WorldWideScience

Sample records for supernova sn ejecta

  1. X-ray emission from reverse-shocked ejecta in supernova remnants

    Science.gov (United States)

    Cioffi, Denis F.; Mckee, Christopher F.

    1990-01-01

    A simple physical model of the dynamics of a young supernova remnant is used to derive a straightforward kinematical description of the reverse shock. With suitable approximations, formulae can then be developed to give the X-ray emission of the reverse-shocked ejecta. The results are found to agree favorably with observations of SN1006.

  2. MEASURING EJECTA VELOCITY IMPROVES TYPE Ia SUPERNOVA DISTANCES

    International Nuclear Information System (INIS)

    Foley, Ryan J.; Kasen, Daniel

    2011-01-01

    We use a sample of 121 spectroscopically normal Type Ia supernovae (SNe Ia) to show that their intrinsic color is correlated with their ejecta velocity, as measured from the blueshift of the Si II λ6355 feature near maximum brightness, v SiII . The SN Ia sample was originally used by Wang et al. to show that the relationship between color excess and peak magnitude, which in the absence of intrinsic color differences describes a reddening law, was different for two subsamples split by v SiII (defined as 'Normal' and 'High Velocity'). We verify this result, but find that the two subsamples have the same reddening law when extremely reddened events (E(B - V)>0.35 mag) are excluded. We also show that (1) the High-Velocity subsample is offset by ∼0.06 mag to the red from the Normal subsample in the (B max - V max )-M V plane, (2) the B max - V max cumulative distribution functions of the two subsamples have nearly identical shapes, but the High-Velocity subsample is offset by ∼0.07 mag to the red in B max - V max , and (3) the bluest High-Velocity SNe Ia are ∼0.10 mag redder than the bluest Normal SNe Ia. Together, this evidence indicates a difference in intrinsic color for the subsamples. Accounting for this intrinsic color difference reduces the scatter in Hubble residuals from 0.190 mag to 0.130 mag for SNe Ia with A V ∼ V found in large SN Ia samples. We explain the correlation between ejecta velocity and color as increased line blanketing in the High-Velocity SNe Ia, causing them to become redder. We discuss some implications of this result, and stress the importance of spectroscopy for future SN Ia cosmology surveys, with particular focus on the design of WFIRST.

  3. Interstellar and ejecta dust in the cas a supernova remnant

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, Richard G. [CRESST, University of Maryland, Baltimore County, Baltimore, MD 21250 (United States); Dwek, Eli; Kober, Gladys [NASA Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Rho, Jeonghee [SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043 (United States); Hwang, Una, E-mail: Richard.G.Arendt@nasa.gov [NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States)

    2014-05-01

    Infrared continuum observations provide a means of investigating the physical composition of the dust in the ejecta and swept up medium of the Cas A supernova remnant (SNR). Using low-resolution Spitzer IRS spectra (5-35 μm), and broad-band Herschel PACS imaging (70, 100, and 160 μm), we identify characteristic dust spectra, associated with ejecta layers that underwent distinct nuclear burning histories. The most luminous spectrum exhibits strong emission features at ∼9 and 21 μm and is closely associated with ejecta knots with strong Ar emission lines. The dust features can be reproduced by magnesium silicate grains with relatively low Mg to Si ratios. Another dust spectrum is associated with ejecta having strong Ne emission lines. It has no indication of any silicate features and is best fit by Al{sub 2}O{sub 3} dust. A third characteristic dust spectrum shows features that are best matched by magnesium silicates with a relatively high Mg to Si ratio. This dust is primarily associated with the X-ray-emitting shocked ejecta, but it is also evident in regions where shocked interstellar or circumstellar material is expected. However, the identification of dust composition is not unique, and each spectrum includes an additional featureless dust component of unknown composition. Colder dust of indeterminate composition is associated with emission from the interior of the SNR, where the reverse shock has not yet swept up and heated the ejecta. Most of the dust mass in Cas A is associated with this unidentified cold component, which is ≲ 0.1 M {sub ☉}. The mass of warmer dust is only ∼0.04 M {sub ☉}.

  4. Supernova ejecta with a relativistic wind from a central compact object: a unified picture for extraordinary supernovae

    Science.gov (United States)

    Suzuki, Akihiro; Maeda, Keiichi

    2017-04-01

    The hydrodynamical interaction between freely expanding supernova ejecta and a relativistic wind injected from the central region is studied in analytic and numerical ways. As a result of the collision between the ejecta and the wind, a geometrically thin shell surrounding a hot bubble forms and expands in the ejecta. We use a self-similar solution to describe the early dynamical evolution of the shell and carry out a two-dimensional special relativistic hydrodynamic simulation to follow further evolution. The Rayleigh-Taylor instability inevitably develops at the contact surface separating the shocked wind and ejecta, leading to the complete destruction of the shell and the leakage of hot gas from the hot bubble. The leaking hot materials immediately catch up with the outermost layer of the supernova ejecta and thus different layers of the ejecta are mixed. We present the spatial profiles of hydrodynamical variables and the kinetic energy distributions of the ejecta. We stop the energy injection when a total energy of 1052 erg, which is 10 times larger than the initial kinetic energy of the supernova ejecta, is deposited into the ejecta and follow the subsequent evolution. From the results of our simulations, we consider expected emission from supernova ejecta powered by the energy injection at the centre and discuss the possibility that superluminous supernovae and broad-lined Ic supernovae could be produced by similar mechanisms.

  5. THE CHEMISTRY OF POPULATION III SUPERNOVA EJECTA. I. FORMATION OF MOLECULES IN THE EARLY UNIVERSE

    International Nuclear Information System (INIS)

    Cherchneff, Isabelle; Dwek, Eli

    2009-01-01

    We study the formation and destruction of molecules in the ejecta of Population III supernovae (SNe) using a chemical kinetic approach to follow the evolution of molecular abundances from day 100 to day 1000 after explosion. The chemical species included in the study range from simple diatomic molecules to more complex dust precursor species. All relevant molecule formation and destruction processes that are unique to the SN environment are considered. Our work focuses on zero-metallicity progenitors with masses of 20, 170, and 270 M sun , and we study the effect of different levels of heavy element mixing and the inward diffusion of hydrogen and helium on the ejecta chemistry. We show that the ejecta chemistry does not reach a steady state within the relevant timespan (∼3 yr) for molecule formation, thus invalidating previous results relying on this assumption. The primary species formed in the harsh SN environment are O 2 , CO, SiS, and SO. The SiO, formed as early as 200 days after explosion, is rapidly depleted by the formation of silica molecular precursors in the ejecta. The rapid conversion of CO to C 2 and its thermal fractionation at temperatures above 5000 K allow for the formation of carbon chains in the oxygen-rich zone of the unmixed models, providing an important pathway for the formation of carbon dust in hot environments where the C/O ratio is less than 1. We show that the fully mixed ejecta of a 170 M sun progenitor synthesizes 11.3 M sun of molecules, whereas 20 M sun and 270 M sun progenitors produce 0.78 M sun and 3.2 M sun of molecules, respectively. The admixing of 10% of hydrogen into the fully mixed ejecta of the 170 M sun progenitor increases its molecular yield to ∼47 M sun . The unmixed ejecta of a 170 M sun progenitor SN without hydrogen penetration synthesizes ∼37 M sun of molecules, whereas its 20 M sun counterpart produces ∼1.2 M sun . This smaller efficiency at forming molecules is due to the large fraction of He + in the

  6. The Three-dimensional Expansion of the Ejecta from Tycho's Supernova Remnant

    International Nuclear Information System (INIS)

    Williams, Brian J.; Depasquale, Joseph; Coyle, Nina M.; Yamaguchi, Hiroya; Petre, Robert; Seitenzahl, Ivo R.; Hewitt, John W.; Blondin, John M.; Borkowski, Kazimierz J.; Reynolds, Stephen P.; Ghavamian, Parviz

    2017-01-01

    We present the first 3D measurements of the velocity of various ejecta knots in Tycho’s supernova remnant, known to result from a Type Ia explosion. Chandra X-ray observations over a 12 yr baseline from 2003 to 2015 allow us to measure the proper motion of nearly 60 “tufts” of Si-rich ejecta, giving us the velocity in the plane of the sky. For the line-of-sight velocity, we use two different methods: a nonequilibrium ionization model fit to the strong Si and S lines in the 1.2–2.8 keV regime, and a fit consisting of a series of Gaussian lines. These methods give consistent results, allowing us to determine the redshift or blueshift of each of the knots. Assuming a distance of 3.5 kpc, we find total velocities that range from 2400 to 6600 km s −1 , with a mean of 4430 km s −1 . We find several regions where the ejecta knots have overtaken the forward shock. These regions have proper motions in excess of 6000 km s −1 . Some SN Ia explosion models predict a velocity asymmetry in the ejecta. We find no such velocity asymmetries in Tycho, and we discuss our findings in light of various explosion models, favoring those delayed-detonation models with relatively vigorous and symmetrical deflagrations. Finally, we compare measurements with models of the remnant’s evolution that include both smooth and clumpy ejecta profiles, finding that both ejecta profiles can be accommodated by the observations.

  7. The Three-dimensional Expansion of the Ejecta from Tycho's Supernova Remnant

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Brian J.; Depasquale, Joseph [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Coyle, Nina M.; Yamaguchi, Hiroya; Petre, Robert [NASA Goddard Space Flight Center, X-ray Astrophysics Laboratory, Greenbelt, MD 20771 (United States); Seitenzahl, Ivo R. [School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Australian Defence Force Academy, Canberra, ACT 2600 (Australia); Hewitt, John W. [University of North Florida, Department of Physics, 1 UNF Drive, Jacksonville, FL 32224 (United States); Blondin, John M.; Borkowski, Kazimierz J.; Reynolds, Stephen P. [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Ghavamian, Parviz, E-mail: bwilliams@stsci.edu [Department of Physics, Astronomy, and Geosciences, Towson University, Towson, MD 21252 (United States)

    2017-06-10

    We present the first 3D measurements of the velocity of various ejecta knots in Tycho’s supernova remnant, known to result from a Type Ia explosion. Chandra X-ray observations over a 12 yr baseline from 2003 to 2015 allow us to measure the proper motion of nearly 60 “tufts” of Si-rich ejecta, giving us the velocity in the plane of the sky. For the line-of-sight velocity, we use two different methods: a nonequilibrium ionization model fit to the strong Si and S lines in the 1.2–2.8 keV regime, and a fit consisting of a series of Gaussian lines. These methods give consistent results, allowing us to determine the redshift or blueshift of each of the knots. Assuming a distance of 3.5 kpc, we find total velocities that range from 2400 to 6600 km s{sup −1}, with a mean of 4430 km s{sup −1}. We find several regions where the ejecta knots have overtaken the forward shock. These regions have proper motions in excess of 6000 km s{sup −1}. Some SN Ia explosion models predict a velocity asymmetry in the ejecta. We find no such velocity asymmetries in Tycho, and we discuss our findings in light of various explosion models, favoring those delayed-detonation models with relatively vigorous and symmetrical deflagrations. Finally, we compare measurements with models of the remnant’s evolution that include both smooth and clumpy ejecta profiles, finding that both ejecta profiles can be accommodated by the observations.

  8. The rebirth of Supernova 1987A : a study of the ejecta-ring collision

    Science.gov (United States)

    Gröningsson, Per

    Supernovae are some of the most energetic phenomena in the Universe and they have throughout history fascinated people as they appeared as new stars in the sky. Supernova (SN) 1987A exploded in the nearby satellite galaxy, the Large Magellanic Cloud (LMC), at a distance of only 168,000 light years. The proximity of SN 1987A offers a unique opportunity to study the medium surrounding the supernova in great detail. Powered by the dynamical interaction of the ejecta with the inner circumstellar ring, SN 1987A is dramatically evolving at all wavelengths on time scales less than a year. This makes SN 1987A a great ``laboratory'' for studies of shock physics. Repeated observations of the ejecta-ring collision have been carried out using the UVES echelle spectrograph at VLT. This thesis covers seven epochs of high resolution spectra taken between October 1999 and November 2007. Three different emission line components are identified from the spectra. A narrow (~10 km/s) velocity component emerges from the unshocked ring. An intermediate (~250 km/s) component arises in the shocked ring, and a broad component extending to ~15,000 km/s comes from the reverse shock. Thanks to the high spectral resolution of UVES, it has been possible to separate the shocked from the unshocked ring emission. For the unshocked gas, ionization stages from neutral up to Ne V and Fe VII were found. The line fluxes of the low-ionization lines decline during the period of the observations. However, the fluxes of the [O III] and [Ne III] lines appear to increase and this is found to be consistent with the heating of the pre-shock gas by X-rays from the shock interactions. The line emission from the ejecta-ring collision increases rapidly as more gas is swept up by the shocks. This emission comes from ions with a range of ionization stages (e.g., Fe II-XIV). The low-ionization lines show an increase in their line widths which is consistent with that these lines originate from radiative shocks. The

  9. On the Possibility of Fast Radio Bursts from Inside Supernovae: The Case of SN 1986J

    Science.gov (United States)

    Bietenholz, Michael F.; Bartel, Norbert

    2017-12-01

    We discuss the possibility of obtaining fast radio bursts (FRBs) from the interior of supernovae, in particular SN 1986J. Young neutron stars are involved in many of the possible scenarios for the origin of FRBs, and it has been suggested that the high dispersion measures observed in FRBs might be produced by the ionized material in the ejecta of associated supernovae. Using VLA and VLBI measurements of the Type IIn SN 1986J, which has a central compact component not seen in other supernovae, we can directly observe for the first time radio signals, which originate in the interior of a young (∼30 year old) supernova. We show that at an age of 30 years, any FRB signal at ∼1 GHz would still be largely absorbed by the ejecta. By the time the ejecta have expanded so that a 1 GHz signal would be visible, the internal dispersion measure due to the SN ejecta would be below the values typically seen for FRBs. The high dispersion measures seen for the FRBs detected so far could of course be due to propagation through the intergalactic medium provided that the FRBs are at distances much larger than that of SN 1986J, which is 10 Mpc. We conclude that if FRBs originate in Type II SNe/SNRs, they would likely not become visible until 60 ∼ 200 years after the SN explosion.

  10. UNBURNED MATERIAL IN THE EJECTA OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Folatelli, Gastón; Tanaka, Masaomi; Maeda, Keiichi; Nomoto, Ken'ichi; Phillips, M. M.; Morrell, Nidia; Campillay, Abdo; González, Sergio; Roth, Miguel; Stritzinger, Maximilian; Burns, Christopher R.; Freedman, W. L.; Madore, Barry F; Persson, S. E.; Hamuy, Mario; Mazzali, Paolo; Boldt, Luis; Contreras, Carlos; Salgado, Francisco; Suntzeff, Nicholas B.

    2012-01-01

    The presence of unburned material in the ejecta of normal Type Ia supernovae (SNe Ia) is investigated using early-time spectroscopy obtained by the Carnegie Supernova Project. The tell-tale signature of pristine material from a C+O white dwarf progenitor star is the presence of carbon, as oxygen is also a product of carbon burning. The most prominent carbon lines in optical spectra of SNe Ia are expected to arise from C II. We find that at least 30% of the objects in the sample show an absorption at ≈6300 Å which is attributed to C II λ6580. An alternative identification of this absorption as Hα is considered to be unlikely. These findings imply a larger incidence of carbon in SNe Ia ejecta than previously noted. We show how observational biases and physical conditions may hide the presence of weak C II lines, and account for the scarcity of previous carbon detections in the literature. This relatively large frequency of carbon detections has crucial implications on our understanding of the explosive process. Furthermore, the identification of the 6300 Å absorptions as carbon would imply that unburned material is present at very low expansion velocities, merely ≈1000 km s –1 above the bulk of Si II. Based on spectral modeling, it is found that the detections are consistent with a mass of carbon of 10 –3 to 10 –2 M ☉ . The presence of this material so deep in the ejecta would imply substantial mixing, which may be related to asymmetries of the flame propagation. Another possible explanation for the carbon absorptions may be the existence of clumps of unburned material along the line of sight. However, the uniformity of the relation between C II and Si II velocities is not consistent with such small-scale asymmetries. The spectroscopic and photometric properties of SNe Ia with and without carbon signatures are compared. A trend toward bluer color and lower luminosity at maximum light is found for objects which show carbon.

  11. UNBURNED MATERIAL IN THE EJECTA OF TYPE Ia SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Folatelli, Gaston; Tanaka, Masaomi; Maeda, Keiichi; Nomoto, Ken' ichi [Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Phillips, M. M.; Morrell, Nidia; Campillay, Abdo; Gonzalez, Sergio; Roth, Miguel [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Stritzinger, Maximilian [The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, 10691 Stockholm (Sweden); Burns, Christopher R.; Freedman, W. L.; Madore, Barry F; Persson, S. E. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena, CA 91101 (United States); Hamuy, Mario [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Mazzali, Paolo [Max-Planck Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany); Boldt, Luis [Argelander Institut fuer Astronomie, Universitaet Bonn, Auf dem Huegel 71, D-53111 Bonn (Germany); Contreras, Carlos [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Victoria 3122 (Australia); Salgado, Francisco [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Suntzeff, Nicholas B., E-mail: gaston.folatelli@ipmu.jp [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States)

    2012-01-20

    The presence of unburned material in the ejecta of normal Type Ia supernovae (SNe Ia) is investigated using early-time spectroscopy obtained by the Carnegie Supernova Project. The tell-tale signature of pristine material from a C+O white dwarf progenitor star is the presence of carbon, as oxygen is also a product of carbon burning. The most prominent carbon lines in optical spectra of SNe Ia are expected to arise from C II. We find that at least 30% of the objects in the sample show an absorption at Almost-Equal-To 6300 A which is attributed to C II {lambda}6580. An alternative identification of this absorption as H{alpha} is considered to be unlikely. These findings imply a larger incidence of carbon in SNe Ia ejecta than previously noted. We show how observational biases and physical conditions may hide the presence of weak C II lines, and account for the scarcity of previous carbon detections in the literature. This relatively large frequency of carbon detections has crucial implications on our understanding of the explosive process. Furthermore, the identification of the 6300 A absorptions as carbon would imply that unburned material is present at very low expansion velocities, merely Almost-Equal-To 1000 km s{sup -1} above the bulk of Si II. Based on spectral modeling, it is found that the detections are consistent with a mass of carbon of 10{sup -3} to 10{sup -2} M{sub Sun }. The presence of this material so deep in the ejecta would imply substantial mixing, which may be related to asymmetries of the flame propagation. Another possible explanation for the carbon absorptions may be the existence of clumps of unburned material along the line of sight. However, the uniformity of the relation between C II and Si II velocities is not consistent with such small-scale asymmetries. The spectroscopic and photometric properties of SNe Ia with and without carbon signatures are compared. A trend toward bluer color and lower luminosity at maximum light is found for

  12. Discovery of 11 ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Cacella, P.; Stone, G.; Fernandez, J. M.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Nicholls, B.; Post, R. S.

    2018-05-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from 14-cm telescopes in Hawaii, Texas, South Africa, and Chile, we discovered several new transient sources.

  13. A solar-type star polluted by calcium-rich supernova ejecta inside the supernova remnant RCW 86

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Langer, Norbert; Fossati, Luca; Bock, Douglas C.-J.; Castro, Norberto; Georgiev, Iskren Y.; Greiner, Jochen; Johnston, Simon; Rau, Arne; Tauris, Thomas M.

    2017-06-01

    When a massive star in a binary system explodes as a supernova, its companion star may be polluted with heavy elements from the supernova ejecta. Such pollution has been detected in a handful of post-supernova binaries 1 , but none of them is associated with a supernova remnant. We report the discovery of a binary G star strongly polluted with calcium and other elements at the position of the candidate neutron star [GV2003] N within the young galactic supernova remnant RCW 86. Our discovery suggests that the progenitor of the supernova that produced RCW 86 could have been a moving star, which exploded near the edge of its wind bubble and lost most of its initial mass because of common-envelope evolution shortly before core collapse, and that the supernova explosion might belong to the class of calcium-rich supernovae — faint and fast transients 2,3 , the origin of which is strongly debated 4-6 .

  14. Very Deep inside the SN 1987A Core Ejecta: Molecular Structures Seen in 3D

    Energy Technology Data Exchange (ETDEWEB)

    Abellán, F. J.; Marcaide, J. M. [Departamento de Astronomía y Astrofísica, Universidad de Valencia, C/Dr. Moliner 50, E-46100 Burjassot (Spain); Indebetouw, R.; Chevalier, R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Gabler, M.; Janka, H.-Th. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85748 Garching (Germany); Fransson, C.; Lundqvist, P. [Department of Astronomy, The Oskar Klein Centre, Stockholm University, Alba Nova University Centre, SE-106 91 Stockholm (Sweden); Spyromilio, J. [ESO, Karl-Schwarzschild-Straße 2, D-85748 Garching (Germany); Burrows, D. N. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Cigan, P.; Gomez, H. L.; Matsuura, M. [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Gaensler, B. M. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Kirshner, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Larsson, J. [KTH, Department of Physics, and the Oskar Klein Centre, AlbaNova, SE-106 91 Stockholm (Sweden); McCray, R. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Ng, C.-Y. [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Park, S. [Department of Physics, University of Texas at Arlington, 108 Science Hall, Box 19059, Arlington, TX 76019 (United States); Roche, P., E-mail: francisco.abellan@uv.es [Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); and others

    2017-06-20

    Most massive stars end their lives in core-collapse supernova explosions and enrich the interstellar medium with explosively nucleosynthesized elements. Following core collapse, the explosion is subject to instabilities as the shock propagates outward through the progenitor star. Observations of the composition and structure of the innermost regions of a core-collapse supernova provide a direct probe of the instabilities and nucleosynthetic products. SN 1987A in the Large Magellanic Cloud is one of very few supernovae for which the inner ejecta can be spatially resolved but are not yet strongly affected by interaction with the surroundings. Our observations of SN 1987A with the Atacama Large Millimeter/submillimeter Array are of the highest resolution to date and reveal the detailed morphology of cold molecular gas in the innermost regions of the remnant. The 3D distributions of carbon and silicon monoxide (CO and SiO) emission differ, but both have a central deficit, or torus-like distribution, possibly a result of radioactive heating during the first weeks (“nickel heating”). The size scales of the clumpy distribution are compared quantitatively to models, demonstrating how progenitor and explosion physics can be constrained.

  15. Very Deep inside the SN 1987A Core Ejecta: Molecular Structures Seen in 3D

    International Nuclear Information System (INIS)

    Abellán, F. J.; Marcaide, J. M.; Indebetouw, R.; Chevalier, R.; Gabler, M.; Janka, H.-Th.; Fransson, C.; Lundqvist, P.; Spyromilio, J.; Burrows, D. N.; Cigan, P.; Gomez, H. L.; Matsuura, M.; Gaensler, B. M.; Kirshner, R.; Larsson, J.; McCray, R.; Ng, C.-Y.; Park, S.; Roche, P.

    2017-01-01

    Most massive stars end their lives in core-collapse supernova explosions and enrich the interstellar medium with explosively nucleosynthesized elements. Following core collapse, the explosion is subject to instabilities as the shock propagates outward through the progenitor star. Observations of the composition and structure of the innermost regions of a core-collapse supernova provide a direct probe of the instabilities and nucleosynthetic products. SN 1987A in the Large Magellanic Cloud is one of very few supernovae for which the inner ejecta can be spatially resolved but are not yet strongly affected by interaction with the surroundings. Our observations of SN 1987A with the Atacama Large Millimeter/submillimeter Array are of the highest resolution to date and reveal the detailed morphology of cold molecular gas in the innermost regions of the remnant. The 3D distributions of carbon and silicon monoxide (CO and SiO) emission differ, but both have a central deficit, or torus-like distribution, possibly a result of radioactive heating during the first weeks (“nickel heating”). The size scales of the clumpy distribution are compared quantitatively to models, demonstrating how progenitor and explosion physics can be constrained.

  16. A STUBBORNLY LARGE MASS OF COLD DUST IN THE EJECTA OF SUPERNOVA 1987A

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, M.; Barlow, M. J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Dwek, E. [Observational Cosmology Laboratory Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Babler, B. [Department of Astronomy, 475 North Charter Street, University of Wisconsin, Madison, WI 53706 (United States); Baes, M.; Fritz, Jacopo [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Meixner, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Cernicharo, José [Departamento de Astrofísica, Centro de Astrobiología, CSIC-INTA, Ctra. de Torrejón a Ajalvir km 4, E-28850 Madrid (Spain); Clayton, Geoff C. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Dunne, L. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Fransson, C.; Lundqvist, P. [The Oskar Klein Centre, Department of Astronomy, Stockholm University, Albanova, SE-10691 Stockholm (Sweden); Gear, Walter; Gomez, H. L. [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); Groenewegen, M. A. T. [Koninklijke Sterrenwacht van België, Ringlaan 3, 1180 Brussel (Belgium); Indebetouw, R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Ivison, R. J. [SUPA, Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Jerkstrand, A. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Lebouteiller, V. [AIM, CEA/Saclay, L' Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Lim, T. L., E-mail: mikako@star.ucl.ac.uk [RAL Space, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); and others

    2015-02-10

    We present new Herschel photometric and spectroscopic observations of Supernova 1987A, carried out in 2012. Our dedicated photometric measurements provide new 70 μm data and improved imaging quality at 100 and 160 μm compared to previous observations in 2010. Our Herschel spectra show only weak CO line emission, and provide an upper limit for the 63 μm [O I] line flux, eliminating the possibility that line contaminations distort the previously estimated dust mass. The far-infrared spectral energy distribution (SED) is well fitted by thermal emission from cold dust. The newly measured 70 μm flux constrains the dust temperature, limiting it to nearly a single temperature. The far-infrared emission can be fitted by 0.5 ± 0.1 M {sub ☉} of amorphous carbon, about a factor of two larger than the current nucleosynthetic mass prediction for carbon. The observation of SiO molecules at early and late phases suggests that silicates may also have formed and we could fit the SED with a combination of 0.3 M {sub ☉} of amorphous carbon and 0.5 M {sub ☉} of silicates, totalling 0.8 M {sub ☉} of dust. Our analysis thus supports the presence of a large dust reservoir in the ejecta of SN 1987A. The inferred dust mass suggests that supernovae can be an important source of dust in the interstellar medium, from local to high-redshift galaxies.

  17. The ASAS-SN bright supernova catalogue - III. 2016

    DEFF Research Database (Denmark)

    Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.

    2017-01-01

    This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m(peak)d......This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m(peak)d...

  18. TYPE Ia SUPERNOVA COLORS AND EJECTA VELOCITIES: HIERARCHICAL BAYESIAN REGRESSION WITH NON-GAUSSIAN DISTRIBUTIONS

    International Nuclear Information System (INIS)

    Mandel, Kaisey S.; Kirshner, Robert P.; Foley, Ryan J.

    2014-01-01

    We investigate the statistical dependence of the peak intrinsic colors of Type Ia supernovae (SNe Ia) on their expansion velocities at maximum light, measured from the Si II λ6355 spectral feature. We construct a new hierarchical Bayesian regression model, accounting for the random effects of intrinsic scatter, measurement error, and reddening by host galaxy dust, and implement a Gibbs sampler and deviance information criteria to estimate the correlation. The method is applied to the apparent colors from BVRI light curves and Si II velocity data for 79 nearby SNe Ia. The apparent color distributions of high-velocity (HV) and normal velocity (NV) supernovae exhibit significant discrepancies for B – V and B – R, but not other colors. Hence, they are likely due to intrinsic color differences originating in the B band, rather than dust reddening. The mean intrinsic B – V and B – R color differences between HV and NV groups are 0.06 ± 0.02 and 0.09 ± 0.02 mag, respectively. A linear model finds significant slopes of –0.021 ± 0.006 and –0.030 ± 0.009 mag (10 3 km s –1 ) –1 for intrinsic B – V and B – R colors versus velocity, respectively. Because the ejecta velocity distribution is skewed toward high velocities, these effects imply non-Gaussian intrinsic color distributions with skewness up to +0.3. Accounting for the intrinsic-color-velocity correlation results in corrections to A V extinction estimates as large as –0.12 mag for HV SNe Ia and +0.06 mag for NV events. Velocity measurements from SN Ia spectra have the potential to diminish systematic errors from the confounding of intrinsic colors and dust reddening affecting supernova distances

  19. Discovery of Ten ASAS-SN Supernovae

    Science.gov (United States)

    Nicholls, B.; Brimacombe, J.; Kiyota, S.; Stone, G.; Cruz, I.; Trappett, D.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.

    2018-03-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the "Leavitt" telescope in Fort Davis, Texas, the "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  20. Discovery of 11 ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Fernandez, J. M.; Stone, G.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Nicholls, B.

    2018-04-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the "Leavitt" telescope in Fort Davis, Texas, the "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  1. MODELING SNR CASSIOPEIA A FROM THE SUPERNOVA EXPLOSION TO ITS CURRENT AGE: THE ROLE OF POST-EXPLOSION ANISOTROPIES OF EJECTA

    Energy Technology Data Exchange (ETDEWEB)

    Orlando, S.; Miceli, M.; Pumo, M. L.; Bocchino, F., E-mail: orlando@astropa.inaf.it [INAF—Osservatorio Astronomico di Palermo “G.S. Vaiana,” Piazza del Parlamento 1, I-90134 Palermo (Italy)

    2016-05-01

    The remnants of core-collapse supernovae (SNe) have complex morphologies that may reflect asymmetries and structures developed during the progenitor SN explosion. Here we investigate how the morphology of the supernova remnant Cassiopeia A (Cas A) reflects the characteristics of the progenitor SN with the aim of deriving the energies and masses of the post-explosion anisotropies responsible for the observed spatial distribution of Fe and Si/S. We model the evolution of Cas A from the immediate aftermath of the progenitor SN to the three-dimensional interaction of the remnant with the surrounding medium. The post-explosion structure of the ejecta is described by small-scale clumping of material and larger-scale anisotropies. The hydrodynamic multi-species simulations consider an appropriate post-explosion isotopic composition of the ejecta. The observed average expansion rate and shock velocities can be well reproduced by models with ejecta mass M {sub ej} ≈ 4 M {sub ⊙} and explosion energy E {sub SN} ≈ 2.3 × 10{sup 51} erg. The post-explosion anisotropies (pistons) reproduce the observed distributions of Fe and Si/S if they had a total mass of ≈0.25 M {sub ⊙} and a total kinetic energy of ≈1.5 × 10{sup 50} erg. The pistons produce a spatial inversion of ejecta layers at the epoch of Cas A, leading to the Si/S-rich ejecta physically interior to the Fe-rich ejecta. The pistons are also responsible for the development of the bright rings of Si/S-rich material which form at the intersection between the reverse shock and the material accumulated around the pistons during their propagation. Our result supports the idea that the bulk of asymmetries observed in Cas A are intrinsic to the explosion.

  2. The ν process in the innermost supernova ejecta

    Directory of Open Access Journals (Sweden)

    Sieverding Andre

    2017-01-01

    Full Text Available The neutrino-induced nucleosynthesis (ν process in supernova explosions of massive stars of solar metallicity with initial main sequence masses between 13 and 30 M⊙ has been studied with an analytic explosion model using a new extensive set of neutrino-nucleus cross-sections and spectral properties that agree with modern supernova simulations. The production factors for the nuclei 7Li, 11B, 19F, 138La and 180Ta, are still significantly enhanced but do not reproduce the full solar abundances. We study the possible contribution of the innermost supernova eject to the production of the light elements 7Li and 11B with tracer particles based on a 2D supernova simulation of a 12 M⊙ progenitor and conclude, that a contribution exists but is negligible for the total yield for this explosion model.

  3. The ν process in the innermost supernova ejecta

    Energy Technology Data Exchange (ETDEWEB)

    Sieverding, Andre [Institut für Kernphysik, Technische Universität Darmstadt, Germany; Martínez-Pinedo, Gabriel [Institut für Kernphysik, Technische Universität Darmstadt, Germany; Langanke, Karlheinz [Gesellschaft fur Schwerionenforschung (GSI), Germany; Harris, James Austin [ORNL; Hix, William Raphael [ORNL

    2017-12-01

    The neutrino-induced nucleosynthesis (ν process) in supernova explosions of massive stars of solar metallicity with initial main sequence masses between 13 and 30 M⊙ has been studied with an analytic explosion model using a new extensive set of neutrino-nucleus cross-sections and spectral properties that agree with modern supernova simulations. The production factors for the nuclei 7Li, 11B, 19F, 138La and 180Ta, are still significantly enhanced but do not reproduce the full solar abundances. We study the possible contribution of the innermost supernova eject to the production of the light elements 7Li and 11B with tracer particles based on a 2D supernova simulation of a 12 M⊙ progenitor and conclude, that a contribution exists but is negligible for the total yield for this explosion model.

  4. The interaction of supernova ejecta with an ambient medium

    International Nuclear Information System (INIS)

    Chevalier, R.A.

    1983-01-01

    Plausible environments for supernovae are the interstellar medium with constant density or a circumstellar medium built up by mass loss with rho proportional to r -2 . Self-similar solutions for the interaction region between the expanding supernova gas and the ambient gas exist provided that the expanding gas has rho proportional to rsup(-n) with n > 5. The circumstellar medium case is likely to be important for the early evolution of Type II supernovae because their progenitor stars are probably red supergiants. The radio and X-ray emission observed from extragalactic supernovae may be from this interaction region. The early self-similar solutions can also be applied to the young galactic remnants. (Auth.)

  5. Discovery of 7 ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Castro, N.; Clocchiatti, A.; Stone, G.; Nicholls, B.; Fernandez, J. M.; Cacella, P.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Bock, G.

    2018-06-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  6. Discovery of 9 ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Castro, N.; Clocchiatti, A.; Cacella, P.; Wiethoff, W.; Krannich, G.; Stone, G.; Kiyota, S.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Bock, G.

    2018-05-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  7. Discovery of 8 ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Kiyota, S.; Wiethoff, W.; Stone, G.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Bock, G.

    2018-06-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  8. Discovery of Six ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Stone, G.; Kiyota, S.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Bock, G.; Cornect, R.

    2018-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  9. Discovery of 8 ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Tomasella, Lina; Krannich, G.; Stone, G.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Nicholls, B.; Cacella, P.; Kiyota, S.

    2018-05-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  10. Discovery of Eight ASAS-SN Supernovae

    Science.gov (United States)

    Stone, G.; Brimacombe, J.; Cacella, P.; Farfan, R. G.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Trappett, D.

    2018-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  11. Discovery of Four ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Kiyota, S.; Cruz, I.; Stone, G.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.

    2018-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  12. Discovery of Nine ASAS-SN Supernovae

    Science.gov (United States)

    Cacella, P.; Brimacombe, J.; Fernandez, J. M.; Kiyota, S.; Krannich, G.; Koff, R. A.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Aslan, L.; Bock, G.; Stone, G.

    2018-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  13. Discovery of Five ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Stone, G.; Kiyota, S.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.

    2018-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  14. X-ray emission due to interaction of SN1987A ejecta with its progenitor's stellar-wind matter

    International Nuclear Information System (INIS)

    Masai, Kuniaki.

    1990-06-01

    The progenitor of the supernova 1987A, Sk-69 202 probably had lost a considerable amount of mass in its stellar wind in the past evolutionary track through a red supergiant to a blue supergiant. In about 10 years, the expanding ejecta of SN1987A will catch up to collide with the wind matter ejected in the red supergiant phase. Shocks due to the collision will heat up the ejecta and the wind matter to cause an enhancement of thermal X-ray emission lasting for several decades. We predict the X-ray light curve and the spectrum as well as the epoch of the enhancement intending to encourage future X-ray observations, which will give a clue for the study of such peculiar stellar evolution with a blueward transition as Sk-69 202. (author)

  15. THE CHEMISTRY OF POPULATION III SUPERNOVA EJECTA. II. THE NUCLEATION OF MOLECULAR CLUSTERS AS A DIAGNOSTIC FOR DUST IN THE EARLY UNIVERSE

    International Nuclear Information System (INIS)

    Cherchneff, Isabelle; Dwek, Eli

    2010-01-01

    We study the formation of molecular precursors to dust in the ejecta of Population III supernovae (Pop. III SNe) using a chemical kinetic approach to follow the evolution of small dust cluster abundances from day 100 to day 1000 after explosion. Our work focuses on zero-metallicity 20 M sun and 170 M sun progenitors, and we consider fully macroscopically mixed and unmixed ejecta. The dust precursors comprise molecular chains, rings, and small clusters of chemical composition relevant to the initial elemental composition of the ejecta under study. The nucleation stage for small silica, metal oxides and sulfides, pure metal, and carbon clusters is described with a new chemical reaction network highly relevant to the kinetic description of dust formation in hot circumstellar environments. We consider the effect of the pressure dependence of critical nucleation rates and test the impact of microscopically mixed He + on carbon dust formation. Two cases of metal depletion on silica clusters (full and no depletion) are considered to derive upper limits to the amounts of dust produced in SN ejecta at 1000 days, while the chemical composition of clusters gives a prescription for the type of dust formed in Pop. III SNe. We show that the cluster mass produced in the fully mixed ejecta of a 170 M sun progenitor is ∼ 25 M sun whereas its 20 M sun counterpart forms ∼ 0.16 M sun of clusters. The unmixed ejecta of a 170 M sun progenitor SN synthesize ∼5.6 M sun of small clusters, while its 20 M sun counterpart produces ∼0.103 M sun . Our results point to smaller amounts of dust formed in the ejecta of Pop. III SNe by a factor of ∼ 5 compared to values derived by previous studies, and to different dust chemical compositions. Such deviations result from some erroneous assumptions made, the inappropriate use of classical nucleation theory to model dust formation, and the omission of the synthesis of molecules in SN ejecta. We also find that the unmixed ejecta of massive Pop

  16. The Chemistry of Population III Supernova Ejecta. II. The Nucleation of Molecular Clusters as a Diagnostic for Dust in the Early Universe

    Science.gov (United States)

    Cherchneff, Isabelle; Dwek, Eli

    2010-04-01

    We study the formation of molecular precursors to dust in the ejecta of Population III supernovae (Pop. III SNe) using a chemical kinetic approach to follow the evolution of small dust cluster abundances from day 100 to day 1000 after explosion. Our work focuses on zero-metallicity 20 M sun and 170 M sun progenitors, and we consider fully macroscopically mixed and unmixed ejecta. The dust precursors comprise molecular chains, rings, and small clusters of chemical composition relevant to the initial elemental composition of the ejecta under study. The nucleation stage for small silica, metal oxides and sulfides, pure metal, and carbon clusters is described with a new chemical reaction network highly relevant to the kinetic description of dust formation in hot circumstellar environments. We consider the effect of the pressure dependence of critical nucleation rates and test the impact of microscopically mixed He+ on carbon dust formation. Two cases of metal depletion on silica clusters (full and no depletion) are considered to derive upper limits to the amounts of dust produced in SN ejecta at 1000 days, while the chemical composition of clusters gives a prescription for the type of dust formed in Pop. III SNe. We show that the cluster mass produced in the fully mixed ejecta of a 170 M sun progenitor is ~ 25 M sun whereas its 20 M sun counterpart forms ~ 0.16 M sun of clusters. The unmixed ejecta of a 170 M sun progenitor SN synthesize ~5.6 M sun of small clusters, while its 20 M sun counterpart produces ~0.103 M sun. Our results point to smaller amounts of dust formed in the ejecta of Pop. III SNe by a factor of ~ 5 compared to values derived by previous studies, and to different dust chemical compositions. Such deviations result from some erroneous assumptions made, the inappropriate use of classical nucleation theory to model dust formation, and the omission of the synthesis of molecules in SN ejecta. We also find that the unmixed ejecta of massive Pop. III SNe

  17. The Transition of a Type IIL Supernova into a Supernova Remnant: Late-time Observations of SN 2013by

    Energy Technology Data Exchange (ETDEWEB)

    Black, C. S.; Fesen, R. A. [6127 Wilder Lab, Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Milisavljevic, D.; Patnaude, D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Margutti, R. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Parker, S. [Parkdale Observatory, 225 Warren Road, RDl Oxford, Canterbury 7495 (New Zealand)

    2017-10-10

    We present early-time Swift and Chandra X-ray data along with late-time optical and near-infrared observations of SN 2013by, a Type IIL supernova (SN) that occurred in the nearby spiral galaxy ESO 138−G10 ( D ∼ 14.8 Mpc). Optical and NIR photometry and spectroscopy follow the late-time evolution of the SN from days +89 to +457 post maximum brightness. The optical spectra and X-ray light curves are consistent with the picture of an SN having prolonged interaction with circumstellar material (CSM) that accelerates the transition from SN to supernova remnant (SNR). Specifically, we find SN 2013by’s H α profile exhibits significant broadening (∼10,000 km s{sup −1}) on day +457, the likely consequence of high-velocity, H-rich material being excited by a reverse shock. A relatively flat X-ray light curve is observed that cannot be modeled using Inverse Compton scattering processes alone, but requires an additional energy source most likely originating from the SN-CSM interaction. In addition, we see the first overtone of CO emission near 2.3 μ m on day +152, signaling the formation of molecules and dust in the SN ejecta and is the first time CO has been detected in a Type IIL SN. We compare SN 2013by with Type IIP SNe, whose spectra show the rarely observed SN-to-SNR transition in varying degrees and conclude that Type IIL SNe may enter the remnant phase at earlier epochs than their Type IIP counterparts.

  18. The Three-Dimensional Expansion of the Ejecta from Tycho's Supernova Remnant

    Science.gov (United States)

    Williams, Brian J.; Coyle, Nina; Yamaguchi, Hiroya; DePasquale, Joseph M.; Seitenzahl, Ivo Rolf; Hewitt, John W.; Blondin, John M.; Borkowski, Kazimierz J.; Ghavamian, Parviz; Petre, Robert; Reynolds, Stephen P.

    2017-08-01

    We present the first three-dimensional measurements of the velocity of various ejecta knots in Tycho's supernova remnant, known to result from a Type Ia explosion. Chandra X-ray observations over a 12-year baseline from 2003 to 2015 allow us to measure the proper motion of nearly 60 ``tufts'' of Si-rich ejecta, giving us the velocity in the plane of the sky. For the line of sight velocity, we use two different methods: a non-equilibrium ionization model fit to the strong Si and S lines in the 1.2-2.8 keV regime, and a fit consisting of a series of Gaussian lines. These methods give consistent results, allowing us to determine the red or blue shift of each of the knots. Assuming a distance of 3.5 kpc, we find total velocities that range from 2400 to 6600 km s$^{-1}$, with a mean of 4430 km s$^{-1}$. We find several regions where the ejecta knots have overtaken the forward shock. These regions have proper motions in excess of 6000 km s$^{-1}$. Some Type Ia supernova explosion models predict a velocity asymmetry in the ejecta. We find no such velocity asymmetries in Tycho, and discuss our findings in light of various explosion models, favoring those delayed detonation models with relatively vigorous and symmetrical deflagrations. Finally, we compare measurements with models of the remnant's evolution that include both smooth and clumpy ejecta profiles, finding that both ejecta profiles can be accommodated by the observations.

  19. Hubble space telescope and ground-based observations of the type Iax supernovae SN 2005hk and SN 2008A

    International Nuclear Information System (INIS)

    McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Chornock, Ryan; Holtzman, Jon A.; Balam, David D.; Branch, David; Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong; Frieman, Joshua; Fynbo, Johan; Leloudas, Giorgos; Galbany, Lluis; Garnavich, Peter M.; Graham, Melissa L.; Hsiao, Eric Y.; Leonard, Douglas C.

    2014-01-01

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with n e ≳ 10 9 cm –3 . Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected 'infrared catastrophe', a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a 'complete deflagration' that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  20. Hubble space telescope and ground-based observations of the type Iax supernovae SN 2005hk and SN 2008A

    Energy Technology Data Exchange (ETDEWEB)

    McCully, Curtis; Jha, Saurabh W. [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Foley, Ryan J. [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Chornock, Ryan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Holtzman, Jon A. [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Balam, David D. [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Branch, David [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Frieman, Joshua [Kavli Institute for Cosmological Physics and Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Fynbo, Johan; Leloudas, Giorgos [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Galbany, Lluis [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Garnavich, Peter M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Graham, Melissa L. [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Leonard, Douglas C., E-mail: cmccully@physics.rutgers.edu [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); and others

    2014-05-10

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with n{sub e} ≳ 10{sup 9} cm{sup –3}. Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected 'infrared catastrophe', a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a 'complete deflagration' that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  1. RUNAWAY DWARF CARBON STARS AS CANDIDATE SUPERNOVA EJECTA

    Energy Technology Data Exchange (ETDEWEB)

    Plant, Kathryn A.; Margon, Bruce; Guhathakurta, Puragra; Cunningham, Emily C.; Toloba, Elisa [Department of Astronomy and Astrophysics and University of California Observatories, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Munn, Jeffrey A., E-mail: kaplant@ucsc.edu [US Naval Observatory, Flagstaff Station, 10391 West Naval Observatory Road, Flagstaff, AZ 86005-8521 (United States)

    2016-12-20

    The dwarf carbon (dC) star SDSS J112801.67+004034.6 has an unusually high radial velocity, 531 ± 4 km s{sup −1}. We present proper motion and new spectroscopic observations which imply a large Galactic rest frame velocity, 425 ± 9 km s{sup −1}. Several other SDSS dC stars are also inferred to have very high galactocentric velocities, again each based on both high heliocentric radial velocity and also confidently detected proper motions. Extreme velocities and the presence of C {sub 2} bands in the spectra of dwarf stars are both rare. Passage near the Galactic center can accelerate stars to such extreme velocities, but the large orbital angular momentum of SDSS J1128 precludes this explanation. Ejection from a supernova in a binary system or disruption of a binary by other stars are possibilities, particularly as dC stars are thought to obtain their photospheric C {sub 2} via mass transfer from an evolved companion.

  2. Early Observations of the Type Ia Supernova iPTF 16abc: A Case of Interaction with Nearby, Unbound Material and/or Strong Ejecta Mixing

    Science.gov (United States)

    Miller, A. A.; Cao, Y.; Piro, A. L.; Blagorodnova, N.; Bue, B. D.; Cenko, S. B.; Dhawan, S.; Ferretti, R.; Fox, O. D.; Fremling, C.; Goobar, A.; Howell, D. A.; Hosseinzadeh, G.; Kasliwal, M. M.; Laher, R. R.; Lunnan, R.; Masci, F. J.; McCully, C.; Nugent, P. E.; Sollerman, J.; Taddia, F.; Kulkarni, S. R.

    2018-01-01

    Early observations of Type Ia supernovae (SNe Ia) provide a unique probe of their progenitor systems and explosion physics. Here we report the intermediate Palomar Transient Factory (iPTF) discovery of an extraordinarily young SN Ia, iPTF 16abc. By fitting a power law to our early light curve, we infer that first light for the SN, that is, when the SN could have first been detected by our survey, occurred only 0.15{+/- }0.070.15 days before our first detection. In the ∼24 hr after discovery, iPTF 16abc rose by ∼2 mag, featuring a near-linear rise in flux for ≳ 3 days. Early spectra show strong C II absorption, which disappears after ∼7 days. Unlike the extensively observed Type Ia SN 2011fe, the {(B-V)}0 colors of iPTF 16abc are blue and nearly constant in the days after explosion. We show that our early observations of iPTF 16abc cannot be explained by either SN shock breakout and the associated, subsequent cooling or the SN ejecta colliding with a stellar companion. Instead, we argue that the early characteristics of iPTF 16abc, including (i) the rapid, near-linear rise, (ii) the nonevolving blue colors, and (iii) the strong C II absorption, are the result of either ejecta interaction with nearby, unbound material or vigorous mixing of radioactive 56Ni in the SN ejecta, or a combination of the two. In the next few years, dozens of very young normal SNe Ia will be discovered, and observations similar to those presented here will constrain the white dwarf explosion mechanism.

  3. The ASAS-SN bright supernova catalogue - III. 2016

    Science.gov (United States)

    Holoien, T. W.-S.; Brown, J. S.; Stanek, K. Z.; Kochanek, C. S.; Shappee, B. J.; Prieto, J. L.; Dong, Subo; Brimacombe, J.; Bishop, D. W.; Bose, S.; Beacom, J. F.; Bersier, D.; Chen, Ping; Chomiuk, L.; Falco, E.; Godoy-Rivera, D.; Morrell, N.; Pojmanski, G.; Shields, J. V.; Strader, J.; Stritzinger, M. D.; Thompson, Todd A.; Woźniak, P. R.; Bock, G.; Cacella, P.; Conseil, E.; Cruz, I.; Fernandez, J. M.; Kiyota, S.; Koff, R. A.; Krannich, G.; Marples, P.; Masi, G.; Monard, L. A. G.; Nicholls, B.; Nicolas, J.; Post, R. S.; Stone, G.; Wiethoff, W. S.

    2017-11-01

    This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (mpeak ≤ 17), spectroscopically confirmed supernovae discovered in 2016. We then gather the near-infrared through ultraviolet magnitudes of all host galaxies and the offsets of the supernovae from the centres of their hosts from public data bases. We illustrate the results using a sample that now totals 668 supernovae discovered since 2014 May 1, including the supernovae from our previous catalogues, with type distributions closely matching those of the ideal magnitude limited sample from Li et al. This is the third of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.

  4. GAMMA RAYS FROM TYPE Ia SUPERNOVA SN 2014J

    International Nuclear Information System (INIS)

    Churazov, E.; Sunyaev, R.; Grebenev, S.; Isern, J.; Bikmaev, I.; Bravo, E.; Chugai, N.; Jean, P.; Knödlseder, J.; Lebrun, F.; Kuulkers, E.

    2015-01-01

    The whole set of INTEGRAL observations of Type Ia supernova SN 2014J, covering the period 19–162 days after the explosion, has been analyzed. For spectral fitting the data are split into early and late periods covering days 19–35 and 50–162, respectively, optimized for 56 Ni and 56 Co lines. As expected for the early period, much of the gamma-ray signal is confined to energies below ∼200 keV, while for the late period it is strongest above 400 keV. In particular, in the late period, 56 Co lines at 847 and 1248 keV are detected at 4.7σ and 4.3σ, respectively. The light curves in several representative energy bands are calculated for the entire period. The resulting spectra and light curves are compared with a subset of models. We confirm our previous finding that the gamma-ray data are broadly consistent with the expectations for canonical one-dimensional models, such as delayed detonation or deflagration models for a near-Chandrasekhar mass white dwarf. Late optical spectra (day 136 after the explosion) show rather symmetric Co and Fe line profiles, suggesting that, unless the viewing angle is special, the distribution of radioactive elements is symmetric in the ejecta

  5. INTERACTING SUPERNOVAE AND SUPERNOVA IMPOSTORS: SN 2009ip, IS THIS THE END?

    International Nuclear Information System (INIS)

    Pastorello, A.; Cappellaro, E.; Benetti, S.; Inserra, C.; Smartt, S. J.; Fraser, M.; Pignata, G.; Takáts, K.; Bufano, F.; Valenti, S.; Benitez, S.; Botticella, M. T.; Brimacombe, J.; Cellier-Holzem, F.; Costado, M. T.; Cupani, G.; Curtis, I.; Elias-Rosa, N.; Ergon, M.; Fynbo, J. P. U.

    2013-01-01

    We report the results of a three-year-long dedicated monitoring campaign of a restless luminous blue variable (LBV) in NGC 7259. The object, named SN 2009ip, was observed photometrically and spectroscopically in the optical and near-infrared domains. We monitored a number of erupting episodes in the past few years, and increased the density of our observations during eruptive episodes. In this paper, we present the full historical data set from 2009 to 2012 with multi-wavelength dense coverage of the two high-luminosity events between 2012 August and September. We construct bolometric light curves and measure the total luminosities of these eruptive or explosive events. We label them the 2012a event (lasting ∼50 days) with a peak of 3 × 10 41 erg s –1 , and the 2012b event (14 day rise time, still ongoing) with a peak of 8 × 10 42 erg s –1 . The latter event reached an absolute R-band magnitude of about –18, comparable to that of a core-collapse supernova (SN). Our historical monitoring has detected high-velocity spectral features (∼13,000 km s –1 ) in 2011 September, one year before the current SN-like event. This implies that the detection of such high-velocity outflows cannot, conclusively, point to a core-collapse SN origin. We suggest that the initial peak in the 2012a event was unlikely to be due to a faint core-collapse SN. We propose that the high intrinsic luminosity of the latest peak, the variability history of SN 2009ip, and the detection of broad spectral lines indicative of high-velocity ejecta are consistent with a pulsational pair-instability event, and that the star may have survived the last outburst. The question of the survival of the LBV progenitor star and its future fate remain open issues, only to be answered with future monitoring of this historically unique explosion.

  6. THE MORPHOLOGY OF THE EJECTA IN SUPERNOVA 1987A: A STUDY OVER TIME AND WAVELENGTH

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Josefin [KTH, Department of Physics, and the Oskar Klein Centre, AlbaNova, SE-106 91 Stockholm (Sweden); Fransson, Claes; Lundqvist, Peter; Sollerman, Jesper [Department of Astronomy and the Oskar Klein Centre, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Kjaer, Karina; Leibundgut, Bruno; Spyromilio, Jason [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Jerkstrand, Anders [Astrophysics Research Centre, School of Maths and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Kirshner, Robert P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-78, Cambridge, MA 02138 (United States); Mattila, Seppo [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Vaeisaelaentie 20, FI-21500 Piikkioe (Finland); McCray, Richard [JILA, University of Colorado, Boulder, CO 80309-0440 (United States); Wheeler, J. Craig [Department of Astronomy, University of Texas, Austin, TX 78712-0259 (United States)

    2013-05-01

    We present a study of the morphology of the ejecta in Supernova 1987A based on images and spectra from the Hubble Space Telescope (HST) as well as integral field spectroscopy from VLT/SINFONI. The HST observations were obtained between 1994 and 2011 and primarily probe the outer H-rich zones of the ejecta. The SINFONI observations were obtained in 2005 and 2011 and instead probe the [Si I]+[Fe II] emission from the inner regions. We find a strong temporal evolution of the morphology in the HST images, from a roughly elliptical shape before {approx}5000 days, to a more irregular, edge-brightened morphology with a ''hole'' in the middle thereafter. This transition is a natural consequence of the change in the dominant energy source powering the ejecta, from radioactive decay before {approx}5000 days to X-ray input from the circumstellar interaction thereafter. The [Si I]+[Fe II] images display a more uniform morphology, which may be due to a remaining significant contribution from radioactivity in the inner ejecta and the higher abundance of these elements in the core. Both the H{alpha} and the [Si I]+[Fe II] line profiles show that the ejecta are distributed fairly close to the plane of the inner circumstellar ring, which is assumed to define the rotational axis of the progenitor star. The H{alpha} emission extends to higher velocities than [Si I]+[Fe II], as expected from theoretical models. There is no clear symmetry axis for all the emission. Instead, we find that the emission is concentrated to clumps and that the emission is distributed somewhat closer to the ring in the north than in the south. This north-south asymmetry may be partially explained by dust absorption. We compare our results with explosion models and find some qualitative agreement, but note that the observations show a higher degree of large-scale asymmetry.

  7. Physics, SN1987A, and the next nearby supernova

    International Nuclear Information System (INIS)

    Burrows, A.

    1989-01-01

    The scientific community has extracted quite a bit of information from SN1987A, some of it enduring. I will summarize what I believe we learned, what we did not learn, and what we can learn about supernovae, neutrinos, and particle physics when the next galactic supernova explodes onto the news

  8. SN 2014J at M82 - I. A middle-class Type Ia supernova by all spectroscopic metrics

    Science.gov (United States)

    Galbany, L.; Moreno-Raya, M. E.; Ruiz-Lapuente, P.; González Hernández, J. I.; Méndez, J.; Vallely, P.; Baron, E.; Domínguez, I.; Hamuy, M.; López-Sánchez, A. R.; Mollá, M.; Catalán, S.; Cooke, E. A.; Fariña, C.; Génova-Santos, R.; Karjalainen, R.; Lietzen, H.; McCormac, J.; Riddick, F. C.; Rubiño-Martín, J. A.; Skillen, I.; Tudor, V.; Vaduvescu, O.

    2016-03-01

    We present the intensive spectroscopic follow up of the Type Ia supernova (SN Ia) 2014J in the starburst galaxy M82. Twenty-seven optical spectra have been acquired from 2014 January 22 to September 1 with the Isaac Newton and William Herschel Telescopes. After correcting the observations for the recession velocity of M82 and for Milky Way and host galaxy extinction, we measured expansion velocities from spectral line blueshifts and pseudo-equivalent width of the strongest features in the spectra, which gives an idea on how elements are distributed within the ejecta. We position SN 2014J in the Benetti, Branch et al. and Wang et al. diagrams. These diagrams are based on properties of the Si II features and provide dynamical and chemical information about the SN ejecta. The nearby SN 2011fe, which showed little evidence for reddening in its host galaxy, is shown as a reference for comparisons. SN 2014J is a border-line object between the Core-normal and Broad-line groups, which corresponds to an intermediate position between low-velocity gradient and high-velocity gradient objects. SN 2014J follows the R(Si II)-Δm15 correlation, which confirms its classification as a relatively normal SN Ia. Our description of the SN Ia in terms of the evolution of the pseudo-equivalent width of various ions as well as the position in the various diagrams put this specific SN Ia into the overall sample of SN Ia.

  9. Freely Expanding Knots of X-Ray-emitting Ejecta in Kepler’s Supernova Remnant

    Science.gov (United States)

    Sato, Toshiki; Hughes, John P.

    2017-08-01

    We report measurements of proper motion, radial velocity, and elemental composition for 14 compact X-ray-bright knots in Kepler’s supernova remnant (SNR) using archival Chandra data. The knots with the highest speed show both large proper motions (μ ˜ 0.″11-0.″14 yr-1) and high radial velocities (v ˜ 8700-10,020 km s-1). For these knots the estimated space velocities (9100 km s-1 ≲ v 3D ≲ 10,400 km s-1) are similar to the typical Si velocity seen in supernovae (SNe) Ia near maximum light. High-speed ejecta knots appear only in specific locations and are morphologically and kinematically distinct from the rest of the ejecta. The proper motions of five knots extrapolate back over the age of Kepler’s SNR to a consistent central position. This new kinematic center agrees well with previous determinations, but is less subject to systematic errors and denotes a location about which several prominent structures in the remnant display a high degree of symmetry. These five knots are expanding at close to the free expansion rate (expansion indices of 0.75 ≲ m ≲ 1.0), which we argue indicates either that they were formed in the explosion with a high density contrast (more than 100 times the ambient density) or that they have propagated through regions of relatively low density (n H ruled out.

  10. X-RAY EJECTA KINEMATICS OF THE GALACTIC CORE-COLLAPSE SUPERNOVA REMNANT G292.0+1.8

    Energy Technology Data Exchange (ETDEWEB)

    Bhalerao, Jayant; Park, Sangwook [Department of Physics, University of Texas at Arlington, P.O. Box 19059, Arlington, TX 76019 (United States); Dewey, Daniel [MIT Kavli Institute, Cambridge, MA 02139 (United States); Hughes, John P. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States); Mori, Koji [Department of Applied Physics, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192 (Japan); Lee, Jae-Joon, E-mail: jayant.bhalerao@mavs.uta.edu [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

    2015-02-10

    We report on the results from the analysis of our 114 ks Chandra High Energy Transmision Grating Spectrometer observation of the Galactic core-collapse supernova remnant G292.0+1.8. To probe the three-dimensional structure of the clumpy X-ray emitting ejecta material in this remnant, we measured Doppler shifts in emission lines from metal-rich ejecta knots projected at different radial distances from the expansion center. We estimate radial velocities of ejecta knots in the range of –2300 ≲ v{sub r}  ≲ 1400 km s{sup –1}. The distribution of ejecta knots in velocity versus projected-radius space suggests an expanding ejecta shell with a projected angular thickness of ∼90'' (corresponding to ∼3 pc at d = 6 kpc). Based on this geometrical distribution of the ejecta knots, we estimate the location of the reverse shock approximately at the distance of ∼4 pc from the center of the supernova remnant, putting it in close proximity to the outer boundary of the radio pulsar wind nebula. Based on our observed remnant dynamics and the standard explosion energy of 10{sup 51} erg, we estimate the total ejecta mass to be ≲8 M {sub ☉}, and we propose an upper limit of ≲35 M {sub ☉} on the progenitor's mass.

  11. X-RAY AND RADIO EMISSION FROM TYPE IIn SUPERNOVA SN 2010jl

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Poonam [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune University Campus, Pune 411 007 (India); Chevalier, Roger A. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Chugai, Nikolai [Institute of Astronomy of Russian Academy of Sciences, Pyatnitskaya St. 48, 109017 Moscow (Russian Federation); Fransson, Claes [Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Soderberg, Alicia M., E-mail: poonam@ncra.tifr.res.in [Smithsonian Astrophysical Observatory, 60 Garden St., MS-20, Cambridge, MA 02138 (United States)

    2015-09-01

    We present all X-ray and radio observations of the Type IIn supernova SN 2010jl. The X-ray observations cover a period up to day 1500 with Chandra, XMM-Newton, NuSTAR, and Swift-X-ray Telescope (XRT). The Chandra observations after 2012 June, the XMM-Newton observation in 2013 November, and most of the Swift-XRT observations until 2014 December are presented for the first time. All the spectra can be fitted by an absorbed hot thermal model except for Chandra spectra on 2011 October and 2012 June when an additional component is needed. Although the origin of this component is uncertain, it is spatially coincident with the supernova and occurs when there are changes to the supernova spectrum in the energy range close to that of the extra component, indicating that the emission is related to the supernova. The X-ray light curve shows an initial plateau followed by a steep drop starting at day ∼300. We attribute the drop to a decrease in the circumstellar density. The column density to the X-ray emission drops rapidly with time, showing that the absorption is in the vicinity of the supernova. We also present Very Large Array radio observations of SN 2010jl. Radio emission was detected from SN 2010jl from day 570 onwards. The radio light curves and spectra suggest that the radio luminosity was close to its maximum at the first detection. The velocity of the shocked ejecta derived assuming synchrotron self-absorption is much less than that estimated from the optical and X-ray observations, suggesting that free–free absorption dominates.

  12. Radio Emission from Pulsar Wind Nebulae without Surrounding Supernova Ejecta: Application to FRB 121102

    International Nuclear Information System (INIS)

    Dai, Z. G.; Wang, J. S.; Yu, Y. W.

    2017-01-01

    In this paper, we propose a new scenario in which a rapidly rotating strongly magnetized pulsar without any surrounding supernova ejecta repeatedly produces fast radio bursts (FRBs) via a range of possible mechanisms; simultaneously, an ultra-relativistic electron/positron pair wind from the pulsar sweeps up its ambient dense interstellar medium, giving rise to a non-relativistic pulsar wind nebula (PWN). We show that the synchrotron radio emission from such a PWN is bright enough to account for the recently discovered persistent radio source associated with the repeating FRB 121102 within reasonable ranges of the model parameters. Our PWN scenario is consistent with the non-evolution of the dispersion measure inferred from all of the repeating bursts observed in four years.

  13. Radio Emission from Pulsar Wind Nebulae without Surrounding Supernova Ejecta: Application to FRB 121102

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Z. G.; Wang, J. S. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Yu, Y. W., E-mail: dzg@nju.edu.cn [Institute of Astrophysics, Central China Normal University, Wuhan 430079 (China)

    2017-03-20

    In this paper, we propose a new scenario in which a rapidly rotating strongly magnetized pulsar without any surrounding supernova ejecta repeatedly produces fast radio bursts (FRBs) via a range of possible mechanisms; simultaneously, an ultra-relativistic electron/positron pair wind from the pulsar sweeps up its ambient dense interstellar medium, giving rise to a non-relativistic pulsar wind nebula (PWN). We show that the synchrotron radio emission from such a PWN is bright enough to account for the recently discovered persistent radio source associated with the repeating FRB 121102 within reasonable ranges of the model parameters. Our PWN scenario is consistent with the non-evolution of the dispersion measure inferred from all of the repeating bursts observed in four years.

  14. Hydrodynamical models of supernova SN 1987 A in the LMC

    International Nuclear Information System (INIS)

    Grassberg, E.K.; Imshennik, V.S.; Nadezhin, D.K.; Utrobin, V.P.

    1987-01-01

    It is shown that the properties of SN 1987A in LMC can be described well by hydrodynamical models of explosions of compact massive stars. In accordance with these models, the mass of the expelled envelope the presupernova radius and the total energy of explosion are evaluated for SN 1987A to be ∼ 16M Sun , ∼ 30R Sun , and ∼ 3.10 51 erg, respectively. The progenitor of supernova remnant Cas A may be considered as the prototype to the SN 1987A in our own Galaxy. In other galaxies, this subtype of supernovae can be represented by SN 1948B in NGC6946. If energy of explosion transfers from collapsed core of the star to the envelope within timescale less than 1 hour, then delay Δt ∼ 3 hours between the neutrino pulse and the steep rise of optical luminosity of SN 1987A does not contradict with scenario of explosions of compact massive stars

  15. SN 2009bb: A PECULIAR BROAD-LINED TYPE Ic SUPERNOVA ,

    International Nuclear Information System (INIS)

    Pignata, Giuliano; Stritzinger, Maximilian; Phillips, M. M.; Morrell, Nidia; Boldt, Luis; Campillay, Abdo; Contreras, Carlos; Gonzalez, Sergio; Krzeminski, Wojtek; Roth, Miguel; Salgado, Francisco; Soderberg, Alicia; Mazzali, Paolo; Anderson, J. P.; Folatelli, Gaston; Foerster, Francisco; Hamuy, Mario; Maza, Jose; Levesque, Emily M.; Rest, Armin

    2011-01-01

    Ultraviolet, optical, and near-infrared photometry and optical spectroscopy of the broad-lined Type Ic supernova (SN) 2009bb are presented, following the flux evolution from -10 to +285 days past B-band maximum. Thanks to the very early discovery, it is possible to place tight constraints on the SN explosion epoch. The expansion velocities measured from near maximum spectra are found to be only slightly smaller than those measured from spectra of the prototype broad-lined SN 1998bw associated with GRB 980425. Fitting an analytical model to the pseudobolometric light curve of SN 2009bb suggests that 4.1 ± 1.9 M sun of material was ejected with 0.22 ± 0.06 M sun of it being 56 Ni. The resulting kinetic energy is 1.8 ± 0.7 x 10 52 erg. This, together with an absolute peak magnitude of M B = -18.36 ± 0.44, places SN 2009bb on the energetic and luminous end of the broad-lined Type Ic (SN Ic) sequence. Detection of helium in the early time optical spectra accompanied with strong radio emission and high metallicity of its environment makes SN 2009bb a peculiar object. Similar to the case for gamma-ray bursts (GRBs), we find that the bulk explosion parameters of SN 2009bb cannot account for the copious energy coupled to relativistic ejecta, and conclude that another energy reservoir (a central engine) is required to power the radio emission. Nevertheless, the analysis of the SN 2009bb nebular spectrum suggests that the failed GRB detection is not imputable to a large angle between the line-of-sight and the GRB beamed radiation. Therefore, if a GRB was produced during the SN 2009bb explosion, it was below the threshold of the current generation of γ-ray instruments.

  16. Formation of dust grains in the ejecta of SN 1987A

    International Nuclear Information System (INIS)

    Kozasa, Takashi; Hasegawa, Hiroichi; Nomoto, Kenichi

    1989-01-01

    Formation of dust grains in the ejecta of SN 1987A is investigated on the basis of a theory of homogeneous nucleation and grain growth. The formation of dust grains in the gas ejected from a heavy element-rich mantle is considered, including the effects of latent heat released during grain growth and of radiation from the photosphere. It is shown that dust grains can condense in the heavy-element-rich mantle, and that the time of formation strongly depends on the temperature structure in the ejecta. Moreover, the formation of dust grains is retarded by the strong SN radiation field and the effect of latent heat deposited during grain growth. 41 refs

  17. Freely Expanding Knots of X-Ray-emitting Ejecta in Kepler’s Supernova Remnant

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Toshiki [Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Hughes, John P., E-mail: toshiki@astro.isas.jaxa.jp, E-mail: jph@physics.rutgers.edu [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States)

    2017-08-20

    We report measurements of proper motion, radial velocity, and elemental composition for 14 compact X-ray-bright knots in Kepler’s supernova remnant (SNR) using archival Chandra data. The knots with the highest speed show both large proper motions ( μ ∼ 0.″11–0.″14 yr{sup −1}) and high radial velocities ( v ∼ 8700–10,020 km s{sup −1}). For these knots the estimated space velocities (9100 km s{sup −1} ≲ v {sub 3D} ≲ 10,400 km s{sup −1}) are similar to the typical Si velocity seen in supernovae (SNe) Ia near maximum light. High-speed ejecta knots appear only in specific locations and are morphologically and kinematically distinct from the rest of the ejecta. The proper motions of five knots extrapolate back over the age of Kepler’s SNR to a consistent central position. This new kinematic center agrees well with previous determinations, but is less subject to systematic errors and denotes a location about which several prominent structures in the remnant display a high degree of symmetry. These five knots are expanding at close to the free expansion rate (expansion indices of 0.75 ≲ m ≲ 1.0), which we argue indicates either that they were formed in the explosion with a high density contrast (more than 100 times the ambient density) or that they have propagated through regions of relatively low density ( n {sub H} < 0.1 cm{sup −3}) in the ambient medium. X-ray spectral analysis shows that the undecelerated knots have high Si and S abundances, a lower Fe abundance, and very low O abundance, pointing to an origin in the partial Si-burning zone, which occurs in the outer layer of the exploding white dwarf for models of SNe Ia. Other knots show lower speeds and expansion indices consistent with decelerated ejecta knots or features in the ambient medium overrun by the forward shock. Our new accurate location for the explosion site has well-defined positional uncertainties, allowing for a great reduction in the area to be searched for faint

  18. Supernova mechanisms: Before and after SN1987a

    International Nuclear Information System (INIS)

    Kahana, S.H.

    1987-01-01

    The impact of SN1987a on theoretical studies of the specific mechanism generating Type II supernovae is examined. The explosion energy extracted from analysis of the light curve for SN 1987a is on the edge of distinguishing between a prompt explosion from a hydrodynamic shock and a delayed, neutrino-induced, explosion. The detection of neutrinos from 1987a is also reanalyzed. 30 refs., 2 tabs

  19. The curious case of SN 2011dn: A very peculiar type Ia supernova?

    Science.gov (United States)

    Rachubo, Alisa

    supernova light from its host galaxy, we employ galaxy-subtraction techniques to generate more precise light curves. From these data, we obtain an updated Deltam15( B) value of 1.01 +/- 0.02, which suggests that SN 2011dn is indeed slightly overluminous compared to normal SNe Ia, but perhaps not as overluminous as '91T-like SNe Ia. However, despite this apparent resolution of the spectral and photometric conflict, we find SN 2011dn to still exhibit some unique features. For instance, its near-maximum and especially its post-maximum spectra exhibit an unusually weak Si II lambda6355 feature, even considering that '91T-like SNe Ia spectra tend to have shallow silicon features. Furthermore, we find that SN 2011dn exhibits some unusual UV-optical color evolution, though its early-time UV excess may be linked to unburned carbon in SN 2011dn's ejecta, as indicated by the C III lambda4649 feature in its pre-maximum spectra. Altogether, after a careful reanalysis of the spectral and photometric properties of SN 2011dn, we classify it as slightly overluminous, with '91T-like pre-maximum and near-maximum spectra, but exhibiting some atypical features. SN 2011dn is not as peculiar as anticipated, but still has some characteristics that are unique to it.

  20. No Evidence of Circumstellar Gas Surrounding Type Ia Supernova SN 2017cbv

    Science.gov (United States)

    Ferretti, Raphael; Amanullah, Rahman; Bulla, Mattia; Goobar, Ariel; Johansson, Joel; Lundqvist, Peter

    2017-12-01

    Nearby type Ia supernovae (SNe Ia), such as SN 2017cbv, are useful events to address the question of what the elusive progenitor systems of the explosions are. Hosseinzadeh et al. suggested that the early blue excess of the light curve of SN 2017cbv could be due to the supernova ejecta interacting with a non-degenerate companion star. Some SN Ia progenitor models suggest the existence of circumstellar (CS) environments in which strong outflows create low-density cavities of different radii. Matter deposited at the edges of the cavities should be at distances at which photoionization due to early ultraviolet (UV) radiation of SNe Ia causes detectable changes to the observable Na I D and Ca II H&K absorption lines. To study possible narrow absorption lines from such material, we obtained a time series of high-resolution spectra of SN 2017cbv at phases between ‑14.8 and +83 days with respect to B-band maximum, covering the time at which photoionization is predicted to occur. Both narrow Na I D and Ca II H&K are detected in all spectra, with no measurable changes between the epochs. We use photoionization models to rule out the presence of Na I and Ca II gas clouds along the line of sight of SN 2017cbv between ∼8 × 1016–2 × 1019 cm and ∼1015–1017 cm, respectively. Assuming typical abundances, the mass of a homogeneous spherical CS gas shell with radius R must be limited to {M}{{H} {{I}}}{CSM}R/{10}17[{cm}])}2 {M}ȯ . The bounds point to progenitor models that deposit little gas in their CS environment.

  1. Neutrino properties and supernova SN1987a

    International Nuclear Information System (INIS)

    Nussinov, S.

    1989-01-01

    The use of SN1987a to indicate how limits on neutrino properties can be deduced from the observed neutrino signals is shown. Bounds on possible deviations from relativity are briefly considered. The possible evidence for a half-millisecond pulsar in the SN remnant and on speculative attempts at finding the same periodicity in the neutrino signal are commented on. 37 refs

  2. Late-time spectral line formation in Type IIb supernovae, with application to SN 1993J, SN 2008ax, and SN 2011dh

    Science.gov (United States)

    Jerkstrand, A.; Ergon, M.; Smartt, S. J.; Fransson, C.; Sollerman, J.; Taubenberger, S.; Bersten, M.; Spyromilio, J.

    2015-01-01

    We investigate line formation processes in Type IIb supernovae (SNe) from 100 to 500 days post-explosion using spectral synthesis calculations. The modelling identifies the nuclear burning layers and physical mechanisms that produce the major emission lines, and the diagnostic potential of these. We compare the model calculations with data on the three best observed Type IIb SNe to-date - SN 1993J, SN 2008ax, and SN 2011dh. Oxygen nucleosynthesis depends sensitively on the main-sequence mass of the star and modelling of the [O I] λλ6300, 6364 lines constrains the progenitors of these three SNe to the MZAMS = 12-16 M⊙ range (ejected oxygen masses 0.3-0.9 M⊙), with SN 2011dh towards the lower end and SN 1993J towards the upper end of the range. The high ejecta masses from MZAMS ≳ 17 M⊙ progenitors give rise to brighter nebular phase emission lines than observed. Nucleosynthesis analysis thus supports a scenario of low-to-moderate mass progenitors for Type IIb SNe, and by implication an origin in binary systems. We demonstrate how oxygen and magnesium recombination lines may be combined to diagnose the magnesium mass in the SN ejecta. For SN 2011dh, a magnesium mass of 0.02-0.14 M⊙ is derived, which gives a Mg/O production ratio consistent with the solar value. Nitrogen left in the He envelope from CNO burning gives strong [N II] λλ6548, 6583 emission lines that dominate over Hα emission in our models. The hydrogen envelopes of Type IIb SNe are too small and dilute to produce any noticeable Hα emission or absorption after ~150 days, and nebular phase emission seen around 6550 Å is in many cases likely caused by [N II] λλ6548, 6583. Finally, the influence of radiative transport on the emergent line profiles is investigated. Significant line blocking in the metal core remains for several hundred days, which affects the emergent spectrum. These radiative transfer effects lead to early-time blueshifts of the emission line peaks, which gradually

  3. SN 2017dio: A Type-Ic Supernova Exploding in a Hydrogen-rich Circumstellar Medium

    Science.gov (United States)

    Kuncarayakti, Hanindyo; Maeda, Keiichi; Ashall, Christopher J.; Prentice, Simon J.; Mattila, Seppo; Kankare, Erkki; Fransson, Claes; Lundqvist, Peter; Pastorello, Andrea; Leloudas, Giorgos; Anderson, Joseph P.; Benetti, Stefano; Bersten, Melina C.; Cappellaro, Enrico; Cartier, Régis; Denneau, Larry; Della Valle, Massimo; Elias-Rosa, Nancy; Folatelli, Gastón; Fraser, Morgan; Galbany, Lluís; Gall, Christa; Gal-Yam, Avishay; Gutiérrez, Claudia P.; Hamanowicz, Aleksandra; Heinze, Ari; Inserra, Cosimo; Kangas, Tuomas; Mazzali, Paolo; Melandri, Andrea; Pignata, Giuliano; Rest, Armin; Reynolds, Thomas; Roy, Rupak; Smartt, Stephen J.; Smith, Ken W.; Sollerman, Jesper; Somero, Auni; Stalder, Brian; Stritzinger, Maximilian; Taddia, Francesco; Tomasella, Lina; Tonry, John; Weiland, Henry; Young, David R.

    2018-02-01

    SN 2017dio shows both spectral characteristics of a type-Ic supernova (SN) and signs of a hydrogen-rich circumstellar medium (CSM). Prominent, narrow emission lines of H and He are superposed on the continuum. Subsequent evolution revealed that the SN ejecta are interacting with the CSM. The initial SN Ic identification was confirmed by removing the CSM interaction component from the spectrum and comparing with known SNe Ic and, reversely, adding a CSM interaction component to the spectra of known SNe Ic and comparing them to SN 2017dio. Excellent agreement was obtained with both procedures, reinforcing the SN Ic classification. The light curve constrains the pre-interaction SN Ic peak absolute magnitude to be around {M}g=-17.6 mag. No evidence of significant extinction is found, ruling out a brighter luminosity required by an SN Ia classification. These pieces of evidence support the view that SN 2017dio is an SN Ic, and therefore the first firm case of an SN Ic with signatures of hydrogen-rich CSM in the early spectrum. The CSM is unlikely to have been shaped by steady-state stellar winds. The mass loss of the progenitor star must have been intense, \\dot{M}∼ 0.02{({ε }{{H}α }/0.01)}-1 ({v}{wind}/500 km s‑1) ({v}{shock}/10,000 km s‑1)‑3 M ⊙ yr‑1, peaking at a few decades before the SN. Such a high mass-loss rate might have been experienced by the progenitor through eruptions or binary stripping. Based on observations made with the NOT, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. This work is based (in part) on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile as part of PESSTO, (the Public ESO Spectroscopic Survey for Transient Objects Survey) ESO program 188.D-3003, 191.D-0935, 197.D-1075. Based on observations made with the Liverpool Telescope operated on the

  4. Discovery of Six ASAS-SN Supernova Candidates

    Science.gov (United States)

    Brimacombe, J.; Stone, G.; Vallely, P.; Stanek, K. Z.; Brown, J. S.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Conseil, E.

    2018-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  5. XRF 100316D/SN 2010bh and the nature of gamma-ray burst supernovae

    NARCIS (Netherlands)

    Cano, Z.; Bersier, D.; Guidorzi, C.; Kobayashi, S.; Levan, A.J.; Tanvir, N.R.; Wiersema, K.; D'Avanzo, P.; Fruchter, A.S.; Garnavich, P.; Gomboc, A.; Gorosabel, J.; Kasen, D.; Kopač, D.; Margutti, R.; Mazzali, P.A.; Melandri, A.; Mundell, C.G.; Nugent, P.E.; Pian, E.; Smith, R.J.; Steele, I.; Wijers, R.A.M.J.; Woosley, S.E.

    2011-01-01

    We present ground-based and Hubble Space Telescope optical and infrared observations of Swift XRF 100316D/SN 2010bh. It is seen that the optical light curves of SN 2010bh evolve at a faster rate than the archetype gamma-ray burst supernova (GRB-SN) 1998bw, but at a similar rate to SN 2006aj, an SN

  6. SN 2015as: a low-luminosity Type IIb supernova without an early light-curve peak

    Science.gov (United States)

    Gangopadhyay, Anjasha; Misra, Kuntal; Pastorello, A.; Sahu, D. K.; Tomasella, L.; Tartaglia, L.; Singh, Mridweeka; Dastidar, Raya; Srivastav, S.; Ochner, P.; Brown, Peter J.; Anupama, G. C.; Benetti, S.; Cappellaro, E.; Kumar, Brajesh; Kumar, Brijesh; Pandey, S. B.

    2018-05-01

    We present results of the photometric (from 3 to 509 d post-explosion) and spectroscopic (up to 230 d post-explosion) monitoring campaign of the He-rich Type IIb supernova (SN) 2015as. The (B - V) colour evolution of SN 2015as closely resemble those of SN 2008ax, suggesting that SN 2015as belongs to the SN IIb subgroup that does not show the early, short-duration photometric peak. The light curve of SN 2015as reaches the B-band maximum about 22 d after the explosion, at an absolute magnitude of -16.82 ± 0.18 mag. At ˜75 d after the explosion, its spectrum transitions from that of a SN II to a SN Ib. P Cygni features due to He I lines appear at around 30 d after explosion, indicating that the progenitor of SN 2015as was partially stripped. For SN 2015as, we estimate a 56Ni mass of ˜0.08 M⊙ and ejecta mass of 1.1-2.2 M⊙, which are similar to the values inferred for SN 2008ax. The quasi-bolometric analytical light-curve modelling suggests that the progenitor of SN 2015as has a modest mass (˜0.1 M⊙), a nearly compact (˜0.05 × 1013 cm) H envelope on top of a dense, compact (˜2 × 1011 cm) and a more massive (˜1.2 M⊙) He core. The analysis of the nebular phase spectra indicates that ˜0.44 M⊙ of O is ejected in the explosion. The intensity ratio of the [Ca II]/[O I] nebular lines favours either a main-sequence progenitor mass of ˜15 M⊙ or a Wolf-Rayet star of 20 M⊙.

  7. Neutrino spectrum from SN 1987A and from cosmic supernovae

    International Nuclear Information System (INIS)

    Yueksel, Hasan; Beacom, John F.

    2007-01-01

    The detection of neutrinos from SN 1987A by the Kamiokande-II and Irvine-Michigan-Brookhaven detectors provided the first glimpse of core collapse in a supernova, complementing the optical observations and confirming our basic understanding of the mechanism behind the explosion. One long-standing puzzle is that, when fitted with thermal spectra, the two independent detections do not seem to agree with either each other or typical theoretical expectations. We assess the compatibility of the two data sets in a model-independent way and show that they can be reconciled if one avoids any bias on the neutrino spectrum stemming from theoretical conjecture. We reconstruct the neutrino spectrum from SN 1987A directly from the data through nonparametric inferential statistical methods and present predictions for the diffuse supernova neutrino background based on SN 1987A data. We show that this prediction cannot be too small (especially in the 10-18 MeV range), since the majority of the detected events from SN 1987A were above 18 MeV (including 6 events above 35 MeV), suggesting an imminent detection in operational and planned detectors

  8. Supernovae

    International Nuclear Information System (INIS)

    Petschek, A.

    1990-01-01

    This book offers papers incorporating the latest results and understanding about supernovae, including SN1987A. There are several chapters reviewing all the radio through infrared, visible, and ultraviolet to X-rays and gamma-rays but also neutrinos. Other chapters deal with the classification of supernovae, depending on their spectra and light curves. Three chapters treat supernovae theory, including an idea of a fractal burning front and another on the behavior of neutron stars

  9. The Importance of Physical Models for Deriving Dust Masses and Grain Size Distributions in Supernova Ejecta. I. Radiatively Heated Dust in the Crab Nebula

    Science.gov (United States)

    Temim, Tea; Dwek, Eli

    2013-01-01

    Recent far-infrared (IR) observations of supernova remnants (SNRs) have revealed significantly large amounts of newly condensed dust in their ejecta, comparable to the total mass of available refractory elements. The dust masses derived from these observations assume that all the grains of a given species radiate at the same temperature, regardless of the dust heating mechanism or grain radius. In this paper, we derive the dust mass in the ejecta of the Crab Nebula, using a physical model for the heating and radiation from the dust. We adopt a power-law distribution of grain sizes and two different dust compositions (silicates and amorphous carbon), and calculate the heating rate of each dust grain by the radiation from the pulsar wind nebula. We find that the grains attain a continuous range of temperatures, depending on their size and composition. The total mass derived from the best-fit models to the observed IR spectrum is 0.019-0.13 Solar Mass, depending on the assumed grain composition. We find that the power-law size distribution of dust grains is characterized by a power-law index of 3.5-4.0 and a maximum grain size larger than 0.1 micron. The grain sizes and composition are consistent with what is expected for dust grains formed in a Type IIP supernova (SN). Our derived dust mass is at least a factor of two less than the mass reported in previous studies of the Crab Nebula that assumed more simplified two-temperature models. These models also require a larger mass of refractory elements to be locked up in dust than was likely available in the ejecta. The results of this study show that a physical model resulting in a realistic distribution of dust temperatures can constrain the dust properties and affect the derived dust masses. Our study may also have important implications for deriving grain properties and mass estimates in other SNRs and for the ultimate question of whether SNe are major sources of dust in the Galactic interstellar medium and in

  10. Measurements of the diameter of the supernova SN 1987A

    International Nuclear Information System (INIS)

    Karovska, M.; Nisenson, P.; Standley, C.; Heathcote, S.R.

    1991-01-01

    Speckle interferometric measurements of the angular diameter of SN 1987A in the Large Magellanic Cloud, obtained at 664 days after the outburst are presented. Diameters were estimated with milliarcsec precision at 657 nm and 550 nm by fitting model visibility functions to the data corresponding to different intensity distributions for the supernova disk. Measurements made assuming a uniform intensity distribution were compared to the uniform disk measurements obtained from 30 days after the explosion. Diameter measurements obtained near the center of the H-alpha line are consistent with homologous expansion of the supernova shell with a mean velocity of 2850 km/s. The linear least-squares fit to the measurements obtained at other wavelengths from 260 days after the explosion yielded a somewhat lower mean expansion velocity. 8 refs

  11. The GRB 060218/SN 2006aj event in the context of other gamma-ray burst supernovae

    DEFF Research Database (Denmark)

    Ferrero, P.; Kann, D. A.; Zeh, A.

    2006-01-01

    Gamma rays: bursts: X-rays: individuals: GRB 060218, supernovae: individual: SN 2006aj Udgivelsesdato: Oct.......Gamma rays: bursts: X-rays: individuals: GRB 060218, supernovae: individual: SN 2006aj Udgivelsesdato: Oct....

  12. OPTICAL OBSERVATIONS OF THE TYPE IA SUPERNOVA SN 2011fe IN M101 FOR NEARLY 500 DAYS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kaicheng; Wang, Xiaofeng; Zhao, Xulin; Chen, Jia; Chen, Juncheng; Huang, Fang; Mo, Jun; Rui, Liming; Song, Hao; Sai, Hanna; Li, Wenxiong [Physics Department and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing, 100084 (China); Zhang, JuJia; Bai, Jinming [Yunnan Astronomical Observatory of China, Chinese Academy of Sciences, Kunming, 650011 (China); Zhang, Tianmeng; Wu, Chao [National Astronomical Observatory of China, Chinese Academy of Sciences, Beijing, 100012 (China); Ganeshalingam, Mohan; Li, Weidong; Filippenko, Alexei V.; Zheng, Weikang [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Wang, Lifan, E-mail: wang_xf@mail.tsinghua.edu.cn [Physics and Astronomy Department, Texas A and M University, College Station, TX 77843 (United States)

    2016-03-20

    We present well-sampled optical observations of the bright Type Ia supernova (SN Ia) SN 2011fe in M101. Our data, starting from ∼16 days before maximum light and extending to ∼463 days after maximum, provide an unprecedented time series of spectra and photometry for a normal SN Ia. Fitting the early-time rising light curve, we find that the luminosity evolution of SN 2011fe follows a t{sup n} law, with the index n being close to 2.0 in the VRI bands but slightly larger in the U and B bands. Combining the published ultraviolet (UV) and near-infrared (NIR) photometry, we derive the contribution of UV/NIR emission relative to the optical. SN 2011fe is found to have stronger UV emission and reaches its UV peak a few days earlier than other SNe Ia with similar Δm{sub 15}(B), suggestive of less trapping of high-energy photons in the ejecta. Moreover, the U-band light curve shows a notably faster decline at late phases (t ≈ 100–300 days), which also suggests that the ejecta may be relatively transparent to UV photons. These results favor the notion that SN 2011fe might have a progenitor system with relatively lower metallicity. On the other hand, the early-phase spectra exhibit prominent high-velocity features (HVFs) of O i λ7773 and the Ca ii NIR triplet, but only barely detectable in Si ii 6355. This difference can be caused by either an ionization/temperature effect or an abundance enhancement scenario for the formation of HVFs; it suggests that the photospheric temperature of SN 2011fe is intrinsically low, perhaps owing to incomplete burning during the explosion of the white dwarf.

  13. SN REFSDAL: CLASSIFICATION AS A LUMINOUS AND BLUE SN 1987A-LIKE TYPE II SUPERNOVA

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, P. L.; Filippenko, A. V.; Graham, M. L. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Brammer, G.; Strolger, L.-G.; Riess, A. G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Selsing, J.; Hjorth, J.; Christensen, L. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Foley, R. J. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, IL 61801 (United States); Rodney, S. A. [Department of Physics and Astronomy, University of South Carolina, 712 Main St., Columbia, SC 29208 (United States); Treu, T. [University of California, Los Angeles, CA 90095 (United States); Steidel, C. C.; Strom, A.; Zitrin, A. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Schmidt, K. B.; McCully, C. [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States); Bradač, M. [University of California, Davis, 1 Shields Avenue, Davis, CA 95616 (United States); Jha, S. W. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Graur, O., E-mail: pkelly@astro.berkeley.edu [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States); and others

    2016-11-10

    We have acquired Hubble Space Telescope (HST) and Very Large Telescope near-infrared spectra and images of supernova (SN) Refsdal after its discovery as an Einstein cross in fall 2014. The HST light curve of SN Refsdal has a shape consistent with the distinctive, slowly rising light curves of SN 1987A-like SNe, and we find strong evidence for a broad H α P-Cygni profile and Na I D absorption in the HST grism spectrum at the redshift ( z = 1.49) of the spiral host galaxy. SNe IIn, largely powered by circumstellar interaction, could provide a good match to the light curve of SN Refsdal, but the spectrum of a SN IIn would not show broad and strong H α and Na I D absorption. From the grism spectrum, we measure an H α expansion velocity consistent with those of SN 1987A-like SNe at a similar phase. The luminosity, evolution, and Gaussian profile of the H α emission of the WFC3 and X-shooter spectra, separated by ∼2.5 months in the rest frame, provide additional evidence that supports the SN 1987A-like classification. In comparison with other examples of SN 1987A-like SNe, photometry of SN Refsdal favors bluer B - V and V - R colors and one of the largest luminosities for the assumed range of potential magnifications. The evolution of the light curve at late times will provide additional evidence about the potential existence of any substantial circumstellar material. Using MOSFIRE and X-shooter spectra, we estimate a subsolar host-galaxy metallicity (8.3 ± 0.1 dex and <8.4 dex, respectively) near the explosion site.

  14. Abundance Tomography of Type Ia Supernovae

    International Nuclear Information System (INIS)

    Stehle, M.; Mazzali, P.A.; Hillebrandt, W.

    2005-01-01

    An analysis of early time spectra of Type Ia Supernovae is presented. A new method to derive a detailed abundance distribution of the SN ejecta through comparison with synthetic spectra, called 'Abundance Tomography' is introduced and applied to the normal SN Ia 2002bo. Conclusions regarding the explosion mechanism are drawn

  15. SN 2008iy: An Unusual Type IIn Supernova with an Enduring 400 Day Rise Time

    OpenAIRE

    Miller, A. A.; Silverman, J. M.; Butler, N. R.; Bloom, J. S.; Chornock, R.; Filippenko, A. V.; Ganeshalingam, M.; Klein, C. R.; Li, W.; Nugent, P. E.; Smith, N.; Steele, T. N.

    2009-01-01

    We present spectroscopic and photometric observations of the Type IIn supernova (SN) 2008iy. SN 2008iy showed an unprecedentedly long rise time of ~400 days, making it the first SN to take significantly longer than 100 days to reach peak optical luminosity. The peak absolute magnitude of SN 2008iy was M_r ~ -19.1 mag, and the total radiated energy over the first ~700 days was ~2 x 10^50 erg. Spectroscopically, SN 2008iy is very similar to the Type IIn SN 1988Z at late times, and, like SN 1988...

  16. The Peculiar SN 2005hk: Do Some Type Ia Supernovae Explode As Deflagrations?

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.M.; Li, W.; Frieman, J.A.; Blinnikov, S.I.; DePoy, D.; Prieto, J.L.; Milne, P.; Contreras, C.; Folatelli, Gaston; Morrell, N.; Hamuy, M.; Suntzeff, N.B.; Roth, M.; Gonzalez, S.; Krzeminski, W.; Filippenko, A.V.; Freedman, W.L.; Chornock, R.; Jha, S.; Madore, B.F.; Persson, S.E.; /Las Campanas Observ. /UC, Berkeley, Astron. Dept.

    2006-11-14

    We present extensive u{prime}g{prime}r{prime}i{prime} BV RIY JHK{sub s} photometry and optical spectroscopy of SN 2005hk. These data reveal that SN 2005hk was nearly identical in its observed properties to SN 2002cx, which has been called 'the most peculiar known type Ia supernova'. Both supernovae exhibited high ionization SN 1991T-like pre-maximum spectra, yet low peak luminosities like SN 1991bg. The spectra reveal that SN 2005hk, like SN 2002cx, exhibited expansion velocities that were roughly half those of typical type Ia supernovae. The R and I light curves of both supernovae were also peculiar in not displaying the secondary maximum observed for normal type Ia supernovae. Our Y JH photometry of SN 2005hk reveals the same peculiarity in the near-infrared. By combining our optical and near-infrared photometry of SN 2005hk with published ultraviolet light curves obtained with the Swift satellite, we are able to construct a bolometric light curve from {approx} 10 days before to {approx}60 days after B maximum. The shape and unusually low peak luminosity of this light curve, plus the low expansion velocities and absence of a secondary maximum at red and near-infrared wavelengths, are all in reasonable agreement with model calculations of a 3D deflagration which produces {approx} 0.25 M{sub {circle_dot}} of {sup 56}Ni.

  17. GRB 161219B / SN 2016jca: A low-redshift gamma-ray burst supernova powered by radioactive heating

    DEFF Research Database (Denmark)

    Cano, Z.; Izzo, L.; De Ugarte Postigo, A.

    2017-01-01

    Since the first discovery of a broad-lined type Ic supernova (SN) with a long-duration gamma-ray burst (GRB) in 1998, fewer than fifty gamma-ray burst supernovae (GRB-SNe) have been discovered. The intermediate-luminosity Swift GRB 161219B and its associated supernova SN 2016jca, which occurred a...

  18. The Broad-Lined Type Ic SN 2012ap and the Nature of Relativistic Supernovae Lacking a Gamma-Ray Burst Detection

    Science.gov (United States)

    Milisavljevic, D.; Margutti, R.; Parrent, J. T.; Soderberg, A. M.; Fesen, R. A.; Mazzali, P.; Maeda, K.; Sanders, N. E.; Cenko, S. B.; Silverman, J. M.

    2014-01-01

    We present ultraviolet, optical, and near-infrared observations of SN2012ap, a broad-lined Type Ic supernova in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst signature. Photometry and spectroscopy follow the flux evolution from -13 to +272 days past the B-band maximum of -17.4 +/- 0.5 mag. The spectra are dominated by Fe II, O I, and Ca II absorption lines at ejecta velocities of v approx. 20,000 km s(exp. -1) that change slowly over time. Other spectral absorption lines are consistent with contributions from photospheric He I, and hydrogen may also be present at higher velocities (v approx. greater than 27,000 km s(exp. -1)). We use these observations to estimate explosion properties and derive a total ejecta mass of 2.7 Solar mass, a kinetic energy of 1.0×1052 erg, and a (56)Ni mass of 0.1-0.2 Solar mass. Nebular spectra (t > 200 d) exhibit an asymmetric double-peaked [O I] lambda lambda 6300, 6364 emission profile that we associate with absorption in the supernova interior, although toroidal ejecta geometry is an alternative explanation. SN2012ap joins SN2009bb as another exceptional supernova that shows evidence for a central engine (e.g., black-hole accretion or magnetar) capable of launching a non-negligible portion of ejecta to relativistic velocities without a coincident gamma-ray burst detection. Defining attributes of their progenitor systems may be related to notable properties including above-average environmental metallicities of Z approx. greater than Solar Z, moderate to high levels of host-galaxy extinction (E(B -V ) > 0.4 mag), detection of high-velocity helium at early epochs, and a high relative flux ratio of [Ca II]/[O I] > 1 at nebular epochs. These events support the notion that jet activity at various energy scales may be present in a wide range of supernovae.

  19. THE BROAD-LINED Type Ic SN 2012ap AND THE NATURE OF RELATIVISTIC SUPERNOVAE LACKING A GAMMA-RAY BURST DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Milisavljevic, D.; Margutti, R.; Parrent, J. T.; Soderberg, A. M.; Sanders, N. E.; Kamble, A.; Chakraborti, S.; Drout, M. R.; Kirshner, R. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Fesen, R. A. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Mazzali, P. [Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5RF (United Kingdom); Maeda, K. [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Silverman, J. M. [University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Filippenko, A. V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Pickering, T. E. [Southern African Large Telescope, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Kawabata, K. [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Hattori, T. [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Hsiao, E. Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Stritzinger, M. D., E-mail: dmilisav@cfa.harvard.edu [Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C (Denmark); and others

    2015-01-20

    We present ultraviolet, optical, and near-infrared observations of SN 2012ap, a broad-lined Type Ic supernova in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst signature. Photometry and spectroscopy follow the flux evolution from –13 to +272 days past the B-band maximum of –17.4 ± 0.5 mag. The spectra are dominated by Fe II, O I, and Ca II absorption lines at ejecta velocities of v ≈ 20,000 km s{sup –1} that change slowly over time. Other spectral absorption lines are consistent with contributions from photospheric He I, and hydrogen may also be present at higher velocities (v ≳ 27,000 km s{sup –1}). We use these observations to estimate explosion properties and derive a total ejecta mass of ∼2.7 M {sub ☉}, a kinetic energy of ∼1.0 × 10{sup 52} erg, and a {sup 56}Ni mass of 0.1-0.2 M {sub ☉}. Nebular spectra (t > 200 days) exhibit an asymmetric double-peaked [O I] λλ6300, 6364 emission profile that we associate with absorption in the supernova interior, although toroidal ejecta geometry is an alternative explanation. SN 2012ap joins SN 2009bb as another exceptional supernova that shows evidence for a central engine (e.g., black hole accretion or magnetar) capable of launching a non-negligible portion of ejecta to relativistic velocities without a coincident gamma-ray burst detection. Defining attributes of their progenitor systems may be related to notable observed properties including environmental metallicities of Z ≳ Z {sub ☉}, moderate to high levels of host galaxy extinction (E(B – V) > 0.4 mag), detection of high-velocity helium at early epochs, and a high relative flux ratio of [Ca II]/[O I] >1 at nebular epochs. These events support the notion that jet activity at various energy scales may be present in a wide range of supernovae.

  20. SN 2010ay IS A LUMINOUS AND BROAD-LINED TYPE Ic SUPERNOVA WITHIN A LOW-METALLICITY HOST GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, N. E.; Soderberg, A. M.; Foley, R. J.; Chornock, R.; Chomiuk, L.; Berger, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Valenti, S.; Smartt, S.; Botticella, M. T. [Astrophysics Research Centre, School of Maths and Physics, Queen' s University, Belfast BT7 1NN (United Kingdom); Hurley, K. [Space Sciences Laboratory, University of California Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Barthelmy, S. D.; Gehrels, N.; Cline, T. [NASA Goddard Space Flight Center, Code 661, Greenbelt, MD 20771 (United States); Levesque, E. M. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Narayan, G. [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Briggs, M. S.; Connaughton, V. [CSPAR, University of Alabama in Huntsville, Huntsville, AL (United States); Terada, Y. [Department of Physics, Saitama University, Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama 338-8570 (Japan); Golenetskii, S.; Mazets, E., E-mail: nsanders@cfa.harvard.edu [Ioffe Physico-Technical Institute, Laboratory for Experimental Astrophysics, 26 Polytekhnicheskaya, St. Petersburg 194021 (Russian Federation); and others

    2012-09-10

    We report on our serendipitous pre-discovery detection and follow-up observations of the broad-lined Type Ic supernova (SN Ic) 2010ay at z = 0.067 imaged by the Pan-STARRS1 3{pi} survey just {approx}4 days after explosion. The supernova (SN) had a peak luminosity, M{sub R} Almost-Equal-To -20.2 mag, significantly more luminous than known GRB-SNe and one of the most luminous SNe Ib/c ever discovered. The absorption velocity of SN 2010ay is v{sub Si} Almost-Equal-To 19 Multiplication-Sign 10{sup 3} km s{sup -1} at {approx}40 days after explosion, 2-5 times higher than other broad-lined SNe and similar to the GRB-SN 2010bh at comparable epochs. Moreover, the velocity declines {approx}2 times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of {sup 56}Ni, M{sub Ni} = 0.9 M{sub Sun }. Applying scaling relations to the light curve, we estimate a total ejecta mass, M{sub ej} Almost-Equal-To 4.7 M{sub Sun }, and total kinetic energy, E{sub K} Almost-Equal-To 11 Multiplication-Sign 10{sup 51} erg. The ratio of M{sub Ni} to M{sub ej} is {approx}2 times as large for SN 2010ay as typical GRB-SNe and may suggest an additional energy reservoir. The metallicity (log (O/H){sub PP04} + 12 = 8.19) of the explosion site within the host galaxy places SN 2010ay in the low-metallicity regime populated by GRB-SNe, and {approx}0.5(0.2) dex lower than that typically measured for the host environments of normal (broad-lined) SNe Ic. We constrain any gamma-ray emission with E{sub {gamma}} {approx}< 6 Multiplication-Sign 10{sup 48} erg (25-150 keV), and our deep radio follow-up observations with the Expanded Very Large Array rule out relativistic ejecta with energy E {approx}> 10{sup 48} erg. We therefore rule out the association of a relativistic outflow like those that accompanied SN 1998bw and traditional long-duration gamma-ray bursts (GRBs), but we place less

  1. Aspherical supernovae

    International Nuclear Information System (INIS)

    Kasen, Daniel Nathan

    2004-01-01

    Although we know that many supernovae are aspherical, the exact nature of their geometry is undetermined. Because all the supernovae we observe are too distant to be resolved, the ejecta structure can't be directly imaged, and asymmetry must be inferred from signatures in the spectral features and polarization of the supernova light. The empirical interpretation of this data, however, is rather limited--to learn more about the detailed supernova geometry, theoretical modeling must been undertaken. One expects the geometry to be closely tied to the explosion mechanism and the progenitor star system, both of which are still under debate. Studying the 3-dimensional structure of supernovae should therefore provide new break throughs in our understanding. The goal of this thesis is to advance new techniques for calculating radiative transfer in 3-dimensional expanding atmospheres, and use them to study the flux and polarization signatures of aspherical supernovae. We develop a 3-D Monte Carlo transfer code and use it to directly fit recent spectropolarimetric observations, as well as calculate the observable properties of detailed multi-dimensional hydrodynamical explosion simulations. While previous theoretical efforts have been restricted to ellipsoidal models, we study several more complicated configurations that are tied to specific physical scenarios. We explore clumpy and toroidal geometries in fitting the spectropolarimetry of the Type Ia supernova SN 2001el. We then calculate the observable consequences of a supernova that has been rendered asymmetric by crashing into a nearby companion star. Finally, we fit the spectrum of a peculiar and extraordinarily luminous Type Ic supernova. The results are brought to bear on three broader astrophysical questions: (1) What are the progenitors and the explosion processes of Type Ia supernovae? (2) What effect does asymmetry have on the observational diversity of Type Ia supernovae, and hence their use in cosmology? (3) And

  2. SN 2009kn - the twin of the Type IIn supernova 1994W

    DEFF Research Database (Denmark)

    Kankare, E.; Ergon, M.; Bufano, F.

    2012-01-01

    We present an optical and near-infrared photometric and spectroscopic study of supernova (SN) 2009kn spanning ~1.5 yr from the discovery. The optical spectra are dominated by the narrow (full width at half-maximum ~1000 km s^-1) Balmer lines distinctive of a Type IIn SN with P Cygni profiles. Con...

  3. Supernova 2008J: early time observations of a heavily reddened SN 2002ic-like transient

    DEFF Research Database (Denmark)

    Taddia, F.; Stritzinger, M. D.; Phillips, M. M.

    2012-01-01

    Aims: We provide additional observational evidence that some Type Ia supernovae (SNe Ia) show signatures of circumstellar interaction (CSI) with hydrogen-rich material. Methods: Early phase optical and near-infrared (NIR) light curves and spectroscopy of SN 2008J obtained by the Carnegie Supernova...... that their CSI emissions are similarly robust. The high-resolution spectrum reveals narrow emission lines produced from un-shocked gas characterized by a wind velocity of ~50 km s-1. We conclude that SN 2008J best matches an explosion of a SN Ia that interacts with its CSM....

  4. A Significantly off-center 56Ni Distribution for the Low-Luminosity Type Ia Supernova SN 2016brx from the 100IAS survey

    Science.gov (United States)

    Dong, Subo; Katz, Boaz; Kollmeier, Juna A.; Kushnir, Doron; Elias-Rosa, N.; Bose, Subhash; Morrell, Nidia; Prieto, J. L.; Chen, Ping; Kochanek, C. S.; Brandt, G. M.; Holoien, T. W.-S.; Gal-Yam, Avishay; Morales-Garoffolo, Antonia; Parker, Stuart; Phillips, M. M.; Piro, Anthony L.; Shappee, B. J.; Simon, Joshua D.; Stanek, K. Z.

    2018-06-01

    We present nebular-phase spectra of the Type Ia supernova (SN Ia) 2016brx, a member of the 1991bg-like subclass that lies at the faint end of the SN Ia luminosity function. Nebular spectra are available for only three other 1991bg-like SNe, and their Co line centers are all within ≲ 500 km/s of each other. In contrast, the nebular Co line center of SN 2016brx is blue-shifted by >1500 km/s compared to them and by ≈1200 km/s compared to the rest frame. This is a significant shift relative to the narrow nebular line velocity dispersion of ≲ 2000 km/s of these SNe. The large range of nebular line shifts implies that the 56Ni in the ejecta of SN 1991bg-like events is off-center by ˜1000 km/s rather than universally centrally confined as previously suggested. With the addition of SN 2016brx, the Co nebular line shapes of 1991bg-like objects appear to connect with the brighter SNe Ia that show double-peaked profiles, hinting at a continuous distribution of line profiles among SNe Ia. One class of models to produce both off-center and bi-modal 56Ni distributions is collisions of white dwarfs with unequal and equal masses.

  5. Positrons from supernova and the origin of the galactic-center positron-annihilation radiation

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1983-01-01

    The emission of positrons from supernova ejecta is dicussed in terms of the galactic-center annihilation radiation. The positrons from the radioactive sequences 56 Ni→ 56 Co→ 56 Fe are the most numerous source from supernova. Only type I supernova will allow a significant fraction to escape the expanding ejecta. For a neutron star model of a type I SN a fraction 4 x 10 -3 of the escaped positron is enough to create the observed several year fluctuation of the annihilation radiation. The likelihood of this model is discussed in terms of other astrophysical evidence as well as the type I SN light curve

  6. Photometric type Ia supernova candidates from the three-year SDSS-II SN survey data

    Energy Technology Data Exchange (ETDEWEB)

    Sako, Masao; /Pennsylvania U.; Bassett, Bruce; /South African Astron. Observ. /Cape Town U., Dept. Math.; Connolly, Brian; /Pennsylvania U.; Dilday, Benjamin; /Las Cumbres Observ. /UC, Santa Barbara /Rutgers U., Piscataway; Cambell, Heather; /Portsmouth U., ICG; Frieman, Joshua A.; /Chicago U. /Chicago U., KICP /Fermilab; Gladney, Larry; /Pennsylvania U.; Kessler, Richard; /Chicago U. /Chicago U., KICP; Lampeitl, Hubert; /Portsmouth U., ICG; Marriner, John; /Fermilab; Miquel, Ramon; /Barcelona, IFAE /ICREA, Barcelona /Portsmouth U., ICG

    2011-07-01

    We analyze the three-year Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey data and identify a sample of 1070 photometric Type Ia supernova (SN Ia) candidates based on their multiband light curve data. This sample consists of SN candidates with no spectroscopic confirmation, with a subset of 210 candidates having spectroscopic redshifts of their host galaxies measured while the remaining 860 candidates are purely photometric in their identification. We describe a method for estimating the efficiency and purity of photometric SN Ia classification when spectroscopic confirmation of only a limited sample is available, and demonstrate that SN Ia candidates from SDSS-II can be identified photometrically with {approx}91% efficiency and with a contamination of {approx}6%. Although this is the largest uniform sample of SN candidates to date for studying photometric identification, we find that a larger spectroscopic sample of contaminating sources is required to obtain a better characterization of the background events. A Hubble diagram using SN candidates with no spectroscopic confirmation, but with host galaxy spectroscopic redshifts, yields a distance modulus dispersion that is only {approx}20%-40% larger than that of the spectroscopically confirmed SN Ia sample alone with no significant bias. A Hubble diagram with purely photometric classification and redshift-distance measurements, however, exhibits biases that require further investigation for precision cosmology.

  7. PHOTOMETRIC TYPE Ia SUPERNOVA CANDIDATES FROM THE THREE-YEAR SDSS-II SN SURVEY DATA

    International Nuclear Information System (INIS)

    Sako, Masao; Connolly, Brian; Gladney, Larry; Bassett, Bruce; Dilday, Benjamin; Cambell, Heather; Lampeitl, Hubert; Nichol, Robert C.; Frieman, Joshua A.; Kessler, Richard; Marriner, John; Miquel, Ramon; Schneider, Donald P.; Smith, Mathew; Sollerman, Jesper

    2011-01-01

    We analyze the three-year Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey data and identify a sample of 1070 photometric Type Ia supernova (SN Ia) candidates based on their multiband light curve data. This sample consists of SN candidates with no spectroscopic confirmation, with a subset of 210 candidates having spectroscopic redshifts of their host galaxies measured while the remaining 860 candidates are purely photometric in their identification. We describe a method for estimating the efficiency and purity of photometric SN Ia classification when spectroscopic confirmation of only a limited sample is available, and demonstrate that SN Ia candidates from SDSS-II can be identified photometrically with ∼91% efficiency and with a contamination of ∼6%. Although this is the largest uniform sample of SN candidates to date for studying photometric identification, we find that a larger spectroscopic sample of contaminating sources is required to obtain a better characterization of the background events. A Hubble diagram using SN candidates with no spectroscopic confirmation, but with host galaxy spectroscopic redshifts, yields a distance modulus dispersion that is only ∼20%-40% larger than that of the spectroscopically confirmed SN Ia sample alone with no significant bias. A Hubble diagram with purely photometric classification and redshift-distance measurements, however, exhibits biases that require further investigation for precision cosmology.

  8. Spectroscopic classification of PTSS-18ecg (SN 2018bhb) as a type Ia supernova around maximum

    Science.gov (United States)

    Zhang, Jujia; Ding, Xu; Wang, Xiaofeng; Li, Wenxiong; Li, Bin; Xu, Zhijian; Tan, Hanjie; Zhao, Haibin; Wang, Lifan; Li, Zhitong

    2018-05-01

    We obtained an optical spectrum (range 350-890 nm) of PTSS-18ecg (SN 2018bhb), discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT 2018 May 10.7 with the Li-Jiang 2.4 m telescope (LJT+YFOSC) at Li-Jiang Observatory of Yunnan Observatories.

  9. SUPERLUMINOUS SUPERNOVA SN 2015bn IN THE NEBULAR PHASE: EVIDENCE FOR THE ENGINE-POWERED EXPLOSION OF A STRIPPED MASSIVE STAR

    Energy Technology Data Exchange (ETDEWEB)

    Nicholl, M.; Berger, E.; Blanchard, P. K.; Challis, P.; Cowperthwaite, P. S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Margutti, R. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Chornock, R. [Astrophysical Institute, Department of Physics and Astronomy, 251B Clippinger Lab, Ohio University, Athens, OH 45701 (United States); Jerkstrand, A.; Smartt, S. J.; Inserra, C.; Kankare, E.; Maguire, K. [Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Arcavi, I.; Hosseinzadeh, G.; Howell, D. A. [Las Cumbres Observatory Global Telescope, 6740 Cortona Drive, Suite 102, Goleta, CA 93111 (United States); Chambers, K. C.; Magnier, E. A. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Chen, T.-W. [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstraße 1, D-85748, Garching (Germany); Gal-Yam, A. [Benoziyo Center for Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Mazzali, P. A., E-mail: matt.nicholl@cfa.harvard.edu [Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); and others

    2016-09-10

    We present nebular-phase imaging and spectroscopy for the hydrogen-poor superluminous supernova (SLSN) SN 2015bn, at redshift z = 0.1136, spanning +250–400 days after maximum light. The light curve exhibits a steepening in the decline rate from 1.4 mag (100 days){sup −1} to 1.7 mag (100 days){sup −1}, suggestive of a significant decrease in the opacity. This change is accompanied by a transition from a blue continuum superposed with photospheric absorption lines to a nebular spectrum dominated by emission lines of oxygen, calcium, and magnesium. There are no obvious signatures of circumstellar interaction or large {sup 56}Ni mass. We show that the spectrum at +400 days is virtually identical to a number of energetic SNe Ic such as SN 1997dq, SN 2012au, and SN 1998bw, indicating similar core conditions and strengthening the link between “hypernovae”/long gamma-ray bursts and SLSNe. A single explosion mechanism may unify these events that span absolute magnitudes of −22 < M {sub B} < −17. Both the light curve and spectrum of SN 2015bn are consistent with an engine-driven explosion ejecting 7–30 M {sub ⊙} of oxygen-dominated ejecta (for reasonable choices in temperature and opacity). A strong and relatively narrow O i λ 7774 line, seen in a number of these energetic events but not in normal supernovae, may point to an inner shell that is the signature of a central engine.

  10. Nearby Supernova Factory Observations of SN 2006D: On SporadicCarbon Signatures in Early Type Ia Supernova Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R.C.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey,S.; Baltay, C.; Baron, E.; Bauer, A.; Buton, C.; Bongard, S.; Copin, Y.; Gangler, E.; Gilles, S.; Kessler, R.; Loken, S.; Nugent, P.; Pain, R.; Parrent, J.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigaudier, G.; Runge, K.; Scalzo, R.; Smadja, G.; Wang, L.; Weaver, B.A.

    2006-10-12

    We present four spectra of the Type Ia supernova SN Ia 2006Dextending from -7 to +13 days with respect to B-band maximum. The spectrainclude the strongest signature of unburned material at photosphericvelocities observed in a SN Ia to date. The earliest spectrum exhibits CII absorption features below 14,000 km/s, including a distinctive C IIlambda 6580 absorption feature. The carbon signatures dissipate as the SNapproaches peak brightness. In addition to discussing implications ofphotospheric-velocity carbon for white dwarf explosion models, we outlinesome factors that may influence the frequency of its detection before andaround peak brightness. Two effects are explored in this regard,including depopulation of the C II optical levels by non-LTE effects, andline-of-sight effects resulting from a clumpy distribution of unburnedmaterial with low volume-filling factor.

  11. XRF 100316D/SN 2010bh AND THE NATURE OF GAMMA-RAY BURST SUPERNOVAE

    International Nuclear Information System (INIS)

    Cano, Z.; Bersier, D.; Guidorzi, C.; Kobayashi, S.; Melandri, A.; Mundell, C. G.; Levan, A. J.; Tanvir, N. R.; Wiersema, K.; D'Avanzo, P.; Margutti, R.; Fruchter, A. S.; Garnavich, P.; Gomboc, A.; Kopac, D.; Gorosabel, J.; Kasen, D.; Mazzali, P. A.; Nugent, P. E.; Pian, E.

    2011-01-01

    We present ground-based and Hubble Space Telescope optical and infrared observations of Swift XRF 100316D/SN 2010bh. It is seen that the optical light curves of SN 2010bh evolve at a faster rate than the archetype gamma-ray burst supernova (GRB-SN) 1998bw, but at a similar rate to SN 2006aj, an SN that was spectroscopically linked with XRF 060218, and at a similar rate to the non-GRB associated Type Ic SN 1994I. We estimate the rest-frame extinction of this event from our optical data to be E(B - V) = 0.18 ± 0.08 mag. We find the V-band absolute magnitude of SN 2010bh to be M V = -18.62 ± 0.08, which is the faintest peak V-band magnitude observed to date for spectroscopically confirmed GRB-SNe. When we investigate the origin of the flux at t - t 0 = 0.598 days, it is shown that the light is not synchrotron in origin, but is likely coming from the SN shock breakout. We then use our optical and infrared data to create a quasi-bolometric light curve of SN 2010bh, which we model with a simple analytical formula. The results of our modeling imply that SN 2010bh synthesized a nickel mass of M Ni ∼ 0.1 M sun , ejected M ej ∼ 2.2 M sun , and has an explosion energy of E k ∼ 1.4 x 10 52 erg. Thus, while SN 2010bh is an energetic explosion, the amount of nickel created during the explosion is much less than that of SN 1998bw and only marginally more than SN 1994I. Finally, for a sample of 22 GRB-SNe we check for a correlation between the stretch factors and luminosity factors in the R band and conclude that no statistically significant correlation exists.

  12. Spectroscopic Classification of SN 2017ghm as a Type Ia Supernova

    Science.gov (United States)

    Vinko, J.; Wheeler, J. C.; Wang, X.; Li, W.; Li, Z.; Xiang, D.; Rui, L.; Lin, H.; Xu, Z.; Li, B.; Zhao, H.; Wang, L.; Tan, H.; Zhang, J.

    2017-09-01

    An optical spectrum (range 360-680 nm) of SN 2017ghm (=PTSS-17uyml), discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), was obtained with the new "Low Resolution Spectrograph-2" (LRS2) on the 10m Hobby-Eberly Telescope at McDonald Observatory by S. Rostopchin on 2017 Aug 31.17 UT. The spectrum is consistent with that of a heavily reddened Type Ia supernova (with Av > 2.3 mag) around maximum light.

  13. Could there be a hole in type Ia supernovae?

    International Nuclear Information System (INIS)

    Kasen, Daniel; Nugent, Peter; Thomas, R.C.; Wang, Lifan

    2004-01-01

    In the favored progenitor scenario, Type Ia supernovae (SNe Ia) arise from a white dwarf accreting material from a non-degenerate companion star. Soon after the white dwarf explodes, the ejected supernova material engulfs the companion star; two-dimensional hydrodynamical simulations by Marietta et al. (2001) show that, in the interaction, the companion star carves out a conical hole of opening angle 30-40 degrees in the supernova ejecta. In this paper we use multi-dimensional Monte Carlo radiative transfer calculations to explore the observable consequences of an ejecta-hole asymmetry. We calculate the variation of the spectrum, luminosity, and polarization with viewing angle for the aspherical supernova near maximum light. We find that the supernova looks normal from almost all viewing angles except when one looks almost directly down the hole. In the latter case, one sees into the deeper, hotter layers of ejecta. The supernova is relatively brighter and has a peculiar spectrum characterized by more highly ionized species, weaker absorption features, and lower absorption velocities. The spectrum viewed down the hole is comparable to the class of SN 1991T-like supernovae. We consider how the ejecta-hole asymmetry may explain the current spectropolarimetric observations of SNe Ia, and suggest a few observational signatures of the geometry. Finally, we discuss the variety currently seen in observed SNe Ia and how an ejecta-hole asymmetry may fit in as one of several possible sources of diversity

  14. Gamma-ray observations of supernovae SN1987A

    International Nuclear Information System (INIS)

    Souza, C.A.W.; Neri, J.A.C.F.; Jayanthi, U.B.

    1988-01-01

    Theoretical investigations of supernovae explosions predict a high emission of gamma rays (∼ 10 -2 photons.cm -2 .s -1 ) beginning around 300 days after explosion. A balloon-borne experiment was flown in October, 1987, to observe this emission. The payload carried 4 phoswich detectors of BGO/CsI and NaI/CsI with areas 169 cm 2 and 100 cm 2 , respectively. The detectors' sensitivity (for 10000 s at 3g/cm 3 with error bar of 3 σ) is about 10 -3 ∼ 10 -4 photons. cm -2 .s -1 at energies above 200 KeV. The detectors mounted on a stabilized platform observed the supernova for about 2 hours. The data are being analized for pulsations (≥ 0.5 ms) and gamma ray emission. Energy spectra and temporal analysis will be presented and discussed. (author) [pt

  15. Hubble Space Telescope and Ground-Based Observations of the Type Iax Supernovae SN 2005hk and SN 2008A

    Energy Technology Data Exchange (ETDEWEB)

    McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Chornock, Ryan; Holtzman, Jon A.; Balam, David D.; Branch, David; Filippenko, Alexei V.; Frieman, Joshua; Fynbo, Johan; Galbany, Lluis; Ganeshalingam, Mohan; Garnavich, Peter M.; Graham, Melissa L.; Hsiao, Eric Y.; Leloudas, Giorgos; Leonard, Douglas C.; Li, Weidong; Riess, Adam G.; Sako, Masao; Schneider, Donald P.; Silverman, Jeffrey M.; Sollerman, Jesper; Steele, Thea N.; Thomas, Rollin C.; Wheeler, J. Craig; Zheng, Chen

    2014-04-24

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with ne109 cm–3. Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected "infrared catastrophe," a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a "complete deflagration" that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  16. Supernova SN1961v - an explosion of a very massive star

    International Nuclear Information System (INIS)

    Utrobin, V.P.

    1983-01-01

    An investigation of the outburst of the unique supernova SN1961v in the galaxy NGC 1058 is carried out. An analysis of hydrodynamical models of supernoVa outbursts and a comparison with a considerable body of observational data on SN1961v clearly show that the SN1961v phenomenon is an explosion of a very massive star-with the mass of 2000 M and radiUs of about 100 R that results in expelling the envelope with the kinetic energy of 1.8x10 52 erg. The light curve of SN1961v furnishes direct evidence for a heterogeneity of the presupernova interior. The chemical composition produced during the evolution of the very massive star and in the final eXplosion must have a number of the essential features. In particular, hydrogen has to be underabundant relative to the solar content and distributed in the specific manner through the star. At late stages from February 1963 to February 1967, the light curve of SN1961v may be accoUnted for as interaction of the expelled envelope with the stellar wind of presupernova

  17. Spectroscopic classification of SN 2018brz as a type Ia supernova before maximum

    Science.gov (United States)

    Galbany, Lluis; Lopez-Sanchez, Angel R.; Ascasibar, Yago; Fiegert, Kristin

    2018-05-01

    We report the spectroscopic classification of SN 2018brz (RA=08:33:22.27, DEC=-76:37:39.8) in an anonymous host galaxy. The candidate was discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN: Shappee et al. 2014) on UT 2018-05-15 at 16.5 mag. Observations were performed on the 4m Anglo-Australian Telescope at Siding Spring Observatory on 2018 May 19 9:15 UT, using Koala+AAOmega and Grisms 580V+1000R (3500-6000A and 6300-7300A).

  18. SN 2006bt: A PERPLEXING, TROUBLESOME, AND POSSIBLY MISLEADING TYPE Ia SUPERNOVA

    International Nuclear Information System (INIS)

    Foley, Ryan J.; Narayan, Gautham; Challis, Peter J.; Kirshner, Robert P.; Filippenko, Alexei V.; Silverman, Jeffrey M.; Steele, Thea N.

    2010-01-01

    SN 2006bt displays characteristics unlike those of any other known Type Ia supernova (SN Ia). We present optical light curves and spectra of SN 2006bt which demonstrate the peculiar nature of this object. SN 2006bt has broad, slowly declining light curves indicative of a hot, high-luminosity SN, but lacks a prominent second maximum in the i band as do low-luminosity SNe Ia. Its spectra are similar to those of low-luminosity SNe Ia, containing features that are only present in cool SN photospheres. Light-curve fitting methods suggest that SN 2006bt is reddened by a significant amount of dust; however, it occurred in the outskirts of its early-type host galaxy and has no strong Na D absorption in any of its spectra, suggesting a negligible amount of host-galaxy dust absorption. C II is possibly detected in our pre-maximum spectra, but at a much lower velocity than other elements. The progenitor was likely very old, being a member of the halo population of a galaxy that shows no signs of recent star formation. SNe Ia have been very successfully modeled as a one-parameter family, and this is fundamental to their use as cosmological distance indicators. SN 2006bt is a challenge to that picture, yet its relatively normal light curves allowed SN 2006bt to be included in cosmological analyses. We generate mock SN Ia data sets which indicate that contamination by similar objects will both increase the scatter of a SN Ia Hubble diagram and systematically bias measurements of cosmological parameters. However, spectra and rest-frame i-band light curves should provide a definitive way to identify and eliminate such objects.

  19. Detection of a Very Bright Source Close to the LMC Supernova SN 1987A: Erratum

    Science.gov (United States)

    Nisenson, P.; Papaliolios, C.; Karovska, M.; Noyes, R.

    1988-01-01

    In the Letter "Detection of a Very Bright Source Close to the LMC Supernova SN 1987A" by P. Nisenson, C. Papaliolios, M. Karovska, and R. Noyes (1987 Ap. J. [Letters], 320, L15), two of the figure labels for Figure 1 were inadvertently transposed in the production process. A corrected version of the figure appears as Plate L4. The Journal regrets the error.

  20. Spectroscopic Classification of SN 2018nt as a Reddened Type Ia Supernova

    Science.gov (United States)

    Vinko, J.; Szeged, U.; Wheeler, J. C.

    2018-02-01

    An optical spectrum (range 360-700 nm) of SN 2018nt (K2 C16-0043), was obtained with the "Low Resolution Spectrograph-2" (LRS2) on the 10m Hobby-Eberly Telescope at McDonald Observatory by S. Odewahn on 2018 Feb 05.20 UT. The spectrum is consistent with that of a heavily reddened Type Ia supernova (with Av > 2 mag) about 3 weeks after maximum light.

  1. Scattered-Light Echoes from the Historical Galactic Supernovae Cassiopeia A and Tycho (SN 1572)

    Energy Technology Data Exchange (ETDEWEB)

    Rest, A; Welch, D L; Suntzeff, N B; Oaster, L; Lanning, H; Olsen, K; Smith, R C; Becker, A C; Bergmann, M; Challis, P; Clocchiatti, A; Cook, K H; Damke, G; Garg, A; Huber, M E; Matheson, T; Minniti, D; Prieto, J L; Wood-Vasey, W M

    2008-05-06

    We report the discovery of an extensive system of scattered light echo arclets associated with the recent supernovae in the local neighborhood of the Milky Way: Tycho (SN 1572) and Cassiopeia A. Existing work suggests that the Tycho SN was a thermonuclear explosion while the Cas A supernova was a core collapse explosion. Precise classifications according to modern nomenclature require spectra of the outburst light. In the case of ancient SNe, this can only be done with spectroscopy of their light echo, where the discovery of the light echoes from the outburst light is the first step. Adjacent light echo positions suggest that Cas A and Tycho may share common scattering dust structures. If so, it is possible to measure precise distances between historical Galactic supernovae. On-going surveys that alert on the development of bright scattered-light echo features have the potential to reveal detailed spectroscopic information for many recent Galactic supernovae, both directly visible and obscured by dust in the Galactic plane.

  2. Scattered-Light Echoes from the Historical Galactic Supernovae Cassiopeia A and Tycho (SN 1572)

    International Nuclear Information System (INIS)

    Rest, A.; Welch, D.L.; Suntzeff, N.B.; Oaster, L.; Lanning, H.; Olsen, K.; Smith, R.C.; Becker, A.C.; Bergmann, M.; Challis, P.; Clocchiatti, A.; Cook, K.H.; Damke, G.; Garg, A.; Huber, M.E.; Matheson, T.; Minniti, D.; Prieto, J.L.; Wood-Vasey, W.M.

    2008-01-01

    We report the discovery of an extensive system of scattered light echo arclets associated with the recent supernovae in the local neighborhood of the Milky Way: Tycho (SN 1572) and Cassiopeia A. Existing work suggests that the Tycho SN was a thermonuclear explosion while the Cas A supernova was a core collapse explosion. Precise classifications according to modern nomenclature require spectra of the outburst light. In the case of ancient SNe, this can only be done with spectroscopy of their light echo, where the discovery of the light echoes from the outburst light is the first step. Adjacent light echo positions suggest that Cas A and Tycho may share common scattering dust structures. If so, it is possible to measure precise distances between historical Galactic supernovae. On-going surveys that alert on the development of bright scattered-light echo features have the potential to reveal detailed spectroscopic information for many recent Galactic supernovae, both directly visible and obscured by dust in the Galactic plane

  3. Type Ia Supernova Light Curve Inference: Hierarchical Models for Nearby SN Ia in the Optical and Near Infrared

    Science.gov (United States)

    Mandel, Kaisey; Kirshner, R. P.; Narayan, G.; Wood-Vasey, W. M.; Friedman, A. S.; Hicken, M.

    2010-01-01

    I have constructed a comprehensive statistical model for Type Ia supernova light curves spanning optical through near infrared data simultaneously. The near infrared light curves are found to be excellent standard candles (sigma(MH) = 0.11 +/- 0.03 mag) that are less vulnerable to systematic error from dust extinction, a major confounding factor for cosmological studies. A hierarchical statistical framework incorporates coherently multiple sources of randomness and uncertainty, including photometric error, intrinsic supernova light curve variations and correlations, dust extinction and reddening, peculiar velocity dispersion and distances, for probabilistic inference with Type Ia SN light curves. Inferences are drawn from the full probability density over individual supernovae and the SN Ia and dust populations, conditioned on a dataset of SN Ia light curves and redshifts. To compute probabilistic inferences with hierarchical models, I have developed BayeSN, a Markov Chain Monte Carlo algorithm based on Gibbs sampling. This code explores and samples the global probability density of parameters describing individual supernovae and the population. I have applied this hierarchical model to optical and near infrared data of over 100 nearby Type Ia SN from PAIRITEL, the CfA3 sample, and the literature. Using this statistical model, I find that SN with optical and NIR data have a smaller residual scatter in the Hubble diagram than SN with only optical data. The continued study of Type Ia SN in the near infrared will be important for improving their utility as precise and accurate cosmological distance indicators.

  4. Highly reddened Type Ia supernova SN 2004ab: another case of anomalous extinction

    Science.gov (United States)

    Chakradhari, N. K.; Sahu, D. K.; Anupama, G. C.; Prabhu, T. P.

    2018-02-01

    We present optical photometric and spectroscopic data for supernova SN 2004ab, a highly reddened normal Type Ia supernova. The total reddening is estimated as E(B - V) = 1.70 ± 0.05 mag. The intrinsic decline-rate parameter Δm15(B)true is 1.27 ± 0.05, and the B-band absolute magnitude at maximum MB^{max} is -19.31 ± 0.25 mag. The host galaxy NGC 5054 is found to exhibit anomalous extinction with a very low value of RV = 1.41 ± 0.06 in the direction of SN 2004ab. The peak bolometric luminosity is derived as log L_bol^max = 43.10 ± 0.07 erg s-1. The photospheric velocity measured from the absorption minimum of the Si II λ6355 line shows a velocity gradient of \\dot{v} = 90 km s-1 d-1, indicating that SN 2004ab is a member of the high velocity gradient (HVG) subgroup. The ratio of the strengths of the Si II λ5972 and λ6355 absorption lines, R(Si II), is estimated as 0.37, while their pseudo-equivalent widths suggest that SN 2004ab belongs to the broad line (BL) type subgroup.

  5. Detection of a very bright source close to the LMC supernova SN 1987A

    Science.gov (United States)

    Nisenson, P.; Papaliolios, C.; Karovska, M.; Noyes, R.

    1987-01-01

    High angular resolution observations of the supernova in the Large Magellanic Cloud, SN 1987A, have revealed a bright source separated from the SN by approximately 60 mas with a magnitude difference of 2.7 at 656 nm (H-alpha). Speckle imaging techniques were applied to data recorded with the CfA two-dimensional photon counting detector on the CTIO 4 m telescope on March 25 and April 2 to allow measurements in H-alpha on both nights and at 533 nm and 450 nm on the second night. The nature of this object is as yet unknown, though it is almost certainly a phenomenon related to the SN.

  6. SN 2012au: A GOLDEN LINK BETWEEN SUPERLUMINOUS SUPERNOVAE AND THEIR LOWER-LUMINOSITY COUNTERPARTS

    International Nuclear Information System (INIS)

    Milisavljevic, Dan; Soderberg, Alicia M.; Margutti, Raffaella; Drout, Maria R.; Marion, G. Howie; Sanders, Nathan E.; Lunnan, Ragnhild; Chornock, Ryan; Berger, Edo; Foley, Ryan J.; Challis, Pete; Kirshner, Robert P.; Dittmann, Jason; Bieryla, Allyson; Kamble, Atish; Chakraborti, Sayan; Hsiao, Eric Y.; Fesen, Robert A.; Parrent, Jerod T.; Levesque, Emily M.

    2013-01-01

    We present optical and near-infrared observations of SN 2012au, a slow-evolving supernova (SN) with properties that suggest a link between subsets of energetic and H-poor SNe and superluminous SNe. SN 2012au exhibited conspicuous Type-Ib-like He I lines and other absorption features at velocities reaching ≈2 × 10 4 km s –1 in its early spectra, and a broad light curve that peaked at M B = –18.1 mag. Models of these data indicate a large explosion kinetic energy of ∼10 52 erg and 56 Ni mass ejection of M Ni ≈ 0.3 M ☉ on par with SN 1998bw. SN 2012au's spectra almost one year after explosion show a blend of persistent Fe II P-Cyg absorptions and nebular emissions originating from two distinct velocity regions. These late-time emissions include strong [Fe II], [Ca II], [O I], Mg I], and Na I lines at velocities ∼> 4500 km s –1 , as well as O I and Mg I lines at noticeably smaller velocities ∼ –1 . Many of the late-time properties of SN 2012au are similar to the slow-evolving hypernovae SN 1997dq and SN 1997ef, and the superluminous SN 2007bi. Our observations suggest that a single explosion mechanism may unify all of these events that span –21 ∼ B ∼< –17 mag. The aspherical and possibly jetted explosion was most likely initiated by the core collapse of a massive progenitor star and created substantial high-density, low-velocity Ni-rich material.

  7. SN 2012au: A GOLDEN LINK BETWEEN SUPERLUMINOUS SUPERNOVAE AND THEIR LOWER-LUMINOSITY COUNTERPARTS

    Energy Technology Data Exchange (ETDEWEB)

    Milisavljevic, Dan; Soderberg, Alicia M.; Margutti, Raffaella; Drout, Maria R.; Marion, G. Howie; Sanders, Nathan E.; Lunnan, Ragnhild; Chornock, Ryan; Berger, Edo; Foley, Ryan J.; Challis, Pete; Kirshner, Robert P.; Dittmann, Jason; Bieryla, Allyson; Kamble, Atish; Chakraborti, Sayan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Fesen, Robert A.; Parrent, Jerod T. [6127 Wilder Lab, Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Levesque, Emily M., E-mail: dmilisav@cfa.harvard.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); and others

    2013-06-20

    We present optical and near-infrared observations of SN 2012au, a slow-evolving supernova (SN) with properties that suggest a link between subsets of energetic and H-poor SNe and superluminous SNe. SN 2012au exhibited conspicuous Type-Ib-like He I lines and other absorption features at velocities reaching Almost-Equal-To 2 Multiplication-Sign 10{sup 4} km s{sup -1} in its early spectra, and a broad light curve that peaked at M{sub B} = -18.1 mag. Models of these data indicate a large explosion kinetic energy of {approx}10{sup 52} erg and {sup 56}Ni mass ejection of M{sub Ni} Almost-Equal-To 0.3 M{sub Sun} on par with SN 1998bw. SN 2012au's spectra almost one year after explosion show a blend of persistent Fe II P-Cyg absorptions and nebular emissions originating from two distinct velocity regions. These late-time emissions include strong [Fe II], [Ca II], [O I], Mg I], and Na I lines at velocities {approx}> 4500 km s{sup -1}, as well as O I and Mg I lines at noticeably smaller velocities {approx}< 2000 km s{sup -1}. Many of the late-time properties of SN 2012au are similar to the slow-evolving hypernovae SN 1997dq and SN 1997ef, and the superluminous SN 2007bi. Our observations suggest that a single explosion mechanism may unify all of these events that span -21 {approx}< M{sub B} {approx}< -17 mag. The aspherical and possibly jetted explosion was most likely initiated by the core collapse of a massive progenitor star and created substantial high-density, low-velocity Ni-rich material.

  8. INVERSE COMPTON X-RAY EMISSION FROM SUPERNOVAE WITH COMPACT PROGENITORS: APPLICATION TO SN2011fe

    International Nuclear Information System (INIS)

    Margutti, R.; Soderberg, A. M.; Chomiuk, L.; Milisavljevic, D.; Foley, R. J.; Slane, P.; Moe, M.; Chevalier, R.; Hurley, K.; Hughes, J. P.; Fransson, C.; Barthelmy, S.; Cummings, J.; Boynton, W.; Enos, H.; Fellows, C.; Briggs, M.; Connaughton, V.; Costa, E.; Del Monte, E.

    2012-01-01

    We present a generalized analytic formalism for the inverse Compton X-ray emission from hydrogen-poor supernovae and apply this framework to SN 2011fe using Swift X-Ray Telescope (XRT), UVOT, and Chandra observations. We characterize the optical properties of SN 2011fe in the Swift bands and find them to be broadly consistent with a 'normal' SN Ia, however, no X-ray source is detected by either XRT or Chandra. We constrain the progenitor system mass-loss rate M-dot -9 M ☉ yr -1 (3σ c.l.) for wind velocity v w = 100 km s –1 . Our result rules out symbiotic binary progenitors for SN 2011fe and argues against Roche lobe overflowing subgiants and main-sequence secondary stars if ∼> 1% of the transferred mass is lost at the Lagrangian points. Regardless of the density profile, the X-ray non-detections are suggestive of a clean environment (n CSM –3 ) for 2 × 10 15 ∼ 16 cm around the progenitor site. This is either consistent with the bulk of material being confined within the binary system or with a significant delay between mass loss and supernova explosion. We furthermore combine X-ray and radio limits from Chomiuk et al. to constrain the post-shock energy density in magnetic fields. Finally, we searched for the shock breakout pulse using gamma-ray observations from the Interplanetary Network and find no compelling evidence for a supernova-associated burst. Based on the compact radius of the progenitor star we estimate that the shock breakout pulse was likely not detectable by current satellites.

  9. A MISSING-LINK IN THE SUPERNOVA–GRB CONNECTION: THE CASE OF SN 2012ap

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborti, Sayan; Soderberg, Alicia; Kamble, Atish; Margutti, Raffaella; Milisavljevic, Dan; Dittmann, Jason [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chomiuk, Laura [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Yadav, Naveen; Ray, Alak [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005 (India); Hurley, Kevin [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, CA 94720 (United States); Bietenholz, Michael [Department of Physics and Astronomy, York University, 4700 Keele St., M3J 1P3 Ontario (Canada); Brunthaler, Andreas [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Pignata, Giuliano [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Pian, Elena [Scuola Normale Superiore, Piazza Dei Cavalieri 7—I-56126 Pisa (Italy); Mazzali, Paolo [Liverpool John Moores University, IC2, 146 Brownlow Hill, Liverpool (United Kingdom); Fransson, Claes [Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Bartel, Norbert [Hartebeesthoek Radio Astronomy Observatory, PO Box 443, Krugersdrop, 1740 (South Africa); Hamuy, Mario [Departamento de Astronoma, Universidad de Chile (Chile); Levesque, Emily [University of Colorado, C327A, Boulder, CO 80309 (United States); MacFadyen, Andrew, E-mail: schakraborti@fas.harvard.edu [New York University, 4 Washington Place, New York, NY 10003 (United States); and others

    2015-06-01

    Gamma-ray bursts (GRBs) are characterized by ultra-relativistic outflows, while supernovae are generally characterized by non-relativistic ejecta. GRB afterglows decelerate rapidly, usually within days, because their low-mass ejecta rapidly sweep up a comparatively larger mass of circumstellar material. However, supernovae with heavy ejecta can be in nearly free expansion for centuries. Supernovae were thought to have non-relativistic outflows except for a few relativistic ones accompanied by GRBs. This clear division was blurred by SN 2009bb, the first supernova with a relativistic outflow without an observed GRB. However, the ejecta from SN 2009bb was baryon loaded and in nearly free expansion for a year, unlike GRBs. We report the first supernova discovered without a GRB but with rapidly decelerating mildly relativistic ejecta, SN 2012ap. We discovered a bright and rapidly evolving radio counterpart driven by the circumstellar interaction of the relativistic ejecta. However, we did not find any coincident GRB with an isotropic fluence of more than one-sixth of the fluence from GRB 980425. This shows for the first time that central engines in SNe Ic, even without an observed GRB, can produce both relativistic and rapidly decelerating outflows like GRBs.

  10. A MISSING-LINK IN THE SUPERNOVA–GRB CONNECTION: THE CASE OF SN 2012ap

    International Nuclear Information System (INIS)

    Chakraborti, Sayan; Soderberg, Alicia; Kamble, Atish; Margutti, Raffaella; Milisavljevic, Dan; Dittmann, Jason; Chomiuk, Laura; Yadav, Naveen; Ray, Alak; Hurley, Kevin; Bietenholz, Michael; Brunthaler, Andreas; Pignata, Giuliano; Pian, Elena; Mazzali, Paolo; Fransson, Claes; Bartel, Norbert; Hamuy, Mario; Levesque, Emily; MacFadyen, Andrew

    2015-01-01

    Gamma-ray bursts (GRBs) are characterized by ultra-relativistic outflows, while supernovae are generally characterized by non-relativistic ejecta. GRB afterglows decelerate rapidly, usually within days, because their low-mass ejecta rapidly sweep up a comparatively larger mass of circumstellar material. However, supernovae with heavy ejecta can be in nearly free expansion for centuries. Supernovae were thought to have non-relativistic outflows except for a few relativistic ones accompanied by GRBs. This clear division was blurred by SN 2009bb, the first supernova with a relativistic outflow without an observed GRB. However, the ejecta from SN 2009bb was baryon loaded and in nearly free expansion for a year, unlike GRBs. We report the first supernova discovered without a GRB but with rapidly decelerating mildly relativistic ejecta, SN 2012ap. We discovered a bright and rapidly evolving radio counterpart driven by the circumstellar interaction of the relativistic ejecta. However, we did not find any coincident GRB with an isotropic fluence of more than one-sixth of the fluence from GRB 980425. This shows for the first time that central engines in SNe Ic, even without an observed GRB, can produce both relativistic and rapidly decelerating outflows like GRBs

  11. Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star.

    Science.gov (United States)

    Nugent, Peter E; Sullivan, Mark; Cenko, S Bradley; Thomas, Rollin C; Kasen, Daniel; Howell, D Andrew; Bersier, David; Bloom, Joshua S; Kulkarni, S R; Kandrashoff, Michael T; Filippenko, Alexei V; Silverman, Jeffrey M; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard T; Maguire, Kate; Suzuki, Nao; Tarlton, James E; Pan, Yen-Chen; Bildsten, Lars; Fulton, Benjamin J; Parrent, Jerod T; Sand, David; Podsiadlowski, Philipp; Bianco, Federica B; Dilday, Benjamin; Graham, Melissa L; Lyman, Joe; James, Phil; Kasliwal, Mansi M; Law, Nicholas M; Quimby, Robert M; Hook, Isobel M; Walker, Emma S; Mazzali, Paolo; Pian, Elena; Ofek, Eran O; Gal-Yam, Avishay; Poznanski, Dovi

    2011-12-14

    Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.

  12. Soft x-ray emission from the Lupus Loop and SN 1006 supernova remnants

    International Nuclear Information System (INIS)

    Winkler, P.F. Jr.; Hearn, D.R.; Richardson, J.A.; Behnken, J.M.

    1979-01-01

    X-ray maps of the Lupus region have been obtained in a raster scan observation from SAS 3. These show the Lupus Loop to be a faint, extended source of soft x-rays with a temperature about 2.5 x 10 6 K. The most prominent feature of the region is the A.D. 1006 supernova remnant, which is unexpectedly bright at 0.2--1.0 keV. One speculative interpretation of the low-energy flux from SN 1006 is as blackbody radiation from a hot neutron star

  13. The supernova-gamma-ray burst-jet connection.

    Science.gov (United States)

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  14. X-ray characteristics of the Lupus Loop and SN1006 supernova remnants

    Energy Technology Data Exchange (ETDEWEB)

    Toor, A [California Univ., Livermore (USA). Lawrence Livermore Lab.

    1980-01-01

    The spatial extent of the Lupus Loop and spectra for the Lupus Loop and SN1006 supernova remnants have been determined with a rocket-borne payload. The Lupus Loop is an extended source of soft X-rays (approx. 300' diam) that shows a correlation between its brightest X-ray and radio-emission regions. Its spectrum is characterized by a temperature of 350 eV. Thus, the Lupus Loop appears similar to Vela X and Cygnus Loop, although much weaker. Emission from SN1006 is spatially unresolved and exhibits a harder spectrum than that of the Lupus Loop. All spectral data (0.2 100 keV) from our observation and previous observations are satisfactorily fit with a power law (index = 2.15). This spectral dependence suggests the possibility that a rotating neutron star is the underlying source of the radiated energy although such an interpretation appears inconsistent with the remnant's morphology.

  15. X-ray characteristics of the Lupus Loop and SN1006 supernova remnants

    International Nuclear Information System (INIS)

    Toor, A.

    1980-01-01

    The spatial extent of the Lupus Loop and spectra for the Lupus Loop and SN1006 supernova remnants have been determined with a rocket-borne payload. The Lupus Loop is an extended source of soft X-rays (approx. 300' diam) that shows a correlation between its brightest X-ray and radio-emission regions. Its spectrum is characterized by a temperature of 350 eV. Thus, the Lupus Loop appears similar to Vela X and Cygnus Loop, although much weaker. Emission from SN1006 is spatially unresolved and exhibits a harder spectrum than that of the Lupus Loop. All spectral data (0.2 100 keV) from our observation and previous observations are satisfactorily fit with a power law (index = 2.15). This spectral dependence suggests the possibility that a rotating neutron star is the underlying source of the radiated energy although such an interpretation appears inconsistent with the remnant's morphology. (orig.)

  16. Two transitional type Ia supernovae located in the Fornax cluster member NGC 1404: SN 2007on and SN 2011iv

    Science.gov (United States)

    Gall, C.; Stritzinger, M. D.; Ashall, C.; Baron, E.; Burns, C. R.; Hoeflich, P.; Hsiao, E. Y.; Mazzali, P. A.; Phillips, M. M.; Filippenko, A. V.; Anderson, J. P.; Benetti, S.; Brown, P. J.; Campillay, A.; Challis, P.; Contreras, C.; Elias de la Rosa, N.; Folatelli, G.; Foley, R. J.; Fraser, M.; Holmbo, S.; Marion, G. H.; Morrell, N.; Pan, Y.-C.; Pignata, G.; Suntzeff, N. B.; Taddia, F.; Robledo, S. Torres; Valenti, S.

    2018-03-01

    We present an analysis of ultraviolet (UV) to near-infrared observations of the fast-declining Type Ia supernovae (SNe Ia) 2007on and 2011iv, hosted by the Fornax cluster member NGC 1404. The B-band light curves of SN 2007on and SN 2011iv are characterised by Δm15 (B) decline-rate values of 1.96 mag and 1.77 mag, respectively. Although they have similar decline rates, their peak B- and H-band magnitudes differ by 0.60 mag and 0.35 mag, respectively. After correcting for the luminosity vs. decline rate and the luminosity vs. colour relations, the peak B-band and H-band light curves provide distances that differ by 14% and 9%, respectively. These findings serve as a cautionary tale for the use of transitional SNe Ia located in early-type hosts in the quest to measure cosmological parameters. Interestingly, even though SN 2011iv is brighter and bluer at early times, by three weeks past maximum and extending over several months, its B - V colour is 0.12 mag redder than that of SN 2007on. To reconcile this unusual behaviour, we turn to guidance from a suite of spherical one-dimensional Chandrasekhar-mass delayed-detonation explosion models. In this context, 56Ni production depends on both the so-called transition density and the central density of the progenitor white dwarf. To first order, the transition density drives the luminosity-width relation, while the central density is an important second-order parameter. Within this context, the differences in the B - V colour evolution along the Lira regime suggest that the progenitor of SN 2011iv had a higher central density than SN 2007on. The photometry tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A58

  17. Stripped-envelope supernova SN 2004dk is now interacting with hydrogen-rich circumstellar material

    Science.gov (United States)

    Mauerhan, Jon C.; Filippenko, Alexei V.; Zheng, WeiKang; Brink, Thomas; Graham, Melissa L.; Shivvers, Isaac; Clubb, Kelsey

    2018-05-01

    The dominant mechanism and time scales over which stripped-envelope supernovae (SNe) progenitor stars shed their hydrogen envelopes are uncertain. Observations of Type Ib and Ic SNe at late phases could reveal the optical signatures of interaction with distant circumstellar material (CSM) providing important clues on the origin of the necessary pre-SN mass loss. We report deep late-time optical spectroscopy of the Type Ib explosion SN 2004dk 4684 days (13 years) after discovery. We detect strong Hα emission with an intermediate line width of ˜400 km s-1 and luminosity ˜2.5 × 1039 erg s-1, signaling that the SN blast wave has caught up with the hydrogen-rich CSM lost by the progenitor system. The line luminosity is the highest ever reported for a SN at this late stage. Prominent emission features of He I, Fe, and Ca are also detected. The spectral characteristics are consistent with CSM energized by the forward shock, and resemble the late-time spectra of the persistently interacting Type IIn SNe 2005ip and 1988Z. We suggest that the onset of interaction with H-rich CSM was associated with a previously reported radio rebrightening at ˜1700 days. The data indicate that the mode of pre-SN mass loss was a relatively slow dense wind that persisted millennia before the SN, followed by a short-lived Wolf-Rayet phase that preceded core-collapse and created a cavity within an extended distribution of CSM. We also present new spectra of SNe 2014C, PTF11iqb, and 2009ip, all of which also exhibit continued interaction with extended CSM distributions.

  18. Multi-dimensional simulations of the expanding supernova remnant of SN 1987A

    Energy Technology Data Exchange (ETDEWEB)

    Potter, T. M.; Staveley-Smith, L. [International center for Radio Astronomy Research (ICRAR) M468, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Reville, B. [Center for Plasma Physics, Queen' s University Belfast, University Road, Belfast BT7 1NN (United Kingdom); Ng, C.-Y. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Bicknell, G. V.; Sutherland, R. S. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 0200 (Australia); Wagner, A. Y., E-mail: tobympotter@gmail.com [Center for Computational Sciences, Tsukuba University, Tsukuba, Ibaraki, 305-8577 (Japan)

    2014-10-20

    The expanding remnant from SN 1987A is an excellent laboratory for investigating the physics of supernovae explosions. There is still a large number of outstanding questions, such as the reason for the asymmetric radio morphology, the structure of the pre-supernova environment, and the efficiency of particle acceleration at the supernova shock. We explore these questions using three-dimensional simulations of the expanding remnant between days 820 and 10,000 after the supernova. We combine a hydrodynamical simulation with semi-analytic treatments of diffusive shock acceleration and magnetic field amplification to derive radio emission as part of an inverse problem. Simulations show that an asymmetric explosion, combined with magnetic field amplification at the expanding shock, is able to replicate the persistent one-sided radio morphology of the remnant. We use an asymmetric Truelove and McKee progenitor with an envelope mass of 10 M {sub ☉} and an energy of 1.5 × 10{sup 44} J. A termination shock in the progenitor's stellar wind at a distance of 0.''43-0.''51 provides a good fit to the turn on of radio emission around day 1200. For the H II region, a minimum distance of 0.''63 ± 0.''01 and maximum particle number density of (7.11 ± 1.78) × 10{sup 7} m{sup –3} produces a good fit to the evolving average radius and velocity of the expanding shocks from day 2000 to day 7000 after explosion. The model predicts a noticeable reduction, and possibly a temporary reversal, in the asymmetric radio morphology of the remnant after day 7000, when the forward shock left the eastern lobe of the equatorial ring.

  19. Very-high-energy gamma-ray observations of the Type Ia Supernova SN 2014J with the MAGIC telescopes

    Science.gov (United States)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Arcaro, C.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Toyama, T.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.

    2017-06-01

    Context. In this work we present data from observations with the MAGIC telescopes of SN 2014J detected on January 21 2014, the closest Type Ia supernova since Imaging Air Cherenkov Telescopes started to operate. Aims: We aim to probe the possibility of very-high-energy (VHE; E ≥ 100 GeV) gamma rays produced in the early stages of Type Ia supernova explosions. Methods: We performed follow-up observations after this supernova (SN) explosion for five days, between January 27 and February 2 2014. We searched for gamma-ray signals in the energy range between 100 GeV and several TeV from the location of SN 2014J using data from a total of 5.5 h of observations. Prospects for observing gamma rays of hadronic origin from SN 2014J in the near future are also being addressed. Results: No significant excess was detected from the direction of SN 2014J. Upper limits at 95% confidence level on the integral flux, assuming a power-law spectrum, dF/dE ∝ E- Γ, with a spectral index of Γ = 2.6, for energies higher than 300 GeV and 700 GeV, are established at 1.3 × 10-12 and 4.1 × 10-13 photons cm-2 s-1, respectively. Conclusions: For the first time, upper limits on the VHE emission of a Type Ia supernova are established. The energy fraction isotropically emitted into TeV gamma rays during the first 10 days after the supernova explosion for energies greater than 300 GeV is limited to 10-6 of the total available energy budget ( 1051 erg). Within the assumed theoretical scenario, the MAGIC upper limits on the VHE emission suggest that SN 2014J will not be detectable in the future by any current or planned generation of Imaging Atmospheric Cherenkov Telescopes.

  20. The X-Ray Light Curve of the Very Luminous Supernova SN 1978K in NGC 1313

    Science.gov (United States)

    Schlegel, Eric M.; Petre, R.; Colbert, E. J. M.

    1996-01-01

    We present the 0.5-2.0 keV light curve of the X-ray luminous supernova SN 1978K in NGC 1313, based on six ROSAT observations spanning 1990 July to t994 July. SN 1978K is one of a few supernovae or supernova remnants that are very luminous (˜1039-1040 ergs s-1) in the X-ray, optical, and radio bands, and the first, at a supernova age of 10-20 yr, for which sufficient data exist to create an X-ray light curve. The X-ray flux is approximately constant over the 4 yr sampled by our observations, which were obtained 12-16 yr after the initial explosion. Three models exist to explain the large X-ray luminosity: pulsar input, a reverse shock running back into the expanding debris of the supernova, and the outgoing shock crushing of cloudlets in the debris field. Based upon calculations of Chevalier & Fransson, a pulsar cannot provide sufficient energy to produce the soft X-ray luminosity. Based upon the models and the light curve to date, it is not possible to discern the evolutionary phase of the supernova.

  1. HIGH RESOLUTION 36 GHz IMAGING OF THE SUPERNOVA REMNANT OF SN 1987A

    International Nuclear Information System (INIS)

    Potter, T. M.; Staveley-Smith, L.; Zanardo, G.; Ng, C.-Y.; Gaensler, B. M.; Ball, Lewis; Kesteven, M. J.; Manchester, R. N.; Tzioumis, A. K.

    2009-01-01

    The aftermath of supernova (SN) 1987A continues to provide spectacular insights into the interaction between an SN blastwave and its circumstellar environment. We here present 36 GHz observations from the Australia Telescope Compact Array of the radio remnant of SN 1987A. These new images, taken in 2008 April and 2008 October, substantially extend the frequency range of an ongoing monitoring and imaging program conducted between 1.4 and 20 GHz. Our 36.2 GHz images have a diffraction-limited angular resolution of 0.''3-0.''4, which covers the gap between high resolution, low dynamic range VLBI images of the remnant and low resolution, high dynamic range images at frequencies between 1 and 20 GHz. The radio morphology of the remnant at 36 GHz is an elliptical ring with enhanced emission on the eastern and western sides, similar to that seen previously at lower frequencies. Model fits to the data in the Fourier domain show that the emitting region is consistent with a thick inclined torus of mean radius 0.''85, and a 2008 October flux density of 27 ± 6 mJy at 36.2 GHz. The spectral index for the remnant at this epoch, determined between 1.4 GHz and 36.2 GHz, is α = -0.83. There is tentative evidence for an unresolved central source with flatter spectral index.

  2. The signature of supernova ejecta in the X-ray afterglow of the gamma-ray burst 011211.

    Science.gov (United States)

    Reeves, J N; Watson, D; Osborne, J P; Pounds, K A; O'Brien, P T; Short, A D T; Turner, M J L; Watson, M G; Mason, K O; Ehle, M; Schartel, N

    2002-04-04

    Now that gamma-ray bursts (GRBs) have been determined to lie at cosmological distances, their isotropic burst energies are estimated to be as high as 1054 erg (ref. 2), making them the most energetic phenomena in the Universe. The nature of the progenitors responsible for the bursts remains, however, elusive. The favoured models range from the merger of two neutron stars in a binary system to the collapse of a massive star. Spectroscopic studies of the afterglow emission could reveal details of the environment of the burst, by indicating the elements present, the speed of the outflow and an estimate of the temperature. Here we report an X-ray spectrum of the afterglow of GRB011211, which shows emission lines of magnesium, silicon, sulphur, argon, calcium and possibly nickel, arising in metal-enriched material with an outflow velocity of the order of one-tenth the speed of light. These observations strongly favour models where a supernova explosion from a massive stellar progenitor precedes the burst event and is responsible for the outflowing matter.

  3. Supernovae 2016bdu and 2005gl, and their link with SN 2009ip-like transients: another piece of the puzzle

    DEFF Research Database (Denmark)

    Pastorello, A.; Kochanek, C. S.; Fraser, M.

    2018-01-01

    Supernova (SN) 2016bdu is an unusual transient resembling SN 2009ip. SN 2009ip-like events are characterized by a long-lasting phase of erratic variability which ends with two luminous outbursts a few weeks apart. The second outburst is significantly more luminous (about 3 mag) than the first. In...

  4. Narrowband Hα Imaging of Old Hydrogen-deficient Supernovae

    Science.gov (United States)

    Pooley, David A.; Vinko, Jozsef; Silverman, Jeffrey M.; Wheeler, J. Craig Craig; Szalai, Tamas; MacQueen, Phillip; Marion, Howie H.; Sárneczky, Krisztián

    2017-06-01

    We report results from our long-term observational survey aimed at discovering late-time interaction between the ejecta of hydrogen-deficient Type I supernovae and the hydrogen-rich envelope expelled from the progenitor star several decades to centuries before explosion. The expelled envelope, moving with a velocity of ˜10-100 km/s, is expected to be caught up by the fast-moving SN ejecta several years to decades after explosion depending on the history of the mass-loss process acting in the progenitor star prior to explosion. The collision between the SN ejecta and the circumstellar envelope results in net emission in the Balmer-lines, especially in Hα. For the past three years, we have been using the Direct Imaging Auxiliary Functions Instrument (DIAFI) on the 2.7m Harlan J. Smith Telescope at McDonald Observatory to look for signs of late-time Hα emission in older Type Ia/Ibc/IIb SNe having hydrogen-poor ejecta, via narrow-band imaging. Continuum-subtracted Hα emission has been detected for 13 point sources: 9 SN Ibc, 1 SN IIb and 3 SN Ia events. Thirty-eight SN sites were observed on at least two epochs, from which three objects (SN 1985F, SN 2005kl, SN 2012fh) showed significant temporal variation in the strength of their Hα emission in our DIAFI data. This suggests that the variable emission is probably not due to nearby HII regions, and hence is an important additional hint that ejecta-CSM interaction may take place in these systems. Moreover, we successfully detected the late-time Hα emission from the Type Ib SN 2014C, which was recently discovered as a strongly interacting SN in other wavebands.

  5. PRE-DISCOVERY AND FOLLOW-UP OBSERVATIONS OF THE NEARBY SN 2009nr: IMPLICATIONS FOR PROMPT TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Khan, Rubab; Stanek, K. Z.; Beacom, J. F.; Szczygiel, D. M.; Mogren, K.; Eastman, J. D.; Martini, P.; Stoll, R.; Prieto, J. L.; Pojmanski, G.; Pilecki, B.

    2011-01-01

    We present photometric and spectroscopic observations of the Type Ia supernova SN 2009nr in UGC 8255 (z = 0.0122). Following the discovery announcement at what turned out to be 10 days after peak, we detected it at V ≅15.7 mag in data collected by the All-Sky Automated Survey (ASAS) North telescope 2 weeks prior to the peak, and then followed it up with telescopes ranging in aperture from 10 cm to 6.5 m. Using early photometric data available only from ASAS, we find that the supernova is similar to the overluminous Type Ia SN 1991T, with a peak at M V ≅ -19.6 mag, and a slow decline rate of Δm 15 (B) ≅ 0.95 mag. The early post-maximum spectra closely resemble those of SN 1991T, while the late-time spectra are more similar to those of normal Type Ia supernovae (SNe Ia). Interestingly, SN 2009nr has a projected distance of 13.0 kpc (∼4.3 disk scale lengths) from the nucleus of the small star-forming host galaxy UGC 8255. This indicates that the progenitor of SN 2009nr is not associated with a young stellar population, calling into question the conventional association of luminous SNe Ia with the 'prompt' component directly correlated with current star formation. The pre-discovery observation of SN 2009nr using ASAS demonstrates the science utility of high-cadence all sky surveys conducted using small telescopes for the discovery of nearby (d ∼< 50 Mpc) supernovae.

  6. Host galaxy spectra and consequences for supernova typing from the SDSS SN survey

    Energy Technology Data Exchange (ETDEWEB)

    Olmstead, Matthew D.; Brown, Peter J.; Brownstein, Joel R.; Dawson, Kyle S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Sako, Masao; Gupta, Ravi R. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Bassett, Bruce; Kunz, Martin [African Institute for Mathematical Sciences, 6 Melrose Road, Muizenberg, 7945 (South Africa); Bizyaev, Dmitry; Brinkmann, J.; Brewington, Howard; Ebelke, Garrett L. [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Campbell, Heather [Institute of Astronomy, Madingley Road, Cambridge CB4 0HA (United Kingdom); D' Andrea, Chris B.; Lampeitl, Hubert [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Frieman, Joshua A. [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Galbany, Lluís [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Garnavich, Peter [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Hlozek, Renee [Department of Astrophysics, Peyton Hall, 4 Ivy Lane, Princeton, NJ 08544 (United States); Jha, Saurabh W., E-mail: olmstead@physics.utah.edu [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); and others

    2014-04-01

    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey, this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of SN host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future analysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased toward lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  7. OGLE-2013-SN-079: A LONELY SUPERNOVA CONSISTENT WITH A HELIUM SHELL DETONATION

    International Nuclear Information System (INIS)

    Inserra, C.; Sim, S. A.; Smartt, S. J.; Nicholl, M.; Jerkstrand, A.; Chen, T.-W.; Wyrzykowski, L.; Fraser, M.; Blagorodnova, N.; Campbell, H.; Shen, K. J.; Gal-Yam, A.; Howell, D. A.; Valenti, S.; Maguire, K.; Mazzali, P.; Bersier, D.; Taubenberger, S.; Benitez-Herrera, S.; Elias-Rosa, N.

    2015-01-01

    We present observational data for a peculiar supernova discovered by the OGLE-IV survey and followed by the Public ESO Spectroscopic Survey for Transient Objects. The inferred redshift of z = 0.07 implies an absolute magnitude in the rest-frame I-band of M I ∼ –17.6 mag. This places it in the luminosity range between normal Type Ia SNe and novae. Optical and near infrared spectroscopy reveal mostly Ti and Ca lines, and an unusually red color arising from strong depression of flux at rest wavelengths <5000 Å. To date, this is the only reported SN showing Ti-dominated spectra. The data are broadly consistent with existing models for the pure detonation of a helium shell around a low-mass CO white dwarf and ''double-detonation'' models that include a secondary detonation of a CO core following a primary detonation in an overlying helium shell

  8. OGLE-2013-SN-079: A LONELY SUPERNOVA CONSISTENT WITH A HELIUM SHELL DETONATION

    Energy Technology Data Exchange (ETDEWEB)

    Inserra, C.; Sim, S. A.; Smartt, S. J.; Nicholl, M.; Jerkstrand, A.; Chen, T.-W. [Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Wyrzykowski, L. [University of Warsaw, Astronomical Observatory, Al. Ujazdowskie 400-478 Warszawa (Poland); Fraser, M.; Blagorodnova, N.; Campbell, H. [Institute of Astronomy, University of Cambridge, Madingley Road, CB3 0HA Cambridge (United Kingdom); Shen, K. J. [Department of Astronomy and Theoretical Astrophysics Center, University of California, Berkeley, CA 94720 (United States); Gal-Yam, A. [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Howell, D. A.; Valenti, S. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102 Goleta, CA 93117 (United States); Maguire, K. [European Southern Observatory for Astronomical Research in the Southern Hemisphere (ESO), Karl-Schwarzschild-Str. 2, 85748 Garching b. Munchen (Germany); Mazzali, P.; Bersier, D. [Astrophysics Research Institute, Liverpool John Moores University, Liverpool (United Kingdom); Taubenberger, S.; Benitez-Herrera, S. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany); Elias-Rosa, N., E-mail: c.inserra@qub.ac.uk [INAF - Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); and others

    2015-01-20

    We present observational data for a peculiar supernova discovered by the OGLE-IV survey and followed by the Public ESO Spectroscopic Survey for Transient Objects. The inferred redshift of z = 0.07 implies an absolute magnitude in the rest-frame I-band of M{sub I} ∼ –17.6 mag. This places it in the luminosity range between normal Type Ia SNe and novae. Optical and near infrared spectroscopy reveal mostly Ti and Ca lines, and an unusually red color arising from strong depression of flux at rest wavelengths <5000 Å. To date, this is the only reported SN showing Ti-dominated spectra. The data are broadly consistent with existing models for the pure detonation of a helium shell around a low-mass CO white dwarf and ''double-detonation'' models that include a secondary detonation of a CO core following a primary detonation in an overlying helium shell.

  9. High energy emission of supernova sn 1987a. Cosmic rays acceleration in mixed shocks

    International Nuclear Information System (INIS)

    Lehoucq, Roland

    1992-01-01

    In its first part, this research thesis reports the study of the high energy emission of the sn 1987 supernova, based on a Monte Carlo simulation of the transfer of γ photons emitted during disintegration of radioactive elements (such as "5"6Ni, "5"6Co, "5"7Co and "4"4Ti) produced during the explosion. One of the studied problems is the late evolution (beyond 1200 days) of light curvature which is very different when it is powered by the radiation of a central object or by radioactivity. The second part reports the study of acceleration of cosmic rays in two-fluid shock waves in order to understand the different asymmetries noticed in hot spots of extragalactic radio-sources. This work comprises the resolution of structure equations of a shock made of a conventional fluid and a relativistic one, in presence or absence of a magnetic field [fr

  10. SN 2010jl: Optical to Hard X-ray Observations Reveal an Explosion Embedded In a Ten Solar Mass Cocoon

    DEFF Research Database (Denmark)

    Ofek, Eran O.; Zoglauer, Andreas; Boggs, Steven E.

    2014-01-01

    Some supernovae (SNe) may be powered by the interaction of the SN ejecta with a large amount of circumstellar matter (CSM). However, quantitative estimates of the CSM mass around such SNe are missing when the CSM material is optically thick. Specifically, current estimators are sensitive to uncer......Some supernovae (SNe) may be powered by the interaction of the SN ejecta with a large amount of circumstellar matter (CSM). However, quantitative estimates of the CSM mass around such SNe are missing when the CSM material is optically thick. Specifically, current estimators are sensitive...

  11. Power law and exponential ejecta size distributions from the dynamic fragmentation of shock-loaded Cu and Sn metals under melt conditions

    International Nuclear Information System (INIS)

    Durand, O.; Soulard, L.

    2013-01-01

    Large scale molecular dynamics (MD) simulations are performed to study and to model the ejecta production from the dynamic fragmentation of shock-loaded metals under melt conditions. A generic 3D crystal in contact with vacuum containing about 10 8 atoms and with a sinusoidal free surface roughness is shock loaded so as to undergo a solid-liquid phase change on shock. The reflection of the shock wave at the interface metal/vacuum gives rise to the ejection of 2D jets/sheets of atoms (Richtmyer-Meshkov instabilities in the continuum limit), which develop and break up, forming ejecta (fragments) of different volumes (or mass). The fragmentation process is investigated by analyzing the evolution of the resulting volume distribution of the ejecta as a function of time. Two metals are studied (Cu and Sn) and the amplitude of the roughness is varied. The simulations show that the associated distributions exhibit a generic behavior with the sum of two distinct terms of varying weight, following the expansion rate of the jets: in the small size limit, the distribution obeys a power law dependence with an exponent equal to 1.15 ± 0.08; and in the large size limit, it obeys an exponential form. These two components are interpreted, with the help of additional simple simulations, as the signature of two different basic mechanisms of fragmentation. The power law dependence results from the fragmentation of a 2D network of ligaments arranged following a fractal (scale free) geometry and generated when the sheets of liquid metal expand and tear. The exponential distribution results from a 1D Poisson fragmentation process of the largest ligaments previously generated. Unlike the power law distribution, it is governed by a characteristic length scale, which may be provided by energy balance principle

  12. Power law and exponential ejecta size distributions from the dynamic fragmentation of shock-loaded Cu and Sn metals under melt conditions

    Energy Technology Data Exchange (ETDEWEB)

    Durand, O.; Soulard, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2013-11-21

    Large scale molecular dynamics (MD) simulations are performed to study and to model the ejecta production from the dynamic fragmentation of shock-loaded metals under melt conditions. A generic 3D crystal in contact with vacuum containing about 10{sup 8} atoms and with a sinusoidal free surface roughness is shock loaded so as to undergo a solid-liquid phase change on shock. The reflection of the shock wave at the interface metal/vacuum gives rise to the ejection of 2D jets/sheets of atoms (Richtmyer-Meshkov instabilities in the continuum limit), which develop and break up, forming ejecta (fragments) of different volumes (or mass). The fragmentation process is investigated by analyzing the evolution of the resulting volume distribution of the ejecta as a function of time. Two metals are studied (Cu and Sn) and the amplitude of the roughness is varied. The simulations show that the associated distributions exhibit a generic behavior with the sum of two distinct terms of varying weight, following the expansion rate of the jets: in the small size limit, the distribution obeys a power law dependence with an exponent equal to 1.15 ± 0.08; and in the large size limit, it obeys an exponential form. These two components are interpreted, with the help of additional simple simulations, as the signature of two different basic mechanisms of fragmentation. The power law dependence results from the fragmentation of a 2D network of ligaments arranged following a fractal (scale free) geometry and generated when the sheets of liquid metal expand and tear. The exponential distribution results from a 1D Poisson fragmentation process of the largest ligaments previously generated. Unlike the power law distribution, it is governed by a characteristic length scale, which may be provided by energy balance principle.

  13. New measurement of the period for the 4th ULX pulsar - the supernova impostor SN2010da in NGC 300

    Science.gov (United States)

    Grebenev, S. A.; Mereminskiy, I. A.

    2018-01-01

    Following the discovery (Atel #11158) of the new (fourth) ULX pulsar (in the peculiar supergiant X-ray binary known as the supernova impostor SN 2010da located in NGC 300, at a distance of 1.86 Mpc) we note that SWIFT/XRT observed this galaxy again on April 16, 2017, and detected the source still in a bright X-ray state.

  14. Nucleosynthesis in Supernovae

    Science.gov (United States)

    Thielemann, Friedrich-Karl; Isern, Jordi; Perego, Albino; von Ballmoos, Peter

    2018-04-01

    We present the status and open problems of nucleosynthesis in supernova explosions of both types, responsible for the production of the intermediate mass, Fe-group and heavier elements (with the exception of the main s-process). Constraints from observations can be provided through individual supernovae (SNe) or their remnants (e.g. via spectra and gamma-rays of decaying unstable isotopes) and through surface abundances of stars which witness the composition of the interstellar gas at their formation. With a changing fraction of elements heavier than He in these stars (known as metallicity) the evolution of the nucleosynthesis in galaxies over time can be determined. A complementary way, related to gamma-rays from radioactive decays, is the observation of positrons released in β+-decays, as e.g. from ^{26}Al, ^{44}Ti, ^{56,57}Ni and possibly further isotopes of their decay chains (in competition with the production of e+e- pairs in acceleration shocks from SN remnants, pulsars, magnetars or even of particle physics origin). We discuss (a) the role of the core-collapse supernova explosion mechanism for the composition of intermediate mass, Fe-group (and heavier?) ejecta, (b) the transition from neutron stars to black holes as the final result of the collapse of massive stars, and the relation of the latter to supernovae, faint supernovae, and gamma-ray bursts/hypernovae, (c) Type Ia supernovae and their nucleosynthesis (e.g. addressing the ^{55}Mn puzzle), plus (d) further constraints from galactic evolution, γ-ray and positron observations. This is complemented by the role of rare magneto-rotational supernovae (related to magnetars) in comparison with the nucleosynthesis of compact binary mergers, especially with respect to forming the heaviest r-process elements in galactic evolution.

  15. Ti-44 Gamma-Ray Emission Lines from SN1987A Reveal an Asymmetric Explosion

    Science.gov (United States)

    Boggs, S. E.; Harrison, F. A.; Miyasaka, H.; Grefenstette, B. W.; Zoglauer, A.; Fryer, C. L.; Reynolds, S. P.; Alexander, D. M.; An, H.; Barret, D.; hide

    2015-01-01

    In core-collapse supernovae, titanium-44 (Ti-44) is produced in the innermost ejecta, in the layer of material directly on top of the newly formed compact object. As such, it provides a direct probe of the supernova engine. Observations of supernova 1987A (SN1987A) have resolved the 67.87- and 78.32-kilo-electron volt emission lines from decay of Ti-44 produced in the supernova explosion. These lines are narrow and redshifted with a Doppler velocity of 700 kilometers per second, direct evidence of large-scale asymmetry in the explosion.

  16. 44Ti gamma-ray emission lines from SN1987A reveal an asymmetric explosion

    DEFF Research Database (Denmark)

    Boggs, S. E.; Harrison, F. A.; Miyasaka, H.

    2015-01-01

    In core-collapse supernovae, titanium-44 (44Ti) is produced in the innermost ejecta, in the layer of material directly on top of the newly formed compact object. As such, it provides a direct probe of the supernova engine. Observations of supernova 1987A (SN1987A) have resolved the 67.87- and 78.......32–kilo–electron volt emission lines from decay of 44Ti produced in the supernova explosion. These lines are narrow and redshifted with a Doppler velocity of ~700 kilometers per second, direct evidence of large-scale asymmetry in the explosion....

  17. Astronomy in Denver: The polarization evolution of the luminous Type Ib SN 2012au

    Science.gov (United States)

    Hoffman, Jennifer L.; DeKlotz, Sophia; Cooper, Kevin; Slay, Hannah; Williams, George Grant; Supernova Spectropolarimetry Project (SNSPOL)

    2018-06-01

    We present an analysis of the spectropolarimetric behavior of the Type Ib SN 2012au over the first 315 days of its evolution. Our data were obtained by the Supernova Spectropolarimetry Project using the CCD Imaging/Spectropolarimeter (SPOL) at the 61" Kuiper, the 90" Bok, and the 6.5-m MMT telescopes. SN 2012au was a very energetic, luminous, and slowly evolving event that may represent an intermediate case between normal core-collapse supernovae and the enigmatic superluminous supernovae. Strong, time-variable line polarization signatures, particularly in the He Il λ5876 line, support previous hypotheses of an asymmetric explosion and allow us to trace detailed structures within the supernova ejecta as they change over time. We compare the polarimetric evolution of the continuum and emission lines in SN 2012au and compare its behavior with that of other bright and polarimetrically variable supernovae.

  18. SN 2008jb: A 'LOST' CORE-COLLAPSE SUPERNOVA IN A STAR-FORMING DWARF GALAXY AT ∼10 Mpc

    International Nuclear Information System (INIS)

    Prieto, J. L.; Lee, J. C.; Drake, A. J.; Djorgovski, S. G.; McNaught, R.; Garradd, G.; Beacom, J. F.; Beshore, E.; Catelan, M.; Pojmanski, G.; Stanek, K. Z.; Szczygieł, D. M.

    2012-01-01

    We present the discovery and follow-up observations of SN 2008jb, a core-collapse supernova in the southern dwarf irregular galaxy ESO 302–14 (M B = –15.3 mag) at 9.6 Mpc. This nearby transient was missed by galaxy-targeted surveys and was only found in archival optical images obtained by the Catalina Real-time Transient Survey and the All-Sky Automated Survey. The well-sampled archival photometry shows that SN 2008jb was detected shortly after explosion and reached a bright optical maximum, V max ≅ 13.6 mag (M V,max ≅ –16.5). The shape of the light curve shows a plateau of ∼100 days, followed by a drop of ∼1.4 mag in the V band to a slow decline with an approximate 56 Co decay slope. The late-time light curve is consistent with 0.04 ± 0.01 M ☉ of 56 Ni synthesized in the explosion. A spectrum of the supernova obtained two years after explosion shows a broad, boxy Hα emission line, which is unusual for normal Type II-Plateau supernovae at late times. We detect the supernova in archival Spitzer and WISE images obtained 8-14 months after explosion, which show clear signs of warm (600-700 K) dust emission. The dwarf irregular host galaxy, ESO 302–14, has a low gas-phase oxygen abundance, 12 + log(O/H) = 8.2 (∼1/5 Z ☉ ), similar to those of the Small Magellanic Cloud and the hosts of long gamma-ray bursts and luminous core-collapse supernovae. This metallicity is one of the lowest among local (∼ 5 M ☉ for the star formation complex, assuming a single-age starburst. These properties are consistent with the expanding Hα supershells observed in many well-studied nearby dwarf galaxies, which are tell-tale signs of feedback from the cumulative effect of massive star winds and supernovae. The age estimated for the star-forming region where SN 2008jb exploded suggests a relatively high-mass progenitor star with an initial mass M ∼ 20 M ☉ and warrants further study. We discuss the implications of these findings in the study of core

  19. SN 2016jhj at redshift 0.34: extending the Type II supernova Hubble diagram using the standard candle method

    Science.gov (United States)

    de Jaeger, T.; Galbany, L.; Filippenko, A. V.; González-Gaitán, S.; Yasuda, N.; Maeda, K.; Tanaka, M.; Morokuma, T.; Moriya, T. J.; Tominaga, N.; Nomoto, K.; Komiyama, Y.; Anderson, J. P.; Brink, T. G.; Carlberg, R. G.; Folatelli, G.; Hamuy, M.; Pignata, G.; Zheng, W.

    2017-12-01

    Although Type Ia supernova cosmology has now reached a mature state, it is important to develop as many independent methods as possible to understand the true nature of dark energy. Recent studies have shown that Type II supernovae (SNe II) offer such a path and could be used as alternative distance indicators. However, the majority of these studies were unable to extend the Hubble diagram above redshift z = 0.3 because of observational limitations. Here, we show that we are now ready to move beyond low redshifts and attempt high-redshift (z ≳ 0.3) SN II cosmology as a result of new-generation deep surveys such as the Subaru/Hyper Suprime-Cam survey. Applying the 'standard candle method' to SN 2016jhj (z = 0.3398 ± 0.0002; discovered by HSC) together with a low-redshift sample, we are able to construct the highest-redshift SN II Hubble diagram to date with an observed dispersion of 0.27 mag (i.e. 12-13 per cent in distance). This work demonstrates the bright future of SN II cosmology in the coming era of large, wide-field surveys like that of the Large Synoptic Survey Telescope.

  20. ON THE RADIO POLARIZATION SIGNATURE OF EFFICIENT AND INEFFICIENT PARTICLE ACCELERATION IN SUPERNOVA REMNANT SN 1006

    Energy Technology Data Exchange (ETDEWEB)

    Reynoso, Estela M. [Instituto de Astronomia y Fisica del Espacio (IAFE), C. C. 67, Suc. 28, 1428 Buenos Aires (Argentina); Hughes, John P. [Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854-8019 (United States); Moffett, David A., E-mail: ereynoso@iafe.uba.ar, E-mail: jph@physics.rutgers.edu, E-mail: david.moffett@furman.edu [Department of Physics, Furman University, Greenville, SC 29613 (United States)

    2013-04-15

    Radio polarization observations provide essential information on the degree of order and orientation of magnetic fields, which themselves play a key role in the particle acceleration processes that take place in supernova remnants (SNRs). Here we present a radio polarization study of SN 1006, based on combined Very Large Array and Australia Telescope Compact Array observations at 20 cm that resulted in sensitive images with an angular resolution of 10 arcsec. The fractional polarization in the two bright radio and X-ray lobes of the SNR is measured to be 0.17, while in the southeastern sector, where the radio and non-thermal X-ray emission are much weaker, the polarization fraction reaches a value of 0.6 {+-} 0.2, close to the theoretical limit of 0.7. We interpret this result as evidence of a disordered, turbulent magnetic field in the lobes, where particle acceleration is believed to be efficient, and a highly ordered field in the southeast, where the acceleration efficiency has been shown to be very low. Utilizing the frequency coverage of our observations, an average rotation measure of {approx}12 rad m{sup -2} is determined from the combined data set, which is then used to obtain the intrinsic direction of the magnetic field vectors. While the orientation of magnetic field vectors across the SNR shell appear to be radial, a large fraction of the magnetic vectors lie parallel to the Galactic plane. Along the highly polarized southeastern rim, the field is aligned tangent to the shock, and therefore also nearly parallel to the Galactic plane. These results strongly suggest that the ambient field surrounding SN 1006 is aligned with this direction (i.e., from northeast to southwest) and that the bright lobes are due to a polar cap geometry. Our study establishes that the most efficient particle acceleration and generation of magnetic turbulence in SN 1006 is attained for shocks in which the magnetic field direction and shock normal are quasi-parallel, while

  1. ON THE RADIO POLARIZATION SIGNATURE OF EFFICIENT AND INEFFICIENT PARTICLE ACCELERATION IN SUPERNOVA REMNANT SN 1006

    International Nuclear Information System (INIS)

    Reynoso, Estela M.; Hughes, John P.; Moffett, David A.

    2013-01-01

    Radio polarization observations provide essential information on the degree of order and orientation of magnetic fields, which themselves play a key role in the particle acceleration processes that take place in supernova remnants (SNRs). Here we present a radio polarization study of SN 1006, based on combined Very Large Array and Australia Telescope Compact Array observations at 20 cm that resulted in sensitive images with an angular resolution of 10 arcsec. The fractional polarization in the two bright radio and X-ray lobes of the SNR is measured to be 0.17, while in the southeastern sector, where the radio and non-thermal X-ray emission are much weaker, the polarization fraction reaches a value of 0.6 ± 0.2, close to the theoretical limit of 0.7. We interpret this result as evidence of a disordered, turbulent magnetic field in the lobes, where particle acceleration is believed to be efficient, and a highly ordered field in the southeast, where the acceleration efficiency has been shown to be very low. Utilizing the frequency coverage of our observations, an average rotation measure of ∼12 rad m –2 is determined from the combined data set, which is then used to obtain the intrinsic direction of the magnetic field vectors. While the orientation of magnetic field vectors across the SNR shell appear to be radial, a large fraction of the magnetic vectors lie parallel to the Galactic plane. Along the highly polarized southeastern rim, the field is aligned tangent to the shock, and therefore also nearly parallel to the Galactic plane. These results strongly suggest that the ambient field surrounding SN 1006 is aligned with this direction (i.e., from northeast to southwest) and that the bright lobes are due to a polar cap geometry. Our study establishes that the most efficient particle acceleration and generation of magnetic turbulence in SN 1006 is attained for shocks in which the magnetic field direction and shock normal are quasi-parallel, while inefficient

  2. Supernova VLBI

    Science.gov (United States)

    Bartel, N.

    2009-08-01

    We review VLBI observations of supernovae over the last quarter century and discuss the prospect of imaging future supernovae with space VLBI in the context of VSOP-2. From thousands of discovered supernovae, most of them at cosmological distances, ˜50 have been detected at radio wavelengths, most of them in relatively nearby galaxies. All of the radio supernovae are Type II or Ib/c, which originate from the explosion of massive progenitor stars. Of these, 12 were observed with VLBI and four of them, SN 1979C, SN 1986J, SN 1993J, and SN 1987A, could be imaged in detail, the former three with VLBI. In addition, supernovae or young supernova remnants were discovered at radio wavelengths in highly dust-obscured galaxies, such as M82, Arp 299, and Arp 220, and some of them could also be imaged in detail. Four of the supernovae so far observed were sufficiently bright to be detectable with VSOP-2. With VSOP-2 the expansion of supernovae can be monitored and investigated with unsurpassed angular resolution, starting as early as the time of the supernova's transition from its opaque to transparent stage. Such studies can reveal, in a movie, the aftermath of a supernova explosion shortly after shock break out.

  3. SN 2013fs and SN 2013fr: exploring the circumstellar-material diversity in Type II supernovae

    Science.gov (United States)

    Bullivant, Christopher; Smith, Nathan; Williams, G. Grant; Mauerhan, Jon C.; Andrews, Jennifer E.; Fong, Wen-Fai; Bilinski, Christopher; Kilpatrick, Charles D.; Milne, Peter A.; Fox, Ori D.; Cenko, S. Bradley; Filippenko, Alexei V.; Zheng, WeiKang; Kelly, Patrick L.; Clubb, Kelsey I.

    2018-05-01

    We present photometry and spectroscopy of SN 2013fs and SN 2013fr in the first ˜100 d post-explosion. Both objects showed transient, relatively narrow H α emission lines characteristic of SNe IIn, but later resembled normal SNe II-P or SNe II-L, indicative of fleeting interaction with circumstellar material (CSM). SN 2013fs was discovered within 8 h of explosion; one of the earliest SNe discovered thus far. Its light curve exhibits a plateau, with spectra revealing strong CSM interaction at early times. It is a less luminous version of the transitional SN IIn PTF11iqb, further demonstrating a continuum of CSM interaction intensity between SNe II-P and SNe IIn. It requires dense CSM within 6.5 × 1014 cm of the progenitor, from a phase of advanced pre-SN mass loss beginning shortly before explosion. Spectropolarimetry of SN 2013fs shows little continuum polarization (˜0.5 per cent, consistent with zero), but noticeable line polarization during the plateau phase. SN 2013fr morphed from an SN IIn at early times to an SN II-L. After the first epoch, its narrow lines probably arose from host-galaxy emission, but the bright, narrow H α emission at early times may be intrinsic to the SN. As for SN 2013fs, this would point to a short-lived phase of strong CSM interaction if proven to be intrinsic, suggesting a continuum between SNe IIn and SNe II-L. It is a low-velocity SN II-L like SN 2009kr, but more luminous. SN 2013fr also developed an infrared excess at later times, due to warm CSM dust that requires a more sustained phase of strong pre-SN mass loss.

  4. Observational and theoretical spectra of supernovae

    Science.gov (United States)

    Wheeler, J. Craig; Swartz, Douglas A.; Harkness, Robert P.

    1993-05-01

    Progress in nuclear astrophysics by means of quantitative supernova spectroscopy is discussed with special concentration on type Ia, Ib and Ic and on SN 1987A. Spectral calculations continue to support an exploding C/O white dwarf as the best model of a SN Ia. Deflagration model W7 produces good maximum light spectra of SN Ia and seems to have a better composition distribution compared to delayed detonation models, but proper treatment of opacity remains a problem and the physical basis of SN Ia explosions is still not completely understood. All models for SN Ia predict large quantities of 56Co in the ejecta, but it is not clear that observations confirm this. Although the evolutionary origin of SN Ia remains uncertain, there is recent evidence that transfer of hydrogen in a binary system may be involved, as long suspected. There has been progress in comparing dynamical models with the optical/IR spectra of SN 1987A. The evolution of the [OI] λλ6300, 6364 feature and the presence of strong persistent HeI λ10 830 indicate that both the envelope and core material contribute substantially to the formation of emission lines in the nebular phase and that neither the core nor the envelope can be neglected. Blending with nearby hydrogen lines may affect both of these spectral features, thereby complicating the analysis of the lines. The effects of continuum transfer and photoionization have been included and are under study. The discrepancies between theoretical and observed spectra are due primarily to the one-dimensional hydrodynamic models. The spectral data are not consistent with the high density ``spike'' (in radial coordinate) of the core material that is predicted by all such models. Analysis of the light curves of SN Ib and SN Ic supernovae implies that there are significant differences in their physical properties. Some SN Ib have considerably more ejecta mass than SN Ic events. SN Ib require He-rich atmospheres to produce the observed strong optical lines of

  5. Recent results on SN 1987A

    International Nuclear Information System (INIS)

    Woosley, S.E.; Pinto, P.A.; Weaver, T.A.

    1988-01-01

    Several critical issues recently raised by observations of SN 1987A are addressed. These include: the evolution of the pre-supernova star, why it was blue, what its composition and core structure were; the detailed isotopic composition of the ejecta; why and to what extent the supernova composition was mixed in velocity space; the interpretation of recently observed infrared lines, especially their profiles and the existence of red-shifted 'wings'; and what has become of the neutron star. 64 refs., 14 figs., 1 tab

  6. EmpiriciSN: Re-sampling Observed Supernova/Host Galaxy Populations Using an XD Gaussian Mixture Model

    Energy Technology Data Exchange (ETDEWEB)

    Holoien, Thomas W.-S.; /Ohio State U., Dept. Astron. /Ohio State U., CCAPP /KIPAC, Menlo Park /SLAC; Marshall, Philip J.; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC

    2017-05-11

    We describe two new open-source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program that uses Gaussian mixtures to perform density estimation of noisy data using extreme deconvolution (XD) algorithms. Additionally, it has functionality not available in other XD tools. It allows the user to select between the AstroML and Bovy et al. fitting methods and is compatible with scikit-learn machine learning algorithms. Most crucially, it allows the user to condition a model based on the known values of a subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model that is conditioned on known values of other parameters. EmpiriciSN is an exemplary application of this functionality, which can be used to fit an XDGMM model to observed supernova/host data sets and predict likely supernova parameters using a model conditioned on observed host properties. It is primarily intended to simulate realistic supernovae for LSST data simulations based on empirical galaxy properties.

  7. EmpiriciSN: Re-sampling Observed Supernova/Host Galaxy Populations Using an XD Gaussian Mixture Model

    Science.gov (United States)

    Holoien, Thomas W.-S.; Marshall, Philip J.; Wechsler, Risa H.

    2017-06-01

    We describe two new open-source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program that uses Gaussian mixtures to perform density estimation of noisy data using extreme deconvolution (XD) algorithms. Additionally, it has functionality not available in other XD tools. It allows the user to select between the AstroML and Bovy et al. fitting methods and is compatible with scikit-learn machine learning algorithms. Most crucially, it allows the user to condition a model based on the known values of a subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model that is conditioned on known values of other parameters. EmpiriciSN is an exemplary application of this functionality, which can be used to fit an XDGMM model to observed supernova/host data sets and predict likely supernova parameters using a model conditioned on observed host properties. It is primarily intended to simulate realistic supernovae for LSST data simulations based on empirical galaxy properties.

  8. RADIO AND X-RAY OBSERVATIONS OF SN 2006jd: ANOTHER STRONGLY INTERACTING TYPE IIn SUPERNOVA

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Poonam [Department of Physics, Royal Military College of Canada, Kingston, ON K7K 7B4 (Canada); Chevalier, Roger A.; Irwin, Christopher M. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Chugai, Nikolai [Institute of Astronomy of Russian Academy of Sciences, Pyatnitskaya Street 48, 109017 Moscow (Russian Federation); Fransson, Claes [Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Soderberg, Alicia M. [Smithsonian Astrophysical Observatory, 60 Garden Street, MS-20, Cambridge, MA 02138 (United States); Chakraborti, Sayan [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai 400005 (India); Immler, Stefan, E-mail: Poonam.Chandra@rmc.ca [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-08-20

    We report four years of radio and X-ray monitoring of the Type IIn supernova SN 2006jd at radio wavelengths with the Very Large Array, Giant Metrewave Radio Telescope, and Expanded Very Large Array; at X-ray wavelengths with Chandra, XMM-Newton, and Swift-XRT. We assume that the radio and X-ray emitting particles are produced by shock interaction with a dense circumstellar medium. The radio emission shows an initial rise that can be attributed to free-free absorption by cool gas mixed into the nonthermal emitting region; external free-free absorption is disfavored because of the shape of the rising light curves and the low gas column density inferred along the line of sight to the emission region. The X-ray luminosity implies a preshock circumstellar density {approx}10{sup 6} cm{sup -3} at a radius r {approx} 2 Multiplication-Sign 10{sup 16} cm, but the column density inferred from the photoabsorption of X-rays along the line of sight suggests a significantly lower density. The implication may be an asymmetry in the interaction. The X-ray spectrum shows Fe line emission at 6.9 keV that is stronger than is expected for the conditions in the X-ray emitting gas. We suggest that cool gas mixed into the hot gas plays a role in the line emission. Our radio and X-ray data both suggest the density profile is flatter than r{sup -2} because of the slow evolution of the unabsorbed emission.

  9. SUPERNOVA 1987A: A TEMPLATE TO LINK SUPERNOVAE TO THEIR REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Orlando, S.; Miceli, M.; Pumo, M. L.; Bocchino, F., E-mail: orlando@astropa.inaf.it [INAF—Osservatorio Astronomico di Palermo “G.S. Vaiana”, Piazza del Parlamento 1, I-90134 Palermo (Italy)

    2015-09-10

    The emission of supernova remnants (SNRs) reflects the properties of both the progenitor supernovae (SNe) and the surrounding environment. The complex morphology of the remnants, however, hampers the disentanglement of the two contributions. Here, we aim at identifying the imprint of SN 1987A on the X-ray emission of its remnant and at constraining the structure of the environment surrounding the SN. We performed high-resolution hydrodynamic simulations describing SN 1987A soon after the core-collapse and the following three-dimensional expansion of its remnant between days 1 and 15,000 after the SN. We demonstrated that the physical model reproducing the main observables of SN 1987A during the first 250 days of evolution also reproduces the X-ray emission of the subsequent expanding remnant, thus bridging the gap between SNe and SNRs. By comparing model results with observations, we constrained the explosion energy in the range 1.2–1.4 × 10{sup 51} erg and the envelope mass in the range 15–17 M{sub ⊙}. We found that the shape of X-ray lightcurves and spectra at early epochs (<15 years) reflects the structure of outer ejecta: our model reproduces the observations if the outermost ejecta have a post-explosion radial profile of density approximated by a power law with index α = −8. At later epochs, the shapes of X-ray lightcurves and spectra reflect the density structure of the nebula around SN 1987A. This enabled us to ascertain the origin of the multi-thermal X-ray emission, disentangle the imprint of the SN on the remnant emission from the effects of the remnant interaction with the environment, and constrain the pre-supernova structure of the nebula.

  10. SN 2013ej IN M74: A LUMINOUS AND FAST-DECLINING TYPE II-P SUPERNOVA

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Fang [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Wang, Xiaofeng; Chen, Juncheng; Mo, Jun; Zhao, Xulin [Physics Department and Tsinghua Center for Astrophysics, Tsinghua University, Beijing 100084 (China); Zhang, Jujia [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Brown, Peter J. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A. and M. University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States); Zampieri, Luca [INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Pumo, Maria Letizia [INAF-Osservatorio Astronomico di Palermo “Giuseppe S. Vaiana,” Piazza del Parlamento 1, I-90134 Palermo (Italy); Zhang, Tianmeng, E-mail: huangfang@mail.bnu.edu.cn, E-mail: wang_xf@mail.tsinghua.edu.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2015-07-01

    We present extensive ultraviolet, optical, and near-infrared observations of the Type IIP supernova (SN IIP) 2013ej in the nearby spiral galaxy M74. The multicolor light curves, spanning from ∼8–185 days after explosion, show that it has a higher peak luminosity (i.e., M{sub V} ∼ −17.83 mag at maximum light), a faster post-peak decline, and a shorter plateau phase (i.e., ∼50 days) compared to the normal Type IIP SN 1999em. The mass of {sup 56}Ni is estimated as 0.02 ± 0.01 M{sub ⊙} from the radioactive tail of the bolometric light curve. The spectral evolution of SN 2013ej is similar to that of SN 2004et and SN 2007od, but shows a larger expansion velocity (i.e., v{sub Fe} {sub ii} ∼ 4600 km s{sup −1} at t ∼ 50 days) and broader line profiles. In the nebular phase, the emission of the Hα line displays a double-peak structure, perhaps due to the asymmetric distribution of {sup 56}Ni produced in the explosion. With the constraints from the main observables such as bolometric light curve, expansion velocity, and photospheric temperature of SN 2013ej, we performed hydrodynamical simulations of the explosion parameters, yielding the total explosion energy as ∼0.7× 10{sup 51} erg, the radius of the progenitor as ∼600 R{sub ⊙}, and the ejected mass as ∼10.6 M{sub ⊙}. These results suggest that SN 2013ej likely arose from a red supergiant with a mass of 12–13 M{sub ⊙} immediately before the explosion.

  11. SN 2013ej IN M74: A LUMINOUS AND FAST-DECLINING TYPE II-P SUPERNOVA

    International Nuclear Information System (INIS)

    Huang, Fang; Wang, Xiaofeng; Chen, Juncheng; Mo, Jun; Zhao, Xulin; Zhang, Jujia; Brown, Peter J.; Zampieri, Luca; Pumo, Maria Letizia; Zhang, Tianmeng

    2015-01-01

    We present extensive ultraviolet, optical, and near-infrared observations of the Type IIP supernova (SN IIP) 2013ej in the nearby spiral galaxy M74. The multicolor light curves, spanning from ∼8–185 days after explosion, show that it has a higher peak luminosity (i.e., M V ∼ −17.83 mag at maximum light), a faster post-peak decline, and a shorter plateau phase (i.e., ∼50 days) compared to the normal Type IIP SN 1999em. The mass of 56 Ni is estimated as 0.02 ± 0.01 M ⊙ from the radioactive tail of the bolometric light curve. The spectral evolution of SN 2013ej is similar to that of SN 2004et and SN 2007od, but shows a larger expansion velocity (i.e., v Fe ii  ∼ 4600 km s −1 at t ∼ 50 days) and broader line profiles. In the nebular phase, the emission of the Hα line displays a double-peak structure, perhaps due to the asymmetric distribution of 56 Ni produced in the explosion. With the constraints from the main observables such as bolometric light curve, expansion velocity, and photospheric temperature of SN 2013ej, we performed hydrodynamical simulations of the explosion parameters, yielding the total explosion energy as ∼0.7× 10 51 erg, the radius of the progenitor as ∼600 R ⊙ , and the ejected mass as ∼10.6 M ⊙ . These results suggest that SN 2013ej likely arose from a red supergiant with a mass of 12–13 M ⊙ immediately before the explosion

  12. SN 2016coi/ASASSN-16fp: An example of residual helium in a type Ic supernova?

    Science.gov (United States)

    Prentice, S. J.; Ashall, C.; Mazzali, P. A.; Zhang, J.-J.; James, P. A.; Wang, X.-F.; Vinkó, J.; Percival, S.; Short, L.; Piascik, A.; Huang, F.; Mo, J.; Rui, L.-M.; Wang, J.-G.; Xiang, D.-F.; Xin, Y.-X.; Yi, W.-M.; Yu, X.-G.; Zhai, Q.; Zhang, T.-M.; Hosseinzadeh, G.; Howell, D. A.; McCully, C.; Valenti, S.; Cseh, B.; Hanyecz, O.; Kriskovics, L.; Pál, A.; Sárneczky, K.; Sódor, Á.; Szakáts, R.; Székely, P.; Varga-Verebélyi, E.; Vida, K.; Bradac, M.; Reichart, D. E.; Sand, D.; Tartaglia, L.

    2018-05-01

    The optical observations of Ic-4 supernova (SN) 2016coi/ASASSN-16fp, from ˜2 to ˜450 days after explosion, are presented along with analysis of its physical properties. The SN shows the broad lines associated with SNe Ic-3/4 but with a key difference. The early spectra display a strong absorption feature at ˜5400 Åwhich is not seen in other SNe Ic-3/4 at this epoch. This feature has been attributed to HeIin the literature. Spectral modelling of the SN in the early photospheric phase suggests the presence of residual He in a C/O dominated shell. However, the behaviour of the HeIlines is unusual when compared with He-rich SNe, showing relatively low velocities and weakening rather than strengthening over time. The SN is found to rise to peak ˜16 d after core-collapse reaching a bolometric luminosity of Lp ˜ 3 × 1042 erg s-1. Spectral models, including the nebular epoch, show that the SN ejected 2.5 - 4 M⊙of material, with ˜1.5 M⊙below 5000 km s-1, and with a kinetic energy of (4.5 - 7) × 1051 erg. The explosion synthesised ˜0.14 M⊙of 56Ni. There are significant uncertainties in E(B - V)host and the distance however, which will affect Lp and MNi. SN 2016coi exploded in a host similar to the Large Magellanic Cloud (LMC) and away from star-forming regions. The properties of the SN and the host-galaxy suggest that the progenitor had MZAMS of 23 - 28 M⊙and was stripped almost entirely down to its C/O core at explosion.

  13. Explosive nucleosynthesis in a neutrino-driven core collapse supernova

    International Nuclear Information System (INIS)

    Fujimoto, Shin-ichiro; Kotake, Kei; Hashimoto, Masa-aki; Ono, Masaomi; Ohnishi, Naofumi

    2010-01-01

    We investigate explosive nucleosynthesis in a delayed neutrino-driven, supernova explosion aided by standing accretion shock instability (SASI), based on two-dimensional hydrodynamic simulations of the explosion of a 15 M · star. We take into accounts neutrino heating and cooling as well as change in electron fraction due to weak interactions appropriately, in the two-dimensional simulations. We assume the isotropic emission of neutrinos from the neutrino spheres with given luminosities. and the Fermi-Dirac distribution of given temperatures. We find that the stalled shock revives due to the neutrino heating aided by SASI for cases with L νe ≥3.9x10 52 ergss -1 and the as-pherical shock passes through the outer layers of the star (≥10,000 km), with the explosion energies of ∼10 51 ergs.Next we examine abundances and masses of the supernova ejecta. We find that masses of the ejecta and 56 Ni correlate with the neutrino luminosity, and 56 Ni mass is comparable to that observed in SN 1987A. We also find that abundance pattern of the supernova ejecta is similar to that of the solar system, for cases with high explosion energies of >10 51 ergs. We emphasize that 64 Zn, which is underproduced in the spherical case, is abundantly produced in slightly neutron-rich ejecta.

  14. Interacting Supernovae: Types IIn and Ibn

    Science.gov (United States)

    Smith, Nathan

    Supernovae that show evidence of strong shock interaction between their ejecta and pre-existing slower circumstellar material (CSM) constitute an interesting, diverse, and still poorly understood category of explosive transients. The chief reason they are extremely interesting is because they tell us that in a subset of stellar deaths, the progenitor star becomes wildly unstable in the years, decades, or centuries before explosion. This is something that has not been included in standard stellar evolution models but may significantly change the end product and yield of that evolution and complicates our attempts to map SNe to their progenitors. Another reason they are interesting is because CSM interaction is an efficient engine for making bright transients, allowing superluminous transients to arise from normal SN explosion energy, and transients of normal supernova luminosity to arise from sub-energetic explosions or low radioactivity yield. CSM interaction shrouds the fast ejecta in bright shock emission, obscuring our view of the underlying explosion, and the radiation hydrodynamics is challenging to model. The CSM interaction may also be highly nonspherical, perhaps linked to binary interaction in the progenitor system. In some cases, these complications make it difficult to tell the difference between a core-collapse and thermonuclear explosion or to discern between a nonterminal eruption, failed supernova, or weak supernova. Efforts to uncover the physical parameters of individual events and connections to progenitor stars make this a rapidly evolving topic that challenges paradigms of stellar evolution.

  15. EARLY RADIO AND X-RAY OBSERVATIONS OF THE YOUNGEST NEARBY TYPE Ia SUPERNOVA PTF 11kly (SN 2011fe)

    International Nuclear Information System (INIS)

    Horesh, Assaf; Kulkarni, S. R.; Carpenter, John; Kasliwal, Mansi M.; Ofek, Eran O.; Fox, Derek B.; Quimby, Robert; Gal-Yam, Avishay; Cenko, S. Bradley; De Bruyn, A. G.; Kamble, Atish; Wijers, Ralph A. M. J.; Van der Horst, Alexander J.; Kouveliotou, Chryssa; Podsiadlowski, Philipp; Sullivan, Mark; Maguire, Kate; Howell, D. Andrew; Nugent, Peter E.; Gehrels, Neil

    2012-01-01

    On 2011 August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby Type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starting about a day after the estimated explosion time. We present our analysis of the radio and X-ray observations, yielding the tightest constraints yet placed on the pre-explosion mass-loss rate from the progenitor system of this supernova. We find a robust limit of M-dot ∼ -8 (w/100 km s -1 ) M sun yr -1 from sensitive X-ray non-detections, as well as a similar limit from radio data, which depends, however, on assumptions about microphysical parameters. We discuss our results in the context of single-degenerate models for SNe Ia and find that our observations modestly disfavor symbiotic progenitor models involving a red giant donor, but cannot constrain systems accreting from main-sequence or sub-giant stars, including the popular supersoft channel. In view of the proximity of PTF11kly and the sensitivity of our prompt observations, we would have to wait for a long time (a decade or longer) in order to more meaningfully probe the circumstellar matter of SNe Ia.

  16. METAMORPHOSIS OF SN 2014C: DELAYED INTERACTION BETWEEN A HYDROGEN POOR CORE-COLLAPSE SUPERNOVA AND A NEARBY CIRCUMSTELLAR SHELL

    International Nuclear Information System (INIS)

    Milisavljevic, D.; Margutti, R.; Kamble, A.; Patnaude, D. J.; Raymond, J. C.; Challis, P.; Drout, M. R.; Grindlay, J. E.; Kirshner, R. P.; Lunnan, R.; Miller, G. F.; Parrent, J. T.; Sanders, N. E.; Eldridge, J. J.; Fong, W.; Bietenholz, M.; Chornock, R.; Fransson, C.; Fesen, R. A.; Mackey, J.

    2015-01-01

    We present optical observations of supernova SN 2014C, which underwent an unprecedented slow metamorphosis from H-poor type Ib to H-rich type IIn over the course of one year. The observed spectroscopic evolution is consistent with the supernova having exploded in a cavity before encountering a massive shell of the progenitor star’s stripped hydrogen envelope. Possible origins for the circumstellar shell include a brief Wolf–Rayet fast wind phase that overtook a slower red supergiant wind, eruptive ejection, or confinement of circumstellar material by external influences of neighboring stars. An extended high velocity Hα absorption feature seen in near-maximum light spectra implies that the progenitor star was not completely stripped of hydrogen at the time of core collapse. Archival pre-explosion Subaru Telescope Suprime-Cam and Hubble Space Telescope Wide Field Planetary Camera 2 images of the region obtained in 2009 show a coincident source that is most likely a compact massive star cluster in NGC 7331 that hosted the progenitor system. By comparing the emission properties of the source with stellar population models that incorporate interacting binary stars we estimate the age of the host cluster to be 30–300 Myr, and favor ages closer to 30 Myr in light of relatively strong Hα emission. SN 2014C is the best observed member of a class of core-collapse supernovae that fill the gap between events that interact strongly with dense, nearby environments immediately after explosion and those that never show signs of interaction. Better understanding of the frequency and nature of this intermediate population can contribute valuable information about the poorly understood final stages of stellar evolution

  17. METAMORPHOSIS OF SN 2014C: DELAYED INTERACTION BETWEEN A HYDROGEN POOR CORE-COLLAPSE SUPERNOVA AND A NEARBY CIRCUMSTELLAR SHELL

    Energy Technology Data Exchange (ETDEWEB)

    Milisavljevic, D.; Margutti, R.; Kamble, A.; Patnaude, D. J.; Raymond, J. C.; Challis, P.; Drout, M. R.; Grindlay, J. E.; Kirshner, R. P.; Lunnan, R.; Miller, G. F.; Parrent, J. T.; Sanders, N. E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA, 02138 (United States); Eldridge, J. J. [Department of Physics, University of Auckland, Private Bag 92019, Auckland (New Zealand); Fong, W. [Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Bietenholz, M. [Hartebeesthoek Radio Observatory, P.O. Box 443, Krugersdorp 1740 (South Africa); Chornock, R. [Astrophysical Institute, Department of Physics and Astronomy, 251B Clippinger Lab, Ohio University, Athens, OH 45701 (United States); Fransson, C. [Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE106 91 Stockholm (Sweden); Fesen, R. A. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Lab, Hanover, NH 03755 (United States); Mackey, J., E-mail: dmilisav@cfa.harvard.edu [Argelander-Institut für Astronomie, Auf dem Hgel 71, D-53121 Bonn (Germany); and others

    2015-12-20

    We present optical observations of supernova SN 2014C, which underwent an unprecedented slow metamorphosis from H-poor type Ib to H-rich type IIn over the course of one year. The observed spectroscopic evolution is consistent with the supernova having exploded in a cavity before encountering a massive shell of the progenitor star’s stripped hydrogen envelope. Possible origins for the circumstellar shell include a brief Wolf–Rayet fast wind phase that overtook a slower red supergiant wind, eruptive ejection, or confinement of circumstellar material by external influences of neighboring stars. An extended high velocity Hα absorption feature seen in near-maximum light spectra implies that the progenitor star was not completely stripped of hydrogen at the time of core collapse. Archival pre-explosion Subaru Telescope Suprime-Cam and Hubble Space Telescope Wide Field Planetary Camera 2 images of the region obtained in 2009 show a coincident source that is most likely a compact massive star cluster in NGC 7331 that hosted the progenitor system. By comparing the emission properties of the source with stellar population models that incorporate interacting binary stars we estimate the age of the host cluster to be 30–300 Myr, and favor ages closer to 30 Myr in light of relatively strong Hα emission. SN 2014C is the best observed member of a class of core-collapse supernovae that fill the gap between events that interact strongly with dense, nearby environments immediately after explosion and those that never show signs of interaction. Better understanding of the frequency and nature of this intermediate population can contribute valuable information about the poorly understood final stages of stellar evolution.

  18. Observational Evidence for High Neutronization in Supernova Remnants: Implications for Type Ia Supernova Progenitors

    International Nuclear Information System (INIS)

    Martínez-Rodríguez, Héctor; Badenes, Carles; Andrews, Brett; Yamaguchi, Hiroya; Bravo, Eduardo; Timmes, F. X.; Miles, Broxton J.; Townsley, Dean M.; Piro, Anthony L.; Mori, Hideyuki; Park, Sangwook

    2017-01-01

    The physical process whereby a carbon–oxygen white dwarf explodes as a Type Ia supernova (SN Ia) remains highly uncertain. The degree of neutronization in SN Ia ejecta holds clues to this process because it depends on the mass and the metallicity of the stellar progenitor, and on the thermodynamic history prior to the explosion. We report on a new method to determine ejecta neutronization using Ca and S lines in the X-ray spectra of Type Ia supernova remnants (SNRs). Applying this method to Suzaku data of Tycho, Kepler , 3C 397, and G337.2−0.7 in the Milky Way, and N103B in the Large Magellanic Cloud, we find that the neutronization of the ejecta in N103B is comparable to that of Tycho and Kepler , which suggests that progenitor metallicity is not the only source of neutronization in SNe Ia. We then use a grid of SN Ia explosion models to infer the metallicities of the stellar progenitors of our SNRs. The implied metallicities of 3C 397, G337.2−0.7, and N103B are major outliers compared to the local stellar metallicity distribution functions, indicating that progenitor metallicity can be ruled out as the origin of neutronization for these SNRs. Although the relationship between ejecta neutronization and equivalent progenitor metallicity is subject to uncertainties stemming from the 12 C + 16 O reaction rate, which affects the Ca/S mass ratio, our main results are not sensitive to these details.

  19. Observational Evidence for High Neutronization in Supernova Remnants: Implications for Type Ia Supernova Progenitors

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Rodríguez, Héctor; Badenes, Carles; Andrews, Brett [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States); Yamaguchi, Hiroya [NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Bravo, Eduardo [E.T.S. Arquitectura del Vallès, Universitat Politècnica de Catalunya, Carrer Pere Serra 1-15, E-08173 Sant Cugat del Vallès (Spain); Timmes, F. X. [The Joint Institute for Nuclear Astrophysics (United States); Miles, Broxton J.; Townsley, Dean M. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL (United States); Piro, Anthony L. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Mori, Hideyuki [CRESST and X-ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 602, Greenbelt, MD 20771 (United States); Park, Sangwook, E-mail: hector.mr@pitt.edu [Department of Physics, University of Texas at Arlington, Box 19059, Arlington, TX 76019 (United States)

    2017-07-01

    The physical process whereby a carbon–oxygen white dwarf explodes as a Type Ia supernova (SN Ia) remains highly uncertain. The degree of neutronization in SN Ia ejecta holds clues to this process because it depends on the mass and the metallicity of the stellar progenitor, and on the thermodynamic history prior to the explosion. We report on a new method to determine ejecta neutronization using Ca and S lines in the X-ray spectra of Type Ia supernova remnants (SNRs). Applying this method to Suzaku data of Tycho, Kepler , 3C 397, and G337.2−0.7 in the Milky Way, and N103B in the Large Magellanic Cloud, we find that the neutronization of the ejecta in N103B is comparable to that of Tycho and Kepler , which suggests that progenitor metallicity is not the only source of neutronization in SNe Ia. We then use a grid of SN Ia explosion models to infer the metallicities of the stellar progenitors of our SNRs. The implied metallicities of 3C 397, G337.2−0.7, and N103B are major outliers compared to the local stellar metallicity distribution functions, indicating that progenitor metallicity can be ruled out as the origin of neutronization for these SNRs. Although the relationship between ejecta neutronization and equivalent progenitor metallicity is subject to uncertainties stemming from the {sup 12}C + {sup 16}O reaction rate, which affects the Ca/S mass ratio, our main results are not sensitive to these details.

  20. PTF 12gzk—A rapidly declining, high-velocity type Ic radio supernova

    Energy Technology Data Exchange (ETDEWEB)

    Horesh, Assaf; Kulkarni, Shrinivas R. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Corsi, Alessandra [Department of Physics, The George Washington University, 725 21st Street, NW, Washington, DC 20052 (United States); Frail, Dale A. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States); Cenko, S. Bradley [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Ben-Ami, Sagi; Gal-Yam, Avishay; Yaron, Ofer; Arcavi, Iair; Ofek, Eran O. [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Kasliwal, Mansi M. [Carnegie Institution for Science, Department of Terrestrial Magnetism, 5241 Broad Branch Road, Washington, DC 20008 (United States)

    2013-11-20

    Only a few cases of Type Ic supernovae (SNe) with high-velocity ejecta (≥0.2 c) have been discovered and studied. Here, we present our analysis of radio and X-ray observations of the Type Ic SN PTF 12gzk. The radio emission declined less than 10 days after explosion, suggesting SN ejecta expanding at high velocity (∼0.3 c). The radio data also indicate that the density of the circumstellar material (CSM) around the supernova is lower by a factor of ∼10 than the CSM around normal Type Ic SNe. PTF 12gzk may therefore be an intermediate event between a 'normal' SN Ic and a gamma-ray-burst-SN-like event. Our observations of this rapidly declining radio SN at a distance of 58 Mpc demonstrates the potential to detect many additional radio SNe, given the new capabilities of the Very Large Array (improved sensitivity and dynamic scheduling), which are currently missed, leading to a biased view of radio SNe Ic. Early optical discovery followed by rapid radio observations would provide a full description of the ejecta velocity distribution and CSM densities around stripped massive star explosions as well as strong clues about the nature of their progenitor stars.

  1. PTF 12gzk—A rapidly declining, high-velocity type Ic radio supernova

    International Nuclear Information System (INIS)

    Horesh, Assaf; Kulkarni, Shrinivas R.; Corsi, Alessandra; Frail, Dale A.; Cenko, S. Bradley; Ben-Ami, Sagi; Gal-Yam, Avishay; Yaron, Ofer; Arcavi, Iair; Ofek, Eran O.; Kasliwal, Mansi M.

    2013-01-01

    Only a few cases of Type Ic supernovae (SNe) with high-velocity ejecta (≥0.2 c) have been discovered and studied. Here, we present our analysis of radio and X-ray observations of the Type Ic SN PTF 12gzk. The radio emission declined less than 10 days after explosion, suggesting SN ejecta expanding at high velocity (∼0.3 c). The radio data also indicate that the density of the circumstellar material (CSM) around the supernova is lower by a factor of ∼10 than the CSM around normal Type Ic SNe. PTF 12gzk may therefore be an intermediate event between a 'normal' SN Ic and a gamma-ray-burst-SN-like event. Our observations of this rapidly declining radio SN at a distance of 58 Mpc demonstrates the potential to detect many additional radio SNe, given the new capabilities of the Very Large Array (improved sensitivity and dynamic scheduling), which are currently missed, leading to a biased view of radio SNe Ic. Early optical discovery followed by rapid radio observations would provide a full description of the ejecta velocity distribution and CSM densities around stripped massive star explosions as well as strong clues about the nature of their progenitor stars.

  2. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0

    Science.gov (United States)

    Kochanek, C. S.; Shappee, B. J.; Stanek, K. Z.; Holoien, T. W.-S.; Thompson, Todd A.; Prieto, J. L.; Dong, Subo; Shields, J. V.; Will, D.; Britt, C.; Perzanowski, D.; Pojmański, G.

    2017-10-01

    The All-Sky Automated Survey for Supernovae (ASAS-SN) is working toward imaging the entire visible sky every night to a depth of V˜ 17 mag. The present data covers the sky and spans ˜2-5 years with ˜100-400 epochs of observation. The data should contain some ˜1 million variable sources, and the ultimate goal is to have a database of these observations publicly accessible. We describe here a first step, a simple but unprecedented web interface https://asas-sn.osu.edu/ that provides an up to date aperture photometry light curve for any user-selected sky coordinate. The V band photometry is obtained using a two-pixel (16.″0) radius aperture and is calibrated against the APASS catalog. Because the light curves are produced in real time, this web tool is relatively slow and can only be used for small samples of objects. However, it also imposes no selection bias on the part of the ASAS-SN team, allowing the user to obtain a light curve for any point on the celestial sphere. We present the tool, describe its capabilities, limitations, and known issues, and provide a few illustrative examples.

  3. RADIO EMISSION FROM SN 1994I IN NGC 5194 (M 51): THE BEST-STUDIED TYPE Ib/c RADIO SUPERNOVA

    International Nuclear Information System (INIS)

    Weiler, Kurt W.; Panagia, Nino; Stockdale, Christopher; Rupen, Michael; Sramek, Richard A.; Williams, Christopher L.

    2011-01-01

    We present the results of detailed monitoring of the radio emission from the Type Ic supernova SN 1994I from three days after optical discovery on 1994 March 31 until eight years later at age 2927 days on 2002 April 5. The data were mainly obtained using the Very Large Array at the five wavelengths of λλ1.3, 2.0, 3.6, 6.2, and 21 cm and from the Cambridge 5 km Ryle Telescope at λ2.0 cm. Two additional measurements were obtained at millimeter wavelengths. This data set represents the most complete, multifrequency radio observations ever obtained for a Type Ib/c supernova. The radio emission evolves regularly in both time and frequency and is well described by established supernova emission/absorption models. It is the first radio supernova with sufficient data to show that it is clearly dominated by the effects of synchrotron self-absorption at early times.

  4. No evidence for an early seventeenth-century Indian sighting of Kepler's supernova (SN1604)

    Science.gov (United States)

    van Gent, R. H.

    2013-03-01

    In a recent paper in this journal, Sule et al. (2011) argued that an early 17th-century Indian mural of the constellation Sagittarius with a dragon-headed tail indicated that the bright supernova of 1604 was also sighted by Indian astronomers. In this paper it will be shown that this identification is based on a misunderstanding of traditional Islamic astrological iconography and that the claim that the mural represents an early 17th-century Indian sighting of the supernova of 1604 has to be rejected.

  5. Searching for the Expelled Hydrogen Envelope in Type I Supernovae via Late-Time H α Emission

    Energy Technology Data Exchange (ETDEWEB)

    Vinko, J.; Silverman, J. M.; Wheeler, J. C.; MacQueen, P.; Marion, G. H. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Pooley, D. [Department of Physics and Astronomy, Trinity University, One Trinity Place, San Antonio, TX 78212 (United States); Szalai, T. [Department of Optics and Quantum Electronics, University of Szeged, Dom ter 9, Szeged, 6720 (Hungary); Kelly, P. [Department of Astronomy, University of California at Berkeley, 501 Campbell Hall, Berkeley, CA 94720-3411 (United States); Sárneczky, K. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Konkoly Thege ut 15-17, Budapest, 1121 (Hungary)

    2017-03-01

    We report the first results from our long-term observational survey aimed at discovering late-time interaction between the ejecta of hydrogen-poor Type I supernovae (SNe I) and the hydrogen-rich envelope expelled from the progenitor star several decades/centuries before explosion. The expelled envelope, moving with a velocity of ∼10–100 km s{sup −1}, is expected to be caught up by the fast-moving SN ejecta several years/decades after explosion, depending on the history of the mass-loss process acting in the progenitor star prior to explosion. The collision between the SN ejecta and the circumstellar envelope results in net emission in the Balmer lines, especially H α . We look for signs of late-time H α emission in older SNe Ia/Ibc/IIb with hydrogen-poor ejecta via narrowband imaging. Continuum-subtracted H α emission has been detected for 13 point sources: 9 SN Ibc, 1 SN IIb, and 3 SN Ia events. Thirty-eight SN sites were observed on at least two epochs, from which three objects (SN 1985F, SN 2005kl, and SN 2012fh) showed significant temporal variation in the strength of their H α emission in our Direct Imaging Auxiliary Functions Instrument (DIAFI) data. This suggests that the variable emission is probably not due to nearby H ii regions unassociated with the SN and hence is an important additional hint that ejecta–circumstellar medium interaction may take place in these systems. Moreover, we successfully detected the late-time H α emission from the Type Ib SN 2014C, which was recently discovered as a strongly interacting SN in various (radio, infrared, optical, and X-ray) bands.

  6. A hydrodynamical model of Kepler's supernova remnant constrained by x-ray spectra

    International Nuclear Information System (INIS)

    Ballet, J.; Arnaud, M.; Rothinfluo, R.; Chieze, J.P.; Magne, B.

    1988-01-01

    The remnant of the historical supernova observed by Kepler in 1604 was recently observed in x-rays by the EXOSAT satellite up to 10 keV. A strong Fe K emission line around 6.5 keV is readily apparent in the spectrum. From an analysis of the light curve of the SN, reconstructed from historical descriptions, a previous study proposed to classify it as type I. Standard models of SN I based on carbon deflagration of white dwarf predict the synthesis of about 0.5 M circle of iron in the ejecta. Observing the iron line is a crucial check for such models. It has been argued that the light curve of Sn II-L is very similar to that of SN I and that the original observations are compatible with either type. In view of this uncertainty the authors have run a hydrodynamics-ionization code for both SN II and SN I remnants

  7. SN 2013dh in NGC 5936 is probably a type Iax supernova

    Science.gov (United States)

    Jha, Saurabh W.; McCully, Curtis; Foley, Ryan J.; Cenko, S. Bradley; Zheng, WeiKang; Clubb, Kelsey I.; Shivvers, Isaac; Filippenko, Alexei V.; Tucker, Brad E.; Garnavich, Peter M.

    2013-06-01

    Further to CBET 3561 (Kumar et al. 2013; Cenko et al. 2013), we have analyzed spectra of SN 2013dh obtained on June 14.3 and June 17.3 UT with the Shane 3-m reflector (+ Kast spectrograph) at Lick Observatory. The observations continue to show that SN 2013dh has a blue continuum with relatively narrow (FWHM approximately 3000 km/s) Fe III absorption.

  8. CARBON MONOXIDE IN THE COLD DEBRIS OF SUPERNOVA 1987A

    Energy Technology Data Exchange (ETDEWEB)

    Kamenetzky, J.; McCray, R.; Glenn, J. [Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, UCB 391, Boulder, CO 80309 (United States); Indebetouw, R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22903 (United States); Barlow, M. J.; Matsuura, M. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Baes, M. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Blommaert, J. A. D. L.; Decin, L. [Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D BUS 2401, B-2001 Leuven (Belgium); Bolatto, A. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Dunne, L. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8410 (New Zealand); Fransson, C. [Department of Astronomy, Oskar Klein Centre, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Gomez, H. L. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA (United Kingdom); Groenewegen, M. A. T. [Royal Observatory of Belgium, Ringlaan 3, B-1180 Brussels (Belgium); Hopwood, R. [Physics Department, Imperial College London, London SW7 2AZ (United Kingdom); Kirshner, R. P. [Harvard College Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Lakicevic, M. [Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom); Marcaide, J. [Universidad de Valencia, C/Dr. Moliner 50, E-46100 Burjassot (Spain); Marti-Vidal, I. [Onsala Space Observatory, SE-439 92 Onsala (Sweden); Meixner, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2013-08-20

    We report spectroscopic and imaging observations of rotational transitions of cold CO and SiO in the ejecta of SN1987A, the first such emission detected in a supernova remnant. In addition to line luminosities for the CO J = 1-0, 2-1, 6-5, and 7-6 transitions, we present upper limits for all other transitions up to J = 13-12, collectively measured from the Atacama Large Millimeter Array, the Atacama Pathfinder EXperiment, and the Herschel Spectral and Photometric Imaging REceiver. Simple models show the lines are emitted from at least 0.01 M{sub Sun} of CO at a temperature >14 K, confined within at most 35% of a spherical volume expanding at {approx}2000 km s{sup -1}. Moreover, we locate the emission within 1'' of the central debris. These observations, along with a partial observation of SiO, confirm the presence of cold molecular gas within supernova remnants and provide insight into the physical conditions and chemical processes in the ejecta. Furthermore, we demonstrate the powerful new window into supernova ejecta offered by submillimeter observations.

  9. CARBON MONOXIDE IN THE COLD DEBRIS OF SUPERNOVA 1987A

    International Nuclear Information System (INIS)

    Kamenetzky, J.; McCray, R.; Glenn, J.; Indebetouw, R.; Barlow, M. J.; Matsuura, M.; Baes, M.; Blommaert, J. A. D. L.; Decin, L.; Bolatto, A.; Dunne, L.; Fransson, C.; Gomez, H. L.; Groenewegen, M. A. T.; Hopwood, R.; Kirshner, R. P.; Lakicevic, M.; Marcaide, J.; Marti-Vidal, I.; Meixner, M.

    2013-01-01

    We report spectroscopic and imaging observations of rotational transitions of cold CO and SiO in the ejecta of SN1987A, the first such emission detected in a supernova remnant. In addition to line luminosities for the CO J = 1-0, 2-1, 6-5, and 7-6 transitions, we present upper limits for all other transitions up to J = 13-12, collectively measured from the Atacama Large Millimeter Array, the Atacama Pathfinder EXperiment, and the Herschel Spectral and Photometric Imaging REceiver. Simple models show the lines are emitted from at least 0.01 M ☉ of CO at a temperature >14 K, confined within at most 35% of a spherical volume expanding at ∼2000 km s –1 . Moreover, we locate the emission within 1'' of the central debris. These observations, along with a partial observation of SiO, confirm the presence of cold molecular gas within supernova remnants and provide insight into the physical conditions and chemical processes in the ejecta. Furthermore, we demonstrate the powerful new window into supernova ejecta offered by submillimeter observations

  10. [O I] λλ6300, 6364 IN THE NEBULAR SPECTRUM OF A SUBLUMINOUS TYPE Ia SUPERNOVA

    International Nuclear Information System (INIS)

    Taubenberger, S.; Kromer, M.; Hillebrandt, W.; Pakmor, R.; Pignata, G.; Maeda, K.; Hachinger, S.; Leibundgut, B.

    2013-01-01

    In this Letter, a late-phase spectrum of SN 2010lp, a subluminous Type Ia supernova (SN Ia), is presented and analyzed. As in 1991bg-like SNe Ia at comparable epochs, the spectrum is characterized by relatively broad [Fe II] and [Ca II] emission lines. However, instead of narrow [Fe III] and [Co III] lines that dominate the emission from the innermost regions of 1991bg-like supernovae (SNe), SN 2010lp shows [O I] λλ6300, 6364 emission, usually associated with core-collapse SNe and never previously observed in a subluminous thermonuclear explosion. The [O I] feature has a complex profile with two strong, narrow emission peaks. This suggests that oxygen is distributed in a non-spherical region close to the center of the ejecta, severely challenging most thermonuclear explosion models discussed in the literature. We conclude that, given these constraints, violent mergers are presently the most promising scenario to explain SN 2010lp

  11. SN 2016X: a type II-P supernova with a signature of shock breakout from explosion of a massive red supergiant

    Science.gov (United States)

    Huang, F.; Wang, X.-F.; Hosseinzadeh, G.; Brown, P. J.; Mo, J.; Zhang, J.-J.; Zhang, K.-C.; Zhang, T.-M.; Howell, D.-A.; Arcavi, I.; McCully, C.; Valenti, S.; Rui, L.-M.; Song, H.; Xiang, D.-F.; Li, W.-X.; Lin, H.; Wang, L.-F.

    2018-04-01

    We present extensive ultraviolet (UV) and optical photometry, as well as dense optical spectroscopy, for type II Plateau (IIP) supernova SN 2016X that exploded in the nearby (˜15 Mpc) spiral galaxy UGC 08041. The observations span the period from 2 to 180 d after the explosion; in particular, the Swift UV data probably captured the signature of shock breakout associated with the explosion of SN 2016X. It shows very strong UV emission during the first week after explosion, with a contribution of ˜20-30 per cent to the bolometric luminosity (versus ≲15 per cent for normal SNe IIP). Moreover, we found that this supernova has an unusually long rise time of about 12.6 ± 0.5 d in the R band (versus ˜7.0 d for typical SNe IIP). The optical light curves and spectral evolution are quite similar to the fast-declining type IIP object SN 2013ej, except that SN 2016X has a relatively brighter tail. Based on the evolution of photospheric temperature as inferred from the Swift data in the early phase, we derive that the progenitor of SN 2016X has a radius of about 930 ± 70 R⊙. This large-size star is expected to be a red supergiant star with an initial mass of ≳19-20 M⊙ based on the mass-radius relation of the Galactic red supergiants, and it represents one of the most largest and massive progenitors found for SNe IIP.

  12. AMI-LA 15 GHz Observation of the Type IIP Supernova SN 2017eaw

    Science.gov (United States)

    Bright, Joe; Mooley, Kunal; Fender, Rob; Horesh, Assaf

    2017-05-01

    SN 2017eaw was discovered by Patrick Wiggins on 2017 May 14.24 and confirmed as a transient object (located in NGC 6946, at a distance of around 5.5 Mpc) in follow up observations from the McDonald observatory (ATel #10372).

  13. Spectroscopic Classification of SN 2018bgc (=ATLAS18nvs) as a Type Ia Supernova

    Science.gov (United States)

    Lin, Han; Wang, Xiaofeng; Xiang, Danfeng; Rui, Liming; Hu, Lei; Hu, Maokai; Zhang, Xinhan; Li, Xue; Zhang, Tianmeng; Zhang, Jujia

    2018-05-01

    We obtained an optical spectrum (range 385-855 nm) of SN 2018bgc(=ATLAS18nvs), discovered by ATLAS, on UT May 08.60 2018 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  14. Upper limits on the luminosity of the progenitor of type Ia supernova SN2014J

    DEFF Research Database (Denmark)

    Nielsen, M. T. B.; Gilfanov, M.; Bogdan, A.

    2014-01-01

    We analysed archival data of Chandra pre-explosion observations of the position of SN2014J in M82. No X-ray source at this position was detected in the data, and we calculated upper limits on the luminosities of the progenitor. These upper limits allow us to firmly rule out an unobscured supersof...

  15. Spectroscopic classification of SN 2018bsn as a type Ia supernova before the maximum

    Science.gov (United States)

    Zhang, Jujia; Ye, Kai; Xu, Zhijian; Li, Wenxiong; Wang, Xiaofeng; Mo, Jun; Tan, Hanjie; Zhang, Tianmeng

    2018-05-01

    We obtained an optical spectrum (range 350-890 nm) of SN 2018bsn, discovered by the Tsinghua-NAOC Transient Survey (TNTS), on UT May 17.7 2018 with the 2.4 m telescope (LJT + YFOSC) at Lijiang Observatory of Yunnan Observatories (YNAO).

  16. The Type II supernovae 2006V and 2006au: two SN 1987A-like events

    DEFF Research Database (Denmark)

    Taddia, F.; Stritzinger, M. D.; Sollerman, J.

    2012-01-01

    1987A. Methods. Optical and near-infrared (NIR) light curves, and optical spectroscopy of SNe 2006V and 2006au are presented. These observations are compared to those of SN 1987A, and are used to estimate properties of their progenitors. Results. Both objects exhibit a slow rise to maximum and light...

  17. Spectroscopic Classification of SN 2018bek as a Young Type II Supernova

    Science.gov (United States)

    Xiang, Danfeng; Wang, Xiaofeng; Zhang, Kaicheng; Li, Wenxiong; DerKacy, James; Baron, Eddie; Brink, Thomas; Zheng, Weikang; Filippenko, Alex; Lin, Han; Rui, Liming; Hu, Lei; Hu, Maokai; Zhang, Tianmeng; Zhang, Jujia

    2018-05-01

    We obtained a few optical spectra of SN 2018bek,discovered by Jaroslaw Grzegorzek,on UT May 05-09 2018 with the 3.5m telescope (+Dual Imaging Spectrograph) at the Apache Point Observatory, the 2.16-m telescope(+BFOSC) at Xinglong Observatory of NAOC, and the Lick 3.0-m telescope (+Kast) at Lick Observatory.

  18. Butterfly Ejecta

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] Released 4 September 2003In the heavily cratered southern highlands of Mars, the type of crater seen in this THEMIS visible image is relatively rare. Elliptical craters with 'butterfly' ejecta patterns make up roughly 5% of the total crater population of Mars. They are caused by impactors which hit the surface at oblique, or very shallow angles. Similar craters are also seen in about the same abundance on the Moon and Venus.Image information: VIS instrument. Latitude -24.6, Longitude 41 East (319 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. VERY LATE PHOTOMETRY OF SN 2011fe

    International Nuclear Information System (INIS)

    Kerzendorf, W. E.; Taubenberger, S.; Seitenzahl, I. R.; Ruiter, A. J.

    2014-01-01

    The Type Ia supernova SN 2011fe is one of the closest supernovae of the past decades. Due to its proximity and low dust extinction, this object provides a very rare opportunity to study the extremely late time evolution (>900 days) of thermonuclear supernovae. In this Letter, we present our photometric data of SN 2011fe taken at an unprecedented late epoch of ≈930 days with GMOS-N mounted on the Gemini North telescope (g = 23.43 ± 0.28, r = 24.14 ± 0.14, i = 23.91 ± 0.18, and z = 23.90 ± 0.17) to study the energy production and retention in the ejecta of SN 2011fe. Together with previous measurements by other groups, our result suggests that the optical supernova light curve can still be explained by the full thermalization of the decay positrons of 56 Co. This is in spite of theoretical predicted effects (e.g., infrared catastrophe, positron escape, and dust) that advocate a substantial energy redistribution and/or loss via various processes that result in a more rapid dimming at these very late epochs

  20. Nurseries of Supernovae

    DEFF Research Database (Denmark)

    Frederiksen, Teddy

    Type Ia supernovae (SNe) have long been the gold standard for precision cosmology and after several decades of intense research the supernova (SN) community was in 2011 honored by giving the Nobel Prize in physics for the discovery of Dark Energy to the leaders of the two big SN collaborations: S...

  1. RAPIDLY DECAYING SUPERNOVA 2010X: A CANDIDATE '.Ia' EXPLOSION

    International Nuclear Information System (INIS)

    Kasliwal, Mansi M.; Kulkarni, S. R.; Quimby, Robert M.; Ofek, Eran O.; Gal-Yam, Avishay; Yaron, Ofer; Sternberg, Assaf; Arcavi, Iair; Nugent, Peter; Poznanski, Dovi; Jacobsen, Janet; Howell, D. Andrew; Sullivan, Mark; Rich, Douglas J.; Burke, Paul F.; Brimacombe, Joseph; Milisavljevic, Dan; Fesen, Robert; Bildsten, Lars; Shen, Ken

    2010-01-01

    We present the discovery, photometric, and spectroscopic follow-up observations of SN 2010X (PTF 10bhp). This supernova decays exponentially with τ d = 5 days and rivals the current recordholder in speed, SN 2002bj. SN 2010X peaks at M r = -17 mag and has mean velocities of 10,000 km s -1 . Our light curve modeling suggests a radioactivity-powered event and an ejecta mass of 0.16 M sun . If powered by Nickel, we show that the Nickel mass must be very small (∼0.02 M sun ) and that the supernova quickly becomes optically thin to γ-rays. Our spectral modeling suggests that SN 2010X and SN 2002bj have similar chemical compositions and that one of aluminum or helium is present. If aluminum is present, we speculate that this may be an accretion-induced collapse of an O-Ne-Mg white dwarf. If helium is present, all observables of SN 2010X are consistent with being a thermonuclear helium shell detonation on a white dwarf, a '.Ia' explosion. With the 1 day dynamic-cadence experiment on the Palomar Transient Factory, we expect to annually discover a few such events.

  2. LINKING TYPE Ia SUPERNOVA PROGENITORS AND THEIR RESULTING EXPLOSIONS

    International Nuclear Information System (INIS)

    Foley, Ryan J.; Kirshner, Robert P.; Simon, Joshua D.; Burns, Christopher R.; Gal-Yam, Avishay; Hamuy, Mario; Morrell, Nidia I.; Phillips, Mark M.; Shields, Gregory A.; Sternberg, Assaf

    2012-01-01

    Comparing the ejecta velocities at maximum brightness and narrow circumstellar/interstellar Na D absorption line profiles of a sample of 23 Type Ia supernovae (SNe Ia), we determine that the properties of SN Ia progenitor systems and explosions are intimately connected. As demonstrated by Sternberg et al., half of all SNe Ia with detectable Na D absorption at the host-galaxy redshift in high-resolution spectroscopy have Na D line profiles with significant blueshifted absorption relative to the strongest absorption component, which indicates that a large fraction of SN Ia progenitor systems have strong outflows. In this study, we find that SNe Ia with blueshifted circumstellar/interstellar absorption systematically have higher ejecta velocities and redder colors at maximum brightness relative to the rest of the SN Ia population. This result is robust at a 98.9%-99.8% confidence level, providing the first link between the progenitor systems and properties of the explosion. This finding is further evidence that the outflow scenario is the correct interpretation of the blueshifted Na D absorption, adding additional confirmation that some SNe Ia are produced from a single-degenerate progenitor channel. An additional implication is that either SN Ia progenitor systems have highly asymmetric outflows that are also aligned with the SN explosion or SNe Ia come from a variety of progenitor systems where SNe Ia from systems with strong outflows tend to have more kinetic energy per unit mass than those from systems with weak or no outflows.

  3. An Empirical Fitting Method for Type Ia Supernova Light Curves: A Case Study of SN 2011fe

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, WeiKang; Filippenko, Alexei V., E-mail: zwk@astro.berkeley.edu [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2017-03-20

    We present a new empirical fitting method for the optical light curves of Type Ia supernovae (SNe Ia). We find that a variant broken-power-law function provides a good fit, with the simple assumption that the optical emission is approximately the blackbody emission of the expanding fireball. This function is mathematically analytic and is derived directly from the photospheric velocity evolution. When deriving the function, we assume that both the blackbody temperature and photospheric velocity are constant, but the final function is able to accommodate these changes during the fitting procedure. Applying it to the case study of SN 2011fe gives a surprisingly good fit that can describe the light curves from the first-light time to a few weeks after peak brightness, as well as over a large range of fluxes (∼5 mag, and even ∼7 mag in the g band). Since SNe Ia share similar light-curve shapes, this fitting method has the potential to fit most other SNe Ia and characterize their properties in large statistical samples such as those already gathered and in the near future as new facilities become available.

  4. Spectral Sequences of Type Ia Supernovae. I. Connecting Normal and Subluminous SNe Ia and the Presence of Unburned Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Heringer, E.; Kerkwijk, M. H. van [Department of Astronomy and Astrophysics, University of Toronto, 50 Saint George Street, Toronto, ON M5S 3H4 (Canada); Sim, S. A. [Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Kerzendorf, W. E. [European Southern Observatory (ESO), Karl-Schwarzschild-Straße 2, D-85748 Garching (Germany)

    2017-09-01

    Type Ia supernovae (SNe Ia) are generally agreed to arise from thermonuclear explosions of carbon–oxygen white dwarfs. The actual path to explosion, however, remains elusive, with numerous plausible parent systems and explosion mechanisms suggested. Observationally, SNe Ia have multiple subclasses, distinguished by their light curves and spectra. This raises the question of whether these indicate that multiple mechanisms occur in nature or that explosions have a large but continuous range of physical properties. We revisit the idea that normal and 91bg-like SNe can be understood as part of a spectral sequence in which changes in temperature dominate. Specifically, we find that a single ejecta structure is sufficient to provide reasonable fits of both the normal SN Ia SN 2011fe and the 91bg-like SN 2005bl, provided that the luminosity and thus temperature of the ejecta are adjusted appropriately. This suggests that the outer layers of the ejecta are similar, thus providing some support for a common explosion mechanism. Our spectral sequence also helps to shed light on the conditions under which carbon can be detected in premaximum SN Ia spectra—we find that emission from iron can “fill in” the carbon trough in cool SNe Ia. This may indicate that the outer layers of the ejecta of events in which carbon is detected are relatively metal-poor compared to events in which carbon is not detected.

  5. Persistent X-Ray Emission from ASASSN-15lh: Massive Ejecta and Pre-SLSN Dense Wind?

    Science.gov (United States)

    Huang, Yan; Li, Zhuo

    2018-06-01

    The persistent soft X-ray emission from the location of the most luminous supernova (SN) so far, ASASSN-15lh (or SN 2015L), with L∼ {10}42 {erg} {{{s}}}-1, is puzzling. We show that it can be explained by radiation from electrons accelerated by the SN shock inverse-Compton scattering the intense UV photons. The non-detection in radio requires strong free–free absorption in the dense medium. In these interpretations, the circumstellar medium is derived to be a wind (n ∝ R ‑2) with mass-loss rate of \\dot{{M}}≳ 3× {10}-3{{M}}ȯ ({{v}}{{w}}/{10}3 {{k}}{{m}} {{{s}}}-1) {{{y}}{{r}}}-1, and the initial velocity of the bulk SN ejecta is ≲ 0.02c. These constraints imply a massive ejecta mass of ≳ 60({E}0/2× {10}52 {erg}){M}ȯ in ASASSN-15lh, and a strong wind ejected by the progenitor star within ∼ 8{({v}{{w}}/{10}3{km}{{{s}}}-1)}-1 yr before explosion.

  6. Supernova neutrinos

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In the first part of his in-depth article on the 1987 supernova, David Schramm of the University of Chicago and the NASA/Fermilab Astrophysics Centre reviewed the background to supernovae, the composition of massive stars and the optical history of SN 1987A, and speculated on what the 1987 remnant might be. In such a Type II supernova, gravitational pressure crushes the atoms of the star's interior producing neutron matter, or even a black hole, and releasing an intense burst of neutrinos. 1987 was the first time that physicists were equipped (but not entirely ready!) to intercept these particles, and in the second part of his article, David Schramm covers the remarkable new insights from the science of supernova neutrino astronomy, born on 23 February 1987

  7. SLOW-SPEED SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY: TWO CHANNELS

    Energy Technology Data Exchange (ETDEWEB)

    White, Christopher J. [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Kasliwal, Mansi M.; Piro, Anthony L. [The Observatories, Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Nugent, Peter E. [Computational Cosmology Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Gal-Yam, Avishay; Ofek, Eran O.; Ben-Ami, Sagi [Benoziyo Center for Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Howell, D. Andrew [Department of Physics, University of California, Santa Barbara, Broida Hall, Mail Code 9530, Santa Barbara, CA 93106-9530 (United States); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Goobar, Ariel [The Oskar Klein Centre, Department of Physics, AlbaNova, Stockholm University, SE-106 91 Stockholm (Sweden); Bloom, Joshua S. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Kulkarni, Shrinivas R.; Cao, Yi [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Laher, Russ R.; Masci, Frank; Surace, Jason [Spitzer Science Center, California Institute of Technology, M/S 314-6, Pasadena, CA 91125 (United States); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Hook, Isobel M. [Department of Physics (Astrophysics), University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Jönsson, Jakob [Savantic AB, Rosenlundsgatan 50, SE-118 63 Stockholm (Sweden); Matheson, Thomas [National Optical Astronomy Observatory, Tucson, AZ 85719-4933 (United States); and others

    2015-01-20

    Since the discovery of the unusual prototype SN 2002cx, the eponymous class of Type I (hydrogen-poor) supernovae with low ejecta speeds has grown to include approximately two dozen members identified from several heterogeneous surveys, in some cases ambiguously. Here we present the results of a systematic study of 1077 Type I supernovae discovered by the Palomar Transient Factory, leading to nine new members of this peculiar class. Moreover, we find there are two distinct subclasses based on their spectroscopic, photometric, and host galaxy properties: ''SN 2002cx-like'' supernovae tend to be in later-type or more irregular hosts, have more varied and generally dimmer luminosities, have longer rise times, and lack a Ti II trough when compared to ''SN 2002es-like'' supernovae. None of our objects show helium, and we counter a previous claim of two such events. We also find that the occurrence rate of these transients relative to Type Ia supernovae is 5.6{sub −3.8}{sup +22}% (90% confidence), lower compared to earlier estimates. Combining our objects with the literature sample, we propose that these subclasses have two distinct physical origins.

  8. Probing Late-Stage Stellar Evolution through Robotic Follow-Up of Nearby Supernovae

    Science.gov (United States)

    Hosseinzadeh, Griffin

    2018-01-01

    Many of the remaining uncertainties in stellar evolution can be addressed through immediate and long-term photometry and spectroscopy of supernovae. The early light curves of thermonuclear supernovae can contain information about the nature of the binary companion to the exploding white dwarf. Spectra of core-collapse supernovae can reveal material lost by massive stars in their final months to years. Thanks to a revolution in technology—robotic telescopes, high-speed internet, machine learning—we can now routinely discover supernovae within days of explosion and obtain well-sampled follow-up data for months and years. Here I present three major results from the Global Supernova Project at Las Cumbres Observatory that take advantage of these technological advances. (1) SN 2017cbv is a Type Ia supernova discovered within a day of explosion. Early photometry shows a bump in the U-band relative to previously observed Type Ia light curves, possibly indicating the presence of a nondegenerate binary companion. (2) SN 2016bkv is a low-luminosity Type IIP supernova also caught very young. Narrow emission lines in the earliest spectra indicate interaction between the ejecta and a dense shell of circumstellar material, previously observed only in the brightest Type IIP supernovae. (3) Type Ibn supernovae are a rare class that interact with hydrogen-free circumstellar material. An analysis of the largest-yet sample of this class has found that their light curves are much more homogeneous and faster-evolving than their hydrogen-rich counterparts, Type IIn supernovae, but that their maximum-light spectra are more diverse.

  9. SPECTROSCOPIC OBSERVATIONS OF SN 2012fr: A LUMINOUS, NORMAL TYPE Ia SUPERNOVA WITH EARLY HIGH-VELOCITY FEATURES AND A LATE VELOCITY PLATEAU

    International Nuclear Information System (INIS)

    Childress, M. J.; Scalzo, R. A.; Sim, S. A.; Tucker, B. E.; Yuan, F.; Schmidt, B. P.; Cenko, S. B.; Filippenko, A. V.; Silverman, J. M.; Contreras, C.; Hsiao, E. Y.; Phillips, M.; Morrell, N.; Jha, S. W.; McCully, C.; Anderson, J. P.; De Jaeger, T.; Forster, F.; Benetti, S.; Bufano, F.

    2013-01-01

    We present 65 optical spectra of the Type Ia SN 2012fr, 33 of which were obtained before maximum light. At early times, SN 2012fr shows clear evidence of a high-velocity feature (HVF) in the Si II λ6355 line that can be cleanly decoupled from the lower velocity ''photospheric'' component. This Si II λ6355 HVF fades by phase –5; subsequently, the photospheric component exhibits a very narrow velocity width and remains at a nearly constant velocity of ∼12,000 km s –1 until at least five weeks after maximum brightness. The Ca II infrared triplet exhibits similar evidence for both a photospheric component at v ≈ 12,000 km s –1 with narrow line width and long velocity plateau, as well as an HVF beginning at v ≈ 31,000 km s –1 two weeks before maximum. SN 2012fr resides on the border between the ''shallow silicon'' and ''core-normal'' subclasses in the Branch et al. classification scheme, and on the border between normal and high-velocity Type Ia supernovae (SNe Ia) in the Wang et al. system. Though it is a clear member of the ''low velocity gradient'' group of SNe Ia and exhibits a very slow light-curve decline, it shows key dissimilarities with the overluminous SN 1991T or SN 1999aa subclasses of SNe Ia. SN 2012fr represents a well-observed SN Ia at the luminous end of the normal SN Ia distribution and a key transitional event between nominal spectroscopic subclasses of SNe Ia.

  10. SN1987A's Twentieth Anniversary

    Science.gov (United States)

    2007-02-01

    provided further evidence for asymmetries in the explosion. The 'Bochum event' was a rapid change in the line profile observed with the Bochum telescope on La Silla. It is the signature of a radioactive blob rising from the inner ejecta to the surface. "The picture emerging from the observations of the first several weeks was certainly more complex than what had ever been assumed of supernovae before," says Bruno Leibundgut (ESO). ESO PR Photo 08f/07 ESO PR Photo 08f/07 A Ring Around SN1987A The 1-m telescope at La Silla was also extensively used in daytime observing the supernova in the near- and mid-infrared for more than one year after the explosion. A clear excess emission developed in the near-infrared already 10 days after the explosion, the origin of which is still not fully understood. It was most probably due to circumstellar material that was lighted up by the explosion. Dust condensation in the ejecta was discovered by spectroscopy about 500 days after the explosion. Macroscopic dust grains partially covered the ejecta, and most probably still do. They might explain why no compact object is seen at the location of the supernova. In 1989, when the NTT came into operation, it imaged for the first time the circumstellar ring around SN 1987A. And, about three years after the explosion, NTT images revealed a circumstellar structure around SN 1987A which resembled the triangular hat which Napoleon wore. Napoleon's hat gave the first opportunity for a 3-dimensional view of SN 1987A. "The existence of the ring presents an unsolved puzzle for SN 1987A," says Roberto Gilmozzi (ESO). "Even though it is not clear how to construct such a ring, it is likely that the star that exploded as SN 1987A had a companion." When ESO's Very Large Telescope came into operation, the interest in the supernova had not faded away. Far from it! Observations were done with the VLT's many instruments, including FORS, UVES, ISAAC, and VISIR, to probe in more detail the surroundings of the

  11. Rayleigh-Taylor instability and mixing in SN 1987A

    International Nuclear Information System (INIS)

    Ebisuzaki, T.; Shigeyama, T.; Nomoto, K.

    1989-01-01

    The stability of the supernova ejecta is compared with the Rayleigh-Taylor instability for a realistic model of SN 1987A. A linear analysis indicates that the layers around the composition interface between the hydrogen-rich and helium zones, and become Rayleigh-Taylor unstable between the helium and metal zones. In these layers, the pressure increases outward because of deceleration due to the reverse shock which forms when the blast shock hits the massive hydrogen-rich envelope. On the contrary, the density steeply decreases outward because of the preexisting nuclear burning shell. Then, these layers undergo the Raleigh-Taylor instability because of the opposite signs of the pressure and density gradients. The estimated growth rate is larger than the expansion rate of the supernova. The Rayleigh-Taylor instability near the composition interface is likely to induce mixing, which has been strongly suggested from observations of SN 1987A. 25 refs

  12. Dust grains from the heart of supernovae

    Science.gov (United States)

    Bocchio, M.; Marassi, S.; Schneider, R.; Bianchi, S.; Limongi, M.; Chieffi, A.

    2016-03-01

    Dust grains are classically thought to form in the winds of asymptotic giant branch (AGB) stars. However, there is increasing evidence today for dust formation in supernovae (SNe). To establish the relative importance of these two classes of stellar sources of dust, it is important to know the fraction of freshly formed dust in SN ejecta that is able to survive the passage of the reverse shock and be injected in the interstellar medium. With this aim, we have developed a new code, GRASH_Rev, that allows following the dynamics of dust grains in the shocked SN ejecta and computing the time evolution of the mass, composition, and size distribution of the grains. We considered four well-studied SNe in the Milky Way and Large Magellanic Cloud: SN 1987A, CasA, the Crab nebula, and N49. These sources have been observed with both Spitzer and Herschel, and the multiwavelength data allow a better assessment the mass of warm and cold dust associated with the ejecta. For each SN, we first identified the best explosion model, using the mass and metallicity of the progenitor star, the mass of 56Ni, the explosion energy, and the circumstellar medium density inferred from the data. We then ran a recently developed dust formation model to compute the properties of freshly formed dust. Starting from these input models, GRASH_Rev self-consistently follows the dynamics of the grains, considering the effects of the forward and reverse shock, and allows predicting the time evolution of the dust mass, composition, and size distribution in the shocked and unshocked regions of the ejecta. All the simulated models aagree well with observations. Our study suggests that SN 1987A is too young for the reverse shock to have affected the dust mass. Hence the observed dust mass of 0.7-0.9 M⊙ in this source can be safely considered as indicative of the mass of freshly formed dust in SN ejecta. Conversely, in the other three SNe, the reverse shock has already destroyed between 10-40% of the

  13. Peculiar Supernovae

    Science.gov (United States)

    Milisavljevic, Dan; Margutti, Raffaella

    2018-06-01

    What makes a supernova truly "peculiar?" In this review we attempt to address this question by tracing the history of the use of "peculiar" as a descriptor of non-standard supernovae back to the original binary spectroscopic classification of Type I vs. Type II proposed by Minkowski (Publ. Astron. Soc. Pac., 53:224, 1941). A handful of noteworthy examples are highlighted to illustrate a general theme: classes of supernovae that were once thought to be peculiar are later seen as logical branches of standard events. This is not always the case, however, and we discuss ASASSN-15lh as an example of a transient with an origin that remains contentious. We remark on how late-time observations at all wavelengths (radio-through-X-ray) that probe 1) the kinematic and chemical properties of the supernova ejecta and 2) the progenitor star system's mass loss in the terminal phases preceding the explosion, have often been critical in understanding the nature of seemingly unusual events.

  14. Broad-lined Supernova 2016coi with a Helium Envelope

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Masayuki [Department of Physics, Faculty of Science and Engineering, Konan University, Okamoto, Kobe, Hyogo 658-8501 (Japan); Nakaoka, Tatsuya; Kawabata, Miho [Department of Physical Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526 (Japan); Tanaka, Masaomi [National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Osawa, Mitaka, Tokyo 181-8588 (Japan); Maeda, Keiichi [Department of Astronomy, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Honda, Satoshi; Hosoya, Kensuke; Karita, Mayu; Morihana, Kumiko [Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, 407-2 Nishigaichi, Sayo-cho, Sayo, Hyogo 679-5313 (Japan); Hanayama, Hidekazu [Ishigakijima Astronomical Observatory, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 1024-1 Arakawa, Ishigaki, Okinawa 907-0024 (Japan); Morokuma, Tomoki [Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Imai, Masataka [Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi8, Kita-ku, Sapporo 060-0810 (Japan); Kinugasa, Kenzo [Nobeyama Radio Observatory, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 462-2 Nobeyama, Minamimaki, Minamisaku, Nagano 384-1305 (Japan); Murata, Katsuhiro L. [Department of Astrophysics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Nishimori, Takefumi; Gima, Hirotaka; Ito, Ayano; Morikawa, Yuto; Murakami, Kotone [Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065 (Japan); Hashimoto, Osamu, E-mail: yamanaka@center.konan-u.ac.jp [Gunma Astronomical Observatory, Takayama, Gunma 377-0702 (Japan); and others

    2017-03-01

    We present the early-phase spectra and the light curves of the broad-lined (BL) supernova (SN) 2016coi from t = 7 to 67 days after the estimated explosion date. This SN was initially reported as a BL Type SN Ic (SN Ic-BL). However, we found that spectra up to t = 12 days exhibited the He i λ 5876, λ 6678, and λ 7065 absorption lines. We show that the smoothed and blueshifted spectra of normal SNe Ib are remarkably similar to the observed spectrum of SN 2016coi. The line velocities of SN 2016coi were similar to those of SNe Ic-BL and significantly faster than those of SNe Ib. Analyses of the line velocity and light curve suggest that the kinetic energy and the total ejecta mass of SN 2016coi are similar to those of SNe Ic-BL. Together with BL SNe 2009bb and 2012ap, for which the detection of He i was also reported, these SNe could be transitional objects between SNe Ic-BL and SNe Ib, and be classified as BL Type “Ib” SNe (SNe “Ib”-BL). Our work demonstrates the diversity of the outermost layer in BL SNe, which should be related to the variety of the evolutionary paths.

  15. Interacting supernovae and supernova impostors

    Science.gov (United States)

    Tartaglia, Leonardo

    2016-02-01

    Massive stars are thought to end their lives with spectacular explosions triggered by the gravitational collapse of their cores. Interacting supernovae are generally attributed to supernova explosions occurring in dense circumstellar media, generated through mass-loss which characterisie the late phases of the life of their progenitors. In the last two decades, several observational evidences revealed that mass-loss in massive stars may be related to violent eruptions involving their outer layers, such as the luminous blue variables. Giant eruptions of extragalactic luminous blue variables, similar to that observed in Eta Car in the 19th century, are usually labelled 'SN impostors', since they mimic the behaviour of genuine SNe, but are not the final act of the life of the progenitor stars. The mechanisms producing these outbursts are still not understood, although the increasing number of observed cases triggered the efforts of the astronomical community to find possible theoretical interpretations. More recently, a number of observational evidences suggested that also lower-mass stars can experience pre-supernova outbursts, hence becoming supernova impostors. Even more interestingly, there is growing evidence of a connection among massive stars, their outbursts and interacting supernovae. All of this inspired this research, which has been focused in particular on the characterisation of supernova impostors and the observational criteria that may allow us to safely discriminate them from interacting supernovae. Moreover, the discovery of peculiar transients, motivated us to explore the lowest range of stellar masses that may experience violent outbursts. Finally, the quest for the link among massive stars, their giant eruptions and interacting supernovae, led us to study the interacting supernova LSQ13zm, which possibly exploded a very short time after an LBV-like major outburst.

  16. Electron Acceleration in Supernovae and Millimeter Perspectives

    Directory of Open Access Journals (Sweden)

    Keiichi Maeda

    2014-12-01

    Full Text Available Supernovae launch a strong shock wave by the interaction of the expanding ejecta and surrounding circumstellar matter (CSM. At the shock, electrons are accelerated to relativistic speed, creating observed synchrotron emissions in radio wavelengths. In this paper, I suggest that SNe (i.e., < 1 year since the explosion provide a unique site to study the electron acceleration mechanism. I argue that the eciency of the acceleration at the young SN shock is much lower than conventionally assumed, and that the electrons emitting in the cm wavelengths are not fully in the Diffusive Shock Acceleration (DSA regime. Thus radio emissions from young SNe record information on the yet-unresolved 'injection' mechanism. I also present perspectives of millimeter (mm observations of SNe - this will provide opportunities to uniquely determine the shock physics and the acceleration efficiency, to test the non-linear DSA mechanism and provide a characteristic electron energy scale with which the DSA start dominating the electron acceleration.

  17. Autopsy of the Supernova Remnant Cassiopeia A

    Science.gov (United States)

    Milisavljevic, Dan; Fesen, Robert A.

    2014-01-01

    Three-dimensional kinematic reconstructions of optically emitting ejecta in the young Galactic supernova remnant Cassiopeia A (Cas A) are discussed. The reconstructions encompass the remnant's faint outlying ejecta knots, including the exceptionally high-velocity NE and SW streams of debris often referred to as `jets'. The bulk of Cas A's ejecta are arranged in several circular rings with diameters between approximately 30'' (0.5 pc) and 2' (2 pc). We suggest that similar large-scale ejecta rings may be a common phenomenon of young core-collapse remnants and may explain lumpy emission line profile substructure sometimes observed in spectra of extragalactic core-collapse supernovae years after explosion. A likely origin for these large ejecta rings is post-explosion input of energy from plumes of radioactive 56Ni-rich ejecta that rise, expand, and compress non-radioactive material to form bubble-like structures.

  18. Gravitational collapse and supernovae

    International Nuclear Information System (INIS)

    Lattimer, J.M.

    1989-01-01

    The collapse of the core of a massive star and the subsequent birth of a neutron star in a supernova explosion are discussed, and a model of the supernova mechanism is developed. The basic theory is then compared with the particular case of SN1987A, whose emitted neutrinos permitted the first direct test of the model. (author)

  19. DUST PRODUCTION AND PARTICLE ACCELERATION IN SUPERNOVA 1987A REVEALED WITH ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Indebetouw, R.; Chevalier, R. [Department of Astronomy, University of Virginia, PO Box 400325, Charlottesville, VA 22904 (United States); Matsuura, M.; Barlow, M. J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Dwek, E. [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Zanardo, G. [International Centre for Radio Astronomy Research (ICRAR), University of Western Australia, Crawley, WA 6009 (Australia); Baes, M. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Bouchet, P. [CEA-Saclay, F-91191 Gif-sur-Yvette (France); Burrows, D. N. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Clayton, G. C. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Fransson, C.; Lundqvist, P. [Department of Astronomy and the Oskar Klein Centre, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Gaensler, B. [Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) (Australia); Kirshner, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Lakićević, M. [Lennard-Jones Laboratories, Keele University, ST5 5BG (United Kingdom); Long, K. S.; Meixner, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Martí-Vidal, I. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala (Sweden); Marcaide, J. [Universidad de Valencia, C/Dr. Moliner 50, E-46100 Burjassot (Spain); McCray, R., E-mail: remy@virginia.edu [Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, UCB 391, Boulder, CO 80309 (United States); and others

    2014-02-10

    Supernova (SN) explosions are crucial engines driving the evolution of galaxies by shock heating gas, increasing the metallicity, creating dust, and accelerating energetic particles. In 2012 we used the Atacama Large Millimeter/Submillimeter Array to observe SN 1987A, one of the best-observed supernovae since the invention of the telescope. We present spatially resolved images at 450 μm, 870 μm, 1.4 mm, and 2.8 mm, an important transition wavelength range. Longer wavelength emission is dominated by synchrotron radiation from shock-accelerated particles, shorter wavelengths by emission from the largest mass of dust measured in a supernova remnant (>0.2 M {sub ☉}). For the first time we show unambiguously that this dust has formed in the inner ejecta (the cold remnants of the exploded star's core). The dust emission is concentrated at the center of the remnant, so the dust has not yet been affected by the shocks. If a significant fraction survives, and if SN 1987A is typical, supernovae are important cosmological dust producers.

  20. Supernova will continue to glow

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    On the night of 23/24 February 1987 a new supernova called SN 1987A, was discovered. Within a few hours of the announcement of the discovery, the South African Astronomical Observatory (SAAO) began a series of observations. In this article, the importance of supernovae-exploding stars, and what the SAAO has discovered so far from SN 1987A are discussed

  1. Hubble Space Telescope Observations of the Afterglow, Supernova and Host Galaxy Associated with the Extremely Bright GRB 130427A

    Science.gov (United States)

    Levan, A.J.; Tanvir, N. R.; Fruchter, A. S.; Hjorth, J.; Pian, E.; Mazzali, P.; Hounsell, R. A.; Perley, D. A.; Cano, Z.; Graham, J.; hide

    2014-01-01

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst, GRB 130427A. At z=0.34 this burst affords an excellent opportunity to study the supernova and host galaxy associated with an intrinsically extremely luminous burst (E(sub iso) greater than 10(exp 54) erg): more luminous than any previous GRB with a spectroscopically associated supernova. We use the combination of the image quality, UV capability and and invariant PSF of HST to provide the best possible separation of the afterglow, host and supernova contributions to the observed light approximately 17 rest-frame days after the burst utilising a host subtraction spectrum obtained 1 year later. Advanced Camera for Surveys (ACS) grism observations show that the associated supernova, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, vph approximately 15,000 kilometers per second). The positions of the bluer features are better matched by the higher velocity SN 2010bh (vph approximately 30,000 kilometers per second), but SN 2010bh (vph approximately 30,000 kilometers per second but this SN is significantly fainter, and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated approximately 4 kpc from the nucleus of a moderately star forming (1 Solar Mass yr(exp-1)), possibly interacting disc galaxy. The absolute magnitude, physical size and morphology of this galaxy, as well as the location of the GRB within it are also strikingly similar to those of GRB980425SN 1998bw. The similarity of supernovae and environment from both the most luminous and least luminous GRBs suggests broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  2. Supernova hydrodynamics

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1981-01-01

    The explosion of a star supernova occurs at the end of its evolution when the nuclear fuel in its core is almost, or completely, consumed. The star may explode due to a small residual thermonuclear detonation, type I SN or it may collapse, type I and type II SN leaving a neutron star remnant. The type I progenitor should be thought to be an old accreting white dwarf, 1.4 M/sub theta/, with a close companion star. A type II SN is thought to be a massive young star 6 to 10 M/sub theta/. The mechanism of explosion is still a challenge to our ability to model the most extreme conditions of matter and hydrodynamics that occur presently and excessively in the universe. 39 references

  3. The Low-luminosity Type IIP Supernova 2016bkv with Early-phase Circumstellar Interaction

    Science.gov (United States)

    Nakaoka, Tatsuya; Kawabata, Koji S.; Maeda, Keiichi; Tanaka, Masaomi; Yamanaka, Masayuki; Moriya, Takashi J.; Tominaga, Nozomu; Morokuma, Tomoki; Takaki, Katsutoshi; Kawabata, Miho; Kawahara, Naoki; Itoh, Ryosuke; Shiki, Kensei; Mori, Hiroki; Hirochi, Jun; Abe, Taisei; Uemura, Makoto; Yoshida, Michitoshi; Akitaya, Hiroshi; Moritani, Yuki; Ueno, Issei; Urano, Takeshi; Isogai, Mizuki; Hanayama, Hidekazu; Nagayama, Takahiro

    2018-06-01

    We present optical and near-infrared observations of a low-luminosity (LL) Type IIP supernova (SN) 2016bkv from the initial rising phase to the plateau phase. Our observations show that the end of the plateau is extended to ≳140 days since the explosion, indicating that this SN takes one of the longest times to finish the plateau phase among Type IIP SNe (SNe IIP), including LL SNe IIP. The line velocities of various ions at the middle of the plateau phase are as low as 1000–1500 km s‑1, which is the lowest even among LL SNe IIP. These measurements imply that the ejecta mass in SN 2016bkv is larger than that of the well-studied LL IIP SN 2003Z. In the early phase, SN 2016bkv shows a strong bump in the light curve. In addition, the optical spectra in this bump phase exhibit a blue continuum accompanied by a narrow Hα emission line. These features indicate an interaction between the SN ejecta and the circumstellar matter (CSM) as in SNe IIn. Assuming the ejecta–CSM interaction scenario, the mass loss rate is estimated to be ∼ 1.7× {10}-2 {M}ȯ yr‑1 within a few years before the SN explosion. This is comparable to or even larger than the largest mass loss rate observed for the Galactic red supergiants (∼ {10}-3 {M}ȯ yr‑1 for VY CMa). We suggest that the progenitor star of SN 2016bkv experienced a violent mass loss just before the SN explosion.

  4. Type Ia Supernova Properties as a Function of the Distance to the Host Galaxy in the SDSS-II SN Survey

    Energy Technology Data Exchange (ETDEWEB)

    Galbany, Lluis [Institut de Fisica d' Altes Energies (IFAE), Barcelona (Spain); et al.

    2012-08-20

    We use type-Ia supernovae (SNe Ia) discovered by the SDSS-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host galaxy center, using the distance as a proxy for local galaxy properties (local star-formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light-curves using both MLCS2k2 and SALT2, and determine color (AV, c) and light-curve shape (delta, x1) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4-sigma level) finding is that the average fitted AV from MLCS2k2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that SNe in elliptical galaxies tend to have narrower light-curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.

  5. EXPLOSIVE NUCLEOSYNTHESIS IN THE NEUTRINO-DRIVEN ASPHERICAL SUPERNOVA EXPLOSION OF A NON-ROTATING 15 Msun STAR WITH SOLAR METALLICITY

    International Nuclear Information System (INIS)

    Fujimoto, Shin-ichiro; Kotake, Kei; Hashimoto, Masa-aki; Ono, Masaomi; Ohnishi, Naofumi

    2011-01-01

    We investigate explosive nucleosynthesis in a non-rotating 15 M sun star with solar metallicity that explodes by a neutrino-heating supernova (SN) mechanism aided by both standing accretion shock instability (SASI) and convection. To trigger explosions in our two-dimensional hydrodynamic simulations, we approximate the neutrino transport with a simple light-bulb scheme and systematically change the neutrino fluxes emitted from the protoneutron star. By a post-processing calculation, we evaluate abundances and masses of the SN ejecta for nuclei with a mass number ≤70, employing a large nuclear reaction network. Aspherical abundance distributions, which are observed in nearby core-collapse SN remnants, are obtained for the non-rotating spherically symmetric progenitor, due to the growth of a low-mode SASI. The abundance pattern of the SN ejecta is similar to that of the solar system for models whose masses range between (0.4-0.5) M sun of the ejecta from the inner region (≤10, 000 km) of the precollapse core. For the models, the explosion energies and the 56 Ni masses are ≅ 10 51 erg and (0.05-0.06) M sun , respectively; their estimated baryonic masses of the neutron star are comparable to the ones observed in neutron-star binaries. These findings may have little uncertainty because most of the ejecta is composed of matter that is heated via the shock wave and has relatively definite abundances. The abundance ratios for Ne, Mg, Si, and Fe observed in the Cygnus loop are reproduced well with the SN ejecta from an inner region of the 15 M sun progenitor.

  6. DISAPPEARANCE OF THE PROGENITOR OF SUPERNOVA iPTF13bvn

    Energy Technology Data Exchange (ETDEWEB)

    Folatelli, Gastón; Bersten, Melina C. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Instituto de Astrofísica de La Plata (IALP), CONICET, Paseo del Bosque S/N, B1900FWA La Plata (Argentina); Van Dyk, Schuyler D. [IPAC/Caltech, Mailcode 100-22, Pasadena, CA 91125 (United States); Kuncarayakti, Hanindyo; Pignata, Giuliano; Hamuy, Mario [Millennium Institute of Astrophysics (MAS), Santiago (Chile); Maeda, Keiichi; Nomoto, Ken’ichi; Quimby, Robert M. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Zheng, WeiKang; Filippenko, Alexei V.; Clubb, Kelsey I. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Smith, Nathan [Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Elias-Rosa, Nancy [INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Foley, Ryan J. [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801 (United States); Miller, Adam A., E-mail: gaston.folatelli@ipmu.jp [Jet Propulsion Laboratory, 4800 Oak Grove Drive, MS 169-506, Pasadena, CA 91109 (United States)

    2016-07-10

    Supernova (SN) iPTF13bvn in NGC 5806 was the first Type Ib SN to have been tentatively associated with a progenitor in pre-explosion images. We performed deep ultraviolet (UV) and optical Hubble Space Telescope observations of the SN site ∼740 days after explosion. We detect an object in the optical bands that is fainter than the pre-explosion object. This dimming is likely not produced by dust absorption in the ejecta; thus, our finding confirms the connection of the progenitor candidate with the SN. The object in our data is likely dominated by the fading SN, implying that the pre-SN flux is mostly due to the progenitor. We compare our revised pre-SN photometry with previously proposed models. Although binary progenitors are favored, models need to be refined. In particular, to comply with our deep UV detection limit, any companion star must be less luminous than a late-O star or substantially obscured by newly formed dust. A definitive progenitor characterization will require further observations to disentangle the contribution of a much fainter SN and its environment.

  7. Far-infrared spectrophotometry of SN 1987A - Days 265 and 267

    Science.gov (United States)

    Moseley, S. H.; Dwek, E.; Silverberg, R. F.; Glaccum, W.; Graham, J. R.; Loewenstein, R. F.

    1989-01-01

    The paper presents 16-66-micron spectra of SN 1987A taken on days 266 and 268 after core collapse. The spectrum consists of a nearly flat continuum, strong emission lines of hydrogen, and fine-structure lines of Fe II, Fe III, Co II, S I, and possibly Fe I, Ni II, and S III. From the relative strength of three lines which arise from transitions within the ground and excited states of Fe II, the temperature and a lower limit on the density of the line-emitting region are derived. From the line strengths, the abundances of Fe and S I, the end products of explosive nucleosynthesis in the supernova are estimated. An upper limit is also set to the amount of Co II remaining in the mantle. The low measured mass of Fe suggests that the ejecta are clumpy. The flat continuum is most likely free-free emission from the expanding supernova ejecta. About 35 percent of this emission arises from the ionized metals in the mantle; the rest arises from ionized hydrogen. At the time of these observations, there is no evidence for any emission from dust that may have formed in the supernova ejecta or from preexisting dust in the surrounding medium.

  8. The Origin and Evolution of the Infrared Light Curve of SN2010jl

    Science.gov (United States)

    Dwek, Eli; Sarangi, Arkaprabha; Arendt, Richard; Fox, Ori; Kallman, Timothy; Kazanas, Demosthenes

    2018-01-01

    SN2010jl is a luminous core-collapse supernova (CCSN) of Type IIn that is surrounded by a dense circumstellar medium (CSM). The supernova (SN) luminosity vastly exceeds the available power from radiactive elements in the ejecta, and is powered by the interaction of the SN shock wave with the ambient medium. Upper limits on the UV and near-IR (NIR) emission from pre-explosion images of the region suggest that any progenitor star was hidden by pre-existing CSM dust. After day ~80, the SN spectrum shows the development of an IR excess above the extrapolated UVO emission arising from the shocked CSM. This IR component is attributed to thermal emission from dust.After day ~300, the light curve exhibits a rise in the NIR luminosity, concurrent with a steep decline at UVO wavelengths. Ruling out any possible contribution of SN-condensed dust to the IR light curve, we show that the early IR emission arises from the pre-existing CSM dust that survived the flash of radiation from the shock breakout. The late IR emission arises from newly-formed CSM dust that condensed in the cooling dust-free postshock gas of the advancing SN shock wave. Our analysis presents the first detailed modeling of dust formation in a cooling postshock environment, and provides important insights into the interaction of the SN shock wave with the CSM.

  9. Supernova 2010as: the lowest-velocity member of a family of flat-velocity type IIb supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Folatelli, Gastón; Bersten, Melina C.; Nomoto, Ken' ichi [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Kuncarayakti, Hanindyo; Hamuy, Mario [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Olivares Estay, Felipe; Pignata, Giuliano [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Anderson, Joseph P. [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago (Chile); Holmbo, Simon; Stritzinger, Maximilian [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Maeda, Keiichi [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Morrell, Nidia; Contreras, Carlos; Phillips, Mark M. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Förster, Francisco [Center for Mathematical Modelling, Universidad de Chile, Avenida Blanco Encalada 2120 Piso 7, Santiago (Chile); Prieto, José Luis [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton, NJ 08544 (United States); Valenti, Stefano [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Afonso, Paulo; Altenmüller, Konrad; Elliott, Jonny, E-mail: gaston.folatelli@ipmu.jp [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße 1, D-85740 Garching (Germany); and others

    2014-09-01

    We present extensive optical and near-infrared photometric and spectroscopic observations of the stripped-envelope supernova SN 2010as. Spectroscopic peculiarities such as initially weak helium features and low expansion velocities with a nearly flat evolution place this object in the small family of events previously identified as transitional Type Ib/c supernovae (SNe). There is ubiquitous evidence of hydrogen, albeit weak, in this family of SNe, indicating that they are in fact a peculiar kind of Type IIb SNe that we name 'flat-velocity' Type IIb. The flat-velocity evolution—which occurs at different levels between 6000 and 8000 km s{sup –1} for different SNe—suggests the presence of a dense shell in the ejecta. Despite the spectroscopic similarities, these objects show surprisingly diverse luminosities. We discuss the possible physical or geometrical unification picture for such diversity. Using archival Hubble Space Telescope images, we associate SN 2010as with a massive cluster and derive a progenitor age of ≈6 Myr, assuming a single star-formation burst, which is compatible with a Wolf-Rayet progenitor. Our hydrodynamical modeling, on the contrary, indicates that the pre-explosion mass was relatively low, ≈4 M {sub ☉}. The seeming contradiction between a young age and low pre-SN mass may be solved by a massive interacting binary progenitor.

  10. The many sides of RCW 86: a Type Ia supernova remnant evolving in its progenitor's wind bubble

    Science.gov (United States)

    Broersen, Sjors; Chiotellis, Alexandros; Vink, Jacco; Bamba, Aya

    2014-07-01

    We present the results of a detailed investigation of the Galactic supernova remnant RCW 86 using the XMM-Newton X-ray telescope. RCW 86 is the probable remnant of SN 185 A.D., a supernova that likely exploded inside a wind-blown cavity. We use the XMM-Newton Reflection Grating Spectrometer to derive precise temperatures and ionization ages of the plasma, which are an indication of the interaction history of the remnant with the presumed cavity. We find that the spectra are well fitted by two non-equilibrium ionization models, which enables us to constrain the properties of the ejecta and interstellar matter plasma. Furthermore, we performed a principal component analysis on EPIC MOS and pn data to find regions with particular spectral properties. We present evidence that the shocked ejecta, emitting Fe K and Si line emission, are confined to a shell of approximately 2 pc width with an oblate spheroidal morphology. Using detailed hydrodynamical simulations, we show that general dynamical and emission properties at different portions of the remnant can be well reproduced by a Type Ia supernova that exploded in a non-spherically symmetric wind-blown cavity. We also show that this cavity can be created using general wind properties for a single degenerate system. Our data and simulations provide further evidence that RCW 86 is indeed the remnant of SN 185, and is the likely result of a Type Ia explosion of single degenerate origin.

  11. SPECTROPOLARIMETRY OF SUPERLUMINOUS SUPERNOVAE: INSIGHT INTO THEIR GEOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Inserra, C.; Bulla, M.; Sim, S. A.; Smartt, S. J., E-mail: c.inserra@qub.ac.uk [Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom)

    2016-11-01

    We present the first spectropolarimetric observations of a hydrogen-free superluminous supernova (SLSN) at z = 0.1136, namely SN 2015bn. The transient shows significant polarization at both of the observed epochs: one 24 days before maximum light in the rest-frame, and the other at 27 days after peak luminosity. Analysis of the Q – U plane suggests the presence of a dominant axis and no physical departure from the main axis at either epoch. The polarization spectrum along the dominant axis is characterized by a strong wavelength dependence and an increase in the signal from the first to the second epoch. We use a Monte Carlo code to demonstrate that these properties are consistent with a simple toy model that adopts an axisymmetric ellipsoidal configuration for the ejecta. We find that the wavelength dependence of the polarization is possibly due to a strong wavelength dependence in the line opacity, while the higher level of polarization at the second epoch is a consequence of the increase in the asphericity of the inner layers of the ejecta or the fact that the photosphere recedes into less spherical layers. The geometry of the SLSN is similar to that of stripped-envelope core-collapse SNe connected to GRB, while the overall evolution of the ejecta shape could be consistent with a central engine.

  12. Supernova research with VLBI

    Science.gov (United States)

    Bartel, Norbert; Bietenholz, Michael F.

    2016-06-01

    Core-collapse supernovae have been monitored with VLBI from shortly after the explosion to many years thereafter. Radio emission is produced as the ejecta hit the stellar wind left over from the dyingstar. Images show the details of the interaction as the shock front expands into the circumstellar medium. Measurements of the velocity and deceleration of the expansion provide information on both the ejecta and the circumstellar medium. VLBI observations can also search for the stellar remnant of the explosion, a neutron star or a black hole. Combining the transverse expansion rate with the radial expansion rate from optical spectra allows a geometric determination of the distance to the host galaxy. We will present results from recent VLBI observations, focus on their interpretations, and show updated movies of supernovae from soon after their explosion to the present.

  13. No Escape from the Supernova! Magnetic Imprisonment of Dusty Pinballs by a Supernova Remnant arXiv

    CERN Document Server

    Fry, Brian J.; Ellis, John R.

    Motivated by recent measurements of deposits of $^{60}$Fe on the ocean floor and the lunar surface, we model the transport of dust grains containing $^{60}$Fe from a near-Earth (i.e., within 100 pc) supernova (SN). We inject dust grains into the environment of a SN remnant (SNR) and trace their trajectories using a magnetohydrodynamic description. We assume the interstellar medium (ISM) magnetic fields are turbulent, and are amplified by the SNR shock, while the SN wind and ejecta fields are negligible. We examine the various influences on the dust grains within the SNR to determine when/if the dust decouples from the plasma, how much it is sputtered, and where within the SNR the dust grains are located. We find that Rayleigh-Taylor instabilities are important for dust survival, as they influence the location of the SN's reverse shock. We find that the presence of a magnetic field within the shocked ISM material limits the passage of SN dust grains, with the field either reflecting or trapping the grains with...

  14. Explaining the morphology of supernova remnant (SNR) 1987A with the jittering jets explosion mechanism

    Science.gov (United States)

    Bear, Ealeal; Soker, Noam

    2018-04-01

    We find that the remnant of supernova (SN) 1987A shares some morphological features with four supernova remnants (SNRs) that have signatures of shaping by jets, and from that we strengthen the claim that jets played a crucial role in the explosion of SN 1987A. Some of the morphological features appear also in planetary nebulae (PNe) where jets are observed. The clumpy ejecta bring us to support the claim that the jittering jets explosion mechanism can account for the structure of the remnant of SN 1987A, i.e., SNR 1987A. We conduct a preliminary attempt to quantify the fluctuations in the angular momentum of the mass that is accreted on to the newly born neutron star via an accretion disk or belt. The accretion disk/belt launches the jets that explode core collapse supernovae (CCSNe). The relaxation time of the accretion disk/belt is comparable to the duration of a typical jet-launching episode in the jittering jets explosion mechanism, and hence the disk/belt has no time to relax. We suggest that this might explain two unequal opposite jets that later lead to unequal sides of the elongated structures in some SNRs of CCSNe. We reiterate our earlier call for a paradigm shift from neutrino-driven explosion to a jet-driven explosion of CCSNe.

  15. X-RAY EMISSION FROM SN 2004dj: A TALE OF TWO SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborti, Sayan; Yadav, Naveen; Ray, Alak [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai 400 005 (India); Smith, Randall [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chandra, Poonam [Department of Physics, Royal Military College of Canada, Kingston, ON K7K 7B4 (Canada); Pooley, David, E-mail: schakraborti@fas.harvard.edu [Department of Physics, Sam Houston State University, Huntsville, TX (United States)

    2012-12-20

    Type IIP (Plateau) supernovae are the most commonly observed variety of core-collapse events. They have been detected in a wide range of wavelengths from radio, through optical to X-rays. The standard picture of a Type IIP supernova has the blastwave interacting with the progenitor's circumstellar matter to produce a hot region bounded by a forward and a reverse shock. This region is thought to be responsible for most of the X-ray and radio emission from these objects. Yet the origin of X-rays from these supernovae is not well understood quantitatively. The relative contributions of particle acceleration and magnetic field amplification in generating the X-ray and radio emission need to be determined. In this work, we analyze archival Chandra observations of SN 2004dj, one of the nearest supernovae since SN 1987A, along with published radio and optical information. We determine the pre-explosion mass-loss rate, blastwave velocity, electron acceleration, and magnetic field amplification efficiencies. We find that a greater fraction of the thermal energy goes into accelerating electrons than into amplifying magnetic fields. We conclude that the X-ray emission arises out of a combination of inverse Compton scattering by non-thermal electrons accelerated in the forward shock and thermal emission from supernova ejecta heated by the reverse shock.

  16. Optical observations of the type Ic supernova 2007gr in NGC 1058

    International Nuclear Information System (INIS)

    Chen, Juncheng; Wang, Xiaofeng; Li, Junzheng; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Filippenko, Alexei V.; Li, Weidong; Chornock, Ryan; Steele, Thea

    2014-01-01

    We present extensive optical observations of the normal Type Ic supernova (SN) 2007gr, spanning from about one week before maximum light to more than one year thereafter. The optical light and color curves of SN 2007gr are very similar to those of the broad-lined Type Ic SN 2002ap, but the spectra show remarkable differences. The optical spectra of SN 2007gr are characterized by unusually narrow lines, prominent carbon lines, and slow evolution of the line velocity after maximum light. The earliest spectrum (taken at t = –8 days) shows a possible signature of helium (He I λ5876 at a velocity of ∼19,000 km s –1 ). Moreover, the larger intensity ratio of the [O I] λ6300 and λ6364 lines inferred from the early nebular spectra implies a lower opacity of the ejecta shortly after the explosion. These results indicate that SN 2007gr perhaps underwent a less energetic explosion of a smaller-mass Wolf-Rayet star (∼8-9 M ☉ ) in a binary system, as favored by an analysis of the progenitor environment through pre-explosion and post-explosion Hubble Space Telescope images. In the nebular spectra, asymmetric double-peaked profiles can be seen in the [O I] λ6300 and Mg I] λ4571 lines. We suggest that the two peaks are contributed by the blueshifted and rest-frame components. The similarity in velocity structure and the different evolution of the strength of the two components favor an aspherical explosion with the ejecta distributed in a torus or disk-like geometry, but inside the ejecta the O and Mg have different distributions.

  17. Optical observations of the type Ic supernova 2007gr in NGC 1058

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Juncheng; Wang, Xiaofeng; Li, Junzheng [Physics Department and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing 100084 (China); Ganeshalingam, Mohan; Silverman, Jeffrey M.; Filippenko, Alexei V.; Li, Weidong; Chornock, Ryan; Steele, Thea, E-mail: cjc09@mails.tsinghua.edu.cn, E-mail: wang_xf@mail.tsinghua.edu.cn [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2014-08-01

    We present extensive optical observations of the normal Type Ic supernova (SN) 2007gr, spanning from about one week before maximum light to more than one year thereafter. The optical light and color curves of SN 2007gr are very similar to those of the broad-lined Type Ic SN 2002ap, but the spectra show remarkable differences. The optical spectra of SN 2007gr are characterized by unusually narrow lines, prominent carbon lines, and slow evolution of the line velocity after maximum light. The earliest spectrum (taken at t = –8 days) shows a possible signature of helium (He I λ5876 at a velocity of ∼19,000 km s{sup –1}). Moreover, the larger intensity ratio of the [O I] λ6300 and λ6364 lines inferred from the early nebular spectra implies a lower opacity of the ejecta shortly after the explosion. These results indicate that SN 2007gr perhaps underwent a less energetic explosion of a smaller-mass Wolf-Rayet star (∼8-9 M{sub ☉}) in a binary system, as favored by an analysis of the progenitor environment through pre-explosion and post-explosion Hubble Space Telescope images. In the nebular spectra, asymmetric double-peaked profiles can be seen in the [O I] λ6300 and Mg I] λ4571 lines. We suggest that the two peaks are contributed by the blueshifted and rest-frame components. The similarity in velocity structure and the different evolution of the strength of the two components favor an aspherical explosion with the ejecta distributed in a torus or disk-like geometry, but inside the ejecta the O and Mg have different distributions.

  18. TYPE Ia SUPERNOVA CARBON FOOTPRINTS

    International Nuclear Information System (INIS)

    Thomas, R. C.; Nugent, P.; Aldering, G.; Aragon, C.; Bailey, S.; Childress, M.; Fakhouri, H. K.; Hsiao, E. Y.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Paech, K.; Chotard, N.; Copin, Y.; Gangler, E.

    2011-01-01

    We present convincing evidence of unburned carbon at photospheric velocities in new observations of five Type Ia supernovae (SNe Ia) obtained by the Nearby Supernova Factory. These SNe are identified by examining 346 spectra from 124 SNe obtained before +2.5 days relative to maximum. Detections are based on the presence of relatively strong C II λ6580 absorption 'notches' in multiple spectra of each SN, aided by automated fitting with the SYNAPPS code. Four of the five SNe in question are otherwise spectroscopically unremarkable, with ions and ejection velocities typical of SNe Ia, but spectra of the fifth exhibit high-velocity (v > 20, 000 km s –1 ) Si II and Ca II features. On the other hand, the light curve properties are preferentially grouped, strongly suggesting a connection between carbon-positivity and broadband light curve/color behavior: three of the five have relatively narrow light curves but also blue colors and a fourth may be a dust-reddened member of this family. Accounting for signal to noise and phase, we estimate that 22 +10 –6% of SNe Ia exhibit spectroscopic C II signatures as late as –5 days with respect to maximum. We place these new objects in the context of previously recognized carbon-positive SNe Ia and consider reasonable scenarios seeking to explain a physical connection between light curve properties and the presence of photospheric carbon. We also examine the detailed evolution of the detected carbon signatures and the surrounding wavelength regions to shed light on the distribution of carbon in the ejecta. Our ability to reconstruct the C II λ6580 feature in detail under the assumption of purely spherical symmetry casts doubt on a 'carbon blobs' hypothesis, but does not rule out all asymmetric models. A low volume filling factor for carbon, combined with line-of-sight effects, seems unlikely to explain the scarcity of detected carbon in SNe Ia by itself.

  19. Multidimensional Models of Type Ia Supernova Nebular Spectra: Strong Emission Lines from Stripped Companion Gas Rule Out Classic Single-degenerate Systems

    Science.gov (United States)

    Botyánszki, János; Kasen, Daniel; Plewa, Tomasz

    2018-01-01

    The classic single-degenerate model for the progenitors of Type Ia supernova (SN Ia) predicts that the supernova ejecta should be enriched with solar-like abundance material stripped from the companion star. Spectroscopic observations of normal SNe Ia at late times, however, have not resulted in definite detection of hydrogen. In this Letter, we study line formation in SNe Ia at nebular times using non-LTE spectral modeling. We present, for the first time, multidimensional radiative transfer calculations of SNe Ia with stripped material mixed in the ejecta core, based on hydrodynamical simulations of ejecta–companion interaction. We find that interaction models with main-sequence companions produce significant Hα emission at late times, ruling out these types of binaries being viable progenitors of SNe Ia. We also predict significant He I line emission at optical and near-infrared wavelengths for both hydrogen-rich or helium-rich material, providing an additional observational probe of stripped ejecta. We produce models with reduced stripped masses and find a more stringent mass limit of M st ≲ 1 × 10‑4 M ⊙ of stripped companion material for SN 2011fe.

  20. THE 2012 RISE OF THE REMARKABLE TYPE IIn SN 2009ip

    International Nuclear Information System (INIS)

    Prieto, José L.; Brimacombe, J.; Drake, A. J.; Howerton, S.

    2013-01-01

    Recent observations by Mauerhan et al. have shown the unprecedented transition of the previously identified luminous blue variable (LBV) and supernova (SN) impostor SN 2009ip to a real Type IIn SN explosion. We present ∼100 optical R- and I-band photometric measurements of SN 2009ip obtained between UT 2012 September 23.6 and October 9.6, using 0.3-0.4 m aperture telescopes from the Coral Towers Observatory in Cairns, Australia. The light curves show well-defined phases, including very rapid brightening early on (0.5 mag in 6 hr observed during the night of September 24), a transition to a much slower rise between September 25 and September 28, and a plateau/peak around October 7. These changes are coincident with the reported spectroscopic changes that most likely mark the start of a strong interaction between the fast SN ejecta and a dense circumstellar medium formed during the LBV eruptions observed in recent years. In the 16-day observing period, SN 2009ip brightened by 3.7 mag from I = 17.4 mag on September 23.6 (M I ≅ –14.2) to I = 13.7 mag (M I ≅ –17.9) on October 9.6, radiating ∼3 × 10 49 erg in the optical wavelength range. As of 2012 October 9.6, SN 2009ip is more luminous than most Type IIP SN and comparable to other Type IIn SN.

  1. Numerical studies on the link between radioisotopic signatures on Earth and the formation of the Local Bubble. I. 60Fe transport to the solar system by turbulent mixing of ejecta from nearby supernovae into a locally homogeneous interstellar medium

    Science.gov (United States)

    Schulreich, M. M.; Breitschwerdt, D.; Feige, J.; Dettbarn, C.

    2017-08-01

    Context. The discovery of radionuclides like 60Fe with half-lives of million years in deep-sea crusts and sediments offers the unique possibility to date and locate nearby supernovae. Aims: We want to quantitatively establish that the 60Fe enhancement is the result of several supernovae which are also responsible for the formation of the Local Bubble, our Galactic habitat. Methods: We performed three-dimensional hydrodynamic adaptive mesh refinement simulations (with resolutions down to subparsec scale) of the Local Bubble and the neighbouring Loop I superbubble in different homogeneous, self-gravitating environments. For setting up the Local and Loop I superbubble, we took into account the time sequence and locations of the generating core-collapse supernova explosions, which were derived from the mass spectrum of the perished members of certain stellar moving groups. The release of 60Fe and its subsequent turbulent mixing process inside the superbubble cavities was followed via passive scalars, where the yields of the decaying radioisotope were adjusted according to recent stellar evolution calculations. Results: The models are able to reproduce both the timing and the intensity of the 60Fe excess observed with rather high precision, provided that the external density does not exceed 0.3 cm-3 on average. Thus the two best-fit models presented here were obtained with background media mimicking the classical warm ionised and warm neutral medium. We also found that 60Fe (which is condensed onto dust grains) can be delivered to Earth via two physical mechanisms: either through individual fast-paced supernova blast waves, which cross the Earth's orbit sometimes even twice as a result of reflection from the Local Bubble's outer shell, or, alternatively, through the supershell of the Local Bubble itself, injecting the 60Fe content of all previous supernovae at once, but over a longer time range.

  2. A Massive Shell of Supernova-formed Dust in SNR G54.1+0.3

    Energy Technology Data Exchange (ETDEWEB)

    Temim, Tea [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Dwek, Eli; Arendt, Richard G. [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Borkowski, Kazimierz J.; Reynolds, Stephen P. [North Carolina State University, Raleigh, NC 27695 (United States); Slane, Patrick; Raymond, John C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Gelfand, Joseph D. [New York University, Abu Dhabi (United Arab Emirates)

    2017-02-10

    While theoretical models of dust condensation predict that most refractory elements produced in core-collapse supernovae (SNe) efficiently condense into dust, a large quantity of dust has so far only been observed in SN 1987A. We present an analysis of observations from the Spitzer Space Telescope , Herschel Space Observatory , Stratospheric Observatory for Infrared Astronomy, and AKARI of the infrared shell surrounding the pulsar wind nebula in the supernova remnant G54.1+0.3. We attribute a distinctive spectral feature at 21 μ m to a magnesium silicate grain species that has been invoked in modeling the ejecta-condensed dust in Cas A, which exhibits the same spectral signature. If this species is responsible for producing the observed spectral feature and accounts for a significant fraction of the observed infrared continuum, we find that it would be the dominant constituent of the dust in G54.1+0.3, with possible secondary contributions from other compositions, such as carbon, silicate, or alumina grains. The total mass of SN-formed dust required by this model is at least 0.3 M {sub ⊙}. We discuss how these results may be affected by varying dust grain properties and self-consistent grain heating models. The spatial distribution of the dust mass and temperature in G54.1+0.3 confirms the scenario in which the SN-formed dust has not yet been processed by the SN reverse shock and is being heated by stars belonging to a cluster in which the SN progenitor exploded. The dust mass and composition suggest a progenitor mass of 16–27 M {sub ⊙} and imply a high dust condensation efficiency, similar to that found for Cas A and SN 1987A. The study provides another example of significant dust formation in a Type IIP SN explosion and sheds light on the properties of pristine SN-condensed dust.

  3. Super-luminous Type II supernovae powered by magnetars

    Science.gov (United States)

    Dessart, Luc; Audit, Edouard

    2018-05-01

    Magnetar power is believed to be at the origin of numerous super-luminous supernovae (SNe) of Type Ic, arising from compact, hydrogen-deficient, Wolf-Rayet type stars. Here, we investigate the properties that magnetar power would have on standard-energy SNe associated with 15-20 M⊙ supergiant stars, either red (RSG; extended) or blue (BSG; more compact). We have used a combination of Eulerian gray radiation-hydrodynamics and non-LTE steady-state radiative transfer to study their dynamical, photometric, and spectroscopic properties. Adopting magnetar fields of 1, 3.5, 7 × 1014 G and rotational energies of 0.4, 1, and 3 × 1051 erg, we produce bolometric light curves with a broad maximum covering 50-150 d and a magnitude of 1043-1044 erg s-1. The spectra at maximum light are analogous to those of standard SNe II-P but bluer. Although the magnetar energy is channelled in equal proportion between SN kinetic energy and SN luminosity, the latter may be boosted by a factor of 10-100 compared to a standard SN II. This influence breaks the observed relation between brightness and ejecta expansion rate of standard Type II SNe. Magnetar energy injection also delays recombination and may even cause re-ionization, with a reversal in photospheric temperature and velocity. Depositing the magnetar energy in a narrow mass shell at the ejecta base leads to the formation of a dense shell at a few 1000 km s-1, which causes a light-curve bump at the end of the photospheric phase. Depositing this energy over a broad range of mass in the inner ejecta, to mimic the effect of multi-dimensional fluid instabilities, prevents the formation of a dense shell and produces an earlier-rising and smoother light curve. The magnetar influence on the SN radiation is generally not visible prior to 20-30 d, during which one may discern a BSG from a RSG progenitor. We propose a magnetar model for the super-luminous Type II SN OGLE-SN14-073.

  4. THE TYPE IIb SUPERNOVA 2011dh FROM A SUPERGIANT PROGENITOR

    International Nuclear Information System (INIS)

    Bersten, Melina C.; Nomoto, Ken'ichi; Folatelli, Gastón; Maeda, Keiichi; Benvenuto, Omar G.; Ergon, Mattias; Sollerman, Jesper; Benetti, Stefano; Ochner, Paolo; Tomasella, Lina; Botticella, Maria Teresa; Fraser, Morgan; Kotak, Rubina

    2012-01-01

    A set of hydrodynamical models based on stellar evolutionary progenitors is used to study the nature of SN 2011dh. Our modeling suggests that a large progenitor star—with R ∼ 200 R ☉ —is needed to reproduce the early light curve (LC) of SN 2011dh. This is consistent with the suggestion that the yellow super-giant star detected at the location of the supernova (SN) in deep pre-explosion images is the progenitor star. From the main peak of the bolometric LC and expansion velocities, we constrain the mass of the ejecta to be ≈2 M ☉ , the explosion energy to be E = (6-10) × 10 50 erg, and the 56 Ni mass to be approximately 0.06 M ☉ . The progenitor star was composed of a helium core of 3-4 M ☉ and a thin hydrogen-rich envelope of ≈0.1M ☉ with a main-sequence mass estimated to be in the range of 12-15 M ☉ . Our models rule out progenitors with helium-core masses larger than 8 M ☉ , which correspond to M ZAMS ∼> 25M ☉ . This suggests that a single star evolutionary scenario for SN 2011dh is unlikely.

  5. THE ULTRAVIOLET BRIGHTEST TYPE Ia SUPERNOVA 2011de

    International Nuclear Information System (INIS)

    Brown, Peter J.

    2014-01-01

    We present and discuss the ultraviolet (UV)/optical photometric light curves and absolute magnitudes of the Type Ia supernova (SN Ia) 2011de from the Swift Ultraviolet/Optical Telescope. We find it to be the UV brightest SN Ia yet observed—more than a factor of 10 brighter than normal SNe Ia in the mid-ultraviolet. We find that the UV/optical brightness and broad light curve evolution can be modeled with additional flux from the shock of the ejecta hitting a relatively large red giant companion separated by 6 × 10 13 cm. However, the post-maximum behavior of other UV-bright SNe Ia can also be modeled in a similar manner, including objects with UV spectroscopy or pre-maximum photometry which is inconsistent with this model. This suggests that similar UV luminosities can be intrinsic or caused by other forms of shock interaction. The high velocities reported for SN 2011de make it distinct from the UV-bright ''super-Chandrasekhar'' SNe Ia and the NUV-blue group of normal SNe Ia. SN 2011de is an extreme example of the UV variations in SNe Ia

  6. Fluid Instabilities of Magnetar-Powered Supernovae

    Science.gov (United States)

    Chen, Ke-Jung

    2017-05-01

    Magnetar-powered supernova explosions are competitive models for explaining very luminous optical transits. Until recently, these explosion models were mainly calculated in 1D. Radiation emitted from the magnetar snowplows into the previous supernovae ejecta and causes a nonphysical dense shell (spike) found in previous 1D studies. This suggests that strong fluid instabilities may have developed within the magnetar-powered supernovae. Such fluid instabilities emerge at the region where luminous transits later occur, so they can affect the consequent observational signatures. We examine the magnetar-powered supernovae with 2D hydrodynamics simulations and find that the 1D dense shell transforms into the development of Rayleigh-Taylor and thin shell instabilities in 2D. The resulting mixing is able to fragment the entire shell and break the spherical symmetry of supernovae ejecta.

  7. Supernovae from massive stars with extended tenuous envelopes

    Science.gov (United States)

    Dessart, Luc; Yoon, Sung-Chul; Livne, Eli; Waldman, Roni

    2018-04-01

    Massive stars with a core-halo structure are interesting objects for stellar physics and hydrodynamics. Using simulations for stellar evolution, radiation hydrodynamics, and radiative transfer, we study the explosion of stars with an extended and tenuous envelope (i.e. stars in which 95% of the mass is contained within 10% or less of the surface radius). We consider both H-rich supergiant and He-giant progenitors resulting from close-binary evolution and dying with a final mass of 2.8-5 M⊙. An extended envelope causes the supernova (SN) shock to brake and a reverse shock to form, sweeping core material into a dense shell. The shock-deposited energy, which suffers little degradation from expansion, is trapped in ejecta layers of moderate optical depth, thereby enhancing the SN luminosity at early times. With the delayed 56Ni heating, we find that the resulting optical and near-IR light curves all exhibit a double-peak morphology. We show how an extended progenitor can explain the blue and featureless optical spectra of some Type IIb and Ib SNe. The dense shell formed by the reverse shock leads to line profiles with a smaller and near-constant width. This ejecta property can explain the statistically narrower profiles of Type IIb compared to Type Ib SNe, as well as the peculiar Hα profile seen in SN 1993J. At early times, our He-giant star explosion model shows a high luminosity, a blue colour, and featureless spectra reminiscent of the Type Ib SN 2008D, suggesting a low-mass progenitor.

  8. Early Blue Excess from the Type Ia Supernova 2017cbv and Implications for Its Progenitor

    International Nuclear Information System (INIS)

    Hosseinzadeh, Griffin; Howell, D. Andrew; McCully, Curtis; Arcavi, Iair; Sand, David J.; Tartaglia, Leonardo; Valenti, Stefano; Bostroem, K. Azalee; Brown, Peter; Kasen, Daniel; Hsiao, Eric Y.; Davis, Scott; Shahbandeh, Melissa; Stritzinger, Maximilian D.

    2017-01-01

    We present very early, high-cadence photometric observations of the nearby Type Ia SN 2017cbv. The light curve is unique in that it has a blue bump during the first five days of observations in the U , B , and g bands, which is clearly resolved given our photometric cadence of 5.7 hr during that time span. We model the light curve as the combination of early shocking of the supernova ejecta against a nondegenerate companion star plus a standard SN Ia component. Our best-fit model suggests the presence of a subgiant star 56 R _☉ from the exploding white dwarf, although this number is highly model-dependent. While this model matches the optical light curve well, it overpredicts the observed flux in the ultraviolet bands. This may indicate that the shock is not a blackbody, perhaps because of line blanketing in the UV. Alternatively, it could point to another physical explanation for the optical blue bump, such as interaction with circumstellar material or an unusual nickel distribution. Early optical spectra of SN 2017cbv show strong carbon (C ii λ 6580) absorption up through day −13 with respect to maximum light, suggesting that the progenitor system contains a significant amount of unburned material. These early results on SN 2017cbv illustrate the power of early discovery and intense follow-up of nearby supernovae to resolve standing questions about the progenitor systems and explosion mechanisms of SNe Ia.

  9. Early Blue Excess from the Type Ia Supernova 2017cbv and Implications for Its Progenitor

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinzadeh, Griffin; Howell, D. Andrew; McCully, Curtis; Arcavi, Iair [Las Cumbres Observatory, 6740 Cortona Drive, Suite 102, Goleta, CA 93117-5575 (United States); Sand, David J.; Tartaglia, Leonardo [Department of Astronomy/Steward Observatory, 933 North Cherry Avenue, Room N204, Tucson, AZ 85721-0065 (United States); Valenti, Stefano; Bostroem, K. Azalee [Department of Physics, University of California, 1 Shields Avenue, Davis, CA 95616-5270 (United States); Brown, Peter [Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843-4242 (United States); Kasen, Daniel [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8169 (United States); Hsiao, Eric Y.; Davis, Scott; Shahbandeh, Melissa [Department of Physics, Florida State University, 77 Chieftain Way, Tallahassee, FL 32306-4350 (United States); Stritzinger, Maximilian D., E-mail: griffin@lco.global [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark)

    2017-08-20

    We present very early, high-cadence photometric observations of the nearby Type Ia SN 2017cbv. The light curve is unique in that it has a blue bump during the first five days of observations in the U , B , and g bands, which is clearly resolved given our photometric cadence of 5.7 hr during that time span. We model the light curve as the combination of early shocking of the supernova ejecta against a nondegenerate companion star plus a standard SN Ia component. Our best-fit model suggests the presence of a subgiant star 56 R {sub ☉} from the exploding white dwarf, although this number is highly model-dependent. While this model matches the optical light curve well, it overpredicts the observed flux in the ultraviolet bands. This may indicate that the shock is not a blackbody, perhaps because of line blanketing in the UV. Alternatively, it could point to another physical explanation for the optical blue bump, such as interaction with circumstellar material or an unusual nickel distribution. Early optical spectra of SN 2017cbv show strong carbon (C ii λ 6580) absorption up through day −13 with respect to maximum light, suggesting that the progenitor system contains a significant amount of unburned material. These early results on SN 2017cbv illustrate the power of early discovery and intense follow-up of nearby supernovae to resolve standing questions about the progenitor systems and explosion mechanisms of SNe Ia.

  10. New prospects for detecting high-energy neutrinos from nearby supernovae

    Science.gov (United States)

    Murase, Kohta

    2018-04-01

    Neutrinos from supernovae (SNe) are crucial probes of explosive phenomena at the deaths of massive stars and neutrino physics. High-energy neutrinos are produced through hadronic processes by cosmic rays, which are accelerated during interaction between the supernova (SN) ejecta and circumstellar material (CSM). Recent observations of extragalactic SNe have revealed that a dense CSM is commonly expelled by the progenitor star. We provide new quantitative predictions of time-dependent high-energy neutrino emission from diverse types of SNe. We show that IceCube and KM3Net can detect ˜103 events from a SN II-P (and ˜3 ×105 events from a SN IIn) at a distance of 10 kpc. The new model also enables us to critically optimize the time window for dedicated searches for nearby SNe. A successful detection will give us a multienergy neutrino view of SN physics and new opportunities to study neutrino properties, as well as clues to the cosmic-ray origin. GeV-TeV neutrinos may also be seen by KM3Net, Hyper-Kamiokande, and PINGU.

  11. Constraining Magnetic Field Amplification in SN Shocks Using Radio Observations of SNe 2011fe and 2014J

    Science.gov (United States)

    Kundu, E.; Lundqvist, P.; Pérez-Torres, M. A.; Herrero-Illana, R.; Alberdi, A.

    2017-06-01

    We modeled the radio non-detection of two Type Ia supernovae (SNe), SN 2011fe and SN 2014J, considering synchrotron emission from the interaction between SN ejecta and the circumstellar medium. For ejecta whose outer parts have a power-law density structure, we compare synchrotron emission with radio observations. Assuming that 20% of the bulk shock energy is being shared equally between electrons and magnetic fields, we found a very low-density medium around both the SNe. A less tenuous medium with particle density ˜1 cm-3, which could be expected around both SNe, can be estimated when the magnetic field amplification is less than that presumed for energy equipartition. This conclusion also holds if the progenitor of SN 2014J was a rigidly rotating white dwarf (WD) with a main-sequence (MS) or red giant companion. For a He star companion, or a MS for SN 2014J, with 10% and 1% of bulk kinetic energy in magnetic fields, we obtain mass-loss rates of 99% onto the WD, but is less restricted for the latter case. However, if the tenuous medium is due to a recurrent nova, it is difficult from our model to predict synchrotron luminosities. Although the formation channels of SNe 2011fe and 2014J are not clear, the null detection in radio wavelengths could point toward a low amplification efficiency for magnetic fields in SN shocks.

  12. The unprecedented metamorphosis of SN2014C: from a H-stripped explosion to a strongly interacting supernova

    Science.gov (United States)

    Margutti, Raffaella

    2015-09-01

    Mass loss in massive stars is one of the least understood yet fundamental aspects of stellar evolution. HOW and WHEN do massive stars lose their H-envelopes? This central question motivates this proposal. We request a modest investment of Chandra time over 3 years to map the unique situation of the interaction of a H-stripped SN2014C with a H-rich shell ejected by its progenitor star, as part of our extensive radio-to-gamma-ray follow-up. Our goal is to constrain the density profile and proximity of the ejected material, and hence the mass-loss history of the progenitor star. Unlike all other H-stripped SNe, the radio and X-ray emission of SN14C is still increasing at 400 days, giving us the unprecedented opportunity to constrain the epoch ejection of H-rich material in fine detail.

  13. What stars become supernovae

    International Nuclear Information System (INIS)

    Tinsley, B.M.

    1975-01-01

    A variety of empirical lines of evidence is assembled on the masses and stellar population types of stars that trigger supernova (SN) explosions. The main theoretical motivations are to determine whether type I supernovae (SN I) can have massive precursors, and whether there is an interval of stellar mass, between the masses of precursors of pulsars and white dwarfs, that is disrupted by carbon detonation. Statistical and other uncertainties in the empirical arguments are given particular attention, and are found to be more important than generally realized. Relatively secure conclusions include the following. Statistics of stellar birthrates, SN, pulsars, and SN remnants in the Galaxy show that SN II (or all SN) could arise from stars with masses greater than M/sub s/ where M/sub s/ approximately 49 to 12 M solar mass; the precursor mass range cannot be more closely defined from present data; nor can it be said whether all SN leave pulsars and/or extended radio remnants. Several methods of estimating the masses of stars that become white dwarfs are consistent with a lower limit, M/sub s/ greater than or equal to 5 M solar mass, so carbon detonation may indeed be avoided, although this conclusion is not secure. Studies of the properties of galaxies in which SN occur, and their distributions within galaxies, support the usual views that SN I have low-mass precursors (less than or equal to 5 M solar mass and typically less than or equal to 1 M solar mass) and SN II have massive precursors (greater than or equal to 5 M solar mass); the restriction of known SN II to Sc and Sb galaxies, to date, is shown to be consistent, statistically, with massive stars in other galaxies also dying as SN II. Possible implications of the peculiarities of some SN-producing galaxies are discussed. Suggestions are made for observational and theoretical studies that would help answer important remaining questions on the nature of SN precursors

  14. Two populations of progenitors for Type Ia supernovae?

    Science.gov (United States)

    Mannucci, F.; Della Valle, M.; Panagia, N.

    2006-08-01

    We use recent observations of the evolution of the Type Ia supernova (SN Ia) rate with redshift, the dependence of the SN Ia rate on the colours of the parent galaxies, and the enhancement of the SN Ia rate in radio-loud early-type galaxies to derive on robust empirical grounds, the delay time distribution (DTD) between the formation of the progenitor star and its explosion as an SN. Our analysis finds: (i) delay times as long as 3-4 Gyr, derived from observations of SNe Ia at high redshift, cannot reproduce the dependence of the SN Ia rate on the colours and on the radio-luminosity of the parent galaxies, as observed in the local Universe; (ii) the comparison between observed SN rates and a grid of theoretical `single-population' DTDs shows that only a few of them are possibly consistent with observations. The most successful models are all predicting a peak of SN explosions soon after star formation and an extended tail in the DTD, and can reproduce the data but only at a modest statistical confidence level; (iii) present data are best matched by a bimodal DTD, in which about 50 per cent of SNe Ia (dubbed `prompt' SNe Ia) explode soon after their stellar birth, in a time of the order of 108 yr, while the remaining 50 per cent (`tardy' SNe Ia) have a much wider distribution, well described by an exponential function with a decay time of about 3 Gyr. The presence in the DTD of both a strong peak at early times and a prolonged exponential tail, coupled with the well-established bimodal distribution of the decay rate (Δm15) and the systematic difference observed in the expansion velocities of the ejecta of SNe Ia in ellipticals and spirals, suggests the existence of two classes of progenitors. We discuss the cosmological implications of this result and make simple predictions, which are testable with future instrumentation.

  15. Schooner ejecta studies

    Energy Technology Data Exchange (ETDEWEB)

    Henny, Robert W [University of New Mexico (United States)

    1970-05-15

    This paper presents a preliminary analysis of the Schooner ejecta and missile population. Our work on the Schooner event results from a continuing interest in cratering phenomenology with emphasis directed towards development of photographic techniques for the documentation of static and dynamic aspects of large ejecta and missile populations. Project Schooner was a nuclear experiment in a layered tuffaceous medium executed as part of the Plowshare program for development of nuclear excavation. Schooner was detonated on December 8, 1968 at approximately 0800:00.149.6 (PST), 1600:00.149.6 (GMT), in area 20, Nevada Test Site (NTS). The resultant yield was 31 {+-} 4 KT. The emplacement hole was U20u at geodetic coordinates: Longitude: W 116 diameter 33* 57.1419'' Latitude: N 37'' 20* 36.3187'' Surface ground zero (GZ) was 5,562.4 feet mean sea level (MSL); emplacement depth (to the working point) was 108.2 meters (355 feet). The basic crater and ejecta data are listed.

  16. Multicolour modelling of SN 2013dx associated with GRB 130702A★

    Science.gov (United States)

    Volnova, A. A.; Pruzhinskaya, M. V.; Pozanenko, A. S.; Blinnikov, S. I.; Minaev, P. Yu.; Burkhonov, O. A.; Chernenko, A. M.; Ehgamberdiev, Sh. A.; Inasaridze, R.; Jelinek, M.; Khorunzhev, G. A.; Klunko, E. V.; Krugly, Yu. N.; Mazaeva, E. D.; Rumyantsev, V. V.; Volvach, A. E.

    2017-05-01

    We present optical observations of SN 2013dx, related to the Fermi burst GRB 130702A, which occurred at red shift z = 0.145. It is the second-best sampled gamma-ray burst (GRB)/supernova (SN) after SN 1998bw. The observational light curves contain more than 280 data points in the uBgrRiz filters until 88 d after the burst, and the data were collected from our observational collaboration (Maidanak Observatory, Abastumani Observatory, Crimean Astrophysical Observatory, Mondy Observatory, National Observatory of Turkey and Observatorio del Roque de los Muchachos) and from the literature. We model numerically the multicolour light curves using the one-dimensional radiation hydrodynamical code stella, previously widely implemented for modelling typical non-GRB SNe. The best-fitting model has the following parameters: pre-SN star mass M = 25 M⊙; mass of the compact remnant MCR = 6 M⊙; total energy of the outburst Eoburst = 3.5 × 1052 erg; pre-supernova star radius R = 100 R⊙; M_^{56Ni} = 0.2 M_{⊙}, which is totally mixed through the ejecta; MO = 16.6 M⊙; MSi = 1.2 M⊙ and MFe = 1.2 M⊙, and the radiative efficiency of the SN is 0.1 per cent.

  17. LAD Early Career Prize Talk:Laboratory astrophysics experiments investigating the effects of high energy fluxes on Rayleigh-Taylor instability growth relevant to young supernova remnants

    Science.gov (United States)

    Kuranz, Carolyn C.; Drake, R. Paul; Park, Hye Sook; Huntington, Channing; Miles, Aaron R.; Remington, Bruce A.; Plewa, Tomek; Trantham, Matt; Shvarts, Dov; Raman, Kumar; MacLaren, Steven; Wan, Wesley; Doss, Forrest; Kline, John; Flippos, Kirk; Malamud, Guy; Handy, Timothy; Prisbey, Shon; Grosskopf, Michael; Krauland, Christine; Klein, Sallee; Harding, Eric; Wallace, Russell; Marion, Donna; Kalantar, Dan

    2017-06-01

    Energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh Taylor (RT) instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter (CSM), based on simple models and hydrodynamic simulations. When a blast wave emerges from an exploding star, it drives a forward shock into the CSM and a reverse shock forms in the expanding stellar ejecta, creating a young supernova remnant (SNR). As mass accumulates in the shocked layers, the interface between these two shocks decelerates, becoming unstable to the RT instability. Simulations predict that RT produces structures at this interface, having a range of spatial scales. When the CSM is dense enough, as in the case of SN 1993J, the hot shocked matter can produce significant radiative fluxes that affect the emission from the SNR. Here we report experimental results from the National Ignition Facility (NIF) to explore how large energy fluxes, which are present in supernovae such as SN 1993J, might affect this structure. The experiment used NIF to create a RT unstable interface subject to a high energy flux by the emergence of a blast wave into lower-density matter, in analogy to the SNR. We also preformed and with a low energy flux to compare the affect of the energy flux on the instability growth. We found that the RT growth was reduced in the experiments with a high energy flux. In analyzing the comparison with SN 1993J, we discovered that the energy fluxes produced by heat conduction appear to be larger than the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling SNRs.

  18. A class of ejecta transport test problems

    International Nuclear Information System (INIS)

    Hammerberg, James E.; Buttler, William T.; Oro, David M.; Rousculp, Christopher L.; Morris, Christopher; Mariam, Fesseha G.

    2011-01-01

    Hydro code implementations of ejecta dynamics at shocked interfaces presume a source distribution function ofparticulate masses and velocities, f 0 (m, v;t). Some of the properties of this source distribution function have been determined from extensive Taylor and supported wave experiments on shock loaded Sn interfaces of varying surface and subsurface morphology. Such experiments measure the mass moment of f o under vacuum conditions assuming weak particle-particle interaction and, usually, fully inelastic capture by piezo-electric diagnostic probes. Recently, planar Sn experiments in He, Ar, and Kr gas atmospheres have been carried out to provide transport data both for machined surfaces and for coated surfaces. A hydro code model of ejecta transport usually specifies a criterion for the instantaneous temporal appearance of ejecta with source distribution f 0 (m, v;t 0 ). Under the further assumption of separability, f 0 (m,v;t 0 ) = f 1 (m)f 2 (v), the motion of particles under the influence of gas dynamic forces is calculated. For the situation of non-interacting particulates, interacting with a gas via drag forces, with the assumption of separability and simplified approximations to the Reynolds number dependence of the drag coefficient, the dynamical equation for the time evolution of the distribution function, f(r,v,m;t), can be resolved as a one-dimensional integral which can be compared to a direct hydro simulation as a test problem. Such solutions can also be used for preliminary analysis of experimental data. We report solutions for several shape dependent drag coefficients and analyze the results of recent planar dsh experiments in Ar and Xe.

  19. Astrophysical and terrestrial neutrinos in Supernova detectors

    International Nuclear Information System (INIS)

    Lagage, P.O.

    1985-09-01

    Supernova (SN) explosions are the place of very fundamental phenomena, whose privileged messengers are neutrinos. But such events are very rare. Then, SN detection has to be combined with other purposes. The recent developments of SN detectors have been associated with developments of underground particle physics (proton decay, monopoles ...). But here, I will restrict myself to discuss the possibilities for a supernova detector to be sensitive to other sources of neutrinos, astrophysical or terrestrial

  20. A Model of the Vela Supernova Remnant

    Science.gov (United States)

    Gvaramadze, Vasilii

    2000-10-01

    A model of the Vela supernova remnant (SNR) based on a cavity explosion of a supernova (SN) star is proposed. It is suggested that the general structure of the remnant is determined by the interaction of the SN blast wave with a massive shell created by the SN progenitor (15-20 M_solar) star. A possible origin of the nebula of hard X-ray emission detected around the Vela pulsar is discussed.

  1. Nearby supernova host galaxies from the CALIFA survey. II. Supernova environmental metallicity

    NARCIS (Netherlands)

    Galbany, L.; Stanishev, V.; Mourão, A. M.; Rodrigues, M.; Flores, H.; Walcher, C. J.; Sánchez, S. F.; García-Benito, R.; Mast, D.; Badenes, C.; González Delgado, R. M.; Kehrig, C.; Lyubenova, M.; Marino, R. A.; Mollá, M.; Meidt, S.; Pérez, E.; van de Ven, G.; Vílchez, J. M.

    2016-01-01

    The metallicity of a supernova progenitor, together with its mass, is one of the main parameters that can rule the progenitor's fate. We present the second study of nearby supernova (SN) host galaxies (0.005 ⊙) > 10 dex) by targeted searches. We neither found evidence that the metallicity at the SN

  2. ASYMMETRY IN THE OUTBURST OF SN 1987A DETECTED USING LIGHT ECHO SPECTROSCOPY

    International Nuclear Information System (INIS)

    Sinnott, B.; Welch, D. L.; Sutherland, P. G.; Rest, A.; Bergmann, M.

    2013-01-01

    We report direct evidence for asymmetry in the early phases of SN 1987A via optical spectroscopy of five fields of its light echo system. The light echoes allow the first few hundred days of the explosion to be reobserved, with different position angles providing different viewing angles to the supernova. Light echo spectroscopy therefore allows a direct spectroscopic comparison of light originating from different regions of the photosphere during the early phases of SN 1987A. Gemini multi-object spectroscopy of the light echo fields shows fine structure in the Hα line as a smooth function of position angle on the near-circular light echo rings. Hα profiles originating from the northern hemisphere of SN 1987A show an excess in redshifted emission and a blue knee, while southern hemisphere profiles show an excess of blueshifted Hα emission and a red knee. This fine structure is reminiscent of the 'Bochum event' originally observed for SN 1987A, but in an exaggerated form. Maximum deviation from symmetry in the Hα line is observed at position angles 16° and 186°, consistent with the major axis of the expanding elongated ejecta. The asymmetry signature observed in the Hα line smoothly diminishes as a function of viewing angle away from the poles of the elongated ejecta. We propose an asymmetric two-sided distribution of 56 Ni most dominant in the southern far quadrant of SN 1987A as the most probable explanation of the observed light echo spectra. This is evidence that the asymmetry of high-velocity 56 Ni in the first few hundred days after explosion is correlated to the geometry of the ejecta some 25 years later.

  3. THE SPECTROSCOPIC DIVERSITY OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Blondin, S.; Matheson, T.; Kirshner, R. P.; Mandel, K. S.; Challis, P.; Berlind, P.; Calkins, M.; Garnavich, P. M.; Jha, S. W.; Modjaz, M.; Riess, A. G.; Schmidt, B. P.

    2012-01-01

    We present 2603 spectra of 462 nearby Type Ia supernovae (SNe Ia), including 2065 previously unpublished spectra, obtained during 1993-2008 through the Center for Astrophysics Supernova Program. There are on average eight spectra for each of the 313 SNe Ia with at least two spectra. Most of the spectra were obtained with the FAST spectrograph at the Fred Lawrence Whipple Observatory 1.5 m telescope and reduced in a consistent manner, making this data set well suited for studies of SN Ia spectroscopic diversity. Using additional data from the literature, we study the spectroscopic and photometric properties of SNe Ia as a function of spectroscopic class using the classification schemes of Branch et al. and Wang et al. The width-luminosity relation appears to be steeper for SNe Ia with broader lines, although the result is not statistically significant with the present sample. Based on the evolution of the characteristic Si II λ6355 line, we propose improved methods for measuring velocity gradients, revealing a larger range than previously suspected, from ∼0 to ∼400 km s −1 day −1 considering the instantaneous velocity decline rate at maximum light. We find a weaker and less significant correlation between Si II velocity and intrinsic B – V color at maximum light than reported by Foley et al., owing to a more comprehensive treatment of uncertainties and host galaxy dust. We study the extent of nuclear burning and the presence of unburnt carbon in the outermost layers of the ejecta and report new detections of C II λ6580 in 23 early-time SN Ia spectra. The frequency of C II detections is not higher in SNe Ia with bluer colors or narrower light curves, in conflict with the recent results of Thomas et al. Based on nebular spectra of 27 SNe Ia, we find no relation between the FWHM of the iron emission feature at ∼4700 Å and Δm 15 (B) after removing the two low-luminosity SN 1986G and SN 1991bg, suggesting that the peak luminosity is not strongly dependent

  4. The great supernova of 1987

    International Nuclear Information System (INIS)

    Woosley, S.E.

    1989-01-01

    Seven hundred day after the explosion of the brightest supernova in four centuries, astronomers continue to be both excited and perplexed by its behavior. By now, the supernova has received considerably attention in the literature. This paper emphasizes several aspects of the supernova that continue to be of special interest. These include: the evolution of the presupernova star, why it was blue, what its composition and core structure were; the iron core mass, explosion mechanism, and certain aspects of the neutrino burst; the detailed isotopic composition of the ejecta; the light curve and the requirement for mixing; the expected continued evolution of the supernova at all wavelengths given both the presence of several radioactivities as well as a central collapsed object as a power source; and late breaking news regarding the pulsar

  5. Toward connecting core-collapse supernova theory with observations. I. Shock revival in a 15 M ☉ blue supergiant progenitor with SN 1987A energetics

    International Nuclear Information System (INIS)

    Handy, Timothy; Plewa, Tomasz; Odrzywołek, Andrzej

    2014-01-01

    We study the evolution of the collapsing core of a 15 M ☉ blue supergiant supernova progenitor from the core bounce until 1.5 s later. We present a sample of hydrodynamic models parameterized to match the explosion energetics of SN 1987A. We find the spatial model dimensionality to be an important contributing factor in the explosion process. Compared to two-dimensional (2D) simulations, our three-dimensional (3D) models require lower neutrino luminosities to produce equally energetic explosions. We estimate that the convective engine in our models is 4% more efficient in 3D than in 2D. We propose that the greater efficiency of the convective engine found in 3D simulations might be due to the larger surface-to-volume ratio of convective plumes, which aids in distributing energy deposited by neutrinos. We do not find evidence of the standing accretion shock instability or turbulence being a key factor in powering the explosion in our models. Instead, the analysis of the energy transport in the post-shock region reveals characteristics of penetrative convection. The explosion energy decreases dramatically once the resolution is inadequate to capture the morphology of convection on large scales. This shows that the role of dimensionality is secondary to correctly accounting for the basic physics of the explosion. We also analyze information provided by particle tracers embedded in the flow and find that the unbound material has relatively long residency times in 2D models, while in 3D a significant fraction of the explosion energy is carried by particles with relatively short residency times.

  6. Ejecta from Ocean Impacts

    Science.gov (United States)

    Kyte, Frank T.

    2003-01-01

    Numerical simulations of deep-ocean impact provide some limits on the size of a projectile that will not mix with the ocean floor during a deep-ocean impact. For a vertical impact at asteroidal velocities (approx. 20 km/s), mixing is only likely when the projectile diameter is greater than 112 of the water depth. For oblique impacts, even larger projectiles will not mix with ocean floor silicates. Given the typical water depths of 4 to 5 km in deep-ocean basins, asteroidal projectiles with diameters as large as 2 or 3 km may commonly produce silicate ejecta that is composed only of meteoritic materials and seawater salts. However, the compressed water column beneath the projectile can still disrupt and shock metamorphose the ocean floor. Therefore, production of a separate, terrestrial ejecta component is not ruled out in the most extreme case. With increasing projectile size (or energy) relative to water depths, there must be a gradation between oceanic impacts and more conventional continental impacts. Given that 60% of the Earth's surface is covered by oceanic lithosphere and 500 m projectiles impact the Earth on 10(exp 5) y timescales, there must be hundreds of oceanic impact deposits in the sediment record awaiting discovery.

  7. A SPECTROSCOPICALLY NORMAL TYPE Ic SUPERNOVA FROM A VERY MASSIVE PROGENITOR

    International Nuclear Information System (INIS)

    Valenti, Stefano; Pastorello, Andrea; Benetti, Stefano; Cappellaro, Enrico; Tomasella, Lina; Turatto, Massimo; Taubenberger, Stefan; Aramyan, Levon; Botticella, Maria Teresa; Fraser, Morgan; Smartt, Stephen J.; Magill, Lindsay; Kotak, Rubina; Wright, Darryl E.; Elias-Rosa, Nancy; Ergon, Mattias; Sollerman, Jesper; Magnier, Eugene; Price, Paul A.

    2012-01-01

    We present observations of the Type Ic supernova (SN Ic) 2011bm spanning a period of about one year. The data establish that SN 2011bm is a spectroscopically normal SN Ic with moderately low ejecta velocities and with a very slow spectroscopic and photometric evolution (more than twice as slow as SN 1998bw). The Pan-STARRS1 retrospective detection shows that the rise time from explosion to peak was ∼40 days in the R band. Through an analysis of the light curve and the spectral sequence, we estimate a kinetic energy of ∼7-17 foe and a total ejected mass of ∼7-17 M ☉ , 5-10 M ☉ of which is oxygen and 0.6-0.7 M ☉ is 56 Ni. The physical parameters obtained for SN 2011bm suggest that its progenitor was a massive star of initial mass 30-50 M ☉ . The profile of the forbidden oxygen lines in the nebular spectra shows no evidence of a bi-polar geometry in the ejected material.

  8. SUPERNOVA PTF 09UJ: A POSSIBLE SHOCK BREAKOUT FROM A DENSE CIRCUMSTELLAR WIND

    International Nuclear Information System (INIS)

    Ofek, E. O.; Neill, J. D.; Kulkarni, S. R.; Forster, K.; Kasliwal, M. M.; Law, N.; Martin, C.; Quimby, R. M.; Rabinak, I.; Arcavi, I.; Waxman, E.; Gal-Yam, A.; Cenko, S. B.; Bloom, J. S.; Filippenko, A. V.; Poznanski, D.; Nugent, P. E.; Jacobsen, J.; Bildsten, L.; Howell, D. A.

    2010-01-01

    Type-IIn supernovae (SNe IIn), which are characterized by strong interaction of their ejecta with the surrounding circumstellar matter (CSM), provide a unique opportunity to study the mass-loss history of massive stars shortly before their explosive death. We present the discovery and follow-up observations of an SN IIn, PTF 09uj, detected by the Palomar Transient Factory (PTF). Serendipitous observations by Galaxy Evolution Explorer (GALEX) at ultraviolet (UV) wavelengths detected the rise of the SN light curve prior to the PTF discovery. The UV light curve of the SN rose fast, with a timescale of a few days, to a UV absolute AB magnitude of about -19.5. Modeling our observations, we suggest that the fast rise of the UV light curve is due to the breakout of the SN shock through the dense CSM (n ∼ 10 10 cm -3 ). Furthermore, we find that prior to the explosion the progenitor went through a phase of high mass-loss rate (∼0.1 M sun yr -1 ) that lasted for a few years. The decay rate of this SN was fast relative to that of other SNe IIn.

  9. Point-source and diffuse high-energy neutrino emission from Type IIn supernovae

    Science.gov (United States)

    Petropoulou, M.; Coenders, S.; Vasilopoulos, G.; Kamble, A.; Sironi, L.

    2017-09-01

    Type IIn supernovae (SNe), a rare subclass of core collapse SNe, explode in dense circumstellar media that have been modified by the SNe progenitors at their last evolutionary stages. The interaction of the freely expanding SN ejecta with the circumstellar medium gives rise to a shock wave propagating in the dense SN environment, which may accelerate protons to multi-PeV energies. Inelastic proton-proton collisions between the shock-accelerated protons and those of the circumstellar medium lead to multimessenger signatures. Here, we evaluate the possible neutrino signal of Type IIn SNe and compare with IceCube observations. We employ a Monte Carlo method for the calculation of the diffuse neutrino emission from the SN IIn class to account for the spread in their properties. The cumulative neutrino emission is found to be ˜10 per cent of the observed IceCube neutrino flux above 60 TeV. Type IIn SNe would be the dominant component of the diffuse astrophysical flux, only if 4 per cent of all core collapse SNe were of this type and 20-30 per cent of the shock energy was channeled to accelerated protons. Lower values of the acceleration efficiency are accessible by the observation of a single Type IIn SN as a neutrino point source with IceCube using up-going muon neutrinos. Such an identification is possible in the first year following the SN shock breakout for sources within 20 Mpc.

  10. STRESS Counting Supernovae

    Science.gov (United States)

    Botticella, M. T.; Cappellaro, E.; Riello, M.; Greggio, L.; Benetti, S.; Patat, F.; Turatto, M.; Altavilla, G.; Pastorello, A.; Valenti, S.; Zampieri, L.; Harutyunyan, A.; Pignata, G.; Taubenberger, S.

    2008-12-01

    The rate of occurrence of supernovae (SNe) is linked to some of the basic ingredients of galaxy evolution, such as the star formation rate, the chemical enrichment and feedback processes. SN rates at intermediate redshift and their dependence on specific galaxy properties have been investigated in the Southern inTermediate Redshift ESO Supernova Search (STRESS). The rate of core collapse SNe (CC SNe) at a redshift of around 0.25 is found to be a factor two higher than the local value, whereas the SNe Ia rate remains almost constant. SN rates in red and blue galaxies were also measured and it was found that the SNe Ia rate seems to be constant in galaxies of different colour, whereas the CC SN rate seems to peak in blue galaxies, as in the local Universe.

  11. On the type Ia supernovae 2007on and 2011iv: evidence for Chandrasekhar-mass explosions at the faint end of the luminosity-width relationship

    Science.gov (United States)

    Ashall, C.; Mazzali, P. A.; Stritzinger, M. D.; Hoeflich, P.; Burns, C. R.; Gall, C.; Hsiao, E. Y.; Phillips, M. M.; Morrell, N.; Foley, Ryan J.

    2018-06-01

    Radiative transfer models of two transitional type Ia supernovae (SNe Ia) have been produced using the abundance stratification technique. These two objects - designated SN 2007on and SN 2011iv - both exploded in the same galaxy, NGC 1404, which allows for a direct comparison. SN 2007on synthesized 0.25 M_{⊙} of 56Ni and was less luminous than SN 2011iv, which produced 0.31 M_{⊙} of 56Ni. SN 2007on had a lower central density (ρc) and higher explosion energy (Ekin ˜1.3 ± 0.3 × 1051erg) than SN 2011iv, and it produced less nuclear statistical equilibrium (NSE) elements (0.06 M_{⊙}). Whereas, SN 2011iv had a larger ρc, which increased the electron capture rate in the lowest velocity regions, and produced 0.35 M_{⊙} of stable NSE elements. SN 2011iv had an explosion energy of ˜Ekin ˜0.9 ± 0.2 × 1051erg. Both objects had an ejecta mass consistent with the Chandrasekhar mass (Ch-mass), and their observational properties are well described by predictions from delayed-detonation explosion models. Within this framework, comparison to the sub-luminous SN 1986G indicates SN 2011iv and SN 1986G have different transition densities (ρtr) but similar ρc. Whereas SN 1986G and SN 2007on had a similar ρtr but different ρc. Finally, we examine the colour-stretch parameter sBV versus Lmax relation and determine that the bulk of SNe Ia (including the sub-luminous ones) are consistent with Ch-mass delayed-detonation explosions, where the main parameter driving the diversity is ρtr. We also find ρc to be driving the second-order scatter observed at the faint end of the luminosity-width relationship.

  12. Supernovae Discovery Efficiency

    Science.gov (United States)

    John, Colin

    2018-01-01

    Abstract:We present supernovae (SN) search efficiency measurements for recent Hubble Space Telescope (HST) surveys. Efficiency is a key component to any search, and is important parameter as a correction factor for SN rates. To achieve an accurate value for efficiency, many supernovae need to be discoverable in surveys. This cannot be achieved from real SN only, due to their scarcity, so fake SN are planted. These fake supernovae—with a goal of realism in mind—yield an understanding of efficiency based on position related to other celestial objects, and brightness. To improve realism, we built a more accurate model of supernovae using a point-spread function. The next improvement to realism is planting these objects close to galaxies and of various parameters of brightness, magnitude, local galactic brightness and redshift. Once these are planted, a very accurate SN is visible and discoverable by the searcher. It is very important to find factors that affect this discovery efficiency. Exploring the factors that effect detection yields a more accurate correction factor. Further inquires into efficiency give us a better understanding of image processing, searching techniques and survey strategies, and result in an overall higher likelihood to find these events in future surveys with Hubble, James Webb, and WFIRST telescopes. After efficiency is discovered and refined with many unique surveys, it factors into measurements of SN rates versus redshift. By comparing SN rates vs redshift against the star formation rate we can test models to determine how long star systems take from the point of inception to explosion (delay time distribution). This delay time distribution is compared to SN progenitors models to get an accurate idea of what these stars were like before their deaths.

  13. Radio emission from Supernovae and High Precision Astrometry

    Science.gov (United States)

    Perez-Torres, M. A.

    1999-11-01

    corrections, agree well within one standard deviation. In summary, our astrometric results demonstrate the feasibility of using phase-delay difference techniques (single-frequency or dual-frequency) for sources separated by as far as 15(deg) on the sky. This opens the avenue for the extension of the technique on a global scale with the aim of building up a quasi-inertial reference frame (of submilliarcsecond accuracy) based on extragalactic radio sources. The second part of this thesis is devoted to the study of the radio emission of the Type II supernova SN 1993J, whose relative proximity (it exploded in the Galaxy M81, at a distance of 10 million of light-years) has allowed us to observe it with VLBI at different radio frequency bands since June 1993. This radio supernova is the best studied one so far and thus a perfect laboratory to test supernova radio emission models. Early VLBI observations of this supernova by our group allowed us to discover the shell structure of SN 1993J--likely common to all supernovae--the youngest ever discovered in a supernova. Subsequently, our VLBI observations showed SN 1993J to be self-similarly expanding and, more recently, we used our VLBI observations at 3.6 and 6 cm in the period 6 through 42 months after explosion to show that the supernova expansion is decelerating, its size following a power-law with time (R t^m; m=0.86 +- 0.02). Our measurement of the expansion index yields estimates of the density of both supernova ejecta and circumstellar material in standard supernova explosion models. In particular, the density of the circumstellar material seems to be following a power-law less steep than usual (rhocs r^{-s}, with s approx. 1.66 instead of the standard s=2). Our VLBI observations also showed that the supernova radio emission comes from a shell of width 30% of the outer radius. In this thesis, we describe a numerical code that simulates synchrotron radio emission from a supernova. We assume that the supernova is self

  14. Early UV emission from disc-originated matter (DOM) in Type Ia supernovae in the double-degenerate scenario

    Science.gov (United States)

    Levanon, Naveh; Soker, Noam

    2017-09-01

    We show that the blue and UV excess emission in the first few days of some Type Ia supernovae (SNe Ia) can be accounted in the double-degenerate (DD) scenario by the collision of the SN ejecta with circumstellar matter that was blown by the accretion disc formed during the merger process of the two white dwarfs (WDs). We assume that in cases of excess early light, the disc blows the circumstellar matter, that we term disc-originated matter (DOM), hours to days before explosion. To perform our analysis, we first provide a model-based definition for early excess light, replacing the definition of excess light relative to a power-law fit to the rising luminosity. We then examine the light curves of the SNe Ia iPTF14atg and SN 2012cg, and find that the collision of the ejecta with a DOM in the frame of the DD scenario can account for their early excess emission. Thus, early excess light does not necessarily imply the presence of a stellar companion in the frame of the single-degenerate scenario. Our findings further increase the variety of phenomena that the DD scenario can account for, and emphasize the need to consider all different SN Ia scenarios when interpreting observations.

  15. THE SUBLUMINOUS AND PECULIAR TYPE Ia SUPERNOVA PTF 09dav

    International Nuclear Information System (INIS)

    Sullivan, M.; Ofek, E. O.; Blake, S.; Podsiadlowski, P.; Kasliwal, M. M.; Cooke, J.; Quimby, R.; Kulkarni, S. R.; Nugent, P. E.; Thomas, R. C.; Poznanski, D.; Howell, D. A.; Arcavi, I.; Gal-Yam, A.; Hook, I. M.; Mazzali, P.; Bildsten, L.; Bloom, J. S.; Cenko, S. B.; Law, N.

    2011-01-01

    PTF 09dav is a peculiar subluminous Type Ia supernova (SN) discovered by the Palomar Transient Factory (PTF). Spectroscopically, it appears superficially similar to the class of subluminous SN1991bg-like SNe, but it has several unusual features which make it stand out from this population. Its peak luminosity is fainter than any previously discovered SN1991bg-like SN Ia (M B ∼ -15.5), but without the unusually red optical colors expected if the faint luminosity were due to extinction. The photospheric optical spectra have very unusual strong lines of Sc II and Mg I, with possible Sr II, together with stronger than average Ti II and low velocities of ∼6000 km s -1 . The host galaxy of PTF09dav is ambiguous. The SN lies either on the extreme outskirts (∼41 kpc) of a spiral galaxy or in an very faint (M R ≥ -12.8) dwarf galaxy, unlike other 1991bg-like SNe which are invariably associated with massive, old stellar populations. PTF 09dav is also an outlier on the light-curve-width-luminosity and color-luminosity relations derived for other subluminous SNe Ia. The inferred 56 Ni mass is small (0.019 ± 0.003 M sun ), as is the estimated ejecta mass of 0.36 M sun . Taken together, these properties make PTF 09dav a remarkable event. We discuss various physical models that could explain PTF 09dav. Helium shell detonation or deflagration on the surface of a CO white dwarf can explain some of the features of PTF 09dav, including the presence of Sc and the low photospheric velocities, but the observed Si and Mg are not predicted to be very abundant in these models. We conclude that no single model is currently capable of explaining all of the observed signatures of PTF 09dav.

  16. SUPERNOVA REMNANTS AND THE INTERSTELLAR MEDIUM OF M83: IMAGING AND PHOTOMETRY WITH THE WIDE FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Dopita, Michael A.; Blair, William P.; Kuntz, Kip D.; Long, Knox S.; Mutchler, Max; Whitmore, Bradley C.; Bond, Howard E.; MacKenty, John; Balick, Bruce; Calzetti, Daniela; Carollo, Marcella; Disney, Michael; Frogel, Jay A.; O'Connell, Robert; Hall, Donald; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick; Paresce, Francesco; Saha, Abhijit

    2010-01-01

    We present Wide Field Camera 3 images taken with the Hubble Space Telescope within a single field in the southern grand design star-forming galaxy M83. Based on their size, morphology, and photometry in continuum-subtracted Hα, [S II], Hβ, [O III], and [O II] filters, we have identified 60 supernova remnant (SNR) candidates, as well as a handful of young ejecta-dominated candidates. A catalog of these remnants, their sizes and, where possible, their Hα fluxes are given. Radiative ages and pre-shock densities are derived from those SNRs that have good photometry. The ages lie in the range 2.62 rad /yr) 0 /cm -3 min = 16 +7 -5 M sun . Finally, we give evidence for the likely detection of the remnant of the historical supernova, SN1968L.

  17. Neutrino Emission from Supernovae

    Science.gov (United States)

    Janka, Hans-Thomas

    Supernovae are the most powerful cosmic sources of MeV neutrinos. These elementary particles play a crucial role when the evolution of a massive star is terminated by the collapse of its core to a neutron star or a black hole and the star explodes as supernova. The release of electron neutrinos, which are abundantly produced by electron captures, accelerates the catastrophic infall and causes a gradual neutronization of the stellar plasma by converting protons to neutrons as dominant constituents of neutron star matter. The emission of neutrinos and antineutrinos of all flavors carries away the gravitational binding energy of the compact remnant and drives its evolution from the hot initial to the cold final state. The absorption of electron neutrinos and antineutrinos in the surroundings of the newly formed neutron star can power the supernova explosion and determines the conditions in the innermost supernova ejecta, making them an interesting site for the nucleosynthesis of iron-group elements and trans-iron nuclei.

  18. Precursors prior to type IIn supernova explosions are common: Precursor rates, properties, and correlations

    Energy Technology Data Exchange (ETDEWEB)

    Ofek, Eran O.; Steinbok, Aviram; Arcavi, Iair; Gal-Yam, Avishay; Tal, David; Ben-Ami, Sagi; Yaron, Ofer [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Shaviv, Nir J. [Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel); Kulkarni, Shrinivas R. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Nugent, Peter E. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Kasliwal, Mansi M. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Cenko, S. Bradley [Astrophysics Science Division, NASA/Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Laher, Russ; Surace, Jason [Spitzer Science Center, California Institute of Technology, M/S 314-6, Pasadena, CA 91125 (United States); Bloom, Joshua S.; Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Silverman, Jeffrey M. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)

    2014-07-10

    There is a growing number of Type IIn supernovae (SNe) which present an outburst prior to their presumably final explosion. These precursors may affect the SN display, and are likely related to poorly charted phenomena in the final stages of stellar evolution. By coadding Palomar Transient Factory (PTF) images taken prior to the explosion, here we present a search for precursors in a sample of 16 Type IIn SNe. We find five SNe IIn that likely have at least one possible precursor event (PTF 10bjb, SN 2010mc, PTF 10weh, SN 2011ht, and PTF 12cxj), three of which are reported here for the first time. For each SN we calculate the control time. We find that precursor events among SNe IIn are common: at the one-sided 99% confidence level, >50% of SNe IIn have at least one pre-explosion outburst that is brighter than 3 × 10{sup 7} L{sub ☉} taking place up to 1/3 yr prior to the SN explosion. The average rate of such precursor events during the year prior to the SN explosion is likely ≳ 1 yr{sup –1}, and fainter precursors are possibly even more common. Ignoring the two weakest precursors in our sample, the precursors rate we find is still on the order of one per year. We also find possible correlations between the integrated luminosity of the precursor and the SN total radiated energy, peak luminosity, and rise time. These correlations are expected if the precursors are mass-ejection events, and the early-time light curve of these SNe is powered by interaction of the SN shock and ejecta with optically thick circumstellar material.

  19. THE DESTRUCTION OF THE CIRCUMSTELLAR RING OF SN 1987A

    International Nuclear Information System (INIS)

    Fransson, Claes; Migotto, Katia; Lundqvist, Peter; Taddia, Francesco; Sollerman, Jesper; Larsson, Josefin; Pesce, Dominic; Chevalier, Roger A.; Challis, Peter; Kirshner, Robert P.; France, Kevin; Leibundgut, Bruno; Spyromilio, Jason; McCray, Richard; Jerkstrand, Anders; Mattila, Seppo; Smith, Nathan; Wheeler, J. Craig; Crotts, Arlin; Garnavich, Peter

    2015-01-01

    We present imaging and spectroscopic observations with Hubble Space Telescope and Very Large Telescope of the ring of SN 1987A from 1994 to 2014. After an almost exponential increase of the shocked emission from the hotspots up to day ∼8000 (∼2009), both this and the unshocked emission are now fading. From the radial positions of the hotspots we see an acceleration of these up to 500–1000 km s −1 , consistent with the highest spectroscopic shock velocities from the radiative shocks. In the most recent observations (2013 and 2014), we find several new hotspots outside the inner ring, excited by either X-rays from the shocks or by direct shock interaction. All of these observations indicate that the interaction with the supernova ejecta is now gradually dissolving the hotspots. We predict, based on the observed decay, that the inner ring will be destroyed by ∼2025

  20. An updated Type II supernova Hubble diagram

    Science.gov (United States)

    Gall, E. E. E.; Kotak, R.; Leibundgut, B.; Taubenberger, S.; Hillebrandt, W.; Kromer, M.; Burgett, W. S.; Chambers, K.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Kudritzki, R. P.; Magnier, E. A.; Metcalfe, N.; Smith, K.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.

    2018-03-01

    We present photometry and spectroscopy of nine Type II-P/L supernovae (SNe) with redshifts in the 0.045 ≲ z ≲ 0.335 range, with a view to re-examining their utility as distance indicators. Specifically, we apply the expanding photosphere method (EPM) and the standardized candle method (SCM) to each target, and find that both methods yield distances that are in reasonable agreement with each other. The current record-holder for the highest-redshift spectroscopically confirmed supernova (SN) II-P is PS1-13bni (z = 0.335-0.012+0.009), and illustrates the promise of Type II SNe as cosmological tools. We updated existing EPM and SCM Hubble diagrams by adding our sample to those previously published. Within the context of Type II SN distance measuring techniques, we investigated two related questions. First, we explored the possibility of utilising spectral lines other than the traditionally used Fe IIλ5169 to infer the photospheric velocity of SN ejecta. Using local well-observed objects, we derive an epoch-dependent relation between the strong Balmer line and Fe IIλ5169 velocities that is applicable 30 to 40 days post-explosion. Motivated in part by the continuum of key observables such as rise time and decline rates exhibited from II-P to II-L SNe, we assessed the possibility of using Hubble-flow Type II-L SNe as distance indicators. These yield similar distances as the Type II-P SNe. Although these initial results are encouraging, a significantly larger sample of SNe II-L would be required to draw definitive conclusions. Tables A.1, A.3, A.5, A.7, A.9, A.11, A.13, A.15 and A.17 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A25

  1. TYPE II-P SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY AND THE STANDARDIZED CANDLE METHOD

    International Nuclear Information System (INIS)

    D'Andrea, Chris B.; Sako, Masao; Dilday, Benjamin; Jha, Saurabh; Frieman, Joshua A.; Kessler, Richard; Holtzman, Jon; Konishi, Kohki; Yasuda, Naoki; Schneider, D. P.; Sollerman, Jesper; Wheeler, J. Craig; Cinabro, David; Nichol, Robert C.; Lampeitl, Hubert; Smith, Mathew; Atlee, David W.; Bassett, Bruce; Castander, Francisco J.; Goobar, Ariel

    2010-01-01

    We apply the Standardized Candle Method (SCM) for Type II Plateau supernovae (SNe II-P), which relates the velocity of the ejecta of a SN to its luminosity during the plateau, to 15 SNe II-P discovered over the three season run of the Sloan Digital Sky Survey-II Supernova Survey. The redshifts of these SNe-0.027 0.01) as all of the current literature on the SCM combined. We find that the SDSS SNe have a very small intrinsic I-band dispersion (0.22 mag), which can be attributed to selection effects. When the SCM is applied to the combined SDSS-plus-literature set of SNe II-P, the dispersion increases to 0.29 mag, larger than the scatter for either set of SNe separately. We show that the standardization cannot be further improved by eliminating SNe with positive plateau decline rates, as proposed in Poznanski et al. We thoroughly examine all potential systematic effects and conclude that for the SCM to be useful for cosmology, the methods currently used to determine the Fe II velocity at day 50 must be improved, and spectral templates able to encompass the intrinsic variations of Type II-P SNe will be needed.

  2. Millisecond Magnetar Birth Connects FRB 121102 to Superluminous Supernovae and Long-duration Gamma-Ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Brian D.; Margalit, Ben [Columbia Astrophysics Laboratory, New York, NY 10027 (United States); Berger, Edo [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-05-20

    Subarcsecond localization of the repeating fast radio burst FRB 121102 revealed its coincidence with a dwarf host galaxy and a steady (“quiescent”) nonthermal radio source. We show that the properties of the host galaxy are consistent with those of long-duration gamma-ray bursts (LGRB) and hydrogen-poor superluminous supernovae (SLSNe-I). Both LGRBs and SLSNe-I were previously hypothesized to be powered by the electromagnetic spin-down of newly formed, strongly magnetized neutron stars with millisecond birth rotation periods (“millisecond magnetars”). This motivates considering a scenario whereby the repeated bursts from FRB 121102 originate from a young magnetar remnant embedded within a young hydrogen-poor supernova (SN) remnant. Requirements on the gigahertz free–free optical depth through the expanding SN ejecta (accounting for photoionization by the rotationally powered magnetar nebula), energetic constraints on the bursts, and constraints on the size of the quiescent source all point to an age of less than a few decades. The quiescent radio source can be attributed to synchrotron emission from the shock interaction between the fast outer layer of the supernova ejecta with the surrounding wind of the progenitor star, or the radio source can from deeper within the magnetar wind nebula as outlined in Metzger et al. Alternatively, the radio emission could be an orphan afterglow from an initially off-axis LGRB jet, though this might require the source to be too young. The young age of the source can be tested by searching for a time derivative of the dispersion measure and the predicted fading of the quiescent radio source. We propose future tests of the SLSNe-I/LGRB/FRB connection, such as searches for FRBs from nearby SLSNe-I/LGRBs on timescales of decades after their explosions.

  3. Millisecond Magnetar Birth Connects FRB 121102 to Superluminous Supernovae and Long-duration Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Metzger, Brian D.; Margalit, Ben; Berger, Edo

    2017-01-01

    Subarcsecond localization of the repeating fast radio burst FRB 121102 revealed its coincidence with a dwarf host galaxy and a steady (“quiescent”) nonthermal radio source. We show that the properties of the host galaxy are consistent with those of long-duration gamma-ray bursts (LGRB) and hydrogen-poor superluminous supernovae (SLSNe-I). Both LGRBs and SLSNe-I were previously hypothesized to be powered by the electromagnetic spin-down of newly formed, strongly magnetized neutron stars with millisecond birth rotation periods (“millisecond magnetars”). This motivates considering a scenario whereby the repeated bursts from FRB 121102 originate from a young magnetar remnant embedded within a young hydrogen-poor supernova (SN) remnant. Requirements on the gigahertz free–free optical depth through the expanding SN ejecta (accounting for photoionization by the rotationally powered magnetar nebula), energetic constraints on the bursts, and constraints on the size of the quiescent source all point to an age of less than a few decades. The quiescent radio source can be attributed to synchrotron emission from the shock interaction between the fast outer layer of the supernova ejecta with the surrounding wind of the progenitor star, or the radio source can from deeper within the magnetar wind nebula as outlined in Metzger et al. Alternatively, the radio emission could be an orphan afterglow from an initially off-axis LGRB jet, though this might require the source to be too young. The young age of the source can be tested by searching for a time derivative of the dispersion measure and the predicted fading of the quiescent radio source. We propose future tests of the SLSNe-I/LGRB/FRB connection, such as searches for FRBs from nearby SLSNe-I/LGRBs on timescales of decades after their explosions.

  4. Observation and interpretation of type IIb supernova explosions

    Science.gov (United States)

    Morales-Garoffolo, Antonia

    2016-03-01

    Core-collapse supernovae (CC-SNe) explosions represent the final demise of massive stars. Among the various types, there is a group of relatively infrequent CC-SNe termed type IIb, which appear to be hybrids between normal type II SNe (those characterised by H emission) and type Ib (those that lack H features in their spectra but exhibit prominent HeI lines). The nature of the stellar progenitors leading to type IIb SNe is currently unknown, although two channels are contemplated: single massive stars that have lost part of their outer envelope as a consequence of stellar winds, and massive stars that shed mass by Roche-Lobe overflow to a companion. The latter is in fact the favoured scenario for most of the objects observed up to now. In the majority of cases, when there are no direct progenitor detections, some hints about type IIb SN progenitors (e.g., initial mass) can be derived indirectly from the objects' light curves (LCs) and spectra. Motivated by the relatively few well-sampled observational datasets that exist up to date for type IIb SNe and the unknowns on their progenitors, we carried out extensive observations (mainly in the optical domain) for the young type IIb SNe 2011fu and 2013df. Both these SNe are particularly interesting because they show a first LC peak caused by shock breakout, followed by a secondary 56Ni-decay-powered maximum. The analysis of the data for SNe 2011fu and 2013df points to precursors that seem to have been stars with large radii (of the order of 100 RSun), with low mass hydrogen envelopes (tenths of MSun), and relatively low initial masses (12-18 MSun), which could have formed part of interacting binary systems. The nature of a third SN IIb candidate, OGLE-2013-SN-100, proved to be enigmatic. OGLE-2013-SN-100, shows a first peak in the LC, and other characteristics somewhat similar to those of type IIb SNe. However, after a deeper analysis, we conclude OGLE-2013-SN-100 is likely not a SN of type IIb. We provide an alternative

  5. Hubble space telescope observations of the afterglow, supernova, and host galaxy associated with the extremely bright GRB 130427A

    Energy Technology Data Exchange (ETDEWEB)

    Levan, A. J. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Tanvir, N. R.; Wiersema, K. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Fruchter, A. S.; Hounsell, R. A.; Graham, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Hjorth, J.; Fynbo, J. P. U. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Pian, E. [INAF, Trieste Astronomical Observatory, via G.B. Tiepolo 11, I-34143 Trieste (Italy); Mazzali, P. [Astrophysics Research Institute, Liverpool John Moores University, IC2 Liverpool Science Park 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Cano, Z. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Kouveliotou, C. [Science and Technology Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Pe' er, A. [Department of Physics, University College Cork, Cork (Ireland); Misra, K., E-mail: a.j.levan@warwick.ac.uk [Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital-263 002 (India)

    2014-09-10

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst (GRB), GRB 130427A. At z = 0.34, this burst affords an excellent opportunity to study the supernova (SN) and host galaxy associated with an intrinsically extremely luminous burst (E {sub iso} > 10{sup 54} erg): more luminous than any previous GRB with a spectroscopically associated SN. We use the combination of the image quality, UV capability, and invariant point-spread function of HST to provide the best possible separation of the afterglow, host, and SN contributions to the observed light ∼17 rest-frame days after the burst, utilizing a host subtraction spectrum obtained one year later. Advanced Camera for Surveys grism observations show that the associated SN, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, v {sub ph} ∼ 15, 000 km s{sup –1}). The positions of the bluer features are better matched by the higher velocity SN 2010bh (v {sub ph} ∼ 30, 000 km s{sup –1}), but this SN is significantly fainter and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated ∼4 kpc from the nucleus of a moderately star forming (1 M {sub ☉} yr{sup –1}), possibly interacting disk galaxy. The absolute magnitude, physical size, and morphology of this galaxy, as well as the location of the GRB within it, are also strikingly similar to those of GRB 980425/SN 1998bw. The similarity of the SNe and environment from both the most luminous and least luminous GRBs suggests that broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  6. Radio Evolution of Supernova Remnants Including Nonlinear Particle Acceleration: Insights from Hydrodynamic Simulations

    Science.gov (United States)

    Pavlović, Marko Z.; Urošević, Dejan; Arbutina, Bojan; Orlando, Salvatore; Maxted, Nigel; Filipović, Miroslav D.

    2018-01-01

    We present a model for the radio evolution of supernova remnants (SNRs) obtained by using three-dimensional hydrodynamic simulations coupled with nonlinear kinetic theory of cosmic-ray (CR) acceleration in SNRs. We model the radio evolution of SNRs on a global level by performing simulations for a wide range of the relevant physical parameters, such as the ambient density, supernova (SN) explosion energy, acceleration efficiency, and magnetic field amplification (MFA) efficiency. We attribute the observed spread of radio surface brightnesses for corresponding SNR diameters to the spread of these parameters. In addition to our simulations of Type Ia SNRs, we also considered SNR radio evolution in denser, nonuniform circumstellar environments modified by the progenitor star wind. These simulations start with the mass of the ejecta substantially higher than in the case of a Type Ia SN and presumably lower shock speed. The magnetic field is understandably seen as very important for the radio evolution of SNRs. In terms of MFA, we include both resonant and nonresonant modes in our large-scale simulations by implementing models obtained from first-principles, particle-in-cell simulations and nonlinear magnetohydrodynamical simulations. We test the quality and reliability of our models on a sample consisting of Galactic and extragalactic SNRs. Our simulations give Σ ‑ D slopes between ‑4 and ‑6 for the full Sedov regime. Recent empirical slopes obtained for the Galactic samples are around ‑5, while those for the extragalactic samples are around ‑4.

  7. THE HE-RICH CORE-COLLAPSE SUPERNOVA 2007Y: OBSERVATIONS FROM X-RAY TO RADIO WAVELENGTHS

    International Nuclear Information System (INIS)

    Stritzinger, Maximilian; Phillips, Mark M.; Boldt, Luis

    2009-01-01

    A detailed study spanning approximately a year has been conducted on the Type Ib supernova (SN) 2007Y. Imaging was obtained from X-ray to radio wavelengths, and a comprehensive set of multi-band (w2m2w1u'g'r'i'UBVYJHK s ) light curves and optical spectroscopy is presented. A virtually complete bolometric light curve is derived, from which we infer a 56 Ni mass of 0.06 M sun . The early spectrum strongly resembles SN 2005bf and exhibits high-velocity features of Ca II and Hα; during late epochs the spectrum shows evidence of an ejecta-wind interaction. Nebular emission lines have similar widths and exhibit profiles that indicate a lack of major asymmetry in the ejecta. Late phase spectra are modeled with a non-LTE code, from which we find 56 Ni, O, and total-ejecta masses (excluding He) to be 0.06, 0.2, and 0.42 M sun , respectively, below 4500 km s -1 . The 56 Ni mass confirms results obtained from the bolometric light curve. The oxygen abundance suggests that the progenitor was most likely a ∼3.3 M sun He core star that evolved from a zero-age-main-sequence mass of 10-13 M sun . The explosion energy is determined to be ∼10 50 erg, and the mass-loss rate of the progenitor is constrained from X-ray and radio observations to be ∼ -6 M sun yr -1 . SN 2007Y is among the least energetic normal Type Ib SNe ever studied.

  8. Non-spherical core collapse supernovae. III. Evolution towards homology and dependence on the numerical resolution

    Science.gov (United States)

    Gawryszczak, A.; Guzman, J.; Plewa, T.; Kifonidis, K.

    2010-10-01

    Aims: We study the hydrodynamic evolution of a non-spherical core-collapse supernova in two spatial dimensions. We begin our study from the moment of shock revival - taking into account neutrino heating and cooling, nucleosynthesis, convection, and the standing accretion shock (SASI) instability of the supernova blast - and continue for the first week after the explosion when the expanding flow becomes homologous and the ejecta enter the early supernova remnant (SNR) phase. We observe the growth and interaction of Richtmyer-Meshkov, Rayleigh-Taylor, and Kelvin-Helmholtz instabilities resulting in an extensive mixing of the heavy elements throughout the ejecta. We obtain a series of models at progressively higher resolution and provide a discussion of numerical convergence. Methods: Different from previous studies, our computations are performed in a single domain. Periodic mesh mapping is avoided. This is made possible by employing cylindrical coordinates, and an adaptive mesh refinement (AMR) strategy in which the computational workload (defined as the product of the total number of computational cells and the length of the time step) is monitored and, if necessary, reduced. Results: Our results are in overall good agreement with the AMR simulations we have reported in the past. We show, however, that numerical convergence is difficult to achieve, due to the strongly non-linear nature of the problem. Even more importantly, we find that our model displays a strong tendency to expand laterally away from the equatorial plane and toward the poles. We demonstrate that this expansion is a physical property of the low-mode, SASI instability. Although the SASI operates only within about the first second of the explosion, it leaves behind a large lateral velocity gradient in the post shock layer which affects the evolution for minutes and hours later. This results in a prolate deformation of the ejecta and a fast advection of the highest-velocity 56Ni-rich material from

  9. Summary of George Mason University SN1987A workshop

    International Nuclear Information System (INIS)

    van den Bergh, S.

    1990-01-01

    The author summaries studies of SN 1987A. This discussion focuses on how theories of core collapse in supernovae have been confirmed by observations of neutrinos produced by SN1987A and observations of the exponential tail of the light curve of SN1987A give strong support to the prediction that this phase of supernova light curves is powered by 56 Co decay

  10. Mass extinctions and supernova explosions

    OpenAIRE

    Korschinek, Gunther

    2016-01-01

    A nearby supernova (SN) explosion could have negatively influenced life on Earth, maybe even been responsible for mass extinctions. Mass extinction poses a significant extinction of numerous species on Earth, as recorded in the paleontologic, paleoclimatic, and geological record of our planet. Depending on the distance between the Sun and the SN, different types of threats have to be considered, such as ozone depletion on Earth, causing increased exposure to the Sun's ultraviolet radiation, o...

  11. Pulsar Wind Bubble Blowout from a Supernova

    Energy Technology Data Exchange (ETDEWEB)

    Blondin, John M. [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Chevalier, Roger A., E-mail: blondin@ncsu.edu [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States)

    2017-08-20

    For pulsars born in supernovae, the expansion of the shocked pulsar wind nebula is initially in the freely expanding ejecta of the supernova. While the nebula is in the inner flat part of the ejecta density profile, the swept-up, accelerating shell is subject to the Rayleigh–Taylor instability. We carried out two- and three-dimensional simulations showing that the instability gives rise to filamentary structure during this initial phase but does not greatly change the dynamics of the expanding shell. The flow is effectively self-similar. If the shell is powered into the outer steep part of the density profile, the shell is subject to a robust Rayleigh–Taylor instability in which the shell is fragmented and the shocked pulsar wind breaks out through the shell. The flow is not self-similar in this phase. For a wind nebula to reach this phase requires that the deposited pulsar energy be greater than the supernova energy, or that the initial pulsar period be in the ms range for a typical 10{sup 51} erg supernova. These conditions are satisfied by some magnetar models for Type I superluminous supernovae. We also consider the Crab Nebula, which may be associated with a low energy supernova for which this scenario applies.

  12. SN2015bh: NGC2770's 4th supernova or a luminous blue variable on its way to a Wolf-Rayet star?

    DEFF Research Database (Denmark)

    Thone, C. C.; de Ugarte Postigo, A.; Leloudas, G.

    2017-01-01

    yr that experienced a possible terminal explosion as type IIn SN in 2015, named SN 2015bh. This possible SN (or " main event") had a precursor peaking similar to 40 days before maximum. The total energy release of the main event ;is similar to 1.8 X 10(49) erg, consistent with a ... 2015bh lies within a spiral arm of NGC2770 next to several small star-forming regions with a metallicity of similar to 0.5 solar and a stellar population age of 7-10 Myr. SN 2015bh shares many similarities with SN 2009ip and may form a new class of objects that exhibit outbursts a few decades prior...

  13. The dark energy survey Y1 supernova search: Survey strategy compared to forecasts and the photometric type Is SN volumetric rate

    Science.gov (United States)

    Fischer, John Arthur

    For 70 years, the physics community operated under the assumption that the expansion of the Universe must be slowing due to gravitational attraction. Then, in 1998, two teams of scientists used Type Ia supernovae to discover that cosmic expansion was actually acceler- ating due to a mysterious "dark energy." As a result, Type Ia supernovae have become the most cosmologically important transient events in the last 20 years, with a large amount of effort going into their discovery as well as understanding their progenitor systems. One such probe for understanding Type Ia supernovae is to use rate measurements to de- termine the time delay between star formation and supernova explosion. For the last 30 years, the discovery of individual Type Ia supernova events has been accelerating. How- ever, those discoveries were happening in time-domain surveys that probed only a portion of the redshift range where expansion was impacted by dark energy. The Dark Energy Survey (DES) is the first project in the "next generation" of time-domain surveys that will discovery thousands of Type Ia supernovae out to a redshift of 1.2 (where dark energy be- comes subdominant) and DES will have better systematic uncertainties over that redshift range than any survey to date. In order to gauge the discovery effectiveness of this survey, we will use the first season's 469 photometrically typed supernovee and compare it with simulations in order to update the full survey Type Ia projections from 3500 to 2250. We will then use 165 of the 469 supernovae out to a redshift of 0.6 to measure the supernovae rate both as a function of comoving volume and of the star formation rate as it evolves with redshift. We find the most statistically significant prompt fraction of any survey to date (with a 3.9? prompt fraction detection). We will also reinforce the already existing tension in the measurement of the delayed fraction between high (z > 1.2) and low red- shift rate measurements, where we find no

  14. Ejecta evolution during cone impact

    KAUST Repository

    Marston, Jeremy

    2014-07-07

    We present findings from an experimental investigation into the impact of solid cone-shaped bodies onto liquid pools. Using a variety of cone angles and liquid physical properties, we show that the ejecta formed during the impact exhibits self-similarity for all impact speeds for very low surface tension liquids, whilst for high-surface tension liquids similarity is only achieved at high impact speeds. We find that the ejecta tip can detach from the cone and that this phenomenon can be attributed to the air entrainment phenomenon. We analyse of a range of cone angles, including some ogive cones, and impact speeds in terms of the spatiotemporal evolution of the ejecta tip. Using superhydrophobic cones, we also examine the entry of cones which entrain an air layer.

  15. Supernova models with slow energy pumping and galactic supernova remnants

    International Nuclear Information System (INIS)

    Utrobin, V.P.

    1978-01-01

    The study of supernova (SN) models with slow energy pumping is continued. At maximum luminosity the main characteristics of a SN are shown to be independent of the initial structure of the model. However, they depend on the mass Msub(e) of the envelope, and on the intensity of energy pumping Lsub(epsilon), with an increase of Msub(e) leading qualitatively to the same changes in the SN parameters as a decrease in Lsub(epsilon). A simple relationship connecting the important SN parameters is obtained. From the inflection of the color index B-V curve, the possibility of deriving the characteristic time of energy pumping with intensity Lsub(epsilon) approximately 10 44 erg s -1 is pointed out. The comparison of the extragalactic type I SN observations with the results of calculations leads to the estimate of Msub(e) approximately 0.3-0.7 solar masses. An investigation of the galactic type I SN remnants is carried out. The estimate of Msub(e) approximately 0.2-0.3 solar masses is obtained for the remnants of supernovae SN 1006, SN 1572, and SN 1604. It completely fits the results for the extragalactic type I SNs. The total initial mass of SN 1604 presupernova was shown to be at least about 7 solar masses. It was established that the Crab nebula resulted from the outburst of a peculiar SN. The unique properties of such SNs, including SN 1054, are due to the low intensity of energy pumping (Lsub(epsilon) approximately 10 42 erg s -1 ). The mass of the envelope of the Crab nebula is evaluated to be Msub(e) approximately 0.7 solar masses. (Auth.)

  16. Adiabatic supernova expansion into the circumstellar medium

    International Nuclear Information System (INIS)

    Band, D.L.; Liang, E.P.

    1987-01-01

    We perform one dimensional numerical simulations with a Lagrangian hydrodynamics code of the adiabatic expansion of a supernova into the surrounding medium. The early expansion follows Chevalier's analytic self-similar solution until the reverse shock reaches the ejecta core. We follow the expansion as it evolves towards the adiabatic blast wave phase. Some memory of the earlier phases of expansion is retained in the interior even when the outer regions expand as a blast wave. We find the results are sensitive to the initial configuration of the ejecta and to the placement of gridpoints. 6 refs., 2 figs

  17. Type Ia supernova rate studies from the SDSS-II Supernova Study

    Energy Technology Data Exchange (ETDEWEB)

    Dilday, Benjamin [Univ. of Chicago, IL (United States)

    2008-08-01

    The author presents new measurements of the type Ia SN rate from the SDSS-II Supernova Survey. The SDSS-II Supernova Survey was carried out during the Fall months (Sept.-Nov.) of 2005-2007 and discovered ~ 500 spectroscopically confirmed SNe Ia with densely sampled (once every ~ 4 days), multi-color light curves. Additionally, the SDSS-II Supernova Survey has discovered several hundred SNe Ia candidates with well-measured light curves, but without spectroscopic confirmation of type. This total, achieved in 9 months of observing, represents ~ 15-20% of the total SNe Ia discovered worldwide since 1885. The author describes some technical details of the SN Survey observations and SN search algorithms that contributed to the extremely high-yield of discovered SNe and that are important as context for the SDSS-II Supernova Survey SN Ia rate measurements.

  18. ASPHERICITY, INTERACTION, AND DUST IN THE TYPE II-P/II-L SUPERNOVA 2013EJ IN MESSIER 74

    Energy Technology Data Exchange (ETDEWEB)

    Mauerhan, Jon C.; Graham, Melissa L.; Filippenko, Alexei V.; Shivvers, Isaac [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Van Dyk, Schuyler D. [Infrared Processing and Analysis Center, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Johansson, Joel [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 234 Herzl St., Rehovot (Israel); Hu, Maokai; Wang, Lifan [Department of Physics, Texas A and M University, College Station, TX 77843 (United States); Fox, Ori D., E-mail: mauerhan@astro.berkeley.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2017-01-10

    SN 2013ej is a well-studied core-collapse supernova (SN) that stemmed from a directly identified red supergiant (RSG) progenitor in galaxy M74. The source exhibits signs of substantial geometric asphericity, X-rays from persistent interaction with circumstellar material (CSM), thermal emission from warm dust, and a light curve that appears intermediate between supernovae of Types II-P and II-L. The proximity of this source motivates a close inspection of these physical characteristics and their potential interconnection. We present multiepoch spectropolarimetry of SN 2013ej during the first 107 days and deep optical spectroscopy and ultraviolet through infrared photometry past ∼800 days. SN 2013ej exhibits the strongest and most persistent continuum and line polarization ever observed for a SN of its class during the recombination phase. Modeling indicates that the data are consistent with an oblate ellipsoidal photosphere, viewed nearly edge-on and probably augmented by optical scattering from circumstellar dust. We suggest that interaction with an equatorial distribution of CSM, perhaps the result of binary evolution, is responsible for generating the photospheric asphericity. Relatedly, our late-time optical imaging and spectroscopy show that asymmetric CSM interaction is ongoing, and the morphology of broad H α emission from shock-excited ejecta provides additional evidence that the geometry of the interaction region is ellipsoidal. Alternatively, a prolate ellipsoidal geometry from an intrinsically bipolar explosion is also a plausible interpretation of the data but would probably require a ballistic jet of radioactive material capable of penetrating the hydrogen envelope early in the recombination phase. Finally, our latest space-based optical imaging confirms that the late interaction-powered light curve dropped below the stellar progenitor level, confirming the RSG star’s association with the explosion.

  19. Ejecta evolution during cone impact

    KAUST Repository

    Marston, Jeremy; Thoroddsen, Sigurdur T

    2014-01-01

    -similarity for all impact speeds for very low surface tension liquids, whilst for high-surface tension liquids similarity is only achieved at high impact speeds. We find that the ejecta tip can detach from the cone and that this phenomenon can be attributed

  20. Supernova explosions

    CERN Document Server

    Branch, David

    2017-01-01

    Targeting advanced students of astronomy and physics, as well as astronomers and physicists contemplating research on supernovae or related fields, David Branch and J. Craig Wheeler offer a modern account of the nature, causes and consequences of supernovae, as well as of issues that remain to be resolved. Owing especially to (1) the appearance of supernova 1987A in the nearby Large Magellanic Cloud, (2) the spectacularly successful use of supernovae as distance indicators for cosmology, (3) the association of some supernovae with the enigmatic cosmic gamma-ray bursts, and (4) the discovery of a class of superluminous supernovae, the pace of supernova research has been increasing sharply. This monograph serves as a broad survey of modern supernova research and a guide to the current literature. The book’s emphasis is on the explosive phases of supernovae. Part 1 is devoted to a survey of the kinds of observations that inform us about supernovae, some basic interpreta tions of such data, and an overview of t...

  1. Modelling the interaction of thermonuclear supernova remnants with circumstellar structures: the case of Tycho's supernova remnant

    NARCIS (Netherlands)

    Chiotellis, A.; Kosenko, D.; Schure, K.M.; Vink, J.; Kaastra, J.S.

    2013-01-01

    The well-established Type Ia remnant of Tycho's supernova (SN 1572) reveals discrepant ambient medium-density estimates based on either the measured dynamics or the X-ray emission properties. This discrepancy can potentially be solved by assuming that the supernova remnant (SNR) shock initially

  2. Production of {sup 44}Ti in neutrino-driven aspherical supernova explosions

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Shin-ichiro [Kumamoto National College of Technology, 2659-2 Suya, Goshi 861-1102 (Japan); Ono, Masaomi; Hashimoto, Masa-aki [Department of Physics, School of Sciences, Kyushu University, Fukuoka 810-8560 (Japan); Kotake, Kei [National Astronomical Observatory Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2014-05-02

    We examine the synthesis of {sup 44}Ti in a neutrino-driven aspherical supernova (SN), focusing on reaction rates related to {sup 44}Ti and rotation of a progenitor. We have performed 2D hydrodynamic simulations of SN of a 15M{sub ⊙} progenitor, whose angular velocity is manually set to be a cylindrical distribution and have followed explosive nucleosynthesis in the ejecta. We find that the faster rates of {sup 40}Ca(α,γ){sup 44}Ti and the slower rate of {sup 44}Ti(α,p){sup 47}V lead to more massive ejection of {sup 44}Ti and {sup 56}Ni and larger ratios <{sup 44}Ti/{sup 56}Ni>. Faster rotation also results in more massive ejection of {sup 44}Ti and {sup 56}Ni. Ratios <{sup 44}Ti/{sup 56}Ni> are however independent from rotation. Large masses of {sup 44}Ti and large ratios observed in SN 1987A and Cas A (> 1O{sup −4}M{sub ⊙} and 1-2 respectively) are not realized in all the models.

  3. Progenitors of low-luminosity Type II-Plateau supernovae

    Science.gov (United States)

    Lisakov, Sergey M.; Dessart, Luc; Hillier, D. John; Waldman, Roni; Livne, Eli

    2018-01-01

    The progenitors of low-luminosity Type II-Plateau supernovae (SNe II-P) are believed to be red supergiant (RSG) stars, but there is much disparity in the literature concerning their mass at core collapse and therefore on the main sequence. Here, we model the SN radiation arising from the low-energy explosion of RSG stars of 12, 25 and 27 M⊙ on the main sequence and formed through single star evolution. Despite the narrow range in ejecta kinetic energy (2.5-4.2 × 1050 erg) in our model set, the SN observables from our three models are significantly distinct, reflecting the differences in progenitor structure (e.g. surface radius, H-rich envelope mass and He-core mass). Our higher mass RSG stars give rise to Type II SNe that tend to have bluer colours at early times, a shorter photospheric phase, and a faster declining V-band light curve (LC) more typical of Type II-linear SNe, in conflict with the LC plateau observed for low-luminosity SNe II. The complete fallback of the CO core in the low-energy explosions of our high-mass RSG stars prevents the ejection of any 56Ni (nor any core O or Si), in contrast to low-luminosity SNe II-P, which eject at least 0.001 M⊙ of 56Ni. In contrast to observations, Type II SN models from higher mass RSGs tend to show an H α absorption that remains broad at late times (due to a larger velocity at the base of the H-rich envelope). In agreement with the analyses of pre-explosion photometry, we conclude that low-luminosity SNe II-P likely arise from low-mass rather than high-mass RSG stars.

  4. How to model supernovae in simulations of star and galaxy formation

    Science.gov (United States)

    Hopkins, Philip F.; Wetzel, Andrew; Kereš, Dušan; Faucher-Giguère, Claude-André; Quataert, Eliot; Boylan-Kolchin, Michael; Murray, Norman; Hayward, Christopher C.; El-Badry, Kareem

    2018-06-01

    We study the implementation of mechanical feedback from supernovae (SNe) and stellar mass loss in galaxy simulations, within the Feedback In Realistic Environments (FIRE) project. We present the FIRE-2 algorithm for coupling mechanical feedback, which can be applied to any hydrodynamics method (e.g. fixed-grid, moving-mesh, and mesh-less methods), and black hole as well as stellar feedback. This algorithm ensures manifest conservation of mass, energy, and momentum, and avoids imprinting `preferred directions' on the ejecta. We show that it is critical to incorporate both momentum and thermal energy of mechanical ejecta in a self-consistent manner, accounting for SNe cooling radii when they are not resolved. Using idealized simulations of single SN explosions, we show that the FIRE-2 algorithm, independent of resolution, reproduces converged solutions in both energy and momentum. In contrast, common `fully thermal' (energy-dump) or `fully kinetic' (particle-kicking) schemes in the literature depend strongly on resolution: when applied at mass resolution ≳100 M⊙, they diverge by orders of magnitude from the converged solution. In galaxy-formation simulations, this divergence leads to orders-of-magnitude differences in galaxy properties, unless those models are adjusted in a resolution-dependent way. We show that all models that individually time-resolve SNe converge to the FIRE-2 solution at sufficiently high resolution (models without re-tuning parameters.

  5. Multiwavelength observations of the Type IIb supernova 2009mg

    DEFF Research Database (Denmark)

    Oates, S. R.; Bayless, A. J.; Stritzinger, M. D.

    2012-01-01

    -time temporal index of SN 2009mg, determined from 40 d post-explosion, is consistent with the decay rate of SN 1993J, but inconsistent with the decay of 56Co. This suggests leakage of γ-rays out of the ejecta and a stellar mass on the small side of the mass distribution. Our XRT non-detection provides an upper...

  6. Smoking supernovae

    OpenAIRE

    Gomez, Haley Louise; Eales, Stephen Anthony; Dunne, L.

    2007-01-01

    The question ‘Are supernovae important sources of dust?’ is a contentious one. Observations with the Infrared Astronomical Satellite (IRAS) and the Infrared Space Observatory (ISO) only detected very small amounts of hot dust in supernova remnants. Here, we review observations of two young Galactic remnants with the Submillimetre Common User Bolometer Array (SCUBA), which imply that large quantities of dust are produced by supernovae. The association of dust with the Cassiopeia A remnant is i...

  7. Binary progenitors of supernovae

    Science.gov (United States)

    Trimble, V.

    1984-12-01

    Among the massive stars that are expected to produce Type II, hydrogen-rich supernovae, the presence of a close companion can increase the main sequence mass needed to yield a collapsing core. In addition, due to mass transfer from the primary to the secondary, the companion enhances the stripping of the stellar hydrogen envelope produced by single star winds and thereby makes it harder for the star to give rise to a typical SN II light curve. Among the less massive stars that may be the basis for Type I, hydrogen-free supernovae, a close companion could be an innocent bystander to carbon detonation/deflagration in the primary. It may alternatively be a vital participant which transfers material to a white dwarf primary and drives it to explosive conditions.

  8. MAGNETAR-POWERED SUPERNOVAE IN TWO DIMENSIONS. I. SUPERLUMINOUS SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke-Jung [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Tokyo 181-8588 (Japan); Woosley, S. E.; Sukhbold, Tuguldur, E-mail: ken.chen@nao.ac.jp [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-11-20

    Previous studies have shown that the radiation emitted by a rapidly rotating magnetar embedded in a young supernova can greatly amplify its luminosity. These one-dimensional studies have also revealed the existence of an instability arising from the piling up of radiatively accelerated matter in a thin dense shell deep inside the supernova. Here, we examine the problem in two dimensions and find that, while instabilities cause mixing and fracture this shell into filamentary structures that reduce the density contrast, the concentration of matter in a hollow shell persists. The extent of the mixing depends upon the relative energy input by the magnetar and the kinetic energy of the inner ejecta. The light curve and spectrum of the resulting supernova will be appreciably altered, as will the appearance of the supernova remnant, which will be shellular and filamentary. A similar pile up and mixing might characterize other events where energy is input over an extended period by a centrally concentrated source, e.g., a pulsar, radioactive decay, a neutrino-powered wind, or colliding shells. The relevance of our models to the recent luminous transient ASASSN-15lh is briefly discussed.

  9. SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL

    International Nuclear Information System (INIS)

    Inserra, C.; Smartt, S. J.; Jerkstrand, A.; Fraser, M.; Wright, D.; Smith, K.; Chen, T.-W.; Kotak, R.; Nicholl, M.; Valenti, S.; Pastorello, A.; Benetti, S.; Bresolin, F.; Kudritzki, R. P.; Burgett, W. S.; Chambers, K. C.; Flewelling, H.; Botticella, M. T.; Ergon, M.; Fynbo, J. P. U.

    2013-01-01

    We report extensive observational data for five of the lowest redshift Super-Luminous Type Ic Supernovae (SL-SNe Ic) discovered to date, namely, PTF10hgi, SN2011ke, PTF11rks, SN2011kf, and SN2012il. Photometric imaging of the transients at +50 to +230 days after peak combined with host galaxy subtraction reveals a luminous tail phase for four of these SL-SNe. A high-resolution, optical, and near-infrared spectrum from xshooter provides detection of a broad He I λ10830 emission line in the spectrum (+50 days) of SN2012il, revealing that at least some SL-SNe Ic are not completely helium-free. At first sight, the tail luminosity decline rates that we measure are consistent with the radioactive decay of 56 Co, and would require 1-4 M ☉ of 56 Ni to produce the luminosity. These 56 Ni masses cannot be made consistent with the short diffusion times at peak, and indeed are insufficient to power the peak luminosity. We instead favor energy deposition by newborn magnetars as the power source for these objects. A semi-analytical diffusion model with energy input from the spin-down of a magnetar reproduces the extensive light curve data well. The model predictions of ejecta velocities and temperatures which are required are in reasonable agreement with those determined from our observations. We derive magnetar energies of 0.4 ∼ 51 erg) ∼ ej (M ☉ ) ∼< 8.6. The sample of five SL-SNe Ic presented here, combined with SN 2010gx—the best sampled SL-SNe Ic so far—points toward an explosion driven by a magnetar as a viable explanation for all SL-SNe Ic.

  10. SN 2012fr

    DEFF Research Database (Denmark)

    Contreras, Carlos; Phillips, M. M.; Burns, Christopher R.

    2018-01-01

    We present detailed ultraviolet, optical, and near-infrared light curves of the Type Ia supernova (SN) 2012fr, which exploded in the Fornax cluster member NGC 1365. These precise high-cadence light curves provide a dense coverage of the flux evolution from -12 to +140 days with respect to the epo...

  11. iPTF17cw: An Engine-driven Supernova Candidate Discovered Independent of a Gamma-Ray Trigger

    Energy Technology Data Exchange (ETDEWEB)

    Corsi, A.; Palliyaguru, N. T. [Department of Physics and Astronomy, Texas Tech University, Box 1051, Lubbock, TX 79409-1051 (United States); Cenko, S. B.; Singer, L. P.; Kutyrev, A. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kasliwal, M. M.; Kulkarni, S. R.; Blagorodnova, N.; Kupfer, T.; Vedantham, H. [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Quimby, R. [Department of Astronomy/Mount Laguna Observatory, San Diego State University, San Diego, CA 92182 (United States); Frail, D. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Goldstein, A. M.; Connaughton, V. [Universities Space Research Association, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Perley, D. A.; Copperwheat, C. M.; Piascik, A. S.; Steele, I. A. [Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF (United Kingdom); Fremling, C.; Taddia, F., E-mail: alessandra.corsi@ttu.edu [Oskar Klein Centre, Department of Astronomy, Stockholm University, Albanova University Centre, SE-106 91 Stockholm (Sweden); and others

    2017-09-20

    We present the discovery, classification, and radio-to-X-ray follow-up observations of iPTF17cw, a broad-lined (BL) type Ic supernova (SN) discovered by the intermediate Palomar Transient Factory (iPTF). Although it is unrelated to the gravitational wave trigger, this SN was discovered as a happy by-product of the extensive observational campaign dedicated to the follow-up of Advanced LIGO event GW 170104. The spectroscopic properties and inferred peak bolometric luminosity of iPTF17cw are most similar to the gamma-ray-burst (GRB)-associated SN, SN 1998bw, while the shape of the r -band light curve is most similar to that of the relativistic SN, SN 2009bb. Karl G. Jansky Very Large Array (VLA) observations of the iPTF17cw field reveal a radio counterpart ≈10 times less luminous than SN 1998bw, and with a peak radio luminosity comparable to that of SN 2006aj/GRB 060218 and SN 2010bh/GRB 100316D. Our radio observations of iPTF17cw imply a relativistically expanding outflow. However, further late-time observations with the VLA in its most extended configuration are needed to confirm fading of the iPTF17cw radio counterpart at all frequencies. X-ray observations carried out with Chandra reveal the presence of an X-ray counterpart with a luminosity similar to that of SN 2010bh/GRB 100316D. Searching the Fermi catalog for possible γ -rays reveals that GRB 161228B is spatially and temporally compatible with iPTF17cw. The similarity to SN 1998bw and SN 2009bb, the radio and X-ray detections, and the potential association with GRB 161228B all point to iPTF17cw being a new candidate member of the rare sample of optically discovered engine-driven BL-Ic SNe associated with relativistic ejecta.

  12. iPTF17cw: An Engine-driven Supernova Candidate Discovered Independent of a Gamma-Ray Trigger

    International Nuclear Information System (INIS)

    Corsi, A.; Palliyaguru, N. T.; Cenko, S. B.; Singer, L. P.; Kutyrev, A.; Kasliwal, M. M.; Kulkarni, S. R.; Blagorodnova, N.; Kupfer, T.; Vedantham, H.; Quimby, R.; Frail, D. A.; Goldstein, A. M.; Connaughton, V.; Perley, D. A.; Copperwheat, C. M.; Piascik, A. S.; Steele, I. A.; Fremling, C.; Taddia, F.

    2017-01-01

    We present the discovery, classification, and radio-to-X-ray follow-up observations of iPTF17cw, a broad-lined (BL) type Ic supernova (SN) discovered by the intermediate Palomar Transient Factory (iPTF). Although it is unrelated to the gravitational wave trigger, this SN was discovered as a happy by-product of the extensive observational campaign dedicated to the follow-up of Advanced LIGO event GW 170104. The spectroscopic properties and inferred peak bolometric luminosity of iPTF17cw are most similar to the gamma-ray-burst (GRB)-associated SN, SN 1998bw, while the shape of the r -band light curve is most similar to that of the relativistic SN, SN 2009bb. Karl G. Jansky Very Large Array (VLA) observations of the iPTF17cw field reveal a radio counterpart ≈10 times less luminous than SN 1998bw, and with a peak radio luminosity comparable to that of SN 2006aj/GRB 060218 and SN 2010bh/GRB 100316D. Our radio observations of iPTF17cw imply a relativistically expanding outflow. However, further late-time observations with the VLA in its most extended configuration are needed to confirm fading of the iPTF17cw radio counterpart at all frequencies. X-ray observations carried out with Chandra reveal the presence of an X-ray counterpart with a luminosity similar to that of SN 2010bh/GRB 100316D. Searching the Fermi catalog for possible γ -rays reveals that GRB 161228B is spatially and temporally compatible with iPTF17cw. The similarity to SN 1998bw and SN 2009bb, the radio and X-ray detections, and the potential association with GRB 161228B all point to iPTF17cw being a new candidate member of the rare sample of optically discovered engine-driven BL-Ic SNe associated with relativistic ejecta.

  13. Performing a stellar autopsy using the radio-bright remnant of SN 1996cr

    Science.gov (United States)

    Meunier, C.; Bauer, F. E.; Dwarkadas, V. V.; Koribalski, B.; Emonts, B.; Hunstead, R. W.; Campbell-Wilson, D.; Stockdale, C.; Tingay, S. J.

    2013-05-01

    We present newly reduced archival radio observations of SN 1996cr in the Circinus Galaxy from the Australia Telescope Compact Array and the Molonglo Observatory Synthesis Telescope, and attempt to model its radio light curves using recent hydrodynamical simulations of the interaction between the supernova (SN) ejecta and the circumstellar material (CSM) at X-ray wavelengths. The radio data within the first 1000 d show clear signs of free-free absorption (FFA), which decreases gradually and is minimal above 1.4 GHz after day ˜3000. Constraints on the FFA optical depth provide estimates of the CSM free electron density, which allows insight into the ionization of SN 1996cr's CSM and offers a test on the density distribution adopted by the hydrodynamical simulation. The intrinsic spectral index of the radiation shows evidence for spectral flattening, which is characterized by α = 0.852 ± 0.002 at day 3000 and a decay rate of Δα = -0.014 ± 0.001 yr-1. The striking similarity in the spectral flattening of SN 1987A, SN 1993J and SN 1996cr suggests this may be a relatively common feature of SNe/CSM shocks. We adopt this spectral index variation to model the synchrotron radio emission of the shock, and consider several scalings that relate the parameters of the hydrodynamical simulation to the magnetic field and electron distribution. The simulated light curves match the large-scale features of the observed light curves, but fail to match certain tightly constraining sections. This suggests that simple energy density scalings may not be able to account for the complexities of the true physical processes at work, or alternatively, that the parameters of the simulation require modification in order to accurately represent the surroundings of SN 1996cr.

  14. Constraining the Type Ia Supernova Progenitor: The Search for Hydrogen in Nebular Spectra

    Science.gov (United States)

    Leonard, Douglas C.

    2007-12-01

    Despite intense scrutiny, the progenitor system(s) that gives rise to Type Ia supernovae remains unknown. The favored theory invokes a carbon-oxygen white dwarf accreting hydrogen-rich material from a close companion until a thermonuclear runaway ensues that incinerates the white dwarf. However, simulations resulting from this single-degenerate, binary channel demand the presence of low-velocity Hα emission in spectra taken during the late nebular phase, since a portion of the companion's envelope becomes entrained in the ejecta. This hydrogen has never been detected, but has only rarely been sought. Here we present results from a campaign to obtain deep, nebular-phase spectroscopy of nearby Type Ia supernovae, and include multiepoch observations of two events: SN 2005am (slightly subluminous) and SN 2005cf (normally bright). No Hα emission is detected in the spectra of either object. An upper limit of 0.01 Msolar of solar abundance material in the ejecta is established from the models of Mattila et al., which, when coupled with the mass-stripping simulations of Marietta et al. and Meng et al., effectively rules out progenitor systems for these supernovae with secondaries close enough to the white dwarf to be experiencing Roche lobe overflow at the time of explosion. Alternative explanations for the absence of Hα emission, along with suggestions for future investigations necessary to confidently exclude them as possibilities, are critically evaluated. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Additional observations were obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a

  15. Comparing Neutron Star Kicks to Supernova Remnant Asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Holland-Ashford, Tyler; Lopez, Laura A. [The Ohio State University Department of Astronomy, 140 W 18th Avenue, Columbus, OH 43201 (United States); Auchettl, Katie [The Ohio State University Center for Cosmology and Astro-particle Physics, 191 West Woodruff Avenue, Columbus, OH 43210 (United States); Temim, Tea [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Ramirez-Ruiz, Enrico, E-mail: holland-ashford.1@osu.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2017-07-20

    Supernova explosions are inherently asymmetric and can accelerate new-born neutron stars (NSs) to hundreds of km s{sup −1}. Two prevailing theories to explain NS kicks are ejecta asymmetries (e.g., conservation of momentum between NS and ejecta) and anisotropic neutrino emission. Observations of supernova remnants (SNRs) can give us insights into the mechanism that generates these NS kicks. In this paper, we investigate the relationship between NS kick velocities and the X-ray morphologies of 18 SNRs observed with the Chandra X-ray Observatory and the Röntgen Satellite ( ROSAT ). We measure SNR asymmetries using the power-ratio method (a multipole expansion technique), focusing on the dipole, quadrupole, and octupole power ratios. Our results show no correlation between the magnitude of the power ratios and NS kick velocities, but we find that for Cas A and G292.0+1.8, whose emission traces the ejecta distribution, their NSs are preferentially moving opposite to the bulk of the X-ray emission. In addition, we find a similar result for PKS 1209–51, CTB 109, and Puppis A; however, their emission is dominated by circumstellar/interstellar material, so their asymmetries may not reflect their ejecta distributions. Our results are consistent with the theory that NS kicks are a consequence of ejecta asymmetries as opposed to anisotropic neutrino emission. In the future, additional observations to measure NS proper motions within ejecta-dominated SNRs are necessary to robustly constrain the NS kick mechanism.

  16. supernovae: Photometric classification of supernovae

    Science.gov (United States)

    Charnock, Tom; Moss, Adam

    2017-05-01

    Supernovae classifies supernovae using their light curves directly as inputs to a deep recurrent neural network, which learns information from the sequence of observations. Observational time and filter fluxes are used as inputs; since the inputs are agnostic, additional data such as host galaxy information can also be included.

  17. SN 2010jl: Optical to hard X-ray observations reveal an explosion embedded in a ten solar mass cocoon

    International Nuclear Information System (INIS)

    Ofek, Eran O.; Gal-Yam, Avishay; Arcavi, Iair; Zoglauer, Andreas; Boggs, Steven E.; Barriére, Nicolas M.; Reynolds, Stephen P.; Fryer, Chris L.; Even, Wesley; Harrison, Fiona A.; Kulkarni, Shrinivas R.; Bellm, Eric; Grefenstette, Brian; Cenko, S. Bradley; Bloom, Joshua S.; Filippenko, Alexei V.; Christensen, Finn; Craig, William W.; Hailey, Charles J.; Laher, Russ

    2014-01-01

    Some supernovae (SNe) may be powered by the interaction of the SN ejecta with a large amount of circumstellar matter (CSM). However, quantitative estimates of the CSM mass around such SNe are missing when the CSM material is optically thick. Specifically, current estimators are sensitive to uncertainties regarding the CSM density profile and the ejecta velocity. Here we outline a method to measure the mass of the optically thick CSM around such SNe. We present new visible-light and X-ray observations of SN 2010jl (PTF 10aaxf), including the first detection of an SN in the hard X-ray band using NuSTAR. The total radiated luminosity of SN 2010jl is extreme—at least 9 × 10 50 erg. By modeling the visible-light data, we robustly show that the mass of the circumstellar material within ∼10 16 cm of the progenitor of SN 2010jl was in excess of 10 M ☉ . This mass was likely ejected tens of years prior to the SN explosion. Our modeling suggests that the shock velocity during shock breakout was ∼6000 km s –1 , decelerating to ∼2600 km s –1 about 2 yr after maximum light. Furthermore, our late-time NuSTAR and XMM spectra of the SN presumably provide the first direct measurement of SN shock velocity 2 yr after the SN maximum light—measured to be in the range of 2000-4500 km s –1 if the ions and electrons are in equilibrium, and ≳ 2000 km s –1 if they are not in equilibrium. This measurement is in agreement with the shock velocity predicted by our modeling of the visible-light data. Our observations also show that the average radial density distribution of the CSM roughly follows an r –2 law. A possible explanation for the ≳ 10 M ☉ of CSM and the wind-like profile is that they are the result of multiple pulsational pair instability events prior to the SN explosion, separated from each other by years.

  18. RADIOACTIVELY POWERED RISING LIGHT CURVES OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Piro, Anthony L.

    2012-01-01

    The rising luminosity of the recent, nearby supernova 2011fe shows a quadratic dependence with time during the first ≈0.5-4 days. In addition, studies of the composite light curves formed from stacking together many Type Ia supernovae (SNe Ia) have found similar power-law indices for the rise, but may also show some dispersion that may indicate diversity. I explore what range of power-law rises are possible due to the presence of radioactive material near the surface of the exploding white dwarf (WD). I summarize what constraints such a model places on the structure of the progenitor and the distribution and velocity of ejecta. My main conclusion is that for the inferred explosion time for SN 2011fe, its rise requires an increasing mass fraction X 56 ≈ (4-6) × 10 –2 of 56 Ni distributed between a depth of ≈10 –2 and 0.3 M ☉ below the WD's surface. Radioactive elements this shallow are not found in simulations of a single C/O detonation. Scenarios that may produce this material include helium-shell burning during a double-detonation ignition, a gravitationally confined detonation, and a subset of deflagration to detonation transition models. In general, the power-law rise can differ from quadratic depending on the details of the velocity, density, and radioactive deposition gradients in a given event. Therefore, comparisons of this work with observed bolometric rises of SNe Ia would place strong constraints on the properties of the shallow outer layers, providing important clues for identifying the elusive progenitors of SNe Ia.

  19. PTF11mnb: First analog of supernova 2005bf. Long-rising, double-peaked supernova Ic from a massive progenitor

    Science.gov (United States)

    Taddia, F.; Sollerman, J.; Fremling, C.; Karamehmetoglu, E.; Quimby, R. M.; Gal-Yam, A.; Yaron, O.; Kasliwal, M. M.; Kulkarni, S. R.; Nugent, P. E.; Smadja, G.; Tao, C.

    2018-01-01

    Aims: We study PTF11mnb, a He-poor supernova (SN) whose light curves resemble those of SN 2005bf, a peculiar double-peaked stripped-envelope (SE) SN, until the declining phase after the main peak. We investigate the mechanism powering its light curve and the nature of its progenitor star. Methods: Optical photometry and spectroscopy of PTF11mnb are presented. We compared light curves, colors and spectral properties to those of SN 2005bf and normal SE SNe. We built a bolometric light curve and modeled this light curve with the SuperNova Explosion Code (SNEC) hydrodynamical code explosion of a MESA progenitor star and semi-analytic models. Results: The light curve of PTF11mnb turns out to be similar to that of SN 2005bf until 50 d when the main (secondary) peaks occur at -18.5 mag. The early peak occurs at 20 d and is about 1.0 mag fainter. After the main peak, the decline rate of PTF11mnb is remarkably slower than what was observed in SN 2005bf, and it traces well the 56Co decay rate. The spectra of PTF11mnb reveal a SN Ic and have no traces of He unlike in the case of SN Ib 2005bf, although they have velocities comparable to those of SN 2005bf. The whole evolution of the bolometric light curve is well reproduced by the explosion of a massive (Mej = 7.8 M⊙), He-poor star characterized by a double-peaked 56Ni distribution, a total 56Ni mass of 0.59 M⊙, and an explosion energy of 2.2 × 1051 erg. Alternatively, a normal SN Ib/c explosion (M(56Ni) = 0.11 M⊙, EK = 0.2 × 1051 erg, Mej = 1 M⊙) can power the first peak while a magnetar, with a magnetic field characterized by B = 5.0 × 1014 G, and a rotation period of P = 18.1 ms, provides energy for the main peak. The early g-band light curve can be fit with a shock-breakout cooling tail or an extended envelope model from which a radius of at least 30 R⊙ is obtained. Conclusions: We presented a scenario where PTF11mnb was the explosion of a massive, He-poor star, characterized by a double-peaked 56Ni

  20. Aspherical Supernovae: Effects on Early Light Curves

    Science.gov (United States)

    Afsariardchi, Niloufar; Matzner, Christopher D.

    2018-04-01

    Early light from core-collapse supernovae, now detectable in high-cadence surveys, holds clues to a star and its environment just before it explodes. However, effects that alter the early light have not been fully explored. We highlight the possibility of nonradial flows at the time of shock breakout. These develop in sufficiently nonspherical explosions if the progenitor is not too diffuse. When they do develop, nonradial flows limit ejecta speeds and cause ejecta–ejecta collisions. We explore these phenomena and their observational implications using global, axisymmetric, nonrelativistic FLASH simulations of simplified polytropic progenitors, which we scale to representative stars. We develop a method to track photon production within the ejecta, enabling us to estimate band-dependent light curves from adiabatic simulations. Immediate breakout emission becomes hidden as an oblique flow develops. Nonspherical effects lead the shock-heated ejecta to release a more constant luminosity at a higher, evolving color temperature at early times, effectively mixing breakout light with the early light curve. Collisions between nonradial ejecta thermalize a small fraction of the explosion energy; we will address emission from these collisions in a subsequent paper.

  1. SN 2009E

    DEFF Research Database (Denmark)

    Pastorello...[], A.; Pumo, M.L.; Navasardyan, H.

    2012-01-01

    . In this paper we investigate the properties of SN 2009E, which exploded in a relatively nearby spiral galaxy (NGC 4141) and that is probably the faintest 1987A-like supernova discovered so far. We also attempt to characterize this subgroup of core-collapse supernovae with the help of the literature and present...... observations which started about 2 months after the supernova explosion, highlight significant differences between SN 2009E and the prototypical SN 1987A. Modelling the data of SN 2009E allows us to constrain the explosion parameters and the properties of the progenitor star, and compare the inferred estimates...... 2009E ejected about 0.04 M⊙ of 56Ni, which is the smallest 56Ni mass in our sample of 1987A-like events. Modelling the observations with a radiation hydrodynamics code, we infer for SN 2009E a kinetic plus thermal energy of about 0.6 foe, an initial radius of ~7 × 1012 cm and an ejected mass of ~19 M...

  2. Supernova cosmology

    International Nuclear Information System (INIS)

    Leibundgut, B.

    2005-01-01

    Supernovae have developed into a versatile tool for cosmology. Their impact on the cosmological model has been profound and led to the discovery of the accelerated expansion. The current status of the cosmological model as perceived through supernova observations will be presented. Supernovae are currently the only astrophysical objects that can measure the dynamics of the cosmic expansion during the past eight billion years. Ongoing experiments are trying to determine the characteristics of the accelerated expansion and give insight into what might be the physical explanation for the acceleration. (author)

  3. Supernova models

    International Nuclear Information System (INIS)

    Woosley, S.E.; Weaver, T.A.

    1980-01-01

    Recent progress in understanding the observed properties of Type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the 56 Ni produced therein is reviewed. Within the context of this model for Type I explosions and the 1978 model for Type II explosions, the expected nucleosynthesis and gamma-line spectra from both kinds of supernovae are presented. Finally, a qualitatively new approach to the problem of massive star death and Type II supernovae based upon a combination of rotation and thermonuclear burning is discussed

  4. PROBING SHOCK BREAKOUT AND PROGENITORS OF STRIPPED-ENVELOPE SUPERNOVAE THROUGH THEIR EARLY RADIO EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Keiichi, E-mail: keiichi.maeda@ipmu.jp [Kavli Institute for the Physics and Mathematics of the Universe (Kavli-IPMU), Todai Institutes for Advanced Study (TODIAS), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)

    2013-01-01

    We study properties of early radio emission from stripped-envelope supernovae (SNe; those of Type IIb/Ib/Ic). We suggest there is a sub-class of stripped-envelope SNe based on their radio properties, including the optically well-studied Type Ic SNe (SNe Ic) 2002ap and 2007gr, showing a rapid rise to a radio peak within {approx}10 days and reaching a low luminosity (at least an order of magnitude fainter than a majority of SNe IIb/Ib/Ic). They show a decline after the peak that is shallower than that of other stripped-envelope SNe while their spectral index is similar. We show that all these properties are naturally explained if the circumstellar material (CSM) density is low and therefore the forward shock is expanding into the CSM without deceleration. Since the forward shock velocity in this situation, as estimated from the radio properties, still records the maximum velocity of the SN ejecta following the shock breakout, observing these SNe in radio wavelengths provides new diagnostics on the nature of both the breakout and the progenitor which otherwise require a quite rapid follow-up in other wavelengths. The inferred post-shock breakout velocities of SNe Ic 2002ap and 2007gr are sub-relativistic, {approx}0.3c. These are higher than that inferred for SN II 1987A, in line with suggested compact progenitors. However, these are lower than expected for a Wolf-Rayet (W-R) progenitor. It may reflect an as yet unresolved nature of the progenitors just before the explosion, and we suggest that the W-R progenitor envelopes might have been inflated which could quickly reduce the maximum ejecta velocity from the initial shock breakout velocity.

  5. Rates and progenitors of type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Wood-Vasey, William Michael [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    The remarkable uniformity of Type Ia supernovae has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, Type Ia supernovae exhibit intrinsic variation in both their spectra and observed brightness. The brightness variations have been approximately corrected by various methods, but there remain intrinsic variations that limit the statistical power of current and future observations of distant supernovae for cosmological purposes. There may be systematic effects in this residual variation that evolve with redshift and thus limit the cosmological power of SN Ia luminosity-distance experiments. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in Type Ia supernovae. Toward this end, the Nearby Supernova Factory has been designed to discover hundreds of Type Ia supernovae in a systematic and automated fashion and study them in detail. This project will observe these supernovae spectrophotometrically to provide the homogeneous high-quality data set necessary to improve the understanding and calibration of these vital cosmological yardsticks. From 1998 to 2003, in collaboration with the Near-Earth Asteroid Tracking group at the Jet Propulsion Laboratory, a systematic and automated searching program was conceived and executed using the computing facilities at Lawrence Berkeley National Laboratory and the National Energy Research Supercomputing Center. An automated search had never been attempted on this scale. A number of planned future large supernovae projects are predicated on the ability to find supernovae quickly, reliably, and efficiently in large datasets. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of Type Ia supernovae. This thesis presents a new method for

  6. Rates and progenitors of type Ia supernovae

    International Nuclear Information System (INIS)

    Wood-Vasey, William Michael

    2004-01-01

    The remarkable uniformity of Type Ia supernovae has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, Type Ia supernovae exhibit intrinsic variation in both their spectra and observed brightness. The brightness variations have been approximately corrected by various methods, but there remain intrinsic variations that limit the statistical power of current and future observations of distant supernovae for cosmological purposes. There may be systematic effects in this residual variation that evolve with redshift and thus limit the cosmological power of SN Ia luminosity-distance experiments. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in Type Ia supernovae. Toward this end, the Nearby Supernova Factory has been designed to discover hundreds of Type Ia supernovae in a systematic and automated fashion and study them in detail. This project will observe these supernovae spectrophotometrically to provide the homogeneous high-quality data set necessary to improve the understanding and calibration of these vital cosmological yardsticks. From 1998 to 2003, in collaboration with the Near-Earth Asteroid Tracking group at the Jet Propulsion Laboratory, a systematic and automated searching program was conceived and executed using the computing facilities at Lawrence Berkeley National Laboratory and the National Energy Research Supercomputing Center. An automated search had never been attempted on this scale. A number of planned future large supernovae projects are predicated on the ability to find supernovae quickly, reliably, and efficiently in large datasets. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of Type Ia supernovae. This thesis presents a new method for

  7. The nearby supernova factory

    International Nuclear Information System (INIS)

    Wood-Vasey, W.M.; Aldering, G.; Lee, B.C.; Loken, S.; Nugent, P.; Perlmutter, S.; Siegrist, J.; Wang, L.; Antilogus, P.; Astier, P.; Hardin, D.; Pain, R.; Copin, Y.; Smadja, G.; Gangler, E.; Castera, A.; Adam, G.; Bacon, R.; Lemonnier, J.-P.; Pecontal, A.; Pecontal, E.; Kessler, R.

    2004-01-01

    The Nearby Supernova Factory (SNfactory) is an ambitious project to find and study in detail approximately 300 nearby Type Ia supernovae (SNe Ia) at redshifts 0.03 < z < 0.08. This program will provide an exceptional data set of well-studied SNe in the nearby smooth Hubble flow that can be used as calibration for the current and future programs designed to use SNe to measure the cosmological parameters. The first key ingredient for this program is a reliable supply of Hubble-flow SNe systematically discovered in unprecedented numbers using the same techniques as those used in distant SNe searches. In 2002, 35 SNe were found using our test-bed pipeline for automated SN search and discovery. The pipeline uses images from the asteroid search conducted by the Near Earth Asteroid Tracking group at JPL. Improvements in our subtraction techniques and analysis have allowed us to increase our effective SN discovery rate to ∼12 SNe/month in 2003

  8. Strong late-time circumstellar interaction in the peculiar supernova iPTF14hls

    Science.gov (United States)

    Andrews, Jennifer E.; Smith, Nathan

    2018-06-01

    We present a moderate-resolution spectrum of the peculiar Type II supernova (SN) iPTF14hls taken on day 1153 after discovery. This spectrum reveals the clear signature of shock interaction with dense circumstellar material (CSM). We suggest that this CSM interaction may be an important clue for understanding the extremely unusual photometric and spectroscopic evolution seen over the first 600 d of iPTF14hls. The late-time spectrum shows a double-peaked intermediate-width H α line indicative of expansion speeds around 1000 km s-1, with the double-peaked shape hinting at a disc-like geometry in the CSM. If the CSM were highly asymmetric, perhaps in a disc or torus that was ejected from the star 3-6 yr prior to explosion, the CSM interaction could have been overrun and hidden below the SN ejecta photosphere from a wide range of viewing angles. In that case, CSM interaction luminosity would have been thermalized well below the photosphere, potentially sustaining the high luminosity without exhibiting the traditional observational signatures of strong CSM interaction (narrow H α emission and X-rays). Variations in density structure of the CSM could account for the multiple rebrightenings of the light curve. We propose that a canonical 1 × 1051 erg explosion energy with enveloped CSM interaction as seen in some recent SNe, rather than an entirely new explosion mechanism, may be adequate to explain the peculiar evolution of iPTF14hls.

  9. Supernova observations at McDonald Observatory

    International Nuclear Information System (INIS)

    Wheeler, J.C.

    1984-01-01

    The programs to obtain high quality spectra and photometry of supernovae at McDonald Observatory are reviewed. Spectra of recent Type I supernovae in NGC 3227, NGC 3625, and NGC 4419 are compared with those of SN 1981b in NGC 4536 to quantitatively illustrate both the homogeneity of Type I spectra at similar epochs and the differences in detail which will serve as a probe of the physical processes in the explosions. Spectra of the recent supernova in NGC 0991 give for the first time quantitative confirmation of a spectrally homogeneous, but distinct subclass of Type I supernovae which appears to be less luminous and to have lower excitation at maximum light than classical Type I supernovae

  10. A CHANDRASEKHAR MASS PROGENITOR FOR THE TYPE Ia SUPERNOVA REMNANT 3C 397 FROM THE ENHANCED ABUNDANCES OF NICKEL AND MANGANESE

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Hiroya; Williams, Brian J.; Petre, Robert [NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Badenes, Carles [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States); Foster, Adam R.; Brickhouse, Nancy S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bravo, Eduardo [E.T.S. Arquitectura del Vallès, Universitat Politècnica de Catalunya, Carrer Pere Serra 1-15, E-08173 Sant Cugat del Vallès (Spain); Maeda, Keiichi [Department of Astronomy, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Nobukawa, Masayoshi; Koyama, Katsuji [Department of Physics, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Eriksen, Kristoffer A., E-mail: hiroya.yamaguchi@nasa.gov [Theoretical Design Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2015-03-10

    Despite decades of intense efforts, many fundamental aspects of Type Ia supernovae (SNe Ia) remain elusive. One of the major open questions is whether the mass of an exploding white dwarf (WD) is close to the Chandrasekhar limit. Here, we report the detection of strong K-shell emission from stable Fe-peak elements in the Suzaku X-ray spectrum of the Type Ia supernova remnant (SNR) 3C 397. The high Ni/Fe and Mn/Fe mass ratios (0.11–0.24 and 0.018–0.033, respectively) in the hot plasma component that dominates the K-shell emission lines indicate a degree of neutronization in the supernova ejecta that can only be achieved by electron capture in the dense cores of exploding WDs with a near-Chandrasekhar mass. This suggests a single-degenerate origin for 3C 397, since Chandrasekhar mass progenitors are expected naturally if the WD accretes mass slowly from a companion. Together with other results supporting the double-degenerate scenario, our work adds to the mounting evidence that both progenitor channels make a significant contribution to the SN Ia rate in star-forming galaxies.

  11. A CHANDRASEKHAR MASS PROGENITOR FOR THE TYPE Ia SUPERNOVA REMNANT 3C 397 FROM THE ENHANCED ABUNDANCES OF NICKEL AND MANGANESE

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroya; Williams, Brian J.; Petre, Robert; Badenes, Carles; Foster, Adam R.; Brickhouse, Nancy S.; Bravo, Eduardo; Maeda, Keiichi; Nobukawa, Masayoshi; Koyama, Katsuji; Eriksen, Kristoffer A.

    2015-01-01

    Despite decades of intense efforts, many fundamental aspects of Type Ia supernovae (SNe Ia) remain elusive. One of the major open questions is whether the mass of an exploding white dwarf (WD) is close to the Chandrasekhar limit. Here, we report the detection of strong K-shell emission from stable Fe-peak elements in the Suzaku X-ray spectrum of the Type Ia supernova remnant (SNR) 3C 397. The high Ni/Fe and Mn/Fe mass ratios (0.11–0.24 and 0.018–0.033, respectively) in the hot plasma component that dominates the K-shell emission lines indicate a degree of neutronization in the supernova ejecta that can only be achieved by electron capture in the dense cores of exploding WDs with a near-Chandrasekhar mass. This suggests a single-degenerate origin for 3C 397, since Chandrasekhar mass progenitors are expected naturally if the WD accretes mass slowly from a companion. Together with other results supporting the double-degenerate scenario, our work adds to the mounting evidence that both progenitor channels make a significant contribution to the SN Ia rate in star-forming galaxies

  12. Supernova neutrino detection in LZ

    Science.gov (United States)

    Khaitan, D.

    2018-02-01

    In the first 10 seconds of a core-collapse supernova, almost all of its progenitor's gravitational potential, O(1053 ergs), is carried away in the form of neutrinos. These neutrinos, with O(10 MeV) kinetic energy, can interact via coherent elastic neutrino-nucleus scattering (CEνNS) depositing O(1 keV) in detectors. In this work we describe the performances of low-background dark matter detectors, such as LUX-ZEPLIN (LZ), optimized for detecting low-energy depositions, in detecting these neutrino interactions. For instance, a 27 Msolar supernova at 10 kpc is expected to produce ~350 neutrino interactions in the 7-tonne liquid xenon active volume of LZ. Based on the LS220 EoS neutrino flux model for a SN, the Noble Element Simulation Technique (NEST), and predicted CEνNS cross-sections for xenon, to study energy deposition and detection of SN neutrinos in LZ. We simulate the response of the LZ data acquisition system (DAQ) and demonstrate its capability and limitations in handling this interaction rate. We present an overview of the LZ detector, focusing on the benefits of liquid xenon for supernova neutrino detection. We discuss energy deposition and detector response simulations and their results. We present an analysis technique to reconstruct the total number of neutrinos and the time of the supernova core bounce.

  13. Evidence for a Sub-Chandrasekhar-mass Type Ia Supernova in the Ursa Minor Dwarf Galaxy

    Science.gov (United States)

    McWilliam, Andrew; Piro, Anthony L.; Badenes, Carles; Bravo, Eduardo

    2018-04-01

    A long-standing problem is identifying the elusive progenitors of Type Ia supernovae (SNe Ia), which can roughly be split into Chandraksekhar and sub-Chandrasekhar-mass events. An important difference between these two cases is the nucleosynthetic yield, which is altered by the increased neutron excess in Chandrasekhar progenitors due to their pre-explosion simmering and high central density. Based on these arguments, we show that the chemical composition of the most metal-rich star in the Ursa Minor dwarf galaxy, COS 171, is dominated by nucleosynthesis from a low-metallicity, low-mass, sub-Chandrasekhar-mass SN Ia. Key diagnostic abundance ratios include Mn/Fe and Ni/Fe, which could not have been produced by a Chandrasekhar-mass SN Ia. Large deficiencies of Ni/Fe, Cu/Fe and Zn/Fe also suggest the absence of alpha-rich freeze-out nucleosynthesis, favoring low-mass white dwarf progenitors of SNe Ia, near 0.95 M ⊙, from comparisons to numerical detonation models. We also compare Mn/Fe and Ni/Fe ratios to the recent yields predicted by Shen et al., finding consistent results. To explain the [Fe/H] at ‑1.35 dex for COS 171 would require dilution of the SN Ia ejecta with ∼104 M ⊙ of material, which is expected for an SN remnant expanding into a warm interstellar medium with n ∼ 1 cm‑3. In the future, finding more stars with the unique chemical signatures we highlight here will be important for constraining the rate and environments of sub-Chandrasekhar SNe Ia.

  14. REVEALING TYPE Ia SUPERNOVA PHYSICS WITH COSMIC RATES AND NUCLEAR GAMMA RAYS

    International Nuclear Information System (INIS)

    Horiuchi, Shunsaku; Beacom, John F.

    2010-01-01

    Type Ia supernovae (SNe Ia) remain mysterious despite their central importance in cosmology and their rapidly increasing discovery rate. The progenitors of SNe Ia can be probed by the delay time between progenitor birth and explosion as SNe Ia. The explosions and progenitors of SNe Ia can be probed by MeV nuclear gamma rays emitted in the decays of radioactive nickel and cobalt into iron. We compare the cosmic star formation and SN Ia rates, finding that their different redshift evolution requires a large fraction of SNe Ia to have large delay times. A delay-time distribution of the form t -α with α = 1.0 ± 0.3 provides a good fit, implying that 50% of SNe Ia explode more than ∼1 Gyr after progenitor birth. The extrapolation of the cosmic SN Ia rate to z = 0 agrees with the rate we deduce from catalogs of local SNe Ia. We investigate prospects for gamma-ray telescopes to exploit the facts that escaping gamma rays directly reveal the power source of SNe Ia and uniquely provide tomography of the expanding ejecta. We find large improvements relative to earlier studies by Gehrels et al. in 1987 and Timmes and Woosley in 1997 due to larger and more certain SN Ia rates and advances in gamma-ray detectors. The proposed Advanced Compton Telescope, with a narrow-line sensitivity ∼60 times better than that of current satellites, would, on an annual basis, detect up to ∼100 SNe Ia (3σ) and provide revolutionary model discrimination for SNe Ia within 20 Mpc, with gamma-ray light curves measured with ∼10σ significance daily for ∼100 days. Even more modest improvements in detector sensitivity would open a new and invaluable astronomy with frequent SN Ia gamma-ray detections.

  15. DETECTION OF BROAD Hα EMISSION LINES IN THE LATE-TIME SPECTRA OF A HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Lin; Masci, F. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Quimby, R. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Ofek, E.; Gal-Yam, A.; Vreeswijk, P. M.; Leloudas, G.; Cia, A. de; Yaron, O. [Department of Particle Physics and Astrophysics, Faculty of Physics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Mazzali, P. [Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Perley, D. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Cao, Y.; Kulkarni, S. R. [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States); Nugent, P. E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Rebbapragada, Umaa D. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Woźniak, P. R., E-mail: lyan@ipac.caltech.edu [Space and Remote Sensing, ISR-2, MS-B244 Los Alamos National Laboratory Los Alamos, NM 87545 (United States)

    2015-12-01

    iPTF13ehe is a hydrogen-poor superluminous supernova (SLSN) at z = 0.3434, with a slow-evolving light curve and spectral features similar to SN2007bi. It rises in 83–148 days to reach a peak bolometric luminosity of ∼1.3 × 10{sup 44} erg s{sup −1}, then decays slowly at 0.015 mag day{sup −1}. The measured ejecta velocity is ∼ 13,000 km s{sup −1}. The inferred explosion characteristics, such as the ejecta mass (70–220 M{sub ⊙}), and the total radiative and kinetic energy (E{sub rad} ∼ 10{sup 51} erg, E{sub kin} ∼ 2 × 10{sup 53} erg), are typical of slow-evolving H-poor SLSN events. However, the late-time spectrum taken at +251 days (rest, post-peak) reveals a Balmer Hα emission feature with broad and narrow components, which has never been detected before among other H-poor SLSNe. The broad component has a velocity width of ∼4500 km s{sup −1} and a ∼300 km s{sup −1} blueward shift relative to the narrow component. We interpret this broad Hα emission with a luminosity of ∼2 × 10{sup 41} erg s{sup −1} as resulting from the interaction between the supernova ejecta and a discrete H-rich shell, located at a distance of ∼4 × 10{sup 16} cm from the explosion site. This interaction causes the rest-frame r-band LC to brighten at late times. The fact that the late-time spectra are not completely absorbed by the shock-ionized H-shell implies that its Thomson scattering optical depth is likely ≤1, thus setting upper limits on the shell mass ≤30 M{sub ⊙}. Of the existing models, a Pulsational Pair Instability supernova model can naturally explain the observed 30 M{sub ⊙} H-shell, ejected from a progenitor star with an initial mass of (95–150) M{sub ⊙} about 40 years ago. We estimate that at least ∼15% of all SLSNe-I may have late-time Balmer emission lines.

  16. A statistical analysis of angular distribution of neutrino events observed in Kamiokande II and IMB detectors from supernova SN 1987 A

    International Nuclear Information System (INIS)

    Krivoruchenko, M.I.

    1989-01-01

    A detailed statistical analysis of angular distribution of neutrino events observed in Kamiokande II and IMB detectors on UT 07:35, 2/23'87 is carried out. Distribution functions of the mean scattering angles in the reaction anti υ e p→e + n and υe→υe are constructed with account taken of the multiple Coulomb scattering and the experimental angular errors. The Smirnov and Wald-Wolfowitz run tests are used to test the hypothesis that the angular distributions of events from the two detectors agree with each other. We test with the use of the Kolmogorov and Mises statistical criterions the hypothesis that the recorded events all represent anti υ e p→e + n inelastic scatterings. Then the Neyman-Pearson test is applied to each event in testing the hypothesis anti υ e p→e + n against the alternative υe→υe. The hypotheses that the number of elastic events equals s=0, 1, 2, ... against the alternatives s≠0, 1, 2, ... are tested on the basis of the generalized likelihood ratio criterion. The confidence intervals for the number of elastic events are also constructed. The current supernova models fail to give a satisfactory account of the angular distribution data. (orig.)

  17. Radio emission from supernovae. I. One to twelve year old supernovae

    International Nuclear Information System (INIS)

    Weiler, K.W.; Panagia, N.; Sramek, R.A.; Van Der Hulst, J.M.; Roberts, M.S.

    1989-01-01

    All recorded optical supernovae brighter than 14.0 mag from SN 1970A to SN 1981A were observed in May 1982 using VLA at 6 cm. Apart from the known radio supernovae (SN 1970G, SN 1979C, and SN 1980K), radio emissions were not detected from any of the objects to a limit of about 0.5 mJy. Limits on mass-loss rates from the presupernova systems are established. It is found that Type Ia Sns originate in systems which contain very little circumstellar material at the time of explosion. These systems are very different from those which originate Type Ib Sns. With some exceptions, Type II SNs originate with the high presupernova mass-loss rates expected from red supergiant progenitors with original main-sequence masses greater than about 8 solar masses. 16 references

  18. THE DETECTION RATE OF EARLY UV EMISSION FROM SUPERNOVAE: A DEDICATED GALEX/PTF SURVEY AND CALIBRATED THEORETICAL ESTIMATES

    Energy Technology Data Exchange (ETDEWEB)

    Ganot, Noam; Gal-Yam, Avishay; Ofek, Eran O.; Sagiv, Ilan; Waxman, Eli; Lapid, Ofer [Department of Particle Physics and Astrophysics, Faculty of Physics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Kulkarni, Shrinivas R.; Kasliwal, Mansi M. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Ben-Ami, Sagi [Smithsonian Astrophysical Observatory, Harvard-Smithsonian Ctr. for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chelouche, Doron; Rafter, Stephen [Physics Department, Faculty of Natural Sciences, University of Haifa, 31905 Haifa (Israel); Behar, Ehud; Laor, Ari [Physics Department, Technion Israel Institute of Technology, 32000 Haifa (Israel); Poznanski, Dovi; Nakar, Ehud; Maoz, Dan [School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Trakhtenbrot, Benny [Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27 Zurich 8093 (Switzerland); Neill, James D.; Barlow, Thomas A.; Martin, Christofer D., E-mail: noam.ganot@gmail.com [California Institute of Technology, 1200 East California Boulevard, MC 278-17, Pasadena, CA 91125 (United States); Collaboration: ULTRASAT Science Team; WTTH consortium; GALEX Science Team; Palomar Transient Factory; and others

    2016-03-20

    The radius and surface composition of an exploding massive star, as well as the explosion energy per unit mass, can be measured using early UV observations of core-collapse supernovae (SNe). We present the first results from a simultaneous GALEX/PTF search for early ultraviolet (UV) emission from SNe. Six SNe II and one Type II superluminous SN (SLSN-II) are clearly detected in the GALEX near-UV (NUV) data. We compare our detection rate with theoretical estimates based on early, shock-cooling UV light curves calculated from models that fit existing Swift and GALEX observations well, combined with volumetric SN rates. We find that our observations are in good agreement with calculated rates assuming that red supergiants (RSGs) explode with fiducial radii of 500 R{sub ⊙}, explosion energies of 10{sup 51} erg, and ejecta masses of 10 M{sub ⊙}. Exploding blue supergiants and Wolf–Rayet stars are poorly constrained. We describe how such observations can be used to derive the progenitor radius, surface composition, and explosion energy per unit mass of such SN events, and we demonstrate why UV observations are critical for such measurements. We use the fiducial RSG parameters to estimate the detection rate of SNe during the shock-cooling phase (<1 day after explosion) for several ground-based surveys (PTF, ZTF, and LSST). We show that the proposed wide-field UV explorer ULTRASAT mission is expected to find >85 SNe per year (∼0.5 SN per deg{sup 2}), independent of host galaxy extinction, down to an NUV detection limit of 21.5 mag AB. Our pilot GALEX/PTF project thus convincingly demonstrates that a dedicated, systematic SN survey at the NUV band is a compelling method to study how massive stars end their life.

  19. Understanding type Ia supernovae through their U-band spectra

    Science.gov (United States)

    Nordin, J.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Barbary, K.; Bongard, S.; Boone, K.; Brinnel, V.; Buton, C.; Childress, M.; Chotard, N.; Copin, Y.; Dixon, S.; Fagrelius, P.; Feindt, U.; Fouchez, D.; Gangler, E.; Hayden, B.; Hillebrandt, W.; Kim, A.; Kowalski, M.; Kuesters, D.; Leget, P.-F.; Lombardo, S.; Lin, Q.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Runge, K.; Rubin, D.; Saunders, C.; Smadja, G.; Sofiatti, C.; Suzuki, N.; Taubenberger, S.; Tao, C.; Thomas, R. C.; Nearby Supernova Factory

    2018-06-01

    Context. Observations of type Ia supernovae (SNe Ia) can be used to derive accurate cosmological distances through empirical standardization techniques. Despite this success neither the progenitors of SNe Ia nor the explosion process are fully understood. The U-band region has been less well observed for nearby SNe, due to technical challenges, but is the most readily accessible band for high-redshift SNe. Aims: Using spectrophotometry from the Nearby Supernova Factory, we study the origin and extent of U-band spectroscopic variations in SNe Ia and explore consequences for their standardization and the potential for providing new insights into the explosion process. Methods: We divide the U-band spectrum into four wavelength regions λ(uNi), λ(uTi), λ(uSi) and λ(uCa). Two of these span the Ca H&K λλ 3934, 3969 complex. We employ spectral synthesis using SYNAPPS to associate the two bluer regions with Ni/Co and Ti. Results: The flux of the uTi feature is an extremely sensitive temperature/luminosity indicator, standardizing the SN peak luminosity to 0.116 ± 0.011 mag root mean square (RMS). A traditional SALT2.4 fit on the same sample yields a 0.135 mag RMS. Standardization using uTi also reduces the difference in corrected magnitude between SNe originating from different host galaxy environments. Early U-band spectra can be used to probe the Ni+Co distribution in the ejecta, thus offering a rare window into the source of light curve power. The uCa flux further improves standardization, yielding a 0.086 ± 0.010 mag RMS without the need to include an additional intrinsic dispersion to reach χ2/dof 1. This reduction in RMS is partially driven by an improved standardization of Shallow Silicon and 91T-like SNe. All tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A71. Individual SN spectra shown are available at http://snfactory.lbl.gov/snf/data

  20. Supernova Explosions Stay In Shape

    Science.gov (United States)

    2009-12-01

    At a very early age, children learn how to classify objects according to their shape. Now, new research suggests studying the shape of the aftermath of supernovas may allow astronomers to do the same. A new study of images from NASA's Chandra X-ray Observatory on supernova remnants - the debris from exploded stars - shows that the symmetry of the remnants, or lack thereof, reveals how the star exploded. This is an important discovery because it shows that the remnants retain information about how the star exploded even though hundreds or thousands of years have passed. "It's almost like the supernova remnants have a 'memory' of the original explosion," said Laura Lopez of the University of California at Santa Cruz, who led the study. "This is the first time anyone has systematically compared the shape of these remnants in X-rays in this way." Astronomers sort supernovas into several categories, or "types", based on properties observed days after the explosion and which reflect very different physical mechanisms that cause stars to explode. But, since observed remnants of supernovas are leftover from explosions that occurred long ago, other methods are needed to accurately classify the original supernovas. Lopez and colleagues focused on the relatively young supernova remnants that exhibited strong X-ray emission from silicon ejected by the explosion so as to rule out the effects of interstellar matter surrounding the explosion. Their analysis showed that the X-ray images of the ejecta can be used to identify the way the star exploded. The team studied 17 supernova remnants both in the Milky Way galaxy and a neighboring galaxy, the Large Magellanic Cloud. For each of these remnants there is independent information about the type of supernova involved, based not on the shape of the remnant but, for example, on the elements observed in it. The researchers found that one type of supernova explosion - the so-called Type Ia - left behind relatively symmetric, circular

  1. Gaia17biu/SN 2017egm in NGC 3191: The Closest Hydrogen-poor Superluminous Supernova to Date Is in a “Normal,” Massive, Metal-rich Spiral Galaxy

    Science.gov (United States)

    Bose, Subhash; Dong, Subo; Pastorello, A.; Filippenko, Alexei V.; Kochanek, C. S.; Mauerhan, Jon; Romero-Cañizales, C.; Brink, Thomas G.; Chen, Ping; Prieto, J. L.; Post, R.; Ashall, Christopher; Grupe, Dirk; Tomasella, L.; Benetti, Stefano; Shappee, B. J.; Stanek, K. Z.; Cai, Zheng; Falco, E.; Lundqvist, Peter; Mattila, Seppo; Mutel, Robert; Ochner, Paolo; Pooley, David; Stritzinger, M. D.; Villanueva, S., Jr.; Zheng, WeiKang; Beswick, R. J.; Brown, Peter J.; Cappellaro, E.; Davis, Scott; Fraser, Morgan; de Jaeger, Thomas; Elias-Rosa, N.; Gall, C.; Gaudi, B. Scott; Herczeg, Gregory J.; Hestenes, Julia; Holoien, T. W.-S.; Hosseinzadeh, Griffin; Hsiao, E. Y.; Hu, Shaoming; Jaejin, Shin; Jeffers, Ben; Koff, R. A.; Kumar, Sahana; Kurtenkov, Alexander; Lau, Marie Wingyee; Prentice, Simon; Reynolds, T.; Rudy, Richard J.; Shahbandeh, Melissa; Somero, Auni; Stassun, Keivan G.; Thompson, Todd A.; Valenti, Stefano; Woo, Jong-Hak; Yunus, Sameen

    2018-01-01

    Hydrogen-poor superluminous supernovae (SLSNe-I) have been predominantly found in low-metallicity, star-forming dwarf galaxies. Here we identify Gaia17biu/SN 2017egm as an SLSN-I occurring in a “normal” spiral galaxy (NGC 3191) in terms of stellar mass (several times 1010 M⊙) and metallicity (roughly solar). At redshift z = 0.031, Gaia17biu is also the lowest-redshift SLSN-I to date, and the absence of a larger population of SLSNe-I in dwarf galaxies of similar redshift suggests that metallicity is likely less important to the production of SLSNe-I than previously believed. With the smallest distance and highest apparent brightness for an SLSN-I, we are able to study Gaia17biu in unprecedented detail. Its pre-peak near-ultraviolet to optical color is similar to that of Gaia16apd and among the bluest observed for an SLSN-I, while its peak luminosity (Mg = ‑21 mag) is substantially lower than that of Gaia16apd. Thanks to the high signal-to-noise ratios of our spectra, we identify several new spectroscopic features that may help to probe the properties of these enigmatic explosions. We detect polarization at the ∼0.5% level that is not strongly dependent on wavelength, suggesting a modest, global departure from spherical symmetry. In addition, we put the tightest upper limit yet on the radio luminosity of an SLSN-I with early stage in the evolution of an SLSN-I. This limit largely rules out an association of this SLSN-I with known populations of gamma-ray-burst-like central engines.

  2. SN 1987A. Theory

    International Nuclear Information System (INIS)

    Schaeffer, R.

    1987-03-01

    SN 1987A was unique in many aspects. The most striking, undoubtedly, is its low luminosity, nearly two orders of magnitude below the expectations based on supernovae currently observed in external galaxies. The rise time of the optical emission, usually a few days, was for SN 1987A, of the order of a few hours. Also its surface temperature is surprisingly low, 5000K. The neutrino burst has been detected. It was observed twice, with a time difference of 5 hours, the second burst occurring within 3 hours of the onset of the optical signal. In this talk, I will discuss how these strange events fit with the theoretical models of supernova explosions, how they differ in some cases, and try to evaluate the degree of certainty -or uncertainty- of our present knowledge on how these extremely powerful star explosions occur

  3. Identification of a jet-driven supernova remnant in the Small Magellanic Cloud: Possible evidence for the enhancement of bipolar explosions at low metallicity

    International Nuclear Information System (INIS)

    Lopez, Laura A.; Castro, Daniel; Slane, Patrick O.; Ramirez-Ruiz, Enrico; Badenes, Carles

    2014-01-01

    Recent evidence has suggested that the supernova remnant (SNR) 0104–72.3 in the Small Magellanic Cloud (SMC) may be the result of a 'prompt' Type Ia SN on the basis of enhanced iron abundances and its association with a star-forming region. In this paper, we present evidence that SNR 0104–72.3 arose from a jet-driven bipolar core-collapse (CC) SN. Specifically, we use serendipitous Chandra data of SNR 0104–72.3 taken because of its proximity to the calibration source SNR E0102–72.3. We analyze 56 Advanced CCD Imaging Spectrometer (ACIS) observations of SNR 0104–72.3 to produce imaging and spectra with an effective exposure of 528.6 ks. We demonstrate that SNR 0104–72.3 is highly elliptical relative to other nearby young SNRs, suggesting a CC SN origin. Furthermore, we compare ejecta abundances derived from spectral fits to nucleosynthetic yields of Type Ia and CC SNe, and we find that the iron, neon, and silicon abundances are consistent with either a spherical CC SN of a 18-20 M ☉ progenitor or an aspherical CC SN of a 25 M ☉ progenitor. We show that the star formation history at the site of SNR 0104–72.3 is also consistent with a CC origin. Given the bipolar morphology of the SNR, we favor the aspherical CC SN scenario. This result may suggest jet-driven SNe occur frequently in the low-metallicity environment of the SMC, consistent with the observational and theoretical work on broad-line Type Ic SNe and long-duration gamma-ray bursts.

  4. Simulating Supernova Light Curves

    International Nuclear Information System (INIS)

    Even, Wesley Paul; Dolence, Joshua C.

    2016-01-01

    This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth's atmosphere.

  5. Simulating Supernova Light Curves

    Energy Technology Data Exchange (ETDEWEB)

    Even, Wesley Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dolence, Joshua C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth’s atmosphere.

  6. New possibilities in supernova accretion phase from dense matter effect

    Science.gov (United States)

    Chakraborty, S.; Mirizzi, A.; Saviano, N.

    2012-07-01

    We carry out a detailed analysis of the supernova (SN) neutrino flavor evolution during the accretion phase (at post-bounce times tpb Mikheyev-Smirnov-Wolfenstein effect in the SN mantle and Earth matter effects, can reveal the neutrino mass hierarchy in the likely case that the mixing angle θ13 is not very small.

  7. Magnetorotational Explosions of Core-Collapse Supernovae

    Directory of Open Access Journals (Sweden)

    Gennady S. Bisnovatyi-Kogan

    2014-12-01

    Full Text Available Core-collapse supernovae are accompanied by formation of neutron stars. The gravitation energy is transformed into the energy of the explosion, observed as SN II, SN Ib,c type supernovae. We present results of 2-D MHD simulations, where the source of energy is rotation, and magnetic eld serves as a "transition belt" for the transformation of the rotation energy into the energy of the explosion. The toroidal part of the magnetic energy initially grows linearly with time due to dierential rotation. When the twisted toroidal component strongly exceeds the poloidal eld, magneto-rotational instability develops, leading to a drastic acceleration in the growth of magnetic energy. Finally, a fast MHD shock is formed, producing a supernova explosion. Mildly collimated jet is produced for dipole-like type of the initial field. At very high initial magnetic field no MRI development was found.

  8. Neutron Star Kicks by the Gravitational Tug-boat Mechanism in Asymmetric Supernova Explosions: Progenitor and Explosion Dependence

    Energy Technology Data Exchange (ETDEWEB)

    Janka, Hans-Thomas [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)

    2017-03-01

    Asymmetric mass ejection in the early phase of supernova (SN) explosions can impart a kick velocity to the new-born neutron star (NS). For neutrino-driven explosions the NS acceleration has been shown to be mainly caused by the gravitational attraction of the anisotropically expelled inner ejecta, while hydrodynamic forces contribute on a subdominant level, and asymmetric neutrino emission plays only a secondary role. Two- and three-dimensional hydrodynamic simulations have demonstrated that this gravitational tug-boat mechanism can explain the observed space velocities of young NSs up to more than 1000 km s{sup −1}. Here, we discuss how the NS kick depends on the energy, ejecta mass, and asymmetry of the SN explosion, and what role the compactness of the pre-collapse stellar core plays for the momentum transfer to the NS. We also provide simple analytic expressions for the NS velocity in terms of these quantities. Referring to results of hydrodynamic simulations in the literature, we argue why, within the discussed scenario of NS acceleration, electron-capture SNe, low-mass Fe-core SNe, and ultra-stripped SNe can be expected to have considerably lower intrinsic NS kicks than core-collapse SNe of massive stellar cores. Our basic arguments also remain valid if progenitor stars possess large-scale asymmetries in their convective silicon and oxygen burning layers. Possible scenarios for spin-kick alignment are sketched. Much of our discussion stays on a conceptual and qualitative level, and more work is necessary on the numerical modeling side to determine the dependences of involved parameters, whose prescriptions will be needed for recipes that can be used to better describe NS kicks in binary evolution and population synthesis studies.

  9. Phase Doppler anemometry as an ejecta diagnostic

    Science.gov (United States)

    Bell, D. J.; Chapman, D. J.

    2017-01-01

    When a shock wave is incident on a free surface, micron sized pieces of the material can be ejected from that surface. Phase Doppler Anemometry (PDA) is being developed to simultaneously measure the sizes and velocities of the individual shock induced ejecta particles; providing an important insight into ejecta phenomena. The results from experiments performed on the 13 mm bore light gas gun at the Institute of Shock Physics, Imperial College London are presented. Specially grooved tin targets were shocked at pressures of up to 14 GPa, below the melt on release pressure, to generate ejecta particles. These experiments are the first time that PDA has been successfully fielded on dynamic ejecta experiments. The results and current state of the art of the technique are discussed along with the future improvements required to optimise performance and increase usability.

  10. Asymmetry of the envelope of supernova 1987A

    Energy Technology Data Exchange (ETDEWEB)

    Papaliolios, C.; Karovska, M.; Koechlin, L.; Nisenson, P.; Standley, C.; Heathcote, S.

    1989-04-13

    The supernova SN1987A in the Large Magellanic Cloud has been observed by high-angular-resolution speckle interferometry since 25 March (30 days after the explosion) with the 4-m telescope at the Cerro Tololo Interamerican Observatory. Data obtained on 25 March and 2 April 1987 revealed a second bright 'companion' source separated from the supernova by 60 milliarcseconds and less than three magnitudes fainter than the supernova. Measurements of the average diameter of the supernova envelope have been made from data recorded from March 1987 to April 1988. Here we present a more detailed analysis of these data, which shows that the expanding envelope is asymmetric. (author).

  11. Asymmetry of the envelope of supernova 1987A

    International Nuclear Information System (INIS)

    Papaliolios, C.; Karovska, M.; Koechlin, L.; Nisenson, P.; Standley, C.; Heathcote, S.

    1989-01-01

    The supernova SN1987A in the Large Magellanic Cloud has been observed by high-angular-resolution speckle interferometry since 25 March (30 days after the explosion) with the 4-m telescope at the Cerro Tololo Interamerican Observatory. Data obtained on 25 March and 2 April 1987 revealed a second bright 'companion' source separated from the supernova by 60 milliarcseconds and less than three magnitudes fainter than the supernova. Measurements of the average diameter of the supernova envelope have been made from data recorded from March 1987 to April 1988. Here we present a more detailed analysis of these data, which shows that the expanding envelope is asymmetric. (author)

  12. A multi-wavelength investigation of the radio-loud supernova PTF11qcj and its circumstellar environment

    Energy Technology Data Exchange (ETDEWEB)

    Corsi, A. [Department of Physics, The George Washington University, 725 21st St, NW, Washington, DC 20052 (United States); Ofek, E. O.; Gal-Yam, A.; Xu, D. [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Frail, D. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Kulkarni, S. R.; Horesh, A.; Carpenter, J.; Arcavi, I.; Cao, Y.; Mooley, K.; Sesar, B. [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Fox, D. B. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Kasliwal, M. M. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Sullivan, M.; Maguire, K.; Pan, Y.-C. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Cenko, S. B. [NASA Goddard Space Flight Center, Code 685, Greenbelt, MD 20771 (United States); Sternberg, A. [Max-Planck-Institut fur Astrophysik, D-85741 Garching (Germany); Bersier, D., E-mail: corsi@gwu.edu [Astrophysics Research Institute, Liverpool John Moores University, Liverpool (United Kingdom); and others

    2014-02-10

    We present the discovery, classification, and extensive panchromatic (from radio to X-ray) follow-up observations of PTF11qcj, a supernova (SN) discovered by the Palomar Transient Factory (PTF). Our observations with the Karl G. Jansky Very Large Array show that this event is radio-loud: PTF11qcj reached a radio peak luminosity comparable to that of the famous gamma-ray-burst-associated SN 1998bw (L {sub 5} {sub GHz} ≈ 10{sup 29} erg s{sup –1} Hz{sup –1}). PTF11qcj is also detected in X-rays with the Chandra Observatory, and in the infrared band with Spitzer. Our multi-wavelength analysis probes the SN interaction with circumstellar material. The radio observations suggest a progenitor mass-loss rate of ∼10{sup –4} M {sub ☉} yr{sup –1} × (v{sub w} /1000 km s{sup –1}), and a velocity of ≈0.3-0.5 c for the fastest moving ejecta (at ≈10 days after explosion). However, these estimates are derived assuming the simplest model of SN ejecta interacting with a smooth circumstellar wind, and do not account for possible inhomogeneities in the medium and asphericity of the explosion. The radio data show deviations from such a simple model, as well as a late-time re-brightening. The X-ray flux from PTF11qcj is compatible with the high-frequency extrapolation of the radio synchrotron emission (within the large uncertainties). A light echo from pre-existing dust is in agreement with our infrared data. Our pre-explosion data from the PTF suggest that a precursor eruption of absolute magnitude M{sub r} ≈ –13 mag may have occurred ≈2.5 yr prior to the SN explosion. Overall, PTF11qcj fits the expectations from the explosion of a Wolf-Rayet star. Precursor eruptions may be a feature characterizing the final pre-explosion evolution of such stars.

  13. Happy birthday, supernova

    International Nuclear Information System (INIS)

    Schorn, R.A.

    1988-01-01

    The advances in understanding that have been made concerning SN 1987A in the year since it appeared are reviewed. The rapidity of the initial rise in brightness and the relatively faint absolute magnitude during the first few weeks have been found to be due to the progenitor star's being a blue giant, relatively small compared to a red giant. The nitrogen lines in the spectrum are evidence that the star was once a red giant whose stellar wind was so strong that the resulting loss of material converted the star into a blue giant. The variations in the light curve of the supernova are explained in terms of the radioactive decay of Ni-56 and Co-56 and the interaction of the resulting gamma rays with the debris cloud. Some of the remaining unanswered questions are summarized

  14. Shock Acceleration of Electrons and Synchrotron Emission from the Dynamical Ejecta of Neutron Star Mergers

    Science.gov (United States)

    Lee, Shiu-Hang; Maeda, Keiichi; Kawanaka, Norita

    2018-05-01

    Neutron star mergers (NSMs) eject energetic subrelativistic dynamical ejecta into circumbinary media. Analogous to supernovae and supernova remnants, the NSM dynamical ejecta are expected to produce nonthermal emission by electrons accelerated at a shock wave. In this paper, we present the expected radio and X-ray signals by this mechanism, taking into account nonlinear diffusive shock acceleration (DSA) and magnetic field amplification. We suggest that the NSM is unique as a DSA site, where the seed relativistic electrons are abundantly provided by the decays of r-process elements. The signal is predicted to peak at a few 100–1000 days after the merger, determined by the balance between the decrease of the number of seed electrons and the increase of the dissipated kinetic energy, due to the shock expansion. While the resulting flux can ideally reach the maximum flux expected from near-equipartition, the available kinetic energy dissipation rate of the NSM ejecta limits the detectability of such a signal. It is likely that the radio and X-ray emission are overwhelmed by other mechanisms (e.g., an off-axis jet) for an observer placed in a jet direction (i.e., for GW170817). However, for an off-axis observer, to be discovered once a number of NSMs are identified, the dynamical ejecta component is predicted to dominate the nonthermal emission. While the detection of this signal is challenging even with near-future facilities, this potentially provides a robust probe of the creation of r-process elements in NSMs.

  15. Three-dimensional Modeling of Type Ia Supernova Explosions

    Science.gov (United States)

    Khokhlov, Alexei

    2001-06-01

    A deflagration explosion of a Type Ia Supernova (SNIa) is studied using three-dimensional, high-resolution, adaptive mesh refinement fluid dynamic calculations. Deflagration speed in an exploding Chandrasekhar-mass carbon-oxygen white dwarf (WD) grows exponentially, reaches approximately 30the speed of sound, and then declines due to a WD expansion. Outermost layers of the WD remain unburned. The explosion energy is comparable to that of a Type Ia supernova. The freezing of turbulent motions by expansion appears to be a crucial physical mechanism regulating the strength of a supernova explosion. In contrast to one-dimensional models, three-dimensional calculations predict the formation of Si-group elements and pockets of unburned CO in the middle and in central regions of a supernova ejecta. This, and the presence of unburned outer layer of carbon-oxygen may pose problems for SNIa spectra. Explosion sensitivity to initial conditions and its relation to a diversity of SNIa is discussed.

  16. The very young resolved stellar populations around stripped-envelope supernovae

    Science.gov (United States)

    Maund, Justyn R.

    2018-05-01

    The massive star origins for Type IIP supernovae (SNe) have been established through direct detection of their red supergiants progenitors in pre-explosion observations; however, there has been limited success in the detection of the progenitors of H-deficient SNe. The final fate of more massive stars, capable of undergoing a Wolf-Rayet phase, and the origins of Type Ibc SNe remain debated, including the relative importance of single massive star progenitors or lower mass stars stripped in binaries. We present an analysis of the ages and spatial distributions of massive stars around the sites of 23 stripped-envelope SNe, as observed with the Hubble Space Telescope, to probe the possible origins of the progenitors of these events. Using a Bayesian stellar populations analysis scheme, we find characteristic ages for the populations observed within 150 pc of the target Type IIb, Ib, and Ic SNe to be log (t) = 7.20, 7.05, and 6.57, respectively. The Type Ic SNe in the sample are nearly all observed within 100 pc of young, dense stellar populations. The environment around SN 2002ap is an important exception both in terms of age and spatial properties. These findings may support the hypothesis that stars with Minit > 30 M⊙ produce a relatively large proportion of Type Ibc SNe, and that these SN subtypes arise from progressively more massive progenitors. Significantly higher extinctions are derived towards the populations hosting these SNe than previously used in analysis of constraints from pre-explosion observations. The large initial masses inferred for the progenitors are in stark contrast with the low ejecta masses estimated from SN light curves.

  17. Supernova models

    International Nuclear Information System (INIS)

    Woosley, S.E.; California, University, Livermore, CA); Weaver, T.A.

    1981-01-01

    Recent progress in understanding the observed properties of type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the Ni-56 produced therein is reviewed. The expected nucleosynthesis and gamma-line spectra for this model of type I explosions and a model for type II explosions are presented. Finally, a qualitatively new approach to the problem of massive star death and type II supernovae based upon a combination of rotation and thermonuclear burning is discussed. While the theoretical results of existing models are predicated upon the assumption of a successful core bounce calculation and the neglect of such two-dimensional effects as rotation and magnetic fields the new model suggests an entirely different scenario in which a considerable portion of the energy carried by an equatorially ejected blob is deposited in the red giant envelope overlying the mantle of the star

  18. Supernova neutrinos

    International Nuclear Information System (INIS)

    John Beacom

    2003-01-01

    We propose that neutrino-proton elastic scattering, ν + p → ν + p, can be used for the detection of supernova neutrinos. Though the proton recoil kinetic energy spectrum is soft, with T p ≅ 2E ν 2 /M p , and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from (bar ν) e + p → e + + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum, which solves a long-standing problem of how to separately measure the total energy release and temperature of ν μ , ν τ , (bar ν) μ , and (bar ν) τ . The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos

  19. A trio of gamma-ray burst supernovae

    DEFF Research Database (Denmark)

    Cano, Z.; Ugarte Postigo, Antonio de; Pozanenko, A.

    2014-01-01

    We present optical and near-infrared (NIR) photometry for three gamma-ray burst supernovae (GRB-SNe): GRB 120729A, GRB 130215A / SN 2013ez and GRB 130831A / SN 2013fu. In the case of GRB 130215A / SN 2013ez, we also present optical spectroscopy at t-t0=16.1 d, which covers rest-frame 3000...

  20. Probing Neutrino Mass Hierarchy with Supernova

    International Nuclear Information System (INIS)

    Chakraborty, Sovan

    2013-01-01

    The rise time of electron antineutrino lightcurve from a Galactic supernova (SN), observable at the IceCube Cherenkov detector, can provide signature of the neutrino mass hierarchy at “large” 1-3 leptonic mixing angle ϑ 13 . In the early accretion phase of the SN, the neutrino oscillations are nontrivial. Due to the matter suppression of collective effects at these early post bounce times, only the MSW resonances in the outer layers of the SN influence the neutrino flux. When the oscillations are taken into account, the signal in IceCube shows sufficiently fast rise time for the inverted mass hierarchy compared to the normal hierarchy. An investigation with an extensive set of stellar core-collapse simulations, provides both qualitative and quantitative robustness of these features. Thus opening another avenue to explore the neutrino mass hierarchy with the rise time of a supernova burst

  1. NUMERICAL SIMULATIONS OF SUPERNOVA DUST DESTRUCTION. I. CLOUD-CRUSHING AND POST-PROCESSED GRAIN SPUTTERING

    International Nuclear Information System (INIS)

    Silvia, Devin W.; Smith, Britton D.; Michael Shull, J.

    2010-01-01

    We investigate through hydrodynamic simulations the destruction of newly formed dust grains by sputtering in the reverse shocks of supernova (SN) remnants. Using an idealized setup of a planar shock impacting a dense, spherical clump, we implant a population of Lagrangian particles into the clump to represent a distribution of dust grains in size and composition. We then post-process the simulation output to calculate the grain sputtering for a variety of species and size distributions. We explore the parameter space appropriate for this problem by altering the overdensity of the ejecta clumps and the speed of the reverse shocks. Since radiative cooling could lower the temperature of the medium in which the dust is embedded and potentially protect the dust by slowing or halting grain sputtering, we study the effects of different cooling methods over the timescale of the simulations. In general, our results indicate that grains with radii less than 0.1 μm are sputtered to much smaller radii and often destroyed completely, while larger grains survive their interaction with the reverse shock. We also find that, for high ejecta densities, the percentage of dust that survives is strongly dependent on the relative velocity between the clump and the reverse shock, causing up to 50% more destruction for the highest velocity shocks. The fraction of dust destroyed varies widely across grain species, ranging from total destruction of Al 2 O 3 grains to minimal destruction of Fe grains (only 20% destruction in the most extreme cases). C and SiO 2 grains show moderate to strong sputtering as well, with 38% and 80% mass loss. The survival rate of grains formed by early SNe is crucial in determining whether or not they can act as the 'dust factories' needed to explain high-redshift dust.

  2. Modelling of X-ray emission supernova remnants observed by the European satellite XMM-Newton

    International Nuclear Information System (INIS)

    Cassam-Chenai, G.

    2004-01-01

    This thesis deals with the X-ray emission of supernova remnants (SNRs) observed by the European satellite XMM-Newton. In SNRs, the matter heated to millions of degrees shines brightly in X-rays. This emission depends on the hydrodynamical evolution of the SNR, on the chemical composition of the ejected matter and on the ambient medium. Moreover, the blast-wave is considered to be the prime site of the production and the acceleration of cosmic-rays in our Galaxy. XMM-Newton is one of the first to allow the investigation of these different aspects thanks to its spatially-resolved spectroscopy and its very good sensitivity. l first studied Kepler's SNR (SN 1604) whose X-ray emission is dominated by the ejecta. Its observation has allowed to obtain information on the nucleosynthesis products, on their spatial distribution and on the temperature structure in the shocked ejecta. This gives strong constraints on the physics of the explosion and on the progenitor's type. l have shown also that the X-ray emission at the shock is likely to be non-thermal. Then, l studied the SNR G347.3-0.5 whose X-ray emission is entirely due to the synchrotron radiation of relativistic (TeV) electrons accelerated at the shock. From five pointing, l made a full mapping of the X-ray emission characteristics (brightness, absorption and spectral index) at small scale. Combined to radio observations, these results have indicated a clear interaction between the SNR and molecular clouds located at 1 kpc and not at 6 kpc as previously estimated. Lastly, in the framework of a self-similar hydrodynamical model coupled with non-linear particle acceleration, l have obtained the synchrotron emission profile in SNRs, including the adiabatic and radiative losses of the accelerated electrons. (author) [fr

  3. How To Model Supernovae in Simulations of Star and Galaxy Formation

    Science.gov (United States)

    Hopkins, Philip F.; Wetzel, Andrew; Kereš, Dušan; Faucher-Giguére, Claude-André; Quataert, Eliot; Boylan-Kolchin, Michael; Murray, Norman; Hayward, Christopher C.; El-Badry, Kareem

    2018-03-01

    We study the implementation of mechanical feedback from supernovae (SNe) and stellar mass loss in galaxy simulations, within the Feedback In Realistic Environments (FIRE) project. We present the FIRE-2 algorithm for coupling mechanical feedback, which can be applied to any hydrodynamics method (e.g. fixed-grid, moving-mesh, and mesh-less methods), and black hole as well as stellar feedback. This algorithm ensures manifest conservation of mass, energy, and momentum, and avoids imprinting "preferred directions" on the ejecta. We show that it is critical to incorporate both momentum and thermal energy of mechanical ejecta in a self-consistent manner, accounting for SNe cooling radii when they are not resolved. Using idealized simulations of single SN explosions, we show that the FIRE-2 algorithm, independent of resolution, reproduces converged solutions in both energy and momentum. In contrast, common "fully-thermal" (energy-dump) or "fully-kinetic" (particle-kicking) schemes in the literature depend strongly on resolution: when applied at mass resolution ≳ 100 M⊙, they diverge by orders-of-magnitude from the converged solution. In galaxy-formation simulations, this divergence leads to orders-of-magnitude differences in galaxy properties, unless those models are adjusted in a resolution-dependent way. We show that all models that individually time-resolve SNe converge to the FIRE-2 solution at sufficiently high resolution (simulations and cosmological galaxy-formation simulations, the FIRE-2 algorithm converges much faster than other sub-grid models without re-tuning parameters.

  4. Neutrinos from type-II supernovae and the neutrino-driven supernova mechanism

    International Nuclear Information System (INIS)

    Janka, H.T.

    1996-01-01

    Supernova 1987A has confirmed fundamental aspects of our theoretical view of type-II supernovae: Type-II supernovae are a consequence of the collapse of the iron core of a massive evolved star and lead to the formation of a neutron star or black hole. This picture is most strongly supported by the detection of electron antineutrinos in the IMB and Kamiokande II experiments in connection with SN 1987A. However, the mechanism causing the supernova explosion is not yet satisfactorily understood. In this paper the properties of the neutrino emission from supernovae and protoneutron stars will be reviewed; analytical estimates will be derived and results of numerical simulations will be shown. It will be demonstrated that the spectral distributions of the emitted neutrinos show clear and systematic discrepancies compared with thermal (black body-type) emission. This must be taken into account when neutrino observations from supernovae are to be interpreted, or when implications of the neutrino emission on nucleosynthesis processes in mantle and envelope of the progenitor star are to be investigated. Furthermore, the influence of neutrinos on the supernova dynamics will be discussed, in particular their crucial role in causing the explosion by Wilson's neutrino-driven delayed mechanism. Possible implications of convection inside the newly born neutron star and between surface and the supernova shock will be addressed and results of multi-dimensional simulations will be presented. (author) 7 figs., 1 tab., refs

  5. Neutrinos from type-II supernovae and the neutrino-driven supernova mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Janka, H T [Max-Planck-Institut fuer Astrophysik, Garching (Germany)

    1996-11-01

    Supernova 1987A has confirmed fundamental aspects of our theoretical view of type-II supernovae: Type-II supernovae are a consequence of the collapse of the iron core of a massive evolved star and lead to the formation of a neutron star or black hole. This picture is most strongly supported by the detection of electron antineutrinos in the IMB and Kamiokande II experiments in connection with SN 1987A. However, the mechanism causing the supernova explosion is not yet satisfactorily understood. In this paper the properties of the neutrino emission from supernovae and protoneutron stars will be reviewed; analytical estimates will be derived and results of numerical simulations will be shown. It will be demonstrated that the spectral distributions of the emitted neutrinos show clear and systematic discrepancies compared with thermal (black body-type) emission. This must be taken into account when neutrino observations from supernovae are to be interpreted, or when implications of the neutrino emission on nucleosynthesis processes in mantle and envelope of the progenitor star are to be investigated. Furthermore, the influence of neutrinos on the supernova dynamics will be discussed, in particular their crucial role in causing the explosion by Wilson`s neutrino-driven delayed mechanism. Possible implications of convection inside the newly born neutron star and between surface and the supernova shock will be addressed and results of multi-dimensional simulations will be presented. (author) 7 figs., 1 tab., refs.

  6. The discovery of the most distant known type Ia supernova at redshift 1.914

    DEFF Research Database (Denmark)

    Jones, Dennis; Rodney, S.A.; Riess, A.G.

    2013-01-01

    We present the discovery of a Type Ia supernova (SN) at redshift z = 1.914 from the CANDELS multi-cycle treasury program on the Hubble Space Telescope (HST). This SN was discovered in the infrared using the Wide-Field Camera 3, and it is the highest-redshift Type Ia SN yet observed. We classify t...

  7. SHADOWS OF OUR FORMER COMPANIONS: HOW THE SINGLE-DEGENERATE BINARY TYPE IA SUPERNOVA SCENARIO AFFECTS REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Gray, William J.; Raskin, Cody; Owen, J. Michael [Lawrence Livermore National Laboratory, P.O. Box 808, L-038, Livermore, CA 94550 (United States)

    2016-12-10

    Here we present three-dimensional high-resolution simulations of Type Ia supernova in the presence of a non-degenerate companion. We find that the presence of a nearby companion leaves a long-lived hole in the supernova ejecta. In particular, we aim to study the long-term evolution of this hole as the supernova ejecta interacts with the surrounding interstellar medium (ISM). Using estimates for the X-ray emission, we find that the hole generated by the companion remains for many centuries after the interaction between the ejecta and the ISM. We also show that the hole is discernible over a wide range of viewing angles and companion masses.

  8. SHADOWS OF OUR FORMER COMPANIONS: HOW THE SINGLE-DEGENERATE BINARY TYPE IA SUPERNOVA SCENARIO AFFECTS REMNANTS

    International Nuclear Information System (INIS)

    Gray, William J.; Raskin, Cody; Owen, J. Michael

    2016-01-01

    Here we present three-dimensional high-resolution simulations of Type Ia supernova in the presence of a non-degenerate companion. We find that the presence of a nearby companion leaves a long-lived hole in the supernova ejecta. In particular, we aim to study the long-term evolution of this hole as the supernova ejecta interacts with the surrounding interstellar medium (ISM). Using estimates for the X-ray emission, we find that the hole generated by the companion remains for many centuries after the interaction between the ejecta and the ISM. We also show that the hole is discernible over a wide range of viewing angles and companion masses.

  9. Nucleosynthesis and hydrodynamic instabilities in core collapse supernovae

    International Nuclear Information System (INIS)

    Kifonidis, K.

    2001-01-01

    Hydrodynamic instabilities are of crucial importance for the explosion of massive stars as core collapse supernovae, for the synthesis of the heavy elements, and for their injection into the interstellar medium. The processes hereby involved are studied by means of two-dimensional hydrodynamic simulations which follow all phases from shock revival to shock breakout through the photosphere of a massive star. The computed distributions of radioactive elements are compared to observational data of SN 1987 A and other supernovae. While we find good agreement of our models with observations of Type Ib supernovae, the high velocities of iron group elements observed in SN 1987 A cannot be reproduced. Possible reasons for this discrepancy are discussed. Hydrodynamic instabilities are of crucial importance for the explosion of massive stars as core collapse supernovae, for the synthesis of the heavy elements, and for their injection into the interstellar medium. The processes hereby involved are studied by means of two-dimensional hydrodynamic simulations which follow all phases from shock revival to shock breakout through the photosphere of a massive star. The computed distributions of radioactive elements are compared to observational data of SN 1987 A and other supernovae. While we find good agreement of our models with observations of Type Ib supernovae, the high velocities of iron group elements observed in SN 1987 A cannot be reproduced. Possible reasons for this discrepancy are discussed

  10. A Mid-IR Census of Dusty Supernovae From the Past Decade In Preparation for JWST

    Science.gov (United States)

    Fox, Ori; Andrews, Jennifer; Arendt, Rick; Clayton, Geoff; Dwek, Eli; Filippenko, Alex; Johansson, Joel; Kelly, Patrick; Krafton, Kelsie; Marston, Tony; Mauerhan, Jon; Szalai, Tamas; Van Dyk, Schuyler

    2018-05-01

    Over the past decade, our team has shown that a surprising number of different supernova (SN) subclasses have members that exhibit mid-infrared (mid-IR) emission from warm dust at late times (>100 days post-explosion). This work has used Spitzer 3.6 and 4.5 micron imaging to constrain the dust origin and heating mechanisms, but a number of questions still remain. How much dust can SNe IIP produce in their ejecta? What progenitor can produce such extreme mass-loss events required to form the large, dense, pre-existing dust shells observed in so many cases? Many of these SNe remain bright today, in some cases more than a decade after discovery. Continued mid-IR monitoring is necessary to answer these questions by measuring the full extent of either the newly formed dust mass or pre-existing dust shell. Furthermore, Spitzer observations of both old and new SNe will provide up to date flux estimates as we prepare for continued observations with JWST. This proposal will cap off nearly a decade of work and bridge the gap to the first few cycles of JWST.

  11. Jets in Hydrogen-poor Superluminous Supernovae: Constraints from a Comprehensive Analysis of Radio Observations

    Science.gov (United States)

    Coppejans, D. L.; Margutti, R.; Guidorzi, C.; Chomiuk, L.; Alexander, K. D.; Berger, E.; Bietenholz, M. F.; Blanchard, P. K.; Challis, P.; Chornock, R.; Drout, M.; Fong, W.; MacFadyen, A.; Migliori, G.; Milisavljevic, D.; Nicholl, M.; Parrent, J. T.; Terreran, G.; Zauderer, B. A.

    2018-03-01

    The energy source powering the extreme optical luminosity of hydrogen-stripped superluminous supernovae (SLSNe-I) is not known, but recent studies have highlighted the case for a central engine. Radio and/or X-ray observations are best placed to track the fastest ejecta and probe the presence of outflows from a central engine. We compile all the published radio observations of SLSNe-I to date and present three new observations of two new SLSNe-I. None were detected. Through modeling the radio emission, we constrain the subparsec environments and possible outflows in SLSNe-I. In this sample, we rule out on-axis collimated relativistic jets of the kind detected in gamma-ray bursts (GRBs). We constrain off-axis jets with opening angles of 5° (30°) to energies of {E}{{k}}values {ε }e=0.1 and {ε }B=0.01. The deepest limits rule out emission of the kind seen in faint uncollimated GRBs (with the exception of GRB 060218) and from relativistic SNe. Finally, for the closest SLSN-I, SN 2017egm, we constrain the energy of an uncollimated nonrelativistic outflow like those observed in normal SNe to {E}{{k}}≲ {10}48 erg.

  12. On neutron star/supernova remnant associations

    OpenAIRE

    Gvaramadze, V. V.

    2000-01-01

    It is pointed out that a cavity supernova (SN) explosion of a moving massive star could result in a significant offset of the neutron star (NS) birth-place from the geometrical centre of the supernova remnant (SNR). Therefore: a) the high implied transverse velocities of a number of NSs (e.g. PSR B1610-50, PSR B1757-24, SGR0525-66) could be reduced; b) the proper motion vector of a NS should not necessarily point away from the geometrical centre of the associated SNR; c) the circle of possibl...

  13. Evidence for nearby supernova explosions

    International Nuclear Information System (INIS)

    Benitez, Narciso; Maiz-Apellaniz, Jesus; Canelles, Matilde

    2002-01-01

    Supernova (SN) explosions are one of the most energetic--and potentially lethal--phenomena in the Universe. We show that the Scorpius-Centaurus OB association, a group of young stars currently located at ∼130 pc from the Sun, has generated 20 SN explosions during the last 11 Myr, some of them probably as close as 40 pc to our planet. The deposition on Earth of 60 Fe atoms produced by these explosions can explain the recent measurements of an excess of this isotope in deep ocean crust samples. We propose that ∼2 Myr ago, one of the SNe exploded close enough to Earth to seriously damage the ozone layer, provoking or contributing to the Pliocene-Pleistocene boundary marine extinction

  14. The triple-ring nebula around SN 1987A: fingerprint of a binary merger.

    Science.gov (United States)

    Morris, Thomas; Podsiadlowski, Philipp

    2007-02-23

    Supernova 1987A, the first naked-eye supernova observed since Kepler's supernova in 1604, defies a number of theoretical expectations. Its anomalies have long been attributed to a merger between two massive stars that occurred some 20,000 years before the explosion, but so far there has been no conclusive proof that this merger took place. Here, we present three-dimensional hydrodynamical simulations of the mass ejection associated with such a merger and the subsequent evolution of the ejecta, and we show that this accurately reproduces the properties of the triple-ring nebula surrounding the supernova.

  15. Photometry of High-Redshift Gravitationally Lensed Type Ia Supernovae

    Science.gov (United States)

    Haynie, Annastasia

    2018-01-01

    Out of more than 1100 well-identified Type Ia Supernovae, only roughly 10 of them are at z> 1.5. High redshift supernovae are hard to detect but this is made easier by taking advantage of the effects of gravitational lensing, which magnifies objects in the background field of massive galaxy clusters. Supernova Nebra (z= ~1.8), among others, was discovered during observations taken as part of the RELICS survey, which focused on fields of view that experience strong gravitational lensing effects. SN Nebra, which sits behind galaxy cluster Abell 1763, is magnified and therefore appears closer and easier to see than with HST alone. Studying high-redshift supernovae like SN Nebra is an important step towards creating cosmological models that accurately describe the behavior of dark energy in the early Universe. Recent efforts have been focused on improving photometry and the building and fitting of preliminary light curves.

  16. A Spectroscopic Study of the Rich Supernova Remnant Population in M83

    Science.gov (United States)

    Winkler, P. Frank; Blair, William P.; Long, Knox S.

    2017-04-01

    We report the results from a spectrophotometric study sampling the ≳ 300 candidate supernova remnants (SNRs) in M83 identified through optical imaging with Magellan/IMACS and Hubble Space Telescope/WFC3. Of the 118 candidates identified based on a high [S II] λλ 6716, 6731 to Hα emission ratio, 117 show spectroscopic signatures of shock-heated gas, confirming them as SNRs—the largest uniform set of SNR spectra for any galaxy. Spectra of 22 objects with a high [O III] λ5007 to Hα emission ratio, selected in an attempt to identify young ejecta-dominated SNRs like Cas A, reveal only one (previously reported) object with the broad (≳ 1000 {km} {{{s}}}-1) emission lines characteristic of ejecta-dominated SNRs, beyond the known SN1957D remnant. The other 20 [O III]-selected candidates include planetary nebulae, compact H II regions, and one background QSO. Although our spectroscopic sample includes 22 SNRs smaller than 11 pc, none of the other objects show broad emission lines; instead their spectra stem from relatively slow (˜ 200 {km} {{{s}}}-1) radiative shocks propagating into the metal-rich interstellar medium of M83. With six SNe in the past century, one might expect more of M83's small-diameter SNRs to show evidence of ejecta; this appears not to be the case. We attribute their absence to several factors, including that SNRs expanding into a dense medium evolve quickly to the ISM-dominated phase, and that SNRs expanding into regions already evacuated by earlier SNe are probably very faint. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  17. Photometric classification of type Ia supernovae in the SuperNova Legacy Survey with supervised learning

    Energy Technology Data Exchange (ETDEWEB)

    Möller, A. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Ruhlmann-Kleider, V.; Leloup, C.; Neveu, J.; Palanque-Delabrouille, N.; Rich, J. [Irfu, SPP, CEA Saclay, F-91191 Gif sur Yvette Cedex (France); Carlberg, R. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H8 (Canada); Lidman, C. [Australian Astronomical Observatory, North Ryde, NSW 2113 (Australia); Pritchet, C., E-mail: anais.moller@anu.edu.au, E-mail: vanina.ruhlmann-kleider@cea.fr, E-mail: clement.leloup@cea.fr, E-mail: jneveu@lal.in2p3.fr, E-mail: nathalie.palanque-delabrouille@cea.fr, E-mail: james.rich@cea.fr, E-mail: raymond.carlberg@utoronto.ca, E-mail: chris.lidman@aao.gov.au, E-mail: pritchet@uvic.ca [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, BC V8W 3P6 (Canada)

    2016-12-01

    In the era of large astronomical surveys, photometric classification of supernovae (SNe) has become an important research field due to limited spectroscopic resources for candidate follow-up and classification. In this work, we present a method to photometrically classify type Ia supernovae based on machine learning with redshifts that are derived from the SN light-curves. This method is implemented on real data from the SNLS deferred pipeline, a purely photometric pipeline that identifies SNe Ia at high-redshifts (0.2 < z < 1.1). Our method consists of two stages: feature extraction (obtaining the SN redshift from photometry and estimating light-curve shape parameters) and machine learning classification. We study the performance of different algorithms such as Random Forest and Boosted Decision Trees. We evaluate the performance using SN simulations and real data from the first 3 years of the Supernova Legacy Survey (SNLS), which contains large spectroscopically and photometrically classified type Ia samples. Using the Area Under the Curve (AUC) metric, where perfect classification is given by 1, we find that our best-performing classifier (Extreme Gradient Boosting Decision Tree) has an AUC of 0.98.We show that it is possible to obtain a large photometrically selected type Ia SN sample with an estimated contamination of less than 5%. When applied to data from the first three years of SNLS, we obtain 529 events. We investigate the differences between classifying simulated SNe, and real SN survey data. In particular, we find that applying a thorough set of selection cuts to the SN sample is essential for good classification. This work demonstrates for the first time the feasibility of machine learning classification in a high- z SN survey with application to real SN data.

  18. Photometric classification of type Ia supernovae in the SuperNova Legacy Survey with supervised learning

    International Nuclear Information System (INIS)

    Möller, A.; Ruhlmann-Kleider, V.; Leloup, C.; Neveu, J.; Palanque-Delabrouille, N.; Rich, J.; Carlberg, R.; Lidman, C.; Pritchet, C.

    2016-01-01

    In the era of large astronomical surveys, photometric classification of supernovae (SNe) has become an important research field due to limited spectroscopic resources for candidate follow-up and classification. In this work, we present a method to photometrically classify type Ia supernovae based on machine learning with redshifts that are derived from the SN light-curves. This method is implemented on real data from the SNLS deferred pipeline, a purely photometric pipeline that identifies SNe Ia at high-redshifts (0.2 < z < 1.1). Our method consists of two stages: feature extraction (obtaining the SN redshift from photometry and estimating light-curve shape parameters) and machine learning classification. We study the performance of different algorithms such as Random Forest and Boosted Decision Trees. We evaluate the performance using SN simulations and real data from the first 3 years of the Supernova Legacy Survey (SNLS), which contains large spectroscopically and photometrically classified type Ia samples. Using the Area Under the Curve (AUC) metric, where perfect classification is given by 1, we find that our best-performing classifier (Extreme Gradient Boosting Decision Tree) has an AUC of 0.98.We show that it is possible to obtain a large photometrically selected type Ia SN sample with an estimated contamination of less than 5%. When applied to data from the first three years of SNLS, we obtain 529 events. We investigate the differences between classifying simulated SNe, and real SN survey data. In particular, we find that applying a thorough set of selection cuts to the SN sample is essential for good classification. This work demonstrates for the first time the feasibility of machine learning classification in a high- z SN survey with application to real SN data.

  19. Supernova light-curve fitters and dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Bengochea, Gabriel R., E-mail: gabriel@iafe.uba.a [Instituto de Astronomia y Fisica del Espacio (IAFE), CC 67, Suc. 28, 1428 Buenos Aires (Argentina)

    2011-01-24

    We show that when a procedure is made to remove the tension between a supernova Ia (SN Ia) data set and observations from BAO and CMB, there might be the case where the same SN Ia set built with two different light-curve fitters behaves as two separate and distinct supernova sets, and the tension found by some authors between supernova sets actually could be due to tension or inconsistency between fitters. We also show that the information of the fitter used in an SN Ia data set could be relevant to determine whether phantom type models are favored or not when such a set is combined with the BAO/CMB joint parameter.

  20. Supernova light-curve fitters and dark energy

    International Nuclear Information System (INIS)

    Bengochea, Gabriel R.

    2011-01-01

    We show that when a procedure is made to remove the tension between a supernova Ia (SN Ia) data set and observations from BAO and CMB, there might be the case where the same SN Ia set built with two different light-curve fitters behaves as two separate and distinct supernova sets, and the tension found by some authors between supernova sets actually could be due to tension or inconsistency between fitters. We also show that the information of the fitter used in an SN Ia data set could be relevant to determine whether phantom type models are favored or not when such a set is combined with the BAO/CMB joint parameter.

  1. Pair production of helicity-flipped neutrinos in supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A. (NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Box 500, Batavia, Illinois 60510-0500 (USA) Departamento de Fisica Teorica, Universidad de Valencia, 46100 Burjassot (Valencia) (Spain)); Gandhi, R. (Department of Physics and Astronomy, University of Arizona, Tucson, AZ (USA))

    1990-04-15

    We calculate the emissivity for the pair production of helicity-flipped neutrinos, in a way that can be used in supernova calculations. We also present some simple estimates which show that such a process can act as an efficient energy-loss mechanism in the shocked supernova core, and we use this fact to estimate neutrino mass limits from SN 1987A neutrino observations.

  2. Pair production of helicity-flipped neutrinos in supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A.; Gandhi, R.

    1989-07-03

    We calculate the emissivity for the pair production of helicity-flipped neutrinos, in a way that can be used in supernova calculations. We also present some simple estimates which show that such processes can act as an efficient energy-loss mechanism in the shocked supernova core, and we use this fact to extract neutrino mass limits from SN1987A neutrino observations. 24 refs., 2 figs.

  3. Dark Matter Ignition of Type Ia Supernovae.

    Science.gov (United States)

    Bramante, Joseph

    2015-10-02

    Recent studies of low redshift type Ia supernovae (SN Ia) indicate that half explode from less than Chandrasekhar mass white dwarfs, implying ignition must proceed from something besides the canonical criticality of Chandrasekhar mass SN Ia progenitors. We show that 1-100 PeV mass asymmetric dark matter, with imminently detectable nucleon scattering interactions, can accumulate to the point of self-gravitation in a white dwarf and collapse, shedding gravitational potential energy by scattering off nuclei, thereby heating the white dwarf and igniting the flame front that precedes SN Ia. We combine data on SN Ia masses with data on the ages of SN Ia-adjacent stars. This combination reveals a 2.8σ inverse correlation between SN Ia masses and ignition ages, which could result from increased capture of dark matter in 1.4 vs 1.1 solar mass white dwarfs. Future studies of SN Ia in galactic centers will provide additional tests of dark-matter-induced type Ia ignition. Remarkably, both bosonic and fermionic SN Ia-igniting dark matter also resolve the missing pulsar problem by forming black holes in ≳10  Myr old pulsars at the center of the Milky Way.

  4. TYPE Iax SUPERNOVAE: A NEW CLASS OF STELLAR EXPLOSION

    International Nuclear Information System (INIS)

    Foley, Ryan J.; Challis, P. J.; Chornock, R.; Marion, G. H.; Kirshner, R. P.; Ganeshalingam, M.; Li, W.; Silverman, J. M.; Filippenko, A. V.; Morrell, N. I.; Phillips, M. M.; Pignata, G.; Stritzinger, M. D.; Wang, X.; Anderson, J. P.; Hamuy, M.; Freedman, W. L.; Persson, S. E.; Jha, S. W.; McCully, C.

    2013-01-01

    We describe observed properties of the Type Iax class of supernovae (SNe Iax), consisting of SNe observationally similar to its prototypical member, SN 2002cx. The class currently has 25 members, and we present optical photometry and/or optical spectroscopy for most of them. SNe Iax are spectroscopically similar to SNe Ia, but have lower maximum-light velocities (2000 ∼ –1 ), typically lower peak magnitudes (–14.2 ≥ M V, p eak ∼> –18.9 mag), and most have hot photospheres. Relative to SNe Ia, SNe Iax have low luminosities for their light-curve shape. There is a correlation between luminosity and light-curve shape, similar to that of SNe Ia, but offset from that of SNe Ia and with larger scatter. Despite a host-galaxy morphology distribution that is highly skewed to late-type galaxies without any SNe Iax discovered in elliptical galaxies, there are several indications that the progenitor stars are white dwarfs (WDs): evidence of C/O burning in their maximum-light spectra, low (typically ∼0.5 M ☉ ) ejecta masses, strong Fe lines in their late-time spectra, a lack of X-ray detections, and deep limits on massive stars and star formation at the SN sites. However, two SNe Iax show strong He lines in their spectra. The progenitor system and explosion model that best fits all of the data is a binary system of a C/O WD that accretes matter from a He star and has a deflagration. At least some of the time, this explosion will not disrupt the WD. The small number of SNe in this class prohibit a detailed analysis of the homogeneity and heterogeneity of the entire class. We estimate that in a given volume there are 31 +17 -13 SNe Iax for every 100 SNe Ia, and for every 1 M ☉ of iron generated by SNe Ia at z = 0, SNe Iax generate ∼0.036 M ☉ . Being the largest class of peculiar SNe, thousands of SNe Iax will be discovered by LSST. Future detailed observations of SNe Iax should further our understanding of both their progenitor systems and explosions as well

  5. Direct Measurement of the Supernova Rate in Starburst Galaxies

    Science.gov (United States)

    Bregman, Jesse D.; Temi, Pasquale; Rank, David; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    Supernovae play a key role in the dynamics, structure, and chemical evolution of galaxies. The massive stars that end their lives as supernovae live for short times. Many are still associated with dusty star formation regions when they explode, making them difficult to observe at visible wavelengths. In active star forming regions (galactic nuclei and starburst regions), dust extintion is especially severe. Thus, determining the supernova rate in the active star forming regions of galaxies, where the supernova rate can be one or two orders of magnitude higher than the average, has proven to be difficult. From observations of SN1987A, we know that the [NiII] 6.63 micron emission line was the strongest line in the infrared spectrum for a period of a year and a half after the explosion. Since dust extintion is much less at 6.63 pm than at visible wavelengths (A(sub 6.63)/A(sub V) = 0.025), the NiII line can be used as a sensitive probe for the detection of recent supernovae. We have observed a sample of starburst galaxies at 6.63 micron using ISOCAM to search for the NiII emission line characteristic of recent supernovae. We did not detect any NiII line emission brighter than a 5sigma limit of 5 mJy. We can set upper limits to the supernova rate in our sample, scaled to the rate in M82, of less than 0.3 per year at the 90% confidence level using Bayesian methods. Assuming that a supernova would have a NiII with the same luminosity as observed in SN1987A, we find less than 0.09 and 0.15 per year at the 50% and 67% confidence levels. These rates are somewhat less if a more normal type II supernovae has a NiII line luminosity greater than the line in SN1987A.

  6. Supernova 1987A in the Large Magellanic Cloud

    Science.gov (United States)

    Kafatos, Minas; Michalitsianos, Andrew G.

    2006-11-01

    Foreword; Acknowledgements; Workshop participants; 1. Images and spectrograms of Sanduleak - 69º202, the SN 1987a progenitor N. R. Walborn; 2. The progenitor of SN 1987A G. Sonneborn; 3. Another supernova with a blue progenitor C. M. Gaskell and W. C. Keel; 4. Optical and infrared observations of SN 1987A from Cerro Tololo Inter-American Observatory M. M. Phillips; 5. SN 1987A: observational results obtained at ESO I. J. Danziger, P. Bouchet, R. A. E. Fosbury, C. Gouiffes, L. B. Lucy, A. F. M. Moorwood, E. Oliva and F. Rufener; 6. Observations of SN 1987A at the South African Astronomical Observatory (SAAO) M. W. Feast; 7. Observations of SN 1987A at the Anglo-Australian Telescope W. J. Couch; 8. Linear polarimetric study of SN 1987A A. Clocchiatti, M. Méndez, O. Benvenuto, C. Feinstein, H. Marraco, B. García and N. Morrell; 9. Infrared spectroscopy of SN 1987A from the NASA Kuiper Airborne Observatory H. P. Larson, S. Drapatz, M. J. Mumma and H. A. Weaver; 10. Radio observations of SN 1987A N. Bartel et al.; 11. Ultraviolet observations of SN 1987A: clues to mass loss R. P. Kirshner; 12. On the energetics of SN 1987A N. Panagia; 13. On the nature and apparent uniqueness of SN 1987A A. V. Filippenko; 14. A comparison of the SN 1987A light curve with other type II supernovae, and the detectability of similar supernovae M. F. Schmitz and C. M. Gaskell; 15. P-Cygni features and photospheric velocities L. Bildsten and J. C. L. Wang; 16. The Neutrino burst from SN 1987A detected in the Mont Blanc LSD experiment M. Aglietta et al.; 17. Toward observational neutrino astrophysics M. Koshiba; 18. The discovery of neutrinos from SN 1987A with the IMB detector J. Matthews; 19. Peering into the abyss: the neutrinos from SN 1987A A. Burrows; 20. Phenomenological analysis of neutrino emission from SN 1987A J. N. Bahcall, D. N. Spergel and W. H. Press; 21. Mass determination of neutrinos H. Y. Chiu; 22. Neutrino transport in a type II supernova D. C. Ellison, P. M. Giovanoni

  7. Discovery of a Supernova in HST imaging of the MACSJ0717 Frontier Field

    Science.gov (United States)

    Rodney, Steven A.; Lotz, Jennifer; Strolger, Louis-Gregory

    2013-10-01

    We report the discovery of a supernova (SN) in Hubble Space Telescope (HST) observations centered on the galaxy cluster MACSJ0717. It was discovered in the F814W (i) band of the Advanced Camera for Surveys (ACS), in observations that were collected as part of the ongoing HST Frontier Fields (HFF) program (PI:J.Lotz, HST PID 13498). The FrontierSN ID for this object is SN HFF13Zar (nicknamed "SN Zara").

  8. COMPARISON OF DIVERSITY OF TYPE IIB SUPERNOVAE WITH ASYMMETRY IN CASSIOPEIA A USING LIGHT ECHOES

    Energy Technology Data Exchange (ETDEWEB)

    Finn, Kieran; Bianco, Federica B.; Modjaz, Maryam; Liu, Yu-Qian [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States); Rest, Armin [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2016-10-20

    We compare the diversity of spectral line velocities in a large sample of type IIb supernovae (SNe IIb) with the expected asphericity in the explosion, as measured from the light echoes (LEs) of Cassiopeia A (Cas A), which was a historical galactic SN IIb. We revisit the results of Rest et al., who used LEs to observe Cas A from multiple lines of sight and hence determine its asphericity, as seen in the velocity of three spectral lines (He i λ 5876, H α , and the Ca ii near-infrared (NIR) triplet). We confirm and improve on this measurement by reproducing the effect of the LEs in the spectra of several extragalactic SNe IIb found in the literature as well as mean SN IIb spectra recently created by Liu et al. and comparing these to the observed light echo spectra of Cas A, including their associated uncertainties. In order to quantify the accuracy of this comparison, we smooth the light echo spectra of Cas A using Gaussian processes and use a Monte Carlo method to measure the absorption velocities of these three features in the spectra. We then test the hypothesis that the diversity of ejecta velocities seen in SNe IIb can be explained by asphericity. We do this by comparing the range of velocities seen in the different LEs, and hence different lines of sight, of Cas A to that seen in the population of SNe IIb. We conclude that these two ranges are of the same order and thus asphericity could be enough to explain the diversity in the expansion velocity alone.

  9. High-Resolution X-Ray Spectroscopy of Galactic Supernova Remnants

    Directory of Open Access Journals (Sweden)

    Satoru Katsuda

    2014-12-01

    Full Text Available High-resolution X-ray spectroscopy of Galactic supernova remnants (SNRs, based on grating spectrometers onboard XMM-Newton and Chandra, has been revealing a variety of new astrophysical phenomena. Broadened oxygen lines for a northwestern compact knot in SN 1006 clearly show a high oxygen temperature of ~300 keV. The high temperature together with a lower electron temperature (kTe ~ 1 keV can be reasonably interpreted as temperature non-equilibration between electrons and oxygen behind a collisionless shock. An ejecta knot in the Puppis A SNR shows blueshifted line emission by ~ 1500kms-1. The line widths are fairly narrow in contrast to the SN 1006's knot; an upper limit of 0.9 eV is obtained for O VIII Lyα, which translates to an oxygen temperature of kTO < 30 keV. The low temperature suggests that the knot was heated by a reverse shock whose velocity is 4 times slower than that of a forward shock. Anomalous intensity ratios in O VII Heα lines, i.e., a stronger forbidden line than a resonance line, is found in a cloud-shock interaction region in Puppis A. The line ratio can be best explained by the charge-exchange emission that should arise at interfaces between the cold/warm clouds and the hot plasma. There are several other targets for which we plan to analyze high-quality grating data prior to the operation of the soft X-ray spectrometer onboard Astro-H.

  10. Host galaxies of type ia supernovae from the nearby supernova factory

    Science.gov (United States)

    Childress, Michael Joseph

    Type Ia Supernovae (SNe Ia) are excellent distance indicators, yet the full details of the underlying physical mechanism giving rise to these dramatic stellar deaths remain unclear. As large samples of cosmological SNe Ia continue to be collected, the scatter in brightnesses of these events is equally affected by systematic errors as statistical. Thus we need to understand the physics of SNe Ia better, and in particular we must know more about the progenitors of these SNe so that we can derive better estimates for their true intrinsic brightnesses. The host galaxies of SNe Ia provide important indirect clues as to the nature of SN Ia progenitors. In this Thesis we utilize the host galaxies of SNe Ia discovered by the Nearby Supernova Factory (SNfactory) to pursue several key investigations into the nature of SN Ia progenitors and their effects on SN Ia brightnesses. We first examine the host galaxy of SN 2007if, an important member of the subclass of SNe Ia whose extreme brightnesses indicate a progenitor that exceeded the canonical Chandrasekhar-mass value presumed for normal SNe Ia, and show that the host galaxy of this SN is composed of very young stars and has extremely low metallicity, providing important constraints on progenitor scenarios for this SN. We then utilize the full sample of SNfactory host galaxy masses (measured from photometry) and metallicities (derived from optical spectroscopy) to examine several global properties of SN Ia progenitors: (i) we show that SN Ia hosts show tight agreement with the normal galaxy mass-metallicity relation; (ii) comparing the observed distribution of SN Ia host galaxy masses to a theoretical model that couples galaxy physics to the SN Ia delay time distribution (DTD), we show the power of the SN Ia host mass distribution in constraining the SN Ia DTD; and (iii) we show that the lack of ultra-low metallicities in the SNfactory SN Ia host sample gives provisional support for the theorized low-metallicity inhibition of

  11. TYPE IIb SUPERNOVAE WITH COMPACT AND EXTENDED PROGENITORS

    International Nuclear Information System (INIS)

    Chevalier, Roger A.; Soderberg, Alicia M.

    2010-01-01

    The classic example of a Type IIb supernova is SN 1993J, which had a cool extended progenitor surrounded by a dense wind. There is evidence for another category of Type IIb supernova that has a more compact progenitor with a lower density, probably fast, wind. Distinguishing features of the compact category are weak optical emission from the shock heated envelope at early times, nonexistent or very weak H emission in the late nebular phase, rapidly evolving radio emission, rapid expansion of the radio shell, and expected nonthermal as opposed to thermal X-ray emission. Type IIb supernovae that have one or more of these features include SNe 1996cb, 2001ig, 2003bg, 2008ax, and 2008bo. All of these with sufficient radio data (the last four) show evidence for presupernova wind variability. We estimate a progenitor envelope radius ∼1 x 10 11 cm for SN 2008ax, a value consistent with a compact Wolf-Rayet progenitor. Supernovae in the SN 1993J extended category include SN 2001gd and probably the Cas A supernova. We suggest that the compact Type IIb events be designated Type cIIb and the extended ones Type eIIb. The H envelope mass dividing these categories is ∼0.1 M sun .

  12. Masses of supernova progenitors

    International Nuclear Information System (INIS)

    Tinsley, B.M.

    1977-01-01

    The possible nature and masses of supernovae progenitors, and the bearing of empirical results on some unsolved theoretical problems concerning the origin of supernovae, are discussed. The author concentrates on two main questions: what is the lower mass limit for stars to die explosively and what stars initiate type I supernovae. The evidence considered includes local supernova rates, empirical estimates of msub(w) (the upper mass limit for death as a white dwarf), the distributions of supernovae among stellar populations in galaxies and the colors of supernova producing galaxies. (B.D.)

  13. Generation of Cosmic rays in Historical Supernova Remnants

    Directory of Open Access Journals (Sweden)

    Sinitsyna V.Y.

    2013-06-01

    Full Text Available We present the results of observations of two types of Galactic supernova remnants with the SHALON mirror Cherenkov telescope of Tien-Shan high-mountain Observatory: the shell-type supernova remnants Tycho, Cas A and IC 443; plerions Crab Nebula, 3c58(SN1181 and Geminga (probably plerion. The experimental data have confirmed the prediction of the theory about the hadronic generation mechanism of very high energy (800 GeV - 100 TeV gamma-rays in Tycho's supernova remnant. The data obtainedsuggest that the very high energy gamma-ray emission in the objects being discussedis different in origin.

  14. Three-dimensional simulations of core-collapse supernovae: from shock revival to shock breakout

    Science.gov (United States)

    Wongwathanarat, A.; Müller, E.; Janka, H.-Th.

    2015-05-01

    We present three-dimensional hydrodynamic simulations of the evolution of core-collapse supernovae (SN) from blast-wave initiation by the neutrino-driven mechanism to shock breakout from the stellar surface, using an axis-free Yin-Yang grid and considering two 15 M⊙ red supergiants (RSG) and two blue supergiants (BSG) of 15 M⊙ and 20 M⊙. We demonstrate that the metal-rich ejecta in homologous expansion still carry fingerprints of asymmetries at the beginning of the explosion, but the final metal distribution is massively affected by the detailed progenitor structure. The most extended and fastest metal fingers and clumps are correlated with the biggest and fastest-rising plumes of neutrino-heated matter, because these plumes most effectively seed the growth of Rayleigh-Taylor (RT) instabilities at the C+O/He and He/H composition-shell interfaces after the passage of the SN shock. The extent of radial mixing, global asymmetry of the metal-rich ejecta, RT-induced fragmentation of initial plumes to smaller-scale fingers, and maximum Ni and minimum H velocities depend not only on the initial asphericity and explosion energy (which determine the shock and initial Ni velocities), but also on the density profiles and widths of C+O core and He shell and on the density gradient at the He/H transition, which leads to unsteady shock propagation and the formation of reverse shocks. Both RSG explosions retain a large global metal asymmetry with pronounced clumpiness and substructure, deep penetration of Ni fingers into the H-envelope (with maximum velocities of 4000-5000 km s-1 for an explosion energy around 1.5 bethe) and efficient inward H-mixing. While the 15 M⊙ BSG shares these properties (maximum Ni speeds up to ~3500 km s-1), the 20 M⊙ BSG develops a much more roundish geometry without pronounced metal fingers (maximum Ni velocities only ~2200 km s-1) because of reverse-shock deceleration and insufficient time for strong RT growth and fragmentation at the He

  15. Photon Dispersion in a Supernova Core

    OpenAIRE

    Kopf, A.; Raffelt, G.

    1997-01-01

    While the photon forward-scattering amplitude on free magnetic dipoles (e.g. free neutrons) vanishes, the nucleon magnetic moments still contribute significantly to the photon dispersion relation in a supernova (SN) core where the nucleon spins are not free due to their interaction. We study the frequency dependence of the relevant spin susceptibility in a toy model with only neutrons which interact by one-pion exchange. Our approach amounts to calculating the photon absorption rate from the ...

  16. Interaction of Supernova Blast Waves with Wind-Driven Shells: Formation of "Jets", "Bullets", "Ears", Etc.

    Science.gov (United States)

    Gvaramadze, V. V.

    Most of middle-aged supernova remnants (SNRs) have a distorted and complicated appearance which cannot be explained in the framework of the Sedov-Taylor model. We consider three typical examples of such SNRs (Vela SNR, MSH15-52, G309.2-00.6) and show that their structure could be explained as a result of interaction of a supernova (SN) blast wave with the ambient medium preprocessed by the action of the SN progenitor's wind and ionized emission.

  17. SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, Jason; Kasen, Daniel, E-mail: jdexter@berkeley.edu [Departments of Physics and Astronomy, University of California, Berkeley, CA 94720 (United States)

    2013-07-20

    Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time ({approx}>days) power potentially associated with the accretion of this 'fallback' material could significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as M-dot {proportional_to}t{sup -5/3} at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse out efficiently. The resulting light curves are different and more diverse than previous fallback supernova models which ignored the input of accretion power and produced short-lived, dim transients. The possible outcomes when fallback accretion power is significant include super-luminous ({approx}> 10{sup 44} erg s{sup -1}) Type II events of both short and long durations, as well as luminous Type I events from compact stars that may have experienced significant mass loss. Accretion power may unbind the remaining infalling material, causing a sudden decrease in the brightness of some long duration Type II events. This scenario may be relevant for explaining some of the recently discovered classes of peculiar and rare supernovae.

  18. Are young supernova remnants interacting with circumstellar gas

    International Nuclear Information System (INIS)

    Chevalier, R.A.

    1982-01-01

    The young remnants of galactic Type I supernovae (SN 1006, SN 1572, and SN 1604) appear to be interacting with moderately dense gas (n/sub O/> or =0.1 cm -3 ). If the gas in the ambient interstellar medium, the observations suggest that gas of this density is fairly pervasive. If the gas is circumstellar, there are important implications for the progenitors of Type I supernovae. A plausible density distribution for circumstellar gas is rhoinfinityr -2 . The expansion of a supernova into such a medium is examined and is compared with expansion into a uniform medium. The two cases can be distinguished on the basis of their density profiles and their rates of expansion. Currently available data factor the hypothesis of expansion in a uniform medium for all three Type I remnants; the evidence is the strongest for SN 1572 and the weakest for SN 1604. Further X-ray and radio observations of the galactic remnants and of extragalactic Type I supernovae should serve to test this hypothesis

  19. Prompt effects of supernovae

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1975-01-01

    Conflicting theories on the mechanisms of supernova production are examined. Supernova as sources of other phenomena such as comic rays, gamma rays, x-rays, and electromagnetic pulses are considered. 32 references

  20. SN 2006oz

    DEFF Research Database (Denmark)

    Leloudas, Georgios; Chatzopoulos, E.; Dilday, B.

    2012-01-01

    to contribute to a better understanding of these objects by studying SN 2006oz, a newly-recognized member of this class. Methods. We present multi-color light curves of SN 2006oz from the SDSS-II SN Survey that cover its rise time, as well as an optical spectrum that shows that the explosion occurred at z ~ 0.......376. We fitted black-body functions to estimate the temperature and radius evolution of the photosphere and used the parametrized code SYNOW to model the spectrum. We constructed a bolometric light curve and compared it with explosion models. In addition, we conducted a deep search for the host galaxy...... to a recombination wave in a circumstellar medium (CSM) and discuss whether this is a common property of all similar explosions. The subsequent rise can be equally well described by input from a magnetar or by ejecta-CSM interaction, but the models are not well constrained owing to the lack of post...

  1. Neutron Star/supernova Remnant Associations

    Science.gov (United States)

    Gvaramadze, V. V.

    We propose a new approach for studying the neutron star/supernova remnant associations, based on the idea that the (diffuse) supernova remnants (SNRs) can be products of an off-centred supernova (SN) explosion in a preexisting bubble created by the wind of a moving massive star. A cavity SN explosion of a moving star results in a considerable offset of the neutron star (NS) birth-place from the geometrical centre of the SNR. Therefore: a) the high transverse velocities inferred for a number of NSs (e.g. PSR B 1610-50, PSR B 1757-24, SGR 0525-66) through their association with SNRs can be reduced; b) the proper motion vector of a NS should not necessarily point away from the geometrical centre of the associated SNR. Taking into account of these two facts allow us to enlarge the circle of possible NS/SNR associations, and could significantly affect the results of previous studies of NS/SNR associations. The possibilities of our approach are illustrated with the example of the association between PSR B 1706-44 and SNR G 343.1-2.3. We show that this association could be real if both objects are the remnants of a SN exploded within a mushroom-like cavity (created by the SN progenitor wind breaking out of the parent molecular cloud and expanding into an intercloud medium of a much less density). We also show that the SN explosion sites in some middle-aged (shell-like) SNRs could be marked by (compact) nebulae of thermal X-ray emission. The possible detection of such nebulae within middle-aged SNRs could be used for the re-estimation of implied transverse velocities of known NSs or for the search of new stellar remnants possibly associated with these SNRs.

  2. Detecting First Supernovae with JWST

    Science.gov (United States)

    Regos, Eniko; FLARE

    2018-01-01

    We have applied for a JWST ERS First Transients Survey, FLARE to answer empirically how the Universe made its first stars. To quest the epoch of reionization we target what happened to these first stars by observing the most luminous events, supernovae. These transients provide direct constraints on star formation rates and the initial mass function.These very rare events can be reached by JWST at 27 mag AB in 2 micron and 4.4 micron over a field of 0.1 square degree visited multiple times each year.The survey may detect massive Pop III SNe at redshifts up to 10, pinpointing the redshift of first stars, a key scientific goal of JWST.We explore all models of star formation history (derived from UV luminosity densities and IR data), DTD, top heavy IMF of early, low metallicity stars, and normalizations to data of SN Ia, II rates (SNLS, CLASH, CANDELS, SDSS, SVISS), as well as SLSN (ROTSE, SNLS) to estimate the expected SN rates as function of redshift.Population synthesis of double degenerate and single degenerate scenarios of SN Ia shows that the shape of the DTD is rather insensitive to the assumptions (common envelope prescription and metallicities, or retention efficiency of accreted H to white dwarf core and mass transfer rate).Indeed GOODS High z SN Ia rates imply substantial delay in their progenitor model, and Hubble Higher z SN search constrains delay time distribution models as well.SLSN (I, II /H/ and extreme rare pulsational pair instability) are magnetars (ULGRB) in high local star formation rate, faint, low metallicity galaxies.

  3. Gravitational lensing of the SNLS supernovae

    International Nuclear Information System (INIS)

    Kronborg, T.

    2011-01-01

    Type Ia supernovae have become an essential tool of modern observational cosmology. By studying the distance-redshift relation of a large number of supernovae, the nature of dark energy can be unveiled. Distances to Type Ia SNe are however affected by gravitational lensing which can induce systematic effects in the measurement of cosmology. The majority of the supernovae is slightly de-magnified whereas a small fraction is significantly magnified due to the mass distribution along the line of sight. This causes naturally an additional dispersion in the observed magnitudes. There are two different ways to estimate the magnification of a supernova. A first method consists in comparing the supernova luminosity, which is measured to about 15% precision, to the mean SN luminosity at the same redshift. Another estimate can be obtained from predicting the magnification induced by the foreground matter density modeled from the measurements of the luminosity of the galaxies with an initial prior on the mass-luminosity relation of the galaxies. A correlation between these 2 estimates will make it possible to tune the initially used mass-luminosity relation resulting in an independent measurement of the dark matter clustering based on the luminosity of SNe Ia. Evidently, this measurement depends crucially on the detection of this correlation also referred to as the lensing signal. This thesis is dedicated to the measurement of the lensing signal in the SNLS 3-year sample. (author)

  4. A 3D View of a Supernova Remnant

    Science.gov (United States)

    Kohler, Susanna

    2017-06-01

    The outlined regions mark the 57 knots in Tycho selected by the authors for velocity measurements. Magenta regions have redshifted line-of-sight velocities (moving away from us); cyan regions have blueshifted light-of-sight velocities (moving toward us). [Williams et al. 2017]The Tycho supernova remnant was first observed in the year 1572. Nearly 450 years later, astronomers have now used X-ray observations of Tycho to build the first-ever 3D map of a Type Ia supernova remnant.Signs of ExplosionsSupernova remnants are spectacular structures formed by the ejecta of stellar explosions as they expand outwards into the surrounding interstellar medium.One peculiarity of these remnants is that they often exhibit asymmetries in their appearance and motion. Is this because the ejecta are expanding into a nonuniform interstellar medium? Or was the explosion itself asymmetric? The best way we can explore this question is with detailed observations of the remnants.Histograms of the velocity in distribution of the knots in the X (green), Y (blue) and Z (red) directions (+Z is away from the observer). They show no evidence for asymmetric expansion of the knots. [Williams et al. 2017]Enter TychoTo this end, a team of scientists led by Brian Williams (Space Telescope Science Institute and NASA Goddard SFC) has worked to map out the 3D velocities of the ejecta in the Tycho supernova remnant. Tycho is a Type Ia supernova thought to be caused by the thermonuclear explosion of a white dwarf in a binary system that was destabilized by mass transfer from its companion.After 450 years of expansion, the remnant now has the morphological appearance of a roughly circular cloud of clumpy ejecta. The forward shock wave from the supernova, however, is known to have twice the velocity on one side of the shell as on the other.To better understand this asymmetry, Williams and collaborators selected a total of 57 knots in Tychos ejecta, spread out around the remnant. They then used 12 years of

  5. HIGH-RESOLUTION RADIO OBSERVATIONS OF THE REMNANT OF SN 1987A AT HIGH FREQUENCIES

    International Nuclear Information System (INIS)

    Zanardo, Giovanna; Staveley-Smith, L.; Potter, T. M.; Ng, C.-Y.; Gaensler, B. M.; Manchester, R. N.; Tzioumis, A. K.

    2013-01-01

    We present new imaging observations of the remnant of Supernova (SN) 1987A at 44 GHz, performed in 2011 with the Australia Telescope Compact Array (ATCA). The 0.''35 × 0.''23 resolution of the diffraction-limited image is the highest achieved to date in high-dynamic range. We also present a new ATCA image at 18 GHz derived from 2011 observations, which is super-resolved to 0.''25. The flux density is 40 ± 2 mJy at 44 GHz and 81 ± 6 mJy at 18 GHz. At both frequencies, the remnant exhibits a ring-like emission with two prominent lobes, and an east-west brightness asymmetry that peaks on the eastern lobe. A central feature of fainter emission appears at 44 GHz. A comparison with previous ATCA observations at 18 and 36 GHz highlights higher expansion velocities of the remnant's eastern side. The 18-44 GHz spectral index is α = –0.80 (S ν ∝ν α ). The spectral index map suggests slightly steeper values at the brightest sites on the eastern lobe, whereas flatter values are associated with the inner regions. The remnant morphology at 44 GHz generally matches the structure seen with contemporaneous X-ray and Hα observations. Unlike the Hα emission, both the radio and X-ray emission peaks on the eastern lobe. The regions of flatter spectral index align and partially overlap with the optically visible ejecta. Simple free-free absorption models suggest that emission from a pulsar wind nebula or a compact source inside the remnant may now be detectable at high frequencies or at low frequencies if there are holes in the ionized component of the ejecta.

  6. Crater ejecta scaling laws: fundamental forms based on dimensional analysis

    International Nuclear Information System (INIS)

    Housen, K.R.; Schmidt, R.M.; Holsapple, K.A.

    1983-01-01

    A model of crater ejecta is constructed using dimensional analysis and a recently developed theory of energy and momentum coupling in cratering events. General relations are derived that provide a rationale for scaling laboratory measurements of ejecta to larger events. Specific expressions are presented for ejection velocities and ejecta blanket profiles in two limiting regimes of crater formation: the so-called gravity and strength regimes. In the gravity regime, ejectra velocities at geometrically similar launch points within craters vary as the square root of the product of crater radius and gravity. This relation implies geometric similarity of ejecta blankets. That is, the thickness of an ejecta blanket as a function of distance from the crater center is the same for all sizes of craters if the thickness and range are expressed in terms of crater radii. In the strength regime, ejecta velocities are independent of crater size. Consequently, ejecta blankets are not geometrically similar in this regime. For points away from the crater rim the expressions for ejecta velocities and thickness take the form of power laws. The exponents in these power laws are functions of an exponent, α, that appears in crater radius scaling relations. Thus experimental studies of the dependence of crater radius on impact conditions determine scaling relations for ejecta. Predicted ejection velocities and ejecta-blanket profiles, based on measured values of α, are compared to existing measurements of velocities and debris profiles

  7. A Moderate Redshift Supernova Search Program

    Science.gov (United States)

    Adams, M. T.; Wheeler, J. C.; Ward, M.; Wren, W. R.; Schmidt, B. P.

    1995-12-01

    We report on a recently initiated supernova (SN) search program using the McDonald Observatory 0.76m telescope and Prime Focus Camera (PFC). This SN search program takes advantage of the PFC's 42.6 x 42.6 arcmin FOV to survey moderate redshift Abell clusters in single Kron-Cousins R-band images. Our scientific goal is to discover and provide quality BVRI photometric follow-up, to R \\ +21, for a significant SNe sample at 0.03 group (Perlmutter et al 1995, ApJ, 440, L41), and the High Redshift SN Search Team (Schmidt et al 1995, Aiguiblava NATO ASI Proceedings). The McDonald SN search program includes a sample of the Abell clusters used by Lauer and Postman (1994, ApJ, 425, 418) to analyze Local Group motion. SNe discovered in these clusters contribute to the resolution of the Local Group motion controversy. We present an overview of the McDonald Observatory supernova search program, and discuss recent results.

  8. In search of Mahutonga: a possible supernova recorded in Maori astronomical traditions?

    Science.gov (United States)

    Green, David A.; Orchiston, Wayne

    Maori astronomical traditions refer to Mahutonga, which can be interpreted as a possible record of a southern supernova (SN) in or near Crux. A search for any known "young" supernova remnants in this region does not reveal any obvious candidate to associate with this possible supernova. Relaxing the positional constraint somewhat, the SN of A.D. 185 near a Centauri is nearby. If this is associated with Mahutonga, then the Maori term must be a relic of an earlier Proto-Polynesian record.

  9. Handbook of supernovae

    CERN Document Server

    Murdin, Paul

    2017-01-01

    This reference work gathers all of the latest research in the supernova field areas to create a definitive source book on supernovae, their remnants and related topics. It includes each distinct subdiscipline, including stellar types, progenitors, stellar evolution, nucleosynthesis of elements, supernova types, neutron stars and pulsars, black holes, swept up interstellar matter, cosmic rays, neutrinos from supernovae, supernova observations in different wavelengths, interstellar molecules and dust. While there is a great deal of primary and specialist literature on supernovae, with a great many scientific groups around the world focusing on the phenomenon and related subdisciplines, nothing else presents an overall survey. This handbook closes that gap at last. As a comprehensive and balanced collection that presents the current state of knowledge in the broad field of supernovae, this is to be used as a basis for further work and study by graduate students, astronomers and astrophysicists working in close/r...

  10. Evolutionary signatures in complex ejecta and their driven shocks

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    2004-11-01

    Full Text Available We examine interplanetary signatures of ejecta-ejecta interactions. To this end, two time intervals of inner-heliospheric (≤1AU observations separated by 2 solar cycles are chosen where ejecta/magnetic clouds are in the process of interacting to form complex ejecta. At the Sun, both intervals are characterized by many coronal mass ejections (CMEs and flares. In each case, a complement of observations from various instruments on two spacecraft are examined in order to bring out the in-situ signatures of ejecta-ejecta interactions and their relation to solar observations. In the first interval (April 1979, data are shown from Helios-2 and ISEE-3, separated by ~0.33AU in radial distance and 28° in heliographic longitude. In the second interval (March-April 2001, data from the SOHO and Wind probes are combined, relating effects at the Sun and their manifestations at 1AU on one of Wind's distant prograde orbits. At ~0.67AU, Helios-2 observes two individual ejecta which have merged by the time they are observed at 1AU by ISEE-3. In March 2001, two distinct Halo CMEs (H-CMEs are observed on SOHO on 28-29 March approaching each other with a relative speed of 500kms-1 within 30 solar radii. In order to isolate signatures of ejecta-ejecta interactions, the two event intervals are compared with expectations for pristine (isolated ejecta near the last solar minimum, extensive observations on which were given by Berdichevsky et al. (2002. The observations from these two event sequences are then intercompared. In both event sequences, coalescence/merging was accompanied by the following signatures: heating of the plasma, acceleration of the leading ejecta and deceleration of the trailing ejecta, compressed field and plasma in the leading ejecta, disappearance of shocks and the strengthening of shocks driven by the accelerated ejecta. A search for reconnection signatures at the interface between the two ejecta in the March 2001 event was inconclusive

  11. Thermal x-rays from SN 1987A

    International Nuclear Information System (INIS)

    Nomoto, K.; Shigeyama, T.; Hayakawa, S.; Itoh, H.; Masai, K.

    1988-01-01

    The authors discuss how the x-ray spectrum of SN 1987A observed with the Ginga satellite may be explained by the ejecta-circumstellar matter collision model at photon energies below 15 keV. The harder x-rays may be ascribed to Compton degradation of the gamma-rays from 56 Co

  12. Postshot distribution and movement of radionuclides in nuclear crater ejecta

    Energy Technology Data Exchange (ETDEWEB)

    Koranda, John J; Martin, John R; Wikkerink, Robert; Stuart, Marshall [Bio-Medical Division, Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    The distribution and postshot movement of radionuclides in nuclear crater ejecta are discussed in this report. Continuing studies of tritium movement in ejecta at SEDAN crater demonstrate that variations in tritium concentration are correlated with seasonal rainfall and soil water movements. Losses of 27 mCi H{sup 3}/ft{sup 2} are evident on SEDAN crater lip at the end of a three year period of measurements in -which an unusually large flux of rain was received. The distribution of gamma emitting radionuclides and tritium is described in the recently created SCHOONER crater ejecta field. The specific activity of radionuclides in the SCHOONER ejecta continuum is shown for ejecta collected from the crater lip to 17 miles from GZ. The movement of W{sup 181} and tritium into the sub-ejecta preshot soil is described at a site 3000 feet from GZ. (author)

  13. HOST GALAXIES OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY

    International Nuclear Information System (INIS)

    Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Chotard, N.; Copin, Y.; Gangler, E.

    2013-01-01

    We present photometric and spectroscopic observations of galaxies hosting Type Ia supernovae (SNe Ia) observed by the Nearby Supernova Factory. Combining Galaxy Evolution Explorer (GALEX) UV data with optical and near-infrared photometry, we employ stellar population synthesis techniques to measure SN Ia host galaxy stellar masses, star formation rates (SFRs), and reddening due to dust. We reinforce the key role of GALEX UV data in deriving accurate estimates of galaxy SFRs and dust extinction. Optical spectra of SN Ia host galaxies are fitted simultaneously for their stellar continua and emission lines fluxes, from which we derive high-precision redshifts, gas-phase metallicities, and Hα-based SFRs. With these data we show that SN Ia host galaxies present tight agreement with the fiducial galaxy mass-metallicity relation from Sloan Digital Sky Survey (SDSS) for stellar masses log(M * /M ☉ ) > 8.5 where the relation is well defined. The star formation activity of SN Ia host galaxies is consistent with a sample of comparable SDSS field galaxies, though this comparison is limited by systematic uncertainties in SFR measurements. Our analysis indicates that SN Ia host galaxies are, on average, typical representatives of normal field galaxies.

  14. The Type Ia Supernova Rate in Radio and Infrared Galaxies from the CFHT Supernova Legacy Survey

    OpenAIRE

    Graham, M. L.; Pritchet, C. J.; Sullivan, M.; Howell, D. A.; Gwyn, S. D. J.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R. G.; Conley, A.; Fouchez, D.; Guy, J.; Hardin, D.; Hook, I. M.; Pain, R.

    2009-01-01

    We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, VLA 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-type host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is ~1-5 times the rate in all early-type galaxies, and that any enhancement is always

  15. The Story of Supernova “Refsdal” Told by Muse

    NARCIS (Netherlands)

    Grillo, C.; Karman, W.; Suyu, S. H.; Rosati, P.; Balestra, I.; Mercurio, A.; Lombardi, M.; Treu, T.; Caminha, G. B.; Halkola, A.; Rodney, S. A.; Gavazzi, R.; Caputi, K. I.

    2016-01-01

    We present Multi Unit Spectroscopic Explorer (MUSE) observations in the core of the Hubble Frontier Fields (HFF) galaxy cluster MACS J1149.5+2223, where the first magnified and spatially resolved multiple images of supernova (SN) "Refsdal" at redshift 1.489 were detected. Thanks to a Director's

  16. Two transitional type Ia supernovae located in the Fornax cluster member NGC 1404

    DEFF Research Database (Denmark)

    Gall, C.; Stritzinger, M. D.; Ashall, C.

    2018-01-01

    We present an analysis of ultraviolet (UV) to near-infrared observations of the fast-declining Type Ia supernovae (SNe Ia) 2007on and 2011iv, hosted by the Fornax cluster member NGC 1404. The B-band light curves of SN 2007on and SN 2011iv are characterised by Delta m(15)(B) decline-rate values of...

  17. Type-Ia supernova rates to redshift 2.4 from clash: The cluster lensing and supernova survey with Hubble

    International Nuclear Information System (INIS)

    Graur, O.; Rodney, S. A.; Riess, A. G.; Medezinski, E.; Maoz, D.; Jha, S. W.; Holoien, T. W.-S.; McCully, C.; Patel, B.; Postman, M.; Dahlen, T.; Strolger, L.-G.; Coe, D.; Bradley, L.; Koekemoer, A.; Benítez, N.; Molino, A.; Jouvel, S.; Nonino, M.; Balestra, I.

    2014-01-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, ∼13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z > 1.2. We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range 1.8 < z < 2.4. The results are consistent with the rates measured by the HST/GOODS and Subaru Deep Field SN surveys. We model these results together with previous measurements at z < 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of −1.00 −0.06(0.10) +0.06(0.09) (statistical) −0.08 +0.12 (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at >99% significance level.

  18. Type-Ia Supernova Rates to Redshift 2.4 from Clash: The Cluster Lensing and Supernova Survey with Hubble

    Science.gov (United States)

    Graur, O.; Rodney, S. A.; Maoz, D.; Riess, A. G.; Jha, S. W.; Postman, M.; Dahlen, T.; Holoien, T. W.-S.; McCully, C.; Patel, B.; hide

    2014-01-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, approximately 13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z greater than 1.2.We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range z greater than 1.8 and less than 2.4. The results are consistent with the rates measured by the HST/ GOODS and Subaru Deep Field SN surveys.We model these results together with previous measurements at z less than 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of 1.00 (+0.06(0.09))/(-0.06(0.10)) (statistical) (+0.12/-0.08) (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at greater than 99% significance level.

  19. Radio Supernovae: Circum-Stellar Investigation (C.S.I.) of Supernova Progenitor Stars

    Science.gov (United States)

    2009-02-24

    years initiated by K. W. Weiler, N. Panagia, and R. A. Sramek. The VLA observing programs have detected dozens of new radio SNe. After discovery , the...analysis of the recent VLA data appears to support this discovery , reporting an inversion of the spectral index at higher 6 Figure 4 Left, the VLA light...formation of pulsar wind-nebula in other SN observations where VLBI measurements are not feasible. 3 The Future of Radio Supernovae Current observing

  20. Type Ia supernovae, standardizable candles, and gravity

    Science.gov (United States)

    Wright, Bill S.; Li, Baojiu

    2018-04-01

    Type Ia supernovae (SNe Ia) are generally accepted to act as standardizable candles, and their use in cosmology led to the first confirmation of the as yet unexplained accelerated cosmic expansion. Many of the theoretical models to explain the cosmic acceleration assume modifications to Einsteinian general relativity which accelerate the expansion, but the question of whether such modifications also affect the ability of SNe Ia to be standardizable candles has rarely been addressed. This paper is an attempt to answer this question. For this we adopt a semianalytical model to calculate SNe Ia light curves in non-standard gravity. We use this model to show that the average rescaled intrinsic peak luminosity—a quantity that is assumed to be constant with redshift in standard analyses of Type Ia supernova (SN Ia) cosmology data—depends on the strength of gravity in the supernova's local environment because the latter determines the Chandrasekhar mass—the mass of the SN Ia's white dwarf progenitor right before the explosion. This means that SNe Ia are no longer standardizable candles in scenarios where the strength of gravity evolves over time, and therefore the cosmology implied by the existing SN Ia data will be different when analysed in the context of such models. As an example, we show that the observational SN Ia cosmology data can be fitted with both a model where (ΩM,ΩΛ)=(0.62 ,0.38 ) and Newton's constant G varies as G (z )=G0(1 +z )-1/4 and the standard model where (ΩM,ΩΛ)=(0.3 ,0.7 ) and G is constant, when the Universe is assumed to be flat.

  1. Ejecta Particle-Size Measurements in Vacuum and Helium Gas using Ultraviolet In-Line Fraunhofer Holography

    Energy Technology Data Exchange (ETDEWEB)

    Sorenson, Danny S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pazuchanics, Peter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johnson, Randall P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Malone, R. M. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Kaufman, M. I. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Tibbitts, A. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Tunnell, T. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Marks, D. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Capelle, G. A. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); Grover, M. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); Marshall, B. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); Stevens, G. D. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); Turley, W. D. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); LaLone, B. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States)

    2014-06-25

    An Ultraviolet (UV) in-line Fraunhofer holography diagnostic has been developed for making high-resolution spatial measurements of ejecta particles traveling at many mm/μsec. This report will discuss the development of the diagnostic including the high-powered laser system and high-resolution optical relay system. In addition, the system required to reconstruct the images from the hologram and the corresponding analysis of those images to extract particles will also be described. Finally, results from six high-explosive (HE), shock-driven Sn ejecta experiments will be presented. Particle size distributions will be shown that cover most of the ejecta velocities for experiments conducted in a vacuum, and helium gas environments. In addition, a modification has been made to the laser system that produces two laser pulses separated by 6.8 ns. This double-pulsed capability allows a superposition of two holograms to be acquired at two different times, thus allowing ejecta velocities to be measured directly. Results from this double pulsed experiment will be described.

  2. EXPANDED VERY LARGE ARRAY OBSERVATIONS OF THE RADIO EVOLUTION OF SN 2011dh

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, M. I.; Chomiuk, L.; Brunthaler, A.; Rupen, M. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Soderberg, A. M.; Zauderer, B. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Bietenholz, M. F. [Department of Physics and Astronomy, York University, Toronto, M3J 1P3, Ontario (Canada); Chevalier, R. A. [Astronomy Department, University of Virginia, Charlottesville, VA 22904 (United States); Fransson, C. [Department of Astronomy, The Oskar Klein Centre, Stockholm University, 106 91 Stockholm (Sweden)

    2012-05-10

    We report on Expanded Very Large Array observations of the Type IIb supernova 2011dh, performed over the first 100 days of its evolution and spanning 1-40 GHz in frequency. The radio emission is well described by the self-similar propagation of a spherical shockwave, generated as the supernova ejecta interact with the local circumstellar environment. Modeling this emission with a standard synchrotron self-absorption (SSA) model gives an average expansion velocity of v Almost-Equal-To 0.1c, supporting the classification of the progenitor as a compact star (R{sub *} Almost-Equal-To 10{sup 11} cm). We find that the circumstellar density is consistent with a {rho}{proportional_to}r{sup -2} profile. We determine that the progenitor shed mass at a constant rate of Almost-Equal-To 3 Multiplication-Sign 10{sup -5} M{sub Sun} yr{sup -1}, assuming a wind velocity of 1000 km s{sup -1} (values appropriate for a Wolf-Rayet star), or Almost-Equal-To 7 Multiplication-Sign 10{sup -7} M{sub Sun} yr{sup -1} assuming 20 km s{sup -1} (appropriate for a yellow supergiant [YSG] star). Both values of the mass-loss rate assume a converted fraction of kinetic to magnetic energy density of {epsilon}{sub B} = 0.1. Although optical imaging shows the presence of a YSG, the rapid optical evolution and fast expansion argue that the progenitor is a more compact star-perhaps a companion to the YSG. Furthermore, the excellent agreement of the radio properties of SN 2011dh with the SSA model implies that any YSG companion is likely in a wide, non-interacting orbit.

  3. SUPERNOVA CONSTRAINTS AND SYSTEMATIC UNCERTAINTIES FROM THE FIRST THREE YEARS OF THE SUPERNOVA LEGACY SURVEY

    International Nuclear Information System (INIS)

    Conley, A.; Carlberg, R. G.; Perrett, K. M.; Guy, J.; Regnault, N.; Astier, P.; Balland, C.; Hardin, D.; Pain, R.; Sullivan, M.; Hook, I. M.; Basa, S.; Fouchez, D.; Howell, D. A.; Palanque-Delabrouille, N.; Rich, J.; Ruhlmann-Kleider, V.; Pritchet, C. J.; Balam, D.; Baumont, S.

    2011-01-01

    We combine high-redshift Type Ia supernovae from the first three years of the Supernova Legacy Survey (SNLS) with other supernova (SN) samples, primarily at lower redshifts, to form a high-quality joint sample of 472 SNe (123 low-z, 93 SDSS, 242 SNLS, and 14 Hubble Space Telescope). SN data alone require cosmic acceleration at >99.999% confidence, including systematic effects. For the dark energy equation of state parameter (assumed constant out to at least z = 1.4) in a flat universe, we find w = -0.91 +0.16 -0.20 (stat) +0.07 -0.14 (sys) from SNe only, consistent with a cosmological constant. Our fits include a correction for the recently discovered relationship between host-galaxy mass and SN absolute brightness. We pay particular attention to systematic uncertainties, characterizing them using a systematic covariance matrix that incorporates the redshift dependence of these effects, as well as the shape-luminosity and color-luminosity relationships. Unlike previous work, we include the effects of systematic terms on the empirical light-curve models. The total systematic uncertainty is dominated by calibration terms. We describe how the systematic uncertainties can be reduced with soon to be available improved nearby and intermediate-redshift samples, particularly those calibrated onto USNO/SDSS-like systems.

  4. Nearby Type Ia Supernova Follow-up at the Thacher Observatory

    Science.gov (United States)

    Swift, Jonathan; O'Neill, Katie; Kilpatrick, Charles; Foley, Ryan

    2018-06-01

    Type Ia supernovae (SN Ia) provide an effective way to study the expansion of the universe through analyses of their photometry and spectroscopy. The interpretation of high-redshift SN Ia is dependent on accurate characterization of nearby, low-redshift targets. To help build up samples of nearby SN Ia, the Thacher Observatory has begun a photometric follow-up program in 4 photometric bands. Here we present the observations and analysis of multi-band photometry for several recent supernovae as well as FLOYDS spectra from the Las Cumbres Observatory.

  5. How supernovae launch galactic winds?

    Science.gov (United States)

    Fielding, Drummond; Quataert, Eliot; Martizzi, Davide; Faucher-Giguère, Claude-André

    2017-09-01

    We use idealized three-dimensional hydrodynamic simulations of global galactic discs to study the launching of galactic winds by supernovae (SNe). The simulations resolve the cooling radii of the majority of supernova remnants (SNRs) and thus self-consistently capture how SNe drive galactic winds. We find that SNe launch highly supersonic winds with properties that agree reasonably well with expectations from analytic models. The energy loading (η _E= \\dot{E}_wind/ \\dot{E}_SN) of the winds in our simulations are well converged with spatial resolution while the wind mass loading (η _M= \\dot{M}_wind/\\dot{M}_\\star) decreases with resolution at the resolutions we achieve. We present a simple analytic model based on the concept that SNRs with cooling radii greater than the local scaleheight break out of the disc and power the wind. This model successfully explains the dependence (or lack thereof) of ηE (and by extension ηM) on the gas surface density, star formation efficiency, disc radius and the clustering of SNe. The winds our simulations are weaker than expected in reality, likely due to the fact that we seed SNe preferentially at density peaks. Clustering SNe in time and space substantially increases the wind power.

  6. Related Progenitor Models for Long-duration Gamma-Ray Bursts and Type Ic Superluminous Supernovae

    Science.gov (United States)

    Aguilera-Dena, David R.; Langer, Norbert; Moriya, Takashi J.; Schootemeijer, Abel

    2018-05-01

    We model the late evolution and mass loss history of rapidly rotating Wolf–Rayet stars in the mass range 5 M ⊙…100 M ⊙). We find that quasi-chemically homogeneously evolving single stars computed with enhanced mixing retain very little or no helium and are compatible with Type Ic supernovae. The more efficient removal of core angular momentum and the expected smaller compact object mass in our lower-mass models lead to core spins in the range suggested for magnetar-driven superluminous supernovae. Our higher-mass models retain larger specific core angular momenta, expected for long-duration gamma-ray bursts in the collapsar scenario. Due to the absence of a significant He envelope, the rapidly increasing neutrino emission after core helium exhaustion leads to an accelerated contraction of the whole star, inducing a strong spin-up and centrifugally driven mass loss at rates of up to {10}-2 {M}ȯ {yr}}-1 in the last years to decades before core collapse. Because the angular momentum transport in our lower-mass models enhances the envelope spin-up, they show the largest relative amounts of centrifugally enforced mass loss, i.e., up to 25% of the expected ejecta mass. Our most massive models evolve into the pulsational pair-instability regime. We would thus expect signatures of interaction with a C/O-rich circumstellar medium for Type Ic superluminous supernovae with ejecta masses below ∼10 M ⊙ as well as for the most massive engine-driven explosions with ejecta masses above ∼30 M ⊙. Signs of such interaction should be observable at early epochs of the supernova explosion; they may be related to bumps observed in the light curves of superluminous supernovae, or to the massive circumstellar CO-shell proposed for Type Ic superluminous supernova Gaia16apd.

  7. Imaging the Ejecta in Classical Novae

    Science.gov (United States)

    Linford, Justin

    2016-10-01

    A nova outburst results when sufficient mass accretes from a companion star onto the surface of a white dwarf, triggering a thermonuclear explosion. In classical novae the bulk of the emission comes from the warm, expanding ejecta. The prevailing theories assume that the explosion occurs as a single, spherically symmetric ejection event and predict a simple relationship between the white dwarf mass, the accretion rate, and the mass loss and energetics of the explosion. However, observations with modern instruments indicate that nova eruptions are far from simple. There is now evidence for multiple ejection events, common envelopes, non-spherical geometry, and even jet-like structures in the ejecta. Our ENova collaboration combines radio, mm, optical, and X-ray observations and detailed theoretical modelling to study the most common major explosions in the universe. Among our results so far are the direct demonstration of the importance of shocks in novae, including the detection of gamma-ray producing shocks in several sources, and the realization that multiple, long-lived outflows are much more common than previously assumed. Here we propose to continue these highly successful observations with coordinated detailed VLA radio interferometry and HST optical imaging and spectroscropy of several recent novae with substantial VLA monitoring already in progress.

  8. Long-lasting X-ray emission from type IIb supernova 2011dh and mass-loss history of the yellow supergiant progenitor

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Keiichi [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Katsuda, Satoru [RIKEN (The Institute of Physical and Chemical Research) Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Bamba, Aya [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258 (Japan); Terada, Yukikatsu [Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura, Saitama 338-8570 (Japan); Fukazawa, Yasushi, E-mail: keiichi.maeda@kusastro.kyoto-u.ac.jp [Department of Physical Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan)

    2014-04-20

    Type IIb supernova (SN) 2011dh, with conclusive detection of an unprecedented yellow supergiant (YSG) progenitor, provides an excellent opportunity to deepen our understanding on the massive star evolution in the final centuries toward the SN explosion. In this paper, we report on detection and analyses of thermal X-ray emission from SN IIb 2011dh at ∼500 days after the explosion on Chandra archival data, providing a solidly derived mass-loss rate of a YSG progenitor for the first time. We find that the circumstellar media should be dense, more than that expected from a Wolf-Rayet (W-R) star by one order of magnitude. The emission is powered by a reverse shock penetrating into an outer envelope, fully consistent with the YSG progenitor but not with a W-R progenitor. The density distribution at the outermost ejecta is much steeper than that expected from a compact W-R star, and this finding must be taken into account in modeling the early UV/optical emission from SNe IIb. The derived mass-loss rate is ∼3 × 10{sup –6} M {sub ☉} yr{sup –1} for the mass-loss velocity of ∼20 km s{sup –1} in the final ∼1300 yr before the explosion. The derived mass-loss properties are largely consistent with the standard wind mass-loss expected for a giant star. This is not sufficient to be a main driver to expel nearly all the hydrogen envelope. Therefore, the binary interaction, with a huge mass transfer having taken place at ≳ 1300 yr before the explosion, is a likely scenario to produce the YSG progenitor.

  9. Nucleosynthesis in Core-Collapse Supernovae

    Science.gov (United States)

    Stevenson, Taylor Shannon; Viktoria Ohstrom, Eva; Harris, James Austin; Hix, William R.

    2018-01-01

    The nucleosynthesis which occurs in core-collapse supernovae (CCSN) is one of the most important sources of elements in the universe. Elements from Oxygen through Iron come predominantly from supernovae, and contributions of heavier elements are also possible through processes like the weak r-process, the gamma process and the light element primary process. The composition of the ejecta depends on the mechanism of the explosion, thus simulations of high physical fidelity are needed to explore what elements and isotopes CCSN can contribute to Galactic Chemical Evolution. We will analyze the nucleosynthesis results from self-consistent CCSN simulations performed with CHIMERA, a multi-dimensional neutrino radiation-hydrodynamics code. Much of our understanding of CCSN nucleosynthesis comes from parameterized models, but unlike CHIMERA these fail to address essential physics, including turbulent flow/instability and neutrino-matter interaction. We will present nucleosynthesis predictions for the explosion of a 9.6 solar mass first generation star, relying both on results of the 160 species nuclear reaction network used in CHIMERA within this model and on post-processing with a more extensive network. The lowest mass iron core-collapse supernovae, like this model, are distinct from their more massive brethren, with their explosion mechanism and nucleosynthesis being more like electron capture supernovae resulting from Oxygen-Neon white dwarves. We will highlight the differences between the nucleosynthesis in this model and more massive supernovae. The inline 160 species network is a feature unique to CHIMERA, making this the most sophisticated model to date for a star of this type. We will discuss the need and mechanism to extrapolate the post-processing to times post-simulation and analyze the uncertainties this introduces for supernova nucleosynthesis. We will also compare the results from the inline 160 species network to the post-processing results to study further

  10. Type Ia Supernova Cosmology

    Science.gov (United States)

    Leibundgut, B.; Sullivan, M.

    2018-03-01

    The primary agent for Type Ia supernova cosmology is the uniformity of their appearance. We present the current status, achievements and uncertainties. The Hubble constant and the expansion history of the universe are key measurements provided by Type Ia supernovae. They were also instrumental in showing time dilation, which is a direct observational signature of expansion. Connections to explosion physics are made in the context of potential improvements of the quality of Type Ia supernovae as distance indicators. The coming years will see large efforts to use Type Ia supernovae to characterise dark energy.

  11. The historical supernovae

    CERN Document Server

    Clark, David H

    1977-01-01

    The Historical Supernovae is an interdisciplinary study of the historical records of supernova. This book is composed of 12 chapters that particularly highlight the history of the Far East. The opening chapter briefly describes the features of nova and supernova, stars which spontaneously explode with a spectacular and rapid increase in brightness. The succeeding chapter deals with the search for the historical records of supernova from Medieval European monastic chronicles, Arabic chronicles, astrological works etc., post renaissance European scientific writings, and Far Eastern histories and

  12. The nebular spectra of the transitional Type Ia Supernovae 2007on and 2011iv

    DEFF Research Database (Denmark)

    Mazzali, P. A.; Ashall, C.; Pian, E.

    2018-01-01

    The nebular-epoch spectrum of the rapidly declining, 'transitional' Type Ia supernova (SN) 2007on showed double emission peaks, which have been interpreted as indicating that the SN was the result of the direct collision of two white dwarfs. The spectrum can be reproduced using two distinct...... be expected for the bolometric luminosity of the SN. This is the case for both SNe 2007on and 2011iv, also a transitional SN Ia that exploded in the same elliptical galaxy, NGC1404. Although SN 2011iv does not show double-peaked emission line profiles, the width of its emission lines is such that a two...

  13. The detonation of a sub-Chandrasekhar-mass white dwarf at the origin of the low-luminosity Type Ia supernova 1999by

    Science.gov (United States)

    Blondin, Stéphane; Dessart, Luc; Hillier, D. John

    2018-03-01

    While Chandrasekhar-mass (MCh) models with a low 56Ni yield can match the peak luminosities of fast-declining, 91bg-like Type Ia supernovae (SNe Ia), they systematically fail to reproduce their faster light-curve evolution. Here, we illustrate the impact of a low ejecta mass on the radiative display of low-luminosity SNe Ia, by comparing a sub-MCh model resulting from the pure central detonation of a C-O white dwarf (WD) to an MCh delayed-detonation model with the same 56Ni yield of 0.12 M⊙. Our sub-MCh model from a 0.90 M⊙ WD progenitor has a ˜5 d shorter rise time in the integrated UV-optical-IR (uvoir) luminosity, as well as in the B band, and a ˜20 per cent higher peak uvoir luminosity (˜1 mag brighter peak MB). This sub-MCh model also displays bluer maximum-light colours due to the larger specific heating rate, and larger post-maximum uvoir and B-band decline rates. The luminosity decline at nebular times is also more pronounced, reflecting the enhanced escape of gamma rays resulting from the lower density of the progenitor WD. The deficit of stable nickel in the innermost ejecta leads to a notable absence of forbidden lines of [Ni II] in the nebular spectra. In contrast, the MCh model displays a strong line due to [Ni II] 1.939 μm, which could in principle serve to distinguish between different progenitor scenarios. Our sub-MCh model offers an unprecedented agreement with optical and near-infrared observations of the 91bg-like SN 1999by, making a strong case for a WD progenitor significantly below the Chandrasekhar-mass limit for this event and other low-luminosity SNe Ia.

  14. THE FIRST SYSTEMATIC STUDY OF TYPE Ibc SUPERNOVA MULTI-BAND LIGHT CURVES

    International Nuclear Information System (INIS)

    Drout, Maria R.; Soderberg, Alicia M.; Gal-Yam, Avishay; Arcavi, Iair; Green, Yoav; Cenko, S. Bradley; Fox, Derek B.; Leonard, Douglas C.; Sand, David J.; Moon, Dae-Sik

    2011-01-01

    We present detailed optical photometry for 25 Type Ibc supernovae (SNe Ibc) within d ≈ 150 Mpc obtained with the robotic Palomar 60 inch telescope in 2004-2007. This study represents the first uniform, systematic, and statistical sample of multi-band SNe Ibc light curves available to date. We correct the light curves for host galaxy extinction using a new technique based on the photometric color evolution, namely, we show that the (V – R) color of extinction-corrected SNe Ibc at Δt ≈ 10 days after V-band maximum is tightly distributed, ((V – R) V10 ) = 0.26 ± 0.06 mag. Using this technique, we find that SNe Ibc typically suffer from significant host galaxy extinction, (E(B – V)) ≈ 0.4 mag. A comparison of the extinction-corrected light curves for helium-rich (Type Ib) and helium-poor (Type Ic) SNe reveals that they are statistically indistinguishable, both in luminosity and decline rate. We report peak absolute magnitudes of (M R ) = –17.9 ± 0.9 mag and (M R ) = –18.3 ± 0.6 mag for SNe Ib and Ic, respectively. Focusing on the broad-lined (BL) SNe Ic, we find that they are more luminous than the normal SNe Ibc sample, (M R ) = –19.0 ± 1.1 mag, with a probability of only 1.6% that they are drawn from the same population of explosions. By comparing the peak absolute magnitudes of SNe Ic-BL with those inferred for local engine-driven explosions (GRB-SN 1998bw, XRF-SN 2006aj, and SN 2009bb) we find a 25% probability that relativistic SNe are drawn from the overall SNe Ic-BL population. Finally, we fit analytic models to the light curves to derive typical 56 Ni masses of M Ni ≈ 0.2 and 0.5 M ☉ for SNe Ibc and SNe Ic-BL, respectively. With reasonable assumptions for the photospheric velocities, we further extract kinetic energy and ejecta mass values of M ej ≈ 2 M ☉ and E K ≈ 10 51 erg for SNe Ibc, while for SNe Ic-BL we find higher values, M ej ≈ 5 M ☉ and E K ≈ 10 52 erg. We discuss the implications for the progenitors of SNe Ibc

  15. Ab Initio Simulations of a Supernova-driven Galactic Dynamo in an Isolated Disk Galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Butsky, Iryna [Astronomy Department, University of Washington, Seattle, WA 98195 (United States); Zrake, Jonathan; Kim, Ji-hoon; Yang, Hung-I; Abel, Tom [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Menlo Park, CA 94025 (United States)

    2017-07-10

    We study the magnetic field evolution of an isolated spiral galaxy, using isolated Milky Way–mass galaxy formation simulations and a novel prescription for magnetohydrodynamic (MHD) supernova feedback. Our main result is that a galactic dynamo can be seeded and driven by supernova explosions, resulting in magnetic fields whose strength and morphology are consistent with observations. In our model, supernovae supply thermal energy and a low-level magnetic field along with their ejecta. The thermal expansion drives turbulence, which serves a dual role by efficiently mixing the magnetic field into the interstellar medium and amplifying it by means of a turbulent dynamo. The computational prescription for MHD supernova feedback has been implemented within the publicly available ENZO code and is fully described in this paper. This improves upon ENZO 's existing modules for hydrodynamic feedback from stars and active galaxies. We find that the field attains microgauss levels over gigayear timescales throughout the disk. The field also develops a large-scale structure, which appears to be correlated with the disk’s spiral arm density structure. We find that seeding of the galactic dynamo by supernova ejecta predicts a persistent correlation between gas metallicity and magnetic field strength. We also generate all-sky maps of the Faraday rotation measure from the simulation-predicted magnetic field, and we present a direct comparison with observations.

  16. A Type II Supernova Hubble diagram from the CSP-I, SDSS-II, and SNLS surveys

    OpenAIRE

    de Jaeger, T.; González-Gaitán, S.; Hamuy, M.; Galbany, L.; Anderson, J. P.; Phillips, M. M.; Stritzinger, M. D.; Carlberg, R. G.; Sullivan, M.; Gutiérrez, C. P.; Hook, I. M.; Howell, D. Andrew; Hsiao, E. Y.; Kuncarayakti, H.; Ruhlmann-Kleider, V.

    2016-01-01

    The coming era of large photometric wide-field surveys will increase the detection rate of supernovae by orders of magnitude. Such numbers will restrict spectroscopic follow-up in the vast majority of cases, and hence new methods based solely on photometric data must be developed. Here, we construct a complete Hubble diagram of Type II supernovae (SNe II) combining data from three different samples: the Carnegie Supernova Project-I, the Sloan Digital Sky Survey II SN, and th...

  17. Rayleigh-Taylor mixing in supernova experiments

    International Nuclear Information System (INIS)

    Swisher, N. C.; Abarzhi, S. I.; Kuranz, C. C.; Arnett, D.; Hurricane, O.; Remington, B. A.; Robey, H. F.

    2015-01-01

    We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properly accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order

  18. HIGH-DENSITY CIRCUMSTELLAR INTERACTION IN THE LUMINOUS TYPE IIn SN 2010jl: THE FIRST 1100 DAYS

    International Nuclear Information System (INIS)

    Fransson, Claes; Ergon, Mattias; Sollerman, Jesper; Challis, Peter J.; Kirshner, Robert P.; Marion, G. H.; Milisavljevic, Dan; Friedman, Andrew S.; Chornock, Ryan; Czekala, Ian; Soderberg, Alicia; Chevalier, Roger A.; France, Kevin; Smith, Nathan; Bufano, Filomena; Kangas, Tuomas; Larsson, Josefin; Mattila, Seppo; Benetti, Stefano

    2014-01-01

    Hubble Space Telescope and ground-based observations of the Type IIn supernova (SN) 2010jl are analyzed, including photometry and spectroscopy in the ultraviolet, optical, and near-IR bands, 26-1128 days after first detection. At maximum, the bolometric luminosity was ∼3 × 10 43 erg s –1 and even at 850 days exceeds 10 42 erg s –1 . A near-IR excess, dominating after 400 days, probably originates in dust in the circumstellar medium (CSM). The total radiated energy is ≳ 6.5 × 10 50 erg, excluding the dust component. The spectral lines can be separated into one broad component that is due to electron scattering and one narrow with expansion velocity ∼100 km s –1 from the CSM. The broad component is initially symmetric around zero velocity but becomes blueshifted after ∼50 days, while remaining symmetric about a shifted centroid velocity. Dust absorption in the ejecta is unlikely to explain the line shifts, and we attribute the shift instead to acceleration by the SN radiation. From the optical lines and the X-ray and dust properties, there is strong evidence for large-scale asymmetries in the CSM. The ultraviolet lines indicate CNO processing in the progenitor, while the optical shows a number of narrow coronal lines excited by the X-rays. The bolometric light curve is consistent with a radiative shock in an r –2 CSM with a mass-loss rate of M-dot ∼0.1  M ⊙ yr −1 . The total mass lost is ≳ 3 M ☉ . These properties are consistent with the SN expanding into a CSM characteristic of a luminous blue variable progenitor with a bipolar geometry. The apparent absence of nuclear processing is attributed to a CSM that is still opaque to electron scattering

  19. HIGH-DENSITY CIRCUMSTELLAR INTERACTION IN THE LUMINOUS TYPE IIn SN 2010jl: THE FIRST 1100 DAYS

    Energy Technology Data Exchange (ETDEWEB)

    Fransson, Claes; Ergon, Mattias; Sollerman, Jesper [Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Challis, Peter J.; Kirshner, Robert P.; Marion, G. H.; Milisavljevic, Dan; Friedman, Andrew S.; Chornock, Ryan; Czekala, Ian; Soderberg, Alicia [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chevalier, Roger A. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); France, Kevin [CASA, University of Colorado, 593UCB Boulder, CO 80309-0593 (United States); Smith, Nathan [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Bufano, Filomena [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Kangas, Tuomas [Tuorla Observatory, University of Turku, Väisäläntie 20 FI-21500 Piikkiö (Finland); Larsson, Josefin [KTH, Department of Physics, and the Oskar Klein Centre, AlbaNova, SE-106 91 Stockholm (Sweden); Mattila, Seppo [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20 FI-21500 Piikkiö (Finland); Benetti, Stefano [INAF-Osservatorio Astronomico di Padova, Vicolo dellOsservatorio 5, I-35122 Padova (Italy)

    2014-12-20

    Hubble Space Telescope and ground-based observations of the Type IIn supernova (SN) 2010jl are analyzed, including photometry and spectroscopy in the ultraviolet, optical, and near-IR bands, 26-1128 days after first detection. At maximum, the bolometric luminosity was ∼3 × 10{sup 43} erg s{sup –1} and even at 850 days exceeds 10{sup 42} erg s{sup –1}. A near-IR excess, dominating after 400 days, probably originates in dust in the circumstellar medium (CSM). The total radiated energy is ≳ 6.5 × 10{sup 50} erg, excluding the dust component. The spectral lines can be separated into one broad component that is due to electron scattering and one narrow with expansion velocity ∼100 km s{sup –1} from the CSM. The broad component is initially symmetric around zero velocity but becomes blueshifted after ∼50 days, while remaining symmetric about a shifted centroid velocity. Dust absorption in the ejecta is unlikely to explain the line shifts, and we attribute the shift instead to acceleration by the SN radiation. From the optical lines and the X-ray and dust properties, there is strong evidence for large-scale asymmetries in the CSM. The ultraviolet lines indicate CNO processing in the progenitor, while the optical shows a number of narrow coronal lines excited by the X-rays. The bolometric light curve is consistent with a radiative shock in an r {sup –2} CSM with a mass-loss rate of M-dot ∼0.1  M{sub ⊙} yr{sup −1}. The total mass lost is ≳ 3 M {sub ☉}. These properties are consistent with the SN expanding into a CSM characteristic of a luminous blue variable progenitor with a bipolar geometry. The apparent absence of nuclear processing is attributed to a CSM that is still opaque to electron scattering.

  20. SN Refsdal

    DEFF Research Database (Denmark)

    Kelly, P. L.; Brammer, G.; Selsing, J.

    2016-01-01

    (SNe), and we find strong evidence for a broad H-alpha P-Cygni profile in the HST grism spectrum at the redshift (z = 1.49) of the spiral host galaxy. SNe IIn, powered by circumstellar interaction, could provide a good match to the light curve of SN Refsdal, but the spectrum of a SN IIn would not show...... in the rest frame, provide additional evidence that supports the SN 1987A-like classification. In comparison with other examples of SN 1987A-like SNe, SN Refsdal has a blue B-V color and a high luminosity for the assumed range of potential magnifications. If SN Refsdal can be modeled as a scaled version of SN...

  1. Probing Dark Energy via Neutrino and Supernova Observatories

    International Nuclear Information System (INIS)

    Hall, Lawrence; Hall, Lawrence J.; Murayama, Hitoshi; Papucci, Michele; Perez, Gilad

    2006-01-01

    A novel method for extracting cosmological evolution parameters is proposed, using a probe other than light: future observations of the diffuse anti-neutrino flux emitted from core-collapse supernovae (SNe), combined with the SN rate extracted from future SN surveys. The relic SN neutrino differential flux can be extracted by using future neutrino detectors such as Gadolinium-enriched, megaton, water detectors or 100-kiloton detectors of liquid Argon or liquid scintillator. The core-collapse SN rate can be reconstructed from direct observation of SN explosions using future precision observatories. Our method, by itself, cannot compete with the accuracy of the optical-based measurements but may serve as an important consistency check as well as a source of complementary information. The proposal does not require construction of a dedicated experiment, but rather relies on future experiments proposed for other purposes

  2. Probing Dark Energy via Neutrino and Supernova Observatories

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Lawrence; Hall, Lawrence J.; Murayama, Hitoshi; Papucci, Michele; Perez, Gilad

    2006-07-10

    A novel method for extracting cosmological evolution parameters is proposed, using a probe other than light: future observations of the diffuse anti-neutrino flux emitted from core-collapse supernovae (SNe), combined with the SN rate extracted from future SN surveys. The relic SN neutrino differential flux can be extracted by using future neutrino detectors such as Gadolinium-enriched, megaton, water detectors or 100-kiloton detectors of liquid Argon or liquid scintillator. The core-collapse SN rate can be reconstructed from direct observation of SN explosions using future precision observatories. Our method, by itself, cannot compete with the accuracy of the optical-based measurements but may serve as an important consistency check as well as a source of complementary information. The proposal does not require construction of a dedicated experiment, but rather relies on future experiments proposed for other purposes.

  3. Supernova Cosmology in the Big Data Era

    Science.gov (United States)

    Kessler, Richard

    Here we describe large "Big Data" Supernova (SN) Ia surveys, past and present, used to make precision measurements of cosmological parameters that describe the expansion history of the universe. In particular, we focus on surveys designed to measure the dark energy equation of state parameter w and its dependence on cosmic time. These large surveys have at least four photometric bands, and they use a rolling search strategy in which the same instrument is used for both discovery and photometric follow-up observations. These surveys include the Supernova Legacy Survey (SNLS), Sloan Digital Sky Survey II (SDSS-II), Pan-STARRS 1 (PS1), Dark Energy Survey (DES), and Large Synoptic Survey Telescope (LSST). We discuss the development of how systematic uncertainties are evaluated, and how methods to reduce them play a major role is designing new surveys. The key systematic effects that we discuss are (1) calibration, measuring the telescope efficiency in each filter band, (2) biases from a magnitude-limited survey and from the analysis, and (3) photometric SN classification for current surveys that don't have enough resources to spectroscopically confirm each SN candidate.

  4. Absolute-magnitude distributions of supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Dean; Wright, John [Department of Physics, Xavier University of Louisiana, New Orleans, LA 70125 (United States); Jenkins III, Robert L. [Applied Physics Department, Richard Stockton College, Galloway, NJ 08205 (United States); Maddox, Larry, E-mail: drichar7@xula.edu [Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, LA 70402 (United States)

    2014-05-01

    The absolute-magnitude distributions of seven supernova (SN) types are presented. The data used here were primarily taken from the Asiago Supernova Catalogue, but were supplemented with additional data. We accounted for both foreground and host-galaxy extinction. A bootstrap method is used to correct the samples for Malmquist bias. Separately, we generate volume-limited samples, restricted to events within 100 Mpc. We find that the superluminous events (M{sub B} < –21) make up only about 0.1% of all SNe in the bias-corrected sample. The subluminous events (M{sub B} > –15) make up about 3%. The normal Ia distribution was the brightest with a mean absolute blue magnitude of –19.25. The IIP distribution was the dimmest at –16.75.

  5. THE AGES OF TYPE Ia SUPERNOVA PROGENITORS

    International Nuclear Information System (INIS)

    Brandt, Timothy D.; Aubourg, Eric; Strauss, Michael A.; Tojeiro, Rita; Heavens, Alan; Jimenez, Raul

    2010-01-01

    Using light curves and host galaxy spectra of 101 Type Ia supernovae (SNe Ia) with redshift z ∼ 2.4 Gyr. We find that each channel contributes roughly half of the Type Ia rate in our reference sample. We also construct the average spectra of high-stretch and low-stretch SN Ia host galaxies, and find that the difference of these spectra looks like a main-sequence B star with nebular emission lines indicative of star formation. This supports our finding that there are two populations of SNe Ia, and indicates that the progenitors of high-stretch supernovae are at the least associated with very recent star formation in the last few tens of Myr. Our results provide valuable constraints for models of Type Ia progenitors and may help improve the calibration of SNe Ia as standard candles.

  6. Impacto ambiental de los remanentes de supernova

    Science.gov (United States)

    Dubner, G. M.

    2015-08-01

    The explosion of a supernovae (SN) represents the sudden injection of about ergs of thermal and mechanical energy in a small region of space, causing the formation of powerful shock waves that propagate through the interstellar medium at speeds of several thousands of km/s. These waves sweep, compress and heat the interstellar material that they encounter, forming the supernova remnants. Their evolution over thousands of years change forever, irreversibly, not only the physical but also the chemical properties of a vast region of space that can span hundreds of parsecs. This contribution briefly analyzes the impact of these explosions, discussing the relevance of some phenomena usually associated with SNe and their remnants in the light of recent theoretical and observational results.

  7. On Neutron Star/Supernova Remnant Association

    Science.gov (United States)

    Gvaramadze, V. V.

    It is pointed out that a cavity supernova (SN) explosion of a moving massive star could result in a significant offset of the neutron star (NS) birth-place from the geometrical centre of the supernova remnant (SNR). Therefore: a) the high implied transverse velocities of a number of NSs (e.g. PSR B1610-50, PSR B1706-44, PSR B1757-24, SGR 0526-66) could be reduced; b) the proper motion vector of a NS should not necessarily point away from the geometrical centre of the associated SNR; c) the circle of possible NS/SNR associations could be enlarged. An observational test is discussed, which could provide a determination of the true birth-places of NSs associated with middle-aged SNRs, and thereby provide more reliable estimates of their transverse velocities.

  8. Supernovae from Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Schaeffer, R.

    1986-01-01

    Wolf-Rayet stars are known to originate from the most massive stars. Under the assumption that these stripped stars explode at the end of their evolution through the same instability mechanism as type II supernovae, we calculate their light curve. The latter is found to be quite similar to the typical SN I light curves but is fainter by about 2 magnitudes. A detailed study of its shape leads to identify the WR supernovae with the SNIp (or SNIb) subclass. The more massive WR stars should explode via the e + e - pair production mechanism, with negligible 56 Ni formation. Their rather dim light curve is predicted to have a ∼ 2 month plateau and afterwards a very sharp decline. A delayed manifestation of such an event might be the Cas A remnant

  9. THE CARNEGIE SUPERNOVA PROJECT: SECOND PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Stritzinger, Maximilian D.; Phillips, M. M.; Campillay, Abdo; Morrell, Nidia; Krzeminski, Wojtek; Roth, Miguel; Boldt, Luis N.; Burns, Chris; Freedman, Wendy L.; Madore, Barry F.; Persson, Sven E.; Contreras, Carlos; Gonzalez, Sergio; Folatelli, Gaston; Salgado, Francisco; DePoy, D. L.; Marshall, J. L.; Rheault, Jean-Philippe; Suntzeff, Nicholas B.; Hamuy, Mario

    2011-01-01

    The Carnegie Supernova Project (CSP) was a five-year observational survey conducted at Las Campanas Observatory that obtained, among other things, high-quality light curves of ∼100 low-redshift Type Ia supernovae (SNe Ia). Presented here is the second data release of nearby SN Ia photometry consisting of 50 objects, with a subset of 45 having near-infrared follow-up observations. Thirty-three objects have optical pre-maximum coverage with a subset of 15 beginning at least five days before maximum light. In the near-infrared, 27 objects have coverage beginning before the epoch of B-band maximum, with a subset of 13 beginning at least five days before maximum. In addition, we present results of a photometric calibration program to measure the CSP optical (uBgVri) bandpasses with an accuracy of ∼1%. Finally, we report the discovery of a second SN Ia, SN 2006ot, similar in its characteristics to the peculiar SN 2006bt.

  10. Mass Extinctions and Supernova Explosions

    Science.gov (United States)

    Korschinek, Gunther

    A nearby supernova (SN) explosion could have negatively influenced life on Earth, maybe even been responsible for mass extinctions. Mass extinction poses a significant extinction of numerous species on Earth, as recorded in the paleontologic, paleoclimatic, and geological record of our planet. Depending on the distance between the Sun and the SN, different types of threats have to be considered, such as ozone depletion on Earth, causing increased exposure to the Sun's ultraviolet radiation or the direct exposure of lethal X-rays. Another indirect effect is cloud formation, induced by cosmic rays in the atmosphere which result in a drop in the Earth's temperature, causing major glaciations of the Earth. The discovery of highly intensive gamma-ray bursts (GRBs), which could be connected to SNe, initiated further discussions on possible life-threatening events in the Earth's history. The probability that GRBs hit the Earth is very low. Nevertheless, a past interaction of Earth with GRBs and/or SNe cannot be excluded and might even have been responsible for past extinction events.

  11. Light echoes - Type II supernovae

    International Nuclear Information System (INIS)

    Schaefer, B.E.

    1987-01-01

    Type II supernovae (SNs) light curves show a remarkable range of shapes. Data have been collected for the 12 Type II SNs that have light curve information for more than four months past maximum. Contrary to previous reports, it is found that (1) the decay rate after 100 days past maximum varies by almost an order of magnitude and (2) the light curve shapes are not bimodally distributed, but actually form a continuum. In addition, it is found that the extinctions to the SNs are related to the light curve shapes. This implies that the absorbing dust is local to the SNs. The dust is likely to be part of a circumstellar shell emitted by the SN progenitor that Dwek (1983) has used to explain infrared echoes. The optical depth of the shell can get quite large. In such cases, it is found that the photons scattered and delayed by reflection off dust grains will dominate the light curve several months after peak brightness. This light echo offers a straightforward explanation of the diversity of Type II SN light curves. 22 references

  12. Matching Supernovae to Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    One of the major challenges for modern supernova surveys is identifying the galaxy that hosted each explosion. Is there an accurate and efficient way to do this that avoids investing significant human resources?Why Identify Hosts?One problem in host galaxy identification. Here, the supernova lies between two galaxies but though the centroid of the galaxy on the right is closer in angular separation, this may be a distant background galaxy that is not actually near the supernova. [Gupta et al. 2016]Supernovae are a critical tool for making cosmological predictions that help us to understand our universe. But supernova cosmology relies on accurately identifying the properties of the supernovae including their redshifts. Since spectroscopic followup of supernova detections often isnt possible, we rely on observations of the supernova host galaxies to obtain redshifts.But how do we identify which galaxy hosted a supernova? This seems like a simple problem, but there are many complicating factors a seemingly nearby galaxy could be a distant background galaxy, for instance, or a supernovas host could be too faint to spot.The authors algorithm takes into account confusion, a measure of how likely the supernova is to be mismatched. In these illustrations of low (left) and high (right) confusion, the supernova is represented by a blue star, and the green circles represent possible host galaxies. [Gupta et al. 2016]Turning to AutomationBefore the era of large supernovae surveys, searching for host galaxies was done primarily by visual inspection. But current projects like the Dark Energy Surveys Supernova Program is finding supernovae by the thousands, and the upcoming Large Synoptic Survey Telescope will likely discover hundreds of thousands. Visual inspection will not be possible in the face of this volume of data so an accurate and efficient automated method is clearly needed!To this end, a team of scientists led by Ravi Gupta (Argonne National Laboratory) has recently

  13. HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Kessler, Richard; Goldstein, Daniel A.; Liotine, Camille; Pomian, Katarzyna; D’Andrea, Chris B.; Sullivan, Mark; Carretero, Jorge; Castander, Francisco J.; Nichol, Robert C.; Finley, David A.; Fischer, John A.; Foley, Ryan J.; Kim, Alex G.; Papadopoulos, Andreas; Sako, Masao; Scolnic, Daniel M.; Smith, Mathew; Tucker, Brad E.; Uddin, Syed; Wolf, Rachel C.; Yuan, Fang; Abbott, Tim M. C.; Abdalla, Filipe B.; Benoit-Lévy, Aurélien; Bertin, Emmanuel; Brooks, David; Rosell, Aurelio Carnero; Kind, Matias Carrasco; Cunha, Carlos E.; Costa, Luiz N. da; Desai, Shantanu; Doel, Peter; Eifler, Tim F.; Evrard, August E.; Flaugher, Brenna; Fosalba, Pablo; Gaztañaga, Enrique; Gruen, Daniel; Gruendl, Robert; James, David J.; Kuehn, Kyler; Kuropatkin, Nikolay; Maia, Marcio A. G.; Marshall, Jennifer L.; Miquel, Ramon; Plazas, Andrés A.; Romer, A. Kathy; Sánchez, Eusebio; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Sobreira, Flávia; Suchyta, Eric; Swanson, Molly E. C.; Tarle, Gregory; Walker, Alistair R.; Wester, William

    2016-11-08

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  14. HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Liotine, Camille; Pomian, Katarzyna [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Kessler, Richard; Scolnic, Daniel M. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Goldstein, Daniel A. [Department of Astronomy, University of California, Berkeley, 501 Campbell Hall #3411, Berkeley, CA 94720 (United States); D’Andrea, Chris B.; Nichol, Robert C.; Papadopoulos, Andreas [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Sullivan, Mark [Department of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Carretero, Jorge; Castander, Francisco J. [Institut de Ciències de l’Espai, IEEC-CSIC, Campus UAB, Carrer de Can Magrans, s/n, E-08193 Bellaterra, Barcelona (Spain); Finley, David A. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Fischer, John A.; Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Foley, Ryan J. [Department of Astronomy, University of Illinois, 1002 W. Green Street, Urbana, IL 61801 (United States); Kim, Alex G., E-mail: raviryan@gmail.com [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); and others

    2016-12-01

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate “hostless” SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  15. Evolution of Supernova Remnants

    Science.gov (United States)

    Arbutina, B.

    2017-12-01

    This book, both a monograph and a graduate textbook, is based on my original research and partly on the materials prepared earlier for the 2007 and 2008 IARS Astrophysics Summer School in Istanbul, AstroMundus course 'Supernovae and Their Remnants' that was held for the first time in 2011 at the Department of Astronomy, Faculty of Mathematics, University of Belgrade, and a graduate course 'Evolution of Supernova Remnants' that I teach at the aforementioned university. The first part Supernovae (introduction, thermonuclear supernovae, core-collapse supernovae) provides introductory information and explains the classification and physics of supernova explosions, while the second part Supernova remnants (introduction, shock waves, cosmic rays and particle acceleration, magnetic fields, synchrotron radiation, hydrodynamic and radio evolution of supernova remnants), which is the field I work in, is more detailed in scope i.e. technical/mathematical. Special attention is paid to details of mathematical derivations that often cannot be found in original works or available literature. Therefore, I believe it can be useful to both, graduate students and researchers interested in the field.

  16. A DECADE-BASELINE STUDY OF THE PLASMA STATES OF EJECTA KNOTS IN CASSIOPEIA A

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, John; Dewey, Daniel; Figueroa-Feliciano, Enectali; Heine, Sarah N. T.; Canizares, C. R.; Bastien, Fabienne A.; Sato, Kosuke, E-mail: enectali@mit.edu, E-mail: jmrv@mit.edu [Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2013-05-20

    We present the analysis of 21 bright X-ray knots in the Cassiopeia A supernova remnant from observations spanning 10 yr. We performed a comprehensive set of measurements to reveal the kinematic and thermal state of the plasma in each knot, using a combined analysis of two high energy resolution High Energy Transmission Grating (HETG) and four medium energy resolution Advanced CCD Imaging Spectrometer (ACIS) sets of spectra. The ACIS electron temperature estimates agree with the HETG-derived values for approximately half of the knots studied, yielding one of the first comparisons between high resolution temperature estimates and ACIS-derived temperatures. We did not observe the expected spectral evolution-predicted from the ionization age and density estimates for each knot-in all but three of the knots studied. The incompatibility of these measurements with our assumptions has led us to propose a dissociated ejecta model, with the metals unmixed inside the knots, which could place strong constraints on supernova mixing models.

  17. Supernova 1604, Kepler’s Supernova, and Its Remnant

    NARCIS (Netherlands)

    Vink, J.; Alsabti, A.W.; Murdin, P.

    2016-01-01

    Supernova 1604 is the last galactic supernova for which historical records exist. Johannes Kepler’s name is attached to it, as he published a detailed account of the observations made by himself and European colleagues. Supernova 1604 was very likely a type Ia supernova, which exploded 350–750 pc

  18. Optical and near-infrared observations of SN 2011dh - The first 100 days

    Science.gov (United States)

    Ergon, M.; Sollerman, J.; Fraser, M.; Pastorello, A.; Taubenberger, S.; Elias-Rosa, N.; Bersten, M.; Jerkstrand, A.; Benetti, S.; Botticella, M. T.; Fransson, C.; Harutyunyan, A.; Kotak, R.; Smartt, S.; Valenti, S.; Bufano, F.; Cappellaro, E.; Fiaschi, M.; Howell, A.; Kankare, E.; Magill, L.; Mattila, S.; Maund, J.; Naves, R.; Ochner, P.; Ruiz, J.; Smith, K.; Tomasella, L.; Turatto, M.

    2014-02-01

    We present optical and near-infrared (NIR) photometry and spectroscopy of the Type IIb supernova (SN) 2011dh for the first 100 days. We complement our extensive dataset with Swift ultra-violet (UV) and Spitzer mid-infrared (MIR) data to build a UV to MIR bolometric lightcurve using both photometric and spectroscopic data. Hydrodynamical modelling of the SN based on this bolometric lightcurve have been presented in Bersten et al. (2012, ApJ, 757, 31). We find that the absorption minimum for the hydrogen lines is never seen below ~11 000 km s-1 but approaches this value as the lines get weaker. This suggests that the interface between the helium core and hydrogen rich envelope is located near this velocity in agreement with the Bersten et al. (2012) He4R270 ejecta model. Spectral modelling of the hydrogen lines using this ejecta model supports the conclusion and we find a hydrogen mass of 0.01-0.04 M⊙ to be consistent with the observed spectral evolution. We estimate that the photosphere reaches the helium core at 5-7 days whereas the helium lines appear between ~10 and ~15 days, close to the photosphere and then move outward in velocity until ~40 days. This suggests that increasing non-thermal excitation due to decreasing optical depth for the γ-rays is driving the early evolution of these lines. The Spitzer 4.5 μm band shows a significant flux excess, which we attribute to CO fundamental band emission or a thermal dust echo although further work using late time data is needed. Thedistance and in particular the extinction, where we use spectral modelling to put further constraints, is discussed in some detail as well as the sensitivity of the hydrodynamical modelling to errors in these quantities. We also provide and discuss pre- and post-explosion observations of the SN site which shows a reduction by ~75 percent in flux at the position of the yellow supergiant coincident with SN 2011dh. The B, V and r band decline rates of 0.0073, 0.0090 and 0.0053 mag day-1

  19. The Stellar Origins of Supernovae

    Science.gov (United States)

    Van Dyk, Schulyer

    2017-08-01

    Supernovae (SNe) have a profound effect on galaxies and have been used as precise cosmological probes, resulting in the Nobel-distinguished discovery of the accelerating Universe. They are clearly very important events deserving of intense study. Yet, even with over 10000 classified SNe, we know relatively little about the stars which give rise to these powerful explosions. The main limitation has been the lack of spatial resolution in pre-SN imaging data. However, since 1999 our team has been at the vanguard of directly identifying SN progenitor stars in HST images. From this exciting line of study, the trends from 15 detections for Type II-Plateau SNe appear to be red supergiant progenitors of relatively low mass (8 to 17 Msun) - although this upper mass limit still requires testing - and warmer, envelope-stripped supergiant progenitors for 5 Type IIb SNe. Additionally, evidence is accumulating that some Type II-narrow SNe may arise from exploding stars in a luminous blue variable phase. However, the nature of the progenitors of Type Ib/c SNe, a subset of which are associated with gamma-ray bursts, still remains ambiguous. Furthermore, we continue in the embarrassing situation that we still do not yet know which progenitor systems explode as Type Ia SNe, which are being used for precision cosmology. In Cycles 16, 17, and 20 through 24 we have had great success with our approved ToO programs. As of this proposal deadline, we have already triggered on SN 2016jbu with our Cycle 24 program. We therefore propose to continue this project in Cycles 25 and 26, to determine the identities of the progenitors of 8 SNe within about 20 Mpc through ToO observations using WFC3/UVIS.

  20. TYPE Ia SUPERNOVAE AS SITES OF THE p-PROCESS: TWO-DIMENSIONAL MODELS COUPLED TO NUCLEOSYNTHESIS

    International Nuclear Information System (INIS)

    Travaglio, C.; Gallino, R.; Roepke, F. K.; Hillebrandt, W.

    2011-01-01

    Beyond Fe, there is a class of 35 proton-rich nuclides, between 74 Se and 196 Hg, called p-nuclei. They are bypassed by the s and r neutron capture processes and are typically 10-1000 times less abundant than the s- and/or r-isotopes in the solar system. The bulk of p-isotopes is created in the 'gamma processes' by sequences of photodisintegrations and beta decays in explosive conditions in both core collapse supernovae (SNe II) and in Type Ia supernovae (SNe Ia). SNe II contribute to the production of p-nuclei through explosive neon and oxygen burning. However, the major problem in SN II ejecta is a general underproduction of the light p-nuclei for A 209 Bi. We select tracers within the typical temperature range for p-process production, (1.5-3.7) x 10 9 K, and analyze in detail their behavior, exploring the influence of different s-process distributions on the p-process nucleosynthesis. In addition, we discuss the sensitivity of p-process production to parameters of the explosion mechanism, taking into account the consequences on Fe and alpha elements. We find that SNe Ia can produce a large amount of p-nuclei, both the light p-nuclei below A = 120 and the heavy-p nuclei, at quite flat average production factors, tightly related to the s-process seed distribution. For the first time, we find a stellar source able to produce both light and heavy p-nuclei almost at the same level as 56 Fe, including the debated neutron magic 92, 94 Mo and 96, 98 Ru. We also find that there is an important contribution from the p-process nucleosynthesis to the s-only nuclei 80 Kr, 86 Sr, to the neutron magic 90 Zr, and to the neutron-rich 96 Zr. Finally, we investigate the metallicity effect on p-process production in our models. Starting with different s-process seed distributions for two metallicities Z = 0.02 and Z = 0.001, running two-dimensional SN Ia models with different initial composition, we estimate that SNe Ia can contribute to at least 50% of the solar p

  1. Constraints on high-energy neutrino emission from SN 2008D

    NARCIS (Netherlands)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S.W.; Bay, R.; Alba, J.L.B.; Beattie, K.; Beatty, J.J.; Bechet, S.; Becker, J.K.; Becker, K.H.; Benabderrahmane, M.L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D.Z.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D.J.; Bohm, C.; Bose, D.; Boser, S.; Botner, O.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D.F.; D'Agostino, M.V.; Danninger, M.; Davis, J.C.; Clercq, C. De; Demirors, L.; Depaepe, O.; Descamps, F.; Desiati, P.; Vries-Uiterweerd, G. de; DeYoung, T.; Diaz-Velez, J.C.; Dierckxsens, M.; Dreyer, J.; Dumm, J.P.; Duvoort, M.R.; Ehrlich, R.; Eisch, J.; Ellsworth, R.W.; Engdegard, O.; Euler, S.; Evenson, P.A.; Fadiran, O.; Fazely, A.R.; Fedynitch, A.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M.M.; Fox, B.D.; Franckowiak, A.; Franke, R.; Gaisser, T.K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glusenkamp, T.; Goldschmidt, A.; Goodman, J.A.; Grant, D.; Griesel, T.; Gross, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G.C.; Hoffman, K.D.; Homeier, A.; Hoshina, K.; Lafebre, S.J.; et al.,

    2011-01-01

    SN 2008D, a core collapse supernova at a distance of 27 Mpc, was serendipitously discovered by the Swift satellite through an associated X-ray flash. Core collapse supernovae have been observed in association with long gamma-ray bursts and X-ray flashes and a physical connection is widely assumed.

  2. Colorful Investigations of Supernovae for WFIRST-AFTA

    Science.gov (United States)

    Foley, Ryan

    Type Ia supernovae (SNe Ia) are extremely good probes of dark energy, and WFIRST-AFTA is particularly well suited to make the best SN distance measurements possible. For conservative assumptions, the WFIRST SN survey is projected to have twice the impact as its other probes. Considering that Euclid will only have a minimal SN survey, but strong programs for other dark energy probes, the WFIRST SN survey is especially unique and important. With an initial simulation of the WFIRST-AFTA survey, we have determined that the largest statistical and systematic uncertainties are related to SN color. SN distances strongly depend on the precise measurement of SN colors since we must make a dust extinction correction that depends on the observed color. The details of how the correction is applied and the possibility that the correction evolves with redshift combine with potential calibration systematics to limit the current effectiveness of the SN component of WFIRST-AFTA. Here, we propose to support two graduate students to (1) investigate how intrinsic color variations will impact WFIRST-AFTA systematic uncertainties, (2) determine improved methods for reducing the systematic uncertainties related to SN color, and (3) simulate survey strategies incorporating our results to obtain the highest dark energy figure of merit (DE-FoM).

  3. STRESS a SN survey at ESO

    Science.gov (United States)

    Botticella, M. T.

    We performed the Southern inTermediate Redshift ESO Supernova Search (STRESS), a survey specifically designed to measure the rate of both SNe Ia and CC SNe, in order to obtain a direct comparison of the high redshift and local rates and to investigate the dependence of the rates on specific galaxy properties, most notably their colour. We found that the type Ia SN rate, at mean redshift z = 0.3, is 0.22+0.10+0.16-0.08-0.14 h270 SNu, while the CC SN rate, at z = 0.21, is 0.82+0.31+0.300.24-0.26 h270 SNu. The quoted errors are the statistical and systematic uncertainties. With respect to the local value, the CC SN rate at z = 0.2 is higher by a factor of ˜ 2, whereas the type Ia SN rate remains almost constant. We also measured the SN rates in the red and blue galaxies and found that the SN Ia rate seems to be constant in galaxies of different colour, whereas the CC SN rate seems to peak in blue galaxies, as in the local Universe. Finally we exploited the link between SFH and SN rates to predict the evolutionary behaviour of the SN rates and compare it with the path indicated by observations.

  4. Dependence on supernovae light-curve processing in void models

    Energy Technology Data Exchange (ETDEWEB)

    Bengochea, Gabriel R., E-mail: gabriel@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); De Rossi, Maria E., E-mail: derossi@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

    2014-06-02

    In this work, we show that when supernova Ia (SN Ia) data sets are used to put constraints on the free parameters of inhomogeneous models, certain extra information regarding the light-curve fitter used in the supernovae Ia luminosity fluxes processing should be taken into account. We found that the size of the void as well as other parameters of these models might be suffering extra degenerations or additional systematic errors due to the fitter. A recent proposal to relieve the tension between the results from Planck satellite and SNe Ia is re-analyzed in the framework of these subjects.

  5. A hybrid type Ia supernova with an early flash triggered by helium-shell detonation.

    Science.gov (United States)

    Jiang, Ji-An; Doi, Mamoru; Maeda, Keiichi; Shigeyama, Toshikazu; Nomoto, Ken'ichi; Yasuda, Naoki; Jha, Saurabh W; Tanaka, Masaomi; Morokuma, Tomoki; Tominaga, Nozomu; Ivezić, Željko; Ruiz-Lapuente, Pilar; Stritzinger, Maximilian D; Mazzali, Paolo A; Ashall, Christopher; Mould, Jeremy; Baade, Dietrich; Suzuki, Nao; Connolly, Andrew J; Patat, Ferdinando; Wang, Lifan; Yoachim, Peter; Jones, David; Furusawa, Hisanori; Miyazaki, Satoshi

    2017-10-04

    Type Ia supernovae arise from the thermonuclear explosion of white-dwarf stars that have cores of carbon and oxygen. The uniformity of their light curves makes these supernovae powerful cosmological distance indicators, but there have long been debates about exactly how their explosion is triggered and what kind of companion stars are involved. For example, the recent detection of the early ultraviolet pulse of a peculiar, subluminous type Ia supernova has been claimed as evidence for an interaction between a red-giant or a main-sequence companion and ejecta from a white-dwarf explosion. Here we report observations of a prominent but red optical flash that appears about half a day after the explosion of a type Ia supernova. This supernova shows hybrid features of different supernova subclasses, namely a light curve that is typical of normal-brightness supernovae, but with strong titanium absorption, which is commonly seen in the spectra of subluminous ones. We argue that this early flash does not occur through previously suggested mechanisms such as the companion-ejecta interaction. Instead, our simulations show that it could occur through detonation of a thin helium shell either on a near-Chandrasekhar-mass white dwarf, or on a sub-Chandrasekhar-mass white dwarf merging with a less-massive white dwarf. Our finding provides evidence that one branch of previously proposed explosion models-the helium-ignition branch-does exist in nature, and that such a model may account for the explosions of white dwarfs in a mass range wider than previously supposed.

  6. Hitomi observations of the LMC SNR N 132 D: Highly redshifted X-ray emission from iron ejecta

    Science.gov (United States)

    Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iwai, Masachika; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sato, Toshiki; Sawada, Makoto; Schartel, Norbert; Serlemtsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shin'ichiro; Urry, C. Megan; Ursino, Eugenio; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen

    2018-03-01

    We present Hitomi observations of N 132 D, a young, X-ray bright, O-rich core-collapse supernova remnant in the Large Magellanic Cloud (LMC). Despite a very short observation of only 3.7 ks, the Soft X-ray Spectrometer (SXS) easily detects the line complexes of highly ionized S K and Fe K with 16-17 counts in each. The Fe feature is measured for the first time at high spectral resolution. Based on the plausible assumption that the Fe K emission is dominated by He-like ions, we find that the material responsible for this Fe emission is highly redshifted at ˜ 800 km s-1 compared to the local LMC interstellar medium (ISM), with a 90% credible interval of 50-1500 km s-1 if a weakly informative prior is placed on possible line broadening. This indicates (1) that the Fe emission arises from the supernova ejecta, and (2) that these ejecta are highly asymmetric, since no blueshifted component is found. The S K velocity is consistent with the local LMC ISM, and is likely from swept-up ISM material. These results are consistent with spatial mapping that shows the He-like Fe concentrated in the interior of the remnant and the S tracing the outer shell. The results also show that even with a very small number of counts, direct velocity measurements from Doppler-shifted lines detected in extended objects like supernova remnants are now possible. Thanks to the very low SXS background of ˜ 1 event per spectral resolution element per 100 ks, such results are obtainable during short pointed or slew observations with similar instruments. This highlights the power of high-spectral-resolution imaging observations, and demonstrates the new window that has been opened with Hitomi and will be greatly widened with future missions such as the X-ray Astronomy Recovery Mission (XARM) and Athena.

  7. The 20th anniversary of SN1987A

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, A [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaragi, 305-0801 (Japan)], E-mail: atsuto.suzuki@kek.jp

    2008-07-15

    Observation of a neutrino burst from the supernova, SN1987A opened a new window of observational astronomy by neutrinos. And the history showed that the SN1987A neutrino burst observation was the vanguard of successive discoveries of neutrino properties by Super-Kamiokande, SNO, K2K, KamLAND and so on. On the occasion of the SN1987A 20th anniversary, the backstage story up to the discovery of the SN1987A neutrino bursts is summarized, tracing the Kamiokande log-note and including the IMB, LSD and Baksan data.

  8. Supernovae and neutrinos

    International Nuclear Information System (INIS)

    Totsuka, Y.

    1991-01-01

    On February 25, 1987, a sheet of telefax came to us from S. A. Bludman, saying Supernova went off in Large Magellanic Clouds. Can you see it? This is what we have been waiting 350 years for exclamation point In few hours, more information arrived. But it was still too early to definitely identify the supernova as type I or type II. This paper reports that the type I supernova is an explosion of a complete star due to uncontrolled nuclear fusion, while the type II supernova is triggered by gravitational collapse of the Fe core of a massive star (≥8 solar mass). It is this type II supernova that would leave a neutron star or a black hole after the liberation of an enormous amount of energy (3 x 10 53 erg) in the form of neutrinos. Therefore only the type II supernova is a relevant place to look for neutrino signals. It was also frustrating that the time when the stellar collapse actually took place was not definitely determined, because it was believed that the supernova brightened up about a day after the collapse and there was an ambiguity in a time lag of the optical observation. There was a possibility that it had happened well before February 24

  9. Evolutionary signatures in complex ejecta and their driven shocks

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    2004-11-01

    Full Text Available We examine interplanetary signatures of ejecta-ejecta interactions. To this end, two time intervals of inner-heliospheric (≤1AU observations separated by 2 solar cycles are chosen where ejecta/magnetic clouds are in the process of interacting to form complex ejecta. At the Sun, both intervals are characterized by many coronal mass ejections (CMEs and flares. In each case, a complement of observations from various instruments on two spacecraft are examined in order to bring out the in-situ signatures of ejecta-ejecta interactions and their relation to solar observations. In the first interval (April 1979, data are shown from Helios-2 and ISEE-3, separated by ~0.33AU in radial distance and 28° in heliographic longitude. In the second interval (March-April 2001, data from the SOHO and Wind probes are combined, relating effects at the Sun and their manifestations at 1AU on one of Wind's distant prograde orbits. At ~0.67AU, Helios-2 observes two individual ejecta which have merged by the time they are observed at 1AU by ISEE-3. In March 2001, two distinct Halo CMEs (H-CMEs are observed on SOHO on 28-29 March approaching each other with a relative speed of 500kms-1 within 30 solar radii. In order to isolate signatures of ejecta-ejecta interactions, the two event intervals are compared with expectations for pristine (isolated ejecta near the last solar minimum, extensive observations on which were given by Berdichevsky et al. (2002. The observations from these two event sequences are then intercompared. In both event sequences, coalescence/merging was accompanied by the following signatures: heating of the plasma, acceleration of the leading ejecta and deceleration of the trailing ejecta, compressed field and plasma in the leading ejecta, disappearance of shocks and the strengthening of shocks driven by the accelerated ejecta. A search for reconnection signatures at the interface between the two ejecta in the March 2001 event was

  10. Defining photometric peculiar type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    González-Gaitán, S.; Pignata, G.; Förster, F.; Gutiérrez, C. P.; Bufano, F.; Galbany, L.; Hamuy, M.; De Jaeger, T. [Millennium Institute of Astrophysics, Casilla 36-D, Santiago (Chile); Hsiao, E. Y.; Phillips, M. M. [Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena (Chile); Folatelli, G. [Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa 277-8583 (Kavli IPMU, WPI) (Japan); Anderson, J. P., E-mail: sgonzale@das.uchile.cl [European Southern Observatory, Alonso de Córdova 3107, Casilla 19, Santiago (Chile)

    2014-11-10

    We present a new photometric identification technique for SN 1991bg-like type Ia supernovae (SNe Ia), i.e., objects with light curve characteristics such as later primary maxima and the absence of a secondary peak in redder filters. This method is capable of selecting this sub-group from the normal type Ia population. Furthermore, we find that recently identified peculiar sub-types such as SNe Iax and super-Chandrasekhar SNe Ia have photometric characteristics similar to 91bg-like SNe Ia, namely, the absence of secondary maxima and shoulders at longer wavelengths, and can also be classified with our technique. The similarity of these different SN Ia sub-groups perhaps suggests common physical conditions. This typing methodology permits the photometric identification of peculiar SNe Ia in large upcoming wide-field surveys either to study them further or to obtain a pure sample of normal SNe Ia for cosmological studies.

  11. The evolution of red supergiants to supernovae

    Science.gov (United States)

    Beasor, Emma R.; Davies, Ben

    2017-11-01

    With red supergiants (RSGs) predicted to end their lives as Type IIP core collapse supernova (CCSN), their behaviour before explosion needs to be fully understood. Mass loss rates govern RSG evolution towards SN and have strong implications on the appearance of the resulting explosion. To study how the mass-loss rates change with the evolution of the star, we have measure