate Discovered Independent of a Gamma-Ray Trigger

    Energy Technology Data Exchange (ETDEWEB)

    Corsi, A.; Palliyaguru, N. T. [Department of Physics and Astronomy, Texas Tech University, Box 1051, Lubbock, TX 79409-1051 (United States); Cenko, S. B.; Singer, L. P.; Kutyrev, A. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kasliwal, M. M.; Kulkarni, S. R.; Blagorodnova, N.; Kupfer, T.; Vedantham, H. [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Quimby, R. [Department of Astronomy/Mount Laguna Observatory, San Diego State University, San Diego, CA 92182 (United States); Frail, D. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Goldstein, A. M.; Connaughton, V. [Universities Space Research Association, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Perley, D. A.; Copperwheat, C. M.; Piascik, A. S.; Steele, I. A. [Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF (United Kingdom); Fremling, C.; Taddia, F., E-mail: alessandra.corsi@ttu.edu [Oskar Klein Centre, Department of Astronomy, Stockholm University, Albanova University Centre, SE-106 91 Stockholm (Sweden); and others

    2017-09-20

    We present the discovery, classification, and radio-to-X-ray follow-up observations of iPTF17cw, a broad-lined (BL) type Ic supernova (SN) discovered by the intermediate Palomar Transient Factory (iPTF). Although it is unrelated to the gravitational wave trigger, this SN was discovered as a happy by-product of the extensive observational campaign dedicated to the follow-up of Advanced LIGO event GW 170104. The spectroscopic properties and inferred peak bolometric luminosity of iPTF17cw are most similar to the gamma-ray-burst (GRB)-associated SN, SN 1998bw, while the shape of the r -band light curve is most similar to that of the relativistic SN, SN 2009bb. Karl G. Jansky Very Large Array (VLA) observations of the iPTF17cw field reveal a radio counterpart ≈10 times less luminous than SN 1998bw, and with a peak radio luminosity comparable to that of SN 2006aj/GRB 060218 and SN 2010bh/GRB 100316D. Our radio observations of iPTF17cw imply a relativistically expanding outflow. However, further late-time observations with the VLA in its most extended configuration are needed to confirm fading of the iPTF17cw radio counterpart at all frequencies. X-ray observations carried out with Chandra reveal the presence of an X-ray counterpart with a luminosity similar to that of SN 2010bh/GRB 100316D. Searching the Fermi catalog for possible γ -rays reveals that GRB 161228B is spatially and temporally compatible with iPTF17cw. The similarity to SN 1998bw and SN 2009bb, the radio and X-ray detections, and the potential association with GRB 161228B all point to iPTF17cw being a new candidate member of the rare sample of optically discovered engine-driven BL-Ic SNe associated with relativistic ejecta.

  1. iPTF17cw: An Engine-driven Supernova Candidate Discovered Independent of a Gamma-Ray Trigger

    International Nuclear Information System (INIS)

    Corsi, A.; Palliyaguru, N. T.; Cenko, S. B.; Singer, L. P.; Kutyrev, A.; Kasliwal, M. M.; Kulkarni, S. R.; Blagorodnova, N.; Kupfer, T.; Vedantham, H.; Quimby, R.; Frail, D. A.; Goldstein, A. M.; Connaughton, V.; Perley, D. A.; Copperwheat, C. M.; Piascik, A. S.; Steele, I. A.; Fremling, C.; Taddia, F.

    2017-01-01

    We present the discovery, classification, and radio-to-X-ray follow-up observations of iPTF17cw, a broad-lined (BL) type Ic supernova (SN) discovered by the intermediate Palomar Transient Factory (iPTF). Although it is unrelated to the gravitational wave trigger, this SN was discovered as a happy by-product of the extensive observational campaign dedicated to the follow-up of Advanced LIGO event GW 170104. The spectroscopic properties and inferred peak bolometric luminosity of iPTF17cw are most similar to the gamma-ray-burst (GRB)-associated SN, SN 1998bw, while the shape of the r -band light curve is most similar to that of the relativistic SN, SN 2009bb. Karl G. Jansky Very Large Array (VLA) observations of the iPTF17cw field reveal a radio counterpart ≈10 times less luminous than SN 1998bw, and with a peak radio luminosity comparable to that of SN 2006aj/GRB 060218 and SN 2010bh/GRB 100316D. Our radio observations of iPTF17cw imply a relativistically expanding outflow. However, further late-time observations with the VLA in its most extended configuration are needed to confirm fading of the iPTF17cw radio counterpart at all frequencies. X-ray observations carried out with Chandra reveal the presence of an X-ray counterpart with a luminosity similar to that of SN 2010bh/GRB 100316D. Searching the Fermi catalog for possible γ -rays reveals that GRB 161228B is spatially and temporally compatible with iPTF17cw. The similarity to SN 1998bw and SN 2009bb, the radio and X-ray detections, and the potential association with GRB 161228B all point to iPTF17cw being a new candidate member of the rare sample of optically discovered engine-driven BL-Ic SNe associated with relativistic ejecta.

  2. Men and IC

    Science.gov (United States)

    ... Bowel Syndrome Lupus Pelvic Floor Dysfunction Pudendal Neuralgia Sjogren’s Syndrome Vulvodynia Newly Diagnosed Toolkit IC Awareness Toolkit Know ... Bowel Syndrome Lupus Pelvic Floor Dysfunction Pudendal Neuralgia Sjogren’s Syndrome Vulvodynia Newly Diagnosed Toolkit IC Awareness Toolkit Know ...

  3. IC Treatment: Surgical Procedures

    Science.gov (United States)

    ... Bowel Syndrome Lupus Pelvic Floor Dysfunction Pudendal Neuralgia Sjogren’s Syndrome Vulvodynia Newly Diagnosed Toolkit IC Awareness Toolkit Know ... Bowel Syndrome Lupus Pelvic Floor Dysfunction Pudendal Neuralgia Sjogren’s Syndrome Vulvodynia Newly Diagnosed Toolkit IC Awareness Toolkit Know ...

  4. IC: Frequently Asked Questions

    Science.gov (United States)

    ... Bowel Syndrome Lupus Pelvic Floor Dysfunction Pudendal Neuralgia Sjogren’s Syndrome Vulvodynia Newly Diagnosed Toolkit IC Awareness Toolkit Know ... Bowel Syndrome Lupus Pelvic Floor Dysfunction Pudendal Neuralgia Sjogren’s Syndrome Vulvodynia Newly Diagnosed Toolkit IC Awareness Toolkit Know ...

  5. General IC Symptoms

    Science.gov (United States)

    ... Bowel Syndrome Lupus Pelvic Floor Dysfunction Pudendal Neuralgia Sjogren’s Syndrome Vulvodynia Newly Diagnosed Toolkit IC Awareness Toolkit Know ... Bowel Syndrome Lupus Pelvic Floor Dysfunction Pudendal Neuralgia Sjogren’s Syndrome Vulvodynia Newly Diagnosed Toolkit IC Awareness Toolkit Know ...

  6. Children and IC

    Science.gov (United States)

    ... Cola, and Orange Crush, for example), Kool-Aid, chocolate, and many fruits, fruit juices and drinks (including ... Guideline IC Treatments IC Diet & Self Management Physical Therapy Antidepressants Antihistamines Pentosan Polysulfate Sodium Bladder Instillations Immunosuppresants ...

  7. The supernova-gamma-ray burst-jet connection.

    Science.gov (United States)

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  8. PROBING SHOCK BREAKOUT AND PROGENITORS OF STRIPPED-ENVELOPE SUPERNOVAE THROUGH THEIR EARLY RADIO EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Keiichi, E-mail: keiichi.maeda@ipmu.jp [Kavli Institute for the Physics and Mathematics of the Universe (Kavli-IPMU), Todai Institutes for Advanced Study (TODIAS), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)

    2013-01-01

    We study properties of early radio emission from stripped-envelope supernovae (SNe; those of Type IIb/Ib/Ic). We suggest there is a sub-class of stripped-envelope SNe based on their radio properties, including the optically well-studied Type Ic SNe (SNe Ic) 2002ap and 2007gr, showing a rapid rise to a radio peak within {approx}10 days and reaching a low luminosity (at least an order of magnitude fainter than a majority of SNe IIb/Ib/Ic). They show a decline after the peak that is shallower than that of other stripped-envelope SNe while their spectral index is similar. We show that all these properties are naturally explained if the circumstellar material (CSM) density is low and therefore the forward shock is expanding into the CSM without deceleration. Since the forward shock velocity in this situation, as estimated from the radio properties, still records the maximum velocity of the SN ejecta following the shock breakout, observing these SNe in radio wavelengths provides new diagnostics on the nature of both the breakout and the progenitor which otherwise require a quite rapid follow-up in other wavelengths. The inferred post-shock breakout velocities of SNe Ic 2002ap and 2007gr are sub-relativistic, {approx}0.3c. These are higher than that inferred for SN II 1987A, in line with suggested compact progenitors. However, these are lower than expected for a Wolf-Rayet (W-R) progenitor. It may reflect an as yet unresolved nature of the progenitors just before the explosion, and we suggest that the W-R progenitor envelopes might have been inflated which could quickly reduce the maximum ejecta velocity from the initial shock breakout velocity.

  9. Gaia17biu/SN 2017egm in NGC 3191: The Closest Hydrogen-poor Superluminous Supernova to Date Is in a “Normal,” Massive, Metal-rich Spiral Galaxy

    Science.gov (United States)

    Bose, Subhash; Dong, Subo; Pastorello, A.; Filippenko, Alexei V.; Kochanek, C. S.; Mauerhan, Jon; Romero-Cañizales, C.; Brink, Thomas G.; Chen, Ping; Prieto, J. L.; Post, R.; Ashall, Christopher; Grupe, Dirk; Tomasella, L.; Benetti, Stefano; Shappee, B. J.; Stanek, K. Z.; Cai, Zheng; Falco, E.; Lundqvist, Peter; Mattila, Seppo; Mutel, Robert; Ochner, Paolo; Pooley, David; Stritzinger, M. D.; Villanueva, S., Jr.; Zheng, WeiKang; Beswick, R. J.; Brown, Peter J.; Cappellaro, E.; Davis, Scott; Fraser, Morgan; de Jaeger, Thomas; Elias-Rosa, N.; Gall, C.; Gaudi, B. Scott; Herczeg, Gregory J.; Hestenes, Julia; Holoien, T. W.-S.; Hosseinzadeh, Griffin; Hsiao, E. Y.; Hu, Shaoming; Jaejin, Shin; Jeffers, Ben; Koff, R. A.; Kumar, Sahana; Kurtenkov, Alexander; Lau, Marie Wingyee; Prentice, Simon; Reynolds, T.; Rudy, Richard J.; Shahbandeh, Melissa; Somero, Auni; Stassun, Keivan G.; Thompson, Todd A.; Valenti, Stefano; Woo, Jong-Hak; Yunus, Sameen

    2018-01-01

    Hydrogen-poor superluminous supernovae (SLSNe-I) have been predominantly found in low-metallicity, star-forming dwarf galaxies. Here we identify Gaia17biu/SN 2017egm as an SLSN-I occurring in a “normal” spiral galaxy (NGC 3191) in terms of stellar mass (several times 1010 M⊙) and metallicity (roughly solar). At redshift z = 0.031, Gaia17biu is also the lowest-redshift SLSN-I to date, and the absence of a larger population of SLSNe-I in dwarf galaxies of similar redshift suggests that metallicity is likely less important to the production of SLSNe-I than previously believed. With the smallest distance and highest apparent brightness for an SLSN-I, we are able to study Gaia17biu in unprecedented detail. Its pre-peak near-ultraviolet to optical color is similar to that of Gaia16apd and among the bluest observed for an SLSN-I, while its peak luminosity (Mg = ‑21 mag) is substantially lower than that of Gaia16apd. Thanks to the high signal-to-noise ratios of our spectra, we identify several new spectroscopic features that may help to probe the properties of these enigmatic explosions. We detect polarization at the ∼0.5% level that is not strongly dependent on wavelength, suggesting a modest, global departure from spherical symmetry. In addition, we put the tightest upper limit yet on the radio luminosity of an SLSN-I with early stage in the evolution of an SLSN-I. This limit largely rules out an association of this SLSN-I with known populations of gamma-ray-burst-like central engines.

  10. Peculiar Supernovae

    Science.gov (United States)

    Milisavljevic, Dan; Margutti, Raffaella

    2018-06-01

    What makes a supernova truly "peculiar?" In this review we attempt to address this question by tracing the history of the use of "peculiar" as a descriptor of non-standard supernovae back to the original binary spectroscopic classification of Type I vs. Type II proposed by Minkowski (Publ. Astron. Soc. Pac., 53:224, 1941). A handful of noteworthy examples are highlighted to illustrate a general theme: classes of supernovae that were once thought to be peculiar are later seen as logical branches of standard events. This is not always the case, however, and we discuss ASASSN-15lh as an example of a transient with an origin that remains contentious. We remark on how late-time observations at all wavelengths (radio-through-X-ray) that probe 1) the kinematic and chemical properties of the supernova ejecta and 2) the progenitor star system's mass loss in the terminal phases preceding the explosion, have often been critical in understanding the nature of seemingly unusual events.

  11. SN 1987A. Theory

    International Nuclear Information System (INIS)

    Schaeffer, R.

    1987-03-01

    SN 1987A was unique in many aspects. The most striking, undoubtedly, is its low luminosity, nearly two orders of magnitude below the expectations based on supernovae currently observed in external galaxies. The rise time of the optical emission, usually a few days, was for SN 1987A, of the order of a few hours. Also its surface temperature is surprisingly low, 5000K. The neutrino burst has been detected. It was observed twice, with a time difference of 5 hours, the second burst occurring within 3 hours of the onset of the optical signal. In this talk, I will discuss how these strange events fit with the theoretical models of supernova explosions, how they differ in some cases, and try to evaluate the degree of certainty -or uncertainty- of our present knowledge on how these extremely powerful star explosions occur

  12. Simulating Supernova Light Curves

    International Nuclear Information System (INIS)

    Even, Wesley Paul; Dolence, Joshua C.

    2016-01-01

    This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth's atmosphere.

  13. Simulating Supernova Light Curves

    Energy Technology Data Exchange (ETDEWEB)

    Even, Wesley Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dolence, Joshua C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth’s atmosphere.

  14. New possibilities in supernova accretion phase from dense matter effect

    Science.gov (United States)

    Chakraborty, S.; Mirizzi, A.; Saviano, N.

    2012-07-01

    We carry out a detailed analysis of the supernova (SN) neutrino flavor evolution during the accretion phase (at post-bounce times tpb Mikheyev-Smirnov-Wolfenstein effect in the SN mantle and Earth matter effects, can reveal the neutrino mass hierarchy in the likely case that the mixing angle θ13 is not very small.

  15. THE FIRST SYSTEMATIC STUDY OF TYPE Ibc SUPERNOVA MULTI-BAND LIGHT CURVES

    International Nuclear Information System (INIS)

    Drout, Maria R.; Soderberg, Alicia M.; Gal-Yam, Avishay; Arcavi, Iair; Green, Yoav; Cenko, S. Bradley; Fox, Derek B.; Leonard, Douglas C.; Sand, David J.; Moon, Dae-Sik

    2011-01-01

    We present detailed optical photometry for 25 Type Ibc supernovae (SNe Ibc) within d ≈ 150 Mpc obtained with the robotic Palomar 60 inch telescope in 2004-2007. This study represents the first uniform, systematic, and statistical sample of multi-band SNe Ibc light curves available to date. We correct the light curves for host galaxy extinction using a new technique based on the photometric color evolution, namely, we show that the (V – R) color of extinction-corrected SNe Ibc at Δt ≈ 10 days after V-band maximum is tightly distributed, ((V – R) V10 ) = 0.26 ± 0.06 mag. Using this technique, we find that SNe Ibc typically suffer from significant host galaxy extinction, (E(B – V)) ≈ 0.4 mag. A comparison of the extinction-corrected light curves for helium-rich (Type Ib) and helium-poor (Type Ic) SNe reveals that they are statistically indistinguishable, both in luminosity and decline rate. We report peak absolute magnitudes of (M R ) = –17.9 ± 0.9 mag and (M R ) = –18.3 ± 0.6 mag for SNe Ib and Ic, respectively. Focusing on the broad-lined (BL) SNe Ic, we find that they are more luminous than the normal SNe Ibc sample, (M R ) = –19.0 ± 1.1 mag, with a probability of only 1.6% that they are drawn from the same population of explosions. By comparing the peak absolute magnitudes of SNe Ic-BL with those inferred for local engine-driven explosions (GRB-SN 1998bw, XRF-SN 2006aj, and SN 2009bb) we find a 25% probability that relativistic SNe are drawn from the overall SNe Ic-BL population. Finally, we fit analytic models to the light curves to derive typical 56 Ni masses of M Ni ≈ 0.2 and 0.5 M ☉ for SNe Ibc and SNe Ic-BL, respectively. With reasonable assumptions for the photospheric velocities, we further extract kinetic energy and ejecta mass values of M ej ≈ 2 M ☉ and E K ≈ 10 51 erg for SNe Ibc, while for SNe Ic-BL we find higher values, M ej ≈ 5 M ☉ and E K ≈ 10 52 erg. We discuss the implications for the progenitors of SNe Ibc

  16. Magnetorotational Explosions of Core-Collapse Supernovae

    Directory of Open Access Journals (Sweden)

    Gennady S. Bisnovatyi-Kogan

    2014-12-01

    Full Text Available Core-collapse supernovae are accompanied by formation of neutron stars. The gravitation energy is transformed into the energy of the explosion, observed as SN II, SN Ib,c type supernovae. We present results of 2-D MHD simulations, where the source of energy is rotation, and magnetic eld serves as a "transition belt" for the transformation of the rotation energy into the energy of the explosion. The toroidal part of the magnetic energy initially grows linearly with time due to dierential rotation. When the twisted toroidal component strongly exceeds the poloidal eld, magneto-rotational instability develops, leading to a drastic acceleration in the growth of magnetic energy. Finally, a fast MHD shock is formed, producing a supernova explosion. Mildly collimated jet is produced for dipole-like type of the initial field. At very high initial magnetic field no MRI development was found.

  17. Asymmetry of the envelope of supernova 1987A

    Energy Technology Data Exchange (ETDEWEB)

    Papaliolios, C.; Karovska, M.; Koechlin, L.; Nisenson, P.; Standley, C.; Heathcote, S.

    1989-04-13

    The supernova SN1987A in the Large Magellanic Cloud has been observed by high-angular-resolution speckle interferometry since 25 March (30 days after the explosion) with the 4-m telescope at the Cerro Tololo Interamerican Observatory. Data obtained on 25 March and 2 April 1987 revealed a second bright 'companion' source separated from the supernova by 60 milliarcseconds and less than three magnitudes fainter than the supernova. Measurements of the average diameter of the supernova envelope have been made from data recorded from March 1987 to April 1988. Here we present a more detailed analysis of these data, which shows that the expanding envelope is asymmetric. (author).

  18. Asymmetry of the envelope of supernova 1987A

    International Nuclear Information System (INIS)

    Papaliolios, C.; Karovska, M.; Koechlin, L.; Nisenson, P.; Standley, C.; Heathcote, S.

    1989-01-01

    The supernova SN1987A in the Large Magellanic Cloud has been observed by high-angular-resolution speckle interferometry since 25 March (30 days after the explosion) with the 4-m telescope at the Cerro Tololo Interamerican Observatory. Data obtained on 25 March and 2 April 1987 revealed a second bright 'companion' source separated from the supernova by 60 milliarcseconds and less than three magnitudes fainter than the supernova. Measurements of the average diameter of the supernova envelope have been made from data recorded from March 1987 to April 1988. Here we present a more detailed analysis of these data, which shows that the expanding envelope is asymmetric. (author)

  19. Happy birthday, supernova

    International Nuclear Information System (INIS)

    Schorn, R.A.

    1988-01-01

    The advances in understanding that have been made concerning SN 1987A in the year since it appeared are reviewed. The rapidity of the initial rise in brightness and the relatively faint absolute magnitude during the first few weeks have been found to be due to the progenitor star's being a blue giant, relatively small compared to a red giant. The nitrogen lines in the spectrum are evidence that the star was once a red giant whose stellar wind was so strong that the resulting loss of material converted the star into a blue giant. The variations in the light curve of the supernova are explained in terms of the radioactive decay of Ni-56 and Co-56 and the interaction of the resulting gamma rays with the debris cloud. Some of the remaining unanswered questions are summarized

  20. Supernova models

    International Nuclear Information System (INIS)

    Woosley, S.E.; California, University, Livermore, CA); Weaver, T.A.

    1981-01-01

    Recent progress in understanding the observed properties of type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the Ni-56 produced therein is reviewed. The expected nucleosynthesis and gamma-line spectra for this model of type I explosions and a model for type II explosions are presented. Finally, a qualitatively new approach to the problem of massive star death and type II supernovae based upon a combination of rotation and thermonuclear burning is discussed. While the theoretical results of existing models are predicated upon the assumption of a successful core bounce calculation and the neglect of such two-dimensional effects as rotation and magnetic fields the new model suggests an entirely different scenario in which a considerable portion of the energy carried by an equatorially ejected blob is deposited in the red giant envelope overlying the mantle of the star

  1. Supernova neutrinos

    International Nuclear Information System (INIS)

    John Beacom

    2003-01-01

    We propose that neutrino-proton elastic scattering, ν + p → ν + p, can be used for the detection of supernova neutrinos. Though the proton recoil kinetic energy spectrum is soft, with T p ≅ 2E ν 2 /M p , and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from (bar ν) e + p → e + + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum, which solves a long-standing problem of how to separately measure the total energy release and temperature of ν μ , ν τ , (bar ν) μ , and (bar ν) τ . The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos

  2. A trio of gamma-ray burst supernovae

    DEFF Research Database (Denmark)

    Cano, Z.; Ugarte Postigo, Antonio de; Pozanenko, A.

    2014-01-01

    We present optical and near-infrared (NIR) photometry for three gamma-ray burst supernovae (GRB-SNe): GRB 120729A, GRB 130215A / SN 2013ez and GRB 130831A / SN 2013fu. In the case of GRB 130215A / SN 2013ez, we also present optical spectroscopy at t-t0=16.1 d, which covers rest-frame 3000...

  3. Probing Neutrino Mass Hierarchy with Supernova

    International Nuclear Information System (INIS)

    Chakraborty, Sovan

    2013-01-01

    The rise time of electron antineutrino lightcurve from a Galactic supernova (SN), observable at the IceCube Cherenkov detector, can provide signature of the neutrino mass hierarchy at “large” 1-3 leptonic mixing angle ϑ 13 . In the early accretion phase of the SN, the neutrino oscillations are nontrivial. Due to the matter suppression of collective effects at these early post bounce times, only the MSW resonances in the outer layers of the SN influence the neutrino flux. When the oscillations are taken into account, the signal in IceCube shows sufficiently fast rise time for the inverted mass hierarchy compared to the normal hierarchy. An investigation with an extensive set of stellar core-collapse simulations, provides both qualitative and quantitative robustness of these features. Thus opening another avenue to explore the neutrino mass hierarchy with the rise time of a supernova burst

  4. Super-luminous Type II supernovae powered by magnetars

    Science.gov (United States)

    Dessart, Luc; Audit, Edouard

    2018-05-01

    Magnetar power is believed to be at the origin of numerous super-luminous supernovae (SNe) of Type Ic, arising from compact, hydrogen-deficient, Wolf-Rayet type stars. Here, we investigate the properties that magnetar power would have on standard-energy SNe associated with 15-20 M⊙ supergiant stars, either red (RSG; extended) or blue (BSG; more compact). We have used a combination of Eulerian gray radiation-hydrodynamics and non-LTE steady-state radiative transfer to study their dynamical, photometric, and spectroscopic properties. Adopting magnetar fields of 1, 3.5, 7 × 1014 G and rotational energies of 0.4, 1, and 3 × 1051 erg, we produce bolometric light curves with a broad maximum covering 50-150 d and a magnitude of 1043-1044 erg s-1. The spectra at maximum light are analogous to those of standard SNe II-P but bluer. Although the magnetar energy is channelled in equal proportion between SN kinetic energy and SN luminosity, the latter may be boosted by a factor of 10-100 compared to a standard SN II. This influence breaks the observed relation between brightness and ejecta expansion rate of standard Type II SNe. Magnetar energy injection also delays recombination and may even cause re-ionization, with a reversal in photospheric temperature and velocity. Depositing the magnetar energy in a narrow mass shell at the ejecta base leads to the formation of a dense shell at a few 1000 km s-1, which causes a light-curve bump at the end of the photospheric phase. Depositing this energy over a broad range of mass in the inner ejecta, to mimic the effect of multi-dimensional fluid instabilities, prevents the formation of a dense shell and produces an earlier-rising and smoother light curve. The magnetar influence on the SN radiation is generally not visible prior to 20-30 d, during which one may discern a BSG from a RSG progenitor. We propose a magnetar model for the super-luminous Type II SN OGLE-SN14-073.

  5. Neutrinos from type-II supernovae and the neutrino-driven supernova mechanism

    International Nuclear Information System (INIS)

    Janka, H.T.

    1996-01-01

    Supernova 1987A has confirmed fundamental aspects of our theoretical view of type-II supernovae: Type-II supernovae are a consequence of the collapse of the iron core of a massive evolved star and lead to the formation of a neutron star or black hole. This picture is most strongly supported by the detection of electron antineutrinos in the IMB and Kamiokande II experiments in connection with SN 1987A. However, the mechanism causing the supernova explosion is not yet satisfactorily understood. In this paper the properties of the neutrino emission from supernovae and protoneutron stars will be reviewed; analytical estimates will be derived and results of numerical simulations will be shown. It will be demonstrated that the spectral distributions of the emitted neutrinos show clear and systematic discrepancies compared with thermal (black body-type) emission. This must be taken into account when neutrino observations from supernovae are to be interpreted, or when implications of the neutrino emission on nucleosynthesis processes in mantle and envelope of the progenitor star are to be investigated. Furthermore, the influence of neutrinos on the supernova dynamics will be discussed, in particular their crucial role in causing the explosion by Wilson's neutrino-driven delayed mechanism. Possible implications of convection inside the newly born neutron star and between surface and the supernova shock will be addressed and results of multi-dimensional simulations will be presented. (author) 7 figs., 1 tab., refs

  6. Neutrinos from type-II supernovae and the neutrino-driven supernova mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Janka, H T [Max-Planck-Institut fuer Astrophysik, Garching (Germany)

    1996-11-01

    Supernova 1987A has confirmed fundamental aspects of our theoretical view of type-II supernovae: Type-II supernovae are a consequence of the collapse of the iron core of a massive evolved star and lead to the formation of a neutron star or black hole. This picture is most strongly supported by the detection of electron antineutrinos in the IMB and Kamiokande II experiments in connection with SN 1987A. However, the mechanism causing the supernova explosion is not yet satisfactorily understood. In this paper the properties of the neutrino emission from supernovae and protoneutron stars will be reviewed; analytical estimates will be derived and results of numerical simulations will be shown. It will be demonstrated that the spectral distributions of the emitted neutrinos show clear and systematic discrepancies compared with thermal (black body-type) emission. This must be taken into account when neutrino observations from supernovae are to be interpreted, or when implications of the neutrino emission on nucleosynthesis processes in mantle and envelope of the progenitor star are to be investigated. Furthermore, the influence of neutrinos on the supernova dynamics will be discussed, in particular their crucial role in causing the explosion by Wilson`s neutrino-driven delayed mechanism. Possible implications of convection inside the newly born neutron star and between surface and the supernova shock will be addressed and results of multi-dimensional simulations will be presented. (author) 7 figs., 1 tab., refs.

  7. Pregnancy and IC

    Science.gov (United States)

    ... have not already done so, try to identify foods, beverages, and supplements that are irritating to your bladder ... Other Medicines Over-the-counter Medicines Pain Management Management of IC ... Diet Food Diaries Least and Most Bothersome Foods IC-Friendly ...

  8. The discovery of the most distant known type Ia supernova at redshift 1.914

    DEFF Research Database (Denmark)

    Jones, Dennis; Rodney, S.A.; Riess, A.G.

    2013-01-01

    We present the discovery of a Type Ia supernova (SN) at redshift z = 1.914 from the CANDELS multi-cycle treasury program on the Hubble Space Telescope (HST). This SN was discovered in the infrared using the Wide-Field Camera 3, and it is the highest-redshift Type Ia SN yet observed. We classify t...

  9. Nucleosynthesis and hydrodynamic instabilities in core collapse supernovae

    International Nuclear Information System (INIS)

    Kifonidis, K.

    2001-01-01

    Hydrodynamic instabilities are of crucial importance for the explosion of massive stars as core collapse supernovae, for the synthesis of the heavy elements, and for their injection into the interstellar medium. The processes hereby involved are studied by means of two-dimensional hydrodynamic simulations which follow all phases from shock revival to shock breakout through the photosphere of a massive star. The computed distributions of radioactive elements are compared to observational data of SN 1987 A and other supernovae. While we find good agreement of our models with observations of Type Ib supernovae, the high velocities of iron group elements observed in SN 1987 A cannot be reproduced. Possible reasons for this discrepancy are discussed. Hydrodynamic instabilities are of crucial importance for the explosion of massive stars as core collapse supernovae, for the synthesis of the heavy elements, and for their injection into the interstellar medium. The processes hereby involved are studied by means of two-dimensional hydrodynamic simulations which follow all phases from shock revival to shock breakout through the photosphere of a massive star. The computed distributions of radioactive elements are compared to observational data of SN 1987 A and other supernovae. While we find good agreement of our models with observations of Type Ib supernovae, the high velocities of iron group elements observed in SN 1987 A cannot be reproduced. Possible reasons for this discrepancy are discussed

  10. On neutron star/supernova remnant associations

    OpenAIRE

    Gvaramadze, V. V.

    2000-01-01

    It is pointed out that a cavity supernova (SN) explosion of a moving massive star could result in a significant offset of the neutron star (NS) birth-place from the geometrical centre of the supernova remnant (SNR). Therefore: a) the high implied transverse velocities of a number of NSs (e.g. PSR B1610-50, PSR B1757-24, SGR0525-66) could be reduced; b) the proper motion vector of a NS should not necessarily point away from the geometrical centre of the associated SNR; c) the circle of possibl...

  11. IC Associated Conditions

    Science.gov (United States)

    ... Bowel Syndrome Lupus Pelvic Floor Dysfunction Pudendal Neuralgia Sjogren’s Syndrome Vulvodynia Newly Diagnosed Toolkit IC Awareness Toolkit Know ... Bowel Syndrome Lupus Pelvic Floor Dysfunction Pudendal Neuralgia Sjogren’s Syndrome Vulvodynia Click to learn more about these and ...

  12. LD to IC

    CERN Multimedia

    Association du personnel

    2010-01-01

    LC to IC – Publication of posts: Following the publication of new LD to IC posts, we regret that a large number of post descriptions are not available in both CERN official languages, English and French. Consequently, the Staff Association has decided to provide assistance to those who need it with the translation of one or more posts of interest. To do this, please contact the Staff Association secretariat, tel. 72819 or 72761 or 74224.

  13. Evidence for nearby supernova explosions

    International Nuclear Information System (INIS)

    Benitez, Narciso; Maiz-Apellaniz, Jesus; Canelles, Matilde

    2002-01-01

    Supernova (SN) explosions are one of the most energetic--and potentially lethal--phenomena in the Universe. We show that the Scorpius-Centaurus OB association, a group of young stars currently located at ∼130 pc from the Sun, has generated 20 SN explosions during the last 11 Myr, some of them probably as close as 40 pc to our planet. The deposition on Earth of 60 Fe atoms produced by these explosions can explain the recent measurements of an excess of this isotope in deep ocean crust samples. We propose that ∼2 Myr ago, one of the SNe exploded close enough to Earth to seriously damage the ozone layer, provoking or contributing to the Pliocene-Pleistocene boundary marine extinction

  14. Photometry of High-Redshift Gravitationally Lensed Type Ia Supernovae

    Science.gov (United States)

    Haynie, Annastasia

    2018-01-01

    Out of more than 1100 well-identified Type Ia Supernovae, only roughly 10 of them are at z> 1.5. High redshift supernovae are hard to detect but this is made easier by taking advantage of the effects of gravitational lensing, which magnifies objects in the background field of massive galaxy clusters. Supernova Nebra (z= ~1.8), among others, was discovered during observations taken as part of the RELICS survey, which focused on fields of view that experience strong gravitational lensing effects. SN Nebra, which sits behind galaxy cluster Abell 1763, is magnified and therefore appears closer and easier to see than with HST alone. Studying high-redshift supernovae like SN Nebra is an important step towards creating cosmological models that accurately describe the behavior of dark energy in the early Universe. Recent efforts have been focused on improving photometry and the building and fitting of preliminary light curves.

  15. Photometric classification of type Ia supernovae in the SuperNova Legacy Survey with supervised learning

    Energy Technology Data Exchange (ETDEWEB)

    Möller, A. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Ruhlmann-Kleider, V.; Leloup, C.; Neveu, J.; Palanque-Delabrouille, N.; Rich, J. [Irfu, SPP, CEA Saclay, F-91191 Gif sur Yvette Cedex (France); Carlberg, R. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H8 (Canada); Lidman, C. [Australian Astronomical Observatory, North Ryde, NSW 2113 (Australia); Pritchet, C., E-mail: anais.moller@anu.edu.au, E-mail: vanina.ruhlmann-kleider@cea.fr, E-mail: clement.leloup@cea.fr, E-mail: jneveu@lal.in2p3.fr, E-mail: nathalie.palanque-delabrouille@cea.fr, E-mail: james.rich@cea.fr, E-mail: raymond.carlberg@utoronto.ca, E-mail: chris.lidman@aao.gov.au, E-mail: pritchet@uvic.ca [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, BC V8W 3P6 (Canada)

    2016-12-01

    In the era of large astronomical surveys, photometric classification of supernovae (SNe) has become an important research field due to limited spectroscopic resources for candidate follow-up and classification. In this work, we present a method to photometrically classify type Ia supernovae based on machine learning with redshifts that are derived from the SN light-curves. This method is implemented on real data from the SNLS deferred pipeline, a purely photometric pipeline that identifies SNe Ia at high-redshifts (0.2 < z < 1.1). Our method consists of two stages: feature extraction (obtaining the SN redshift from photometry and estimating light-curve shape parameters) and machine learning classification. We study the performance of different algorithms such as Random Forest and Boosted Decision Trees. We evaluate the performance using SN simulations and real data from the first 3 years of the Supernova Legacy Survey (SNLS), which contains large spectroscopically and photometrically classified type Ia samples. Using the Area Under the Curve (AUC) metric, where perfect classification is given by 1, we find that our best-performing classifier (Extreme Gradient Boosting Decision Tree) has an AUC of 0.98.We show that it is possible to obtain a large photometrically selected type Ia SN sample with an estimated contamination of less than 5%. When applied to data from the first three years of SNLS, we obtain 529 events. We investigate the differences between classifying simulated SNe, and real SN survey data. In particular, we find that applying a thorough set of selection cuts to the SN sample is essential for good classification. This work demonstrates for the first time the feasibility of machine learning classification in a high- z SN survey with application to real SN data.

  16. Photometric classification of type Ia supernovae in the SuperNova Legacy Survey with supervised learning

    International Nuclear Information System (INIS)

    Möller, A.; Ruhlmann-Kleider, V.; Leloup, C.; Neveu, J.; Palanque-Delabrouille, N.; Rich, J.; Carlberg, R.; Lidman, C.; Pritchet, C.

    2016-01-01

    In the era of large astronomical surveys, photometric classification of supernovae (SNe) has become an important research field due to limited spectroscopic resources for candidate follow-up and classification. In this work, we present a method to photometrically classify type Ia supernovae based on machine learning with redshifts that are derived from the SN light-curves. This method is implemented on real data from the SNLS deferred pipeline, a purely photometric pipeline that identifies SNe Ia at high-redshifts (0.2 < z < 1.1). Our method consists of two stages: feature extraction (obtaining the SN redshift from photometry and estimating light-curve shape parameters) and machine learning classification. We study the performance of different algorithms such as Random Forest and Boosted Decision Trees. We evaluate the performance using SN simulations and real data from the first 3 years of the Supernova Legacy Survey (SNLS), which contains large spectroscopically and photometrically classified type Ia samples. Using the Area Under the Curve (AUC) metric, where perfect classification is given by 1, we find that our best-performing classifier (Extreme Gradient Boosting Decision Tree) has an AUC of 0.98.We show that it is possible to obtain a large photometrically selected type Ia SN sample with an estimated contamination of less than 5%. When applied to data from the first three years of SNLS, we obtain 529 events. We investigate the differences between classifying simulated SNe, and real SN survey data. In particular, we find that applying a thorough set of selection cuts to the SN sample is essential for good classification. This work demonstrates for the first time the feasibility of machine learning classification in a high- z SN survey with application to real SN data.

  17. Supernova light-curve fitters and dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Bengochea, Gabriel R., E-mail: gabriel@iafe.uba.a [Instituto de Astronomia y Fisica del Espacio (IAFE), CC 67, Suc. 28, 1428 Buenos Aires (Argentina)

    2011-01-24

    We show that when a procedure is made to remove the tension between a supernova Ia (SN Ia) data set and observations from BAO and CMB, there might be the case where the same SN Ia set built with two different light-curve fitters behaves as two separate and distinct supernova sets, and the tension found by some authors between supernova sets actually could be due to tension or inconsistency between fitters. We also show that the information of the fitter used in an SN Ia data set could be relevant to determine whether phantom type models are favored or not when such a set is combined with the BAO/CMB joint parameter.

  18. Supernova light-curve fitters and dark energy

    International Nuclear Information System (INIS)

    Bengochea, Gabriel R.

    2011-01-01

    We show that when a procedure is made to remove the tension between a supernova Ia (SN Ia) data set and observations from BAO and CMB, there might be the case where the same SN Ia set built with two different light-curve fitters behaves as two separate and distinct supernova sets, and the tension found by some authors between supernova sets actually could be due to tension or inconsistency between fitters. We also show that the information of the fitter used in an SN Ia data set could be relevant to determine whether phantom type models are favored or not when such a set is combined with the BAO/CMB joint parameter.

  19. Pair production of helicity-flipped neutrinos in supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A. (NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Box 500, Batavia, Illinois 60510-0500 (USA) Departamento de Fisica Teorica, Universidad de Valencia, 46100 Burjassot (Valencia) (Spain)); Gandhi, R. (Department of Physics and Astronomy, University of Arizona, Tucson, AZ (USA))

    1990-04-15

    We calculate the emissivity for the pair production of helicity-flipped neutrinos, in a way that can be used in supernova calculations. We also present some simple estimates which show that such a process can act as an efficient energy-loss mechanism in the shocked supernova core, and we use this fact to estimate neutrino mass limits from SN 1987A neutrino observations.

  20. Pair production of helicity-flipped neutrinos in supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A.; Gandhi, R.

    1989-07-03

    We calculate the emissivity for the pair production of helicity-flipped neutrinos, in a way that can be used in supernova calculations. We also present some simple estimates which show that such processes can act as an efficient energy-loss mechanism in the shocked supernova core, and we use this fact to extract neutrino mass limits from SN1987A neutrino observations. 24 refs., 2 figs.

  1. The Fast Evolution of SN 2010bh Associated with XRF 100316D

    Science.gov (United States)

    Olivares E., F.; Greiner, J.; Schady, P.; Rau, A.; Klose, S.; Kruhler, T.; Afonso, P. M. J.; Updike, A. C.; Nardini, M.; Filgas, R.; hide

    2012-01-01

    The first observational evidence of a connection between supernovae (SNe) and gamma-ray bursts (GRBs) was found about a decade ago. Since then, only half a dozen spectroscopically confirmed associations have been discovered and XRF 1003160 associated with the type-Ic SN 20lObh is among the latest. Aims. We constrain the progenitor radius, the host-galaxy extinction, and the physical parameters of the explosion of XRF l00316D/SN 20lObh at z 0.059. We study the SN brightness and colours in the context of GRB-SNe. Methods. We began observations with the Gamma-Ray burst Optical and Near-infrared Detector (GROND) 12 hours after the GRB trigger and continued until 80 days after the burst. GROND provided excellent photometric data in six filter bands covering a wavelength range from approximately 350 to 1800 nm, significantly expanding the pre-existing data set for this event. Combining GROND and Swift data, the early broad-band spectral energy distribution (SED) is modelled with a blackbody and afterglow component attenuated by dust and gas absorption. The temperature and radius evolution of the thermal component are analysed and combined with earlier measurements available from the literature. Templates of SN 1998bw are fitted to the SN itself to directly compare the lightcurve properties. Finally, a two-component parametrized model is fitted to the quasi-bolometric light curve. which delivers physical parameters of the explosion. Results. The best-fit models to the broad-band SEDs imply moderate reddening along the line of sight through the host galaxy (A(sub v.host = 1.2 +/- 0.1 mag). Furthermore, the parameters of the blackbody component reveal a cooling envelope at an apparent initial radius of 7 x 10(exp 11) cm, which is compatible with a dense wind surrounding a Wolf-Rayet star. A multicolor comparison shows that SN 2010bh is 60 - 70% as bright as SN 1998bw. Reaching maximum brightness at 8 - 9 days after the burst in the blue bands, SN 20lObh proves to be the

  2. Dark Matter Ignition of Type Ia Supernovae.

    Science.gov (United States)

    Bramante, Joseph

    2015-10-02

    Recent studies of low redshift type Ia supernovae (SN Ia) indicate that half explode from less than Chandrasekhar mass white dwarfs, implying ignition must proceed from something besides the canonical criticality of Chandrasekhar mass SN Ia progenitors. We show that 1-100 PeV mass asymmetric dark matter, with imminently detectable nucleon scattering interactions, can accumulate to the point of self-gravitation in a white dwarf and collapse, shedding gravitational potential energy by scattering off nuclei, thereby heating the white dwarf and igniting the flame front that precedes SN Ia. We combine data on SN Ia masses with data on the ages of SN Ia-adjacent stars. This combination reveals a 2.8σ inverse correlation between SN Ia masses and ignition ages, which could result from increased capture of dark matter in 1.4 vs 1.1 solar mass white dwarfs. Future studies of SN Ia in galactic centers will provide additional tests of dark-matter-induced type Ia ignition. Remarkably, both bosonic and fermionic SN Ia-igniting dark matter also resolve the missing pulsar problem by forming black holes in ≳10  Myr old pulsars at the center of the Milky Way.

  3. Direct Measurement of the Supernova Rate in Starburst Galaxies

    Science.gov (United States)

    Bregman, Jesse D.; Temi, Pasquale; Rank, David; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    Supernovae play a key role in the dynamics, structure, and chemical evolution of galaxies. The massive stars that end their lives as supernovae live for short times. Many are still associated with dusty star formation regions when they explode, making them difficult to observe at visible wavelengths. In active star forming regions (galactic nuclei and starburst regions), dust extintion is especially severe. Thus, determining the supernova rate in the active star forming regions of galaxies, where the supernova rate can be one or two orders of magnitude higher than the average, has proven to be difficult. From observations of SN1987A, we know that the [NiII] 6.63 micron emission line was the strongest line in the infrared spectrum for a period of a year and a half after the explosion. Since dust extintion is much less at 6.63 pm than at visible wavelengths (A(sub 6.63)/A(sub V) = 0.025), the NiII line can be used as a sensitive probe for the detection of recent supernovae. We have observed a sample of starburst galaxies at 6.63 micron using ISOCAM to search for the NiII emission line characteristic of recent supernovae. We did not detect any NiII line emission brighter than a 5sigma limit of 5 mJy. We can set upper limits to the supernova rate in our sample, scaled to the rate in M82, of less than 0.3 per year at the 90% confidence level using Bayesian methods. Assuming that a supernova would have a NiII with the same luminosity as observed in SN1987A, we find less than 0.09 and 0.15 per year at the 50% and 67% confidence levels. These rates are somewhat less if a more normal type II supernovae has a NiII line luminosity greater than the line in SN1987A.

  4. Supernova 1987A in the Large Magellanic Cloud

    Science.gov (United States)

    Kafatos, Minas; Michalitsianos, Andrew G.

    2006-11-01

    Foreword; Acknowledgements; Workshop participants; 1. Images and spectrograms of Sanduleak - 69º202, the SN 1987a progenitor N. R. Walborn; 2. The progenitor of SN 1987A G. Sonneborn; 3. Another supernova with a blue progenitor C. M. Gaskell and W. C. Keel; 4. Optical and infrared observations of SN 1987A from Cerro Tololo Inter-American Observatory M. M. Phillips; 5. SN 1987A: observational results obtained at ESO I. J. Danziger, P. Bouchet, R. A. E. Fosbury, C. Gouiffes, L. B. Lucy, A. F. M. Moorwood, E. Oliva and F. Rufener; 6. Observations of SN 1987A at the South African Astronomical Observatory (SAAO) M. W. Feast; 7. Observations of SN 1987A at the Anglo-Australian Telescope W. J. Couch; 8. Linear polarimetric study of SN 1987A A. Clocchiatti, M. Méndez, O. Benvenuto, C. Feinstein, H. Marraco, B. García and N. Morrell; 9. Infrared spectroscopy of SN 1987A from the NASA Kuiper Airborne Observatory H. P. Larson, S. Drapatz, M. J. Mumma and H. A. Weaver; 10. Radio observations of SN 1987A N. Bartel et al.; 11. Ultraviolet observations of SN 1987A: clues to mass loss R. P. Kirshner; 12. On the energetics of SN 1987A N. Panagia; 13. On the nature and apparent uniqueness of SN 1987A A. V. Filippenko; 14. A comparison of the SN 1987A light curve with other type II supernovae, and the detectability of similar supernovae M. F. Schmitz and C. M. Gaskell; 15. P-Cygni features and photospheric velocities L. Bildsten and J. C. L. Wang; 16. The Neutrino burst from SN 1987A detected in the Mont Blanc LSD experiment M. Aglietta et al.; 17. Toward observational neutrino astrophysics M. Koshiba; 18. The discovery of neutrinos from SN 1987A with the IMB detector J. Matthews; 19. Peering into the abyss: the neutrinos from SN 1987A A. Burrows; 20. Phenomenological analysis of neutrino emission from SN 1987A J. N. Bahcall, D. N. Spergel and W. H. Press; 21. Mass determination of neutrinos H. Y. Chiu; 22. Neutrino transport in a type II supernova D. C. Ellison, P. M. Giovanoni

  5. Discovery of a Supernova in HST imaging of the MACSJ0717 Frontier Field

    Science.gov (United States)

    Rodney, Steven A.; Lotz, Jennifer; Strolger, Louis-Gregory

    2013-10-01

    We report the discovery of a supernova (SN) in Hubble Space Telescope (HST) observations centered on the galaxy cluster MACSJ0717. It was discovered in the F814W (i) band of the Advanced Camera for Surveys (ACS), in observations that were collected as part of the ongoing HST Frontier Fields (HFF) program (PI:J.Lotz, HST PID 13498). The FrontierSN ID for this object is SN HFF13Zar (nicknamed "SN Zara").

  6. Host galaxies of type ia supernovae from the nearby supernova factory

    Science.gov (United States)

    Childress, Michael Joseph

    Type Ia Supernovae (SNe Ia) are excellent distance indicators, yet the full details of the underlying physical mechanism giving rise to these dramatic stellar deaths remain unclear. As large samples of cosmological SNe Ia continue to be collected, the scatter in brightnesses of these events is equally affected by systematic errors as statistical. Thus we need to understand the physics of SNe Ia better, and in particular we must know more about the progenitors of these SNe so that we can derive better estimates for their true intrinsic brightnesses. The host galaxies of SNe Ia provide important indirect clues as to the nature of SN Ia progenitors. In this Thesis we utilize the host galaxies of SNe Ia discovered by the Nearby Supernova Factory (SNfactory) to pursue several key investigations into the nature of SN Ia progenitors and their effects on SN Ia brightnesses. We first examine the host galaxy of SN 2007if, an important member of the subclass of SNe Ia whose extreme brightnesses indicate a progenitor that exceeded the canonical Chandrasekhar-mass value presumed for normal SNe Ia, and show that the host galaxy of this SN is composed of very young stars and has extremely low metallicity, providing important constraints on progenitor scenarios for this SN. We then utilize the full sample of SNfactory host galaxy masses (measured from photometry) and metallicities (derived from optical spectroscopy) to examine several global properties of SN Ia progenitors: (i) we show that SN Ia hosts show tight agreement with the normal galaxy mass-metallicity relation; (ii) comparing the observed distribution of SN Ia host galaxy masses to a theoretical model that couples galaxy physics to the SN Ia delay time distribution (DTD), we show the power of the SN Ia host mass distribution in constraining the SN Ia DTD; and (iii) we show that the lack of ultra-low metallicities in the SNfactory SN Ia host sample gives provisional support for the theorized low-metallicity inhibition of

  7. Optical spectra of 73 stripped-envelope core-collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Modjaz, M.; Bianco, F. B.; Liu, Y. Q. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Blondin, S. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388, Marseille (France); Kirshner, R. P.; Challis, P.; Hicken, M.; Marion, G. H. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Matheson, T. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Berlind, P.; Calkins, M. L. [F. L. Whipple Observatory, 670 Mt. Hopkins Road, P.O. Box 97, Amado, AZ 85645 (United States); Garnavich, P. [Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556 (United States); Jha, S., E-mail: mmodjaz@nyu.edu [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States)

    2014-05-01

    We present 645 optical spectra of 73 supernovae (SNe) of Types IIb, Ib, Ic, and broad-lined Ic. All of these types are attributed to the core collapse of massive stars, with varying degrees of intact H and He envelopes before explosion. The SNe in our sample have a mean redshift (cz) = 4200 km s{sup –1}. Most of these spectra were gathered at the Harvard-Smithsonian Center for Astrophysics (CfA) between 2004 and 2009. For 53 SNe, these are the first published spectra. The data coverage ranges from mere identification (1-3 spectra) for a few SNe to extensive series of observations (10-30 spectra) that trace the spectral evolution for others, with an average of 9 spectra per SN. For 44 SNe of the 73 SNe presented here, we have well-determined dates of maximum light to determine the phase of each spectrum. Our sample constitutes the most extensive spectral library of stripped-envelope SNe to date. We provide very early coverage (as early as 30 days before V-band max) for photospheric spectra, as well as late-time nebular coverage when the innermost regions of the SN are visible (as late as 2 yr after explosion, while for SN 1993J, we have data as late as 11.6 yr). This data set has homogeneous observations and reductions that allow us to study the spectroscopic diversity of these classes of stripped SNe and to compare these to SNe-gamma-ray bursts. We undertake these matters in follow-up papers.

  8. The very young resolved stellar populations around stripped-envelope supernovae

    Science.gov (United States)

    Maund, Justyn R.

    2018-05-01

    The massive star origins for Type IIP supernovae (SNe) have been established through direct detection of their red supergiants progenitors in pre-explosion observations; however, there has been limited success in the detection of the progenitors of H-deficient SNe. The final fate of more massive stars, capable of undergoing a Wolf-Rayet phase, and the origins of Type Ibc SNe remain debated, including the relative importance of single massive star progenitors or lower mass stars stripped in binaries. We present an analysis of the ages and spatial distributions of massive stars around the sites of 23 stripped-envelope SNe, as observed with the Hubble Space Telescope, to probe the possible origins of the progenitors of these events. Using a Bayesian stellar populations analysis scheme, we find characteristic ages for the populations observed within 150 pc of the target Type IIb, Ib, and Ic SNe to be log (t) = 7.20, 7.05, and 6.57, respectively. The Type Ic SNe in the sample are nearly all observed within 100 pc of young, dense stellar populations. The environment around SN 2002ap is an important exception both in terms of age and spatial properties. These findings may support the hypothesis that stars with Minit > 30 M⊙ produce a relatively large proportion of Type Ibc SNe, and that these SN subtypes arise from progressively more massive progenitors. Significantly higher extinctions are derived towards the populations hosting these SNe than previously used in analysis of constraints from pre-explosion observations. The large initial masses inferred for the progenitors are in stark contrast with the low ejecta masses estimated from SN light curves.

  9. TYPE IIb SUPERNOVAE WITH COMPACT AND EXTENDED PROGENITORS

    International Nuclear Information System (INIS)

    Chevalier, Roger A.; Soderberg, Alicia M.

    2010-01-01

    The classic example of a Type IIb supernova is SN 1993J, which had a cool extended progenitor surrounded by a dense wind. There is evidence for another category of Type IIb supernova that has a more compact progenitor with a lower density, probably fast, wind. Distinguishing features of the compact category are weak optical emission from the shock heated envelope at early times, nonexistent or very weak H emission in the late nebular phase, rapidly evolving radio emission, rapid expansion of the radio shell, and expected nonthermal as opposed to thermal X-ray emission. Type IIb supernovae that have one or more of these features include SNe 1996cb, 2001ig, 2003bg, 2008ax, and 2008bo. All of these with sufficient radio data (the last four) show evidence for presupernova wind variability. We estimate a progenitor envelope radius ∼1 x 10 11 cm for SN 2008ax, a value consistent with a compact Wolf-Rayet progenitor. Supernovae in the SN 1993J extended category include SN 2001gd and probably the Cas A supernova. We suggest that the compact Type IIb events be designated Type cIIb and the extended ones Type eIIb. The H envelope mass dividing these categories is ∼0.1 M sun .

  10. The oiling of ICS

    International Nuclear Information System (INIS)

    Hunter, S.

    1993-01-01

    The incident command system (ICS) works for oil spills. It should be the industry standard and some will argue that it already is. But there are a number of temptations to fiddle with it. Fueling these inclinations is the fundamental difference between oil spills and natural disasters: Oil spills make the perpetrator fix the problem - under heavy oversight. Add to this difference the public outcry that attends oil spills and the dual role of government as both helper and prosecutor. From these conditions emerge adaptations of ICS which both weaken and strengthen it. The benefits of ICS are diminished by deputy incident commanders who block unified commanders from access to section chiefs, over-zealous crisis managers who displace command post decisions or its information office, separate press offices with party line slants, government law enforcement activity mixed into spill response, nonstandard operations terminology and structure involving open-quotes containment and clean upclose quotes or open-quotes salvage,close quotes and the commingling of public and private response funds. ICS's application to oil spill response is strengthened by the use of trained unified commanders, deputy incident commanders who operate as staff rather than line, crisis managers who support on-scene objectives, joint information centers, and heavy involvement of skilled, prepared environmental assessment teams in the planning section who generate priorities, strategies, and (operationally coordinated) tactics. Technically, not all these points constitute alterations of ICS, but most do and the others come close. This mixed bag of strengthening and weakening tweaks to oil spill ICS provides an opportunity to take a new look at this faithful friend to the crisis responder

  11. Masses of supernova progenitors

    International Nuclear Information System (INIS)

    Tinsley, B.M.

    1977-01-01

    The possible nature and masses of supernovae progenitors, and the bearing of empirical results on some unsolved theoretical problems concerning the origin of supernovae, are discussed. The author concentrates on two main questions: what is the lower mass limit for stars to die explosively and what stars initiate type I supernovae. The evidence considered includes local supernova rates, empirical estimates of msub(w) (the upper mass limit for death as a white dwarf), the distributions of supernovae among stellar populations in galaxies and the colors of supernova producing galaxies. (B.D.)

  12. Photon Dispersion in a Supernova Core

    OpenAIRE

    Kopf, A.; Raffelt, G.

    1997-01-01

    While the photon forward-scattering amplitude on free magnetic dipoles (e.g. free neutrons) vanishes, the nucleon magnetic moments still contribute significantly to the photon dispersion relation in a supernova (SN) core where the nucleon spins are not free due to their interaction. We study the frequency dependence of the relevant spin susceptibility in a toy model with only neutrons which interact by one-pion exchange. Our approach amounts to calculating the photon absorption rate from the ...

  13. Interaction of Supernova Blast Waves with Wind-Driven Shells: Formation of "Jets", "Bullets", "Ears", Etc.

    Science.gov (United States)

    Gvaramadze, V. V.

    Most of middle-aged supernova remnants (SNRs) have a distorted and complicated appearance which cannot be explained in the framework of the Sedov-Taylor model. We consider three typical examples of such SNRs (Vela SNR, MSH15-52, G309.2-00.6) and show that their structure could be explained as a result of interaction of a supernova (SN) blast wave with the ambient medium preprocessed by the action of the SN progenitor's wind and ionized emission.

  14. Are young supernova remnants interacting with circumstellar gas

    International Nuclear Information System (INIS)

    Chevalier, R.A.

    1982-01-01

    The young remnants of galactic Type I supernovae (SN 1006, SN 1572, and SN 1604) appear to be interacting with moderately dense gas (n/sub O/> or =0.1 cm -3 ). If the gas in the ambient interstellar medium, the observations suggest that gas of this density is fairly pervasive. If the gas is circumstellar, there are important implications for the progenitors of Type I supernovae. A plausible density distribution for circumstellar gas is rhoinfinityr -2 . The expansion of a supernova into such a medium is examined and is compared with expansion into a uniform medium. The two cases can be distinguished on the basis of their density profiles and their rates of expansion. Currently available data factor the hypothesis of expansion in a uniform medium for all three Type I remnants; the evidence is the strongest for SN 1572 and the weakest for SN 1604. Further X-ray and radio observations of the galactic remnants and of extragalactic Type I supernovae should serve to test this hypothesis

  15. SUPERNOVA 1987A: A TEMPLATE TO LINK SUPERNOVAE TO THEIR REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Orlando, S.; Miceli, M.; Pumo, M. L.; Bocchino, F., E-mail: orlando@astropa.inaf.it [INAF—Osservatorio Astronomico di Palermo “G.S. Vaiana”, Piazza del Parlamento 1, I-90134 Palermo (Italy)

    2015-09-10

    The emission of supernova remnants (SNRs) reflects the properties of both the progenitor supernovae (SNe) and the surrounding environment. The complex morphology of the remnants, however, hampers the disentanglement of the two contributions. Here, we aim at identifying the imprint of SN 1987A on the X-ray emission of its remnant and at constraining the structure of the environment surrounding the SN. We performed high-resolution hydrodynamic simulations describing SN 1987A soon after the core-collapse and the following three-dimensional expansion of its remnant between days 1 and 15,000 after the SN. We demonstrated that the physical model reproducing the main observables of SN 1987A during the first 250 days of evolution also reproduces the X-ray emission of the subsequent expanding remnant, thus bridging the gap between SNe and SNRs. By comparing model results with observations, we constrained the explosion energy in the range 1.2–1.4 × 10{sup 51} erg and the envelope mass in the range 15–17 M{sub ⊙}. We found that the shape of X-ray lightcurves and spectra at early epochs (<15 years) reflects the structure of outer ejecta: our model reproduces the observations if the outermost ejecta have a post-explosion radial profile of density approximated by a power law with index α = −8. At later epochs, the shapes of X-ray lightcurves and spectra reflect the density structure of the nebula around SN 1987A. This enabled us to ascertain the origin of the multi-thermal X-ray emission, disentangle the imprint of the SN on the remnant emission from the effects of the remnant interaction with the environment, and constrain the pre-supernova structure of the nebula.

  16. Prompt effects of supernovae

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1975-01-01

    Conflicting theories on the mechanisms of supernova production are examined. Supernova as sources of other phenomena such as comic rays, gamma rays, x-rays, and electromagnetic pulses are considered. 32 references

  17. Neutron Star/supernova Remnant Associations

    Science.gov (United States)

    Gvaramadze, V. V.

    We propose a new approach for studying the neutron star/supernova remnant associations, based on the idea that the (diffuse) supernova remnants (SNRs) can be products of an off-centred supernova (SN) explosion in a preexisting bubble created by the wind of a moving massive star. A cavity SN explosion of a moving star results in a considerable offset of the neutron star (NS) birth-place from the geometrical centre of the SNR. Therefore: a) the high transverse velocities inferred for a number of NSs (e.g. PSR B 1610-50, PSR B 1757-24, SGR 0525-66) through their association with SNRs can be reduced; b) the proper motion vector of a NS should not necessarily point away from the geometrical centre of the associated SNR. Taking into account of these two facts allow us to enlarge the circle of possible NS/SNR associations, and could significantly affect the results of previous studies of NS/SNR associations. The possibilities of our approach are illustrated with the example of the association between PSR B 1706-44 and SNR G 343.1-2.3. We show that this association could be real if both objects are the remnants of a SN exploded within a mushroom-like cavity (created by the SN progenitor wind breaking out of the parent molecular cloud and expanding into an intercloud medium of a much less density). We also show that the SN explosion sites in some middle-aged (shell-like) SNRs could be marked by (compact) nebulae of thermal X-ray emission. The possible detection of such nebulae within middle-aged SNRs could be used for the re-estimation of implied transverse velocities of known NSs or for the search of new stellar remnants possibly associated with these SNRs.

  18. Detecting First Supernovae with JWST

    Science.gov (United States)

    Regos, Eniko; FLARE

    2018-01-01

    We have applied for a JWST ERS First Transients Survey, FLARE to answer empirically how the Universe made its first stars. To quest the epoch of reionization we target what happened to these first stars by observing the most luminous events, supernovae. These transients provide direct constraints on star formation rates and the initial mass function.These very rare events can be reached by JWST at 27 mag AB in 2 micron and 4.4 micron over a field of 0.1 square degree visited multiple times each year.The survey may detect massive Pop III SNe at redshifts up to 10, pinpointing the redshift of first stars, a key scientific goal of JWST.We explore all models of star formation history (derived from UV luminosity densities and IR data), DTD, top heavy IMF of early, low metallicity stars, and normalizations to data of SN Ia, II rates (SNLS, CLASH, CANDELS, SDSS, SVISS), as well as SLSN (ROTSE, SNLS) to estimate the expected SN rates as function of redshift.Population synthesis of double degenerate and single degenerate scenarios of SN Ia shows that the shape of the DTD is rather insensitive to the assumptions (common envelope prescription and metallicities, or retention efficiency of accreted H to white dwarf core and mass transfer rate).Indeed GOODS High z SN Ia rates imply substantial delay in their progenitor model, and Hubble Higher z SN search constrains delay time distribution models as well.SLSN (I, II /H/ and extreme rare pulsational pair instability) are magnetars (ULGRB) in high local star formation rate, faint, low metallicity galaxies.

  19. Gravitational lensing of the SNLS supernovae

    International Nuclear Information System (INIS)

    Kronborg, T.

    2011-01-01

    Type Ia supernovae have become an essential tool of modern observational cosmology. By studying the distance-redshift relation of a large number of supernovae, the nature of dark energy can be unveiled. Distances to Type Ia SNe are however affected by gravitational lensing which can induce systematic effects in the measurement of cosmology. The majority of the supernovae is slightly de-magnified whereas a small fraction is significantly magnified due to the mass distribution along the line of sight. This causes naturally an additional dispersion in the observed magnitudes. There are two different ways to estimate the magnification of a supernova. A first method consists in comparing the supernova luminosity, which is measured to about 15% precision, to the mean SN luminosity at the same redshift. Another estimate can be obtained from predicting the magnification induced by the foreground matter density modeled from the measurements of the luminosity of the galaxies with an initial prior on the mass-luminosity relation of the galaxies. A correlation between these 2 estimates will make it possible to tune the initially used mass-luminosity relation resulting in an independent measurement of the dark matter clustering based on the luminosity of SNe Ia. Evidently, this measurement depends crucially on the detection of this correlation also referred to as the lensing signal. This thesis is dedicated to the measurement of the lensing signal in the SNLS 3-year sample. (author)

  20. SN1987A's Twentieth Anniversary

    Science.gov (United States)

    2007-02-01

    Looking back at 20 Years of Observations of this Supernova with ESO telescopes The unique supernova SN 1987A has been a bonanza for astrophysicists. It provided several observational 'firsts,' like the detection of neutrinos from an exploding star, the observation of the progenitor star on archival photographic plates, the signatures of a non-spherical explosion, the direct observation of the radioactive elements produced during the blast, observation of the formation of dust in the supernova, as well as the detection of circumstellar and interstellar material. ESO PR Photo 08a/07 ESO PR Photo 08a/07 SN1987A in the Large Magellanic Cloud Today, it is exactly twenty years since the explosion of Supernova 1987A in the Large Magellanic Cloud was first observed, at a distance of 163,000 light-years. It was the first naked-eye supernova to be seen for 383 years. Few events in modern astronomy have met with such an enthusiastic response by the scientists and now, after 20 years, it continues to be an extremely exciting object that is further studied by astronomers around the world, in particular using ESO's telescopes. When the first signs of Supernova 1987A, the first supernova of the year 1987, were noticed early on 24 February of that year, it was clear that this would be an unusual event. It was discovered by naked-eye and on a panoramic photographic plate taken with a 10-inch astrograph on Las Campanas in Chile by Oscar Duhalde and Ian Shelton, respectively. A few hours earlier, still on 23 February, two large underground detectors - in Japan and the USA - had registered the passage of high-energy neutrinos. Since SN 1987A exploded in the Large Magellanic Cloud (LMC), it was only accessible to telescopes in the Southern Hemisphere, more particularly in Australia, South Africa, and South America. In Chile, ESO's observatory at La Silla with its armada of telescopes with sizes between 0.5 and 3.6-m, played an important role. ESO PR Photo 08c/07 ESO PR Photo 08c/07 The

  1. A Moderate Redshift Supernova Search Program

    Science.gov (United States)

    Adams, M. T.; Wheeler, J. C.; Ward, M.; Wren, W. R.; Schmidt, B. P.

    1995-12-01

    We report on a recently initiated supernova (SN) search program using the McDonald Observatory 0.76m telescope and Prime Focus Camera (PFC). This SN search program takes advantage of the PFC's 42.6 x 42.6 arcmin FOV to survey moderate redshift Abell clusters in single Kron-Cousins R-band images. Our scientific goal is to discover and provide quality BVRI photometric follow-up, to R \\ +21, for a significant SNe sample at 0.03 group (Perlmutter et al 1995, ApJ, 440, L41), and the High Redshift SN Search Team (Schmidt et al 1995, Aiguiblava NATO ASI Proceedings). The McDonald SN search program includes a sample of the Abell clusters used by Lauer and Postman (1994, ApJ, 425, 418) to analyze Local Group motion. SNe discovered in these clusters contribute to the resolution of the Local Group motion controversy. We present an overview of the McDonald Observatory supernova search program, and discuss recent results.

  2. Positrons from supernova and the origin of the galactic-center positron-annihilation radiation

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1983-01-01

    The emission of positrons from supernova ejecta is dicussed in terms of the galactic-center annihilation radiation. The positrons from the radioactive sequences 56 Ni→ 56 Co→ 56 Fe are the most numerous source from supernova. Only type I supernova will allow a significant fraction to escape the expanding ejecta. For a neutron star model of a type I SN a fraction 4 x 10 -3 of the escaped positron is enough to create the observed several year fluctuation of the annihilation radiation. The likelihood of this model is discussed in terms of other astrophysical evidence as well as the type I SN light curve

  3. In search of Mahutonga: a possible supernova recorded in Maori astronomical traditions?

    Science.gov (United States)

    Green, David A.; Orchiston, Wayne

    Maori astronomical traditions refer to Mahutonga, which can be interpreted as a possible record of a southern supernova (SN) in or near Crux. A search for any known "young" supernova remnants in this region does not reveal any obvious candidate to associate with this possible supernova. Relaxing the positional constraint somewhat, the SN of A.D. 185 near a Centauri is nearby. If this is associated with Mahutonga, then the Maori term must be a relic of an earlier Proto-Polynesian record.

  4. Handbook of supernovae

    CERN Document Server

    Murdin, Paul

    2017-01-01

    This reference work gathers all of the latest research in the supernova field areas to create a definitive source book on supernovae, their remnants and related topics. It includes each distinct subdiscipline, including stellar types, progenitors, stellar evolution, nucleosynthesis of elements, supernova types, neutron stars and pulsars, black holes, swept up interstellar matter, cosmic rays, neutrinos from supernovae, supernova observations in different wavelengths, interstellar molecules and dust. While there is a great deal of primary and specialist literature on supernovae, with a great many scientific groups around the world focusing on the phenomenon and related subdisciplines, nothing else presents an overall survey. This handbook closes that gap at last. As a comprehensive and balanced collection that presents the current state of knowledge in the broad field of supernovae, this is to be used as a basis for further work and study by graduate students, astronomers and astrophysicists working in close/r...

  5. HOST GALAXIES OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY

    International Nuclear Information System (INIS)

    Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Chotard, N.; Copin, Y.; Gangler, E.

    2013-01-01

    We present photometric and spectroscopic observations of galaxies hosting Type Ia supernovae (SNe Ia) observed by the Nearby Supernova Factory. Combining Galaxy Evolution Explorer (GALEX) UV data with optical and near-infrared photometry, we employ stellar population synthesis techniques to measure SN Ia host galaxy stellar masses, star formation rates (SFRs), and reddening due to dust. We reinforce the key role of GALEX UV data in deriving accurate estimates of galaxy SFRs and dust extinction. Optical spectra of SN Ia host galaxies are fitted simultaneously for their stellar continua and emission lines fluxes, from which we derive high-precision redshifts, gas-phase metallicities, and Hα-based SFRs. With these data we show that SN Ia host galaxies present tight agreement with the fiducial galaxy mass-metallicity relation from Sloan Digital Sky Survey (SDSS) for stellar masses log(M * /M ☉ ) > 8.5 where the relation is well defined. The star formation activity of SN Ia host galaxies is consistent with a sample of comparable SDSS field galaxies, though this comparison is limited by systematic uncertainties in SFR measurements. Our analysis indicates that SN Ia host galaxies are, on average, typical representatives of normal field galaxies.

  6. The Type Ia Supernova Rate in Radio and Infrared Galaxies from the CFHT Supernova Legacy Survey

    OpenAIRE

    Graham, M. L.; Pritchet, C. J.; Sullivan, M.; Howell, D. A.; Gwyn, S. D. J.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R. G.; Conley, A.; Fouchez, D.; Guy, J.; Hardin, D.; Hook, I. M.; Pain, R.

    2009-01-01

    We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, VLA 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-type host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is ~1-5 times the rate in all early-type galaxies, and that any enhancement is always

  7. The Story of Supernova “Refsdal” Told by Muse

    NARCIS (Netherlands)

    Grillo, C.; Karman, W.; Suyu, S. H.; Rosati, P.; Balestra, I.; Mercurio, A.; Lombardi, M.; Treu, T.; Caminha, G. B.; Halkola, A.; Rodney, S. A.; Gavazzi, R.; Caputi, K. I.

    2016-01-01

    We present Multi Unit Spectroscopic Explorer (MUSE) observations in the core of the Hubble Frontier Fields (HFF) galaxy cluster MACS J1149.5+2223, where the first magnified and spatially resolved multiple images of supernova (SN) "Refsdal" at redshift 1.489 were detected. Thanks to a Director's

  8. Two transitional type Ia supernovae located in the Fornax cluster member NGC 1404

    DEFF Research Database (Denmark)

    Gall, C.; Stritzinger, M. D.; Ashall, C.

    2018-01-01

    We present an analysis of ultraviolet (UV) to near-infrared observations of the fast-declining Type Ia supernovae (SNe Ia) 2007on and 2011iv, hosted by the Fornax cluster member NGC 1404. The B-band light curves of SN 2007on and SN 2011iv are characterised by Delta m(15)(B) decline-rate values of...

  9. Type-Ia supernova rates to redshift 2.4 from clash: The cluster lensing and supernova survey with Hubble

    International Nuclear Information System (INIS)

    Graur, O.; Rodney, S. A.; Riess, A. G.; Medezinski, E.; Maoz, D.; Jha, S. W.; Holoien, T. W.-S.; McCully, C.; Patel, B.; Postman, M.; Dahlen, T.; Strolger, L.-G.; Coe, D.; Bradley, L.; Koekemoer, A.; Benítez, N.; Molino, A.; Jouvel, S.; Nonino, M.; Balestra, I.

    2014-01-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, ∼13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z > 1.2. We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range 1.8 < z < 2.4. The results are consistent with the rates measured by the HST/GOODS and Subaru Deep Field SN surveys. We model these results together with previous measurements at z < 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of −1.00 −0.06(0.10) +0.06(0.09) (statistical) −0.08 +0.12 (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at >99% significance level.

  10. Type-Ia Supernova Rates to Redshift 2.4 from Clash: The Cluster Lensing and Supernova Survey with Hubble

    Science.gov (United States)

    Graur, O.; Rodney, S. A.; Maoz, D.; Riess, A. G.; Jha, S. W.; Postman, M.; Dahlen, T.; Holoien, T. W.-S.; McCully, C.; Patel, B.; hide

    2014-01-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, approximately 13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z greater than 1.2.We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range z greater than 1.8 and less than 2.4. The results are consistent with the rates measured by the HST/ GOODS and Subaru Deep Field SN surveys.We model these results together with previous measurements at z less than 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of 1.00 (+0.06(0.09))/(-0.06(0.10)) (statistical) (+0.12/-0.08) (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at greater than 99% significance level.

  11. SPECTROSCOPIC EVIDENCE FOR SN 2010ma ASSOCIATED WITH GRB 101219B

    International Nuclear Information System (INIS)

    Sparre, M.; Fynbo, J. P. U.; Malesani, D.; De Ugarte Postigo, A.; Hjorth, J.; Leloudas, G.; Milvang-Jensen, B.; Watson, D. J.; Sollerman, J.; Goldoni, P.; Covino, S.; Tagliaferri, G.; D'Elia, V.; Flores, H.; Hammer, F.; Jakobsson, P.; Schulze, S.; Kaper, L.; Levan, A. J.; Tanvir, N. R.

    2011-01-01

    We report on the spectroscopic detection of supernova SN 2010ma associated with the long gamma-ray burst GRB 101219B. We observed the optical counterpart of the GRB on three nights with the X-shooter spectrograph at the Very Large Telescope. From weak absorption lines, we measure a redshift of z = 0.55. The first-epoch UV-near-infrared afterglow spectrum, taken 11.6 hr after the burst, is well fit by a power law consistent with the slope of the X-ray spectrum. The second- and third-epoch spectra (obtained 16.4 and 36.7 days after the burst), however, display clear bumps closely resembling those of the broad-lined type-Ic SN 1998bw if placed at z = 0.55. Apart from demonstrating that spectroscopic SN signatures can be observed for GRBs at these large distances, our discovery makes a step forward in establishing a general connection between GRBs and SNe. In fact, unlike most previous unambiguous GRB-associated SNe, GRB 101219B has a large gamma-ray energy (E iso = 4.2 x 10 51 erg), a bright afterglow, and obeys the 'Amati' relation, thus being fully consistent with the cosmological population of GRBs.

  12. CORE-COLLAPSE SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY: INDICATIONS FOR A DIFFERENT POPULATION IN DWARF GALAXIES

    International Nuclear Information System (INIS)

    Arcavi, Iair; Gal-Yam, Avishay; Kasliwal, Mansi M.; Quimby, Robert M.; Ofek, Eran O.; Kulkarni, Shrinivas R.; Law, Nicholas; Cooke, Jeff; Nugent, Peter E.; Poznanski, Dovi; Cenko, S. Bradley; Bloom, Joshua S.; Filippenko, Alexei V.; Sullivan, Mark; Hook, Isobel; Joensson, Jakob; Blake, Sarah; Howell, D. Andrew; Dekany, Richard; Rahmer, Gustavo

    2010-01-01

    We use the first compilation of 72 core-collapse supernovae (SNe) from the Palomar Transient Factory (PTF) to study their observed subtype distribution in dwarf galaxies compared to giant galaxies. Our sample is the largest single-survey, untargeted, spectroscopically classified, homogeneous collection of core-collapse events ever assembled, spanning a wide host-galaxy luminosity range (down to M r ∼ -14 mag) and including a substantial fraction (>20%) of dwarf (M r ≥ -18 mag) hosts. We find more core-collapse SNe in dwarf galaxies than expected and several interesting trends emerge. We use detailed subclassifications of stripped-envelope core-collapse SNe and find that all Type I core-collapse events occurring in dwarf galaxies are either SNe Ib or broad-lined SNe Ic (SNe Ic-BL), while 'normal' SNe Ic dominate in giant galaxies. We also see a significant excess of SNe IIb in dwarf hosts. We hypothesize that in lower metallicity hosts, metallicity-driven mass loss is reduced, allowing massive stars that would have appeared as 'normal' SNe Ic in metal-rich galaxies to retain some He and H, exploding as Ib/IIb events. At the same time, another mechanism allows some stars to undergo extensive stripping and explode as SNe Ic-BL (and presumably also as long-duration gamma-ray bursts). Our results are still limited by small-number statistics, and our measurements of the observed N(Ib/c)/N(II) number ratio in dwarf and giant hosts (0.25 +0.3 -0.15 and 0.23 +0.11 -0.08 , respectively; 1σ uncertainties) are consistent with previous studies and theoretical predictions. As additional PTF data accumulate, more robust statistical analyses will be possible, allowing the evolution of massive stars to be probed via the dwarf-galaxy SN population.

  13. Radio Supernovae: Circum-Stellar Investigation (C.S.I.) of Supernova Progenitor Stars

    Science.gov (United States)

    2009-02-24

    years initiated by K. W. Weiler, N. Panagia, and R. A. Sramek. The VLA observing programs have detected dozens of new radio SNe. After discovery , the...analysis of the recent VLA data appears to support this discovery , reporting an inversion of the spectral index at higher 6 Figure 4 Left, the VLA light...formation of pulsar wind-nebula in other SN observations where VLBI measurements are not feasible. 3 The Future of Radio Supernovae Current observing

  14. Irregular Dwarf Galaxy IC 1613

    Science.gov (United States)

    2005-01-01

    Ultraviolet image (left) and visual image (right) of the irregular dwarf galaxy IC 1613. Low surface brightness galaxies, such as IC 1613, are more easily detected in the ultraviolet because of the low background levels compared to visual wavelengths.

  15. Type Ia supernovae, standardizable candles, and gravity

    Science.gov (United States)

    Wright, Bill S.; Li, Baojiu

    2018-04-01

    Type Ia supernovae (SNe Ia) are generally accepted to act as standardizable candles, and their use in cosmology led to the first confirmation of the as yet unexplained accelerated cosmic expansion. Many of the theoretical models to explain the cosmic acceleration assume modifications to Einsteinian general relativity which accelerate the expansion, but the question of whether such modifications also affect the ability of SNe Ia to be standardizable candles has rarely been addressed. This paper is an attempt to answer this question. For this we adopt a semianalytical model to calculate SNe Ia light curves in non-standard gravity. We use this model to show that the average rescaled intrinsic peak luminosity—a quantity that is assumed to be constant with redshift in standard analyses of Type Ia supernova (SN Ia) cosmology data—depends on the strength of gravity in the supernova's local environment because the latter determines the Chandrasekhar mass—the mass of the SN Ia's white dwarf progenitor right before the explosion. This means that SNe Ia are no longer standardizable candles in scenarios where the strength of gravity evolves over time, and therefore the cosmology implied by the existing SN Ia data will be different when analysed in the context of such models. As an example, we show that the observational SN Ia cosmology data can be fitted with both a model where (ΩM,ΩΛ)=(0.62 ,0.38 ) and Newton's constant G varies as G (z )=G0(1 +z )-1/4 and the standard model where (ΩM,ΩΛ)=(0.3 ,0.7 ) and G is constant, when the Universe is assumed to be flat.

  16. SUPERNOVA CONSTRAINTS AND SYSTEMATIC UNCERTAINTIES FROM THE FIRST THREE YEARS OF THE SUPERNOVA LEGACY SURVEY

    International Nuclear Information System (INIS)

    Conley, A.; Carlberg, R. G.; Perrett, K. M.; Guy, J.; Regnault, N.; Astier, P.; Balland, C.; Hardin, D.; Pain, R.; Sullivan, M.; Hook, I. M.; Basa, S.; Fouchez, D.; Howell, D. A.; Palanque-Delabrouille, N.; Rich, J.; Ruhlmann-Kleider, V.; Pritchet, C. J.; Balam, D.; Baumont, S.

    2011-01-01

    We combine high-redshift Type Ia supernovae from the first three years of the Supernova Legacy Survey (SNLS) with other supernova (SN) samples, primarily at lower redshifts, to form a high-quality joint sample of 472 SNe (123 low-z, 93 SDSS, 242 SNLS, and 14 Hubble Space Telescope). SN data alone require cosmic acceleration at >99.999% confidence, including systematic effects. For the dark energy equation of state parameter (assumed constant out to at least z = 1.4) in a flat universe, we find w = -0.91 +0.16 -0.20 (stat) +0.07 -0.14 (sys) from SNe only, consistent with a cosmological constant. Our fits include a correction for the recently discovered relationship between host-galaxy mass and SN absolute brightness. We pay particular attention to systematic uncertainties, characterizing them using a systematic covariance matrix that incorporates the redshift dependence of these effects, as well as the shape-luminosity and color-luminosity relationships. Unlike previous work, we include the effects of systematic terms on the empirical light-curve models. The total systematic uncertainty is dominated by calibration terms. We describe how the systematic uncertainties can be reduced with soon to be available improved nearby and intermediate-redshift samples, particularly those calibrated onto USNO/SDSS-like systems.

  17. Nearby Type Ia Supernova Follow-up at the Thacher Observatory

    Science.gov (United States)

    Swift, Jonathan; O'Neill, Katie; Kilpatrick, Charles; Foley, Ryan

    2018-06-01

    Type Ia supernovae (SN Ia) provide an effective way to study the expansion of the universe through analyses of their photometry and spectroscopy. The interpretation of high-redshift SN Ia is dependent on accurate characterization of nearby, low-redshift targets. To help build up samples of nearby SN Ia, the Thacher Observatory has begun a photometric follow-up program in 4 photometric bands. Here we present the observations and analysis of multi-band photometry for several recent supernovae as well as FLOYDS spectra from the Las Cumbres Observatory.

  18. How supernovae launch galactic winds?

    Science.gov (United States)

    Fielding, Drummond; Quataert, Eliot; Martizzi, Davide; Faucher-Giguère, Claude-André

    2017-09-01

    We use idealized three-dimensional hydrodynamic simulations of global galactic discs to study the launching of galactic winds by supernovae (SNe). The simulations resolve the cooling radii of the majority of supernova remnants (SNRs) and thus self-consistently capture how SNe drive galactic winds. We find that SNe launch highly supersonic winds with properties that agree reasonably well with expectations from analytic models. The energy loading (η _E= \\dot{E}_wind/ \\dot{E}_SN) of the winds in our simulations are well converged with spatial resolution while the wind mass loading (η _M= \\dot{M}_wind/\\dot{M}_\\star) decreases with resolution at the resolutions we achieve. We present a simple analytic model based on the concept that SNRs with cooling radii greater than the local scaleheight break out of the disc and power the wind. This model successfully explains the dependence (or lack thereof) of ηE (and by extension ηM) on the gas surface density, star formation efficiency, disc radius and the clustering of SNe. The winds our simulations are weaker than expected in reality, likely due to the fact that we seed SNe preferentially at density peaks. Clustering SNe in time and space substantially increases the wind power.

  19. Identification of a jet-driven supernova remnant in the Small Magellanic Cloud: Possible evidence for the enhancement of bipolar explosions at low metallicity

    International Nuclear Information System (INIS)

    Lopez, Laura A.; Castro, Daniel; Slane, Patrick O.; Ramirez-Ruiz, Enrico; Badenes, Carles

    2014-01-01

    Recent evidence has suggested that the supernova remnant (SNR) 0104–72.3 in the Small Magellanic Cloud (SMC) may be the result of a 'prompt' Type Ia SN on the basis of enhanced iron abundances and its association with a star-forming region. In this paper, we present evidence that SNR 0104–72.3 arose from a jet-driven bipolar core-collapse (CC) SN. Specifically, we use serendipitous Chandra data of SNR 0104–72.3 taken because of its proximity to the calibration source SNR E0102–72.3. We analyze 56 Advanced CCD Imaging Spectrometer (ACIS) observations of SNR 0104–72.3 to produce imaging and spectra with an effective exposure of 528.6 ks. We demonstrate that SNR 0104–72.3 is highly elliptical relative to other nearby young SNRs, suggesting a CC SN origin. Furthermore, we compare ejecta abundances derived from spectral fits to nucleosynthetic yields of Type Ia and CC SNe, and we find that the iron, neon, and silicon abundances are consistent with either a spherical CC SN of a 18-20 M ☉ progenitor or an aspherical CC SN of a 25 M ☉ progenitor. We show that the star formation history at the site of SNR 0104–72.3 is also consistent with a CC origin. Given the bipolar morphology of the SNR, we favor the aspherical CC SN scenario. This result may suggest jet-driven SNe occur frequently in the low-metallicity environment of the SMC, consistent with the observational and theoretical work on broad-line Type Ic SNe and long-duration gamma-ray bursts.

  20. HOST GALAXY PROPERTIES OF THE SUBLUMINOUS GRB 120422A/SN 2012bz

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, Emily M. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado 389-UCB, Boulder, CO 80309 (United States); Chornock, Ryan; Soderberg, Alicia M.; Berger, Edo; Lunnan, Ragnhild, E-mail: Emily.Levesque@colorado.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-10-20

    GRB 120422A is a nearby (z = 0.283) long-duration gamma-ray burst (LGRB) detected by Swift with E {sub {gamma},iso} {approx} 4.5 Multiplication-Sign 10{sup 49} erg. It is also associated with the spectroscopically confirmed broad-lined Type Ic SN 2012bz. These properties establish GRB 120422A/SN 2012bz as the sixth and newest member of the class of subluminous GRBs supernovae (SNe). Observations also show that GRB 120422A/SN 2012bz occurred at an unusually large offset ({approx}8 kpc) from the host galaxy nucleus, setting it apart from other nearby LGRBs and leading to speculation that the host environment may have undergone prior interaction activity. Here, we present spectroscopic observations using the 6.5 m Magellan telescope at Las Campanas. We extract spectra at three specific locations within the GRB/SN host galaxy, including the host nucleus, the explosion site, and the 'bridge' of diffuse emission connecting these two regions. We measure a metallicity of log(O/H) + 12 = 8.3 {+-} 0.1 and a star formation rate (SFR) per unit area of 0.08 M {sub Sun} yr{sup -1} kpc{sup -2} at the host nucleus. At the GRB/SN explosion site we measure a comparable metallicity of log(O/H) + 12 = 8.2 {+-} 0.1 but find a much lower SFR per unit area of 0.01 M {sub Sun} yr{sup -1} kpc{sup -2}. We also compare the host galaxy of this event to the hosts of other LGRBs, including samples of subluminous LGRBs and cosmological LGRBs, and find no systematic metallicity difference between the environments of these different subtypes.

  1. Type Ia Supernova Cosmology

    Science.gov (United States)

    Leibundgut, B.; Sullivan, M.

    2018-03-01

    The primary agent for Type Ia supernova cosmology is the uniformity of their appearance. We present the current status, achievements and uncertainties. The Hubble constant and the expansion history of the universe are key measurements provided by Type Ia supernovae. They were also instrumental in showing time dilation, which is a direct observational signature of expansion. Connections to explosion physics are made in the context of potential improvements of the quality of Type Ia supernovae as distance indicators. The coming years will see large efforts to use Type Ia supernovae to characterise dark energy.

  2. The historical supernovae

    CERN Document Server

    Clark, David H

    1977-01-01

    The Historical Supernovae is an interdisciplinary study of the historical records of supernova. This book is composed of 12 chapters that particularly highlight the history of the Far East. The opening chapter briefly describes the features of nova and supernova, stars which spontaneously explode with a spectacular and rapid increase in brightness. The succeeding chapter deals with the search for the historical records of supernova from Medieval European monastic chronicles, Arabic chronicles, astrological works etc., post renaissance European scientific writings, and Far Eastern histories and

  3. The nebular spectra of the transitional Type Ia Supernovae 2007on and 2011iv

    DEFF Research Database (Denmark)

    Mazzali, P. A.; Ashall, C.; Pian, E.

    2018-01-01

    The nebular-epoch spectrum of the rapidly declining, 'transitional' Type Ia supernova (SN) 2007on showed double emission peaks, which have been interpreted as indicating that the SN was the result of the direct collision of two white dwarfs. The spectrum can be reproduced using two distinct...... be expected for the bolometric luminosity of the SN. This is the case for both SNe 2007on and 2011iv, also a transitional SN Ia that exploded in the same elliptical galaxy, NGC1404. Although SN 2011iv does not show double-peaked emission line profiles, the width of its emission lines is such that a two...

  4. Could there be a hole in type Ia supernovae?

    International Nuclear Information System (INIS)

    Kasen, Daniel; Nugent, Peter; Thomas, R.C.; Wang, Lifan

    2004-01-01

    In the favored progenitor scenario, Type Ia supernovae (SNe Ia) arise from a white dwarf accreting material from a non-degenerate companion star. Soon after the white dwarf explodes, the ejected supernova material engulfs the companion star; two-dimensional hydrodynamical simulations by Marietta et al. (2001) show that, in the interaction, the companion star carves out a conical hole of opening angle 30-40 degrees in the supernova ejecta. In this paper we use multi-dimensional Monte Carlo radiative transfer calculations to explore the observable consequences of an ejecta-hole asymmetry. We calculate the variation of the spectrum, luminosity, and polarization with viewing angle for the aspherical supernova near maximum light. We find that the supernova looks normal from almost all viewing angles except when one looks almost directly down the hole. In the latter case, one sees into the deeper, hotter layers of ejecta. The supernova is relatively brighter and has a peculiar spectrum characterized by more highly ionized species, weaker absorption features, and lower absorption velocities. The spectrum viewed down the hole is comparable to the class of SN 1991T-like supernovae. We consider how the ejecta-hole asymmetry may explain the current spectropolarimetric observations of SNe Ia, and suggest a few observational signatures of the geometry. Finally, we discuss the variety currently seen in observed SNe Ia and how an ejecta-hole asymmetry may fit in as one of several possible sources of diversity

  5. A Type II Supernova Hubble diagram from the CSP-I, SDSS-II, and SNLS surveys

    OpenAIRE

    de Jaeger, T.; González-Gaitán, S.; Hamuy, M.; Galbany, L.; Anderson, J. P.; Phillips, M. M.; Stritzinger, M. D.; Carlberg, R. G.; Sullivan, M.; Gutiérrez, C. P.; Hook, I. M.; Howell, D. Andrew; Hsiao, E. Y.; Kuncarayakti, H.; Ruhlmann-Kleider, V.

    2016-01-01

    The coming era of large photometric wide-field surveys will increase the detection rate of supernovae by orders of magnitude. Such numbers will restrict spectroscopic follow-up in the vast majority of cases, and hence new methods based solely on photometric data must be developed. Here, we construct a complete Hubble diagram of Type II supernovae (SNe II) combining data from three different samples: the Carnegie Supernova Project-I, the Sloan Digital Sky Survey II SN, and th...

  6. Interacting Supernovae: Types IIn and Ibn

    Science.gov (United States)

    Smith, Nathan

    Supernovae that show evidence of strong shock interaction between their ejecta and pre-existing slower circumstellar material (CSM) constitute an interesting, diverse, and still poorly understood category of explosive transients. The chief reason they are extremely interesting is because they tell us that in a subset of stellar deaths, the progenitor star becomes wildly unstable in the years, decades, or centuries before explosion. This is something that has not been included in standard stellar evolution models but may significantly change the end product and yield of that evolution and complicates our attempts to map SNe to their progenitors. Another reason they are interesting is because CSM interaction is an efficient engine for making bright transients, allowing superluminous transients to arise from normal SN explosion energy, and transients of normal supernova luminosity to arise from sub-energetic explosions or low radioactivity yield. CSM interaction shrouds the fast ejecta in bright shock emission, obscuring our view of the underlying explosion, and the radiation hydrodynamics is challenging to model. The CSM interaction may also be highly nonspherical, perhaps linked to binary interaction in the progenitor system. In some cases, these complications make it difficult to tell the difference between a core-collapse and thermonuclear explosion or to discern between a nonterminal eruption, failed supernova, or weak supernova. Efforts to uncover the physical parameters of individual events and connections to progenitor stars make this a rapidly evolving topic that challenges paradigms of stellar evolution.

  7. Rayleigh-Taylor mixing in supernova experiments

    International Nuclear Information System (INIS)

    Swisher, N. C.; Abarzhi, S. I.; Kuranz, C. C.; Arnett, D.; Hurricane, O.; Remington, B. A.; Robey, H. F.

    2015-01-01

    We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properly accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order

  8. SN Refsdal

    DEFF Research Database (Denmark)

    Kelly, P. L.; Brammer, G.; Selsing, J.

    2016-01-01

    (SNe), and we find strong evidence for a broad H-alpha P-Cygni profile in the HST grism spectrum at the redshift (z = 1.49) of the spiral host galaxy. SNe IIn, powered by circumstellar interaction, could provide a good match to the light curve of SN Refsdal, but the spectrum of a SN IIn would not show...... in the rest frame, provide additional evidence that supports the SN 1987A-like classification. In comparison with other examples of SN 1987A-like SNe, SN Refsdal has a blue B-V color and a high luminosity for the assumed range of potential magnifications. If SN Refsdal can be modeled as a scaled version of SN...

  9. Probing Dark Energy via Neutrino and Supernova Observatories

    International Nuclear Information System (INIS)

    Hall, Lawrence; Hall, Lawrence J.; Murayama, Hitoshi; Papucci, Michele; Perez, Gilad

    2006-01-01

    A novel method for extracting cosmological evolution parameters is proposed, using a probe other than light: future observations of the diffuse anti-neutrino flux emitted from core-collapse supernovae (SNe), combined with the SN rate extracted from future SN surveys. The relic SN neutrino differential flux can be extracted by using future neutrino detectors such as Gadolinium-enriched, megaton, water detectors or 100-kiloton detectors of liquid Argon or liquid scintillator. The core-collapse SN rate can be reconstructed from direct observation of SN explosions using future precision observatories. Our method, by itself, cannot compete with the accuracy of the optical-based measurements but may serve as an important consistency check as well as a source of complementary information. The proposal does not require construction of a dedicated experiment, but rather relies on future experiments proposed for other purposes

  10. Probing Dark Energy via Neutrino and Supernova Observatories

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Lawrence; Hall, Lawrence J.; Murayama, Hitoshi; Papucci, Michele; Perez, Gilad

    2006-07-10

    A novel method for extracting cosmological evolution parameters is proposed, using a probe other than light: future observations of the diffuse anti-neutrino flux emitted from core-collapse supernovae (SNe), combined with the SN rate extracted from future SN surveys. The relic SN neutrino differential flux can be extracted by using future neutrino detectors such as Gadolinium-enriched, megaton, water detectors or 100-kiloton detectors of liquid Argon or liquid scintillator. The core-collapse SN rate can be reconstructed from direct observation of SN explosions using future precision observatories. Our method, by itself, cannot compete with the accuracy of the optical-based measurements but may serve as an important consistency check as well as a source of complementary information. The proposal does not require construction of a dedicated experiment, but rather relies on future experiments proposed for other purposes.

  11. Astronomy in Denver: The polarization evolution of the luminous Type Ib SN 2012au

    Science.gov (United States)

    Hoffman, Jennifer L.; DeKlotz, Sophia; Cooper, Kevin; Slay, Hannah; Williams, George Grant; Supernova Spectropolarimetry Project (SNSPOL)

    2018-06-01

    We present an analysis of the spectropolarimetric behavior of the Type Ib SN 2012au over the first 315 days of its evolution. Our data were obtained by the Supernova Spectropolarimetry Project using the CCD Imaging/Spectropolarimeter (SPOL) at the 61" Kuiper, the 90" Bok, and the 6.5-m MMT telescopes. SN 2012au was a very energetic, luminous, and slowly evolving event that may represent an intermediate case between normal core-collapse supernovae and the enigmatic superluminous supernovae. Strong, time-variable line polarization signatures, particularly in the He Il λ5876 line, support previous hypotheses of an asymmetric explosion and allow us to trace detailed structures within the supernova ejecta as they change over time. We compare the polarimetric evolution of the continuum and emission lines in SN 2012au and compare its behavior with that of other bright and polarimetrically variable supernovae.

  12. Supernova Cosmology in the Big Data Era

    Science.gov (United States)

    Kessler, Richard

    Here we describe large "Big Data" Supernova (SN) Ia surveys, past and present, used to make precision measurements of cosmological parameters that describe the expansion history of the universe. In particular, we focus on surveys designed to measure the dark energy equation of state parameter w and its dependence on cosmic time. These large surveys have at least four photometric bands, and they use a rolling search strategy in which the same instrument is used for both discovery and photometric follow-up observations. These surveys include the Supernova Legacy Survey (SNLS), Sloan Digital Sky Survey II (SDSS-II), Pan-STARRS 1 (PS1), Dark Energy Survey (DES), and Large Synoptic Survey Telescope (LSST). We discuss the development of how systematic uncertainties are evaluated, and how methods to reduce them play a major role is designing new surveys. The key systematic effects that we discuss are (1) calibration, measuring the telescope efficiency in each filter band, (2) biases from a magnitude-limited survey and from the analysis, and (3) photometric SN classification for current surveys that don't have enough resources to spectroscopically confirm each SN candidate.

  13. Absolute-magnitude distributions of supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Dean; Wright, John [Department of Physics, Xavier University of Louisiana, New Orleans, LA 70125 (United States); Jenkins III, Robert L. [Applied Physics Department, Richard Stockton College, Galloway, NJ 08205 (United States); Maddox, Larry, E-mail: drichar7@xula.edu [Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, LA 70402 (United States)

    2014-05-01

    The absolute-magnitude distributions of seven supernova (SN) types are presented. The data used here were primarily taken from the Asiago Supernova Catalogue, but were supplemented with additional data. We accounted for both foreground and host-galaxy extinction. A bootstrap method is used to correct the samples for Malmquist bias. Separately, we generate volume-limited samples, restricted to events within 100 Mpc. We find that the superluminous events (M{sub B} < –21) make up only about 0.1% of all SNe in the bias-corrected sample. The subluminous events (M{sub B} > –15) make up about 3%. The normal Ia distribution was the brightest with a mean absolute blue magnitude of –19.25. The IIP distribution was the dimmest at –16.75.

  14. THE AGES OF TYPE Ia SUPERNOVA PROGENITORS

    International Nuclear Information System (INIS)

    Brandt, Timothy D.; Aubourg, Eric; Strauss, Michael A.; Tojeiro, Rita; Heavens, Alan; Jimenez, Raul

    2010-01-01

    Using light curves and host galaxy spectra of 101 Type Ia supernovae (SNe Ia) with redshift z ∼ 2.4 Gyr. We find that each channel contributes roughly half of the Type Ia rate in our reference sample. We also construct the average spectra of high-stretch and low-stretch SN Ia host galaxies, and find that the difference of these spectra looks like a main-sequence B star with nebular emission lines indicative of star formation. This supports our finding that there are two populations of SNe Ia, and indicates that the progenitors of high-stretch supernovae are at the least associated with very recent star formation in the last few tens of Myr. Our results provide valuable constraints for models of Type Ia progenitors and may help improve the calibration of SNe Ia as standard candles.

  15. Impacto ambiental de los remanentes de supernova

    Science.gov (United States)

    Dubner, G. M.

    2015-08-01

    The explosion of a supernovae (SN) represents the sudden injection of about ergs of thermal and mechanical energy in a small region of space, causing the formation of powerful shock waves that propagate through the interstellar medium at speeds of several thousands of km/s. These waves sweep, compress and heat the interstellar material that they encounter, forming the supernova remnants. Their evolution over thousands of years change forever, irreversibly, not only the physical but also the chemical properties of a vast region of space that can span hundreds of parsecs. This contribution briefly analyzes the impact of these explosions, discussing the relevance of some phenomena usually associated with SNe and their remnants in the light of recent theoretical and observational results.

  16. On Neutron Star/Supernova Remnant Association

    Science.gov (United States)

    Gvaramadze, V. V.

    It is pointed out that a cavity supernova (SN) explosion of a moving massive star could result in a significant offset of the neutron star (NS) birth-place from the geometrical centre of the supernova remnant (SNR). Therefore: a) the high implied transverse velocities of a number of NSs (e.g. PSR B1610-50, PSR B1706-44, PSR B1757-24, SGR 0526-66) could be reduced; b) the proper motion vector of a NS should not necessarily point away from the geometrical centre of the associated SNR; c) the circle of possible NS/SNR associations could be enlarged. An observational test is discussed, which could provide a determination of the true birth-places of NSs associated with middle-aged SNRs, and thereby provide more reliable estimates of their transverse velocities.

  17. Supernovae from Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Schaeffer, R.

    1986-01-01

    Wolf-Rayet stars are known to originate from the most massive stars. Under the assumption that these stripped stars explode at the end of their evolution through the same instability mechanism as type II supernovae, we calculate their light curve. The latter is found to be quite similar to the typical SN I light curves but is fainter by about 2 magnitudes. A detailed study of its shape leads to identify the WR supernovae with the SNIp (or SNIb) subclass. The more massive WR stars should explode via the e + e - pair production mechanism, with negligible 56 Ni formation. Their rather dim light curve is predicted to have a ∼ 2 month plateau and afterwards a very sharp decline. A delayed manifestation of such an event might be the Cas A remnant

  18. THE CARNEGIE SUPERNOVA PROJECT: SECOND PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Stritzinger, Maximilian D.; Phillips, M. M.; Campillay, Abdo; Morrell, Nidia; Krzeminski, Wojtek; Roth, Miguel; Boldt, Luis N.; Burns, Chris; Freedman, Wendy L.; Madore, Barry F.; Persson, Sven E.; Contreras, Carlos; Gonzalez, Sergio; Folatelli, Gaston; Salgado, Francisco; DePoy, D. L.; Marshall, J. L.; Rheault, Jean-Philippe; Suntzeff, Nicholas B.; Hamuy, Mario

    2011-01-01

    The Carnegie Supernova Project (CSP) was a five-year observational survey conducted at Las Campanas Observatory that obtained, among other things, high-quality light curves of ∼100 low-redshift Type Ia supernovae (SNe Ia). Presented here is the second data release of nearby SN Ia photometry consisting of 50 objects, with a subset of 45 having near-infrared follow-up observations. Thirty-three objects have optical pre-maximum coverage with a subset of 15 beginning at least five days before maximum light. In the near-infrared, 27 objects have coverage beginning before the epoch of B-band maximum, with a subset of 13 beginning at least five days before maximum. In addition, we present results of a photometric calibration program to measure the CSP optical (uBgVri) bandpasses with an accuracy of ∼1%. Finally, we report the discovery of a second SN Ia, SN 2006ot, similar in its characteristics to the peculiar SN 2006bt.

  19. Mass Extinctions and Supernova Explosions

    Science.gov (United States)

    Korschinek, Gunther

    A nearby supernova (SN) explosion could have negatively influenced life on Earth, maybe even been responsible for mass extinctions. Mass extinction poses a significant extinction of numerous species on Earth, as recorded in the paleontologic, paleoclimatic, and geological record of our planet. Depending on the distance between the Sun and the SN, different types of threats have to be considered, such as ozone depletion on Earth, causing increased exposure to the Sun's ultraviolet radiation or the direct exposure of lethal X-rays. Another indirect effect is cloud formation, induced by cosmic rays in the atmosphere which result in a drop in the Earth's temperature, causing major glaciations of the Earth. The discovery of highly intensive gamma-ray bursts (GRBs), which could be connected to SNe, initiated further discussions on possible life-threatening events in the Earth's history. The probability that GRBs hit the Earth is very low. Nevertheless, a past interaction of Earth with GRBs and/or SNe cannot be excluded and might even have been responsible for past extinction events.

  20. Light echoes - Type II supernovae

    International Nuclear Information System (INIS)

    Schaefer, B.E.

    1987-01-01

    Type II supernovae (SNs) light curves show a remarkable range of shapes. Data have been collected for the 12 Type II SNs that have light curve information for more than four months past maximum. Contrary to previous reports, it is found that (1) the decay rate after 100 days past maximum varies by almost an order of magnitude and (2) the light curve shapes are not bimodally distributed, but actually form a continuum. In addition, it is found that the extinctions to the SNs are related to the light curve shapes. This implies that the absorbing dust is local to the SNs. The dust is likely to be part of a circumstellar shell emitted by the SN progenitor that Dwek (1983) has used to explain infrared echoes. The optical depth of the shell can get quite large. In such cases, it is found that the photons scattered and delayed by reflection off dust grains will dominate the light curve several months after peak brightness. This light echo offers a straightforward explanation of the diversity of Type II SN light curves. 22 references

  1. Matching Supernovae to Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    One of the major challenges for modern supernova surveys is identifying the galaxy that hosted each explosion. Is there an accurate and efficient way to do this that avoids investing significant human resources?Why Identify Hosts?One problem in host galaxy identification. Here, the supernova lies between two galaxies but though the centroid of the galaxy on the right is closer in angular separation, this may be a distant background galaxy that is not actually near the supernova. [Gupta et al. 2016]Supernovae are a critical tool for making cosmological predictions that help us to understand our universe. But supernova cosmology relies on accurately identifying the properties of the supernovae including their redshifts. Since spectroscopic followup of supernova detections often isnt possible, we rely on observations of the supernova host galaxies to obtain redshifts.But how do we identify which galaxy hosted a supernova? This seems like a simple problem, but there are many complicating factors a seemingly nearby galaxy could be a distant background galaxy, for instance, or a supernovas host could be too faint to spot.The authors algorithm takes into account confusion, a measure of how likely the supernova is to be mismatched. In these illustrations of low (left) and high (right) confusion, the supernova is represented by a blue star, and the green circles represent possible host galaxies. [Gupta et al. 2016]Turning to AutomationBefore the era of large supernovae surveys, searching for host galaxies was done primarily by visual inspection. But current projects like the Dark Energy Surveys Supernova Program is finding supernovae by the thousands, and the upcoming Large Synoptic Survey Telescope will likely discover hundreds of thousands. Visual inspection will not be possible in the face of this volume of data so an accurate and efficient automated method is clearly needed!To this end, a team of scientists led by Ravi Gupta (Argonne National Laboratory) has recently

  2. HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Kessler, Richard; Goldstein, Daniel A.; Liotine, Camille; Pomian, Katarzyna; D’Andrea, Chris B.; Sullivan, Mark; Carretero, Jorge; Castander, Francisco J.; Nichol, Robert C.; Finley, David A.; Fischer, John A.; Foley, Ryan J.; Kim, Alex G.; Papadopoulos, Andreas; Sako, Masao; Scolnic, Daniel M.; Smith, Mathew; Tucker, Brad E.; Uddin, Syed; Wolf, Rachel C.; Yuan, Fang; Abbott, Tim M. C.; Abdalla, Filipe B.; Benoit-Lévy, Aurélien; Bertin, Emmanuel; Brooks, David; Rosell, Aurelio Carnero; Kind, Matias Carrasco; Cunha, Carlos E.; Costa, Luiz N. da; Desai, Shantanu; Doel, Peter; Eifler, Tim F.; Evrard, August E.; Flaugher, Brenna; Fosalba, Pablo; Gaztañaga, Enrique; Gruen, Daniel; Gruendl, Robert; James, David J.; Kuehn, Kyler; Kuropatkin, Nikolay; Maia, Marcio A. G.; Marshall, Jennifer L.; Miquel, Ramon; Plazas, Andrés A.; Romer, A. Kathy; Sánchez, Eusebio; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Sobreira, Flávia; Suchyta, Eric; Swanson, Molly E. C.; Tarle, Gregory; Walker, Alistair R.; Wester, William

    2016-11-08

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  3. HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Liotine, Camille; Pomian, Katarzyna [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Kessler, Richard; Scolnic, Daniel M. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Goldstein, Daniel A. [Department of Astronomy, University of California, Berkeley, 501 Campbell Hall #3411, Berkeley, CA 94720 (United States); D’Andrea, Chris B.; Nichol, Robert C.; Papadopoulos, Andreas [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Sullivan, Mark [Department of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Carretero, Jorge; Castander, Francisco J. [Institut de Ciències de l’Espai, IEEC-CSIC, Campus UAB, Carrer de Can Magrans, s/n, E-08193 Bellaterra, Barcelona (Spain); Finley, David A. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Fischer, John A.; Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Foley, Ryan J. [Department of Astronomy, University of Illinois, 1002 W. Green Street, Urbana, IL 61801 (United States); Kim, Alex G., E-mail: raviryan@gmail.com [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); and others

    2016-12-01

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate “hostless” SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  4. Evolution of Supernova Remnants

    Science.gov (United States)

    Arbutina, B.

    2017-12-01

    This book, both a monograph and a graduate textbook, is based on my original research and partly on the materials prepared earlier for the 2007 and 2008 IARS Astrophysics Summer School in Istanbul, AstroMundus course 'Supernovae and Their Remnants' that was held for the first time in 2011 at the Department of Astronomy, Faculty of Mathematics, University of Belgrade, and a graduate course 'Evolution of Supernova Remnants' that I teach at the aforementioned university. The first part Supernovae (introduction, thermonuclear supernovae, core-collapse supernovae) provides introductory information and explains the classification and physics of supernova explosions, while the second part Supernova remnants (introduction, shock waves, cosmic rays and particle acceleration, magnetic fields, synchrotron radiation, hydrodynamic and radio evolution of supernova remnants), which is the field I work in, is more detailed in scope i.e. technical/mathematical. Special attention is paid to details of mathematical derivations that often cannot be found in original works or available literature. Therefore, I believe it can be useful to both, graduate students and researchers interested in the field.

  5. Supernova 1604, Kepler’s Supernova, and Its Remnant

    NARCIS (Netherlands)

    Vink, J.; Alsabti, A.W.; Murdin, P.

    2016-01-01

    Supernova 1604 is the last galactic supernova for which historical records exist. Johannes Kepler’s name is attached to it, as he published a detailed account of the observations made by himself and European colleagues. Supernova 1604 was very likely a type Ia supernova, which exploded 350–750 pc

  6. VERY LATE PHOTOMETRY OF SN 2011fe

    International Nuclear Information System (INIS)

    Kerzendorf, W. E.; Taubenberger, S.; Seitenzahl, I. R.; Ruiter, A. J.

    2014-01-01

    The Type Ia supernova SN 2011fe is one of the closest supernovae of the past decades. Due to its proximity and low dust extinction, this object provides a very rare opportunity to study the extremely late time evolution (>900 days) of thermonuclear supernovae. In this Letter, we present our photometric data of SN 2011fe taken at an unprecedented late epoch of ≈930 days with GMOS-N mounted on the Gemini North telescope (g = 23.43 ± 0.28, r = 24.14 ± 0.14, i = 23.91 ± 0.18, and z = 23.90 ± 0.17) to study the energy production and retention in the ejecta of SN 2011fe. Together with previous measurements by other groups, our result suggests that the optical supernova light curve can still be explained by the full thermalization of the decay positrons of 56 Co. This is in spite of theoretical predicted effects (e.g., infrared catastrophe, positron escape, and dust) that advocate a substantial energy redistribution and/or loss via various processes that result in a more rapid dimming at these very late epochs

  7. The Stellar Origins of Supernovae

    Science.gov (United States)

    Van Dyk, Schulyer

    2017-08-01

    Supernovae (SNe) have a profound effect on galaxies and have been used as precise cosmological probes, resulting in the Nobel-distinguished discovery of the accelerating Universe. They are clearly very important events deserving of intense study. Yet, even with over 10000 classified SNe, we know relatively little about the stars which give rise to these powerful explosions. The main limitation has been the lack of spatial resolution in pre-SN imaging data. However, since 1999 our team has been at the vanguard of directly identifying SN progenitor stars in HST images. From this exciting line of study, the trends from 15 detections for Type II-Plateau SNe appear to be red supergiant progenitors of relatively low mass (8 to 17 Msun) - although this upper mass limit still requires testing - and warmer, envelope-stripped supergiant progenitors for 5 Type IIb SNe. Additionally, evidence is accumulating that some Type II-narrow SNe may arise from exploding stars in a luminous blue variable phase. However, the nature of the progenitors of Type Ib/c SNe, a subset of which are associated with gamma-ray bursts, still remains ambiguous. Furthermore, we continue in the embarrassing situation that we still do not yet know which progenitor systems explode as Type Ia SNe, which are being used for precision cosmology. In Cycles 16, 17, and 20 through 24 we have had great success with our approved ToO programs. As of this proposal deadline, we have already triggered on SN 2016jbu with our Cycle 24 program. We therefore propose to continue this project in Cycles 25 and 26, to determine the identities of the progenitors of 8 SNe within about 20 Mpc through ToO observations using WFC3/UVIS.

  8. Simplified design of IC amplifiers

    CERN Document Server

    Lenk, John

    1996-01-01

    Simplified Design of IC Amplifiers has something for everyone involved in electronics. No matter what skill level, this book shows how to design and experiment with IC amplifiers. For experimenters, students, and serious hobbyists, this book provides sufficient information to design and build IC amplifier circuits from 'scratch'. For working engineers who design amplifier circuits or select IC amplifiers, the book provides a variety of circuit configurations to make designing easier.Provides basics for all phases of practical design.Covers the most popular forms for amplif

  9. Constraints on high-energy neutrino emission from SN 2008D

    NARCIS (Netherlands)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S.W.; Bay, R.; Alba, J.L.B.; Beattie, K.; Beatty, J.J.; Bechet, S.; Becker, J.K.; Becker, K.H.; Benabderrahmane, M.L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D.Z.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D.J.; Bohm, C.; Bose, D.; Boser, S.; Botner, O.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D.F.; D'Agostino, M.V.; Danninger, M.; Davis, J.C.; Clercq, C. De; Demirors, L.; Depaepe, O.; Descamps, F.; Desiati, P.; Vries-Uiterweerd, G. de; DeYoung, T.; Diaz-Velez, J.C.; Dierckxsens, M.; Dreyer, J.; Dumm, J.P.; Duvoort, M.R.; Ehrlich, R.; Eisch, J.; Ellsworth, R.W.; Engdegard, O.; Euler, S.; Evenson, P.A.; Fadiran, O.; Fazely, A.R.; Fedynitch, A.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M.M.; Fox, B.D.; Franckowiak, A.; Franke, R.; Gaisser, T.K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glusenkamp, T.; Goldschmidt, A.; Goodman, J.A.; Grant, D.; Griesel, T.; Gross, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G.C.; Hoffman, K.D.; Homeier, A.; Hoshina, K.; Lafebre, S.J.; et al.,

    2011-01-01

    SN 2008D, a core collapse supernova at a distance of 27 Mpc, was serendipitously discovered by the Swift satellite through an associated X-ray flash. Core collapse supernovae have been observed in association with long gamma-ray bursts and X-ray flashes and a physical connection is widely assumed.

  10. Colorful Investigations of Supernovae for WFIRST-AFTA

    Science.gov (United States)

    Foley, Ryan

    Type Ia supernovae (SNe Ia) are extremely good probes of dark energy, and WFIRST-AFTA is particularly well suited to make the best SN distance measurements possible. For conservative assumptions, the WFIRST SN survey is projected to have twice the impact as its other probes. Considering that Euclid will only have a minimal SN survey, but strong programs for other dark energy probes, the WFIRST SN survey is especially unique and important. With an initial simulation of the WFIRST-AFTA survey, we have determined that the largest statistical and systematic uncertainties are related to SN color. SN distances strongly depend on the precise measurement of SN colors since we must make a dust extinction correction that depends on the observed color. The details of how the correction is applied and the possibility that the correction evolves with redshift combine with potential calibration systematics to limit the current effectiveness of the SN component of WFIRST-AFTA. Here, we propose to support two graduate students to (1) investigate how intrinsic color variations will impact WFIRST-AFTA systematic uncertainties, (2) determine improved methods for reducing the systematic uncertainties related to SN color, and (3) simulate survey strategies incorporating our results to obtain the highest dark energy figure of merit (DE-FoM).

  11. STRESS a SN survey at ESO

    Science.gov (United States)

    Botticella, M. T.

    We performed the Southern inTermediate Redshift ESO Supernova Search (STRESS), a survey specifically designed to measure the rate of both SNe Ia and CC SNe, in order to obtain a direct comparison of the high redshift and local rates and to investigate the dependence of the rates on specific galaxy properties, most notably their colour. We found that the type Ia SN rate, at mean redshift z = 0.3, is 0.22+0.10+0.16-0.08-0.14 h270 SNu, while the CC SN rate, at z = 0.21, is 0.82+0.31+0.300.24-0.26 h270 SNu. The quoted errors are the statistical and systematic uncertainties. With respect to the local value, the CC SN rate at z = 0.2 is higher by a factor of ˜ 2, whereas the type Ia SN rate remains almost constant. We also measured the SN rates in the red and blue galaxies and found that the SN Ia rate seems to be constant in galaxies of different colour, whereas the CC SN rate seems to peak in blue galaxies, as in the local Universe. Finally we exploited the link between SFH and SN rates to predict the evolutionary behaviour of the SN rates and compare it with the path indicated by observations.

  12. RAPIDLY DECAYING SUPERNOVA 2010X: A CANDIDATE '.Ia' EXPLOSION

    International Nuclear Information System (INIS)

    Kasliwal, Mansi M.; Kulkarni, S. R.; Quimby, Robert M.; Ofek, Eran O.; Gal-Yam, Avishay; Yaron, Ofer; Sternberg, Assaf; Arcavi, Iair; Nugent, Peter; Poznanski, Dovi; Jacobsen, Janet; Howell, D. Andrew; Sullivan, Mark; Rich, Douglas J.; Burke, Paul F.; Brimacombe, Joseph; Milisavljevic, Dan; Fesen, Robert; Bildsten, Lars; Shen, Ken

    2010-01-01

    We present the discovery, photometric, and spectroscopic follow-up observations of SN 2010X (PTF 10bhp). This supernova decays exponentially with τ d = 5 days and rivals the current recordholder in speed, SN 2002bj. SN 2010X peaks at M r = -17 mag and has mean velocities of 10,000 km s -1 . Our light curve modeling suggests a radioactivity-powered event and an ejecta mass of 0.16 M sun . If powered by Nickel, we show that the Nickel mass must be very small (∼0.02 M sun ) and that the supernova quickly becomes optically thin to γ-rays. Our spectral modeling suggests that SN 2010X and SN 2002bj have similar chemical compositions and that one of aluminum or helium is present. If aluminum is present, we speculate that this may be an accretion-induced collapse of an O-Ne-Mg white dwarf. If helium is present, all observables of SN 2010X are consistent with being a thermonuclear helium shell detonation on a white dwarf, a '.Ia' explosion. With the 1 day dynamic-cadence experiment on the Palomar Transient Factory, we expect to annually discover a few such events.

  13. Dependence on supernovae light-curve processing in void models

    Energy Technology Data Exchange (ETDEWEB)

    Bengochea, Gabriel R., E-mail: gabriel@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); De Rossi, Maria E., E-mail: derossi@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

    2014-06-02

    In this work, we show that when supernova Ia (SN Ia) data sets are used to put constraints on the free parameters of inhomogeneous models, certain extra information regarding the light-curve fitter used in the supernovae Ia luminosity fluxes processing should be taken into account. We found that the size of the void as well as other parameters of these models might be suffering extra degenerations or additional systematic errors due to the fitter. A recent proposal to relieve the tension between the results from Planck satellite and SNe Ia is re-analyzed in the framework of these subjects.

  14. Recent results on SN 1987A

    International Nuclear Information System (INIS)

    Woosley, S.E.; Pinto, P.A.; Weaver, T.A.

    1988-01-01

    Several critical issues recently raised by observations of SN 1987A are addressed. These include: the evolution of the pre-supernova star, why it was blue, what its composition and core structure were; the detailed isotopic composition of the ejecta; why and to what extent the supernova composition was mixed in velocity space; the interpretation of recently observed infrared lines, especially their profiles and the existence of red-shifted 'wings'; and what has become of the neutron star. 64 refs., 14 figs., 1 tab

  15. The 20th anniversary of SN1987A

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, A [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaragi, 305-0801 (Japan)], E-mail: atsuto.suzuki@kek.jp

    2008-07-15

    Observation of a neutrino burst from the supernova, SN1987A opened a new window of observational astronomy by neutrinos. And the history showed that the SN1987A neutrino burst observation was the vanguard of successive discoveries of neutrino properties by Super-Kamiokande, SNO, K2K, KamLAND and so on. On the occasion of the SN1987A 20th anniversary, the backstage story up to the discovery of the SN1987A neutrino bursts is summarized, tracing the Kamiokande log-note and including the IMB, LSD and Baksan data.

  16. Supernovae and neutrinos

    International Nuclear Information System (INIS)

    Totsuka, Y.

    1991-01-01

    On February 25, 1987, a sheet of telefax came to us from S. A. Bludman, saying Supernova went off in Large Magellanic Clouds. Can you see it? This is what we have been waiting 350 years for exclamation point In few hours, more information arrived. But it was still too early to definitely identify the supernova as type I or type II. This paper reports that the type I supernova is an explosion of a complete star due to uncontrolled nuclear fusion, while the type II supernova is triggered by gravitational collapse of the Fe core of a massive star (≥8 solar mass). It is this type II supernova that would leave a neutron star or a black hole after the liberation of an enormous amount of energy (3 x 10 53 erg) in the form of neutrinos. Therefore only the type II supernova is a relevant place to look for neutrino signals. It was also frustrating that the time when the stellar collapse actually took place was not definitely determined, because it was believed that the supernova brightened up about a day after the collapse and there was an ambiguity in a time lag of the optical observation. There was a possibility that it had happened well before February 24

  17. Defining photometric peculiar type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    González-Gaitán, S.; Pignata, G.; Förster, F.; Gutiérrez, C. P.; Bufano, F.; Galbany, L.; Hamuy, M.; De Jaeger, T. [Millennium Institute of Astrophysics, Casilla 36-D, Santiago (Chile); Hsiao, E. Y.; Phillips, M. M. [Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena (Chile); Folatelli, G. [Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa 277-8583 (Kavli IPMU, WPI) (Japan); Anderson, J. P., E-mail: sgonzale@das.uchile.cl [European Southern Observatory, Alonso de Córdova 3107, Casilla 19, Santiago (Chile)

    2014-11-10

    We present a new photometric identification technique for SN 1991bg-like type Ia supernovae (SNe Ia), i.e., objects with light curve characteristics such as later primary maxima and the absence of a secondary peak in redder filters. This method is capable of selecting this sub-group from the normal type Ia population. Furthermore, we find that recently identified peculiar sub-types such as SNe Iax and super-Chandrasekhar SNe Ia have photometric characteristics similar to 91bg-like SNe Ia, namely, the absence of secondary maxima and shoulders at longer wavelengths, and can also be classified with our technique. The similarity of these different SN Ia sub-groups perhaps suggests common physical conditions. This typing methodology permits the photometric identification of peculiar SNe Ia in large upcoming wide-field surveys either to study them further or to obtain a pure sample of normal SNe Ia for cosmological studies.

  18. The evolution of red supergiants to supernovae

    Science.gov (United States)

    Beasor, Emma R.; Davies, Ben

    2017-11-01

    With red supergiants (RSGs) predicted to end their lives as Type IIP core collapse supernova (CCSN), their behaviour before explosion needs to be fully understood. Mass loss rates govern RSG evolution towards SN and have strong implications on the appearance of the resulting explosion. To study how the mass-loss rates change with the evolution of the star, we have measured the amount of circumstellar material around 19 RSGs in a coeval cluster. Our study has shown that mass loss rates ramp up throughout the lifetime of an RSG, with more evolved stars having mass loss rates a factor of 40 higher than early stage RSGs. Interestingly, we have also found evidence for an increase in circumstellar extinction throughout the RSG lifetime, meaning the most evolved stars are most severely affected. We find that, were the most evolved RSGs in NGC2100 to go SN, this extra extinction would cause the progenitor's initial mass to be underestimated by up to 9M⊙.

  19. TYPE Ia SUPERNOVA CARBON FOOTPRINTS

    International Nuclear Information System (INIS)

    Thomas, R. C.; Nugent, P.; Aldering, G.; Aragon, C.; Bailey, S.; Childress, M.; Fakhouri, H. K.; Hsiao, E. Y.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Paech, K.; Chotard, N.; Copin, Y.; Gangler, E.

    2011-01-01

    We present convincing evidence of unburned carbon at photospheric velocities in new observations of five Type Ia supernovae (SNe Ia) obtained by the Nearby Supernova Factory. These SNe are identified by examining 346 spectra from 124 SNe obtained before +2.5 days relative to maximum. Detections are based on the presence of relatively strong C II λ6580 absorption 'notches' in multiple spectra of each SN, aided by automated fitting with the SYNAPPS code. Four of the five SNe in question are otherwise spectroscopically unremarkable, with ions and ejection velocities typical of SNe Ia, but spectra of the fifth exhibit high-velocity (v > 20, 000 km s –1 ) Si II and Ca II features. On the other hand, the light curve properties are preferentially grouped, strongly suggesting a connection between carbon-positivity and broadband light curve/color behavior: three of the five have relatively narrow light curves but also blue colors and a fourth may be a dust-reddened member of this family. Accounting for signal to noise and phase, we estimate that 22 +10 –6% of SNe Ia exhibit spectroscopic C II signatures as late as –5 days with respect to maximum. We place these new objects in the context of previously recognized carbon-positive SNe Ia and consider reasonable scenarios seeking to explain a physical connection between light curve properties and the presence of photospheric carbon. We also examine the detailed evolution of the detected carbon signatures and the surrounding wavelength regions to shed light on the distribution of carbon in the ejecta. Our ability to reconstruct the C II λ6580 feature in detail under the assumption of purely spherical symmetry casts doubt on a 'carbon blobs' hypothesis, but does not rule out all asymmetric models. A low volume filling factor for carbon, combined with line-of-sight effects, seems unlikely to explain the scarcity of detected carbon in SNe Ia by itself.

  20. Mechanisms for supernova explosions

    International Nuclear Information System (INIS)

    Epstein, R.I.

    1977-01-01

    This report discusses some of the recent developments in the study of one supernova mechanism, the neutrino transport mechanism, and indicates what future developments are needed before this model can be adequately understood. (Auth.)

  1. Automated search for supernovae

    International Nuclear Information System (INIS)

    Kare, J.T.

    1984-01-01

    This thesis describes the design, development, and testing of a search system for supernovae, based on the use of current computer and detector technology. This search uses a computer-controlled telescope and charge coupled device (CCD) detector to collect images of hundreds of galaxies per night of observation, and a dedicated minicomputer to process these images in real time. The system is now collecting test images of up to several hundred fields per night, with a sensitivity corresponding to a limiting magnitude (visual) of 17. At full speed and sensitivity, the search will examine some 6000 galaxies every three nights, with a limiting magnitude of 18 or fainter, yielding roughly two supernovae per week (assuming one supernova per galaxy per 50 years) at 5 to 50 percent of maximum light. An additional 500 nearby galaxies will be searched every night, to locate about 10 supernovae per year at one or two percent of maximum light, within hours of the initial explosion

  2. Berkeley automated supernova search

    Energy Technology Data Exchange (ETDEWEB)

    Kare, J.T.; Pennypacker, C.R.; Muller, R.A.; Mast, T.S.; Crawford, F.S.; Burns, M.S.

    1981-01-01

    The Berkeley automated supernova search employs a computer controlled 36-inch telescope and charge coupled device (CCD) detector to image 2500 galaxies per night. A dedicated minicomputer compares each galaxy image with stored reference data to identify supernovae in real time. The threshold for detection is m/sub v/ = 18.8. We plan to monitor roughly 500 galaxies in Virgo and closer every night, and an additional 6000 galaxies out to 70 Mpc on a three night cycle. This should yield very early detection of several supernovae per year for detailed study, and reliable premaximum detection of roughly 100 supernovae per year for statistical studies. The search should be operational in mid-1982.

  3. Automated search for supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Kare, J.T.

    1984-11-15

    This thesis describes the design, development, and testing of a search system for supernovae, based on the use of current computer and detector technology. This search uses a computer-controlled telescope and charge coupled device (CCD) detector to collect images of hundreds of galaxies per night of observation, and a dedicated minicomputer to process these images in real time. The system is now collecting test images of up to several hundred fields per night, with a sensitivity corresponding to a limiting magnitude (visual) of 17. At full speed and sensitivity, the search will examine some 6000 galaxies every three nights, with a limiting magnitude of 18 or fainter, yielding roughly two supernovae per week (assuming one supernova per galaxy per 50 years) at 5 to 50 percent of maximum light. An additional 500 nearby galaxies will be searched every night, to locate about 10 supernovae per year at one or two percent of maximum light, within hours of the initial explosion.

  4. Berkeley automated supernova search

    International Nuclear Information System (INIS)

    Kare, J.T.; Pennypacker, C.R.; Muller, R.A.; Mast, T.S.

    1981-01-01

    The Berkeley automated supernova search employs a computer controlled 36-inch telescope and charge coupled device (CCD) detector to image 2500 galaxies per night. A dedicated minicomputer compares each galaxy image with stored reference data to identify supernovae in real time. The threshold for detection is m/sub v/ = 18.8. We plan to monitor roughly 500 galaxies in Virgo and closer every night, and an additional 6000 galaxies out to 70 Mpc on a three night cycle. This should yield very early detection of several supernovae per year for detailed study, and reliable premaximum detection of roughly 100 supernovae per year for statistical studies. The search should be operational in mid-1982

  5. Physics of supernovae

    International Nuclear Information System (INIS)

    Woosley, S.E.; Weaver, T.A.

    1985-01-01

    Presupernova models of massive stars are presented and their explosion by ''delayed neutrino transport'' examined. A new form of long duration Type II supernova model is also explored based upon repeated encounter with the electron-positron pair instability in stars heavier than about 60 Msub solar. Carbon deflagration in white dwarfs is discussed as the probable explanation of Type I supernovae and special attention is paid to the physical processes whereby a nuclear flame propagates through degenerate carbon. 89 refs., 12 figs

  6. Velocity Dispersion of Ionized Gas and Multiple Supernova Explosions

    Directory of Open Access Journals (Sweden)

    Vasiliev E. O.

    2015-06-01

    Full Text Available We use 3D numerical simulations to study the evolution of the Hα intensity and velocity dispersion for single and multiple supernova (SN explosions. We find that the IHα– σ diagram obtained for simulated gas flows is similar in shape to that observed in dwarf galaxies. We conclude that colliding SN shells with significant difference in age are responsible for high velocity dispersion that reaches up to ≳ 100 km s−1. Such a high velocity dispersion could be hardly obtained for a single SN remnant. Peaks of velocity dispersion in the IHα– σ diagram may correspond to several isolated or merged SN remnants with moderately different ages. Degrading the spatial resolution in the Hα intensity and velocity dispersion maps makes the simulated IHα– σ diagrams close to those observed in dwarf galaxies not only in shape, but also quantitatively.

  7. Type Ia supernovae yielding distances with 3-4% precision

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Patrick L. [Univ. of California, Berkeley, CA (United States); Filippenko, Alexei V. [Univ. of California, Berkeley, CA (United States); Burke, David L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hicken, Malcolm [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Ganeshalingam, Mohan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zheng, Weikang [Univ. of California, Berkeley, CA (United States)

    2015-01-26

    The luminosities of Type Ia supernovae (SN), the thermonuclear explosions of white dwarf stars, vary systematically with their intrinsic color and light-curve decline rate. These relationships have been used to calibrate their luminosities to within ~0.14–0.20 mag from broadband optical light curves, yielding individual distances accurate to ~7–10%. Here we identify a subset of SN Ia that erupt in environments having high ultraviolet surface brightness and star-formation surface density. When we apply a steep model extinction law, these SN can be calibrated to within ~0.065–0.075 mag, corresponding to ~3–4% in distance — the best yet with SN Ia by a substantial margin. The small scatter suggests that variations in only one or two progenitor properties account for their light-curve-width/color/luminosity relation.

  8. Dynamics of supernova remnants in the Galactic centre.

    Science.gov (United States)

    Bortolas, E.; Mapelli, M.; Spera, M.

    The Galactic centre (GC) is a unique place to study the extreme dynamical processes occurring near a super-massive black hole (SMBH). Here we simulate a large set of binaries orbiting the SMBH while the primary member undergoes a supernova (SN) explosion, in order to study the impact of SN kicks on the orbits of stars and dark remnants in the GC. We find that SN explosions are efficient in scattering neutron stars and other light stars on new (mostly eccentric) orbits, while black holes (BHs) tend to retain memory of the orbit of their progenitor star. SN kicks are thus unable to eject BHs from the GC: a cusp of dark remnants may be lurking in the central parsec of our Galaxy.

  9. Signatures of the neutrino mass hierarchy in supernova neutrinos

    International Nuclear Information System (INIS)

    Chiu, S.H.; Huang, Chu-Ching; Lai, Kwang-Chang

    2015-01-01

    The undetermined neutrino mass hierarchy may leave an observable imprint on the neutrino fluxes from a core-collapse supernova (SN). The interpretation of the observables, however, is subject to the uncertain SN models and the flavor conversion mechanism of neutrinos in a SN. We attempt to propose a qualitative interpretation of the expected neutrino events at terrestrial detectors, focusing on the accretion phase of the neutrino burst. The flavor conversions due to neutrino self-interaction, the MSW effect, and the Earth regeneration effect are incorporated in the calculation. It leads to several distinct scenarios that are identified by the neutrino mass hierarchies and the collective flavor transitions. Consequences resulting from the variation of incident angles and SN models are also discussed

  10. Supernova ejecta with a relativistic wind from a central compact object: a unified picture for extraordinary supernovae

    Science.gov (United States)

    Suzuki, Akihiro; Maeda, Keiichi

    2017-04-01

    The hydrodynamical interaction between freely expanding supernova ejecta and a relativistic wind injected from the central region is studied in analytic and numerical ways. As a result of the collision between the ejecta and the wind, a geometrically thin shell surrounding a hot bubble forms and expands in the ejecta. We use a self-similar solution to describe the early dynamical evolution of the shell and carry out a two-dimensional special relativistic hydrodynamic simulation to follow further evolution. The Rayleigh-Taylor instability inevitably develops at the contact surface separating the shocked wind and ejecta, leading to the complete destruction of the shell and the leakage of hot gas from the hot bubble. The leaking hot materials immediately catch up with the outermost layer of the supernova ejecta and thus different layers of the ejecta are mixed. We present the spatial profiles of hydrodynamical variables and the kinetic energy distributions of the ejecta. We stop the energy injection when a total energy of 1052 erg, which is 10 times larger than the initial kinetic energy of the supernova ejecta, is deposited into the ejecta and follow the subsequent evolution. From the results of our simulations, we consider expected emission from supernova ejecta powered by the energy injection at the centre and discuss the possibility that superluminous supernovae and broad-lined Ic supernovae could be produced by similar mechanisms.

  11. Mapping the Supernova-Rich Fireworks Galaxy NGC 6946

    Science.gov (United States)

    Patton, Locke; Levesque, Emily

    2018-01-01

    Supernovae (SNe) are the spectacularly violent deaths of evolved young massive stars, which expel a shock wave into the intergalactic medium that in turn can spark star formation and disperse heavy elements into their host galaxy. While a SN event can be classified by its spectral signature, determining the nature of a SN progenitor depends upon chance photometry taken prior to the event. By turning to the study of SN host environments and their surrounding interstellar medium within the unique and rare population of galaxies that have hosted three or more SN events within the last century, we are granted the opportunity to study the locations and environmental properties of stellar populations prone to supernova progenitor production. Using moderate-resolution optical slit spectra taken with the Apache Point Observatory 3.5m DIS spectrograph, our goal is to map metallicity, ionization parameter, and star formation rates using emission line diagnostic ratios across each SN-rich galaxy. Dubbed the “Fireworks Galaxy” at a distance of 5.6 ± 1.5 Mpc, NGC 6946 is of particular interest as it has uniquely produced ten core-collapse supernovae (CCSNe) and several other massive star transients within the last century. We present spatially-resolved metallicity and star formation rate (SFR) maps of NGC 6946, tracing fifty-five slit orientations which span the face of the galaxy and cover all CCSN host sites. Future work will include both stellar population synthesis modelling to determine stellar populations, ages, and SFR histories in NGC 6946 and a further expansion of this analysis to the other SN-rich host galaxies in our sample.

  12. THE EFFECT OF HOST GALAXIES ON TYPE Ia SUPERNOVAE IN THE SDSS-II SUPERNOVA SURVEY

    International Nuclear Information System (INIS)

    Lampeitl, Hubert; Smith, Mathew; Nichol, Robert C.; Bassett, Bruce; Cinabro, David; Dilday, Benjamin; Jha, Saurabh W.; Foley, Ryan J.; Frieman, Joshua A.; Garnavich, Peter M.; Goobar, Ariel; Nordin, Jakob; Im, Myungshin; Marriner, John; Miquel, Ramon; Oestman, Linda; Riess, Adam G.; Sako, Masao; Schneider, Donald P.; Sollerman, Jesper

    2010-01-01

    We present an analysis of the host galaxy dependences of Type Ia Supernovae (SNe Ia) from the full three year sample of the SDSS-II Supernova Survey. We re-discover, to high significance, the strong correlation between host galaxy type and the width of the observed SN light curve, i.e., fainter, quickly declining SNe Ia favor passive host galaxies, while brighter, slowly declining Ia's favor star-forming galaxies. We also find evidence (at between 2σ and 3σ) that SNe Ia are ≅0.1 ± 0.04 mag brighter in passive host galaxies than in star-forming hosts, after the SN Ia light curves have been standardized using the light-curve shape and color variations. This difference in brightness is present in both the SALT2 and MCLS2k2 light-curve fitting methodologies. We see evidence for differences in the SN Ia color relationship between passive and star-forming host galaxies, e.g., for the MLCS2k2 technique, we see that SNe Ia in passive hosts favor a dust law of R V = 1.0 ± 0.2, while SNe Ia in star-forming hosts require R V = 1.8 +0.2 -0.4 . The significance of these trends depends on the range of SN colors considered. We demonstrate that these effects can be parameterized using the stellar mass of the host galaxy (with a confidence of >4σ) and including this extra parameter provides a better statistical fit to our data. Our results suggest that future cosmological analyses of SN Ia samples should include host galaxy information.

  13. MULTI-COLOR OPTICAL AND NEAR-INFRARED LIGHT CURVES OF 64 STRIPPED-ENVELOPE CORE-COLLAPSE SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Bianco, F. B.; Modjaz, M. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Hicken, M.; Friedman, A.; Kirshner, R. P.; Challis, P.; Marion, G. H. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bloom, J. S. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Wood-Vasey, W. M. [PITT PACC, Department of Physics and Astronomy, 3941 O' Hara Street, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Rest, A., E-mail: fb55@nyu.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-08-01

    We present a densely sampled, homogeneous set of light curves of 64 low-redshift (z ≲ 0.05) stripped-envelope supernovae (SNe of Type IIb, Ib, Ic, and Ic-BL). These data were obtained between 2001 and 2009 at the Fred L. Whipple Observatory (FLWO) on Mount Hopkins in Arizona, with the optical FLWO 1.2 m and the near-infrared (NIR) Peters Automated Infrared 1.3 m telescopes. Our data set consists of 4543 optical photometric measurements on 61 SNe, including a combination of U BV RI, U BV r{sup ′}i{sup ′}, and u{sup ′} BV r{sup ′}i{sup ′}, and 1919 JHK{sub s} NIR measurements on 25 SNe. This sample constitutes the most extensive multi-color data set of stripped-envelope SNe to date. Our photometry is based on template-subtracted images to eliminate any potential host-galaxy light contamination. This work presents these photometric data, compares them with data in the literature, and estimates basic statistical quantities: date of maximum, color, and photometric properties. We identify promising color trends that may permit the identification of stripped-envelope SN subtypes from their photometry alone. Many of these SNe were observed spectroscopically by the Harvard-Smithsonian Center for Astrophysics (CfA) SN group, and the spectra are presented in a companion paper. A thorough exploration that combines the CfA photometry and spectroscopy of stripped-envelope core-collapse SNe will be presented in a follow-up paper.

  14. The Effect of Neutrino Oscillations on Supernova Light Element Synthesis

    International Nuclear Information System (INIS)

    Yoshida, Takashi; Kajino, Toshitaka; Yokomakura, Hidekazu; Kimura, Keiichi; Takamura, Akira; Hartmann, Dieter H.

    2006-01-01

    We investigate light element synthesis through the ν-process during supernova explosions considering neutrino oscillations and investigate the dependence of 7Li and 11B yields on neutrino oscillation parameters mass hierarchy and θ13. The adopted supernova explosion model for explosive nucleosynthesis corresponds to SN 1987A. The 7Li and 11B yields increase by about factors of 1.9 and 1.3 in the case of normal mass hierarchy and adiabatic 13-mixing resonance compared with the case without neutrino oscillations. In the case of inverted mass hierarchy or nonadiabatic 13-mixing resonance, the increase in 7Li and 11B yields is much smaller. Astronomical observations of 7Li/11B ratio in stars formed in regions strongly affected by prior generations of supernovae would constrain mass hierarchy and the range of θ13

  15. Bio-medical CMOS ICs

    CERN Document Server

    Yoo, Hoi-Jun

    2011-01-01

    This book is based on a graduate course entitled, Ubiquitous Healthcare Circuits and Systems, that was given by one of the editors. It includes an introduction and overview to biomedical ICs and provides information on the current trends in research.

  16. Narrowband Hα Imaging of Old Hydrogen-deficient Supernovae

    Science.gov (United States)

    Pooley, David A.; Vinko, Jozsef; Silverman, Jeffrey M.; Wheeler, J. Craig Craig; Szalai, Tamas; MacQueen, Phillip; Marion, Howie H.; Sárneczky, Krisztián

    2017-06-01

    We report results from our long-term observational survey aimed at discovering late-time interaction between the ejecta of hydrogen-deficient Type I supernovae and the hydrogen-rich envelope expelled from the progenitor star several decades to centuries before explosion. The expelled envelope, moving with a velocity of ˜10-100 km/s, is expected to be caught up by the fast-moving SN ejecta several years to decades after explosion depending on the history of the mass-loss process acting in the progenitor star prior to explosion. The collision between the SN ejecta and the circumstellar envelope results in net emission in the Balmer-lines, especially in Hα. For the past three years, we have been using the Direct Imaging Auxiliary Functions Instrument (DIAFI) on the 2.7m Harlan J. Smith Telescope at McDonald Observatory to look for signs of late-time Hα emission in older Type Ia/Ibc/IIb SNe having hydrogen-poor ejecta, via narrow-band imaging. Continuum-subtracted Hα emission has been detected for 13 point sources: 9 SN Ibc, 1 SN IIb and 3 SN Ia events. Thirty-eight SN sites were observed on at least two epochs, from which three objects (SN 1985F, SN 2005kl, SN 2012fh) showed significant temporal variation in the strength of their Hα emission in our DIAFI data. This suggests that the variable emission is probably not due to nearby HII regions, and hence is an important additional hint that ejecta-CSM interaction may take place in these systems. Moreover, we successfully detected the late-time Hα emission from the Type Ib SN 2014C, which was recently discovered as a strongly interacting SN in other wavebands.

  17. Time-resolved Polarimetry of the Superluminous SN 2015bn with the Nordic Optical Telescope

    DEFF Research Database (Denmark)

    Leloudas, Giorgos; Maund, Justyn R.; Gal-Yam, Avishay

    2017-01-01

    We present imaging polarimetry of the superluminous supernova SN 2015bn, obtained over nine epochs between -20 and +46 days with the Nordic Optical Telescope. This was a nearby, slowly evolving Type I superluminous supernova that has been studied extensively and for which two epochs of spectropol......We present imaging polarimetry of the superluminous supernova SN 2015bn, obtained over nine epochs between -20 and +46 days with the Nordic Optical Telescope. This was a nearby, slowly evolving Type I superluminous supernova that has been studied extensively and for which two epochs...... of spectropolarimetry are also available. Based on field stars, we determine the interstellar polarization in the Galaxy to be negligible. The polarization of SN 2015bn shows a statistically significant increase during the last epochs, confirming previous findings. Our well-sampled imaging polarimetry series allows us...

  18. PROGENITORS OF RECOMBINING SUPERNOVA REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Takashi J., E-mail: takashi.moriya@ipmu.jp [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8583 (Japan)

    2012-05-01

    Usual supernova remnants have either ionizing plasma or plasma in collisional ionization equilibrium, i.e., the ionization temperature is lower than or equal to the electron temperature. However, the existence of recombining supernova remnants, i.e., supernova remnants with ionization temperature higher than the electron temperature, has been recently confirmed. One suggested way to have recombining plasma in a supernova remnant is to have a dense circumstellar medium at the time of the supernova explosion. If the circumstellar medium is dense enough, collisional ionization equilibrium can be established in the early stage of the evolution of the supernova remnant and subsequent adiabatic cooling, which occurs after the shock wave gets out of the dense circumstellar medium, makes the electron temperature lower than the ionization temperature. We study the circumstellar medium around several supernova progenitors and show which supernova progenitors can have a circumstellar medium dense enough to establish collisional ionization equilibrium soon after the explosion. We find that the circumstellar medium around red supergiants (especially massive ones) and the circumstellar medium dense enough to make Type IIn supernovae can establish collisional ionization equilibrium soon after the explosion and can evolve to become recombining supernova remnants. Wolf-Rayet stars and white dwarfs have the possibility to be recombining supernova remnants but the fraction is expected to be very small. As the occurrence rate of the explosions of red supergiants is much higher than that of Type IIn supernovae, the major progenitors of recombining supernova remnants are likely to be red supergiants.

  19. Planck intermediate results XXXI. Microwave survey of Galactic supernova remnants

    DEFF Research Database (Denmark)

    Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.

    2016-01-01

    The all-sky Planck survey in 9 frequency bands was used to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism for micr......The all-sky Planck survey in 9 frequency bands was used to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism...... for microwave emission. In only one case, IC 443, is there high-frequency emission clearly from dust associated with the supernova remnant. In all cases, the low-frequency emission is from synchrotron radiation. As predicted for a population of relativistic particles with energy distribution that extends...

  20. The Influence of Host Galaxies in Type Ia Supernova Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Syed A. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, Jiangshu (China); Mould, Jeremy [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Melbourne, VIC (Australia); Lidman, Chris; Zhang, Bonnie R. [Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) (Australia); Ruhlmann-Kleider, Vanina, E-mail: saushuvo@gmail.com [CEA, Centre de Saclay, Irfu/SPP, F-91191 Gif-sur-Yvette, Paris (France)

    2017-10-10

    We use a sample of 1338 spectroscopically confirmed and photometrically classified Type Ia supernovae (SNe Ia) sourced from Carnegie Supernova Project, Center for Astrophysics Supernova Survey, Sloan Digital Sky Survey-II, and SuperNova Legacy Survey SN samples to examine the relationships between SNe Ia and the galaxies that host them. Our results provide confirmation with improved statistical significance that SNe Ia, after standardization, are on average more luminous in massive hosts (significance >5 σ ), and decline more rapidly in massive hosts (significance >9 σ ) and in hosts with low specific star formation rates (significance >8 σ ). We study the variation of these relationships with redshift and detect no evolution. We split SNe Ia into pairs of subsets that are based on the properties of the hosts and fit cosmological models to each subset. Including both systematic and statistical uncertainties, we do not find any significant shift in the best-fit cosmological parameters between the subsets. Among different SN Ia subsets, we find that SNe Ia in hosts with high specific star formation rates have the least intrinsic scatter ( σ {sub int} = 0.08 ± 0.01) in luminosity after standardization.

  1. Ti-44 Gamma-Ray Emission Lines from SN1987A Reveal an Asymmetric Explosion

    Science.gov (United States)

    Boggs, S. E.; Harrison, F. A.; Miyasaka, H.; Grefenstette, B. W.; Zoglauer, A.; Fryer, C. L.; Reynolds, S. P.; Alexander, D. M.; An, H.; Barret, D.; hide

    2015-01-01

    In core-collapse supernovae, titanium-44 (Ti-44) is produced in the innermost ejecta, in the layer of material directly on top of the newly formed compact object. As such, it provides a direct probe of the supernova engine. Observations of supernova 1987A (SN1987A) have resolved the 67.87- and 78.32-kilo-electron volt emission lines from decay of Ti-44 produced in the supernova explosion. These lines are narrow and redshifted with a Doppler velocity of 700 kilometers per second, direct evidence of large-scale asymmetry in the explosion.

  2. 44Ti gamma-ray emission lines from SN1987A reveal an asymmetric explosion

    DEFF Research Database (Denmark)

    Boggs, S. E.; Harrison, F. A.; Miyasaka, H.

    2015-01-01

    In core-collapse supernovae, titanium-44 (44Ti) is produced in the innermost ejecta, in the layer of material directly on top of the newly formed compact object. As such, it provides a direct probe of the supernova engine. Observations of supernova 1987A (SN1987A) have resolved the 67.87- and 78.......32–kilo–electron volt emission lines from decay of 44Ti produced in the supernova explosion. These lines are narrow and redshifted with a Doppler velocity of ~700 kilometers per second, direct evidence of large-scale asymmetry in the explosion....

  3. Probing Late-Stage Stellar Evolution through Robotic Follow-Up of Nearby Supernovae

    Science.gov (United States)

    Hosseinzadeh, Griffin

    2018-01-01

    Many of the remaining uncertainties in stellar evolution can be addressed through immediate and long-term photometry and spectroscopy of supernovae. The early light curves of thermonuclear supernovae can contain information about the nature of the binary companion to the exploding white dwarf. Spectra of core-collapse supernovae can reveal material lost by massive stars in their final months to years. Thanks to a revolution in technology—robotic telescopes, high-speed internet, machine learning—we can now routinely discover supernovae within days of explosion and obtain well-sampled follow-up data for months and years. Here I present three major results from the Global Supernova Project at Las Cumbres Observatory that take advantage of these technological advances. (1) SN 2017cbv is a Type Ia supernova discovered within a day of explosion. Early photometry shows a bump in the U-band relative to previously observed Type Ia light curves, possibly indicating the presence of a nondegenerate binary companion. (2) SN 2016bkv is a low-luminosity Type IIP supernova also caught very young. Narrow emission lines in the earliest spectra indicate interaction between the ejecta and a dense shell of circumstellar material, previously observed only in the brightest Type IIP supernovae. (3) Type Ibn supernovae are a rare class that interact with hydrogen-free circumstellar material. An analysis of the largest-yet sample of this class has found that their light curves are much more homogeneous and faster-evolving than their hydrogen-rich counterparts, Type IIn supernovae, but that their maximum-light spectra are more diverse.

  4. Preparatory studies for the WFIRST supernova cosmology measurements

    Science.gov (United States)

    Perlmutter, Saul

    tune details, like the wavelength coverage and S/N requirements, of the WFIRST IFS to capitalize on these systematic error reduction methods. b) Supernova extraction and host galaxy subtractions. The underlying light of the host galaxy must be subtracted from the supernova images making up the lightcurves. Using the IFS to provide the lightcurve points via spectrophotometry requires the subtraction of a reference spectrum of the galaxy taken after the supernova light has faded to a negligible level. We plan to apply the expertise obtained from the SNfactory to develop galaxy background procedures that minimize the systematic errors introduced by this step in the analysis. c) Instrument calibration and ground to space cross calibration. Calibrating the entire supernova sample will be a challenge as no standard stars exist that span the range of magnitudes and wavelengths relevant to the WFIRST survey. Linking the supernova measurements to the relatively brighter standards will require several links. WFIRST will produce the high redshift sample, but the nearby supernova to anchor the Hubble diagram will have to come from ground based observations. Developing algorithms to carry out the cross calibration of these two samples to the required one percent level will be an important goal of our proposal. An integral part of this calibration will be to remove all instrumental signatures and to develop unbiased measurement techniques starting at the pixel level. We then plan to pull the above studies together in a synthesis to produce a correlated error matrix. We plan to develop a Fisher Matrix based model to evaluate the correlated error matrix due to the various systematic errors discussed above. A realistic error model will allow us to carry out a more reliable estimates of the eventual errors on the measurement of the cosmological parameters, as well as serve as a means of optimizing and fine tuning the requirements for the instruments and survey strategies.

  5. The past, present and future supernova threat to Earth's biosphere

    Science.gov (United States)

    Beech, Martin

    2011-12-01

    between 150 and 300-pc—again, affording no possible threat to Earth's biosphere. Temporally, the next most likely, close, potential Type Ic supernova to the Sun is the Wolf-Rayet star within the γ 2 Velorum binary system located at least 260-pc away. It is suggested that evidence relating to large-scale astroengineering projects might fruitfully be looked for in those regions located within 10 to 30-pc of any pre-supernova candidate system.

  6. Presupernova models and supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, D [Tokyo Univ. (Japan). Dept. of Earth Science and Astronomy; Nomoto, K I [Ibaraki Univ., Mito (Japan). Dept. of Physics

    1980-02-01

    Present status of the theories for presupernova evolution and triggering mechanisms of supernova explosions are summarized and discussed from the standpoint of the theory of stellar structure and evolution. It is not intended to collect every detail of numerical results thus far obtained, but to extract physically clear-cut understanding from complexities of the numerical stellar models. For this purpose the evolution of stellar cores is discussed in a generalized fashion. The following types of the supernova explosions are discussed. The carbon deflagration supernova of intermediate mass star which results in the total disruption of the star. Massive star evolves into a supernova triggered by photo-dissociation of iron nuclei which results in a formation of a neutron star or a black hole depending on its mass. These two are typical types of the supernova. Between them there remains a range of mass for which collapse of the stellar core is triggered by electron captures, which has been recently shown to leave a neutron star despite oxygen deflagration competing with the electron captures. Also discussed are combustion and detonation of helium or carbon which take place in accreting white dwarfs, and the collapse which is triggered by electron-pair creation in very massive stars.

  7. Two Years and Five Images of Supernova Refsdal

    Science.gov (United States)

    Kelly, Patrick

    2017-01-01

    In 1964, Sjur Refsdal hypothesized that a supernova (SN) whose light takes multiple paths to reach us around a strong gravitational lens could be used as a highly powerful probe. For such a system, the time delays between the images of the SN should depend sensitively on the cosmic expansion rate and the distribution of matter within the lens. I will present observations of the first strongly lensed SN resolved into multiple images, which was found in near-infrared imaging taken in early November 2014 with the Hubble Space Telescope (HST). SN `Refsdal' appeared in an Einstein cross configuration around an early-type galaxy in the MACS J1149.6+2223 cluster (z=0.54), and its light curve and spectrum are broadly similar to those of the peculiar and well-studied SN 1987A. Models of the cluster potential predicted that the SN would reappear within two years in a different image of its spiral host galaxy (z=1.49) closer to the cluster's center. In early December 2015, we detected the new image of the SN with the HST, and we anticipate being able to measure its relative time delay with a 1-2% precision, providing a rare test of blind model predictions.

  8. Nearby supernova factory announces 34 supernovae in one year'; best Rookie year ever for supernova search

    CERN Multimedia

    2003-01-01

    The Nearby Supernova Factory (SNfactory), an international collaboration based at Lawrence Berkeley National Laboratory, announced that it had discovered 34 supernovae during the first year of the prototype system's operation (2 pages).

  9. A surge of light at the birth of a supernova

    Science.gov (United States)

    Bersten, M. C.; Folatelli, G.; García, F.; van Dyk, S. D.; Benvenuto, O. G.; Orellana, M.; Buso, V.; Sánchez, J. L.; Tanaka, M.; Maeda, K.; Filippenko, A. V.; Zheng, W.; Brink, T. G.; Cenko, S. B.; de Jaeger, T.; Kumar, S.; Moriya, T. J.; Nomoto, K.; Perley, D. A.; Shivvers, I.; Smith, N.

    2018-02-01

    It is difficult to establish the properties of massive stars that explode as supernovae. The electromagnetic emission during the first minutes to hours after the emergence of the shock from the stellar surface conveys important information about the final evolution and structure of the exploding star. However, the unpredictable nature of supernova events hinders the detection of this brief initial phase. Here we report the serendipitous discovery of a newly born, normal type IIb supernova (SN 2016gkg), which reveals a rapid brightening at optical wavelengths of about 40 magnitudes per day. The very frequent sampling of the observations allowed us to study in detail the outermost structure of the progenitor of the supernova and the physics of the emergence of the shock. We develop hydrodynamical models of the explosion that naturally account for the complete evolution of the supernova over distinct phases regulated by different physical processes. This result suggests that it is appropriate to decouple the treatment of the shock propagation from the unknown mechanism that triggers the explosion.

  10. Hierarchical Models for Type Ia Supernova Light Curves in the Optical and Near Infrared

    Science.gov (United States)

    Mandel, Kaisey; Narayan, G.; Kirshner, R. P.

    2011-01-01

    I have constructed a comprehensive statistical model for Type Ia supernova optical and near infrared light curves. Since the near infrared light curves are excellent standard candles and are less sensitive to dust extinction and reddening, the combination of near infrared and optical data better constrains the host galaxy extinction and improves the precision of distance predictions to SN Ia. A hierarchical probabilistic model coherently accounts for multiple random and uncertain effects, including photometric error, intrinsic supernova light curve variations and correlations across phase and wavelength, dust extinction and reddening, peculiar velocity dispersion and distances. An improved BayeSN MCMC code is implemented for computing probabilistic inferences for individual supernovae and the SN Ia and host galaxy dust populations. I use this hierarchical model to analyze nearby Type Ia supernovae with optical and near infared data from the PAIRITEL, CfA3, and CSP samples and the literature. Using cross-validation to test the robustness of the model predictions, I find that the rms Hubble diagram scatter of predicted distance moduli is 0.11 mag for SN with optical and near infrared data versus 0.15 mag for SN with only optical data. Accounting for the dispersion expected from random peculiar velocities, the rms intrinsic prediction error is 0.08-0.10 mag for SN with both optical and near infrared light curves. I discuss results for the inferred intrinsic correlation structures of the optical-NIR SN Ia light curves and the host galaxy dust distribution captured by the hierarchical model. The continued observation and analysis of Type Ia SN in the optical and near infrared is important for improving their utility as precise and accurate cosmological distance indicators.

  11. LATE-TIME LIGHT CURVES OF TYPE II SUPERNOVAE: PHYSICAL PROPERTIES OF SUPERNOVAE AND THEIR ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Masaaki; Meixner, Margaret; Panagia, Nino [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Fabbri, Joanna; Barlow, Michael J.; Wesson, Roger [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Clayton, Geoffrey C.; Andrews, Jennifer E. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Gallagher, Joseph S. [Department of Mathematics, Physics, and Computer Science, Raymond Walters College, 9555 Plain field Rd., Blue Ash, OH 45236 (United States); Sugerman, Ben E. K. [Department of Physics and Astronomy, Goucher College, 1021 Dulaney Valley Road, Baltimore, MD 21204 (United States); Ercolano, Barbara [Universitaets-Sternwarte Muenchen, Scheinerstr. 1, 81679 Muenchen (Germany); Welch, Douglas, E-mail: otsuka@stsci.edu, E-mail: otsuka@asiaa.sinica.edu.tw [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada)

    2012-01-01

    We present BVRIJHK-band photometry of six core-collapse supernovae, SNe 1999bw, 2002hh, 2003gd, 2004et, 2005cs, and 2006bc, measured at late epochs (>2 yr) based on the Hubble Space Telescope (HST), and the Gemini North, and WIYN telescopes. We also show the JHK light curves of supernova impostor SN 2008S up to day 575 because it was serendipitously in our SN 2002hh field of view. Of our 43 HST observations in total, 36 observations are successful in detecting the light from the SNe alone and measuring magnitudes of all the targets. HST observations show a resolved scattered light echo around SN 2003gd at day 1520 and around SN 2002hh at day 1717. Our Gemini and WIYN observations detected SNe 2002hh and 2004et as well. Combining our data with previously published data, we show VRIJHK-band light curves and estimate decline magnitude rates at each band in four different phases. Our prior work on these light curves and other data indicate that dust is forming in our targets from days {approx}300 to 400, supporting SN dust formation theory. In this paper we focus on other physical properties derived from late-time light curves. We estimate {sup 56}Ni masses for our targets (0.5-14 Multiplication-Sign 10{sup -2} M{sub Sun }) from the bolometric light curve of each of days {approx}150-300 using SN 1987A as a standard (7.5 Multiplication-Sign 10{sup -2} M{sub Sun }). The flattening or sometimes increasing fluxes in the late-time light curves of SNe 2002hh, 2003gd, 2004et, and 2006bc indicate the presence of light echoes. We estimate the circumstellar hydrogen density of the material causing the light echo and find that SN 2002hh is surrounded by relatively dense materials (n(H) >400 cm{sup -3}) and SNe 2003gd and 2004et have densities more typical of the interstellar medium ({approx}1 cm{sup -3}). We analyze the sample as a whole in the context of physical properties derived in prior work. The {sup 56}Ni mass appears well correlated with progenitor mass with a slope of 0

  12. Exploring Cosmology with Supernovae

    DEFF Research Database (Denmark)

    Li, Xue

    distribution of strong gravitational lensing is developed. For Type Ia supernova (SNe Ia), the rate is lower than core-collapse supernovae (CC SNe). The rate of SNe Ia declines beyond z 1:5. Based on these reasons, we investigate a potential candidate to measure cosmological distance: GRB......-SNe. They are a subclass of CC SNe. Light curves of GRB-SNe are obtained and their properties are studied. We ascertain that the properties of GRB-SNe make them another candidate for standardizable candles in measuring the cosmic distance. Cosmological parameters M and are constrained with the help of GRB-SNe. The first...

  13. Neutrinos in supernovae

    International Nuclear Information System (INIS)

    Cooperstein, J.

    1986-10-01

    The role of neutrinos in Type II supernovae is discussed. An overall view of the neutrino luminosity as expected theoretically is presented. The different weak interactions involved are assessed from the standpoint of how they exchange energy, momentum, and lepton number. Particular attention is paid to entropy generation and the path to thermal and chemical equilibration, and to the phenomenon of trapping. Various methods used to calculate the neutrino flows are considered. These include trapping and leakage schemes, distribution-averaged transfer, and multi-energy group methods. The information obtained from the neutrinos caught from Supernova 1987a is briefly evaluated. 55 refs., 7 figs

  14. Type I supernova models

    International Nuclear Information System (INIS)

    Canal, Ramon; Labay, Javier; Isern, Jordi

    1987-01-01

    We briefly describe the characteristics of Type I supernova outbursts and we present the theoretical models so far advanced to explain them. We especially insist on models based on the thermonuclear explosion of a white dwarf in a close binary system, even regarding the recent division of Type I supernovae into the Ia and Ib subtypes. Together with models assuming explosive thermonuclear burning in a fluid interior, we consider in some detail those based on partially solid interiors. We finally discuss models that incorporate nonthermonuclear energy contributions, suggested in order to explain Type Ib outbursts. (Author)

  15. The Foundation Supernova Survey: motivation, design, implementation, and first data release

    Science.gov (United States)

    Foley, Ryan J.; Scolnic, Daniel; Rest, Armin; Jha, S. W.; Pan, Y.-C.; Riess, A. G.; Challis, P.; Chambers, K. C.; Coulter, D. A.; Dettman, K. G.; Foley, M. M.; Fox, O. D.; Huber, M. E.; Jones, D. O.; Kilpatrick, C. D.; Kirshner, R. P.; Schultz, A. S. B.; Siebert, M. R.; Flewelling, H. A.; Gibson, B.; Magnier, E. A.; Miller, J. A.; Primak, N.; Smartt, S. J.; Smith, K. W.; Wainscoat, R. J.; Waters, C.; Willman, M.

    2018-03-01

    The Foundation Supernova Survey aims to provide a large, high-fidelity, homogeneous, and precisely calibrated low-redshift Type Ia supernova (SN Ia) sample for cosmology. The calibration of the current low-redshift SN sample is the largest component of systematic uncertainties for SN cosmology, and new data are necessary to make progress. We present the motivation, survey design, observation strategy, implementation, and first results for the Foundation Supernova Survey. We are using the Pan-STARRS telescope to obtain photometry for up to 800 SNe Ia at z ≲ 0.1. This strategy has several unique advantages: (1) the Pan-STARRS system is a superbly calibrated telescopic system, (2) Pan-STARRS has observed 3/4 of the sky in grizyP1 making future template observations unnecessary, (3) we have a well-tested data-reduction pipeline, and (4) we have observed ˜3000 high-redshift SNe Ia on this system. Here, we present our initial sample of 225 SN Ia grizP1 light curves, of which 180 pass all criteria for inclusion in a cosmological sample. The Foundation Supernova Survey already contains more cosmologically useful SNe Ia than all other published low-redshift SN Ia samples combined. We expect that the systematic uncertainties for the Foundation Supernova Sample will be two to three times smaller than other low-redshift samples. We find that our cosmologically useful sample has an intrinsic scatter of 0.111 mag, smaller than other low-redshift samples. We perform detailed simulations showing that simply replacing the current low-redshift SN Ia sample with an equally sized Foundation sample will improve the precision on the dark energy equation-of-state parameter by 35 per cent, and the dark energy figure of merit by 72 per cent.

  16. Radio observations reveal a smooth circumstellar environment around the extraordinary type Ib supernova 2012au

    Energy Technology Data Exchange (ETDEWEB)

    Kamble, Atish; Soderberg, Alicia M.; Margutti, Raffaella; Milisavljevic, Dan; Chakraborti, Sayan; Dittmann, Jason; Drout, Maria; Sanders, Nathan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chomiuk, Laura [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Medvedev, Mikhail [The Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045 (United States); Chevalier, Roger [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Chugai, Nikolai [Institute of Astronomy, Russian Academy of Sciences, Pyatnitskaya 48, 109017 Moscow (Russian Federation); Fransson, Claes [Department of Astronomy, The Oskar Klein Centre, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm (Sweden); Nakar, Ehud, E-mail: atish.vyas@gmail.com [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)

    2014-12-10

    We present extensive radio and X-ray observations of SN 2012au, an energetic, radio-luminous supernova of Type Ib that exhibits multi-wavelength properties bridging subsets of hydrogen-poor superluminous supernovae, hypernovae, and normal core-collapse supernovae. The observations closely follow models of synchrotron emission from a shock-heated circumburst medium that has a wind density profile (ρ∝r {sup –2}). We infer a sub-relativistic velocity for the shock wave v ≈ 0.2 c and a radius of r ≈ 1.4 × 10{sup 16}cm at 25 days after the estimated date of explosion. For a wind velocity of 1000 km s{sup –1}, we determine the mass-loss rate of the progenitor to be M-dot =3.6×10{sup −6} M{sub ⊙} yr{sup −1}, consistent with the estimates from X-ray observations. We estimate the total internal energy of the radio-emitting material to be E ≈ 10{sup 47} erg, which is intermediate to SN 1998bw and SN 2002ap. The evolution of the radio light curve of SN 2012au is in agreement with its interaction with a smoothly distributed circumburst medium and the absence of stellar shells ejected from previous outbursts out to r ≈ 10{sup 17} cm from the supernova site. We conclude that the bright radio emission from SN 2012au was not dissimilar from other core-collapse supernovae despite its extraordinary optical properties, and that the evolution of the SN 2012au progenitor star was relatively quiet, marked with a steady mass loss, during the final years preceding explosion.

  17. Matter suppression of collective SN neutrino oscillations and stability analysis

    International Nuclear Information System (INIS)

    Saviano, N.; Chakraborty, S.; Mirizzi, A.

    2014-01-01

    We perform a detailed analysis of the supernova (SN) neutrino flavor evolution during the early time accretion phase (post-bounce time t pb ≤ 500 ms), characterizing the ν signal by recent SN hydrodynamics simulations. We find that collective oscillations induced the ν-ν interactions in the deepest SN regions are suppressed by trajectory-dependent 'multi-angle' effects associated with the dense ordinary matter. We confirm this result with a linearized stability analysis of the neutrino equations of motion in presence of realistic neutrino energy with angle distributions. (authors)

  18. A hydrodynamical model of Kepler's supernova remnant constrained by x-ray spectra

    International Nuclear Information System (INIS)

    Ballet, J.; Arnaud, M.; Rothinfluo, R.; Chieze, J.P.; Magne, B.

    1988-01-01

    The remnant of the historical supernova observed by Kepler in 1604 was recently observed in x-rays by the EXOSAT satellite up to 10 keV. A strong Fe K emission line around 6.5 keV is readily apparent in the spectrum. From an analysis of the light curve of the SN, reconstructed from historical descriptions, a previous study proposed to classify it as type I. Standard models of SN I based on carbon deflagration of white dwarf predict the synthesis of about 0.5 M circle of iron in the ejecta. Observing the iron line is a crucial check for such models. It has been argued that the light curve of Sn II-L is very similar to that of SN I and that the original observations are compatible with either type. In view of this uncertainty the authors have run a hydrodynamics-ionization code for both SN II and SN I remnants

  19. RAPIDLY RISING TRANSIENTS IN THE SUPERNOVA—SUPERLUMINOUS SUPERNOVA GAP

    Energy Technology Data Exchange (ETDEWEB)

    Arcavi, Iair; Howell, D. Andrew [Las Cumbres Observatory Global Telescope, 6740 Cortona Dr., Suite 102, Goleta, CA 93111 (United States); Wolf, William M. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Bildsten, Lars; McCully, Curtis; Valenti, Stefano [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Leloudas, Giorgos; Gal-Yam, Avishay; Katz, Boaz [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot, 76100 (Israel); Hardin, Delphine; Astier, Pierre; Balland, Cristophe [LPNHE, CNRS-IN2P3 and University of Paris VI and VII, F-75005 Paris (France); Prajs, Szymon; Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Perley, Daniel A. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Svirski, Gilad [Racah Institute for Physics, The Hebrew University, Jerusalem 91904 (Israel); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Lidman, Chris [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Carlberg, Ray G. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H8 (Canada); Conley, Alex, E-mail: iarcavi@lcogt.net [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309-389 (United States); and others

    2016-03-01

    We present observations of four rapidly rising (t{sub rise} ≈ 10 days) transients with peak luminosities between those of supernovae (SNe) and superluminous SNe (M{sub peak} ≈ −20)—one discovered and followed by the Palomar Transient Factory (PTF) and three by the Supernova Legacy Survey. The light curves resemble those of SN 2011kl, recently shown to be associated with an ultra-long-duration gamma-ray burst (GRB), though no GRB was seen to accompany our SNe. The rapid rise to a luminous peak places these events in a unique part of SN phase space, challenging standard SN emission mechanisms. Spectra of the PTF event formally classify it as an SN II due to broad Hα emission, but an unusual absorption feature, which can be interpreted as either high velocity Hα (though deeper than in previously known cases) or Si ii (as seen in SNe Ia), is also observed. We find that existing models of white dwarf detonations, CSM interaction, shock breakout in a wind (or steeper CSM), and magnetar spin down cannot readily explain the observations. We consider the possibility that a “Type 1.5 SN” scenario could be the origin of our events. More detailed models for these kinds of transients and more constraining observations of future such events should help to better determine their nature.

  20. Primordial black holes survive SN lensing constraints

    Science.gov (United States)

    García-Bellido, Juan; Clesse, Sébastien; Fleury, Pierre

    2018-06-01

    It has been claimed in [arxiv:1712.02240] that massive primordial black holes (PBH) cannot constitute all of the dark matter (DM), because their gravitational-lensing imprint on the Hubble diagram of type Ia supernovae (SN) would be incompatible with present observations. In this note, we critically review those constraints and find several caveats on the analysis. First of all, the constraints on the fraction α of PBH in matter seem to be driven by a very restrictive choice of priors on the cosmological parameters. In particular, the degeneracy between Ωm and α was ignored and thus, by fixing Ωm, transferred the constraining power of SN magnitudes to α. Furthermore, by considering more realistic physical sizes for the type-Ia supernovae, we find an effect on the SN lensing magnification distribution that leads to significantly looser constraints. Moreover, considering a wide mass spectrum of PBH, such as a lognormal distribution, further softens the constraints from SN lensing. Finally, we find that the fraction of PBH that could constitute DM today is bounded by fPBH < 1 . 09(1 . 38) , for JLA (Union 2.1) catalogs, and thus it is perfectly compatible with an all-PBH dark matter scenario in the LIGO band.

  1. PELE-IC test problems

    International Nuclear Information System (INIS)

    Gong, E.Y.; Alexander, E.E.; McMaster, W.H.; Quinones, D.F.

    1979-01-01

    This report provides prospective users of the Lawrence Livermore Laboratory (LLL) fluid-structure interaction computer code, PELE-IC, a variety of test problems for verifying the code on CDC 7600 computer systems at facilities external to the LLL environment. The test problems have been successfully run on CDC 7600 computers at the LLL and Lawrence Berkeley Laboratory (LBL) computer centers

  2. Interstellar Lithium and Rubidium in the Diffuse Gas Near IC 443

    Science.gov (United States)

    Ritchey, Adam M.; Taylor, C. J.; Federman, S. R.; Lambert, D. L.

    2011-01-01

    We present an analysis of interstellar lithium and rubidium from observations made with the Hobby-Eberly Telescope at McDonald Observatory of the Li I λ6707 and Rb I λ7800 absorption lines along four lines of sight through the supernova remnant IC 443. The observations probe interstellar material polluted by the ejecta of a core-collapse (Type II) supernova and can thus be used to constrain the contribution from massive stars to the synthesis of lithium and rubidium. Production of 7Li is expected to occur through neutrino spallation in the helium and carbon shells of the progenitor star during the terminal supernova explosion, while both 6Li and 7Li are synthesized via spallation and fusion reactions involving cosmic rays accelerated by the remnant. Gamma-ray emission from IC 443 provides strong evidence for the interaction of accelerated cosmic rays with the ambient atomic and molecular gas. Rubidium is also produced by massive stars through the weak s-process in the He- and C-burning shells and the r-process during core collapse. We examine interstellar 7Li/6Li isotope ratios as well as Li/K and Rb/K ratios along each line of sight, and discuss the implications of our results in the context of nucleosynthesis associated with Type II supernovae.

  3. Supernova Photometric Lightcurve Classification

    Science.gov (United States)

    Zaidi, Tayeb; Narayan, Gautham

    2016-01-01

    This is a preliminary report on photometric supernova classification. We first explore the properties of supernova light curves, and attempt to restructure the unevenly sampled and sparse data from assorted datasets to allow for processing and classification. The data was primarily drawn from the Dark Energy Survey (DES) simulated data, created for the Supernova Photometric Classification Challenge. This poster shows a method for producing a non-parametric representation of the light curve data, and applying a Random Forest classifier algorithm to distinguish between supernovae types. We examine the impact of Principal Component Analysis to reduce the dimensionality of the dataset, for future classification work. The classification code will be used in a stage of the ANTARES pipeline, created for use on the Large Synoptic Survey Telescope alert data and other wide-field surveys. The final figure-of-merit for the DES data in the r band was 60% for binary classification (Type I vs II).Zaidi was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  4. Theoretical models for supernovae

    International Nuclear Information System (INIS)

    Woosley, S.E.; Weaver, T.A.

    1981-01-01

    The results of recent numerical simulations of supernova explosions are presented and a variety of topics discussed. Particular emphasis is given to (i) the nucleosynthesis expected from intermediate mass (10sub solar less than or equal to M less than or equal to 100 Msub solar) Type II supernovae and detonating white dwarf models for Type I supernovae, (ii) a realistic estimate of the γ-line fluxes expected from this nucleosynthesis, (iii) the continued evolution, in one and two dimensions, of intermediate mass stars wherein iron core collapse does not lead to a strong, mass-ejecting shock wave, and (iv) the evolution and explosion of vary massive stars M greater than or equal to 100 Msub solar of both Population I and III. In one dimension, nuclear burning following a failed core bounce does not appear likely to lead to a supernova explosion although, in two dimensions, a combination of rotation and nuclear burning may do so. Near solar proportions of elements from neon to calcium and very brilliant optical displays may be created by hypernovae, the explosions of stars in the mass range 100 M/sub solar/ to 300 M/sub solar/. Above approx. 300 M/sub solar/ a black hole is created by stellar collapse following carbon ignition. Still more massive stars may be copious producers of 4 He and 14 N prior to their collapse on the pair instability

  5. Supernova neutrino detection

    International Nuclear Information System (INIS)

    Selvi, M.

    2005-01-01

    Neutrinos emitted during a supernova core collapse represent a unique feature to study both stellar and neutrino properties. After discussing the details of the neutrino emission in the star and the effect of neutrino oscillations on the expected neutrino fluxes at Earth, a review of the detection techniques is presented in this paper, with particular attention to the problem of electron neutrino detection

  6. Supernova Cosmology Project

    Science.gov (United States)

    , i.e. with the cosmology hidden. Looking Beyond Lambda with the Union Supernova Compilation by Rubin et Matrix Description Covariance Matrix with Systematics Description Full Table of All SNe Description Beyond Lambda Figures Updated 11-18-11 Contact: drubin at physics dot fsu dot edu, saul at lbl dot gov

  7. Decays of supernova neutrinos

    International Nuclear Information System (INIS)

    Lindner, Manfred; Ohlsson, Tommy; Winter, Walter

    2002-01-01

    Supernova neutrinos could be well-suited for probing neutrino decay, since decay may be observed even for very small decay rates or coupling constants. We will introduce an effective operator framework for the combined description of neutrino decay and neutrino oscillations for supernova neutrinos, which can especially take into account two properties: one is the radially symmetric neutrino flux, allowing a decay product to be re-directed towards the observer even if the parent neutrino had a different original direction of propagation. The other is decoherence because of the long baselines for coherently produced neutrinos. We will demonstrate how to use this effective theory to calculate the time-dependent fluxes at the detector. In addition, we will show the implications of a Majoron-like decay model. As a result, we will demonstrate that for certain parameter values one may observe some effects which could also mimic signals similar to the ones expected from supernova models, making it in general harder to separate neutrino and supernova properties

  8. Neutrino Emission from Supernovae

    Science.gov (United States)

    Janka, Hans-Thomas

    Supernovae are the most powerful cosmic sources of MeV neutrinos. These elementary particles play a crucial role when the evolution of a massive star is terminated by the collapse of its core to a neutron star or a black hole and the star explodes as supernova. The release of electron neutrinos, which are abundantly produced by electron captures, accelerates the catastrophic infall and causes a gradual neutronization of the stellar plasma by converting protons to neutrons as dominant constituents of neutron star matter. The emission of neutrinos and antineutrinos of all flavors carries away the gravitational binding energy of the compact remnant and drives its evolution from the hot initial to the cold final state. The absorption of electron neutrinos and antineutrinos in the surroundings of the newly formed neutron star can power the supernova explosion and determines the conditions in the innermost supernova ejecta, making them an interesting site for the nucleosynthesis of iron-group elements and trans-iron nuclei.

  9. Gamma-ray observations of SN1987A

    International Nuclear Information System (INIS)

    Figueiredo, N.; Villela, T.; Jayanthi, U.B.; Souza, C.A.W.; Neri, J.A.C.F.; Cestal, R.C.; Martinez, M.L.

    1990-01-01

    This paper reports that on February 23, 1987, a Supernova (SN 1987A) was discovered in the Large Magellanic Cloud, a neighbor irregular galaxy only 55 kpc away. For the first time it was possible to observe a supernova whose progenitor star was known. This may also be the first time that it will be possible to prove the theoretical hypothesis that neutron stars are a consequence of a supernova explosion. The main peculiar characteristic of this supernova is that the progenitor star was a blue supergiant instead of a red supergiant as thy are generally believed to be. It was known as Sk -69 degrees 202, a 15-solar-mass star, spectral type B3I. Two hypothesis were invoked to explain such unexpected progenitor: the low metallicity of the LMC or large mass loss during the stage of red supergiant

  10. SLOW-SPEED SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY: TWO CHANNELS

    Energy Technology Data Exchange (ETDEWEB)

    White, Christopher J. [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Kasliwal, Mansi M.; Piro, Anthony L. [The Observatories, Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Nugent, Peter E. [Computational Cosmology Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Gal-Yam, Avishay; Ofek, Eran O.; Ben-Ami, Sagi [Benoziyo Center for Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Howell, D. Andrew [Department of Physics, University of California, Santa Barbara, Broida Hall, Mail Code 9530, Santa Barbara, CA 93106-9530 (United States); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Goobar, Ariel [The Oskar Klein Centre, Department of Physics, AlbaNova, Stockholm University, SE-106 91 Stockholm (Sweden); Bloom, Joshua S. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Kulkarni, Shrinivas R.; Cao, Yi [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Laher, Russ R.; Masci, Frank; Surace, Jason [Spitzer Science Center, California Institute of Technology, M/S 314-6, Pasadena, CA 91125 (United States); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Hook, Isobel M. [Department of Physics (Astrophysics), University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Jönsson, Jakob [Savantic AB, Rosenlundsgatan 50, SE-118 63 Stockholm (Sweden); Matheson, Thomas [National Optical Astronomy Observatory, Tucson, AZ 85719-4933 (United States); and others

    2015-01-20

    Since the discovery of the unusual prototype SN 2002cx, the eponymous class of Type I (hydrogen-poor) supernovae with low ejecta speeds has grown to include approximately two dozen members identified from several heterogeneous surveys, in some cases ambiguously. Here we present the results of a systematic study of 1077 Type I supernovae discovered by the Palomar Transient Factory, leading to nine new members of this peculiar class. Moreover, we find there are two distinct subclasses based on their spectroscopic, photometric, and host galaxy properties: ''SN 2002cx-like'' supernovae tend to be in later-type or more irregular hosts, have more varied and generally dimmer luminosities, have longer rise times, and lack a Ti II trough when compared to ''SN 2002es-like'' supernovae. None of our objects show helium, and we counter a previous claim of two such events. We also find that the occurrence rate of these transients relative to Type Ia supernovae is 5.6{sub −3.8}{sup +22}% (90% confidence), lower compared to earlier estimates. Combining our objects with the literature sample, we propose that these subclasses have two distinct physical origins.

  11. Measurements of the Rate of Type Ia Supernovae at Redshift z < ~0.3 from the SDSS-II Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Dilday, Benjamin; /Rutgers U., Piscataway /Chicago U. /KICP, Chicago; Smith, Mathew; /Cape Town U., Dept. Math. /Portsmouth U.; Bassett, Bruce; /Cape Town U., Dept. Math. /South African Astron. Observ.; Becker, Andrew; /Washington U., Seattle, Astron. Dept.; Bender, Ralf; /Munich, Tech. U. /Munich U. Observ.; Castander, Francisco; /Barcelona, IEEC; Cinabro, David; /Wayne State U.; Filippenko, Alexei V.; /UC, Berkeley; Frieman, Joshua A.; /Chicago U. /Fermilab; Galbany, Lluis; /Barcelona, IFAE; Garnavich, Peter M.; /Notre Dame U. /Stockholm U., OKC /Stockholm U.

    2010-01-01

    We present a measurement of the volumetric Type Ia supernova (SN Ia) rate based on data from the Sloan Digital Sky Survey II (SDSS-II) Supernova Survey. The adopted sample of supernovae (SNe) includes 516 SNe Ia at redshift z {approx}< 0.3, of which 270 (52%) are spectroscopically identified as SNe Ia. The remaining 246 SNe Ia were identified through their light curves; 113 of these objects have spectroscopic redshifts from spectra of their host galaxy, and 133 have photometric redshifts estimated from the SN light curves. Based on consideration of 87 spectroscopically confirmed non-Ia SNe discovered by the SDSS-II SN Survey, we estimate that 2.04{sub -0.95}{sup +1.61}% of the photometric SNe Ia may be misidentified. The sample of SNe Ia used in this measurement represents an order of magnitude increase in the statistics for SN Ia rate measurements in the redshift range covered by the SDSS-II Supernova Survey. If we assume a SN Ia rate that is constant at low redshift (z < 0.15), then the SN observations can be used to infer a value of the SN rate of r{sub V} = (2.69{sub -0.30-0.01}{sup +0.34+0.21}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} at a mean redshift of {approx} 0.12, based on 79 SNe Ia of which 72 are spectroscopically confirmed. However, the large sample of SNe Ia included in this study allows us to place constraints on the redshift dependence of the SN Ia rate based on the SDSS-II Supernova Survey data alone. Fitting a power-law model of the SN rate evolution, r{sub V} (z) = A{sub p} x ((1+z)/(1+z{sub 0})){sup {nu}}, over the redshift range 0.0 < z < 0.3 with z{sub 0} = 0.21, results in A{sub p} = (3.43{sub -0.15}{sup +0.15}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} and {nu} = 2.04{sub -0.89}{sup +0.90}.

  12. Asymmetric Explosion of Type Ia Supernovae and Their Observational Signatures

    International Nuclear Information System (INIS)

    Maeda, Keiichi

    2010-01-01

    The nature of Type Ia supernova (SN Ia) explosions has not yet been clarified, despite their importance in astrophysics and cosmology. Recent theoretical investigations suggest that asymmetric distribution of initial thermonuclear sparks may be a key in the SN Ia explosion mechanism. In this paper, the first observational evidence of the asymmetry in SN Ia explosions is presented: We have found that late-time nebular spectra of various SNe Ia show a diversity in wavelengths of emission lines. This feature is inconsistent with any spherically symmetric explosion models, and indicates that the innermost region, a likely product of the deflagration wave propagation, shows an off-set with respect to the explosion center. The diversity in the emission-line wavelengths could naturally be explained by a combination of different viewing angles.

  13. No Collective Neutrino Flavor Conversions during the Supernova Accretion Phase

    Science.gov (United States)

    Chakraborty, Sovan; Fischer, Tobias; Mirizzi, Alessandro; Saviano, Ninetta; Tomàs, Ricard

    2011-10-01

    We perform a dedicated study of the supernova (SN) neutrino flavor evolution during the accretion phase, using results from recent neutrino radiation hydrodynamics simulations. In contrast to what was expected in the presence of only neutrino-neutrino interactions, we find that the multiangle effects associated with the dense ordinary matter suppress collective oscillations. The matter suppression implies that neutrino oscillations will start outside the neutrino decoupling region and therefore will have a negligible impact on the neutrino heating and the explosion dynamics. Furthermore, the possible detection of the next galactic SN neutrino signal from the accretion phase, based on the usual Mikheyev-Smirnov-Wolfenstein effect in the SN mantle and Earth matter effects, can reveal the neutrino mass hierarchy in the case that the mixing angle θ13 is not very small.

  14. CIRCUMSTELLAR SHELLS IN ABSORPTION IN TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Borkowski, Kazimierz J.; Blondin, John M.; Reynolds, Stephen P.

    2009-01-01

    Progenitors of Type Ia supernovae (SNe) have been predicted to modify their ambient circumstellar (CSM) and interstellar environments through the action of their powerful winds. While there is X-ray and optical evidence for circumstellar interaction in several remnants of Type Ia SNe, widespread evidence for such interaction in Type Ia SNe themselves has been lacking. We consider prospects for the detection of CSM shells that have been predicted to be common around Type Ia SNe. Such shells are most easily detected in Na I absorption lines. Variable (declining) absorption is expected to occur soon after the explosion, primarily during the SN rise time, for shells located within ∼1-10 pc of a SN. The distance of the shell from the SN can be determined by measuring the timescale for line variability.

  15. EVOLVING TO TYPE Ia SUPERNOVAE WITH SHORT DELAY TIMES

    International Nuclear Information System (INIS)

    Wang Bo; Chen Xuefei; Han Zhanwen; Meng Xiangcun

    2009-01-01

    The single-degenerate model is currently a favorable progenitor model for Type Ia supernovae (SNe Ia). Recent investigations on the white dwarf (WD) + He star channel of the single-degenerate model imply that this channel is noteworthy for producing SNe Ia. In this paper, we studied SN Ia birthrates and delay times of this channel via a detailed binary population synthesis approach. We found that the Galactic SN Ia birthrate from the WD + He star channel is ∼0.3 x 10 -3 yr -1 according to our standard model, and that this channel can explain SNe Ia with short delay times (∼4.5 x 10 7 -1.4 x 10 8 yr). Meanwhile, these WD + He star systems may be related to the young supersoft X-ray sources prior to SN Ia explosions.

  16. Identifying the neutrino mass hierarchy with supernova neutrinos

    International Nuclear Information System (INIS)

    Tomas, Ricard

    2006-01-01

    We review how a high-statistics observation of the neutrino signal from a future galactic core-collapse supernova (SN) may be used to discriminate between different neutrino mixing scenarios. We discuss two complementary methods that allow for the positive identification of the mass hierarchy without knowledge of the emitted neutrino fluxes, provided that the 13-mixing angle is large, sin 2 θ 13 -5 . These two approaches are the observation of modulations in the neutrino spectra by Earth matter effects or by the passage of shock waves through the SN envelope. If the value of the 13-mixing angle is unknown, using additionally the information encoded in the prompt neutronization ν e burst-a robust feature found in all modern SN simulations-can be sufficient to fix both the neutrino hierarchy and to decide whether θ 13 is 'small' or 'large'

  17. The Hubble Constant from SN Refsdal

    Science.gov (United States)

    Vega-Ferrero, J.; Diego, J. M.; Miranda, V.; Bernstein, G. M.

    2018-02-01

    Hubble Space Telescope observations from 2015 December 11 detected the expected fifth counter-image of supernova (SN) Refsdal at z = 1.49. In this Letter, we compare the time-delay predictions from numerous models with the measured value derived by Kelly et al. from very early data in the light curve of the SN Refsdal and find a best value for {H}0={64}-11+9 {km} {{{s}}}-1 {{Mpc}}-1 (68% CL), in excellent agreement with predictions from cosmic microwave background and recent weak lensing data + baryon acoustic oscillations + Big Bang nucleosynthesis (from the DES Collaboration). This is the first constraint on H 0 derived from time delays between multiple-lensed SN images, and the first with a galaxy cluster lens, subject to systematic effects different from other time-delay H 0 estimates. Additional time-delay measurements from new multiply imaged SNe will allow derivation of competitive constraints on H 0.

  18. Radioactive Iron Rain: Transporting 60Fe in Supernova Dust to the Ocean Floor

    Science.gov (United States)

    Fry, Brian J.; Fields, Brian D.; Ellis, John R.

    2016-08-01

    Several searches have found evidence of {}60{{Fe}} deposition, presumably from a near-Earth supernova (SN), with concentrations that vary in different locations on Earth. This paper examines various influences on the path of interstellar dust carrying {}60{{Fe}} from an SN through the heliosphere, with the aim of estimating the final global distribution on the ocean floor. We study the influences of magnetic fields, angle of arrival, wind, and ocean cycling of SN material on the concentrations at different locations. We find that the passage of SN material through the mesosphere/lower thermosphere has the greatest influence on the final global distribution, with ocean cycling causing lesser alteration as the SN material sinks to the ocean floor. SN distance estimates in previous works that assumed a uniform distribution are a good approximation. Including the effects on surface distributions, we estimate a distance of {46}-6+10 pc for an 8{--}10 {M}⊙ SN progenitor. This is consistent with an SN occurring within the Tuc-Hor stellar group ˜2.8 Myr ago, with SN material arriving on Earth ˜2.2 Myr ago. We note that the SN dust retains directional information to within 1◦ through its arrival in the inner solar system, so that SN debris deposition on inert bodies such as the Moon will be anisotropic, and thus could in principle be used to infer directional information. In particular, we predict that existing lunar samples should show measurable {}60{{Fe}} differences.

  19. X-ray emission from reverse-shocked ejecta in supernova remnants

    Science.gov (United States)

    Cioffi, Denis F.; Mckee, Christopher F.

    1990-01-01

    A simple physical model of the dynamics of a young supernova remnant is used to derive a straightforward kinematical description of the reverse shock. With suitable approximations, formulae can then be developed to give the X-ray emission of the reverse-shocked ejecta. The results are found to agree favorably with observations of SN1006.

  20. Radio emission from Supernovae and High Precision Astrometry

    Science.gov (United States)

    Perez-Torres, M. A.

    1999-11-01

    corrections, agree well within one standard deviation. In summary, our astrometric results demonstrate the feasibility of using phase-delay difference techniques (single-frequency or dual-frequency) for sources separated by as far as 15(deg) on the sky. This opens the avenue for the extension of the technique on a global scale with the aim of building up a quasi-inertial reference frame (of submilliarcsecond accuracy) based on extragalactic radio sources. The second part of this thesis is devoted to the study of the radio emission of the Type II supernova SN 1993J, whose relative proximity (it exploded in the Galaxy M81, at a distance of 10 million of light-years) has allowed us to observe it with VLBI at different radio frequency bands since June 1993. This radio supernova is the best studied one so far and thus a perfect laboratory to test supernova radio emission models. Early VLBI observations of this supernova by our group allowed us to discover the shell structure of SN 1993J--likely common to all supernovae--the youngest ever discovered in a supernova. Subsequently, our VLBI observations showed SN 1993J to be self-similarly expanding and, more recently, we used our VLBI observations at 3.6 and 6 cm in the period 6 through 42 months after explosion to show that the supernova expansion is decelerating, its size following a power-law with time (R t^m; m=0.86 +- 0.02). Our measurement of the expansion index yields estimates of the density of both supernova ejecta and circumstellar material in standard supernova explosion models. In particular, the density of the circumstellar material seems to be following a power-law less steep than usual (rhocs r^{-s}, with s approx. 1.66 instead of the standard s=2). Our VLBI observations also showed that the supernova radio emission comes from a shell of width 30% of the outer radius. In this thesis, we describe a numerical code that simulates synchrotron radio emission from a supernova. We assume that the supernova is self

  1. Extending Supernova Spectral Templates for Next Generation Space Telescope Observations

    Science.gov (United States)

    Roberts-Pierel, Justin; Rodney, Steven A.; Steven Rodney

    2018-01-01

    Widely used empirical supernova (SN) Spectral Energy Distributions (SEDs) have not historically extended meaningfully into the ultraviolet (UV), or the infrared (IR). However, both are critical for current and future aspects of SN research including UV spectra as probes of poorly understood SN Ia physical properties, and expanding our view of the universe with high-redshift James Webb Space Telescope (JWST) IR observations. We therefore present a comprehensive set of SN SED templates that have been extended into the UV and IR, as well as an open-source software package written in Python that enables a user to generate their own extrapolated SEDs. We have taken a sampling of core-collapse (CC) and Type Ia SNe to get a time-dependent distribution of UV and IR colors (U-B,r’-[JHK]), and then generated color curves are used to extrapolate SEDs into the UV and IR. The SED extrapolation process is now easily duplicated using a user’s own data and parameters via our open-source Python package: SNSEDextend. This work develops the tools necessary to explore the JWST’s ability to discriminate between CC and Type Ia SNe, as well as provides a repository of SN SEDs that will be invaluable to future JWST and WFIRST SN studies.

  2. SUPERNOVA 2003ie WAS LIKELY A FAINT TYPE IIP EVENT

    Energy Technology Data Exchange (ETDEWEB)

    Arcavi, Iair; Gal-Yam, Avishay [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Sergeev, Sergey G., E-mail: iair.arcavi@weizmann.ac.il [Crimean Astrophysical Observatory, P/O Nauchny, Crimea 98409 (Ukraine)

    2013-04-15

    We present new photometric observations of supernova (SN) 2003ie starting one month before discovery, obtained serendipitously while observing its host galaxy. With only a weak upper limit derived on the mass of its progenitor (<25 M{sub Sun }) from previous pre-explosion studies, this event could be a potential exception to the ''red supergiant (RSG) problem'' (the lack of high-mass RSGs exploding as Type IIP SNe). However, this is true only if SN2003ie was a Type IIP event, something which has never been determined. Using recently derived core-collapse SN light-curve templates, as well as by comparison to other known SNe, we find that SN2003ie was indeed a likely Type IIP event. However, with a plateau magnitude of {approx} - 15.5 mag, it is found to be a member of the faint Type IIP class. Previous members of this class have been shown to arise from relatively low-mass progenitors (<12 M{sub Sun }). It therefore seems unlikely that this SN had a massive RSG progenitor. The use of core-collapse SN light-curve templates is shown to be helpful in classifying SNe with sparse coverage. These templates are likely to become more robust as large homogeneous samples of core-collapse events are collected.

  3. A TYPE Ia SUPERNOVA AT REDSHIFT 1.55 IN HUBBLE SPACE TELESCOPE INFRARED OBSERVATIONS FROM CANDELS

    International Nuclear Information System (INIS)

    Rodney, Steven A.; Riess, Adam G.; Jones, David O.; Dahlen, Tomas; Ferguson, Henry C.; Casertano, Stefano; Grogin, Norman A.; Strolger, Louis-Gregory; Hjorth, Jens; Frederiksen, Teddy F.; Weiner, Benjamin J.; Mobasher, Bahram; Challis, Peter; Kirshner, Robert P.; Faber, S. M.; Filippenko, Alexei V.; Garnavich, Peter; Hayden, Brian; Graur, Or; Jha, Saurabh W.

    2012-01-01

    We report the discovery of a Type Ia supernova (SN Ia) at redshift z = 1.55 with the infrared detector of the Wide Field Camera 3 (WFC3-IR) on the Hubble Space Telescope (HST). This object was discovered in CANDELS imaging data of the Hubble Ultra Deep Field and followed as part of the CANDELS+CLASH Supernova project, comprising the SN search components from those two HST multi-cycle treasury programs. This is the highest redshift SN Ia with direct spectroscopic evidence for classification. It is also the first SN Ia at z > 1 found and followed in the infrared, providing a full light curve in rest-frame optical bands. The classification and redshift are securely defined from a combination of multi-band and multi-epoch photometry of the SN, ground-based spectroscopy of the host galaxy, and WFC3-IR grism spectroscopy of both the SN and host. This object is the first of a projected sample at z > 1.5 that will be discovered by the CANDELS and CLASH programs. The full CANDELS+CLASH SN Ia sample will enable unique tests for evolutionary effects that could arise due to differences in SN Ia progenitor systems as a function of redshift. This high-z sample will also allow measurement of the SN Ia rate out to z ≈ 2, providing a complementary constraint on SN Ia progenitor models.

  4. HOW TO FIND GRAVITATIONALLY LENSED TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Goldstein, Daniel A.; Nugent, Peter E.

    2017-01-01

    Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts ( z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H _0, w , and Ω_m via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear to be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts’ photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z -band search, more than an order of magnitude improvement over previous estimates. We also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R -band search—despite the fact that this survey will not resolve a single system.

  5. HOW TO FIND GRAVITATIONALLY LENSED TYPE Ia SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Daniel A.; Nugent, Peter E. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2017-01-01

    Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts ( z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H {sub 0}, w , and Ω{sub m} via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear to be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts’ photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z -band search, more than an order of magnitude improvement over previous estimates. We also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R -band search—despite the fact that this survey will not resolve a single system.

  6. Observational Investigations of the Progenitors of Supernovae

    Science.gov (United States)

    Lyman, J. D.

    2014-03-01

    Supernovae (SNe) are the spectacular deaths of stars and have shaped the universe we see today. Their far-reaching influence affects the chemical and dynamical evolution of galaxies, star formation, neutron star and black hole formation, and they are largely responsible for most of the heavy elements that make up the universe, including around 90 per cent of the reader. They also provide laboratories of nuclear and particle physics far beyond what we can construct on Earth and act as probes of extreme density and energy. This thesis presents new research into understanding the nature of the progenitor systems of various types of SNe, as well as presenting results that will allow their study to be more productive in the future, through use of automated pipelines and methods to increase the science value of discovered SNe. An environmental study of two peculiar types of transients ('Calcium-rich' and '2002cx-like'), which may not be true SNe, reveals extremely different ages of the exploding systems that will constrain the current theoretical effort into discovering the progenitor systems. The GRB-SN 120422A/2012bz is investigated and found to be an extremely luminous and energetic SN, even amongst the infamously bright GRB-SNe. A method is presented that allows an accurate reconstruction of the bolometric light curve of a core-collapse SN, which relies on only two optical filter observations - this will hugely reduce the observational cost of constructing bolometric light curves, a tool of great importance when hoping to constrain the nature of a SN explosion and hence its progenitor. Finally, this method is utilised to construct the largest bolometric CCSN bolometric light curve sample to date, and these are analytically modelled to reveal population statistics of the explosions, thus informing on the nature of the progenitors.

  7. THE LOCAL HOSTS OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Neill, James D.; Martin, D. Christopher; Barlow, Tom A.; Foster, Karl; Friedman, Peter G.; Morrissey, Patrick; Wyder, Ted K.; Sullivan, Mark; Howell, D. Andrew; Conley, Alex; Seibert, Mark; Madore, Barry F.; Neff, Susan G.; Schiminovich, David; Bianchi, Luciana; Donas, Jose; Milliard, Bruno; Heckman, Timothy M.; Lee, Young-Wook; Rich, R. Michael

    2009-01-01

    We use multi-wavelength, matched aperture, integrated photometry from the Galaxy Evolution Explorer (GALEX), the Sloan Digital Sky Survey, and the RC3 to estimate the physical properties of 166 nearby galaxies hosting 168 well-observed Type Ia supernovae (SNe Ia). The ultraviolet (UV) imaging of local SN Ia hosts from GALEX allows a direct comparison with higher-redshift hosts measured at optical wavelengths that correspond to the rest-frame UV. Our data corroborate well-known features that have been seen in other SN Ia samples. Specifically, hosts with active star formation produce brighter and slower SNe Ia on average, and hosts with luminosity-weighted ages older than 1 Gyr produce on average more faint, fast, and fewer bright, slow SNe Ia than younger hosts. New results include that in our sample, the faintest and fastest SNe Ia occur only in galaxies exceeding a stellar mass threshold of ∼10 10 M sun , leading us to conclude that their progenitors must arise in populations that are older and/or more metal rich than the general SN Ia population. A low host extinction subsample hints at a residual trend in peak luminosity with host age, after correcting for light-curve shape, giving the appearance that older hosts produce less-extincted SNe Ia on average. This has implications for cosmological fitting of SNe Ia, and suggests that host age could be useful as a parameter in the fitting. Converting host mass to metallicity and computing 56 Ni mass from the supernova light curves, we find that our local sample is consistent with a model that predicts a shallow trend between stellar metallicity and the 56 Ni mass that powers the explosion, but we cannot rule out the absence of a trend. We measure a correlation between 56 Ni mass and host age in the local universe that is shallower and not as significant as that seen at higher redshifts. The details of the age- 56 Ni mass correlations at low and higher redshift imply a luminosity-weighted age threshold of ∼3 Gyr

  8. THE SPECTROSCOPIC DIVERSITY OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Blondin, S.; Matheson, T.; Kirshner, R. P.; Mandel, K. S.; Challis, P.; Berlind, P.; Calkins, M.; Garnavich, P. M.; Jha, S. W.; Modjaz, M.; Riess, A. G.; Schmidt, B. P.

    2012-01-01

    We present 2603 spectra of 462 nearby Type Ia supernovae (SNe Ia), including 2065 previously unpublished spectra, obtained during 1993-2008 through the Center for Astrophysics Supernova Program. There are on average eight spectra for each of the 313 SNe Ia with at least two spectra. Most of the spectra were obtained with the FAST spectrograph at the Fred Lawrence Whipple Observatory 1.5 m telescope and reduced in a consistent manner, making this data set well suited for studies of SN Ia spectroscopic diversity. Using additional data from the literature, we study the spectroscopic and photometric properties of SNe Ia as a function of spectroscopic class using the classification schemes of Branch et al. and Wang et al. The width-luminosity relation appears to be steeper for SNe Ia with broader lines, although the result is not statistically significant with the present sample. Based on the evolution of the characteristic Si II λ6355 line, we propose improved methods for measuring velocity gradients, revealing a larger range than previously suspected, from ∼0 to ∼400 km s −1 day −1 considering the instantaneous velocity decline rate at maximum light. We find a weaker and less significant correlation between Si II velocity and intrinsic B – V color at maximum light than reported by Foley et al., owing to a more comprehensive treatment of uncertainties and host galaxy dust. We study the extent of nuclear burning and the presence of unburnt carbon in the outermost layers of the ejecta and report new detections of C II λ6580 in 23 early-time SN Ia spectra. The frequency of C II detections is not higher in SNe Ia with bluer colors or narrower light curves, in conflict with the recent results of Thomas et al. Based on nebular spectra of 27 SNe Ia, we find no relation between the FWHM of the iron emission feature at ∼4700 Å and Δm 15 (B) after removing the two low-luminosity SN 1986G and SN 1991bg, suggesting that the peak luminosity is not strongly dependent

  9. CMOS Analog IC Design: Fundamentals

    OpenAIRE

    Bruun, Erik

    2018-01-01

    This book is intended for use as the main textbook for an introductory course in CMOS analog integrated circuit design. It is aimed at electronics engineering students who have followed basic courses in mathematics, physics, circuit theory, electronics and signal processing. It takes the students directly from a basic level to a level where they can start working on simple analog IC design projects or continue their studies using more advanced textbooks in the field. A distinct feature of thi...

  10. Electron Acceleration in Supernovae and Millimeter Perspectives

    Directory of Open Access Journals (Sweden)

    Keiichi Maeda

    2014-12-01

    Full Text Available Supernovae launch a strong shock wave by the interaction of the expanding ejecta and surrounding circumstellar matter (CSM. At the shock, electrons are accelerated to relativistic speed, creating observed synchrotron emissions in radio wavelengths. In this paper, I suggest that SNe (i.e., < 1 year since the explosion provide a unique site to study the electron acceleration mechanism. I argue that the eciency of the acceleration at the young SN shock is much lower than conventionally assumed, and that the electrons emitting in the cm wavelengths are not fully in the Diffusive Shock Acceleration (DSA regime. Thus radio emissions from young SNe record information on the yet-unresolved 'injection' mechanism. I also present perspectives of millimeter (mm observations of SNe - this will provide opportunities to uniquely determine the shock physics and the acceleration efficiency, to test the non-linear DSA mechanism and provide a characteristic electron energy scale with which the DSA start dominating the electron acceleration.

  11. Calibrating the Type Ia Supernova Distance Scale Using Surface Brightness Fluctuations

    Science.gov (United States)

    Potter, Cicely; Jensen, Joseph B.; Blakeslee, John; Milne, Peter; Garnavich, Peter M.; Brown, Peter

    2018-06-01

    We have observed 20 supernova host galaxies with HST WFC3/IR in the F110W filter, and prepared the data for Surface Brightness Fluctuation (SBF) distance measurements. The purpose of this study is to determine if there are any discrepancies between the SBF distance scale and the type-Ia SN distance scale, for which local calibrators are scarce. We have now measured SBF magnitudes to all early-type galaxies that have hosted SN Ia within 80 Mpc for which SBF measurements are possible. SBF is the only distance measurement technique with statistical uncertainties comparable to SN Ia that can be applied to galaxies out to 80 Mpc.

  12. Long Gamma-Ray Bursts without Visible Supernovae A Case Study of Redshift Estimators and Alleged Novel Objects

    CERN Document Server

    Dado, Shlomo; De Rújula, A; Plaga, Rainer

    2008-01-01

    It has been argued that the observational limits on a supernova (SN) associated with GRB 060614 convincingly exclude a SN akin to SN 1998bw as its originator and provide evidence for a new class of long-duration GRBs. We discuss this issue in the contexts of indirect "redshift estimators" and of the fireball and cannonball models of GRBs. The latter explains the unusual properties of GRB 060614: at its debated but favored low redshift (0.125), they are predicted, as opposed to exceptional, if the associated core-collapse SN is of a recently discovered, very faint type. We take the occasion to discuss the association between GRBs and SNe.

  13. Deflagration to detonation transition in thermonuclear supernovae

    International Nuclear Information System (INIS)

    Charignon, Camille

    2013-01-01

    Type Ia supernovae are an important tool to determine the expansion history of our Universe. Thus, considerable attention has been given to both observations and models of these events. The most popular explosion model is the central ignition of a deflagration in the dense C+O interior of a Chandrasekhar mass white dwarf, followed by a transition to a detonation (TDD). We study in this thesis a new mechanism for this transition. The most robust and studied progenitor model and the postulated mechanism for the TDD, the so called 'Zel'dovich gradient mechanism', are presented. State of the art 3D simulations of such a delayed detonation, at the price of some adjustments, can indeed reproduce observables. But due to largely unresolved physical scales, such simulations cannot explain the TDD by themselves, and especially, the physical mechanism which triggers this transition - which is not yet understood, even on Earth, for unconfined media. It is then discussed why the current Zel'dovich mechanism might be too constraining for a SN Ia model, pointing to a new approach, which is the core result of this thesis.In the final part, our alternative model for DDT in supernovae, the acoustic heating of the pre-supernova envelope, is presented. A planar model first proves that small amplitude acoustic perturbations (generated by a turbulent flame) are actually amplified in a steep density gradient, up to a point where they turn into shocks able to trigger a detonation. Then, this mechanism is applied to more realistic models, taking into account, in spherical geometry, the expanding envelope. A parametric study demonstrates the validity of the model for a reasonable range of acoustic wave amplitudes and frequencies.To conclude, some exploratory 2D and 3D MHD simulations, seeking for realistic acoustic source compatible with our mechanism, are presented. (author) [fr

  14. Supernovae, compact stars and nuclear physics

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1989-01-01

    We briefly review the current understanding of supernova. We investigate the implications of rapid rotation corresponding to the frequency of the new pulsar reported in the supernovae remnant SN1987A. It places very stringent conditions on the equation of state if the star is assumed to be bound by gravity alone. We find that the central energy density of the star must be greater than 12 times that of nuclear density to be stable against the most optimistic estimate of general relativistic instabilities. This is too high for the matter to plausibly consist of individual hadrons. We conclude that the newly discovered pulsar, if its half-millisecond signals are attributable to rotation, cannot be a neutron star. We show that it can be a strange quark star, and that the entire family of strange stars can sustain high rotation under appropriate conditions. We discuss the conversion of a neutron star to strange star, the possible existence of a crust of heavy ions held in suspension by centrifugal and electric forces, the cooling and other features. 39 refs., 8 figs., 2 tabs

  15. Radio emission from embryonic superluminous supernova remnants

    Science.gov (United States)

    Omand, Conor M. B.; Kashiyama, Kazumi; Murase, Kohta

    2018-02-01

    It has been widely argued that Type-I superluminous supernovae (SLSNe-I) are driven by powerful central engines with a long-lasting energy injection after the core-collapse of massive progenitors. One of the popular hypotheses is that the hidden engines are fast-rotating pulsars with a magnetic field of B ˜ 1013-1015 G. Murase, Kashiyama & Mészáros proposed that quasi-steady radio/submm emission from non-thermal electron-positron pairs in nascent pulsar wind nebulae can be used as a relevant counterpart of such pulsar-driven supernovae (SNe). In this work, focusing on the nascent SLSN-I remnants, we examine constraints that can be placed by radio emission. We show that the Atacama Large Millimeter/submillimetre Array can detect the radio nebula from SNe at DL ˜ 1 Gpc in a few years after the explosion, while the Jansky Very Large Array can also detect the counterpart in a few decades. The proposed radio follow-up observation could solve the parameter degeneracy in the pulsar-driven SN model for optical/UV light curves, and could also give us clues to young neutron star scenarios for SLSNe-I and fast radio bursts.

  16. Observational Evidence for High Neutronization in Supernova Remnants: Implications for Type Ia Supernova Progenitors

    International Nuclear Information System (INIS)

    Martínez-Rodríguez, Héctor; Badenes, Carles; Andrews, Brett; Yamaguchi, Hiroya; Bravo, Eduardo; Timmes, F. X.; Miles, Broxton J.; Townsley, Dean M.; Piro, Anthony L.; Mori, Hideyuki; Park, Sangwook

    2017-01-01

    The physical process whereby a carbon–oxygen white dwarf explodes as a Type Ia supernova (SN Ia) remains highly uncertain. The degree of neutronization in SN Ia ejecta holds clues to this process because it depends on the mass and the metallicity of the stellar progenitor, and on the thermodynamic history prior to the explosion. We report on a new method to determine ejecta neutronization using Ca and S lines in the X-ray spectra of Type Ia supernova remnants (SNRs). Applying this method to Suzaku data of Tycho, Kepler , 3C 397, and G337.2−0.7 in the Milky Way, and N103B in the Large Magellanic Cloud, we find that the neutronization of the ejecta in N103B is comparable to that of Tycho and Kepler , which suggests that progenitor metallicity is not the only source of neutronization in SNe Ia. We then use a grid of SN Ia explosion models to infer the metallicities of the stellar progenitors of our SNRs. The implied metallicities of 3C 397, G337.2−0.7, and N103B are major outliers compared to the local stellar metallicity distribution functions, indicating that progenitor metallicity can be ruled out as the origin of neutronization for these SNRs. Although the relationship between ejecta neutronization and equivalent progenitor metallicity is subject to uncertainties stemming from the 12 C + 16 O reaction rate, which affects the Ca/S mass ratio, our main results are not sensitive to these details.

  17. Observed Type II supernova colours from the Carnegie Supernova Project-I

    Science.gov (United States)

    de Jaeger, T.; Anderson, J. P.; Galbany, L.; González-Gaitán, S.; Hamuy, M.; Phillips, M. M.; Stritzinger, M. D.; Contreras, C.; Folatelli, G.; Gutiérrez, C. P.; Hsiao, E. Y.; Morrell, N.; Suntzeff, N. B.; Dessart, L.; Filippenko, A. V.

    2018-06-01

    We present a study of observed Type II supernova (SN II) colours using optical/near-infrared photometric data from the Carnegie Supernovae Project-I. We analyse four colours (B - V, u - g, g - r, and g - Y) and find that SN II colour curves can be described by two linear regimes during the photospheric phase. The first (s1, colour) is steeper and has a median duration of ˜40 d. The second, shallower slope (s2, colour) lasts until the end of the `plateau' (˜80 d). The two slopes correlate in the sense that steeper initial colour curves also imply steeper colour curves at later phases. As suggested by recent studies, SNe II form a continuous population of objects from the colour point of view as well. We investigate correlations between the observed colours and a range of photometric and spectroscopic parameters including the absolute magnitude, the V-band light-curve slopes, and metal-line strengths. We find that less luminous SNe II appear redder, a trend that we argue is not driven by uncorrected host-galaxy reddening. While there is significant dispersion, we find evidence that redder SNe II (mainly at early epochs) display stronger metal-line equivalent widths. Host-galaxy reddening does not appear to be a dominant parameter, neither driving observed trends nor dominating the dispersion in observed colours. Intrinsic SN II colours are most probably dominated by photospheric temperature differences, with progenitor metallicity possibly playing a minor role. Such temperature differences could be related to differences in progenitor radius, together with the presence or absence of circumstellar material close to the progenitor stars.

  18. Observational Evidence for High Neutronization in Supernova Remnants: Implications for Type Ia Supernova Progenitors

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Rodríguez, Héctor; Badenes, Carles; Andrews, Brett [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States); Yamaguchi, Hiroya [NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Bravo, Eduardo [E.T.S. Arquitectura del Vallès, Universitat Politècnica de Catalunya, Carrer Pere Serra 1-15, E-08173 Sant Cugat del Vallès (Spain); Timmes, F. X. [The Joint Institute for Nuclear Astrophysics (United States); Miles, Broxton J.; Townsley, Dean M. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL (United States); Piro, Anthony L. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Mori, Hideyuki [CRESST and X-ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 602, Greenbelt, MD 20771 (United States); Park, Sangwook, E-mail: hector.mr@pitt.edu [Department of Physics, University of Texas at Arlington, Box 19059, Arlington, TX 76019 (United States)

    2017-07-01

    The physical process whereby a carbon–oxygen white dwarf explodes as a Type Ia supernova (SN Ia) remains highly uncertain. The degree of neutronization in SN Ia ejecta holds clues to this process because it depends on the mass and the metallicity of the stellar progenitor, and on the thermodynamic history prior to the explosion. We report on a new method to determine ejecta neutronization using Ca and S lines in the X-ray spectra of Type Ia supernova remnants (SNRs). Applying this method to Suzaku data of Tycho, Kepler , 3C 397, and G337.2−0.7 in the Milky Way, and N103B in the Large Magellanic Cloud, we find that the neutronization of the ejecta in N103B is comparable to that of Tycho and Kepler , which suggests that progenitor metallicity is not the only source of neutronization in SNe Ia. We then use a grid of SN Ia explosion models to infer the metallicities of the stellar progenitors of our SNRs. The implied metallicities of 3C 397, G337.2−0.7, and N103B are major outliers compared to the local stellar metallicity distribution functions, indicating that progenitor metallicity can be ruled out as the origin of neutronization for these SNRs. Although the relationship between ejecta neutronization and equivalent progenitor metallicity is subject to uncertainties stemming from the {sup 12}C + {sup 16}O reaction rate, which affects the Ca/S mass ratio, our main results are not sensitive to these details.

  19. The effect of peculiar velocities on supernova cosmology

    DEFF Research Database (Denmark)

    Davis, Tamara Maree; Hui, Lam; Frieman, Joshua A.

    2011-01-01

    We analyze the effect that peculiar velocities have on the cosmological inferences we make using luminosity distance indicators, such as Type Ia supernovae. In particular we study the corrections required to account for (1) our own motion, (2) correlations in galaxy motions, and (3) a possible lo...... when future surveys aim for percent-level accuracy and we recommend our statistical approach to down-weighting peculiar velocities as a more robust option than a sharp low-redshift cut....... local under- or overdensity. For all of these effects we present a case study showing the impact on the cosmology derived by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). Correcting supernova (SN) redshifts for the cosmic microwave background (CMB) dipole slightly overcorrects...... nearby SNe that share some of our local motion. We show that while neglecting the CMB dipole would cause a shift in the derived equation of state of ¿w ~ 0.04 (at fixed O m ), the additional local-motion correction is currently negligible (¿w

  20. Supernova research with VLBI

    Science.gov (United States)

    Bartel, Norbert; Bietenholz, Michael F.

    2016-06-01

    Core-collapse supernovae have been monitored with VLBI from shortly after the explosion to many years thereafter. Radio emission is produced as the ejecta hit the stellar wind left over from the dyingstar. Images show the details of the interaction as the shock front expands into the circumstellar medium. Measurements of the velocity and deceleration of the expansion provide information on both the ejecta and the circumstellar medium. VLBI observations can also search for the stellar remnant of the explosion, a neutron star or a black hole. Combining the transverse expansion rate with the radial expansion rate from optical spectra allows a geometric determination of the distance to the host galaxy. We will present results from recent VLBI observations, focus on their interpretations, and show updated movies of supernovae from soon after their explosion to the present.

  1. THE VERY YOUNG TYPE Ia SUPERNOVA 2013dy: DISCOVERY, AND STRONG CARBON ABSORPTION IN EARLY-TIME SPECTRA

    International Nuclear Information System (INIS)

    Zheng, WeiKang; Filippenko, Alexei V.; Nugent, Peter E.; Graham, Melissa; Kelly, Patrick L.; Fox, Ori D.; Shivvers, Isaac; Clubb, Kelsey I.; Li, Weidong; Silverman, Jeffrey M.; Howie Marion, G.; Kasen, Daniel; Wang, Xiaofeng; Valenti, Stefano; Howell, D. Andrew; Ciabattari, Fabrizio; Cenko, S. Bradley; Balam, Dave; Hsiao, Eric; Sand, David

    2013-01-01

    The Type Ia supernova (SN Ia) 2013dy in NGC 7250 (d ≈ 13.7 Mpc) was discovered by the Lick Observatory Supernova Search. Combined with a prediscovery detection by the Italian Supernova Search Project, we are able to constrain the first-light time of SN 2013dy to be only 0.10 ± 0.05 days (2.4 ± 1.2 hr) before the first detection. This makes SN 2013dy the earliest known detection of an SN Ia. We infer an upper limit on the radius of the progenitor star of R 0 ≲ 0.25 R ☉ , consistent with that of a white dwarf. The light curve exhibits a broken power law with exponents of 0.88 and then 1.80. A spectrum taken 1.63 days after first light reveals a C II absorption line comparable in strength to Si II. This is the strongest C II feature ever detected in a normal SN Ia, suggesting that the progenitor star had significant unburned material. The C II line in SN 2013dy weakens rapidly and is undetected in a spectrum 7 days later, indicating that C II is detectable for only a very short time in some SNe Ia. SN 2013dy reached a B-band maximum of M B = –18.72 ± 0.03 mag ∼17.7 days after first light

  2. THE VERY YOUNG TYPE Ia SUPERNOVA 2013dy: DISCOVERY, AND STRONG CARBON ABSORPTION IN EARLY-TIME SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, WeiKang; Filippenko, Alexei V.; Nugent, Peter E.; Graham, Melissa; Kelly, Patrick L.; Fox, Ori D.; Shivvers, Isaac; Clubb, Kelsey I.; Li, Weidong [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Silverman, Jeffrey M.; Howie Marion, G. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Kasen, Daniel [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Wang, Xiaofeng [Department of Physics, Tsinghua University, Beijing 100084 (China); Valenti, Stefano; Howell, D. Andrew [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117 (United States); Ciabattari, Fabrizio [Monte Agliale Observatory, Borgo a Mozzano, Lucca, I-55023 Italy (Italy); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Balam, Dave [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Hsiao, Eric [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Sand, David, E-mail: zwk@astro.berkeley.edu [Physics Department, Texas Tech University, Lubbock, TX 79409 (United States); and others

    2013-11-20

    The Type Ia supernova (SN Ia) 2013dy in NGC 7250 (d ≈ 13.7 Mpc) was discovered by the Lick Observatory Supernova Search. Combined with a prediscovery detection by the Italian Supernova Search Project, we are able to constrain the first-light time of SN 2013dy to be only 0.10 ± 0.05 days (2.4 ± 1.2 hr) before the first detection. This makes SN 2013dy the earliest known detection of an SN Ia. We infer an upper limit on the radius of the progenitor star of R {sub 0} ≲ 0.25 R {sub ☉}, consistent with that of a white dwarf. The light curve exhibits a broken power law with exponents of 0.88 and then 1.80. A spectrum taken 1.63 days after first light reveals a C II absorption line comparable in strength to Si II. This is the strongest C II feature ever detected in a normal SN Ia, suggesting that the progenitor star had significant unburned material. The C II line in SN 2013dy weakens rapidly and is undetected in a spectrum 7 days later, indicating that C II is detectable for only a very short time in some SNe Ia. SN 2013dy reached a B-band maximum of M{sub B} = –18.72 ± 0.03 mag ∼17.7 days after first light.

  3. Supernovae and neutrinos

    International Nuclear Information System (INIS)

    John F. Beacom

    2002-01-01

    A long-standing problem in supernova physics is how to measure the total energy and temperature of ν μ , ν τ , (bar ν) μ , and (bar ν) τ . While of the highest importance, this is very difficult because these flavors only have neutral-current detector interactions. We propose that neutrino-proton elastic scattering, ν + p → ν + p, can be used for the detection of supernova neutrinos in scintillator detectors. It should be emphasized immediately that the dominant signal is on free protons. Though the proton recoil kinetic energy spectrum is soft, with T p ≅ 2E ν 2 /M p , and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from (bar ν) e + p → e + + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos

  4. Discovery of a Supernova Explosion at Half the Age of the Universe and its Cosmological Implications

    Science.gov (United States)

    Perlmutter, S.; Aldering, G.; Della Valle, M.; Deustua, S.; Ellis, R. S.; Fabbro, S.; Fruchter, A.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hook, I. M.; Kim, A. G.; Kim, M. Y.; Knop, R. A.; Lidman, C.; McMahon, R. G.; Nugent, P.; Pain, R.; Panagia, N.; Pennypacker, C. R.; Ruiz-Lapuente, P.; Schaefer, B.; Walton, N.

    1997-12-16

    The ultimate fate of the universe, infinite expansion or a big crunch, can be determined by measuring the redshifts, apparent brightnesses, and intrinsic luminosities of very distant supernovae. Recent developments have provided tools that make such a program practicable: (1) Studies of relatively nearby Type la supernovae (SNe la) have shown that their intrinsic luminosities can be accurately determined; (2) New research techniques have made it possible to schedule the discovery and follow-up observations of distant supernovae, producing well over 50 very distant (z = 0.3-0.7) SNe Ia to date. These distant supernovae provide a record of changes in the expansion rate over the past several billion years. By making precise measurements of supernovae at still greater distances, and thus extending this expansion history back far enough in time, we can even distinguish the slowing caused by the gravitational attraction of the universe's mass density {Omega}{sub M} from the effect of a possibly inflationary pressure caused by a cosmological constant {Lambda}. We report here the first such measurements, with our discovery of a Type Ia supernova (SN 1997ap) at z = 0.83. Measurements at the Keck II 10-m telescope make this the most distant spectroscopically confirmed supernova. Over two months of photometry of SN 1997ap with the Hubble Space Telescope and ground-based telescopes, when combined with previous measurements of nearer SNe la, suggests that we may live in a low mass-density universe. Further supernovae at comparable distances are currently scheduled for ground and space-based observations.

  5. Dust grains from the heart of supernovae

    Science.gov (United States)

    Bocchio, M.; Marassi, S.; Schneider, R.; Bianchi, S.; Limongi, M.; Chieffi, A.

    2016-03-01

    Dust grains are classically thought to form in the winds of asymptotic giant branch (AGB) stars. However, there is increasing evidence today for dust formation in supernovae (SNe). To establish the relative importance of these two classes of stellar sources of dust, it is important to know the fraction of freshly formed dust in SN ejecta that is able to survive the passage of the reverse shock and be injected in the interstellar medium. With this aim, we have developed a new code, GRASH_Rev, that allows following the dynamics of dust grains in the shocked SN ejecta and computing the time evolution of the mass, composition, and size distribution of the grains. We considered four well-studied SNe in the Milky Way and Large Magellanic Cloud: SN 1987A, CasA, the Crab nebula, and N49. These sources have been observed with both Spitzer and Herschel, and the multiwavelength data allow a better assessment the mass of warm and cold dust associated with the ejecta. For each SN, we first identified the best explosion model, using the mass and metallicity of the progenitor star, the mass of 56Ni, the explosion energy, and the circumstellar medium density inferred from the data. We then ran a recently developed dust formation model to compute the properties of freshly formed dust. Starting from these input models, GRASH_Rev self-consistently follows the dynamics of the grains, considering the effects of the forward and reverse shock, and allows predicting the time evolution of the dust mass, composition, and size distribution in the shocked and unshocked regions of the ejecta. All the simulated models aagree well with observations. Our study suggests that SN 1987A is too young for the reverse shock to have affected the dust mass. Hence the observed dust mass of 0.7-0.9 M⊙ in this source can be safely considered as indicative of the mass of freshly formed dust in SN ejecta. Conversely, in the other three SNe, the reverse shock has already destroyed between 10-40% of the

  6. A Peculiar Subclass of Type Ia Supernovae a.k.a. Type Iax

    Science.gov (United States)

    Singh, Mridweeka; Misra, Kuntal; Sahu, Devendra Kumar; Dastidar, Raya; Gangopadhyay, Anjasha; Bose, Subhash; Srivastav, Shubham; Anapuma, Gadiyara Chakrapani; Chakradhari, Nand Kumar; Kumar, Brajesh; Kumar, Brijesh; Pandey, Shashi Bhushan

    2018-04-01

    We present optical photometric (upto ˜ 410 days since Bmax) and spectroscopic (upto ˜ 235 days since Bmax) observations of a type Iax supernova SN 2014dt located in M61. The broad band light curves follow a linear decline up to ˜ 100 days after which a significant flattening is seen in the late-time (beyond 150 days) light curves of SN 2014dt. SN 2014dt best matches the light curve evolution of SN 2005hk and reaches a peak magnitude of MB˜ -18.12±0.04 with ?m15˜ 1.35±0.06 mag. The earliest spectrum at ˜ 23 days is dominated by FeII and CoII lines with the absence of the Si II 6150 Å line. Using the peak bolometric luminosity we estimate a 56Ni mass of 0.14 M⊙ in the case of SN 2005hk and the striking similarity between SN 2014dt and SN 2005hk implies that a comparable amount of 56Ni would have been synthesized in the explosion of SN 2014dt. There are several explosion scenarios proposed for these peculiar events. Being one of the brightest and closest SN! , SN 2014dt is an ideal candidate for long term monitoring. Late phase observations are very essential to understand the progenitor system and the actual explosion scenario for these events.

  7. Could a nearby supernova explosion have caused a mass extinction?

    International Nuclear Information System (INIS)

    Ellis, J.; Schramm, D.N.

    1995-01-01

    We examine the possibility that a nearby supernova explosion could have caused one or more of the mass extinctions identified by paleontologists. We discuss the possible rate of such events in the light of the recent suggested identification of Geminga as a supernova remnant less than 100 parsec (pc) away and the discovery of a millisecond pulsar about 150 pc away and observations of SN 1987A. The fluxes of γ-radiation and charged cosmic rays on the Earth are estimated, and their effects on the Earth's ozone layer are discussed. A supernova explosion of the order of 10 pc away could be expected as often as every few hundred million years and could destroy the ozone layer for hundreds of years, letting in potentially lethal solar ultraviolet radiation. In addition to effects on land ecology, this could entail mass destruction of plankton and reef communities, with disastrous consequences for marine life as well. A supernova extinction should be distinguishable from a meteorite impact such as the one that presumably killed the dinosaurs at the open-quotes KT boundary.close quotes The recent argument that the KT event was exceedingly large and thus quite rare supports the need for other catastrophic events. 24 refs

  8. Could a nearby supernova explosion have caused a mass extinction?

    CERN Document Server

    Ellis, Jonathan Richard

    1995-01-01

    We examine the possibility that a nearby supernova explosion could have caused one or more of the mass extinctions identified by palaeontologists. We discuss the likely rate of such events in the light of the recent identification of Geminga as a supernova remnant less than 100 pc away and the discovery of a millisecond pulsar about 150 pc away, and observations of SN 1987A. The fluxes of $\\gamma$ radiation and charged cosmic rays on the Earth are estimated, and their effects on the Earth's ozone layer discussed. A supernova explosion of the order of 10 pc away could be expected every few hundred million years, and could destroy the ozone layer for hundreds of years, letting in potentially lethal solar ultraviolet radiation. In addition to effects on land ecology, this could entail mass destruction of plankton and reef communities, with disastrous consequences for marine life as well. A supernova extinction should be distinguishable from a meteorite impact such as the one that presumably killed the dinosaurs.

  9. Could a nearby supernova explosion have caused a mass extinction?

    Science.gov (United States)

    Ellis, J; Schramm, D N

    1995-01-03

    We examine the possibility that a nearby supernova explosion could have caused one or more of the mass extinctions identified by paleontologists. We discuss the possible rate of such events in the light of the recent suggested identification of Geminga as a supernova remnant less than 100 parsec (pc) away and the discovery of a millisecond pulsar about 150 pc away and observations of SN 1987A. The fluxes of gamma-radiation and charged cosmic rays on the Earth are estimated, and their effects on the Earth's ozone layer are discussed. A supernova explosion of the order of 10 pc away could be expected as often as every few hundred million years and could destroy the ozone layer for hundreds of years, letting in potentially lethal solar ultraviolet radiation. In addition to effects on land ecology, this could entail mass destruction of plankton and reef communities, with disastrous consequences for marine life as well. A supernova extinction should be distinguishable from a meteorite impact such as the one that presumably killed the dinosaurs at the "KT boundary." The recent argument that the KT event was exceedingly large and thus quite rare supports the need for other catastrophic events.

  10. Computing fundamentals IC3 edition

    CERN Document Server

    Wempen, Faithe

    2014-01-01

    Kick start your journey into computing and prepare for your IC3 certification With this essential course book you'll be sending e-mails, surfing the web and understanding the basics of computing in no time. Written by Faithe Wempen, a Microsoft Office Master Instructor and author of more than 120 books, this complete guide to the basics has been tailored to provide comprehensive instruction on the full range of entry-level computing skills. It is a must for students looking to move into almost any profession, as entry-level computing courses have become a compulsory requirement in the modern w

  11. Supernovae as Cosmological Probes

    Science.gov (United States)

    Cappellaro, E.

    I review the use of SN Ia as distance indicators for measuring H 0, the Hubble constant, and the expansion history of the Universe. Most current estimates of H 0 are in the range 74-76 km s^{-1}Mpc^{-1}, in significant disagreement with the PLANCK's CMB estimate that is 10 % smaller. The main issues for SN Ia calibration, namely the luminosity vs. light curve shape relation and the correction for dust extinction are briefly addressed. SN Ia have been the key for the discovery of the acceleration of the cosmic expansion and in the near future they are expected to give a significant contribution to reveal the nature of dark energy.

  12. Multi-wavelength Observations of the Enduring Type IIn Supernovae 2005ip and 2006jd

    DEFF Research Database (Denmark)

    Stritzinger, Maximilian; Taddia, Francesco; Fransson, Claes

    2012-01-01

    We present an observational study of the Type IIn supernovae (SNe IIn) 2005ip and 2006jd. Broadband UV, optical, and near-IR photometry, and visual-wavelength spectroscopy of SN 2005ip complement and extend upon published observations to 6.5 years past discovery. Our observations of SN 2006jd...... extend from UV to mid-infrared wavelengths, and like SN 2005ip, are compared to reported X-ray measurements to understand the nature of the progenitor. Both objects display a number of similarities with the 1988Z-like subclass of SN IIn including (1) remarkably similar early- and late-phase optical...... spectra, (2) a variety of high-ionization coronal lines, (3) long-duration optical and near-IR emission, and (4) evidence of cold and warm dust components. However, diversity is apparent, including an unprecedented late-time r-band excess in SN 2006jd. The observed differences are attributed...

  13. SEM probe of IC radiation sensitivity

    Science.gov (United States)

    Gauthier, M. K.; Stanley, A. G.

    1979-01-01

    Scanning Electron Microscope (SEM) used to irradiate single integrated circuit (IC) subcomponent to test for radiation sensitivity can localize area of IC less than .03 by .03 mm for determination of exact location of radiation sensitive section.

  14. Inhomogeneities and the Modeling of Radio Supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Björnsson, C.-I.; Keshavarzi, S. T., E-mail: bjornsson@astro.su.se [Department of Astronomy, AlbaNova University Center, Stockholm University, SE–106 91 Stockholm (Sweden)

    2017-05-20

    Observations of radio supernovae (SNe) often exhibit characteristics not readily accounted for by a homogeneous, spherically symmetric synchrotron model; e.g., flat-topped spectra/light curves. It is shown that many of these deviations from the standard model can be attributed to an inhomogeneous source structure. When inhomogeneities are present, the deduced radius of the source and, hence, the shock velocity, is sensitive to the details of the modeling. As the inhomogeneities are likely to result from the same mechanism that amplify the magnetic field, a comparison between observations and the detailed numerical simulations now under way may prove mutually beneficial. It is argued that the radio emission in Type Ib/c SNe has a small volume filling factor and comes from a narrow region associated with the forward shock, while the radio emission region in SN 1993J (Type IIb) is determined by the extent of the Rayleigh–Taylor instability emanating from the contact discontinuity. Attention is also drawn to the similarities between radio SNe and the structural properties of SN remnants.

  15. PROMPT Ia SUPERNOVAE ARE SIGNIFICANTLY DELAYED

    International Nuclear Information System (INIS)

    Raskin, Cody; Scannapieco, Evan; Rhoads, James; Della Valle, Massimo

    2009-01-01

    The time delay between the formation of a population of stars and the onset of type Ia supernovae (SNe Ia) sets important limits on the masses and nature of SN Ia progenitors. Here, we use a new observational technique to measure this time delay by comparing the spatial distributions of SNe Ia to their local environments. Previous work attempted such analyses encompassing the entire host of each SN Ia, yielding inconclusive results. Our approach confines the analysis only to the relevant portions of the hosts, allowing us to show that even so-called prompt SNe Ia that trace star formation on cosmic timescales exhibit a significant delay time of 200-500 million years. This implies that either the majority of Ia companion stars have main-sequence masses less than 3 M sun , or that most SNe Ia arise from double white dwarf binaries. Our results are also consistent with a SNe Ia rate that traces the white dwarf formation rate, scaled by a fixed efficiency factor.

  16. The VLT Measures the Shape of a Type Ia Supernova

    Science.gov (United States)

    2003-08-01

    1448 and SN 2001el (DSS and NTT/EMMI). PR Photo 24b/03 : Optical spectrum of SN 2001el and fractional polarisation (VLT/FORS) Supernova explosions and cosmic distances During Type Ia supernova events, remnants of stars with an initial mass of up to a few times that of the Sun (so-called "white dwarf stars") explode, leaving nothing behind but a rapidly expanding cloud of "stardust". Type Ia supernovae are apparently quite similar to one another. This provides them a very useful role as "standard candles" that can be used to measure cosmic distances. Their peak brightness rivals that of their parent galaxy, hence qualifying them as prime cosmic yardsticks. Astronomers have exploited this fortunate circumstance to study the expansion history of our Universe. They recently arrived at the fundamental conclusion that the Universe is expanding at an accelerating rate, cf. ESO PR 21/98, December 1998 (see also the Supernova Acceleration Probe web page). The explosion of a white dwarf star In the most widely accepted models of Type Ia supernovae the pre-explosion white dwarf star orbits a solar-like companion star, completing a revolution every few hours. Due to the close interaction, the companion star continuously loses mass, part of which is picked up (in astronomical terminology: "accreted") by the white dwarf. A white dwarf represents the penultimate stage of a solar-type star. The nuclear reactor in its core has run out of fuel a long time ago and is now inactive. However, at some point the mounting weight of the accumulating material will have increased the pressure inside the white dwarf so much that the nuclear ashes in there will ignite and start burning into even heavier elements. This process very quickly becomes uncontrolled and the entire star is blown to pieces in a dramatic event. An extremely hot fireball is seen that often outshines the host galaxy. The shape of the explosion Although all supernovae of Type Ia have quite similar properties, it has never been

  17. Study of superconducting Nb3Sn coils

    International Nuclear Information System (INIS)

    Vivet, B.

    1963-01-01

    Composite superconducting Nb 3 Sn wires with a diameter of 0.5 mm and a length of about 100 m were made, and Hc-Ic diagrams were plotted up to fields of 80 kgauss for short lengths. Two solenoids producing fields of about 20 kgauss were studied. Nb 3 Sn solenoids, as opposed to those of Nb-Zr or Nb-Ti, appear to have a predictable behavior. Solenoids with less insulation produced stronger fields than heavily insulated solenoids. (author) [fr

  18. [O I] λλ6300, 6364 IN THE NEBULAR SPECTRUM OF A SUBLUMINOUS TYPE Ia SUPERNOVA

    International Nuclear Information System (INIS)

    Taubenberger, S.; Kromer, M.; Hillebrandt, W.; Pakmor, R.; Pignata, G.; Maeda, K.; Hachinger, S.; Leibundgut, B.

    2013-01-01

    In this Letter, a late-phase spectrum of SN 2010lp, a subluminous Type Ia supernova (SN Ia), is presented and analyzed. As in 1991bg-like SNe Ia at comparable epochs, the spectrum is characterized by relatively broad [Fe II] and [Ca II] emission lines. However, instead of narrow [Fe III] and [Co III] lines that dominate the emission from the innermost regions of 1991bg-like supernovae (SNe), SN 2010lp shows [O I] λλ6300, 6364 emission, usually associated with core-collapse SNe and never previously observed in a subluminous thermonuclear explosion. The [O I] feature has a complex profile with two strong, narrow emission peaks. This suggests that oxygen is distributed in a non-spherical region close to the center of the ejecta, severely challenging most thermonuclear explosion models discussed in the literature. We conclude that, given these constraints, violent mergers are presently the most promising scenario to explain SN 2010lp

  19. NEUTRONIZATION DURING CARBON SIMMERING IN TYPE IA SUPERNOVA PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Rodríguez, Héctor; Badenes, Carles [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States); Piro, Anthony L. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Schwab, Josiah, E-mail: hector.mr@pitt.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States)

    2016-07-01

    When a Type Ia supernova (SN Ia) progenitor first ignites carbon in its core, it undergoes ∼10{sup 3}–10{sup 4} years of convective burning prior to the onset of thermonuclear runaway. This carbon simmering phase is important for setting the thermal profile and composition of the white dwarf. Using the MESA stellar evolution code, we follow this convective burning and examine the production of neutron-rich isotopes. The neutron content of the SN fuel has important consequences for the ensuing nucleosynthesis, and in particular, for the production of secondary Fe-peak nuclei like Mn and stable Ni. These elements have been observed in the X-ray spectra of SN remnants like Tycho, Kepler, and 3C 397, and their yields can provide valuable insights into the physics of SNe Ia and the properties of their progenitors. We find that weak reactions during simmering can at most generate a neutron excess of ≈ 3 × 10{sup −4}. This is ≈ 70% lower than that found in previous studies that do not take the full density and temperature profile of the simmering region into account. Our results imply that the progenitor metallicity is the main contributor to the neutron excess in SN Ia fuel for Z ≳ 1/3 Z {sub ⊙}. Alternatively, at lower metallicities, this neutron excess provides a floor that should be present in any centrally-ignited SN Ia scenario.

  20. LINKING TYPE Ia SUPERNOVA PROGENITORS AND THEIR RESULTING EXPLOSIONS

    International Nuclear Information System (INIS)

    Foley, Ryan J.; Kirshner, Robert P.; Simon, Joshua D.; Burns, Christopher R.; Gal-Yam, Avishay; Hamuy, Mario; Morrell, Nidia I.; Phillips, Mark M.; Shields, Gregory A.; Sternberg, Assaf

    2012-01-01

    Comparing the ejecta velocities at maximum brightness and narrow circumstellar/interstellar Na D absorption line profiles of a sample of 23 Type Ia supernovae (SNe Ia), we determine that the properties of SN Ia progenitor systems and explosions are intimately connected. As demonstrated by Sternberg et al., half of all SNe Ia with detectable Na D absorption at the host-galaxy redshift in high-resolution spectroscopy have Na D line profiles with significant blueshifted absorption relative to the strongest absorption component, which indicates that a large fraction of SN Ia progenitor systems have strong outflows. In this study, we find that SNe Ia with blueshifted circumstellar/interstellar absorption systematically have higher ejecta velocities and redder colors at maximum brightness relative to the rest of the SN Ia population. This result is robust at a 98.9%-99.8% confidence level, providing the first link between the progenitor systems and properties of the explosion. This finding is further evidence that the outflow scenario is the correct interpretation of the blueshifted Na D absorption, adding additional confirmation that some SNe Ia are produced from a single-degenerate progenitor channel. An additional implication is that either SN Ia progenitor systems have highly asymmetric outflows that are also aligned with the SN explosion or SNe Ia come from a variety of progenitor systems where SNe Ia from systems with strong outflows tend to have more kinetic energy per unit mass than those from systems with weak or no outflows.

  1. NEUTRONIZATION DURING CARBON SIMMERING IN TYPE IA SUPERNOVA PROGENITORS

    International Nuclear Information System (INIS)

    Martínez-Rodríguez, Héctor; Badenes, Carles; Piro, Anthony L.; Schwab, Josiah

    2016-01-01

    When a Type Ia supernova (SN Ia) progenitor first ignites carbon in its core, it undergoes ∼10 3 –10 4 years of convective burning prior to the onset of thermonuclear runaway. This carbon simmering phase is important for setting the thermal profile and composition of the white dwarf. Using the MESA stellar evolution code, we follow this convective burning and examine the production of neutron-rich isotopes. The neutron content of the SN fuel has important consequences for the ensuing nucleosynthesis, and in particular, for the production of secondary Fe-peak nuclei like Mn and stable Ni. These elements have been observed in the X-ray spectra of SN remnants like Tycho, Kepler, and 3C 397, and their yields can provide valuable insights into the physics of SNe Ia and the properties of their progenitors. We find that weak reactions during simmering can at most generate a neutron excess of ≈ 3 × 10 −4 . This is ≈ 70% lower than that found in previous studies that do not take the full density and temperature profile of the simmering region into account. Our results imply that the progenitor metallicity is the main contributor to the neutron excess in SN Ia fuel for Z ≳ 1/3 Z ⊙ . Alternatively, at lower metallicities, this neutron excess provides a floor that should be present in any centrally-ignited SN Ia scenario.

  2. Supernova 2010as: the lowest-velocity member of a family of flat-velocity type IIb supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Folatelli, Gastón; Bersten, Melina C.; Nomoto, Ken' ichi [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Kuncarayakti, Hanindyo; Hamuy, Mario [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Olivares Estay, Felipe; Pignata, Giuliano [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Anderson, Joseph P. [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago (Chile); Holmbo, Simon; Stritzinger, Maximilian [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Maeda, Keiichi [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Morrell, Nidia; Contreras, Carlos; Phillips, Mark M. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Förster, Francisco [Center for Mathematical Modelling, Universidad de Chile, Avenida Blanco Encalada 2120 Piso 7, Santiago (Chile); Prieto, José Luis [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton, NJ 08544 (United States); Valenti, Stefano [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Afonso, Paulo; Altenmüller, Konrad; Elliott, Jonny, E-mail: gaston.folatelli@ipmu.jp [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße 1, D-85740 Garching (Germany); and others

    2014-09-01

    We present extensive optical and near-infrared photometric and spectroscopic observations of the stripped-envelope supernova SN 2010as. Spectroscopic peculiarities such as initially weak helium features and low expansion velocities with a nearly flat evolution place this object in the small family of events previously identified as transitional Type Ib/c supernovae (SNe). There is ubiquitous evidence of hydrogen, albeit weak, in this family of SNe, indicating that they are in fact a peculiar kind of Type IIb SNe that we name 'flat-velocity' Type IIb. The flat-velocity evolution—which occurs at different levels between 6000 and 8000 km s{sup –1} for different SNe—suggests the presence of a dense shell in the ejecta. Despite the spectroscopic similarities, these objects show surprisingly diverse luminosities. We discuss the possible physical or geometrical unification picture for such diversity. Using archival Hubble Space Telescope images, we associate SN 2010as with a massive cluster and derive a progenitor age of ≈6 Myr, assuming a single star-formation burst, which is compatible with a Wolf-Rayet progenitor. Our hydrodynamical modeling, on the contrary, indicates that the pre-explosion mass was relatively low, ≈4 M {sub ☉}. The seeming contradiction between a young age and low pre-SN mass may be solved by a massive interacting binary progenitor.

  3. Disturbance Ecology from nearby Supernovae

    OpenAIRE

    Hartmann, D. H.; Kretschmer, K.; Diehl, R.

    2002-01-01

    Monte Carlo simulations of Galactic Supernovae are carried out to study the rate of nearby events, which may have a direct effect on Earth's ecology though ionizing radiation and cosmic ray bombardment. A nearby supernova may have left a radioactive imprint (60Fe) in recent galactic history.

  4. An updated Type II supernova Hubble diagram

    Science.gov (United States)

    Gall, E. E. E.; Kotak, R.; Leibundgut, B.; Taubenberger, S.; Hillebrandt, W.; Kromer, M.; Burgett, W. S.; Chambers, K.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Kudritzki, R. P.; Magnier, E. A.; Metcalfe, N.; Smith, K.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.

    2018-03-01

    We present photometry and spectroscopy of nine Type II-P/L supernovae (SNe) with redshifts in the 0.045 ≲ z ≲ 0.335 range, with a view to re-examining their utility as distance indicators. Specifically, we apply the expanding photosphere method (EPM) and the standardized candle method (SCM) to each target, and find that both methods yield distances that are in reasonable agreement with each other. The current record-holder for the highest-redshift spectroscopically confirmed supernova (SN) II-P is PS1-13bni (z = 0.335-0.012+0.009), and illustrates the promise of Type II SNe as cosmological tools. We updated existing EPM and SCM Hubble diagrams by adding our sample to those previously published. Within the context of Type II SN distance measuring techniques, we investigated two related questions. First, we explored the possibility of utilising spectral lines other than the traditionally used Fe IIλ5169 to infer the photospheric velocity of SN ejecta. Using local well-observed objects, we derive an epoch-dependent relation between the strong Balmer line and Fe IIλ5169 velocities that is applicable 30 to 40 days post-explosion. Motivated in part by the continuum of key observables such as rise time and decline rates exhibited from II-P to II-L SNe, we assessed the possibility of using Hubble-flow Type II-L SNe as distance indicators. These yield similar distances as the Type II-P SNe. Although these initial results are encouraging, a significantly larger sample of SNe II-L would be required to draw definitive conclusions. Tables A.1, A.3, A.5, A.7, A.9, A.11, A.13, A.15 and A.17 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A25

  5. Hydromagnetic instabilities and magnetic field amplification in core collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Cerda-Duran, P; Obergaulinger, M; Mueller, E [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-st. 1, 85748 Garching (Germany); Aloy, M A; Font, J A, E-mail: cerda@mpa-garching.mpg.de [Departamento de Astronomia y Astrofisica, Universidad de Valencia, 46100 Burjassot, Valencia (Spain)

    2011-09-22

    Some of the most violent events in the universe, the gamma ray burst, could be related to the gravitational collapse of massive stellar cores. The recent association of long GRBs to some class of type Ic supernova seems to support this view. In such scenario fast rotation, strong magnetic fields and general relativistic effects are key ingredients. It is thus important to understand the mechanism that amplifies the magnetic field under that conditions. I present global simulations of the magneto-rotational collapse of stellar cores in general relativity and semi-global simulations of hydromagnetic instabilities under core collapse conditions. I discuss effect of the magneto-rotational instability and the magnetic field amplification during the collapse, the uncertainties in this process and the dynamical effects in the supernova explosion.

  6. The optical emission from the supernova remnant HB 3

    Science.gov (United States)

    Fesen, R. A.; Gull, T. R.

    1983-01-01

    The supernova remnant HB 3 was first detected as a radio source by Brown and Hazard (1953). On the basis of subsequent radio studies, it was concluded that the object was a supernova remnant (SNR). HB 3 is located at the far western edge of the H II region/molecular cloud complex W3-W4-W5 (IC 1795-1805-1848). However, a physical association of HB 3 with this complex is uncertain. In the present investigation, attention is called to the probability that HB 3 exhibits a more extensive optical emission structure than previously realized, and one which agrees well with both the position and morphology of the radio emission. It is found that narrow-passband optical images strongly suggest an almost complete optical emission shell for HB 3. Spectroscopic observations are, however, required to confirm that this emission is characteristic of a SNR.

  7. Circumstellar matter and the nature of the SN1987A progenitor star

    International Nuclear Information System (INIS)

    Chevalier, R.A.; Fransson, C.

    1987-01-01

    The radio observations of the supernova SN1987A can be interpreted in terms of its interaction with circumstellar matter. The early turn-on of the radio emission implies a relatively low density circumstellar medium. The optical properties of the supernova imply that the progenitor star had a smaller radius than that of a typical type II supernova progenitor. The mass loss properties are consistent with this hypothesis. The authors predict the thermal X-ray luminosity of the supernova, and note that it is below the current upper limit. A bright infrared dust echo is not expected. Weak ultraviolet emission lines from circumstellar gas may be visible. Although the circumstellar density is low, it is possible that the progenitor star did lose a substantial fraction of its mass prior to the supernova explosion. (author)

  8. DUST PRODUCTION AND PARTICLE ACCELERATION IN SUPERNOVA 1987A REVEALED WITH ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Indebetouw, R.; Chevalier, R. [Department of Astronomy, University of Virginia, PO Box 400325, Charlottesville, VA 22904 (United States); Matsuura, M.; Barlow, M. J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Dwek, E. [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Zanardo, G. [International Centre for Radio Astronomy Research (ICRAR), University of Western Australia, Crawley, WA 6009 (Australia); Baes, M. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Bouchet, P. [CEA-Saclay, F-91191 Gif-sur-Yvette (France); Burrows, D. N. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Clayton, G. C. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Fransson, C.; Lundqvist, P. [Department of Astronomy and the Oskar Klein Centre, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Gaensler, B. [Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) (Australia); Kirshner, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Lakićević, M. [Lennard-Jones Laboratories, Keele University, ST5 5BG (United Kingdom); Long, K. S.; Meixner, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Martí-Vidal, I. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala (Sweden); Marcaide, J. [Universidad de Valencia, C/Dr. Moliner 50, E-46100 Burjassot (Spain); McCray, R., E-mail: remy@virginia.edu [Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, UCB 391, Boulder, CO 80309 (United States); and others

    2014-02-10

    Supernova (SN) explosions are crucial engines driving the evolution of galaxies by shock heating gas, increasing the metallicity, creating dust, and accelerating energetic particles. In 2012 we used the Atacama Large Millimeter/Submillimeter Array to observe SN 1987A, one of the best-observed supernovae since the invention of the telescope. We present spatially resolved images at 450 μm, 870 μm, 1.4 mm, and 2.8 mm, an important transition wavelength range. Longer wavelength emission is dominated by synchrotron radiation from shock-accelerated particles, shorter wavelengths by emission from the largest mass of dust measured in a supernova remnant (>0.2 M {sub ☉}). For the first time we show unambiguously that this dust has formed in the inner ejecta (the cold remnants of the exploded star's core). The dust emission is concentrated at the center of the remnant, so the dust has not yet been affected by the shocks. If a significant fraction survives, and if SN 1987A is typical, supernovae are important cosmological dust producers.

  9. The cosmic transparency measured with Type Ia supernovae: implications for intergalactic dust

    Science.gov (United States)

    Goobar, Ariel; Dhawan, Suhail; Scolnic, Daniel

    2018-06-01

    Observations of high-redshift Type Ia supernovae (SNe Ia) are used to study the cosmic transparency at optical wavelengths. Assuming a flat Λ cold dark matter (ΛCDM) cosmological model based on baryon acoustic oscillations and cosmic microwave background measurements, redshift dependent deviations of SN Ia distances are used to constrain mechanisms that would dim light. The analysis is based on the most recent Pantheon SN compilation, for which there is a 0.03 ± 0.01 {({stat})} mag discrepancy in the distant supernova distance moduli relative to the ΛCDM model anchored by supernovae at z < 0.05. While there are known systematic uncertainties that combined could explain the observed offset, here we entertain the possibility that the discrepancy may instead be explained by scattering of supernova light in the intergalactic medium (IGM). We focus on two effects: Compton scattering by free electrons and extinction by dust in the IGM. We find that if the discrepancy is entirely due to dimming by dust, the measurements can be modelled with a cosmic dust density Ω _IGM^dust = 8 × 10^{-5} (1+z)^{-1}, corresponding to an average attenuation of 2 × 10-5 mag Mpc-1 in V band. Forthcoming SN Ia studies may provide a definitive measurement of the IGM dust properties, while still providing an unbiased estimate of cosmological parameters by introducing additional parameters in the global fits to the observations.

  10. Nuclear astrophysics of supernovae

    International Nuclear Information System (INIS)

    Cooperstein, J.

    1988-01-01

    In this paper, I'll give a general introduction to Supernova Theory, beginning with the presupernova evolution and ending with the later stages of the explosion. This will be distilled from a colloquium type of talk. It is necessary to have the whole supernova picture in one's mind's eye when diving into some of its nooks and crannies, as it is quite a mess of contradictory ingredients. We will have some discussion of supernova 1987a, but will keep our discussion more general. Second, we'll look at the infall and bounce of the star, seeing why it goes unstable, what dynamics it follows as it collapses, and how and why it bounces back. From there, we will go on to look at the equation of state (EOS) in more detail. We'll consider the cases T = 0 and T > 0. We'll focus on /rho/ 0 , and then /rho/ > /rho/ 0 and the EOS of neutron stars, and whether or not they contain cores of strange matter. There are many things we could discuss here and not enough time. If I had more lectures, the remaining time would focus on two more questions of special interest to nuclear physicists: the electron capture reactions and neutrino transport. If time permitted, we'd have some discussion of the nucleosynthetic reactions in the explosion's debris as well. However, we cannot cover such material adequately, and I have chosen these topics because they are analytically tractable, pedagogically useful, and rather important. 23 refs., 14 figs., 3 tabs

  11. GALAXY OUTFLOWS WITHOUT SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Sur, Sharanya [Indian Institute of Astrophysics, 2nd Block, Koramangala, Bangalore 560034 (India); Scannapieco, Evan [School of Earth and Space Exploration, Arizona State University, P.O. Box 876004, Tempe-85287 (United States); Ostriker, Eve C., E-mail: sharanya.sur@iiap.res.in, E-mail: sharanya.sur@asu.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-02-10

    High surface density, rapidly star-forming galaxies are observed to have ≈50–100 km s{sup −1} line of sight velocity dispersions, which are much higher than expected from supernova driving alone, but may arise from large-scale gravitational instabilities. Using three-dimensional simulations of local regions of the interstellar medium, we explore the impact of high velocity dispersions that arise from these disk instabilities. Parametrizing disks by their surface densities and epicyclic frequencies, we conduct a series of simulations that probe a broad range of conditions. Turbulence is driven purely horizontally and on large scales, neglecting any energy input from supernovae. We find that such motions lead to strong global outflows in the highly compact disks that were common at high redshifts, but weak or negligible mass loss in the more diffuse disks that are prevalent today. Substantial outflows are generated if the one-dimensional horizontal velocity dispersion exceeds ≈35 km s{sup −1}, as occurs in the dense disks that have star-formation rate (SFR) densities above ≈0.1 M{sub ⊙} yr{sup −1} kpc{sup −2}. These outflows are triggered by a thermal runaway, arising from the inefficient cooling of hot material coupled with successive heating from turbulent driving. Thus, even in the absence of stellar feedback, a critical value of the SFR density for outflow generation can arise due to a turbulent heating instability. This suggests that in strongly self-gravitating disks, outflows may be enhanced by, but need not caused by, energy input from supernovae.

  12. Cosmological and supernova neutrinos

    Science.gov (United States)

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Shibagaki, S.; Suzuki, T.

    2014-06-01

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial 7Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and 7Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and 180Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ13 with predicted and observed supernova-produced abundance ratio 11B/7Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  13. Cosmological and supernova neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Balantekin, A. B. [Department of Physics, University of Wisconsin - Madison, Wisconsin 53706 (United States); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Kusakabe, M. [School of Liberal Arts and Science, Korea Aerospace University, Goyang 412-791 (Korea, Republic of); Mathews, G. J. [Department of Physics, University of Notre Dame, IN 46556 (United States); Nakamura, K. [Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Pehlivan, Y. [Mimar Sinan GSÜ, Department of Physics, Şişli, İstanbul 34380 (Turkey); Suzuki, T. [Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-06-24

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  14. No Escape from the Supernova! Magnetic Imprisonment of Dusty Pinballs by a Supernova Remnant arXiv

    CERN Document Server

    Fry, Brian J.; Ellis, John R.

    Motivated by recent measurements of deposits of $^{60}$Fe on the ocean floor and the lunar surface, we model the transport of dust grains containing $^{60}$Fe from a near-Earth (i.e., within 100 pc) supernova (SN). We inject dust grains into the environment of a SN remnant (SNR) and trace their trajectories using a magnetohydrodynamic description. We assume the interstellar medium (ISM) magnetic fields are turbulent, and are amplified by the SNR shock, while the SN wind and ejecta fields are negligible. We examine the various influences on the dust grains within the SNR to determine when/if the dust decouples from the plasma, how much it is sputtered, and where within the SNR the dust grains are located. We find that Rayleigh-Taylor instabilities are important for dust survival, as they influence the location of the SN's reverse shock. We find that the presence of a magnetic field within the shocked ISM material limits the passage of SN dust grains, with the field either reflecting or trapping the grains with...

  15. The CHilean Automatic Supernova sEarch (CHASE)

    Science.gov (United States)

    Pignata, G.; Maza, J.; Hamuy, M.; Antezana, R.; Gonzales, L.

    2009-05-01

    One of the most important challenges in modern cosmology will be to figure out the origin of the dark energy, to measure its equation of state and the time rate with which it changes (described by parameters w and w'). The measurement of these parameters will require high levels of accuracy in the Supernova (SN) Type Ia distances and various sources of systematic error such as reddening corrections and possible evolution in the SNcharacteristics which could couple with redshift and mimic the cosmological signal of interest. Fortunately, these concerns can be fully addressed through the comprehensive study of SNe in the local (z < 0.05) universe. Although Type II plateau SNe are not as luminous as SNe Ia, they afford two important, independent routes to cosmological distances using the Expanding Photosphere Method and the Standardized Candle Method. To assess the performance of these techniques a nearby sample of Type II SNe is necessary. With the purpose of addressing these issues the Millennium Center for Supernova Studies (MCSS) is teaming up with the Carnegie Supernova Project (CSP) to carry out an optical and near infrared (photometry, spectroscopy and polarimetry) follow up of nearby SNe. Unfortunately, the majority of the SNe observed by the MCSS and the CSP are discovered by searches carried out from the northern hemisphere. This entails a number of observational difficulties, in particular, it reduces the number of SNe for which the follow-up starts at very early epochs. The aim of the CHASE project is to remove this search bias by discovering young Southern SNe that will be extensively observed by the MCSS and the CSP. In the first nine-months of operation, CHASE has discovered two SNe: SN007oc (CBET 1114) and SN007pl (CBET 1130), thus demonstrating the feasibility of the survey.

  16. Radio Emission from Supernovae

    International Nuclear Information System (INIS)

    Weiler, Kurt W.; Panagia, Nino; Sramek, Richard A.; Van Dyk, Schuyler D.; Williams, Christopher L.; Stockdale, Christopher J.; Kelley, Matthew T.

    2009-01-01

    Study of radio supernovae over the past 27 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the presupernova stellar system, and to detect dumpiness of the circumstellar material.

  17. Supernova SN 2008iz in M82 Galaxy

    African Journals Online (AJOL)

    kagoyire

    models to the data, a simple power-law model and a simplified Weiler model, yielding a decline index, β = -1.23±0.01 and ... (4.8 GHz), X (8.4 GHz), K (22.3 GHz) and Q-bands (43.2 GHz) to trace the evolution of the radio ... with a total bandwidth of 128 MHz, each in dual circular polarization. The flux calibrator 3C48 was ...

  18. Spitzer Observations Of IC 2118

    Science.gov (United States)

    2010-09-01

    Micron All-Sky Survey ( 2MASS ; Skrutskie et al. 2006) photometric data in an effort to segregate YSOs from background galaxies. While one previously known T...Spectral Typea Other names IRAS 04591−0856 05 01 30.2 −08 52 14 . . . HHL 17, G13 2MASS 05020630−0850467 05 02 06.3 −08 50 47 M2 IV . . . RXJ 0502.4−0744b...05 02 20.8 −07 44 10 . . . 2MASS 05022084−0744099 2MASS 05060574−0646151c 05 06 05.7 −06 46 15 G8: (May not be a member of IC 2118; see Kun et al

  19. THE MASSIVE PROGENITOR OF THE TYPE II-LINEAR SUPERNOVA 2009kr

    International Nuclear Information System (INIS)

    Elias-Rosa, Nancy; Van Dyk, Schuyler D.; Li Weidong; Miller, Adam A.; Silverman, Jeffrey M.; Ganeshalingam, Mohan; Filippenko, Alexei V.; Steele, Thea N.; Bloom, Joshua S.; Griffith, Christopher V.; Kleiser, Io K. W.; Boden, Andrew F.; Kasliwal, Mansi M.; Vinko, Jozsef; Cuillandre, Jean-Charles; Foley, Ryan J.

    2010-01-01

    We present early-time photometric and spectroscopic observations of supernova (SN) 2009kr in NGC 1832. We find that its properties to date support its classification as Type II-linear (SN II-L), a relatively rare subclass of core-collapse supernovae (SNe). We have also identified a candidate for the SN progenitor star through comparison of pre-explosion, archival images taken with WFPC2 on board the Hubble Space Telescope with SN images obtained using adaptive optics plus NIRC2 on the 10 m Keck-II telescope. Although the host galaxy's substantial distance (∼26 Mpc) results in large uncertainties in the relative astrometry, we find that if this candidate is indeed the progenitor, it is a highly luminous (M 0 V = -7.8 mag) yellow supergiant with initial mass ∼18-24 M sun . This would be the first time that an SN II-L progenitor has been directly identified. Its mass may be a bridge between the upper initial mass limit for the more common Type II-plateau SNe and the inferred initial mass estimate for one Type II-narrow SN.

  20. A New Method to Constrain Supernova Fractions Using X-ray Observations of Clusters of Galaxies

    Science.gov (United States)

    Bulbul, Esra; Smith, Randall K.; Loewenstein, Michael

    2012-01-01

    Supernova (SN) explosions enrich the intracluster medium (ICM) both by creating and dispersing metals. We introduce a method to measure the number of SNe and relative contribution of Type Ia supernovae (SNe Ia) and core-collapse supernovae (SNe cc) by directly fitting X-ray spectral observations. The method has been implemented as an XSPEC model called snapec. snapec utilizes a single-temperature thermal plasma code (apec) to model the spectral emission based on metal abundances calculated using the latest SN yields from SN Ia and SN cc explosion models. This approach provides a self-consistent single set of uncertainties on the total number of SN explosions and relative fraction of SN types in the ICM over the cluster lifetime by directly allowing these parameters to be determined by SN yields provided by simulations. We apply our approach to XMM-Newton European Photon Imaging Camera (EPIC), Reflection Grating Spectrometer (RGS), and 200 ks simulated Astro-H observations of a cooling flow cluster, A3112.We find that various sets of SN yields present in the literature produce an acceptable fit to the EPIC and RGS spectra of A3112. We infer that 30.3% plus or minus 5.4% to 37.1% plus or minus 7.1% of the total SN explosions are SNe Ia, and the total number of SN explosions required to create the observed metals is in the range of (1.06 plus or minus 0.34) x 10(exp 9), to (1.28 plus or minus 0.43) x 10(exp 9), fromsnapec fits to RGS spectra. These values may be compared to the enrichment expected based on well-established empirically measured SN rates per star formed. The proportions of SNe Ia and SNe cc inferred to have enriched the ICM in the inner 52 kiloparsecs of A3112 is consistent with these specific rates, if one applies a correction for the metals locked up in stars. At the same time, the inferred level of SN enrichment corresponds to a star-to-gas mass ratio that is several times greater than the 10% estimated globally for clusters in the A3112 mass range.

  1. Two populations of progenitors for Type Ia supernovae?

    Science.gov (United States)

    Mannucci, F.; Della Valle, M.; Panagia, N.

    2006-08-01

    We use recent observations of the evolution of the Type Ia supernova (SN Ia) rate with redshift, the dependence of the SN Ia rate on the colours of the parent galaxies, and the enhancement of the SN Ia rate in radio-loud early-type galaxies to derive on robust empirical grounds, the delay time distribution (DTD) between the formation of the progenitor star and its explosion as an SN. Our analysis finds: (i) delay times as long as 3-4 Gyr, derived from observations of SNe Ia at high redshift, cannot reproduce the dependence of the SN Ia rate on the colours and on the radio-luminosity of the parent galaxies, as observed in the local Universe; (ii) the comparison between observed SN rates and a grid of theoretical `single-population' DTDs shows that only a few of them are possibly consistent with observations. The most successful models are all predicting a peak of SN explosions soon after star formation and an extended tail in the DTD, and can reproduce the data but only at a modest statistical confidence level; (iii) present data are best matched by a bimodal DTD, in which about 50 per cent of SNe Ia (dubbed `prompt' SNe Ia) explode soon after their stellar birth, in a time of the order of 108 yr, while the remaining 50 per cent (`tardy' SNe Ia) have a much wider distribution, well described by an exponential function with a decay time of about 3 Gyr. The presence in the DTD of both a strong peak at early times and a prolonged exponential tail, coupled with the well-established bimodal distribution of the decay rate (Δm15) and the systematic difference observed in the expansion velocities of the ejecta of SNe Ia in ellipticals and spirals, suggests the existence of two classes of progenitors. We discuss the cosmological implications of this result and make simple predictions, which are testable with future instrumentation.

  2. The Type IIb Supernova 2013df and its Cool Supergiant Progenitor

    Science.gov (United States)

    VanDyk, Schuyler D.; Zeng, Weikang; Fox, Ori D.; Cenko, S. Bradley; Clubb, Kelsey I.; Filippenko, Alexei; Foley, Ryan J.; Miller, Adam A.; Smith, Nathan; Kelly, Patrick L.; hide

    2014-01-01

    We have obtained early-time photometry and spectroscopy of supernova (SN) 2013df in NGC 4414. The SN is clearly of Type II b, with notable similarities to SN 1993J. From its luminosity at secondary maximum light, it appears that less Ni-56 (is approximately less than 0.06M) was synthesized in the SN 2013df explosion than was the case for the SNe II b 1993J, 2008ax, and 2011dh. Based on a comparison of the light curves, the SN 2013df progenitor must have been more extended in radius prior to explosion than the progenitor of SN 1993J. The total extinction for SN 2013dfis estimated to be A(sub V) = 0.30 mag. The metallicity at the SN location is likely to be solar. We have conducted Hubble Space Telescope(HST) Target of Opportunity observations of the SN with the Wide Field Camera 3, and from a precise comparison of these new observations to archival HST observations of the host galaxy obtained 14 yr prior to explosion, we have identified the progenitor of SN 2013df to be a yellow supergiant, somewhat hotter than a red supergiant progenitor for a normal Type II-Plateau SN. From its observed spectral energy distribution, assuming that the light is dominated by one star, the progenitor had effective temperature T(sub eff) = 4250+/-100 K and a bolometric luminosity L(sub bol) =10(exp 4.94+/-0.06) Solar Luminosity. This leads to an effective radius Reff = 545+/-65 Solar Radius. The star likely had an initial mass in the range of 13-17Solar Mass; however, if it was a member of an interacting binary system, detailed modeling of the system is required to estimate this mass more accurately. The progenitor star of SN 2013df appears to have been relatively similar to the progenitor of SN 1993J.

  3. The type IIb supernova 2013df and its cool supergiant progenitor

    Energy Technology Data Exchange (ETDEWEB)

    Van Dyk, Schuyler D. [Spitzer Science Center/Caltech, Mail Code 220-6, Pasadena, CA 91125 (United States); Zheng, WeiKang; Fox, Ori D.; Clubb, Kelsey I.; Filippenko, Alexei V.; Kelly, Patrick L. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Foley, Ryan J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Miller, Adam A. [Jet Propulsion Laboratory, MS 169-506, Pasadena, CA 91109 (United States); Smith, Nathan [Steward Observatory, University of Arizona, Tucson, AZ 85720 (United States); Lee, William H. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 70-264, Cd. Universitaria, México DF 04510 (Mexico); Ben-Ami, Sagi; Gal-Yam, Avishay, E-mail: vandyk@ipac.caltech.edu [Benoziyo Center for Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel)

    2014-02-01

    We have obtained early-time photometry and spectroscopy of supernova (SN) 2013df in NGC 4414. The SN is clearly of Type IIb, with notable similarities to SN 1993J. From its luminosity at secondary maximum light, it appears that less {sup 56}Ni (≲ 0.06 M {sub ☉}) was synthesized in the SN 2013df explosion than was the case for the SNe IIb 1993J, 2008ax, and 2011dh. Based on a comparison of the light curves, the SN 2013df progenitor must have been more extended in radius prior to explosion than the progenitor of SN 1993J. The total extinction for SN 2013df is estimated to be A{sub V} = 0.30 mag. The metallicity at the SN location is likely to be solar. We have conducted Hubble Space Telescope (HST) Target of Opportunity observations of the SN with the Wide Field Camera 3, and from a precise comparison of these new observations to archival HST observations of the host galaxy obtained 14 yr prior to explosion, we have identified the progenitor of SN 2013df to be a yellow supergiant, somewhat hotter than a red supergiant progenitor for a normal Type II-Plateau SN. From its observed spectral energy distribution, assuming that the light is dominated by one star, the progenitor had effective temperature T {sub eff} = 4250 ± 100 K and a bolometric luminosity L {sub bol} = 10{sup 4.94±0.06} L {sub ☉}. This leads to an effective radius R {sub eff} = 545 ± 65 R {sub ☉}. The star likely had an initial mass in the range of 13-17 M {sub ☉}; however, if it was a member of an interacting binary system, detailed modeling of the system is required to estimate this mass more accurately. The progenitor star of SN 2013df appears to have been relatively similar to the progenitor of SN 1993J.

  4. A common central engine for long gamma-ray bursts and Type Ib/c supernovae

    Science.gov (United States)

    Sobacchi, E.; Granot, J.; Bromberg, O.; Sormani, M. C.

    2017-11-01

    Long-duration, spectrally soft gamma-ray bursts (GRBs) are associated with Type Ic core collapse (CC) supernovae (SNe), and thus arise from the death of massive stars. In the collapsar model, the jet launched by the central engine must bore its way out of the progenitor star before it can produce a GRB. Most of these jets do not break out, and are instead 'choked' inside the star, as the central engine activity time, te, is not long enough. Modelling the long-soft GRB duration distribution assuming a power-law distribution for their central engine activity times, ∝ t_e^{-α } for te > tb, we find a steep distribution (α ∼ 4) and a typical GRB jet breakout time of tb ∼ 60s in the star's frame. The latter suggests the presence of a low-density, extended envelope surrounding the progenitor star, similar to that previously inferred for low-luminosity GRBs. Extrapolating the range of validity of this power law below what is directly observable, to te < tb, by only a factor of ∼4-5 produces enough events to account for all Type Ib/c SNe. Such extrapolation is necessary to avoid fine-tuning the distribution of central engine activity times with the breakout time, which are presumably unrelated. We speculate that central engines launching relativistic jets may operate in all Type Ib/c SNe. In this case, the existence of a common central engine would imply that (i) the jet may significantly contribute to the energy of the SN; (ii) various observational signatures, like the asphericity of the explosion, could be directly related to jet's interaction with the star.

  5. Hubble Space Telescope Observations of the Afterglow, Supernova and Host Galaxy Associated with the Extremely Bright GRB 130427A

    Science.gov (United States)

    Levan, A.J.; Tanvir, N. R.; Fruchter, A. S.; Hjorth, J.; Pian, E.; Mazzali, P.; Hounsell, R. A.; Perley, D. A.; Cano, Z.; Graham, J.; hide

    2014-01-01

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst, GRB 130427A. At z=0.34 this burst affords an excellent opportunity to study the supernova and host galaxy associated with an intrinsically extremely luminous burst (E(sub iso) greater than 10(exp 54) erg): more luminous than any previous GRB with a spectroscopically associated supernova. We use the combination of the image quality, UV capability and and invariant PSF of HST to provide the best possible separation of the afterglow, host and supernova contributions to the observed light approximately 17 rest-frame days after the burst utilising a host subtraction spectrum obtained 1 year later. Advanced Camera for Surveys (ACS) grism observations show that the associated supernova, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, vph approximately 15,000 kilometers per second). The positions of the bluer features are better matched by the higher velocity SN 2010bh (vph approximately 30,000 kilometers per second), but SN 2010bh (vph approximately 30,000 kilometers per second but this SN is significantly fainter, and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated approximately 4 kpc from the nucleus of a moderately star forming (1 Solar Mass yr(exp-1)), possibly interacting disc galaxy. The absolute magnitude, physical size and morphology of this galaxy, as well as the location of the GRB within it are also strikingly similar to those of GRB980425SN 1998bw. The similarity of supernovae and environment from both the most luminous and least luminous GRBs suggests broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  6. SHOCK BREAKOUT IN TYPE II PLATEAU SUPERNOVAE: PROSPECTS FOR HIGH-REDSHIFT SUPERNOVA SURVEYS

    International Nuclear Information System (INIS)

    Tominaga, N.; Morokuma, T.; Blinnikov, S. I.; Nomoto, K.; Baklanov, P.; Sorokina, E. I.

    2011-01-01

    Shock breakout is the brightest radiative phenomenon in a supernova (SN) but is difficult to be observed owing to the short duration and X-ray/ultraviolet (UV)-peaked spectra. After the first observation from the rising phase reported in 2008, its observability at high redshift is attracting enormous attention. We perform multigroup radiation hydrodynamics calculations of explosions for evolutionary presupernova models with various main-sequence masses M MS , metallicities Z, and explosion energies E. We present multicolor light curves of shock breakouts in Type II plateau SNe, being the most frequent core-collapse SNe, and predict apparent multicolor light curves of shock breakout at various redshifts z. We derive the observable SN rate and reachable redshift as functions of filter x and limiting magnitude m x,lim by taking into account an initial mass function, cosmic star formation history, intergalactic absorption, and host galaxy extinction. We propose a realistic survey strategy optimized for shock breakout. For example, the g'-band observable SN rate for m g',lim = 27.5 mag is 3.3 SNe deg -2 day -1 and half of them are located at z ≥ 1.2. It is clear that the shock breakout is a beneficial clue for probing high-z core-collapse SNe. We also establish ways to identify shock breakout and constrain SN properties from the observations of shock breakout, brightness, timescale, and color. We emphasize that the multicolor observations in blue optical bands with ∼hour intervals, preferably over ≥2 continuous nights, are essential to efficiently detect, identify, and interpret shock breakout.

  7. Automated Supernova Discovery (Abstract)

    Science.gov (United States)

    Post, R. S.

    2015-12-01

    (Abstract only) We are developing a system of robotic telescopes for automatic recognition of Supernovas as well as other transient events in collaboration with the Puckett Supernova Search Team. At the SAS2014 meeting, the discovery program, SNARE, was first described. Since then, it has been continuously improved to handle searches under a wide variety of atmospheric conditions. Currently, two telescopes are used to build a reference library while searching for PSN with a partial library. Since data is taken every night without clouds, we must deal with varying atmospheric and high background illumination from the moon. Software is configured to identify a PSN, reshoot for verification with options to change the run plan to acquire photometric or spectrographic data. The telescopes are 24-inch CDK24, with Alta U230 cameras, one in CA and one in NM. Images and run plans are sent between sites so the CA telescope can search while photometry is done in NM. Our goal is to find bright PSNs with magnitude 17.5 or less which is the limit of our planned spectroscopy. We present results from our first automated PSN discoveries and plans for PSN data acquisition.

  8. Research in nuclear astrophysics: Stellar collapse and supernovae

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1990-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics has been examined. We have been actively researching both the astrophysics of gravitational collapse, neutron star birth, and the emission of neutrinos from supernovae, on the one hand, and the nuclear physics of the equation of state of hot, dense matter on the other hand. There is close coupling between nuclear theory and supernova and neutron star phenomenon; in fact, nuclear matter properties, especially supernuclear densities, might be best delineated by astrophysical considerations. Our research has also focused on the neutrinos emitted from supernovae, since they are the only available observables of the internal supernova mechanism. The recent observations of neutrinos from SN 1987A proved to be in remarkable agreement with models we pioneered prior to its explosion. We have also developed a novel hydrodynamical code in which shocks are treated via Riemann resolution rather than with artificial viscosity. We have also extended models of the neutrino emission and cooling of neutron stars to include the effects of rotation. The Lattimer compressible liquid drop model is the basis of our equation of state. We have developed a rapid version for use in hydrodynamic codes that retains essentially all the physics of earlier, more detailed equations of state. We have also focused on the nuclei-nuclear matter phase transition just below nuclear matter density, including the probable nuclear deformations and the possible ''inside-out'' phase of bubbles, which could be of major importance in supernovae models. Work also progressed toward understanding the origin of the r-process elements, through focusing on the neutron star decompression model

  9. The Final Stages of Massive Star Evolution and Their Supernovae

    Science.gov (United States)

    Heger, Alexander

    In this chapter I discuss the final stages in the evolution of massive stars - stars that are massive enough to burn nuclear fuel all the way to iron group elements in their core. The core eventually collapses to form a neutron star or a black hole when electron captures and photo-disintegration reduce the pressure support to an extent that it no longer can hold up against gravity. The late burning stages of massive stars are a rich subject by themselves, and in them many of the heavy elements in the universe are first generated. The late evolution of massive stars strongly depends on their mass, and hence can be significantly effected by mass loss due to stellar winds and episodic mass loss events - a critical ingredient that we do not know as well as we would like. If the star loses all the hydrogen envelope, a Type I supernova results, if it does not, a Type II supernova is observed. Whether the star makes neutron star or a black hole, or a neutron star at first and a black hole later, and how fast they spin largely affects the energetics and asymmetry of the observed supernova explosion. Beyond photon-based astronomy, other than the sun, a supernova (SN 1987) has been the only object in the sky we ever observed in neutrinos, and supernovae may also be the first thing we will ever see in gravitational wave detectors like LIGO. I conclude this chapter reviewing the deaths of the most massive stars and of Population III stars.

  10. THE PRODUCTION RATE OF SN Ia EVENTS IN GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Washabaugh, Pearce C.; Bregman, Joel N.

    2013-01-01

    In globular clusters, dynamical evolution produces luminous X-ray emitting binaries at a rate about 200 times greater than in the field. If globular clusters also produce SN Ia at a high rate, it would account for many of the SN Ia production in early-type galaxies and provide insight into their formation. Here we use archival Hubble Space Telescope (HST) images of nearby galaxies that have hosted an SN Ia to examine the rate at which globular clusters produce these events. The location of the SN Ia is registered on an HST image obtained before the event or after the supernova (SN) faded. Of the 36 nearby galaxies examined, 21 had sufficiently good data to search for globular cluster hosts. None of the 21 SNe have a definite globular cluster counterpart, although there are some ambiguous cases. This places an upper limit to the enhancement rate of SN Ia production in globular clusters of about 42 at the 95% confidence level, which is an order of magnitude lower than the enhancement rate for luminous X-ray binaries. Even if all of the ambiguous cases are considered as having a globular cluster counterpart, the upper bound for the enhancement rate is 82 at the 95% confidence level, still a factor of several below that needed to account for half of the SN Ia events. Barring unforeseen selection effects, we conclude that globular clusters are not responsible for producing a significant fraction of the SN Ia events in early-type galaxies.

  11. Spallation reactions in shock waves at supernova explosions and related problems

    Energy Technology Data Exchange (ETDEWEB)

    Ustinova, G. K., E-mail: ustinova@dubna.net.ru [RAS, V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry (Russian Federation)

    2013-05-15

    The isotopic anomalies of some extinct radionuclides testify to the outburst of a nearby supernova just before the collapse of the protosolar nebula, and to the fact that the supernova was Sn Ia, i.e. the carbon-detonation supernova. A key role of spallation reactions in the formation of isotopic anomalies in the primordial matter of the Solar System is revealed. It is conditioned by the diffusive acceleration of particles in the explosive shock waves, which leads to the amplification of rigidity of the energy spectrum of particles and its enrichment with heavier ions. The quantitative calculations of such isotopic anomalies of many elements are presented. It is well-grounded that the anomalous Xe-HL in meteoritic nanodiamonds was formed simultaneously with nanodiamonds themselves during the shock wave propagation at the Sn Ia explosion. The possible effects of shock wave fractionation of noble gases in the atmosphere of planets are considered. The origin of light elements Li, Be and B in spallation reactions, predicted by Fowler in the middle of the last century, is argued. All the investigated isotopic anomalies give the evidence for the extremely high magnetohydrodynamics (MHD) conditions at the initial stage of free expansion of the explosive shock wave from Sn Ia, which can be essential in solution of the problem of origin of cosmic rays. The specific iron-enriched matter of Sn Ia and its MHD-separation in turbulent processes must be taking into account in the models of origin of the Solar System.

  12. Mod 1 ICS TI Report: ICS Conversion of a 140% HPGe Detector

    Energy Technology Data Exchange (ETDEWEB)

    Bounds, John Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-05

    This report evaluates the Mod 1 ICS, an electrically cooled 140% HPGe detector. It is a custom version of the ORTEC Integrated Cooling System (ICS) modified to make it more practical for us to use in the field. Performance and operating characteristics of the Mod 1 ICS are documented, noting both pros and cons. The Mod 1 ICS is deemed a success. Recommendations for a Mod 2 ICS, a true field prototype, are provided.

  13. Late-Time Spectral Observations of Type IIP Supernovae

    Science.gov (United States)

    Silverman, Jeffrey M.; Pickett, Stephanie; Wheeler, J. Craig; Filippenko, Alexei

    2016-01-01

    Type II-Plateau supernovae (SNe IIP) are H-rich explosions that come from red supergiant (RSG) progenitors. Despite the fact that they are the most common subtype of SN, little work has been done on late-time observations of SNe IIP owing to their relative faintness at these epochs. We analyze 91 late-time (older than about 100 days past explosion) optical spectra of 38 SNe IIP, making this the largest sample of SN IIP nebular spectra ever studied. Quantitative criteria from the spectra themselves are employed to determine if an observation is truly nebular, and thus should be included in the study. We measure the fluxes, shapes, and velocities of various emission lines and investigate their temporal evolution. These values are also compared to photometric data in order to search for correlations that may allow us to gain insight into the RSG progenitors of SNe IIP and learn more about the details of the explosion itself.

  14. First SN Discoveries from the Dark Energy Survey

    Science.gov (United States)

    Abbott, T.; Abdalla, F.; Achitouv, I.; Ahn, E.; Aldering, G.; Allam, S.; Alonso, D.; Amara, A.; Annis, J.; Antonik, M.; Aragon-Salamanca, A.; Armstrong, R.; Ashall, C.; Asorey, J.; Bacon, D.; Balbinot, E.; Banerji, M.; Barbary, K.; Barkhouse, W.; Baruah, L.; Bauer, A.; Bechtol, K.; Becker, M.; Bender, R.; Benoist, C.; Benoit-Levy, A.; Bernardi, M.; Bernstein, G.; Bernstein, J. P.; Bernstein, R.; Bertin, E.; Beynon, E.; Bhattacharya, S.; Biesiadzinski, T.; Biswas, R.; Blake, C.; Bloom, J. S.; Bocquet, S.; Brandt, C.; Bridle, S.; Brooks, D.; Brown, P. J.; Brunner, R.; Buckley-Geer, E.; Burke, D.; Burkert, A.; Busha, M.; Campa, J.; Campbell, H.; Cane, R.; Capozzi, D.; Carlstrom, J.; Carnero Rosell, A.; Carollo, M.; Carrasco-Kind, M.; Carretero, J.; Carter, M.; Casas, R.; Castander, F. J.; Chen, Y.; Chiu, I.; Chue, C.; Clampitt, J.; Clerkin, L.; Cohn, J.; Colless, M.; Copeland, E.; Covarrubias, R. A.; Crittenden, R.; Crocce, M.; Cunha, C.; da Costa, L.; d'Andrea, C.; Das, S.; Das, R.; Davis, T. M.; Deb, S.; DePoy, D.; Derylo, G.; Desai, S.; de Simoni, F.; Devlin, M.; Diehl, H. T.; Dietrich, J.; Dodelson, S.; Doel, P.; Dolag, K.; Efstathiou, G.; Eifler, T.; Erickson, B.; Eriksen, M.; Estrada, J.; Etherington, J.; Evrard, A.; Farrens, S.; Fausti Neto, A.; Fernandez, E.; Ferreira, P. C.; Finley, D.; Fischer, J. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Furlanetto, C.; Garcia-Bellido, J.; Gaztanaga, E.; Gelman, M.; Gerdes, D.; Giannantonio, T.; Gilhool, S.; Gill, M.; Gladders, M.; Gladney, L.; Glazebrook, K.; Gray, M.; Gruen, D.; Gruendl, R.; Gupta, R.; Gutierrez, G.; Habib, S.; Hall, E.; Hansen, S.; Hao, J.; Heitmann, K.; Helsby, J.; Henderson, R.; Hennig, C.; High, W.; Hirsch, M.; Hoffmann, K.; Holhjem, K.; Honscheid, K.; Host, O.; Hoyle, B.; Hu, W.; Huff, E.; Huterer, D.; Jain, B.; James, D.; Jarvis, M.; Jarvis, M. J.; Jeltema, T.; Johnson, M.; Jouvel, S.; Kacprzak, T.; Karliner, I.; Katsaros, J.; Kent, S.; Kessler, R.; Kim, A.; Kim-Vy, T.; King, L.; Kirk, D.; Kochanek, C.; Kopp, M.; Koppenhoefer, J.; Kovacs, E.; Krause, E.; Kravtsov, A.; Kron, R.; Kuehn, K.; Kuemmel, M.; Kuhlmann, S.; Kunder, A.; Kuropatkin, N.; Kwan, J.; Lahav, O.; Leistedt, B.; Levi, M.; Lewis, P.; Liddle, A.; Lidman, C.; Lilly, S.; Lin, H.; Liu, J.; Lopez-Arenillas, C.; Lorenzon, W.; LoVerde, M.; Ma, Z.; Maartens, R.; Maccrann, N.; Macri, L.; Maia, M.; Makler, M.; Manera, M.; Maraston, C.; March, M.; Markovic, K.; Marriner, J.; Marshall, J.; Marshall, S.; Martini, P.; Marti Sanahuja, P.; Mayers, J.; McKay, T.; McMahon, R.; Melchior, P.; Merritt, K. W.; Merson, A.; Miller, C.; Miquel, R.; Mohr, J.; Moore, T.; Mortonson, M.; Mosher, J.; Mould, J.; Mukherjee, P.; Neilsen, E.; Ngeow, C.; Nichol, R.; Nidever, D.; Nord, B.; Nugent, P.; Ogando, R.; Old, L.; Olsen, J.; Ostrovski, F.; Paech, K.; Papadopoulos, A.; Papovich, C.; Patton, K.; Peacock, J.; Pellegrini, P. S. S.; Peoples, J.; Percival, W.; Perlmutter, S.; Petravick, D.; Plazas, A.; Ponce, R.; Poole, G.; Pope, A.; Refregier, A.; Reyes, R.; Ricker, P.; Roe, N.; Romer, K.; Roodman, A.; Rooney, P.; Ross, A.; Rowe, B.; Rozo, E.; Rykoff, E.; Sabiu, C.; Saglia, R.; Sako, M.; Sanchez, A.; Sanchez, C.; Sanchez, E.; Sanchez, J.; Santiago, B.; Saro, A.; Scarpine, V.; Schindler, R.; Schmidt, B. P.; Schmitt, R. L.; Schubnell, M.; Seitz, S.; Senger, R.; Sevilla, I.; Sharp, R.; Sheldon, E.; Sheth, R.; Smith, R. C.; Smith, M.; Snigula, J.; Soares-Santos, M.; Sobreira, F.; Song, J.; Soumagnac, M.; Spinka, H.; Stebbins, A.; Stoughton, C.; Suchyta, E.; Suhada, R.; Sullivan, M.; Sun, F.; Suntzeff, N.; Sutherland, W.; Swanson, M. E. C.; Sypniewski, A. J.; Szepietowski, R.; Talaga, R.; Tarle, G.; Tarrant, E.; Balan, S. Thaithara; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker, D.; Uddin, S. A.; Ural, S.; Vikram, V.; Voigt, L.; Walker, A. R.; Walker, T.; Wechsler, R.; Weinberg, D.; Weller, J.; Wester, W.; Wetzstein, M.; White, M.; Wilcox, H.; Wilman, D.; Yanny, B.; Young, J.; Zablocki, A.; Zenteno, A.; Zhang, Y.; Zuntz, J.

    2012-12-01

    The Dark Energy Survey (DES) report the discovery of the first set of supernovae (SN) from the project. Images were observed as part of the DES Science Verification phase using the newly-installed 570-Megapixel Dark Energy Camera on the CTIO Blanco 4-m telescope by observers J. Annis, E. Buckley-Geer, and H. Lin. SN observations are planned throughout the observing campaign on a regular cadence of 4-6 days in each of the ten 3-deg2 fields in the DES griz filters.

  15. Rayleigh-Taylor instability and mixing in SN 1987A

    International Nuclear Information System (INIS)

    Ebisuzaki, T.; Shigeyama, T.; Nomoto, K.

    1989-01-01

    The stability of the supernova ejecta is compared with the Rayleigh-Taylor instability for a realistic model of SN 1987A. A linear analysis indicates that the layers around the composition interface between the hydrogen-rich and helium zones, and become Rayleigh-Taylor unstable between the helium and metal zones. In these layers, the pressure increases outward because of deceleration due to the reverse shock which forms when the blast shock hits the massive hydrogen-rich envelope. On the contrary, the density steeply decreases outward because of the preexisting nuclear burning shell. Then, these layers undergo the Raleigh-Taylor instability because of the opposite signs of the pressure and density gradients. The estimated growth rate is larger than the expansion rate of the supernova. The Rayleigh-Taylor instability near the composition interface is likely to induce mixing, which has been strongly suggested from observations of SN 1987A. 25 refs

  16. Understanding Core-Collapse Supernovae

    Science.gov (United States)

    Hix, W. R.; Lentz, E. J.; Baird, M.; Messer, O. E. B.; Mezzacappa, A.; Lee, C.-T.; Bruenn, S. W.; Blondin, J. M.; Marronetti, P.

    2010-03-01

    Our understanding of core-collapse supernovae continues to improve as better microphysics is included in increasingly realistic neutrino-radiationhydrodynamic simulations. Recent multi-dimensional models with spectral neutrino transport, which slowly develop successful explosions for a range of progenitors between 12 and 25 solar mass, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progresses on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  17. Massive stars dying alone: Extremely remote environments of SN2009ip and SN2010jp

    Science.gov (United States)

    Smith, Nathan

    2014-10-01

    We propose an imaging study of the astonishingly remote environments of two recent supernovae (SNe): SN2009ip and SN2010jp. Both were unusual Type IIn explosions that crashed into dense circumstellar material (CSM) ejected by the star shortly before explosion. The favored progenitors of these SNe are very massive luminous blue variable (LBV) stars. In fact, SN2009ip presents an extraordinay case where the LBV-like progenitor was actually detected directly in archival HST data, and where we obtained spectra and photometry for numerous pre-SN eruptions. No other SN has this treasure trove of detailed information about the progenitor (not even SN1987A). SN2010jp represents a possible collapsar-powered event, since it showed evidence of a fast bipolar jet in spectra and a low 56Ni mass; this would be an analog of the black-hole forming explosions that cause gamma ray bursts, but where the relativistic jet is damped by a residual H envelope on the star. In both cases, the only viable models for these SNe involve extremely massive (initial masses of 40-100 Msun) progenitor stars. This seems at odds with their extremely remote environments in the far outskirts of their host galaxies, with no detected evidence for an underlying massive star population in ground-based data (nor in the single shallow WFPC2/F606W image of SN2009ip). Here we propose deep UV HST images to search for any mid/late O-type stars nearby, deep red images to detect any red supergiants, and an H-alpha image to search for any evidence of ongoing star formation in the vicinity. These observations will place important and demanding constraints on the initial masses and ages of these progenitors.

  18. First-Year Spectroscopy for the SDSS-II Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Chen; Romani, Roger W.; Sako, Masao; Marriner, John; Bassett, Bruce; Becker, Andrew; Choi, Changsu; Cinabro, David; DeJongh, Fritz; Depoy, Darren L.; Dilday, Ben; Doi, Mamoru; Frieman, Joshua A.; Garnavich, Peter M.; Hogan, Craig J.; Holtzman, Jon; Im, Myungshin; Jha, Saurabh; Kessler, Richard; Konishi, Kohki; Lampeitl, Hubert

    2008-03-25

    This paper presents spectroscopy of supernovae discovered in the first season of the Sloan Digital Sky Survey-II Supernova Survey. This program searches for and measures multi-band light curves of supernovae in the redshift range z = 0.05-0.4, complementing existing surveys at lower and higher redshifts. Our goal is to better characterize the supernova population, with a particular focus on SNe Ia, improving their utility as cosmological distance indicators and as probes of dark energy. Our supernova spectroscopy program features rapid-response observations using telescopes of a range of apertures, and provides confirmation of the supernova and host-galaxy types as well as precise redshifts. We describe here the target identification and prioritization, data reduction, redshift measurement, and classification of 129 SNe Ia, 16 spectroscopically probable SNe Ia, 7 SNe Ib/c, and 11 SNe II from the first season. We also describe our efforts to measure and remove the substantial host galaxy contamination existing in the majority of our SN spectra.

  19. Spatially-resolved Spectroscopy of the IC443 Pulsar Wind Nebula and Environs

    Science.gov (United States)

    Swartz, Douglas A.; Weisskopf, M. C.; Zavlin, V.; Bucciantini, N.; Clarke, T. E.; Karovska, M.; Pavlov, G. G.; van der Horst, A.; Yukita, M.

    2013-04-01

    Deep Chandra ACIS observations of the region around the putative pulsar, CXO J061705.3+222127, in the supernova remnant IC443 confirm that (1) the spectrum and flux of the central object are consistent with a rotation-powered pulsar interpretation, (2) the non-thermal surrounding nebula is likely powered by a pulsar wind, and (3) the thermal-dominated spectrum at greater distances is consistent with emission from the supernova remnant. The observations further reveal, for the first time, a ring-like morphology surrounding the pulsar and a jet-like structure oriented roughly north-south across the ring and through the pulsar location. The cometary shape of the nebula, suggesting motion towards the southwest, appears to be subsonic; there is no evidence for a strong bow shock and the ring, presumably formed at a wind termination shock, is not distorted by motion through the ambient medium.

  20. Spatially-resolved Spectroscopy of the IC443 Pulsar Wind Nebula and Environs

    Science.gov (United States)

    Swartz, D. A.; Weisskopf, M. C.; Zavlin, V. E.; Bucciantini, N.; Clarke, T. E.; Karovska, M.; Pavlov, G. G.; O'Dell, S. L.; vanderHorst, A J.; Yukita, M.

    2013-01-01

    Deep Chandra ACIS observations of the region around the putative pulsar, CXOU J061705.3+222117, in the supernova remnant IC443 reveal, for the first time, a ring-like morphology surrounding the pulsar and a jet-like structure oriented roughly north-south across the ring and through the pulsar location. The observations further confirm that (1) the spectrum and flux of the central object are consistent with a rotation-powered pulsar interpretation, (2) the non-thermal surrounding nebula is likely powered by the pulsar wind, and (3) the thermal-dominated spectrum at greater distances is consistent with emission from the supernova remnant. The cometary shape of the nebula, suggesting motion towards the southwest (or, equivalently, flow of ambient medium to the northeast), appears to be subsonic; there is no evidence for a strong bow shock, and the circular ring is not distorted by motion through the ambient medium.

  1. PHOTOMETRIC SUPERNOVA COSMOLOGY WITH BEAMS AND SDSS-II

    Energy Technology Data Exchange (ETDEWEB)

    Hlozek, Renee [Oxford Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford, OX1 3RH (United Kingdom); Kunz, Martin [Department de physique theorique, Universite de Geneve, 30, quai Ernest-Ansermet, CH-1211 Geneve 4 (Switzerland); Bassett, Bruce; Smith, Mat; Newling, James [African Institute for Mathematical Sciences, 68 Melrose Road, Muizenberg 7945 (South Africa); Varughese, Melvin [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, Cape Town, 7700 (South Africa); Kessler, Rick; Frieman, Joshua [The Kavli Institute for Cosmological Physics, The University of Chicago, 933 East 56th Street, Chicago, IL 60637 (United States); Bernstein, Joseph P.; Kuhlmann, Steve; Marriner, John [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Campbell, Heather; Lampeitl, Hubert; Nichol, Robert C. [Institute of Cosmology and Gravitation, Dennis Sciama Building Burnaby Road Portsmouth PO1 3FX (United Kingdom); Dilday, Ben [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Falck, Bridget; Riess, Adam G. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 203 South 33rd Street, Philadelphia, PA 19104 (United States); Schneider, Donald P., E-mail: rhlozek@astro.princeton.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2012-06-20

    Supernova (SN) cosmology without spectroscopic confirmation is an exciting new frontier, which we address here with the Bayesian Estimation Applied to Multiple Species (BEAMS) algorithm and the full three years of data from the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SN). BEAMS is a Bayesian framework for using data from multiple species in statistical inference when one has the probability that each data point belongs to a given species, corresponding in this context to different types of SNe with their probabilities derived from their multi-band light curves. We run the BEAMS algorithm on both Gaussian and more realistic SNANA simulations with of order 10{sup 4} SNe, testing the algorithm against various pitfalls one might expect in the new and somewhat uncharted territory of photometric SN cosmology. We compare the performance of BEAMS to that of both mock spectroscopic surveys and photometric samples that have been cut using typical selection criteria. The latter typically either are biased due to contamination or have significantly larger contours in the cosmological parameters due to small data sets. We then apply BEAMS to the 792 SDSS-II photometric SNe with host spectroscopic redshifts. In this case, BEAMS reduces the area of the {Omega}{sub m}, {Omega}{sub {Lambda}} contours by a factor of three relative to the case where only spectroscopically confirmed data are used (297 SNe). In the case of flatness, the constraints obtained on the matter density applying BEAMS to the photometric SDSS-II data are {Omega}{sup BEAMS}{sub m} = 0.194 {+-} 0.07. This illustrates the potential power of BEAMS for future large photometric SN surveys such as Large Synoptic Survey Telescope.

  2. An Analysis of the Peculiar Type IIn Supernova 1995N

    Science.gov (United States)

    Baird, M. D.; Garnavich, P. M.; Schlegel, E. M.; Challis, P. M.; Kirshner, R. P.

    1998-12-01

    SN 1995N is a peculiar type IIn supernova. Spectroscopic and photometric data for this analysis were gathered between May 10, 1995 (two days after discovery) and July 18, 1998. A total of twenty two photometric images and eight spectra were obtained at the FLWO and MMTO. The photometric data show a broad maximum at R=17.0 occurred in late October, 1995, followed by a very slow decline at a rate of 2.39 millimag-day(-1) for R and 1.37 millimag-day(-1) for V. The R decay rate corresponds to a half life of 315 days, which is much longer than that of (56) Co. The spectra show broad hydrogen (1500 km/s FWHM) and oxygen (10000 km/s FWZI) emission features along with many unresolved emission lines. Some of the more interesting narrow lines identified correspond to high ionization states for iron such as Fe VII and Fe X which indicate temperatures as high as 10(6) degrees K. These high ionization states, the X-ray detection by Lewin et al. (1996, IAUC 6445) and the slow photometric decay suggest that SN 1995N is powered by a shock propagating through a dense circumstellar environment. From the earliest observations the energy output appears dominated by the interaction and not by radioactivity, implying that the progenitor exploded well before the discovery of SN 1995N. The situation may be similar to SN 1987A, where the rise in emission from a circumstellar interaction is only now beginning and is expected to peak some 15 years after the supernova explosion.

  3. PHOTOMETRIC SUPERNOVA COSMOLOGY WITH BEAMS AND SDSS-II

    International Nuclear Information System (INIS)

    Hlozek, Renée; Kunz, Martin; Bassett, Bruce; Smith, Mat; Newling, James; Varughese, Melvin; Kessler, Rick; Frieman, Joshua; Bernstein, Joseph P.; Kuhlmann, Steve; Marriner, John; Campbell, Heather; Lampeitl, Hubert; Nichol, Robert C.; Dilday, Ben; Falck, Bridget; Riess, Adam G.; Sako, Masao; Schneider, Donald P.

    2012-01-01

    Supernova (SN) cosmology without spectroscopic confirmation is an exciting new frontier, which we address here with the Bayesian Estimation Applied to Multiple Species (BEAMS) algorithm and the full three years of data from the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SN). BEAMS is a Bayesian framework for using data from multiple species in statistical inference when one has the probability that each data point belongs to a given species, corresponding in this context to different types of SNe with their probabilities derived from their multi-band light curves. We run the BEAMS algorithm on both Gaussian and more realistic SNANA simulations with of order 10 4 SNe, testing the algorithm against various pitfalls one might expect in the new and somewhat uncharted territory of photometric SN cosmology. We compare the performance of BEAMS to that of both mock spectroscopic surveys and photometric samples that have been cut using typical selection criteria. The latter typically either are biased due to contamination or have significantly larger contours in the cosmological parameters due to small data sets. We then apply BEAMS to the 792 SDSS-II photometric SNe with host spectroscopic redshifts. In this case, BEAMS reduces the area of the Ω m , Ω Λ contours by a factor of three relative to the case where only spectroscopically confirmed data are used (297 SNe). In the case of flatness, the constraints obtained on the matter density applying BEAMS to the photometric SDSS-II data are Ω BEAMS m = 0.194 ± 0.07. This illustrates the potential power of BEAMS for future large photometric SN surveys such as Large Synoptic Survey Telescope.

  4. Things begin to happen around Supernova 1987A

    Science.gov (United States)

    1994-01-01

    On 23 February 1994, it will be exactly seven years since the explosion of Supernova 1987A in the Large Magellanic Cloud [1] was first observed, at a distance of approx. 160,000 light-years. It was the first naked-eye supernova to be seen in almost four hundred years. Few events in modern astronomy have met with such an enthusiastic response by the scientists and this famous object has been under constant surveillance ever since. After several years of relative quiescence, things are now beginning to happen in the immediate neighbourhood of SN 1987A. Recent observations with the ESO 3.5 m New Technology Telescope (NTT) indicate that interaction between the stellar material which was ejected during the explosion and the surrounding ring-shaped nebulae has started. This signals the beginning of a more active phase during which the supernova is likely to display a number of new and interesting phenomena, never before observed. SEVEN YEARS IN THE LIFE OF A SUPERNOVA After brightening to maximum light at about magnitude 3 a few months after the explosion, the long period of steady fading which is typical for supernovae, set in by mid-1987. The matter ejected by the explosion took the form of an expanding fireball, which began to spread through the nearly empty space around the supernova with a velocity of almost 10,000 km/sec. As it cooled, the temperature and therefore the total brightness decreased and the supernova became fainter and fainter. At the present moment, the magnitude of SN 1987A is about 18.5, that is almost 2 million times fainter than it was at maximum. Various phenomena have been observed around SN 1987A during the past years. Already in early 1988, light echoes were seen as concentric, slowly expanding luminous circles; they represent the reflections of the explosion light flash in interstellar clouds inside the Large Magellanic Cloud, between the supernova and us. In 1989, high-resolution observations with the NTT showed an elliptical ``ring

  5. ASAS-SN Discovery of a Possible Galactic Nova ASASSN-18ix

    Science.gov (United States)

    Stanek, K. Z.; Kochanek, C. S.; Shields, J. V.; Thompson, T. A.; Chomiuk, L.; Strader, J.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Dong, Subo; Stritzinger, M.

    2018-04-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from multiple ASAS-SN telescopes, we detect a new bright transient source, possibly a classical nova, but it might also be a young, large amplitude outburst of a cataclysmic variable Object RA (J2000) DEC (J2000) Gal l (deg) Gal b (deg) Disc.

  6. A Measurement of the Rate of Type Ia Supernovae in Galaxy Clusters from the SDSS-II Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Dilday, Benjamin; /Rutgers U., Piscataway /Chicago U. /KICP, Chicago; Bassett, Bruce; /Cape Town U., Dept. Math. /South African Astron. Observ.; Becker, Andrew; /Washington U., Seattle, Astron. Dept.; Bender, Ralf; /Munich, Tech. U. /Munich U. Observ.; Castander, Francisco; /Barcelona, IEEC; Cinabro, David; /Wayne State U.; Frieman, Joshua A.; /Chicago U. /Fermilab; Galbany, Lluis; /Barcelona, IFAE; Garnavich, Peter; /Notre Dame U.; Goobar, Ariel; /Stockholm U., OKC /Stockholm U.; Hopp, Ulrich; /Munich, Tech. U. /Munich U. Observ. /Tokyo U.

    2010-03-01

    We present measurements of the Type Ia supernova (SN) rate in galaxy clusters based on data from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. The cluster SN Ia rate is determined from 9 SN events in a set of 71 C4 clusters at z {le} 0.17 and 27 SN events in 492 maxBCG clusters at 0.1 {le} z {le} 0.3. We find values for the cluster SN Ia rate of (0.37{sub -0.12-0.01}{sup +0.17+0.01}) SNur h{sup 2} and (0.55{sub -0.11-0.01}{sup +0.13+0.02}) SNur h{sup 2} (SNux = 10{sup -12}L{sub x{circle_dot}}{sup -1} yr{sup -1}) in C4 and maxBCG clusters, respectively, where the quoted errors are statistical and systematic, respectively. The SN rate for early-type galaxies is found to be (0.31{sub -0.12-0.01}{sup +0.18+0.01}) SNur h{sup 2} and (0.49{sub -0.11-0.01}{sup +0.15+0.02}) SNur h{sup 2} in C4 and maxBCG clusters, respectively. The SN rate for the brightest cluster galaxies (BCG) is found to be (2.04{sub -1.11-0.04}{sup +1.99+0.07}) SNur h{sup 2} and (0.36{sub -0.30-0.01}{sup +0.84+0.01}) SNur h{sup 2} in C4 and maxBCG clusters, respectively. The ratio of the SN Ia rate in cluster early-type galaxies to that of the SN Ia rate in field early-type galaxies is 1.94{sub -0.91-0.015}{sup +1.31+0.043} and 3.02{sub -1.03-0.048}{sup +1.31+0.062}, for C4 and maxBCG clusters, respectively. The SN rate in galaxy clusters as a function of redshift, which probes the late time SN Ia delay distribution, shows only weak dependence on redshift. Combining our current measurements with previous measurements, we fit the cluster SN Ia rate data to a linear function of redshift, and find r{sub L} = [(0.49{sub -0.14}{sup +0.15}) + (0.91{sub -0.81}{sup +0.85}) x z] SNuB h{sup 2}. A comparison of the radial distribution of SNe in cluster to field early-type galaxies shows possible evidence for an enhancement of the SN rate in the cores of cluster early-type galaxies. With an observation of at most 3 hostless, intra-cluster SNe Ia, we estimate the fraction of cluster SNe that are

  7. A MEASUREMENT OF THE RATE OF TYPE Ia SUPERNOVAE IN GALAXY CLUSTERS FROM THE SDSS-II SUPERNOVA SURVEY

    International Nuclear Information System (INIS)

    Dilday, Benjamin; Jha, Saurabh W.; Bassett, Bruce; Becker, Andrew; Bender, Ralf; Hopp, Ulrich; Castander, Francisco; Cinabro, David; Frieman, Joshua A.; Galbany, LluIs; Miquel, Ramon; Garnavich, Peter; Goobar, Ariel; Ihara, Yutaka; Kessler, Richard; Lampeitl, Hubert; Nichol, Robert C.; Marriner, John; Molla, Mercedes

    2010-01-01

    We present measurements of the Type Ia supernova (SN) rate in galaxy clusters based on data from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. The cluster SN Ia rate is determined from 9 SN events in a set of 71 C4 clusters at z ≤ 0.17 and 27 SN events in 492 maxBCG clusters at 0.1 ≤ z ≤ 0.3. We find values for the cluster SN Ia rate of (0.37 +0.17+0.01 -0.12-0.01 ) SNur h 2 and (0.55 +0.13+0.02 -0.11-0.01 ) SNur h 2 (SNux = 10 -12 L -1 xsun yr -1 ) in C4 and maxBCG clusters, respectively, where the quoted errors are statistical and systematic, respectively. The SN rate for early-type galaxies is found to be (0.31 +0.18+0.01 -0.12-0.01 ) SNur h 2 and (0.49 +0.15+0.02 -0.11-0.01 ) SNur h 2 in C4 and maxBCG clusters, respectively. The SN rate for the brightest cluster galaxies (BCG) is found to be (2.04 +1.99+0.07 -1.11-0.04 ) SNur h 2 and (0.36 +0.84+0.01 -0.30-0.01 ) SNur h 2 in C4 and maxBCG clusters, respectively. The ratio of the SN Ia rate in cluster early-type galaxies to that of the SN Ia rate in field early-type galaxies is 1.94 +1.31+0.043 -0.91-0.015 and 3.02 +1.31+0.062 -1.03-0.048 , for C4 and maxBCG clusters, respectively. The SN rate in galaxy clusters as a function of redshift, which probes the late time SN Ia delay distribution, shows only weak dependence on redshift. Combining our current measurements with previous measurements, we fit the cluster SN Ia rate data to a linear function of redshift, and find r L = [(0.49 +0.15 -0.14 )+(0.91 +0.85 -0.81 ) x z] SNuB h 2 . A comparison of the radial distribution of SNe in cluster to field early-type galaxies shows possible evidence for an enhancement of the SN rate in the cores of cluster early-type galaxies. With an observation of at most three hostless, intra-cluster SNe Ia, we estimate the fraction of cluster SNe that are hostless to be (9.4 +8.3 -5.1 )%.

  8. The early detection and follow-up of the highly obscured Type II supernova 2016ija/DLT16am

    DEFF Research Database (Denmark)

    Tartaglia, L.; Sand, D. J.; Valenti, S.

    2018-01-01

    We present our analysis of the Type II supernova DLT16am (SN~2016ija). The object was discovered during the ongoing $\\rm{D}`edge-on nearby ($D=20.0\\pm1.9\\,\\rm{Mpc}$) galaxy NGC~1532. The subsequent prompt and high-cadenced spectroscopic and photometric follow-up revealed a highly extincted...

  9. Cosmological Results from High-z Supernovae

    Science.gov (United States)

    Tonry, John L.; Schmidt, Brian P.; Barris, Brian; Candia, Pablo; Challis, Peter; Clocchiatti, Alejandro; Coil, Alison L.; Filippenko, Alexei V.; Garnavich, Peter; Hogan, Craig; Holland, Stephen T.; Jha, Saurabh; Kirshner, Robert P.; Krisciunas, Kevin; Leibundgut, Bruno; Li, Weidong; Matheson, Thomas; Phillips, Mark M.; Riess, Adam G.; Schommer, Robert; Smith, R. Chris; Sollerman, Jesper; Spyromilio, Jason; Stubbs, Christopher W.; Suntzeff, Nicholas B.

    2003-09-01

    The High-z Supernova Search Team has discovered and observed eight new supernovae in the redshift interval z=0.3-1.2. These independent observations, analyzed by similar but distinct methods, confirm the results of Riess and Perlmutter and coworkers that supernova luminosity distances imply an accelerating universe. More importantly, they extend the redshift range of consistently observed Type Ia supernovae (SNe Ia) to z~1, where the signature of cosmological effects has the opposite sign of some plausible systematic effects. Consequently, these measurements not only provide another quantitative confirmation of the importance of dark energy, but also constitute a powerful qualitative test for the cosmological origin of cosmic acceleration. We find a rate for SN Ia of (1.4+/-0.5)×10-4h3Mpc-3yr-1 at a mean redshift of 0.5. We present distances and host extinctions for 230 SN Ia. These place the following constraints on cosmological quantities: if the equation of state parameter of the dark energy is w=-1, then H0t0=0.96+/-0.04, and ΩΛ-1.4ΩM=0.35+/-0.14. Including the constraint of a flat universe, we find ΩM=0.28+/-0.05, independent of any large-scale structure measurements. Adopting a prior based on the Two Degree Field (2dF) Redshift Survey constraint on ΩM and assuming a flat universe, we find that the equation of state parameter of the dark energy lies in the range -1.48-1, we obtain wInstitute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555. This research is primarily associated with proposal GO-8177, but also uses and reports results from proposals GO-7505, 7588, 8641, and 9118. Based in part on observations taken with the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, le Centre National de la Recherche Scientifique de France, and the University of Hawaii. CTIO: Based in part on observations taken at the Cerro Tololo Inter

  10. Dust in Supernovae and Supernova Remnants II: Processing and Survival

    Science.gov (United States)

    Micelotta, E. R.; Matsuura, M.; Sarangi, A.

    2018-03-01

    Observations have recently shown that supernovae are efficient dust factories, as predicted for a long time by theoretical models. The rapid evolution of their stellar progenitors combined with their efficiency in precipitating refractory elements from the gas phase into dust grains make supernovae the major potential suppliers of dust in the early Universe, where more conventional sources like Asymptotic Giant Branch (AGB) stars did not have time to evolve. However, dust yields inferred from observations of young supernovae or derived from models do not reflect the net amount of supernova-condensed dust able to be expelled from the remnants and reach the interstellar medium. The cavity where the dust is formed and initially resides is crossed by the high velocity reverse shock which is generated by the pressure of the circumstellar material shocked by the expanding supernova blast wave. Depending on grain composition and initial size, processing by the reverse shock may lead to substantial dust erosion and even complete destruction. The goal of this review is to present the state of the art about processing and survival of dust inside supernova remnants, in terms of theoretical modelling and comparison to observations.

  11. Medicina-Noto VLBI observation of SN2013ej

    Science.gov (United States)

    Sokolovsky, K.; Giroletti, M.; Stagni, M.; Nanni, M.; Mahabal, A.

    2013-08-01

    We used the 32m radio telescopes of Istituto di Radioastronomia (INAF-IRA) in Medicina and Noto as a two-element very long baseline interferometer to search for a possible radio counterpart of SN2013ej, a type IIP supernova (CBET #3606, ATel #5228, #5229, #5230, #5237, #5243) in M74. The observations were conducted at 6.7 GHz on 2013 July 31.3 UT, 6 days after the first optical detection reported in CBET #3609.

  12. Circumstellar X-ray Emission from SN1978K

    Science.gov (United States)

    Schlegel, Eric M.; Colbert, E.; Petre, R.

    1995-02-01

    We present the X-ray light curve in the 0.2 2.4 keV band based on fiveROSAT observations of SN1978K in NGC 1313. The X-ray emission is believed to arise from the interaction of the reverse shock and the expanding debris from the supernova. The reverse shock becomes established after the outgoing shock runs into circumstellar matter.

  13. The great supernova of 1987

    International Nuclear Information System (INIS)

    Woosley, S.E.

    1989-01-01

    Seven hundred day after the explosion of the brightest supernova in four centuries, astronomers continue to be both excited and perplexed by its behavior. By now, the supernova has received considerably attention in the literature. This paper emphasizes several aspects of the supernova that continue to be of special interest. These include: the evolution of the presupernova star, why it was blue, what its composition and core structure were; the iron core mass, explosion mechanism, and certain aspects of the neutrino burst; the detailed isotopic composition of the ejecta; the light curve and the requirement for mixing; the expected continued evolution of the supernova at all wavelengths given both the presence of several radioactivities as well as a central collapsed object as a power source; and late breaking news regarding the pulsar

  14. Neutrinos and nucleosynthesis in supernova

    Energy Technology Data Exchange (ETDEWEB)

    Solis, U [Instituto de Ciencias Nucleares, Departamento de Fisica de Altas EnergIas, Universidad Nacional Autonoma de Mexico (ICN-UNAM). Apartado Postal 70-543, 04510 Mexico, D.F. (Mexico); D' Olivo, J C [Instituto de Ciencias Nucleares, Departamento de Fisica de Altas EnergIas, Universidad Nacional Autonoma de Mexico (ICN-UNAM). Apartado Postal 70-543, 04510 Mexico, D.F. (Mexico); Cabral-Rosetti, L G [Departamento de Posgrado, Centro Interdisciplinario de Investigacion y Docencia en Educacion Tecnica (CIIDET), Av. Universidad 282 Pte., Col. Centro, A. Postal 752, C.P. 76000, Santiago de Queretaro, Qro. (Mexico)

    2006-05-15

    The type II supernova is considered as a candidate site for the production of heavy elements. The nucleosynthesis occurs in an intense neutrino flux, we calculate the electron fraction in this environment.

  15. Neutrinos and nucleosynthesis in supernova

    International Nuclear Information System (INIS)

    Solis, U; D'Olivo, J C; Cabral-Rosetti, L G

    2006-01-01

    The type II supernova is considered as a candidate site for the production of heavy elements. The nucleosynthesis occurs in an intense neutrino flux, we calculate the electron fraction in this environment

  16. Dimming supernovae without cosmic acceleration

    International Nuclear Information System (INIS)

    Csaki, Csaba; Terning, John; Kaloper, Nemanja

    2002-01-01

    We present a simple model where photons propagating in extragalactic magnetic fields can oscillate into very light axions. The oscillations may convert some of the photons, departing a distant supernova, into axions, making the supernova appear dimmer and hence more distant than it really is. Averaging over different configurations of the magnetic field we find that the dimming saturates at about one-third of the light from the supernovae at very large redshifts. This results in a luminosity distance versus redshift curve almost indistinguishable from that produced by the accelerating Universe, if the axion mass and coupling scale are m∼10 -16 eV , M∼4x10 11 GeV . This phenomenon may be an alternative to the accelerating Universe for explaining supernova observations

  17. Wafer level 3-D ICs process technology

    CERN Document Server

    Tan, Chuan Seng; Reif, L Rafael

    2009-01-01

    This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.

  18. THE TYPE IIb SUPERNOVA 2011dh FROM A SUPERGIANT PROGENITOR

    International Nuclear Information System (INIS)

    Bersten, Melina C.; Nomoto, Ken'ichi; Folatelli, Gastón; Maeda, Keiichi; Benvenuto, Omar G.; Ergon, Mattias; Sollerman, Jesper; Benetti, Stefano; Ochner, Paolo; Tomasella, Lina; Botticella, Maria Teresa; Fraser, Morgan; Kotak, Rubina

    2012-01-01

    A set of hydrodynamical models based on stellar evolutionary progenitors is used to study the nature of SN 2011dh. Our modeling suggests that a large progenitor star—with R ∼ 200 R ☉ —is needed to reproduce the early light curve (LC) of SN 2011dh. This is consistent with the suggestion that the yellow super-giant star detected at the location of the supernova (SN) in deep pre-explosion images is the progenitor star. From the main peak of the bolometric LC and expansion velocities, we constrain the mass of the ejecta to be ≈2 M ☉ , the explosion energy to be E = (6-10) × 10 50 erg, and the 56 Ni mass to be approximately 0.06 M ☉ . The progenitor star was composed of a helium core of 3-4 M ☉ and a thin hydrogen-rich envelope of ≈0.1M ☉ with a main-sequence mass estimated to be in the range of 12-15 M ☉ . Our models rule out progenitors with helium-core masses larger than 8 M ☉ , which correspond to M ZAMS ∼> 25M ☉ . This suggests that a single star evolutionary scenario for SN 2011dh is unlikely.

  19. THE ULTRAVIOLET BRIGHTEST TYPE Ia SUPERNOVA 2011de

    International Nuclear Information System (INIS)

    Brown, Peter J.

    2014-01-01

    We present and discuss the ultraviolet (UV)/optical photometric light curves and absolute magnitudes of the Type Ia supernova (SN Ia) 2011de from the Swift Ultraviolet/Optical Telescope. We find it to be the UV brightest SN Ia yet observed—more than a factor of 10 brighter than normal SNe Ia in the mid-ultraviolet. We find that the UV/optical brightness and broad light curve evolution can be modeled with additional flux from the shock of the ejecta hitting a relatively large red giant companion separated by 6 × 10 13 cm. However, the post-maximum behavior of other UV-bright SNe Ia can also be modeled in a similar manner, including objects with UV spectroscopy or pre-maximum photometry which is inconsistent with this model. This suggests that similar UV luminosities can be intrinsic or caused by other forms of shock interaction. The high velocities reported for SN 2011de make it distinct from the UV-bright ''super-Chandrasekhar'' SNe Ia and the NUV-blue group of normal SNe Ia. SN 2011de is an extreme example of the UV variations in SNe Ia

  20. Measuring Cosmological Parameters with Photometrically Classified Pan-STARRS Supernovae

    Science.gov (United States)

    Jones, David; Scolnic, Daniel; Riess, Adam; Rest, Armin; Kirshner, Robert; Berger, Edo; Kessler, Rick; Pan, Yen-Chen; Foley, Ryan; Chornock, Ryan; Ortega, Carolyn; Challis, Peter; Burgett, William; Chambers, Kenneth; Draper, Peter; Flewelling, Heather; Huber, Mark; Kaiser, Nick; Kudritzki, Rolf; Metcalfe, Nigel; Tonry, John; Wainscoat, Richard J.; Waters, Chris; Gall, E. E. E.; Kotak, Rubina; McCrum, Matt; Smartt, Stephen; Smith, Ken

    2018-01-01

    We use nearly 1,200 supernovae (SNe) from Pan-STARRS and ~200 low-z (z energy equation of state parameter w to be -0.986±0.058 (stat+sys). If we allow w to evolve with redshift as w(a) = w0 + wa(1-a), we find w0 = -0.923±0.148 and wa = -0.404±0.797. These results are consistent with measurements of cosmological parameters from the JLA and from a new analysis of 1049 spectroscopically confirmed SNe Ia (Scolnic et al. 2017). We try four different photometric classification priors for Pan-STARRS SNe and two alternate ways of modeling the CC SN contamination, finding that none of these variants gives a w that differs by more than 1% from the baseline measurement. The systematic uncertainty on w due to marginalizing over the CC SN contamination, σwCC = 0.019, is approximately equal to the photometric calibration uncertainty and is lower than the systematic uncertainty in the SN\\,Ia dispersion model (σwdisp = 0.024). Our data provide one of the best current constraints on w, demonstrating that samples with ~5% CC SN contamination can give competitive cosmological constraints when the contaminating distribution is marginalized over in a Bayesian framework.

  1. VLBI OBSERVATIONS OF THE NEARBY TYPE IIb SUPERNOVA 2011dh

    International Nuclear Information System (INIS)

    Bietenholz, M. F.; Brunthaler, A.; Soderberg, A. M.; Zauderer, B.; Krauss, M.; Chomiuk, L.; Rupen, M. P.; Bartel, N.

    2012-01-01

    We report on phase-referenced very long baseline interferometry radio observations of the Type IIb supernova 2011dh, at times t = 83 days and 179 days after the explosion and at frequencies, respectively, of 22.2 and 8.4 GHz. We detected SN 2011dh at both epochs. At the first epoch only an upper limit on SN 2011dh's angular size was obtained, but at the second epoch, we determine the angular radius of SN 2011dh's radio emission to be 0.25 ± 0.08 mas by fitting a spherical shell model directly to the visibility measurements. At a distance of 8.4 Mpc, this angular radius corresponds to a time-averaged (since t = 0) expansion velocity of the forward shock of 21, 000 ± 7000 km s –1 . Our measured values of the radius of the emission region are in excellent agreement with those derived from fitting synchrotron self-absorbed models to the radio spectral energy distribution, providing strong confirmation for the latter method of estimating the radius. We find that SN 2011dh's radius evolves in a power-law fashion, with R∝t 0.92±0.10 .

  2. Multiepoch Spectropolarimetry of SN 2011fe

    Energy Technology Data Exchange (ETDEWEB)

    Milne, Peter A.; Williams, G. Grant; Smith, Paul S.; Smith, Nathan; Jannuzi, Buell T.; Green, E. M. [University of Arizona, Steward Observatory, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Porter, Amber; Leising, Mark D. [118 Kinard Laboratory, Clemson University, Clemson, SC 29634 (United States)

    2017-01-20

    We present multiple spectropolarimetric observations of the nearby Type Ia supernova (SN) 2011fe in M101, obtained before, during, and after the time of maximum apparent visual brightness. The excellent time coverage of our spectropolarimetry has allowed better monitoring of the evolution of polarization features than is typical, which has allowed us new insight into the nature of normal SNe Ia. SN 2011fe exhibits time-dependent polarization in both the continuum and strong absorption lines. At early epochs, red wavelengths exhibit a degree of continuum polarization of up to 0.4%, likely indicative of a mild asymmetry in the electron-scattering photosphere. This behavior is more common in subluminous SNe Ia than in normal events, such as SN 2011fe. The degree of polarization across a collection of absorption lines varies dramatically from epoch to epoch. During the earliest epoch, a λ 4600–5000 Å complex of absorption lines shows enhanced polarization at a different position angle than the continuum. We explore the origin of these features, presenting a few possible interpretations, without arriving at a single favored ion. During two epochs near maximum, the dominant polarization feature is associated with the Si ii λ 6355 Å absorption line. This is common for SNe Ia, but for SN 2011fe the polarization of this feature increases after maximum light, whereas for other SNe Ia, that polarization feature was strongest before maximum light.

  3. Multiepoch Spectropolarimetry of SN 2011fe

    International Nuclear Information System (INIS)

    Milne, Peter A.; Williams, G. Grant; Smith, Paul S.; Smith, Nathan; Jannuzi, Buell T.; Green, E. M.; Porter, Amber; Leising, Mark D.

    2017-01-01

    We present multiple spectropolarimetric observations of the nearby Type Ia supernova (SN) 2011fe in M101, obtained before, during, and after the time of maximum apparent visual brightness. The excellent time coverage of our spectropolarimetry has allowed better monitoring of the evolution of polarization features than is typical, which has allowed us new insight into the nature of normal SNe Ia. SN 2011fe exhibits time