WorldWideScience

Sample records for superlattice structures grown

  1. Effect of Interface Bond Type on the Structure of InAs/GaSb Superlattices Grown by Metalorganic Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    LI Li-Gong; LIUShu-Man; LUO Shuai; YANG Tao; WANG Li-Jun; LIUFeng-Qi; YE Xiao-Ling; XU Bo; WANG Zhan-Guo

    2011-01-01

    InAs/GaSb type-II superlattices were grown on (100) GaSb substrates by meta.lorga.nic chemical vapor deposition. Raman scattering spectroscopy reveals that it is possible to grow superlattices with almost pure GaAs-like and mixed-like (plane of mixed As and Sb atoms that connect the GaSb and lnAs layers) interfaces. Introducing the InSb-like interface results in nanopipes and As contamination of the GaSb layers. X-ray diffraction and atomic force microscopy demonstrate that the superlattices with a mixed-like interface have better morphology and crystalline quality.%InAs/GaSb type-Ⅱ superlattices were grown on (100) GaSb substrates by metalorganic chemical vapor deposition.Raman scattering spectroscopy reveals that it is possible to grow superlattices with almost pure GaAs-like and mixed-like (plane of mixed As and Sb atoms that connect the GaSb and InAs layers) interfaces.Introducing the InSb-like interface results in nanopipes and As contamination of the GaSb layers.X-ray diffraction and atomic force microscopy demonstrate that the superlattices with a mixed-like interface have better morphology and crystalline quality.InAs/GaSb type-Ⅱ superlattices (SLs) have been shown to be a promising alternative to the existing HgCdTe and quantum well infrared detectors.[1,2]This material system can be tailored over a wide range of infrared wavelength from 3 to more than 30 μm by changing the thicknesses of the InAs and GaSb layers.Using the same technique,the Auger recombination rate can be significantly reduced in InAs/GaSb SLs,which is especially important for realizing high-performance infrared detectors at room temperature.[3,4] Furthermore,due to the large electron effective mass of the SL structures,the bandto-band tunneling current is intrinsically small compared to that of HgCdTe.[5] Since both the anion and the cation change across the interface (IF) of the InAs/GaSb SL,two types of interfaces are possible,InSb-like and GaAs-like.It has been shown that the

  2. Structural and optical properties of InAs/InAsSb superlattices grown by metal organic chemical vapor deposition for mid-wavelength infrared photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Ning, Zhen-Dong, E-mail: ningzd@semi.ac.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Liu, Shu-Man, E-mail: liusm@semi.ac.cn [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Luo, Shuai; Ren, Fei; Wang, Feng-Jiao; Yang, Tao; Liu, Feng-Qi [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Wang, Zhan-Guo [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Zhao, Lian-Cheng [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2016-04-15

    Graphical abstract: - Highlights: • Structural and optical properties of InAs/InAsSb superlattices were investigated. • Temperature dependent photoluminescence emission was investigated in detail. • The Varshni and Bose–Einstein parameters were obtained. - Abstract: InAs/InAsSb superlattices were grown on (0 0 1) GaSb substrates by metal organic chemical vapor deposition for potential applications as mid-infrared optoelectronic devices. X-ray diffraction, transmission electron microscopy, photoluminescence emission and spectral photoconductivity were used to characterize the grown structures. Generally, photoluminescence emission measurements of InAs/InAsSb superlattices were performed over the temperature range from 11 K to 300 K. The Varshni and Bose–Einstein parameters were determined. Low-temperature photoluminescence measurements showed peaks at 3–5 μm, while photoconductance results showed strong spectral response up to room temperature, when the photoresponse onset was extended to 5.5 μm. The photoluminescence emission band covers the CO{sub 2} absorption peak making it suitable for application in CO{sub 2} detection.

  3. Magnetic structure of holmium-yttrium superlattices

    DEFF Research Database (Denmark)

    Jehan, D.A.; McMorrow, D.F.; Cowley, R.A.;

    1993-01-01

    that the superlattices have high crystallographic integrity: the structural coherence length parallel to the growth direction is typically almost-equal-to 2000 angstrom, while the interfaces between the two elements are well defined and extend over approximately four lattice planes. The magnetic structures were......We present the results of a study of the chemical and magnetic structures of a series of holmium-yttrium superlattices and a 5000 angstrom film of holmium, all grown by molecular-beam epitaxy. By combining the results of high-resolution x-ray diffraction with detailed modeling, we show...... determined using neutron-scattering techniques. The moments on the Ho3+ ions in the superlattices form a basal-plane helix. From an analysis of the superlattice structure factors of the primary magnetic satellites, we are able to determine separately the contributions made by the holmium and yttrium...

  4. Revisiting HOPG superlattices: Structure and conductance properties

    Science.gov (United States)

    Patil, Sumati; Kolekar, Sadhu; Deshpande, Aparna

    2017-04-01

    Superlattices observed on highly oriented pyrolytic graphite (HOPG) have been studied extensively by scanning tunnelling microscopy (STM). The interest in the study of graphite superlattices has seen a resurgence since the discovery of graphene. Single layer graphene, bilayer graphene, and few layer graphene can now be grown on different substrates. The adherence of graphene to various substrates often leads to a periodic out-of-plane modulation and superlattices due to lattice mismatch. In this paper, we report STM imaging and scanning tunnelling spectroscopy (STS) of different kinds of superlattices on HOPG characterized by a variation in lattice periodicities. Our study also shows evidence of the displacement of the topmost HOPG layer by scanning different areas of the same superlattice. A correlation between the lattice periodicity with its conductance properties is derived. The results of this work are important for understanding the origin of the superlattice structure on HOPG. Investigation of such superlattices may open up possible ways to modify two dimensional electron systems to create materials with tailored electronic properties.

  5. X-ray reflectivity and atomic force microscopy studies of MOCVD grown AlxGa1-xN/GaN superlattice structures*

    Institute of Scientific and Technical Information of China (English)

    Wang Yuanzhang; Li Jinchai; Li Shuping; Chen Hangyang; Liu Dayi; Kang Junyong

    2011-01-01

    The grazing incidence X-ray reflectivity (GIXR) technique and atomic force microscopy (AFM) were exploited to obtain an accurate evaluation of the surfaces and interfaces for metalorganic chemical vapor deposition grown AlxGa1-xN/GaN superlattice structures. The X-ray diffraction results have been combined with reflectivity data to evaluate the layer thickness and Al mole fraction in the AlGaN layer. The presence ora smooth interface is responsible for the observation of intensity oscillation in GIXR, which is well correlated to step flow observation in AFM images of the surface. The structure with a low Al mole fraction (x = 0.25) and thin well width has a rather smooth surface for the Rrms of AFM data value is 0.45 nm.

  6. Structural and electrical properties of InAs/GaSb superlattices grown by metalorganic vapor phase epitaxy for midwavelength infrared detectors

    Energy Technology Data Exchange (ETDEWEB)

    Arikata, Suguru; Kyono, Takashi [Semiconductor Technologies Laboratory, Sumitomo Electric Industries, LTD., Hyogo (Japan); Miura, Kouhei; Balasekaran, Sundararajan; Inada, Hiroshi; Iguchi, Yasuhiro [Transmission Devices Laboratory, Sumitomo Electric Industries, LTD., Yokohama (Japan); Sakai, Michito [Sensor System Research Group, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki (Japan); Katayama, Haruyoshi [Space Technology Directorate I, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki (Japan); Kimata, Masafumi [College of Science and Engineering, Ritsumeikan University, Shiga (Japan); Akita, Katsushi [Sumiden Semiconductor Materials, LTD., Hyogo (Japan)

    2017-03-15

    InAs/GaSb superlattice (SL) structures were fabricated on GaSb substrates by metalorganic vapor phase epitaxy (MOVPE) toward midwavelength infrared (MWIR) photodiodes. Almost defect-free 200-period SLs with a strain-compensation interfacial layer were successfully fabricated and demonstrate an intense photoluminescence peak centered at 6.1 μm at 4 K and an external quantum efficiency of 31% at 3.5 μm at 20 K. These results indicate that the high-performance MWIR detectors can be fabricated in application with the InAs/GaSb SLs grown by MOVPE as an attractive method for production. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Passivation of MBE grown InGaSb/InAs superlattice photodiodes

    Science.gov (United States)

    Hill, Cory J.; Keo, Sam S.; Mumolo, Jason M.; Gunapala, Sarath D.

    2005-01-01

    We have performed wet chemical passivation tests on InGaSb/InAs superlattice photodiode structures grown molecular beam epitaxy. The details of the devices growth and characterization as well as the results of chemical passivation involving RuCl3 and H2SO4 with SiO2 dielectric depositions are presented.

  8. Complex band structure and superlattice electronic states

    Science.gov (United States)

    Schulman, J. N.; McGill, T. C.

    1981-04-01

    The complex band structures of the bulk materials which constitute the alternating layer (001) semiconductor-semiconductor superlattice are investigated. The complex bands near the center of the Brillouin zone in the [001] direction are studied in detail. The decay lengths of superlattice states whose energies lie in the bulk band gaps of one of the semiconductors are determined from the dispersion curves of these bands for imaginary k-->. This method is applied using a tight-binding band-structure calculation to two superlattices: the AlAs-GaAs superlattice and the CdTe-HgTe superlattice. The decay lengths of AlAs-GaAs superlattice conduction-band minimum states are found to be substantially shorter than those for the CdTe-HgTe superlattice. These differences in the decay of the states in the two superlattices result in differences in the variation of the conduction-band effective masses with the thickness of the AlAs and CdTe layers. The conduction-band effective masses increase more rapidly with AlAs thickness in the AlAs-GaAs superlattice than with CdTe thickness in the CdTe-HgTe superlattice.

  9. Temperature-Dependent X-ray Diffraction Measurements of Infrared Superlattices Grown by MBE

    Directory of Open Access Journals (Sweden)

    Charles J. Reyner

    2016-11-01

    Full Text Available Strained-layer superlattices (SLSs are an active research topic in the molecular beam epitaxy (MBE and infrared focal plane array communities. These structures undergo a >500 K temperature change between deposition and operation. As a result, the lattice constants of the substrate and superlattice are expected to change by approximately 0.3%, and at approximately the same rate. However, we present the first temperature-dependent X-ray diffraction (XRD measurements of SLS material on GaSb and show that the superlattice does not contract in the same manner as the substrate. In both InAs/InAs0.65Sb0.35 and In0.8Ga0.2As/InAs0.65Sb0.35 SLS structures, the apparent out-of-plane strain states of the superlattices switch from tensile at deposition to compressive at operation. These changes have ramifications for material characterization, defect generation, carrier lifetime, and overall device performance of superlattices grown by MBE.

  10. The structural and magnetic properties of holmium/scandium superlattices

    DEFF Research Database (Denmark)

    Bryn-Jacobsen, C.; Cowley, R.A.; McMorrow, D.F.;

    1997-01-01

    The properties of Ho/Sc superlattices grown by molecular beam epitaxy (MBE) have been investigated using X-ray and neutron diffraction techniques. Structural studies reveal the novel existence of more than one a lattice parameter. Examining the magnetic properties, it is found that the Ho 4f...

  11. Magnetic structures of holmium-lutetium alloys and superlattices

    DEFF Research Database (Denmark)

    Swaddling, P.P.; Cowley, R.A.; Ward, R.C.C.;

    1996-01-01

    Alloys and superlattices of Ho and Lu have been grown using molecular beam epitaxy and their magnetic structures determined using neutron-scattering techniques. The 4f moments in the alloys form a helix at all compositions with the moments aligned in the basal plane perpendicular to the wave vector...

  12. Progress in MBE grown type-II superlattice photodiodes

    Science.gov (United States)

    Hill, Cory J.; Li, Jian V.; Mumolo, Jason M.; Gunapala, Sarath D.

    2006-01-01

    We report on the status of GaSb/InAs type-II superlattice diodes grown and fabricated at the Jet Propulsion Laboratory designed for infrared absorption in the 8-12(mu)m range. Recent devices have produced detectivities as high as 8x10 to the tenth power Jones with a differential resistance-area product greater than 6 Ohmcm(sup 2) at 80K with a long wavelength cutoff of approximately 12(mu)m. The measured quantum efficiency of these front-side illuminated devices is close to 30% in the 10-11(mu)m range without antireflection coatings.

  13. Cross-sectional scanning thermal microscopy of ErAs/GaAs superlattices grown by molecular beam epitaxy.

    Science.gov (United States)

    Park, K W; Krivoy, E M; Nair, H P; Bank, S R; Yu, E T

    2015-07-03

    Scanning thermal microscopy has been implemented in a cross-sectional geometry, and its application for quantitative, nanoscale analysis of thermal conductivity is demonstrated in studies of an ErAs/GaAs nanocomposite superlattice. Spurious measurement effects, attributable to local thermal transport through air, were observed near large step edges, but could be eliminated by thermocompression bonding to an additional structure. Using this approach, bonding of an ErAs/GaAs superlattice grown on GaAs to a silicon-on-insulator wafer enabled thermal signals to be obtained simultaneously from Si, SiO2, GaAs, and ErAs/GaAs superlattice. When combined with numerical modeling, the thermal conductivity of the ErAs/GaAs superlattice measured using this approach was 11 ± 4 W m(-1) K(-1).

  14. Microcavities with distributed Bragg reflectors based on ZnSe/MgS superlattice grown by MOVPE

    Science.gov (United States)

    Tawara, T.; Yoshida, H.; Yogo, T.; Tanaka, S.; Suemune, I.

    2000-12-01

    Monolithic II-VI semiconductor microcavities for the blue-green region grown by metal-organic vapor-phase epitaxy have been demonstrated. ZnSe/MgS-superlattice (ZnSe/MgS-SL) layers were used for the distributed Bragg reflectors (DBRs). The DBR with only 5 periods showed the high reflectivity of 92% at the wavelength of 510 nm due to the large difference of refractive indices between ZnSe and MgS layers. In a monolithic II-VI microcavity structure based on these DBRs, a clear cavity resonance mode was observed in the blue-green region for the first time.

  15. Structure and magnetic properties of thin films and superlattices

    CERN Document Server

    Bentall, M J

    2002-01-01

    Thin layers of rare earth elements and Laves phase superlattices were grown using molecular beam epitaxy. Their structure and magnetic properties have been probed using x-ray and neutron scattering, magnetisation measurements and high resolution electron microscopy. When holmium is grown on yttrium, the x-ray scattering from layers with a thickness below T sub c ' 115 A is characteristic of a pseudomorphic layer with the same in-plane lattice parameter as the yttrium substrate to within 0.05%. For layers above T sub c ' there is a sharp reduction in misfit strain which is probably due to the creation of edge dislocations. When gadolinium is grown on yttrium, no sharp change of strain of the thin layer was observed up to a thickness of 2920 A. This is characteristic of a pseudomorphic layer, and a failure to nucleate dislocations. For the Laves phase superlattices, a study of the x-ray scattering near several Bragg reflections revealed the presence of numerous superlattice peaks, showing that the samples exhib...

  16. Structural and magnetic properties of holmium-scandium alloys and superlattices

    DEFF Research Database (Denmark)

    Bryn-Jacobsen, C.; Cowley, R.A.; McMorrow, D.F.

    1997-01-01

    The properties of Ho-Sc alloys and superlattices grown by molecular-beam epitaxy have been investigated using x-ray and neutron-diffraction techniques. Structural studies reveal that the alloy samples have different a lattice parameters for the Sc-seed layer and the Ho:Sc alloy grown on top...... of the seed layer; while the superlattices have different a lattice parameters for the Sc seed, and for both the Ho and Sc in the superlattice layers. The structural characteristics are related to the large lattice mismatches (of the order 7%) between the constituent elements. The magnetic moments....... It is found that a good description of the dependence of T-N upon concentration is given by a virtual-crystal model where the peak in the conduction-electron susceptibility varies linearly between that of the pure constituents. In the superlattices, the moments also form a basal-plane helix at T...

  17. Electrical transport engineering of semiconductor superlattice structures

    Science.gov (United States)

    Shokri, Aliasghar

    2014-04-01

    We investigate the influence of doping concentration on band structures of electrons and electrical transmission in a typical aperiodic semiconductor superlattice consisting of quantum well and barrier layers, theoretically. For this purpose, we assume that each unit cell of the superlattice contains alternately two types of material GaAs (as a well) and GaAlAs (as a barrier) with six sublayers of two materials. Our calculations are based on the generalized Kronig-Penny (KP) model and the transfer matrix method within the framework of the parabolic conductance band effective mass approximation in the coherent regime. This model reduces the numerical calculation time and enables us to use the transfer matrix method to investigate transport in the superlattices. We show that by varying the doping concentration and geometrical parameters, one can easily block the transmission of the electrons. The numerical results may be useful in designing of nanoenergy filter devices.

  18. Electrical transport engineering of semiconductor superlattice structures

    Energy Technology Data Exchange (ETDEWEB)

    Shokri, Aliasghar, E-mail: aashokri@tpnu.ac.ir

    2014-04-01

    We investigate the influence of doping concentration on band structures of electrons and electrical transmission in a typical aperiodic semiconductor superlattice consisting of quantum well and barrier layers, theoretically. For this purpose, we assume that each unit cell of the superlattice contains alternately two types of material GaAs (as a well) and GaAlAs (as a barrier) with six sublayers of two materials. Our calculations are based on the generalized Kronig–Penny (KP) model and the transfer matrix method within the framework of the parabolic conductance band effective mass approximation in the coherent regime. This model reduces the numerical calculation time and enables us to use the transfer matrix method to investigate transport in the superlattices. We show that by varying the doping concentration and geometrical parameters, one can easily block the transmission of the electrons. The numerical results may be useful in designing of nanoenergy filter devices.

  19. Ultrafast structural dynamics of perovskite superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Woerner, M.; Korff Schmising, C. von; Zhavoronkov, N.; Elsaesser, T. [Max-Born-Institut fuer Nichtlineare Optik und Kurzzeitspektroskopie, Berlin (Germany); Bargheer, M. [Universitaet Potsdam, Institut fuer Physik und Astronomie, Potsdam (Germany); Vrejoiu, I.; Hesse, D.; Alexe, M. [Max-Planck-Institut fuer Mikrostrukturphysik, Halle (Germany)

    2009-07-15

    Femtosecond X-ray diffraction provides direct insight into the ultrafast reversible lattice dynamics of materials with a perovskite structure. Superlattice (SL) structures consisting of a sequence of nanometer-thick layer pairs allow for optically inducing a tailored stress profile that drives the lattice motions and for limiting the influence of strain propagation on the observed dynamics. We demonstrate this concept in a series of diffraction experiments with femtosecond time resolution, giving detailed information on the ultrafast lattice dynamics of ferroelectric and ferromagnetic superlattices. Anharmonically coupled lattice motions in a SrRuO{sub 3}/PbZr{sub 0.2}Ti{sub 0.8}O{sub 3} (SRO/PZT) SL lead to a switch-off of the electric polarizations on a time scale of the order of 1 ps. Ultrafast magnetostriction of photoexcited SRO layers is demonstrated in a SRO/SrTiO{sub 3} (STO) SL. (orig.)

  20. Raman spectra and magnetization of all-ferromagnetic superlattices grown on (110) oriented SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Behera, B. C.; Ravindra, A. V.; Padhan, P. [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India); Prellier, W. [Laboratoire CRISMAT, CNRS UMR 6508, ENSICAEN, 6 Bd du Marehal Juin, F-14050 Caen Cedex (France)

    2014-03-03

    Superlattices consist of two ferromagnets La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) and SrRuO{sub 3} (SRO) were grown in (110)-orientation on SrTiO{sub 3} (STO) substrates. The x-ray diffraction and Raman spectra of these superlattices show the presence of in-plane compressive strain and orthorhombic structure of less than 4 u.c. thick LSMO spacer, respectively. Magnetic measurements reveal several features including reduced magnetization, enhanced coercivity, antiferromagnetic coupling, and switching from antiferromagnetic to ferromagnetic coupling with magnetic field orientations. These magnetic properties are explained by the observed orthorhombic structure of spacer LSMO in Raman scattering which occurs due to the modification in the stereochemistry of Mn at the interfaces of SRO and LSMO.

  1. Structure property relationships of nitride superlattice hard coatings prepared by pulsed laser deposition

    Science.gov (United States)

    Patel, Nitin

    Today, more than 40% of all cutting tools used in machining applications are covered with coatings. Coatings improve wear resistance, increase tool life, enable use at higher speed, and broaden the application range. Superlattices, where thin layers (typically deposited in an alternating fashion, are widely used commercially. Importantly, the hardness value of a superlattice (e.g. TiN/AlN) can significantly exceed the rule of mixture value. Superlattice coatings built from crystallographically dissimilar materials are not widely studied but hold promise for improvements in performance by allowing for both hardness and toughness to be simultaneously optimized. This is what this thesis is concerned with: a structure-property comparison of isostructural superlattices with corresponding non-isostructural superlattices. In order to grow both isostructural and non-isostructural superlattices from the same set of materials, it is necessary to grow monolithic films in different phases. Towards this end, the synthesis of different phases of AlN, (Ti,Al)N, TaN, and TiN was investigated. Films were grown by pulsed laser deposition in two different chambers that had different base pressures to study the effect of background gases on the phases and orientations of the films. Growth of AlN and (Ti,Al)N films is strongly affected in a chamber that had a base pressure of 10-6 Torr, but the films adopt their stable nitride structures in a chamber with the lower base pressure of 10-8 Torr. TaN adopts either the cubic rock salt structure or its stable hexagonal structure, depending on the growth temperature, while TiN grows as rock salt in all conditions. Single crystal epitaxial superlattices were then grown with different compositions, periodicities, and crystallographic orientations to compare the effect of chemistry, nanostructure, and crystallographic texture on hardness. Finally, the structure-property relationships of non-isostructural (cubic/hexagonal) superlattices are

  2. The chemical and magnetic structures of holmium-yttrium and holmium-lutetium superlattices

    DEFF Research Database (Denmark)

    McMorrow, D.F.; Jehan, D.A.; Swaddling, P.P.;

    1993-01-01

    We present the results of a study of the chemical and magnetic structures of Ho/Y and Ho/Lu superlattices, all grown by molecular beam epitaxy. By combining the results of high-resolution X-ray diffraction with detailed modelling we show that the superlattices have high crystallographic integrity......: the average structural coherence length in the growth direction is approximately 2000 angstrom, while the interfaces between the two elements are well defined, extending over approximately four lattice planes. The magnetic structures were determined using neutron scattering techniques. In the case of the Ho...

  3. Theory of silicon superlattices - Electronic structure and enhanced mobility

    Science.gov (United States)

    Moriarty, J. A.; Krishnamurthy, S.

    1983-01-01

    A realistic tight-binding band-structure model of silicon superlattices is formulated and used to study systems of potential applied interest, including periodic layered Si-Si(1-x)Ge(x) heterostructures. The results suggest a possible new mechanism for achieving enhanced transverse carrier mobility in such structures: reduced transverse conductivity effective masses associated with the superlattice band structure. For electrons in 100-line-oriented superlattices, a reduced conductivity mass arises intrinsically from the lower symmetry of the superlattice and its unique effect on the indirect bulk silicon band gap. An order of magnitude estimate of the range of mobility enhancement expected from this mechanism appears to be consistent with preliminary experimental results on Si-Si(1-x)Ge(x) superlattices.

  4. Coherent magnetic structures in terbium/holmium superlattices

    DEFF Research Database (Denmark)

    Bryn-Jacobsen, C.; Cowley, R.A.; McMorrow, D.F.;

    1997-01-01

    Neutron-scattering techniques have been used to investigate the magnetic properties of three Tb/Ho superlattices grown by molecular-beam epitaxy. It is revealed that for temperatures in the range T = 10 to T-N(Ho)approximate to 130 K, there is a basal-plane ferromagnetic alignment of Tb moments...

  5. Electronic structure of superlattices of graphene and hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.

    2011-11-14

    We study the electronic structure of superlattices consisting of graphene and hexagonal boron nitride slabs, using ab initio density functional theory. We find that the system favors a short C–B bond length at the interface between the two component materials. A sizeable band gap at the Dirac point is opened for superlattices with single graphene layers but not for superlattices with graphene bilayers. The system is promising for applications in electronic devices such as field effect transistors and metal-oxide semiconductors.

  6. Coherent quantum transport features in carbon superlattice structures

    Science.gov (United States)

    McIntosh, R.; Henley, S. J.; Silva, S. R. P.; Bhattacharyya, S.

    2016-10-01

    Whilst resonant transmission is well understood and can be fully harnessed for crystalline superlattices, a complete picture has not yet emerged for disordered superlattices. It has proven difficult to tune resonant transmission in disordered diamond-like carbon (DLC) superlattices as conventional models are not equipped to incorporate significant structural disorder. In this work, we present concurrent experimental and theoretical analysis which addresses resonant transmission in DLC superlattices. Devices were fabricated by growing alternate layers of DLC with different percentages of sp3 hybridized carbon.Coherent quantum transport effects were demonstrated in these structurally disordered DLC superlattices through distinct current modulation with negative differential resistance (NDR) in the current-voltage (I-V) measurements. A model was developed using tight-binding calculations assuming a random variation of the hopping integral to simulate structural (bond-length) disorder. Calculations of the I-V characteristics compliment the interpretation of the measurements and illustrate that while DLC superlattice structures are unlike their classical counterparts, the near-field structural order will help with the confinement of quantised states. The present model provides an empirical guide for tailoring the properties of future devices, giving rise to much hope that carbon electronics operating at high frequencies over large areas can now be developed.

  7. Structural, magnetic, and superconducting properties of pulsed-laser-deposition-grown La1.85Sr0.15CuO4/La2/3Ca1/3MnO3 superlattices on (001)-oriented LaSrAlO4 substrates

    Science.gov (United States)

    Das, S.; Sen, K.; Marozau, I.; Uribe-Laverde, M. A.; Biskup, N.; Varela, M.; Khaydukov, Y.; Soltwedel, O.; Keller, T.; Döbeli, M.; Schneider, C. W.; Bernhard, C.

    2014-03-01

    Epitaxial La1.85Sr0.15CuO4/La2/3Ca1/3MnO3 (LSCO/LCMO) superlattices on (001)-oriented LaSrAlO4 substrates have been grown with pulsed laser deposition technique. Their structural, magnetic, and superconducting properties have been determined with in situ reflection high-energy electron diffraction, x-ray diffraction, specular neutron reflectometry, scanning transmission electron microscopy, electric transport, and magnetization measurements. We find that despite the large mismatch between the in-plane lattice parameters of LSCO (a =0.3779 nm) and LCMO (a =0.387 nm) these superlattices can be grown epitaxially and with a high crystalline quality. While the first LSCO layer remains clamped to the LaSrAlO4 substrate, a sizable strain relaxation occurs already in the first LCMO layer. The following LSCO and LCMO layers adopt a nearly balanced state in which the tensile and compressive strain effects yield alternating in-plane lattice parameters with an almost constant average value. No major defects are observed in the LSCO layers, while a significant number of vertical antiphase boundaries are found in the LCMO layers. The LSCO layers remain superconducting with a relatively high superconducting onset temperature of Tconset≈36 K. The macroscopic superconducting response is also evident in the magnetization data due to a weak diamagnetic signal below 10 K for H ∥ ab and a sizable paramagnetic shift for H ∥ c that can be explained in terms of a vortex-pinning-induced flux compression. The LCMO layers maintain a strongly ferromagnetic state with a Curie temperature of TCurie≈190 K and a large low-temperature saturation moment of about 3.5(1) μB per Mn ion. These results suggest that the LSCO/LCMO superlattices can be used to study the interaction between the antagonistic ferromagnetic and superconducting orders and, in combination with previous studies on YBa2Cu3O7-x/La2/3Ca1/3MnO3 superlattices, may allow one to identify the relevant mechanisms.

  8. X-ray crystal truncation rod scattering from MBE grown (CaF 2-SrF 2)/Si(111) superlattices

    Science.gov (United States)

    Harada, J.; Itoh, Y.; Shimura, T.; Takahashi, I.; Alvarez, J. C.; Sokolov, N. S.

    1994-01-01

    Flouride CaF 2-SrF 2 superlattices (SLs) grown by molecular beam epitaxy have been studied by means of X-ray diffractometry for the first time. The diffraction patterns showed reasonably good crystalline quality of the SLs and a type-B epitaxial relation to the Si(111) substrate. From the analysis of the crystal truncation rod (CTR) profiles, based on the pseudomorphic model, it was obtained that despite the same high temperature (770°C) of formation of the CaF 2/Si(111) interface its structure depended on the growth temperature of the SLs. The shape of the CTR profiles confirmed the existence of the superlattice which consists of one or two monolayer thick SrF 2 layers. Some CaF 2/SrF 2-interface roughness was noticeable.

  9. The influence of AlN/GaN superlattice intermediate layer on the properties of GaN grown on Si(111) substrates

    Institute of Scientific and Technical Information of China (English)

    Liu Zhe; Wang Xiao-Liang; Wang Jun-Xi; Hu Guo-Xin; Guo Lun-Chun; Li Jin-Min

    2007-01-01

    AIN/GaN superlattice buffer is inserted between GaN epitaxial layer and Si substrate before epitaxial growth of GaN layer. High-quality and crack-free GaN epitaxial layers can be obtained by inserting AIN/GaN superlattice buffer layer. The influence of AIN/GaN superlattice buffer layer on the properties of GaN films are investigated in this paper. One of the important roles of the superlattice is to release tensile strain between Si substrate and epilayer. Raman spectra show a substantial decrease of in-plane tensile strain in GaN layers by vising AIN/GaN superlattice buffer layer. Moreover, TEM cross-sectional images show that the densities of both screw and edge dislocations are significantly reduced. The GaN films grown on Si with the superlattice buffer also have better surface morphology and optical properties.

  10. Fabrication and Crystal Structure of [ABO3 /REMO3] (A=Ca, La, B=Fe, Mn, RE=Bi, La, M=Fe, Fe0.8Mn0.2) Superlattices Grown by Pulsed Laser Deposition Method

    NARCIS (Netherlands)

    Watabe, Yuta; Iwata, Nobuyuki; Oikawa, Takahiro; Hashimoto, Takuya; Huijben, Mark; Rijnders, Guus; Yamamoto, Hiroshi

    2014-01-01

    In this study, we aim to synthesize novel materials that show ferromagnetic and ferroelectric properties with the magnetoelectric effect at room temperature. Nine types of superlattice were fabricated by stacking [7 units — ABO3/7 units — REMO3] for 14 times by pulsed laser deposition. From all reci

  11. CuO{sub 2}/BaO{sub 2} superlattices grown by ionic layering

    Energy Technology Data Exchange (ETDEWEB)

    Tolstoi, V.P.; Tolstobrov, E.V. [St. Petersburg State Univ. (Russian Federation)

    1994-07-01

    Superlattices based on CuO, BaO, Y{sub 2}O{sub 3}, and other oxides are used in research of high-{Tc} superconducting materials. A new technique has been developed recently to produce thin superconducting films consisting of alternating layers deposited in a particular sequence by molecular beam epitaxy or electron-beam sputtering. This technique was used for growing LaBa{sub 2}Cu{sub 3}O{sub x}/YBa{sub 2}Cu{sub 3}O{sub x}, YBa{sub 2}Cu{sub 3}O{sub x}/DyBa{sub 2}Cu{sub 3}O{sub x}, and YBa{sub 2}Cu{sub 3}O{sub x}/PrBa{sub 2}Cu{sub 3}O{sub x} superlattices. However, physical deposition methods have some restrictions: First of all, it is impossible to deposit layers on samples of complex shape. There are also problems in depositing materials such as metal peroxides, which decay irreversibly during the deposition. It is noted that metal peroxides have a number of advantages in synthesis of high-{Tc} layers. In particular, the layer is maximally saturated with oxygen in this case. In addition, if one assumes that metal atoms in peroxide layers alternate in a sequence required for producing a high-{Tc} structure, diffusional restrictions during the synthesis are eliminated. This work is aimed at studying the possibilities of synthesizing CuO{sub 2}/BaO{sub 2} superlattices by ionic layering, which is one of the solid-assembling methods and involves sequential adsorption of anions and cations that react at the substrate surface in a solution to produce poorly soluble compounds.

  12. Magnetic Rare-Earth Superlattices

    DEFF Research Database (Denmark)

    Majkrzak, C.F.; Gibbs, D.; Böni, P.

    1988-01-01

    The magnetic structures of several single‐crystal, magnetic rare‐earth superlattice systems grown by molecular‐beam epitaxy are reviewed. In particular, the results of recent neutron diffraction investigations of long‐range magnetic order in Gd‐Y, Dy‐Y, Gd‐Dy, and Ho‐Y periodic superlattices...... are presented. In the Gd‐Y system, an antiphase domain structure develops for certain Y layer spacings, whereas modified helical moment configurations are found to occur in the other systems, some of which are commensurate with the chemical superlattice wavelength. References are made to theoretical interaction...

  13. Electronic structure of a graphene superlattice with massive Dirac fermions

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Jonas R. F., E-mail: jonas.iasd@gmail.com [Instituto de Ciencia de Materiales de Madrid (CSIC) - Cantoblanco, Madrid 28049 (Spain)

    2015-02-28

    We study the electronic and transport properties of a graphene-based superlattice theoretically by using an effective Dirac equation. The superlattice consists of a periodic potential applied on a single-layer graphene deposited on a substrate that opens an energy gap of 2Δ in its electronic structure. We find that extra Dirac points appear in the electronic band structure under certain conditions, so it is possible to close the gap between the conduction and valence minibands. We show that the energy gap E{sub g} can be tuned in the range 0 ≤ E{sub g} ≤ 2Δ by changing the periodic potential. We analyze the low energy electronic structure around the contact points and find that the effective Fermi velocity in very anisotropic and depends on the energy gap. We show that the extra Dirac points obtained here behave differently compared to previously studied systems.

  14. Isolated structures in two-dimensional optical superlattice

    Science.gov (United States)

    Zou, Xin-Hao; Yang, Bao-Guo; Xu, Xia; Tang, Peng-Ju; Zhou, Xiao-Ji

    2017-10-01

    Overlaying commensurate optical lattices with various configurations called superlattices can lead to exotic lattice topologies and, in turn, a discovery of novel physics. In this study, by overlapping the maxima of lattices, a new isolated structure is created, while the interference of minima can generate various "sublattice" patterns. Three different kinds of primitive lattices are used to demonstrate isolated square, triangular, and hexagonal "sublattice" structures in a two-dimensional optical superlattice, the patterns of which can be manipulated dynamically by tuning the polarization, frequency, and intensity of laser beams. In addition, we propose the method of altering the relative phase to adjust the tunneling amplitudes in "sublattices". Our configurations provide unique opportunities to study particle entanglement in "lattices" formed by intersecting wells and to implement special quantum logic gates in exotic lattice geometries.

  15. Nonlinear thermoelectric efficiency of superlattice-structured nanowires

    Science.gov (United States)

    Karbaschi, Hossein; Lovén, John; Courteaut, Klara; Wacker, Andreas; Leijnse, Martin

    2016-09-01

    We theoretically investigate nonlinear ballistic thermoelectric transport in a superlattice-structured nanowire. By a special choice of nonuniform widths of the superlattice barriers—analogous to antireflection coating in optical systems—it is possible to achieve a transmission which comes close to a square profile as a function of energy. We calculate the low-temperature output power and power-conversion efficiency of a thermoelectric generator based on such a structure and show that the efficiency remains high also when operating at a significant power. To provide guidelines for experiments, we study how the results depend on the nanowire radius, the number of barriers, and on random imperfections in barrier width and separation. Our results indicate that high efficiencies can indeed be achieved with today's capabilities in epitaxial nanowire growth.

  16. Isolated Structures in Two-Dimensional Optical Superlattice

    CERN Document Server

    Zou, Xinhao; Xu, Xia; Tang, Pengju; Zhou, Xiaoji

    2016-01-01

    Overlaying commensurate optical lattices with various configurations called superlattices can lead to exotic lattice topologies and, in turn, a discovery of novel physics. In this study, by overlapping the maxima of lattices, a new isolated structure is created, while the interference of minima can generate various "sublattice" patterns. Three different kinds of primitive lattices are used to demonstrate isolated square, triangular, and hexagonal "sublattice" structures in a two-dimensional optical superlattice, the patterns of which can be manipulated dynamically by tuning the polarization, frequency, and intensity of laser beams. In addition, we propose the method of altering the relative phase to adjust the tunneling amplitudes in "sublattices." Our configurations provide unique opportunities to study particle entanglement in "lattices" formed by intersecting wells and to implement special quantum logic gates in exotic lattice geometries.

  17. P-type AlAs/[GaAs/AlAs] Semiconductor/Superlattice DBR Grown by MBE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A p-type AlAs(70.2 nm)/16.5 period [GaAs(3 nm)/AlAs(0.7 nm)] semiconductor/superlatice distributed Bragg reflector (DBR) has been grown on n+-GaAs(100) substrate by V80H molecular beam epitaxy system. Experimental reflection spectrum shows that its central wavelength is 820 nm, with the peak reflectivity for 10-pair DBR of as high as 96 %, and the reflection bandwidth of as wide as 90 nm. We formed a 20×20 μm2 square mesa to measure the series resistance using wet chemical etching. From the measurement result, the series resistance of about 50 Ω is obtained at a moderate doping (3×1018 cm-3). Finally, the dependence of the resistance of the DBR on the temperature is analyzed. From the experimental result, it is found that the mechanism of the low series resistance of this kind of DBR may increase the tunneling current in the semiconductor/superlattice mirror structure, which will result in a decrease in series resistance.

  18. Low dark current N structure superlattice MWIR photodetectors

    Science.gov (United States)

    Salihoglu, Omer; Muti, Abdullah; Turan, Rasit; Ergun, Yuksel; Aydinli, Atilla

    2014-06-01

    Commercially available read out integrated circuits (ROICs) require the FPA to have high dynamic resistance area product at zero bias (R0A) which is directly related to dark current of the detector. Dark current arises from bulk and surface contributions. Recent band structure engineering studies significantly suppressed the bulk contribution of the type-II superlattice infrared photodetectors (N structure, M structure, W structure). In this letter, we will present improved dark current results for unipolar barrier complex supercell superlattice system which is called as "N structure". The unique electronic band structure of the N structure increases electron-hole overlap under bias, significantly. N structure aims to improve absorption by manipulating electron and hole wavefunctions that are spatially separated in T2SLs, increasing the absorption while decreasing the dark current. In order to engineer the wavefunctions, we introduce a thin AlSb layer between InAs and GaSb layers in the growth direction which also acts as a unipolar electron barrier. Despite the difficulty of perfect lattice matching of InAs and AlSb, such a design is expected to reduce dark current. Experiments were carried out on Single pixel with mesa sizes of 100 × 100 - 700 × 700 μm photodiodes. Temperature dependent dark current with corresponding R0A resistance values are reported.

  19. Fine structure of the exciton electroabsorption in semiconductor superlattices

    Science.gov (United States)

    Monozon, B. S.; Schmelcher, P.

    2017-02-01

    Wannier-Mott excitons in a semiconductor layered superlattice (SL) are investigated analytically for the case that the period of the superlattice is much smaller than the 2D exciton Bohr radius. Additionally we assume the presence of a longitudinal external static electric field directed parallel to the SL axis. The exciton states and the optical absorption coefficient are derived in the tight-binding and adiabatic approximations. Strong and weak electric fields providing spatially localized and extended electron and hole states, respectively, are studied. The dependencies of the exciton states and the exciton absorption spectrum on the SL parameters and the electric field strength are presented in an explicit form. We focus on the fine structure of the ground quasi-2D exciton level formed by the series of closely spaced energy levels adjacent from the high frequencies. These levels are related to the adiabatically slow relative exciton longitudinal motion governed by the potential formed by the in-plane exciton state. It is shown that the external electric fields compress the fine structure energy levels, decrease the intensities of the corresponding optical peaks and increase the exciton binding energy. A possible experimental study of the fine structure of the exciton electroabsorption is discussed.

  20. GaAs Based InAs/GaSb Superlattice Short Wavelength Infrared Detectors Grown by Molecular Beam Epitaxy

    Institute of Scientific and Technical Information of China (English)

    TANG Bao; XU Ying-Qiang; ZHOU Zhi-Qiang; HAO Rui-Ting; WANG Guo-Wei; REN Zheng-Wei; NIU Zhi-Chuan

    2009-01-01

    InAs/GaSb superlattice (SL) short wavelength infrared photoconduction detectors are grown by molecular beam epitaxy on GaAs(O01) semi-insulating substrates. An interracial misfit mode A1Sb quantum dot layer and a thick GaSb layer are grown as buffer layers. The detectors containing a 200-period 2 ML/8 ML InAs/GaSb SL active layer are fabricated with a pixel area of 800×800 μm2 without using passivation or antireflection coatings. Corresponding to the 50% cutoff wavelengths of 2.05 μm at 77K and 2.25 μ m at 300 K, the peak detectivities of the detectors are 4 × 109 cm·Hz1/2/W at 77K and 2 × 108 cm.Hz1/2/W at 30OK, respectively.

  1. Laser induced structural transformation in chalcogenide based superlattices

    Science.gov (United States)

    Zallo, Eugenio; Wang, Ruining; Bragaglia, Valeria; Calarco, Raffaella

    2016-05-01

    Superlattices made of alternating layers of nominal GeTe and Sb2Te3 have been studied by micro-Raman spectroscopy. A structural irreversible transformation into ordered GeSbTe alloy is induced by high power laser light exposure. The intensity ratio of anti-Stokes and Stokes scattering under laser illumination gives a maximum average temperature in the sample of 177 °C. The latter is lower than the growth temperature and of 400 °C necessary by annealing to transform the structure in a GeSbTe alloy. The absence of this configuration after in situ annealing even up to 300 °C evidences an electronic excitation induced-transition which brings the system into a different and stable crystalline state.

  2. Electronic Structure of Si1-xIVx/Si Superlattices on Si(001)

    Institute of Scientific and Technical Information of China (English)

    CHEN Jie; L(U) Tie-Yu; HUANG Mei-Chun

    2007-01-01

    We have preformed systematical ab initio studies of the structural and electronic properties of short-period Si1-xIVx/Si (x = 0.125, 0.25, 0.5,IV=Ge, Sn) superlattices (SLs) grown along the [001] direction on bulk Si. The present calculations reveal that the Si0.875 Ge0.125/Si, Si0.75 Ge0.25/Si and Si0.875Sn0.125/Si axe the Γ-point direct bandgap semiconductors. The technological importance lies in the expectation that the direct gap Si1-xIVx/Si SLs may be used as components in integrated optoelectronic devices, in conjunction with the already well-established and highly advanced silicon technology.

  3. Manganites in Perovskite Superlattices: Structural and Electronic Properties

    KAUST Repository

    Jilili, Jiwuer

    2016-07-13

    Perovskite oxides have the general chemical formula ABO3, where A is a rare-earth or alkali-metal cation and B is a transition metal cation. Perovskite oxides can be formed with a variety of constituent elements and exhibit a wide range of properties ranging from insulators, metals to even superconductors. With the development of growth and characterization techniques, more information on their physical and chemical properties has been revealed, which diversified their technological applications. Perovskite manganites are widely investigated compounds due to the discovery of the colossal magnetoresistance effect in 1994. They have a broad range of structural, electronic, magnetic properties and potential device applications in sensors and spintronics. There is not only the technological importance but also the need to understand the fundamental mechanisms of the unusual magnetic and transport properties that drive enormous attention. Manganites combined with other perovskite oxides are gaining interest due to novel properties especially at the interface, such as interfacial ferromagnetism, exchange bias, interfacial conductivity. Doped manganites exhibit diverse electrical properties as compared to the parent compounds. For instance, hole doped La0.7Sr0.3MnO3 is a ferromagnetic metal, whereas LaMnO3 is an antiferromagnetic insulator. Since manganites are strongly correlated systems, heterojunctions composed of manganites and other perovskite oxides are sunject to complex coupling of the spin, orbit, charge, and lattice degrees of freedom and exhibit unique electronic, magnetic, and transport properties. Electronic reconstructions, O defects, doping, intersite disorder, magnetic proximity, magnetic exchange, and polar catastrophe are some effects to explain these interfacial phenomena. In our work we use first-principles calculations to study the structural, electronic, and magnetic properties of manganite based superlattices. Firstly, we investigate the electronic

  4. Structurally induced magnetization in a La2/3Sr4/3MnO4 superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Amish B. [Argonne National Lab. (ANL), Argonne, IL (United States); Nelson-Cheeseman, Brittany B. [Argonne National Lab. (ANL), Argonne, IL (United States); Subramanian, Ganesh [Arizona State Univ., Tempe, AZ (United States); Bhattacharya, Anand [Argonne National Lab. (ANL), Argonne, IL (United States); Spence, John C.H. [Arizona State Univ., Tempe, AZ (United States)

    2012-03-16

    A structural transition has been observed in a digital superlattice of La2/3Sr4/3MnO4, which is correlated to a magnetization enhancement upon cooling the sample. The artificial superlattices were grown layer-by-layer using ozone-assisted molecular beam epitaxy (MBE). Electron diffraction experiments show a phase transition below 150K in nanopatches of the superlattice, which coincides with an enhanced magnetization starting below 110K. Furthermore, atomic scale electron energy loss spectroscopy (EELS) shows changes in the Mn L2,3 and O K edges, which are related to valence, strain, and the atomic coordination within nanopatches. Atomic resolution image and EELS showing variations of oxygen and lanthanum signature edges in a La2/3Sr4/3MnO4 supperlattice.

  5. Engineering the electronic structure of graphene superlattices via Fermi velocity modulation

    Science.gov (United States)

    Lima, Jonas R. F.

    2017-01-01

    Graphene superlattices have attracted much research interest in the last years, since it is possible to manipulate the electronic properties of graphene in these structures. It has been verified that extra Dirac points appear in the electronic structure of the system. The electronic structure in the vicinity of these points has been studied for a gapless and gapped graphene superlattice and for a graphene superlattice with a spatially modulated energy gap. In each case a different behavior was obtained. In this work we show that via Fermi velocity engineering it is possible to tune the electronic properties of a graphene superlattice to match all the previous cases studied. We also obtained new features of the system never observed before, reveling that the electronic structure of graphene is very sensitive to the modulation of the Fermi velocity. The results obtained here are relevant for the development of novel graphene-based electronic devices.

  6. Photonic band structure of one-dimensional aperiodic superlattices composed of negative refraction metamaterials

    Science.gov (United States)

    Tyc, Michał H.; Salejda, Włodzimierz; Klauzer-Kruszyna, Agnieszka; Tarnowski, Karol

    2007-05-01

    The dispersion relation for polarized light transmitting through a one-dimensional superlattice composed of aperiodically arranged layers made of ordinary dielectric and negative refraction metamaterials is calculated with finite element method. Generalized Fibonacci, generalized Thue-Morse, double-periodic and Rudin-Shapiro superlattices are investigated, using their periodic approximants. Strong dispersion of metamaterials is taken into account. Group velocities and effective refraction indices in the structures are calculated. The self-similar structure of the transmission spectra is observed.

  7. Structural, electrical and luminescent characteristics of ultraviolet light emitting structures grown by hydride vapor phase epitaxy

    Directory of Open Access Journals (Sweden)

    A.Y. Polyakov

    2017-03-01

    Full Text Available Electrical and luminescent properties of near-UV light emitting diode structures (LEDs prepared by hydride vapor phase epitaxy (HVPE were studied. Variations in photoluminescence and electroluminescence efficiency observed for LEDs grown under nominally similar conditions could be attributed to the difference in the structural quality (dislocation density, density of dislocations agglomerates of the GaN active layers, to the difference in strain relaxation achieved by growth of AlGaN/AlGaN superlattice and to the presence of current leakage channels in current confining AlGaN layers of the double heterostructure.

  8. Study on band gap structure of Fibonacci quantum superlattices by using the transfer matrix method

    Science.gov (United States)

    Ferrando, V.; Castro-Palacio, J. C.; Marí, B.; Monsoriu, J. A.

    2014-02-01

    The scattering properties of particles in a one-dimensional Fibonacci sequence based potential have been analyzed by means of the Transfer Matrix Method. The electronic band gaps are examined comparatively with those obtained using the corresponding periodic potentials. The reflection coefficient shows self-similar properties for the Fibonacci superlattices. Moreover, by using the generalized Bragg's condition, the band gaps positions are derived from the golden mean involved in the design of the superlattice structure.

  9. InN/GaN Superlattices: Band Structures and Their Pressure Dependence

    DEFF Research Database (Denmark)

    Gorczyca, Iza; Suski, Tadek; Staszczak, Grzegorz;

    2013-01-01

    with one monolayer of InN and 40 monolayers of GaN. The results are compared with calculations performed for different types of superlattices: InN/GaN, InGaN/GaN, and InN/InGaN/GaN with single monolayers of InN and/or InGaN. The superlattices are simulated by band structure calculations based on the local......Creation of short-period InN/GaN superlattices is one of the possible ways of conducting band gap engineering in the green-blue range of the spectrum. The present paper reports results of photoluminescence experiments, including pressure effects, on a superlattice sample consisting of unit cells...

  10. ``N'' structure for type-II superlattice photodetectors

    Science.gov (United States)

    Salihoglu, Omer; Muti, Abdullah; Kutluer, Kutlu; Tansel, Tunay; Turan, Rasit; Ergun, Yuksel; Aydinli, Atilla

    2012-08-01

    In the quest to raise the operating temperature and improve the detectivity of type II superlattice (T2SL) photodetectors, we introduce a design approach that we call the "N structure." N structure aims to improve absorption by manipulating electron and hole wavefunctions that are spatially separated in T2SLs, increasing the absorption while decreasing the dark current. In order to engineer the wavefunctions, we introduce a thin AlSb layer between InAs and GaSb layers in the growth direction which also acts as a unipolar electron barrier. Unlike the symmetrical insertion of AlSb into GaSb layers, N design aims to exploit the shifting of the electron and hole wavefunctions under reverse bias. With cutoff wavelength of 4.3 μm at 77 K, temperature dependent dark current and detectivity measurements show that the dark current density is 3.6 × 10-9 A/cm2, under zero bias. Photodetector reaches background limited infrared photodetection (BLIP) condition at 125 K with the BLIP detectivity (D*BLIP) of 2.6 × 1010 Jones under 300 K background and -0.3 V bias voltage.

  11. Superlattice Optical Bistability Research.

    Science.gov (United States)

    2014-09-26

    multilayer heterojunction and superlattice device applications. 2.0 Growth Studies The MBE growth of mercury compound is still relatively new and novel...These superlattices are grown by molecular beam epitaxy in a MBE system specifically designed to handle mercury . MBE is an ultrahigh vacuum evaporative...therefore the growth process is not as well understood as that of III-V semiconductor - compounds . In HgTe-CdTe superlattices the CdTe deposition is

  12. Structural and optical investigation of InAsxP1-x/InP strained superlattices

    Science.gov (United States)

    Lamberti, C.; Bordiga, S.; Boscherini, F.; Mobilio, S.; Pascarelli, S.; Gastaldi, L.; Madella, M.; Papuzza, C.; Rigo, C.; Soldani, D.; Ferrari, C.; Lazzarini, L.; Salviati, G.

    1998-01-01

    We report a complete characterization of InAsxP1-x/InP (0.05superlattices epitaxially grown by low pressure metalorganic chemical vapor deposition and by chemical beam epitaxy. Samples were obtained by both conventional growth procedures and by periodically exposing the just-grown InP surface to an AsH3 flux. Using the latter procedure, very thin InAsxP1-x/InP layers (10-20 Å) are obtained by P↔As substitutions effects. Arsenic composition of the so obtained layers depends both on AsH3 flux intensity and exposure times. Samples have been characterized by means of high resolution x-ray diffraction, high resolution transmission electron microscopy, 4 K photoluminescence, and extended x ray absorption fine structure spectroscopy. The combined use of high resolution x-ray diffraction and of 4 K photoluminescence, with related simulations, allows us to predict both InAsP composition and width, which are qualitatively confirmed by electron microscopy. Our study indicates that the effect of the formation of thin InAsP layers is due to the As incorporation onto the InP surface exposed to the As flux during the AsH3 exposure, rather than the residual As pressure in the growth chamber during InP growth. Arsenic K-edge extended x-ray absorption fine structure analysis shows that the first shell environment of As at these interfaces is similar to that found in bulk InAsxP1-x alloys of similar composition. In particular we measure an almost constant As-In bond length (within 0.02 Å), independent of As concentration; this confirms that epitaxy with InP is accompanied by local structural distortions, such as bond angle variations, which accommodate the nearly constant As-In bond length. In our investigation we characterize not only very high quality heterostructures but also samples showing serious interface problems such as nonplanarity and/or a consistent chemical spread along the growth axis. In the study presented here we thus propose a general method, based on

  13. Patterning effects on magnetic reversal properties in epitaxial-grown Laves phase DyFe{sub 2}/YFe{sub 2} superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K., E-mail: K.Wang@hqu.edu.cn [College of Information Science and Engineering, Huaqiao University, Xiamen city 361021 (China); Chen, R.F.; Chen, C.W. [College of Information Science and Engineering, Huaqiao University, Xiamen city 361021 (China); Ward, R.C.C. [Clarendon Laboratory, Oxford University, OX1 3PU (United Kingdom)

    2015-03-01

    A large-scale striped array with 7.5 µm width has been fabricated in an epitaxial (110) single crystal [20 Å DyFe{sub 2}/80 Å YFe{sub 2}]{sub 40} superlattice using a UV direct writing system. The [−112] direction perpendicular to the [1−11] easy axis of the YFe{sub 2} layers, which dominate the magnetic behavior in the soft-layer-rich sample, was chosen to be patterned. The reversal behavior of the patterned superlattice was investigated by magneto-optical Kerr effect (MOKE) measurements. Both the switching fields and the exchange springs in the superlattices were found to be significantly affected by the patterning. Pronounced change in the coercivity was observed with the field applied along the patterned [−112] direction due to a considerable induced anisotropy, which is estimated to be 2.1×10{sup 4} erg/cm{sup 3}. When the field is applied along the [1−11] direction a reduction of 9% in the irreversible switching field was presented. This agrees well with the ratio of 8% of the shape anisotropy to the value of the hard layers along the [1−11] direction. Nevertheless, the small bending field remains unaffected after patterning due to a strong Fe–Fe exchange field. - Highlights: • We investigate the magnetic reversal properties of patterned epitaxial-grown Laves phase single crystal DyFe{sub 2}/YFe{sub 2} superlattice. • We find both the switching fields and the exchange springs in the superlattices can be significantly affected by the patterning. • The bending field in the superlattice remains unaffected after patterning due to a strong Fe–Fe exchange field.

  14. The magnetic structure of holmium-erbium superlattices

    Energy Technology Data Exchange (ETDEWEB)

    McMorrow, D.F. [Risoe National Lab., Roskilde (Denmark); Simpson, J.A.; Cowley, R.A.; Jehan, D.A.; Ward, R.C.C.; Wells, M.R. [Oxford Physics, Clarendon Lab. (United Kingdom); Thurston, T.R.; Gibbs, D. [Brookhaven National Lab., Upton, NY (United States)

    1994-06-01

    The effect of completing crystal-field anisotropies on magnetic order has been investigated in a series of Ho/Er superlattices using neutron and resonant x-ray magnetic diffraction techniques. The neutron diffraction reveals that for temperatures in the interval T{sub N}(Er) {le} T {le} T{sub N}(Ho) the Ho basal-plane order propagates coherently through the paramagnetic Er, and that below T{sub N}(Er) the longitudinal component of the Er moments fails to order across the Ho block. The magnetic superlattice peaks observed in the x-ray scattering display an anomalous energy dependence: a sharp resonance is found at L{sub III}(Ho), with no resonance visible at L{sub III}(Er). These results are discussed with reference to models of exchange in metallic superlattices.

  15. Structural and electronic properties of germanene/MoS2 monolayer and silicene/MoS2 monolayer superlattices

    OpenAIRE

    Li, Xiaodan; Wu, Shunqing; Zhou, Sen; Zhu, Zizhong

    2014-01-01

    Superlattice provides a new approach to enrich the class of materials with novel properties. Here, we report the structural and electronic properties of superlattices made with alternate stacking of two-dimensional hexagonal germanene (or silicene) and a MoS2 monolayer using the first principles approach. The results are compared with those of graphene/MoS2 superlattice. The distortions of the geometry of germanene, silicene, and MoS2 layers due to the formation of the superlattices are all r...

  16. Formation of uniform magnetic structures and epitaxial hydride phases in Nd/Pr superlattices

    DEFF Research Database (Denmark)

    Goff, J.P.; Bryn-Jacobsen, C.; McMorrow, D.F.;

    1997-01-01

    , and that the stacking sequence is coherent over many bilayer repeats. The neutron measurements show that for the hexagonal sites of the dhcp structure, the Nd magnetic order propagates coherently through the Pr, whereas the order on the cubic sites is either suppressed or confined to single Nd blocks. It is also shown...... that the singlet ground state of Pr is perturbed to produce a local moment on the hexagonal sites, so that in some cases there is a uniform magnetic structure throughout the superlattice. These results cast new light on the theory of magnetic interactions in rare-earth superlattices. Within a few months of growth...

  17. Synchrotron X-Ray Study on Structures of Ni80Fe20/Cu Superlattices

    Institute of Scientific and Technical Information of China (English)

    XU Ming; LUO Guang-Ming; CHAI Chun-Lin; YANG Tao; MAI Zhen-Hong; LAI Wu-Yan; WU Zhong-Hua; WANG De-Wu

    2001-01-01

    We have shown that, in contrast to the results in the literature, the Bragg peak intensity of Ni80Fe20/Cu superlattices is enhanced at the incident x-ray energy slightly higher than the absorption edge of the heavier element (Cu). The atomic density at Ni80Fe20/Cu interface was analysed by the diffraction anomalous fine structure technology with the incident angle of x-ray fixed at the first Bragg peak. Our results demonstrate the epitaxy growth of Ni80Fe20/Cu superlattices. Upon annealing, the epitaxity of Ni80Fe20/Cu multilayers becomes poor but the local crystallinity in each layer is improved.

  18. The magnetic phase diagram and zero field structure of holmium-lutetium superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Swaddling, P.P. [Clarendon Laboratory, Oxford University, Oxford (United Kingdom); McMorrow, D.F. [Risoe National Laboratory, Roskilde (Denmark); Cowley, R.A. [Clarendon Laboratory, Oxford University, Oxford (United Kingdom); Simpson, J.A. [Clarendon Laboratory, Oxford University, Oxford (United Kingdom); Wells, M.R. [Clarendon Laboratory, Oxford University, Oxford (United Kingdom); Ward, R.C.C. [Clarendon Laboratory, Oxford University, Oxford (United Kingdom); Clausen, K.N. [Risoe National Laboratory, Roskilde (Denmark); Collins, M.F. [Dept of Physics and Astronomy, McMaster University, Hamilton (Canada); Buyers, W.J.L. [AECL, Chalk River, Ontario (Canada)

    1995-02-09

    Neutron diffraction has been used to study the magnetic structure of a series of Ho/Lu superlattices. In zero field a transition to a ferromagnetic phase of Ho is observed at low temperatures, and the stability of this phase has been investigated by applying a magnetic field in the basal plane. ((orig.)).

  19. Electronic structure of atomically coherent square semiconductor superlattices with dimensionality below two

    NARCIS (Netherlands)

    Kalesaki, E.; Evers, W.H.; Vanmaekelbergh, D.; Delerue, C.

    2013-01-01

    The electronic structure of recently synthesized square superlattices with atomic coherence composed of PbSe, CdSe, or CdTe nanocrystals (NCs) attached along {100} facets is investigated using tight-binding calculations. In experimental realizations of these systems [W. H. Evers et al., Nano Lett. 1

  20. Artificial semiconductor/insulator superlattice channel structure for high-performance oxide thin-film transistors.

    Science.gov (United States)

    Ahn, Cheol Hyoun; Senthil, Karuppanan; Cho, Hyung Koun; Lee, Sang Yeol

    2013-01-01

    High-performance thin-film transistors (TFTs) are the fundamental building blocks in realizing the potential applications of the next-generation displays. Atomically controlled superlattice structures are expected to induce advanced electric and optical performance due to two-dimensional electron gas system, resulting in high-electron mobility transistors. Here, we have utilized a semiconductor/insulator superlattice channel structure comprising of ZnO/Al2O3 layers to realize high-performance TFTs. The TFT with ZnO (5 nm)/Al2O3 (3.6 nm) superlattice channel structure exhibited high field effect mobility of 27.8 cm(2)/Vs, and threshold voltage shift of only < 0.5 V under positive/negative gate bias stress test during 2 hours. These properties showed extremely improved TFT performance, compared to ZnO TFTs. The enhanced field effect mobility and stability obtained for the superlattice TFT devices were explained on the basis of layer-by-layer growth mode, improved crystalline nature of the channel layers, and passivation effect of Al2O3 layers.

  1. Land/groove optical recording with GeTe/Sb2Te3 superlattice-like structure

    Institute of Scientific and Technical Information of China (English)

    Wei Qiang(墙威); Luping Shi; Towchong Chong; Yang Cao(曹阳)

    2004-01-01

    A superlattice-like (SLL) structure was applied to phase-change optical recording. The recording layer consisting of alternating thin layers of two different phase-change materials, GeTe and Sb2Tes, were grown by magnetron sputtering on polycarbonate substrates. Land/groove optical recording was adopted to suppress crosstalk and obtain a large track density. Dynamic properties of the SLL disc were investigated with the shortest 1T pulse duration of 8 ns. Clear eye pattern was observed after 10000 direct overwrite cycles. Erasability above 20 dB was achieved at a constant linear velocity of 19 m/s. Carrier-noise ratio (CNR) kept above 46 dB when the recording frequency reaches 21 MHz. The SLL phase change optical disc demonstrates a better recording performance than the Ge1Sb2Te4 and Ge1Sb4Te7 discs in terms of CNR, erasability, and overwrite jitter.

  2. Zigzag-Shaped Superlattices on the Basis of Graphene Nanoribbons: Structure and Electronic Properties

    Science.gov (United States)

    Saroka, V. A.; Batrakov, K. G.

    2016-09-01

    The paper focuses on superlattices consisting of two coplanar fragments of one-layer graphene nanoribbons that have different width and are connected at an angle. Classification of such superlattices was carried out; their electronic properties were studied using the tight-binding method. It was demonstrated that in superlattices consisting of two fragments of graphene nanoribbons with armchair edges connected at an angle of 60°, the band gap can be regulated by the number of dimeric carbon atom chains of one of the fragments. In that case one can observe a periodic dependence of the band gap on the number of chains with a characteristic period equal to three dimeric chains. The number of dimeric chains of the second superlattice fragment regulates the average band gap value near which the periodic oscillations occur, as well as the amplitude of those oscillations. Therefore, one can accomplish a sufficiently precise band gap tuning for such structures. Such tuning can find its wide application in the booming carbon nanoelectronics industry when creating generators, amplifiers and sensors in the nanochains.

  3. Structural and magnetic properties of an InGaAs/Fe3Si superlattice in cylindrical geometry

    Science.gov (United States)

    Deneke, Ch; Schumann, J.; Engelhard, R.; Thomas, J.; Müller, C.; Khatri, M. S.; Malachias, A.; Weisser, M.; Metzger, T. H.; Schmidt, O. G.

    2009-01-01

    The structure and magnetic properties of an InGaAs/Fe3Si superlattice in a cylindrical geometry are investigated by electron microscopy techniques, x-ray diffraction and magnetometry. To form a radial superlattice, a pseudomorphic InGaAs/Fe3Si bilayer has been released from its substrate self-forming into rolled-up microtubes. Oxide-free interfaces as well as areas of crystalline bonding are observed and an overall lattice mismatch between succeeding layers is determined. The cylindrical symmetry of the final radial superlattice shows a significant effect on the magnetization behavior of the rolled-up layers.

  4. Effect of La0.7Sr0.3MnO3 crystal structures on magnetization of (1 1 1) oriented La0.7Sr0.3MnO3-SrRuO3 superlattices

    Science.gov (United States)

    Behera, B. C.; Padhan, P.; Prellier, W.

    2016-05-01

    A series of superlattices consisting of 15 bilayers of ferromagnetic La0.7Sr0.3MnO3 (LSMO) and SrRuO3 (SRO) were grown with either stacking order on (1 1 1) oriented SrTiO3 (STO) substrates using the pulsed laser deposition technique. The Raman spectra of these superlattices show the existence of rhombohedral and orthorhombic crystal structures of LSMO in (111)STO/[11-unit cell (u.c.) LSMO/n-u.c. SRO]X15 superlattices with n  =  2 and 3. Interestingly, the Raman spectra of (1 1 1)STO/[11-u.c. SRO/n-u.c. LSMO]X15 superlattices with n  =  2 and 3 show only the orthorhombic structure of LSMO. The (1 1 1)STO/[11-u.c. LSMO/n-u.c. SRO]X15 superlattices exhibit enhanced magnetization with weak antiferromagnetic coupling whereas reduced magnetization with strong antiferromagnetic coupling is observed in (1 1 1)STO/[11-u.c. SRO/n-u.c. LSMO]X15 superlattices. The observed magnetic properties of these superlattices can be explained by the interfacial structural coupling, as evident from their Raman spectra which suggest a modification in the stereochemistry of Mn at the interfaces.

  5. Ge/Si Quantum Dots Superlattices Grown at Different Temperatures and Characterized by Raman Spectroscopy and Capacitance Measurements

    Directory of Open Access Journals (Sweden)

    A. D. Rodrigues

    2012-01-01

    Full Text Available Ge/Si heterostructures with Ge self-assembled quantum dots (SAQDs grown at various temperatures by molecular beam epitaxy were investigated using resonant Raman spectroscopy and capacitance measurements. The occurrence of quantum confinement effects was confirmed by both techniques. For the structures grown at low temperatures (300−400°C, the SAQDs optical phonon wavenumbers decrease as the Raman excitation energy is increased; this is an evidence of the scattering sensitivity to the size of the SAQDs and to the inhomogeneity in their sizes. However, the opposite behavior is observed for the SAQDs grown at higher temperatures, as a consequence of the competition between the phonon localization and internal mechanical stress effects. The E1 electronic transition of the Ge in the SAQDs was found to be shifted towards higher energies as compared to bulk Ge, due to biaxial compressive stress and to the electronic confinement effect present in the structures. The intermixing of Si atoms in the quantum dots was found to be much more significant for the sample grown at higher temperatures. The capacitance measurements, besides confirming the existence of the dots in these structures, showed that the deepest Ge layers lose their 0D signature as the growth temperature increases.

  6. Structural simulation of superlattices in lithium aluminates; Simulacion estructural de superredes en aluminatos de litio

    Energy Technology Data Exchange (ETDEWEB)

    Carrera G, L.M.; Basurto S, R. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    Among the materials to be used on the tritium generator cover of the future fusion reactors the lithium aluminate ({gamma} - LiAlO{sub 2}) is one of the more studied. In this work it is presented the superlattice structural simulation that presents to {gamma} - LiAlO{sub 2} as main phase and to {alpha} - LiAlO{sub 2} as the secondary phase. The simulation is developed considering that as the two phases present different symmetry ({gamma} - LiAlO{sub 2} is tetrahedral and {alpha} - LiAlO{sub 2} is hexahedral) it is had a superlattice LUCS type (Layered Ultrathin Coherent Structure) that is it presents an structure in coherent ultrathin layers since it is what implicates a lesser energy of formation. (Author)

  7. Structural and electronic properties of germanene/MoS2 monolayer and silicene/MoS2 monolayer superlattices

    Science.gov (United States)

    Li, Xiaodan; Wu, Shunqing; Zhou, Sen; Zhu, Zizhong

    2014-03-01

    Superlattice provides a new approach to enrich the class of materials with novel properties. Here, we report the structural and electronic properties of superlattices made with alternate stacking of two-dimensional hexagonal germanene (or silicene) and a MoS2 monolayer using the first principles approach. The results are compared with those of graphene/MoS2 superlattice. The distortions of the geometry of germanene, silicene, and MoS2 layers due to the formation of the superlattices are all relatively small, resulting from the relatively weak interactions between the stacking layers. Our results show that both the germanene/MoS2 and silicene/MoS2 superlattices are manifestly metallic, with the linear bands around the Dirac points of the pristine germanene and silicene seem to be preserved. However, small band gaps are opened up at the Dirac points for both the superlattices due to the symmetry breaking in the germanene and silicene layers caused by the introduction of the MoS2 sheets. Moreover, charge transfer happened mainly within the germanene (or silicene) and the MoS2 layers (intra-layer transfer), as well as some part of the intermediate regions between the germanene (or silicene) and the MoS2 layers (inter-layer transfer), suggesting more than just the van der Waals interactions between the stacking sheets in the superlattices.

  8. Magnetic properties of rare earth superlattices

    CERN Document Server

    Wilkins, C J T

    2001-01-01

    Single-crystal Tm/Y and Tm/Lu superlattices have been grown using molecular beam epitaxy and their chemical structures have been determined using X-ray diffraction. Magnetisation measurements have revealed a more complicated phase diagram than that of pure Tm. Application of a field along the c-direction gave rise to an extra transition, and transitions were detected for the superlattices when the field was applied along the b-axis. In neutron diffraction studies, c-axis longitudinally modulated magnetic structures were found for both Tm/Y and Tm/Lu, which propagate coherently through the non-magnetic layers. In the case of Tm/Lu superlattices, there is evidence for ordering of the basal plane components.

  9. Structurally induced magnetization in a La{sub 2/3}Sr{sub 4/3}MnO{sub 4} superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Amish B. [Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 S. Goodwin Ave., Urbana, IL 61801 (United States); Department of Physics, Arizona State University, Tempe, AZ 85287 (United States); Nelson-Cheeseman, Brittany B.; Bhattacharya, Anand [Center for Nanoscale Materials and Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Subramanian, Ganesh; Spence, John C.H. [Department of Physics, Arizona State University, Tempe, AZ 85287 (United States)

    2012-07-15

    A structural transition has been observed in a digital superlattice of La{sub 2/3}Sr{sub 4/3}MnO{sub 4}, which is correlated to a magnetization enhancement upon cooling the sample. These artificial superlattices were grown layer-by-layer using ozone-assisted molecular beam epitaxy (MBE). Electron diffraction experiments show a phase transition below 150 K in nanopatches of the superlattice, which coincides with an enhanced magnetization starting below 110 K. Atomic scale electron energy loss spectroscopy (EELS) also shows changes in the Mn L{sub 2,3} and O K edges, which are related to valence, strain, and the atomic coordination within nanopatches. Atomic resolution image and EELS showing variations of oxygen and lanthanum signature edges in a La{sub 2/3}Sr{sub 4/3}MnO{sub 4} supperlattice. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Density functional theory investigation of titanium-tungsten superlattices: Structure and mechanical properties

    Science.gov (United States)

    Rudin, Sven P.

    2012-11-01

    Titanium (Ti) exhibits the body-centered crystal structure only at high temperatures. The temperature range of this so-called β-Ti phase can be expanded by alloying Ti with tungsten (W). Rather than placing the W atoms in the β-Ti crystal at random, this work applies density functional theory calculations to explore the consequences of an orderly placement in Ti/W superlattice structures. In all examples the W layer remains bcc-like. The stacking direction of the Ti/W superlattice drives the core of the Ti layer toward either a locally hcp- or ω-Ti structure, though the latter is mechanically unstable for all but the thinnest W layers. The relative thicknesses of the W and Ti layers as well as the stacking direction influence the formation energies, which consistently fall within a range corresponding roughly to room temperature. Superlattices allow a choice of stacking direction and layer thicknesses, both strongly influencing the material's strength, though not improving the mechanical properties as observed for Ti with randomly placed W particles.

  11. Electronic Structures and Giant Magnetoresistance of Co/Cu Superlattices with Different Orientations

    Institute of Scientific and Technical Information of China (English)

    SHANG Jia-Xiang; ZHAO Xiao-Dan

    2006-01-01

    @@ The electronic structures of Co3 Cu3 superlattices with the orientations of (100), (110) and (111) are calculated by the first-principle method within the framework of the density functional theory. It has been found that the spin-dependent scattering and charge transfers are prominent at interfaces compared to the interior layers for the three orientation superlattices. We also evaluate the magnetoresistance ratio by using the two-current model The results show that the giant magnetoresistance ratio decreases in the order of (110), (100), (111) orientations for Co3Cu3 models (49. 4%, 37. 7%, 29.3%, respectively). Further analysis shows that an expansion of average atomic volume would enhance the magnetic moment of Co, which is consistent with other calculation and experimental results. In addition, the giant magnetoresistance effect is analysed from the point of charge transfer.

  12. Electronic structure and optical properties of (BeTen/(ZnSem superlattices

    Directory of Open Access Journals (Sweden)

    Caid M.

    2016-03-01

    Full Text Available The structural, electronic and optical properties of (BeTen/(ZnSem superlattices have been computationally evaluated for different configurations with m = n and m≠n using the full-potential linear muffin-tin method. The exchange and correlation potentials are treated by the local density approximation (LDA. The ground state properties of (BeTen/(ZnSem binary compounds are determined and compared with the available data. It is found that the superlattice band gaps vary depending on the layers used. The optical constants, including the dielectric function ε(ω, the refractive index n(ω and the refractivity R(ω, are calculated for radiation energies up to 35 eV.

  13. Synchrotron X—Ray Study on Structures of Ni80Fe20/Cu Superlattices

    Institute of Scientific and Technical Information of China (English)

    杨涛; 麦振洪; 赖武彦; 吴忠华; 王德武; XUMing; 罗光明; 柴春林

    2001-01-01

    We have shown that,in contrast to the results in the literature,the Bragg peak intensity of Ni80Fe20/Cu superlattices is enhanced at the incident x-ray energy slightly higher than the absorption edge of the heavier element(Cu).The atomic density at Ni80Fe20/Cu interface was analysed by the diffraction anomalous fine structure technology with the incident angle of x-ray fixed at the first Bragg peak.Our results demonstrate the epitaxy growth of Ni80Fe20/Cu superlattices.Upon annealing,the epitaxity of Ni80Fe20/Cu multilayers becomes poor but the local crystallinity in each layer is improved.

  14. Phonon modes of MgB2: super-lattice structures and spectral response.

    Science.gov (United States)

    Alarco, Jose A; Chou, Alison; Talbot, Peter C; Mackinnon, Ian D R

    2014-11-28

    Micrometre-sized MgB2 crystals of varying quality, synthesized at low temperature and autogenous pressure, are compared using a combination of Raman and infra-red (IR) spectroscopy. These data, which include new peak positions in both spectroscopies for high quality MgB2, are interpreted using DFT calculations on phonon behaviour for symmetry-related structures. Raman and IR activity additional to that predicted by point group analyses of the P6/mmm symmetry are detected. These additional peaks, as well as the overall shapes of calculated phonon dispersion (PD) models are explained by assuming a double super-lattice, consistent with a lower symmetry structure for MgB2. A 2× super-lattice in the c-direction allows a simple correlation of the pair breaking energy and the superconducting gap by activation of corresponding acoustic frequencies. A consistent physical interpretation of these spectra is obtained when the position of a phonon anomaly defines a super-lattice modulation in the a-b plane.

  15. Low-Temperature Thermal Conductance in Superlattice Nanowire with Structural Defect

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-Jun; LIU Jing-Feng; LI Shui

    2008-01-01

    Using the scattering-matrix cascading method, we investigate the effect of structural defect on the acoustic phonon transmission and thermal conductance in the superlattice nanowire at low temperatures. In the present system, the phonon transmissions exhibit quite complex oscillatory behaviour. It is found that a lateral defect in an otherwise periodic structure significantly decrease the thermal conductance and completely washes away the transmission quantization. However, the appreciable transmission quantization survives in the presence of a longitudinal defect whereas a good quantization plateau of thermal conductance emerges below the universal level in a wide temperature range with the lateral defect.

  16. Thermoelectric properties of MBE-grown HgCdTe-based superlattices from 100K to 300K

    Science.gov (United States)

    Zhang, Kejia; Yadav, Abhishek; Shao, Lei; Bommena, Ramana; Zhao, Jun; Velicu, Silviu; Pipe, Kevin P.

    2016-07-01

    We report on the thermoelectric properties of long-period HgCdTe superlattices (MCT SLs) from cryogenic temperature to room temperature. We find that the thermal conductivity is lower than the alloy value especially at low temperatures, the electrical conductivity is similar to that of alloy films, and the Seebeck coefficient is comparable to other SLs. Calculations based on Rytov's elastic model show that the phonon group velocity is reduced due to folding by more than a factor of two relative to its value in bulk CdTe or HgTe. Thermal conductivity is found to be relatively constant over a wide range of temperatures.

  17. Structural parameters and their effects on the electronic transport properties in aperiodic superlattice profile

    Science.gov (United States)

    Bendahma, F.; Djelti, R.; Bentata, S.

    2016-08-01

    The aperiodic GaAs/AlxGa1-xAs superlattices (SL) with trimer disorder have been studied in this paper. The transfer-matrix technique and the exact Airy function formalism have been used to determine the miniband structure, the transmission coefficient, the resonance energy and resonant tunneling time (RTT). Although the disorder localizes the states on average, our numerical calculations show that the localization length of the states becomes more extended when the disorder is correlated (trimer case). We have also found that the RTT is of the order of several femtoseconds.

  18. Photodetectors based on intersubband transitions using III-nitride superlattice structures

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, Daniel; Baumann, Esther; Giorgetta, Fabrizio R; Theron, Ricardo [University of Neuchatel, 1 A.-L. Breguet, 2000 Neuchatel (Switzerland); Wu, Hong; Schaff, William J; Dawlaty, Jahan; George, Paul A; Eastman, Lester F; Rana, Farhan [Cornell University, Phillips Hall, Ithaca, NY 14853 (United States); Kandaswamy, Prem K; Leconte, Sylvain; Monroy, Eva [Equipe mixte CEA-CNRS Nanophysique et Semiconducteurs, INAC/SP2M/PSC, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France)

    2009-04-29

    We review our recent progress on the fabrication of near-infrared photodetectors based on intersubband transitions in AlN/GaN superlattice structures. Such devices were first demonstrated in 2003, and have since then seen a quite substantial development both in terms of detector responsivity and high speed operation. Nowadays, the most impressive results include characterization up to 3 GHz using a directly modulated semiconductor laser and up to 13.3 GHz using an ultra-short pulse solid state laser.

  19. Electronic structure modeling of InAs/GaSb superlattices with hybrid density functional theory

    Science.gov (United States)

    Garwood, T.; Modine, N. A.; Krishna, S.

    2017-03-01

    The application of first-principles calculations holds promise for greatly improving our understanding of semiconductor superlattices. Developing a procedure to accurately predict band gaps using hybrid density functional theory lays the groundwork for future studies investigating more nuanced properties of these structures. Our approach allows a priori prediction of the properties of SLS structures using only the band gaps of the constituent materials. Furthermore, it should enable direct investigation of the effects of interface structure, e.g., intermixing or ordering at the interface, on SLS properties. In this paper, we present band gap data for various InAs/GaSb type-II superlattice structures calculated using the generalized Kohn-Sham formulation of density functional theory. A PBE0-type hybrid functional was used, and the portion of the exact exchange was tuned to fit the band gaps of the binary compounds InAs and GaSb with the best agreement to bulk experimental values obtained with 18% of the exact exchange. The heterostructures considered in this study are 6 monolayer (ML) InAs/6 ML GaSb, 8 ML InAs/8 ML GaSb and 10 ML InAs/10 ML GaSb with deviations from the experimental band gaps ranging from 3% to 11%.

  20. Superlattice band structure: New and simple energy quantification condition

    Energy Technology Data Exchange (ETDEWEB)

    Maiz, F., E-mail: fethimaiz@gmail.com [University of Cartage, Nabeul Engineering Preparatory Institute, Merazka, 8000 Nabeul (Tunisia); King Khalid University, Faculty of Science, Physics Department, P.O. Box 9004, Abha 61413 (Saudi Arabia)

    2014-10-01

    Assuming an approximated effective mass and using Bastard's boundary conditions, a simple method is used to calculate the subband structure for periodic semiconducting heterostructures. Our method consists to derive and solve the energy quantification condition (EQC), this is a simple real equation, composed of trigonometric and hyperbolic functions, and does not need any programming effort or sophistic machine to solve it. For less than ten wells heterostructures, we have derived and simplified the energy quantification conditions. The subband is build point by point; each point presents an energy level. Our simple energy quantification condition is used to calculate the subband structure of the GaAs/Ga{sub 0.5}Al{sub 0.5}As heterostructures, and build its subband point by point for 4 and 20 wells. Our finding shows a good agreement with previously published results.

  1. Interlayer diffusion studies of a Laves phase exchange spring superlattice.

    Science.gov (United States)

    Wang, C; Kohn, A; Wang, S G; Ward, R C C

    2011-03-23

    Rare earth Laves phase (RFe(2)) superlattice structures grown at different temperatures are studied using x-ray reflectivity (XRR), x-ray diffraction, and transmission electron microscopy. The optimized molecular beam epitaxy growth condition is matched with the XRR simulation, showing minimum diffusion/roughness at the interfaces. Electron microscopy characterization reveals that the epitaxial growth develops from initial 3D islands to a high quality superlattice structure. Under this optimum growth condition, chemical analysis by electron energy loss spectroscopy with high spatial resolution is used to study the interface. The analysis shows that the interface roughness is between 0.6 and 0.8 nm and there is no significant interlayer diffusion. The locally sharp interface found in this work explains the success of simple structural models in predicting the magnetic reversal behavior of Laves exchange spring superlattices.

  2. Electronic and optical properties of 4.2 μm"N" structured superlattice MWIR photodetectors

    Science.gov (United States)

    Salihoglu, O.; Hostut, M.; Tansel, T.; Kutluer, K.; Kilic, A.; Alyoruk, M.; Sevik, C.; Turan, R.; Ergun, Y.; Aydinli, A.

    2013-07-01

    We report on the development of a new structure for type II superlattice photodiodes that we call the "N" design. In this new design, we insert an electron barrier between InAs and GaSb in the growth direction. The barrier pushes the electron and hole wavefunctions towards the layer edges and under bias, increases the overlap integral by about 25% leading to higher detectivity. InAs/AlSb/GaSb superlattices were studied with density functional theory. Both AlAs and InSb interfaces were taken into account by calculating the heavy hole-light hole (HH-LH) splittings. Experiments were carried out on single pixel photodiodes by measuring electrical and optical performance. With cut-off wavelength of 4.2 μm at 120 K, temperature dependent dark current and detectivity measurements show that the dark current is 2.5 × 10-9 A under zero bias with corresponding R0A resistance of 1.5 × 104 Ω cm2 for the 500 × 500 μm2 single pixel square photodetectors. Photodetector reaches BLIP condition at 125 K with the BLIP detectivity (DBLIP∗) of 2.6 × 1010 Jones under 300 K background and -0.3 V bias voltage.

  3. Effect of InSb/In0.9Al0.1Sb superlattice buffer layer on the structural and electronic properties of InSb films

    Science.gov (United States)

    Zhao, Xiaomeng; Zhang, Yang; Guan, Min; Cui, Lijie; Wang, Baoqiang; Zhu, Zhanping; Zeng, Yiping

    2017-07-01

    The effect of InSb/In0.9Al0.1Sb buffer layers on InSb thin films grown on GaAs (0 0 1) substrate by molecular beam epitaxy (MBE) is investigated. The crystal quality and the surface morphology of InSb are characterized by XRD and AFM. The carrier transport property is researched through variable temperature hall test. The sharp interface between InSb/In0.9Al0.1Sb is demonstrated important for the high quality InSb thin film. We try different superlattice buffer layers by changing ratios, 2-0.5, thickness, 300-450 nm, and periods, 20-50. According to the function of the dislocation density to the absolute temperature below 150 K with different periods of SL buffers, we can find that the number of periods of superlattice is a major factor to decrease the density of threading dislocations. With the 50 periods SL buffer layer, the electron mobility of InSb at the room temperature and liquid nitrogen cooling temperature is ∼63,000 and ∼4600 cm2/V s, respectively. We deduce that the interface in the SL structure works as a filter layer to prevent the dislocation propagating to the upper InSb thin films.

  4. Electronic Band Structure and New Magneto-transport Properties in p-type Semiconductor Medium-infrared HgTe / CdTe Superlattice

    Science.gov (United States)

    Nafidi, Ab.; EL Abidi, A.; El Kaaouachi, A.; Nafidi, Ah.

    2005-06-01

    We report here the band structure and new magneto-transport results for HgTe (56 Å) / CdTe (30 Å) superlattice grown by molecular beam epitaxy (MBE). The angular dependence of the transverse magnetoresistance follows the two-dimensional (2D) behaviour. At low temperature, the sample exhibits p type conductivity with a concentration of 1.84×1012 cm-2 and a Hall mobility of 8200 cm2/Vs. The observed Shubnikov-de Haas effect gives a carrier density of 1.80×1012 cm-2. The superlattice heavy holes dominate the conduction in plane with an effective mass of 0.297 m0 and Fermi energy (2D) of 14 meV. In intrinsic regime, the measured gap Eg = 190 meV agree well with calculated Eg(Γ, 300 K) =178 meV. The formalism used here predicts that the system is semiconductor, for our HgTe to CdTe thickness ratio d1/d2 = 1,87, when d2 < 140 Å. In our case, d2=30 Å and Eg (Γ, 4.2 K) = 111 meV. In spite of it, the sample exhibits the features typical of a p type semiconductor and is a medium-infrared detector (7 μm< λ< 11 μm).

  5. Structure direction of II-VI semiconductor quantum dot binary nanoparticle superlattices by tuning radius ratio.

    Science.gov (United States)

    Chen, Zhuoying; O'Brien, Stephen

    2008-06-01

    We report a nanoparticle radius ratio dependent study of the formation of binary nanoparticle superlattices (BNSLs) of CdTe and CdSe quantum dots. While keeping all other parameters identical in the system, the effective nanoparticle radius ratio, gamma(eff), was tuned to allow the formation of five different BNSL structures, AlB(2), cub-NaZn(13), ico-NaZn(13), CaCu(5), and MgZn(2). For each structure, gamma(eff) is located close to a local maximum of its space-filling factor, based on a model for space filling principles. We demonstrate the ability to select specific BNSLs based solely on gamma(eff), highlighting the role of entropic forces as a driver for self-assembly.

  6. Formation of Superlattices of Gold Nanoparticles Using Ostwald Ripening in Emulsions: Transition from fcc to bcc Structure.

    Science.gov (United States)

    Schmitt, Julien; Hajiw, Stéphanie; Lecchi, Amélie; Degrouard, Jéril; Salonen, Anniina; Impéror-Clerc, Marianne; Pansu, Brigitte

    2016-06-30

    An efficient method to form 3D superlattices of gold nanoparticles inside oil emulsion droplets is presented. We demonstrate that this method relies on Ostwald ripening, a well-known phenomenon occurring during the aging of emulsions. The key point is that the nanoparticle concentration inside the smaller droplets is increasing very slowly with time, thus inducing the crystallization of the nanoparticles into superlattices. Using oil-in-water emulsions doped with hydrophobic gold nanoparticles, we demonstrate that this method is efficient for different types of oils (toluene, cyclohexane, dodecane, and hexadecane). 3D superlattices of the nanoparticles are obtained, with dimensions reaching a hundred nanometers. The kinetics of the crystallization depends on the solubility of the oil in water but also on the initial concentration of the gold nanoparticles in oil. This method also provides an innovative way to obtain the complete phase diagram of nanoparticle suspensions with concentration. Indeed, during this slow crystallization process, a transition from a disordered suspension to a fcc structure is observed, followed by a transition toward a bcc structure. This evolution with time provides key results to understand the role played by the ligands located at the surface of the nanoparticles in order to control the type of superlattices which are formed.

  7. Ab initio study of structural and electronic properties of (GaN)n/(AlN)n superlattices

    Science.gov (United States)

    Djoudi, L.; Merabet, M.; Dahmane, F.; Boucharef, M.; Benalia, S.; Rached, D.

    2016-10-01

    Structural and electronic properties of binary GaN and AlN compounds and their superlattices (SLs) (GaN)n/(AlN)n are investigated using the first-principles full potential linear muffin-tin orbitals method (FP-LMTO). The exchange-correlation potential is treated with the local density approximation of Perdew and Wang (LDA-PW). The ground-state properties are determined for the bulk materials GaN, AlN, and their superlattices (GaN)n/(AlN)n) in cubic phase. The calculated structural properties of GaN and AlN compounds are in good agreement with available experimental and theoretical data. It is found that AlN exhibit an indirect fundamental band gap while that GaN and the superlattices (SLs) exhibit a direct fundamental band gap, which might make the superlattices (GaN)n/(AlN)n materials promising and useful for optoelectronic applications. The fundamental band gap decreases with increasing the number of monolayer.

  8. Direct spectroscopic identification of the magnetic structure of the interface of Mn{sub 3}O{sub 4}/Fe{sub 3}O{sub 4} superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.L., E-mail: clchen@phys.sinica.edu.tw [Institutes of Physics, Academia Sinica, Taipei, Taiwan (China); Dong, C.L., E-mail: dong.cl@nsrrc.org.tw [National Synchrotron Radiation Research Center, Hsinchu, Taiwan (China); Chern, G. [Department of Physics, National Chung-Cheng University, Chiayi, Taiwan (China); Kumar, K. [Department of Science, Institute of Technology Tallaght (ITT Dublin), Tallaght, Dublin 24 (Ireland); Lin, H.J.; Chen, C.T. [National Synchrotron Radiation Research Center, Hsinchu, Taiwan (China); Chang, C.L. [Department of Physics, Tamkang University, Tamsui, Taiwan (China); Fujimori, A. [Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2014-11-25

    Highlights: • Electronic structure of interfacial layer of superlattices is studied with XAS. • Magnetic property of interface in superlattices is studied by XMCD. • Antiparallel coupling between two ferrimagnetic layers is characterized. • MnFe{sub 2}O{sub 4}-like interface formed in Fe{sub 3}O{sub 4}/Mn{sub 3}O{sub 4} superlattices is identified. • Interfacial layer critically affects the magnetic properties of the superlattices. - Abstract: In this study, Fe and Mn L{sub 2,3}-edge X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) are performed on a series of Mn{sub 3}O{sub 4}/Fe{sub 3}O{sub 4} superlattices with various layer thicknesses to investigate the effect of the interface on the magnetic properties of the superlattices. XAS and XMCD spectral analyses indicate the presence of antiparallel interlayer magnetic coupling between the layers of Fe{sub 3}O{sub 4} and Mn{sub 3}O{sub 4}, which are both ferrimagnetic, in the Mn{sub 3}O{sub 4}/Fe{sub 3}O{sub 4} superlattices. Results suggest that interlayer magnetic coupling between the Mn{sub 3}O{sub 4} and Fe{sub 3}O{sub 4} layers in the superlattice is affected by the magnetic property of the interface region. The magnetic response of the superlattices is dominated by Fe{sub 3}O{sub 4} at high Fe{sub 3}O{sub 4} layer thicknesses and by the interface as the thickness declines. Findings reveal the formation of an interface that is likely composed of MnFe{sub 2}O{sub 4}. The interface critically influences the magnetic properties of the Mn{sub 3}O{sub 4}/Fe{sub 3}O{sub 4} superlattices.

  9. Self-Organized Growth of Alloy Superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Chason, E.; Floro, J.A.; Follstaedt, D.M.; Lagally, M.G.; Liu, F.; Tersoff, J.; Venezuela, P.

    1998-10-19

    We predict theoretically and demonstrate experimentally the spontaneous formation of a superlattice during crystal growth. When a strained alloy grows by "step flow", the steps at the surface form periodic bunches. The resulting modulated strain biases the incorporation of the respective alloy components at different steps in the bunch, leading to the formation of a superlattice. X-ray diffraction and electron microscopy for SiGe grown on Si give clear evidence for such spontaneous superlattice formation.

  10. Ab Initio Investigation of the Structural and Electronic Properties of HgTe/CdTe Superlattices

    Science.gov (United States)

    Laref, A.; Alsagri, M.; Laref, S.; Luo, S. J.

    2017-08-01

    We carried out first-principle calculations to examine the impact of layer periodicity and strain on the structural and electronic features of HgTe/CdTe superlattices (SLs). The full-potential linearized augmented plane wave methodology is used to determine the electronic characteristics of these CdTe-HgTe heterojunctions. The CdTe and HgTe layers have a strong effect on the emerged fundamental energy gap of the SLs owing to the peculiar quantum confinement effect. The impact of layer thickness changes and strain are indispensable for engineering the energy band gap of HgTe/CdTe SLs. This could lead to an enormous development in the optoelectronic characteristics of these SLs, which may result in their broad applications in electronic devices.

  11. ON THE CHARACTERIZATION OF METALLIC SUPERLATTICE STRUCTURES BY X—RAY DIFFRACTION

    Institute of Scientific and Technical Information of China (English)

    MINGXU; WenxueYU; 等

    1999-01-01

    To solve the problem on the microstructural characterization of metallic superlattices,taking the NiFe/Cu superlattices as example,we show that the sturctures of metallic superlattices can be characterized exactly by combining low-angle X-ray diffraction with high-angle X-ray diffraction.First,we determine exactly the total film thickness by a straightforward and precise method based on a modified Bragg law from the subsidiary maxima around the low-angle X-ray diffraction peak.Then.by combining with the simulation of high-angle X-ray diffraction.we obtain the sturctural parameters such as the superlattice period,the sublayer and buffer thickness,This characterization procedure is also applicable to other types of metallic superlattices.

  12. InN/GaN Superlattices: Band Structures and Their Pressure Dependence

    DEFF Research Database (Denmark)

    Gorczyca, Iza; Suski, Tadek; Staszczak, Grzegorz

    2013-01-01

    Creation of short-period InN/GaN superlattices is one of the possible ways of conducting band gap engineering in the green-blue range of the spectrum. The present paper reports results of photoluminescence experiments, including pressure effects, on a superlattice sample consisting of unit cells...... density approximation (LDA) with a semi-empirical correction for the ‘‘LDA gap error’’. A similarity is observed between the results of calculations for an InGaN/GaN superlattice (with one monolayer of InGaN) and the experimental results. This indicates that the fabricated InN quantum wells may contain...

  13. Improved structural and electrical properties in native Sb2Te3/GexSb2Te3+x van der Waals superlattices due to intermixing mitigation

    Directory of Open Access Journals (Sweden)

    Stefano Cecchi

    2017-02-01

    Full Text Available Superlattices made of Sb2Te3/GeTe phase change materials have demonstrated outstanding performance with respect to GeSbTe alloys in memory applications. Recently, epitaxial Sb2Te3/GeTe superlattices were found to feature GexSb2Te3+x blocks as a result of intermixing between constituting layers. Here we present the epitaxy and characterization of Sb2Te3/GexSb2Te3+x van der Waals superlattices, where GexSb2Te3+x was intentionally fabricated. X-ray diffraction, Raman spectroscopy, scanning transmission electron microscopy, and lateral electrical transport data are reported. The intrinsic 2D nature of both sublayers is found to mitigate the intermixing in the structures, significantly improving the interface sharpness and ultimately the superlattice structural and electrical properties.

  14. Superlattice structure of Ce{sup 3+}-doped BaMgF{sub 4} fluoride crystals - x-ray diffraction, electron spin-resonance, and optical investigations

    Energy Technology Data Exchange (ETDEWEB)

    Yamaga, M.; Hattori, K. [Department of Electrical and Electronic Engineering, Faculty of Engineering, Gifu University, Gifu (Japan); Kodama, N. [Department of Materials Science and Engineering, Faculty of Engineering and Resource Science, Akita University, Akita (Japan); Ishizawa, N. [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama (Japan); Honda, M. [Faculty of Science, Naruto University of Education, Naruto (Japan); Shimamura, K.; Fukuda, T. [Institute for Materials Research, Tohoku University, Sendai (Japan)

    2001-09-14

    The x-ray diffraction patterns for Ce{sup 3+}-doped BaMgF{sub 4} (BMF) crystals suggest the existence of superlattice structure. The superlattice model is consistent with the characterization of the 4f{sup 1} ground state of Ce{sup 3+} as a probe ion using the electron spin-resonance (ESR) technique. The distinct Ce{sup 3+} luminescence spectra with different peak energies and lifetimes also support the superlattice model. Although the detailed superlattice structure could not be analysed using the diffraction spots, a model has been proposed, taking into account the eight Ce{sup 3+} polyhedra with different anion coordinations in the unit cell of the BMF crystal obtained from the ESR experiments. (author)

  15. Structural, Dynamic, and Vibrational Properties during Heat Transfer in Si/Ge Superlattices: A Car-Parrinello Molecular Dynamics Study

    CERN Document Server

    Ji, Pengfei; Yang, Mo

    2016-01-01

    The structural, dynamic, and vibrational properties during the heat transfer process in Si/Ge superlattices, are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quant...

  16. Optimization of thermoelectric properties for rough nano-ridge GaAs/AlAs superlattice structure

    Science.gov (United States)

    Wu, Chao-Wei; Wu, Yuh-Renn

    2016-11-01

    In this paper, optimizations of thermoelectric(TE) properties for the rough surface of the nano-ridge GaAs/AlAs superlattice(SL) structure are investigated. The nano-ridge featured with rough surface at both sides of the SL structure is introduced, where the modification of the phonon spatial confinement and phonon surface roughness scattering are taken into account. The elastic continuum model is employed to calculate the phonon dispersion relation and the related phonon group velocity. Reported experimental results with SL structures were used for verification of our model. The lattice thermal conductivity, electrical conductivity, Seebeck coefficient, and electronic thermal conductivity are calculated by Boltzmann transport equations and relaxation time approximation. Simulation results show that the nano-ridge SL structure with certain periodicity and phonon surface roughness scattering have strong influences on the TE properties. Highest ZT in our calculation is 1.285 at 300K and the ZT value of 3.04 is obtained at 1000K.

  17. Identification of an organic semiconductor superlattice structure of pentacene and perfluoro-pentacene through resonant and non-resonant X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kowarik, S.; Weber, C. [Humboldt-Universität zu Berlin, Institut für Physik, Newtonstr. 15, 12489 Berlin (Germany); Hinderhofer, A.; Gerlach, A.; Schreiber, F. [Universität Tübingen, Institut für Angewandte Physik, Auf der Morgenstelle 10, 72076 Tübingen (Germany); Wang, C.; Hexemer, A. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Leone, S. R. [Departments of Chemistry and Physics, University of California, and Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2015-11-15

    Highly crystalline and stable molecular superlattices are grown with the smallest possible stacking period using monolayers (MLs) of the organic semiconductors pentacene (PEN) and perfluoro-pentacene (PFP). Superlattice reflections in X-ray reflectivity and their energy dependence in resonant soft X-ray reflectivity measurements show that PFP and PEN MLs indeed alternate even though the coherent ordering is lost after ∼ 4 ML. The observed lattice spacing of 15.9 Å in the superlattice is larger than in pure PEN and PFP films, presumably because of more upright standing molecules and lack of interdigitation between the incommensurate crystalline PEN and PFP layers. The findings are important for the development of novel organic quantum optoelectronic devices.

  18. Identification of an organic semiconductor superlattice structure of pentacene and perfluoro-pentacene through resonant and non-resonant X-ray scattering

    Directory of Open Access Journals (Sweden)

    S. Kowarik

    2015-11-01

    Full Text Available Highly crystalline and stable molecular superlattices are grown with the smallest possible stacking period using monolayers (MLs of the organic semiconductors pentacene (PEN and perfluoro-pentacene (PFP. Superlattice reflections in X-ray reflectivity and their energy dependence in resonant soft X-ray reflectivity measurements show that PFP and PEN MLs indeed alternate even though the coherent ordering is lost after ∼ 4 ML. The observed lattice spacing of 15.9 Å in the superlattice is larger than in pure PEN and PFP films, presumably because of more upright standing molecules and lack of interdigitation between the incommensurate crystalline PEN and PFP layers. The findings are important for the development of novel organic quantum optoelectronic devices.

  19. Experimental evidence of improved thermoelectric properties at 300K in Si/Ge superlattice structures

    Energy Technology Data Exchange (ETDEWEB)

    Venkatasubramanian, R.; Colpitts, T.; Watko, E.; Malta, D. [Research Triangle Inst., Research Triangle Park, NC (United States)

    1997-04-01

    The authors have found that it may be possible to obtain significant enhancement in ZT at 300 K, over conventional bulk SiGe alloys, through the use of Si/Ge Superlattice (SL) structures. The Seebeck coefficient in Si/Ge SL structures was observed to increase rapidly with decreasing SL period with no loss of electrical conductivity. The carrier mobilities in Si/Ge SLs were higher than in a comparable thin-film Si/Ge alloy. The best power factor of the short-period Si/Ge SLs is 112.2 {micro}W/K{sup 2} cm, over five-fold better than state-of-the-art n-type, bulk SiGe alloys. Approximately a two to four-fold reduction in thermal conductivity in short-period SL structures, compared to bulk SiGe alloy, was observed. The authors estimate at least a factor of five improvement over current state-of-the-art SiGe alloys, in several Si/Ge SL samples with periodicity of {approximately}45 to 75 {angstrom}. The results of this study are promising, but tentative due to the possible effects of substrate and the developmental nature of the thermoelectric property measurements.

  20. Comparing the structural stability of PbS nanocrystals assembled in fcc and bcc superlattice allotropes.

    Science.gov (United States)

    Bian, Kaifu; Wang, Zhongwu; Hanrath, Tobias

    2012-07-04

    We investigated the structural stability of colloidal PbS nanocrystals (NCs) self-assembled into superlattice (SL) allotropes of either face-centered cubic (fcc) or body-centered cubic (bcc) symmetry. Small-angle X-ray scattering analysis showed that the NC packing density is higher in the bcc than in the fcc SL; this is a manifestation of the cuboctahedral shape of the NC building block. Using the high-pressure rock-salt/orthorhombic phase transition as a stability indicator, we discovered that the transition pressure for NCs in a bcc SL occurs at 8.5 GPa, which is 1.5 GPa higher than the transition pressure (7.0 GPa) observed for a fcc SL. The higher structural stability in the bcc SL is attributed primarily to the effective absorption of loading force in specific SL symmetry and to a lesser extent to the surface energy of the NCs. The experimental results provide new insights into the fundamental relationship between the symmetry of the self-assembled SL and the structural stability of the constituent NCs.

  1. Enhanced tunnel transport in disordered carbon superlattice structures incorporated with nitrogen

    Science.gov (United States)

    Katkov, Mikhail V.; Bhattacharyya, Somnath

    2012-06-01

    The possibility for enhanced tunnel transport through the incorporation of nitrogen in a quasi-one dimensional superlattice structure of amorphous carbon (a -C) made of sp2-C and sp3-C rich phases is shown by using a tight-binding model. The proposed superstructure can be described by a set of disordered graphite-like carbon clusters (acting as quantum wells) separated by a thin layer of diamond-like carbon (barriers) where the variation of the width and depth of the carbon clusters significantly control the electron transmission peaks. A large structural disorder in the pure carbon system, introduced through the variation of the bond length and associated deformation potential for respective carbon phases, was found to suppress the sharp features of the transmission coefficients. A small percentage of nitrogen addition to the carbon clusters can produce a distinct transmission peak at the low energy; however, it can be practically destroyed due to increase of the level of disorder of carbon sites. Whereas pronounced resonance peaks, both for C and N sites can be achieved through controlling the arrangement of the nitrogen sites of increased concentration within the disordered sp2-C clusters. The interplay of disorder associated with N and C sites illustrated the tunable nature of resistance of the structures as well as their characteristic times.

  2. Ultrafast switching in nanoscale phase-change random access memory with superlattice-like structures.

    Science.gov (United States)

    Loke, Desmond; Shi, Luping; Wang, Weijie; Zhao, Rong; Yang, Hongxin; Ng, Lung-Tat; Lim, Kian-Guan; Chong, Tow-Chong; Yeo, Yee-Chia

    2011-06-24

    Phase-change random access memory cells with superlattice-like (SLL) GeTe/Sb(2)Te(3) were demonstrated to have excellent scaling performance in terms of switching speed and operating voltage. In this study, the correlations between the cell size, switching speed and operating voltage of the SLL cells were identified and investigated. We found that small SLL cells can achieve faster switching speed and lower operating voltage compared to the large SLL cells. Fast amorphization and crystallization of 300 ps and 1 ns were achieved in the 40 nm SLL cells, respectively, both significantly faster than those observed in the Ge(2)Sb(2)Te(5) (GST) cells of the same cell size. 40 nm SLL cells were found to switch with low amorphization voltage of 0.9 V when pulse-widths of 5 ns were employed, which is much lower than the 1.6 V required by the GST cells of the same cell size. These effects can be attributed to the fast heterogeneous crystallization, low thermal conductivity and high resistivity of the SLL structures. Nanoscale PCRAM with SLL structure promises applications in high speed and low power memory devices.

  3. Resonant tunnelling assisted electrical switching in amorphous-carbon multilayer-superlattice structures

    Science.gov (United States)

    Bhattacharyya, Somnath; Silva, S. R. P.

    2007-03-01

    Negative differential resistance (NDR) in an amorphous carbon (a-C) double barrier resonant tunnel diode (DB-RTD) with an estimated cut-off frequency well into the gigahertz regime is reported [1]. Presently we extend this work in carbon multi-layer superlattice structures by showing room temperature resonant tunnelling and establish a high value of the phase coherence length of ˜10 nm for low-dimensional amorphous materials. By applying a high bias, these structures are modified with reversible current switching of up to four orders of magnitude with a NDR signature and multiple peaks representative of resonant tunnelling in the ON state. In addition to the formation of filamentary channels by applying high bias, all these features are also explained using concepts based on tunnelling through the interface of the carbon layers, quantum-dot heterostructures and the presence of a confined two dimensional electron gas. This switching behavior and its tunability have been tested by applying a microwave signal up to 100 GHz which suggest the potential for novel high-speed memory devices. [1] S. Bhattacharyya, S.J. Henley, E. Mendoza, L.G-Rojas, J. Allam and S.R.P. Silva, Nature Mater. 5, 19 (2006).

  4. Visible and solar-blind AlGaN metal-semiconductor-metal photodetectors grown on Si(111) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Pau, J.L.; Munoz, E.; Sanchez-Garcia, M.A.; Calleja, E. [ISOM, ETSI Telecomunicacion, Ciudad Universitaria, 28040 Madrid (Spain); Dpto. Ingenieria Electronica, ETSI Telecomunicacion, Ciudad Universitaria, 28040 Madrid (Spain)

    2002-08-16

    Visible and solar-blind photodetectors have been fabricated on undoped GaN and AlGaN (x{proportional_to}0.40) layers grown by plasma-assisted molecular beam epitaxy. The use of single and double AlGaN/GaN superlattice buffers and their effects on the grown structures were explored. Metal-semiconductor-metal (MSM) and Schottky barrier photodiodes were characterised. A band-edge responsivity of 49 mA/W for GaN MSM photodiodes was obtained using a single superlattice as buffer. The growth of an additional superlattice as intermediate buffer enhanced the dark current of MSM devices due to the charge accumulation induced by piezoelectric effects inside the superlattice. Schottky barrier photodiodes showed a photosignal below the bandgap with opposite sign to the GaN photoresponse. This signal could be related to the superlattice absorption. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  5. Analyses of 2-DEG characteristics in GaN HEMT with AlN/GaN super-lattice as barrier layer grown by MOCVD.

    Science.gov (United States)

    Xu, Peiqiang; Jiang, Yang; Chen, Yao; Ma, Ziguang; Wang, Xiaoli; Deng, Zhen; Li, Yan; Jia, Haiqiang; Wang, Wenxin; Chen, Hong

    2012-02-20

    GaN-based high-electron mobility transistors (HEMTs) with AlN/GaN super-lattices (SLs) (4 to 10 periods) as barriers were prepared on (0001) sapphire substrates. An innovative method of calculating the concentration of two-dimensional electron gas (2-DEG) was brought up when AlN/GaN SLs were used as barriers. With this method, the energy band structure of AlN/GaN SLs was analyzed, and it was found that the concentration of 2-DEG is related to the thickness of AlN barrier and the thickness of the period; however, it is independent of the total thickness of the AlN/GaN SLs. In addition, we consider that the sheet carrier concentration in every SL period is equivalent and the 2-DEG concentration measured by Hall effect is the average value in one SL period. The calculation result fitted well with the experimental data. So, we proposed that our method can be conveniently applied to calculate the 2-DEG concentration of HEMT with the AlN/GaN SL barrier.

  6. High quantum efficiency Type-II superlattice N-structure photodetectors with thin intrinsic layers

    Science.gov (United States)

    Ergun, Yuksel; Hostut, Mustafa; Tansel, Tunay; Muti, Abdullah; Kilic, Abidin; Turan, Rasit; Aydinli, Atilla

    2013-06-01

    We report on the development of InAs/AlSb/GaSb based N-structure superlattice pin photodiode. In this new design, AlSb layer in between InAs and GaSb layers acts as an electron barrier that pushes electron and hole wave functions towards the GaSb/InAs interface to perform strong overlap under reverse bias. Experimental results show that, with only 20 periods of intrinsic layers, dark current density and dynamic resistance at -50 mV bias are measured as 6x10-3 A/cm2 and 148 Ωcm2 at 77K, respectively. Under zero bias, high spectral response of 1.2A/W is obtained at 5 μm with 50% cut-off wavelengths (λc) of 6 μm. With this new design, devices with only 146 nm thick i-regions exhibit a quantum efficiency of 42% at 3 μm with front-side illimunation and no anti-reflection coatings.

  7. Magnetism in lanthanide superlattices

    DEFF Research Database (Denmark)

    Goff, J.P.; Sarthour, R.S.; McMorrow, D.F.

    2000-01-01

    Neutron diffraction studies of heavy rare-earth superlattices have revealed the stabilization of novel magnetic phases chat are not present in bulk materials. The most striking result is the propagation of the magnetic ordering through nonmagnetic spacer materials. Here we describe some recent X......-ray magnetic resonant scattering studies of light rare-earth superlattices, which illuminate the mechanism of interlayer coupling, and provide access to different areas of Physics. such as the interplay between superconductivity and magnetism. Magnetic X-ray diffraction is found to be particularly well suited...... to the study of the modulated magnetic structures in superlattices, and provides unique information on the conduction-electron spin-density wave responsible for the propagation of magnetic order. (C) 2000 Elsevier Science B.V. All rights reserved....

  8. Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy

    Science.gov (United States)

    Stolz, A.; Cho, E.; Dogheche, E.; Androussi, Y.; Troadec, D.; Pavlidis, D.; Decoster, D.

    2011-04-01

    The waveguide properties are reported for wide bandgap gallium nitride (GaN) structures grown by metal organic vapor phase epitaxy on sapphire using a AlN/GaN short period-superlattice (SPS) buffer layer system. A detailed optical characterization of GaN structures has been performed using the prism coupling technique in order to evaluate its properties and, in particular, the refractive index dispersion and the propagation loss. In order to identify the structural defects in the samples, we performed transmission electron microscopy analysis. The results suggest that AlN/GaN SPS plays a role in acting as a barrier to the propagation of threading dislocations in the active GaN epilayer; above this defective region, the dislocations density is remarkably reduced. The waveguide losses were reduced to a value around 0.65dB/cm at 1.55 μm, corresponding to the best value reported so far for a GaN-based waveguide.

  9. Magnetic, transport and structural properties of Co/Ir multilayers grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Colis, S.; Dinia, A.; Ulhaq-Bouillet, C.; Panissod, P.; Meny, C.; Schmerber, G.; Arabski, J. [IPCMS-GEMME (UMR 7504 du CNRS), 23 rue du Loess, BP 34, F-67034 Strasbourg Cedex 2 (France)

    2003-09-01

    We report on the structural properties of a [Co{sub 30}/Ir{sub 10}]{sub 10} {sub x} (A) superlattice, as well as on the magnetic and transport properties of a Co{sub 15}/Ir{sub 5}/Co{sub 30} (A) artificial ferrimagnetic system. The samples were grown by molecular beam epitaxy (MBE) on MgO(001) substrates covered with a Ir{sub 130} (A) buffer layer. High resolution cross section and plan view transmission electron microscopy (TEM) images present a high quality epitaxial stack [100]MgO(001) parallel [100]Ir(001) parallel [100]Co(001), with a tetragonalization of the Co fcc structure, due to strains induced by the Ir buffer. TEM images also show that the Co/Ir interfaces are flat, while the layers are continuous and free of bridges. These observations are consistent with zero field nuclear magnetic resonance measurements which indicate an fcc structure of the Co layers, and an interface mixing between Co and Ir limited to one atomic layer. As a consequence the antiferromagnetically coupled Co/Ir/Co sandwich presents large saturation and coercive fields which exceed 20 kOe and 220 Oe, respectively. Annealing made on the same sandwich indicate that the magnetic and transport properties are stable up to 300 C. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Magnetic rare earth superlattices

    DEFF Research Database (Denmark)

    Majkrzak, C.F.; Kwo, J.; Hong, M.;

    1991-01-01

    Advances in molecular beam epitaxy deposition techniques have recently made it possible to grow, an atomic plane at a time, single crystalline superlattices composed of alternating layers of a magnetic rare earth, such as Gd, Dy, Ho, or Er, and metallic Y, which has an identical chemical structure...

  11. Enhancement in figure-of-merit with superlattices structures for thin-film thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Venkatasubramanian, R.; Colpitts, T.

    1997-07-01

    Thin-film superlattice (SL) structures in thermoelectric materials are shown to be a promising approach to obtaining an enhanced figure-of-merit, ZT, compared to conventional, state-of-the-art bulk alloyed materials. In this paper the authors describe experimental results on Bi{sub 2}Te{sub 3}/Sb{sub 2}Te{sub 3} and Si/Ge SL structures, relevant to thermoelectric cooling and power conversion, respectively. The short-period Bi{sub 2}Te{sub 3} and Si/Ge SL structures appear to indicate reduced thermal conductivities compared to alloys of these materials. From the observed behavior of thermal conductivity values in the Bi{sub 2}Te{sub 3}/Sb{sub 2}Te{sub 3} SL structures, a distinction is made where certain types of periodic structures may correspond to an ordered alloy rather than an SL, and therefore, do not offer a significant reduction in thermal conductivity values. The study also indicates that SL structures, with little or weak quantum-confinement, also offer an improvement in thermoelectric power factor over conventional alloys. They present power factor and electrical transport data in the plane of the SL interfaces to provide preliminary support for the arguments on reduced alloy scattering and impurity scattering in Bi{sub 2}Te{sub 3}/Sb{sub 2}Te{sub 3} and Si/Ge SL structures. These results, though tentative due to the possible role of the substrate and the developmental nature of the 3-{omega} method used to determine thermal conductivity values, suggest that the short-period SL structures potentially offer factorial improvements in the three-dimensional figure-of-merit (ZT3D) compared to current state-of-the-art bulk alloys. An approach to a thin-film thermoelectric device called a Bipolarity-Assembled, Series-Inter-Connected Thin-Film Thermoelectric Device (BASIC-TFTD) is introduced to take advantage of these thin-film SL structures.

  12. Thermoelectric properties of thin film and superlattice structure of IV-VI and V-VI compound semiconductors; Thermoelektrische Eigenschaften duenner Schichten und Uebergitterstrukturen von IV-VI- und V-VI-Verbundhalbleitern

    Energy Technology Data Exchange (ETDEWEB)

    Blumers, Mathias

    2012-02-29

    The basic material property governing the efficiency of thermoelectric applications is the thermoelectric figure of merit Z=S{sup 2}.{sigma}/k, where S is the Seebeck-coefficient, {sigma} is the electrical conductivity and k the thermal conductivity. A promising concept of increasing Z by one and two dimensional quantum well superlattices (QW-SL) was introduced in the early 1990s in terms of theoretical predictions. The realization of such low dimensional systems is done by use of semiconductor compounds with different energy gaps. The ambition of the Nitherma project was to investigate the thermoelectric properties of superlattices and Multi-Quantum-Well-structures (MQW) made of Pb{sub 1-x}Sr{sub x}Te and Bi{sub 2}(Se{sub x}Te{sub 1-x}){sub 3}, respectively. Therefore SL- and MQW-structures of this materials were grown and Z was determined by measuring of S, {sigma} and {kappa} parallel to the layer planes. Aim of this thesis is the interpretation of the transport measurements (S,{sigma},{kappa}) of low dimensional structures and the improvement of preparation and measurement techniques. The influence of low dimensionality on the thermal conductivity in SL- and MQW-structures was investigated by measurements on structures with different layer thicknesses. In addition, measurements of the Seebeck-coefficient were performed, also to verify the results of the participating groups.

  13. Interface Properties of InAs/AlSb Superlattices Characterized by Grazing Incidence X-Ray Reflectivity

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-Hua; GUO Li-Wei; WU Shu-Dong; WANG Wen-Xin; HUANG Qi; ZHOU Jun-Ming

    2005-01-01

    @@ Two kinds of superlattice interfaces of InAs/AlSb superlattices are realized in an optimized interface growth process, where one is AlAs-like and the other is InSb-like grown on a relaxed AlSb buffer layer. The superlattice properties such as interface roughness and layer thickness are studied by grazing incidence x-ray reflectivity. The reflectivity curves are simulated by standard software till the simulation curves match well with the experimental curves. The simulation indicates that AlAs-like interfaces are much rougher than InSb-like interfaces. Grazing incidence x-ray reflectivity is also discussed as a powerful tool to assessing the structure properties of superlattices.

  14. MgO/Cu2O Superlattices: Growth of Epitaxial Two-Dimensional Nanostructures

    Science.gov (United States)

    Yang, M. J.; Wadekar, P. V.; Hsieh, W. C.; Huang, H. C.; Lin, C. W.; Chou, J. W.; Liao, C. H.; Chang, C. F.; Seo, H. W.; You, S. T.; Tu, L. W.; Lo, I. K.; Ho, N. J.; Yeh, S. W.; Liao, H. H.; Chen, Q. Y.; Chu, W. K.

    2016-12-01

    Alternated stacking of dissimilar layers can produce novel superlattice materials with multiple functionalities. The majority of such work reported in literature on epitaxial superlattices has been on alternating layers with the same space group (SG) and crystal structure (CS), whereas superlattices with the same CS but different SG have not been studied as much. We have grown superlattices with two well-known oxide materials, viz. cuprite (Cu2O, CS = cubic and SG = Pn bar{3} m) and magnesium oxide (MgO, CS = cubic, SG = Fm bar{3} m). An MgO buffer layer grown near 650°C at the film-substrate interface was found to be essential to achieving reasonable long-range atomic order. Grazing-angle x-ray diffraction, x-ray reflectivity, and electron diffraction analyses as well as transmission electron microscopy were used to investigate the interface abruptness, smoothness, and general crystallinity of the individual layers. Interdiffusion between MgO and Cu2O near interfacial regions places a limit of 250°C on the growth temperature for fabrication of superlattices with reasonably sharp interfaces.

  15. Aberration Corrected Scanning Transmission Electron Microscopy of (Ca , Sr)Fe2O5 Brownmillerite superlattices

    Science.gov (United States)

    Mukherjee, Debangshu; Stone, Greg; Moon, Eun Ju; Young, Joshua; Gopalan, Venkatraman; Rondinelli, James; May, Steven; Alem, Nasim

    The brownmillerite phase A2B2O5 consists of ordered oxygen vacancies in alternate perovskite layers forming chiral tetrahedral chains. The handedness of these tetrahedral chains control the polarization of the structure. The current study focuses on 1-1 brownmillerite superlattices grown on a SrTiO3 substrates using molecular beam epitaxy. The B-site in this structure is iron throughout the superlattice film, while the A-site alternates between calcium and strontium in the superlattice layers. In this study, we use atomic resolution aberration corrected scanning transmission electron microscopy (STEM) to investigate the structure and chemistry of the film-substrate interface as well as the chemical structure of the superlattice. Atom positions are determined to measure displacement vectors of A-site cations in the superlattice structure. D.M., G.A.S., V.G. and N.A. were supported by the National Science Foundation under Grant No. DMR-1420620. E.J.M. and S.J.M. were supported by the National Science Foundation under Grant No. DMR-1151649.

  16. structural reliability of the nigerian grown abura timber bridge beam ...

    African Journals Online (AJOL)

    ENGR. J. I. AGUWA

    2013-07-02

    Jul 2, 2013 ... Structural reliability analysis was carried out on the Nigerian grown Abura timber, to ascertain its structural ... wall sheeting, formwork and furniture. The ... reinforced concrete members. ... fulfill certain performance criteria related to safety and ..... Plastic Structures” First Edition, Mir Publishers. Moscow ...

  17. Electronic structure and magnetic couplings in metallic superlattices with diffuse interfaces

    Science.gov (United States)

    Stoeffler, Daniel; Gautier, François

    1992-02-01

    The real-space tight-binding method allows one to describe the magnetic order and the interlayer magnetic couplings (IMC) in Fe 3Cr n superlattices. In this paper we extend our previous study on Fe 3Cr n to Co 3Cr n and Ni 6Cr n superlattices. We obtain similar results for the IMC except that for Co 3Cr n the oscillations are obtained only after a "preasymptotic" ferromagnetic coupling regime ( n > 8). Then, we explore the role of diffuse interfaces by assuming as a first step the existence of ordered interfacial compounds (OIC). We show that the IMC oscillations are strongly perturbed and can be strongly damped by frustration effects on the Cr-OIC interfaces.

  18. Analysis of reaction between c+a and -c+a dislocations in GaN layer grown on 4-inch Si(111 substrate with AlGaN/AlN strained layer superlattice by transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    Yoshihiro Sugawara

    2016-04-01

    Full Text Available The behavior of dislocations in a GaN layer grown on a 4-inch Si(111 substrate with an AlGaN/AlN strained layer superlattice using horizontal metal-organic chemical vapor deposition was observed by transmission electron microscopy. Cross-sectional observation indicated that a drastic decrease in the dislocation density occurred in the GaN layer. The reaction of a dislocation (b=1/3[-211-3] and anothor dislocation (b =1/3[-2113] to form one dislocation (b =2/3[-2110] in the GaN layer was clarified by plan-view observation using weak-beam dark-field and large-angle convergent-beam diffraction methods.

  19. Analysis of reaction between c+a and -c+a dislocations in GaN layer grown on 4-inch Si(111) substrate with AlGaN/AlN strained layer superlattice by transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, Yoshihiro; Ishikawa, Yukari, E-mail: yukari@jfcc.or.jp [Japan Fine Ceramics Center, Atsuta, Nagoya, 456-8587 (Japan); Watanabe, Arata [Research Center for Nano Devices and Advanced Materials, Nagoya Institute of Technology, Nagoya, 466-8555 (Japan); Miyoshi, Makoto; Egawa, Takashi [Research Center for Nano Devices and Advanced Materials, Nagoya Institute of Technology, Nagoya, 466-8555 (Japan); Innovation Center for Multi-Business of Nitride Semiconductors, Nagoya Institute of Technoloy, Nagoya, 466-8555 (Japan)

    2016-04-15

    The behavior of dislocations in a GaN layer grown on a 4-inch Si(111) substrate with an AlGaN/AlN strained layer superlattice using horizontal metal-organic chemical vapor deposition was observed by transmission electron microscopy. Cross-sectional observation indicated that a drastic decrease in the dislocation density occurred in the GaN layer. The reaction of a dislocation (b=1/3[-211-3]) and anothor dislocation (b =1/3[-2113]) to form one dislocation (b =2/3[-2110]) in the GaN layer was clarified by plan-view observation using weak-beam dark-field and large-angle convergent-beam diffraction methods.

  20. Mn in misch-metal based superlattice metal hydride alloy - Part 1 structural, hydrogen storage and electrochemical properties

    Science.gov (United States)

    Young, K.; Wong, D. F.; Wang, L.; Nei, J.; Ouchi, T.; Yasuoka, S.

    2015-03-01

    The structural, gaseous phase hydrogen storage, and electrochemical properties of a series of Mn-modified misch-metal based superlattice metal hydride alloys were investigated in part one of this two-part series of papers. X-ray diffraction analysis showed that these alloys are all multi-phased compositions with different abundances of AB2, AB3, A2B7, AB4, and AB5 phases. Substitution of Ni in the B-site by Mn promotes AB5 phase formation and decreases both gaseous phase and electrochemical capacities due to the reduction in the abundance of main hexagonal A2B7 phase. AC impedance and magnetic susceptibility measurement were employed to characterize the surface of Mn-free and Mn-modified alloys and show deterioration in surface catalytic ability as the Mn-content increases. Mn-modification adversely affected misch-metal based superlattice metal hydride alloy properties such as phase homogeneity, capacity, cycle stability, high-rate performance, and surface reaction.

  1. Structure of shaped sapphire grown from multicapillary dies

    Science.gov (United States)

    Dobrovinskaya, E. R.; Litvinov, L. A.; Pischik, V. V.

    1990-07-01

    Peculiarities in grain structure development have been studied in sapphire crystals grown with multicapillary channels in the die to feed melt to the crystallization zone. A new mechanism of grain boundary formation based on gas-bubble collapse at the crystal-melt interface is proposed.

  2. Electronic Band Structures and Optical Properties of Type-II Superlattice Photodetectors with Interfacial Effect

    Science.gov (United States)

    2012-01-18

    MWIR and LWIR superlattice photodiodes,” Infrared Phys. Techn. 50, 187–190 (2007). 21. A. Khoshakhlagh, E. Plis, S. Myers, Y. D. Sharma, L. R. Dawson...quantum efficiency (QE) spectra [19,20] for a mid-wave infrared (MWIR) detector with a 3.6 μm cutoff wavelength and a long-wave infrared detector ( LWIR ...1016 cm−3 (dashed), NA = 5×1015 cm−3 (solid). different thicknesses, and the calibration is automatically included during the spectral response

  3. Charge transfer-induced magnetic exchange bias and electron localization in (111)- and (001)-oriented LaNiO3/LaMnO3 superlattices

    Science.gov (United States)

    Wei, Haoming; Barzola-Quiquia, Jose Luis; Yang, Chang; Patzig, Christian; Höche, Thomas; Esquinazi, Pablo; Grundmann, Marius; Lorenz, Michael

    2017-03-01

    High-quality lattice-matched LaNiO3/LaMnO3 superlattices with monolayer terrace structure have been grown on both (111)- and (001)-oriented SrTiO3 substrates by pulsed laser deposition. In contrast to the previously reported experiments, a magnetic exchange bias is observed that reproducibly occurs in both (111)- and (001)-oriented superlattices with the thin single layers of 5 and 7 unit cells, respectively. The exchange bias is theoretically explained by charge transfer-induced magnetic moments at Ni atoms. Furthermore, magnetization data at low temperature suggest two magnetic phases in the superlattices, with Néel temperature around 10 K. Electrical transport measurements reveal a metal-insulator transition with strong localization of electrons in the superlattices with the thin LaNiO3 layers of 4 unit cells, in which the electrical transport is dominated by two-dimensional variable range hopping.

  4. Multiferroicity in Perovskite Manganite Superlattice

    Science.gov (United States)

    Tao, Yong-Mei; Jiang, Xue-Fan; Liu, Jun-Ming

    2016-08-01

    Multiferroic properties of short period perovskite type manganite superlattice ((R1MnO3)n/(R2MnO3)n (n=1,2,3)) are considered within the framework of classical Heisenberg model using Monte Carlo simulation. Our result revealed the interesting behaviors in Mn spins structure in superlattice. Apart from simple plane spin cycloid structure which is shown in all manganites including bulk, film, and superlattice here in low temperature, a non-coplanar spiral spin structure is exhibited in a certain temperature range when n equals 1, 2 or 3. Specific heat, spin-helicity vector, spin correlation function, spin-helicity correlation function, and spin configuration are calculated to confirm this non-coplanar spiral spin structure. These results are associated with the competition among exchange interaction, magnetic anisotropy, and Dzyaloshinskii-Moriya interaction. Supported by the National Natural Science Foundation of China (NSFC) under Grant No. 11447136

  5. Textured Sb2Te3 films and GeTe/Sb2Te3 superlattices grown on amorphous substrates by molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    Jos E. Boschker

    2017-01-01

    Full Text Available The realization of textured films of 2-dimensionally (2D bonded materials on amorphous substrates is important for the integration of this material class with silicon based technology. Here, we demonstrate the successful growth by molecular beam epitaxy of textured Sb2Te3 films and GeTe/Sb2Te3 superlattices on two types of amorphous substrates: carbon and SiO2. X-ray diffraction measurements reveal that the out-of-plane alignment of grains in the layers has a mosaic spread with a full width half maximum of 2.8°. We show that a good texture on SiO2 is only obtained for an appropriate surface preparation, which can be performed by ex situ exposure to Ar+ ions or by in situ exposure to an electron beam. X-ray photoelectron spectroscopy reveals that this surface preparation procedure results in reduced oxygen content. Finally, it is observed that film delamination can occur when a capping layer is deposited on top of a superlattice with a good texture. This is attributed to the stress in the capping layer and can be prevented by using optimized deposition conditions of the capping layer. The obtained results are also relevant to the growth of other 2D materials on amorphous substrates.

  6. Textured Sb2Te3 films and GeTe/Sb2Te3 superlattices grown on amorphous substrates by molecular beam epitaxy

    Science.gov (United States)

    Boschker, Jos E.; Tisbi, E.; Placidi, E.; Momand, Jamo; Redaelli, Andrea; Kooi, Bart J.; Arciprete, Fabrizio; Calarco, Raffaella

    2017-01-01

    The realization of textured films of 2-dimensionally (2D) bonded materials on amorphous substrates is important for the integration of this material class with silicon based technology. Here, we demonstrate the successful growth by molecular beam epitaxy of textured Sb2Te3 films and GeTe/Sb2Te3 superlattices on two types of amorphous substrates: carbon and SiO2. X-ray diffraction measurements reveal that the out-of-plane alignment of grains in the layers has a mosaic spread with a full width half maximum of 2.8°. We show that a good texture on SiO2 is only obtained for an appropriate surface preparation, which can be performed by ex situ exposure to Ar+ ions or by in situ exposure to an electron beam. X-ray photoelectron spectroscopy reveals that this surface preparation procedure results in reduced oxygen content. Finally, it is observed that film delamination can occur when a capping layer is deposited on top of a superlattice with a good texture. This is attributed to the stress in the capping layer and can be prevented by using optimized deposition conditions of the capping layer. The obtained results are also relevant to the growth of other 2D materials on amorphous substrates.

  7. Theoretical study of magnetism and electronic structure of Fe{sub 3}/Cr{sub n}(1 1 0) superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Hu Haiquan [College of Physics Science and Information Engineering, Liaocheng University, Liaocheng 252059 (China)], E-mail: huhq@lcu.edu.cn; Li Hengshuai [College of Physics Science and Information Engineering, Liaocheng University, Liaocheng 252059 (China)], E-mail: hengshuaili@sina.com; Wang Yuanxu [College of Physics and Electron, Henan University, Kaifeng 475001 (China); Ren Zhongming [College of Car and Traffic Engineering, Liaocheng University, Liaocheng 252059 (China)

    2008-03-01

    The electronic structure and magnetism of Fe{sub 3}/Cr{sub n}(1 1 0) (n=1, 3, 5) superlattices (SL) with varying layer thickness have been studied using the full-potential linearized augmented plane-wave (FLAPW) method within the first-principle formalism. The results show that the ferromagnetic state is the preferable phase in the ground state. The magnetic moments of the Fe layers are slightly modified by the presence of the Cr layers. The Cr magnetic moments alternate direction from layer to layer, and an antiferromagnetic coupling between Fe and Cr at the interfacial layer is seen. The magnetic moments of the Cr layers are suppressed because there is a strong hybridization between d-states of both Fe and Cr atoms. Only a small moment is found in the Cr layer. The Cr moment alignment is determined by a delicate balance between the different magnetic interaction.

  8. Study of the electronic structure and half-metallicity of CaMnO3/BaTiO3 superlattice

    Science.gov (United States)

    Wang, Kai; Jiang, Wei; Chen, Jun-Nan; Huang, Jian-Qi

    2016-09-01

    In this paper, the electronic structure, magnetic properties and half-metallicity of the CaMnO3/BaTiO3 superlattice are investigated by employing the first-principle calculation based on density functional theory within the GGA or GGA + U exchange-correlation functional. The CaMnO3/BaTiO3 superlattice is constructed by the cubic CaMnO3 and the tetragonal ferroelectric BaTiO3 growing alternately along (0 0 1) direction. The cubic CaMnO3 presents a robust half-metallicity and a metastable ferromagnetic phase. Its magnetic moment is an integral number of 3.000 μB per unit cell. However, the CaMnO3/BaTiO3 superlattice has a stable ferromagnetic phase, for which the magnetic moment is 12.000 μB per unit cell. It also retains the robust half-metallicity which mainly results from the strong hybridization between Mn and O atoms. The results show that the constructed CaMnO3/BaTiO3 superlattice exhibits superior magnetoelectric properties. It may provide a theoretical reference for the design and preparation of new multiferroic materials.

  9. Electronic transport and band structures of GaAs/AlAs nanostructures superlattices for near-infrared detection

    Science.gov (United States)

    Barkissy, Driss; Nafidi, Abdelhakim; Boutramine, Abderrazak; Benchtaber, Nassima; Khalal, Ali; El Gouti, Thami

    2017-01-01

    We report here the theoretical calculations of band structures E( d 1), E( k z , k p ) and effective mass along the growth axis and in the plane of GaAs/Al x Ga1- x As superlattices, in the envelope function formalism. The effect of valence band offset, well thickness and temperature on the band structures, has been also studied. Our results show that a transition from indirect to direct band gap in (GaAs) m /(AlAs)4 takes place between m = 5 and 6 monolayers at room temperature. Samples (GaAs)9/(AlAs)4 and GaAs( d 1 = 10 nm)/Al0.15Ga0.85As( d 2 = 15 nm) have a direct band gap of 1.747 eV at room temperature and 1.546 eV at T = 30 mK, respectively. Their corresponding cutoff wavelengths are located in the near infrared region. We have interpreted the photoluminescence measurements of Ledentsov et al. in GaAs( d 1 = 2.52 nm)/AlAs ( d 1 = 1.16 nm) and the oscillations in the magnetoresistance observed by Kawamura et al. in GaAs/Al0.15Ga0.85As superlattice. In the later, the existence of discrete quantized levels along the growth direction z indicates extremely low interactions between adjacent wells leading to the use in parallel transport. The position of Fermi level predicts that this sample exhibits n-type conductivity. These results were compared and discussed with the available data in the literature and can be used as a guide for the design of infrared nanostructured detectors.

  10. Ion beam studies in strained layer superlattices

    CERN Document Server

    Pathak, A P; Bhattacharya, D P; Dev, B N; Ghosh, S; Goswami, D K; Lakshmi-Bala, S; Nageswara-Rao, S V S; Satyam, P V; Siddiqui, A M; Srivastava, S K; Turos, A

    2002-01-01

    The potential device application of semiconductor heterostructures and strained layer superlattices has been highlighted. Metal organic chemical vapour deposition grown In sub 0 sub . sub 5 sub 3 Ga sub 0 sub . sub 4 sub 7 As/InP lattice-matched structure has been irradiated by 130 MeV Ag sup 1 sup 3 sup + and studied by RBS/Channelling using 3.5 MeV He sup 2 sup + ions. Ion irradiation seems to have induced a finite tensile strain in the InGaAs layer, indicating thereby that ion beam mixing occurs at this energy. Other complementary techniques like high resolution XRD and STM are needed to conclude the structural modifications in the sample.

  11. Photoluminescence in Er-implanted AlGaN/GaN superlattices and GaN epilayers

    Energy Technology Data Exchange (ETDEWEB)

    Sobolev, N.A.; Emel' yanov, A.M.; Sakharov, V.I.; Serenkov, I.T.; Shek, E.I.; Besyul' kin, A.I.; Lundin, W.V.; Shmidt, N.M.; Usikov, A.S.; Zavarin, E.E

    2003-12-31

    Photoluminescence (PL), structural and electrophysical properties of Al{sub 0.26}Ga{sub 0.74}N/GaN superlattices grown by metal-organic chemical vapor deposition, implanted by erbium (Er) ions with 1 MeV energy and 1x10{sup 15} cm{sup -2} dose as well as annealed at 700-1100 deg. C for 4 min in argon have been investigated. A comparison of the properties of the superlattices with that of the GaN epilayers grown, implanted and annealed at the same conditions is also given. The Er-related peak with a maximum at {lambda}{approx}1.54 {mu}m dominated and the defect-related emission band at {lambda}{approx}1-1.4 {mu}m was observed in the PL spectra of both types of samples. When the measurement temperature was increased from 80 to 300 K, practically the same temperature quenching of the Er-related intensity was observed in the superlattices and GaN epilayers implanted and annealed at the same conditions. The Er-related intensity at 300 K increased monotonically as the annealing temperature was raised from 700 to 1000 deg. C, but the intensity in the superlattices was higher by several times than that in the epilayers. A decrease of the Er-related PL intensity in the superlattice after annealing at 1100 deg. C is associated with the formation of non-radiative recombination centers.

  12. A systematic study of polarized electron emission from strained GaAs/GaAsP superlattice photocathodes

    CERN Document Server

    Maruyama, T; Brachmann, A; Clendenin, J E; Garwin, E L; Harvey, S; Jiang, J; Kirby, R E; Prescott, C Y; Prepost, R; Moy, A M

    2004-01-01

    Spin-polarized electron photoemission has been studied for GaAs/GaAs$_{1-x}$P$_x$ strained superlattice cathodes grown by gas-source molecular beam epitaxy. The superlattice structural parameters are systematically varied to optimize the photoemission characteristics. The heavy-hole and light-hole transitions are reproducibly observed in quantum efficiency spectra, enabling direct measurement of the band energies and the energy splitting. Electron-spin polarization as high as 86% with over 1% quantum efficiency has been observed.

  13. Anisotropy in layered half-metallic Heusler alloy superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Azadani, Javad G.; Munira, Kamaram; Sivakumar, Chockalingam; Butler, William H. [Center for Materials for Information Technology, University of Alabama, Tuscaloosa, Alabama 35487 (United States); Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487 (United States); Romero, Jonathon [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487 (United States); Ma, Jianhua; Ghosh, Avik W. [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2016-01-28

    We show that when two Heusler alloys are layered in the [001], [110], or [111] directions for various thicknesses to form a superlattice, the Slater-Pauling rule may still be satisfied and the resulting superlattice is often half-metallic with gaps comparable to or larger than those of its constituents. In addition, uniaxial magnetocrystalline anisotropy is induced because of the differences in the electronic structure of the two Heuslers in the superlattice. Various full-full, full-half, and half-half Heusler superlattices are studied, and potential half-metallic superlattices with perpendicular magnetocrystalline anisotropy are identified.

  14. Enhanced infrared detectors using resonant structures combined with thin type-II superlattice absorbers

    Science.gov (United States)

    Goldflam, M. D.; Kadlec, E. A.; Olson, B. V.; Klem, J. F.; Hawkins, S. D.; Parameswaran, S.; Coon, W. T.; Keeler, G. A.; Fortune, T. R.; Tauke-Pedretti, A.; Wendt, J. R.; Shaner, E. A.; Davids, P. S.; Kim, J. K.; Peters, D. W.

    2016-12-01

    We examined the spectral responsivity of a 1.77 μm thick type-II superlattice based long-wave infrared detector in combination with metallic nanoantennas. Coupling between the Fabry-Pérot cavity formed by the semiconductor layer and the resonant nanoantennas on its surface enables spectral selectivity, while also increasing peak quantum efficiency to over 50%. Electromagnetic simulations reveal that this high responsivity is a direct result of field-enhancement in the absorber layer, enabling significant absorption in spite of the absorber's subwavelength thickness. Notably, thinning of the absorbing material could ultimately yield lower photodetector noise through a reduction in dark current while improving photocarrier collection efficiency. The temperature- and incident-angle-independent spectral response observed in these devices allows for operation over a wide range of temperatures and optical systems. This detector paradigm demonstrates potential benefits to device performance with applications throughout the infrared.

  15. Thermodynamics of Co/Cr superlattices

    Science.gov (United States)

    Mukherjee, T.; Sahoo, S.; Skomski, R.; Sellmyer, D. J.; Binek, Ch.

    2008-03-01

    Progress in ultra thin film growth has resulted in many novel surface and interface induced properties of artificial heterostuctures. Here, we study magnetic superlattices of ultrathin Co and Cr films grown by Molecular Beam Epitaxy methodology at a base pressure below 1x10-10 mbar. Our approach is based on controlling two distinct magnetic degrees of freedom. First, the critical temperature, Tc, of individual Co films is tailored via geometrical confinement of the correlation length perpendicular to the film. Various thickness dependent values, Tc(d), between zero and the bulk Curie temperature of 1388 K are realized. Second, the Tc-tailored Co films are antiferromagnetically coupled through Cr interlayer films. The oscillating coupling strength is tailored via the Cr interlayer thickness. The resulting thermodynamic properties of such Co/Cr superlattices are studied with the help of SQUID magnetometry. Particular emphasis is laid on tailoring magnetic entropy changes in the vicinity of room temperature. X-ray diffraction and X-ray reflectivity are used to correlate structural data with the magnetic properties.

  16. Hydrostatic pressure and strain effects in short period InN/GaN superlattices

    DEFF Research Database (Denmark)

    Gorczyca, I.; Suski, T.; Christensen, Niels Egede;

    2012-01-01

    The electronic structures of short-period pseudomorphically grown superlattices (SLs) of the form mInN/nGaN are calculated and the band gap variation with the well and the barrier thicknesses is discussed including hydrostatic pressure effects. The calculated band gap shows a strong dependence on...... strongly on the strain conditions and SL geometry, but weakly on the applied external hydrostatic pressure....

  17. Interface disorder and transport properties in HTC/CMR superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Haberkorn, N.; Guimpel, J.; Sirena, M.; Steren, L.B.; Campillo, G.; Saldarriaga, W.; Gomez, M.E

    2004-08-01

    The physical properties of superlattices are affected by interface disorder, like roughness and interdiffusion. X-ray diffraction allows its measurement through modeling and structure refinement. The high-T{sub c} RBa{sub 2}Cu{sub 3}O{sub 7} (RBCO) and colossal magnetoresistance La{sub x}A{sub 1-x}MnO{sub 3} (LAMO) perovskites are interesting superlattice partners given their similar lattice parameters and because the combination of magnetic and superconducting properties is interesting for both basic and applied research. We have investigated the structural and transport properties of YBCO/La{sub 2/3}Ca{sub 1/3}MnO{sub 3} and GdBCO/La{sub 0.6}Sr{sub 0.04}MnO{sub 3} superlattices grown by sputtering on (1 0 0)MgO. We find a roughness of 1 RBCO unit cell and a 30% interdiffusion in the same length from the interfaces for all samples. The superconducting behavior is found strongly dependent on the LAMO layer thickness.

  18. Epitaxy, thin films and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au) 14 tabs.; 58 ills., 96 refs.

  19. Structure and lattice dynamics of GaN and AlN. Ab-initio investigations of strained polytypes and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Jan-Martin

    2004-10-14

    In this dissertation, ab-initio investigations of the strain influence on vibrational properties of GaN and AlN as well as of short-period GaN/AlN superlattices are presented. Based on densityfunctional theory and density-functional perturbation theory, for differently strained structures complete phonon spectra and related properties are calculated using the local-density approximation and norm-conserving pseudopotentials. (orig.)

  20. Superlattice Structures, Electronic Properties, and Spin Dynamics of the Partially Cu-Extracted Phase for the Composite Crystal System CuxV4O11

    Science.gov (United States)

    Onoda, Masashige; Tamura, Asato

    2017-02-01

    The crystal structures, electronic properties, and spin dynamics of CuxV4O11 with 1.2 ≤ x system, are explored through measurements of x-ray four-circle diffraction, electrochemistry, electrical resistivity, thermoelectric power, magnetization, and electron paramagnetic resonance. This system has superlattice structures mainly ascribed to the partial ordering of Cu ions. Cu1.78V4O11 is triclinic with space group Pbar{1} and the double supercell of the V4O11 substructure of the composite crystal. The significantly Cu-extracted crystal Cu1.40V4O11 has a quadruple supercell with space group P1. The electron transport for V ions is nonmetallic owing to the polaronic nature and/or phonon softening and to the random potential of Cu ions. The Curie-Weiss-type paramagnetism basically originates from the Cu2+ chain coordinated octahedrally, and the EPR relaxation at low temperatures is understood through the exchange mechanism for the dipole-dipole and anisotropic exchange interactions. The near absence of paramagnetic behaviors of V4+ ions might be due to the spin-singlet ladder model or alternating-exchange chain model depending on the superlattice structure and valence distribution. The electrochemical performance of Li rechargeable batteries using this superlattice system is about 300 A h kg-1 at voltages above 2 V.

  1. Superlattice Thermoelectric Materials and Devices

    Science.gov (United States)

    Venkatasubramanian, Rama

    2002-03-01

    We have recently demonstrated a significant enhancement in thermoelectric figure-of-merit (ZT) at 300K, of about 2.4 in p-type Bi2Te3/Sb2Te3 superlattices, using the concept of phonon-blocking electron-transmitting superlattice structures [1]. The phonon blocking arises from a complex localization-like behavior for phonons in nano-structured superlattices and the electron transmission is facilitated by optimal choice of band-offsets in these semiconductor hetero-structures. We will also discuss the ZT 1.2 results in n-type Bi2Te3/Bi2Te3-xSex superlattices and our initial understanding on the reasons behind the less-than-dramatic performance of these materials compared to the p-type superlattices. Due to the high ZT of the material, devices potentially offer high coefficient of performance (COP) in solid-state refrigeration. The thin-film devices, resulting from rather simple microelectronic processing, allow high cooling power densities to be achieved for a variety of high-power electronic applications. We have obtained 32K and 40K sub-ambient cooling at 298K and 353K, respectively, in these superlattice micro-thermoelements with potential localized active-cooling power densities approaching 700 W/cm2. In addition to high-performance (in terms of COP) and power densities, these thin-film microdevices are also extremely fast-acting, within 10 microsec and about a factor of 23,000 better than bulk thermoelectric technology. Thus, these are of significance for preventing thermal run-away in high-power electronics. We will present results to demonstrate this concept with infrared imaging of cooling/heating with superlattice micro-devices. We will also discuss outstanding issues such as heat removal from the heat sink towards the full exploitation of this technology. In addition, we will compare the state-of-the-art with other thin-film superlattice materials and device concepts. [1] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B.C. O’Quinn, Thin

  2. Absorption properties of type-II InAs/InAsSb superlattices measured by spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Webster, P. T.; Riordan, N. A.; Liu, S.; Zhang, Y.-H.; Johnson, S. R., E-mail: shane.johnson@asu.edu [Center for Photonics Innovation and School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Steenbergen, E. H. [U.S. Air Force Research Laboratory, AFRL/RXAN, Wright Patterson, Ohio 45433 (United States); Synowicki, R. A. [J. A. Woollam Co., Inc., 645 M. Street, Suite 102, Lincoln, Nebraska 68508 (United States)

    2015-02-09

    Strain-balanced InAs/InAsSb superlattices offer access to the mid- to long-wavelength infrared region with what is essentially a ternary material system at the GaSb lattice constant. The absorption coefficients of InAs/InAsSb superlattices grown by molecular beam epitaxy on (100)-oriented GaSb substrates are measured at room temperature over the 30 to 800 meV photon energy range using spectroscopic ellipsometry, and the miniband structure of each superlattice is calculated using a Kronig-Penney model. The InAs/InAsSb conduction band offset is used as a fitting parameter to align the calculated superlattice ground state transition energy to the measured absorption onset at room temperature and to the photoluminescence peak energy at low temperature. It is observed that the ground state absorption coefficient and transition strength are proportional to the square of the wavefunction overlap and the ground state absorption coefficient approaches a maximum value of around 5780 cm{sup −1} as the wavefunction overlap approaches 100%. The absorption analysis of these samples indicates that the optical joint density of states is weakly dependent on the period thickness and Sb content of the superlattice, and that wavefunction overlap is the principal design parameter in terms of obtaining strong absorption in these structures.

  3. Exchange bias in Fe/Cr double superlattices.

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J. S.; Felcher, G. P.; Inomata, A.; Goyette, R.; Nelson, C.; Bader, S. D.

    1999-11-30

    Utilizing the oscillatory interlayer exchange coupling in Fe/Cr superlattices, we have constructed ''double superlattice'' structures where a ferromagnetic (F) and an antiferromagnetic (AF) Fe/Cr superlattice are coupled through a Cr spacer. The minor hysteresis loops in the magnetization are shifted from zero field, i.e., the F superlattice is exchange biased by the AF one. The double superlattices are sputter-deposited with (211) epitaxy and possess uniaxial in-plane magnetic anisotropy. The magnitude of the bias field is satisfactorily described by the classic formula for collinear spin structures. The coherent structure and insensitivity to atomic-scale roughness makes it possible to determine the spin distribution by polarized neutron reflectivity, which confirms that the spin structure is collinear. The magnetic reversal behavior of the double superlattices suggests that a realistic model of exchange bias needs to address the process of nucleating local reverse domains.

  4. The influence of AlN interlayers on the microstructural and electrical properties of p-type AlGaN/GaN superlattices grown on GaN/sapphire templates

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lei; Liu, Lei; Wang, Lei; Li, Ding; Song, Jie; Liu, Ningyang; Chen, Weihua; Wang, Yuzhou; Yang, Zhijian; Hu, Xiaodong [Peking University, State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Beijing (China)

    2012-09-15

    AlN with different thicknesses were grown as interlayers (ILs) between GaN and p-type Al{sub 0.15}Ga{sub 0.85}N/GaN superlattices (SLs) by metal organic vapor phase epitaxy (MOVPE). It was found that the edge-type threading dislocation density (TDD) increased gradually from the minimum of 2.5 x 10{sup 9} cm{sup -2} without AlN IL to the maximum of 1 x 10{sup 10} cm{sup -2} at an AlN thickness of 20 nm, while the screw-type TDD remained almost unchanged due to the interface-related TD suppression and regeneration mechanism. We obtained that the edge-type dislocations acted as acceptors in p-type Al{sub x} Ga{sub 1-x} N/GaN SLs, through the comparison of the edge-type TDD and hole concentration with different thicknesses of AlN IL. The Mg activation energy was significantly decreased from 153 to 70 meV with a 10-nm AlN IL, which was attributed to the strain modulation between AlGaN barrier and GaN well. The large activation efficiency, together with the TDs, led to the enhanced hole concentration. The variation trend of Hall mobility was also observed, which originated from the scattering at TDs. (orig.)

  5. Structural phase transition and superlattice misfit strain of RFeAsO (R=La,Pr,Nd,Sm)

    Science.gov (United States)

    Ricci, A.; Poccia, N.; Joseph, B.; Barba, L.; Arrighetti, G.; Ciasca, G.; Yan, J.-Q.; McCallum, R. W.; Lograsso, T. A.; Zhigadlo, N. D.; Karpinski, J.; Bianconi, A.

    2010-10-01

    The tetragonal-to-orthorhombic structural phase transition (SPT) in LaFeAsO (La-1111) and SmFeAsO (Sm-1111) single crystals measured by high-resolution x-ray diffraction is found to be sharp while the RFeAsO (R=La,Nd,Pr,Sm) polycrystalline samples show a broad continuous SPT. Comparing the polycrystalline and the single-crystal 1111 samples, the critical exponents of the SPT are found to be the same while the correlation length critical exponents are found to be very different. These results imply that the lattice fluctuations in 1111 systems change in samples with different surface to volume ratio that is assigned to the relieve of the temperature-dependent superlattice misfit strain between active iron layers and the spacer layers in 1111 systems. This phenomenon that is missing in the AFe2As2 (A=Ca,Sr,Ba) “122” systems, with the same electronic structure but different for the thickness and the elastic constant of the spacer layers, is related with the different maximum superconducting transition temperature in the 1111 (55 K) versus 122 (35 K) systems and implies the surface reconstruction in 1111 single crystals.

  6. Synthesis and crystal structure of a Pr5Ni19 superlattice alloy and its hydrogen absorption-desorption property.

    Science.gov (United States)

    Iwase, Kenji; Sakaki, Kouji; Matsuda, Junko; Nakamura, Yumiko; Ishigaki, Toru; Akiba, Etsuo

    2011-05-16

    The intermetallic compound Pr(5)Ni(19), which is not shown in the Pr-Ni binary phase diagram, was synthesized, and the crystal structure was investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Two superlattice reflections with the Sm(5)Co(19)-type structure (002 and 004) and the Pr(5)Co(19)-type structure (003 and 006) were observed in the 2θ region between 2° and 15° in the XRD pattern using Cu Kα radiation. Rietveld refinement provided the goodness-of-fit parameter S = 6.7 for the Pr(5)Co(19)-type (3R) structure model and S = 1.7 for the Sm(5)Co(19)-type (2H) structure model, indicating that the synthesized compound has a Sm(5)Co(19) structure. The refined lattice parameters were a = 0.50010(9) nm and c = 3.2420(4) nm. The high-resolution TEM image also clearly revealed that the crystal structure of Pr(5)Ni(19) is of the Sm(5)Co(19) type, which agrees with the results from Rietveld refinement of the XRD data. The P-C isotherm of Pr(5)Ni(19) in the first absorption was clearly different from that in the first desorption. A single plateau in absorption and three plateaus in desorption were observed. The maximum hydrogen storage capacity of the first cycle reached 1.1 H/M, and that of the second cycle was 0.8 H/M. The 0.3 H/M of hydrogen remained in the metal lattice after the first desorption process.

  7. Depth-Resolved Composition and Electronic Structure of Buried Layers and Interfaces in a LaNiO{sub 3}/SrTiO{sub 3} Superlattice from Soft- and Hard- X-ray Standing-Wave Angle-Resolved Photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Eiteneer, D. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Pálsson, G.K., E-mail: gunnar.palsson@physics.uu.se [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Nemšák, S. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Peter-Grünberg-Institut PGI-6, Forschungszentrum Julich, 52425 Julich (Germany); Gray, A.X. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kaiser, A.M. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Son, J.; LeBeau, J. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Conti, G. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); and others

    2016-08-15

    Highlights: • Depth resolved electronic structure of LaNiO{sub 3}/SrTiO{sub 3} superlattices is measured. • The structure is determined by x-ray standing wave angle-resolved photoemission. • Similarity to the electronic structure of La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} is discussed. - Abstract: LaNiO{sub 3} (LNO) is an intriguing member of the rare-earth nickelates in exhibiting a metal-insulator transition for a critical film thickness of about 4 unit cells [Son et al., Appl. Phys. Lett. 96, 062114 (2010)]; however, such thin films also show a transition to a metallic state in superlattices with SrTiO{sub 3} (STO) [Son et al., Appl. Phys. Lett. 97, 202109 (2010)]. In order to better understand this transition, we have studied a strained LNO/STO superlattice with 10 repeats of [4 unit-cell LNO/3 unit-cell STO] grown on an (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} substrate using soft x-ray standing-wave-excited angle-resolved photoemission (SWARPES), together with soft- and hard- x-ray photoemission measurements of core levels and densities-of-states valence spectra. The experimental results are compared with state-of-the-art density functional theory (DFT) calculations of band structures and densities of states. Using core-level rocking curves and x-ray optical modeling to assess the position of the standing wave, SWARPES measurements are carried out for various incidence angles and used to determine interface-specific changes in momentum-resolved electronic structure. We further show that the momentum-resolved behavior of the Ni 3d e{sub g} and t{sub 2g} states near the Fermi level, as well as those at the bottom of the valence bands, is very similar to recently published SWARPES results for a related La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} superlattice that was studied using the same technique (Gray et al., Europhysics Letters 104, 17004 (2013)), which further validates this experimental approach and our conclusions. Our

  8. The reflection and interference of electrons at the interface of superlattice

    Institute of Scientific and Technical Information of China (English)

    CHENG; Xingkui

    2002-01-01

    [1]Mukherji, D., Nag, B. R., Band structure of semiconductor superlattice, Phys. Rev., 1975,B12: 4338-4345.[2]Bastard, G., Superlattice band structure in the envelop-function approximation, Phys. Rev., 1981,B24: 5693-5697.[3]Ninno, D., Wong, K. B., Geh, M. A. et al., Optical transitions at confined resonance in(001)GaAs-Ga1-xAlxAs superlattice, Phys. Rev., 1985, B32: 2700-2702.[4]Cho, H. S., Prucnal, P. R., New formalism of the Kronig-Penney model with application to superlattice, Phys.Rev., 1987, B36: 3237-3242.[5]Adachi, S., GaAs, AlAs, and AlxGa1-xAs: Material parameters for use in research and device application, J. Appl. Phys., 1985, 58(3): R1-R29.[6]Levine, B. F., Bethea,C.G., Shen,V.O. et al., Tunable long-wavelength detectors using graded barrier quantum wells grown by electron beam source molecular beam epitaxy, Appl. Phys. Lett., 1990, 57(4): 383-385.

  9. Strong reduction of the lattice thermal conductivity in superlattices and quantum dot superlattices

    Science.gov (United States)

    Fomin, V. M.; Nika, D. L.; Cocemasov, A. I.; Isacova, C. I.; Schmidt, O. G.

    2012-06-01

    Thermal transport is theoretically investigated in the planar Si/Ge superlattices and Si/Ge quantum dot superlattices. The phonon states in the considered nanostructures are obtained using the Face-centered Cubic Cell model of lattice dynamics. A significant reduction of the lattice thermal conductivity is revealed in both considered structures in a wide range of temperatures from 100 K to 400 K. This effect is explained by the removal of the high-energy and high-velocity phonon modes from the heat flux due to their localization in superlattice segments and the phonon scattering on the interfaces. The obtained results show prospects of the planar superlattices and quantum-dot superlattices for thermoelectric and thermo-insulating applications.

  10. Strain-Balanced InAs/InAs1-xSbx Type-II Superlattices Grown by Molecular Beam Epitaxy on GaSb Substrates

    Science.gov (United States)

    2011-12-21

    C. Four samples A, B, C, and D with 20 period SLs were grown under identical condi- tions with varying Sb/(Asþ Sb) beam equivalent pressure ( BEP ) flux...incorporation can be achieved. Thus, the InAs1xSbx layers in samples A, B, C, and D have Sb/(AsþSb) BEP ratios of 0.32, 0.347, 0.378, and 0.412

  11. Anisotropic temperature-dependent thermal conductivity by an Al2O3 interlayer in Al2O3/ZnO superlattice films

    Science.gov (United States)

    Lee, Won-Yong; Lee, Jung-Hoon; Ahn, Jae-Young; Park, Tae-Hyun; Park, No-Won; Kim, Gil-Sung; Park, Jin-Seong; Lee, Sang-Kwon

    2017-03-01

    The thermal conductivity of superlattice films is generally anisotropic and should be studied separately in the in-plane and cross-plane directions of the films. However, previous works have mostly focused on the cross-plane thermal conductivity because the electrons and phonons in the cross-plane direction of superlattice films may result in much stronger interface scattering than that in the in-plane direction. Nevertheless, it is highly desirable to perform systematic studies on the effect of interface formation in semiconducting superlattice films on both in-plane and cross-plane thermal conductivities. In this study, we determine both the in-plane and cross-plane thermal conductivities of Al2O3 (AO)/ZnO superlattice films grown by atomic layer deposition (ALD) on SiO2/Si substrates in the temperature range of 50–300 K by the four-point-probe 3-ω method. Our experimental results indicate that the formation of an atomic AO layer (0.82 nm) significantly contributes to the decrease of the cross-plane thermal conductivity of the AO/ZnO superlattice films compared with that of AO/ZnO thin films. The cross-plane thermal conductivity (0.26–0.63 W m‑1 K‑1 of the AO/ZnO superlattice films (with an AO layer of ∼0.82 nm thickness) is approximately ∼150%–370% less than the in-plane thermal conductivity (0.96–1.19 W m‑1 K‑1) of the corresponding film, implying significant anisotropy. This indicates that the suppression of the cross-plane thermal conductivity is mainly attributed to the superlattice, rather than the nanograin columnar structure in the films. In addition, we theoretically analyzed strong anisotropic behavior of the in-plane and cross-plane thermal conductivities of the AO/ZnO superlattice films in terms of temperature dependence.

  12. Deep Green And Monolithic White LEDs Based On Combination Of Short-Period InGaN/GaN Superlattice And InGaN QWs

    Science.gov (United States)

    Tsatsulnikov, A. F.; Lundin, W. V.; Sakharov, A. V.; Zavarin, E. E.; Usov, S. O.; Nikolaev, A. E.; Kryzhanovskaya, N. V.; Chernyakov, A. E.; Zakgeim, A. L.; Cherkashin, N. A.; Hytch, M.

    2011-12-01

    This work presents the results of the investigation of approaches to the synthesis of the active region of LED with extended optical range. Combination of short-period InGaN/GaN superlattice and InGaN quantum well was applied to extend optical range of emission up to 560 nm. Monolithic white LED structures containing two blue and one green QWs separated by the short-period InGaN/GaN superlattice were grown with external quantum efficiency up to 5-6%.

  13. Polyadic Cantor superlattices with variable lacunarity.

    Science.gov (United States)

    Jaggard, D L; Jaggard, A D

    1997-02-01

    Reflection and transmission properties of polyadic fractal superlattices are formulated, solved analytically, and characterized for variations in stage of growth, fractal dimension, and lacunarity. This is the first time to our knowledge that the effect of lacunarity on wave interactions with such structures has been considered. The results are summarized by families of reflection data that we denote twist plots. A new doubly recursive computational technique efficiently provides the reflection and transmission coefficients for a large class of Cantor superlattices with numerous interfaces.

  14. Aging in Magnetic Superlattices

    Science.gov (United States)

    Mukherjee, Tathagata; Pleimling, Michel; Binek, Christian

    2010-03-01

    Aging phenomena can be observed in non-equilibrium systems with slow relaxation dynamics. Magnetic specimens with well defined interactions and dimensions can serve as model systems for universal aspects of aging. Magnetic thin films provide access to a wide range of microscopic parameters. Superlattice structures allow tuning the intra and inter-plane exchange and enable geometrical confinement of the spin fluctuations. We use Co/Cr thin film superlattices to study magnetic aging. The static and dynamic magnetic properties are affected via the Co and Cr film thicknesses. The Curie temperature of the Co films is reduced from the bulk value by geometrical confinement. Cr provides antiferromagnetic coupling between the Co films. In-plane magnetic set fields of some 10-100 mT are applied and the sample is exposed to the latter for various waiting times. After removing the field, relaxation of the magnetization is recorded via longitudinal Kerr-magnetometry and SQUID. The relaxation data are analyzed by scaling plots revealing universal aspects of aging. Financial support by NRI, and NSF through EPSCoR, Career DMR-0547887, DMR-0904999, and MRSEC.

  15. Titanium-based silicide quantum dot superlattices for thermoelectrics applications.

    Science.gov (United States)

    Savelli, Guillaume; Stein, Sergio Silveira; Bernard-Granger, Guillaume; Faucherand, Pascal; Montès, Laurent; Dilhaire, Stefan; Pernot, Gilles

    2015-07-10

    Ti-based silicide quantum dot superlattices (QDSLs) are grown by reduced-pressure chemical vapor deposition. They are made of titanium-based silicide nanodots scattered in an n-doped SiGe matrix. This is the first time that such nanostructured materials have been grown in both monocrystalline and polycrystalline QDSLs. We studied their crystallographic structures and chemical properties, as well as the size and the density of the quantum dots. The thermoelectric properties of the QDSLs are measured and compared to equivalent SiGe thin films to evaluate the influence of the nanodots. Our studies revealed an increase in their thermoelectric properties-specifically, up to a trifold increase in the power factor, with a decrease in the thermal conductivity-making them very good candidates for further thermoelectric applications in cooling or energy-harvesting fields.

  16. Growth kinetics and structural perfection of (InN)1/(GaN)1-20 short-period superlattices on +c-GaN template in dynamic atomic layer epitaxy

    Science.gov (United States)

    Kusakabe, Kazuhide; Hashimoto, Naoki; Itoi, Takaomi; Wang, Ke; Imai, Daichi; Yoshikawa, Akihiko

    2016-04-01

    The growth kinetics and structural perfection of (InN)1/(GaN)1-20 short-period superlattices (SPSs) were investigated with their application to ordered alloys in mind. The SPSs were grown on +c-GaN template at 650 °C by dynamic atomic layer epitaxy in conventional plasma-assisted molecular beam epitaxy. It was found that coherent structured InN/GaN SPSs could be fabricated when the thickness of the GaN barrier was 4 ML or above. Below 3 ML, the formation of SPSs was quite difficult owing to the increased strain in the SPS structure caused by the use of GaN as a template. The effective or average In composition of the (InN)1/(GaN)4 SPSs was around 10%, and the corresponding InN coverage in the ˜1 ML-thick InN wells was 50%. It was found that the effective InN coverage in ˜1 ML-thick InN wells could be varied with the growth conditions. In fact, the effective In composition could be increased up to 13.5%, i.e., the corresponding effective InN coverage was about 68%, by improving the capping/freezing speed by increasing the growth rate of the GaN barrier layer.

  17. Growth kinetics and structural perfection of (InN){sub 1}/(GaN){sub 1–20} short-period superlattices on +c-GaN template in dynamic atomic layer epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kusakabe, Kazuhide; Hashimoto, Naoki; Wang, Ke; Imai, Daichi [Center for SMART Green Innovation Research, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Itoi, Takaomi [Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Yoshikawa, Akihiko, E-mail: yoshi@faculty.chiba-u.jp [Center for SMART Green Innovation Research, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Graduate School of Engineering, Kogakuin University, Hachioji, Tokyo 192-0015 (Japan)

    2016-04-11

    The growth kinetics and structural perfection of (InN){sub 1}/(GaN){sub 1–20} short-period superlattices (SPSs) were investigated with their application to ordered alloys in mind. The SPSs were grown on +c-GaN template at 650 °C by dynamic atomic layer epitaxy in conventional plasma-assisted molecular beam epitaxy. It was found that coherent structured InN/GaN SPSs could be fabricated when the thickness of the GaN barrier was 4 ML or above. Below 3 ML, the formation of SPSs was quite difficult owing to the increased strain in the SPS structure caused by the use of GaN as a template. The effective or average In composition of the (InN){sub 1}/(GaN){sub 4} SPSs was around 10%, and the corresponding InN coverage in the ∼1 ML-thick InN wells was 50%. It was found that the effective InN coverage in ∼1 ML-thick InN wells could be varied with the growth conditions. In fact, the effective In composition could be increased up to 13.5%, i.e., the corresponding effective InN coverage was about 68%, by improving the capping/freezing speed by increasing the growth rate of the GaN barrier layer.

  18. Structural, chemical, and thermoelectric properties of Bi{sub 2}Te{sub 3} Peltier materials. Bulk, thin films, and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Peranio, Nicola

    2008-07-01

    In this work, the nature of the natural nanostructure (nns) was analysed and the correlations to the transport coefficients, particularly the lattice thermal conductivity, is discussed. Experimental methods are presented for the first time, yielding an accurate quantitative analysis of the chemical composition and of stress fields in Bi{sub 2}Te{sub 3} and in compounds with similar structural and chemical microstructures. This work can be subdivided as follows: (I) N-type Bi{sub 2}(Te{sub 0.91}Se{sub 0.09}){sub 3} and p-type (Bi{sub 0.26}Sb{sub 0.74}){sub 1.98}(Te{sub 0.99}Se{sub 0.01}){sub 3.02} bulk materials synthesised by the Bridgman technique. (II) Bi{sub 2}Te{sub 3} thin films and Bi{sub 2}Te{sub 3}/Bi{sub 2}(Te{sub 0.88}Se{sub 0.12}){sub 3} superlattices epitaxially grown by molecular beam epitaxy (MBE) on BaF{sub 2} substrates with periods of {delta}-12 nm at the Fraunhofer-Institut fuer Physikalische Messtechnik (IPM). (III) Experimental methods, i.e., TEM specimen preparation, high-accuracy quantitative chemical analysis by EDX in the TEM, and image simulations of dislocations and the nns according to the two-beam dynamical diffraction theory. The nns was analysed in detail by stereomicroscopy and by image simulation and was found to be a pure sinusoidal displacement field with (i) a displacement vector parallel to <5,-5,1> and an amplitude of about 10 pm and (ii) a wave vector parallel to {l_brace}1,0,10{r_brace} and a wavelength of 10 nm. The results obtained here showed a significant amount of stress in the samples, induced by the nns which was still not noticed and identified. Both kinds of nanostructures, artificial (ans) and natural (nns) nanostructures, yielded in thermoelectric materials a low lattice thermal conductivity which was beneficial for the thermoelectric figure of merit ZT. (orig.)

  19. Structure, strain, and composition profiling of InAs/GaAs(211)B quantum dot superlattices

    Science.gov (United States)

    Florini, N.; Dimitrakopulos, G. P.; Kioseoglou, J.; Germanis, S.; Katsidis, C.; Hatzopoulos, Z.; Pelekanos, N. T.; Kehagias, Th.

    2016-01-01

    The morphology, nanostructure, and strain properties of InAs quantum dots (QDs) grown on GaAs(211)B, uncapped or buried, are explored by transmission electron microscopy and related quantitative techniques. Besides the built-in piezoelectric field, other differences of (211) growth compared to (100)-oriented growth are discussed in terms of the (211) surface non-singularity, leading to anisotropic shape of the QDs and local chemical inhomogeneity of the wetting layer. The shape of the uncapped QDs was precisely defined as truncated pyramidal, elongated along the direction, and bounded by the {110}, {100}, and {213} facets. Local strain measurements showed that large surface QDs were almost unstrained due to plastic relaxation, exhibiting small residual elastic strain at the interface that gradually diminished toward their apex. Conversely, buried QDs were pseudomorphically grown on GaAs. By postulating a plane stress state, we have established a systematic increase of the local strain from the base toward the apex region of the QDs. Using Vegard's law, their chemical composition profiles were calculated, revealing an indium content gradient along the growth direction and compositional variants among different QDs. Photoluminescence measurements showed variations in emission energy between the QDs and consistency with a graded In-content, which complied with the quantitative strain analysis.

  20. Structure, strain, and composition profiling of InAs/GaAs(211)B quantum dot superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Florini, N.; Dimitrakopulos, G. P.; Kioseoglou, J.; Kehagias, Th., E-mail: kehagias@auth.gr [Physics Department, Aristotle University of Thessaloniki, 54624 Thessaloniki (Greece); Germanis, S.; Pelekanos, N. T. [Department of Materials Science and Technology, University of Crete, P.O. Box 2208, 70013 Heraklion (Greece); Microelectronics Research Group, IESL-FORTH, P.O. Box 1385, 71110 Heraklion (Greece); Katsidis, C. [Department of Materials Science and Technology, University of Crete, P.O. Box 2208, 70013 Heraklion (Greece); Hatzopoulos, Z. [Microelectronics Research Group, IESL-FORTH, P.O. Box 1385, 71110 Heraklion (Greece); Department of Physics, University of Crete, P.O. Box 2208, 70013 Heraklion (Greece)

    2016-01-21

    The morphology, nanostructure, and strain properties of InAs quantum dots (QDs) grown on GaAs(211)B, uncapped or buried, are explored by transmission electron microscopy and related quantitative techniques. Besides the built-in piezoelectric field, other differences of (211) growth compared to (100)-oriented growth are discussed in terms of the (211) surface non-singularity, leading to anisotropic shape of the QDs and local chemical inhomogeneity of the wetting layer. The shape of the uncapped QDs was precisely defined as truncated pyramidal, elongated along the 〈111〉 direction, and bounded by the (110), (100), and (213) facets. Local strain measurements showed that large surface QDs were almost unstrained due to plastic relaxation, exhibiting small residual elastic strain at the interface that gradually diminished toward their apex. Conversely, buried QDs were pseudomorphically grown on GaAs. By postulating a plane stress state, we have established a systematic increase of the local strain from the base toward the apex region of the QDs. Using Vegard's law, their chemical composition profiles were calculated, revealing an indium content gradient along the growth direction and compositional variants among different QDs. Photoluminescence measurements showed variations in emission energy between the QDs and consistency with a graded In-content, which complied with the quantitative strain analysis.

  1. In-plain electric properties of [CaMnO3/REMO3] (RE=Bi, La M=Fe, Fe0.8Mn0.2) superlattices grown by pulsed laser deposition method

    NARCIS (Netherlands)

    Iwata, N.; Watabe, Y.; Oikawa, T.; Takase, K.; Huijben, M.; Inaba, T.; Oshima, K.; Rijnders, A.J.H.M.; Yamamoto, H.

    2014-01-01

    The [CaMnO3 (CMO)/REMO3] (RE = Bi, La M = Fe, Fe0.8Mn0.2) superlattices show semiconducting behavior with transition temperatures (TEg) of 71, 127, and 151 K in the [CMO/BiFe0.8Mn0.2O3], [CMO/BiFeO3], and [CMO/LaFeO3] superlattices. The formation of a magnetic polaron is expected in the CMO layer of

  2. Properties of ultra-thin vanadium layers in V/Ru superlattices

    Science.gov (United States)

    Liscio, F.; Maret, M.; Meneghini, C.; Hazemann, J. L.; Albrecht, M.

    2007-12-01

    The properties of ultra-thin vanadium layers in V/Ru(0001) superlattices grown by molecular beam epitaxy were studied. The atomic structure of V was investigated by various methods including reflection high-energy electron diffraction (RHEED), x-ray diffraction (XRD) and polarized x-ray-absorption fine structure (PXAFS). It appears that, for up to three atomic layers, V adopts a slightly distorted hexagonal-close-packed (hcp) structure induced by pseudomorphic growth on Ru(0001). By increasing the V thickness to four atomic layers, this structure almost completely relaxes towards the body-centered-cubic (bcc) bulk structure. This sharp structural transition is also manifested in the electronic properties. A reduced superconducting transition temperature between 0.6 and 1.05 K was found in the bcc V/hcp Ru superlattice, while superconductivity is quenched in the superlattice with hexagonal V. This behavior might be linked to the existence of a ferromagnetic ground state of the metastable V induced by the hybridization of the d-bands at the hcp V/Ru interface, as predicted from first-principles density-functional theory.

  3. Properties of ultra-thin vanadium layers in V/Ru superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Liscio, F [Science et Ingenierie des Materiaux et Procedes, INPGrenoble, CNRS-UJF, BP75, 38402 Saint Martin d' Heres (France); Maret, M [Science et Ingenierie des Materiaux et Procedes, INPGrenoble, CNRS-UJF, BP75, 38402 Saint Martin d' Heres (France); Meneghini, C [Dipartimento Di Fisica, Universita di Roma Tre, 00146-Rome (Italy); Hazemann, J L [Institut Neel, MCMF, CNRS, BP 166, 38042 Grenoble (France); Albrecht, M [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany)

    2007-12-05

    The properties of ultra-thin vanadium layers in V/Ru(0001) superlattices grown by molecular beam epitaxy were studied. The atomic structure of V was investigated by various methods including reflection high-energy electron diffraction (RHEED), x-ray diffraction (XRD) and polarized x-ray-absorption fine structure (PXAFS). It appears that, for up to three atomic layers, V adopts a slightly distorted hexagonal-close-packed (hcp) structure induced by pseudomorphic growth on Ru(0001). By increasing the V thickness to four atomic layers, this structure almost completely relaxes towards the body-centered-cubic (bcc) bulk structure. This sharp structural transition is also manifested in the electronic properties. A reduced superconducting transition temperature between 0.6 and 1.05 K was found in the bcc V/hcp Ru superlattice, while superconductivity is quenched in the superlattice with hexagonal V. This behavior might be linked to the existence of a ferromagnetic ground state of the metastable V induced by the hybridization of the d-bands at the hcp V/Ru interface, as predicted from first-principles density-functional theory.

  4. Tetragonal-strain-induced local structural modifications in InAsxP1-x/InP superlattices: A detailed x-ray-absorption investigation

    Science.gov (United States)

    Pascarelli, S.; Boscherini, F.; Lamberti, C.; Mobilio, S.

    1997-07-01

    We report a comprehensive investigation of the local structure around As in thin InAsxP1-x strained layers in InAsxP1-x/InP superlattices by fluorescence-detected x-ray-absorption fine structure; seven superlattice samples are studied as a function of composition, and compared to six unstrained, bulk samples of similar composition. Contributions up to the third coordination shell around As are clearly visible in the spectra, and are analyzed taking into account important multiple-scattering contributions. Results show that structural modifications due to tetragonal distortion appear mainly in the second and third coordination shells, while nearest-neighbor bond lengths remain closer to the values in unstrained bulk alloys. This implies that in semiconductor alloys tetragonal strain accommodation is mainly obtained through bond-angle distortions, in analogy to the situation in bulk pseudobinary alloys. A model which combines macroscopic elastic theory and the known local structure in bulk pseudobinary alloys is presented, and is found to fit the data very well.

  5. Phoxonic Hybrid Superlattice.

    Science.gov (United States)

    Alonso-Redondo, Elena; Huesmann, Hannah; El Boudouti, El-Houssaine; Tremel, Wolfgang; Djafari-Rouhani, Bahram; Butt, Hans-Juergen; Fytas, George

    2015-06-17

    We studied experimentally and theoretically the direction-dependent elastic and electromagnetic wave propagation in a supported film of hybrid PMMA (poly[methyl-methacrylate])-TiO2 superlattice (SL). In the direction normal to the layers, this one-dimensional periodic structure opens propagation band gaps for both hypersonic (GHz) phonons and near-UV photons. The high mismatch of elastic and optical impedance results in a large dual phoxonic band gap. The presence of defects inherent to the spin-coating fabrication technique is sensitively manifested in the band gap region. Utilizing Brillouin light scattering, phonon propagation along the layers was observed to be distinctly different from propagation normal to them and can, under certain conditions (SL thickness and substrate elasticity), reveal the nanomechanical properties of the constituent layers. Besides the first realization of unidirectional phoxonic behavior, hybrid (soft-hard) periodic materials are a promising simple platform for opto-acoustic interactions and applications such as filters and Bragg mirrors.

  6. Spin-dependent optical superlattice

    Science.gov (United States)

    Yang, Bing; Dai, Han-Ning; Sun, Hui; Reingruber, Andreas; Yuan, Zhen-Sheng; Pan, Jian-Wei

    2017-07-01

    We propose and implement a lattice scheme for coherently manipulating atomic spins. Using a vector light shift and a superlattice structure, we demonstrate experimentally its capability on addressing spins in double wells and square plaquettes with subwavelength resolution. The quantum coherence of spin manipulations is verified through measuring atom tunneling and spin exchange dynamics. Our experiment presents a building block for engineering many-body quantum states in optical lattices for realizing quantum simulation and computation tasks.

  7. Self-consistent photonic band structure of dielectric superlattices containing nonlinear optical materials.

    Science.gov (United States)

    Lousse, V; Vigneron, J P

    2001-02-01

    The theory of photonic crystals is extended to include the optical Kerr effect taking place in weak third-order, nonlinear materials present in the unit cell. The influence on the dispersion relations of the illumination caused by a single Bloch mode transiting through the crystal structure is examined. Special attention is given to the modification of the photonic gap width and position. Assuming an instantaneous change of refractive index with illumination, the nonlinear band structure problem is solved as a sequence of ordinary, linear band structure calculations, carried out in a plane-wave field representation.

  8. On the structural characterization of InAs/GaSb type-II superlattices: The effect of interfaces for fixed layer thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Arikan, Bulent, E-mail: bulentarikanx@gmail.com [Anadolu University, Physics Department, Yunusemre Campus, 26470 Eskisehir (Turkey); Korkmaz, Guven [Anadolu University, Physics Department, Yunusemre Campus, 26470 Eskisehir (Turkey); Suyolcu, Yusuf Eren [Anadolu University, Graduate School of Sciences, Advanced Technologies Research Unit: Nanotechnology, Yunusemre Campus, 26470 Eskisehir (Turkey); Aslan, Bulent; Serincan, Ugur [Anadolu University, Physics Department, Yunusemre Campus, 26470 Eskisehir (Turkey)

    2013-12-02

    We report on the detailed epitaxial growth conditions for type-II InAs/GaSb superlattice (SL) structures designed for mid-wave infrared detection. The mismatch between the GaSb buffer and the SL is precisely controlled by engineering the InSb-like interfaces for fixed InAs and GaSb layer thicknesses in the SL. High resolution X-ray diffraction and cross-sectional high resolution transmission electron microscopy analyses were performed to determine the mismatch and the thicknesses. It was shown that the in-plane lattice mismatch to the GaSb buffer is inversely proportional to the interface thickness for the samples presented here. The effect of the interfaces on the structure was also confirmed by room temperature transmission measurements: features were red-shifted as the interface thickness is increased. - Highlights: • Growth conditions are discussed in detail for type-II InAs/GaSb superlattices. • Interface thicknesses are systematically changed for fixed InAs and GaSb layers. • Shown that in-plane mismatch is inversely proportional to the interface thickness • The mismatch is precisely controlled by engineering the InSb-like interfaces.

  9. Investigation of the vertical electrical transport in a-Si:H/nc-Si:H superlattice thin films.

    Science.gov (United States)

    Das, Debajyoti; Kar, Debjit

    2015-07-14

    Tuning the size of silicon nano-crystallites (Si-ncs) has been realized simply by controlling the thickness of the nc-Si:H sub-layer (tnc) in the a-Si:H/nc-Si:H superlattice thin films grown by low temperature plasma processing in PE-CVD. The vertical electrical transport phenomena accomplished in superlattice films have been investigated in order to identify their effective utilization in practical device configuration. The reduced size of the Si-ncs at thinner tnc and the associated band gap widening due to quantum confinement effects generates the Coulomb potential barrier at the a-Si/nc-Si interface which in turn obstructs the transport of charge carriers to the allowed energy states in Si-ncs, leading to the Poole-Frenkel tunneling as the prevailing charge transport mechanism in force. The advantages of the conduction process governed by the Poole-Frenkel mechanism are two-fold. The lower barrier height caused by the a-Si:H sub-layer in the superlattice than the silicon oxide sub-layer in conventional structures enhances the conduction current. Moreover, increasing trapped charges in the a-Si:H sub-layer can arbitrarily increase the current conduction. Accordingly, a-Si:H/nc-Si:H superlattice structures could provide superior electrical transport in stacked layer devices e.g., multi-junction all silicon solar cells.

  10. MBE growth and characterisation of light rare-earth superlattices

    DEFF Research Database (Denmark)

    Ward, R.C.C.; Wells, M.R.; Bryn-Jacobsen, C.

    1996-01-01

    The molecular beam epitaxy growth techniques which have already successfully produced a range of heavy rare-earth superlattices have now been extended to produce superlattices of two light rare-earth elements, Nd/Pr, as well as superlattices and alloy films of a heavy/light system, Ho/Pr. High......-resolution X-ray diffraction analysis shows the Nd/Pr superlattices to be of high structural quality, while the Ho/Pr superlattices are significantly less so. In the Ho/Pr superlattices, Pr is found to retain its bulk dhcp crystal structure even in thin layers (down to 6 atomic planes thick) sandwiched between...... thick layers of hcp Ho. In addition, neutron diffraction studies of the He/Pr superlattices have shown that the helical Ho magnetic order is not coherent through the dhcp Pr layers, in contrast to previous hcp/hcp superlattices Ho/Y, Ho/Lu and Ho/Er. The series of Ho:Pr alloy films has shown structural...

  11. FABRICATION OF PHOTONIC CRYSTAL WITH SUPERLATTICES

    Institute of Scientific and Technical Information of China (English)

    SUN Cheng; Chen Haihua; Zhang Jizhong; Wei Hongmei; Gu Zhongze

    2006-01-01

    A novel technique was used to fabricate three-dimensional photonic crystals with superlattices. The super structure was fabricated by assembling monodispersed microspheres in the grooves of the scales of morpho butterfly, which makes the photonic crystal being composed of two kinds of different photonic structures (natural groove structure of butterfly wing and artificial microspherical colloids arrangement). The superstructural photonic crystal exhibits some unique optical properties different from both the butterfly wing and the colloidal crystal. The approach exhibited here provides a new way for fabricate photonic crystals with superlattices.

  12. Structural refinement of artificial superlattices by the X-ray diffraction method

    CERN Document Server

    Ishibashi, Y; Tsurumi, T

    1999-01-01

    This paper reports a structural refinement of BaTiO sub 3 (BTO)/SrTiO sub 3 (STO) artificially superstructured thin films. The refinement was achieved by taking into account the effect of interdiffusion between BTO and STO. The samples were prepared by a molecular-beam epitaxy method on SrTiO sub 3 (001) substrate at 600 .deg. C. The phonon model was employed to simulate the X-ray diffraction (XRD) profiles. A discrepancy was observed in the intensities of the satellite peaks when the effect of the interdiffusion between BTO and STO was not incorporated in the simulation. In successive simulations, the concentration profile due to the interdiffusion was first calculated according to Fick's second law, and then the coefficients of the Fourier series describing the lattice distortion and the modulation of the structure factor were determined. The XRD profiles thus simulated almost completely agreed with those observed. This indicates that XRD analysis with the calculation process proposed in this study will ena...

  13. The Optical Emission and Absorption Properties of Silicon-Germanium Superlattice Structures Grown on Non-Conventional Silicon Substrate Orientation

    Science.gov (United States)

    1994-08-01

    derived by Ikonic .75 A derivation of the quantum mechanical selection rules for valence band transitions for (100), (110), and (111) Si substrates is...146 (100), (110), and (111) Si substrates were derived from the matrix elements in the 4x4 Hamiltonian provided by Ikonic "m where - (, -2•2) heavy...angular momentum states in the following manner: (22211I and 12,_-.)) 149 the original result by Luttinger was extended by Ikonic 1 ° to the following

  14. Plasmonic Enhanced Type-II Superlattice Focal Plane Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SVT Associates proposes an novel type II superlattice structure to extend the cutoff wavelength and CBIRD SL photo diode structure with unipolar barriers to suppress...

  15. Nanoengineering of an Si/MnGe quantum dot superlattice for high Curie-temperature ferromagnetism.

    Science.gov (United States)

    Nie, Tianxiao; Kou, Xufeng; Tang, Jianshi; Fan, Yabin; Lee, Shengwei; He, Qinglin; Chang, Li-Te; Murata, Koichi; Gen, Yin; Wang, Kang L

    2017-02-14

    The realization and application of spintronic devices would be dramatically advanced if room-temperature ferromagnetism could be integrated into semiconductor nanostructures, especially when compatible with mature silicon technology. Herein, we report the observation of such a system - an Si/MnGe superlattice with quantum dots well aligned in the vertical direction successfully grown by molecular beam epitaxy. Such a unique system could take full advantage of the type-II energy band structure of the Si/Ge heterostructure, which could trap the holes inside MnGe QDs, significantly enhancing the hole-mediated ferromagnetism. Magnetic measurements indeed found that the superlattice structure exhibited a Curie temperature of above 400 K. Furthermore, zero-field cooling and field cooling curves could confirm the absence of ferromagnetic compounds, such as Ge8Mn11 (Tc ∼ 270 K) and Ge3Mn5 (Tc ∼ 296 K) in our system. Magnetotransport measurement revealed a clear magnetoresistance transition from negative to positive and a pronounced anomalous Hall effect. Such a unique Si/MnGe superlattice sets a new stage for strengthening ferromagnetism due to the enhanced hole-mediation by quantum confinement, which can be exploited for realizing the room-temperature Ge-based spin field-effect transistors in the future.

  16. Electronic properties of superlattices on quantum rings

    Science.gov (United States)

    da Costa, D. R.; Chaves, A.; Ferreira, W. P.; Farias, G. A.; Ferreira, R.

    2017-04-01

    We present a theoretical study of the one-electron states of a semiconductor-made quantum ring (QR) containing a series of piecewise-constant wells and barriers distributed along the ring circumference. The single quantum well and the superlattice cases are considered in detail. We also investigate how such confining potentials affect the Aharonov–Bohm like oscillations of the energy spectrum and current in the presence of a magnetic field. The model is simple enough so as to allow obtaining various analytical or quasi-analytical results. We show that the well-in-a-ring structure presents enhanced localization features, as well as specific geometrical resonances in its above-barrier spectrum. We stress that the superlattice-in-a-ring structure allows giving a physical meaning to the often used but usually artificial Born–von-Karman periodic conditions, and discuss in detail the formation of energy minibands and minigaps for the circumferential motion, as well as several properties of the superlattice eigenstates in the presence of the magnetic field. We obtain that the Aharonov–Bohm oscillations of below-barrier miniband states are reinforced, owing to the important tunnel coupling between neighbour wells of the superlattice, which permits the electron to move in the ring. Additionally, we analysis a superlattice-like structure made of a regular distribution of ionized impurities placed around the QR, a system that may implement the superlattice in a ring idea. Finally, we consider several random disorder models, in order to study roughness disorder and to tackle the robustness of some results against deviations from the ideally nanostructured ring system.

  17. Electronic properties of superlattices on quantum rings.

    Science.gov (United States)

    da Costa, D R; Chaves, A; Ferreira, W P; Farias, G A; Ferreira, R

    2017-04-26

    We present a theoretical study of the one-electron states of a semiconductor-made quantum ring (QR) containing a series of piecewise-constant wells and barriers distributed along the ring circumference. The single quantum well and the superlattice cases are considered in detail. We also investigate how such confining potentials affect the Aharonov-Bohm like oscillations of the energy spectrum and current in the presence of a magnetic field. The model is simple enough so as to allow obtaining various analytical or quasi-analytical results. We show that the well-in-a-ring structure presents enhanced localization features, as well as specific geometrical resonances in its above-barrier spectrum. We stress that the superlattice-in-a-ring structure allows giving a physical meaning to the often used but usually artificial Born-von-Karman periodic conditions, and discuss in detail the formation of energy minibands and minigaps for the circumferential motion, as well as several properties of the superlattice eigenstates in the presence of the magnetic field. We obtain that the Aharonov-Bohm oscillations of below-barrier miniband states are reinforced, owing to the important tunnel coupling between neighbour wells of the superlattice, which permits the electron to move in the ring. Additionally, we analysis a superlattice-like structure made of a regular distribution of ionized impurities placed around the QR, a system that may implement the superlattice in a ring idea. Finally, we consider several random disorder models, in order to study roughness disorder and to tackle the robustness of some results against deviations from the ideally nanostructured ring system.

  18. Energy Band Calculations for Maximally Even Superlattices

    Science.gov (United States)

    Krantz, Richard; Byrd, Jason

    2007-03-01

    Superlattices are multiple-well, semiconductor heterostructures that can be described by one-dimensional potential wells separated by potential barriers. We refer to a distribution of wells and barriers based on the theory of maximally even sets as a maximally even superlattice. The prototypical example of a maximally even set is the distribution of white and black keys on a piano keyboard. Black keys may represent wells and the white keys represent barriers. As the number of wells and barriers increase, efficient and stable methods of calculation are necessary to study these structures. We have implemented a finite-element method using the discrete variable representation (FE-DVR) to calculate E versus k for these superlattices. Use of the FE-DVR method greatly reduces the amount of calculation necessary for the eigenvalue problem.

  19. Thermal etching rate of GaN during MOCVD growth interruption in hydrogen and ammonia ambient determined by AlGaN/GaN superlattice structures

    Science.gov (United States)

    Zhang, Feng; Ikeda, Masao; Zhang, Shuming; Liu, Jianping; Tian, Aiqin; Wen, Pengyan; Cheng, Yang; Yang, Hui

    2017-10-01

    Thermal etching effect of GaN during growth interruption in the metalorganic chemical vapor deposition reactor was investigated in this paper. The thermal etching rate was determined by growing a series of AlGaN/GaN superlattice structures with fixed GaN growth temperature at 735 °C and various AlGaN growth temperature changing from 900 °C to 1007 °C. It was observed that the GaN layer was etched off during the growth interruption when the growth temperature ramped up to AlGaN growth temperature. The etching thickness was determined by high resolution X-ray diffractometer and the etching rate was deduced accordingly. An activation energy of 2.53 eV was obtained for the thermal etching process.

  20. Tunneling in quantum superlattices with variable lacunarity

    Energy Technology Data Exchange (ETDEWEB)

    Villatoro, Francisco R. [Departamento de Lenguajes y Ciencias de la Computacion, Universidad de Malaga, E-29071 Malaga (Spain); Monsoriu, Juan A. [Departamento de Fisica Aplicada, Universidad Politecnica de Valencia, E-46022 Valencia (Spain)], E-mail: jmonsori@fis.upv.es

    2008-05-19

    Fractal superlattices are composite, aperiodic structures comprised of alternating layers of two semiconductors following the rules of a fractal set. The scattering properties of polyadic Cantor fractal superlattices with variable lacunarity are determined. The reflection coefficient as a function of the particle energy and the lacunarity parameter present tunneling curves, which may be classified as vertical, arc, and striation nulls. Approximate analytical formulae for such curves are derived using the transfer matrix method. Comparison with numerical results shows good accuracy. The new results may be useful in the development of band-pass energy filters for electrons, semiconductor solar cells, and solid-state radiation sources up to THz frequencies.

  1. Heteroepitaxy of Ge-Si{sub 1{minus}x}Ge{sub x} superlattices on Si (100) substrates by GeH{sub 4}-Si MBE

    Energy Technology Data Exchange (ETDEWEB)

    Orlov, L.K.; Tolomasov, V.A.; Potapov, A.V.; Drozdov, Yu.N. [Russian Academy of Sciences, Nizhny Novgorod (Russian Federation). Inst. for Physics of Microstructures; Vdovin, V.I. [Inst. for Rare Metals Giredmet, Moscow (Russian Federation)

    1996-12-31

    The authors applied GeH{sub 4}-SI MBE for growing Ge-Si{sub 1{minus}x}Ge{sub x} superlattices on Si(100). They investigated the distribution and the structure of defects inside heteroepitaxial Si{sub 1{minus}x}Ge{sub x} layers grown on Si(100). It was shown that the system has unique peculiarities of a dislocation structure formation. They found out that the plastic deformation on a layer-substrate heteroboundary eliminates strong elastic deformation inside the grown layer.

  2. Sculptured 3D twister superlattices embedded with tunable vortex spirals.

    Science.gov (United States)

    Xavier, Jolly; Vyas, Sunil; Senthilkumaran, Paramasivam; Denz, Cornelia; Joseph, Joby

    2011-09-01

    We present diverse reconfigurable complex 3D twister vortex superlattice structures in a large area embedded with tunable vortex spirals as well as dark rings, threaded by vortex helices. We demonstrate these tunable complex chiral vortex superlattices by the superposition of relatively phase engineered plane waves. The generated complex 3D twister lattice vortex structures are computationally as well as experimentally analyzed using various tools to verify the presence of phase singularities. Our observation indicates the application-specific flexibility of our approach to tailor the transverse superlattice spatial irradiance profile of these longitudinally whirling vortex-cluster units and dark rings.

  3. Structural evidence for enhanced polarization in a commensurate short-period BaTiO3/SrTiO3 superlattice

    Science.gov (United States)

    Tian, W.; Jiang, J. C.; Pan, X. Q.; Haeni, J. H.; Li, Y. L.; Chen, L. Q.; Schlom, D. G.; Neaton, J. B.; Rabe, K. M.; Jia, Q. X.

    2006-08-01

    A short-period (BaTiO3)6/(SrTiO3)5 superlattice was characterized by x-ray diffraction and transmission electron microscopy. The superlattice is epitaxially oriented with the c axes of BaTiO3 and SrTiO3 normal to the (001) surface of the SrTiO3 substrate. Despite the large in-plane lattice mismatch between BaTiO3 and SrTiO3 (˜2.2%), the superlattice interfaces were found to be nearly commensurate. The crystallographic c /a ratio of the superlattice was measured and the results agree quantitatively with first-principles calculations and phase-field modeling. The agreement supports the validity of the enhanced spontaneous polarization predicted for short-period BaTiO3/SrTiO3 superlattices.

  4. Growth and Annealing Study of Mg-Doped AlGaN and GaN/AlGaN Superlattices

    Institute of Scientific and Technical Information of China (English)

    WANG Bao-Zhu; LI Jin-Min; WANG Zhan-Guo; WANG Xiao-Liang; HU Guo-Xin; RAN Jun-Xue; WANG Xin-Hua; GUO Lun-Chun; XIAO Hong-Ling; LI Jian-Ping; ZENG Yi-Ping

    2006-01-01

    @@ Mg-doped AlGaN and GaN/AlGaN superlattices are grown by metalorganic chemical vapour deposition (MOCVD).Rapid thermal annealing (RTA) treatments are carried out on the samples. Hall and high resolution x-ray diffraction measurements are used to characterize the electrical and structural prosperities of the as-grown and annealed samples, respectively. The results of hall measurements show that after annealing, the Mg-doped AlGaN sample can not obtain the distinct hole concentration and can acquire a resistivity of 1.4×103 Ωcm. However, with the same annealing treatment, the GaN/AlGaN superlattice sample has a hole concentration of 1.7×1017 cm-3 and a resistivity of 5.6Ωcm. The piezoelectric field in the GaN/AlGaN superlattices improves the activation efficiency of Mg acceptors, which leads to higher hole concentration and lower p-type resistivity.

  5. Fe-Substitution for Ni in Misch Metal-Based Superlattice Hydrogen Absorbing Alloys—Part 1. Structural, Hydrogen Storage, and Electrochemical Properties

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2016-11-01

    Full Text Available The effects of Fe partially replacing Ni in a misch metal-based superlattice hydrogen absorbing alloy (HAA were studied. Addition of Fe increases the lattice constants and abundance of the main Ce2Ni7 phase, decreases the NdNi3 phase abundance, and increases the CaCu5 phase when the Fe content is above 2.3 at%. For the gaseous phase hydrogen storage (H-storage, Fe incorporation does not change the storage capacity or equilibrium pressure, but it does decrease the change in both entropy and enthalpy. With regard to electrochemistry, >2.3 at% Fe decreases both the full and high-rate discharge capacities due to the deterioration in both bulk transport (caused by decreased secondary phase abundance and consequent lower synergetic effect and surface electrochemical reaction (caused by the lower volume of the surface metallic Ni inclusions. In a low-temperature environment (−40 °C, although Fe increases the reactive surface area, it also severely hinders the ability of the surface catalytic, leading to a net increase in surface charge-transfer resistance. Even though Fe increases the abundance of the beneficial Ce2Ni7 phase with a trade-off for the relatively unfavorable NdNi3 phase, it also deteriorates the electrochemical performance due to a less active surface. Therefore, further surface treatment methods that are able to increase the surface catalytic ability in Fe-containing superlattice alloys and potentially reveal the positive contributions that Fe provides structurally are worth investigating in the future.

  6. Time-resolved photoluminescence of type-II quantum dots and isoelectronic centers in Zn-Se-Te superlattice structures

    Science.gov (United States)

    Cheung, M. C.-K.; Cartwright, A. N.; Sellers, I. R.; McCombe, B. D.; Kuskovsky, I. L.

    2008-01-01

    Spectrally and time-resolved photoluminescence of a ZnTe /ZnSe superlattice reveals a smooth transition of the photoluminescence (PL) lifetime from ˜100ns at 2.35eV to less than a few nanoseconds at 2.8eV. The significant increase of the lifetime in the low energy region is strong evidence to support the formation of type-II quantum dots (QDs), since in these nanostructures the spatial separation of carriers is increased. The shorter lived emission above 2.5eV is attributed to excitons bound to Te isoelectronic centers in the ZnSe matrix. The smooth transition of the PL lifetime confirms that clusters of these Te atoms evolve into type-II ZnTe /ZnSe QDs.

  7. ZnSe/ZnSeTe Superlattice Nanotips

    Directory of Open Access Journals (Sweden)

    Young SJ

    2010-01-01

    Full Text Available Abstract The authors report the growth of ZnSe/ZnSeTe superlattice nanotips on oxidized Si(100 substrate. It was found the nanotips exhibit mixture of cubic zinc-blende and hexagonal wurtzite structures. It was also found that photoluminescence intensities observed from the ZnSe/ZnSeTe superlattice nanotips were much larger than that observed from the homogeneous ZnSeTe nanotips. Furthermore, it was found that activation energies for the ZnSe/ZnSeTe superlattice nanotips with well widths of 16, 20, and 24 nm were 76, 46, and 19 meV, respectively.

  8. ZnSe/ZnSeTe Superlattice Nanotips

    Science.gov (United States)

    2010-01-01

    The authors report the growth of ZnSe/ZnSeTe superlattice nanotips on oxidized Si(100) substrate. It was found the nanotips exhibit mixture of cubic zinc-blende and hexagonal wurtzite structures. It was also found that photoluminescence intensities observed from the ZnSe/ZnSeTe superlattice nanotips were much larger than that observed from the homogeneous ZnSeTe nanotips. Furthermore, it was found that activation energies for the ZnSe/ZnSeTe superlattice nanotips with well widths of 16, 20, and 24 nm were 76, 46, and 19 meV, respectively. PMID:20672085

  9. Multilayer porous structures of HVPE and MOCVD grown GaN for photonic applications

    Science.gov (United States)

    Braniste, T.; Ciers, Joachim; Monaico, Ed.; Martin, D.; Carlin, J.-F.; Ursaki, V. V.; Sergentu, V. V.; Tiginyanu, I. M.; Grandjean, N.

    2017-02-01

    In this paper we report on a comparative study of electrochemical processes for the preparation of multilayer porous structures in hydride vapor phase epitaxy (HVPE) and metal organic chemical vapor phase deposition (MOCVD) grown GaN. It was found that in HVPE-grown GaN, multilayer porous structures are obtained due to self-organization processes leading to a fine modulation of doping during the crystal growth. However, these processes are not totally under control. Multilayer porous structures with a controlled design have been produced by optimizing the technological process of electrochemical etching in MOCVD-grown samples, consisting of five pairs of thin layers with alternating-doping profiles. The samples have been characterized by SEM imaging, photoluminescence spectroscopy, and micro-reflectivity measurements, accompanied by transfer matrix analysis and simulations by a method developed for the calculation of optical reflection spectra. We demonstrate the applicability of the produced structures for the design of Bragg reflectors.

  10. Growth, Nitrogen Vacancy Reduction and Solid Solution Formation in Cubic GaN Thin Films and the Subsequent Fabrication of Superlattice Structures Using AlN and InN

    Science.gov (United States)

    1992-06-01

    AD-A253 331 Semiannual Report Growth, Nitrogen Vacancy Reduction and Solid Solution Formation in Cubic GaN Thin Films and the Subsequent Fabrication...Growth, Nitrogen Vacancy Reduction and Solid Solution Formation in Cubic GaN Thin Films and the Subsequent Fabrication of Superlattice Structures Using...34 substrates, such as using a graded AlxGal-xN solid solution as a buffer layer. E. Conclusion We have shown that in the use of our modified gas source MBE

  11. Cilia containing 9 + 2 structures grown from immortalized cells

    Institute of Scientific and Technical Information of China (English)

    Ming Zhang; Jose G Assouline

    2007-01-01

    Cilia depend on their highly differentiated structure, a 9 + 2 arrangement, to remove particles from the lung and to transport reproductive cells. Immortalized cells could potentially be of great use in cilia research. Immortalization of cells with cilia structure containing the 9 + 2 arrangement might be able to generate cell lines with such cilia structure. However, whether immortalized cells can retain such a highly differentiated structure remains unclear. Here we demonstrate that (1) using E1a gene transfection, tracheal cells are immortalized; (2) interestingly, in a gel culture the immortalized cells form spherical aggregations within which a lumen is developed; and (3) surprisingly, inside the aggregation, cilia containing a 9 + 2 arrangement grow from the cell's apical pole and protrude into the lumen. These results may influence future research in many areas such as understanding the mechanisms of cilia differentiation, cilia generation in other existing cell lines, cilia disorders, generation of other highly differentiated structures besides cilia using the gel culture,immortalization of other ciliated cells with the E1a gene, development of cilia motile function, and establishment of a research model to provide uniform ciliated cells.

  12. Structural, electronic properties and enhancement of electrical polarization in Er2NiMnO6/La2NiMnO6 superlattice by first-principles calculations

    Directory of Open Access Journals (Sweden)

    Haipeng Lu

    2016-03-01

    Full Text Available Employing first-principles calculations, structural, electronic properties of new multiferroic material Er2NiMnO6/La2NiMnO6 perovskite superlattice are investigated. This structure is computed as monoclinic phase with obvious distortion. The average in-plane anti-phase rotation angle, average out-of-plane in-phase rotation angle and other microscopic features are reported in this paper. Ni and Mn are found in this superlattice that stay high spin states. These microscopic properties play important roles in multiferroic properties. Based on these microscopic features, the relationship between the direction of spontaneous polarization and the order of substitution in neighboring A-O layers is explained. Finally, we try to enhance the electrical polarization magnitude by 32% by altering the previous superlattice as LaEr2NiMnO7 structure. Our results show that both repulsion force of A site rare earth ions and the arrangement of B site ions can exert influences on spontaneous polarization.

  13. Superlattice Intermediate Band Solar Cell on Gallium Arsenide

    Science.gov (United States)

    2015-02-09

    AFRL-RV-PS- AFRL-RV-PS- TR-2015-0048 TR-2015-0048 SUPERLATTICE INTERMEDIATE BAND SOLAR CELL ON GALLIUM ARSENIDE Alexandre Freundlich...SUBTITLE 5a. CONTRACT NUMBER FA9453-13-1-0232 Superlattice Intermediate Band Solar Cell on Gallium Arsenide 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...band solar cell incorporating low dimensional structures made with dilute nitrogen alloys of III-V semiconductors is investigated theoretically and

  14. Spin structure of electron subbands in (110)-grown quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Nestoklon, M. O.; Tarasenko, S. A. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Jancu, J.-M. [FOTON-INSA Laboratory, UMR 6082 au CNRS, INSA de Rennes, 35043 Rennes Cedex (France); Voisin, P. [CNRS-Laboratoire de Photonique et de Nanostructures, 91460 Marcoussis (France)

    2013-12-04

    We present the theory of fine structure of electron states in symmetric and asymmetric zinc-blende-type quantum wells with the (110) crystallographic orientation. By combining the symmetry analysis, sp{sup 3}d{sup 5}s* tight-binding method, and envelope-function approach we obtain quantitative description of in-plane wave vector, well width and applied electric field dependencies of the zero-magnetic-field spin splitting of electron subbands and extract spin-orbit-coupling parameters.

  15. Interface bands in carbon nanotube superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Jaskolski, W.; Pelc, M. [Instytut Fizyki UMK, Grudziadzka 5, 87-100 Torun (Poland); Santos, H.; Chico, L. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid (Spain); Ayuela, A. [Centro de Fisica de Materiales CSIC-UPV/EHU, Departamento de Fisica de Materiales (Facultad de Quimicas), and Donostia International Physics Center (DIPC), 20080 Donostia (Spain)

    2010-02-15

    We study the electronic band structure of several carbon nanotube superlattices built of two kinds of intermolecular junctions: (12, 0)/(6, 6) and (8, 0)/(14, 0). In particular, we focus on the energy bands originating from interface states. We find that in case of the metallic (12, 0)/(6, 6) superlattices, the interface bands change periodically their character from bonding- to antibonding-like vs. increasing length of the (6, 6) tube. We show that these changes are related to the decay of the charge density Friedel oscillations in the metallic (6, 6) tube. However, when we explore other chiralities without rotational symmetry, no changes in bondingantibonding character are observed for semiconductor superlattices, as exemplified in the case of (8, 0)/(14, 0) superlattices. Our results indicate that unless metallic tubes are employed in the junctions, the bonding-antibonding crossings are not present (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Structural instability of N-acceptors in homo- and heteroepitaxially grown ZnO by MBE

    Energy Technology Data Exchange (ETDEWEB)

    Ando, K.; Abe, T.; Taya, T.; Ishihara, Y.; Enomoto, K.; Yamazaki, Y.; Yoshikawa, J.; Fujino, K.; Nakamura, H.; Ohno, T.; Kasada, H. [Department of Information and Electronic Engineering, Graduate School of Engineering, Tottori University, 4-1-1 Koyama-Minami, Tottori 680-8550 (Japan)

    2010-06-15

    Unique properties of the N-acceptor in homo- and heteroepitaxially grown ZnO by molecular beam epitaxy (MBE) are studied by means of microproving of surface sheet-resistance, Hall-effect measurement, persistent photoconduction (PPC) and thermally stimulated current (TSC). Rapid postanneal of N-doped ZnO is found to induce the change in the conduction type from n-type (as-grown) to p/n-type mixed conduction, forming island structure, and these properties are related to a structural instability of the N-acceptor. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  17. Identification of a limiting mechanism in GaSb-rich superlattice midwave infrared detector

    Energy Technology Data Exchange (ETDEWEB)

    Delmas, Marie; Rodriguez, Jean-Baptiste; Rossignol, Rémi; Christol, Philippe, E-mail: christol@ies.univ-montp2.fr [Université de Montpellier, IES, UMR 5214, F-34000 Montpellier (France); CNRS, IES, UMR 5214, F-34000 Montpellier (France); Licht, Abigail S. [Université de Montpellier, IES, UMR 5214, F-34000 Montpellier (France); CNRS, IES, UMR 5214, F-34000 Montpellier (France); Renewable Energy and Applied Photonics Laboratories, Electrical and Computer Engineering Department, Tufts University, Medford, Massachusetts 02155 (United States); Giard, Edouard; Ribet-Mohamed, Isabelle [ONERA, Chemin de la Hunière, 91761 Palaiseau (France)

    2016-05-07

    GaSb-rich superlattice (SL) p-i-n photodiodes grown by molecular beam epitaxy were studied theoretically and experimentally in order to understand the poor dark current characteristics typically obtained. This behavior, independent of the SL-grown material quality, is usually attributed to the presence of defects due to Ga-related bonds, limiting the SL carrier lifetime. By analyzing the photoresponse spectra of reverse-biased photodiodes at 80 K, we have highlighted the presence of an electric field, breaking the minibands into localized Wannier-Stark states. Besides the influence of defects in such GaSb-rich SL structures, this electric field induces a strong tunneling current at low bias which can be the main limiting mechanism explaining the high dark current density of the GaSb-rich SL diode.

  18. Hierarchical tubular structures grown from the gel/liquid interface.

    Science.gov (United States)

    Steenbjerg Ibsen, Casper Jon; Mikladal, Bjørn Fridur; Bjørnholt Jensen, Uffe; Birkedal, Henrik

    2014-12-01

    Three dimensional hierarchical materials are widespread in nature but are difficult to synthesize by using self-assembly/organization. Here, we employ a gel-liquid interface to obtain centimeter-long ∼100 μm diameter tubes with complex mineral wall structures that grow from the interface into solution. The gel, made from gelatin, is loaded with metal chloride salt, whereas the solution is a high pH anion source. Tubes were obtained with a range of cations (Ca(2+) , Sr(2+) , Ba(2+) , Cu(2+) , and Zn(2+) ) and anions (CO3 (2-) and PO4 (3-) ). The crystalline phases found in the tube walls corresponded to expectations from solution chemistries and phase solubilities. The growth mechanism is found to be akin to that of chemical gardens. The divalent cations modify the strength of the gelatin gel in a manner that involves not only simple electrostatic screening, but also ion-specific effects. Thus, tubes were not obtained for those ions and/or concentrations that significantly changed the gel's mechanical structure. At high Cu(2+) loading, for example, vertical convection bands, not Liesegang bands, were observed in the gels.

  19. Carbon-coated nanoparticle superlattices for energy applications

    Science.gov (United States)

    Li, Jun; Yiliguma, Affa; Wang, Yifei; Zheng, Gengfeng

    2016-07-01

    Nanoparticle (NP) superlattices represent a unique material architecture for energy conversion and storage. Recent reports on carbon-coated NP superlattices have shown exciting electrochemical properties attributed to their rationally designed compositions and structures, fast electron transport, short diffusion length, and abundant reactive sites via enhanced coupling between close-packed NPs, which are distinctive from their isolated or disordered NP or bulk counterparts. In this minireview, we summarize the recent developments of highly-ordered and interconnected carbon-coated NP superlattices featuring high surface area, tailorable and uniform doping, high conductivity, and structure stability. We then introduce the precisely-engineered NP superlattices by tuning/studying specific aspects, including intermetallic structures, long-range ordering control, and carbon coating methods. In addition, these carbon-coated NP superlattices exhibit promising characteristics in energy-oriented applications, in particular, in the fields of lithium-ion batteries, fuel cells, and electrocatalysis. Finally, the challenges and perspectives are discussed to further explore the carbon-coated NP superlattices for optimized electrochemical performances.

  20. Unexpected bismuth concentration profiles in metal-organic vapor phase epitaxy-grown Ga(As1−xBix/GaAs superlattices revealed by Z-contrast scanning transmission electron microscopy imaging

    Directory of Open Access Journals (Sweden)

    A. W. Wood

    2015-03-01

    Full Text Available A set of GaAs1−xBix/GaAs multilayer quantum-well structures was deposited by metal-organic vapor phase epitaxy at 390 °C and 420 °C. The precursor fluxes were introduced with the intent of growing discrete and compositionally uniform GaAs1−xBix well and GaAs barrier layers in the epitaxial films. High-resolution high-angle annular-dark-field (or “Z-contrast” scanning transmission electron microscopy imaging revealed concentration profiles that were periodic in the growth direction, but far more complicated in shape than the intended square wave. The observed composition profiles could explain various reports of physical properties measurements that suggest compositional inhomogeneity in GaAs1−xBix alloys as they currently are grown.

  1. Manipulation of electronic structure via alteration of local orbital environment in [(SrIrO3)m,(SrTi O3)] (m =1 ,2 ,and ∞ ) superlattices

    Science.gov (United States)

    Kim, So Yeun; Kim, Choong H.; Sandilands, L. J.; Sohn, C. H.; Matsuno, J.; Takagi, H.; Kim, K. W.; Lee, Y. S.; Moon, S. J.; Noh, T. W.

    2016-12-01

    We investigated the electronic structure of [(SrIrO3)m,(SrTi O3)] (m =1 ,2 ,and ∞ ) superlattice (SL) thin films with optical spectroscopy and first principles calculations. Our optical results confirmed the existence of the Jeff= 1 /2 states in SL samples, similar to the bulk Ruddlesden-Popper series S rn+1I rnO3 n +1 iridates. Apart from this similarity, in the SL samples, we observed red shifts of the characteristic optical excitations in the Jeff= 1 /2 state and an enhancement of the low-energy spectral weight, which implies a reduction in the effective electron correlation for bands near the Fermi energy. The density functional theory plus Coulomb interactions (DFT +U ) calculations suggested that the SrTi O3 layer intervened between SrIr O3 layers in the SLs activated additional hopping channels between the Ir ions, thus increasing the bandwidth and reducing the effective strength of the correlations. This paper demonstrates that fabrication of iridium-based heterostructures can be used to finely tune electronic structures via alteration of their local orbital environments.

  2. AlN Nanowall Structures Grown on Si (111) Substrate by Molecular Beam Epitaxy.

    Science.gov (United States)

    Tamura, Yosuke; Hane, Kazuhiro

    2015-12-01

    AlN nanowall structures were grown on Si (111) substrate using molecular beam epitaxy at substrate temperature of 700 °C with N/Al flux ratios ranging from 50 to 660. A few types of other AlN nanostructures were also grown under the nitrogen-rich conditions. The AlN nanowalls were ranged typically 60-120 nm in width and from 190 to 470 nm in length by changing N/Al flux ratio. The AlN nanowall structures grown along the c-plane consisted of AlN (0002) crystal with full-width at half maximum of the rocking curve about 5000 arcsec.

  3. Ion-bombardment-enhanced diffusion during the growth of sputtered superlattice thin films

    Energy Technology Data Exchange (ETDEWEB)

    Eltoukhy, A.H.; Greene, J.E.

    1978-08-15

    A technique is presented for determining the enhancement in solid-state diffusion caused by low-energy ion bombardment. In this technique, superlattice films are grown under varying conditions of ion bombardment and the amplitude of the resulting composition modulation wave is determined by analyzing x-ray diffraction satellite peaks surrounding the central Bragg peaks. The amplitude is in turn related to the enhanced diffusion coefficient D* (x) which may be expressed as D*/sub 0/ exp(-x/delta) where delta is a characteristic diffusion length of the ion-bombardment-produced defects. This approach was confirmed experimentally using InSb/GaSb superlattice structures grown by multitarget sputtering, each sample having equilayer thicknesses between 12 and 30 A. D* was found to increase as the sputtering pressure was decreased. Measured values of D* averaged over the enhanced diffusion region were on the order of 10/sup -17/ cm/sup 2//sec compared to a thermal interdiffusion coefficient of approximately 10/sup -22/ cm/sup 2//sec at the film growth temperature of 250 /sup 0/C.

  4. Indium-bump-free antimonide superlattice membrane detectors on a silicon substrates

    Science.gov (United States)

    Zamiri, M.; Klein, B.; Schuler, T.; Myers, S.; Cavallo, F.; Krishna, S.

    2016-05-01

    We present an approach to realize antimonide based superlattices on silicon substrates without using conventional Indium-bump hybridization. In this approach, PIN based superlattice detectors are grown on top of a 60 nm Al0.6Ga0.4Sb sacrificial layer on a GaSb host substrate. Following the growth, the individual pixels are transferred using our epitaxiallift off technique, which consists of a wet-etch to undercut the pixels followed by a dry-stamp process to transfer the pixels to a silicon substrate prepared with a gold layer. Structural and optical characterization of the transferred pixels was done using an optical microscope, scanning electron microscopy and photoluminescence. The interface between the transferred pixels and the new substrate was abrupt and no significant degradation in the optical quality was observed. An Indium-bump-free membrane detector was then fabricated using this approach. Spectral response measurements provided a 100% cut-off wavelength of 4.3 μm at 77 K. The performance of the membrane detector was compared to a control detector on the as-grown substrate. The membrane detector was limited by surface leakage current. The proposed approach could pave the way for wafer-level integration of photonic detectors on silicon substrates, which could dramatically reduce the cost of these detectors.

  5. Ultrasound focusing images in superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Narita, Michiko; Tanaka, Yukihiro; Tamura, Shin-ichiro [Department of Applied Physics, Hokkaido University, Sapporo (Japan)

    2002-03-04

    We study theoretically ultrasound focusing in periodic multilayered structures, or superlattices, by solving the wave equation with the Green function method and calculating the transmitted ultrasound amplitude images of both the longitudinal and transverse modes. The constituent layers assumed are elastically isotropic but the periodically stacked structure is anisotropic. Thus anisotropy of ultrasound propagation is predicted even at low frequencies and it is enhanced significantly at higher frequencies due to the zone-folding effect of acoustic dispersion relations. An additional effect studied is the interference of ultrasound (known as the internal diffraction), which can be recognized when the propagation distance is comparable to the ultrasound wavelength. Numerical examples are developed for millimetre-scale Al/polymer multilayers used recently for imaging experiment with surface acoustic waves. (author)

  6. Picosecond luminescence approach to vertical transport in GaAs/GaAlAs superlattices

    Science.gov (United States)

    Deveaud, B.; Chomette, A.; Lambert, B.; Regreny, A.; Romestain, R.; Edel, P.

    1986-03-01

    Picosecond luminescence of GaAs/GaAlAs superlattices has been measured at 5 K. Asymetrical structures where one larger well is introduced at 9000 Å from the surface are studied. It is then possible to estimate the mean transfer time of photoexcited carriers through 9000 Å of superlattice. This time is found to be about 4 nsec in a 40/40 Å superlattice and 800 psec in a 30/30 Å one. This evidences the rather high mobility of small period superlattices in the growth direction.

  7. Preparation, structural and electrical properties of zinc oxide grown on silicon nanoporous pillar array

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Polycrystalline thick film of zinc oxide (ZnO) is grown on a unique silicon substrate with a hierarchical structure,silicon nanoporous pillar array (Si-NPA), by using a vapour phase transport method. It is found that as-grown ZnO film is composed of closely packed ZnO crystallites with an average size of ~10 μm. The film resistivity of ZnO/Siheterostructure is measured. Theoretical analysis shows that the carrier transport across ZnO/Si-NPA heterojunction is dominated by two mechanisms, i.e. a thermionic process at high voltages and a quantum tunnelling process at low voltages.

  8. Structural and optical properties of AlN grown by solid source solution growth method

    Science.gov (United States)

    Kangawa, Yoshihiro; Suetsugu, Hiroshige; Knetzger, Michael; Meissner, Elke; Hazu, Kouji; Chichibu, Shigefusa F.; Kajiwara, Takashi; Tanaka, Satoru; Iwasaki, Yosuke; Kakimoto, Koichi

    2015-08-01

    Structural and optical properties of AlN grown on AlN(0001) by the solid source solution growth (3SG) method were investigated. Transmission electron microscopy (TEM) analysis revealed that the geometrical relationship between the growth directions and slip planes influenced the dislocation propagation behaviors and annihilation mechanisms. Panchromatic and monochromatic images in the cathodoluminescence (CL) spectrum further revealed that C impurities were segregated near the surface, while Al vacancies were widely distributed in the AlN/AlN(0001) grown using the 3SG method.

  9. ZnO nanostructured microspheres and grown structures by thermal treatment

    Indian Academy of Sciences (India)

    Jun Wang; Shunxiao Zhang; Jia You; Huijun Yan; Zhanshuang Li; Xiaoyan Jing; Milin Zhang

    2008-08-01

    Synthesis of flower-shaped ZnO nanostructures composed of ZnO nanosticks was achieved by the solution process using zinc acetate dihydrate, sodium hydroxide and polyethylene glycol-20000 (PEG-20000) at 180°C for 4 h. The diameter of individual nanosticks was about 100 nm. Detailed structure characterizations demonstrate that the synthesized products are wurtzite hexagonal phase, grown along the [001] direction. The infrared (IR) spectrum shows the standard peak of zinc oxide at 571 cm-1. Raman scattering exhibits a sharp and strong 2 mode at 441 cm-1 which further confirms the good crystal and wurtzite hexagonal phase of the grown nanostructures.

  10. Magnetic Graphene Nanohole Superlattices

    CERN Document Server

    Yu, Decai; Liu, Miao; Liu, Wei; Liu, Feng

    2008-01-01

    We investigate the magnetic properties of nano-holes (NHs) patterned in graphene using first principles calculations. We show that superlattices consisting of a periodic array of NHs form a new family of 2D crystalline "bulk" magnets whose collective magnetic behavior is governed by inter-NH spin-spin interaction. They exhibit long-range magnetic order well above room temperature. Furthermore, magnetic semiconductors can be made by doping magnetic NHs into semiconducting NH superlattices. Our findings offer a new material system for fundamental studies of spin-spin interaction and magnetic ordering in low dimensions, and open up the exciting opportunities of making engineered magnetic materials for storage media and spintronics applications.

  11. The nature and control of morphology and the formation of defects in InGaAs epilayers and InAs/GaAs superlattices grown via MBE on GaAs(100)

    Energy Technology Data Exchange (ETDEWEB)

    Guha, S.; Rajkumar, K.C.; Madhukar, A. (Univ. of Southern California, Los Angeles, CA (USA))

    1991-05-01

    Initial stages of molecular beam epitaxial (MBE) growth of highly mismatched In{sub x}Ga{sub 1-x}As/GaAs(100) have been studied by planar and cross-sectional transmission electron microscopy. For In{sub 0.5}Ga{sub 0.5}As growth, we find drastic differences in morphology obtained by reducing the growth temperature from 475 to 420degC. We also observe differences in morphology between alloy growth and short period superlattice (InAs){sub n}/(GaAs){sub m} (m=1 monolayer, n=2 monoloayers) growth of equivalent effective composition. In the case of growth by formation of large islands, we present direct evidence of strain relief at the island edges and discuss defect formation in these islands. (orig.).

  12. Structural and magnetic properties of Gd/Fe multilayers grown by pulsed laser deposition

    DEFF Research Database (Denmark)

    Kant, K. Mohan; Bahl, Christian Robert Haffenden; Pryds, Nini

    2010-01-01

    This work investigates the structural and the magnetic properties of Gd/Fe multilayered thin films grown by pulsed laser deposition onto Si (001) substrates at room temperature. he Fe layer thickness is varied from 70 to 150 nm and its effect on the structural and magnetic properties of Fe....../Gd/Fe sandwich multilayers has been explored. Gd films were found to change from amorphous to polycrystalline at a critical thickness of 20 nm....

  13. Tunneling of electrons through semiconductor superlattices

    Indian Academy of Sciences (India)

    C L Roy

    2002-11-01

    The purpose of the present paper is to report a study of tunneling of electrons through semiconductor superlattices (SSL); specially, we have analysed diverse features of transmission coefficient of SSL. The SSL we have considered is Ga0.7Al0.3As–GaAs which has been drawing considerable attention during the recent past on account of some typical features of its band structure. We have indicated how our results would help fabrication of ultra high speed devices.

  14. Atomic structure of "multilayer silicene" grown on Ag(111): Dynamical low energy electron diffraction analysis

    Science.gov (United States)

    Kawahara, Kazuaki; Shirasawa, Tetsuroh; Lin, Chun-Liang; Nagao, Ryo; Tsukahara, Noriyuki; Takahashi, Toshio; Arafune, Ryuichi; Kawai, Maki; Takagi, Noriaki

    2016-09-01

    We have investigated the atomic structure of the "multilayer silicene" grown on the Ag(111) single crystal surface by using low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). We measured the intensity of the LEED spot as a function of the incident electron energy (I-V curve) and analyzed the I-V curve using a dynamical LEED theory. We have found that the Si(111)(√{ 3} ×√{ 3})-Ag model well reproduces the I-V curve whereas the models consisting of the honeycomb structure of Si do not. The bias dependence of the STM image of multilayer silicene agrees with that of the Si(111)(√{ 3} ×√{ 3})-Ag reconstructed surface. Consequently, we have concluded that the multilayer silicene grown on Ag(111) is identical to the Si(111)(√{ 3} ×√{ 3})-Ag reconstructed structure.

  15. Optical studies on a series of AlAs/GaAs short period superlattices

    CERN Document Server

    Oh, M S; Kim, Y D; Woo, D H; Koh, E H; Kim, S H; Kang, K N; Rhee, S J; Woo, J C

    1999-01-01

    We present optical studies of a series of GaAs/AlAs short period superlattices (SLs) grown by Molecular Beam Epitaxy (MBE). The structural properties were examined by X-ray diffraction measurements. Quantum confinement of the electronic states was observed in the low temperature photoluminescence (PL). Spectroscopic ellipsometric (SE) measurements were also performed to determine energies of the interband transitions at room temperature. As n increase, we found that the lower transition energies (below 4.0 eV) decrease. The results are compared with low temperature photoluminescence measurements. We found a new structure at the lower E sub 2 peak, which demonstrates the best resolution of the E sub 2 structure in these SLs so far obtained by SE.

  16. Electronic structure and thermoelectric properties of (Mg2X)2 / (Mg2Y)2 (X, Y = Si, Ge, Sn) superlattices from first-principle calculations

    Science.gov (United States)

    Guo, San-Dong

    2016-05-01

    To identify thermoelectric materials containing abundant, low-cost and non-toxic elements, we have studied the electronic structures and thermoelectric properties of (Mg2X)2/ (Mg2Y)2 (X, Y = Si, Ge, Sn) superlattices with state-of-the-art first-principles calculations using a modified Becke and Johnson (mBJ) exchange potential. Our results show that (Mg2Ge)2/ (Mg2Sn)2 and (Mg2Si)2/ (Mg2Sn)2 are semi-metals using mBJ plus spin-orbit coupling (mBJ + SOC), while (Mg2Si)2/ (Mg2Ge)2 is predicted to be a direct-gap semiconductor with a mBJ gap value of 0.46 eV and mBJ + SOC gap value of 0.44 eV. Thermoelectric properties are predicted by through solving the Boltzmann transport equations within the constant scattering time approximation. It is found that (Mg2Si)2/ (Mg2Ge)2 has a larger Seebeck coefficient and power factor than (Mg2Ge)2/ (Mg2Sn)2 and (Mg2Si)2/ (Mg2Sn)2 for both p-type and n-type doping. The detrimental influence of SOC on the power factor of p-type (Mg2X)2/ (Mg2Y)2 (X, Y = Si, Ge, Sn) is analyzed as a function of the carrier concentration, but there is a negligible SOC effect for n-type. These results can be explained by the influence of SOC on their valence and conduction bands near the Fermi level.

  17. Formation of size-controlled silicon nanocrystals in plasma enhanced chemical vapor deposition grown SiO{sub x}N{sub y}/SiO{sub 2} superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Hartel, A.M., E-mail: andreas.hartel@imtek.uni-freiburg.de [IMTEK, Faculty of Engineering, Albert-Ludwigs-University Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg (Germany); Hiller, D.; Gutsch, S. [IMTEK, Faculty of Engineering, Albert-Ludwigs-University Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg (Germany); Loeper, P. [Fraunhofer Institute for Solar Energy Systems, Heidenhofstr. 2, 79110 Freiburg (Germany); Estrade, S. [MIND-IN2UB, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); TEM-MAT, SCT- UB, Sole i Sabaris 1, 08028 Barcelona (Spain); Peiro, F.; Garrido, B. [MIND-IN2UB, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Zacharias, M. [IMTEK, Faculty of Engineering, Albert-Ludwigs-University Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg (Germany)

    2011-10-31

    Size controlled silicon nanocrystals (SiNC) in silicon oxynitride matrix were prepared using plasma enhanced chemical vapor deposition. The as-deposited superlattices (SLs) and the corresponding bulk films were treated by thermal annealing. Hydrogen effusion was performed during the heating up by choosing a sufficiently low heating ramp. The phase separation of the layers into SiNCs and surrounding oxynitride matrix was studied at temperatures of up to 1150 {sup o}C. The influence of the annealing temperature on SiO{sub x}N{sub y}/SiO{sub 2} - SLs with varying SiO{sub x}N{sub y} layer thickness was investigated by several analytical techniques including variable angle spectroscopic ellipsometry, photoluminescence (PL) spectroscopy, x-ray photoelectron spectroscopy, Fourier transform infrared spectrometry (FTIR) and transmission electron microscopy (TEM). Before annealing FTIR investigations show in addition to the expected Si-O bonds also the formation of nitrogen and hydrogen related bonds. The shift of the Si-O-Si stretching vibration to higher wave numbers after annealing indicates phase separation. The disappearance of the hydrogen related bonds indicates the hydrogen effusion. The PL signal is rising significantly with increasing annealing temperature and the PL peak position is strongly related to the thickness of the SiO{sub x}N{sub y} sublayers due to quantum confinement effects. TEM investigations confirm the size-controlled growth of SiNCs within the oxynitride matrix. The role of incorporated nitrogen and hydrogen is discussed.

  18. Jaynes Cummings Photonic Superlattices

    CERN Document Server

    Longhi, Stefano

    2011-01-01

    A classical realization of the Jaynes-Cummings (JC) model, describing the interaction of a two-level atom with a quantized cavity mode, is proposed based on light transport in engineered waveguide superlattices. The optical setting enables to visualize in Fock space dynamical regimes not yet accessible in quantum systems, providing new physical insights into the deep strong coupling regime of the JC model. In particular, bouncing of photon number wave packets in Hilbert space and revivals of populations are explained as generalized Bloch oscillations in an inhomogeneous tight-binding lattice.

  19. Optical properties of InAsBi and optimal designs of lattice-matched and strain-balanced III-V semiconductor superlattices

    Science.gov (United States)

    Webster, P. T.; Shalindar, A. J.; Riordan, N. A.; Gogineni, C.; Liang, H.; Sharma, A. R.; Johnson, S. R.

    2016-06-01

    The optical properties of bulk InAs0.936Bi0.064 grown by molecular beam epitaxy on a (100)-oriented GaSb substrate are measured using spectroscopic ellipsometry. The index of refraction and absorption coefficient are measured over photon energies ranging from 44 meV to 4.4 eV and are used to identify the room temperature bandgap energy of bulk InAs0.936Bi0.064 as 60.6 meV. The bandgap of InAsBi is expressed as a function of Bi mole fraction using the band anticrossing model and a characteristic coupling strength of 1.529 eV between the Bi impurity state and the InAs valence band. These results are programmed into a software tool that calculates the miniband structure of semiconductor superlattices and identifies optimal designs in terms of maximizing the electron-hole wavefunction overlap as a function of transition energy. These functionalities are demonstrated by mapping the design spaces of lattice-matched GaSb/InAs0.911Sb0.089 and GaSb/InAs0.932Bi0.068 and strain-balanced InAs/InAsSb, InAs/GaInSb, and InAs/InAsBi superlattices on GaSb. The absorption properties of each of these material systems are directly compared by relating the wavefunction overlap square to the absorption coefficient of each optimized design. Optimal design criteria are provided for key detector wavelengths for each superlattice system. The optimal design mid-wave infrared InAs/InAsSb superlattice is grown using molecular beam epitaxy, and its optical properties are evaluated using spectroscopic ellipsometry and photoluminescence spectroscopy.

  20. Columnar structured FePt films epitaxially grown on large lattice mismatched intermediate layer

    Science.gov (United States)

    Dong, K. F.; Deng, J. Y.; Peng, Y. G.; Ju, G.; Chow, G. M.; Chen, J. S.

    2016-09-01

    The microstructure and magnetic properties of the FePt films grown on large mismatched ZrN (15.7%) intermediate layer were investigated. With using ZrN intermediate layer, FePt 10 nm films exhibited (001) texture except for some weaker FePt (110) texture. Good epitaxial relationships of FePt (001) //ZrN (001) //TiN (001) among FePt and ZrN/TiN were revealed from the transmission electron microscopy (TEM) results. As compared with TiN intermediate layer, although FePt-SiO2-C films grown on ZrN/TiN intermediate layer showed isotropic magnetic properties, the large interfacial energy and lattice mismatch between FePt and ZrN would lead to form columnar structural FePt films with smaller grain size and improved isolation. By doping ZrN into the TiN layer, solid solution of ZrTiN was formed and the lattice constant is increased comparing with TiN and decreased comparing with ZrN. Moreover, FePt-SiO2-C films grown on TiN 2 nm-20 vol.% ZrN/TiN 3 nm intermediate layer showed an improved perpendicular magnetic anisotropy. Simultaneously, columnar structure with smaller grain size retained.

  1. Structural and magnetic properties of Gd/Fe multilayers grown by pulsed laser deposition

    DEFF Research Database (Denmark)

    Kant, K. Mohan; Bahl, Christian Robert Haffenden; Pryds, Nini;

    This work investigates structural and magnetic properties of Gd/Fe multilayered thin films grown by pulsed laser deposition onto Si (001) substrates at room temperature. The Fe layer thickness is varied from 70 to 150 nm and its effect on structural and magnetic properties of Gd/Fe multilayers has...... been explored. The samples have a 10 nm Ag capping layer to prevent oxidation during the processing. Two magnetization saturation plateaus were observed in the magnetization vs field isotherm at 290 K, in parallel configuration and these plateau values correspond to that of MFe and MFe + MGd....

  2. Stress, structural and electrical properties of Si-doped GaN film grown by MOCVD

    Institute of Scientific and Technical Information of China (English)

    Xu Zhihao; Zhang Jincheng; Duan Huantao; Zhang Zhongfen; Zhu Qingwei; Xu Hao; Hao Yue

    2009-01-01

    The stresses, structural and electrical properties of n-type Si-doped GaN films grown by metalorganic chemical vapor deposition (MOCVD) are systemically studied. It is suggested that the main stress relaxation is induced by bending dislocations in low doping samples. But for higher doping samples, as the Si doping concentration increases, the in-plane stresses in the grown films are quickly relaxed due to the rapid increase of the edge dislocation densities. Hall effect measurements reveal that the carrier mobility first increases rapidly and then decreases with increasing Si doping concentration. This phenomenon is attributed to the interaction between various scattering process. It is suggested that the dominant scattering process is defect scattering for low doping samples and ionized impurity scattering for high doping samples.

  3. Stress, structural and electrical properties of Si-doped GaN film grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zhihao; Zhang Jincheng; Duan Huantao; Zhang Zhongfen; Zhu Qingwei; Xu Hao; Hao Yue, E-mail: forman1115@163.co [Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi' an 710071 (China)

    2009-12-15

    The stresses, structural and electrical properties of n-type Si-doped GaN films grown by metalorganic chemical vapor deposition (MOCVD) are systemically studied. It is suggested that the main stress relaxation is induced by bending dislocations in low doping samples. But for higher doping samples, as the Si doping concentration increases, the in-plane stresses in the grown films are quickly relaxed due to the rapid increase of the edge dislocation densities. Hall effect measurements reveal that the carrier mobility first increases rapidly and then decreases with increasing Si doping concentration. This phenomenon is attributed to the interaction between various scattering process. It is suggested that the dominant scattering process is defect scattering for low doping samples and ionized impurity scattering for high doping samples. (semiconductor materials)

  4. Photon BLOCH oscillations in porous silicon optical superlattices.

    Science.gov (United States)

    Agarwal, V; del Río, J A; Malpuech, G; Zamfirescu, M; Kavokin, A; Coquillat, D; Scalbert, D; Vladimirova, M; Gil, B

    2004-03-01

    We report the first observation of oscillations of the electromagnetic field in an optical superlattice based on porous silicon. These oscillations are an optical equivalent of well-known electronic Bloch oscillations in crystals. Elementary cells of our structure are composed by microcavities whose coupling gives rise to the extended collective modes forming optical minigaps and minibands. By varying thicknesses of the cavities along the structure axis, we have created an effective electric field for photons. A very high quality factor of the confined optical state of the Wannier-Stark ladder may allow lasing in porous silicon-based superlattices.

  5. High-Detectivity Type-II Superlattice Detectors for 6-14 um Infrared Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SVT Associates proposes an novel type II superlattice structure to extend the cutoff wavelength and CBIRD SL photo diode structure with unipolar barriers to suppress...

  6. Molecular dynamics simulation of thermal conductivities of superlattice nanowires

    Institute of Scientific and Technical Information of China (English)

    杨决宽; 陈云飞; 颜景平

    2003-01-01

    Nonequilibrium molecular dynamics simulations were carried out to investigate heat transfer in superlattice nanowires. Results show that for fixed period length superlattice nanowires, the ratio of the total interfacial thermal resistance to the total thermal resistance and the effective thermal conductivities are invariant with the changes in interface numbers. Increasing the period length leads to an increase in the average interfacial thermal resistance, which indicates that the interfacial thermal resistance depends not only on the materials that constitute the alternating segments of superlattice nanowires, but also on the lattice strain throughout the segments. The modification of the lattice structure due to the lattice mismatch should be taken into account in the acoustic mismatch model. Simulation results also demonstrated the size confinement effect on the thermal conductivities for low dimensional structures, i.e. the thermal conductivities and the interfacial thermal resistance increase as the nanowire cross-sectional area increases.

  7. Defect enhanced spin and valley polarizations in silicene superlattices

    Science.gov (United States)

    Li, Wen; Lu, Wei-Tao; Li, Yun-Fang; Han, Hai-Hua

    2017-04-01

    We studied the effect of a defect of superlattice on the spin and valley dependent transport properties in silicene, where there is an abnormal barrier in height. It is found that the transmission resonance is greatly suppressed, because the symmetry of superlattice structure is destroyed by the defect. The spin-up and spin-down electrons near the K and K ‧ valleys are dominated by different effective superlattices and defects. Therefore, the conductances are strongly dependent on the spin and valley of electron. By adjusting the defect strength properly, the spin and valley polarizations could be dramatically enhanced in a wide energy region. Furthermore, the result suggests an application of the structure as a defect-controlled switch.

  8. Fluorescence x-ray standing wave study on (AlAs)(GaAs) superlattices

    CERN Document Server

    Lessmann, A; Munkholm, A; Schuster, M; Riechert, H; Materlik, G

    1999-01-01

    X-ray standing waves (XSW) were used to investigate the structure of molecular beam epitaxy (MBE) grown (AlAs) sub 3 (GaAs) sub 7 short-period superlattices (SPSL). The modulation of the Al K, As L, and Ga L x-ray fluorescence induced by XSW was measured at the zero-order superlattice (SL) satellite (AlAs)(GaAs)(004,0) and the GaAs(004) substrate Bragg reflection. From the shape of the fluorescence yield modulations and the diffraction pattern, a model of the interfaces is derived by comparing the experimental data with dynamical calculations of the x-ray wave field distribution and reflectivity. A straightforward analysis of the fluorescence measurements at the SL satellite shows that in AlAs layers a high crystalline order is established, whereas in GaAs layers a fraction of the Ga and As atoms is not on ideal lattice sites, but is displaced towards the substrate. The data can be explained by a model in which, at each AlAs/GaAs interface of the GaAs layers, two Ga atom planes are displaced by 0.035 nm and 0...

  9. Fluorescence x-ray standing wave study on (AlAs)(GaAs) superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Lessmann, A.; Brennan, S.; Munkholm, A. [Stanford Synchrotron Radiation Laboratory SSRL/SLAC, Menlo Park, CA (United States); Schuster, M.; Riechert, H. [Siemens AG, Corporate Technology, Munich (Germany); Materlik, G. [Hamburger Synchrotronstrahlungslabor HASYLAB/DESY, Hamburg (Germany)

    1999-05-21

    X-ray standing waves (XSW) were used to investigate the structure of molecular beam epitaxy (MBE) grown (AlAs){sub 3}(GaAs){sub 7} short-period superlattices (SPSL). The modulation of the Al K, As L, and Ga L x-ray fluorescence induced by XSW was measured at the zero-order superlattice (SL) satellite (AlAs)(GaAs)(004,0) and the GaAs(004) substrate Bragg reflection. From the shape of the fluorescence yield modulations and the diffraction pattern, a model of the interfaces is derived by comparing the experimental data with dynamical calculations of the x-ray wave field distribution and reflectivity. A straightforward analysis of the fluorescence measurements at the SL satellite shows that in AlAs layers a high crystalline order is established, whereas in GaAs layers a fraction of the Ga and As atoms is not on ideal lattice sites, but is displaced towards the substrate. The data can be explained by a model in which, at each AlAs/GaAs interface of the GaAs layers, two Ga atom planes are displaced by 0.035 nm and 0.008 nm and one As atom plane by 0.023 nm. The displacements within the GaAs layers exhibit a mirror symmetry with respect to the centre of each layer. (author)

  10. Nonlinear optical response in Kronig-Penney type graphene superlattice in terahertz regime

    Science.gov (United States)

    Jiang, Lijuan; Yuan, Rui-Yang; Zhao, Xin; Lv, Jing; Yan, Hui

    2015-05-01

    The terahertz nonlinear optical response in Kronig-Penney (KP) type graphene superlattice is demonstrated. The single-, triple- and quintuple-frequencies of the fifth-order nonlinear responses are investigated for different frequencies and temperatures with the angle φ along the periodicity of the superlattice toward the external field tuning from 0 to π/2. The results show that the fifth-order nonlinear optical conductance of graphene superlattice is enhanced in the terahertz regime when φ = 0, i.e. an external field is applied along the periodicity of the superlattice. The fifth-order nonlinear optical conductances at φ = 0 for different frequencies and temperatures are calculated. The results show that the nonlinear optical conductance is enhanced in low frequency and low temperature. Our results suggest that KP type graphene superlattices are preferred structures for developing graphene-based nonlinear photonics and optoelectronics devices.

  11. Electronic structure analysis of GaN films grown on r- and a-plane sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Monu; Krishna TC, Shibin; Aggarwal, Neha [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory (CSIR-NPL), Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Vihari, Saket [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory (CSIR-NPL), Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Gupta, Govind, E-mail: govind@nplindia.org [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory (CSIR-NPL), Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)

    2015-10-05

    Graphical abstract: Substrate orientation induced changes in surface chemistry, band bending, hybridization states, electronic properties and surface morphology of epitaxially grown GaN were investigated via photoemission spectroscopic and Atomic Force Microscopic measurements. - Highlights: • Electronic structure and surface properties of GaN film grown on r/a-plane sapphire. • Downward band bending (0.5 eV) and high surface oxide is observed for GaN/a-sapphire. • Electron affinity and ionization energy is found to be higher for GaN/a-sapphire. - Abstract: The electronic structure and surface properties of epitaxial GaN films grown on r- and a-plane sapphire substrates were probed via spectroscopic and microscopic measurements. X-ray photoemission spectroscopic (XPS) measurements were performed to analyse the surface chemistry, band bending and valence band hybridization states. It was observed that GaN/a-sapphire display a downward band bending of 0.5 eV and possess higher amount of surface oxide compared to GaN/r-sapphire. The valence band (VB) investigation revealed that the hybridization corresponds to the interactions of Ga 4s and Ga 4p orbitals with N 2p orbital, and result in N2p–Ga4p, N2p–Ga4s{sup ∗}, mixed and N2p–Ga4s states. The energy band structure and electronic properties were measured via ultraviolet photoemission spectroscopic (UPS) experiments. The band structure analysis and electronic properties calculations divulged that the electron affinity and ionization energy of GaN/a-sapphire were 0.3 eV higher than GaN/r-sapphire film. Atomic Force Microscopic (AFM) measurements revealed faceted morphology of GaN/r-sapphire while a smooth pitted surface was observed for GaN/a-sapphire film, which is closely related to surface oxide coverage.

  12. Acoustoelectric effect in semiconductor superlattice

    Science.gov (United States)

    Mensah, S. Y.; Allotey, F. K. A.; Adjepong, S. K.

    1993-10-01

    Acoustoelectric effect in semiconductor superlattice has been studied for acoustic wave whose wavelength lambda = 2pi/q is smaller than the mean free path of the electrons l (where ql approaches 1). Unlike the homogeneous bulk material where Weinreich relation is independent of the wave number q in the superlattice we observe a dependence on q i.e. spatial dispersion. In the presence of applied constant field E a threshold value was obtained where the acoustoelectric current changes direction.

  13. Fibonacci quasiregular graphene-based superlattices: Quasiperiodicity and its effects on the transmission, transport and electronic structure properties

    Science.gov (United States)

    García-Cervantes, H.; Madrigal-Melchor, J.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I.

    2015-12-01

    We study the transmission, transport and electronic structure properties of aperiodic Fibonacci monolayer graphene-based structures (AFGBSs). The transfer matrix method has been implemented to obtain the transmittance, linear-regime conductance and electronic structure. In particular, we have studied two types of aperiodic graphene-based structures: (1) electrostatic AFGBSs (EAFGBSs), structures formed with electrostatic potentials, and (2) substrate AFGBSs (SAFGBSs), obtained alternating substrates that can open and non-open, such as SiC and SiO2, an energy bandgap on graphene. We have found that the transmission properties can be modulated readily by changing the main parameters of the systems: well and barrier widths, energy and angle of incident electrons and the degree of aperiodicity. In the case of the linear-regime conductance turns out that it diminishes various orders of magnitude increasing the barrier width for SAFGBSs. On the contrary, Klein tunneling sustains the conductance in EAFGBSs. Calculating the electronic structure or miniband-structure formation and its fragmentation we establish a direct connection between the conductance peaks and the opening, closure and degeneration of energy minibands for both EAFGSLs and SAFGSLs.

  14. Fibonacci quasiregular graphene-based superlattices: Quasiperiodicity and its effects on the transmission, transport and electronic structure properties

    Energy Technology Data Exchange (ETDEWEB)

    García-Cervantes, H.; Madrigal-Melchor, J.; Martínez-Orozco, J.C.; Rodríguez-Vargas, I., E-mail: isaac@fisica.uaz.edu.mx

    2015-12-01

    We study the transmission, transport and electronic structure properties of aperiodic Fibonacci monolayer graphene-based structures (AFGBSs). The transfer matrix method has been implemented to obtain the transmittance, linear-regime conductance and electronic structure. In particular, we have studied two types of aperiodic graphene-based structures: (1) electrostatic AFGBSs (EAFGBSs), structures formed with electrostatic potentials, and (2) substrate AFGBSs (SAFGBSs), obtained alternating substrates that can open and non-open, such as SiC and SiO{sub 2}, an energy bandgap on graphene. We have found that the transmission properties can be modulated readily by changing the main parameters of the systems: well and barrier widths, energy and angle of incident electrons and the degree of aperiodicity. In the case of the linear-regime conductance turns out that it diminishes various orders of magnitude increasing the barrier width for SAFGBSs. On the contrary, Klein tunneling sustains the conductance in EAFGBSs. Calculating the electronic structure or miniband-structure formation and its fragmentation we establish a direct connection between the conductance peaks and the opening, closure and degeneration of energy minibands for both EAFGSLs and SAFGSLs.

  15. Structural and optical properties of ZnS thin film grown by pulsed electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Hennayaka, H.M.M.N.; Lee, Ho Seong, E-mail: hs.lee@knu.ac.kr

    2013-12-02

    ZnS thin films were grown on indium–tin-oxide coated glass substrates using pulsed electrodeposition and the effect of the deposition temperature on the structural and optical properties of the ZnS films was investigated. Polycrystalline cubic ZnS films were obtained at all the deposition temperatures. At temperatures below 70 °C, less dense films were obtained and particle agglomeration was visible. On the other hand, at temperatures above 70 °C, more dense films with well-defined grains were obtained. With increasing deposition temperatures, the optical transmittance and bandgap of the ZnS films decreased. These results are attributed to the increase in the thickness of ZnS films and their particle size. The ZnS films grown at 90 °C exhibited the highly (200) preferred orientation and n-type conductivity with a wide bandgap of 3.75 eV. - Highlights: • This study describes the effect of the deposition temperature on the growth of the ZnS thin films. • ZnS thin films were grown using pulsed electrodeposition. • ZnS thin films exhibited the good crystal quality and chemical composition. • ZnS thin films exhibited n-type conductivity with a wide bandgap of 3.75 eV.

  16. Structural characterization of InSb thin films grown by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Joginder, E-mail: joginderchauhan82@gmail.com; Rajaram, P. [School of Studies in Physics, Jiwaji University, Gwalior-474011 (India)

    2015-06-24

    In the present work we have grown InSb thin films on brass substrates, using the electrodeposition technique. The electrochemical baths used in the growth were made up of aqueous solutions of InCl{sub 3} and SbCl{sub 3} mixed together in various proportions. The films grown were characterized by X-Ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive Analysis of X-rays (EDAX). Compositional studies show that stoichiometric InSb films can be prepared from a bath containing 0.05M InCl{sub 3} and 0.04M SbCl{sub 3}. XRD studies reveal that the films grown are polycrystalline having the zinc blende structure with (111) orientation. Crystallite size, dislocation density and strain were calculated using the XRD results. Optical transmission spectra were recorded using an FTIR spectrophotometer. The value of direct band gap was found to be around 0.20 eV for the thin films having the best stoichiometry.

  17. XRR investigations of II-VI and III-nitrid based DBR-structures, multilayers and superlattices.

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrand, Radowan; Schmidt, Thomas; Zargham, Ardalan; Speckmann, Moritz; Kruse, Carsten; Hommel, Detlef; Falta, Jens [Institute of Solid State Physics, University of Bremen (Germany)

    2008-07-01

    Thin layers, especially distributed bragg reflectors (DBR), are important components in vertical cavity surface emitting laser (VCSEL)- structures. The investigation of AlN/InGaN and MgS/ZnCdSe DBR structures with the method of X-ray reflection (XRR) enables the determination of electron density, multilayer thickness and roughness of the interfaces. Reducing the roughness is of peculiar interest to achieve high reflective DBRs.

  18. LDA+U study on fully relaxed LaTiO{sub 3} and (SrTiO{sub 3}){sub m}(LaTiO{sub 3}){sub n} superlattice structures

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Hyo Shin [Korea Institute of Science and Technology, Seoul (Korea, Republic of); Seoul National University, Seoul (Korea, Republic of); Cuong, Do Duc; Lee, Jai Chan [Sungkyunkwan University, Suwon (Korea, Republic of); Han, Seung Wu [Ewha Womans University, Seoul (Korea, Republic of)

    2006-10-15

    Using LDA+U (where LDA stands for local-density-approximation and U for on-site coulomb energy) method, we study the structural and electronic properties of LaTiO{sub 3} and (SrTiO{sub 3}){sub m}(LaTiO{sub 3}){sub n} superlattice structures. Lattice vectors, as well as ionic positions, are relaxed to minimize the LDA+U energy functional. We find that the inclusion of the U term increases the lattice parameters and leads to larger distortions of oxygen octahedra in LaTiO{sub 3} and that the overall agreement with experiment is improved compared to LDA results. In the superlattice, we find that octahedral distortions around the La layer lower the total energy. The ionic relaxations, especially those of Ti atoms near the La layer, affect the spatial distribution of doped electrons, leading to a broader charge profile than the case without ionic relaxation. The corresponding Ti{sup 3+} profile is in good agreement with the electron-energy-loss spectroscopy data.

  19. Comparative evaluation of InAs/GaSb superlattices for mid infrared detection: p-i-n versus residual doping

    Science.gov (United States)

    Korkmaz, Melih; Kaldirim, Melih; Arikan, Bulent; Serincan, Uğur; Aslan, Bulent

    2015-08-01

    We report on the opto-electronic characterization of an InAs/GaSb superlattice (SL) midwave infrared p-i-n photodetector structure (pin-SL) in comparison with the same structure with no intentional doping (i-SL). Both structures were grown on an n-GaSb substrate using molecular beam epitaxy. The nominally undoped structure (i-SL) presented p-i-n like behavior and showed a photovoltaic mode photoresponse due to the residual doping and native defects in this material system. For ˜77 K operation, 0.76 and 0.11 A W-1 responsivity values were obtained at 4 μm from the pin-SL and i-SL structures, respectively. Activation energy analysis showed that the recombination current was dominant in both structures but different recombination centers were involved. The same i-SL structure was also grown on a semi-insulating (SI)-GaAs substrate to study the contribution of the substrate to the carrier density in the SL layers. Temperature dependent Hall effect measurements showed that the nominally undoped structure presented both n-type and p-type conductivities; however, the temperature at which the carrier type switched polarity was observed to be at higher values when the i-SL structure was grown on the SI-GaAs substrate. In addition, a higher carrier density was observed for i-SL on the GaSb substrate than on the GaAs substrate.

  20. Upper critical fields of periodic and quasiperiodic Nb-Ta superlattices

    Science.gov (United States)

    Cohn, J. L.; Lin, J. J.; Lamelas, F. J.; He, H.; Clarke, R.; Uher, C.

    1988-08-01

    Upper critical fields have been studied for two series of Nb-Ta superlattices grown by molecular-beam epitaxy with both periodic and quasiperiodic (Fibonacci sequence) layering. X-ray results are presented to characterize the nature and quality of the layering. Positive curvature in the perpendicular upper critical field (Hc2⊥), pronounced negative curvature near Tc in the parallel upper critical field (Hc2), and dimensional crossover are observed in both types of samples. For quasiperiodic samples two upturns are observed in Hc2 with decreasing temperature. These are shown to be associated with dimensional crossover occurring twice as the superconducting coherence length in the growth direction, ξ⊥, samples the two length scales, 2dNb and dNb, that are present in these structures.

  1. Atom probe tomography characterisation of a laser diode structure grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Samantha E.; Humphreys, Colin J.; Oliver, Rachel A. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Smeeton, Tim M.; Hooper, Stewart E.; Heffernan, Jonathan [Sharp Laboratories of Europe Limited, Edmund Halley Road, Oxford Science Park, Oxford, OX4 4GB (United Kingdom); Saxey, David W.; Smith, George D. W. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom)

    2012-03-01

    Atom probe tomography (APT) has been used to achieve three-dimensional characterization of a III-nitride laser diode (LD) structure grown by molecular beam epitaxy (MBE). Four APT data sets have been obtained, with fields of view up to 400 nm in depth and 120 nm in diameter. These data sets contain material from the InGaN quantum well (QW) active region, as well as the surrounding p- and n-doped waveguide and cladding layers, enabling comprehensive study of the structure and composition of the LD structure. Two regions of the same sample, with different average indium contents (18% and 16%) in the QW region, were studied. The APT data are shown to provide easy access to the p-type dopant levels, and the composition of a thin AlGaN barrier layer. Next, the distribution of indium within the InGaN QW was analyzed, to assess any possible inhomogeneity of the distribution of indium (''indium clustering''). No evidence for a statistically significant deviation from a random distribution was found, indicating that these MBE-grown InGaN QWs do not require indium clusters for carrier localization. However, the APT data show steps in the QW interfaces, leading to well-width fluctuations, which may act to localize carriers. Additionally, the unexpected presence of a small amount (x = 0.005) of indium in a layer grown intentionally as GaN was revealed. Finally, the same statistical method applied to the QW was used to show that the indium distribution within a thick InGaN waveguide layer in the n-doped region did not show any deviation from randomness.

  2. Ge/SiGe superlattices for nanostructured thermoelectric modules

    Energy Technology Data Exchange (ETDEWEB)

    Chrastina, D., E-mail: daniel@chrastina.net [L-NESS Politecnico di Milano, Polo di Como, via Anzani 42, 22100 Como (Italy); Cecchi, S. [L-NESS Politecnico di Milano, Polo di Como, via Anzani 42, 22100 Como (Italy); Hague, J.P. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Frigerio, J. [L-NESS Politecnico di Milano, Polo di Como, via Anzani 42, 22100 Como (Italy); Samarelli, A.; Ferre–Llin, L.; Paul, D.J. [School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow, G12 8LT (United Kingdom); Müller, E. [Electron Microscopy ETH Zurich (EMEZ), ETH-Zürich, CH-8093 (Switzerland); Etzelstorfer, T.; Stangl, J. [Institut für Halbleiter und Festkörperphysik, Universität Linz, A-4040 Linz (Austria); Isella, G. [L-NESS Politecnico di Milano, Polo di Como, via Anzani 42, 22100 Como (Italy)

    2013-09-30

    Thermoelectrics are presently used in a number of applications for both turning heat into electricity and also for using electricity to produce cooling. Mature Si/SiGe and Ge/SiGe heteroepitaxial growth technology would allow highly efficient thermoelectric materials to be engineered, which would be compatible and integrable with complementary metal oxide silicon micropower circuits used in autonomous systems. A high thermoelectric figure of merit requires that electrical conductivity be maintained while thermal conductivity is reduced; thermoelectric figures of merit can be improved with respect to bulk thermoelectric materials by fabricating low-dimensional structures which enhance the density of states near the Fermi level and through phonon scattering at heterointerfaces. We have grown and characterized Ge-rich Ge/SiGe/Si superlattices for nanofabricated thermoelectric generators. Low-energy plasma-enhanced chemical vapor deposition has been used to obtain nanoscale-heterostructured material which is several microns thick. Crystal quality and strain control have been investigated by means of high resolution X-ray diffraction. High-resolution transmission electron microscopy images confirm the material and interface quality. Electrical conductivity has been characterized by the mobility spectrum technique. - Highlights: ► High-quality Ge/SiGe multiple quantum wells for thermoelectric applications ► Mobility spectra of systems featuring a large number of parallel conduction channels ► Competitive thermoelectric properties measured in single devices.

  3. Structural features in GaN grown on a Ge(111) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; McAleese, C.; Xiu, H.; Humphreys, C.J. [Department of Materials Science and Metallurgy, University of Cambridge (United Kingdom); Lieten, R.R.; Degroote, S.; Borghs, G. [Interuniversity Microelectronics Center, Leuven (Belgium)

    2008-07-01

    Using electron microscopy, structural characterisation has been carried out on a GaN epilayer grown directly on a Ge(111) substrate using plasma assisted molecular beam epitaxy (PAMBE) without any intermediate buffer layers. It was determined that a defect with a triangular shape, initially observed with optical microscopy, is essentially a faceted void in the Ge extending from the interface into the substrate. Both hexagonal and cubic phase GaN were observed in the epilayer which may be due to temperature variation during growth. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Growth and atomic structure of tellurium thin films grown on Bi2Te3

    Science.gov (United States)

    Okuyama, Yuma; Sugiyama, Yuya; Ideta, Shin-ichiro; Tanaka, Kiyohisa; Hirahara, Toru

    2017-03-01

    We have grown tellurium (Te) thin films on Bi2Te3 and investigated the atomic structure. From low-energy electron diffraction (LEED) measurements, we found that the Te films are [10 1 bar0]-oriented with six domains. A detailed analysis of the reflection high-energy electron diffraction (RHEED) pattern revealed that the films are strained with the in-plane lattice constant compressed by ∼1.5% compared to the bulk value due to the epitaxy between Te and Bi2Te3. These films will be interesting systems to investigate the predicted topological phases that occur in strained Te.

  5. Superconducting superlattices 2: Native and artificial

    Energy Technology Data Exchange (ETDEWEB)

    Bozovic, I.; Pavuna, D. [eds.

    1998-12-31

    This volume is composed of 26 papers presented at the symposium. Topics covered include the following: high-{Tc} superlattices: intrinsic and artificial; low-{Tc} superlattices and multilayers; and theory.

  6. Rhizobacterial Community Structures Associated with Native Plants Grown in Chilean Extreme Environments.

    Science.gov (United States)

    Jorquera, Milko A; Maruyama, Fumito; Ogram, Andrew V; Navarrete, Oscar U; Lagos, Lorena M; Inostroza, Nitza G; Acuña, Jacquelinne J; Rilling, Joaquín I; de La Luz Mora, María

    2016-10-01

    Chile is topographically and climatically diverse, with a wide array of diverse undisturbed ecosystems that include native plants that are highly adapted to local conditions. However, our understanding of the diversity, activity, and role of rhizobacteria associated with natural vegetation in undisturbed Chilean extreme ecosystems is very poor. In the present study, the combination of denaturing gradient gel electrophoresis and 454-pyrosequencing approaches was used to describe the rhizobacterial community structures of native plants grown in three representative Chilean extreme environments: Atacama Desert (ATA), Andes Mountains (AND), and Antarctic (ANT). Both molecular approaches revealed the presence of Proteobacteria, Bacteroidetes, and Actinobacteria as the dominant phyla in the rhizospheres of native plants. Lower numbers of operational taxonomic units (OTUs) were observed in rhizosphere soils from ATA compared with AND and ANT. Both approaches also showed differences in rhizobacterial community structures between extreme environments and between plant species. The differences among plant species grown in the same environment were attributed to the higher relative abundance of classes Gammaproteobacteria and Alphaproteobacteria. However, further studies are needed to determine which environmental factors regulate the structures of rhizobacterial communities, and how (or if) specific bacterial groups may contribute to the growth and survival of native plants in each Chilean extreme environments.

  7. Co3O4(100) films grown on Ag(100): Structure and chemical properties

    Science.gov (United States)

    Arman, Mohammad A.; Merte, Lindsay R.; Lundgren, Edvin; Knudsen, Jan

    2017-03-01

    Spinel type Co3O4(100) is successfully grown on Ag(100) at ultrahigh vacuum conditions and its structure, electronic and chemical properties are compared with those of Co3O4(111) grown on Ir(100). We find that the Co3O4(100) is unreconstructed. In contrast to the defect free Co3O4(111) surface the Co3O4(100) surface contains a high concentration of defects that we assign to subsurface cation vacancies analogous to those observed for Fe3O4(100). Our photoemission and absorption spectroscopy experiments reveal a very similar electronic structure of the Co3O4(111) and Co3O4(100) surfaces. The similar electronic structure of the two surfaces is reflected in the CO adsorption properties at low temperatures, as we observe adsorption of molecular CO as well as the formation of carbonate (CO3) species on both surfaces upon CO exposure at 85 K.

  8. Spontaneous Superlattice Formation in Nanorods through PartialCation Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Richard D.; Sadtler, Bryce; Demchenko, Denis O.; Erdonmez, Can K.; Wang, Lin-Wang; Alivisatos, A. Paul

    2007-03-14

    Lattice mismatch strains are widely known to controlnanoscale pattern formation in heteroepitaxy, but such effects have notbeen exploited in colloidal nanocrystal growth. We demonstrate acolloidal route to synthesizing CdS-Ag2S nanorod superlattices throughpartial cation exchange. Strain induces the spontaneous formation ofperiodic structures. Ab initio calculations of the interfacial energy andmodeling of strain energies show that these forces drive theself-organization. The nanorod superlattices exhibit high stabilityagainst ripening and phase mixing. These materials are tunablenear-infrared emitters with potential applications as nanometer-scaleoptoelectronic devices.

  9. Binding Graphene Sheets Together Using Silicon: Graphene/Silicon Superlattice

    Directory of Open Access Journals (Sweden)

    Zhang Yong

    2010-01-01

    Full Text Available Abstract We propose a superlattice consisting of graphene and monolayer thick Si sheets and investigate it using a first-principles density functional theory. The Si layer is found to not only strengthen the interlayer binding between the graphene sheets compared to that in graphite, but also inject electrons into graphene, yet without altering the most unique property of graphene: the Dirac fermion-like electronic structure. The superlattice approach represents a new direction for exploring basic science and applications of graphene-based materials.

  10. A change in domain morphology in optical superlattice LiNbO sub 3 induced by thermal annealing

    CERN Document Server

    Lu Yan Qing; Luo Qi; Zhu Yong Yuan; Chen Xiang Fei; Xue Cheng Cheng; Ming Nai Ben

    1997-01-01

    Optical superlattice LiNbO sub 3 crystals were grown by the Czochralski method. The effect of thermal annealing below the Curie temperature on domain structures of a sample with good periodicity was studied. It was found that the periodic domain structure remained unchanged at annealing temperature lower than 1000 deg. C and began to deteriorate when annealed at above 1000 deg. C. A sample at 1100 deg. C for an hour almost changed to a single-domain structure except that a 60 mu m single-domain layer with reversed spontaneous polarization was formed at the edge of the sample. These results are useful for revealing the mechanism of formation of the periodic domain structure and designing a more favourable temperature field to improve the crystals' quality. A space-charge-field model was proposed to explain the phenomena. (author)

  11. The intensive terahertz electroluminescence induced by Bloch oscillations in SiC natural superlattices.

    Science.gov (United States)

    Sankin, Vladimir; Andrianov, Alexandr; Petrov, Alexey; Zakhar'in, Alexey; Lepneva, Ala; Shkrebiy, Pavel

    2012-10-09

    : We report on efficient terahertz (THz) emission from high-electric-field-biased SiC structures with a natural superlattice at liquid helium temperatures. The emission spectrum demonstrates a single line, the maximum of which shifts linearly with increases in bias field. We attribute this emission to steady-state Bloch oscillations of electrons in the SiC natural superlattice. The properties of the THz emission agree fairly with the parameters of the Bloch oscillator regime, which have been proven by high-field electron transport studies of SiC structures with natural superlattices.

  12. Transport in semiconductor nanowire superlattices described by coupled quantum mechanical and kinetic models.

    Science.gov (United States)

    Alvaro, M; Bonilla, L L; Carretero, M; Melnik, R V N; Prabhakar, S

    2013-08-21

    In this paper we develop a kinetic model for the analysis of semiconductor superlattices, accounting for quantum effects. The model consists of a Boltzmann-Poisson type system of equations with simplified Bhatnagar-Gross-Krook collisions, obtained from the general time-dependent Schrödinger-Poisson model using Wigner functions. This system for superlattice transport is supplemented by the quantum mechanical part of the model based on the Ben-Daniel-Duke form of the Schrödinger equation for a cylindrical superlattice of finite radius. The resulting energy spectrum is used to characterize the Fermi-Dirac distribution that appears in the Bhatnagar-Gross-Krook collision, thereby coupling the quantum mechanical and kinetic parts of the model. The kinetic model uses the dispersion relation obtained by the generalized Kronig-Penney method, and allows us to estimate radii of quantum wire superlattices that have the same miniband widths as in experiments. It also allows us to determine more accurately the time-dependent characteristics of superlattices, in particular their current density. Results, for several experimentally grown superlattices, are discussed in the context of self-sustained coherent oscillations of the current density which are important in an increasing range of current and potential applications.

  13. Van der Waals trilayers and superlattices: Modification of electronic structures of MoS2 by intercalation

    OpenAIRE

    Lu, N.; Guo, H. Y.; L. Wang; Wu, X. J.; Zeng, X. C.

    2014-01-01

    We perform a comprehensive first-principles study of the electronic properties of van der Waals (vdW) trilayers via intercalating a two-dimensional (2D) monolayer (ML = BN, MoSe2, WS2, or WSe2) between MoS2 bilayer to form various MoS2/ML/MoS2 sandwich trilayers. We find that the BN monolayer is the most effective sheet to decouple the interlayer vdW coupling of the MoS2 bilayer, and the resulting sandwich trilayer can recover the electronic structures of the MoS2 monolayer, particularly the ...

  14. Laser molecular-beam epitaxy and second-order optical nonlinearity of BaTiO3/SrTiO3 superlattices

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A series of c-axis oriented BaTiO3/SrTiO3 superlattices with the atomic-scale precision were epitaxially grown on single-crystal SrTiO3 (100) substrates using laser molecular-beam epitaxy (LMBE). A periodic modulation of the intensity of reflection high-energy electron diffraction (RHEED) in BaTiO3 and SrTiO3 layers was observed and attributed to the lattice-misfit-induced periodic variation of the terrace density in film surface. The relationship between the second-order nonlinear optical susceptibilities and the superlattice structure was systematically studied. The experimental and theoretical fitting results indicate that the second-order nonlinear optical susceptibilities of BaTiO3/SrTiO3 superlattices were greatly enhanced with the maximum value being more than one order of magnitude larger than that of bulk BaTiO3 crystal. The mechanism of the enhancement of the second-order optical nonlinearity was discussed by taking into account the stress-induced lattice distortion and polarization enhancement.

  15. Observation and understanding of anisotropic strain relaxation in selectively grown SiGe fin structures

    Science.gov (United States)

    Schulze, A.; Loo, R.; Ryan, P.; Wormington, M.; Favia, P.; Witters, L.; Collaert, N.; Bender, H.; Vandervorst, W.; Caymax, M.

    2017-04-01

    The performance of heterogeneous 3D transistor structures critically depends on the composition and strain state of the buffer, channel and source/drain regions. In this paper we used an in-line high resolution x-ray diffraction (HRXRD) tool to study in detail the composition and strain in selectively grown SiGe/Ge fin structures with widths down to 20 nm. For this purpose we arranged fins of identical dimensions into larger arrays which were then analyzed using an x-ray beam several tens of micrometers in size. Asymmetric reciprocal space maps measured both parallel and perpendicular to the fins allowed us to extract the lattice parameters in all three spatial directions. Our results demonstrate an anisotropic in-plane strain state of the selectively grown SiGe buffer in case of narrower fins with significantly reduced relaxation in the direction along the fin. This observation was verified using nano-beam electron diffraction, and is explained based on the reduced probability for dislocation half-loops to evolve in trenches narrower than a few times the critical radius. Moreover, we introduce and discuss in detail a methodology for the determination of the composition in case of an anisotropic in-plane strain state which differs from the procedure commonly used for blanket layers. Our findings verify the importance of in-line HRXRD measurements for process development and monitoring as well as the fundamental study of relaxation and defect formation in confined volumes.

  16. Low-power optically addressed spatial light modulators using MBE-grown III-V structures

    Science.gov (United States)

    Maserjian, Joseph L.; Larsson, Anders G.

    1991-12-01

    Device approaches are investigated for O-SLMs based on MBE engineered III-V materials and structures. Strong photo-optic effects can be achieved in periodically (delta) -doped multiple quantum well (MQW) structures. The doping-defined barriers serve to separate and delay recombination of the photo-generated electron-hole pairs. One can use this photo-effect to change the internal field across the MQWs giving rise to quantum-confined Stark shift. Alternately, the photo-generated electrons can be used to occupy the quantum wells, which in turn causes exciton quenching and a shift of the absorption edge. Recent work has shown that both of these predicted photo-optic effects can indeed be achieved in such MBE engineered structures. However, these enhanced effects are still insufficient for high contrast modulation with only single or double pass absorption through active layers of practical thickness. We use the asymmetric Fabry-Perot cavity approach which permits extinction of light due to interference of light reflected from the front and back surfaces of the cavity. Modulation of the absorption in the active cavity layers unbalances the cavity and 'turns on' the reflected output signal, thereby allowing large contrast ratios. This approach is realized with an all-MBE- grown structure consisting of a GaAs/AlAs quarter-wave stack reflector grown over the GaAs substrate as the high reflectance mirror (approximately equals 0.98) and the GaAs surface as the low reflectance mirror (approximately equals 0.3). We use for our active cavities InGaAs/GaAs MQWs separated by npn (delta) -doped GaAs barriers to achieve sensitive photo-optic effect due to exciton quenching. High contrast modulation (> 60:1) is achieved with the Fabry-Perot structures using low power (write signal.

  17. Fabrication and characterization of (111)-epitaxial Pb(Zr0.35Ti0.65)O3/Pb(Zr0.65Ti0.35)O3 artificial superlattice thin films

    Science.gov (United States)

    Yamada, Tomoaki; Ebihara, Youhei; Kiguchi, Takanori; Sakata, Osami; Morioka, Hitoshi; Shimizu, Takao; Funakubo, Hiroshi; Konno, Toyohiko J.; Yoshino, Masahito; Nagasaki, Takanori

    2016-10-01

    Artificial superlattice thin films consisting of two different compositions of Pb(Zr,Ti)O3 (PZT), which are in tetragonal and rhombohedral phases at room temperature in the bulk state, were grown on (111) c SrRuO3/(111)SrTiO3 by pulsed laser deposition. Fairly perfect periodicity with sharp interfaces was observed by X-ray diffraction and scanning transmission electron microscopy. It was found that the film with each layer of 5 nm thickness had a single-domain structure for both PZT layers, which would arise from the strong mechanical and electrical coupling between PZT layers. The fabricated superlattice thin films showed saturated P-E hysteresis curves. Larger electromechanical response was observed in the films with smaller layer thickness.

  18. Magnetic Bloch oscillations in nanowire superlattice rings.

    Science.gov (United States)

    Citrin, D S

    2004-05-14

    The recent growth of semiconductor nanowire superlattices encourages hope that Bloch-like oscillations in such structures formed into rings may soon be observed in the presence of a time-dependent magnetic flux threading the ring. These magnetic Bloch oscillations are a consequence of Faraday's law; the time-dependent flux produces an electromotive force around the ring, thus leading to the Bloch-like oscillations. In the spectroscopic domain, generalized Wannier-Stark states are found that are manifestations of the emf-induced localization of the states.

  19. Structural features of Ge(Ga) single crystals grown by the floating zone method in microgravity

    Science.gov (United States)

    Prokhorov, I. A.; Zakharov, B. G.; Senchenkov, A. S.; Egorov, A. V.; Camel, D.; Tison, P.

    2008-11-01

    Structural features of the Ge(Ga) single crystal grown by the floating zone (FZ) method in microgravity environment aboard the FOTON-9 spacecraft are investigated by methods of X-ray topography, double-crystal diffractometry, selective chemical etching and spreading resistance measurements. It is established that the crystal structure is characterized by the presence of an incompletely melted region and defects caused by its formation. Growth striations revealed in regrown part of the crystal, testify to development of non-stationary capillary Marangoni convection in melt at the realized parameters of FZ remelting under space conditions. Periodicity of the growth striations is compared to frequency characteristics of heat flux pulsations through the crystallization front, found as a result of numerical simulation of melt hydrodynamics.

  20. Structural and optical characterizations of InPBi thin films grown by molecular beam epitaxy.

    Science.gov (United States)

    Gu, Yi; Wang, Kai; Zhou, Haifei; Li, Yaoyao; Cao, Chunfang; Zhang, Liyao; Zhang, Yonggang; Gong, Qian; Wang, Shumin

    2014-01-13

    InPBi thin films have been grown on InP by gas source molecular beam epitaxy. A maximum Bi composition of 2.4% is determined by Rutherford backscattering spectrometry. X-ray diffraction measurements show good structural quality for Bi composition up to 1.4% and a partially relaxed structure for higher Bi contents. The bandgap was measured by optical absorption, and the bandgap reduction caused by the Bi incorporation was estimated to be about 56 meV/Bi%. Strong and broad photoluminescence signals were observed at room temperature for samples with xBi < 2.4%. The PL peak position varies from 1.4 to 1.9 μm, far below the measured InPBi bandgap.

  1. Structural properties and gas sensing behavior of sol-gel grown nanostructured zinc oxide

    Science.gov (United States)

    Rajyaguru, Bhargav; Gadani, Keval; Rathod, K. N.; Solanki, Sapana; Kansara, S. B.; Pandya, D. D.; Shah, N. A.; Solanki, P. S.

    2016-05-01

    In this communication, we report the results of the studies on structural properties and gas sensing behavior of nanostructured ZnO grown using acetone precursor based modified sol-gel technique. Final product of ZnO was sintered at different temperatures to vary the crystallite size while their structural properties have been studied using X-ray diffraction (XRD) measurement performed at room temperature. XRD results suggest the single phasic nature of all the samples and crystallite size increases from 11.53 to 20.96nm with increase in sintering temperature. Gas sensing behavior has been studied for acetone gas which indicates that lower sintered samples are more capable to sense the acetone gas and related mechanism has been discussed in the light of crystallite size, crystal boundary density, defect mechanism and possible chemical reaction between gas traces and various oxygen species.

  2. Structural and optical characterization and scintillator application of hydrothermal-grown ZnO microrods

    Science.gov (United States)

    Empizo, Melvin John F.; Santos-Putungan, Alexandra B.; Yamanoi, Kohei; Salazar, Hernanie T.; Anguluan, Eloise P.; Mori, Kazuyuki; Arita, Ren; Minami, Yuki; Luong, Mui Viet; Shimizu, Toshihiko; Estacio, Elmer S.; Somintac, Armando S.; Salvador, Arnel A.; Sarmago, Roland V.; Fukuda, Tsuguo; Sarukura, Nobuhiko

    2017-03-01

    ZnO microrods are fabricated by a simple hydrothermal growth route using zinc acetate dihydrate [Zn(CH3COO)2·2H2O] and hexamethylenetetramine [(CH2)6N4] aqueous solutions. The as-prepared microrods exhibit uniform dimensions, well-faceted surfaces, and hexagonal crystal structure. The microrods also have an intense ultraviolet (UV) emission at 392 nm with an average lifetime of 80 ps. No peaks are observed at the visible wavelengths that can be attributed to defect-related emissions. With excellent structural and optical properties and with loose adhesion to their substrates, the ZnO microrods can be isolated, harvested, and manipulated and can be integrated as building blocks of a microstructured scintillator screen. The proposed scintillator screen possibly offers efficient and precise detection with high resolution. Hydrothermal-grown ZnO microrods then hold a promise towards radiation detector innovation and integrated optoelectronic microsystems.

  3. Investigation of miniband formation and optical properties of strain-balanced InGaAs/GaAsP superlattice structure embedded in p-i-n GaAs solar cells

    Science.gov (United States)

    Fukuyama, Atsuhiko; Matsuochi, Kouki; Nakamura, Tsubasa; Takeda, Hideaki; Toprasertpong, Kasidit; Sugiyama, Masakazu; Nakano, Yoshiaki; Suzuki, Hidetoshi; Ikari, Tetsuo

    2017-08-01

    To improve the superlattice (SL) solar cell performance, we carried out an accurate estimation of transition energies and miniband widths and focused on understanding of the optical properties of the SL structure using piezoelectric photothermal (PPT), photoreflectance (PR), and photoluminescence (PL) methods. Solar cell structure samples with different barrier thicknesses from 2.0 to 7.8 nm in quantum wells were prepared. From the PR and theoretical calculation, the formation of a miniband was confirmed. The PL peak showed a redshift and a decrease in signal intensity with decreasing barrier thickness, which were explained by carrier separation as a consequence of electron transportation through the miniband without recombination. The PPT signal intensities of the SL were still large even for the 2.0-nm-barrier-thickness sample. It is conceivable that the multiple-phonon emission during carrier transport through the miniband was detected. The usefulness of multidimensional investigation by using the above three methods is clearly demonstrated.

  4. Plant growth and soil microbial community structure of legumes and grasses grown in monoculture or mixture

    Institute of Scientific and Technical Information of China (English)

    CHEN Meimei; CHEN Baodong; MARSCHNER Petra

    2008-01-01

    A greenhouse pot experiment was conducted to investigate the influence of soil moisture eontent on plant growth and the rhizospheremicrobial community structure of four plant species (white clover, alfalfa, sudan grass, tall fescue), grown individually or in a mixture.The soil moisture content was adjusted to 55% or 80% water holding capacity (WHC). The results indicated that the total plant biomassof one pot was lower at 55% WHC. At a given soil moisture, the total plant biomass of white clover and tall fescue in the mixture waslower than that in a monoculture, indicating their poor competitiveness. For leguminous plants, the decrease in soil moisture reducedthe total microbial biomass, bacterial biomass, fungal biomass, and fungal/baeterial ratio in soil as assessed by the phospholipid fattyacid analysis, whereas, lower soil moisture increased those parameters in the tall fescue. The microbial biomass in the soil with legumeswas higher than that in the soil with grasses and the two plant groups differed in soil microbial community composition. At high soilmoisture content, microbial communities of the plant mixture were similar to those of the legume monoculture, and the existenceof legumes in the mixture enhanced the bacterial and fungal biomass in the soil compared to the grasses grown in the monoculture,indicating that legumes played a dominant role in the soil microbial community changes in the plant mixture.

  5. Morphology evolution of hydrothermally grown ZnO nanostructures on gallium doping and their defect structures

    Energy Technology Data Exchange (ETDEWEB)

    Pineda-Hernandez, G. [Facultad de Ingenieria Quimica, Benemerita Universidad Autonoma de Puebla, C.P. 72570 Puebla, Pue. (Mexico); Escobedo-Morales, A., E-mail: alejandroescobedo@hotmail.com [Facultad de Ingenieria Quimica, Benemerita Universidad Autonoma de Puebla, C.P. 72570 Puebla, Pue. (Mexico); Pal, U. [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Apdo. Postal J-48, C.P. 72570 Puebla, Pue. (Mexico); Chigo-Anota, E. [Facultad de Ingenieria Quimica, Benemerita Universidad Autonoma de Puebla, C.P. 72570 Puebla, Pue. (Mexico)

    2012-08-15

    In the present article, the effect of gallium doping on the morphology, structural, and vibrational properties of hydrothermally grown ZnO nanostructures has been studied. It has been observed that incorporated gallium plays an important role on the growth kinetics and hence on the morphology evolution of the ZnO crystals. Ga doping in high concentration results in the contraction of ZnO unit cell, mainly along c-axis. Although Ga has high solubility in ZnO, heavy doping promotes the segregation of Ga atoms as a secondary phase. Incorporated Ga atoms strongly affect the vibrational characteristics of ZnO lattice and induce anomalous Raman modes. Possible mechanisms of morphology evolution and origin of anomalous Raman modes in Ga doped ZnO nanostructures are discussed. -- Highlights: Black-Right-Pointing-Pointer Ga doped ZnO nanostructures were successfully grown by hydrothermal chemical route. Black-Right-Pointing-Pointer Ga doping has strong effect on the resulting morphology of ZnO nanostructures. Black-Right-Pointing-Pointer Anomalous vibrational modes in wurtzite ZnO lattice are induced by Ga doping. Black-Right-Pointing-Pointer Incorporated Ga atoms accommodate at preferential lattice sites.

  6. Optical Properties of Self-Organized PbS Quantum Dot Superlattices

    Institute of Scientific and Technical Information of China (English)

    YE Chang-Hui; YAO Lian-Zeng; MU Ji-Mei; SHI Gang; ZHANG Li-De

    2000-01-01

    Self-organization of PbS into quantum dot superlattices has been demonstrated for the first time, and hexaplanar colloidal crystals 1 - 10 μm in size made from PbS quantum dots 3 - 6 nm in diameter are revealed in transmissionelectron microscope micrographs, and the inner structures of the superlattices can be seen by a high resolution transmission electron microscopy. The optical absorption and photoluminescence spectra have been recorded. The ordering of the superlattices is crucial for the understanding of the fundamental properties of quantum-dot arrays, as well as for their optimal utilization in optical and electronic applications.

  7. Structure-Dependent Mechanical Properties of ALD-Grown Nanocrystalline BiFeO3 Multiferroics

    Directory of Open Access Journals (Sweden)

    Anna Majtyka

    2016-01-01

    Full Text Available The present paper pertains to mechanical properties and structure of nanocrystalline multiferroic BeFiO3 (BFO thin films, grown by atomic layer deposition (ALD on the Si/SiO2/Pt substrate. The usage of sharp-tip-nanoindentation and multiple techniques of structure examination, namely, grazing incidence X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectrometry, enabled us to detect changes in elastic properties (95 GPa≤E≤118 GPa and hardness (4.50 GPa≤H≤7.96 GPa of BFO after stages of annealing and observe their relation to the material’s structural evolution. Our experiments point towards an increase in structural homogeneity of the samples annealed for a longer time. To our best knowledge, the present report constitutes the first disclosure of nanoindentation mechanical characteristics of ALD-fabricated BeFiO3, providing a new insight into the phenomena that accompany structure formation and development of nanocrystalline multiferroics. We believe that our systematic characterization of the BFO layers carried out at consecutive stages of their deposition provides pertinent information which is needed to control and optimize its ALD fabrication.

  8. Perovskite Superlattices as Tunable Microwave Devices

    Science.gov (United States)

    Christen, H. M.; Harshavardhan, K. S.

    2003-01-01

    Experiments have shown that superlattices that comprise alternating epitaxial layers of dissimilar paraelectric perovskites can exhibit large changes in permittivity with the application of electric fields. The superlattices are potentially useful as electrically tunable dielectric components of such microwave devices as filters and phase shifters. The present superlattice approach differs fundamentally from the prior use of homogeneous, isotropic mixtures of base materials and dopants. A superlattice can comprise layers of two or more perovskites in any suitable sequence (e.g., ABAB..., ABCDABCD..., ABACABACA...). Even though a single layer of one of the perovskites by itself is not tunable, the compositions and sequence of the layers can be chosen so that (1) the superlattice exhibits low microwave loss and (2) the interfacial interaction between at least two of the perovskites in the superlattice renders either the entire superlattice or else at least one of the perovskites tunable.

  9. X-ray standing wave studies of strained InxGa1-xAs/InP short-period superlattices

    Science.gov (United States)

    Aruta, Carmela; Lamberti, Carlo; Gastaldi, Luigi; Boscherini, Federico

    2003-05-01

    We report an x-ray standing wave (XSW) study on a set of structurally well-characterized InxGa1-xAs/InP short-period superlattices grown by metal-organic chemical vapor deposition and chemical-beam epitaxy techniques. It was possible to model the x-ray standing wave profiles only once the superlattice period has been assumed to be constituted by four layers of well-defined chemical composition [barrier (InP), first interface (InAs0.7P0.3), well (In0.53Ga0.47As), and second interface (In0.53Ga0.47As0.7P0.3)], and of variable thickness. The thickness of the four layers have been obtained by fitting the high resolution x-ray diffraction profiles of the heterostructures. The presence of partially disordered interface layers, as evidenced by a transmission electron microscopy study, causes a significant reduction of the coherent fraction, F, of both Ga and As atoms. The difference in F values among measured samples illustrates how the XSW can provide important information on the quality of semiconductor superlattices. Comparison with a "long period (160 Å)" In0.53Ga0.47As/InP superlattice, where the role played by InAs0.7P0.3 and In0.53Ga0.47As0.7P0.3 interface layers is negligible, confirms this picture. The coherent fraction of both As and Ga correlates well with the average perpendicular lattice misfit determined by x-ray diffraction.

  10. Einstein's Photoemission from Quantum Confined Superlattices.

    Science.gov (United States)

    Debbarma, S; Ghatak, K P

    2016-01-01

    This paper is dedicated to the 83th Birthday of Late Professor B. R. Nag, D.Sc., formerly Head of the Departments of Radio Physics and Electronics and Electronic Science of the University of Calcutta, a firm believer of the concept of theoretical minimum of Landau and an internationally well known semiconductor physicist, to whom the second author remains ever grateful as a student and research worker from 1974-2004. In this paper, an attempt is made to study, the Einstein's photoemission (EP) from III-V, II-VI, IV-VI, HgTe/CdTe and strained layer quantum well heavily doped superlattices (QWHDSLs) with graded interfaces in the presence of quantizing magnetic field on the basis of newly formulated electron dispersion relations within the frame work of k · p formalism. The EP from III-V, II-VI, IV-VI, HgTe/CdTe and strained layer quantum wells of heavily doped effective mass superlattices respectively has been presented under magnetic quantization. Besides the said emissions, from the quantum dots of the aforementioned heavily doped SLs have further investigated for the purpose of comparison and complete investigation in the context of EP from quantum confined superlattices. Using appropriate SLs, it appears that the EP increases with increasing surface electron concentration and decreasing film thickness in spiky manners, which are the characteristic features of such quantized hetero structures. Under magnetic quantization, the EP oscillates with inverse quantizing magnetic field due to Shuvnikov-de Haas effect. The EP increases with increasing photo energy in a step-like manner and the numerical values of EP with all the physical variables are totally band structure dependent for all the cases. The most striking features are that the presence of poles in the dispersion relation of the materials in the absence of band tails create the complex energy spectra in the corresponding HD constituent materials of such quantum confined superlattices and effective electron

  11. The Role of Ligand Packing Frustration in Body-Centered Cubic (bcc) Superlattices of Colloidal Nanocrystals.

    Science.gov (United States)

    Goodfellow, Brian W; Yu, Yixuan; Bosoy, Christian A; Smilgies, Detlef-M; Korgel, Brian A

    2015-07-02

    This paper addresses the assembly of body centered-cubic (bcc) superlattices of organic ligand-coated nanocrystals. First, examples of bcc superlattices of dodecanethiol-capped Au nanocrystals and oleic acid-capped PbS and PbSe nanocrystals are presented and examined by transmission electron microscopy (TEM) and grazing incidence small-angle X-ray scattering (GISAXS). These superlattices tend to orient on their densest (110) superlattice planes and exhibit a significant amount of {112} twinning. The same nanocrystals deposit as monolayers with hexagonal packing, and these thin films can coexist with thicker bcc superlattice layers, even though there is no hexagonal plane in a bcc lattice. Both the preference of bcc in bulk films over the denser face-centered cubic (fcc) superlattice structure and the transition to hexagonal monolayers can be rationalized in terms of packing frustration of the ligands. A model is presented to calculate the difference in entropy associated with capping ligand packing frustration in bcc and fcc superlattices.

  12. Dislocation structure of Ge crystals grown by low thermal gradient Czochralski technique

    Science.gov (United States)

    Trukhanov, E. M.; Fritzler, K. B.; Vasilenko, A. P.; Kolesnikov, A. V.; Kasimkin, P. V.; Moskovskih, V. A.

    2017-06-01

    Dislocation structure of the Ge single crystals grown by Czochralski method with low thermal gradient has been studied. The selective etching technique and the X-Ray transmission and reflection topography were used. Clearly defined non-uniform dislocation distribution over the crystal cross - section is revealed. Helical dislocations and sets of prismatic dislocation loops are registered. Helical dislocations perpendicular to the ingot axis are situated near the boundary between the regions with low and high dislocation densities (102 and 103 cm-2, respectively). Their length can be as much as several millimeters. Dislocation formations lying at a 35.3° to the crystal axis along directions are also observed. These formations have the shape of prism confined by {111} planes.

  13. Solidification structures grown under induced flow and continuous casting of steel

    Science.gov (United States)

    Tsavaras, A. A.

    1984-01-01

    The use of induced flow as a means to control solidification structures in strand cast steel is investigated. The quality problems in strand cast steel stemming from columnar growth can be partially controlled, by Electro Magnetic Stirring (EMS). Induced flow changes the normal morphology of dendrites. Solids grown under intense stirring conditions show both negative and positive segregation which is considered unacceptable by some steel producers. The inclusion size and population is strongly affected by induced flow (EMS). Laboratory and industrial data show substantial reduction in inclusion size and content, but the overall effect of flow on inclusions is affected by the particular type of flow patterns utilized in each case. Productivity and quality are raised substantially in steel strand casting by utilizing EMS.

  14. Optical and structural properties of MOVPE-grown GaInSb/GaSb quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Wagener, Viera, E-mail: viera.wagener@nmmu.ac.z [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Olivier, E.J.; Botha, J.R. [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa)

    2009-12-15

    This paper reports on the optical and structural properties of strained type-I Ga{sub 1-x}In{sub x}Sb quantum wells embedded in GaSb from a metal-organic vapour phase epitaxial growth perspective. Photoluminescence measurements and transmission electron microscopy were used to evaluate the effect of the growth temperature on the quality of Ga{sub 1-x}In{sub x}Sb strained layers with varied alloy compositions and thicknesses. Although the various factors contributing to the overall quality of the strained layers are difficult to separate, the quantum well characteristics are significantly altered by the growth temperature. Despite the high growth rates (approx2 nm/s), quantum wells grown at 607 deg. C display photoluminescence emissions with full-width at half-maximum of 3.5-5.0 meV for an indium solid content (x) up to 0.15.

  15. Studies on bulk growth, structural and microstructural characterization of 4-aminobenzophenone single crystal grown from vertical Bridgman technique

    Indian Academy of Sciences (India)

    S P Prabhakaran; R Ramesh Babu; G Bhagavannarayana; K Ramamurthi

    2014-02-01

    Bulk single crystal of 4-aminobenzophenone with a size of 25 mm dia. and 35 mm length has been grown by vertical Bridgman technique. The crystal system of the grown crystal was confirmed by X-ray diffraction analysis. Crystalline perfection was analysed by high resolution X-ray diffraction studies. Chemical etching was carried out for the first time in 4-aminobenzophenone single crystal to study the defects presented in the grown crystal and the growth mechanism involved. Several organic etchants were employed with different etching time to select suitable etchant for studying dislocation pattern and other structural defects existing in the grown crystal. Etch patterns such as spirals and striations observed for the selective etchants provide considerable information on growth mechanism of the crystal.

  16. Investigation of InAs/GaSb-based superlattices by diffraction methods

    Energy Technology Data Exchange (ETDEWEB)

    Ashuach, Y.; Kauffmann, Y.; Lakin, E. [Department of Materials Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Zolotoyabko, E., E-mail: zloto@tx.technion.ac.i [Department of Materials Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Grossman, S.; Klin, O.; Weiss, E. [SCD, SemiConductor Devices, P. O. Box 2250, Haifa 31021 (Israel)

    2010-02-15

    We use high-resolution X-ray diffraction and high-resolution transmission electron microscopy in order to study the strain state, atomic intermixing and layer thicknesses in the MBE-grown GaSb/InSb/InAs/InSb superlattices. Simple and fast metrology procedure is developed, which allows us to obtain the most important technological parameters, such as the thicknesses of the GaSb, InAs and ultra-thin InSb sub-layers, the superlattice period and the fraction of atomic substitutions in the InSb sub-layers.

  17. Electrical and structural properties of (Pd/Au) Schottky contact to as grown and rapid thermally annealed GaN grown by MBE

    Energy Technology Data Exchange (ETDEWEB)

    Nirwal, Varun Singh, E-mail: varun.nirwal30@gmail.com; Singh, Joginder; Gautam, Khyati; Peta, Koteswara Rao [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021 (India)

    2016-05-06

    We studied effect of thermally annealed GaN surface on the electrical and structural properties of (Pd/Au) Schottky contact to Ga-polar GaN grown by molecular beam epitaxy on Si substrate. Current voltage (I-V) measurement was used to study electrical properties while X-ray diffraction (XRD) measurement was used to study structural properties. The Schottky barrier height calculated using I-V characteristics was 0.59 eV for (Pd/Au) Schottky contact on as grown GaN, which increased to 0.73 eV for the Schottky contact fabricated on 700 °C annealed GaN film. The reverse bias leakage current at -1 V was also significantly reduced from 6.42×10{sup −5} A to 7.31×10{sup −7} A after annealing. The value of series resistance (Rs) was extracted from Cheung method and the value of R{sub s} decreased from 373 Ω to 172 Ω after annealing. XRD results revealed the formation of gallide phases at the interface of (Pd/Au) and GaN for annealed sample, which could be the reason for improvement in the electrical properties of Schottky contact after annealing.

  18. Evolving random fractal Cantor superlattices for the infrared using a genetic algorithm.

    Science.gov (United States)

    Bossard, Jeremy A; Lin, Lan; Werner, Douglas H

    2016-01-01

    Ordered and chaotic superlattices have been identified in Nature that give rise to a variety of colours reflected by the skin of various organisms. In particular, organisms such as silvery fish possess superlattices that reflect a broad range of light from the visible to the UV. Such superlattices have previously been identified as 'chaotic', but we propose that apparent 'chaotic' natural structures, which have been previously modelled as completely random structures, should have an underlying fractal geometry. Fractal geometry, often described as the geometry of Nature, can be used to mimic structures found in Nature, but deterministic fractals produce structures that are too 'perfect' to appear natural. Introducing variability into fractals produces structures that appear more natural. We suggest that the 'chaotic' (purely random) superlattices identified in Nature are more accurately modelled by multi-generator fractals. Furthermore, we introduce fractal random Cantor bars as a candidate for generating both ordered and 'chaotic' superlattices, such as the ones found in silvery fish. A genetic algorithm is used to evolve optimal fractal random Cantor bars with multiple generators targeting several desired optical functions in the mid-infrared and the near-infrared. We present optimized superlattices demonstrating broadband reflection as well as single and multiple pass bands in the near-infrared regime.

  19. Structural origin of perpendicular magnetic anisotropy in epitaxial CoPt3 nanostructures grown on WSe2(0001)

    Science.gov (United States)

    Liscio, F.; Maret, M.; Meneghini, C.; Mobilio, S.; Proux, O.; Makarov, D.; Albrecht, M.

    2010-03-01

    We present a detailed analysis of the local ordering in CoPt3 nanostructures epitaxially grown on WSe2(0001) and NaCl(001) low-energy surfaces. Polarized extended x-ray absorption fine-structure measurements at the CoK -edge show a local structural anisotropy in fcc CoPt3 nanostructures grown at 300 K on WSe2 . It is characterized by preferential Co-Co bonding along the in-plane direction balanced with preferential heteroatomic bonding along the out-of-plane direction and explains the unexpected perpendicular magnetic anisotropy. Such anisotropy almost vanishes in partially L12 -ordered nanostructures grown at 700 K. In contrast, the short-range order is isotropic in CoPt3 nanostructures grown on NaCl(001) at 370 K. These different behaviors emphasize the favorable role of Se segregated atoms of WSe2 in the dynamic segregation of Pt atoms at the advancing surface during codeposition, which governs the local structural anisotropy. In the absence of Se, as previously observed in epitaxial CoPt3 films grown on Ru buffer layers, the development of similar structural anisotropy requires higher growth temperatures (550-720 K).

  20. Electronic excitation induced structural and optical modifications in InGaN/GaN quantum well structures grown by MOCVD

    Science.gov (United States)

    Prabakaran, K.; Ramesh, R.; Jayasakthi, M.; Surender, S.; Pradeep, S.; Balaji, M.; Asokan, K.; Baskar, K.

    2017-03-01

    The present study focuses on the electronic excitation induced structural and optical properties of InGaN/GaN quantum well (QW) structures grown by metal organic chemical vapor deposition technique. These excitations were produced using Au7+ ion irradiation with 100 MeV energy. The X-ray rocking curves intensity and full width at half-maximum values corresponding to the planes of (0 0 0 2) and (1 0 -1 5) of the irradiated QW structures show the modifications in the screw and edge-type dislocation densities vary with the ion fluences. The structural characteristics using the reciprocal space mapping indicate the intermixing effects in InGaN/GaN QW structures. Atomic force microscopy images confirmed the presence of nanostructures and the surface modification due to heavy ion irradiation. The irradiated QW structures exhibited degraded photoluminescence intensity and a subsequent decrease in the yellow luminescence band intensity with the fluences of 1 × 1011 and 5 × 1012 ions/cm2 compared to the pristine QW structures.

  1. Structural and magnetic properties of FeF sub 2 (001)/ZnF sub 2 (001) and FeF sub 2 (110)/ZnF sub 2 (110) superlattices

    CERN Document Server

    Yamazaki, H

    2003-01-01

    Using the molecular beam epitaxy technique, fluoride superlattices of FeF sub 2 (001)/ZnF sub 2 (001) and FeF sub 2 (110)/ZnF sub 2 (110) were prepared on single-crystal substrates, Al sub 2 O sub 3 (101-bar 0) and MgO(100), respectively. In addition to structural characterization, dependence of the Neel temperature on the thickness of the FeF sub 2 (001) and (110) layers was investigated in detail. The observed periodic variations of the Neel temperature with a period of 1 atomic monolayer were discussed in terms of an interface-topographical frustration due to the competing exchange interactions of J sub 2 and J sub 3.

  2. Exploring optimum growth window for high quality InAs/GaInSb superlattice materials

    Science.gov (United States)

    Haugan, H. J.; Brown, G. J.; Kim, M.; Mahalingam, K.; Elhamri, S.; Mitchel, W. C.; Grazulis, L.

    2013-06-01

    We report ternary growth studies to develop a largely strained InAs/InGaSb superlattice (SL) material for very long wavelength infrared (VLWIR) detection. We select a SL structure of 47.0 Å InAs/21.5 Å In0.25Ga0.75Sb that theoretically designed for the greatest possible detectivity, and tune growth conditions for the best possible material quality. Since material quality of grown SLs is largely influenced by extrinsic defects such as nonradiative recombination centers and residual background dopings in the grown layers, we investigate the effect of growth temperature (Tg) on the spectral responses and charge carrier transports using photoconductivity and temperature-dependent Hall effect measurements. Results indicate that molecular beam epitaxy (MBE) growth process we developed produces a consistent gap near 50 meV within a range of few meV, but SL spectral sensing determined by photoresponse (PR) intensity is very sensitive to the minor changes in Tg. For the SLs grown from 390 to 470 °C, a PR signal gradually increases as Tg increases from 400 to 440 °C by reaching a maximum at 440 °C. Outside this growth window, the SL quality deteriorates very rapidly. All SLs grown for this study were n-type, but the mobility varied in a variety of range between 11,300 and 21 cm2/Vs. The mobility of the SL grown at 440 °C was approximately 10,000 V/cm2 with a sheet carrier concentration of 5 × 1011 cm-2, but the mobility precipitously dropped to 21 cm2/Vs at higher temperatures. Using the knowledge we learned from this growth set, other growth parameters for the MBE ternary SL growth should be further adjusted in order to achieve high performance of InAs/InGaSb materials suitable for VLWIR detection.

  3. Influence of Fermi velocity engineering on electronic and optical properties of graphene superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Aram, Tahereh Nemati [Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of); Université Grenoble Alpes, Institut Neel, 38042 Grenoble (France); Asgari, Asghar, E-mail: asgari@tabrizu.ac.ir [Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of); School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Crawley, WA 6009 (Australia)

    2015-06-05

    In this paper, using Kronig–Penney model, the electronic states in graphene-based superlattices with various substrates and considering exact electron Fermi velocity values are investigated. The analysis of our results clearly indicates that the difference between Fermi velocity values of gaped and gapless graphene regions determines the patency rate of band gap. Also, using transfer matrix method (TMM) the absorbance spectrum of mentioned structures is calculated. The more important result is that the absorbance of these structures is significantly near zero. - Highlights: • The electronic states in graphene superlattices with various substrates are investigated. • The exact electron Fermi velocity values are considered. • Using TMM the absorbance spectrum of two graphene-based superlattices is calculated. • The widest (narrowest) energy band gap belong to quartz–SiC (quartz–h-BN) superlattice.

  4. Structural and nonlinear optical properties of as-grown and annealed metallophthalocyanine thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zawadzka, A., E-mail: azawa@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Płóciennik, P.; Strzelecki, J. [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Pranaitis, M.; Dabos-Seignon, S.; Sahraoui, B. [LUNAM Université, Université d' Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 bd Lavoisier, 49045 Angers cedex (France)

    2013-10-31

    The paper presents the Third Harmonic Generation investigation of four metallophtalocyanine (MPc, M = Cu, Co, Mg and Zn) thin films. The investigated films were fabricated by Physical Vapor Deposition in high vacuum onto quartz substrates. MPc thin films were annealed after fabrication in ambient atmosphere for 12 h at the temperature equal to 150 °C or 250 °C. The Third Harmonic Generation spectra were measured to investigate the nonlinear optical properties and their dependence on the structure of the thin film after the annealing process. This approach allowed us to determine the electronic contribution of the third-order nonlinear optical susceptibility χ{sup <3>}{sub elec} of these MPc films and to investigate two theoretical models for explanation of the observed results. We find that the annealing process significantly changes the optical and structural properties of MPc thin films. - Highlights: • Metallophtalocyanine thin films were grown by Physical Vapor Deposition technique. • MPcs thin films were undergone an annealing process in ambient atmosphere. • Third Harmonic spectra were measured to investigate nonlinear optical properties. • The third order nonlinear optical susceptibility χ{sup <3>}{sub elec} was determined. • We report changing both nonlinear optical and structural properties of thin films.

  5. Superheating Suppresses Structural Disorder in Layered BiI3 Semiconductors Grown by the Bridgman Method

    Energy Technology Data Exchange (ETDEWEB)

    Johns, Paul M.; Sulekar, Soumitra; Yeo, Shinyoung; Baciak, James E.; Bliss, Mary; Nino, Juan C.

    2016-01-01

    The susceptibility of layered structures to stacking faults is a problem in some of the more attractive semiconductor materials for ambient-temperature radiation detectors. In the work presented here, Bridgman-grown BiI3 layered single crystals are investigated to understand and eliminate this structural disorder, which reduces radiation detector performance. The use of superheating gradients has been shown to improve crystal quality in non-layered semiconductor crystals; thus the technique was here explored to improve the growth of BiI3. When investigating the homogeneity of non-superheated crystals, highly geometric void defects were found to populate the bulk of the crystals. Applying a superheating gradient to the melt prior to crystal growth improved structural quality and decreased defect density from the order of 4600 voids per cm3 to 300 voids per cm3. Corresponding moderate improvements to electronic properties also resulted from the superheat gradient method of crystal growth. Comparative measurements through infrared microscopy, etch-pit density, x-ray rocking curves, and sheet resistivity readings show that superheat gradients in BiI3 growth led to higher quality crystals.

  6. Superheating suppresses structural disorder in layered BiI3 semiconductors grown by the Bridgman method

    Science.gov (United States)

    Johns, Paul M.; Sulekar, Soumitra; Yeo, Shinyoung; Baciak, J. E.; Bliss, Mary; Nino, Juan C.

    2016-01-01

    The susceptibility of layered structures to stacking faults is a problem in some of the more attractive semiconductor materials for ambient-temperature radiation detectors. In this work, Bridgman-grown BiI3 layered single crystals are investigated to understand and eliminate structural disorder, which reduces radiation detector performance. The use of superheating gradients has been shown by others to improve crystal quality in non-layered semiconductor crystals (Rudolph et al., 1996) [26]; thus the technique was explored to improve the growth of BiI3. When investigating the homogeneity of non-superheated crystals, highly geometric void defects were found to populate the bulk of the crystals. Applying a superheating gradient to the melt prior to crystal growth improved structural quality and decreased defect density from the order of 4600 voids per cm3 to 300 voids per cm3. Corresponding moderate improvements to electronic properties also resulted from the superheat gradient method of crystal growth. Comparative measurements through infrared microscopy, etch-pit density, X-ray rocking curves, and sheet resistivity readings show that superheat gradients in BiI3 growth led to higher quality crystals.

  7. Electronic excitation induced structural and optical modifications in InGaN/GaN quantum well structures grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Prabakaran, K.; Ramesh, R.; Jayasakthi, M.; Surender, S.; Pradeep, S. [Crystal Growth Centre, Anna University, Chennai (India); Balaji, M. [National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai (India); Asokan, K. [Inter-University Accelerator Centre, New Delhi (India); Baskar, K., E-mail: drbaskar2009@gmail.com [Crystal Growth Centre, Anna University, Chennai (India); Manonmaniam Sundaranar University, Tirunelveli (India)

    2017-03-01

    Highlights: • Effects on InGaN/GaN QW structures by Au{sup 7+} (100 MeV) ion have been investigated. • Structural defects of the irradiated InGaN/GaN QW structures are determined. • The intermixing effect in irradiated InGaN/GaN QW structures were understood. • Modified luminescence was observed in the PL spectra due to heavy ion irradiation. • Surface modification was observed due to the heavy ion irradiation. - Abstract: The present study focuses on the electronic excitation induced structural and optical properties of InGaN/GaN quantum well (QW) structures grown by metal organic chemical vapor deposition technique. These excitations were produced using Au{sup 7+} ion irradiation with 100 MeV energy. The X-ray rocking curves intensity and full width at half-maximum values corresponding to the planes of (0 0 0 2) and (1 0 −1 5) of the irradiated QW structures show the modifications in the screw and edge-type dislocation densities vary with the ion fluences. The structural characteristics using the reciprocal space mapping indicate the intermixing effects in InGaN/GaN QW structures. Atomic force microscopy images confirmed the presence of nanostructures and the surface modification due to heavy ion irradiation. The irradiated QW structures exhibited degraded photoluminescence intensity and a subsequent decrease in the yellow luminescence band intensity with the fluences of 1 × 10{sup 11} and 5 × 10{sup 12} ions/cm{sup 2} compared to the pristine QW structures.

  8. Phonon-induced polariton superlattices

    DEFF Research Database (Denmark)

    de Lima, Jr., M. M.; Poel, Mike van der; Santos, P. V.;

    2006-01-01

    We show that the coherent interaction between microcavity polaritons and externally stimulated acoustic phonons forms a tunable polariton superlattice with a folded energy dispersion determined by the phonon population and wavelength. Under high phonon concentration, the strong confinement of the...... of the optical and excitonic polariton components in the phonon potential creates weakly coupled polariton wires with a virtually flat energy dispersion....

  9. Electron transport across a quantum wire embedding a saw-tooth superlattice

    Institute of Scientific and Technical Information of China (English)

    Chen Yuan-Ping; Yan Xiao-Hong; Lu Mao-Wang; Deng Yu-Xiang

    2004-01-01

    By developing the recursive Green function method, the transport properties through a quantum wire embedding a finite-length saw-tooth superlattice are studied in the presence of magnetic field. The effects of magnetic modulation and the geometric structures of the superlattice on transmission coefficient are discussed. It is shown that resonant electron gas. The transmission spectrum can be tailored to match requirements through adjusting the size of saw-tooth quantum dot and field strength.

  10. Tunable Negative Differential Resistance in Planer Graphene Superlattice Resonant Tunneling Diode

    OpenAIRE

    Sattari-Esfahlan, S. M.; Fouladi-Oskuei, J.; S. Shojaei

    2017-01-01

    In this paper, we report on the controllable negative differential resistance (NDR) in a proposed planar graphene superlattice structure. High value of peak to valley ratio (PVR) is predicted. This is significant because of appearance of NDR with high PVR at low biases. Our finding is important since beside the other potential applications of the graphene, proposes implementation of the graphene based superlattice in electronic devices such as resonant tunneling diode and filters.

  11. Moire superlattice effects in graphene/boron-nitride van der Waals heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Wallbank, John R.; Chen, Xi; Fal' ko, Vladimir I. [Department of Physics, Lancaster University, Lancaster (United Kingdom); Mucha-Kruczynski, Marcin [Department of Physics, University of Bath (United Kingdom)

    2015-06-15

    Van der Waals heterostructures of graphene and hexagonal boron nitride feature a moire superlattice for graphene's Dirac electrons. Here, we review the effects generated by this superlattice, including a specific miniband structure featuring gaps and secondary Dirac points, and a fractal spectrum of magnetic minibands known as Hofstadter's butterfly. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Self-Organization of PbS into Quantum Dots Superlattices

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Self-organization of PbS into quantum dots superlattices is demonstrated for the first time, and hexaplanar colloidal crystals 1-10m m in size made from PbS quantum dots 4nm in diameter are shown in Transmission Electron Microscope (TEM) micrograph, and the inner structures of the superlattices can be seen from the High Resolution Transmission Electron Microscope (HRTEM).

  13. Optoelectronic and structural properties of InGaN nanostructures grown by plasma-assisted MOCVD

    Science.gov (United States)

    Seidlitz, Daniel; Senevirathna, M. K. I.; Abate, Y.; Hoffmann, A.; Dietz, N.

    2015-09-01

    This paper presents optoelectronic and structural layer properties of InN and InGaN epilayers grown on sapphire templates by Migration-Enhanced Plasma Assisted Metal Organic Chemical Vapor Deposition (MEPA-MOCVD). Real-time characterization techniques have been applied during the growth process to gain insight of the plasma-assisted decomposition of the nitrogen precursor and associated growth surface processes. Analyzed Plasma Emission Spectroscopy (PES) and UV Absorption Spectroscopy (UVAS) provide detection and concentrations of plasma generated active species (N*/NH*/NHx*). Various precursors have been used to assess the nitrogen-active fragments that are directed from the hollow cathode plasma tube to the growth surface. The in-situ diagnostics results are supplemented with ex-situ materials structures investigation results of nanoscale structures using Scanning Near-field Optical Microscopy (SNOM). The structural properties have been analyzed by Raman spectroscopy and Fourier transform infrared (FTIR) reflectance. The Optoelectronic and optical properties were extracted by modeling the FTIR reflectance (e.g. free carrier concentration, high frequency dielectric constant, mobility) and optical absorption spectroscopy. The correlation and comparison between the in-situ metrology results with the ex-situ nano-structural and optoelectronic layer properties provides insides into the growth mechanism on how plasma-activated nitrogen-fragments can be utilized as nitrogen precursor for group III-nitride growth. The here assessed growth process parameter focus on the temporal precursor exposure of the growth surface, the reactor pressure, substrate temperature and their effects of the properties of the InN and InGaN epilayers.

  14. Heterojunction and superlattice detectors for infrared to ultraviolet

    Science.gov (United States)

    Perera, A. G. U.

    2016-07-01

    The interest in Infrared and Ultraviolet detectors has increased immensely due to the emergence of important applications over a wide range of activities. Detectors based on free carrier absorption known as Hetero-junction Interfacial Workfunction Internal Photoemission (HEIWIP) detectors and variations of these heterojunction structures to be used as intervalence band detectors for a wide wavelength region are presented. Although this internal photoemission concept is valid for all semiconductor materials systems, using a well-studied III-V system of GaAs/AlxGa1-x As to cover a wide wavelength range from UV to far-infrared (THz) is an important development in detector technology. Using the intervalence band (heavy hole, light hole and split off) transitions for high operating temperature detection of mid Infrared radiation is also discussed. A promising new way to extend the detection wavelength threshold beyond the standard threshold connected with the energy gap in a GaAs/AlxGa1-x As system is also presented. Superlattice detector technology, which is another promising detector architecture, can be optimized using both Type I and Type II heterostructures. Here the focus will be on Type II Strained Layer (T2SL) Superlattice detectors. T2SL Superlattices based on InAs/(In,GA)Sb have made significant improvements demonstrating focal plane arrays operating around 80 K and with multiple band detection capability. A novel spectroscopic method to evaluate the band offsets of both heterojunction and superlattice detectors is also discussed.

  15. Growth and structural characterization of III-V nanowires grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Dheeraj, D.L.

    2010-10-15

    Heterostructured semiconductor nanowires (NWs) have attracted considerable attention in recent years because of their potential in future nano-electronic and nano-photonic device applications. NWs are usually grown by vapor-liquid-solid (VLS) growth mechanism using techniques such as metal-organic vapor phase epitaxy, chemical beam epitaxy and molecular beam epitaxy (MBE). Of all the available techniques, MBE is known to be the technique which yields highest purity materials. In this study, the growth of GaAs NWs, GaAsSb NWs, as well as GaAs/GaAsSb axial and GaAs/AlGaAs radial heterostructured NWs on GaAs(111)B substrates by MBE is demonstrated. The structural and optical properties of the NWs grown are characterized by electron microscopy techniques such as scanning and transmission electron microscopy, and micro-photoluminescence, respectively. Firstly, the optimum growth conditions to obtain rod shaped GaAs NWs on GaAs(111)B substrates by MBE is determined. It has been found that in-addition to the V/III ratio and substrate temperature, buffer growth conditions also play an important role on the orientation of the NWs. The effect of V/III ratio, substrate temperature, and the arsenic species (As{sub 2}/As{sub 4}) on the morphology of GaAs NWs has been determined. Transmission electron microscopy (TEM) characterization of NWs revealed that GaAs in NW form exhibit wurtzite (WZ) crystal phase in contrast to zinc blende (ZB) phase adapted in its bulk form. Since WZ crystal phase is a metastable phase of GaAs, the WZ GaAs NWs often exhibit stacking faults. The stacking faults are known to be a detrimental problem, if not properly controlled. To gain more insight on the growth kinetics of GaAs NWs grown by MBE, several samples such as GaAs NWs grown for different time durations, and GaAs NWs with three GaAsSb inserts, where GaAsSb inserts acts as markers, have been grown. Interestingly, the growth rates of the GaAs segments and GaAsSb inserts were observed to vary

  16. Characterizing Composition Modulations in InAs/AIAs Short-Period Superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenkiel, S.P.; Follstaedt, D.M.; Jones, E.D.; Lee, S.R.; Mascarenhas, A.; Millunchick, J. Mirecki; Norman, A.G.; Reno, J.L.; Twesten, R.D.

    1999-04-26

    The formation of quantum wires has much interest due to their novel electronic properties which may lead to enhanced optoelectronic device performance and greater photovoltaic efficiencies. One method of forming these structures is through spontaneous lateral modulation found during the epitaxial growth of III/V alloys. In this paper, we report and summarize our investigations on the formation of lateral moduation in the MBE grown InAlAs/InP(001) system. This system was grown as a short-period superlattice where n-monolayers of InAs are deposited followed by m-Monolayers of AlAs (with n and m~2) and this sequence is repeated to grown a low strain InAlAs ternary alloy on InP(001) that exhibits lateral modulation. Films were grown under a variety of condition (growth temperature, effective alloy composition, superlattice period, and growth rate). These films have been extensively analyzed using X-ray diffraction, atomic force microscopy, and transmission electron microscopy (TEM) and microcharacterization, in addition to photon-based spectroscopes. Here we present results of several microstructural characterizations using a wide range of TEM-based techniques, and compare them to results from the other methods to obtain a unified understanding of composition modulation. Two strong points consistently emerge: 1) The lateral modulation wavelength is insensitive to growth temperature and effective alloy composition, but the strength of the lateral modulation is greatest near an effective alloy composition of In(0.46)Al(0.54)As, which corresponds to a slightly tensile global strain with respect to InP. 2) The composition variation for the strongly modulated films is as much as 0.38 InAs mole fraction. In addition, for these strongly modulated films, the modulation wave is asymmetric showing strongly peaked, narrower InAs-rich regions separated by flat AlAs-rich regions. We discuss these results and their possible implications in addition to detailing the techniques used

  17. Highly Polarized Electrons from GaAs-GaAsP and InGaAs-AlGaAs Strained Layer Superlattice Photocathodes

    CERN Document Server

    Nakanishi, T; Kuwahara, M; Naniwa, K; Nishitani, T; Okumi, S; Yamamoto, N; Yasui, K

    2004-01-01

    GaAs-GaAsP strained layer superlattice photocathode has been developed for highly polarized electron beams. This cathode achieved a maximum polarization of 92% with a quantum efficiency of 0.5%. Criteria for achieving the highest polarization together with high quantum efficiency using superlattice photocathodes are discussed based on experimental spin-resolved quantum efficiency spectra of GaAs-AlGaAs, InGaAs-AlGaAs and GaAs-GaAsP superlattice structures.

  18. Aging in Co/Cr Superlattices

    Science.gov (United States)

    Mukherjee, T.; Pleimling, M.; Binek, Ch.

    2009-03-01

    Aging phenomena are observed in various systems brought into non-equilibrium and subsequently showing slow relaxation dynamics. Magnetic specimens with well defined interactions and dimensions can serve as model systems for universal aspects of aging. Magnetic thin films provide access to a wide range of microscopic parameters. Superlattice structures allow tuning the intra and inter-plane exchange and enable geometrical confinement of the spin fluctuations. We use Co/Cr thin film superlattices to study magnetic aging. The static and dynamic properties are affected via the Co and Cr film thicknesses. TC of the Co films is reduced from the bulk value by geometrical confinement. Non-ergodic behavior sets in at a tunable temperature T^* in a range of some 100K above zero. Cr provides antiferromagnetic coupling between the Co films. Non-equilibrium spin states are set via low field cooling in 5mT in-plane magnetic field to below T^*. Next various in-plane magnetic set fields of some 10-100 mT are applied and the sample is exposed to the latter for various waiting times tw, respectively. After removing the field, relaxation of the magnetization is recorded via longitudinal Kerr-magnetometry. The relaxation data are analyzed by scaling plots revealing universal aspects of aging. Financial support by Teledyne-Isco, NRI, and NSF through EPSCoR, Career DMR-0547887, and MRSEC.

  19. Growth of epitaxial semiconductor alloys and superlattices with continuously variable composition by pulsed-laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    McCamy, J.W. [Tennessee Univ., Knoxville, TN (United States). Dept. of Materials Science; Lowndes, D.H. [Oak Ridge National Lab., TN (United States)

    1993-08-01

    We describe a new method to grow epitaxial semiconductor alloys with continuously variable composition, while using a single pulsed laser ablation target of fixed composition. Epitaxial ZnSe{sub 1{minus}x}S{sub x} films with continuously variable sulfur content ``x`` were grown by ablating a ZnSe target through low-pressure ambient H{sub 2}S gas. The sulfur content was easily controlled by varying the H{sub 2}S partial pressure. The composition of ZnSe{sub 1{minus}x}S{sub x} films differs by as much as x = 0.52 from the pure ZnSe target. We have used this method to grow heteroepitaxial structures with either continuously graded or periodically repeating, abrupt compositional changes (compositional superlattices). Structures that simultaneously incorporate both types of compositional modulation also have been grown. This development removes the principal barrier to convenient pulsed-laser ablation (PLA) growth of compositionally graded semiconductor thin-film materials, namely that the film and target normally have the same composition. The method appears to have broad application for PLA growth of other compound semiconductor films and heterostructures, as well as for doping individual layers.

  20. Thermodynamic and structural properties of tuber starches from transgenic potato plants grown in vitro and in vivo.

    Science.gov (United States)

    Wasserman, Luybov A; Sergeev, Andrey I; Vasil'ev, Viktor G; Plashchina, Irina G; Aksenova, Nina P; Konstantinova, Tatyana N; Golyanovskaya, Svetlana A; Sergeeva, Lidiya I; Romanov, Georgy A

    2015-07-10

    Potato plants harboring Phytochrome B (PHYB) gene from Arabidopsis thaliana or rol genes from Agrobacterium rhizogenes were used to study the effect of transgene expression on structure and properties of starch in tubers. Thermodynamic characteristics of starch (melting temperature, enthalpy of melting, thickness of crystalline lamellae) were shown to be variable depending on the transgene expression and plant culturing mode: in vitro or in soil. The expression of rolB or rolC genes in in vitro cultured plants evoked opposite effects on starch melting temperature and crystalline lamellae thickness. AtPHYB or rolB expression in the soil-grown potato led to the formation of more defective or more ordered starch structures, respectively, in comparison with starches of the same lines grown in vitro. On the whole, our study revealed genotype-dependent differences between starches extracted from tubers of in vitro or in vivo grown plants.

  1. Dielectric and Structural Properties of SrTiO_3 Thin Films Grown by Laser Molecular Beam Epitaxy

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Dielectric and Structural Properties of SrTiO_3 Thin Films Grown by Laser Molecular Beam Epitaxy[1]Hao J H,Gao J,Wang Z,et al.Interface structure and phase of epitaxial SrTi O3(110)thin fil ms grown directly on silicon[J].Appl Phys Lett,2005,87:131908. [2]Hao J H,Gao J,Wang HK.SrTi O3(110)thin fil ms grown directly on different oriented silicon substrates[J].Appl Phys A,2005,81:1233. [3]Aki mov I A,Sirenko A A,Clark A M,et al.Electric-field-induced soft-mode hardening in SrTi O3fil ms[J].Phys Rev Lett...

  2. RF Magnetron Sputtering Grown Cu2O Film Structural, Morphological, and Electrical Property Dependencies on Substrate Type.

    Science.gov (United States)

    Ahn, Heejin; Um, Youngho

    2015-03-01

    We investigated the structural, morphological, and electrical properties of cuprous oxide (Cu2O) film dependency on substrate type. Thin films grown using RF magnetron sputtering were characterized by scanning electron microscopy, X-ray diffraction (XRD), and Hall effect measurements. Cu2O thin films were deposited onto sapphire (0001), Si (100), and MgO (110) substrates, and showed Cu2O single phase only, which was confirmed by XRD measurement. Relatively larger compressive strain existed in Cu2O film grown on sapphire and Si, while a smaller tensile strain appeared in Cu2O film grown on MgO. Cu2O thin film crystallite sizes showed a linear dependence on strain. Moreover, film carrier concentration and mobility increased with increasing strain, while resistivity decreased with decreasing strain. Cu2O film strain due to induced strain opens the possibility of controlling structural and electrical properties in device applications.

  3. Luminescence and Structure of ZnO Grown by Physical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    R. García-Gutiérrez

    2012-01-01

    Full Text Available Nanostructured ZnO was deposited on different substrates (Si, SiO2, and Au/SiO2 by an enhanced physical vapor deposition technique that presents excellent luminescent properties. This technique consists in a horizontal quartz tube reactor that uses ultra-high purity Zn and UHP oxygen as precursors. The morphology and structure of ZnO grown in this work were studied by electron microscopy and X-ray diffraction. The XRD patterns revealed the highly crystalline phase of wurtzite polycrystalline structure, with a preferred (1011 growth direction. Room temperature cathodoluminescence studies revealed two features in the luminescence properties of the ZnO obtained by this technique, first a high-intensity narrow peak centered at 390 nm (~3.2 eV corresponding to a near band-to-band emission, and secondly, a broad peak centered around 517 nm (2.4 eV, the typical green-yellow luminescence, related to an unintentionally doped ZnO.

  4. The relationship between the morphology of brushite crystals grown rapidly in silica gel and its structure

    Science.gov (United States)

    Ohta, M.; Tsutsumi, M.

    1982-02-01

    The morphology of brushite, CaHPO 4 · 2 H 2O, provides some basic information on biological mineralization. The growth, morphology and surface structures of brushite crystals grown at fairly high growth rates in silica gel at 37°C in the initial pH range of 4 to 6 (the final pH range of about 3.2 to 4.7) have been investigated. Their preferred growth direction is [101]: there is a marked tendency for calcium and phosphate ions in the gel to attach to (111) or (101) surfaces; inclusions derived from silica gel are also incorporated, mainly along the [101] direction in the initial stage of crystal growth and at higher pH values. The following order of "edge strength", which refers to a sort of resistance of crystal edge against getting out of its shape, was obtained experimentally for the edges parallel to the (010) face of brushite: [101] ⪆ [201] > [001] ⪆ [100]. The relationship between the above order and the structure of corrugated sheets with composition [CaHPO 4] is also discussed.

  5. Structural and electrical properties of large area epitaxial VO2 films grown by electron beam evaporation

    Science.gov (United States)

    Théry, V.; Boulle, A.; Crunteanu, A.; Orlianges, J. C.; Beaumont, A.; Mayet, R.; Mennai, A.; Cosset, F.; Bessaudou, A.; Fabert, M.

    2017-02-01

    Large area (up to 4 squared inches) epitaxial VO2 films, with a uniform thickness and exhibiting an abrupt metal-insulator transition with a resistivity ratio as high as 2.85 × 10 4 , have been grown on (001)-oriented sapphire substrates by electron beam evaporation. The lattice distortions (mosaicity) and the level of strain in the films have been assessed by X-ray diffraction. It is demonstrated that the films grow in a domain-matching mode where the distortions are confined close to the interface which allows growth of high-quality materials despite the high film-substrate lattice mismatch. It is further shown that a post-deposition high-temperature oxygen annealing step is crucial to ensure the correct film stoichiometry and provide the best structural and electrical properties. Alternatively, it is possible to obtain high quality films with a RF discharge during deposition, which hence do not require the additional annealing step. Such films exhibit similar electrical properties and only slightly degraded structural properties.

  6. Structural Characterization of Cubic GaN Grown on GaAs(001) Substrates

    Institute of Scientific and Technical Information of China (English)

    ZHENG Xinhe; QU Bo; WANG Yutian; YANG Hui; LIANGJunwu; HAN Jingyi

    2001-01-01

    Structural characteristics of cubic GaN epilayers grown on GaAs(001) were studied using X-ray double-crystal diffraction technique. The structure factors of cubic GaN(002) and (004) components are approximately identical. However, the integrated intensities of the rocking curve for cubic (002) components are over five times as those of (004)components. The discrepancy has been interpreted in detail considering other factors. In the conventional double crystal rocking curve, the peak broadening includes such information caused by the orientation distribution (mosaicity) and the distribution of lattice spacing. These two kinds of distributions can be distinguished by the triple-axis diffraction in which an analyzer crystal is placed in front of the detector.Moreover, the peak broadening was analyzed by reciprocal lattice construction and Eward sphere. By using triple-axis diffraction of cubic (002) and (113)components, domain size and dislocation density were estimated. The fully relaxed lattice parameter of cubic GaN was determined to be about 0.451 ± 0.001nm.

  7. Structural, electrical and optical characterization of InGaN layers grown by MOVPE

    Institute of Scientific and Technical Information of China (English)

    Ylldlz A; (O)ztürk M Kemal; Bosi M; (O)z(c)elik S; Kasap M

    2009-01-01

    We present a study on n-type ternary InGaN layers grown by atmospheric pressure metalorganic vapour phase epitaxy (MOVPE) on GaN template/(0001) sapphire substrate. An investigation of the different growth conditions on n-type InxGa1-xN (χ=0.06-0.135) alloys was done for a series of five samples. The structural,electrical and optical properties were characterized by high resolution x-ray diffraction (HRXRD),Hall effect and photoluminescence (PL). Experimental results showed that different growth conditions,namely substrate rotation (SR) and change of total H2 flow (THF),strongly affect the properties of InGaN layers. This case can he clearly observed from the analytical results. When the SR speed decreased,the HRXRD scan peak of the samples shifted along a higher angle. Therefore,increasing the SR speed changed important structural properties of InGaN alloys such as peak broadening,values of strain,lattice parameters and defects including tilt,twist and dislocation density. From PL results it is observed that the growth conditions can be changed to control the emission wavelength and it is possible to shift the emission wavelength towards the green. Hall effect measurement has shown that the resistivity of the samples changes dramatically when THF changes.

  8. Impact of Nutrient Restriction on the Structure of Listeria monocytogenes Biofilm Grown in a Microfluidic System

    Directory of Open Access Journals (Sweden)

    Tamazight Cherifi

    2017-05-01

    Full Text Available Biofilm formation by the pathogen Listeria monocytogenes is a major concern in food industries. The aim of this work was to elucidate the effect of nutrient limitation on both biofilm architecture and on the viability of the bacteria in microfluidic growth conditions. Biofilm formation by two L. monocytogenes strains was performed in a rich medium (BHI and in a 10-fold diluted BHI (BHI/10 at 30°C for 24 h by using both static conditions and the microfluidic system Bioflux. In dynamic conditions, biofilms grown in rich and poor medium showed significant differences as well in structure and in the resulting biovolume. In BHI/10, biofilm was organized in a knitted network where cells formed long chains, whereas in the rich medium, the observed structure was homogeneous cellular multilayers. Biofilm biovolume production in BHI/10 was significantly higher than in BHI in these dynamic conditions. Interestingly, biovolume of dead cells in biofilms formed under limited nutrient conditions (BHI/10 was significantly higher than in biofilms formed in the BHI medium. In the other hand, in static conditions, biofilm is organized in a multilayer cells and dispersed cells in a rich medium BHI and poor medium BHI/10 respectively. There was significantly more biomass in the rich medium compared to BHI/10 but no difference was noted in the dead/damaged subpopulation showing how L. monocytogenes biofilm could be affected by the growth conditions. This work demonstrated that nutrient concentration affects biofilm structure and the proportion of dead cells in biofilms under microfluidic condition. Our study also showed that limited nutrients play an important role in the structural stability of L. monocytogenes biofilm by enhancing cell death and liberating extracellular DNA.

  9. Structural analysis of fructans from Agave americana grown in South Africa for spirit production.

    Science.gov (United States)

    Ravenscroft, Neil; Cescutti, Paola; Hearshaw, Meredith A; Ramsout, Ronica; Rizzo, Roberto; Timme, Elizabeth M

    2009-05-27

    Fructans isolated from Agave americana grown in South Africa are currently used for spirit production. Structural studies on water-soluble fructans were performed to facilitate the development of other applications including its use as a prebiotic. Acid hydrolysis followed by HPAEC-PAD analysis confirmed that the fructan was composed of glucose and fructose, and size analysis by HPAEC-PAD and size exclusion chromatography indicated that the saccharides have a DP range from 6 to 50. An average DP of 14 was estimated by (1)H NMR analysis. Linkage analysis and ESI-MS studies suggest that A. americana has a neofructan structure consisting of a central sucrose to which (2 → 1)- and (2 → 6)-linked β-D-Fruf chains are attached. The (2 → 1)-linked units extend from C-1 of Fru and C-6 of glucose, whereas the (2 → 6)-linked β-D-Fruf units are attached to C-6 of the central Fru. This structure accounts for the presence of equimolar amounts of 1,6-linked Glu and 1,2,6-linked Fru found in linkage analysis and the multiplicity of the NMR signals observed. Detailed ESI-MS studies were performed on fructan fractions: native, periodate oxidized/reduced, and permethylated oligomers. These derivatizations introduced mass differences between Glc and Fru following oxidation and between 1,2-, 1,6-, 2,6-, and 1,2,6-linked units after methylation. Thus, ESI-MS showed the presence of a single Glc per fructan chain and that it is predominantly internal, rather than terminal as found in inulin. These structural features were confirmed by the use of 1D and 2D NMR experiments.

  10. Thermoelectric properties of In-rich InGaN and InN/InGaN superlattices

    Directory of Open Access Journals (Sweden)

    James (Zi-Jian Ju

    2016-04-01

    Full Text Available The thermoelectric properties of n-type InGaN alloys with high In-content and InN/InGaN thin film superlattices (SL grown by molecular beam epitaxy are investigated. Room-temperature measurements of the thermoelectric properties reveal that an increasing Ga-content in ternary InGaN alloys (0 < x(Ga < 0.2 yields a more than 10-fold reduction in thermal conductivity (κ without deteriorating electrical conductivity (σ, while the Seebeck coefficient (S increases slightly due to a widening band gap compared to binary InN. Employing InN/InGaN SLs (x(Ga = 0.1 with different periods, we demonstrate that confinement effects strongly enhance electron mobility with values as high as ∼820 cm2/V s at an electron density ne of ∼5×1019 cm−3, leading to an exceptionally high σ of ∼5400 (Ωcm−1. Simultaneously, in very short-period SL structures S becomes decoupled from ne, κ is further reduced below the alloy limit (κ < 9 W/m-K, and the power factor increases to 2.5×10−4 W/m-K2 by more than a factor of 5 as compared to In-rich InGaN alloys. These findings demonstrate that quantum confinement in group-III nitride-based superlattices facilitates improvements of thermoelectric properties over bulk-like ternary nitride alloys.

  11. Magnetic structure of La0.7Sr0.3MnO3/La0.7Sr0.3FeO3 superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Arenholz, E.; van der Laan, G.; Yang, F.; Kemik, N.; Biegalski, M.D.; Christen, H.M.; Takamura, Y.

    2009-01-10

    Using x-ray magnetic dichroism we characterize the magnetic order in La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO)/La{sub 0.7}Sr{sub 0.3}FeO{sub 3} (LSFO) superlattices with 6 unit cell thick sublayers. The LSMO layers exhibit a reduced Curie temperature compared to the bulk while antiferromagnetic order in the LSFO layers persists up to the bulk Neel temperature. Moreover, we find that aligning the LSMO magnetization by a magnetic field within the (001) surface plane leads to a reorientation of the Fe moments as well maintaining a perpendicular orientation of Fe and Mn moments. This perpendicular alignment is due to the frustrated exchange coupling at the LSMO/LSFO interface.

  12. Simple theoretical analysis of the Einstein’s photoemission from quantum confined superlattices

    Science.gov (United States)

    Pahari, S.; Bhattacharya, S.; Roy, S.; Saha, A.; De, D.; Ghatak, K. P.

    2009-11-01

    In this paper, we study the Einstein's photoemission from III-V, II-VI, IV-VI and HgTe/CdTe quantum well superlattices (QWSLs) with graded interfaces and quantum well effective mass superlattices in the presence of a quantizing magnetic field on the basis of newly formulated dispersion relations in the respective cases. Besides, the same has been studied from the afore-mentioned quantum dot superlattices and it appears that the photoemission oscillates with increasing carrier degeneracy and quantizing magnetic field in different manners. In addition, the photoemission oscillates with film thickness and increasing photon energy in quantum steps together with the fact that the solution of the Boltzmann transport equation will introduce new physical ideas and new experimental findings under different external conditions. The influence of band structure is apparent from all the figures and we have suggested three applications of the analyses of this paper in the fields of superlattices and microstructures.

  13. Thermal conductivity measurement of InGaAs/InGaAsP superlattice thin films

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhen; YANG Juekuan; ZHUANG Ping; CHEN Minhua; ZHU Jian; CHEN Yunfei

    2006-01-01

    The thermal conductivities of InGaAs/InGaAsP superlattices with different period lengths were measured from 100 to 320 K using 3ω method.In this temperature range, the thermal conductivities were found to decrease with an increase in temperature. For the period length-dependant thermal conductivity, the minimum value does exist at a certain period length, which demonstrates that at a short period length, superlattice thermal conductivity increases with a decrease in the period length. When the period is longer than a certain period length, the interface thermal resistance dominates in phonon transport. The experimental and theoretical results confirmed the previous predictions from the lattice dynamics analysis, i.e. with the increase in period length, the dominant mechanisms of phonon transport in superlattices will shift from wave mode to particle mode. This is crucial for the cutoff of the phonons and lays a sound foundation for the design of superlattice structures.

  14. Analytical Study of Electromagnetic Wave in Superlattice

    Institute of Scientific and Technical Information of China (English)

    LIN Chang; ZHANG Xiu-Lian

    2004-01-01

    The theoretical description of soliton solutions and exact analytical solutions in the sine-Gordon equation is extended to superlattice physics. A family of interesting exact solutions and a new exact analytical solution have been obtained for the electromagnetic wave propagating through a superlattice. In more general cases, the vector potential along the propagating direction obeys the sine-Gordon equation. Some mathematical results of theoretical investigation are given for different cases in superlattices.

  15. Multistability, chaos, and random signal generation in semiconductor superlattices

    Science.gov (United States)

    Ying, Lei; Huang, Danhong; Lai, Ying-Cheng

    2016-06-01

    Historically, semiconductor superlattices, artificial periodic structures of different semiconductor materials, were invented with the purpose of engineering or manipulating the electronic properties of semiconductor devices. A key application lies in generating radiation sources, amplifiers, and detectors in the "unusual" spectral range of subterahertz and terahertz (0.1-10 THz), which cannot be readily realized using conventional radiation sources, the so-called THz gap. Efforts in the past three decades have demonstrated various nonlinear dynamical behaviors including chaos, suggesting the potential to exploit chaos in semiconductor superlattices as random signal sources (e.g., random number generators) in the THz frequency range. We consider a realistic model of hot electrons in semiconductor superlattice, taking into account the induced space charge field. Through a systematic exploration of the phase space we find that, when the system is subject to an external electrical driving of a single frequency, chaos is typically associated with the occurrence of multistability. That is, for a given parameter setting, while there are initial conditions that lead to chaotic trajectories, simultaneously there are other initial conditions that lead to regular motions. Transition to multistability, i.e., the emergence of multistability with chaos as a system parameter passes through a critical point, is found and argued to be abrupt. Multistability thus presents an obstacle to utilizing the superlattice system as a reliable and robust random signal source. However, we demonstrate that, when an additional driving field of incommensurate frequency is applied, multistability can be eliminated, with chaos representing the only possible asymptotic behavior of the system. In such a case, a random initial condition will lead to a trajectory landing in a chaotic attractor with probability 1, making quasiperiodically driven semiconductor superlattices potentially as a reliable

  16. High-temperature crystallization of nanocrystals into three-dimensional superlattices

    Science.gov (United States)

    Wu, Liheng; Willis, Joshua J.; McKay, Ian Salmon; Diroll, Benjamin T.; Qin, Jian; Cargnello, Matteo; Tassone, Christopher J.

    2017-08-01

    Crystallization of colloidal nanocrystals into superlattices represents a practical bottom-up process with which to create ordered metamaterials with emergent functionalities. With precise control over the size, shape and composition of individual nanocrystals, various single- and multi-component nanocrystal superlattices have been produced, the lattice structures and chemical compositions of which can be accurately engineered. Nanocrystal superlattices are typically prepared by carefully controlling the assembly process through solvent evaporation or destabilization or through DNA-guided crystallization. Slow solvent evaporation or cooling of nanocrystal solutions (over hours or days) is the key element for successful crystallization processes. Here we report the rapid growth (seconds) of micrometre-sized, face-centred-cubic, three-dimensional nanocrystal superlattices during colloidal synthesis at high temperatures (more than 230 degrees Celsius). Using in situ small-angle X-ray scattering, we observe continuous growth of individual nanocrystals within the lattices, which results in simultaneous lattice expansion and fine nanocrystal size control due to the superlattice templates. Thermodynamic models demonstrate that balanced attractive and repulsive interparticle interactions dictated by the ligand coverage on nanocrystal surfaces and nanocrystal core size are responsible for the crystallization process. The interparticle interactions can also be controlled to form different superlattice structures, such as hexagonal close-packed lattices. The rational assembly of various nanocrystal systems into novel materials is thus facilitated for both fundamental research and for practical applications in the fields of magnetics, electronics and catalysis.

  17. Void Structures in Regularly Patterned ZnO Nanorods Grown with the Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Yu-Feng Yao

    2014-01-01

    Full Text Available The void structures and related optical properties after thermal annealing with ambient oxygen in regularly patterned ZnO nanrorod (NR arrays grown with the hydrothermal method are studied. In increasing the thermal annealing temperature, void distribution starts from the bottom and extends to the top of an NR in the vertical (c-axis growth region. When the annealing temperature is higher than 400°C, void distribution spreads into the lateral (m-axis growth region. Photoluminescence measurement shows that the ZnO band-edge emission, in contrast to defect emission in the yellow-red range, is the strongest under the n-ZnO NR process conditions of 0.003 M in Ga-doping concentration and 300°C in thermal annealing temperature with ambient oxygen. Energy dispersive X-ray spectroscopy data indicate that the concentration of hydroxyl groups in the vertical growth region is significantly higher than that in the lateral growth region. During thermal annealing, hydroxyl groups are desorbed from the NR leaving anion vacancies for reacting with cation vacancies to form voids.

  18. Interfacial stability of CoSi2/Si structures grown by molecular beam epitaxy

    Science.gov (United States)

    George, T.; Fathauer, R. W.

    1992-01-01

    The stability of CoSi2/Si interfaces was examined in this study using columnar silicide structures grown on (111) Si substrates. In the first set of experiments, Co and Si were codeposited using MBE at 800 C and the resulting columnar silicide layer was capped by epitaxial Si. Deposition of Co on the surface of the Si capping layer at 800 C results in the growth of the buried silicide columns. The buried columns grow by subsurface diffusion of the deposited Co, suppressing the formation of surface islands of CoSi2. The column sidewalls appear to be less stable than the top and bottom interfaces, resulting in preferential lateral growth and ultimately in the coalescence of the columns to form a continuous buried CoSi2 layer. In the second set of experiments, annealing of a 250 nm-thick buried columnar layer at 1000 C under a 100 nm-thick Si capping layer results in the formation of a surface layer of CoSi2 with a reduction in the sizes of the CoSi2 columns. For a sample having a thicker Si capping layer the annealing leads to Ostwald ripening producing buried equiaxed columns. The high CoSi2/Si interfacial strain could provide the driving force for the observed behavior of the buried columns under high-temperature annealing.

  19. Effects of Complex Structured Anodic Oxide Dielectric Layer Grown in Pore Matrix for Aluminum Capacitor.

    Science.gov (United States)

    Shin, Jin-Ha; Yun, Sook Young; Lee, Chang Hyoung; Park, Hwa-Sun; Suh, Su-Jeong

    2015-11-01

    Anodization of aluminum is generally divided up into two types of anodic aluminum oxide structures depending on electrolyte type. In this study, an anodization process was carried out in two steps to obtain high dielectric strength and break down voltage. In the first step, evaporated high purity Al on Si wafer was anodized in oxalic acidic aqueous solution at various times at a constant temperature of 5 degrees C. In the second step, citric acidic aqueous solution was used to obtain a thickly grown sub-barrier layer. During the second anodization process, the anodizing potential of various ranges was applied at room temperature. An increased thickness of the sub-barrier layer in the porous matrix was obtained according to the increment of the applied anodizing potential. The microstructures and the growth of the sub-barrier layer were then observed with an increasing anodizing potential of 40 to 300 V by using a scanning electron microscope (SEM). An impedance analyzer was used to observe the change of electrical properties, including the capacitance, dissipation factor, impedance, and equivalent series resistance (ESR) depending on the thickness increase of the sub-barrier layer. In addition, the breakdown voltage was measured. The results revealed that dielectric strength was improved with the increase of sub-barrier layer thickness.

  20. Nonreciprocal Multiferroic Superlattices with Broken Parity Symmetry

    Science.gov (United States)

    Tang, Zhenghua; Zhang, Weiyi

    Multiferroic materials are characterized by the coexistence of ferroelectric and ferromagnetic (or antiferromagnetic) orders, the coupling to lattice vibration can be invoked either through piezoelectric or piezomagnetic effects. In this paper, the polaritonic band structures of multiferroic superlattices composed of oppositely polarized domains are investigated using the generalized transfer matrix method. For the primitive cell with broken parity symmetry, the polaritonic band structure is asymmetrical with respect to the forward and backward propagation directions (nonreciprocality). In particular, the band extreme points move away from the Brillouin zone center. This asymmetry in band-gap positions and widths can be used to design compact one-way optical isolators, while the extremely slow light velocities near the asymmetrical upper edges of lower bands includes the essential ingredients for designing slow light devices.

  1. Flame Temperature Effect on the Structure of SiC Nanoparticles Grown by Laser Pyrolysis

    Science.gov (United States)

    Herlin-Boime, N.; Vicens, J.; Dufour, C.; Ténégal, F.; Reynaud, C.; Rizk, R.

    2004-02-01

    Small SiC nanoparticles (10 nm diameter) have been grown in a flow reactor by CO2 laser pyrolysis from a C2H2 and SiH4 mixture. The laser radiation is strongly absorbed by SiH4 vibration. The energy is transferred to the reactive medium and leads to the dissociation of molecules and the subsequent growth of the nanoparticles. The reaction happens with a flame. The purpose of the experiments reported in this paper is to limit the size of the growing particles to the nanometric scale for which specific properties are expected to appear. Therefore the effects of experimental parameters on the structure and chemical composition of nanoparticles have been investigated. For a given reactive mixture and gas velocity, the flame temperature is governed by the laser power. In this study, the temperature was varied from 875°C to 1100°C. The chemical analysis of the products indicate that their composition is a function of the temperature. For the same C/Si atomic ratio in the gaseous phase, the C/Si ratio in the powder increases from 0.7 at 875°C up to 1.02 at 1100°C, indicating a growth mechanism limited by C2H2 dissociation. As expected, X-ray diffraction has shown an improved crystallisation with increasing temperature. Transmission electron microscopy observations have revealed the formation of 10 nm grains for all values of laser power (or flame temperature). These grains appear amorphous at low temperature, whereas they contain an increasing number of nanocrystals (2 nm diameter) when the temperature increases. These results pave the way to a better control of the structure and chemical composition of laser synthesised SiC nanoparticles in the 10 nm range.

  2. Growth and structure of MBE grown TiO2 anatase films with rutile nano-crystallites

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Rui; Wang, Chong M.; McCready, David E.; Droubay, Timothy C.; Chambers, Scott A.

    2007-03-15

    We have grown TiO2 anatase films with rutile nanocrystalline inclusions using molecular beam epitaxy under different growth conditions. This model system is important for investigating the role of rutile/anatase interfaces in heterogeneous photocatalysis. To control the film structure, we grew a pure anatase (001) layer at a slow rate and then increased the growth rate to drive the nucleation of rutile particles. Structure analysis indicates that the rutile phase has four preferred orientations in the anatase film.

  3. Design of MWIR Type-II Superlattices for Infrared Photon Detectors

    Science.gov (United States)

    Grein, Christoph

    The Type II InAs/GaInSb and InAs/InAsSb superlattices are material systems for implementation as photodetector absorbers in infrared imaging applications. In addition to cutoff wavelengths spanning the infrared spectrum, they offer degrees of freedom in their materials design (e.g. layer thicknesses, alloy compositions, number of layers in one superlattice period) that permit the optimization of an infrared photon detector's figures of merit such as detectivity through the tuning of material properties like generation/recombination lifetimes and optical absorption. We describe efforts to obtain accurate electronic band structures of superlattice semiconductors with infrared energy gaps, and employing them to evaluate nonradiative minority carrier lifetimes. Simple device models are utilized to suggest potential performance enhancements that arise from employing superlattices as infrared absorber. We also discuss current efforts to simulate the molecular beam epitaxial growth of InAs/InAsSb superlattices to predict dominant native point defects and other growth nonidealities. Design of MWIR Type-II Superlattices for Infrared Photon Detectors.

  4. Woody plant diversity and structure of shade-grown-coffee plantations in Northern Chiapas, Mexico

    Directory of Open Access Journals (Sweden)

    Lorena Soto-Pinto

    2001-12-01

    Full Text Available Shade-grown coffee is an agricultural system that contains some forest-like characteristics. However, structure and diversity are poorly known in shade coffee systems. In 61 coffee-growers’ plots of Chiapas, Mexico, structural variables of shade vegetation and coffee yields were measured, recording species and their use. Coffee stands had five vegetation strata. Seventy seven woody species mostly used as wood were found (mean density 371.4 trees per hectare. Ninety percent were native species (40% of the local flora, the remaining were introduced species, mainly fruit trees/shrubs. Diametric distribution resembles that of a secondary forest. Principal Coordinates Analysis grouped plots in four classes by the presence of Inga, however the majority of plots are diverse. There was no difference in equitability among groups or coffee yields. Coffee yield was 835 g clean coffee per shrub, or ca. 1668 kg ha-1. There is a significant role of shade-grown coffee as diversity refuge for woody plants and presumably associated fauna, as well as an opportunity for shade-coffee growers to participate in the new biodiversity-friendly-coffee marketEl café bajo sombra es un sistema agrícola que contiene algunas características de los bosques. Sin embargo, las características estructurales y de diversidad de la sombra del café son poco conocidas. En 61 parcelas de productores del norte de Chiapas, Mexico, se midieron variables estructurales de la vegetación de sombra y los rendimientos de café, registrando las especies y sus usos. Los cafetales presentaron cinco estratos de vegetación. Se encontraron 77 especies leñosas, la mayoría de uso maderable (densidad promedio de 371.4 árboles por hectárea. Noventa por ciento fueron especies nativas (40% de la flora local, el porcentaje restante fueron especies introducidas, principalmente árboles o arbustos frutales. La distribución diamétrica se asemeja a la distribución típica de bosques secundarios

  5. Selection rules for light scattering by folded acoustic phonons in low-index Si-based superlattices

    Science.gov (United States)

    Anastassakis, E.; Popovic, Z. V.

    1996-08-01

    We consider the propagation of acoustic waves in Si-based heterojunctions (HJs), quantum wells (QWs) and superlattices (SLs) grown in arbitrary directions, and present a general formalism for obtaining wave velocities, selection rules, and efficiency of Raman scattering (RS) and Brillouin scattering (BS) by folded acoustic-phonons. Results based on nine different directions for the phonon wavevector are tabulated.

  6. Interwell excitons in GaAs superlattices

    DEFF Research Database (Denmark)

    Birkedal, Dan; Sayed, Karim El; Sanders, G.;

    1997-01-01

    The formation of spatially indirect excitons in superlattices with narrow minibands is investigated experimentally. The interwell exciton is similar to the first Wannier-Stark localized exciton of an electrically biased superlattice. However, in the present case the localization is mediated by th...

  7. Type II superlattice technology for LWIR detectors

    Science.gov (United States)

    Klipstein, P. C.; Avnon, E.; Azulai, D.; Benny, Y.; Fraenkel, R.; Glozman, A.; Hojman, E.; Klin, O.; Krasovitsky, L.; Langof, L.; Lukomsky, I.; Nitzani, M.; Shtrichman, I.; Rappaport, N.; Snapi, N.; Weiss, E.; Tuito, A.

    2016-05-01

    SCD has developed a range of advanced infrared detectors based on III-V semiconductor heterostructures grown on GaSb. The XBn/XBp family of barrier detectors enables diffusion limited dark currents, comparable with MCT Rule-07, and high quantum efficiencies. This work describes some of the technical challenges that were overcome, and the ultimate performance that was finally achieved, for SCD's new 15 μm pitch "Pelican-D LW" type II superlattice (T2SL) XBp array detector. This detector is the first of SCD's line of high performance two dimensional arrays working in the LWIR spectral range, and was designed with a ~9.3 micron cut-off wavelength and a format of 640 x 512 pixels. It contains InAs/GaSb and InAs/AlSb T2SLs, engineered using k • p modeling of the energy bands and photo-response. The wafers are grown by molecular beam epitaxy and are fabricated into Focal Plane Array (FPA) detectors using standard FPA processes, including wet and dry etching, indium bump hybridization, under-fill, and back-side polishing. The FPA has a quantum efficiency of nearly 50%, and operates at 77 K and F/2.7 with background limited performance. The pixel operability of the FPA is above 99% and it exhibits a stable residual non uniformity (RNU) of better than 0.04% of the dynamic range. The FPA uses a new digital read-out integrated circuit (ROIC), and the complete detector closely follows the interfaces of SCD's MWIR Pelican-D detector. The Pelican- D LW detector is now in the final stages of qualification and transfer to production, with first prototypes already integrated into new electro-optical systems.

  8. Optical constants of GaAs-AlGaAs superlattices and multiple quantum wells

    Science.gov (United States)

    Kahen, K. B.; Leburton, J. P.

    1986-01-01

    The optical properties of GaAs-Al sub x Ga sub 1-xAs superlattices are calculated as a function of the frequency and superlattice structure. The comutations are performed using a partition method which combines the vectors k.p method with the pseudopotential technique. The influence of the super-structure on the electronic properties of the systems is accounted for by appropriate quantization conditions. The anisotropy and structure dependence of the dielectric constant result mainly from the contribution of the gamma region while the contributions of the other regions of the Brillouin zone are rather insensitive to the superlattice structure. The superlattice index of refraction values are shown to attain maxima at the various quantized transition energies, where for certain structures, the difference between the refractive indices of the superlattices and its corresponding Al sub x Ga sub 1-xAs alloy can be as large as 2%. In general results are in good agreement with the experimental data.

  9. Reversible solvent vapor-mediated phase changes in nanocrystal superlattices.

    Science.gov (United States)

    Goodfellow, Brian W; Korgel, Brian A

    2011-04-26

    Colloidal nanocrystals are being explored for use in a variety of applications, from solar cells to transistors to medical diagnostics and therapy. Ordered assemblies of nanocrystals, or superlattices, are one particularly interesting class of these materials, in which the nanocrystals serve as modular building blocks to construct nanostructures by self-assembly with spatial and temporal complexity and unique properties. From a fundamental perspective, the nanocrystals are simple molecular models that can be manipulated and studied to test statistical mechanical and thermodynamic models of crystallization and disorder. An article by Bian et al. in this issue of ACS Nano reports surprising new phase behavior in semiconductor nanocrystal superlattices: reversible transitions between non-close-packed body-centered cubic (bcc) and body-centered tetragonal (bct) structures, and close-packed face-centered cubic (fcc) structures, observed by real-time in situ grazing incidence small-angle X-ray scattering (GISAXS) measurements, upon solvent vapor exposure and increased interparticle separation. These studies offer new insight and raise new questions about superlattice structure and the forces that control self-assembly. Accompanying computer simulations show that ligand-ligand interactions are important. Furthermore, it appears that ligand-coated nanocrystals have more in common with soft microphase-separated materials, like diblock copolymers and surfactant assemblies, than previously realized.

  10. Structural and magnetic properties of Ni nanowires grown in mesoporous silicon templates

    Energy Technology Data Exchange (ETDEWEB)

    Dolgiy, A.L.; Redko, S.V.; Komissarov, I.; Bondarenko, V.P. [Belarusian State University of Informatics and Radioelectronics, P. Brovka 6, Minsk 220013 (Belarus); Yanushkevich, K.I. [Scientific and Practical Materials Research Center, Institute of Semiconductor and Solid State Physics, Belarusian Academy of Sciences, P. Brovka 19, Minsk 220072 (Belarus); Prischepa, S.L., E-mail: prischepa@bsuir.by [Belarusian State University of Informatics and Radioelectronics, P. Brovka 6, Minsk 220013 (Belarus)

    2013-09-30

    Structural and magnetic properties of Ni nanowires electrochemically deposited into pores of mesoporous silicon template under the stationary galvanostatic regime have been investigated. Samples have been exhaustively studied by using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and specific magnetization measurements. SEM analysis revealed the formation of porous silicon/nickel nanocomposite at the initial stages of Ni deposition with the characteristic dimension of Ni nanoparticles in the range of 40–60 nm. After 60 min of deposition Ni continuous nanowires of 10 μm length have been formed. XRD analysis confirmed the polycrystalline structure of Ni in the mesoporous silicon template with the preferential orientation along [111] axis. Also some amount of silicide Ni{sub 2}Si was formed, which diffraction peak at 2Θ ≈ 33° was especially pronounced for low deposition times. The possible mechanism of nickel silicide formation during the electrochemical process has been discussed. It was supposed that, the presence of amorphous silicon on pore walls facilitates the diffusion of Ni inside silicon matrix with subsequent nickel silicide formation without heating. The idea has been confirmed by the fact that on crystalline silicon the formation of nickel silicide was not observed. The magnetic properties have been investigated by studying the temperature dependence (77 K–700 K) of the specific magnetization σ. The measured σ values were lower with respect to that of bulk Ni. The effect has been explained by the influence of uncontrolled formation of nickel silicide, which causes, after heating, larger irreversibility of σ(T) curves for samples with less deposition time. The obtained σ(T) dependencies allowed us to determine the Curie temperature, T{sub C}, which for low deposition times of Ni was lower (575 K) with respect to the bulk Ni (630 K). This is caused by the influence of dimensional effects on T{sub C} value

  11. Optical and Micro-Structural Characterization of MBE Grown Indium Gallium Nitride Polar Quantum Dots

    KAUST Repository

    El Afandy, Rami

    2011-07-07

    Gallium nitride and related materials have ushered in scientific and technological breakthrough for lighting, mass data storage and high power electronic applications. These III-nitride materials have found their niche in blue light emitting diodes and blue laser diodes. Despite the current development, there are still technological problems that still impede the performance of such devices. Three-dimensional nanostructures are proposed to improve the electrical and thermal properties of III-nitride optical devices. This thesis consolidates the characterization results and unveils the unique physical properties of polar indium gallium nitride quantum dots grown by molecular beam epitaxy technique. In this thesis, a theoretical overview of the physical, structural and optical properties of polar III-nitrides quantum dots will be presented. Particular emphasis will be given to properties that distinguish truncated-pyramidal III-nitride quantum dots from other III-V semiconductor based quantum dots. The optical properties of indium gallium nitride quantum dots are mainly dominated by large polarization fields, as well as quantum confinement effects. Hence, the experimental investigations for such quantum dots require performing bandgap calculations taking into account the internal strain fields, polarization fields and confinement effects. The experiments conducted in this investigation involved the transmission electron microscopy and x-ray diffraction as well as photoluminescence spectroscopy. The analysis of the temperature dependence and excitation power dependence of the PL spectra sheds light on the carrier dynamics within the quantum dots, and its underlying wetting layer. A further analysis shows that indium gallium nitride quantum dots through three-dimensional confinements are able to prevent the electronic carriers from getting thermalized into defects which grants III-nitrides quantum dot based light emitting diodes superior thermally induced optical

  12. Structural characterization of one-dimensional ZnO-based nanostructures grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Sallet, Vincent; Falyouni, Farid; Marzouki, Ali; Haneche, Nadia; Sartel, Corinne; Lusson, Alain; Galtier, Pierre [Groupe d' Etude de la Matiere Condensee (GEMAC), CNRS-Universite de Versailles St-Quentin, Meudon (France); Agouram, Said [SCSIE, Universitat de Valencia, Burjassot (Spain); Enouz-Vedrenne, Shaima [Thales Research and Technology France, Palaiseau (France); Munoz-Sanjose, Vicente [Departamento de Fisica Aplicada y Electromagnetismo, Universitat de Valencia, Burjassot (Spain)

    2010-07-15

    Various one-dimensional (1D) ZnO-based nanostructures, including ZnO nano-wires (NWs) grown using vapour-liquid-solid (VLS) process, ZnO/ZnSe core/shell, nitrogen-doped ZnO and ZnMgO NWs were grown by metalorganic chemical vapour deposition (MOCVD). Transmission electron microscopy (TEM) analysis is presented. For all the samples, a high crystalline quality is observed. Some features are emphasized such as the gold contamination of ZnO wires grown under the metal droplets in the VLS process. It is concluded that MOCVD is a suitable technique for the realization of original ZnO nanodevices. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  13. Photoacoustic transformation of Bessel light beams in magnetoactive superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Mityurich, G. S., E-mail: George-mityurich@mail.ru [Belarusian Trade and Economics University of Consumer Cooperatives (Belarus); Chernenok, E. V.; Sviridova, V. V.; Serdyukov, A. N. [Gomel State University (Belarus)

    2015-03-15

    Photoacoustic transformation of the TE mode of a Bessel light beam (BLB) has been studied for piezoelectric detection in short-period superlattices formed by magnetoactive crystals of bismuth germanate (Bi{sub 12}GeO{sub 20}) and bismuth silicate (Bi{sub 12}SiO{sub 20}) types. It is shown that the resulting signal amplitude can be controlled using optical schemes of BLB formation with a tunable cone angle. A resonant increase in the signal amplitude has been found in the megahertz range of modulation frequencies and its dependences on the BLB modulation frequency, geometric sizes of the two-layer structure and piezoelectric transducer, radial coordinate of the polarization BLB mode, and dissipative superlattice parameters are analyzed.

  14. Thermodynamics and Magnetocaloric properties of Fe/Cr Superlattices

    Science.gov (United States)

    Mukherjee, T.; Michalski, S.; Skomski, R.; Sellmyer, D. J.; Binek, Ch.

    2011-03-01

    We explore MC properties of tailored Fe/Cr superlattices involving simple 3d metals. Our multilayers are fabricated by pulsed laser deposition with emphasis on maximizing magnetic entropy changes near room temperature. We use nanostructuring to tailor magnetic interaction and exploit geometrical confinement in order to fit the FM to paramagnetic transition temperature of the FM constituent films. In concert this leads to an optimized global metamagnetic transition maximizing the isothermal entropy change. Thermodynamic and MC properties of such Fe/Cr superlattices are studied with the help of SQUID magnetometry. Entropy changes are deduced via the Maxwell relation in single phase regions and via the Clausis-Clapeyron relations at first order metamagnetic transitions, X-ray diffraction and X-ray reflectivity are used to correlate structural data with the magnetic properties. Financial support by NRI, and NSF through EPSCoR, Career DMR-0547887, and MRSEC Grant No. 0820521.

  15. Resonant tunnelling in a Fibonacci bilayer graphene superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, S.; Sinha, C. [Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal (India); Biswas, R. [Department of Physics, PK College, Contai, Purba Medinipur, West Bengal (India)

    2010-02-15

    The transmission coefficients (TCs) and angularly averaged conductance for quasi-particle transport are studied for a bilayer graphene superlattice arranged according to the Fibonacci sequence. The transmission is found to be symmetric around the superlattice growth direction and highly sensitive to the direction of the quasi-particle incidence. The transmission spectra are fragmented and appear in groups due to the quasi-periodicity of the system. The average conductance shows interesting structures sharply dependent on the height of the potential barriers between two graphene strips. The low-energy conductance due to Klein transmission is substantially modified by the inclusion of quasi-periodicity in the system. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  16. Phonons in Ge/Si superlattices with Ge quantum dots

    CERN Document Server

    Milekhin, A G; Pchelyakov, O P; Schulze, S; Zahn, D R T

    2001-01-01

    Ge/Si superlattices with Ge quantum dots obtained by means of molecular-beam epitaxy were investigated by means of light Raman scattering under resonance conditions. These structures are shown to have oscillation properties of both two-dimensional and zero-dimensional objects. Within spectrum low-frequency range one observes twisted acoustic phonons (up to 15 order) typical for planar superlattices. Lines of acoustic phonons are overlapped with a wide band of continuous emission. Analysis of frequencies of Ge and Ge-Si optical phonons shows that Ge quantum dots are pseudoamorphous ones and mixing of Ge and Si atoms is a negligible one. One detected low-frequency shift of longitudinal optical phonons at laser excitation energy increase (2.54-2.71 eV)

  17. Robust optical properties of sandwiched lateral composition modulation GaInP structure grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kwangwook; Kang, Seokjin; Ravindran, Sooraj; Min, Jung-Wook; Hwang, Hyeong-Yong; Jho, Young-Dahl; Lee, Yong Tak

    2016-12-26

    Double-hetero structure lateral composition modulated (LCM) GaInP and sandwiched LCM GaInP having the same active layer thickness were grown and their optical properties were compared. Sandwiched LCM GaInP showed robust optical properties due to periodic potential nature of the LCM structure, and the periodicity was undistorted even for thickness far beyond the critical layer thickness. A thick LCM GaInP structure with undistorted potential that could preserve the properties of native LCM structure was possible by stacking thin LCM GaInP structures interspaced with strain compensating GaInP layers. The sandwiched structure could be beneficial in realizing the LCM structure embedded high efficiency solar cells.

  18. Shape-Anisotropy Driven Symmetry Transformations in Nanocrystal Superlattice Polymorphs

    KAUST Repository

    Bian, Kaifu

    2011-04-26

    Despite intense research efforts by research groups worldwide, the potential of self-assembled nanocrystal superlattices (NCSLs) has not been realized due to an incomplete understanding of the fundamental molecular interactions governing the self-assembly process. Because NCSLs reside naturally at length-scales between atomic crystals and colloidal assemblies, synthetic control over the properties of constituent nanocrystal (NC) building blocks and their coupling in ordered assemblies is expected to yield a new class of materials with remarkable optical, electronic, and vibrational characteristics. Progress toward the formation of suitable test structures and subsequent development of NCSL-based technologies has been held back by the limited control over superlattice spacing and symmetry. Here we show that NCSL symmetry can be controlled by manipulating molecular interactions between ligands bound to the NC surface and the surrounding solvent. Specifically, we demonstrate solvent vapor-mediated NCSL symmetry transformations that are driven by the orientational ordering of NCs within the lattice. The assembly of various superlattice polymorphs, including face-centered cubic (fcc), body-centered cubic (bcc), and body-centered tetragonal (bct) structures, is studied in real time using in situ grazing incidence small-angle X-ray scattering (GISAXS) under controlled solvent vapor exposure. This approach provides quantitative insights into the molecular level physics that controls solvent-ligand interactions and assembly of NCSLs. Computer simulations based on all-atom molecular dynamics techniques confirm several key insights gained from experiment. © 2011 American Chemical Society.

  19. Spectral properties of Fibonacci superlattices formed using armchair graphene nanoribbons

    Science.gov (United States)

    Korol, A. M.; Litvynchuk, S. I.; Bagliuk, S. V.; Lazarenko, M. V.

    2016-03-01

    We discuss and analyze the dependence spectra of the transmission coefficient T on the quasiparticle energy E of one variety of graphene-based Fibonacci superlattices (SL). The SL is built from armchair graphene nanoribbons (GNR), and the quasi-periodicity is produced by metal-like (MGNR) and semiconductor (SCGNR) ribbons, placed along the lattice growth axis in accordance with the Fibonacci sequence, which are used as individual SL elements. It is shown that the difference in the values of quantized transverse quasi-momentum of electrons in MGNR and SCGNR is enough to form an effective quasi-periodic modulation in the examined structure (no additional factors required), and the optimal nanoribbon width range for this purpose is determined. We also analyzed the dependence of the spectral properties of the test structure on the geometric parameters of the superlattice, and the external electrostatic potential. We paid particular attention to the fact that each Fibonacci generation had a Dirac superlattice band gap. The results of the study can be useful in the determination of optimal parameters for graphene-based nanoelectronic devices.

  20. Shape-anisotropy driven symmetry transformations in nanocrystal superlattice polymorphs.

    Science.gov (United States)

    Bian, Kaifu; Choi, Joshua J; Kaushik, Ananth; Clancy, Paulette; Smilgies, Detlef-M; Hanrath, Tobias

    2011-04-26

    Despite intense research efforts by research groups worldwide, the potential of self-assembled nanocrystal superlattices (NCSLs) has not been realized due to an incomplete understanding of the fundamental molecular interactions governing the self-assembly process. Because NCSLs reside naturally at length-scales between atomic crystals and colloidal assemblies, synthetic control over the properties of constituent nanocrystal (NC) building blocks and their coupling in ordered assemblies is expected to yield a new class of materials with remarkable optical, electronic, and vibrational characteristics. Progress toward the formation of suitable test structures and subsequent development of NCSL-based technologies has been held back by the limited control over superlattice spacing and symmetry. Here we show that NCSL symmetry can be controlled by manipulating molecular interactions between ligands bound to the NC surface and the surrounding solvent. Specifically, we demonstrate solvent vapor-mediated NCSL symmetry transformations that are driven by the orientational ordering of NCs within the lattice. The assembly of various superlattice polymorphs, including face-centered cubic (fcc), body-centered cubic (bcc), and body-centered tetragonal (bct) structures, is studied in real time using in situ grazing incidence small-angle X-ray scattering (GISAXS) under controlled solvent vapor exposure. This approach provides quantitative insights into the molecular level physics that controls solvent-ligand interactions and assembly of NCSLs. Computer simulations based on all-atom molecular dynamics techniques confirm several key insights gained from experiment.

  1. Strain compensated superlattices on m-plane gallium nitride by ammonia molecular beam epitaxy

    Science.gov (United States)

    Fireman, Micha N.; Bonef, Bastien; Young, Erin C.; Nookala, Nishant; Belkin, Mikhail A.; Speck, James S.

    2017-08-01

    The results of tensile strained AlN/GaN, AlGaN/GaN, and compressive strained InGaN/GaN superlattices (SLs) grown by Ammonia MBE (NH3-MBE) are presented. A combination of atom probe tomography and high-resolution X-ray diffraction confirms that periodic heterostructures of high crystallographic quality are achieved. Strain induced misfit dislocations (MDs), however, are revealed by cathodoluminescence (CL) of the strained AlN/GaN, AlGaN/GaN, and InGaN/GaN structures. MDs in the active region of a device are a severe problem as they act as non-radiative charge recombination centers, affecting the reliability and efficiency of the device. Strain compensated SL structures are subsequently developed, composed of alternating layers of tensile strained AlGaN and compressively strained InGaN. CL reveals the absence of MDs in such structures, demonstrating that strain compensation offers a viable route towards MD free active regions in III-Nitride SL based devices.

  2. Charge transfer and interfacial magnetism in (LaNiO3)n/(LaMnO3)2 superlattices

    OpenAIRE

    Hoffman, Jason; Tung, I. C.; Nelson-Cheeseman, Brittany; Liu, Ming; Freeland, John; Bhattacharya, Anand

    2013-01-01

    (LaNiO3)n/(LaMnO3)2 superlattices were grown using ozone-assisted molecular beam epitaxy, where LaNiO3 is a paramagnetic metal and LaMnO3 is an antiferromagnetic insulator. The superlattices exhibit excellent crystallinity and interfacial roughness of less than 1 unit cell. X-ray spectroscopy and dichroism measurements indicate that electrons are transferred from the LaMnO3 to the LaNiO3, inducing magnetism in LaNiO3. Magnetotransport measurements reveal a transition from metallic to insulati...

  3. Effect of acetylene flow rate on morphology and structure of carbon nanotube thick films grown by thermal chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    CAO Zhangyi; SUN Zhuo; GUO Pingsheng; CHEN Yiwei

    2007-01-01

    Carbon nanotube (CNT) films were grown on nickel foil substrates by thermal chemical vapor deposition (CVD) with acetylene and hydrogen as the precursors. The morphology and structure of CNTs depending on the acetylene flow rate were characterized by a scanning electron microscope (SEM),a transmission electron microscope (TEM) and a Raman spectrometer,respectively.The effect of acetylene flow rate on the morphology and structure of CNT films was investigated.By increasing the acetylene flow rate from 10 to 90 sccm (standard cubic centimeter perminute),the yield and the diameter of CNTs increase.Also, the defects and amorphous phase in CNT films increase with increasing acetylene flow rate.

  4. Electrical and Optical Studies of Defect Structure of HgCdTe Films Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    Świątek, Z.; Ozga, P.; Izhnin, I. I.; Fitsych, E. I.; Voitsekhovskii, A. V.; Korotaev, A. G.; Mynbaev, K. D.; Varavin, V. S.; Dvoretsky, S. A.; Mikhailov, N. N.; Yakushev, M. V.; Bonchyk, A. Yu.; Savytsky, H. V.

    2016-07-01

    Electrical and optical studies of defect structure of HgCdTe films grown by molecular beam epitaxy (MBE) are performed. It is shown that the peculiarity of these films is the presence of neutral defects formed at the growth stage and inherent to the material grown by MBE. It is assumed that these neutral defects are the Te nanocomplexes. Under ion milling, they are activated by mercury interstitials and form the donor centers with the concentration of 1017 cm-3, which makes it possible to detect such defects by measurements of electrical parameters of the material. Under doping of HgCdTe with arsenic using high temperature cracking, the As2 dimers are present in the arsenic flow and block the neutral Te nanocomplexes to form donor As2Te3 complexes. The results of electrical studies are compared with the results of studies carried out by micro-Raman spectroscopy.

  5. Exact Surface States in Photonic Superlattices

    CERN Document Server

    Xie, Qiongtao

    2012-01-01

    We develop an analytical method to derive exact surface states in photonic superlattices. In a kind of infinite bichromatic superlattices satisfying some certain conditions, we analytically obtain their in-gap states, which are superpositions of finite numbers of unstable Bloch waves. By using the unstable in-gap states, we construct exactly several stable surface states in various photonic superlattices. We analytically explore the parametric dependence of these exact surface states. Our analysis provides an exact demonstration for the existence of surface states and would be also helpful to understand surface states in other lattice systems.

  6. Theory of THz harmonic generation in semiconductor superlattices (Conference Presentation)

    Science.gov (United States)

    Pereira, Mauro F.; Winge, David O.; Wacker, Andreas

    2016-10-01

    Superlattices are artificial structures with a wide range of applications and open possibilities for controlling and study transport and optical [M.F. Pereira Jr., Phys. Rev. B 52, (1995)] properties of semiconductors. In this work, we start from the full Nonequilibrium Greens Functions approach [A. Wacker et a, IEEE Journal of Sel. Top. in Quantum Electron.,19 1200611, (2013),T. Schmielau and M.F. Pereira, Appl. Phys. Lett. 95 231111, (2009)] to obtain Voltage-Current curves and compare them with experiments. By adjusting the numerical solutions of the corresponding Dyson equations to a simple model, analytical solutions are given for the nonlinear response of a biased superlattice under sub-THz radiation. The frequency multiplication process leading to multiple harmonicgeneration is described. This hybrid approach leads to predictive simulations and may have important application for a new generation of devices where the superlattices are used as both sources and detectors and may be particular useful for high resolution transient spectroscopy [A.A. Yablokov et at, IEEE Transactions on THz Science and Technology 5, 845 (2015)].

  7. Thermoelectric properties of strontium titanate superlattices incorporating niobium oxide nanolayers

    KAUST Repository

    Sarath Kumar, S. R.

    2014-04-22

    A novel superlattice structure based on epitaxial nanoscale layers of NbOx and Nb-doped SrTiO3 is fabricated using a layer-by-layer approach on lattice matched LAO substrates. The absolute Seebeck coefficient and electrical conductivity of the [(NbOx) a/(Nb-doped SrTiO3)b]20 superlattices (SLs) were found to increase with decreasing layer thickness ratio (a/b ratio), reaching, at high temperatures, a power factor that is comparable to epitaxial Nb-doped SrTiO3 (STNO) films (∼0.7 W m-1 K-1). High temperature studies reveal that the SLs behave as n-type semiconductors and undergo an irreversible change at a varying crossover temperature that depends on the a/b ratio. By use of high resolution X-ray photoelectron spectroscopy and X-ray diffraction, the irreversible changes are identified to be due to a phase transformation from cubic NbO to orthorhombic Nb2O5, which limits the highest temperature of stable operation of the superlattice to 950 K. © 2014 American Chemical Society.

  8. Strain-Mediated Inverse Photoresistivity in SrRuO3/La0.7Sr0.3MnO3Superlattices

    KAUST Repository

    Liu, Heng-Jui

    2015-12-09

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. In the pursuit of novel functionalities by utilizing the lattice degree of freedom in complex oxide heterostructure, the control mechanism through direct strain manipulation across the interfaces is still under development, especially with various stimuli, such as electric field, magnetic field, light, etc. In this study, the superlattices consisting of colossal-magnetoresistive manganites La0.7Sr0.3MnO3 (LSMO) and photostrictive SrRuO3 (SRO) have been designed to investigate the light-dependent controllability of lattice order in the corresponding functionalities and rich interface physics. Two substrates, SrTiO3 (STO) and LaAlO3 (LAO), have been employed to provide the different strain environments to the superlattice system, in which the LSMO sublayers exhibit different orbital occupations. Subsequently, by introducing light, we can modulate the strain state and orbital preference of LSMO sublayers through light-induced expansion of SRO sublayers, leading to surprisingly opposite changes in photoresistivity. The observed photoresistivity decreases in the superlattice grown on STO substrate while increases in the superlattice grown on LAO substrate under light illumination. This work has presented a model system that demonstrates the manipulation of orbital-lattice coupling and the resultant functionalities in artificial oxide superlattices via light stimulus. A fascinating model system of optic-driven functionalities has been achieved by artificial superlattices consisting of manganite La0.7Sr0.3MnO3 (LSMO) and photostrictive SrRuO3 (SRO). With design of different initial strain and orbital states in superlattices, we can even control the photoresistivity of the superlattices in an opposite trend that cannot be achieved in pure single film.

  9. Studies of Spectroscopic Ellipsometry in Cd1-xMnx Te/CdTe Superlattices

    Institute of Scientific and Technical Information of China (English)

    CHEN Chen-Jia; WANG Xue-Zhong; Vittorio BELLANI; Angiolino STELLA

    2006-01-01

    Cd1-xMnxTe/CdTe superlattices and thin films were grown by molecular beam epitaxy on GaAs (001) substrates. Spectroscopic ellipsometry measurements were performed on Cd1-xMnxTe/CdTe superlattices with compositions x = 0.4, 0.8, and Cd1-xMnxTe thin films with x = 0.2, 0.4, 0.6 at room temperature in the photon energy range 1.4-5eV. In superlattices the pseudodielectric functions measured by ellipsometry show specific features related to the exciton transition between quantized interbands. The exciton transitions related to the heavy holes of 11H, 22H, and 33H are observed and identified. In thin films spectroscopic ellipsometry allows the clear identification of the energy gap E0. Additionally, critical point transitions are observable in both the spectra of the superlattices and films. Photoreflectance spectra were also performed at room temperature in order to compare with our ellipsometry results. After taking into account the strain-induced and quantum confinement effects, the theoretical calculations are in good agreement with our experimental spectra. Ellipsometry appears to be a suited technique to monitor the MBE growth, ultimately also in situ, of diluted magnetic low-dimensional systems.

  10. Metal-insulator transitions in LaTiO3 / CaTiO3 superlattices

    Science.gov (United States)

    Seo, Sung Seok A.; Lee, Ho Nyung

    2010-03-01

    Strongly correlated electrons at an interface of complex oxide heterostructures often show interesting behaviors that require an introduction of new physical concepts. For example, the metallic transport behavior found in the superlattices of a Mott insulator LaTiO3 and a band insulator SrTiO3 (STO) has established the concept of interfacial electronic reconstruction. In this work, we have studied the transport property of a new type of Mott/band insulator LaTiO3/CaTiO3 (LTO/CTO) superlattices grown by pulsed laser deposition (PLD). In order to rule out concerns about the PLD plume-triggered oxygen vacancies generated in STO substrates, which might influence transport measurement, and to investigate the effect of epitaxial strain, we have used insulating NdGaO3 substrates. While both LTO and CTO single films are highly insulating, we have observed intriguing metal-insulator transitions (MIT) in the LTO/CTO superlattices depending on the global LTO/CTO thickness ratio and temperature. (Note that LTO/STO superlattices are metallic at all temperatures (2-300 K)). In this talk, we will discuss the origin of the MIT in the scheme of self compensation mechanism of d-electrons at the hetero-interface between LTO and CTO.

  11. Investigation of Anisotropic Thermal Conductivity of GaAs/AlAs Superlattices

    Science.gov (United States)

    Li, Ran

    The thermal conductivities of superlattices are essential to improve the properties of thermoelectrics and optoelectronics; however, limited results in relation to both the in-plane and cross-plane thermal conductivities have been reported. A convenient, effective, and accurate experimental method is required to improve the current research on the thermal properties of superlattices. We conducted an experimental research study on two GaAs/AlAs superlattice samples with a total superlattice layer thickness of 2 microm using a combination of the 2-omega and 3-omega techniques. The samples have period thicknesses of 4 nm and 10 nm, respectively. To explore the thermal conductivities of the substrate and insulation layer of the superlattice samples indirectly, a controlled sample with the same structure, but without a superlattice layer, is used. We obtained the thermal conductivities of the GaAs substrate and insulation layer (SiO2 thin film) using the 3-omega technique and FEM simulation model. We also explored the deviation of the experimental results of the 2-omega technique from the Fourier's Law through the controlled sample. These parameters obtained from the controlled sample are used in the data analysis in the following superlattice research. In the superlattice study, we combine the 3-omega and 2-omega techniques to characterize the anisotropic thermal conductivity of GaAs/AlAs superlattice from the same wafer. The in-plane thermal conductivity, cross-plane thermal conductivity, and anisotropy are obtained from the same wafer by comparing the experimental results with the FEM simulated results. This combination works fine in general and demonstrates a significant reduction in thermal conductivity compared to that of equivalent bulk materials. Superlattices with different period thicknesses but the same total superlattice thickness present a significant difference in both the in-plane and cross-plane thermal conductivities of the superlattices. However, we

  12. Enhancement of minority carrier lifetime of GaInP with lateral composition modulation structure grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Park, K. W.; Ravindran, Sooraj; Kang, S. J.; Hwang, H. Y.; Jho, Y. D. [School of Information and Communications, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Park, C. Y. [School of Information and Communications, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Jo, Y. R.; Kim, B. J. [School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Lee, Y. T., E-mail: ytlee@gist.ac.kr [School of Information and Communications, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-07-28

    We report the enhancement of the minority carrier lifetime of GaInP with a lateral composition modulated (LCM) structure grown using molecular beam epitaxy (MBE). The structural and optical properties of the grown samples are studied by transmission electron microscopy and photoluminescence, which reveal the formation of vertically aligned bright and dark slabs corresponding to Ga-rich and In-rich GaInP regions, respectively, with good crystal quality. With the decrease of V/III ratio during LCM GaInP growth, it is seen that the band gap of LCM GaInP is reduced, while the PL intensity remains high and is comparable to that of bulk GaInP. We also investigate the minority carrier lifetime of LCM structures made with different flux ratios. It is found that the minority carrier lifetime of LCM GaInP is ∼37 times larger than that of bulk GaInP material, due to the spatial separation of electrons and holes by In-rich and Ga-rich regions of the LCM GaInP, respectively. We further demonstrate that the minority carrier lifetime of the grown LCM GaInP structures can easily be tuned by simply adjusting the V/III flux ratio during MBE growth, providing a simple yet powerful technique to tailor the electrical and optical properties at will. The exceptionally high carrier lifetime and the reduced band gap of LCM GaInP make them a highly attractive candidate for forming the top cell of multi-junction solar cells and can enhance their efficiency, and also make them suitable for other optoelectronics devices, such as photodetectors, where longer carrier lifetime is beneficial.

  13. Direct probing of vertical electron movement in superlattices by sub-picosecond luminescence

    Science.gov (United States)

    Deveaud, B.; Chomette, A.; Clérot, F.; Lambert, B.; Auvray, P.; Gauneau, M.; Regreny, A.

    Vertical transport in GaAs/AlGaAs superlattices is probed in structures with graded composition. Such structures allow boi to impose a quasi-electric field to the carriers and to evidence the carrier movement by the temporal changes in the luminescence lineshape. The fit of this lineshape by a drift-diffusion model gives the transport properties of electrons. High mobility of the electrons is evidenced for the shortest period superlattices, in agreement with previous optical measurements. Smaller mobilities are observed when the miniband width becomes smaller.

  14. Fabrication of Si/SiO2 Superlattice Microwire Array Solar Cells Using Microsphere Lithography

    Directory of Open Access Journals (Sweden)

    Shigeru Yamada

    2016-01-01

    Full Text Available A fabrication process for silicon/silicon dioxide (Si/SiO2 superlattice microwire array solar cells was developed. The Si/SiO2 superlattice microwire array was fabricated using a microsphere lithography process with polystyrene particles. The solar cell shows a photovoltaic effect and an open-circuit voltage of 128 mV was obtained. The limiting factors of the solar cell performance were investigated from the careful observations of the solar cell structures. We also investigated the influence of the microwire array structure on light trapping in the solar cells.

  15. Controllable spin and valley polarized current through a superlattice of normal/ferromagnetic/normal silicene junction

    Science.gov (United States)

    Rashidian, Z.; Hajati, Y.; Rezaeipour, S.; Baher, S.

    2017-02-01

    The spin and valley transports in a superlattice of normal/ferromagnetic/normal silicene junction are studied theoretically. Transport properties in particular valley-resolved conductance, spin and valley polarization have been computed by the Landauer Buttiker formula. We achieve fully valley and spin polarized current in the superlattice N/F/N structure. Our findings also imply that by increasing the number of ferromagnetic barriers, the onset of fully spin and valley polarized current always occur for lower values of staggered potential(Δz/E) and length of the ferromagnetic region (Kf L) in the silicene supelattice structure as compared with N/F/N silicene junction. Fully spin and valley polarizations make silicene superlattice a suitable candidate for spin-valleytronics applications.

  16. Optically and Electrically Tunable Dirac Points and Zitterbewegung in Graphene-Based Photonic Superlattices

    CERN Document Server

    Deng, Hanying; Malomed, Boris A; Chen, Xianfeng; Panoiu, Nicolae C

    2015-01-01

    We demonstrate that graphene-based photonic superlattices provide a versatile platform for electrical and all-optical control of photonic beams with deep-subwavelength accuracy. Specifically, by inserting graphene sheets into periodic metallo-dielectric structures one can design optical superlattices that posses photonic Dirac points (DPs) at frequencies at which the spatial average of the permittivity of the superlattice, $\\bar{ \\varepsilon}$, vanishes. Similar to the well-known zero-$\\bar{n}$ bandgaps, we show that these zero-$\\bar{\\varepsilon}$ DPs are highly robust against structural disorder. We also show that, by tuning the graphene permittivity via the optical Kerr effect or electrical doping, one can induce a spectral variation of the DP exceeding \\SI{30}{\

  17. Effect of silane flow rate on structural, electrical and optical properties of silicon thin films grown by VHF PECVD technique

    Energy Technology Data Exchange (ETDEWEB)

    Gope, Jhuma [Physics of Energy Harvesting Division, CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Kumar, Sushil, E-mail: skumar@nplindia.org [Physics of Energy Harvesting Division, CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Sudhakar, S.; Rauthan, C.M.S. [Physics of Energy Harvesting Division, CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Srivastava, P.C. [Department of Physics, Banaras Hindu University, Varanasi 221005 (India)

    2013-08-15

    Hydrogenated silicon thin films deposited by VHF PECVD process for various silane flow rates have been investigated. The silane flow rate was varied from 5 sccm to 30 sccm, maintaining all other parameters constant. The electrical, structural and optical properties of these films were systematically studied as a function of silane flow rate. These films were characterized by Raman spectroscopy, Scanning Electron Microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy and UV–visible (UV–Vis) spectroscopy. Different crystalline volume fraction (22%–60%) and band gap (∼1.58 eV–∼1.96 eV) were achieved for silicon thin films by varying the silane concentration. A transition from amorphous to nanocrystalline silicon has been confirmed by Raman and FTIR analysis. The film grown at this transition region shows the high conductivity in the order of 10{sup −4} Ω{sup −1} cm{sup −1}. - Highlights: • Silicon films grown using VHF PECVD at various F{sub silane} (silane flow rate). • Amorphous to nanocrystalline silicon transition at F{sub silane} ∼5 sccm–10 sccm. • Deposition rate increases with the increase of F{sub silane}. • Powder formation occurred beyond 20 sccm of F{sub silane}. • Film grown at 20 sccm shows max. crystalline fraction ∼60% with E{sub g} ∼1.58 eV.

  18. Quantum confinement in MOVPE-grown structures with self-assembled InAs/GaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kuldova, K; Vyborny, Z; Pangrac, J; Oswald, J [Institute of Physics of the AS CR, v. v. i., Cukrovarnicka 10, CZ-162 00 Praha 6 (Czech Republic); Molas, M; Borysiuk, J; Babinski, A, E-mail: kuldova@fzu.c [Institute of Experimental Physics, University of Warsaw, Ho z-dot a 69, PL-00-681 Warszawa (Poland)

    2010-09-01

    In this communication we report on low-temperature, micro-photoluminescence study of quantum confinement in MOVPE-grown structures with InAs/GaAs quantum dots (QDs) with GaAs and/or strain reducing InGaAs/GaAs capping. We focus our attention on sharp emission lines, which appear in both structures at energies up to 80 meV below the wetting line emission. Power-dependent measurements confirmed their attribution to single excitons as well as biexcitons. Negative binding energy of biexcitons with systematic dependence on their energy was observed. It has been proposed that the investigated emission lines result from radiative recombination in flat non-fully developed QDs in the investigated structure. The attribution is confirmed by transmission electron microscopic analysis of investigated structures.

  19. Interwell excitons in GaAs superlattices

    DEFF Research Database (Denmark)

    Birkedal, Dan; Sayed, Karim El; Sanders, G.;

    1996-01-01

    The formation of spatially indirect excitons in superlattices with narrow minibands is theoretically and experimentally investigated. We identify the experimental conditions for the observation of interwell excitons and find a distinct excitonic state energetically located between the Is exciton ...

  20. Yield and yield structure of spring barley (Hodeum vulgare L. grown in monoculture after different stubble crops

    Directory of Open Access Journals (Sweden)

    Dorota Gawęda

    2012-12-01

    Full Text Available A field experiment was conducted in the period 2006- 2008 in the Uhrusk Experimental Farm belonging to the University of Life Sciences in Lublin. The experimental factor was the type of stubble crop ploughed in each year after harvest of spring barley: white mustard, lacy phacelia, winter rape, and a mixture of narrow-leaf lupin with field pea. In the experiment, successive spring barley crops were grown one after the other (in continuous monoculture. The aim of the experiment was to evaluate the effect of stubble crops used on the size and structure of barley yield. The three-year study showed an increasing trend in grain yield of spring barley grown after the mixture of legumes, lacy phacelia, and white mustard compared to its size in the treatment with no cover crop. Straw yield was significantly higher when barley was grown after the mixture of narrowleaf lupin with field pea than in the other treatments of the experiment. The type of ploughed-in stubble crop did not modify significantly plant height, ear length, and grain weight per ear. Growing the mixture of leguminous plants as a cover crop resulted in a significant increase in the density of ears per unit area in barley by an average of 14.7% relative to the treatment with winter rape. The experiment also showed the beneficial effect of the winter rape cover crop on 1000-grain weight of spring barley compared to that obtained in the treatments with white mustard and the mixture of legumes. All the cover crops caused an increase in the number of grains per ear of barley relative to that found in the control treatment. However, this increase was statistically proven only for the barley crops grown after lacy phacelia and the mixture of legumes.

  1. Structure and Morphology of Phthalocyanine Films Grown in Electrical Fields by Vapor Deposition

    Science.gov (United States)

    Zhu, Shen; Banks, C. E.; Frazier, D. O.; Penn, B.; Abdeldayem, H.; Hicks, R.; Burns, H. D.; Thompson, G. W.

    1999-01-01

    Phthalocyanine (Pc) films have been synthesized by vapor deposition on quartz substrates, some of which were coated with a very thin gold film before depositing Pc films. Electrical fields up to 6200 V/cm between a mech electrode and the substrate are introduced during film growth. These films have been characterized by x-ray diffraction and scanning electron microscopy. The molecular orientations and surface morphology of Pc films were changed under the electrical fields. The surface of these films grown without electrical field shows whisk-like morphology. When films are deposited under an electrical field, a dense film with flat surface is obtained.

  2. Structural properties of undoped and doped cubic GaN grown on SiC(001)

    OpenAIRE

    Martínez-Guerrero, Esteban; Bellet-Amalric, E.; Martinet, L.; Feuillet, G.; Daudin, B.

    2002-01-01

    Transmission electron microscopy and x-ray diffraction measurements reveal the presence of stacking faults ~SFs! in undoped cubic GaN thin layers. We demonstrate the importance of the defects in the interfacial region of the films by showing that the SFs act as nucleation sites for precipitates of residual impurities such as C and Si present in the GaN layers grown on SiC~001! substrates. We used the imaging secondary ion mass spectroscopy technique to locate these impurities. The systemat...

  3. Analytical Study of Electromagnetic Wave in Superlattice

    Institute of Scientific and Technical Information of China (English)

    LINChang; ZHANGXiu-Lian

    2004-01-01

    The theoretical description of soliton solutions and exact analytical solutions in the sine-Gordon equation is extended to superlattice physics. A family of interesting exact solutions and a new exact analytical solution have been obtained for the electromagnetic wave propagating through a superlattice. In more general cases, the vector potential along the propagating direction obeys the sine-Gordon equation. Some mathematical results of theoretical investigation are given for different cases in supedattices.

  4. HgTe-CdTe SUPERLATTICES

    OpenAIRE

    Smith, D; Mcgill, T.

    1984-01-01

    We report on a theoretical study of the electronic properties of HgTe-CdTe superlattices. The band gap as a function of layer thickness, effective masses normal to the layer plane and tunneling length are compared to the corresponding (Hg, Cd)Te alloys. We find that the superlattice possesses a number of properties that may make it superior to the corresponding alloy as an infrared material.

  5. Bonding structure and morphology of chromium oxide films grown by pulsed-DC reactive magnetron sputter deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gago, R., E-mail: rgago@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049 Madrid (Spain); Vinnichenko, M. [Fraunhofer-Institut für Keramische Technologien und Systeme IKTS, D-01277 Dresden (Germany); Hübner, R. [Helmholtz-Zentrum Dresden – Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden (Germany); Redondo-Cubero, A. [Departamento de Física Aplicada and Centro de Microanálisis de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid (Spain)

    2016-07-05

    Chromium oxide (CrO{sub x}) thin films were grown by pulsed-DC reactive magnetron sputter deposition in an Ar/O{sub 2} discharge as a function of the O{sub 2} fraction in the gas mixture (ƒ) and for substrate temperatures, T{sub s}, up to 450 °C. The samples were analysed by Rutherford backscattering spectrometry (RBS), spectroscopic ellipsometry (SE), atomic force microscopy (AFM), scanning (SEM) and transmission (TEM) electron microscopy, X-ray diffraction (XRD), and X-ray absorption near-edge structure (XANES). On unheated substrates, by increasing ƒ the growth rate is higher and the O/Cr ratio (x) rises from ∼2 up to ∼2.5. Inversely, by increasing T{sub s} the atomic incorporation rate drops and x falls to ∼1.8. XRD shows that samples grown on unheated substrates are amorphous and that nanocrystalline Cr{sub 2}O{sub 3} (x = 1.5) is formed by increasing T{sub s}. In amorphous CrO{sub x}, XANES reveals the presence of multiple Cr environments that indicate the growth of mixed-valence oxides, with progressive promotion of hexavalent states with ƒ. XANES data also confirms the formation of single-phase nanocrystalline Cr{sub 2}O{sub 3} at elevated T{sub s}. These structural changes also reflect on the optical and morphological properties of the films. - Highlights: • XANES of CrO{sub x} thin films grown by pulsed-DC reactive magnetron sputtering. • Identification of mixed-valence amorphous CrO{sub x} oxides on unheated substrates. • Promotion of amorphous chromic acid (Cr{sup VI}) by increasing O{sub 2} partial pressure. • Production of single-phase Cr{sub 2}O{sub 3} films by increasing substrate temperature. • Correlation of bonding structure with morphological and optical properties.

  6. Structural and electrical properties of tantalum oxide films grown by photo-assisted pulsed laser deposition

    Science.gov (United States)

    Zhang, Jun-Ying; Boyd, Ian W.

    2002-01-01

    We describe the growth of thin films of Ta 2O 5 on quartz and silicon (1 0 0) substrates by an in situ photo-assisted pulsed laser deposition (photo-PLD) using radiation from a Nd:YAG laser (wavelength, λ=532 nm) to stimulate the ablation, and from an excimer lamp to excite additional photochemistry. The layers grown were investigated by Fourier transform infrared (FT-IR) spectroscopy, UV spectrophotometry, atomic force microscopy (AFM), ellipsometry and electrical measurements. We have found that they exhibit a significant improvement in microstructure, and optical and electrical properties compared with conventional PLD films prepared under, otherwise, identical conditions. For example, FT-IR results showed that the suboxide content in the as-grown films deposited by the photo-PLD process is less, while the leakage current density was an order of magnitude less at around 10 -6 A/cm 2 at a bias of 1 V. These results indicate that this photo-PLD process approach can be advantageous for dielectric and optical oxide film growth.

  7. Spin-dependent Seebeck effects in a graphene superlattice p–n junction with different shapes

    Science.gov (United States)

    Zhou, Benhu; Zhou, Benliang; Yao, Yagang; Zhou, Guanghui; Hu, Ming

    2017-10-01

    We theoretically calculate the spin-dependent transmission probability and spin Seebeck coefficient for a zigzag-edge graphene nanoribbon p–n junction with periodically attached stubs under a perpendicular magnetic field and a ferromagnetic insulator. By using the nonequilibrium Green’s function method combining with the tight-binding Hamiltonian, it is demonstrated that the spin-dependent transmission probability and spin Seebeck coefficient for two types of superlattices can be modulated by the potential drop, the magnetization strength, the number of periods of the superlattice, the strength of the perpendicular magnetic field, and the Anderson disorder strength. Interestingly, a metal to semiconductor transition occurs as the number of the superlattice for a crossed superlattice p–n junction increases, and its spin Seebeck coefficient is much larger than that for the T-shaped one around the zero Fermi energy. Furthermore, the spin Seebeck coefficient for crossed systems can be much pronounced and their maximum absolute value can reach 528 μV K-1 by choosing optimized parameters. Besides, the spin Seebeck coefficient for crossed p–n junction is strongly enhanced around the zero Fermi energy for a weak magnetic field. Our results provide theoretical references for modulating the thermoelectric properties of a graphene superlattice p–n junction by tuning its geometric structure and physical parameters.

  8. Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Joel Glenn [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.

  9. An investigation of structural properties of GaN films grown on patterned sapphire substrates by MOVPE

    Science.gov (United States)

    Törmä, P. T.; Ali, M.; Svensk, O.; Sintonen, S.; Kostamo, P.; Suihkonen, S.; Sopanen, M.; Lipsanen, H.; Odnoblyudov, M. A.; Bougrov, V. E.

    2009-12-01

    GaN films were fabricated by metal organic vapor phase epitaxy (MOVPE) on patterned sapphire substrates (PSSs) with either direct or inverse type patterned structures. Both of these two types of PSSs had their own unique GaN growth process which depart from the standard growth on the planar c-plane. GaN films on PSSs showed decreased threading dislocation (TD) density. However, differences between the crystal quality of the GaN films grown on PSSs were observed. It was also found out with one of the pattern type that the TD density varied laterally and followed the periodicity of the pattern on the sapphire surface.

  10. The structural state of epitaxial GaP films of different polarities grown on misoriented Si(001) substrates

    Science.gov (United States)

    Loshkarev, I. D.; Vasilenko, A. P.; Trukhanov, E. M.; Kolesnikov, A. V.; Putyato, M. A.; Esin, M. Yu.; Petrushkov, M. O.

    2017-02-01

    The structure of GaP films grown by molecular-beam epitaxy on vicinal Si(1113) substrates has been studied by X-ray diffraction. It is established that the crystalline lattice of a pseudomorphic film rotates about the axis toward increasing deviation from the singular orientation, while the subsequent relaxation leads to rotation in the opposite direction. This is valid for the films of both (001) and (001¯) polarities. Differences between the surface morphologies of relaxed and pseudomorphic GaP films are revealed.

  11. Laser MBE-grown yttrium iron garnet films on GaN: characterization of the crystal structure and magnetic properties

    Science.gov (United States)

    Kaveev, A. K.; Bursian, V. E.; Gastev, S. V.; Krichevtsov, B. B.; Suturin, S. M.; Volkov, M. P.; Sokolov, N. S.

    2016-07-01

    Yttrium iron garnet (YIG) films were grown on GaN substrates using the laser molecular beam epitaxy method. X-ray diffraction data showed polycrystalline YIG layers without additional structural modifications. The magnetic properties of the YIG films were studied at room temperature with the aid of a vibration sample magnetometer, the magneto-optical Kerr effect and ferromagnetic resonance methods. ‘Easy-plane’-type magnetic anisotropy was found in the films. The gyromagnetic ratio and 4 πMS value were calculated.

  12. Structural and optical characterization of InAs/GaSb type-II superlattices: Influence of the change in InAs and GaSb layer thicknesses for fixed InSb-like interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Arikan, Bulent, E-mail: bulentarikanx@gmail.com; Korkmaz, Melih; Aslan, Bulent; Serincan, Uğur

    2015-08-31

    In this article, we report on the molecular beam epitaxy growth and characterization of a 140 period InAs/GaSb type-II superlattice structure designed for mid infrared detection. Thickness of a period was systematically altered in each sample by changing the thickness of InAs (GaSb) layers from 9 to 7 monolayers (ML) for a fixed GaSb (InAs) layer at 9 ML (7 ML). The same InSb-like strain compensation interface was used for all samples. High resolution X-ray diffraction analysis, spectral responsivity and external quantum efficiency (QE) measurements were performed to express the effects of layer thickness variations on both structural and photodetector features. The decrease in the InAs thickness resulted in the increased mismatch from 0 to + 1626 ppm and the blue shift in the 50% cut-off wavelength (λ{sub c}) from 5.41 to 4.36 μm at 77 K. The additional decrease in GaSb thickness caused further increase in the mismatch up to + 1791 ppm. The steepness of the photoresponse at the absorption band edge was quantified and presented comparatively with different photodetector parameters and material properties for a complete picture. The highest optical response was obtained from sample having 8 ML InAs and 9 ML GaSb with λ{sub c} = 4.76 μm and QE = 23.7% at 4 μm. - Highlights: • Detailed growth conditions for InAs/GaSb SLs designed for infrared detection • Precisely engineering the λ{sub c} and the ∆a{sub ⊥}/a by controlling the SL layer thicknesses • InAs layer thickness changes are more effective than the GaSb on the λ{sub c} and ∆a{sub ⊥}/a.

  13. Ferromagnet / superconductor oxide superlattices

    Science.gov (United States)

    Santamaria, Jacobo

    2006-03-01

    The growth of heterostructures combining oxide materials is a new strategy to design novel artificial multifunctional materials with interesting behaviors ruled by the interface. With the (re)discovery of colossal magnetoresistance (CMR) materials, there has been renewed interest in heterostructures involving oxide superconductors and CMR ferromagnets where ferromagnetism (F) and superconductivity (S) compete within nanometric distances from the interface. In F/S/F structures involving oxides, interfaces are especially complex and various factors like interface disorder and roughness, epitaxial strain, polarity mismatch etc., are responsible for depressed magnetic and superconducting properties at the interface over nanometer length scales. In this talk I will focus in F/S/F structures made of YBa2Cu3O7 (YBCO) and La0.7Ca0.3MnO3 (LCMO). The high degree of spin polarization of the LCMO conduction band, together with the d-wave superconductivity of the YBCO make this F/S system an adequate candidate for the search of novel spin dependent effects in transport. We show that superconductivity at the interface is depressed by various factors like charge transfer, spin injection or ferromagnetic superconducting proximity effect. I will present experiments to examine the characteristic distances of the various mechanisms of superconductivity depression. In particular, I will discuss that the critical temperature of the superconductor depends on the relative orientation of the magnetization of the F layers, giving rise to a new giant magnetoresistance effect which might be of interest for spintronic applications. Work done in collaboration with V. Peña^1, Z. Sefrioui^1, J. Garcia-Barriocanal^1, C. Visani^1, D. Arias^1, C. Leon^1 , N. Nemes^2, M. Garcia Hernandez^2, S. G. E. te Velthuis^3, A. Hoffmann^3, M. Varela^4, S. J. Pennycook^4. Work supported by MCYT MAT 2005-06024, CAM GR- MAT-0771/2004, UCM PR3/04-12399 Work at Argonne supported by the Department of Energy, Basic

  14. Surface photovoltage spectroscopy of quantum wells and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Bachrach-Ashkenasy, N.; Kronik, L.; Shapira, Y. [Department of Physical Electronics, Faculty of Engineering, Tel-Aviv University, Ramat-Aviv 69978 (Israel); Rosenwaks, Y.; Hanna, M.C. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Leibovitch, M.; Ram, P. [Physics Department, Brooklyn College of the City University of New York, Brooklyn, New York 11210 (United States)

    1996-02-01

    Surface photovoltage spectroscopy (SPS) has been employed to monitor optical transitions in quantum well and superlattice structures at room temperature. Excellent agreement is found between theoretical predictions of heavy hole and electron energy level positions and the observed transitions. The results show that using this technique, the complete band diagram of the quantum structure may be constructed. SPS emerges as a powerful tool capable of monitoring optical transitions above the lowest one in a simple to interpret, contactless, and nondestructive way. {copyright} {ital 1996 American Institute of Physics.}

  15. Broadband Midwave Infrared InAs/GaSb Superlattice Light-Emitting Diodes

    Science.gov (United States)

    Ricker, Russell; Provence, Sydney; Norton, Dennis; Prineas, John; Boggess, Thomas

    Broadband (3.0 μm to 5.0 μm) emission is reported from InAs/GaSb superlattice light-emitting diodes grown via molecular beam epitaxy . Stacked active regions, each with a different emission wavelength, were connected with tunnel junctions, resulting in multiple emission wavelengths in a monolithic structure. Eight active regions provided eight overlapping emission spectra, simulating a broadband spectrum. Chips with mesas of sizes ranging from 24 μm x 24 μm to 400 μm x 400 μm were fabricated and wire bonded to a leadless chip carrier (LCC). The LCC was mounted in a liquid nitrogen cryostat. At low input currents, distinct peaks were observed at 3.3 μm, 3.6 μm, 3.9 μm, 4.2 μm, 4.5 μm, 4.9 μm, and 5.3 μm. At high input currents a continuous spectrum was observed with a peak near 3.8 μm and with a full-width at half-maximum of 1.42 μm. In quasi-continuous operation at 77 K, radiances exceeding 0.35 W/cm2-sr in a Lambertian profile were achieved. Current dependent electroluminescent spectra measured at liquid nitrogen temperatures demonstrate the blending of the various colors from each stage into one smooth spectrum at high currents.

  16. Minority Carrier Lifetime in Beryllium-Doped InAs/InAsSb Strained Layer Superlattices

    Science.gov (United States)

    Lin, Y.; Wang, D.; Donetsky, D.; Belenky, G.; Hier, H.; Sarney, W. L.; Svensson, S. P.

    2014-09-01

    Minority carrier lifetimes in undoped and Beryllium-doped Type-2 Ga-free, InAs/InAsSb strained layer superlattices (SLS) with energy gaps as low as 0.165 eV were determined from photoluminescence kinetics. The minority carrier lifetime of 450 ns at 77 K in the undoped SLS confirms a high material quality. In similarly-grown structures that were p-doped to N A = 6 × 1016 and 3 × 1017 cm-3, electron lifetimes of τ n = 45 ns and 8 ns were measured. The 6 × 1016 cm-3 doping level is a factor of 6 greater than the typical background doping level in long-wave infrared (LWIR) Ga-containing InAs/GaSb SLS with similar bandgap and electron lifetime. This suggests that LWIR photodetectors with InAs/InAsSb SLS absorbers can be designed with smaller minority carrier concentrations and diffusion dark current densities. A relatively slow decrease of the lifetime with doping suggests a minor role of Auger recombination in the studied Ga-free SLS at T = 77 K with p-doping up to mid-1017 cm-3 level.

  17. Structural and optical features of InGaAs quantum dots grown on Si(001) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Vdovin, V I [Institute for Chemical Problems of Microelectronics, 119017 Moscow (Russian Federation); Kazakov, I P [PN Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow (Russian Federation); Rzaev, M M [PN Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow (Russian Federation); Burbaev, T M [PN Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow (Russian Federation)

    2002-12-09

    A multilayer GaAs/SiGe/Si heterostructure with InGaAs quantum dots (QDs) embedded in a GaAs layer was grown by molecular beam epitaxy (MBE) on a Si(001) substrate. A step-graded Si{sub 1-x}Ge{sub x} (0 {<=} x {<=} 1) buffer layer and a GaAs layer with In{sub y}Ga{sub 1-y}As (y {approx} 0.5) QDs were deposited consecutively in two different MBE systems. The heterostructure exhibits intense photoluminescence in the region of 1.3 {mu}m at room temperature. Perfect crystal InGaAs islands with height less than 10 nm are the sources of this radiation.

  18. Preparation and structural properties of YBCO films grown on GaN/c-sapphire hexagonal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Chromik, S., E-mail: stefan.chromik@savba.sk [Institute of Electrical Engineering, SAS, Dubravska cesta 9, 84104 Bratislava (Slovakia); Gierlowski, P. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Spankova, M.; Dobrocka, E.; Vavra, I.; Strbik, V.; Lalinsky, T.; Sojkova, M. [Institute of Electrical Engineering, SAS, Dubravska cesta 9, 84104 Bratislava (Slovakia); Liday, J.; Vogrincic, P. [Department of Microelectronics, Slovak Technical University, Ilkovicova 3, 81219 Bratislava (Slovakia); Espinos, J.P. [Instituto de Ciencia de Materiales de Sevilla, Avda Americo Vespucio 49, 41092 Sevilla (Spain)

    2010-07-01

    Epitaxial YBCO thin films have been grown on hexagonal GaN/c-sapphire substrates using DC magnetron sputtering and pulsed laser deposition. An MgO buffer layer has been inserted between the substrate and the YBCO film as a diffusion barrier. X-ray diffraction analysis indicates a c-axis oriented growth of the YBCO films. {Phi}-scan shows surprisingly twelve maxima. Transmission electron microscopy analyses confirm an epitaxial growth of the YBCO blocks with a superposition of three a-b YBCO planes rotated by 120 deg. to each other. Auger electron spectroscopy and X-ray photoelectron spectroscopy reveal no surface contamination with Ga even if a maximum substrate temperature of 700 deg. C is applied.

  19. Micro structural and dielectric property analysis on hydrothermally grown gadolinium doped SnO2 crystals

    Science.gov (United States)

    Pilakavil, Jaya T.; Pradyumnan, P. P.

    2016-09-01

    A series of SnO2-Gd2O3 mixed oxides were grown in aqueous medium by varying the thermodynamic parameters by hydrothermal method. X ray diffraction data identified tetragonal phases corresponding to tin oxide. The average crystallite size of the samples were between 21 and 31 nm. The morphological studies were conducted using scanning electron microscopy and compositional purity confirmed using energy dispersive spectroscopy. Detailed dielectric studies on the samples were performed in the frequency range 100 Hz-5 MHz, which showed that dielectric constant decreases with frequency in the low frequency range, whereas remains constant at higher frequencies. Impedance analysis is used to explain the effects of grain and grain boundary on transport mechanism of Gd:SnO2 particles synthesised at various pH.

  20. The unoccupied electronic structure characterization of hydrothermally grown ThO{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, T.D.; Petrosky, J.C.; McClory, J.W. [Department of Engineering Physics, Air Force Institute of Technology, WPAFB, OH (United States); Turner, D. [Oak Ridge Institute for Science and Education, Oak Ridge, TN (United States); Mann, J.M. [Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH (United States); Kolis, J.W. [Department of Chemistry and Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Clemson, SC (United States); Zhang, Xin; Dowben, P.A. [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE (United States)

    2014-03-15

    Single crystals of thorium dioxide ThO{sub 2}, grown by the hydrothermal growth technique, have been investigated by ultraviolet photoemission spectroscopy (UPS), inverse photoemission spectroscopy (IPES), and L{sub 3}, M{sub 3}, M{sub 4}, and M{sub 5} X-ray absorption near edge spectroscopy (XANES). The experimental band gap for large single crystals has been determined to be 6 eV to 7 eV, from UPS and IPES, in line with expectations. The combined UPS and IPES, place the Fermi level near the conduction band minimum, making these crystals n-type, with extensive band tailing, suggesting an optical gap in the region of 4.8 eV for excitations from occupied to unoccupied edge states. Hybridization between the Th 6d/5f bands with O 2p is strongly implicated. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Optical Properties of ZnO Soccer-Ball Structures Grown by Vapor Phase Transport

    Science.gov (United States)

    Nam, Giwoong; Lee, Sang-heon; Kim, Soaram; Kim, Min Su; Kim, Do Yeob; Gug Yim, Kwang; Lee, Dong-Yul; Kim, Jin Soo; Kim, Jong Su; Son, Jeong-Sik; Kim, Sung-O.; Jung, Jae Hak; Leem, Jae-Young

    2012-02-01

    ZnO soccer balls were grown on an Au-catalyzed Si(100) substrate by vapor phase transport (VPT) with a mixture of zinc oxide and graphite powders. Temperature-dependent PL was carried out to investigate the mechanism governing the quenching behavior of the PL spectra. From the PL spectra of the ZnO soccer balls at 10 K, several PL peaks were observed at 3.365, 3.318, 3.249, and 3.183 eV corresponding to excitons bound to neutral donors (DoX), a donor-acceptor pair (DAP), first-order longitudinal optical phonon replica of donor-acceptor pair (DAP-1LO), and DAP-2LO, respectively. The mixed system composed of the free exciton (FX) and DoX and the DAP radiative lifetimes were estimated with a theoretical relation between the lifetime and the spectral width. The exciton radiative lifetimes were observed to increase linearly with temperature.

  2. Structural and optical features of InGaAs quantum dots grown on Si(001) substrates

    CERN Document Server

    Vdovin, V I; Rzaev, M M; Burbaev, T M

    2002-01-01

    A multilayer GaAs/SiGe/Si heterostructure with InGaAs quantum dots (QDs) embedded in a GaAs layer was grown by molecular beam epitaxy (MBE) on a Si(001) substrate. A step-graded Si sub 1 sub - sub x Ge sub x (0 <= x <= 1) buffer layer and a GaAs layer with In sub y Ga sub 1 sub sub - sub y As (y approx 0.5) QDs were deposited consecutively in two different MBE systems. The heterostructure exhibits intense photoluminescence in the region of 1.3 mu m at room temperature. Perfect crystal InGaAs islands with height less than 10 nm are the sources of this radiation.

  3. Phonon-pumped terahertz gain in n-type GaAs/AlGaAs superlattices

    Science.gov (United States)

    Sun, Gregory; Soref, Richard A.

    2001-05-01

    Local population inversion and far-IR gain are proposed and theoretically analyzed for an unbiased n-doped GaAs/Al0.15Ga0.85As superlattice pumped solely by phonons. The lasing transition occurs at the Brillouin zone boundary of the superlattice wave vector kz between the two conduction minibands CB1 and CB2 of the opposite curvature in kz space. The proposed waveguided structure is contacted above and below by heat sinks at 300 K and 77 K, respectively. Atop the superlattice, a heat buffer layer confines longitudinal optical phonons for enhanced optical-phonon pumping of CB1 electrons. A gain of 345 cm-1 at 4.5 THz is predicted for a doping density of 2.8×1016cm-3.

  4. Synthesis and electrical properties of In2O3(ZnO)m superlattice nanobelt

    Institute of Scientific and Technical Information of China (English)

    唐欣月; 高红; 武立立; 温静; 潘思明; 刘欣; 张喜田

    2015-01-01

    One-dimensional (1D) In2O3(ZnO)m superlattice nanobelts are synthesized by chemical vapor deposition method. The formation of In2O3(ZnO)m superlattice is verified by the high-resolution transmission electron microscopy images. The typical zigzag boundaries could be clearly observed. An additional peak at 614 cm−1 is found in the Raman spec-trum, which may correspond to the superlattice structure. The study about the electrical transport properties reveals that the In2O3(ZnO)m nanobelts exhibit peculiar nonlinear I–V characteristics even under the Ohmic contact measurement con-dition, which are different from the Ohmic behaviors of the In-doped ZnO nanobelts. The photoelectrical measurements show the differences in photocurrent property between them, and their transport mechanisms are also discussed.

  5. Wannier-Stark localization and terahertz electroluminescence of natural SiC superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Sankin, V. I.; Andrianov, A. V.; Petrov, A. G.; Zakhar' in, A. O. [A.F. Ioffe Physical Technical Institute, 194021 St. Petersburg (Russian Federation)

    2013-12-04

    We report on efficient terahertz electroluminescence in the region of 1.5-2 THz from high electric field biased 6H-SiC n{sup +}−n{sup −}−n{sup +} structures with a natural superlattice at 7 K. The properties of the terahertz emission allow it to be attributed to spontaneous radiation resulting from electron Bloch oscillations in SiC natural superlattice. The use of the unique object, namely, natural superlattice of SiC allowed us to demonstrate a whole series of remarkable effects of Wannier-Stark localization and to get the intensive terahertz emission under steady-state electrical excitation of Bloch oscillations.

  6. Resonant tunnelling and intersubband absorption in AlN - GaN superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, E.; Giorgetta, F.R.; Hofstetter, D. [University of Neuchatel, 1 A.-L. Breguet, Neuchatel, 2000 (Switzerland); Wu, H.; Schaff, W.J.; Eastman, L.F. [Cornell University, Ithaca, NY 14850 (United States); Kirste, L. [Fraunhofer-Institute of Applied Solid State Physics, Tullastrasse 72, Freiburg, 79108 (Germany)

    2005-02-01

    We report on intersubband absorption and photovoltage measurements on regular GaN/AlN-based superlattice structures at 1.55 {mu}m. For high barriers, the photovoltage peaks at a higher energy than the absorbance spectrum due to the decrease of the tunnelling probability. The observed photovoltage is thus the macroscopic manifestation that the 2-dimensional electron gas at the top of the superlattice gets depleted by a vertical transport of electrons. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. PHASE TRANSITION PROPERTIES OF A TWO COMPONENT FINITE MAGNETIC SUPERLATTICE

    Institute of Scientific and Technical Information of China (English)

    WANG XIAO-GUANG; LIU NING-NING; PAN SHAO-HUA; YANG GUO-ZHEN

    2000-01-01

    We study an (l, n) finite superlattice, which consists of two alternative magnetic materials(components) of l and n atomic layers, respectively. Based on the Ising model, we examine the phase transition properties of the magnetic superlattice. By transfer matrix method we derive the equation for Curie temperature of the superlattice. Numerical results are obtained for the dependence of Curie temperature on the thickness and exchange constants of the superlattice.

  8. The Luminescent Properties and Atomic Structures of As-Grown and Annealed Nanostructured Silicon Rich Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    N. D. Espinosa-Torres

    2016-01-01

    Full Text Available Not long ago, we developed a theoretical model to describe a set of chemical reactions that can potentially occur during the process of obtaining Silicon Rich Oxide (SRO films, an off stoichiometry material, notwithstanding the technique used to grow such films. In order to elucidate the physical chemistry properties of such material, we suggested the chemical reactions that occur during the process of growing of SRO films in particular for the case of the Low Pressure Chemical Vapor Deposition (LPCVD technique in the aforementioned model. The present paper represents a step further with respect to the previous (published work, since it is dedicated to the calculation by Density Functional Theory (DFT of the optical and electronic properties of the as-grown and annealed SRO structures theoretically predicted on the basis of the previous work. In this work, we suggest and evaluate either some types of molecules or resulting nanostructures and we predict theoretically, by applying the DFT, the contribution that they may have to the phenomenon of luminescence (PL, which is experimentally measured in SRO films. We evaluated the optical and electronic properties of both the as-grown and the annealed structures.

  9. Short-period InAs/GaSb superlattices for mid-infrared photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Haugan, H.J.; Szmulowicz, F.; Brown, G.J.; Munshi, S.R. [Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433 (United States); Ullrich, B. [Department of Physics and Astronomy, Bowling Green State University, Ohio 45433 (United States); Wickett, J.C.; Stokes, D.W. [Department of Physics, University of Houston, Texas 77204 (United States)

    2007-04-15

    Using a newly developed envelope function approximation model that includes interface effects, several InAs/GaSb type-II superlattices (SLs) were designed for uncooled mid-infrared detector applications. The 4 micron cutoff could be achieved with several SL designs. Superlattices with shorter periods have larger intervalence band separations than larger-ones, which could increase the optical signal and reduce the detector noise, thus making room temperature operation possible. To test these possibilities, several short-period SLs were grown by molecular-beam epitaxy and their optical properties with reducing SL period were studied by band-edge absorption, photoconductivity and photoluminescence measurements. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Improvements in (112-bar2) semipolar GaN crystal quality by graded superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S.R., E-mail: shengruixidian@126.com [Key Lab of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi' an 710071 (China); Zhang, J.C. [Key Lab of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi' an 710071 (China); Cao, Y.R. [School of Electronical and Machanical Engineering, Xidian University, Xi' an, 710071 (China); Zhou, X.W.; Xue, J.S.; Lin, Z.Y.; Ma, J.C. [Key Lab of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi' an 710071 (China); Bao, F. [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125 (China); Hao, Y. [Key Lab of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi' an 710071 (China)

    2012-01-01

    We report on the use of graded superlattices (SLs) for defect reduction in semipolar (112-bar2) GaN films, grown by metal-organic chemical vapor deposition. High-resolution x-ray diffraction analysis revealed that there was a great reduction in the full width at half maximum, both on-axis and off-axis, with the SLs. Atomic force microscopy images revealed a significant decrease in slate features which was associated with the basal-plane stacking faults. The transmission electron microscopy images showed that the threading dislocation was greatly reduced after the graded superlattices. Room temperature photoluminescence measurement revealed that the band-edge emission intensity increased with the insertion of the SLs, which suggested reduction in the nonradiative recombination centers.

  11. Tuneable perpendicular magnetic anisotropy in single crystal [Co/Ni](111) superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Gottwald, M; Girod, S; Andrieu, S; Mangin, S, E-mail: gottwald@lpm.u-nancy.fr [Institut Jean Lamour, CNRS - Nancy Universite, BP 239, F-54506 Vandoeuvre (France)

    2010-06-15

    This paper is dedicated to the preparation of thin film with a strong perpendicular to the film plane magnetic anisotropy, behaviour of great interest for spintronics. Single-crystalline [Co/Ni] (111) superlattices have been grown by molecular beam epitaxy. The epitaxial growth of Co and Ni was controlled by using reflection high energy diffraction (RHEED), allowing us to get an accurate control of the thicknesses. The superlattices magnetic properties were studied using magnetometry. All of them exhibit strong perpendicular to the plane magnetic anisotropy. The maximum of magneto-crystalline anisotropy is obtained for one cobalt mo nolayer. A simple model which takes into account surface and volume anisotropy explains the evolution of perpendicular anisotropy in these layers.

  12. Structural and optical characterization of ZrO2 thin films grown on silicon and quartz substrates

    Science.gov (United States)

    Hojabri, Alireza

    2016-09-01

    Zirconium oxide thin films were grown successfully by thermal annealing of zirconium thin films deposited on quartz and silicon substrates by direct current magnetron sputtering technique. The structural and optical properties in relation to thermal annealing times were investigated. The X-ray diffraction patterns revealed that structure of films changes from amorphous to crystalline by increase of annealing times in range 60-240 min. The composition of films was determined by Rutherford back scattering spectroscopy. Atomic force microscopy results exhibited that surface morphology and roughness of films depend on the annealing time. The refractive index of the films was calculated using Swanepoel's method. The optical band gap energy of annealed films decreased from 5.50 to 5.34 eV with increasing thermal annealing time.

  13. Periodically poled lithium niobate structures grown by the off-center Czochralski technique for backward and forward second harmonic generation

    Science.gov (United States)

    Argiolas, N.; Bazzan, M.; Cattaruzza, E.; Gasparini, A.; Mazzoldi, P.; Sada, C.; Capobianco, A. D.; Autizi, E.; Pigozzo, F. M.; Locatelli, A.; Guarneri, L. C.

    2007-03-01

    We report on the characterization of periodically poled lithium niobate structures grown by the off-center Czochralski technique with periods ranging between 2 and 10 μm. The domains distribution along the crystal was inspected by a profilometer scan after etching the structures and carrying a suitable data processing. The second harmonic generation efficiency was predicted by numerically integrating the governing equations through to a recently proposed nonlinear bidirectional beam propagation method. The numerical analysis pointed out the feasibility of the backward second harmonic generation in the sample with the shortest domain period. The predicted second harmonic generation efficiency was finally corrected considering the phase shifts induced in the second harmonic wave by the presence of different sized domains.

  14. Effects of Mn dope on morphological, structural and optical properties of ZnO nanorods grown by a hydrothermal method

    Science.gov (United States)

    Putri, N. A.; Febrianti, Y.; Sugihartono, I.; Fauzia, V.; Handoko, D.

    2017-07-01

    ZnO nanorods were grown on glass substrate has been systematically investigated by varying Mn doping concentrations. The nanorods have been developed by a simple hydrothermal method on the ZnO seed layers which were deposited by ultrasonic spray pyrolysis method. The influences of Mn on the morphological, structural and optical behavior were observed by measuring Scanning Electron Microscope, X-Ray Diffraction, and UV-Vis spectrophotometer, respectively. It is found that the nanorods growth without any orientation. Interestingly, all the nanorods under investigated exhibit a polycrystalline hexagonal wurtzite structure with strong absorption in UV region and a high transparency in the visible region suggesting that optical properties of ZnO nanorods have been modified by Mn doping.

  15. Magnetocaloric effects in a freestanding and flexible graphene-based superlattice synthesized with a spatially confined reaction.

    Science.gov (United States)

    Zhu, Haiou; Xiao, Chong; Cheng, Hao; Grote, Fabian; Zhang, Xiaodong; Yao, Tao; Li, Zhou; Wang, Chengming; Wei, Shiqiang; Lei, Yong; Xie, Yi

    2014-06-03

    Superlattices have attracted great interest because of their tailorable electronic properties at the interface. However, the lack of an efficient and low-cost synthetic method represents a huge challenge to implement superlattices into practical applications. Herein, we report a space-confined nanoreactor strategy to synthesize flexible freestanding graphene-based superlattice nanosheets, which consist of alternately intercalated monolayered metal-oxide frameworks and graphene. Taking vanadium oxide as an example, clear-cut evidences in extended X-ray absorption fine structure, high-resolution transmission electron microscopy and infrared spectra have confirmed that the vanadium oxide frameworks in the superlattice nanosheets show high symmetry derived from the space-confinement and electron-donor effect of graphene layers, which enable the superlattice nanosheets to show emerging magnetocaloric effect. Undoubtedly, this freestanding and flexible superlattice synthesized from a low-cost and scalable method avoids complex transferring processes from growth substrates for final applications and thus should be beneficial to a wide variety of functionalized devices.

  16. Seebeck effect of as-grown and micro-structured metallic (Zn,Al)O

    Energy Technology Data Exchange (ETDEWEB)

    Homm, G.; Teubert, J.; Henning, T.; Klar, P.J. [I. Physikalisches Institut, Justus-Liebig-Universitaet Giessen (Germany); Szyszka, B. [Fraunhofer-Institut fuer Schicht- und Oberflaechentechnik, Braunschweig (Germany)

    2010-06-15

    We studied the Seebeck coefficient S of sputtered Zn{sub 0.98}Al{sub 0.02}O samples with free carrier concentrations varying from 10{sup 18} to 10{sup 21} cm{sup -3}. The temperature dependence of the Seebeck coefficient at low carrier concentrations exhibits typical semiconductor behavior (S < 0 and pronounced phonon drag below 80K) whereas the metallic as-grown Zn{sub 0.98}Al{sub 0.02}O shows a sign reversal of the Seebeck coefficient with decreasing temperature which is related to the not square-root-like density of states of this degenerately doped metallic material. Furthermore, metallic specimens were microstructured by photolithography and wet-chemical etching with a pattern based on a square grid with a unit cell consisting of a centered square-hole. The Seebeck coefficient changed systematically with decreasing size of the unit cell. The change of S is caused by a shift of the Fermi energy due to the creation of additional surface traps at the sidewalls of the micro holes (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Growth, spectral, structural and mechanical properties of struvite crystal grown in presence of sodium fluoride

    Indian Academy of Sciences (India)

    K Suguna; M Thenmozhi; C Sekar

    2012-08-01

    Struvite or magnesium ammonium phosphate hexahydrate (MAP) is one of the components of urinary stone. Struvite stones are commonly found in women. It forms in human beings as a result of urinary tract infection with urea splitting organisms. These stones can grow rapidly forming “staghorn-calculi”, which is a painful urological disorder. Therefore, it is of prime importance to study the growth and inhibition of struvite crystals. The growth inhibition effect of struvite crystals in sodium metasilicate (SMS) gel in the presence of sodium fluoride has been carried out. Crystals obtained have been analysed by powder and single crystal XRD, SEM–EDX, FTIR and TG–DTA. The results show that the presence of fluoride significantly affects struvite crystal growth and the characteristics of the crystallites produced. The mechanical property of the grown crystals has been investigated by Vickers microhardness testing. Work hardening coefficient was found to be >1.6 for both pure and doped samples which suggests that the crystal belongs to the family of soft material. Presence of sodium fluoride further softened the crystal.

  18. Structural and electronic characterization of graphene grown by chemical vapor deposition and transferred onto sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Joucken, Frédéric, E-mail: frederic.joucken@unamur.be; Colomer, Jean-François; Sporken, Robert; Reckinger, Nicolas

    2016-08-15

    Highlights: • CVD graphene is transferred onto sapphire. • Transport measurements reveal relatively low charge carriers mobility. • Scanning probe microscopy experiments reveal the presence of robust contaminant layers between the graphene and the sapphire, responsible for the low carriers mobility. - Abstract: We present a combination of magnetotransport and local probe measurements on graphene grown by chemical vapor deposition on copper foil and subsequently transferred onto a sapphire substrate. A rather strong p-doping is observed (∼9 × 10{sup 12} cm{sup −2}) together with quite low carrier mobility (∼1350 cm{sup 2}/V s). Atomic force and tunneling imaging performed on the transport devices reveals the presence of contaminants between sapphire and graphene, explaining the limited performance of our devices. The transferred graphene displays ridges similar to those observed whilst graphene is still on the copper foil. We show that, on sapphire, these ridges are made of different thicknesses of the contamination layer and that, contrary to what was reported for hBN or certain transition metal dichalcogenides, no self-cleansing process of the sapphire substrate is observed.

  19. Structural, thermal and dielectric properties of cobaltous malonate single crystals grown in limited diffusion media

    Energy Technology Data Exchange (ETDEWEB)

    Lincy, A.; Mahalakshmi, V.; Tinto, A.J.; Thomas, J. [Smart Materials Analytic Research and Technology (SMART), Department of Physics, St. Berchmans College, Changanassery 686101, Kerala (India); Saban, K.V., E-mail: smartlabindia@gmail.co [Smart Materials Analytic Research and Technology (SMART), Department of Physics, St. Berchmans College, Changanassery 686101, Kerala (India)

    2010-11-15

    Well-faceted crystals of cobaltous malonate (C{sub 6} H{sub 12} Co{sub 2} O{sub 12}) have been grown by the controlled diffusion of ionic species in hydrosilica gel. Single crystal X-ray diffraction studies show that the crystal belongs to the monoclinic system with space group C2/m. The unit cell dimensions are a=12.6301(9) A, b=7.3857(9) A, c=7.2945(7) A, {alpha}={gamma}=90{sup o}, {beta}=120.193(9){sup o}. The functional groups, elucidated from the FT-IR spectrum, are in conformity with the information derived from the X-ray diffraction studies. The thermal behaviour of the material has been investigated using TG-DTA in the temperature range 30-1050 deg. C. The optical band gap of the sample is estimated using diffuse reflectance spectroscopy (DRS). The dielectric constant and dielectric loss of the crystal have been studied over wide temperature and frequency ranges. AC conductivity measurements reveal a thermally activated process and the mechanism behind the conduction process has been discussed.

  20. Influence of the interface corrugation on the subband dispersions and the optical properties of (113)-oriented GaAs/AlAs superlattices

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Lüerssen, D.; Kalt, H.;

    1996-01-01

    We report on the influence of the interface corrugation in (113)-grown GaAs/AlAs superlattices on their band-edge optical properties both in theory and experiment. We calculate the subband dispersions and the optical anisotropies in a multiband k . p formalism. The dominating contribution to the ...

  1. Zener tunneling of light waves in an optical superlattice.

    Science.gov (United States)

    Ghulinyan, Mher; Oton, Claudio J; Gaburro, Zeno; Pavesi, Lorenzo; Toninelli, Costanza; Wiersma, Diederik S

    2005-04-01

    We report on the observation of Zener tunneling of light waves in spectral and time-resolved transmission measurements, performed on an optical superlattice made of porous silicon. The structure was designed to have two photonic minibands, spaced by a narrow frequency gap. A gradient in the refractive index was introduced to create two optical Wannier-Stark ladders and, at a critical value of the optical gradient, tunneling between energy bands was observed in the form of an enhanced transmission peak and a characteristic time dependence of the transmission.

  2. Coherent dynamics of interwell excitons in GaAs/AlxGa1-xAs superlattices

    DEFF Research Database (Denmark)

    Mizeikis, V.; Birkedal, Dan; Langbein, Wolfgang Werner;

    1997-01-01

    Coherent exciton dynamics in a GaAs/AlxGa1-xAs narrow-miniband superlattice is studied by spectrally resolved transient four-wave mixing. Coherent optical properties of the investigated structure are found to be strongly affected by the existence of two different heavy-hole excitonic states. One ...

  3. Annealing Effect on the Structural and Optical Properties of Sputter-Grown Bismuth Titanium Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    José E. Alfonso

    2014-04-01

    Full Text Available The aim of this work is to assess the evolution of the structural and optical properties of BixTiyOz films grown by rf magnetron sputtering upon post-deposition annealing treatments in order to obtain good quality films with large grain size, low defect density and high refractive index similar to that of single crystals. Films with thickness in the range of 220–250 nm have been successfully grown. After annealing treatment at 600 °C the films show excellent transparency and full crystallization. It is shown that to achieve larger crystallite sizes, up to 17 nm, it is better to carry the annealing under dry air than under oxygen atmosphere, probably because the nucleation rate is reduced. The refractive index of the films is similar under both atmospheres and it is very high (n =2.5 at 589 nm. However it is still slightly lower than that of the single crystal value due to the polycrystalline morphology of the thin films.

  4. Effect of annealing on composition, structure and electrical properties of Au layers grown on different thickness Cr layers

    Institute of Scientific and Technical Information of China (English)

    Yan Huang; Hong Qiu; Liqing Pan; Yue Tian; Fengping Wang; Ping Wu

    2004-01-01

    110 nm-thick Au layers were sputter-deposited on unheated glasses coated about a 10 nm-thick and a 50 nm-thick Cr layer respectively. The Au/Cr bilayer films were annealed in a vacuum of 1 mPa at 300℃ for 2, 5 and 30 min, respectively. Auger electron spectroscopy, X-ray diffraction and Field emission scanning electron microscopy were used to analyze the composition and structure of the Au layers. The resistivity of the bilayer films was measured by using four-point probe technique. The adhesion of the bilayer films to the substrate was tested using tape tests. The amount of Cr atoms diffusing into the Au layer increases with increasing the annealing time, resulting in a decrease in lattice constant and an increase in resistivity of the Au layer. The content of Cr inside the Au layer grown on the thinner Cr layer is less than that grown on the thicker Cr layer. For the Au/Cr bilayer films, the lower resistivity and the good adhesion to the glass substrate can be obtained at a shorter annealing time for a thinner Cr layer.

  5. Effect of lattice strain on structural and optical properties of ZnO nanorods grown by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, Khyati, E-mail: khyati34@gmail.com; Nirwal, Varun Singh; Singh, Joginder; Peta, Koteswara Rao; Bhatnagar, P. K. [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021 (India); Singh, Inderpreet [Department of Electronics, SGTB KhalsaCollege, University of Delhi, Delhi-110007 (India)

    2016-05-06

    In this work, we have synthesized ZnO nanorods over ZnO seeds/ITO/glass substrate by the facile hydrothermal method. ZnO seeds are grown at different temperatures ranging from 150°C to 550°C in steps of 100°C. We have studied the effect of strain on the structural and optical properties of ZnO nanorods. It was observed that the growth temperature of seed layer has an influence over the lattice strain present in the nanorods. The as synthesized nanorods were characterized by scanning electron microscope (SEM), x-ray diffraction (XRD) and photoluminescence (PL). SEM images confirm the formation of dense arrays of vertically aligned nanorods on seeds which are grown at 350°C. In addition to this, XRD patterns reveal that these ZnO nanorods are preferentially oriented along (002) direction. The strain analysis based on the XRD results reveals that the minimum value of strain is obtained at 350°C which is attributed to the improved crystalline quality of the interface of seed layer and nanorods leading to their c-axis alignment and enhancement of ultraviolet emission as observed in the PL spectra.

  6. Structural, morphological and mechanical properties of niobium nitride thin films grown by ion and electron beams emanated from plasma

    Science.gov (United States)

    Siddiqui, Jamil; Hussain, Tousif; Ahmad, Riaz; Umar, Zeeshan A.; Abdus Samad, Ubair

    2016-05-01

    The influence of variation in plasma deposition parameters on the structural, morphological and mechanical characteristics of the niobium nitride films grown by plasma-emanated ion and electron beams are investigated. Crystallographic investigation made by X-ray diffractometer shows that the film synthesized at 10 cm axial distance with 15 plasma focus shots (PFS) exhibits better crystallinity when compared to the other deposition conditions. Morphological analysis made by scanning electron microscope reveals a definite granular pattern composed of homogeneously distributed nano-spheroids grown as clustered particles for the film synthesized at 10 cm axial distance for 15 PFS. Roughness analysis demonstrates higher rms roughness for the films synthesized at shorter axial distance and by greater number of PFS. Maximum niobium atomic percentage (35.8) and maximum average hardness (19.4 ± 0.4 GPa) characterized by energy-dispersive spectroscopy and nano-hardness analyzer respectively are observed for film synthesized at 10 cm axial distance with 15 PFS.

  7. GaN grown on sapphire by MOCVD : material for HEMT structures

    NARCIS (Netherlands)

    Grzegorczyk, Andrzej Pawel

    2006-01-01

    This thesis focuses on growth and basic characterization of AlGaN/GaN based high electron mobility structures. In order to provide theoretical background for the presented research, the basic physical properties of III-V nitrides and the characteristics of the HEMT structures are discussed. Addition

  8. Structural, morphological and optical characterizations of ZnO:Al thin films grown on silicon substrates by pulsed laser deposition

    Science.gov (United States)

    Alyamani, A.; Sayari, A.; Albadri, A.; Albrithen, H.; El Mir, L.

    2016-09-01

    The pulsed laser deposition (PLD) technique is used to grow Al-doped ZnO (AZO) thin films at 500 ° C on silicon substrates under vacuum or oxygen gas background from ablating AZO nanoparticle targets synthesized via the sol-gel process. The structural, morphological and optical properties were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and spectroscopic ellipsometry (SE) techniques. XRD and TEM images show that AZO powder has a wurtzite-type structure and is composed of small prismatic-like shape nanoparticles with an average size of 30nm. The structural properties of the AZO films grown under oxygen show no significant changes compared to those of the film grown under vacuum. However, the optical properties show a dependence on the growth conditions of the AZO films. Highly c -axis-oriented AZO thin films were obtained with grain size ˜ 15 nm. The stress in the AZO films is tensile as measured from the c -parameter. The dielectric function, the refractive index and the extinction coefficient as a function of the photon energy for the AZO films were determined by using spectroscopic ellipsometry measurements in the photon energy region from 1 to 6eV. The band gap energy was observed to slightly decrease in the presence of the O2 gas background and this may be attributed to the stress. The surface and volume energy loss functions are calculated and exhibit different behaviors in the energy range 1-6eV. Refractive indices of 1.9-2.1 in the visible region were obtained for the AZO films. Also, the electronic carrier concentration appears to be related to the presence of O2 during the growth process.

  9. Zinc deficiency in field-grown pecan trees: changes in leaf nutrient concentrations and structure.

    Science.gov (United States)

    Ojeda-Barrios, Dámaris; Abadía, Javier; Lombardini, Leonardo; Abadía, Anunciación; Vázquez, Saúl

    2012-06-01

    Zinc (Zn) deficiency is a typical nutritional disorder in pecan trees [Carya illinoinensis (Wangenh.) C. Koch] grown under field conditions in calcareous soils in North America, including northern Mexico and south-western United States. The aim of this study was to assess the morphological and nutritional changes in pecan leaves affected by Zn deficiency as well as the Zn distribution within leaves. Zinc deficiency led to decreases in leaf chlorophyll concentrations, leaf area and trunk cross-sectional area. Zinc deficiency increased significantly the leaf concentrations of K and Ca, and decreased the leaf concentrations of Zn, Fe, Mn and Cu. All nutrient values found in Zn-deficient leaves were within the sufficiency ranges, with the only exception of Zn, which was approximately 44, 11 and 9 µg g(-1) dry weight in Zn-sufficient, moderately and markedly Zn-deficient leaves, respectively. Zinc deficiency led to decreases in leaf thickness, mainly due to a reduction in the thickness of the palisade parenchyma, as well as to increases in stomatal density and size. The localisation of Zn was determined using the fluorophore Zinpyr-1 and ratio-imaging technique. Zinc was mainly localised in the palisade mesophyll area in Zn-sufficient leaves, whereas no signal could be obtained in Zn-deficient leaves. The effects of Zn deficiency on the leaf characteristics of pecan trees include not only decreases in leaf chlorophyll and Zn concentrations, but also a reduction in the thickness of the palisade parenchyma, an increase in stomatal density and pore size and the practical disappearance of Zn leaf pools. These characteristics must be taken into account to design strategies to correct Zn deficiency in pecan tree in the field. Copyright © 2012 Society of Chemical Industry.

  10. Polaritons in periodic and quasiperiodic structures

    CERN Document Server

    Albuquerque, Eudenilson L

    2004-01-01

    In recent years there have been exciting developments in techniques for producing multilayered structures of different materials, often with thicknesses as small as only a few atomic layers. These artificial structures, known as superlattices, can either be grown with the layers stacked in an alternating fashion (the periodic case) or according to some other well-defined mathematical rule (the quasiperiodic case). This book describes research on the excitations (or wave-like behavior) of these materials, with emphasis on how the material properties are coupled to photons (the quanta of the l

  11. Weak Topological Insulators in PbTe/SnTe superlattice

    Science.gov (United States)

    Yang, Gang; Liu, Junwei; Fu, Liang; Duan, Wenhui; Liu, Chaoxing

    2014-03-01

    It is desirable to realize topological phases in artificial structures by engineering electronic band structures. In this paper, we investigate (PbTe)m(SnTe)2n-m superlattices along the [001] direction and find a robust weak topological insulator phase for a large variety of layer numbers m and 2 n - m . We confirm this topologically non-trivial phase by calculating Z2 topological invariants and topological surface states based on the first-principles calculations. We show that the folding of Brillouin zone due to the superlattice structure plays an essential role in inducing topologically non-trivial phases in this system. This mechanism can be generalized to other systems in which band inversion occurs at multiple momenta, and gives us a brand-new way to engineer topological materials in artificial structures. We acknowledge support from the Ministry of Science and Technology of China and the National Natural Science Foundation of China. LF is supported by the DOE Office of Basic Energy Sciences.

  12. Growth and stability of rocksalt Zn1-xMgxO epilayers and ZnO/MgO superlattice on MgO (100) substrate by molecular beam epitaxy.

    Science.gov (United States)

    Lu, C-Y James; Tu, Y-T; Yan, T; Trampert, A; Chang, L; Ploog, K H

    2016-06-07

    Zn1-xMgxO films with x = 0.04-0.50 grown on MgO (100) substrates by molecular beam epitaxy retain the rocksalt (rs) crystal structure and grow epitaxially for x ≥ 0.17. In addition, the rs-ZnO epilayer is observed to be stable up to a thickness of 5 nm and also in a ZnO/MgO superlattice sample. However, a portion of the superlattice has transformed to wurtzite (wz)-structure islands in a self-accommodated manner during growth. The transformation is a combination of a Bain distortion, an in-plane rotation of 14.5°, and a Peierls distortion, resulting in an orientation relationship of (100)rs//(101̄0)wz and 〈011〉rs ∼//〈1̄21̄3〉wz. In such a manner, the volume expansion is only necessary along the growth direction and the in-plane strains can be minimized. A negative pressure generated during the transformation of ZnO stabilizes the MgO into a wurtzite structure.

  13. Nanostructured PLD-grown gadolinia doped ceria: Chemical and structural characterization by transmission electron microscopy techniques

    DEFF Research Database (Denmark)

    Rodrigo, Katarzyna Agnieszka; Wang, Hsiang-Jen; Heiroth, Sebastian

    2011-01-01

    The morphology as well as the spatially resolved elemental and chemical characterization of 10 mol% gadolinia doped ceria (CGO10) structures prepared by pulsed laser deposition (PLD) technique are investigated by scanning transmission electron microscopy accompanied with electron energy loss...... spectroscopy and energy dispersive X-ray spectroscopy. A dense, columnar and structurally inhomogeneous CGO10 film, i.e. exhibiting grain size refinement across the film thickness, is obtained in the deposition process. The cerium M4,5 edges, used to monitor the local electronic structure of the grains...

  14. Surface electronic and structural properties of nanostructured titanium oxide grown by pulsed laser deposition

    NARCIS (Netherlands)

    Fusi, M.; Maccallini, E.; Caruso, T.; Casari, C. S.; Bassi, A. Li; Bottani, C. E.; Rudolf, P.; Prince, K. C.; Agostino, R. G.

    2011-01-01

    Titanium oxide nanostructured thin films synthesized by pulsed laser deposition (PLD) were here characterized with a multi-technique approach to investigate the relation between surface electronic, structural and morphological properties. Depending on the growth parameters, these films present chara

  15. Enhanced valley-resolved thermoelectric transport in a magnetic silicene superlattice

    Science.gov (United States)

    Niu, Zhi Ping; Zhang, Yong Mei; Dong, Shihao

    2015-07-01

    Electrons in two-dimensional crystals with a honeycomb lattice structure possess a valley degree of freedom in addition to charge and spin, which has revived the field of valleytronics. In this work we investigate the valley-resolved thermoelectric transport through a magnetic silicene superlattice. Since spin is coupled to the valley, this device allows a coexistence of the insulating transmission gap of one valley and the metallic resonant band of the other, resulting in a strong valley polarization Pv. Pv oscillates with the barrier strength V with its magnitude greatly enhanced by the superlattice structure. In addition, a controllable fully valley polarized transport and an on/off switching effect in the conductance spectra are obtained. Furthermore, the spin- and valley-dependent thermopowers can be controlled by V, the on-site potential difference between A and B sublattices and Fermi energy, and enhanced by the superlattice structure. Enhanced valley-resolved thermoelectric transport and its control by means of gate voltages make the magnetic silicene superlattice attractive in valleytronics applications.

  16. Effects of growth temperature and device structure on GaP solar cells grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Vaisman, M.; Tomasulo, S.; Masuda, T.; Lang, J. R.; Faucher, J.; Lee, M. L. [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511 (United States)

    2015-02-09

    Gallium phosphide (GaP) is an attractive candidate for wide-bandgap solar cell applications, possessing the largest bandgap of the III-arsenide/phosphides without aluminum. However, GaP cells to date have exhibited poor internal quantum efficiency (IQE), even for photons absorbed by direct transitions, motivating improvements in material quality and device structure. In this work, we investigated GaP solar cells grown by molecular beam epitaxy over a range of substrate temperatures, employing a much thinner emitter than in prior work. Higher growth temperatures yielded the best solar cell characteristics, indicative of increased diffusion lengths. Furthermore, the inclusion of an AlGaP window layer improved both open-circuit voltage and short wavelength IQE.

  17. Structural and optical properties of InGaN/GaN nanowire heterostructures grown by PA-MBE.

    Science.gov (United States)

    Tourbot, G; Bougerol, C; Grenier, A; Den Hertog, M; Sam-Giao, D; Cooper, D; Gilet, P; Gayral, B; Daudin, B

    2011-02-18

    The structural and optical properties of InGaN/GaN nanowire heterostructures grown by plasma-assisted molecular beam epitaxy have been studied using a combination of transmission electron microscopy, electron tomography and photoluminescence spectroscopy. It is found that, depending on In content, the strain relaxation of InGaN may be elastic or plastic. Elastic relaxation results in a pronounced radial In content gradient. Plastic relaxation is associated with the formation of misfit dislocations at the InGaN/GaN interface or with cracks in the InGaN nanowire section. In all cases, a GaN shell was formed around the InGaN core, which is assigned to differences in In and Ga diffusion mean free paths.

  18. InGaAsP-based uni-travelling carrier photodiode structure grown by solid source molecular beam epitaxy.

    Science.gov (United States)

    Natrella, Michele; Rouvalis, Efthymios; Liu, Chin-Pang; Liu, Huiyun; Renaud, Cyril C; Seeds, Alwyn J

    2012-08-13

    We report the first InGaAsP-based uni-travelling carrier photodiode structure grown by Solid Source Molecular Beam Epitaxy; the material contains layers of InGaAsP as thick as 300 nm and a 120 nm thick InGaAs absorber. Large area vertically illuminated test devices have been fabricated and characterised; the devices exhibited 0.1 A/W responsivity at 1550 nm, 12.5 GHz -3 dB bandwidth and -5.8 dBm output power at 10 GHz for a photocurrent of 4.8 mA. The use of Solid Source Molecular Beam Epitaxy enables the major issue associated with the unintentional diffusion of zinc in Metal Organic Vapour Phase Epitaxy to be overcome and gives the benefit of the superior control provided by MBE growth techniques without the costs and the risks of handling toxic gases of Gas Source Molecular Beam Epitaxy.

  19. Structural and electronic properties of InN nanowire network grown by vapor-liquid-solid method

    Energy Technology Data Exchange (ETDEWEB)

    Barick, B. K., E-mail: bkbarick@gmail.com, E-mail: subho-dh@yahoo.co.in; Dhar, S., E-mail: bkbarick@gmail.com, E-mail: subho-dh@yahoo.co.in [Department of Physics, Indian Institute of Technology, Bombay, Mumbai-400076 (India); Rodríguez-Fernández, Carlos; Cantarero, Andres [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain)

    2015-05-15

    Growth of InN nanowires have been carried out on quartz substrates at different temperatures by vapor-liquid-solid (VLS) technique using different thicknesses of Au catalyst layer. It has been found that a narrow window of Au layer thickness and growth temperature leads to multi-nucleation, in which each site acts as the origin of several nanowires. In this multi-nucleation regime, several tens of micrometer long wires with diameter as small as 20 nm are found to grow along [112{sup -}0] direction (a-plane) to form a dense network. Structural and electronic properties of these wires are studied. As grown nanowires show degenerate n-type behavior. Furthermore, x-ray photoemission study reveals an accumulation of electrons on the surface of these nanowires. Interestingly, the wire network shows persistence of photoconductivity for several hours after switching off the photoexcitation.

  20. Ballistic miniband conduction in a graphene superlattice

    Science.gov (United States)

    Lee, Menyoung; Wallbank, John R.; Gallagher, Patrick; Watanabe, Kenji; Taniguchi, Takashi; Fal'ko, Vladimir I.; Goldhaber-Gordon, David

    2016-09-01

    Rational design of long-period artificial lattices yields effects unavailable in simple solids. The moiré pattern in highly aligned graphene/hexagonal boron nitride (h-BN) heterostructures is a lateral superlattice with high electron mobility and an unusual electronic dispersion whose miniband edges and saddle points can be reached by electrostatic gating. We investigated the dynamics of electrons in moiré minibands by measuring ballistic transport between adjacent local contacts in a magnetic field, known as the transverse electron focusing effect. At low temperatures, we observed caustics of skipping orbits extending over hundreds of superlattice periods, reversals of the cyclotron revolution for successive minibands, and breakdown of cyclotron motion near van Hove singularities. At high temperatures, electron-electron collisions suppress focusing. Probing such miniband conduction properties is a necessity for engineering novel transport behaviors in superlattice devices.

  1. Structure analysis of Ni thin films epitaxially grown on bcc metal underlayers formed on MgO(100 substrates

    Directory of Open Access Journals (Sweden)

    Futamoto Masaaki

    2013-01-01

    Full Text Available Ni thin films are prepared on Cr, V, and Nb underlayers with bcc structure formed on MgO(100 single-crystal substrates by molecular beam epitaxy. The growth behavior and the crystallographic properties are investigated by in-situ reflection high-energy electron diffraction and pole-figure X-ray diffraction. Cr(100 and V(100 single-crystal underlayers grow epitaxially on the substrates, whereas an Nb epitaxial_underlayer consisting of two bcc(110 variants is formed on the MgO(100 substrate. Metastable crystals nucleate on the Cr and the V underlayers, where the metastable hcp structure is stabilized through heteroepitaxial growth. With increasing the film thickness, the hcp structure starts to transform into more stable fcc structure by atomic displacement parallel to the hcp(0001 close-packed plane. The resulting films are consisting of mixtures of hcp and fcc crystals. On the other hand, only the formation of fcc crystal is recognized for the Ni film grown on Nb(110 underlayer.

  2. Evaluation of defect density by top-view large scale AFM on metamorphic structures grown by MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Gocalinska, Agnieszka, E-mail: agnieszka.gocalinska@tyndall.ie; Manganaro, Marina; Dimastrodonato, Valeria; Pelucchi, Emanuele

    2015-09-15

    Highlights: • Metamorphic buffer layers of In{sub x}Ga{sub 1−x}As were grown by MOVPE and characterised by AFM and TEM. • It was found that AFM provides sufficient information to estimate threading defect density in metamorphic structures, even when significant roughness is present. • When planar-view TEM is lacking, a combination of cross-sectional TEM and large scale AFM can provide good evaluation of the material quality. • It is fast, cheap and non-destructive – can be very useful in development process of complicated structures, requiring multiple test growths and characterisation. - Abstract: We demonstrate an atomic force microscopy based method for estimation of defect density by identification of threading dislocations on a non-flat surface resulting from metamorphic growth. The discussed technique can be applied as an everyday evaluation tool for the quality of epitaxial structures and allow for cost reduction, as it lessens the amount of the transmission electron microscopy analysis required at the early stages of projects. Metamorphic structures with low surface defectivities (below 10{sup 6}) were developed successfully with the application of the technique, proving its usefulness in process optimisation.

  3. Self-assembled strained GeSiSn nanoscale structures grown by MBE on Si(100)

    Science.gov (United States)

    Nikiforov, A. I.; Timofeev, V. A.; Tuktamyshev, A. R.; Yakimov, A. I.; Mashanov, V. I.; Gutakovskii, A. K.

    2017-01-01

    Gradual relaxation of elastic deformations in a silicon layer at the growth of a covering layer on strained layers was established. The dependence of the thickness of a silicon film, where full elastic strain relaxation occurs, on the germanium layer thickness was determined. The dependence of the critical thickness of 2D-3D transition of temperature and composition of the GeSiSn film on Si(100) was studied. Regularities of the formation of multilayer structures on quantum wells comprising pseudomorphous GeSiSn layers without relaxed buffer layers but creating the structures directly on Si. A possibility of synthesizing multilayer structures by molecular beam epitaxy was shown, and the crystal lattice constants using the high-resolution transmission electron microscopy were determined. Based on multilayer GeSiSn/Si structures the p-i-n-diodes, which demonstrated the photoresponse increasing by several orders of magnitude compared to the Sn-free structures at an increase in the Sn content, were created.

  4. Magnetic and structural properties of Co{sub 2}FeAl thin films grown on Si substrate

    Energy Technology Data Exchange (ETDEWEB)

    Belmeguenai, Mohamed, E-mail: belmeguenai.mohamed@univ-paris13.fr [LSPM (CNRS-UPR 3407) 99 Avenue Jean-Baptiste Clément Université Paris 13, 93430 Villetaneuse (France); Tuzcuoglu, Hanife [LSPM (CNRS-UPR 3407) 99 Avenue Jean-Baptiste Clément Université Paris 13, 93430 Villetaneuse (France); Gabor, Mihai; Petrisor, Traian [Center for Superconductivity, Spintronics and Surface Science, Technical University of Cluj-Napoca, Street Memorandumului No. 28, RO-400114 Cluj-Napoca (Romania); Tiusan, Coriolan [Center for Superconductivity, Spintronics and Surface Science, Technical University of Cluj-Napoca, Street Memorandumului No. 28, RO-400114 Cluj-Napoca (Romania); Institut Jean Lamour, CNRS, Université de Nancy, BP 70239, F-54506 Vandoeuvre (France); Berling, Dominique [IS2M (CNRS-LRC 7228), 15 rue Jean Starcky, Université de Haute-Alsace, BP 2488, 68057 Mulhouse-Cedex (France); Zighem, Fatih; Mourad Chérif, Salim [LSPM (CNRS-UPR 3407) 99 Avenue Jean-Baptiste Clément Université Paris 13, 93430 Villetaneuse (France)

    2015-01-01

    The correlation between magnetic and structural properties of Co{sub 2}FeAl (CFA) thin films of different thicknesses (10 nmgrown at room temperature on MgO-buffered Si/SiO{sub 2} substrates and annealed at 600 °C has been studied. x-ray diffraction (XRD) measurements revealed an (011) out-of-plane textured growth of the films. The deduced lattice parameter increases with the film thickness. Moreover, pole figures showed no in-plane preferential growth orientation. The magneto-optical Kerr effect hysteresis loops showed the presence of a weak in-plane uniaxial anisotropy with a random easy axis direction. The coercive field, measured with the applied field along the easy axis direction, and the uniaxial anisotropy field increase linearly with the inverse of the CFA thickness. The microstrip line ferromagnetic resonance measurements for in-plane and perpendicular applied magnetic fields revealed that the effective magnetization and the uniaxial in-plane anisotropy field follow a linear variation versus the inverse CFA thickness. This allows deriving a perpendicular surface anisotropy coefficient of −1.86 erg/cm{sup 2}. - Highlights: • Various Co{sub 2}FeAl thin films were grown on a Si(001) substrates and annealed at 600 °C. • The thickness dependence of magnetic and structural properties has been studied. • X-ray measurements revealed an (011) out-of-plane textured growth of the films. • The easy axis coercive field varies linearly with the inverse CFA thickness. • The effective magnetization increases linearly with the inverse film thickness.

  5. Study of structural and optical properties of ZnO films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lemlikchi, S., E-mail: lemlikchi_safo@yahoo.fr [Advanced Technology Development Centre, Cite 20 Aout 1956 BP 17 Baba Hassen, Algiers (Algeria); Abdelli-Messaci, S.; Lafane, S.; Kerdja, T. [Advanced Technology Development Centre, Cite 20 Aout 1956 BP 17 Baba Hassen, Algiers (Algeria); Guittoum, A.; Saad, M. [Nuclear Research Centre of Algiers, 2 Bd Frantz-Fanon, Algiers (Algeria)

    2010-07-01

    Wurtzite zinc oxides films (ZnO) were deposited on silicon (0 0 1) and corning glass substrates using the pulsed laser deposition technique. The laser fluence, target-substrate distance, substrate temperature of 300 deg. C were fixed while varying oxygen pressures from 2 to 500 Pa were used. It is observed that the structural properties of ZnO films depend strongly on the oxygen pressure and the substrate nature. The film crystallinity improves with decreasing oxygen pressure. At high oxygen pressure, the films are randomly oriented, whereas, at low oxygen pressures they are well oriented along [0 0 1] axis for Si substrates and along [1 0 3] axis for glass substrates. A honeycomb structure is obtained at low oxygen pressures, whereas microcrystalline structures were obtained at high oxygen pressures. The effect of oxygen pressure on film transparency, band gap E{sub g} and Urbach energies was investigated.

  6. Resonance frequency in ferromagnetic superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Rongke; Huang Andong [School of Science, Shenyang University of Technology, Shenyang 110870 (China); Li Da; Zhang Zhidong, E-mail: rkqiu@163.com [Shenyang National Laboratory for Materials Science, Institute of Metal Research and International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016 (China)

    2011-10-19

    The resonance frequency in two-layer and three-layer ferromagnetic superlattices is studied, using the Callen's Green function method, the Tyablikov decoupling approximation and the Anderson-Callen decoupling approximation. The effects of interlayer exchange coupling, anisotropy, external magnetic field and temperature on the resonance frequency are investigated. It is found that the resonance frequencies increase with increasing external magnetic field. In a parameter region of the asymmetric system, each sublayer corresponds to its own resonance frequency. The anisotropy of a sublayer affects only the resonance frequency corresponding to this sublayer. The stronger the anisotropy, the higher is the resonance frequency. The interlayer exchange coupling affects only the resonance frequencies belonging to the sublayers connected by it. The stronger the interlayer exchange coupling, the higher are the resonance frequencies. All the resonance frequencies decrease as the reduced temperature increases. The results direct the method to enhance and adjust the resonance frequency of magnetic multilayered materials with a wide band.

  7. Optical and micro-structural characterizations of MBE grown indium gallium nitride polar quantum dots

    KAUST Repository

    Elafandy, Rami T.

    2011-12-01

    Comparison between indium rich (27%) InGaN/GaN quantum dots (QDs) and their underlying wetting layer (WL) is performed by means of optical and structural characterizations. With increasing temperature, micro-photoluminescence (μPL) study reveals the superior ability of QDs to prevent carrier thermalization to nearby traps compared to the two dimensional WL. Thus, explaining the higher internal quantum efficiency of the QD nanostructure compared to the higher dimensional WL. Structural characterization (X-ray diffraction (XRD)) and transmission electron microscopy (TEM)) reveal an increase in the QD indium content over the WL indium content which is due to strain induced drifts. © 2011 IEEE.

  8. Structural and electronic properties of polar MnO ultrathin film grown on Ag(111)

    Science.gov (United States)

    Kundu, Asish K.; Menon, Krishnakumar S. R.

    2016-05-01

    Surface electronic structure of ultrathin polar MnO film was studied by Low-energy Electron Diffraction (LEED) and Photoemission Spectroscopic (PES) techniques. Epitaxial monolayer to facet formation with increasing film thickness has been observed by LEED. Our LEED result shows p(2x2) surface reconstruction along with facet formation, stabilize the polar MnO(111) surface. The core levels and the valence band electronic structure of MnO films have been studied as a function of film thickness using X-ray and ultraviolet photoelectron spectroscopy techniques.

  9. Theory of Semiconducting Superlattices and Microstructures

    Science.gov (United States)

    1992-03-01

    Core excitons ir. superlattices We have developed the first theory of Hjalmarsor.- Frenke ’ core excitons in superlattices, and applied it to strained...technique has been described are accelerated. A kinetic tempcrature TK is defined as by Kirkpatrick et al.31 and uses thr Monte Carlo algo- the average...classical kinetic energy of the atoms, rithm of Metropolis et al.32 Monte Carlo steps are taken 3/2kTK=(l/N)4rn’mlv,, where i=1,2, . . . ,n is the

  10. Resonant x-ray scattering in perovskite manganite superlattice. Observation of 'orbital superlattice'

    CERN Document Server

    Kiyama, T; Ohsumi, H; Murakami, Y; Wakabayashi, Y; Izumi, M; Kawasaki, M; Tokura, Y

    2003-01-01

    We report the results of resonant X-ray scattering (RXS) measurement of superlattices which consist of La sub 0 sub . sub 4 sub 5 Sr sub 0 sub . sub 5 sub 5 MnO sub 3 and La sub 0 sub . sub 6 sub 0 Sr sub 0 sub . sub 4 sub 0 MnO sub 3 multilayers. An interference technique made it possible to observe RXS reflections from ferro-type orbital ordering in the superlattices. RXS can reveal the local circumstances around specific atoms in materials regulated atomically. In this experiment, we observed that the superlattice is actually composed of two kinds of layers with different lattice distortion states, presenting 'orbital superlattices', in which layers with different orbital states are stacked alternately in an atomic scale. (author)

  11. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: A theoretical study of harmonic generation in a short period AlGaN/GaN superlattice induced by a terahertz field

    Science.gov (United States)

    Chen, Jun-Feng; Hao, Yue

    2009-12-01

    Based on an improved energy dispersion relation, the terahertz field induced nonlinear transport of miniband electrons in a short period AlGaN/GaN superlattice is theoretically studied in this paper with a semiclassical theory. To a short period superlattice, it is not precise enough to calculate the energy dispersion relation by just using the nearest wells in tight binding method: the next to nearest wells should be considered. The results show that the electron drift velocity is 30% lower under a dc field but 10% higher under an ac field than the traditional simple cosine model obtained from the tight binding method. The influence of the terahertz field strength and frequency on the harmonic amplitude, phase and power efficiency is calculated. The relative power efficiency of the third harmonic reaches the peak value when the dc field strength equals about three times the critical field strength and the ac field strength equals about four times the critical field strength. These results show that the AlGaN/GaN superlattice is a promising candidate to convert radiation of frequency ω to radiation of frequency 3ω or even higher.

  12. Goos-Hänchen shifts in AA-stacked bilayer graphene superlattices

    Science.gov (United States)

    Zahidi, Youness; Redouani, Ilham; Jellal, Ahmed

    2016-07-01

    The quantum Goos-Hänchen shifts of the transmitted electron beam through an AA-stacked bilayer graphene superlattices are investigated. We found that the band structures of graphene superlattices can have more than one Dirac point, their locations do not depend on the number of barriers. It was revealed that any n-barrier structure is perfectly transparent at normal incidence around the Dirac points created in the superlattices. We showed that the Goos-Hänchen shifts display sharp peaks inside the transmission gap around two Dirac points (E =VB + τ, E =VW + τ), which are equal to those of transmission resonances. The obtained Goos-Hänchen shifts are exhibiting negative as well as positive behaviors and strongly depending on the location of Dirac points. It is observed that the maximum absolute values of the shifts increase as long as the number of barriers is increased. Our analysis is done by considering four cases: single, double barriers, superlattices without and with defect.

  13. Nanomechanical characterization of rod-like superlattice assembled from tobacco mosaic viruses

    Science.gov (United States)

    Wang, Haoran; Wang, Xinnan; Li, Tao; Lee, Byeongdu

    2013-01-01

    Tobacco mosaic virus (TMV) and TMV-derived materials have demonstrated their great potential in biomedical applications, where the mechanical properties are determining factors for their proper functionalities and structural integrity. Recently, it has been found that a superlattice structure can be formed by two-dimensional hexagonal packing TMV self-assembly in Barium ions solution. In parallel to the exploration of possible applications of TMV superlattice, the mechanical properties were characterized by the atomic force microscopy based nanoindentation. The elastic modulus of 2.14 GPa was obtained by application of the extended Johnson-Kendall-Roberts (JKR) model with the force vs sample deformation data. The adhesion force was taken into consideration, and an easy-to-implement approach of using the extended JKR model was proposed by processing both the theoretical model and the experimental data. Finite element analysis was conducted to evaluate the reinforcing effect of the like-charge forces between the TMVs and the mechanical properties of the TMV superlattice. Using the Halpin-Tsai model, the transverse elastic modulus of the superlattice sample varied within 2.00-4.38 GPa, depending on the indentation locations. Attraction-repulsion equilibrium was found to maintain the packing of TMVs. This provides useful information to address the sources of the attraction and repulsion forces to control the TMV assembly.

  14. Preparation, Structural and Dielectric Properties of Solution Grown Polyvinyl Alcohol(PVA) Film

    Science.gov (United States)

    Nangia, Rakhi; Shukla, Neeraj K.; Sharma, Ambika

    2017-08-01

    Flexible dielectrics with high permittivity have been investigated extensively due to their applications in electronic industry. In this work, structural and electrical characteristics of polymer based film have been analysed. Poly vinyl alcohol (PVA) film was prepared by solution casting method. X-ray diffraction (XRD) characterization technique is used to investigate the structural properties. The semi-crystalline nature has been determined by the analysis of the obtained XRD pattern. Electrical properties of the synthesized film have been analysed from the C-V and I-V curves obtained at various frequencies and temperatures. Low conductivity values confirm the insulating behaviour of the film. However, it is found that conductivity increases with temperature. Also, the dielectric permittivity is found to be higher at lower frequencies and higher temperatures, that proves PVA to be an excellent dielectric material which can be used in interface electronics. Dielectric behaviour of the film has been explained based on dipole orientations to slow and fast varying electric field. However further engineering can be done to modulate the structural, electrical properties of the film.

  15. Structural changes induced spin-reorientation of ultrathin Mn films grown on Ag(001)

    Energy Technology Data Exchange (ETDEWEB)

    Ouarab, N., E-mail: ouarab_nourdine@yahoo.fr [Quantum Physics and Dynamical Systems Laboratory, Ferhat Abbas University of Sétif (Algeria); Semiconductor Technology Research Center for Energetic-(CRTSE), 02, Bd Frantz Fanon Algiers, BP N° 140 (Algeria); Haroun, A. [Quantum Physics and Dynamical Systems Laboratory, Ferhat Abbas University of Sétif (Algeria); Baadji, N. [School of Physics and CRANN, Trinity College, Dublin 2 (Ireland)

    2016-12-01

    The strained body centered tetragonal (bct) Mn ultrathin film from lattice parameter a=2.89 Å to lattice value of 2.73 Å induces anti-ferromagnetic behavior between Mn layers. The magnetic easy axis of Mn film was demonstrated theoretically to switch from the in-plane to out-of-plane by magneto-optical Kerr effect investigation. By including spin–orbit coupling in full potential linearized augmented plane waves and linearized muffin-tin orbitals methods, manganese ultrathin film displays different magnetic behaviors and the spin-reorientation transition is shown to be correlated to these structural changes. The calculated magnetic moment of manganese planes are enhanced and reach a value of ~4.02 μ{sub B}. The polar magneto-optical Kerr effect is calculated for a photon energy range extended to 15 eV. It shows a pronounced peak in visible light. - Highlights: • The applied strain in Mn-bct structure induces anti-ferromagnetic behavior. • The easy magnetization axis is demonstrated to be out-of-plane. • The magnetic moment of Mn-layers are enhanced and reach a value of ~4.02 μ{sub B}. • Kerr spectra show significant polar responses for Mn films in the visible range. • The prominent structures in the Kerr spectra have been identified.

  16. Structural transformations in MoO{sub x} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-Lopez, M.A.; Haro-Poniatowski, E. [Departamento de Fisica, Laboratorio de Optica Cuantica, Universidad Autonoma Metropolitana Iztapalapa, Apdo. Postal 55-534, 09340, Mexico D. F. (Mexico); Escobar-Alarcon, L. [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, 11801, Mexico D. F. (Mexico)

    2004-01-01

    In this work, laser-induced crystallization in MoO{sub x} thin films (1.8{<=}x{<=}2.1) is reported. This transformation involves a MoO{sub x} oxidation and subsequently a crystallization process from amorphous MoO{sub 3} to crystalline {alpha}MoO{sub 3}. For comparison purposes crystallization is induced thermally, in an oven, as well. The crystallization kinetics is monitored by Raman spectroscopy; a threshold in the energy density necessary to induce the phase transformation is determined in the case of photo-crystallization. This threshold depends on the type of substrate on which the film is deposited. For the thin films deposited on glass substrates, the structural transformation is from amorphous MoO{sub x} to the thermodynamically stable {alpha}MoO{sub 3} crystalline phase. For the thin films deposited on Si(100) the structural transformation is from amorphous MoO{sub x} to a mixture of {alpha}MoO{sub 3} and the thermodynamically unstable {beta}MoO{sub 3} crystalline phases. The structural transformations are also characterized by scanning electron microscopy and light-transmission experiments. (orig.)

  17. An investigation of near-infrared photoluminescence from AP-MOVPE grown InSb/GaSb quantum dot structures

    Science.gov (United States)

    Ahia, C. C.; Tile, N.; Urgessa, Z. N.; Botha, J. R.; Neethling, J. H.

    2017-01-01

    In this work, the near-infrared photoluminescence (PL) of InSb/GaSb QD structures grown on GaSb substrate (2° off (100)) using atmospheric pressure Metalorganic Vapor Phase Epitaxy is investigated. The structures are analyzed before capping and after capping using scanning probe microscopy and high resolution transmission electron microscopy (HRTEM), respectively. At 10 K, with an excitation power of 2 mW, a PL peak at ∼ 732 meV is observed. Upon an increase in laser power to 120 mW, a blue shift of ∼ 8 meV is noticed. This emission typically persists up to 60-70 K, after which it becomes weak. An SPM analysis of the size distribution of uncapped dots reveals a mono-modal distribution with an average density of ∼ 5×1010 cm-2. However, a HRTEM investigation of the capped dots reveals the formation of an InGaSb quantum well-like structure, ∼ 10 nm thick, which gives rise to the PL signal mentioned above.

  18. The dependence of the tunneling characteristic on the electronic energy bands and the carrier’s states of Graphene superlattice

    Science.gov (United States)

    Yang, C. H.; Shen, G. Z.; Ao, Z. M.; Xu, Y. W.

    2016-09-01

    Using the transfer matrix method, the carrier tunneling properties in graphene superlattice generated by the Thue-Morse sequence and Kolakoski sequence are investigated. The positions and strength of the transmission can be modulated by the barrier structures, the incident energy and angle, the height and width of the potential. These carriers tunneling characteristic can be understood from the energy band structures in the corresponding superlattice systems and the carrier’s states in well/barriers. The transmission peaks above the critical incident angle rely on the carrier’s resonance in the well regions. The structural diversity can modulate the electronic and transport properties, thus expanding its applications.

  19. Beating the amorphous limit in thermal conductivity by superlattices design.

    Science.gov (United States)

    Mizuno, Hideyuki; Mossa, Stefano; Barrat, Jean-Louis

    2015-09-16

    The value measured in the amorphous structure with the same chemical composition is often considered as a lower bound for the thermal conductivity of any material: the heat carriers are strongly scattered by disorder, and their lifetimes reach the minimum time scale of thermal vibrations. An appropriate design at the nano-scale, however, may allow one to reduce the thermal conductivity even below the amorphous limit. In the present contribution, using molecular-dynamics simulation and the Green-Kubo formulation, we study systematically the thermal conductivity of layered phononic materials (superlattices), by tuning different parameters that can characterize such structures. We have discovered that the key to reach a lower-than-amorphous thermal conductivity is to block almost completely the propagation of the heat carriers, the superlattice phonons. We demonstrate that a large mass difference in the two intercalated layers, or weakened interactions across the interface between layers result in materials with very low thermal conductivity, below the values of the corresponding amorphous counterparts.

  20. Microemulsion-based synthesis of copper nanodisk superlattices

    Science.gov (United States)

    Sun, Lei; Zhao, Yanbao; Guo, Wenjing; Tao, Xiaojun; Zhang, Zhijun

    2011-06-01

    Nanocrystal superlattices (NCSs) comprised of self-assembled copper nanodisks were successfully synthesized in quaternary W/O microemulsions containing Span 80-Tween 80, liquid paraffin and n-butanol. Morphologies, structure and thermal properties of the Cu nanocrystals were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectra, thermogravimetry (TG) and differential thermogravimetry (DTG). The reaction conditions which effect the growth of the Cu nanodisks were explored, and a mechanism for the formation of the Cu NCSs is proposed. XRD and TEM studies show that the as-synthesized Cu nanodisks exhibit a cubic crystal structure, and FT-IR and TG analysis show that the surfaces of the Cu nanodisks are covered with surfactants, which assist in the formation of the superlattice and prevent the oxidation of the Cu nanocrystals. Variation of the reaction parameters such as mass ratio of the surfactants and the presence of oleic acid is found to have a significant effect on the formation of the Cu nanodisks.

  1. Dimensional control of cobalt spin state in oxide superlattices

    Science.gov (United States)

    Jeong, Da Woon; Choi, W. S.; Okamoto, S.; Sohn, C. H.; Park, H. J.; Kim, J.-Y.; Lee, H. N.; Kim, K. W.; Moon, S. J.; Noh, T. W.

    2013-03-01

    Perovskite cobalt oxide is a very intriguing system with various spin states owing to the delicate balance between crystal field splitting and Hund exchange energy. In this talk, we show that its spin state can be altered through dimensional control, enabled by digital synthesis of perovskite cobalt oxide superlattices. We employed a few unit cells of LaCoO3 as an active magnetic layer, separated by LaAlO3 spacer layer. High quality [(LaCoO3) n (LaAlO3) n ]8 (n = 2, 6, and 10) superlattices were fabricated using pulsed laser epitaxy. Spectroscopic tools including x-ray absorption spectroscopy and optical spectroscopy revealed clear evolution of the electronic structure and resultant spin state by changing dimensionality. Specifically, the spin state changed from a high to a low spin state with a larger optical band gap, as the dimension reduced from 3D to 2D. Dynamic mean field calculation supported the critical role of dimensionality on the spin state and electronic structure of LaCoO3.

  2. Coercivity enhancement in (Co/CoO)n superlattices

    Science.gov (United States)

    Polisetty, Srinivas; Binek, Christian

    2009-03-01

    The temperature dependence of the coercivity is studied in (Co/CoO)n periodic multilayer thin film superstructures below and above the exchange bias blocking temperature. The ferromagnetic Co thin films are grown with the help of MBE at a base pressure of 10E-10 m.bar whereas antiferromagnetic CoO thin films are grown from in-situ oxidized Co. The thicknesses of these films are monitored by reflection high energy electron diffraction (RHEED). A mean-field theory^1 is outlined which provides an analytic and intuitive expression for the enhancement of the coercivity of the ferromagnet which experiences the exchange coupling with a neighboring antiferromagnet. An experimental approach is developed allowing to determine the interface susceptibility of an individual antiferromagnetic pinning layer by systematic change in the thickness of the antiferromagnet thin films in various sets of superlattice samples measured at different temperatures, respectively. The experiment enables us to separate out the intrinsic coercivity from the contribution induced by exchange coupling at the interface. It is the goal of our study to evidence or disprove if it is simply this susceptibility of the reversible interface magnetization creating the spin drag effect and by that the coercivity enhancement. Financial support by NSF through CAREER DMR-0547887, NRI and Nebraska MRSEC. ^1G. Scholten, K. D. Usadel, and U. Nowak, Phys. Rev B. 71, 064413 (2005).

  3. Disorder influence on the magnetic properties of La{sub 0.55}Sr{sub 0.45}MnO{sub 3}/SrTiO{sub 3} superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Haberkorn, N. E-mail: nhaberk@cab.cnea.gov.ar; Sirena, M.; Guimpel, J.; Steren, L.B

    2004-05-01

    The structural and physical properties of La{sub 0.55}Sr{sub 0.45}MnO{sub 3}/SrTiO{sub 3} superlattices grown by magnetron sputtering are studied. Two deposition temperatures and different mismatched substrates and buffer layers were used. The structure was determined by refinement through X-ray diffraction pattern fitting. The results indicate 1 unit cell (u.c.) interdiffusion at the interfaces and a 1 u.c. layer thickness fluctuation, i.e. roughness. In-plane hysteresis loops show the expected ferromagnetic behavior, while the perpendicular-to-plane hysteresis loops show anomalies which could evidence magnetic domain size inhomogeneities and stress.

  4. Structural Modifications of Fructans in Aloe barbadensis Miller (Aloe Vera Grown under Water Stress.

    Directory of Open Access Journals (Sweden)

    Carlos Salinas

    Full Text Available Aloe barbadensis Miller (Aloe vera has a Crassulaceae acid metabolism which grants the plant great tolerance to water restrictions. Carbohydrates such as acemannans and fructans are among the molecules responsible for tolerating water deficit in other plant species. Nevertheless, fructans, which are prebiotic compounds, have not been described nor studied in Aloe vera, whose leaf gel is known to possess beneficial pharmaceutical, nutritional and cosmetic properties. As Aloe vera is frequently cultivated in semi-arid conditions, like those found in northern Chile, we investigated the effect of water deficit on fructan composition and structure. For this, plants were subjected to different irrigation regimes of 100%, 75%, 50% and 25% field capacity (FC. There was a significant increase in the total sugars, soluble sugars and oligo and polyfructans in plants subjected to water deficit, compared to the control condition (100% FC in both leaf tips and bases. The amounts of fructans were also greater in the bases compared to the leaf tips in all water treatments. Fructans also increase in degree of polymerization with increasing water deficit. Glycosidic linkage analyses by GC-MS, led to the conclusion that there are structural differences between the fructans present in the leaves of control plants with respect to plants irrigated with 50% and 25% FC. Therefore, in non-stressed plants, the inulin, neo-inulin and neo-levan type of fructans predominate, while in the most stressful conditions for the plant, Aloe vera also synthesizes fructans with a more branched structure, the neofructans. To our knowledge, the synthesis and the protective role of neo-fructans under extreme water deficit has not been previously reported.

  5. Structural Modifications of Fructans in Aloe barbadensis Miller (Aloe Vera) Grown under Water Stress

    Science.gov (United States)

    Salinas, Carlos; Cardemil, Liliana

    2016-01-01

    Aloe barbadensis Miller (Aloe vera) has a Crassulaceae acid metabolism which grants the plant great tolerance to water restrictions. Carbohydrates such as acemannans and fructans are among the molecules responsible for tolerating water deficit in other plant species. Nevertheless, fructans, which are prebiotic compounds, have not been described nor studied in Aloe vera, whose leaf gel is known to possess beneficial pharmaceutical, nutritional and cosmetic properties. As Aloe vera is frequently cultivated in semi-arid conditions, like those found in northern Chile, we investigated the effect of water deficit on fructan composition and structure. For this, plants were subjected to different irrigation regimes of 100%, 75%, 50% and 25% field capacity (FC). There was a significant increase in the total sugars, soluble sugars and oligo and polyfructans in plants subjected to water deficit, compared to the control condition (100% FC) in both leaf tips and bases. The amounts of fructans were also greater in the bases compared to the leaf tips in all water treatments. Fructans also increase in degree of polymerization with increasing water deficit. Glycosidic linkage analyses by GC-MS, led to the conclusion that there are structural differences between the fructans present in the leaves of control plants with respect to plants irrigated with 50% and 25% FC. Therefore, in non-stressed plants, the inulin, neo-inulin and neo-levan type of fructans predominate, while in the most stressful conditions for the plant, Aloe vera also synthesizes fructans with a more branched structure, the neofructans. To our knowledge, the synthesis and the protective role of neo-fructans under extreme water deficit has not been previously reported. PMID:27454873

  6. Structural Modifications of Fructans in Aloe barbadensis Miller (Aloe Vera) Grown under Water Stress.

    Science.gov (United States)

    Salinas, Carlos; Handford, Michael; Pauly, Markus; Dupree, Paul; Cardemil, Liliana

    2016-01-01

    Aloe barbadensis Miller (Aloe vera) has a Crassulaceae acid metabolism which grants the plant great tolerance to water restrictions. Carbohydrates such as acemannans and fructans are among the molecules responsible for tolerating water deficit in other plant species. Nevertheless, fructans, which are prebiotic compounds, have not been described nor studied in Aloe vera, whose leaf gel is known to possess beneficial pharmaceutical, nutritional and cosmetic properties. As Aloe vera is frequently cultivated in semi-arid conditions, like those found in northern Chile, we investigated the effect of water deficit on fructan composition and structure. For this, plants were subjected to different irrigation regimes of 100%, 75%, 50% and 25% field capacity (FC). There was a significant increase in the total sugars, soluble sugars and oligo and polyfructans in plants subjected to water deficit, compared to the control condition (100% FC) in both leaf tips and bases. The amounts of fructans were also greater in the bases compared to the leaf tips in all water treatments. Fructans also increase in degree of polymerization with increasing water deficit. Glycosidic linkage analyses by GC-MS, led to the conclusion that there are structural differences between the fructans present in the leaves of control plants with respect to plants irrigated with 50% and 25% FC. Therefore, in non-stressed plants, the inulin, neo-inulin and neo-levan type of fructans predominate, while in the most stressful conditions for the plant, Aloe vera also synthesizes fructans with a more branched structure, the neofructans. To our knowledge, the synthesis and the protective role of neo-fructans under extreme water deficit has not been previously reported.

  7. Nanoscale structural characterization of epitaxial graphene grown on off-axis 4H-SiC (0001

    Directory of Open Access Journals (Sweden)

    Yakimova Rositza

    2011-01-01

    Full Text Available Abstract In this work, we present a nanometer resolution structural characterization of epitaxial graphene (EG layers grown on 4H-SiC (0001 8° off-axis, by annealing in inert gas ambient (Ar in a wide temperature range (Tgr from 1600 to 2000°C. For all the considered growth temperatures, few layers of graphene (FLG conformally covering the 100 to 200-nm wide terraces of the SiC surface have been observed by high-resolution cross-sectional transmission electron microscopy (HR-XTEM. Tapping mode atomic force microscopy (t-AFM showed the formation of wrinkles with approx. 1 to 2 nm height and 10 to 20 nm width in the FLG film, as a result of the release of the compressive strain, which builds up in FLG during the sample cooling due to the thermal expansion coefficients mismatch between graphene and SiC. While for EG grown on on-axis 4H-SiC an isotropic mesh-like network of wrinkles interconnected into nodes is commonly reported, in the present case of a vicinal SiC surface, wrinkles are preferentially oriented in the direction perpendicular to the step edges of the SiC terraces. For each Tgr, the number of graphene layers was determined on very small sample areas by HR-XTEM and, with high statistics and on several sample positions, by measuring the depth of selectively etched trenches in FLG by t-AFM. Both the density of wrinkles and the number of graphene layers are found to increase almost linearly as a function of the growth temperature in the considered temperature range.

  8. Structure of a heterogeneous, glycosylated, lipid-bound, in vivo-grown protein crystal at atomic resolution from the viviparous cockroach Diploptera punctata

    Directory of Open Access Journals (Sweden)

    Sanchari Banerjee

    2016-07-01

    Full Text Available Macromolecular crystals for X-ray diffraction studies are typically grown in vitro from pure and homogeneous samples; however, there are examples of protein crystals that have been identified in vivo. Recent developments in micro-crystallography techniques and the advent of X-ray free-electron lasers have allowed the determination of several protein structures from crystals grown in cellulo. Here, an atomic resolution (1.2 Å crystal structure is reported of heterogeneous milk proteins grown inside a living organism in their functional niche. These in vivo-grown crystals were isolated from the midgut of an embryo within the only known viviparous cockroach, Diploptera punctata. The milk proteins crystallized in space group P1, and a structure was determined by anomalous dispersion from the native S atoms. The data revealed glycosylated proteins that adopt a lipocalin fold, bind lipids and organize to form a tightly packed crystalline lattice. A single crystal is estimated to contain more than three times the energy of an equivalent mass of dairy milk. This unique storage form of nourishment for developing embryos allows access to a constant supply of complete nutrients. Notably, the crystalline cockroach-milk proteins are highly heterogeneous with respect to amino-acid sequence, glycosylation and bound fatty-acid composition. These data present a unique example of protein heterogeneity within a single in vivo-grown crystal of a natural protein in its native environment at atomic resolution.

  9. Structure of a heterogeneous, glycosylated, lipid-bound, in vivo-grown protein crystal at atomic resolution from the viviparous cockroach Diploptera punctata.

    Science.gov (United States)

    Banerjee, Sanchari; Coussens, Nathan P; Gallat, François-Xavier; Sathyanarayanan, Nitish; Srikanth, Jandhyam; Yagi, Koichiro J; Gray, James S S; Tobe, Stephen S; Stay, Barbara; Chavas, Leonard M G; Ramaswamy, Subramanian

    2016-07-01

    Macromolecular crystals for X-ray diffraction studies are typically grown in vitro from pure and homogeneous samples; however, there are examples of protein crystals that have been identified in vivo. Recent developments in micro-crystallography techniques and the advent of X-ray free-electron lasers have allowed the determination of several protein structures from crystals grown in cellulo. Here, an atomic resolution (1.2 Å) crystal structure is reported of heterogeneous milk proteins grown inside a living organism in their functional niche. These in vivo-grown crystals were isolated from the midgut of an embryo within the only known viviparous cockroach, Diploptera punctata. The milk proteins crystallized in space group P1, and a structure was determined by anomalous dispersion from the native S atoms. The data revealed glycosylated proteins that adopt a lipocalin fold, bind lipids and organize to form a tightly packed crystalline lattice. A single crystal is estimated to contain more than three times the energy of an equivalent mass of dairy milk. This unique storage form of nourishment for developing embryos allows access to a constant supply of complete nutrients. Notably, the crystalline cockroach-milk proteins are highly heterogeneous with respect to amino-acid sequence, glycosylation and bound fatty-acid composition. These data present a unique example of protein heterogeneity within a single in vivo-grown crystal of a natural protein in its native environment at atomic resolution.

  10. Growth, Nitrogen Vacancy Reduction and Solid Solution Formation in Cubic GaN Thin Films and the Subsequent Fabrication of Superlattice Structures Using AIN and InN

    Science.gov (United States)

    1992-12-01

    AD-A258 804 Final Technical Report Ii Growth, Nitrogen Vacancy Reduction and Solid Solution Formation in Cubic GaN Thin Films and the Subsequent...Technical 6/1/86-12/31/92 4. TITLE AND SUBTITLE Growth, Nitrogen Vacancy Reduction and 5. FUNDING NUMBERS Solid Solution Formation in Cubic GaN Thin...According to the structural and chemical analyses, there is no reason to believe that a homogeneous solid solution close to this composition had

  11. Structural Feature and Solute Trapping of Rapidly Grown Ni3Sn Intermetallic Compound

    Institute of Scientific and Technical Information of China (English)

    QIN Hai-Yan; WANG Wei-Li; WEI Bing-Bo

    2009-01-01

    The rapid dendritic growth of primary Ni3Sn phase in undercooled Nio30.9%Sn-5%Ge alloy is investigated by using the glass fluxing technique. The dendritic growth velocity of Ni3Sn compound is measured as a function of undercooling, and a velocity of 2.47m/s is achieved at the maximum undercooling of 251 K (0.17TL). The addition of the Ge element reduces its growth velocity as compared with the binary Ni75Sn25 alloy. During rapid solidification, the Ni3Sn compound behaves like a normal sofid solution and it displays a morphological transition of "coarse dendrite-equiaxed grain-vermicular structure" with the increase of undercooling. Significant solute trapping of Ge atoms occurs in the whole undercooling range.

  12. Structure and optical properties of ZnS thin films grown by glancing angle deposition

    Science.gov (United States)

    Wang, Sumei; Fu, Xiaoyong; Xia, Guodong; Wang, Jianguo; Shao, Jianda; Fan, Zhengxiu

    2006-10-01

    The glancing angle deposition (GLAD) technique was used to deposit ZnS films by electron beam evaporation method. The cross sectional scanning electron microscopy (SEM) image illustrated a highly orientated microstructure composed of slanted column. The atomic force microscopy (AFM) analysis indicated that incident flux angle had significant effects on the nodule size and surface roughness. Under identical nominal thickness, the actual thickness of the GLAD films is related to the incident flux angle. The refractive index and in-plane birefringence of the GLAD ZnS films were discussed, and the maximum birefringence Δ n = 0.036 was obtained at incident flux angle of α = 80°. Therefore, the glancing angle deposition technique is a promising way to create a columnar structure with enhanced birefringent property.

  13. Properties of Inconel 625 mesh structures grown by electron beam additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    List, F.A., E-mail: listfaiii@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN (United States); Dehoff, R.R.; Lowe, L.E. [Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN (United States); Sames, W.J. [Texas A and M University, College Station, TX (United States)

    2014-10-06

    Relationships between electron beam parameters (beam current, beam speed, and beam focus) and physical properties (mass, diameter, elastic modulus, and yield strength) have been investigated for Inconel 625 mesh cubes fabricated using an additive manufacturing technology based on electron beam melting. The elastic modulus and yield strength of the mesh cubes have been systematically varied by approximately a factor of ten by changing the electron beam parameters. Simple models have been used to understand these relationships. Structural anisotropies of the mesh associated with the layered build architecture have been observed and may contribute, along with microstructural anisotropies, to the anisotropic mechanical properties of the mesh. Knowledge of this kind is likely applicable to other metal and alloy systems and is essential to rapidly realize the full potential of this burgeoning technology.

  14. Properties of Inconel 625 Mesh Structures Grown by Electron Beam Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    List III, Frederick Alyious [ORNL; Dehoff, Ryan R [ORNL; Lowe, Larry E [ORNL; Sames, William J [ORNL

    2014-01-01

    Relationships between electron beam parameters (beam current, beam speed, and beam focus) and physical properties (mass, diameter, elastic modulus, and yield strength) have been investigated for Inconel 625 mesh cubes fabricated using an additive manufacturing technology based on electron beam melting. The elastic modulus and yield strength of the mesh cubes have been systematically varied by approximately a factor of ten by changing the electron beam parameters. Simple models have been used to understand better these relationships. Structural anisotropies of the mesh associated with the layered build architecture have been observed and may contribute, along with microstructural anisotropies, to the anisotropic mechanical properties of the mesh. Knowledge of this kind is likely applicable to other metal and alloy systems and is essential to rapidly realize the full potential of this burgeoning technology.

  15. Structural change upon annealing of amorphous GeSbTe grown on Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Bragaglia, V., E-mail: bragaglia@pdi-berlin.de; Jenichen, B.; Giussani, A.; Perumal, K.; Riechert, H.; Calarco, R. [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2014-08-07

    The structural change upon annealing of an amorphous GeSbTe (GST) film deposited by molecular beam epitaxy on a Si(111) substrate is studied by means of X-ray diffraction (XRD), X-ray reflectivity (XRR), and atomic force microscopy (AFM). XRD profiles reveal that both metastable cubic and stable hexagonal phases are obtained with a single out-of-plane orientation. XRR study shows a density increase and consequent thickness decrease upon annealing, in accordance with literature. From both, the XRD and the AFM study, it emerges that the crystalline substrate acts as a template for the film, favoring the crystallization of the amorphous GST into the [111] oriented metastable cubic phase, and the latter turns into the [0001] stable hexagonal phase for higher annealing temperature.

  16. Structural change upon annealing of amorphous GeSbTe grown on Si(111)

    Science.gov (United States)

    Bragaglia, V.; Jenichen, B.; Giussani, A.; Perumal, K.; Riechert, H.; Calarco, R.

    2014-08-01

    The structural change upon annealing of an amorphous GeSbTe (GST) film deposited by molecular beam epitaxy on a Si(111) substrate is studied by means of X-ray diffraction (XRD), X-ray reflectivity (XRR), and atomic force microscopy (AFM). XRD profiles reveal that both metastable cubic and stable hexagonal phases are obtained with a single out-of-plane orientation. XRR study shows a density increase and consequent thickness decrease upon annealing, in accordance with literature. From both, the XRD and the AFM study, it emerges that the crystalline substrate acts as a template for the film, favoring the crystallization of the amorphous GST into the [111] oriented metastable cubic phase, and the latter turns into the [0001] stable hexagonal phase for higher annealing temperature.

  17. Magnetostrictive iron gallium thin films grown onto antiferromagnetic manganese nitride: Structure and magnetism

    Science.gov (United States)

    Mandru, Andrada-Oana; Corbett, Joseph P.; Richard, Andrea L.; Gallagher, James; Meng, Keng-Yuan; Ingram, David C.; Yang, Fengyuan; Smith, Arthur R.

    2016-10-01

    We report structural and magnetic properties of magnetostrictive Fe100 -xGax (x ≈ 15) alloys when deposited onto antiferromagnetic manganese nitride and non-magnetic magnesium oxide substrates. From X-ray diffraction measurements, we find that the FeGa films are single crystalline. Scanning tunneling microscopy imaging reveals that the surface morphologies are dictated by the growth temperature, composition, and substrate. The magnetic properties can be tailored by the substrate, as found by magnetic force microscopy imaging and vibrating sample magnetometry measurements. In addition to pronounced tetragonal deformations, depositing FeGa onto manganese nitride leads to the formation of stripe-like magnetic domain patterns and to the appearance of perpendicular magnetic anisotropy.

  18. Structural, optical, and electrical properties of tin sulfide thin films grown by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Calixto-Rodriguez, M. [Instituto de Ciencias Fisicas-Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, 62210, Cuernavaca, Morelos (Mexico)], E-mail: manuela@fis.unam.mx; Martinez, H. [Instituto de Ciencias Fisicas-Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, 62210, Cuernavaca, Morelos (Mexico); Sanchez-Juarez, A.; Campos-Alvarez, J. [Centro de Investigacion en Energia-Universidad Nacional Autonoma de Mexico, 62580, Temixco, Morelos (Mexico); Tiburcio-Silver, A. [Instituto Tecnologico de Toluca-SEP, Apartado Postal 20, 52176, Metepec 3, Estado de Mexico (Mexico); Calixto, M.E. [Consultant, Cuernavaca, Morelos (Mexico)

    2009-02-02

    Tin sulfide (SnS) thin films have been prepared by spray pyrolysis (SP) technique using tin chloride and N, N-dimethylthiourea as precursor compounds. Thin films prepared at different temperatures have been characterized using several techniques. X-ray diffraction studies have shown that substrate temperature (T{sub s}) affects the crystalline structure of the deposited material as well as the optoelectronic properties. The calculated optical band gap (E{sub g}) value for films deposited at T{sub s} = 320-396 deg. C was 1.70 eV (SnS). Additional phases of SnS{sub 2} at 455 deg. C and SnO{sub 2} at 488 deg. C were formed. The measured electrical resistivity value for SnS films was {approx} 1 x 10{sup 4} {omega}-cm.

  19. Structural and morphological properties of metallic thin films grown by pulsed laser deposition for photocathode application

    Science.gov (United States)

    Lorusso, A.; Gontad, F.; Caricato, A. P.; Chiadroni, E.; Broitman, E.; Perrone, A.

    2016-03-01

    In this work yttrium and lead thin films have been deposited by pulsed laser deposition technique and characterized by ex situ different diagnostic methods. All the films were adherent to the substrates and revealed a polycrystalline structure. Y films were uniform with a very low roughness and droplet density, while Pb thin films were characterized by a grain morphology with a relatively high roughness and droplet density. Such metallic materials are studied because they are proposed as a good alternative to copper and niobium photocathodes which are generally used in radiofrequency and superconducting radiofrequency guns, respectively. The photoemission performances of the photocathodes based on Y and Pb thin films have been also studied and discussed.

  20. Structural and Optical Properties of CdS Thin Film Grown by Chemical Bath Deposition

    Directory of Open Access Journals (Sweden)

    S. Rajpal

    2013-07-01

    Full Text Available In this work we report synthesis and optical characterization of CdS thin films coated on glass substrate. The films were deposited using chemical bath deposition method. Scanning Electron microscopy shows a uniform film of CdS film at particular concentration and dipping time. The Energy Dispersive spectroscopy reveals the presence of Cd and S in the CdS film. X-Ray diffraction confirms the cubic structure of CdS deposited on glass and amorphous nature of glass. Optical and photoluminescence studies were done using UV-Visible spectroscopy and Photoluminescence spectroscopy respectively. We have determined bandgap by analyzing UV-Visible spectra results. Wettability studies were done using Optical Contact Angle, which confirms the hydrophobic nature of the CdS films.

  1. Structural, electrical, and optical characterization of coalescent p-n GaN nanowires grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kolkovsky, Vl. [Technische Universität Dresden, 01062 Dresden (Germany); Zytkiewicz, Z. R.; Sobanska, M.; Klosek, K. [Institute of Physics Polish Academy of Sciences, al. Lotnikow 32-46, 02-668 Warsaw (Poland); Korona, K. P. [Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw (Poland)

    2015-12-14

    The electrical, structural, and optical properties of coalescent p-n GaN nanowires (NWs) grown by molecular beam epitaxy on Si (111) substrate are investigated. From photoluminescence measurements the full width at half maximum of bound exciton peaks AX and DA is found as 1.3 and 1.2 meV, respectively. These values are lower than those reported previously in the literature. The current-voltage characteristics show the rectification ratio of about 10{sup 2} and the leakage current of about 10{sup −4} A/cm{sup 2} at room temperature. We demonstrate that the thermionic mechanism is not dominant in these samples and spatial inhomogeneties and tunneling processes through a ∼2 nm thick SiN{sub x} layer between GaN and Si could be responsible for deviation from the ideal diode behavior. The free carrier concentration in GaN NWs determined by capacitance-voltage measurements is about 4 × 10{sup 15 }cm{sup −3}. Two deep levels (H190 and E250) are found in the structures. We attribute H190 to an extended defect located at the interface between the substrate and the SiN{sub x} interlayer or near the sidewalls at the bottom of the NWs, whereas E250 is tentatively assigned to a gallium-vacancy- or nitrogen interstitials-related defect.

  2. Structure and morphology of Ru films grown by atomic layer deposition from 1-ethyl-1’-methyl-ruthenocene

    Science.gov (United States)

    Kukli, Kaupo; Aarik, Jaan; Aidla, Aleks; Uustare, Teet; Jõgi, Indrek; Lu, Jun; Tallarida, Massimo; Kemell, Marianna; Kiisler, Alma-Asta; Ritala, Mikko; Leskelä, Markku

    2010-06-01

    Ru thin films were grown on TiO 2, Al 2O 3, HfO 2, and ZrO 2 films as well as on HF-etched silicon and SiO 2-covered silicon by atomic layer deposition from 1-ethyl-1'-methyl-ruthenocene, (CH 3C 5H 4)(C 2H 5C 5H 4)Ru, and oxygen. The growth of Ru was obtained and characterized at temperatures ranging from 250 to 325 °C. On epitaxial rutile, highly oriented growth of Ru with hexagonal structure was achieved, while on other substrates the films possessed nonoriented hexagonal structure. Ruthenium oxide was not detected in the films. The lowest resistivity value obtained for 5.0-6.6 nm thick films was 26 μΩ cm. The conductivity of the films depended somewhat on the deposition cycle time parameters and, expectedly, more strongly on the amount of deposition cycles. Increase in the deposition temperature of underlying metal oxide films increased the conductivity of Ru layers.

  3. Influence of substrate on structural, morphological and optical properties of ZnO films grown by SILAR method

    Indian Academy of Sciences (India)

    F N Jiménez-García; C L Londoño-Calderón; D G Espinosa-Arbeláez; A Del Real; M E Rodríguez-García

    2014-10-01

    ZnO films were obtained by successive ionic layer adsorption and reaction (SILAR) method from four different substrates: glass microslides, corning glass, quartz and silicon with and without oxide layer. For films deposition, a precursor solution of ZnSO4 was used, complexed with ammonium hydroxide. Prior to the film deposition, wettability of the substrates was analysed using a CCD camera. It was found that the Si without the oxide layer substrate shows hydrophobic behaviour, which makes the films less adherent and not uniform, while in the other substrates, the behaviour was optimal for the growing process. ZnO films grown on glass microslides, corning glass, quartz and Si with oxide layer were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV–Vis techniques. According to the XRD patterns, the films were polycrystalline, with hexagonal wurtzite structure and the patterns mentioned showed significant differences in crystallite sizes, microstrain and texture coefficient with respect to the employed substrates. The morphology of the ZnO films constituted by rice-like and flower-like structures shows differences in form and size depending on the substrate. The UV–Vis spectroscopy results show that the substrate did not influence the band gap energy value obtained from films.

  4. Structural and optical investigations on seed layer assisted hydrothermally grown ZnO nanorods on flat and textured substrates

    Science.gov (United States)

    Rayerfrancis, Arokiyadoss; Balaji Bhargav, P.; Ahmed, Nafis; Balaji, C.; Dhara, Sandip

    2016-12-01

    In this article we report the synthesis of vertically aligned ZnO nanorods on plain as well as textured fluorine doped tin oxide (FTO) coated glass substrate using hydrothermal method. Prior to hydrothermal method, AZO seed layer of thickness 5, 10 and 15 nm were deposited on the chosen substrates by DC magnetron sputtering. The as-grown nanorods were annealed at 450 °C for 3 h to improve the crystallinity. Morphology and structure of the nanorods was observed by field emission scanning electron microscopy. The formation of wurtzite structure was confirmed through x-ray diffraction studies. The optical mode of ZnO, E2 (high) at 434 cm-1 present in the samples was confirmed by Raman spectroscopy. The seed layer assisted growth of ZnO nanorods were defect free, which is confirmed from the photoluminescence spectra, and the intensity of band to band emission is much greater than the emission from the defects at the deep level.

  5. Substrate dependent structural, optical and electrical properties of ZnS thin films grown by RF sputtering

    Science.gov (United States)

    Pathak, Trilok K.; Kumar, Vinod; Purohit, L. P.; Swart, H. C.; Kroon, R. E.

    2016-10-01

    Zinc sulphide (ZnS) films are of great importance for applications in various optoelectronic devices. ZnS thin films were grown on glass, indium tin oxide (ITO) and Corning glass substrates by radio-frequency magnetron sputtering at a temperature of 373 K and a comparative study of the structural, optical and electrical properties was performed using X-ray diffraction (XRD), scanning electron microscopy, optical and current-voltage (I-V) measurements. The XRD patterns showed that the sputtered thin films exhibited good crystallinity with the (111) peak around 2θ=28.3° indicating preferential orientation of the cubic structure. The maximum strain and most densely packed grains were obtained for the Corning glass substrate. The transmittance spectra of the films were measured in the wavelength range from 200 to 800 nm, showing that the films are about 77% transparent in the visible region. A slight change of 3.50 eV to 3.54 eV was found for the bandgap of the films deposited on different substrates. The ZnS thin films deposited on Corning glass show better crystallinity, morphology and I-V characteristics than that deposited on ordinary glass and ITO substrates.

  6. Inhibition of a structural phase transition in one-dimensional organometal halide perovskite nanorods grown inside porous silicon nanotube templates

    Science.gov (United States)

    Arad-Vosk, N.; Rozenfeld, N.; Gonzalez-Rodriguez, R.; Coffer, J. L.; Sa'ar, A.

    2017-02-01

    One-dimensional organo-metal halide perovskite (C H3N H3Pb I3 ) nanorods whose diameter and length are dictated by the inner size of porous silicon nanotube templates have been grown, characterized, and compared to bulk perovskites in the form of microwires. We have observed a structural phase transition for bulk perovskites, where the crystal structure changes from tetragonal to orthorhombic at about 160 K, as opposed to small diameter one-dimensional perovskite nanorods, of the order of 30-70 nm in diameter, where the phase transition is inhibited and the dominant phase remains tetragonal. Two major experimental techniques, infrared absorption spectroscopy and photoluminescence, were utilized to probe the temperature dependence of the perovskite phases over the 4-300 K temperature range. Yet, different characteristics of the phase transition were measured by the two spectroscopic methods and explained by the presence of small, tetragonal inclusions embedded in the orthorhombic phase. The inhibition of the phase transition is attributed to the large surface area of these one-dimensional perovskite nanorods, which gives rise to a large stress that, in turn, prevents the formation of the orthorhombic phase. The absence of phase transition enables the measurement of the tetragonal bandgap energy down to low temperatures.

  7. Effect of substrate temperature on the structure of amorphous oxygenated hydrocarbon films grown with a pulsed supersonic methane plasma flow

    Science.gov (United States)

    Fedoseeva, Yu. V.; Pozdnyakov, G. A.; Okotrub, A. V.; Kanygin, M. A.; Nastaushev, Yu. V.; Vilkov, O. Y.; Bulusheva, L. G.

    2016-11-01

    Since amorphous oxygenated hydrocarbon (COxHy) films are promising engineering materials a study of the structure and composition of the films depending on the conditions of synthesis is important for controlling of their physicochemical properties. Here, we used the methods of scanning and transmission electron microscopy, X-ray photoelectron, near-edge X-ray absorption fine structure, Fourier transform infrared and Raman spectroscopy to reveal changes in the chemical connectivity of COxHy films grown on silicon substrates heated to 300, 500, and 700 °C using a supersonic flow of methane plasma. It was found that the COxHy films, deposited at 300 and 500 °C, were mainly composed of the sp2-hybridized carbon areas with various oxygen species. A rise of the substrate temperature caused an increase of the portion of tetrahedral carbon atoms as well as carboxyl and hydroxyl groups. With growth of the substrate temperature, the film thickness reduced monotonically from 400 to 180 nm, while the film adhesion improved substantially. The films, deposited at lower temperatures, showed high hydrophilicity due to porosity and presence of oxygenated groups both at the surface and in the bulk.

  8. Effect of Au/SiO2 substrate on the structural and optical properties of gallium nitride grown by CVD

    Indian Academy of Sciences (India)

    A Ramos-Carrazco; R Garcia-Gutierrez; M Barboza-Flores; R Rangel; O E Contreras; D Berman-Mendoza

    2014-12-01

    The improvement of the growth of thick GaN films using a fused silica wafer covered with a thin gold layer by chemical vapour deposition at 800 °C is reported. In order to compare the surface properties, crystalline quality, micromilling performance and luminescence, the characterization of a GaN film grown on a silicon wafer is presented as well. The different morphologies of the surface observed on the GaN films are compared on each substrate and the resulting microstructures are presented in detail. High resolution TEM images of the GaN films show the main crystallographic planes characterizing these structures. The wurtzite structure was determined for each sample using the substrates of Au/SiO2 and Si (100) from the XRD patterns. Also, the re-deposition effect after ion milling of the GaN films is reported. The performance of ionic beam on the surface of the GaN thick films for the geometries patterning of rectangular, circular and annular with two different ion doses was compared. Cathodoluminescence spectra showed that the top surfaces of the samples emit strong UV emissions peaked at 3.35 and 3.32 eV which are related to the Y4 and Y6 transitions.

  9. Interface formation of two- and three-dimensionally bonded materials in the case of GeTe-Sb₂Te₃ superlattices.

    Science.gov (United States)

    Momand, Jamo; Wang, Ruining; Boschker, Jos E; Verheijen, Marcel A; Calarco, Raffaella; Kooi, Bart J

    2015-12-07

    GeTe-Sb2Te3 superlattices are nanostructured phase-change materials which are under intense investigation for non-volatile memory applications. They show superior properties compared to their bulk counterparts and significant efforts exist to explain the atomistic nature of their functionality. The present work sheds new light on the interface formation between GeTe and Sb2Te3, contradicting previously proposed models in the literature. For this purpose [GeTe(1 nm)-Sb2Te3(3 nm)]15 superlattices were grown on passivated Si(111) at 230 °C using molecular beam epitaxy and they have been characterized particularly with cross-sectional HAADF scanning transmission electron microscopy. Contrary to the previously proposed models, it is found that the ground state of the film actually consists of van der Waals bonded layers (i.e. a van der Waals heterostructure) of Sb2Te3 and rhombohedral GeSbTe. Moreover, it is shown by annealing the film at 400 °C, which reconfigures the superlattice into bulk rhombohedral GeSbTe, that this van der Waals layer is thermodynamically favored. These results are explained in terms of the bonding dimensionality of GeTe and Sb2Te3 and the strong tendency of these materials to intermix. The findings debate the previously proposed switching mechanisms of superlattice phase-change materials and give new insights in their possible memory application.

  10. Structural, electronic and photovoltaic characterization of multiwalled carbon nanotubes grown directly on stainless steel

    Directory of Open Access Journals (Sweden)

    Luca Camilli

    2012-05-01

    Full Text Available We have taken advantage of the native surface roughness and the iron content of AISI-316 stainless steel to grow multiwalled carbon nanotubes (MWCNTs by chemical vapour deposition without the addition of an external catalyst. The structural and electronic properties of the synthesized carbon nanostructures have been investigated by a range of electron microscopy and spectroscopy techniques. The results show the good quality and the high graphitization degree of the synthesized MWCNTs. Through energy-loss spectroscopy we found that the electronic properties of these nanostructures are markedly different from those of highly oriented pyrolytic graphite (HOPG. Notably, a broadening of the π-plasmon peak in the case of MWCNTs is evident. In addition, a photocurrent was measured when MWCNTs were airbrushed onto a silicon substrate. External quantum efficiency (EQE and photocurrent values were reported both in planar and in top-down geometry of the device. Marked differences in the line shapes and intensities were found for the two configurations, suggesting that two different mechanisms of photocurrent generation and charge collection are in operation. From this comparison, we are able to conclude that the silicon substrate plays an important role in the production of electron–hole pairs.

  11. Structural analysis of Gossypium hirsutum fibers grown under greenhouse and hydroponic conditions.

    Science.gov (United States)

    Natalio, Filipe; Tahir, Muhammad Nawaz; Friedrich, Norman; Köck, Margret; Fritz-Popovski, Gerhard; Paris, Oskar; Paschke, Reinhard

    2016-06-01

    Cotton is the one of the world's most important crops. Like any other crop, cotton growth/development and fiber quality is highly dependent on environmental factors. Increasing global weather instability has been negatively impacting its economy. Cotton is a crop that exerts an intensive pressure over natural resources (land and water) and demands an overuse of pesticides. Thus, the search for alternative cotton culture methods that are pesticide-free (biocotton) and enable customized standard fiber quality should be encouraged. Here we describe a culture of Gossypium hirsutum ("Upland" Cotton) utilizing a greenhouse and hydroponics in which the fibers are morphological similar to conventional cultures and structurally fit into the classical two-phase cellulose I model with 4.19nm crystalline domains surrounded by amorphous regions. These fibers exhibit a single crystalline form of cellulose I-Iß, monoclinic unit cell. Fiber quality bulk analysis shows an improved length, strength, whiteness when compared with soil-based cultures. Finally, we show that our fibers can be spun, used for production of non-woven fabrics and indigo-vat stained demonstrating its potential in industrial and commercial applications.

  12. Structural and electrical properties of ultrathin niobium nitride films grown by atomic layer deposition

    Science.gov (United States)

    Linzen, S.; Ziegler, M.; Astafiev, O. V.; Schmelz, M.; Hübner, U.; Diegel, M.; Il'ichev, E.; Meyer, H.-G.

    2017-03-01

    We studied and optimised the properties of ultrathin superconducting niobium nitride films fabricated with a plasma-enhanced atomic layer deposition (PEALD) process. By adjusting process parameters, the chemical embedding of undesired oxygen into the films was minimised and a film structure consisting of mainly polycrystalline niobium nitride with a small fraction of amorphous niobium oxide and niobium oxo-nitrides were formed. For this composition a critical temperature of 13.8 K and critical current densities of 7 × 106 A cm-2 at 4.2 K were measured on 40 nm thick films. A fundamental correlation between these superconducting properties and the crystal lattice size of the cubic δ-niobium-nitride grains were found. Moreover, the film thickness variation between 40 and 2 nm exhibits a pronounced change of the electrical conductivity at room temperature and reveals a superconductor-insulator-transition in the vicinity of 3 nm film thickness at low temperatures. The thicker films with resistances up to 5 kΩ per square in the normal state turn to the superconducting one at low temperatures. The perfect thickness control and film homogeneity of the PEALD growth make such films extremely promising candidates for developing novel devices on the coherent quantum phase slip effect.

  13. Simple theoretical analysis of the photoemission from quantum confined effective mass superlattices of optoelectronic materials

    Directory of Open Access Journals (Sweden)

    Debashis De

    2011-07-01

    Full Text Available The photoemission from quantum wires and dots of effective mass superlattices of optoelectronic materials was investigated on the basis of newly formulated electron energy spectra, in the presence of external light waves, which controls the transport properties of ultra-small electronic devices under intense radiation. The effect of magnetic quantization on the photoemission from the aforementioned superlattices, together with quantum well superlattices under magnetic quantization, has also been investigated in this regard. It appears, taking HgTe/Hg1−xCdxTe and InxGa1−xAs/InP effective mass superlattices, that the photoemission from these quantized structures is enhanced with increasing photon energy in quantized steps and shows oscillatory dependences with the increasing carrier concentration. In addition, the photoemission decreases with increasing light intensity and wavelength as well as with increasing thickness exhibiting oscillatory spikes. The strong dependence of the photoemission on the light intensity reflects the direct signature of light waves on the carrier energy spectra. The content of this paper finds six different applications in the fields of low dimensional systems in general.

  14. Structure and ionic conductivity of well-aligned polycrystalline sodium titanogallate grown by reactive diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Ryo; Okabe, Momoko; Asaka, Toru [Department o f Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Ishizawa, Nobuo [Advanced Ceramics Research Center, Nagoya Institute of Technology, Tajimi 507-0071 (Japan); Fukuda, Koichiro, E-mail: fukuda.koichiro@nitech.ac.jp [Department o f Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan)

    2015-09-15

    We prepared the b-axis-oriented polycrystalline Na{sub 0.85}Ti{sub 0.51}Ga{sub 4.37}O{sub 8} (NTGO) embedded in Ga{sub 2}O{sub 3}-doped Na{sub 2}Ti{sub 4}O{sub 9} matrix using the reactive diffusion technique. When the sandwich-type Ga{sub 2}TiO{sub 5}/NaGaO{sub 2}/Ga{sub 2}TiO{sub 5} diffusion couple was heated at 1323 K for 24 h, the NTGO polycrystal was readily formed in the presence of a liquid phase. The resulting polycrystalline material was characterized by X-ray diffractometry, electron microscopy and impedance spectroscopy. We mechanically processed the annealed diffusion couple and obtained the thin-plate electrolyte consisting mostly of the grain-aligned NTGO polycrystal. The ionic conductivity (σ) of the electrolyte along the common b-axis direction steadily increased from 1.3×10{sup −4} to 7.3×10{sup −3} S/cm as the temperature increased from 573 to 1073 K. There was a slope change at ca. 792 K for the Arrhenius plot of σ; the activation energies were 0.39 eV above this temperature and 0.57 eV below it. The NTGO showed the crystal structure (space group C2/m) with substantial positional disordering of one of the two Ga sites. The Na{sup +} ions occupied ca. 43% of the Wyckoff position 4i site, the deficiency of which would contribute to the relatively high ionic conductivity along the b-axis. The reactive diffusion could be widely applicable as the novel technique to the preparation of grain-aligned ceramics of multi-component systems. - Graphical abstract: We have prepared the b-axis-oriented Na{sub 0.85}Ti{sub 0.51}Ga{sub 4.37}O{sub 8} polycrystal embedded in Ga{sub 2}O{sub 3}-doped Na{sub 2}Ti{sub 4}O{sub 9} matrix by the heat treatment of sandwich-type diffusion couple of Ga{sub 2}TiO{sub 5}/NaGaO{sub 2}/Ga{sub 2}TiO{sub 5}. The resulting Na{sub 0.85}Ti{sub 0.51}Ga{sub 4.37}O{sub 8} electrolyte showed the ionic conductivity ranging from 1.3×10{sup −4} S/cm at 573 K to 7.3×10{sup −3} S/cm at 1073 K. - Highlights: • The b

  15. Cross-Sectional Scanning Tunneling Microscopy of InAsSb/InAsP Superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Allerman, A.A.; Biefeld, R.M.; Yu, E.T.; Zuo, S.L.

    1999-02-10

    Cross-sectional scanning tunneling microscopy has been used to characterize compositional structure in InAs{sub 0.87}Sb{sub 0.13}/InAs{sub 0.73}P{sub 0.27} and InAs{sub 0.83}Sb{sub 0.17}/InAs{sub 0.60}P{sub 0.40} strained-layer superlattice structures grown by metal-organic chemical vapor deposition. High-resolution STM images of the (110) cross section reveal compositional features within both the InAs{sub x}Sb{sub 1{minus}x} and InAs{sub y}P{sub 1{minus}y} alloy layers oriented along the [{bar 1}12] and [1{bar 1}2] directions--the same as those in which features would be observed for CuPt-B type ordered alloys. Typically one variant dominates in a given area, although occasionally the coexistence of both variants is observed. Furthermore, such features in the alloy layers appear to be correlated across heterojunction interfaces in a manner that provides support for III-V alloy ordering models which suggest that compositional order can arise from strain-induced order near the surface of an epitaxially growing crystal. Finally, atomically resolved (1{bar 1}0) images obtained from the InAs{sub 0.87}Sb{sub 0.13}/InAs{sub 0.73}P{sub 0.27} sample reveal compositional features in the [112] and [{bar 1}{bar 1}2] directions, i.e., those in which features would be observed for CuPt-A type ordering.

  16. Broadband mid-infrared superlattice light-emitting diodes

    Science.gov (United States)

    Ricker, R. J.; Provence, S. R.; Norton, D. T.; Boggess, T. F.; Prineas, J. P.

    2017-05-01

    InAs/GaSb type-II superlattice light-emitting diodes were fabricated to form a device that provides emission over the entire 3-5 μm mid-infrared transmission window. Variable bandgap emission regions were coupled together using tunnel junctions to emit at peak wavelengths of 3.3 μm, 3.5 μm, 3.7 μm, 3.9 μm, 4.1 μm, 4.4 μm, 4.7 μm, and 5.0 μm. Cascading the structure recycles the electrons in each emission region to emit several wavelengths simultaneously. At high current densities, the light-emitting diode spectra broadened into a continuous, broadband spectrum that covered the entire mid-infrared band. When cooled to 77 K, radiances of over 1 W/cm2 sr were achieved, demonstrating apparent temperatures above 1000 K over the 3-5 μm band. InAs/GaSb type-II superlattices are capable of emitting from 3 μm to 30 μm, and the device design can be expanded to include longer emission wavelengths.

  17. Analysis of interference between two optical beams in a quasi-zero electric permittivity photonic crystal superlattice.

    Science.gov (United States)

    Li, Ziyuan; Hattori, Haroldo T

    2013-02-01

    A quasi-zero-average-index photonic crystal structure has been recently demonstrated by using the concept of complementary media. It consists of dielectric photonic crystal superlattices with alternating layers of negative index photonic crystals and positive index dielectric media. This photonic crystal structure has unique optical properties, such as phase-invariant field and self-collimation of light. In particular, the nanofabricated superlattices can be used in chip-scale optical interconnects and interferometers with quasi-zero-average phase difference. However, in potential interconnect applications, crosstalk between neighboring signals needs to be avoided. In this article, we study simulations of the interference of propagating electromagnetic waves in a quasi-zero electric permittivity photonic crystal superlattice. The simulations here are restricted to TM modes, with the main electric field along the vertical direction.

  18. Superlattices assembled through shape-induced directional binding.

    Science.gov (United States)

    Lu, Fang; Yager, Kevin G; Zhang, Yugang; Xin, Huolin; Gang, Oleg

    2015-01-01

    Organization of spherical particles into lattices is typically driven by packing considerations. Although the addition of directional binding can significantly broaden structural diversity, nanoscale implementation remains challenging. Here we investigate the assembly of clusters and lattices in which anisotropic polyhedral blocks coordinate isotropic spherical nanoparticles via shape-induced directional interactions facilitated by DNA recognition. We show that these polyhedral blocks--cubes and octahedrons--when mixed with spheres, promote the assembly of clusters with architecture determined by polyhedron symmetry. Moreover, three-dimensional binary superlattices are formed when DNA shells accommodate the shape disparity between nanoparticle interfaces. The crystallographic symmetry of assembled lattices is determined by the spatial symmetry of the block's facets, while structural order depends on DNA-tuned interactions and particle size ratio. The presented lattice assembly strategy, exploiting shape for defining the global structure and DNA-mediation locally, opens novel possibilities for by-design fabrication of binary lattices.

  19. Electrical properties of n-type GaSb substrates and p-type GaSb buffer layers for InAs/InGaSb superlattice infrared detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mitchel, W. C., E-mail: William.Mitchel.1@us.af.mil; Haugan, H. J.; Mou, Shin; Brown, G. J. [Air Force Research Laboratory, Materials & Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433 (United States); Elhamri, S.; Berney, R. [University of Dayton, Department of Physics, Dayton, Ohio 45469 (United States)

    2015-09-15

    Lightly doped n-type GaSb substrates with p-type GaSb buffer layers are the preferred templates for growth of InAs/InGaSb superlattices used in infrared detector applications because of relatively high infrared transmission and a close lattice match to the superlattices. We report here temperature dependent resistivity and Hall effect measurements of bare substrates and substrate-p-type buffer layer structures grown by molecular beam epitaxy. Multicarrier analysis of the resistivity and Hall coefficient data demonstrate that high temperature transport in the substrates is due to conduction in both the high mobility zone center Γ band and the low mobility off-center L band. High overall mobility values indicate the absence of close compensation and that improved infrared and transport properties were achieved by a reduction in intrinsic acceptor concentration. Standard transport measurements of the undoped buffer layers show p-type conduction up to 300 K indicating electrical isolation of the buffer layer from the lightly n-type GaSb substrate. However, the highest temperature data indicate the early stages of the expected p to n type conversion which leads to apparent anomalously high carrier concentrations and lower than expected mobilities. Data at 77 K indicate very high quality buffer layers.

  20. Electrical properties of n-type GaSb substrates and p-type GaSb buffer layers for InAs/InGaSb superlattice infrared detectors

    Directory of Open Access Journals (Sweden)

    W. C. Mitchel

    2015-09-01

    Full Text Available Lightly doped n-type GaSb substrates with p-type GaSb buffer layers are the preferred templates for growth of InAs/InGaSb superlattices used in infrared detector applications because of relatively high infrared transmission and a close lattice match to the superlattices. We report here temperature dependent resistivity and Hall effect measurements of bare substrates and substrate-p-type buffer layer structures grown by molecular beam epitaxy. Multicarrier analysis of the resistivity and Hall coefficient data demonstrate that high temperature transport in the substrates is due to conduction in both the high mobility zone center Γ band and the low mobility off-center L band. High overall mobility values indicate the absence of close compensation and that improved infrared and transport properties were achieved by a reduction in intrinsic acceptor concentration. Standard transport measurements of the undoped buffer layers show p-type conduction up to 300 K indicating electrical isolation of the buffer layer from the lightly n-type GaSb substrate. However, the highest temperature data indicate the early stages of the expected p to n type conversion which leads to apparent anomalously high carrier concentrations and lower than expected mobilities. Data at 77 K indicate very high quality buffer layers.

  1. Structural and functional properties of Al:ZnO thin films grown by Pulsed Laser Deposition at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gondoni, P.; Ghidelli, M. [Dipartimento di Energia and NEMAS - Center for NanoEngineered Materials and Surfaces, Politecnico di Milano, via Ponzio 34/3, 20133 Milano (Italy); Di Fonzo, F. [Center for Nano Science and Technology Polimi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano (Italy); Russo, V. [Dipartimento di Energia and NEMAS - Center for NanoEngineered Materials and Surfaces, Politecnico di Milano, via Ponzio 34/3, 20133 Milano (Italy); Bruno, P.; Marti-Rujas, J. [Center for Nano Science and Technology Polimi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano (Italy); Bottani, C.E.; Li Bassi, A. [Dipartimento di Energia and NEMAS - Center for NanoEngineered Materials and Surfaces, Politecnico di Milano, via Ponzio 34/3, 20133 Milano (Italy); Center for Nano Science and Technology Polimi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano (Italy); Casari, C.S., E-mail: carlo.casari@polimi.it [Dipartimento di Energia and NEMAS - Center for NanoEngineered Materials and Surfaces, Politecnico di Milano, via Ponzio 34/3, 20133 Milano (Italy); Center for Nano Science and Technology Polimi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano (Italy)

    2012-05-01

    Current research on transparent conductive oxides (TCOs) is focusing on indium-free TCOs, such as Al-doped ZnO (AZO), as an alternative to indium-tin oxide. In this work, AZO thin films were grown by Pulsed Laser Deposition at room temperature in oxygen atmosphere. The O{sub 2} pressure was varied from 0.01 Pa to 10 Pa, highlighting the effects of defect formation and oxygen vacancies on the film properties. Structural properties were characterized by X-ray diffraction and Scanning Electron Microscopy, while functional properties were characterized by measurement of electrical conductivity, Hall mobility, carrier density and optical transmission. At an optimal deposition pressure of 2 Pa, optical transparency in the visible range and minimum resistivity (4.5 Bullet-Operator 10{sup -4} {Omega} cm) were found, comparable to state-of-the-art TCOs. Mean value of visible transparency was shown to increase with increasing pressure, up to 88% at a deposition pressure of 10 Pa.

  2. Structural, Optical Constants and Photoluminescence of ZnO Thin Films Grown by Sol-Gel Spin Coating

    Directory of Open Access Journals (Sweden)

    Abdel-Sattar Gadallah

    2013-01-01

    Full Text Available We report manufacturing and characterization of low cost ZnO thin films grown on glass substrates by sol-gel spin coating method. For structural properties, X-ray diffraction measurements have been utilized for evaluating the dominant orientation of the thin films. For optical properties, reflectance and transmittance spectrophotometric measurements have been done in the spectral range from 350 nm to 2000 nm. The transmittance of the prepared thin films is 92.4% and 88.4%. Determination of the optical constants such as refractive index, absorption coefficient, and dielectric constant in this wavelength range has been evaluated. Further, normal dispersion of the refractive index has been analyzed in terms of single oscillator model of free carrier absorption to estimate the dispersion and oscillation energy. The lattice dielectric constant and the ratio of free carrier concentration to free carrier effective mass have been determined. Moreover, photoluminescence measurements of the thin films in the spectral range from 350 nm to 900 nm have been presented. Electrical measurements for resistivity evaluation of the films have been done. An analysis in terms of order-disorder of the material has been presented to provide more consistency in the results.

  3. Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static, and dynamic magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, N. S., E-mail: nsokolov@fl.ioffe.ru; Fedorov, V. V.; Korovin, A. M.; Suturin, S. M.; Baranov, D. A.; Gastev, S. V.; Krichevtsov, B. B.; Bursian, V. E.; Lutsev, L. V. [Ioffe Physical-Technical Institute of Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Maksimova, K. Yu.; Grunin, A. I. [Immanuel Kant Baltic Federal University, Kaliningrad 236041 (Russian Federation); Tabuchi, M. [Synchrotron Radiation Research Center, Nagoya University, Nagoya 464-8603 (Japan)

    2016-01-14

    Pulsed laser deposition has been used to grow thin (10–84 nm) epitaxial layers of Yttrium Iron Garnet Y{sub 3}Fe{sub 5}O{sub 12} (YIG) on (111)–oriented Gadolinium Gallium Garnet substrates at different growth conditions. Atomic force microscopy showed flat surface morphology both on micrometer and nanometer scales. X-ray diffraction measurements revealed that the films are coherent with the substrate in the interface plane. The interplane distance in the [111] direction was found to be by 1.2% larger than expected for YIG stoichiometric pseudomorphic film indicating presence of rhombohedral distortion in this direction. Polar Kerr effect and ferromagnetic resonance measurements showed existence of additional magnetic anisotropy, which adds to the demagnetizing field to keep magnetization vector in the film plane. The origin of the magnetic anisotropy is related to the strain in YIG films observed by XRD. Magneto-optical Kerr effect measurements revealed important role of magnetization rotation during magnetization reversal. An unusual fine structure of microwave magnetic resonance spectra has been observed in the film grown at reduced (0.5 mTorr) oxygen pressure. Surface spin wave propagation has been demonstrated in the in-plane magnetized films.

  4. Structural and Optical Properties of ZnO Films with Different Thicknesses Grown on Sapphire by MOCVD

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    ZnO(002) films with different thicknesses, grown on Al2O3 (006) substrates by metal-organic chemical vapor deposition( MOCVD), were etched by Ar ion beams. The samples were examined by D8 X-ray diffraction, scanning electron microscopy(SEM), and photoluminescence (PL) spectrometry. The structural properties vary with the increasing thickness of the films. When the film thickness is thin, the phi(Φ) scanning curves for ZnO(103) and sapphire(116) substrate show the existence of two kinds of orientation relationships between ZnO films and sapphire,which are ZnO(002)//Al2O3 (006), ZnO(100)//Al2O3 (110) and ZnO(002)//Al2O3 (006), ZnO(110)//Al2O3(110). When the thickness increases to 500 nm there is only one orientation relationship, which is ZnO(002)//Al2O3 (006), ZnO [ 100 ]//Al2O3[ 110 ]. Their photoluminescence (PL) spectra at room temperature show that the optical properties of ZnO films have been greatly improved when increasing the thickness of films is increased.

  5. Structural properties of strained YBa2Cu3O6+x superconducting films grown by pulsed laser deposition

    Science.gov (United States)

    Ariosa, Daniel; Abrecht, M.; Pavuna, Davor; Onellion, Marshall

    2000-09-01

    In YBa2Cu3O6+x compound the tetragonal to orthorhombic transition occurs around x equals 0.3, followed by a continuum variation of lattice parameters. Hence both, the structural and superconducting properties, depend upon the oxygen content in CuO chains. Conversely, the epitaxial stress, exerted by the substrate on YBCO films, modified the lattice parameters influencing the oxygen stability in the chains. The understanding of this mechanism is essential when growing epitaxial films for in- situ photoemission studies as well as for tunneling experiments, since the oxygen stability up to the top surface unit-cell is a central issue. We have studied this effect on c-axis oriented YBCO films grown by laser ablation on (001) STO single crystals. Accurate x-ray diffraction analysis of thick films (t GRT 500 angstrom) indicates the presence of two distinct layers, one strained and the other relaxed. Detailed analysis shows that the relaxed layer is as well oxidized as bulk samples, while the strained one is oxygen deficient. Furthermore, despite an oxygen content of about x equals 0.65, the strained layer is in the tetragonal phase (in bulk, the tetragonal phase exists for x < 0.3). We discuss these results in terms of competition between the chemical pressure induced by oxygen inclusion in the chains, and the uniaxial stress within the film.

  6. Study of Growth, Structural, Thermal and Nonlinear Optical Properties of Silica Gel Grown Calcium Iodate Monohydrate Crystals

    Directory of Open Access Journals (Sweden)

    Sharda J. Shitole

    2015-12-01

    Full Text Available Single crystals of calcium iodate, monohydrate [Ca (IO32, H2O] were grown by simple gel technique by single and double diffusion method. Morphologies and habit faces like prismatic, prismatic pyramidal, needle shaped, hopper crystals were obtained. Few crystals were opaque, some were translucent and some good quality transparent crystals were obtained. EDAX spectrum verified that crystals are of calcium iodate, monohydrate indeed and was used to find Atomic % and Weight %. Unit cell parameters were obtained from the X-ray diffractogram. The calculated unit cell parameters, β, and‘d’ values are in good agreement with reported ones. Structural analysis was done by using FTIR spectroscopy which confirmed the presence of fundamental infrared frequencies, generally observed in all iodate compounds. Thermal analysis exhibits three steps explicitly on heating the samples. The first step involves dehydration at 5500C, second step shows decomposition at 5800C, and the third step involves again decomposition at 6400C. Powder second harmonic generation experiments exhibit the nonlinear nature of the substance.

  7. Structural properties of tensily strained Si layers grown on SiGe(100), (110), and (111) virtual substrates

    Science.gov (United States)

    Destefanis, V.; Rouchon, D.; Hartmann, J. M.; Papon, A. M.; Baud, L.; Crisci, A.; Mermoux, M.

    2009-08-01

    We have studied the structural properties of tensily strained Si (t-Si) layers grown by reduced pressure-chemical vapor deposition on top of SiGe(100), (110), and (111) virtual substrates (VSs). Chemical mechanical planarization has been used beforehand to eliminate the as-grown surface crosshatch on all orientations and reduce by 10 up to 100 times the surface roughness. A definite surface roughening has occurred after the epitaxy of t-Si on (110) and (111). For the lowest Ge contents investigated, top Si(100) and (110) layers are locally "defect-free" whereas numerous {111} stacking faults are present in the t-Si(111) layers. For higher Ge content SiGe VS, a degradation of the crystallographic quality of (110) and (111) t-Si layers has been evidenced, with the presence of dislocations, stacking faults, and twins. Quantification of the strain level in the t-Si layers has been carried out using visible and near-UV Raman spectroscopy. The Ge contents in the VS determined by Raman spectroscopy were very close to the ones previously obtained by secondary ion mass spectrometry or x-ray diffraction. Stress values obtained for t-Si(100) layers were whatever the Ge content similar to those expected. Stress values corresponding to pseudomorphic t-Si growths have been obtained on (110) and (111) SiGe VSs, for Ge contents up to 35% and 25%, respectively. The stress values obtained on (110) surfaces for such Ge contents were high, with a noticeable anisotropy along the [001] and [1-10] directions. Degradations of the (110) and (111) Raman profiles likely coming from twin-assisted strain relaxation have been noticed for t-Si layers on SiGe VS with Ge contents higher than 35% and 25%, respectively. UV and visible Raman mapping of the growth plane strain fluctuations has finally been carried out. Original surface arrays have been highlighted for each surface orientation. Such strain fields are related to the plastic relaxation of strain in the SiGe graded layer underneath

  8. Effect of crystalline/amorphous interfaces on thermal transport across confined thin films and superlattices

    Science.gov (United States)

    Giri, Ashutosh; Braun, Jeffrey L.; Hopkins, Patrick E.

    2016-06-01

    We report on the thermal boundary resistances across crystalline and amorphous confined thin films and the thermal conductivities of amorphous/crystalline superlattices for Si/Ge systems as determined via non-equilibrium molecular dynamics simulations. Thermal resistances across disordered Si or Ge thin films increase with increasing length of the interfacial thin films and in general demonstrate higher thermal boundary resistances in comparison to ordered films. However, for films ≲3 nm, the resistances are highly dependent on the spectral overlap of the density of states between the film and leads. Furthermore, the resistances at a single amorphous/crystalline interface in these structures are much lower than those at interfaces between the corresponding crystalline materials, suggesting that diffusive scattering at an interface could result in higher energy transmissions in these systems. We use these findings, together with the fact that high mass ratios between amorphous and crystalline materials can lead to higher thermal resistances across thin films, to design amorphous/crystalline superlattices with very low thermal conductivities. In this regard, we study the thermal conductivities of amorphous/crystalline superlattices and show that the thermal conductivities decrease monotonically with increasing interface densities above 0.1 nm-1. These thermal conductivities are lower than that of the homogeneous amorphous counterparts, which alludes to the fact that interfaces non-negligibly contribute to thermal resistance in these superlattices. Our results suggest that the thermal conductivity of superlattices can be reduced below the amorphous limit of its material constituent even when one of the materials remains crystalline.

  9. Morphological dependent Indium incorporation in InGaN/GaN multiple quantum wells structure grown on 4° misoriented sapphire substrate

    Directory of Open Access Journals (Sweden)

    Teng Jiang

    2016-03-01

    Full Text Available The epitaxial layers of InGaN/GaN MQWs structure were grown on both planar and vicinal sapphire substrates by metal organic chemical vapor deposition. By comparing the epitaxial layers grown on planar substrate, the sample grown on 4° misoriented from c-plane toward m-plane substrate exhibited many variations both on surface morphology and optical properties according to the scanning electronic microscopy and cathodoluminescence (CL spectroscopy results. Many huge steps were observed in the misoriented sample and a large amount of V-shape defects located around the boundary of the steps. Atoms force microscopy images show that the steps were inclined and deep grooves were formed at the boundary of the adjacent steps. Phase separation was observed in the CL spectra. CL mapping results also indicated that the deep grooves could effectively influence the localization of Indium atoms and form an In-rich region.

  10. Effect of substrate temperature on the structure of amorphous oxygenated hydrocarbon films grown with a pulsed supersonic methane plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Fedoseeva, Yu. V., E-mail: fedoseeva@niic.nsc.ru [Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Pozdnyakov, G.A. [Khristianovich Institute of Theoretical and Applied Mechanics, SB RAS, Novosibirsk 630090 (Russian Federation); Okotrub, A.V.; Kanygin, M.A. [Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Nastaushev, Yu. V. [Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk 630090 (Russian Federation); Vilkov, O.Y. [St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Bulusheva, L.G. [Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2016-11-01

    Highlights: • A deposition of supersonic methane plasma flow on silicon substrate produces amorphous oxygenated hydrocarbon (CO{sub x}H{sub y}) film. • The thickness, composition, and wettability of the film depend on the substrate temperature. • A rise of the substrate temperature from 500 to 700 °C promotes the sp{sup 3}-hybridization carbon formation. - Abstract: Since amorphous oxygenated hydrocarbon (CO{sub x}H{sub y}) films are promising engineering materials a study of the structure and composition of the films depending on the conditions of synthesis is important for controlling of their physicochemical properties. Here, we used the methods of scanning and transmission electron microscopy, X-ray photoelectron, near-edge X-ray absorption fine structure, Fourier transform infrared and Raman spectroscopy to reveal changes in the chemical connectivity of CO{sub x}H{sub y} films grown on silicon substrates heated to 300, 500, and 700 °C using a supersonic flow of methane plasma. It was found that the CO{sub x}H{sub y} films, deposited at 300 and 500 °C, were mainly composed of the sp{sup 2}-hybridized carbon areas with various oxygen species. A rise of the substrate temperature caused an increase of the portion of tetrahedral carbon atoms as well as carboxyl and hydroxyl groups. With growth of the substrate temperature, the film thickness reduced monotonically from 400 to 180 nm, while the film adhesion improved substantially. The films, deposited at lower temperatures, showed high hydrophilicity due to porosity and presence of oxygenated groups both at the surface and in the bulk.

  11. Optical properties and structure of HfO{sub 2} thin films grown by high pressure reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    MartInez, F L [Departamento de Electronica y TecnologIa de Computadoras, Universidad Politecnica de Cartagena, Campus Universitario Muralla del Mar, E-30202 Cartagena (Spain); Toledano-Luque, M [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28040 Madrid (Spain); GandIa, J J [Departamento de EnergIa, CIEMAT, Avda. Complutense 22, E-28040 Madrid (Spain); Carabe, J [Departamento de EnergIa, CIEMAT, Avda. Complutense 22, E-28040 Madrid (Spain); Bohne, W [Hahn-Meitner-Institut Berlin, Abteilung SF4, D-14109 Berlin (Germany); Roehrich, J [Hahn-Meitner-Institut Berlin, Abteilung SF4, D-14109 Berlin (Germany); Strub, E [Hahn-Meitner-Institut Berlin, Abteilung SF4, D-14109 Berlin (Germany); Martil, I [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2007-09-07

    Thin films of hafnium oxide (HfO{sub 2}) have been grown by high pressure reactive sputtering on transparent quartz substrates (UV-grade silica) and silicon wafers. Deposition conditions were adjusted to obtain polycrystalline as well as amorphous films. Optical properties of the films deposited on the silica substrates were investigated by transmittance and reflectance spectroscopy in the ultraviolet, visible and near infrared range. A numerical analysis method that takes into account the different surface roughness of the polycrystalline and amorphous films was applied to calculate the optical constants (refractive index and absorption coefficient). Amorphous films were found to have a higher refractive index and a lower transparency than polycrystalline films. This is attributed to a higher density of the amorphous samples, which was confirmed by atomic density measurements performed by heavy-ion elastic recoil detection analysis. The absorption coefficient gave an excellent fit to the Tauc law (indirect gap), which allowed a band gap value of 5.54 eV to be obtained. The structure of the films (amorphous or polycrystalline) was found to have no significant influence on the nature of the band gap. The Tauc plots also give information about the structure of the films, because the slope of the plot (the Tauc parameter) is related to the degree of order in the bond network. The amorphous samples had a larger value of the Tauc parameter, i.e. more order than the polycrystalline samples. This is indicative of a uniform bond network with percolation of the bond chains, in contrast to the randomly oriented polycrystalline grains separated by grain boundaries.

  12. Photon transport enhanced by transverse Anderson localization in disordered superlattices

    CERN Document Server

    Hsieh, Pin-Chun; McMillan, James; Tsai, Min-An; Lu, Ming; Panoiu, Nicolae; Wong, Chee Wei

    2014-01-01

    One of the daunting challenges in optical physics is to accurately control the flow of light at the subwavelength scale, by patterning the optical medium one can design anisotropic media. The light transport can also be significantly affected by Anderson localization, namely the wave localization in a disordered medium, a ubiquitous phenomenon in wave physics. Here we report the photon transport and collimation enhanced by transverse Anderson localization in chip-scale dispersion engineered anisotropic media. We demonstrate a new type of anisotropic photonic structure in which diffraction is nearly completely arrested by cascaded resonant tunneling through transverse guided resonances. By perturbing the shape of more than 4,000 scatterers in these superlattices we add structural disordered in a controlled manner and uncover the mechanism of disorder-induced transverse localization at the chip-scale. Arrested spatial divergence is captured in the power-law scaling, along with exponential asymmetric mode profil...

  13. Spin-polarized transport in graphene nanoribbon superlattices

    Institute of Scientific and Technical Information of China (English)

    Yu Xin-Xin; Xie Yue-E; OuYang Tao; Chen Yuan-Ping

    2012-01-01

    By the Green's function method,we investigate spin transport properties of a zigzag graphene nanoribbon superlattice (ZGNS) under a ferromagnetic insulator and edge effect.The exchange splitting induced by the ferromagnetic insulator eliminates the spin degeneracy,which leads to spin-polarized transport in structure.Spin-dependent minibands and minigaps are exhibited in the conductance profile near the Fermi energy.The location and width of the miniband are associated with the geometry of the ZGNS.In the optimal structure,the spin-up and spin-down minibands can be separated completely near the Fermi energy.Therefore,a wide,perfect spin polarization with clear stepwise pattern is observed,i.e.,the perfect spin-polarized transport can be tuned from spin up to spin down by varying the electron energy.

  14. Shape-controlled synthesis of palladium and copper superlattice nanowires for high-stability hydrogen sensors

    Science.gov (United States)

    Yang, Dachi; Carpena-Núñez, Jennifer; Fonseca, Luis F.; Biaggi-Labiosa, Azlin; Hunter, Gary W.

    2014-01-01

    For hydrogen sensors built with pure Pd nanowires, the instabilities causing baseline drifting and temperature-driven sensing behavior are limiting factors when working within a wide temperature range. To enhance the material stability, we have developed superlattice-structured palladium and copper nanowires (PdCu NWs) with random-gapped, screw-threaded, and spiral shapes achieved by wet-chemical approaches. The microstructure of the PdCu NWs reveals novel superlattices composed of lattice groups structured by four-atomic layers of alternating Pd and Cu. Sensors built with these modified NWs show significantly reduced baseline drifting and lower critical temperature (259.4 K and 261 K depending on the PdCu structure) for the reverse sensing behavior than those with pure Pd NWs (287 K). Moreover, the response and recovery times of the PdCu NWs sensor were of ~9 and ~7 times faster than for Pd NWs sensors, respectively.

  15. Structural and morphological characterizations of ZnO films grown on GaAs substrates by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Agouram, S.; Zuniga Perez, J.; Munoz-Sanjose, V. [Universitat de Valencia, Departamento de Fisica Aplicada y Electromagnetismo, Burjassot (Spain)

    2007-07-15

    ZnO films were grown on GaAs(100), GaAs(111)A and GaAs(111)B substrates by metal organic chemical vapour deposition (MOCVD). Diethylzinc (DEZn) and tertiarybutanol (t-butanol) were used as Zn and O precursors, respectively. The influence of the growth temperature and GaAs substrate orientation on the crystalline orientation and morphology of the ZnO grown films has been analysed. Crystallinity of grown films was studied by X-ray diffraction (XRD); thickness and morphology of ZnO films were investigated by scanning electron microscopy (SEM). SEM results reveal significant differences between morphologies depending on growth temperature but not significant differences were detected on the texture of grown films. (orig.)

  16. Quantitative study of the effect of deposition temperature on antimony incorporation in InAs/InAsSb superlattices

    Science.gov (United States)

    Haugan, H. J.; Mahalingam, K.; Szmulowicz, F.; Brown, G. J.

    2016-02-01

    InAs/InAsSb superlattices (SLs) are being actively explored for infrared detector applications owing to their superior carrier lifetimes. However, antimony (Sb) segregation during growth can alter the properties of the grown material. In this study, using X-ray energy dispersive spectrometry, authors quantify the compositional profile of individual layers and establish epitaxial parameters for high-quality InAs/InAsSb SL materials. Epitaxial conditions are determined for a nominal 7.7 nm InAs/3.5 nm InAs0.7Sb0.3 SL structure tailored for an approximately 6 μm response at 150 K. Since the growth of mixed anion alloys is complicated by the potential reaction of As2 with Sb surfaces, authors varied the deposition temperature (Tg) in order to control As2 surface reactions on Sb surfaces. Authors find that Sb incorporation is suppressed by 21%, with the increase of Tg from 395 to 440 °C. This incorporation likely stems from Sb surface segregation during InAsSb layer growth that is driven by the As-Sb exchange mechanism, which can lead to significant compositional and dimensional deviations from the intended design.

  17. Shifts in microbial community structure and function in light- and dark-grown biofilms driven by warming.

    Science.gov (United States)

    Romaní, Anna M; Borrego, Carles M; Díaz-Villanueva, Verónica; Freixa, Anna; Gich, Frederic; Ylla, Irene

    2014-08-01

    Biofilms are dynamic players in biogeochemical cycling in running waters and are subjected to environmental stressors like those provoked by climate change. We investigated whether a 2°C increase in flowing water would affect prokaryotic community composition and heterotrophic metabolic activities of biofilms grown under light or dark conditions. Neither light nor temperature treatments were relevant for selecting a specific bacterial community at initial phases (7-day-old biofilms), but both variables affected the composition and function of mature biofilms (28-day-old). In dark-grown biofilms, changes in the prokaryotic community composition due to warming were mainly related to rotifer grazing, but no significant changes were observed in functional fingerprints. In light-grown biofilms, warming also affected protozoan densities, but its effect on prokaryotic density and composition was less evident. In contrast, heterotrophic metabolic activities in light-grown biofilms under warming showed a decrease in the functional diversity towards a specialized use of several carbohydrates. Results suggest that prokaryotes are functionally redundant in dark biofilms but functionally plastic in light biofilms. The more complex and self-serving light-grown biofilm determines a more buffered response to temperature than dark-grown biofilms. Despite the moderate increase in temperature of only 2°C, warming conditions drive significant changes in freshwater biofilms, which responded by finely tuning a complex network of interactions among microbial populations within the biofilm matrix.

  18. Structural and optical properties of LiKB{sub 4}O{sub 7} single crystals grown by Czochralski technique

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar, M. [Crystal Growth and Thin Film Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu (India); Babu, R. Ramesh, E-mail: rampap2k@yahoo.co.in [Crystal Growth and Thin Film Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu (India); Ramamurthi, K. [Crystal Growth and Thin Film Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM University, Kattankulathur 603 203, Tamil Nadu (India); Bhagavannarayana, G. [Crystal Growth and Crystallography Section, National Physical Laboratory, Krishnan Marg, New Delhi 110 012 (India)

    2015-06-15

    One of the alkali metal borates, lithium potassium borate (LiKB{sub 4}O{sub 7}) single crystal, was grown following two different micro step pulling movements employing the modified crystal puller. The influence of two different micro step pulling movements on the crystalline nature, optical properties and micro morphology of the grown LiKB{sub 4}O{sub 7} crystal was investigated by high resolution X-ray diffraction (HRXRD) analysis and birefringence interferometry and chemical etching techniques, respectively. HRXRD studies revealed that the crystalline perfection of the grown crystals is reasonably good. Interferometric images showed that the crystal grown under higher micro step pulling movement has very less number of scattering centers. The etching studies revealed that the crystal grown under higher micro steps pulling movement contains relatively low level dislocation density. - Graphical abstract: Diffraction curve recorded for LiKB{sub 4}O{sub 7} crystal from (a) top portion and (b) bottom portion. - Highlights: • LiKB{sub 4}O{sub 7} crystal was grown under two different micro stepping movements by the crystal puller. • Crystalline nature, optical properties and micro morphology of LiKB{sub 4}O{sub 7} were investigated. • The micro stepping pull movement reduces the dislocation density during the growth of LiKB{sub 4}O{sub 7} crystals.

  19. First-principles study on the electronic and transport properties of periodically nitrogen-doped graphene and carbon nanotube superlattices

    Science.gov (United States)

    Xu, Fuming; Yu, Zhizhou; Gong, Zhirui; Jin, Hao

    2017-08-01

    Prompted by recent reports on √ 3 × √ 3 graphene superlattices with intrinsic inter-valley interactions, we perform first-principles calculations to investigate the electronic properties of periodically nitrogen-doped graphene and carbon nanotube nanostructures. In these structures, nitrogen atoms substitute one-sixth p of the carbon atoms in the pristine hexagonal lattices with exact periodicity to form perfect √ 3 × √ 3 superlattices of graphene and carbon nanotubes. Multiple nanostructures of √ 3 × √ 3 graphene ribbons and carbon nanotubes are explored, and all configurations show nonmagnetic and metallic behaviors. The transport properties of √ 3 × √ 3 graphene and carbon nanotube superlattices are calculated utilizing the non-equilibrium Green's function formalism combined with density functional theory. The transmission spectrum through the pristine and √ 3 × √ 3 armchair carbon nanotube heterostructure shows quantized behavior under certain circumstances.

  20. Transverse acoustic waves in piezoelectric ZnO/MgO and GaN/AlN Fibonacci-periodic superlattices

    Science.gov (United States)

    Martínez-Gutiérrez, D.; Velasco, V. R.

    2014-06-01

    This work studies the transverse acoustic waves, including the piezoelectric coupling, in Fibonacci superlattices formed by wurtzite ZnO/MgO and GaN/AlN, respectively. We examine also other superlattice structures formed by combining different kinds of Fibonacci sequences and finite periodic systems. The possibility to use different Fibonacci sequences including layers with double length of one of the constituent materials produces important modifications in the dispersion curves. The effect is more important in the lower frequency range and affects the gaps appearing in this frequency range. It is also possible to find narrow and flat bands cutting the original gaps and producing narrower ones. There are modes at different frequency ranges having spatial confinement in one of the constituent parts of the superlattice period.