WorldWideScience

Sample records for superlattice brillouin zone

  1. Visualising higher order Brillouin zones with applications

    Science.gov (United States)

    Andrew, R. C.; Salagaram, T.; Chetty, N.

    2017-05-01

    A key concept in material science is the relationship between the Bravais lattice, the reciprocal lattice and the resulting Brillouin zones (BZ). These zones are often complicated shapes that are hard to construct and visualise without the use of sophisticated software, even by professional scientists. We have used a simple sorting algorithm to construct BZ of any order for a chosen Bravais lattice that is easy to implement in any scientific programming language. The resulting zones can then be visualised using freely available plotting software. This method has pedagogical value for upper-level undergraduate students since, along with other computational methods, it can be used to illustrate how constant-energy surfaces combine with these zones to create van Hove singularities in the density of states. In this paper we apply our algorithm along with the empirical pseudopotential method and the 2D equivalent of the tetrahedron method to show how they can be used in a simple software project to investigate this interaction for a 2D crystal. This project not only enhances students’ fundamental understanding of the principles involved but also improves transferable coding skills.

  2. What is the Brillouin zone of an anisotropic photonic crystal?

    Science.gov (United States)

    Sivarajah, P.; Maznev, A. A.; Ofori-Okai, B. K.; Nelson, K. A.

    2016-02-01

    The concept of the Brillouin zone (BZ) in relation to a photonic crystal fabricated in an optically anisotropic material is explored both experimentally and theoretically. In experiment we used femtosecond laser pulses to excite THz polaritons and image their propagation in lithium niobate and lithium tantalate photonic crystal (PhC) slabs. We directly measured the dispersion relation inside PhCs and observed that the lowest band gap expected to form at the BZ boundary forms inside the BZ in the anisotropic lithium niobate PhC. Our analysis shows that in an anisotropic material the BZ—defined as the Wigner-Seitz cell in the reciprocal lattice—is no longer bounded by Bragg planes and thus does not conform to the original definition of the BZ by Brillouin. We construct an alternative Brillouin zone defined by Bragg planes and show its utility in identifying features of the dispersion bands. We show that for an anisotropic two-dimensional PhC without dispersion, the Bragg plane BZ can be constructed by applying the Wigner-Seitz method to a stretched or compressed reciprocal lattice. We also show that in the presence of the dispersion in the underlying material or in a slab waveguide, the Bragg planes are generally represented by curved surfaces rather than planes. The concept of constructing a BZ with Bragg planes should prove useful in understanding the formation of dispersion bands in anisotropic PhCs and in selectively tailoring their optical properties.

  3. What is the Brillouin Zone of an Anisotropic Photonic Crystal?

    CERN Document Server

    Sivarajah, P; Ofori-Okai, B K; Nelson, K A

    2015-01-01

    The concept of the Brillouin zone (BZ) in relation to a photonic crystal fabricated in an optically anisotropic material is explored both experimentally and theoretically. In experiment, we used femtosecond laser pulses to excite THz polaritons and image their propagation in lithium niobate and lithium tantalate photonic crystal (PhC) slabs. We directly measured the dispersion relation inside PhCs and observed that the lowest bandgap expected to form at the BZ boundary forms inside the BZ in the anisotropic lithium niobate PhC. Our analysis shows that in an anisotropic material the BZ - defined as the Wigner-Seitz cell in the reciprocal lattice - is no longer bounded by Bragg planes and thus does not conform to the original definition of the BZ by Brillouin. We construct an alternative Brillouin zone defined by Bragg planes and show its utility in identifying features of the dispersion bands. We show that for an anisotropic 2D PhC without dispersion, the Bragg plane BZ can be constructed by applying the Wigne...

  4. Dynamical Chern-Simons Theory in the Brillouin Zone

    CERN Document Server

    Lian, Biao; Vafa, Farzan; Zhang, Shou-Cheng

    2016-01-01

    Berry connection is conventionally defined as a static gauge field in the Brillouin zone. Here we show that for three-dimensional (3d) time-reversal invariant superconductors, a generalized Berry gauge field behaves as a dynamical fluctuating field of a Chern-Simons gauge theory. The gapless nodal lines in the momentum space play the role of Wilson loop observables, while their linking and knot invariants modify the gravitational theta angle. This angle induces a topological gravitomagnetoelectric effect where a temperature gradient induces a rotational energy flow. We also show how topological strings may be realized in the 6 dimensional phase space, where the physical space defects play the role of topological D-branes.

  5. Quantum Rabi model in the Brillouin zone with ultracold atoms

    Science.gov (United States)

    Felicetti, Simone; Rico, Enrique; Sabin, Carlos; Ockenfels, Till; Koch, Johannes; Leder, Martin; Grossert, Christopher; Weitz, Martin; Solano, Enrique

    2017-01-01

    The quantum Rabi model describes the interaction between a two-level quantum system and a single bosonic mode. We propose a method to perform a quantum simulation of the quantum Rabi model, introducing an implementation of the two-level system provided by the occupation of Bloch bands in the first Brillouin zone by ultracold atoms in tailored optical lattices. The effective qubit interacts with a quantum harmonic oscillator implemented in an optical dipole trap. Our realistic proposal allows one to experimentally investigate the quantum Rabi model for extreme parameter regimes, which are not achievable with natural light-matter interactions. When the simulated wave function exceeds the validity region of the simulation, we identify a generalized version of the quantum Rabi model in a periodic phase space.

  6. Simulation of guided wave propagation near numerical Brillouin zones

    Science.gov (United States)

    Kijanka, Piotr; Staszewski, Wieslaw J.; Packo, Pawel

    2016-04-01

    Attractive properties of guided waves provides very unique potential for characterization of incipient damage, particularly in plate-like structures. Among other properties, guided waves can propagate over long distances and can be used to monitor hidden structural features and components. On the other hand, guided propagation brings substantial challenges for data analysis. Signal processing techniques are frequently supported by numerical simulations in order to facilitate problem solution. When employing numerical models additional sources of errors are introduced. These can play significant role for design and development of a wave-based monitoring strategy. Hence, the paper presents an investigation of numerical models for guided waves generation, propagation and sensing. Numerical dispersion analysis, for guided waves in plates, based on the LISA approach is presented and discussed in the paper. Both dispersion and modal amplitudes characteristics are analysed. It is shown that wave propagation in a numerical model resembles propagation in a periodic medium. Consequently, Lamb wave propagation close to numerical Brillouin zone is investigated and characterized.

  7. Off-axis phonon and photon propagation in porous silicon superlattices studied by Brillouin spectroscopy and optical reflectance

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, L. C., E-mail: lcparsons@mun.ca; Andrews, G. T., E-mail: tandrews@mun.ca [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John' s, Newfoundland A1B 3X7 (Canada)

    2014-07-21

    Brillouin light scattering experiments and optical reflectance measurements were performed on a pair of porous silicon-based optical Bragg mirrors which had constituent layer porosity ratios close to unity. For off-axis propagation, the phononic and photonic band structures of the samples were modeled as a series of intersecting linear dispersion curves. Zone-folding was observed for the longitudinal bulk acoustic phonon and the frequency of the probed zone-folded longitudinal phonon was shown to be dependent on the propagation direction as well as the folding order of the mode branch. There was no conclusive evidence of coupling between the transverse and the folded longitudinal modes. Two additional observed Brillouin peaks were attributed to the Rayleigh surface mode and a possible pseudo-surface mode. Both of these modes were dispersive, with the velocity increasing as the wavevector decreased.

  8. Exploiting the locality of periodic subsystem density-functional theory: efficient sampling of the Brillouin zone

    Science.gov (United States)

    Genova, Alessandro; Pavanello, Michele

    2015-12-01

    In order to approximately satisfy the Bloch theorem, simulations of complex materials involving periodic systems are made {{n}\\text{k}} times more complex by the need to sample the first Brillouin zone at {{n}\\text{k}} points. By combining ideas from Kohn-Sham density-functional theory (DFT) and orbital-free DFT, for which no sampling is needed due to the absence of waves, subsystem DFT offers an interesting middle ground capable of sizable theoretical speedups against Kohn-Sham DFT. By splitting the supersystem into interacting subsystems, and mapping their quantum problem onto separate auxiliary Kohn-Sham systems, subsystem DFT allows an optimal topical sampling of the Brillouin zone. We elucidate this concept with two proof of principle simulations: a water bilayer on Pt[1 1 1]; and a complex system relevant to catalysis—a thiophene molecule physisorbed on a molybdenum sulfide monolayer deposited on top of an α-alumina support. For the latter system, a speedup of 300% is achieved against the subsystem DTF reference by using an optimized Brillouin zone sampling (600% against KS-DFT).

  9. Complex band structure and superlattice electronic states

    Science.gov (United States)

    Schulman, J. N.; McGill, T. C.

    1981-04-01

    The complex band structures of the bulk materials which constitute the alternating layer (001) semiconductor-semiconductor superlattice are investigated. The complex bands near the center of the Brillouin zone in the [001] direction are studied in detail. The decay lengths of superlattice states whose energies lie in the bulk band gaps of one of the semiconductors are determined from the dispersion curves of these bands for imaginary k-->. This method is applied using a tight-binding band-structure calculation to two superlattices: the AlAs-GaAs superlattice and the CdTe-HgTe superlattice. The decay lengths of AlAs-GaAs superlattice conduction-band minimum states are found to be substantially shorter than those for the CdTe-HgTe superlattice. These differences in the decay of the states in the two superlattices result in differences in the variation of the conduction-band effective masses with the thickness of the AlAs and CdTe layers. The conduction-band effective masses increase more rapidly with AlAs thickness in the AlAs-GaAs superlattice than with CdTe thickness in the CdTe-HgTe superlattice.

  10. Excitons at the center of the Brillouin zone in CuB{sub 2}O{sub 4} magnetoelectric

    Energy Technology Data Exchange (ETDEWEB)

    Menshenin, V. V., E-mail: menshenin@imp.uran.ru [Russian Academy of Sciences, Mikheev Institute of Metal Physics, Ural Branch (Russian Federation)

    2017-02-15

    The possibility of exciton excitation in CuB{sub 2}O{sub 4} magnetoelectric at point Γ(0, 0, 0) of the Brillouin zone has been analyzed using group theory. All possible orientations of the electric and magnetic fields that permit the excitation of these excitons have been determined.

  11. Chern-Simons theory and Wilson loops in the Brillouin zone

    Science.gov (United States)

    Lian, Biao; Vafa, Cumrun; Vafa, Farzan; Zhang, Shou-Cheng

    2017-03-01

    Berry connection is conventionally defined as a static gauge field in the Brillouin zone. Here we show that for three-dimensional (3D) time-reversal invariant superconductors, a generalized Berry gauge field behaves as a fluctuating field of a Chern-Simons gauge theory. The gapless nodal lines in the momentum space play the role of Wilson loop observables, while their linking and knot invariants modify the gravitational theta angle. This angle induces a topological gravitomagnetoelectric effect where a temperature gradient induces a rotational energy flow. We also show how topological strings may be realized in the six-dimensional phase space, where the physical space defects play the role of topological D-branes.

  12. Existence of Dirac cones in the Brillouin zone of diperiodic atomic crystals according to group theory

    Science.gov (United States)

    Damljanović, V.; Gajić, R.

    2016-03-01

    We have considered non-magnetic materials with weak spin-orbit coupling, that are periodic in two non-collinear directions, and finite in the third, orthogonal direction. In some cases, the combined time-reversal and crystal symmetry of such systems, allows the existence of Dirac cones at certain points in the reciprocal space. We have investigated in a systematic way, all points of the Brillouin zone of all 80 diperiodic groups and have found sufficient conditions for the existence of s  =  1/2 Dirac fermions, with symmetry-provided band touching at the vertex of the Dirac cones. Conversely, complete linear dispersion is forbidden for orbital wave functions belonging to two-dimensional (2D) irreducible representations (irreps) of little groups that do not satisfy certain group theoretical conditions given in this paper. Our results are illustrated by a tight-binding example.

  13. Existence of Dirac cones in the Brillouin zone of diperiodic atomic crystals according to group theory.

    Science.gov (United States)

    Damljanović, V; Gajić, R

    2016-03-02

    We have considered non-magnetic materials with weak spin-orbit coupling, that are periodic in two non-collinear directions, and finite in the third, orthogonal direction. In some cases, the combined time-reversal and crystal symmetry of such systems, allows the existence of Dirac cones at certain points in the reciprocal space. We have investigated in a systematic way, all points of the Brillouin zone of all 80 diperiodic groups and have found sufficient conditions for the existence of s  =  1/2 Dirac fermions, with symmetry-provided band touching at the vertex of the Dirac cones. Conversely, complete linear dispersion is forbidden for orbital wave functions belonging to two-dimensional (2D) irreducible representations (irreps) of little groups that do not satisfy certain group theoretical conditions given in this paper. Our results are illustrated by a tight-binding example.

  14. Nonuniform sampling schemes of the Brillouin zone for many-electron perturbation-theory calculations in reduced dimensionality

    Science.gov (United States)

    da Jornada, Felipe H.; Qiu, Diana Y.; Louie, Steven G.

    2017-01-01

    First-principles calculations based on many-electron perturbation theory methods, such as the ab initio G W and G W plus Bethe-Salpeter equation (G W -BSE) approach, are reliable ways to predict quasiparticle and optical properties of materials, respectively. However, these methods involve more care in treating the electron-electron interaction and are considerably more computationally demanding when applied to systems with reduced dimensionality, since the electronic confinement leads to a slower convergence of sums over the Brillouin zone due to a much more complicated screening environment that manifests in the "head" and "neck" elements of the dielectric matrix. Here we present two schemes to sample the Brillouin zone for G W and G W -BSE calculations: the nonuniform neck subsampling method and the clustered sampling interpolation method, which can respectively be used for a family of single-particle problems, such as G W calculations, and for problems involving the scattering of two-particle states, such as when solving the BSE. We tested these methods on several few-layer semiconductors and graphene and show that they perform a much more efficient sampling of the Brillouin zone and yield two to three orders of magnitude reduction in the computer time. These two methods can be readily incorporated into several ab initio packages that compute electronic and optical properties through the G W and G W -BSE approaches.

  15. Method to map one-dimensional electronic wave function by using multiple Brillouin zone angle resolved photoemission

    Directory of Open Access Journals (Sweden)

    Dong-Wook Lee

    2010-10-01

    Full Text Available Angle resolved photoemission spectroscopy (ARPES is a powerful tool to investigate electronic structures in solids and has been widely used in studying various materials. The electronic structure information by ARPES is obtained in the momentum space. However, in the case of one-dimensional system, we here show that we extract the real space information from ARPES data taken over multiple Brillouin zones (BZs. Intensities in the multiple BZs are proportional to the photoemission matrix element which contains information on the coefficient of the Bloch wave function. It is shown that the Bloch wave function coefficients can be extracted from ARPES data, which allows us to construct the real space wave function. As a test, we use ARPES data from proto-typical one-dimensional system SrCuO2 and construct the real space wave function.

  16. Physical and mathematical justification of the numerical Brillouin zone integration of the Boltzmann rate equation by Gaussian smearing

    Science.gov (United States)

    Illg, Christian; Haag, Michael; Teeny, Nicolas; Wirth, Jens; Fähnle, Manfred

    2016-03-01

    Scatterings of electrons at quasiparticles or photons are very important for many topics in solid-state physics, e.g., spintronics, magnonics or photonics, and therefore a correct numerical treatment of these scatterings is very important. For a quantum-mechanical description of these scatterings, Fermi's golden rule is used to calculate the transition rate from an initial state to a final state in a first-order time-dependent perturbation theory. One can calculate the total transition rate from all initial states to all final states with Boltzmann rate equations involving Brillouin zone integrations. The numerical treatment of these integrations on a finite grid is often done via a replacement of the Dirac delta distribution by a Gaussian. The Dirac delta distribution appears in Fermi's golden rule where it describes the energy conservation among the interacting particles. Since the Dirac delta distribution is a not a function it is not clear from a mathematical point of view that this procedure is justified. We show with physical and mathematical arguments that this numerical procedure is in general correct, and we comment on critical points.

  17. Phonon-pumped terahertz gain in n-type GaAs/AlGaAs superlattices

    Science.gov (United States)

    Sun, Gregory; Soref, Richard A.

    2001-05-01

    Local population inversion and far-IR gain are proposed and theoretically analyzed for an unbiased n-doped GaAs/Al0.15Ga0.85As superlattice pumped solely by phonons. The lasing transition occurs at the Brillouin zone boundary of the superlattice wave vector kz between the two conduction minibands CB1 and CB2 of the opposite curvature in kz space. The proposed waveguided structure is contacted above and below by heat sinks at 300 K and 77 K, respectively. Atop the superlattice, a heat buffer layer confines longitudinal optical phonons for enhanced optical-phonon pumping of CB1 electrons. A gain of 345 cm-1 at 4.5 THz is predicted for a doping density of 2.8×1016cm-3.

  18. Nonreciprocal Multiferroic Superlattices with Broken Parity Symmetry

    Science.gov (United States)

    Tang, Zhenghua; Zhang, Weiyi

    Multiferroic materials are characterized by the coexistence of ferroelectric and ferromagnetic (or antiferromagnetic) orders, the coupling to lattice vibration can be invoked either through piezoelectric or piezomagnetic effects. In this paper, the polaritonic band structures of multiferroic superlattices composed of oppositely polarized domains are investigated using the generalized transfer matrix method. For the primitive cell with broken parity symmetry, the polaritonic band structure is asymmetrical with respect to the forward and backward propagation directions (nonreciprocality). In particular, the band extreme points move away from the Brillouin zone center. This asymmetry in band-gap positions and widths can be used to design compact one-way optical isolators, while the extremely slow light velocities near the asymmetrical upper edges of lower bands includes the essential ingredients for designing slow light devices.

  19. Optical constants of GaAs-AlGaAs superlattices and multiple quantum wells

    Science.gov (United States)

    Kahen, K. B.; Leburton, J. P.

    1986-01-01

    The optical properties of GaAs-Al sub x Ga sub 1-xAs superlattices are calculated as a function of the frequency and superlattice structure. The comutations are performed using a partition method which combines the vectors k.p method with the pseudopotential technique. The influence of the super-structure on the electronic properties of the systems is accounted for by appropriate quantization conditions. The anisotropy and structure dependence of the dielectric constant result mainly from the contribution of the gamma region while the contributions of the other regions of the Brillouin zone are rather insensitive to the superlattice structure. The superlattice index of refraction values are shown to attain maxima at the various quantized transition energies, where for certain structures, the difference between the refractive indices of the superlattices and its corresponding Al sub x Ga sub 1-xAs alloy can be as large as 2%. In general results are in good agreement with the experimental data.

  20. Brillouin improvement for Wilson fermions

    CERN Document Server

    Durr, Stephan

    2010-01-01

    We present a parameter-free Wilson-type lattice Dirac operator with an 81-point stencil for the covariant derivative and the Laplacian which attempts to minimize the breaking of rotational symmetry near the boundary of the Brillouin zone. The usefulness of this "Brillouin operator" in practical applications is explored by studying the scaling of pseudoscalar decay constants in quenched QCD, with rather good results in the physical charm region. We also investigate the suitability of this operator as a kernel to the overlap procedure. Here, the resulting overlap operator is found to be cheaper to construct and significantly better localized than the variety with the standard Wilson kernel.

  1. Hume-Rothery stabilisation mechanism and d-states-mediated Fermi surface-Brillouin zone interactions in structurally complex metallic alloys

    Science.gov (United States)

    Mizutani, U.; Inukai, M.; Sato, H.

    2011-07-01

    The stability of Co2Zn11 and Al8V5 gamma-brasses, both of which are composed of a transition metal element and polyvalent elements Zn or Al, can be discussed in terms of d-states-mediated Fermi surface-Brillouin zone (FsBz) interactions in the context of first-principles full-potential linearised augmented plane wave (FLAPW) band calculations. A FsBz-induced pseudogap is revealed in the FLAPW-Fourier spectrum, though it is hidden behind a much larger d-band in the total density of states. The stability range of three families of complex metallic alloys (CMAs) that include gamma-brasses, RT-, MI- and Tsai-type 1/1-1/1-1/1 approximants and 2/1-2/1-2/1 approximant, each of which is characterised by ? = 18, 50 and 125, respectively, can be well scaled in terms of the number of electrons per unit cell (e/uc) given by the product of the number of atoms per unit cell and the e/a value determined by the Hume-Rothery plot on the basis of the FLAPW-Fourier method. This is taken as the evidence for the justification of the Hume-Rothery stabilisation mechanism for all these CMAs having a pseudogap at the Fermi level.

  2. Electronic structure in a one-Fe Brillouin zone of the iron pnictide superconductors CsFe2As2 and RbFe2As2

    Science.gov (United States)

    Kong, S.; Liu, D. Y.; Cui, S. T.; Ju, S. L.; Wang, A. F.; Luo, X. G.; Zou, L. J.; Chen, X. H.; Zhang, G. B.; Sun, Z.

    2015-11-01

    Using angle-resolved photoemission spectroscopy, we studied the electronic structures of CsFe2As2 and RbFe2As2 . Contrary to other iron-based superconductors where the band structures are usually depicted in the two-Fe Brillouin zone (BZ), we found that the distribution of electronic spectral weight in CsFe2As2 and RbFe2As2 follows the one-Fe BZ, and that the emerging band structure is qualitatively consistent with theoretical band calculations of the one-Fe BZ except for some shadow band effect. Our data suggest that the interlayer separation is an important tuning factor for the physics of FeAs layers, the increase of which can reduce the coupling between Fe and As and lead to the emergence of the electronic structure in accord with the one-Fe symmetry of the Fe square lattice. Our finding puts strong constraints on the theoretical models constructed on the basis of the one-Fe BZ.

  3. Phoxonic Hybrid Superlattice.

    Science.gov (United States)

    Alonso-Redondo, Elena; Huesmann, Hannah; El Boudouti, El-Houssaine; Tremel, Wolfgang; Djafari-Rouhani, Bahram; Butt, Hans-Juergen; Fytas, George

    2015-06-17

    We studied experimentally and theoretically the direction-dependent elastic and electromagnetic wave propagation in a supported film of hybrid PMMA (poly[methyl-methacrylate])-TiO2 superlattice (SL). In the direction normal to the layers, this one-dimensional periodic structure opens propagation band gaps for both hypersonic (GHz) phonons and near-UV photons. The high mismatch of elastic and optical impedance results in a large dual phoxonic band gap. The presence of defects inherent to the spin-coating fabrication technique is sensitively manifested in the band gap region. Utilizing Brillouin light scattering, phonon propagation along the layers was observed to be distinctly different from propagation normal to them and can, under certain conditions (SL thickness and substrate elasticity), reveal the nanomechanical properties of the constituent layers. Besides the first realization of unidirectional phoxonic behavior, hybrid (soft-hard) periodic materials are a promising simple platform for opto-acoustic interactions and applications such as filters and Bragg mirrors.

  4. Fermi surface-Brillouin-zone-induced pseudogap in {gamma}-Mg{sub 17}Al{sub 12} and a possible stabilization mechanism of {beta}-Al{sub 3}Mg{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mizutani, U [Nagoya Industrial Science Research Institute, JST Plaza-Tokai, Ahara-cho, Minami-ku, Nagoya 457-0063 (Japan); Kondo, Y; Nishino, Y [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Inukai, M [Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Kouto, Sayo, Hyogo 679-5198 (Japan); Feuerbacher, M [Institut fuer Mikrostrukturforschung, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany); Sato, H, E-mail: uichiro@sky.sannet.ne.j [Department of Physics, Aichi University of Education, Kariya-shi, Aichi 448-8542 (Japan)

    2010-12-08

    The electronic structure of {gamma} phase in the system Mg{sub 17}Al{sub 12} containing 58 atoms per unit cell with space group I 4-bar 3m has been calculated by using the WIEN2k-FLAPW program package. A pseudogap is found across the Fermi level. The FLAPW-Fourier spectra at the symmetry points N and {Gamma} of the bcc Brillouin zone revealed that electronic states across the Fermi level at these symmetry points are dominated by |G|{sup 2} = 26 and 24 states corresponding to centers of {l_brace}510{r_brace} + {l_brace}431{r_brace} and {l_brace}422{r_brace} zone planes, respectively. The 1253-wave nearly-free-electron (NFE) band calculations identified that a combination of the two Fermi surface-Brillouin-zone (FsBz) interactions associated with |G|{sup 2} = 26 and 24 account well for the observed DOS pseudogap in {gamma}-Mg{sub 17}Al{sub 12}, most likely leading to the stabilization of this complex metallic compound. The {beta}-Al{sub 3}Mg{sub 2} containing 1178 atoms per cubic unit cell is suggested to be stabilized by satisfying the Hume-Rothery matching condition expressed in terms of e/uc, the number of electrons per unit cell, versus critical |G|{sup 2}. A critical |G|{sup 2} is predicted to be 200 in {beta}-Al{sub 3}Mg{sub 2}, which results in 84 Brillouin zone planes interacting almost simultaneously with a more or less spherical Fermi surface.

  5. Weak Topological Insulators in PbTe/SnTe superlattice

    Science.gov (United States)

    Yang, Gang; Liu, Junwei; Fu, Liang; Duan, Wenhui; Liu, Chaoxing

    2014-03-01

    It is desirable to realize topological phases in artificial structures by engineering electronic band structures. In this paper, we investigate (PbTe)m(SnTe)2n-m superlattices along the [001] direction and find a robust weak topological insulator phase for a large variety of layer numbers m and 2 n - m . We confirm this topologically non-trivial phase by calculating Z2 topological invariants and topological surface states based on the first-principles calculations. We show that the folding of Brillouin zone due to the superlattice structure plays an essential role in inducing topologically non-trivial phases in this system. This mechanism can be generalized to other systems in which band inversion occurs at multiple momenta, and gives us a brand-new way to engineer topological materials in artificial structures. We acknowledge support from the Ministry of Science and Technology of China and the National Natural Science Foundation of China. LF is supported by the DOE Office of Basic Energy Sciences.

  6. Effect of Rashba spin-orbit coupling and external magnetic field on electronic minibands in highly strained one-layer quantum ring superlattice

    Science.gov (United States)

    Mughnetsyan, Vram; Manaselyan, Aram; Kirakosyan, Albert

    2017-04-01

    The Rashba spin-orbit coupling for electronic states in a strained one layer superlattice, composed of InAs/GaAs quantum rings has been investigated in the presence of uniform magnetic field directed perpendicular to the lattice plane. The dispersion surfaces and the energy dependencies on the magnetic field induction are obtained by the exact diagonalization procedure using the Fourier transformation to the momentum space. The characteristic splitting of the mini-bands as well as the crossings of the dispersion surfaces at the high symmetry points in the Brillouin zone have been observed. An upward shift of the minibands by about 60 meV due to strain in superlattice has been observed.

  7. Exact symmetries of electron Bloch states and optical selection rules in [001] GaAs/AlAs quantum wells and superlattices

    Science.gov (United States)

    Tronc, P.; Kitaev, Yu. E.

    2001-05-01

    We determined the exact symmetries of conduction and valence Bloch states in type-I and type-II [001] (GaAs)m(AlAs)n superlattices at the Γ point and at some other symmetry points of the Brillouin zone of the superlattices and derived optical selection rules. Contrary to a result widely accepted in the envelope-function approximation (EFA), pz atomic orbitals cannot mix with px and py orbitals to build Bloch states. The phonon-assisted transitions involving the Γ point as an initial or final state are allowed both without and with taking into account the spin-orbit interaction whatever are the symmetries of the initial and final states. The electron band structure of the superlattices is discussed. Within the domain of validity of EFA (i.e., for not too small values of m and n), a detailed analysis of the Bloch-state symmetry and selection rules is provided on imposing invariance of the superlattice structure under the change of z to -z (the σz symmetry operation). It is shown that optical transitions between the conduction states arising from the Γ states of GaAs on one hand and the conduction states arising from the X states of AlAs on the other hand can be allowed from spin-orbit coupling only. The correspondence is provided between the symmetry of a Bloch state and the parity with respect to σz of its associated envelope function. The effect of an electric field parallel to the growth axis is discussed. Quantum wells do not differ from superlattices with regard to Bloch-state and envelope-function symmetries or optical selection rules. All the above results are still valid for any pseudomorphic superlattice or quantum well made of two binary compounds with zinc-blend structure and identical cations or anions, such as, for example, in the GaN/AlN system.

  8. Simultaneous microwave photonic and phononic band gaps in piezoelectric–piezomagnetic superlattices with three types of domains in a unit cell

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zheng-hua [Xiangnan University-Gospell Joint Laboratory of Microwave Communication Technology, Xiangnan University, Chenzhou 423000 (China); Jiang, Zheng-Sheng [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Chen, Tao [Laboratory of Quantum Information and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Lei, Da-Jun [Xiangnan University-Gospell Joint Laboratory of Microwave Communication Technology, Xiangnan University, Chenzhou 423000 (China); Yan, Wen-Yan, E-mail: yanwenyan88@126.com [School of Software and Communication Engineering, Xiangnan University, Chenzhou 423000 (China); Qiu, Feng; Huang, Jian-Quan; Deng, Hai-Ming; Yao, Min [Xiangnan University-Gospell Joint Laboratory of Microwave Communication Technology, Xiangnan University, Chenzhou 423000 (China)

    2016-04-29

    A novel phoxonic crystal using the piezoelectric (PMN-PT) and piezomagnetic (CoFe{sub 2}O{sub 4}) superlattices with three types of domains in a unit cell (PPSUC) is present, in which dual microwave photonic and phononic band gaps can be obtained simultaneously. Two categories of phononic band gaps, originating from both the Bragg scattering of acoustic waves in periodic structures at the Brillouin zone boundary and the electromagnetic wave-lattice vibration couplings near the Brillouin zone center, can be observed in the phononic band structures. The general characteristics of the microwave photonic band structures are similar to those of pure piezoelectric or piezomagnetic superlattices, with the major discrepancy being the appearance of nearly dispersionless branches within the microwave photonic band gaps, which show an extremely large group velocity delay. Thus, the properties may also be applied to compact acoustic-microwave devices. - Highlights: • Dual microwave photonic and phononic band gaps can coexist in the PPSUC. • Two categories of phononic band gaps with different mechanism can be obtained. • Nearly dispersionless branches appear in the microwave photonic band gaps.

  9. Quasi-two-dimensional Fermi surfaces in the flat antiferromagnetic Brillouin zone of NpRhGa{sub 5} studied by dHvA experiments and energy band calculations

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Dai [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Yamagami, Hiroshi [Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555 (Japan); Homma, Yoshiya [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Shiokawa, Yoshinobu [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Yamamoto, Etsuji [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Nakamura, Akio [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Haga, Yoshinori [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Settai, Rikio [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Onuki, Yoshichika [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan)

    2005-05-04

    We succeeded in growing a high-quality single crystal of NpRhGa{sub 5} by the Ga-flux method and observed the de Haas-van Alphen oscillation in the antiferromagnetic state. Four kinds of nearly cylindrical Fermi surfaces, which correspond to main Fermi surfaces, were clearly detected. These quasi-two-dimensional Fermi surfaces are formed in the flat antiferromagnetic Brillouin zone and are well explained on the basis of spin- and orbital-polarized LAPW energy band calculations. The cyclotron masses are moderately enhanced, ranging from 8.1 to 11.7 m{sub 0}, which are approximately four times larger than the corresponding band masses. This is the first case where the 5f-itinerant band model is applicable to a neptunium magnetic compound. (letter to the editor)

  10. Modeling of the Interminiband Absorption Coefficient in InGaN Quantum Dot Superlattices

    Directory of Open Access Journals (Sweden)

    Giovanni Giannoccaro

    2016-01-01

    Full Text Available In this paper, a model to estimate minibands and theinterminiband absorption coefficient for a wurtzite (WZ indium gallium nitride (InGaN self-assembled quantum dot superlattice (QDSL is developed. It considers a simplified cuboid shape for quantum dots (QDs. The semi-analytical investigation starts from evaluation through the three-dimensional (3D finite element method (FEM simulations of crystal mechanical deformation derived from heterostructure lattice mismatch under spontaneous and piezoelectric polarization effects. From these results, mean values in QDs and barrier regions of charge carriers’ electric potentials and effective masses for the conduction band (CB and three valence sub-bands for each direction are evaluated. For the minibands’ investigation, the single-particle time-independent Schrödinger equation in effective mass approximation is decoupled in three directions and resolved using the one-dimensional (1D Kronig–Penney model. The built-in electric field is also considered along the polar axis direction, obtaining Wannier–Stark ladders. Then, theinterminiband absorption coefficient in thermal equilibrium for transverse electric (TE and magnetic (TM incident light polarization is calculated using Fermi’s golden rule implementation based on a numerical integration into the first Brillouin zone. For more detailed results, an absorption coefficient component related to superlattice free excitons is also introduced. Finally, some simulation results, observations and comments are given.

  11. Brillouin optical reflectometer with a Brillouin active filter

    Science.gov (United States)

    Budylin, G. S.; Gorshkov, B. G.; Gorshkov, G. B.; Zhukov, K. M.; Paramonov, V. M.; Simikin, D. E.

    2017-07-01

    A new scheme of a fibre-optic Brillouin reflectometer is experimentally studied, in which the spectral line of spontaneous Brillouin scattering is selected by an active Brillouin filter represented by the tested fibre itself. To improve the reflectometer characteristics, a cyclic code and Raman amplification of the scattering signal are applied. With an averaging time of 5 min, scanning of 25 km of fibre with a spatial resolution of 4 m and a sampling resolution of 1 m are provided. The root-mean-square deviation in determining the Brillouin frequency is less than 1.1 MHz. The reflectometer sensitivity is evaluated with respect to the temperature changes and mechanical deformation.

  12. Large Brillouin Amplification in Silicon

    CERN Document Server

    Kittlaus, Eric A; Rakich, Peter T

    2015-01-01

    Strong Brillouin coupling has only recently been realized in silicon using a new class of optomechanical waveguides that yield both optical and phononic confinement. Despite these major advances, appreciable Brillouin amplification has yet to be observed in silicon. Using a new membrane-suspended silicon waveguide we report large Brillouin amplification for the first time, reaching levels greater than 5 dB for modest pump powers, and demonstrate a record low (5 mW) threshold for net amplification. This work represents a crucial advance necessary to realize high-performance Brillouin lasers and amplifiers in silicon.

  13. Collective stimulated Brillouin scatter

    CERN Document Server

    Korotkevich, Alexander O; Rose, Harvey A

    2011-01-01

    We develop a statistical theory of stimulated Brillouin backscatter (BSBS) of a spatially and temporally partially incoherent laser beam for laser fusion relevant plasma. We find a new collective regime of BSBS which has a much larger threshold than the classical threshold of a coherent beam in long-scale-length laser fusion plasma. We identify two contributions to BSBS convective instability increment. The first is collective with intensity threshold independent of the laser correlation time and controlled by diffraction. The second is independent of diffraction, it grows with increase of the correlation time and does not have an intensity threshold. The instability threshold is inside the typical parameter region of National Ignition Facility (NIF). We also find that the bandwidth of KrF-laser-based fusion systems would be large enough to allow additional suppression of BSBS.

  14. Collective stimulated Brillouin backscatter

    CERN Document Server

    Lushnikov, Pavel M

    2007-01-01

    We develop the statistical theory of the stimulated Brillouin backscatter (BSBS) instability of a spatially and temporally partially incoherent laser beam for laser fusion relevant plasma. We find a new regime of BSBS which has a much larger threshold than the classical threshold of a coherent beam in long-scale-length laser fusion plasma. Instability is collective because it does not depend on the dynamics of isolated speckles of laser intensity, but rather depends on averaged beam intensity. We identify convective and absolute instability regimes. Well above the incoherent threshold the coherent instability growth rate is recovered. The threshold of convective instability is inside the typical parameter region of National Ignition Facility (NIF) designs although current NIF bandwidth is not large enough to insure dominance of collective instability and suggests lower instability threshold due to speckle contribution. In contrast, we estimate that the bandwidth of KrF-laser-based fusion systems would be larg...

  15. Stimulated Brillouin Scattering Microscopic Imaging.

    Science.gov (United States)

    Ballmann, Charles W; Thompson, Jonathan V; Traverso, Andrew J; Meng, Zhaokai; Scully, Marlan O; Yakovlev, Vladislav V

    2015-01-01

    Two-dimensional stimulated Brillouin scattering microscopy is demonstrated for the first time using low power continuous-wave lasers tunable around 780 nm. Spontaneous Brillouin spectroscopy has much potential for probing viscoelastic properties remotely and non-invasively on a microscopic scale. Nonlinear Brillouin scattering spectroscopy and microscopy may provide a way to tremendously accelerate the data aquisition and improve spatial resolution. This general imaging setup can be easily adapted for specific applications in biology and material science. The low power and optical wavelengths in the water transparency window used in this setup provide a powerful bioimaging technique for probing the mechanical properties of hard and soft tissue.

  16. Stimulated Brillouin Scattering Microscopic Imaging

    Science.gov (United States)

    Ballmann, Charles W.; Thompson, Jonathan V.; Traverso, Andrew J.; Meng, Zhaokai; Scully, Marlan O.; Yakovlev, Vladislav V.

    2015-12-01

    Two-dimensional stimulated Brillouin scattering microscopy is demonstrated for the first time using low power continuous-wave lasers tunable around 780 nm. Spontaneous Brillouin spectroscopy has much potential for probing viscoelastic properties remotely and non-invasively on a microscopic scale. Nonlinear Brillouin scattering spectroscopy and microscopy may provide a way to tremendously accelerate the data aquisition and improve spatial resolution. This general imaging setup can be easily adapted for specific applications in biology and material science. The low power and optical wavelengths in the water transparency window used in this setup provide a powerful bioimaging technique for probing the mechanical properties of hard and soft tissue.

  17. Superlattice Optical Bistability Research.

    Science.gov (United States)

    2014-09-26

    multilayer heterojunction and superlattice device applications. 2.0 Growth Studies The MBE growth of mercury compound is still relatively new and novel...These superlattices are grown by molecular beam epitaxy in a MBE system specifically designed to handle mercury . MBE is an ultrahigh vacuum evaporative...therefore the growth process is not as well understood as that of III-V semiconductor - compounds . In HgTe-CdTe superlattices the CdTe deposition is

  18. Perspectives on stimulated Brillouin scattering

    Science.gov (United States)

    Garmire, Elsa

    2017-01-01

    This collection of papers describes research that goes into detail on some of the more important issues in the physics of stimulated Brillouin scattering. This perspective describes the earliest years of the physics of stimulated Brillouin scattering, along with key developments that have led to this technically and physically rich field of today’s nonlinear optics. Stimulated Brillouin has a profound effect in optical fiber communications, initially discovered by its limit on the transmitted power. By controlling SBS in fibers and making use of its phase conjugation properties in both fibers and bulk media, a wide range of applications have been enabled. Today ring Brillouin lasers in fibers, whispering gallery modes and in photonic integrated circuits provide optical delay lines and switches, pulse shapers and components for increasingly complex and important optical systems.

  19. Selection rules for light scattering by folded acoustic phonons in low-index Si-based superlattices

    Science.gov (United States)

    Anastassakis, E.; Popovic, Z. V.

    1996-08-01

    We consider the propagation of acoustic waves in Si-based heterojunctions (HJs), quantum wells (QWs) and superlattices (SLs) grown in arbitrary directions, and present a general formalism for obtaining wave velocities, selection rules, and efficiency of Raman scattering (RS) and Brillouin scattering (BS) by folded acoustic-phonons. Results based on nine different directions for the phonon wavevector are tabulated.

  20. Conventional and Stuffed Bergman-Type Phases in the Na-Au-T (T = Ga, Ge, Sn) Systems: Syntheses, Structures, Coloring of Cluster Centers, and Fermi Sphere–Brillouin Zone Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Qisheng; Smetana, Volodymyr; Miller, Gordon J.; Corbett, John D.

    2012-08-20

    Bergman-type phases in the Na-Au-T (T = Ga, Ge, and Sn) systems were synthesized by solid-state means and structurally characterized by single-crystal X-ray diffraction studies. Two structurally related (1:1) Bergman phases were found in the Na-Au-Ga system: (a) a conventional Bergman-type (CB) structure, Na26AuxGa54-x, which features empty innermost icosahedra, as refined with x = 18.1 (3), Im$\\overline{3}$ a = 14.512(2) Å, and Z = 2; (b) a stuffed Bergman-type (SB) structure, Na26AuyGa55-y, which contains Gacentered innermost icosahedra, as refined with y = 36.0 (1), Im$\\overline{3}$, a = 14.597(2) Å, and Z = 2. Although these two subtypes have considerable phase widths along with respective tie lines at Na ≈ 32.5 and 32.1 atom %, they do not merge into a continuous solid solution. Rather, a quasicrystalline phase close to the Au-poor CB phase and an orthorhombic derivative near the Au-rich SB phase lie between them. In contrast, only Au-rich SB phases exist in the Ge and Sn systems, in which the innermost icosahedra are centered by Au rather than Ge or Sn. These were refined for Na26Au40.93(5)Ge14.07(5) (Im$\\overline{3}$, a = 14.581(2) Å, and Z = 2) and Na26Au39.83(6)Sn15.17(6) (Im$\\overline{3}$, a = 15.009(2) Å, and Z = 2), respectively. Occupations of the centers of Bergman clusters are rare. Such centering and coloring correlate with the sizes of the neighboring icosahedra, the size ratios between electropositive and electronegative components, and the values of the average valence electron count per atom (e/a). Theoretical calculations revealed that all of these phases are Hume-Rothery phases, with evident pseudogaps in the density of states curves that arise from the interactions between Fermi surface and Brillouin zone boundaries corresponding to a strong diffraction intensity.

  1. SELECTION OF BRILLOUIN SHIFT DISCRIMINATOR FOR BRILLOUIN LIDAR

    Institute of Scientific and Technical Information of China (English)

    吴东; 刘智深

    2002-01-01

    For the measurement of vertical profiles of sound speed in the sea using laser excited Brillouin scattering, a high-resolution measurement of Brillouin frequency shift is required. In this work, a molecular absorption cell was selec ted as the frequency shift discriminator and several kinds of absorption gases were tri ed. It was found that the strong line (#1095) of 127I2 at 18783.3297 cm-1 and two absorption lines of 129I2 located at the two sides of the #1095 line of 127 I2 could be used as frequency shift discriminator to detect the changes of the Brillouin frequency s hift. This selection is the best one within the range from 532.0131 nm to 532.5154 nm. But it is not perfect and there is a lot of work to do before its practical application.

  2. SELECTION OF BRILLOUIN SHIFT DISCRIMINATOR FOR BRILLOUIN LIDAR

    Institute of Scientific and Technical Information of China (English)

    吴东; 刘智深

    2002-01-01

    For the measurement of vertical profiles of sound speed in the sea using laser excited Brillouin scattering, a high-resolution measurement of Brillouin frequency shift is required. In this work, a molecular absorption cell was selected as the frequency shift discriminator and several kinds of absorption gases were tried. It was found that the strong line ( # 1095) of 127 I2 at 18783. 3297 cm-1 and two absorption lines of 129 I2 located at the two sides of the # 1095 line of 127 I2 could be used as frequency shift discriminator to detect the changes of the Brillouin frequency shift. This selection is the best one within the range from 532.0131 run to 532.5154 nm. But it is not perfect and there is a lot of work to do before its practical application.

  3. Brillouin precursors in Debye media

    CERN Document Server

    Macke, Bruno

    2015-01-01

    We theoretically study the formation of Brillouin precursors in Debye media. We point out that the precursors are only visible at propagation distances such that the impulse response of the medium is essentially determined by the frequency-dependence of its absorption and is practically Gaussian. By simple convolution, we then obtain explicit analytical expressions of the transmitted waves generated by reference incident waves, distinguishing precursor and main signal by physical arguments. These expressions are in good agreement with the signals obtained in numerical or real experiments performed on water and explain some features of these signals that remained mysterious or unnoticed. In addition, we show quite generally that the shape of the Brillouin precursor appearing alone at large enough propagation distance and the law giving its amplitude as a function of this distance do not depend on the precise form of the incident wave but only on its integral properties. The incidence of a static conductivity o...

  4. Brillouin Scattering Self-Cancellation

    CERN Document Server

    Florez, Omar; Espinel, Yovanny A V; Cordeiro, Cristiano M B; Alegre, Thiago P Mayer; Wiederhecker, Gustavo S; Dainese, Paulo

    2016-01-01

    The interaction between light and acoustic phonons is strongly modified in sub-wavelength confinement, and has led to the demonstration and control of Brillouin scattering in photonic structures such as nano-scale optical waveguides and cavities. Besides the small optical mode volume, two physical mechanisms come into play simultaneously: a volume effect caused by the strain induced refractive index perturbation (known as photo-elasticity), and a surface effect caused by the shift of the optical boundaries due to mechanical vibrations. As a result proper material and structure engineering allows one to control each contribution individually. In this paper, we experimentally demonstrate the perfect cancellation of Brillouin scattering by engineering a silica nanowire with exactly opposing photo-elastic and moving-boundary effects. This demonstration provides clear experimental evidence that the interplay between the two mechanisms is a promising tool to precisely control the photon-phonon interaction, enhancin...

  5. k dependence of Brillouin halfwidths

    Science.gov (United States)

    Gomperts, Stephen N.; Variyar, Jayasankar E.; Kivelson, Daniel

    1993-01-01

    We find that at a given temperature the Brillouin linewidths in triphenylphosphite are well described by the two-parameter expression Bkα, where the scattering wave number k is varied over two and a half orders of magnitude. The data include measurements in all states of the system from low viscosity liquid to a glass; the parameters α(T) and B(T) exhibit extrema at similar temperatures.

  6. Ultrasound focusing images in superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Narita, Michiko; Tanaka, Yukihiro; Tamura, Shin-ichiro [Department of Applied Physics, Hokkaido University, Sapporo (Japan)

    2002-03-04

    We study theoretically ultrasound focusing in periodic multilayered structures, or superlattices, by solving the wave equation with the Green function method and calculating the transmitted ultrasound amplitude images of both the longitudinal and transverse modes. The constituent layers assumed are elastically isotropic but the periodically stacked structure is anisotropic. Thus anisotropy of ultrasound propagation is predicted even at low frequencies and it is enhanced significantly at higher frequencies due to the zone-folding effect of acoustic dispersion relations. An additional effect studied is the interference of ultrasound (known as the internal diffraction), which can be recognized when the propagation distance is comparable to the ultrasound wavelength. Numerical examples are developed for millimetre-scale Al/polymer multilayers used recently for imaging experiment with surface acoustic waves. (author)

  7. Bursting behaviours in cascaded stimulated Brillouin scattering

    Institute of Scientific and Technical Information of China (English)

    Liu Zhan-Jun; He Xian-Tu; Zheng Chun-Yang; Wang Yu-Gang

    2012-01-01

    Stimulated Brillouin scattering is studied by numerically solving the Vlasov-Maxwell system.A cascade of stimulated Brillouin scattering can occur when a linearly polarized laser pulse propagates in a plasma.It is found that a stimulated Brillouin scattering cascade can reduce the scattering and increase the transmission of light,as well as introduce a bursting behaviour in the evolution of the laser-plasma interaction.The bursting time in the reflectivity is found to be less than half the ion acoustic period.The ion temperature can affect the stimulated Brillouin scattering cascade,which can repeat several times at low ion temperatures and can be completely eliminated at high ion temperatures.For stimulated Brillouin scattering saturation,higher-harmonic generation and wave-wave interaction of the excited ion acoustic waves can restrict the amplitude of the latter.In addition,stimulated Brillouin scattering cascade can restrict the amplitude of the scattered light.

  8. Magnetism in lanthanide superlattices

    DEFF Research Database (Denmark)

    Goff, J.P.; Sarthour, R.S.; McMorrow, D.F.

    2000-01-01

    Neutron diffraction studies of heavy rare-earth superlattices have revealed the stabilization of novel magnetic phases chat are not present in bulk materials. The most striking result is the propagation of the magnetic ordering through nonmagnetic spacer materials. Here we describe some recent X......-ray magnetic resonant scattering studies of light rare-earth superlattices, which illuminate the mechanism of interlayer coupling, and provide access to different areas of Physics. such as the interplay between superconductivity and magnetism. Magnetic X-ray diffraction is found to be particularly well suited...... to the study of the modulated magnetic structures in superlattices, and provides unique information on the conduction-electron spin-density wave responsible for the propagation of magnetic order. (C) 2000 Elsevier Science B.V. All rights reserved....

  9. Stimulated Brillouin scattering and Brillouin-coupled four-wave-mixing in a silica microbottle resonator

    CERN Document Server

    Asano, Motoki; Özdemir, Şahin Kaya; Ikuta, Rikizo; Yang, Lan; Imoto, Nobuyuki; Yamamoto, Takashi

    2016-01-01

    We report the first observation of stimulated Brillouin scattering (SBS) with Brillouin lasing, and Brillouin-coupled four-wave-mixing (FWM) in an ultra-high-Q silica microbottle resonator. The Brillouin lasing was observed at the frequency of $\\Omega_B=2\\pi\\times10.4$ GHz with a threshold power of $0.45$ mW. Coupling between Brillouin and FWM was observed in both backward and forward scattering directions with separations of $2\\Omega_B$. At a pump power of $10$ mW, FWM spacing reached to 7th and 9th order anti-Stokes and Stokes, respectively.

  10. Stimulated Brillouin scattering and Brillouin-coupled four-wave-mixing in a silica microbottle resonator.

    Science.gov (United States)

    Asano, Motoki; Takeuchi, Yuki; Ozdemir, Sahin Kaya; Ikuta, Rikizo; Yang, Lan; Imoto, Nobuyuki; Yamamoto, Takashi

    2016-05-30

    We report the first observation of stimulated Brillouin scattering (SBS) with Brillouin lasing, and Brillouin-coupled four-wave-mixing (FWM) in an ultra-high-Q silica microbottle resonator. The Brillouin lasing was observed at the frequency of ΩB = 2π × 10.4 GHz with a threshold power of 0.45 mW. Coupling between Brillouin and FWM was observed in both backward and forward scattering directions with separations of 2ΩB. At a pump power of 10 mW, FWM spacing reached to 7th and 9th order anti-Stokes and Stokes, respectively.

  11. Magnetic rare earth superlattices

    DEFF Research Database (Denmark)

    Majkrzak, C.F.; Kwo, J.; Hong, M.;

    1991-01-01

    Advances in molecular beam epitaxy deposition techniques have recently made it possible to grow, an atomic plane at a time, single crystalline superlattices composed of alternating layers of a magnetic rare earth, such as Gd, Dy, Ho, or Er, and metallic Y, which has an identical chemical structure...

  12. High-speed Brillouin imaging via continuous-wave stimulated Brillouin scattering (Conference Presentation)

    Science.gov (United States)

    Remer, Itay; Bilenca, Alberto

    2017-02-01

    Brillouin spectroscopy is a noncontact technique for characterizing the mechanical properties of materials. Typically, Brillouin spectrometers have been realized using scanning Fabry-Perot spectrometers that measure, with long acquisition times, spontaneous Brillouin scattering from the samples. In the last few years, the use of virtually imaged phase array (VIPA) etalons for constructing Brillouin spectrometers has enabled to acquire spontaneous Brillouin spectra means for high-speed Brillouin analysis of materials. In this talk, we will present a different approach for high-speed Brillouin material analysis. The method uses continuous-wave stimulated Brillouin scattering (CW-SBS) to measure stimulated Brillouin gain (SBG) spectra of materials at filter and a lock-in detector, resulting in an improved signal-to-noise ratio that enables to significantly shorten acquisition times. We will show that this improvement, combined with micrometer-step-size spatial scanning of the sample, provides precise Brillouin profiles of layered liquids at 30-milliseconds pixel-dwell-time, facilitating Brillouin profilometry analysis of materials at high speed.

  13. Zonas de Brillouin del grafito

    OpenAIRE

    A. Velázquez-Arriaga; P. Rosendo-Francisco; J. López-Lemus

    2009-01-01

    La celda unitaria de un cristal de grafito se analiza usando el principio básico de oscilador armónico. Para este propósito, consideramos a los átomos que conforman la celda unitaria hexagonal unidos por pequeños resortes. Se establece la ecuación de movimiento de dicha celda para obtener la frecuencia normal de vibración del sistema (w) en términos del vector de onda (k) y la distancia interatómica. Con estos datos se generan las zonas de Brillouin y se determinan los puntos silla en los con...

  14. Zonas de Brillouin del grafito

    OpenAIRE

    A. Velázquez-Arriaga

    2009-01-01

    La celda unitaria de un cristal de grafito se analiza usando el principio básico de oscilador armónico. Para este propósito, consideramos a los átomos que conforman la celda unitaria hexagonal unidos por pequeños resortes. Se establece la ecuación de movimiento de dicha celda para obtener la frecuencia normal de vibración del sistema (w) en términos del vector de onda (k) y la distancia interatómica. Con estos datos se generan las zonas de Brillouin y se determinan los puntos silla en los con...

  15. Photoreflectance studies of optical transitions in type II (GaAs) sub m (AlAs) sub n superlattices

    CERN Document Server

    Wang, G; Kitaev, Y E; Planel, R

    2003-01-01

    Photoreflectance (PR) spectra of two type II [001](GaAs) sub m (AlAs) sub n superlattices (SLs) have been measured at 77 K. In the conventional picture of the envelope-function approximation, the lowest conduction state originates, in the first sample, from the X sub z point of the AlAs Brillouin zone (z being the growth direction) whereas it originates from the X sub x sub , sub y point in the second sample. Our spectra exhibit Franz-Keldysh oscillation (FKO) features and interband transition lines. The origin of the built-in electric field within the samples is discussed and its strength calculated from FKOs. For interpreting our spectra of interband optical transitions, a least-squares fit of the data to the Aspnes third-derivative functional form has been performed as well as computation of the optical transition energies. From the energy and amplitude of the interband transition lines in PR spectra, we showed that the two SLs are pseudo-direct, i.e. the ground optical transition in any of them is direct ...

  16. Magnetic Graphene Nanohole Superlattices

    CERN Document Server

    Yu, Decai; Liu, Miao; Liu, Wei; Liu, Feng

    2008-01-01

    We investigate the magnetic properties of nano-holes (NHs) patterned in graphene using first principles calculations. We show that superlattices consisting of a periodic array of NHs form a new family of 2D crystalline "bulk" magnets whose collective magnetic behavior is governed by inter-NH spin-spin interaction. They exhibit long-range magnetic order well above room temperature. Furthermore, magnetic semiconductors can be made by doping magnetic NHs into semiconducting NH superlattices. Our findings offer a new material system for fundamental studies of spin-spin interaction and magnetic ordering in low dimensions, and open up the exciting opportunities of making engineered magnetic materials for storage media and spintronics applications.

  17. Stimulated Brillouin scattering in metamaterials

    Science.gov (United States)

    Smith, M. J. A.; Wolff, C.; Martijn de Sterke, C.; Lapine, M.; Kuhlmey, B. T.; Poulton, C. G.

    2016-10-01

    We compute the SBS gain for a metamaterial comprising a cubic lattice of dielectric spheres suspended in a background dielectric material. Theoretical methods are presented to calculate the optical, acoustic, and opto-acoustic parameters that describe the SBS properties of the material at long wavelengths. Using the electromagnetic and strain energy densities we accurately characterise the optical and acoustic properties of the metamaterial. From a combination of energy density methods and perturbation theory, we recover the appropriate terms of the photoelastic tensor for the metamaterial. We demonstrate that electrostriction is not necessarily the dominant mechanism in the enhancement and suppression of the SBS gain coefficient in a metamaterial, and that other parameters, such as the Brillouin linewidth, can dominate instead. Examples are presented that exhibit an order of magnitude enhancement in the SBS gain as well as perfect suppression.

  18. Stimulated Brillouin scattering in metamaterials

    CERN Document Server

    Smith, M J A; de Sterke, C Martijn; Wolff, C; Lapine, M; Poulton, C G

    2016-01-01

    We compute the SBS gain for a metamaterial comprising a cubic lattice of dielectric spheres suspended in a background dielectric material. Theoretical methods are presented to calculate the optical, acoustic, and opto-acoustic parameters that describe the SBS properties of the material at long wavelengths. Using the electromagnetic and strain energy densities we accurately characterise the optical and acoustic properties of the metamaterial. From a combination of energy density methods and perturbation theory, we recover the appropriate terms of the photoelastic tensor for the metamaterial. We demonstrate that electrostriction is not necessarily the dominant mechanism in the enhancement and suppression of the SBS gain coefficient in a metamaterial, and that other parameters, such as the Brillouin linewidth, can dominate instead. Examples are presented that exhibit an order of magnitude enhancement in the SBS gain as well as perfect suppression.

  19. Guided-wave Brillouin scattering in air

    CERN Document Server

    Renninger, William H; Rakich, Peter T

    2016-01-01

    Here we identify a new form of optomechanical coupling in gas-filled hollow-core fibers. Stimulated forward Brillouin scattering is observed in air in the core of a photonic bandgap fiber. A single resonance is observed at 35 MHz, which corresponds to the first excited axial-radial acoustic mode in the air-filled core. The linewidth and coupling strengths are determined by the acoustic loss and electrostrictive coupling in air, respectively. A simple analytical model, refined by numerical simulations, is developed that accurately predicts the Brillouin coupling strength and frequency from the gas and fiber parameters. Since this form of Brillouin coupling depends strongly on both the acoustic and dispersive optical properties of the gas within the fiber, this new type of optomechanical interaction is highly tailorable. These results allow for forward Brillouin spectroscopy in dilute gases, could be useful for sensing and will present a power and noise limitation for certain applications.

  20. Brillouin Cooling in a Linear Waveguide

    CERN Document Server

    Chen, Yin-Chung; Bahl, Gaurav

    2016-01-01

    Brillouin scattering is rarely considered as a mechanism that can cause cooling of a material due to the thermodynamic dominance of Stokes scattering in most practical systems. However, it has been shown in experiments on resonators that net phonon annihilation through anti-Stokes Brillouin scattering can be enabled by means of a suitable set of optical and acoustic states. The cooling of traveling phonons in a linear waveguide, on the other hand, could lead to the exciting future prospect of manipulating unidirectional heat fluxes and even the nonreciprocal transport of quantum information via phonons. In this work, we present the first analysis of the conditions under which Brillouin cooling may be achieved in a linear waveguide. We analyze the three-wave mixing interaction between the optical and acoustic modes that participate in forward Brillouin scattering, and reveal the key regimes of operation for the process. Our calculations indicate that measurable cooling may occur in state-of-the-art systems whe...

  1. (InAs)1/(GaSb)1超晶格原子链的第一原理研究%First-principles study of(InAs)1/(GaSb)1 superlattice atomic chains

    Institute of Scientific and Technical Information of China (English)

    孙伟峰

    2012-01-01

    InAs)1/(GaSb)1 superlattice atomic chains is investigated by full Brillouin zone analysis for phonon structure.The electron transport calculations for(InAs)1/(GaSb)1 superlattice atomic chain segments in between Al electrodes show that the conductance exhibits nontrivial features as the chain length or strain is varied.The calculated optical absorption spectra represent precipitous cutoff absorptions in infrared regime,and the cutoff wavelength varies with chain structure. InAs/GaSb superlattice atomic chains are predicted to be applied to infrared optoelectronic nanodevices,modifying optoelectronic response wavelength range by changing the structures of superlattice atomic chains.

  2. Jaynes Cummings Photonic Superlattices

    CERN Document Server

    Longhi, Stefano

    2011-01-01

    A classical realization of the Jaynes-Cummings (JC) model, describing the interaction of a two-level atom with a quantized cavity mode, is proposed based on light transport in engineered waveguide superlattices. The optical setting enables to visualize in Fock space dynamical regimes not yet accessible in quantum systems, providing new physical insights into the deep strong coupling regime of the JC model. In particular, bouncing of photon number wave packets in Hilbert space and revivals of populations are explained as generalized Bloch oscillations in an inhomogeneous tight-binding lattice.

  3. Magnetic Rare-Earth Superlattices

    DEFF Research Database (Denmark)

    Majkrzak, C.F.; Gibbs, D.; Böni, P.

    1988-01-01

    The magnetic structures of several single‐crystal, magnetic rare‐earth superlattice systems grown by molecular‐beam epitaxy are reviewed. In particular, the results of recent neutron diffraction investigations of long‐range magnetic order in Gd‐Y, Dy‐Y, Gd‐Dy, and Ho‐Y periodic superlattices...... are presented. In the Gd‐Y system, an antiphase domain structure develops for certain Y layer spacings, whereas modified helical moment configurations are found to occur in the other systems, some of which are commensurate with the chemical superlattice wavelength. References are made to theoretical interaction...

  4. Aging in Magnetic Superlattices

    Science.gov (United States)

    Mukherjee, Tathagata; Pleimling, Michel; Binek, Christian

    2010-03-01

    Aging phenomena can be observed in non-equilibrium systems with slow relaxation dynamics. Magnetic specimens with well defined interactions and dimensions can serve as model systems for universal aspects of aging. Magnetic thin films provide access to a wide range of microscopic parameters. Superlattice structures allow tuning the intra and inter-plane exchange and enable geometrical confinement of the spin fluctuations. We use Co/Cr thin film superlattices to study magnetic aging. The static and dynamic magnetic properties are affected via the Co and Cr film thicknesses. The Curie temperature of the Co films is reduced from the bulk value by geometrical confinement. Cr provides antiferromagnetic coupling between the Co films. In-plane magnetic set fields of some 10-100 mT are applied and the sample is exposed to the latter for various waiting times. After removing the field, relaxation of the magnetization is recorded via longitudinal Kerr-magnetometry and SQUID. The relaxation data are analyzed by scaling plots revealing universal aspects of aging. Financial support by NRI, and NSF through EPSCoR, Career DMR-0547887, DMR-0904999, and MRSEC.

  5. Acoustoelectric effect in semiconductor superlattice

    Science.gov (United States)

    Mensah, S. Y.; Allotey, F. K. A.; Adjepong, S. K.

    1993-10-01

    Acoustoelectric effect in semiconductor superlattice has been studied for acoustic wave whose wavelength lambda = 2pi/q is smaller than the mean free path of the electrons l (where ql approaches 1). Unlike the homogeneous bulk material where Weinreich relation is independent of the wave number q in the superlattice we observe a dependence on q i.e. spatial dispersion. In the presence of applied constant field E a threshold value was obtained where the acoustoelectric current changes direction.

  6. Superconducting superlattices 2: Native and artificial

    Energy Technology Data Exchange (ETDEWEB)

    Bozovic, I.; Pavuna, D. [eds.

    1998-12-31

    This volume is composed of 26 papers presented at the symposium. Topics covered include the following: high-{Tc} superlattices: intrinsic and artificial; low-{Tc} superlattices and multilayers; and theory.

  7. High quality tunable Brillouin optoelectronic oscillator

    Science.gov (United States)

    Mousa, Mohamed; Ahmed, Mahmoud H.; Hassan, Kamel M. M.; Abouelatta, Mohamed; Afifi, Abdelrahman E.

    2016-09-01

    An optical scheme to improve the quality of an RF signal is proposed. The 6 dB linewidth is reduced to sub hertz and the low frequency noise below 1 KHz is reduced about 10 dB. The scheme utilizes a Brillouin-semiconductor optical amplifier (SOA) ring laser fitted with an RF intensity modulator and an APD detector. The experimental results show cavity modes with FSR of 30.57 KHz due to Brillouin fiber length of 6.6 km and 6 dB bandwidth of 780 mHz typical of Brillouin lasers. The gain of the SOA balances out most of the losses in the ring mainly that due to the RF modulator. The modulated optical signal beats at the APD. The optical loop acts as a cavity filter to the RF signal. A jitter in the cavity resonances due to temperature variations is completely eliminated from the output beat signal. There is a 10 dB increase in the phase noise at the FSR frequency and its harmonics. The setup is tested with signals generated by different sources and to frequencies up to 10 GHz, the limit of the APD. Sources with RF linewidth less than the optical FSR produces one output mode with sub-hertz line width. For larger line width signals more than one RF frequency is produced, separated by the FSR, each showing the Brillouin linewidth.

  8. Multiferroicity in Perovskite Manganite Superlattice

    Science.gov (United States)

    Tao, Yong-Mei; Jiang, Xue-Fan; Liu, Jun-Ming

    2016-08-01

    Multiferroic properties of short period perovskite type manganite superlattice ((R1MnO3)n/(R2MnO3)n (n=1,2,3)) are considered within the framework of classical Heisenberg model using Monte Carlo simulation. Our result revealed the interesting behaviors in Mn spins structure in superlattice. Apart from simple plane spin cycloid structure which is shown in all manganites including bulk, film, and superlattice here in low temperature, a non-coplanar spiral spin structure is exhibited in a certain temperature range when n equals 1, 2 or 3. Specific heat, spin-helicity vector, spin correlation function, spin-helicity correlation function, and spin configuration are calculated to confirm this non-coplanar spiral spin structure. These results are associated with the competition among exchange interaction, magnetic anisotropy, and Dzyaloshinskii-Moriya interaction. Supported by the National Natural Science Foundation of China (NSFC) under Grant No. 11447136

  9. Perovskite Superlattices as Tunable Microwave Devices

    Science.gov (United States)

    Christen, H. M.; Harshavardhan, K. S.

    2003-01-01

    Experiments have shown that superlattices that comprise alternating epitaxial layers of dissimilar paraelectric perovskites can exhibit large changes in permittivity with the application of electric fields. The superlattices are potentially useful as electrically tunable dielectric components of such microwave devices as filters and phase shifters. The present superlattice approach differs fundamentally from the prior use of homogeneous, isotropic mixtures of base materials and dopants. A superlattice can comprise layers of two or more perovskites in any suitable sequence (e.g., ABAB..., ABCDABCD..., ABACABACA...). Even though a single layer of one of the perovskites by itself is not tunable, the compositions and sequence of the layers can be chosen so that (1) the superlattice exhibits low microwave loss and (2) the interfacial interaction between at least two of the perovskites in the superlattice renders either the entire superlattice or else at least one of the perovskites tunable.

  10. Superlattice Thermoelectric Materials and Devices

    Science.gov (United States)

    Venkatasubramanian, Rama

    2002-03-01

    We have recently demonstrated a significant enhancement in thermoelectric figure-of-merit (ZT) at 300K, of about 2.4 in p-type Bi2Te3/Sb2Te3 superlattices, using the concept of phonon-blocking electron-transmitting superlattice structures [1]. The phonon blocking arises from a complex localization-like behavior for phonons in nano-structured superlattices and the electron transmission is facilitated by optimal choice of band-offsets in these semiconductor hetero-structures. We will also discuss the ZT 1.2 results in n-type Bi2Te3/Bi2Te3-xSex superlattices and our initial understanding on the reasons behind the less-than-dramatic performance of these materials compared to the p-type superlattices. Due to the high ZT of the material, devices potentially offer high coefficient of performance (COP) in solid-state refrigeration. The thin-film devices, resulting from rather simple microelectronic processing, allow high cooling power densities to be achieved for a variety of high-power electronic applications. We have obtained 32K and 40K sub-ambient cooling at 298K and 353K, respectively, in these superlattice micro-thermoelements with potential localized active-cooling power densities approaching 700 W/cm2. In addition to high-performance (in terms of COP) and power densities, these thin-film microdevices are also extremely fast-acting, within 10 microsec and about a factor of 23,000 better than bulk thermoelectric technology. Thus, these are of significance for preventing thermal run-away in high-power electronics. We will present results to demonstrate this concept with infrared imaging of cooling/heating with superlattice micro-devices. We will also discuss outstanding issues such as heat removal from the heat sink towards the full exploitation of this technology. In addition, we will compare the state-of-the-art with other thin-film superlattice materials and device concepts. [1] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B.C. O’Quinn, Thin

  11. Neutron Brillouin scattering in dense fluids

    Energy Technology Data Exchange (ETDEWEB)

    Verkerk, P. [Technische Univ. Delft (Netherlands); FINGO Collaboration

    1997-04-01

    Thermal neutron scattering is a typical microscopic probe for investigating dynamics and structure in condensed matter. In contrast, light (Brillouin) scattering with its three orders of magnitude larger wavelength is a typical macroscopic probe. In a series of experiments using the improved small-angle facility of IN5 a significant step forward is made towards reducing the gap between the two. For the first time the transition from the conventional single line in the neutron spectrum scattered by a fluid to the Rayleigh-Brillouin triplet known from light-scattering experiments is clearly and unambiguously observed in the raw neutron data without applying any corrections. Results of these experiments are presented. (author).

  12. Brillouin Optomechanics in Coupled Silicon Microcavities

    CERN Document Server

    Espinel, Yovanny A V; Luiz, Gustavo O; Alegre, Thiago P M; Wiederhecker, Gustavo S

    2016-01-01

    The simultaneous control of optical and mechanical waves has enabled a range of fundamental and technological breakthroughs, from the demonstration of ultra-stable frequency reference devices to the exploration of the quantum-classical boundaries in laser-cooling experiments. More recently, such an opto-mechanical interaction has been observed in integrated nano-waveguides and microcavities in the Brillouin regime, where short-wavelength mechanical modes scatters light at several GHz. Here we engineer coupled optical microcavities spectra to enable a low threshold excitation of mechanical travelling-wave modes through backward stimulated Brillouin scattering. Exploring the backward scattering we propose microcavity designs supporting super high frequency modes ($\\sim25$ GHz) an large optomechanical coupling rates ($g_0/2\\pi \\sim 50$ kHz).

  13. Phonon-induced polariton superlattices

    DEFF Research Database (Denmark)

    de Lima, Jr., M. M.; Poel, Mike van der; Santos, P. V.;

    2006-01-01

    We show that the coherent interaction between microcavity polaritons and externally stimulated acoustic phonons forms a tunable polariton superlattice with a folded energy dispersion determined by the phonon population and wavelength. Under high phonon concentration, the strong confinement of the...... of the optical and excitonic polariton components in the phonon potential creates weakly coupled polariton wires with a virtually flat energy dispersion....

  14. Epitaxy, thin films and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au) 14 tabs.; 58 ills., 96 refs.

  15. Compact two wavelength Brillouin fiber laser sensor with double Brillouin frequency spacing

    Science.gov (United States)

    Liu, Yi; Zhang, Mingjiang; Zhang, Jianzhong; Han, Hong; Yi, Xiaogang; Zhang, Jianguo; Wang, Yuncai

    2016-12-01

    A compact two wavelength Brillouin fiber laser (BFL) sensor with double Brillouin frequency spacing is proposed and demonstrated. In the experiment, 20 m polarization maintaining fiber is used as the sensing element and Brillouin gain medium. This short cavity configuration not only guarantees single longitudinal mode operation of two Stokes wavelengths, but also can effectively reduce external perturbations, complexity and noise of BFL in the absence of an erbium-doped fiber amplifier in intra-cavity. In experiment, about 2 MHz/°C sensitivity of beat frequency between the pump and the 2nd-order Stokes wavelength keep in good agreement with the theoretical value. Meanwhile, 0.2 °C temperature stability and  ±0.1 dB power fluctuation are better than the traditional structure. The system is simple and stable, making it convenient for more applications.

  16. Analytical Study of Electromagnetic Wave in Superlattice

    Institute of Scientific and Technical Information of China (English)

    LIN Chang; ZHANG Xiu-Lian

    2004-01-01

    The theoretical description of soliton solutions and exact analytical solutions in the sine-Gordon equation is extended to superlattice physics. A family of interesting exact solutions and a new exact analytical solution have been obtained for the electromagnetic wave propagating through a superlattice. In more general cases, the vector potential along the propagating direction obeys the sine-Gordon equation. Some mathematical results of theoretical investigation are given for different cases in superlattices.

  17. Self-Organized Growth of Alloy Superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Chason, E.; Floro, J.A.; Follstaedt, D.M.; Lagally, M.G.; Liu, F.; Tersoff, J.; Venezuela, P.

    1998-10-19

    We predict theoretically and demonstrate experimentally the spontaneous formation of a superlattice during crystal growth. When a strained alloy grows by "step flow", the steps at the surface form periodic bunches. The resulting modulated strain biases the incorporation of the respective alloy components at different steps in the bunch, leading to the formation of a superlattice. X-ray diffraction and electron microscopy for SiGe grown on Si give clear evidence for such spontaneous superlattice formation.

  18. Spin-dependent optical superlattice

    Science.gov (United States)

    Yang, Bing; Dai, Han-Ning; Sun, Hui; Reingruber, Andreas; Yuan, Zhen-Sheng; Pan, Jian-Wei

    2017-07-01

    We propose and implement a lattice scheme for coherently manipulating atomic spins. Using a vector light shift and a superlattice structure, we demonstrate experimentally its capability on addressing spins in double wells and square plaquettes with subwavelength resolution. The quantum coherence of spin manipulations is verified through measuring atom tunneling and spin exchange dynamics. Our experiment presents a building block for engineering many-body quantum states in optical lattices for realizing quantum simulation and computation tasks.

  19. The electromagnetic Brillouin precursor in one-dimensional photonic crystals

    NARCIS (Netherlands)

    Uitham, R.; Hoenders, B. J.

    2008-01-01

    We have calculated the electromagnetic Brillouin precursor that arises in a one-dimensional photonic crystal that consists of two homogeneous slabs which each have a single electron resonance. This forerunner is compared with the Brillouin precursor that arises in a homogeneous double-electron reson

  20. Short-Pulse Amplification by Strongly-Coupled Brillouin Scattering

    CERN Document Server

    Edwards, Matthew R; Mikhailova, Julia M; Fisch, Nathaniel J

    2016-01-01

    We examine the feasibility of strongly-coupled stimulated Brillouin scattering as a mechanism for the plasma-based amplification of sub-picosecond pulses. In particular, we use fluid theory and particle-in-cell simulations to compare the relative advantages of Raman and Brillouin amplification over a broad range of achievable parameters.

  1. The electromagnetic Brillouin precursor in one-dimensional photonic crystals

    NARCIS (Netherlands)

    Uitham, R.; Hoenders, B. J.

    2008-01-01

    We have calculated the electromagnetic Brillouin precursor that arises in a one-dimensional photonic crystal that consists of two homogeneous slabs which each have a single electron resonance. This forerunner is compared with the Brillouin precursor that arises in a homogeneous double-electron

  2. Acoustic profilometry within polymers as performed by Brillouin microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sanctuary, R [Laboratoire Europeen de Recherche Universitaire Saarland-Lorraine (LERUSL) at the Centre Universitaire de Luxembourg, Departement des Sciences, Laboratoire 1.19, 162a avenue de la Faiencerie, L-1511 Luxembourg (Luxembourg); Bactavatchalou, Ravi [Universitaet des Saarlandes, Fakultaet fuer Physik und Elektrotechnik 7.2, Gebaeude 38, D-66041 Saarbruecken (Germany); Mueller, Ulrich [Universitaet des Saarlandes, Fakultaet fuer Physik und Elektrotechnik 7.2, Gebaeude 38, D-66041 Saarbruecken (Germany); Possart, W [Universitaet des Saarlandes, Fakultaet fuer Chemie, Pharmazie und Werkstoffwissenschaften 8.15, Gebaeude 22, D-66041 Saarbruecken (Germany); Alnot, P [Laboratoire de Physique des Milieux Ionises et Applications (LPMIA), UMR 7040-C.N.R.S, Universite de Nancy I, Bd des Aiguillettes, B.P. 239 F-54506 Vandoeuvre les Nancy (France); Krueger, J K [Universitaet des Saarlandes, Fakultaet fuer Physik und Elektrotechnik 7.2, Gebaeude 38, D-66041 Saarbruecken (Germany)

    2003-11-07

    Using high performance Brillouin spectroscopy we present a new technique, which enables us to perform acoustic microscopy with a spatial resolution of about 1 {mu}m. This technique, called Brillouin microscopy, is tested on several bulk- and film-like polymer samples.

  3. Quantification of plaque stiffness by Brillouin microscopy (Conference Presentation)

    Science.gov (United States)

    Antonacci, Giuseppe; Pedrigi, Ryan; Krams, Rob; Török, Peter

    2016-03-01

    Spontaneous Brillouin scattering is an inelastic scattering process arising from inherent thermal density fluctuations, or acoustic phonons, propagating in a medium. Over the last few years, Brillouin spectroscopy has shown great potential to become a reliable non-invasive diagnostic tool due to its unique capability of retrieving viscoelastic properties of materials such as strain and stiffness. The detection of the weak scattered light, in addition to the resolution of the Brillouin peaks (typically shifted by few GHz from the central peak) represent one of the greatest challenges in Brillouin. The recent development of high sensitivity CCD cameras has brought Brillouin spectroscopy from a point sampling technique to a new imaging modality. Furthermore, the application of Virtually Imaged Phased Array (VIPA) etalons has dramatically reduced insertion loss simultaneously allowing fast (myocardial infarction yet it is not currently possible to credibly assess its stiffness due to lack of suitable methods.

  4. Dynamics of ultra-long Brillouin fiber laser

    Science.gov (United States)

    Fotiadi, Andrei A.; Lobach, Ivan; Mégret, Patrice

    2013-02-01

    We report on experimental studies of random lasing realized in optical fibers with the use of Brillouin amplification and Rayleigh backscattering employed as a distributed feedback instead of a cavity mirror. In our experiment 25-km-long high quality standard telecom single-mode fiber was employed for Rayleigh reflection uniformly distributed over all fiber length. We have observed a clear competition between a classical Brillouin scattering and Brillouin lasing. Presence of extended fluctuation-free fragments in the recorded oscilloscope traces highlights Stokes power statistics typical for laser radiation rather than for Brillouin process. The results of the experiments are in a perfect agreement with the model of Brillouin - Rayleigh cooperative process in long fibers.

  5. Tailorable Stimulated Brillouin Scattering in Nanoscale Silicon Waveguides

    CERN Document Server

    Shin, Heedeuk; Jarecki, Robert; Cox, Jonathan A; Olsson, Roy H; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T

    2013-01-01

    While nanoscale modal confinement radically enhances a variety of nonlinear light-matter interactions within silicon waveguides, traveling-wave stimulated Brillouin scattering nonlinearities have never been observed in silicon nanophotonics. Through a new class of hybrid photonic-phononic waveguides, we demonstrate tailorable traveling-wave forward stimulated Brillouin scattering in nanophotonic silicon waveguides for the first time, yielding 3000 times stronger forward SBS responses than any previous waveguide system. Simulations reveal that a coherent combination of electrostrictive forces and radiation pressures are responsible for greatly enhanced photon-phonon coupling at nano-scales. Highly tailorable Brillouin nonlinearities are produced by engineering the structure of a membrane-suspended waveguide to yield Brillouin resonances from 1 to 18 GHz through high quality-factor (>1000) phonon modes. Such wideband and tailorable stimulated Brillouin scattering in silicon photonics could enable practical real...

  6. Interwell excitons in GaAs superlattices

    DEFF Research Database (Denmark)

    Birkedal, Dan; Sayed, Karim El; Sanders, G.;

    1997-01-01

    The formation of spatially indirect excitons in superlattices with narrow minibands is investigated experimentally. The interwell exciton is similar to the first Wannier-Stark localized exciton of an electrically biased superlattice. However, in the present case the localization is mediated by th...

  7. Revisiting HOPG superlattices: Structure and conductance properties

    Science.gov (United States)

    Patil, Sumati; Kolekar, Sadhu; Deshpande, Aparna

    2017-04-01

    Superlattices observed on highly oriented pyrolytic graphite (HOPG) have been studied extensively by scanning tunnelling microscopy (STM). The interest in the study of graphite superlattices has seen a resurgence since the discovery of graphene. Single layer graphene, bilayer graphene, and few layer graphene can now be grown on different substrates. The adherence of graphene to various substrates often leads to a periodic out-of-plane modulation and superlattices due to lattice mismatch. In this paper, we report STM imaging and scanning tunnelling spectroscopy (STS) of different kinds of superlattices on HOPG characterized by a variation in lattice periodicities. Our study also shows evidence of the displacement of the topmost HOPG layer by scanning different areas of the same superlattice. A correlation between the lattice periodicity with its conductance properties is derived. The results of this work are important for understanding the origin of the superlattice structure on HOPG. Investigation of such superlattices may open up possible ways to modify two dimensional electron systems to create materials with tailored electronic properties.

  8. Narrow linewidth Brillouin laser based on chalcogenide photonic chip

    CERN Document Server

    Kabakova, Irina V; Choi, Duk-Yong; Debbarma, Sukhanta; Luther-Davies, Barry; Madden, Stephen J; Eggleton, Benjamin J

    2013-01-01

    We present the first demonstration of a narrow linewidth, waveguide-based Brillouin laser which is enabled by large Brillouin gain of a chalcogenide chip. The waveguides are equipped with vertical tapers for low loss coupling. Due to optical feedback for the Stokes wave, the lasing threshold is reduced to 360 mW, which is 5 times lower than the calculated single-pass Brillouin threshold for the same waveguide. The slope efficiency of the laser is found to be 30% and the linewidth of 100 kHz is measured using a self-heterodyne method.

  9. Exact Surface States in Photonic Superlattices

    CERN Document Server

    Xie, Qiongtao

    2012-01-01

    We develop an analytical method to derive exact surface states in photonic superlattices. In a kind of infinite bichromatic superlattices satisfying some certain conditions, we analytically obtain their in-gap states, which are superpositions of finite numbers of unstable Bloch waves. By using the unstable in-gap states, we construct exactly several stable surface states in various photonic superlattices. We analytically explore the parametric dependence of these exact surface states. Our analysis provides an exact demonstration for the existence of surface states and would be also helpful to understand surface states in other lattice systems.

  10. On-chip Inter-modal Brillouin Scattering

    CERN Document Server

    Kittlaus, Eric A; Rakich, Peter T

    2016-01-01

    Stimulated Brillouin interactions mediate nonlinear coupling between photons and acoustic phonons through an optomechanical three-wave interaction. Though these nonlinearities were previously very weak in silicon photonic systems, the recent emergence of new optomechanical waveguide structures have transformed Brillouin processes into one of the strongest and most tailorable on-chip nonlinear interactions. New technologies based on Brillouin couplings have formed a basis for amplification, filtering, and nonreciprocal signal processing techniques. In this paper, we demonstrate strong guided-wave Brillouin scattering between light fields guided in distinct spatial modes of a silicon waveguide for the first time. This inter-modal coupling creates dispersive symmetry breaking between Stokes and anti-Stokes processes, permitting single-sideband amplification and wave dynamics that permit near-unity power conversion. Combining these physics with integrated mode-multiplexers enables novel device topologies and elim...

  11. Simple asymptotic forms for Sommerfeld and Brillouin precursors

    CERN Document Server

    Macke, Bruno

    2012-01-01

    We examine from a physical viewpoint the classical problem of the propagation of a causal optical field in a dense Lorentz-medium when the propagation distance is such that the medium is opaque in a broad spectral region including the frequency of the optical carrier. The transmitted signal is then reduced to the celebrated precursors of Sommerfeld and Brillouin, well separated in time. In these conditions, we obtain explicit analytical expressions of the first (Sommerfeld) precursor, which only depend on the nature and the importance of the initial discontinuity of the incident field, and we show that the second (Brillouin) precursor has a Gaussian or Gaussian-derivative shape, depending whether the time-integral (algebraic area) of the incident field differs or not from zero. We demonstrate that the Brillouin precursor that has been actually observed in a Debye medium at decimetric wavelengths is also Gaussian. We complete these results by establishing a more general expression of the Brillouin precursor in...

  12. Cascaded forward Brillouin scattering to all Stokes orders

    CERN Document Server

    Wolff, Christian; Eggleton, Benjamin J; Steel, Michael J; Poulton, Christopher G

    2016-01-01

    Inelastic scattering processes such as Brillouin scattering can often function in cascaded regimes and this is likely to occur in certain integrated opto-acoustic devices. We develop a Hamiltonian formalism for cascaded Brillouin scattering valid for both quantum and classical regimes. By regarding Brillouin scattering as the interaction of a single acoustic envelope and a single optical envelope that covers all Stokes and anti-Stokes orders, we obtain a compact model that is well suited for numerical implementation, extension to include other optical nonlinearities or short pulses, and application in the quantum-optics domain. We then theoretically analyze intra-mode forward Brillouin scattering (FBS) for arbitrary waveguides with and without optical dispersion. In the absence of optical dispersion, we find an exact analytical solution. With a perturbative approach, we furthermore solve the case of weak optical dispersion. Our work leads to several key results on intra-mode FBS. For negligible dispersion, we...

  13. Ultralow-threshold cascaded Brillouin microlaser for tunable microwave generation.

    Science.gov (United States)

    Guo, Changlei; Che, Kaijun; Cai, Zhiping; Liu, Shuai; Gu, Guoqiang; Chu, Chengxu; Zhang, Pan; Fu, Hongyan; Luo, Zhengqian; Xu, Huiying

    2015-11-01

    We experimentally demonstrate an ultralow-threshold cascaded Brillouin microlaser for tunable microwave generation in a high-Q silica microsphere resonator. The threshold of the Brillouin microlaser is as low as 8 μW, which is close to the theoretical prediction. Moreover, the fifth-order Stokes line with a frequency shift up to 55 GHz is achieved with a coupled pump power of less than 0.6 mW. Benefiting from resonant wavelength shifts driven by thermal dynamics in the microsphere, we further realized tunable microwave signals with tuning ranges of 40 MHz at an 11 GHz band and 20 MHz at a 22 GHz band. To the best of our knowledge, it was the first attempt for tunable microwave source based on the whispering-gallery-mode Brillouin microlaser. Such a tunable microwave source from a cascaded Brillouin microlaser could find significant applications in aerospace, communication engineering, and metrology.

  14. Sources of noise in Brillouin optical time-domain analyzers

    OpenAIRE

    Urricelqui Polvorinos, Javier; Soto, Marcelo A.; Thévenaz, Luc

    2015-01-01

    This paper presents a thorough study of the different sources of noise affecting Brillouin optical time-domain analyzers (BOTDA), providing a deep insight into the understanding of the fundamental limitations of this kind of sensors. Analytical and experimental results indicate that the noise source ultimately fixing the sensor performance depends basically on the fiber length and the input pump-probe powers. Thus, while the phase-to-intensity noise conversion induced by stimulated Brillouin ...

  15. Broadband Brillouin Scatter from CO2-Laser-Target Interactions

    Science.gov (United States)

    Mitchel, G. R.; Grek, B.; Johnston, T. W.; Pépin, H.; Church, P.; Lavigne, P.; Martin, F.; Décoste, R.

    1982-05-01

    Light scattered near the incident wavelength from CO2 laser-solid target interactions in oblique incidence shows the spectral signature of Brillouin scattering both in the backward and in the near specular directions. This instability is apparently seeded by broadband scatter from the critical density surface and then amplified in the underdense plasma. 60% of the incident light is scattered, and the Brillouin contribution to total scatter may be large if the source is also large.

  16. Magnetic structure of holmium-yttrium superlattices

    DEFF Research Database (Denmark)

    Jehan, D.A.; McMorrow, D.F.; Cowley, R.A.;

    1993-01-01

    that the superlattices have high crystallographic integrity: the structural coherence length parallel to the growth direction is typically almost-equal-to 2000 angstrom, while the interfaces between the two elements are well defined and extend over approximately four lattice planes. The magnetic structures were......We present the results of a study of the chemical and magnetic structures of a series of holmium-yttrium superlattices and a 5000 angstrom film of holmium, all grown by molecular-beam epitaxy. By combining the results of high-resolution x-ray diffraction with detailed modeling, we show...... determined using neutron-scattering techniques. The moments on the Ho3+ ions in the superlattices form a basal-plane helix. From an analysis of the superlattice structure factors of the primary magnetic satellites, we are able to determine separately the contributions made by the holmium and yttrium...

  17. Interwell excitons in GaAs superlattices

    DEFF Research Database (Denmark)

    Birkedal, Dan; Sayed, Karim El; Sanders, G.;

    1996-01-01

    The formation of spatially indirect excitons in superlattices with narrow minibands is theoretically and experimentally investigated. We identify the experimental conditions for the observation of interwell excitons and find a distinct excitonic state energetically located between the Is exciton ...

  18. Polyadic Cantor superlattices with variable lacunarity.

    Science.gov (United States)

    Jaggard, D L; Jaggard, A D

    1997-02-01

    Reflection and transmission properties of polyadic fractal superlattices are formulated, solved analytically, and characterized for variations in stage of growth, fractal dimension, and lacunarity. This is the first time to our knowledge that the effect of lacunarity on wave interactions with such structures has been considered. The results are summarized by families of reflection data that we denote twist plots. A new doubly recursive computational technique efficiently provides the reflection and transmission coefficients for a large class of Cantor superlattices with numerous interfaces.

  19. Analytical Study of Electromagnetic Wave in Superlattice

    Institute of Scientific and Technical Information of China (English)

    LINChang; ZHANGXiu-Lian

    2004-01-01

    The theoretical description of soliton solutions and exact analytical solutions in the sine-Gordon equation is extended to superlattice physics. A family of interesting exact solutions and a new exact analytical solution have been obtained for the electromagnetic wave propagating through a superlattice. In more general cases, the vector potential along the propagating direction obeys the sine-Gordon equation. Some mathematical results of theoretical investigation are given for different cases in supedattices.

  20. HgTe-CdTe SUPERLATTICES

    OpenAIRE

    Smith, D; Mcgill, T.

    1984-01-01

    We report on a theoretical study of the electronic properties of HgTe-CdTe superlattices. The band gap as a function of layer thickness, effective masses normal to the layer plane and tunneling length are compared to the corresponding (Hg, Cd)Te alloys. We find that the superlattice possesses a number of properties that may make it superior to the corresponding alloy as an infrared material.

  1. Strong reduction of the lattice thermal conductivity in superlattices and quantum dot superlattices

    Science.gov (United States)

    Fomin, V. M.; Nika, D. L.; Cocemasov, A. I.; Isacova, C. I.; Schmidt, O. G.

    2012-06-01

    Thermal transport is theoretically investigated in the planar Si/Ge superlattices and Si/Ge quantum dot superlattices. The phonon states in the considered nanostructures are obtained using the Face-centered Cubic Cell model of lattice dynamics. A significant reduction of the lattice thermal conductivity is revealed in both considered structures in a wide range of temperatures from 100 K to 400 K. This effect is explained by the removal of the high-energy and high-velocity phonon modes from the heat flux due to their localization in superlattice segments and the phonon scattering on the interfaces. The obtained results show prospects of the planar superlattices and quantum-dot superlattices for thermoelectric and thermo-insulating applications.

  2. PHASE TRANSITION PROPERTIES OF A TWO COMPONENT FINITE MAGNETIC SUPERLATTICE

    Institute of Scientific and Technical Information of China (English)

    WANG XIAO-GUANG; LIU NING-NING; PAN SHAO-HUA; YANG GUO-ZHEN

    2000-01-01

    We study an (l, n) finite superlattice, which consists of two alternative magnetic materials(components) of l and n atomic layers, respectively. Based on the Ising model, we examine the phase transition properties of the magnetic superlattice. By transfer matrix method we derive the equation for Curie temperature of the superlattice. Numerical results are obtained for the dependence of Curie temperature on the thickness and exchange constants of the superlattice.

  3. Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators

    CERN Document Server

    Lin, Guoping; Saleh, Khaldoun; Martinenghi, Romain; Beugnot, Jean-Charles; Sylvestre, Thibaut; Chembo, Yanne K

    2015-01-01

    We report the observation of stimulated Brillouin scattering and lasing at 1550~nm in barium fluoride (BaF$_2$) crystal. Brillouin lasing was achieved with ultra-high quality ($Q$) factor monolithic whispering gallery mode (WGM) mm-size disk resonators. Overmoded resonators were specifically used to provide cavity resonances for both the pump and all Brillouin Stokes waves. Single and multiple Brillouin Stokes radiations with frequency shift ranging from $8.2$ GHz up to $49$ GHz have been generated through cascaded Brillouin lasing. BaF$_2$ resonator-based Brillouin lasing can find potential applications for high-coherence lasers and microwave photonics.

  4. Brillouin endoscope, design and optimization strategies (Conference Presentation)

    Science.gov (United States)

    Xiang, Yuchen; Song, ChengZe; Wadsworth, William J.; Paterson, Carl; Török, Peter; Kabakova, Irina V.

    2017-02-01

    Brillouin imaging has recently emerged as a powerful technique for its ability to give insight to the mechanical properties of biomaterial. It exploits inelastic scattering of light by acoustic vibrations and maps the tissue stiffness point by point with micron resolution. The non-invasive, real-time nature of the measurements also makes it a potent candidate for in-vivo imaging of live cells and tissues. This, however, has to rely on a compact and flexible apparatus, a Brillouin endoscope, for remote access to specimen parts. One of the main challenges encountered in the construction of Brillouin endoscope is that the inelastic scattering in the fibre conduit itself is orders of magnitude stronger than the Brillouin signal scattered by the specimen. This is because the length of the fibre endoscope (meters) is orders of magnitude larger than the imaging volume (microns). The problem can be overcome if the scattered light is collected by a separate fibre and does not mix with the fibre scattering inside the delivery channel. Here we present an all-fibre integrated Brillouin microspectroscopy system that exploits the paths separation between delivery and collection channels. The experimental setup consists of a pair of standard silica single-mode fibres coupled to a graded-index lens and illuminated with a 671nm continuum wavelength source. We test our system performance on liquid samples of water and ethanol and confirm Brillouin shifts of 5.9 GHz and 4.6 GHz, respectively. More importantly, we do not observe any signals corresponding to Brillouin shift in the fibre, in agreement with expectation.

  5. Anisotropy in layered half-metallic Heusler alloy superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Azadani, Javad G.; Munira, Kamaram; Sivakumar, Chockalingam; Butler, William H. [Center for Materials for Information Technology, University of Alabama, Tuscaloosa, Alabama 35487 (United States); Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487 (United States); Romero, Jonathon [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487 (United States); Ma, Jianhua; Ghosh, Avik W. [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2016-01-28

    We show that when two Heusler alloys are layered in the [001], [110], or [111] directions for various thicknesses to form a superlattice, the Slater-Pauling rule may still be satisfied and the resulting superlattice is often half-metallic with gaps comparable to or larger than those of its constituents. In addition, uniaxial magnetocrystalline anisotropy is induced because of the differences in the electronic structure of the two Heuslers in the superlattice. Various full-full, full-half, and half-half Heusler superlattices are studied, and potential half-metallic superlattices with perpendicular magnetocrystalline anisotropy are identified.

  6. Phase-locking in cascaded stimulated Brillouin scattering

    CERN Document Server

    Büttner, Thomas F S; Steel, M J; Hudson, Darren D; Eggleton, Benjamin J

    2015-01-01

    Cascaded stimulated Brillouin scattering (SBS) is a complex nonlinear optical process that results in the generation of several optical waves that are frequency shifted by an acoustic resonance frequency. Four-wave mixing (FWM) between these Brillouin shifted optical waves can create an equally spaced optical frequency comb with a stable spectral phase, i.e. a Brillouin frequency comb (BFC). Here, we investigate phase-locking of the spectral components of BFCs, considering FWM interactions arising from the Kerr-nonlinearity as well as from coupling by the acoustic field. Deriving for the first time the coupled-mode equations that include all relevant nonlinear interactions, we examine the contribution of the various nonlinear processes to phase-locking, and show that different regimes can be obtained that depend on the length scale on which the field amplitudes vary.

  7. Phase-locking in cascaded stimulated Brillouin scattering

    Science.gov (United States)

    Büttner, Thomas F. S.; Poulton, Christopher G.; Steel, M. J.; Hudson, Darren D.; Eggleton, Benjamin J.

    2016-02-01

    Cascaded stimulated Brillouin scattering is a complex nonlinear optical process that results in the generation of several optical waves that are frequency shifted by an acoustic resonance frequency. Four-wave mixing (FWM) between these Brillouin shifted optical waves can create an equally spaced optical frequency comb with a stable spectral phase, i.e. a Brillouin frequency comb (BFC). Here, we investigate phase-locking of the spectral components of BFCs, considering FWM interactions arising from the Kerr-nonlinearity as well as from coupling by the acoustic field. Deriving for the first time the coupled-mode equations that include all relevant nonlinear interactions, we examine the contribution of the various nonlinear processes to phase-locking, and show that different regimes can be obtained that depend on the length scale on which the field amplitudes vary.

  8. Temperature sensing based on a Brillouin fiber microwave generator

    Science.gov (United States)

    Yang, X. P.; Gan, J. L.; Xu, S. H.; Yang, Z. M.

    2013-04-01

    We propose and demonstrate a novel dual-frequency Brillouin fiber laser used for microwave generation. Based on this configuration, temperature sensing has been realized. The dual-frequency Brillouin lasing is generated independently from two pieces of fiber cascaded within one ring resonator. Microwave generation is acquired as the beat signal of the dual-frequency Brillouin fiber laser, with the beat frequency being linearly proportional to the temperature difference of the two fiber sections. In the experiment, the temperature coefficient of frequency shift is 1.015 ± 0.001 MHz °C-1. The temperature can be precisely measured by acquiring the frequency of the microwave generator, and this new configuration provides a promising application for temperature sensing.

  9. Photonic-phononic orbital angular momentum in Brillouin parametric conversion

    CERN Document Server

    Zhu, Zhihan; Mu, Chunyuan; Li, Hongwei

    2014-01-01

    Orbital angular momentum (OAM) is a fundamental photonic degree of freedom, showed by Allen and co-workers. Its most attractive feature is an inherently infinite dimensionality, which in recent years has obtained several ground-breaking demonstrations for high information-density communication and processing, both in classical and quantum. Here, by seeking the reason for photonic OAM non-conservation in stimulated Brillouin amplification, we report the first demonstration of the evolution law for OAM in Brillouin process. The parameter of OAM can conveniently transfer between the phonons and different polarized photons due to the photonic spin angular momentum conservation. Our results have revealed a parametric conversion mechanism of Brillouin process for Photonic-phononic OAM, demonstrated the role of phononic OAM and the vortex acoustic wave in this process, and suggested this mechanism may find important applications in OAM-based information communication and processing.

  10. Recent Progress in Brillouin Scattering Based Fiber Sensors

    Directory of Open Access Journals (Sweden)

    Liang Chen

    2011-04-01

    Full Text Available Brillouin scattering in optical fiber describes the interaction of an electro-magnetic field (photon with a characteristic density variation of the fiber. When the electric field amplitude of an optical beam (so-called pump wave, and another wave is introduced at the downshifted Brillouin frequency (namely Stokes wave, the beating between the pump and Stokes waves creates a modified density change via the electrostriction effect, resulting in so-called the stimulated Brillouin scattering. The density variation is associated with a mechanical acoustic wave; and it may be affected by local temperature, strain, and vibration which induce changes in the fiber effective refractive index and sound velocity. Through the measurement of the static or dynamic changes in Brillouin frequency along the fiber one can realize a distributed fiber sensor for local temperature, strain and vibration over tens or hundreds of kilometers. This paper reviews the progress on improving sensing performance parameters like spatial resolution, sensing length limitation and simultaneous temperature and strain measurement. These kinds of sensors can be used in civil structural monitoring of pipelines, bridges, dams, and railroads for disaster prevention. Analogous to the static Bragg grating, one can write a moving Brillouin grating in fibers, with the lifetime of the acoustic wave. The length of the Brillouin grating can be controlled by the writing pulses at any position in fibers. Such gratings can be used to measure changes in birefringence, which is an important parameter in fiber communications. Applications for this kind of sensor can be found in aerospace, material processing and fine structures.

  11. Magnetic properties of rare earth superlattices

    CERN Document Server

    Wilkins, C J T

    2001-01-01

    Single-crystal Tm/Y and Tm/Lu superlattices have been grown using molecular beam epitaxy and their chemical structures have been determined using X-ray diffraction. Magnetisation measurements have revealed a more complicated phase diagram than that of pure Tm. Application of a field along the c-direction gave rise to an extra transition, and transitions were detected for the superlattices when the field was applied along the b-axis. In neutron diffraction studies, c-axis longitudinally modulated magnetic structures were found for both Tm/Y and Tm/Lu, which propagate coherently through the non-magnetic layers. In the case of Tm/Lu superlattices, there is evidence for ordering of the basal plane components.

  12. Electrical transport engineering of semiconductor superlattice structures

    Science.gov (United States)

    Shokri, Aliasghar

    2014-04-01

    We investigate the influence of doping concentration on band structures of electrons and electrical transmission in a typical aperiodic semiconductor superlattice consisting of quantum well and barrier layers, theoretically. For this purpose, we assume that each unit cell of the superlattice contains alternately two types of material GaAs (as a well) and GaAlAs (as a barrier) with six sublayers of two materials. Our calculations are based on the generalized Kronig-Penny (KP) model and the transfer matrix method within the framework of the parabolic conductance band effective mass approximation in the coherent regime. This model reduces the numerical calculation time and enables us to use the transfer matrix method to investigate transport in the superlattices. We show that by varying the doping concentration and geometrical parameters, one can easily block the transmission of the electrons. The numerical results may be useful in designing of nanoenergy filter devices.

  13. Electrical transport engineering of semiconductor superlattice structures

    Energy Technology Data Exchange (ETDEWEB)

    Shokri, Aliasghar, E-mail: aashokri@tpnu.ac.ir

    2014-04-01

    We investigate the influence of doping concentration on band structures of electrons and electrical transmission in a typical aperiodic semiconductor superlattice consisting of quantum well and barrier layers, theoretically. For this purpose, we assume that each unit cell of the superlattice contains alternately two types of material GaAs (as a well) and GaAlAs (as a barrier) with six sublayers of two materials. Our calculations are based on the generalized Kronig–Penny (KP) model and the transfer matrix method within the framework of the parabolic conductance band effective mass approximation in the coherent regime. This model reduces the numerical calculation time and enables us to use the transfer matrix method to investigate transport in the superlattices. We show that by varying the doping concentration and geometrical parameters, one can easily block the transmission of the electrons. The numerical results may be useful in designing of nanoenergy filter devices.

  14. Ballistic miniband conduction in a graphene superlattice

    Science.gov (United States)

    Lee, Menyoung; Wallbank, John R.; Gallagher, Patrick; Watanabe, Kenji; Taniguchi, Takashi; Fal'ko, Vladimir I.; Goldhaber-Gordon, David

    2016-09-01

    Rational design of long-period artificial lattices yields effects unavailable in simple solids. The moiré pattern in highly aligned graphene/hexagonal boron nitride (h-BN) heterostructures is a lateral superlattice with high electron mobility and an unusual electronic dispersion whose miniband edges and saddle points can be reached by electrostatic gating. We investigated the dynamics of electrons in moiré minibands by measuring ballistic transport between adjacent local contacts in a magnetic field, known as the transverse electron focusing effect. At low temperatures, we observed caustics of skipping orbits extending over hundreds of superlattice periods, reversals of the cyclotron revolution for successive minibands, and breakdown of cyclotron motion near van Hove singularities. At high temperatures, electron-electron collisions suppress focusing. Probing such miniband conduction properties is a necessity for engineering novel transport behaviors in superlattice devices.

  15. Energy Band Calculations for Maximally Even Superlattices

    Science.gov (United States)

    Krantz, Richard; Byrd, Jason

    2007-03-01

    Superlattices are multiple-well, semiconductor heterostructures that can be described by one-dimensional potential wells separated by potential barriers. We refer to a distribution of wells and barriers based on the theory of maximally even sets as a maximally even superlattice. The prototypical example of a maximally even set is the distribution of white and black keys on a piano keyboard. Black keys may represent wells and the white keys represent barriers. As the number of wells and barriers increase, efficient and stable methods of calculation are necessary to study these structures. We have implemented a finite-element method using the discrete variable representation (FE-DVR) to calculate E versus k for these superlattices. Use of the FE-DVR method greatly reduces the amount of calculation necessary for the eigenvalue problem.

  16. High-pressure Brillouin scattering in a simple molecular system

    CERN Document Server

    Shimizu, H

    2002-01-01

    Recent developments in high-pressure in situ Brillouin spectroscopy of a simple molecular system are reviewed by demonstrating experimental and analytical methods for the study of acoustic velocities in any direction, adiabatic elastic constants, and elastic anisotropy. Detailed applications to solid argon (Ar) are presented, at pressures up to 70 GPa in a diamond anvil cell, using recently developed approaches that combine the method of in situ Brillouin spectroscopy, for a single crystal of Ar up to 4 GPa, and the envelope method applied to both longitudinal acoustic and transverse acoustic modes, for recrystallized Ar between 4 and 70 GPa.

  17. Brillouin spectroscopy of clotting dynamics in a model system

    Science.gov (United States)

    Bustamante-Lopez, Sandra C.; Traverso, Andrew J.; Yakovlev, Vladislav V.; Meissner, Kenith E.

    2016-02-01

    Keys to successful treatment of disease include early diagnosis and timely treatment. It is hypothesized that early clotting events may contribute to a pro-thrombotic state that exacerbates atherothrombotic vascular disease. Brillouin spectroscopy involves inelastic coupling of light with phonons and enables viscoelastic characterization of samples at the microscale. In this work, we apply Brillouin spectroscopy to a model fibrinogen-thrombin clotting system with the goal of measuring clotting dynamics at the microscale and providing characterization that is not possible with standard rheometric techniques. Here, the clotting dynamics of the model clotting system are measured at various fibrinogen and thrombin concentrations.

  18. Resonance frequency in ferromagnetic superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Rongke; Huang Andong [School of Science, Shenyang University of Technology, Shenyang 110870 (China); Li Da; Zhang Zhidong, E-mail: rkqiu@163.com [Shenyang National Laboratory for Materials Science, Institute of Metal Research and International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016 (China)

    2011-10-19

    The resonance frequency in two-layer and three-layer ferromagnetic superlattices is studied, using the Callen's Green function method, the Tyablikov decoupling approximation and the Anderson-Callen decoupling approximation. The effects of interlayer exchange coupling, anisotropy, external magnetic field and temperature on the resonance frequency are investigated. It is found that the resonance frequencies increase with increasing external magnetic field. In a parameter region of the asymmetric system, each sublayer corresponds to its own resonance frequency. The anisotropy of a sublayer affects only the resonance frequency corresponding to this sublayer. The stronger the anisotropy, the higher is the resonance frequency. The interlayer exchange coupling affects only the resonance frequencies belonging to the sublayers connected by it. The stronger the interlayer exchange coupling, the higher are the resonance frequencies. All the resonance frequencies decrease as the reduced temperature increases. The results direct the method to enhance and adjust the resonance frequency of magnetic multilayered materials with a wide band.

  19. Electronic properties of superlattices on quantum rings

    Science.gov (United States)

    da Costa, D. R.; Chaves, A.; Ferreira, W. P.; Farias, G. A.; Ferreira, R.

    2017-04-01

    We present a theoretical study of the one-electron states of a semiconductor-made quantum ring (QR) containing a series of piecewise-constant wells and barriers distributed along the ring circumference. The single quantum well and the superlattice cases are considered in detail. We also investigate how such confining potentials affect the Aharonov–Bohm like oscillations of the energy spectrum and current in the presence of a magnetic field. The model is simple enough so as to allow obtaining various analytical or quasi-analytical results. We show that the well-in-a-ring structure presents enhanced localization features, as well as specific geometrical resonances in its above-barrier spectrum. We stress that the superlattice-in-a-ring structure allows giving a physical meaning to the often used but usually artificial Born–von-Karman periodic conditions, and discuss in detail the formation of energy minibands and minigaps for the circumferential motion, as well as several properties of the superlattice eigenstates in the presence of the magnetic field. We obtain that the Aharonov–Bohm oscillations of below-barrier miniband states are reinforced, owing to the important tunnel coupling between neighbour wells of the superlattice, which permits the electron to move in the ring. Additionally, we analysis a superlattice-like structure made of a regular distribution of ionized impurities placed around the QR, a system that may implement the superlattice in a ring idea. Finally, we consider several random disorder models, in order to study roughness disorder and to tackle the robustness of some results against deviations from the ideally nanostructured ring system.

  20. Electronic properties of superlattices on quantum rings.

    Science.gov (United States)

    da Costa, D R; Chaves, A; Ferreira, W P; Farias, G A; Ferreira, R

    2017-04-26

    We present a theoretical study of the one-electron states of a semiconductor-made quantum ring (QR) containing a series of piecewise-constant wells and barriers distributed along the ring circumference. The single quantum well and the superlattice cases are considered in detail. We also investigate how such confining potentials affect the Aharonov-Bohm like oscillations of the energy spectrum and current in the presence of a magnetic field. The model is simple enough so as to allow obtaining various analytical or quasi-analytical results. We show that the well-in-a-ring structure presents enhanced localization features, as well as specific geometrical resonances in its above-barrier spectrum. We stress that the superlattice-in-a-ring structure allows giving a physical meaning to the often used but usually artificial Born-von-Karman periodic conditions, and discuss in detail the formation of energy minibands and minigaps for the circumferential motion, as well as several properties of the superlattice eigenstates in the presence of the magnetic field. We obtain that the Aharonov-Bohm oscillations of below-barrier miniband states are reinforced, owing to the important tunnel coupling between neighbour wells of the superlattice, which permits the electron to move in the ring. Additionally, we analysis a superlattice-like structure made of a regular distribution of ionized impurities placed around the QR, a system that may implement the superlattice in a ring idea. Finally, we consider several random disorder models, in order to study roughness disorder and to tackle the robustness of some results against deviations from the ideally nanostructured ring system.

  1. Theory of Semiconducting Superlattices and Microstructures

    Science.gov (United States)

    1992-03-01

    Core excitons ir. superlattices We have developed the first theory of Hjalmarsor.- Frenke ’ core excitons in superlattices, and applied it to strained...technique has been described are accelerated. A kinetic tempcrature TK is defined as by Kirkpatrick et al.31 and uses thr Monte Carlo algo- the average...classical kinetic energy of the atoms, rithm of Metropolis et al.32 Monte Carlo steps are taken 3/2kTK=(l/N)4rn’mlv,, where i=1,2, . . . ,n is the

  2. FABRICATION OF PHOTONIC CRYSTAL WITH SUPERLATTICES

    Institute of Scientific and Technical Information of China (English)

    SUN Cheng; Chen Haihua; Zhang Jizhong; Wei Hongmei; Gu Zhongze

    2006-01-01

    A novel technique was used to fabricate three-dimensional photonic crystals with superlattices. The super structure was fabricated by assembling monodispersed microspheres in the grooves of the scales of morpho butterfly, which makes the photonic crystal being composed of two kinds of different photonic structures (natural groove structure of butterfly wing and artificial microspherical colloids arrangement). The superstructural photonic crystal exhibits some unique optical properties different from both the butterfly wing and the colloidal crystal. The approach exhibited here provides a new way for fabricate photonic crystals with superlattices.

  3. Tunneling in quantum superlattices with variable lacunarity

    Energy Technology Data Exchange (ETDEWEB)

    Villatoro, Francisco R. [Departamento de Lenguajes y Ciencias de la Computacion, Universidad de Malaga, E-29071 Malaga (Spain); Monsoriu, Juan A. [Departamento de Fisica Aplicada, Universidad Politecnica de Valencia, E-46022 Valencia (Spain)], E-mail: jmonsori@fis.upv.es

    2008-05-19

    Fractal superlattices are composite, aperiodic structures comprised of alternating layers of two semiconductors following the rules of a fractal set. The scattering properties of polyadic Cantor fractal superlattices with variable lacunarity are determined. The reflection coefficient as a function of the particle energy and the lacunarity parameter present tunneling curves, which may be classified as vertical, arc, and striation nulls. Approximate analytical formulae for such curves are derived using the transfer matrix method. Comparison with numerical results shows good accuracy. The new results may be useful in the development of band-pass energy filters for electrons, semiconductor solar cells, and solid-state radiation sources up to THz frequencies.

  4. Resonant x-ray scattering in perovskite manganite superlattice. Observation of 'orbital superlattice'

    CERN Document Server

    Kiyama, T; Ohsumi, H; Murakami, Y; Wakabayashi, Y; Izumi, M; Kawasaki, M; Tokura, Y

    2003-01-01

    We report the results of resonant X-ray scattering (RXS) measurement of superlattices which consist of La sub 0 sub . sub 4 sub 5 Sr sub 0 sub . sub 5 sub 5 MnO sub 3 and La sub 0 sub . sub 6 sub 0 Sr sub 0 sub . sub 4 sub 0 MnO sub 3 multilayers. An interference technique made it possible to observe RXS reflections from ferro-type orbital ordering in the superlattices. RXS can reveal the local circumstances around specific atoms in materials regulated atomically. In this experiment, we observed that the superlattice is actually composed of two kinds of layers with different lattice distortion states, presenting 'orbital superlattices', in which layers with different orbital states are stacked alternately in an atomic scale. (author)

  5. High-speed stimulated Brillouin scattering spectroscopy at 780 nm

    Directory of Open Access Journals (Sweden)

    Itay Remer

    2016-09-01

    Full Text Available We demonstrate a high-speed stimulated Brillouin scattering (SBS spectroscopy system that is able to acquire stimulated Brillouin gain point-spectra in water samples and Intralipid tissue phantoms over 2 GHz within 10 ms and 100 ms, respectively, showing a 10-100 fold increase in acquisition rates over current frequency-domain SBS spectrometers. This improvement was accomplished by integrating an ultra-narrowband hot rubidium-85 vapor notch filter in a simplified frequency-domain SBS spectrometer comprising nearly counter-propagating continuous-wave pump-probe light at 780 nm and conventional single-modulation lock-in detection. The optical notch filter significantly suppressed stray pump light, enabling detection of stimulated Brillouin gain spectra with substantially improved acquisition times at adequate signal-to-noise ratios (∼25 dB in water samples and ∼15 dB in tissue phantoms. These results represent an important step towards the use of SBS spectroscopy for high-speed measurements of Brillouin gain resonances in scattering and non-scattering samples.

  6. Cascaded forward Brillouin scattering to all Stokes orders

    Science.gov (United States)

    Wolff, C.; Stiller, B.; Eggleton, B. J.; Steel, M. J.; Poulton, C. G.

    2017-02-01

    Inelastic scattering processes such as Brillouin scattering can often function in cascaded regimes and this is likely to occur in certain integrated opto-acoustic devices. We develop a Hamiltonian formalism for cascaded Brillouin scattering valid for both quantum and classical regimes. By regarding Brillouin scattering as the interaction of a single acoustic envelope and a single optical envelope that covers all Stokes and anti-Stokes orders, we obtain a compact model that is well suited for numerical implementation, extension to include other optical nonlinearities or short pulses, and application in the quantum-optics domain. We then theoretically analyze intra-mode forward Brillouin scattering (FBS) for arbitrary waveguides with and without optical dispersion. In the absence of optical dispersion, we find an exact analytical solution. With a perturbative approach, we furthermore solve the case of weak optical dispersion. Our work leads to several key results on intra-mode FBS. For negligible dispersion, we show that cascaded intra-mode FBS results in a pure phase modulation and discuss how this necessitates specific experimental methods for the observation of fiber-based and integrated FBS. Further, we discuss how the descriptions that have been established in these two classes of waveguides connect to each other and to the broader context of cavity opto-mechanics and Raman scattering. Finally, we draw an unexpected striking similarity between FBS and discrete diffraction phenomena in waveguide arrays, which makes FBS an interesting candidate for future research in quantum-optics.

  7. Interface bands in carbon nanotube superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Jaskolski, W.; Pelc, M. [Instytut Fizyki UMK, Grudziadzka 5, 87-100 Torun (Poland); Santos, H.; Chico, L. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid (Spain); Ayuela, A. [Centro de Fisica de Materiales CSIC-UPV/EHU, Departamento de Fisica de Materiales (Facultad de Quimicas), and Donostia International Physics Center (DIPC), 20080 Donostia (Spain)

    2010-02-15

    We study the electronic band structure of several carbon nanotube superlattices built of two kinds of intermolecular junctions: (12, 0)/(6, 6) and (8, 0)/(14, 0). In particular, we focus on the energy bands originating from interface states. We find that in case of the metallic (12, 0)/(6, 6) superlattices, the interface bands change periodically their character from bonding- to antibonding-like vs. increasing length of the (6, 6) tube. We show that these changes are related to the decay of the charge density Friedel oscillations in the metallic (6, 6) tube. However, when we explore other chiralities without rotational symmetry, no changes in bondingantibonding character are observed for semiconductor superlattices, as exemplified in the case of (8, 0)/(14, 0) superlattices. Our results indicate that unless metallic tubes are employed in the junctions, the bonding-antibonding crossings are not present (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Optical coherent detection Brillouin distributed optical fiber sensor based on orthogonal polarization diversity reception

    Institute of Scientific and Technical Information of China (English)

    Muping Song; Bin Zhao; Xianmin Zhang

    2005-01-01

    In Brillouin distributed optical fiber sensor, using optical coherent detection to detect Brillouin scattering optical signal is a good method, but there exists the polarization correlated detection problem. A novel detecting scheme is presented and demonstrated experimentally, which adopts orthogonal polarization diversity reception to resolve the polarization correlated detection problem. A laser is used as pump and reference light sources, a microwave electric-optical modulator (EOM) is adopted to produce frequency shift reference light, a polarization controller is used to control the polarization of the reference light which is changed into two orthogonal polarization for two adjacent acquisition periods. The Brillouin scattering light is coherently detected with the reference light, and the Brillouin scattering optical signal is taken out based on Brillouin frequency shift. After electronic processing, better Brillouin distributed sensing signal is obtained. A 25-km Brillouin distributed optical fiber sensor is achieved.

  9. Exchange bias in Fe/Cr double superlattices.

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J. S.; Felcher, G. P.; Inomata, A.; Goyette, R.; Nelson, C.; Bader, S. D.

    1999-11-30

    Utilizing the oscillatory interlayer exchange coupling in Fe/Cr superlattices, we have constructed ''double superlattice'' structures where a ferromagnetic (F) and an antiferromagnetic (AF) Fe/Cr superlattice are coupled through a Cr spacer. The minor hysteresis loops in the magnetization are shifted from zero field, i.e., the F superlattice is exchange biased by the AF one. The double superlattices are sputter-deposited with (211) epitaxy and possess uniaxial in-plane magnetic anisotropy. The magnitude of the bias field is satisfactorily described by the classic formula for collinear spin structures. The coherent structure and insensitivity to atomic-scale roughness makes it possible to determine the spin distribution by polarized neutron reflectivity, which confirms that the spin structure is collinear. The magnetic reversal behavior of the double superlattices suggests that a realistic model of exchange bias needs to address the process of nucleating local reverse domains.

  10. Electron gyroharmonic effects on ionospheric stimulated Brillouin scatter

    Science.gov (United States)

    Mahmoudian, A.; Scales, W. A.; Bernhardt, P. A.; Isham, B.; Kendall, E.; Briczinski, S. J.; Fuentes, N. E. B.; Vega-Cancel, O.

    2014-08-01

    Stimulated Brillouin scattering (SBS) and resonant phenomena are well known in the context of laser fusion, fiber optics, and piezoelectric semiconductor plasmas, as well as in various biological applications. Due to recent advances, active space experiments using high-power high-frequency (HF) radio waves may now produce stimulated Brillouin scattering (SBS) in the ionospheric plasma. The sensitivity of the narrowband SBS emission lines to pump frequency stepping across electron gyroharmonics is reported here for the first time. Experimental observations show that SBS emission sidebands are suppressed as the HF pump frequency is stepped across the second and third electron gyroharmonics. A correlation of artificially enhanced airglow and SBS emission lines excited at the upper hybrid altitude is observed and studied for second gyroharmonic heating. The SBS behavior near electron gyroharmonics is shown to have important diagnostic applications for multilayered, multi-ion component plasmas such as the ionosphere.

  11. A Rayleigh-Brillouin scattering spectrometer for ultraviolet wavelengths

    CERN Document Server

    Gu, Ziyu; van Duijn, Eric-Jan; Ubachs, Wim; 10.1063/1.4721272

    2012-01-01

    A spectrometer for the measurement of spontaneous Rayleigh-Brillouin scattering line profiles at ultraviolet wavelengths from gas phase molecules has been developed, employing a high-power frequency-stabilized UV laser with narrow bandwidth (2 MHz). The UV light from a frequency-doubled titanium:sapphire laser is further amplified in an enhancement cavity, delivering a 5 Watt UV-beam propagating through the interaction region inside a scattering cell. The design of the RB-scattering cell allows for measurements at gas pressures in the range 0-4 bar and at stably controlled temperatures from -30 to 70 degree Celsius. A scannable Fabry-Perot analyzer with instrument resolution of 232 MHz probes the Rayleigh-Brillouin profiles. Measurements on N2 and SF6 gases demonstrate the high signal-to-noise ratio achievable with the instrument, at the 1% level at the peak amplitude of the scattering profile.

  12. Brillouin microspectroscopy of nanostructured biomaterials: photonics assisted tailoring mechanical properties

    Science.gov (United States)

    Meng, Zhaokai; Jaiswal, Manish K.; Chitrakar, Chandani; Thakur, Teena; Gaharwar, Akhilesh K.; Yakovlev, Vladislav V.

    2016-03-01

    Developing new biomaterials is essential for the next-generation of materials for bioenergy, bioelectronics, basic biology, medical diagnostics, cancer research, and regenerative medicine. Specifically, recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. The physical properties of nanocomposite biomaterials, including elasticity and viscosity, play key roles in controlling cell fate, which underlines therapeutic success. Conventional mechanical tests, including uniaxial compression and tension, dynamic mechanical analysis and shear rheology, require mechanical forces to be directly exerted onto the sample and therefore may not be suitable for in situ measurements or continuous monitoring of mechanical stiffness. In this study, we employ spontaneous Brillouin spectroscopy as a viscoelasticity-specific probing technique. We utilized a Brillouin spectrometer to characterize biomaterial's microscopic elasticity and correlated those with conventional mechanical tests (e.g., rheology).

  13. A high-efficiency Brillouin fiber ring laser

    Institute of Scientific and Technical Information of China (English)

    Pingping Zhang; Shuling Hu; Shuying Chen; Yuanhong Yang; Chunxi Zhang

    2009-01-01

    A high-efficiency Brillouin fiber ring laser is demonstrated using the standard single-mode fiber.The laser exhibits a 3.6-mW threshold.The output power is 22 mW with 40-nlW pump power,and the maximum optical-to-optical efficiency is 55%. The output is single wavelength with a 3-dB linewidth of 5 MHz,and the interval of center frequency between the laser and the pump light is 11 GHz (0.088 nm).It is shown that the stimulated Brillouin scattering threshold of ring resonator is lower and the energy transfer efficiency is higher than those in fiber.

  14. Stability of Brillouin Flow in Slow-Wave Structures

    Science.gov (United States)

    Simon, David; Lau, Y. Y.; Greening, Geoffrey; Wong, Patrick; Gilgenbach, Ronald; Hoff, Brad

    2016-10-01

    For the first time, we include a slow-wave structure (SWS) to study the stability of Brillouin flow in the conventional, planar, and inverted magnetron geometry. The resonant interaction of the SWS circuit mode and the corresponding smooth-bore diocotron-like mode is found to be the dominant cause for instability, overwhelming the intrinsic negative (positive) mass property of electrons in the inverted (conventional) magnetron geometry. It severely restricts the wavenumber for instability to the narrow range in which the cold tube frequency of the SWS is within a few percent of the corresponding smooth bore diocotron-like mode in the Brillouin flow. This resonant interaction is absent in a smooth bore magnetron. Work supported by ONR N00014-13-1-0566 and N00014-16-1-2353, AFOSR FA9550-15-1-0097, and L-3 Communications Electron Device Division.

  15. A New Approach to Cascaded Stimulated Brillouin Scattering

    CERN Document Server

    Dong, Mark

    2015-01-01

    We present a novel approach to cascaded stimulated Brillouin scattering and frequency comb generation in which the multitude of interacting pump, Stokes, and anti-Stokes optical fields are described by a single forward wave and a single backward wave at a single carrier frequency. The envelopes of these two waves are modulated through coupling to a single acoustic oscillation and through four-wave mixing. Starting from a single pump field, we observe the emergence of a comb of frequencies as the intensity is increased. The set of three differential equations derived here are sufficient to describe the generation of any number of Brillouin sidebands in oscillator systems that would have required hundreds of coupled equations in the standard approach. We test the new approach on some published experiments and find excellent agreement with the results.

  16. Stimulated Brillouin scatter in a magnetized ionospheric plasma.

    Science.gov (United States)

    Bernhardt, P A; Selcher, C A; Lehmberg, R H; Rodriguez, S P; Thomason, J F; Groves, K M; McCarrick, M J; Frazer, G J

    2010-04-23

    High power electromagnetic waves transmitted from the HAARP facility in Alaska can excite low-frequency electrostatic waves by magnetized stimulated Brillouin scatter. Either an ion-acoustic wave with a frequency less than the ion cyclotron frequency (f(CI)) or an electrostatic ion cyclotron (EIC) wave just above f(CI) can be produced. The coupled equations describing the magnetized stimulated Brillouin scatter instability show that the production of both ion-acoustic and EIC waves is strongly influenced by the wave propagation relative to the background magnetic field. Experimental observations of stimulated electromagnetic emissions using the HAARP transmitter have confirmed that only ion-acoustic waves are excited for propagation along the magnetic zenith and that EIC waves can only be detected with oblique propagation angles. The ion composition can be obtained from the measured EIC frequency.

  17. Extreme temperature sensing using brillouin scattering in optical fibers

    CERN Document Server

    Fellay, Alexandre

    Stimulated Brillouin scattering in silica-based optical fibers may be considered from two different and complementary standpoints. For a physicist, this interaction of light and pressure wave in a material, or equivalently in quantum theory terms between photons and phonons, gives some glimpses of the atomic structure of the solid and of its vibration modes. For an applied engineer, the same phenomenon may be put to good use as a sensing mechanism for distributed measurements, thanks to the dependence of the scattered light on external parameters such as the temperature, the pressure or the strain applied to the fiber. As far as temperature measurements are concerned, Brillouin-based distributed sensors have progressively gained wide recognition as efficient systems, even if their rather high cost still restricts the number of their applications. Yet they are generally used in a relatively narrow temperature range around the usual ambient temperature; in this domain, the frequency of the scattered light incre...

  18. Superlattices: problems and new opportunities, nanosolids

    Directory of Open Access Journals (Sweden)

    Tsu Raphael

    2011-01-01

    Full Text Available Abstract Superlattices were introduced 40 years ago as man-made solids to enrich the class of materials for electronic and optoelectronic applications. The field metamorphosed to quantum wells and quantum dots, with ever decreasing dimensions dictated by the technological advancements in nanometer regime. In recent years, the field has gone beyond semiconductors to metals and organic solids. Superlattice is simply a way of forming a uniform continuum for whatever purpose at hand. There are problems with doping, defect-induced random switching, and I/O involving quantum dots. However, new opportunities in component-based nanostructures may lead the field of endeavor to new heights. The all important translational symmetry of solids is relaxed and local symmetry is needed in nanosolids.

  19. Ultrafast structural dynamics of perovskite superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Woerner, M.; Korff Schmising, C. von; Zhavoronkov, N.; Elsaesser, T. [Max-Born-Institut fuer Nichtlineare Optik und Kurzzeitspektroskopie, Berlin (Germany); Bargheer, M. [Universitaet Potsdam, Institut fuer Physik und Astronomie, Potsdam (Germany); Vrejoiu, I.; Hesse, D.; Alexe, M. [Max-Planck-Institut fuer Mikrostrukturphysik, Halle (Germany)

    2009-07-15

    Femtosecond X-ray diffraction provides direct insight into the ultrafast reversible lattice dynamics of materials with a perovskite structure. Superlattice (SL) structures consisting of a sequence of nanometer-thick layer pairs allow for optically inducing a tailored stress profile that drives the lattice motions and for limiting the influence of strain propagation on the observed dynamics. We demonstrate this concept in a series of diffraction experiments with femtosecond time resolution, giving detailed information on the ultrafast lattice dynamics of ferroelectric and ferromagnetic superlattices. Anharmonically coupled lattice motions in a SrRuO{sub 3}/PbZr{sub 0.2}Ti{sub 0.8}O{sub 3} (SRO/PZT) SL lead to a switch-off of the electric polarizations on a time scale of the order of 1 ps. Ultrafast magnetostriction of photoexcited SRO layers is demonstrated in a SRO/SrTiO{sub 3} (STO) SL. (orig.)

  20. Brillouin-Wigner perturbation theory in open electromagnetic systems

    CERN Document Server

    Muljarov, E A; Zimmermann, R; 10.1209/0295-5075/92/50010

    2012-01-01

    A Brillouin-Wigner perturbation theory is developed for open electromagnetic systems which are characterised by discrete resonant states with complex eigenenergies. Since these states are exponentially growing at large distances, a modified normalisation is introduced that allows a simple spectral representation of the Green's function. The perturbed modes are found by solving a linear eigenvalue problem in matrix form. The method is illustrated on exactly solvable one- and three-dimensional examples being, respectively, a dielectric slab and a microsphere.

  1. Transformation optics simulation method for stimulated Brillouin scattering

    CERN Document Server

    Zecca, Roberto; Smith, David R; Larouche, Stéphane

    2016-01-01

    We develop a novel approach to enable the full-wave simulation of stimulated Brillouin scattering and related phenomena in a frequency-domain, finite-element environment. The method uses transformation optics techniques to implement a time-harmonic coordinate transform that reconciles the different frames of reference used by electromagnetic and mechanical finite-element solvers. We show how this strategy can be successfully applied to bulk and guided systems, comparing the results with the predictions of established theory.

  2. All-optical signal processing using dynamic Brillouin gratings

    Science.gov (United States)

    Santagiustina, Marco; Chin, Sanghoon; Primerov, Nicolay; Ursini, Leonora; Thévenaz, Luc

    2013-01-01

    The manipulation of dynamic Brillouin gratings in optical fibers is demonstrated to be an extremely flexible technique to achieve, with a single experimental setup, several all-optical signal processing functions. In particular, all-optical time differentiation, time integration and true time reversal are theoretically predicted, and then numerically and experimentally demonstrated. The technique can be exploited to process both photonic and ultra-wide band microwave signals, so enabling many applications in photonics and in radio science. PMID:23549159

  3. Brillouin optical time-domain analysis for geotechnical monitoring

    Institute of Scientific and Technical Information of China (English)

    L. Zeni; L. Picarelli; B. Avolio; A. Coscetta; R. Papa; G. Zeni; C. Di Maio; R. Vassallo; A. Minardo

    2015-01-01

    In this paper, we show some recent experimental applications of Brillouin optical time-domain analysis (BOTDA) based sensors for geotechnical monitoring. In particular, how these sensors can be applied to detecting early movements of soil slopes by the direct embedding of suitable fiber cables in the ground is presented. Furthermore, the same technology can be used to realize innovative inclinometers, as well as smart foundation anchors.

  4. Polarization-dependent phase locking in stimulated Brillouin scattering systems.

    Science.gov (United States)

    Hua, X; Falk, J

    1993-10-20

    Measurements of the mutual coherence of the output beams from a seeded, two-pump-beam, stimulated Brillouin scattering system are reported. Mutual coherence depends on the relative polarizations of the pump beams and the seed beam. A seed beam can phase-lock the Stokes outputs even if the pump beams are orthogonally polarized. Four-wave mixing is responsible for this phase locking.

  5. Self-pulsation threshold of Raman amplified Brillouin fiber cavities.

    Science.gov (United States)

    Ott, J R; Pedersen, M E V; Rottwitt, K

    2009-08-31

    An implicit equation for the oscillation threshold of stimulated Brillouin scattering from Raman amplified signals in fibers with external feedback is derived under the assumption of no depletion. This is compared to numerical investigations of Raman amplification schemes showing good agreement for high reflectivities. For low reflectivities and high attenuation or long fibers, the assumption of no depletion is shown not to be valid. In these cases the effects of the depletion on the self-pulsation is examined.

  6. Self-pulsation threshold of Raman amplified Brillouin fiber cavities

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær; Pedersen, Martin Erland Vestergaard; Rottwitt, Karsten

    2009-01-01

    An implicit equation for the oscillation threshold of stimulated Brillouin scattering from Raman amplified signals in fibers with external feedback is derived under the assumption of no depletion. This is compared to numerical investigations of Raman amplification schemes showing good agreement...... for high reflectivities. For low reflectivities and high attenuation or long fibers, the assumption of no depletion is shown not to be valid. In these cases the effects of the depletion on the self-pulsation is examined....

  7. Reduced Brillouin backscatter in CO2 laser-target interaction

    Science.gov (United States)

    Ng, A.; Offenberger, A. A.; Karttunen, S. J.

    1981-02-01

    A substantially reduced Brillouin reflection has been found for CO2 laser-irradiated high-density gas targets. In contrast to the high reflectivity (60%) previously observed for underdense hydrogen plasma, total backscatter (stimulated plus specular) is found to peak at 30% for incident intensity 5 times 10 to the twelfth W per square centimeter and decrease thereafter to 18% at 10 to the thirteenth W per square centimeter. The ponderomotive effects are postulated to account for these observations.

  8. Tunneling of electrons through semiconductor superlattices

    Indian Academy of Sciences (India)

    C L Roy

    2002-11-01

    The purpose of the present paper is to report a study of tunneling of electrons through semiconductor superlattices (SSL); specially, we have analysed diverse features of transmission coefficient of SSL. The SSL we have considered is Ga0.7Al0.3As–GaAs which has been drawing considerable attention during the recent past on account of some typical features of its band structure. We have indicated how our results would help fabrication of ultra high speed devices.

  9. Dynamic square superlattice of Faraday waves

    Science.gov (United States)

    Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Tuckerman, Laurette

    2014-11-01

    Faraday waves are computed in a 3D container using BLUE, a code based on a hybrid Front-Tracking/Level-set algorithm for Lagrangian tracking of arbitrarily deformable phase interfaces. A new dynamic superlattice pattern is described which consists of a set of square waves arranged in a two-by-two array. The corners of this array are connected by a bridge whose position oscillates in time between the two diagonals.

  10. Preparation of Extracellular Matrix Protein Fibers for Brillouin Spectroscopy.

    Science.gov (United States)

    Edginton, Ryan S; Mattana, Sara; Caponi, Silvia; Fioretto, Daniele; Green, Ellen; Winlove, C Peter; Palombo, Francesca

    2016-09-15

    Brillouin spectroscopy is an emerging technique in the biomedical field. It probes the mechanical properties of a sample through the interaction of visible light with thermally induced acoustic waves or phonons propagating at a speed of a few km/sec. Information on the elasticity and structure of the material is obtained in a nondestructive contactless manner, hence opening the way to in vivo applications and potential diagnosis of pathology. This work describes the application of Brillouin spectroscopy to the study of biomechanics in elastin and trypsin-digested type I collagen fibers of the extracellular matrix. Fibrous proteins of the extracellular matrix are the building blocks of biological tissues and investigating their mechanical and physical behavior is key to establishing structure-function relationships in normal tissues and the changes which occur in disease. The procedures of sample preparation followed by measurement of Brillouin spectra using a reflective substrate are presented together with details of the optical system and methods of spectral data analysis.

  11. High-extinction VIPA-based Brillouin spectroscopy of turbid biological media

    CERN Document Server

    Fiore, Antonio; Shao, Peng; Yun, Seok Hyun; Scarcelli, Giuliano

    2016-01-01

    Brillouin microscopy has recently emerged as powerful technique to characterize the mechanical properties of biological tissue, cell and biomaterials. However, the potential of Brillouin microscopy is currently limited to transparent samples, because Brillouin spectrometers do not have sufficient spectral extinction to reject the predominant non-Brillouin scattered light of turbid media. To overcome this issue, we developed a spectrometer composed of a two VIPA stages and a multi-pass Fabry-Perot interferometer. The Fabry-Perot etalon acts as an ultra-narrow band-pass filter for Brillouin light with high spectral extinction and low loss. We report background-free Brillouin spectra from Intralipid solutions and up to 100 microns deep within chicken muscle tissue.

  12. Signal Processing for Fibre-optic Distributed Sensing Techniques Employing Brillouin Scattering

    Institute of Scientific and Technical Information of China (English)

    XIAO Shang-hui; LI Li

    2009-01-01

    As fibre optic distributed scattering sensing systems are providing innovative solutions for the monitoring of large structures, Brillouin-based distributed scattering sensing techniques represent a new physical approach for structures health monitoring, which seems extremely promising and is receiving most attentions. This paper comprehensively presents some methods of signal interrogation for fibre optic Brillouin-based distributed scattering sensing technology, especially establishes an accurate Pseudo-Voigt model of Brillouin gain spectrum and gives some results on spectrum analysis and data processing.

  13. MBE growth and characterisation of light rare-earth superlattices

    DEFF Research Database (Denmark)

    Ward, R.C.C.; Wells, M.R.; Bryn-Jacobsen, C.

    1996-01-01

    The molecular beam epitaxy growth techniques which have already successfully produced a range of heavy rare-earth superlattices have now been extended to produce superlattices of two light rare-earth elements, Nd/Pr, as well as superlattices and alloy films of a heavy/light system, Ho/Pr. High......-resolution X-ray diffraction analysis shows the Nd/Pr superlattices to be of high structural quality, while the Ho/Pr superlattices are significantly less so. In the Ho/Pr superlattices, Pr is found to retain its bulk dhcp crystal structure even in thin layers (down to 6 atomic planes thick) sandwiched between...... thick layers of hcp Ho. In addition, neutron diffraction studies of the He/Pr superlattices have shown that the helical Ho magnetic order is not coherent through the dhcp Pr layers, in contrast to previous hcp/hcp superlattices Ho/Y, Ho/Lu and Ho/Er. The series of Ho:Pr alloy films has shown structural...

  14. Wave-function reconstruction in a graded semiconductor superlattice

    DEFF Research Database (Denmark)

    Lyssenko, V. G.; Hvam, Jørn Märcher; Meinhold, D.

    2004-01-01

    We reconstruct a test wave function in a strongly coupled, graded well-width superlattice by resolving the spatial extension of the interband polarisation and deducing the wave function employing non-linear optical spectroscopy. The graded gap superlattice allows us to precisely control the dista...

  15. Current responsivity of semiconductor superlattice THz-photon detectors

    DEFF Research Database (Denmark)

    Ignatov, Anatoly A.; Jauho, Antti-Pekka

    1999-01-01

    The current responsivity of a semiconductor superlattice THz-photon detector is calculated using an equivalent circuit model which takes into account the finite matching efficiency between a detector antenna and the superlattice in the presence of parasitic losses. Calculations performed for curr......The current responsivity of a semiconductor superlattice THz-photon detector is calculated using an equivalent circuit model which takes into account the finite matching efficiency between a detector antenna and the superlattice in the presence of parasitic losses. Calculations performed...... for currently available superlattice diodes show that both the magnitudes and the roll-off frequencies of the responsivity are strongly influenced by an excitation of hybrid plasma-Bloch oscillations which are found to be eigenmodes of the system in the THz-frequency band. The expected room temperature values...

  16. Plasmon nanoparticle superlattices as optical-frequency magnetic metamaterials.

    Science.gov (United States)

    Alaeian, Hadiseh; Dionne, Jennifer A

    2012-07-02

    Nanocrystal superlattices have emerged as a new platform for bottom-up metamaterial design, but their optical properties are largely unknown. Here, we investigate their emergent optical properties using a generalized semi-analytic, full-field solver based on rigorous coupled wave analysis. Attention is given to superlattices composed of noble metal and dielectric nanoparticles in unary and binary arrays. By varying the nanoparticle size, shape, separation, and lattice geometry, we demonstrate the broad tunability of superlattice optical properties. Superlattices composed of spherical or octahedral nanoparticles in cubic and AB(2) arrays exhibit magnetic permeabilities tunable between 0.2 and 1.7, despite having non-magnetic constituents. The retrieved optical parameters are nearly polarization and angle-independent over a broad range of incident angles. Accordingly, nanocrystal superlattices behave as isotropic bulk metamaterials. Their tunable permittivities, permeabilities, and emergent magnetism may enable new, bottom-up metamaterials and negative index materials at visible frequencies.

  17. Transverse magnetic mode along THz waveguides with biased superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Aceituno, P. [Dpto. Fisica Basica, Universidad de La Laguna, La Laguna, 38206 Tenerife (Spain)], E-mail: paceitun@ull.es; Hernandez-Cabrera, A. [Dpto. Fisica Basica, Universidad de La Laguna, La Laguna, 38206 Tenerife (Spain); Vasko, F.T. [Institute of Semiconductor Physics, NAS Ukraine, Pr. Nauki 41, Kiev 03028 (Ukraine)

    2008-05-15

    We study the propagation of transverse magnetic modes arising from a waveguide consisting on a GaAs-based superlattice located at vacuum-dielectric interface. The transverse mode is generated by the ultrafast intersubband response of the superlattice subjected to a high-frequency electric field. The superlattice is also subjected to a homogeneous bias potential to get a biased superlattice with equipopulated levels. The heterostructure is analyzed through the tight-binding approximation, and considering the level broadening caused by different scattering processes (homogeneous and inhomogeneous broadening mechanisms). We pay special attention to the dispersion relations of the complex dielectric permittivity because of real and imaginary parts of this function play a key role in wide miniband superlattices.

  18. Theory of silicon superlattices - Electronic structure and enhanced mobility

    Science.gov (United States)

    Moriarty, J. A.; Krishnamurthy, S.

    1983-01-01

    A realistic tight-binding band-structure model of silicon superlattices is formulated and used to study systems of potential applied interest, including periodic layered Si-Si(1-x)Ge(x) heterostructures. The results suggest a possible new mechanism for achieving enhanced transverse carrier mobility in such structures: reduced transverse conductivity effective masses associated with the superlattice band structure. For electrons in 100-line-oriented superlattices, a reduced conductivity mass arises intrinsically from the lower symmetry of the superlattice and its unique effect on the indirect bulk silicon band gap. An order of magnitude estimate of the range of mobility enhancement expected from this mechanism appears to be consistent with preliminary experimental results on Si-Si(1-x)Ge(x) superlattices.

  19. Zonas de Brillouin de los grupos de capa

    OpenAIRE

    García Santos, Laura

    2016-01-01

    La base de datos de las zonas de Brillouin de los grupos de capa del Bilbao Crystallographic Server incluye tablas de vectores de onda y figuras que forman la base para la clasificación de las representaciones de los grupos de capa. Las propiedades de simetría de los vectores de onda se determinan por los llamados grupos del espacio recíproco y esta clasificación se compara con la que recoge el libro “Character Tables and Compatibility Relations of The Eighty Layer Groups and Seventeen Plane ...

  20. Stimulated Brillouin scattering enhancement in silicon inverse opal waveguides

    CERN Document Server

    Smith, M J A; de Sterke, C Martijn; Lapine, M; Kuhlmey, B T; Poulton, C G

    2016-01-01

    Silicon is an ideal material for on-chip applications, however its poor acoustic properties limit its performance for important optoacoustic applications, particularly for Stimulated Brillouin Scattering (SBS). We theoretically show that silicon inverse opals exhibit a strongly improved acoustic performance that enhances the bulk SBS gain coefficient by more than two orders of magnitude. We also design a waveguide that incorporates silicon inverse opals and which has SBS gain values that are comparable with chalcogenide glass waveguides. This research opens new directions for opto-acoustic applications in on-chip material systems.

  1. Rayleigh-Brillouin spectrum in special relativistic hydrodynamics.

    Science.gov (United States)

    Garcia-Perciante, A L; Garcia-Colin, L S; Sandoval-Villalbazo, A

    2009-06-01

    In this paper we calculate the Rayleigh-Brillouin spectrum for a relativistic simple fluid according to three different versions available for a relativistic approach to nonequilibrium thermodynamics. An outcome of these calculations is that Eckart's version predicts that such spectrum does not exist. This provides an argument to question its validity. The remaining two results, which differ one from another, do provide a finite form for such spectrum. This raises the rather intriguing question as to which of the two theories is a better candidate to be taken as a possible version of relativistic nonequilibrium thermodynamics. The answer will clearly require deeper examination of this problem.

  2. The Rayleigh-Brillouin Spectrum in Special Relativistic Hydrodynamics

    CERN Document Server

    García-Perciante, A L; Sandoval-Villalbazo, A

    2009-01-01

    In this paper we calculate the Rayleigh-Brillouin spectrum for a relativistic simple fluid according to three different versions available for a relativistic approach to non-equilibrium thermodynamics. An outcome of these calculations is that Eckart's version predicts that such spectrum does not exist. This provides an argument to question its validity. The remaining two results, which differ one from another, do provide a finite form for such spectrum. This raises the rather intriguing question as to which of the two theories is a better candidate to be taken as a possible version of relativistic non-equilibrium thermodynamics. The answer will clearly require deeper examination of this problem.

  3. Wavelength division and subcarrier system based on Brillouin amplification

    Science.gov (United States)

    Lee, Yang-Han; Wu, Jingshown; Kao, Ming-Seng; Tsao, Hen-Wai

    1991-10-01

    This paper analyzes an optical wavelength division multiplexing system (WDM) with subcarrier multiplexing (SCM). The pump laser is tuned to amplify the corresponding optical carrier by fiber Brillouin amplification (FBA) in WDM for the desired group of SCM signals and then a microwave tuner is used to select the desired channel in this group. This system has the benefits of eliminating the need of polarization control, the ability of phase noise cancelling due to the 'squaring' photodetection process of the selected optical carrier together with its SCM channels, and enhancement of optical receiver sensitivities by amplification of the carrier.

  4. New improvements for Brillouin optical time-domain reflectometry

    Science.gov (United States)

    Le Floch, Sébastien; Sauser, Florian

    2017-04-01

    This paper presents new techniques designed to improve the performances of a BOTDR. The first one introduces a second pump to the sensor, thus doubling the Brillouin signal on the receiver. The second one uses image processing with a two-dimensional Gaussian filter whose parameters are defined. The last technique explores the possibilities offered by colour codes. The benefits of each, in terms of signal-to-noise ratio, is presented by comparing measurements over a distance range of 50km with a spatial resolution of 5m. These techniques can easily be combined and the global improvement is estimated at 10dB, compared to conventional sensors.

  5. Rayleigh-Brillouin Scattering in Binary Gas Mixtures

    CERN Document Server

    Gu, Ziyu; van de Water, Willem; Marques, Wilson

    2015-01-01

    Precise measurements are performed on spectral lineshapes of spontaneous Rayleigh-Brillouin scattering in mixtures of the noble gases Ar and Kr, with He. Admixture of a light He atomic fraction results in marked changes of the spectra, although in all experiments He is merely a spectator atom: it affects the relaxation of density fluctuations of the heavy constituent, but its contribution to the scattered light intensity is negligibly small. The results are compared to a theory for the spectral lineshape without adjustable parameters, yielding excellent agreement for the case of binary mono-atomic gases, signifying a step towards modeling and understanding of light scattering in more complex molecular media.

  6. Biomechanics of subcellular structures by non-invasive Brillouin microscopy

    Science.gov (United States)

    Antonacci, Giuseppe; Braakman, Sietse

    2016-11-01

    Cellular biomechanics play a pivotal role in the pathophysiology of several diseases. Unfortunately, current methods to measure biomechanical properties are invasive and mostly limited to the surface of a cell. As a result, the mechanical behaviour of subcellular structures and organelles remains poorly characterised. Here, we show three-dimensional biomechanical images of single cells obtained with non-invasive, non-destructive Brillouin microscopy with an unprecedented spatial resolution. Our results quantify the longitudinal elastic modulus of subcellular structures. In particular, we found the nucleoli to be stiffer than both the nuclear envelope (p biomechanics and its role in pathophysiology.

  7. Nonlinear THz response of metallic armchair graphene nanoribbon superlattices

    Science.gov (United States)

    Wang, Yichao; Andersen, David R.

    2016-11-01

    We study the third order THz nonlinear response of metallic armchair graphene nanoribbon superlattices in the presence of an elliptically-polarized excitation field using the time dependent perturbation theory. For a one-dimensional Kronig-Penney potential of infinite length, the nonlinear response can be described perturbatively by a low energy \\mathbf{k}\\centerdot \\mathbf{p} N-photon coupling model. Remarkably, as shown by Burset et al the energy dispersion of the metallic band in the direction parallel to the superlattice wavevector is independent of the applied superlattice potential while the energy dispersion in the direction perpendicular to the superlattice wavevector depends strongly on the superlattice parameters. As a result, we predict novel behavior for the nonlinear response of single layer metallic acGNR superlattices to an applied elliptically-polarized electric field. Our work shows that the superlattice potential, periodicity, Fermi level, excitation field polarization state, and temperature all play a significant role in the resulting THz nonlinear conductances.

  8. Transfer Matrix for Fibonacci Dielectric Superlattice

    Institute of Scientific and Technical Information of China (English)

    蔡祥宝

    2001-01-01

    The transfer matrices, which transfer the amplitudes of the electric fields of second- and third-harmonic waves from one side of the interface to the other, are defined for layers joined coherently, and the total transfer matrices for several sequential interfaces can be simply obtained by multiplication of the matrices. Using the transfer matrix method, the interacting processes of second- and third-harmonic waves in a one-dimensional finite Fibonacci dielectric superlattice are investigated. Applying the numerical procedure described in this letter, the dependence of the second- and third-harmonic fields on sample thickness is obtained. The numerical results agree with the quasi-phase-matching theory.

  9. Einstein's Photoemission from Quantum Confined Superlattices.

    Science.gov (United States)

    Debbarma, S; Ghatak, K P

    2016-01-01

    This paper is dedicated to the 83th Birthday of Late Professor B. R. Nag, D.Sc., formerly Head of the Departments of Radio Physics and Electronics and Electronic Science of the University of Calcutta, a firm believer of the concept of theoretical minimum of Landau and an internationally well known semiconductor physicist, to whom the second author remains ever grateful as a student and research worker from 1974-2004. In this paper, an attempt is made to study, the Einstein's photoemission (EP) from III-V, II-VI, IV-VI, HgTe/CdTe and strained layer quantum well heavily doped superlattices (QWHDSLs) with graded interfaces in the presence of quantizing magnetic field on the basis of newly formulated electron dispersion relations within the frame work of k · p formalism. The EP from III-V, II-VI, IV-VI, HgTe/CdTe and strained layer quantum wells of heavily doped effective mass superlattices respectively has been presented under magnetic quantization. Besides the said emissions, from the quantum dots of the aforementioned heavily doped SLs have further investigated for the purpose of comparison and complete investigation in the context of EP from quantum confined superlattices. Using appropriate SLs, it appears that the EP increases with increasing surface electron concentration and decreasing film thickness in spiky manners, which are the characteristic features of such quantized hetero structures. Under magnetic quantization, the EP oscillates with inverse quantizing magnetic field due to Shuvnikov-de Haas effect. The EP increases with increasing photo energy in a step-like manner and the numerical values of EP with all the physical variables are totally band structure dependent for all the cases. The most striking features are that the presence of poles in the dispersion relation of the materials in the absence of band tails create the complex energy spectra in the corresponding HD constituent materials of such quantum confined superlattices and effective electron

  10. Magnetic Bloch oscillations in nanowire superlattice rings.

    Science.gov (United States)

    Citrin, D S

    2004-05-14

    The recent growth of semiconductor nanowire superlattices encourages hope that Bloch-like oscillations in such structures formed into rings may soon be observed in the presence of a time-dependent magnetic flux threading the ring. These magnetic Bloch oscillations are a consequence of Faraday's law; the time-dependent flux produces an electromotive force around the ring, thus leading to the Bloch-like oscillations. In the spectroscopic domain, generalized Wannier-Stark states are found that are manifestations of the emf-induced localization of the states.

  11. Coherent acoustic phonons in YBa{sub 2}Cu{sub 3}O{sub 7}/La{sub 1/3}Ca{sub 2/3}MnO{sub 3} superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei [National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093 (China); Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, Jiangsu (China); He, Bin; Zhang, Chunfeng, E-mail: cfzhang@nju.edu.cn; Liu, Shenghua; Wang, Xiaoyong [National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093 (China); Liu, Xiaoran; Middey, S.; Chakhalian, J. [Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Xiao, Min, E-mail: mxiao@uark.edu [National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093 (China); Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701 (United States)

    2016-03-28

    We investigate photo-induced coherent acoustic phonons in complex oxide superlattices consisting of high-Tc superconductor YBa{sub 2}Cu{sub 3}O{sub 7−x} and ferromagnetic manganite La{sub 1/3}Ca{sub 2/3}MnO{sub 3} epitaxial layers with broadband pump-probe spectroscopy. Two oscillatory components have been observed in time-resolved differential reflectivity spectra. Based on the analysis, the slow oscillation mode with a frequency sensitive to the probe wavelength is ascribed to the stimulated Brillouin scattering due to the photon reflection by propagating train of coherent phonons. The fast oscillation mode with a probe-wavelength-insensitive frequency is attributed to the Bragg oscillations caused by specular phonon reflections at oxide interfaces or the electron-coupling induced modulation due to free carrier absorption in the metallic superlattices. Our findings suggest that oxide superlattice is an ideal system to tailor the coherent behaviors of acoustic phonons and to manipulate the thermal and acoustic properties.

  12. Brillouin Lasing with a CaF_2 Whispering Gallery Mode Resonator

    CERN Document Server

    Grudinin, Ivan S; Maleki, Lute

    2008-01-01

    Stimulated Brillouin scattering with both pump and Stokes beams in resonance with whispering gallery modes of an ultra high Q CaF_2 resonator is demonstrated for the first time. The resonator is pumped with 1064 nm light and has a Brillouin lasing threshold of 3.5 microwatt. Potential applications include optical generation of microwaves and sensitive gyros.

  13. Demonstration of highly efficient forward stimulated Brillouin scattering in partly suspended silicon nanowire racetrack resonators

    Science.gov (United States)

    Zhang, Ruiwen; Sun, Junqiang; Chen, Guodong; Cheng, Ming; Jiang, Jialin

    2017-07-01

    We demonstrate the forward stimulated Brillouin scattering (FSBS) in a partly suspended silicon nanowire racetrack resonator. To realize the tight confinement of the transverse acoustic modes in the nanoscale silicon core, the racetrack resonator is supported by the tiny pillar. The Brillouin amplification of 2.25 dB is achieved with the resonator radius of 100 μm under a low-power pump laser of 8 mW. The influences of the waveguide width and the top width of the tiny pillar on the Brillouin frequency shift and Brillouin gain are presented and analyzed. The Brillouin frequency shift is conveniently manipulated by the changes in waveguide widths. Our proposed approach furnishes an alternative towards harnessing FSBS in integrated photonic circuits.

  14. Electronic structure of superlattices of graphene and hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.

    2011-11-14

    We study the electronic structure of superlattices consisting of graphene and hexagonal boron nitride slabs, using ab initio density functional theory. We find that the system favors a short C–B bond length at the interface between the two component materials. A sizeable band gap at the Dirac point is opened for superlattices with single graphene layers but not for superlattices with graphene bilayers. The system is promising for applications in electronic devices such as field effect transistors and metal-oxide semiconductors.

  15. Influence of Deviation on Optical Transmission through Aperiodic Superlattices

    Institute of Scientific and Technical Information of China (English)

    YIN Hai-Long; YANG Xiang-Bo; LAN Sheng; HU Wei

    2007-01-01

    We propose a deviation model and study the influences of the relative error and sensitivity of a machine on the transmission coefficients (TCs) of Fibonacci superlattices. It is found that for a system with fewer layers, the influence of deviation can be ignored. When superlattices become more complicated, they may be fabricated by a machine with suitable relative error and possess the designed value of TC. However, when the number of system layers exceeds some critical value, superlattices should be manufactured only by precise machines. The influence of the sensitivity is also discussed.

  16. ZnSe/ZnSeTe Superlattice Nanotips

    Directory of Open Access Journals (Sweden)

    Young SJ

    2010-01-01

    Full Text Available Abstract The authors report the growth of ZnSe/ZnSeTe superlattice nanotips on oxidized Si(100 substrate. It was found the nanotips exhibit mixture of cubic zinc-blende and hexagonal wurtzite structures. It was also found that photoluminescence intensities observed from the ZnSe/ZnSeTe superlattice nanotips were much larger than that observed from the homogeneous ZnSeTe nanotips. Furthermore, it was found that activation energies for the ZnSe/ZnSeTe superlattice nanotips with well widths of 16, 20, and 24 nm were 76, 46, and 19 meV, respectively.

  17. ZnSe/ZnSeTe Superlattice Nanotips

    Science.gov (United States)

    2010-01-01

    The authors report the growth of ZnSe/ZnSeTe superlattice nanotips on oxidized Si(100) substrate. It was found the nanotips exhibit mixture of cubic zinc-blende and hexagonal wurtzite structures. It was also found that photoluminescence intensities observed from the ZnSe/ZnSeTe superlattice nanotips were much larger than that observed from the homogeneous ZnSeTe nanotips. Furthermore, it was found that activation energies for the ZnSe/ZnSeTe superlattice nanotips with well widths of 16, 20, and 24 nm were 76, 46, and 19 meV, respectively. PMID:20672085

  18. Raman fingerprint of aligned graphene/h-BN superlattices.

    Science.gov (United States)

    Eckmann, Axel; Park, Jaesung; Yang, Huafeng; Elias, Daniel; Mayorov, Alexander S; Yu, Geliang; Jalil, Rashid; Novoselov, Kostya S; Gorbachev, Roman V; Lazzeri, Michele; Geim, Andre K; Casiraghi, Cinzia

    2013-11-13

    Graphene placed on hexagonal-boron nitride (h-BN) experiences a superlattice (Moiré) potential, which leads to a strong reconstruction of graphene's electronic spectrum with new Dirac points emerging at sub-eV energies. Here we study the effect of such superlattices on graphene's Raman spectrum. In particular, the 2D Raman peak is found to be exquisitely sensitive to the misalignment between graphene and h-BN lattices, probably due to the presence of a strain distribution with the same periodicity of the Moiré potential. This feature can be used to identify graphene superlattices with a misalignment angle smaller than 2°.

  19. Sculptured 3D twister superlattices embedded with tunable vortex spirals.

    Science.gov (United States)

    Xavier, Jolly; Vyas, Sunil; Senthilkumaran, Paramasivam; Denz, Cornelia; Joseph, Joby

    2011-09-01

    We present diverse reconfigurable complex 3D twister vortex superlattice structures in a large area embedded with tunable vortex spirals as well as dark rings, threaded by vortex helices. We demonstrate these tunable complex chiral vortex superlattices by the superposition of relatively phase engineered plane waves. The generated complex 3D twister lattice vortex structures are computationally as well as experimentally analyzed using various tools to verify the presence of phase singularities. Our observation indicates the application-specific flexibility of our approach to tailor the transverse superlattice spatial irradiance profile of these longitudinally whirling vortex-cluster units and dark rings.

  20. Single Brillouin frequency shifted S-band multi-wavelength Brillouin-Raman fiber laser utilizing fiber Bragg grating and Raman amplifier in ring cavity

    Science.gov (United States)

    Reshak, A. H.; Hambali, N. A. M. Ahmad; Shahimin, M. M.; Wahid, M. H. A.; Anwar, Nur Elina; Alahmed, Zeyad A.; Chyský, J.

    2016-10-01

    This paper is focusing on simulation and analyzing of S-band multi-wavelength Brillouin-Raman fiber laser performance utilizing fiber Bragg grating and Raman amplifier in ring cavity. Raman amplifier-average power model is employed for signal amplification. This laser system is operates in S-band wavelength region due to vast demanding on transmitting the information. Multi-wavelength fiber lasers based on hybrid Brillouin-Raman gain configuration supported by Raman scattering effect have attracted significant research interest due to its ability to produced multi-wavelength signals from a single light source. In multi-wavelength Brillouin-Raman fiber, single mode fiber is utilized as the nonlinear gain medium. From output results, 90% output coupling ratio has ability to provide the maximum average output power of 43 dBm at Brillouin pump power of 20 dBm and Raman pump power of 14 dBm. Furthermore, multi-wavelength Brillouin-Raman fiber laser utilizing fiber Bragg grating and Raman amplifier is capable of generated 7 Brillouin Stokes signals at 1480 nm, 1510 nm and 1530 nm.

  1. Aging in Co/Cr Superlattices

    Science.gov (United States)

    Mukherjee, T.; Pleimling, M.; Binek, Ch.

    2009-03-01

    Aging phenomena are observed in various systems brought into non-equilibrium and subsequently showing slow relaxation dynamics. Magnetic specimens with well defined interactions and dimensions can serve as model systems for universal aspects of aging. Magnetic thin films provide access to a wide range of microscopic parameters. Superlattice structures allow tuning the intra and inter-plane exchange and enable geometrical confinement of the spin fluctuations. We use Co/Cr thin film superlattices to study magnetic aging. The static and dynamic properties are affected via the Co and Cr film thicknesses. TC of the Co films is reduced from the bulk value by geometrical confinement. Non-ergodic behavior sets in at a tunable temperature T^* in a range of some 100K above zero. Cr provides antiferromagnetic coupling between the Co films. Non-equilibrium spin states are set via low field cooling in 5mT in-plane magnetic field to below T^*. Next various in-plane magnetic set fields of some 10-100 mT are applied and the sample is exposed to the latter for various waiting times tw, respectively. After removing the field, relaxation of the magnetization is recorded via longitudinal Kerr-magnetometry. The relaxation data are analyzed by scaling plots revealing universal aspects of aging. Financial support by Teledyne-Isco, NRI, and NSF through EPSCoR, Career DMR-0547887, and MRSEC.

  2. Thermodynamics of Co/Cr superlattices

    Science.gov (United States)

    Mukherjee, T.; Sahoo, S.; Skomski, R.; Sellmyer, D. J.; Binek, Ch.

    2008-03-01

    Progress in ultra thin film growth has resulted in many novel surface and interface induced properties of artificial heterostuctures. Here, we study magnetic superlattices of ultrathin Co and Cr films grown by Molecular Beam Epitaxy methodology at a base pressure below 1x10-10 mbar. Our approach is based on controlling two distinct magnetic degrees of freedom. First, the critical temperature, Tc, of individual Co films is tailored via geometrical confinement of the correlation length perpendicular to the film. Various thickness dependent values, Tc(d), between zero and the bulk Curie temperature of 1388 K are realized. Second, the Tc-tailored Co films are antiferromagnetically coupled through Cr interlayer films. The oscillating coupling strength is tailored via the Cr interlayer thickness. The resulting thermodynamic properties of such Co/Cr superlattices are studied with the help of SQUID magnetometry. Particular emphasis is laid on tailoring magnetic entropy changes in the vicinity of room temperature. X-ray diffraction and X-ray reflectivity are used to correlate structural data with the magnetic properties.

  3. Elasticity of Pyrope at High Pressures and Temperatures by Brillouin Scattering and X-ray Diffraction

    Science.gov (United States)

    Lu, C.; Mao, Z.; Lin, J.; Prakapenka, V.

    2011-12-01

    Iron-containing pyrope ((Fe,Mg)3Al2Si3O12)) is believed to be an abundant rock-forming mineral in the Earth's interior, ranging from the crust to the top of the lower mantle. Based on the pyrolite mineralogical model, pyrope accounts for 13% by volume in the upper mantle and 10% in the transition zone. Therefore, laboratory measurements on the elasticity of pyrope at relevant pressure and temperature conditions are critical in understanding the seismic images and in constraining the chemistry and mineralogy of the region. The elasticity of single-crystal pyrope has been studied up to 20 GPa at 300 K and up to 1100 K at 1 bar, yet it has never been investigated at simultaneous high pressure-temperature conditions. Thus, much of our knowledge of the upper mantle and transition zone seismic profiles largely relies on extrapolated experimental results or theoretical calculations. Here we have measured the single-crystal elasticity of garnet, ((Mg2.04Ca0.16Fe0.74)Al2.02(SiO4)3) up to 20 GPa and 750 K using combined Brillouin scattering and synchrontron X-ray diffraction in an externally-heated diamond anvil cell at GSECARS of the Advanced Photon Source, Argonne National Laboratory. We have derived full elastic constants (Cij) of the sample as a function of pressure and temperature at relevant conditions of the deep mantle. The temperature derivatives of the Cijs are similar to that at ambient pressure, indicating a minimal pressure effect. Together with the elasticity of other major mantle minerals, we have used a thermoelastic model to reconstruct the seismic velocity profile of the upper mantle and the transition zone and to reference the mineralogy of the regions.

  4. Quantum Transport: The Link between Standard Approaches in Superlattices

    DEFF Research Database (Denmark)

    Wacker, Andreas; Jauho, Antti-Pekka

    1998-01-01

    Theories describing electrical transport in semiconductor superlattices can essentially be divided in three disjoint categories: (i) transport in a miniband; (ii) hopping between Wannier-Stark ladders; and (iii) sequential tunneling. We present a quantum transport model, based on nonequilibrium...

  5. Plasmonic Enhanced Type-II Superlattice Focal Plane Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SVT Associates proposes an novel type II superlattice structure to extend the cutoff wavelength and CBIRD SL photo diode structure with unipolar barriers to suppress...

  6. The soliton properties of dipole domains in superlattices

    Institute of Scientific and Technical Information of China (English)

    张启义; 田强

    2002-01-01

    The formation and propagation of dipole domains in superlattices are studied both by the modified discrete driftmodel and by the nonlinear Schrodinger equation. The spatiotemporal distribution of the electric field and electrondensity are presented. The numerical results are compared with the soliton solutions of the nonlinear Schrodingerequation and analysed. It is shown that the numerical solutions agree with the soliton solutions of the nonlinearSchrodinger equation. The dipole electric-field domains in semiconductor superlattices have the properties of solitons.

  7. Superlattice Intermediate Band Solar Cell on Gallium Arsenide

    Science.gov (United States)

    2015-02-09

    AFRL-RV-PS- AFRL-RV-PS- TR-2015-0048 TR-2015-0048 SUPERLATTICE INTERMEDIATE BAND SOLAR CELL ON GALLIUM ARSENIDE Alexandre Freundlich...SUBTITLE 5a. CONTRACT NUMBER FA9453-13-1-0232 Superlattice Intermediate Band Solar Cell on Gallium Arsenide 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...band solar cell incorporating low dimensional structures made with dilute nitrogen alloys of III-V semiconductors is investigated theoretically and

  8. Experimental evidence of delocalized states in random dimer superlattices

    OpenAIRE

    Bellani, V.; Díez, E.; Hey, R.; Toni, L.; Tarricone, L.; Parravicini, G.B.; Domínguez-Adame Acosta, Francisco; Gómez-Alcalá, R.

    1999-01-01

    We study the electronic properties of GaAs-AlGaAs superlattices with intentional correlated disorder by means of photoluminescence and vertical dc resistance. The results are compared to those obtained in ordered and uncorrelated disordered superlattices. We report the first experimental evidence that spatial correlations inhibit localization of states in disordered low-dimensional systems, as our previous theoretical calculations suggested, in contrast to the earlier belief that all eigensta...

  9. Coherent quantum transport features in carbon superlattice structures

    Science.gov (United States)

    McIntosh, R.; Henley, S. J.; Silva, S. R. P.; Bhattacharyya, S.

    2016-10-01

    Whilst resonant transmission is well understood and can be fully harnessed for crystalline superlattices, a complete picture has not yet emerged for disordered superlattices. It has proven difficult to tune resonant transmission in disordered diamond-like carbon (DLC) superlattices as conventional models are not equipped to incorporate significant structural disorder. In this work, we present concurrent experimental and theoretical analysis which addresses resonant transmission in DLC superlattices. Devices were fabricated by growing alternate layers of DLC with different percentages of sp3 hybridized carbon.Coherent quantum transport effects were demonstrated in these structurally disordered DLC superlattices through distinct current modulation with negative differential resistance (NDR) in the current-voltage (I-V) measurements. A model was developed using tight-binding calculations assuming a random variation of the hopping integral to simulate structural (bond-length) disorder. Calculations of the I-V characteristics compliment the interpretation of the measurements and illustrate that while DLC superlattice structures are unlike their classical counterparts, the near-field structural order will help with the confinement of quantised states. The present model provides an empirical guide for tailoring the properties of future devices, giving rise to much hope that carbon electronics operating at high frequencies over large areas can now be developed.

  10. Carbon-coated nanoparticle superlattices for energy applications

    Science.gov (United States)

    Li, Jun; Yiliguma, Affa; Wang, Yifei; Zheng, Gengfeng

    2016-07-01

    Nanoparticle (NP) superlattices represent a unique material architecture for energy conversion and storage. Recent reports on carbon-coated NP superlattices have shown exciting electrochemical properties attributed to their rationally designed compositions and structures, fast electron transport, short diffusion length, and abundant reactive sites via enhanced coupling between close-packed NPs, which are distinctive from their isolated or disordered NP or bulk counterparts. In this minireview, we summarize the recent developments of highly-ordered and interconnected carbon-coated NP superlattices featuring high surface area, tailorable and uniform doping, high conductivity, and structure stability. We then introduce the precisely-engineered NP superlattices by tuning/studying specific aspects, including intermetallic structures, long-range ordering control, and carbon coating methods. In addition, these carbon-coated NP superlattices exhibit promising characteristics in energy-oriented applications, in particular, in the fields of lithium-ion batteries, fuel cells, and electrocatalysis. Finally, the challenges and perspectives are discussed to further explore the carbon-coated NP superlattices for optimized electrochemical performances.

  11. Mechanical characterisation of hydrogels using Brillouin microscopy, ultrasound and unconfined compression tests (Conference Presentation)

    Science.gov (United States)

    Wu, Pei-Jung; Kabakova, Irina V.; Song, ChengZe; Paterson, Carl; Overby, Darryl R.; Török, Peter

    2017-02-01

    Mechanical characterisation of biomaterials provides the basis for investigating disease-related changes in the biomechanical properties of living tissues and cells. Brillouin microscopy offers a non-invasive and label-free method to measure material properties. Briefly, Brillouin scattering involves energy exchange between photons and acoustic phonons, resulting in an optical frequency shift of the scattered light. This shift is proportional to the speed of sound in the material, and consequently to the longitudinal elastic modulus (M). However, it is unclear how Brillouin measurements, which characterize the mechanical response at GHz frequencies, relate to mechanical properties measured at much lower frequencies ( 1 Hz) relevant to physiological conditions. Furthermore, as most biomaterials are hydrated, it remains unclear how the relative incompressibility of water influences the acoustic wave speed so as to affect Brillouin measurements of hydrated biomaterials. In this study, we aim to establish the relationship between Brillouin frequency shift, acoustic wave speed and quasi-static elastic modulus of hydrogels of varying stiffness. Hydrogels are homogeneous and isotropic materials that mimic the poroelastic nature of biological tissues. Each measurement probes the mechanics of hydrogels in a significantly different frequency range: GHz for Brillouin imaging, MHz for ultrasound and Hz for unconfined compression tests. The acoustic wave speed falls into range from 1490 to 1533 m/s in both MHz (ultrasound) and GHz (Brillouin) frequency ranges. The quasi-static modulus correlates positively with Brillouin frequency shift, increasing from 6 to 54 kPa. All the results indicate the measurements obtained by Brillouin microscopy are capable of representing the material properties of hydrogels in quasi-static condition.

  12. Brillouin light scattering studies of 2D magnonic crystals

    Science.gov (United States)

    Tacchi, S.; Gubbiotti, G.; Madami, M.; Carlotti, G.

    2017-02-01

    Magnonic crystals, materials with periodic modulation of their magnetic properties, represent the magnetic counterpart of photonic, phononic and plasmonic crystals, and have been largely investigated in recent years because of the possibility of using spin waves as a new means for carrying and processing information over a very large frequency bandwidth. Here, we review recent Brillouin light scattering studies of 2D magnonic crystals consisting of single- and bi-component arrays of interacting magnetic dots or antidot lattices. In particular, we discuss the principal properties of the magnonic band diagram of such systems, with emphasis given to its dependence on both magnetic and the geometrical parameters. Thanks to the possibility of tailoring their band structure by means of several degrees of freedom, planar magnonic crystals offer a good opportunity to design an innovative class of nanoscale microwave devices.

  13. Coherent Rayleigh-Brillouin scattering as a flow diagnostic technique

    Energy Technology Data Exchange (ETDEWEB)

    Graul, J. S.; Lilly, T. C. [Department of Mechanical and Aerospace Engineering, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918 (United States)

    2014-12-09

    Broadband coherent Rayleigh-Brillouin scattering (CRBS) was used to measure translational gas temperatures for nitrogen at the ambient pressure of 0.8 atm using a purpose-built Fabry-Perot etalon spectrometer. Temperatures derived from the CRBS spectral analysis were compared with experimentally-measured temperatures, and were found to be, on average, within 2% of the experimentally-measured value. Axial flow velocities from a double jet at a pressure ratio of 0.38 were also measured by looking at the Doppler shift of the CRBS line shape. With recent developments in chirped laser technology and the capacity of CRBS to simultaneously provide thermodynamic and bulk flow information, the CRBS line shape acquisition and analysis technique presented here may allow for future time-resolved, characterization of aerospace flows.

  14. High Pressure Brillouin Scattering in the Fragile Glass Former Cumene

    Science.gov (United States)

    Ransom, Tim; Oliver, William

    2012-02-01

    In recent years full-spectrum analysis in light-scattering has been utilized to explore the liquid-glass transition at variable temperature and ambient pressure. In this study we present temperature- and pressure-dependent Brillouin scattering results for the fragile glass-former cumene. Both equal-angle forward scattering and depolarized backscattering geometries are used, and high pressures are attained by the use of a diamond anvil cell mounted in a custom temperature-controlled housing. Opening up the variable pressure regime to full-spectrum analysis will allow more stringent tests of mode-coupling theory as well as greater insight into the behavior of glass-forming systems.

  15. Bunching of temporal cavity solitons via forward Brillouin scattering

    CERN Document Server

    Erkintalo, Miro; Jang, Jae K; Coen, Stéphane; Murdoch, Stuart G

    2015-01-01

    We report on the experimental observation of bunching dynamics with temporal cavity solitons in a continuously-driven passive fibre resonator. Specifically, we excite a large number of ultrafast cavity solitons with random temporal separations, and observe in real time how the initially random sequence self-organizes into regularly-spaced aggregates. To explain our experimental observations, we develop a simple theoretical model that allows long-range acoustically-induced interactions between a large number of temporal cavity solitons to be simulated. Significantly, results from our simulations are in excellent agreement with our experimental observations, strongly suggesting that the soliton bunching dynamics arise from forward Brillouin scattering. In addition to confirming prior theoretical analyses and unveiling a new cavity soliton self-organization phenomenon, our findings elucidate the manner in which sound interacts with large ensembles of ultrafast pulses of light.

  16. Dual-microcavity narrow-linewidth Brillouin laser

    CERN Document Server

    Loh, William; Baynes, Frederick; Cole, Daniel; Quinlan, Franklyn; Lee, Hansuek; Vahala, Kerry; Papp, Scott; Diddams, Scott

    2014-01-01

    Ultralow noise, yet tunable lasers are a revolutionary tool in precision spectroscopy, displacement measurements at the standard quantum limit, and the development of advanced optical atomic clocks. Further applications include LIDAR, coherent communications, frequency synthesis, and precision sensors of strain, motion, and temperature. While all applications benefit from lower frequency noise, many also require a laser that is robust and compact. Here, we introduce a dual-microcavity laser that leverages one chip-integrable silica microresonator to generate tunable 1550 nm laser light via stimulated Brillouin scattering (SBS) and a second microresonator for frequency stabilization of the SBS light. This configuration reduces the fractional frequency noise to $7.8\\times10^{-14} 1/\\sqrt{Hz}$ at 10 Hz offset, which is a new regime of noise performance for a microresonator-based laser. Our system also features terahertz tunability and the potential for chip-level integration. We demonstrate the utility of our du...

  17. Brillouin scattering studies of isotopic effects in solid ammonia

    Science.gov (United States)

    Kiefte, H.; Penney, R.; Breckon, S. W.; Clouter, M. J.

    1987-01-01

    The technique of high resolution Brillouin spectroscopy has been used to determine the adiabatic elastic constants and the elasto-optic coupling (Pockels) coefficient ratios of oriented single crystals of (solid I) ND3 at temperatures near the gas-liquid-solid triple point. The values of the elastic constants at 196.0 K are C11=83.3, C12=44.0, and C44=49.6 (in units of kbar) with an estimated absolute uncertainty of ±2%. The values of the elasto-optic coefficient ratios are P12/P11=0.90 and P44/P11=0.16 for ND3 and 0.89 and 0.16 for NH3, respectively. Other than that expected from the mass ratio, no significant isotopic differences are evident.

  18. DSMC simulation of Rayleigh-Brillouin scattering in binary mixtures

    Science.gov (United States)

    Bruno, Domenico; Frezzotti, Aldo; Ghiroldi, Gian Pietro

    2016-11-01

    Rayleigh-Brillouin scattering spectra (RBS) in dilute gas mixtures have been simulated by the Direct Simulation Monte Carlo method (DSMC). Different noble gas binary mixtures have been considered and the spectra have been simulated adopting the hard sphere collision model. It is suggested that DSMC simulations can be used in the interpretation of light scattering experiments in place of approximate kinetic models. Actually, the former have a firmer physical ground and can be readily extended to treat gas mixtures of arbitrary complexity. The results obtained confirm the capability of DSMC to predict experimental spectra and clears the way towards the simulation of polyatomic gas mixtures of interest for actual application (notably, air) where tractable kinetic model equations are still lacking.

  19. Brillouin resonance broadening due to structural variations in nanoscale waveguides

    CERN Document Server

    Wolff, Christian; Steel, Michael J; Eggleton, Benjamin J; Poulton, Christopher G

    2015-01-01

    We study the impact of structural variations (that is slowly varying geometry aberrations and internal strain fields) on the resonance width and shape of stimulated Brillouin scattering (SBS) in nanoscale waveguides. We find that they lead to an inhomogeneous resonance broadening through two distinct mechanisms: firstly, the acoustic frequency is directly influenced via mechanical nonlinearities; secondly, the optical wave numbers are influenced via the opto-mechanical nonlinearity leading to an additional acoustic frequency shift via the phase-matching condition. We find that this second mechanism is proportional to the opto-mechanical coupling and, hence, related to the SBS-gain itself. It is absent in intra-mode forward SBS, while it plays a significant role in backward scattering. In backward SBS increasing the opto-acoustic overlap beyond a threshold defined by the fabrication tolerances will therefore no longer yield the expected quadratic increase in overall Stokes amplification. Our results can be tra...

  20. Thermal Brillouin noise observed in silicon optomechanical waveguide

    CERN Document Server

    Van Laer, Raphaël; Baets, Roel; Van Thourhout, Dries; Safavi-Naeini, Amir H

    2016-01-01

    Stimulated Brillouin scattering was recently observed in nanoscale silicon waveguides. Surprisingly, thermally-driven photon-phonon conversion in these structures had not yet been reported. Here, we inject an optical probe in a suspended silicon waveguide and measure its phase fluctuations at the output. We observe mechanical resonances around 8 GHz with a scattering efficiency of $10^{-5} \\, \\text{m}^{-1}$ and a signal-to-noise ratio of 2. The observations are in agreement with a theory of noise in these waveguides as well as with stimulated measurements. Our scheme may simplify measurements of mechanical signatures in nanoscale waveguides and is a step towards a better grasp of thermal noise in these new continuum optomechanical systems.

  1. ESTIMATION OF SOUNDING ABILITY OF A BRILLOUIN LIDAR IN THE EAST CHINA SEA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Vertical profiles of sound speed in the sea can be measured by using laser excited Brillouin scattering. In this paper the dependence of the accuracy of sound speed measurement on the accuracy of the Brillouin shift measurement is analyzed. We calculated the maximum detecting depths of sound speed to an accuracy of 1 m/s by lidar with different laser pulse energy, platform altitude, telescope aperture and lidar effective attenuation coefficient. The estimation of sounding ability in the East China Sea is made in some stations. These data can be used in the design of Brillouin Lidar for the China Sea.

  2. Distributed hot-wire anemometry based on Brillouin optical time-domain analysis.

    Science.gov (United States)

    Wylie, Michael T V; Brown, Anthony W; Colpitts, Bruce G

    2012-07-02

    A distributed hot-wire anemometer based on Brillouin optical time-domain analysis is presented. The anemometer is created by passing a current through a stainless steel tube fibre bundle and monitoring Brillouin frequency changes in the presence of airflow. A wind tunnel is used to provide laminar airflow while the device response is calibrated against theoretical models. The sensitivity equation for this anemometer is derived and discussed. Airspeeds from 0 m/s to 10 m/s are examined, and the results show that a Brillouin scattering based distributed hot-wire anemometer is feasible.

  3. A new approach to measure the ocean temperature using Brillouin lidar

    Institute of Scientific and Technical Information of China (English)

    Wei Gao; Zhiwei Lü; Yongkang Dong; Weiming He

    2006-01-01

    @@ An approach of lidar measurements of ocean temperature through measuring the spectral linewidth of the backscattered Brillouin lines is presented. An empirical equation for the temperature as a function of Brillouin linewidth and salinity is derived. Theoretical results are in good agreement with the experimental data. The equation also reveals the dependence of the temperature on the salinity and Brillouin linewidth.It is shown that the uncertainty of the salinity has very little impact on the temperature measurement.The uncertainty of this temperature measurement methodology is approximately 0.02 ℃.

  4. Ion beam studies in strained layer superlattices

    CERN Document Server

    Pathak, A P; Bhattacharya, D P; Dev, B N; Ghosh, S; Goswami, D K; Lakshmi-Bala, S; Nageswara-Rao, S V S; Satyam, P V; Siddiqui, A M; Srivastava, S K; Turos, A

    2002-01-01

    The potential device application of semiconductor heterostructures and strained layer superlattices has been highlighted. Metal organic chemical vapour deposition grown In sub 0 sub . sub 5 sub 3 Ga sub 0 sub . sub 4 sub 7 As/InP lattice-matched structure has been irradiated by 130 MeV Ag sup 1 sup 3 sup + and studied by RBS/Channelling using 3.5 MeV He sup 2 sup + ions. Ion irradiation seems to have induced a finite tensile strain in the InGaAs layer, indicating thereby that ion beam mixing occurs at this energy. Other complementary techniques like high resolution XRD and STM are needed to conclude the structural modifications in the sample.

  5. Magnetocaloric properties of Co/Cr superlattices

    Science.gov (United States)

    Mukherjee, Tathagata; Skomski, Ralph; Sellmyer, David; Binek, Christian

    2010-03-01

    Nanostructured materials aiming on refrigeration applications are experimentally realized by molecular beam epitaxial (MBE) growth of Co/Cr superlattices using mean-field theoretical concepts as guiding principles.footnotetextT. Mukherjee, S. Sahoo, R. Skomski, D. J. Sellmyer, and Ch. Binek, Phys. Rev. B 79, 144406-1-9 (2009). Magnetocaloric properties are deduced from measurements of the temperature and field dependence of the magnetization of our samples. More generally, the potential of artificial antiferromagnets for near room-temperature refrigeration is explored. The effects of intra-plane and inter-plane exchange interactions on the magnetic phase diagram in Ising-type model systems are revisited in mean-field considerations with special emphasis on tailoring magnetocaloric properties. The experimental results are discussed in light of our theoretical findings, and extrapolations for future improved nanostructures are provided. Financial support by NRI, and NSF through EPSCoR, Career DMR-0547887, and MRSEC.

  6. Magnetic Field in Superlattices Semiconductors of Crystals

    Directory of Open Access Journals (Sweden)

    Luciano Nascimento

    2015-05-01

    Full Text Available In this work we present a study on the super-semiconductor networks, using the Kronig-Penney model for the effective mass approximation, and then the calculations for the application of the magnetic field perpendicular and parallel to the layers of super lattices crystals. The magnetic field applied parallel to the layers, was used to adjust the resonance of a higher energy subband of a well by thermal excitation with a lower energy subband of the adjacent well, increasing energy levels in its tunneling rate. We use the formalism of Schrödinger equation of quantum mechanics. Introducing the calculations in a systematic way in superlattices for each semiconductor quantum well to assess their energy spectrum systematically studied.

  7. Development of Strained-Layer Superlattice (SLS) IR Detector Camera Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Strained Layer Superlattice (SLS) detectors are a new class of detectors.   In our FY12 IRAD “Strained Layer Superlattice Infrared Detector Array...

  8. Crossover from Incoherent to Coherent Phonon Scattering in Epitaxial Oxide Superlattices

    Science.gov (United States)

    2013-12-08

    of the superlattices. Figure 3a shows a high-resolution, short-angular-range θ–2θ X - ray diffraction (XRD) scan of a (STO)6/(CTO)6 superlattice...function of interface density. We do so by synthesizing superlattices of electrically insulating perovskite oxides 1. REPORT DATE (DD-MM-YYYY) 4. TITLE...synthesizing superlattices of electrically insulating perovskite oxides and systematically varying the interface density, with unit-cell precision, using two

  9. Quantum Dot Superlattice Enabled Rational Design in Optoelectronics and Hydrogen Generation

    Science.gov (United States)

    2014-11-25

    Final 3. DATES COVERED (From - To) 22-April-2013 to 21-April-2014 4. TITLE AND SUBTITLE Quantum Dot Superlattice Enabled Rational Design...15. SUBJECT TERMS Quantum Dots , Optoelectronic Applications, Charge Transfer, Superlattices, Density Functional Theory, Coupling...FA2386-13-1-4074 “ Quantum Dot Superlattice Enabled Rational Design in Optoelectronics and Hydrogen Generation” April 21, 2014 PI and Co-PI

  10. Enhanced multiwavelength generation in Brillouin fiber laser with pump noise suppression technique

    Science.gov (United States)

    Al-Alimi, A. W.; Cholan, N. A.; Yaacob, M. H.; Mahdi, M. A.

    2016-06-01

    A new multiwavelength Brillouin fiber laser (BFL) that provides a large number of Stokes lines with improved optical signal-to-noise ratio has been proposed and demonstrated. The BFL cavity is only formed by a nonlinear fiber loop mirror (NOLM) with 500 m long highly nonlinear fiber (HNLF). The BFL with improved performance is based on the suppression of the Brillouin pump noise floor utilizing a narrow tunable bandpass filter. The generation of Stokes lines covering up to a 33.67 nm wavelength range is achieved by setting the Brillouin pump signal within the HNLF’s zero dispersion wavelength and with power of 250 mW. This is owing to the combination of the stimulated Brillouin scattering and four-wave mixing effect in the NOLM structure.

  11. Optical frequency combs generated by four-wave mixing in a dual wavelength Brillouin laser cavity

    Directory of Open Access Journals (Sweden)

    Qing Li

    2017-07-01

    Full Text Available We propose and demonstrate the generation of optical frequency combs via four-wave mixing in a dual wavelength Brillouin laser cavity. When pumped by two continuous-wave lasers with a varied frequency separation, dual wavelength Brillouin lasers with reduced linewidth and improved optical signal to noise ratios are generated in a direction opposite to the pump laser. Simultaneously, cavity-enhanced cascaded four-wave mixing between dual wavelength Brillouin lasers occurs in the laser cavity, causing the generation of broadband optical frequency combs with step tunable mode spacing from 40 to 1300 GHz. Compared to the cavity-less case, the number of the comb lines generated in the dual wavelength Brillouin laser cavity is increased by ∼38 times.

  12. System optimization of a long-range Brillouin-loss-based distributed fiber sensor.

    Science.gov (United States)

    Dong, Yongkang; Chen, Liang; Bao, Xiaoyi

    2010-09-20

    We report a high-performance 25 km Brillouin-loss-based distributed fiber sensor through optimizing system parameters. First, the Brillouin spectrum distortion and measurement error induced by the excess amplification on probe pulse are investigated, and the results indicate that a low continuous-wave pump power is essential to decrease the measurement error. Then an optimal pulse pair is determined through the differential Brillouin gain evolution along the entire sensing fiber in a differential pulse-width pair Brillouin optical time domain analysis. Using dispersion-shifted fiber to allow a high-power probe pulse, we realize a 25 km sensing range with a spatial resolution of 30 cm and a strain accuracy of ±20 με, which we believe is the best performance in such a length, to the best of our knowledge.

  13. Stimulated Brillouin scattering of laser in semiconductor plasma embedded with nano-sized grains

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Giriraj, E-mail: grsharma@gmail.com [SRJ Government Girls’ College, Neemuch (M P) (India); Dad, R. C. [Government P G College, Mandsaur (M P) (India); Ghosh, S. [School of Studies in Physics, Vikram University, Ujjain, (M P) (India)

    2015-07-31

    A high power laser propagating through semiconductor plasma undergoes Stimulated Brillouin scattering (SBS) from the electrostrictively generated acoustic perturbations. We have considered that nano-sized grains (NSGs) ions are embedded in semiconductor plasma by means of ion implantation. The NSGs are bombarded by the surrounding plasma particles and collect electrons. By considering a negative charge on the NSGs, we present an analytically study on the effects of NSGs on threshold field for the onset of SBS and Brillouin gain of generated Brillouin scattered mode. It is found that as the charge on the NSGs builds up, the Brillouin gain is significantly raised and the threshold pump field for the onset of SBS process is lowered.

  14. Stimulated Brillouin scattering of an electromagnetic wave in weakly magnetized plasma with variably charged dust particles

    Indian Academy of Sciences (India)

    Sourabh Bal; M Bose

    2009-10-01

    We have investigated analytically the stimulated Brillouin scattering (SBS) of an electromagnetic wave in non-dissipative weakly magnetized plasma in the presence of dust particles with variable charge.

  15. Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging.

    Science.gov (United States)

    Traverso, Andrew J; Thompson, Jonathan V; Steelman, Zachary A; Meng, Zhaokai; Scully, Marlan O; Yakovlev, Vladislav V

    2015-08-01

    We present a unique confocal microscope capable of measuring the Raman and Brillouin spectra simultaneously from a single spatial location. Raman and Brillouin scattering offer complementary information about a material's chemical and mechanical structure, respectively, and concurrent monitoring of both of these spectra would set a new standard for material characterization. We achieve this by applying recent innovations in Brillouin spectroscopy that reduce the necessary acquisition times to durations comparable to conventional Raman spectroscopy while attaining a high level of spectral accuracy. To demonstrate the potential of the system, we map the Raman and Brillouin spectra of a molded poly(ethylene glycol) diacrylate (PEGDA) hydrogel sample in cyclohexane to create two-dimensional images with high contrast at microscale resolutions. This powerful tool has the potential for very diverse analytical applications in basic science, industry, and medicine.

  16. Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis.

    Science.gov (United States)

    Steelman, Zachary; Meng, Zhaokai; Traverso, Andrew J; Yakovlev, Vladislav V

    2015-05-01

    Bacterial meningitis is a disease of pronounced clinical significance, especially in the developing world. Immediate treatment with antibiotics is essential, and no single test can provide a conclusive diagnosis. It is well established that elevated total protein in cerebrospinal fluid (CSF) is associated with bacterial meningitis. Brillouin spectroscopy is a widely used optical technique for noninvasive determination of the elastic moduli of materials. We found that elevated protein levels in CSF alter the fluid elasticity sufficiently to be measurable by Brillouin spectroscopy, with model healthy and diseased fluids distinguishable to marked significance (P = 0.014), which increases with sample concentration by dialysis. Typical raw output of a 2-stage VIPA Brillouin spectrometer: inelastically scattered Brillouin peaks (arrows) and elastically scattered incident radiation (center cross). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. First numerical experiences with overlap fermions based on the Brillouin kernel

    CERN Document Server

    Durr, Stephan

    2016-01-01

    Numerical experiences are reported with overlap fermions which employ the Brillouin action as a kernel. After discussing the dispersion relations of both the kernel and the resulting chiral action, some of the physics features are addressed on quenched backgrounds. We find that the overlap with Brillouin kernel is much better localized than the overlap with Wilson kernel. Also a preliminary account is given of the cost of the formulation, in terms of CPU time and memory.

  18. Broadband Brillouin scatter from CO/sub 2/-laser--target interactions

    Energy Technology Data Exchange (ETDEWEB)

    Mitchel, G.R.; Grek, B.; Johnston, T.W.; Pepin, H.; Church, P.; Lavigne, P.; Martin, F.; Decoste, R.

    1982-05-24

    Light scattered near the incident wavelength from CO/sub 2/ laser--solid target interactions in oblique incidence shows the spectral signature of Brillouin scattering both in the backward and in the near specular directions. This instability is apparently seeded by broadband scatter from the critical density surface and then amplified in the underdense plasma. 60% of the incident light is scattered, and the Brillouin contribution to total scatter may be large if the source is also large.

  19. Brillouin suppression in a fiber optical parametric amplifier by combining temperature distribution and phase modulation

    DEFF Research Database (Denmark)

    Lorenzen, Michael Rodas; Noordegraaf, Danny; Nielsen, Carsten Vandel

    2008-01-01

    We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation.......We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation....

  20. Widely tunable linear-cavity multiwavelength fiber laser with distributed Brillouin scattering

    Institute of Scientific and Technical Information of China (English)

    M. Ajiya; M. H. Al-Mansoori; M. A. Mahdi

    2011-01-01

    We demonstrate a multiple wavelength Brillouin/erbium fiber laser in a linear cavity configuration. The laser cavity is made up of a fiber loop mirror on one end of the resonator and a virtual mirror generated from the distributed stimulated Brillouin scattering effect on the other end. Due to the weak reflectivity provided by the virtual mirror, self-lasing cavity modes are completely suppressed from the laser cavity. At Brillouin pump and 1480-nm pump powers of 2 and 130 mW, respectively, 11 channels of the demonstrated laser with an average total power of 7.13 dBm can freely be tuned over a span of 37-nm wavelength from 1530 to 1567 nm.%@@ We demonstrate a multiple wavelength Brillouin/erbium fiber laser in a linear cavity configuration.The laser cavity is made up of a fiber loop mirror on one end of the resonator and a virtual mirror generated from the distributed stimulated Brillouin scattering effect on the other end.Due to the weak reflectivity provided by the virtual mirror, self-lasing cavity modes are completely suppressed from the laser cavity.At Brillouin pump and 1480-nm pump powers of 2 and 130 mW, respectively, 11 channels of the demonstrated laser with an average total power of 7.13 dBm can freely be tuned over a span of 37-nm wavelength from 1530 to 1567 nm.

  1. Investigation on the effect of EDFA location in ring cavity Brillouin-Erbium fiber laser.

    Science.gov (United States)

    Hambali, Nor Azura Malini A; Mahdi, Mohd Adzir; Al-Mansoori, Mohammed Hayder; Abas, Ahmad Fauzi; Saripan, M Iqbal

    2009-07-06

    We have investigated the characteristics of Brillouin-Erbium fiber laser (BEFL) with variation of Erbium-doped fiber amplifier (EDFA) locations in a ring cavity configuration. Three possible locations of the EDFA in the laser cavity have been studied. The experimental results show that the location of EDFA plays vital role in determining the output power and the tuning range. Besides the Erbium gain, Brillouin gain also contributes to the performance of the BEFL. By placing the EDFA next to the Brillouin gain medium (dispersion compensating fiber), the Brillouin pump signal is amplified thereby generating higher intensities of Brillouin Stokes line. This efficient process suppresses the free running self-lasing cavity modes from oscillating in cavity as a result of higher Stokes laser power and thus provide a wider tuning range. At the injected Brillouin pump power of 1.6 mW and the maximum 1480 nm pump power of 135 mW, the maximum Stokes laser power of 25.1 mW was measured and a tuning range of 50 nm without any self-lasing cavity modes was obtained.

  2. Quasi-Dirac points in one-dimensional graphene superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.H.; Tseng, P.; Hsueh, W.J., E-mail: hsuehwj@ntu.edu.tw

    2016-08-26

    Quasi-Dirac points (QDPs) with energy different from the traditional Dirac points (TDPs) have been found for the first time in one-dimensional graphene superlattices. The angular-averaged conductance reaches a minimum value at the QDPs, at which the Fano factor approaches 1/3. Surprisingly, the minimum conductance at these QDPs may be lower than that at the TDPs under certain conditions. This is remarkable as the minimum conductance attainable in graphene superlattices was believed to appear at TDPs. - Highlights: • Quasi-Dirac points (QDPs) are found for the first time in one-dimensional graphene superlattices. • The QDP is different from the traditional Dirac points (TDPs) in graphene superlattices. • The angular-averaged conductance reaches a minimum value at the QDPs, at which the Fano factor approaches 1/3. • The minimum conductance at these QDPs may be lower than that at the TDPs under certain conditions. • The minimum conductance attainable in graphene superlattices was believed to appear at TDPs.

  3. Investigation of resonant Raman scattering in type II GaAs/AlAs superlattices

    CERN Document Server

    Choi, H

    2001-01-01

    GAMMA-related Type I outgoing RR spectra within several theoretical models. Thereby, the mechanisms of the Type II RR scattering, the origins of the RR lineshape and the polarisation dependence, are fully explained, clarifying the spectral features observed in the GaAs zone-centre optic phonon region. The Type II resonance also allows the observation of zone boundary (X-point) phonons from intervalley (IV) scattering. A model of the IV electron-phonon interaction involving X conduction band electrons and zone boundary phonons in Type II SLs is presented. With the predicted SL selection rules for IV scattering, the simultaneous observation of both the zone-boundary longitudinal acoustic and optic phonons can be understood and the spectral features quantitatively explained. As a consequence of the band alignment in GaAs/AIAs superlattices (SLs) and the indirect nature of bulk AIAs, quantum confinement can be used to engineer a Type II system. This produces an electron population in the AIAs longitudinal (X sub ...

  4. Theoretical analysis of the relationship between the Brillouin gain coefficient and the strain in the optical-fiber sensors

    Institute of Scientific and Technical Information of China (English)

    DONG Wu-qin; JIA Zhen-hong

    2008-01-01

    The relation between the power of the Brillouin signal and the swain is one of the bases of the distributed fiber sensors of temperature and strain. The coefficient of the Brillouin gain can be changed by the temperature and the strain that will affect the power of the Brillouin scattering. The relation between the change of the Brillouin gain coefficient and the strain is thought to be linear by many researchers. However, it is not always linear based on the theoretical analysis and numerical simulation. Therefore, errors will be caused if the relation between the change of the Brillouin gain coefficient and the strain is regarded as to be linear approximately for measuring the temperature and the strain. For this reason, the influence of thep arameters on the Brillouin gain coefficient is proposed through theoretical analysis and numerical simulation.

  5. Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal

    NARCIS (Netherlands)

    Wilts, Bodo D.; Michielsen, Kristel; De Raedt, Hans; Stavenga, Doekele G.

    2012-01-01

    The brilliant structural body colours of many animals are created by three-dimensional biological photonic crystals that act as wavelength-specific reflectors. Here, we report a study on the vividly coloured scales of the diamond weevil, Entimus imperialis. Electron microscopy identified the chitin

  6. Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal

    NARCIS (Netherlands)

    Wilts, Bodo D.; Michielsen, Kristel; De Raedt, Hans; Stavenga, Doekele G.

    2012-01-01

    The brilliant structural body colours of many animals are created by three-dimensional biological photonic crystals that act as wavelength-specific reflectors. Here, we report a study on the vividly coloured scales of the diamond weevil, Entimus imperialis. Electron microscopy identified the chitin

  7. Performance of the distributed Brillouin sensor: Benefits and penalties due to pump depletion

    Science.gov (United States)

    Ravet, Fabien

    Disaster prevention in civil infrastructures requires the use of techniques that allow temperature and strain measurements in real time over lengths of a few meters to tens of kilometres. The distributed Brillouin sensor (DBS) technique has the advantage to combine all these characteristics. The sensing mechanism of the DBS involves the interaction of two counter-propagating lightwaves, the Stokes and the pump, in an optical fibre. Spatial information is obtained through time domain analysis. The sensing data are recorded from the measurement of the pump depletion. We explore the benefits and the drawbacks of this approach and show that there is a power range for which the sensing performances are optima. To achieve that goal, Brillouin fibre generator (BFG) and amplifier (BFA) were studied leading to the derivation of a threshold definition for the BFA, which is the configuration of the DBS. Within that context, numerical and analytical models describing the stimulated Brillouin scattering (SBS) interaction are introduced and validated experimentally. Even if pump depletion is carefully controlled, the Brillouin spectrum shape, and hence the sensor performance, still depend on the sensing parameters such as power, pulse and fibre characteristics. We use a signal processing method grounded in the physics of Brillouin scattering. An analytical approximation, valid for the optimum sensing region, reconstructs the Brillouin spectrum distribution from input sensing parameters and measured data. These data are obtained with a spectrum analysis methodology, based on three original tools: the Rayleigh equivalent criterion, the lengthstress diagram, and the spectrum form factors. This methodology has been successfully used on experimental spectra. The DBS and the signal processing approach were then used to monitor the structural changes in steel pipes and in a composite column, all subjected to heavy loads. The DBS measured the strain distribution of those structures

  8. Molecular dynamics simulation of thermal conductivities of superlattice nanowires

    Institute of Scientific and Technical Information of China (English)

    杨决宽; 陈云飞; 颜景平

    2003-01-01

    Nonequilibrium molecular dynamics simulations were carried out to investigate heat transfer in superlattice nanowires. Results show that for fixed period length superlattice nanowires, the ratio of the total interfacial thermal resistance to the total thermal resistance and the effective thermal conductivities are invariant with the changes in interface numbers. Increasing the period length leads to an increase in the average interfacial thermal resistance, which indicates that the interfacial thermal resistance depends not only on the materials that constitute the alternating segments of superlattice nanowires, but also on the lattice strain throughout the segments. The modification of the lattice structure due to the lattice mismatch should be taken into account in the acoustic mismatch model. Simulation results also demonstrated the size confinement effect on the thermal conductivities for low dimensional structures, i.e. the thermal conductivities and the interfacial thermal resistance increase as the nanowire cross-sectional area increases.

  9. Interlayer diffusion studies of a Laves phase exchange spring superlattice.

    Science.gov (United States)

    Wang, C; Kohn, A; Wang, S G; Ward, R C C

    2011-03-23

    Rare earth Laves phase (RFe(2)) superlattice structures grown at different temperatures are studied using x-ray reflectivity (XRR), x-ray diffraction, and transmission electron microscopy. The optimized molecular beam epitaxy growth condition is matched with the XRR simulation, showing minimum diffusion/roughness at the interfaces. Electron microscopy characterization reveals that the epitaxial growth develops from initial 3D islands to a high quality superlattice structure. Under this optimum growth condition, chemical analysis by electron energy loss spectroscopy with high spatial resolution is used to study the interface. The analysis shows that the interface roughness is between 0.6 and 0.8 nm and there is no significant interlayer diffusion. The locally sharp interface found in this work explains the success of simple structural models in predicting the magnetic reversal behavior of Laves exchange spring superlattices.

  10. Rabi Oscillations in Realistic Superlattice with Finite Bloch Bands

    Institute of Scientific and Technical Information of China (English)

    FAN Wen-Bin; ZHANG Ping; LUO Ying; ZHAO Xian-Geng

    2001-01-01

    We investigate the dynamical processes taking place in nanodevices by high-frequency dc-ac fields. We found that Rabi oscillations between minibands are clearly identified under theoretical resonant conditions derived by an ideal two-band superlattice model, the resonant conditions have broadened, and the amount of broadening is about four times of the Rabi oscillation frequency. We also want to elucidate the role of different mechanisms that could lead to loss of quantum coherence. Our results show how the dephasing effects of disorder of interface roughness and doping fluctuation that after some periods destroy coherent oscillations, such as Rabi oscillations,can be reduced dramatically if we apply a bias static electric field to the superlattice system. The doping fluctuation dephasing effect is much stronger than that of interface roughness in the coherent process of realistic superlattices.

  11. Defect enhanced spin and valley polarizations in silicene superlattices

    Science.gov (United States)

    Li, Wen; Lu, Wei-Tao; Li, Yun-Fang; Han, Hai-Hua

    2017-04-01

    We studied the effect of a defect of superlattice on the spin and valley dependent transport properties in silicene, where there is an abnormal barrier in height. It is found that the transmission resonance is greatly suppressed, because the symmetry of superlattice structure is destroyed by the defect. The spin-up and spin-down electrons near the K and K ‧ valleys are dominated by different effective superlattices and defects. Therefore, the conductances are strongly dependent on the spin and valley of electron. By adjusting the defect strength properly, the spin and valley polarizations could be dramatically enhanced in a wide energy region. Furthermore, the result suggests an application of the structure as a defect-controlled switch.

  12. The magnetic structure of holmium-erbium superlattices

    Energy Technology Data Exchange (ETDEWEB)

    McMorrow, D.F. [Risoe National Lab., Roskilde (Denmark); Simpson, J.A.; Cowley, R.A.; Jehan, D.A.; Ward, R.C.C.; Wells, M.R. [Oxford Physics, Clarendon Lab. (United Kingdom); Thurston, T.R.; Gibbs, D. [Brookhaven National Lab., Upton, NY (United States)

    1994-06-01

    The effect of completing crystal-field anisotropies on magnetic order has been investigated in a series of Ho/Er superlattices using neutron and resonant x-ray magnetic diffraction techniques. The neutron diffraction reveals that for temperatures in the interval T{sub N}(Er) {le} T {le} T{sub N}(Ho) the Ho basal-plane order propagates coherently through the paramagnetic Er, and that below T{sub N}(Er) the longitudinal component of the Er moments fails to order across the Ho block. The magnetic superlattice peaks observed in the x-ray scattering display an anomalous energy dependence: a sharp resonance is found at L{sub III}(Ho), with no resonance visible at L{sub III}(Er). These results are discussed with reference to models of exchange in metallic superlattices.

  13. Electronic states of InSe/GaSe superlattice

    Science.gov (United States)

    Erkoç, Ş.; Allahverdi, K.; Ibrahim, Z.

    1994-06-01

    Analysis of recent publications revealed an increasing interest in epitaxial growth of InSe/GaSe superlattice. Within the effective mass theory we carried out self-consistent calculations of the confined and itinerant electronic states, potential profile and charge density distribution of InSe/GaSe superlattice, where the InSe layers are the well and the GaSe layers the barrier. Calculations were performed for three types of doping: uniform, modulated in the well, and modulated in the barrier. It has been found that the Coulomb interaction in the well and barrier forces the formation of localized states in the barrier region. The possibility of an insulator-metal transition in InSe/GaSe superlattice is predicted for modulation doping in the barrier and for a doping level n = 10 19cm-3. A decrease of the barrier height has been found for modulation doping in the well.

  14. Stimulated Brillouin scattering in single-mode As(2)S(3) and As(2)Se(3) chalcogenide fibers.

    Science.gov (United States)

    Florea, Catalin; Bashkansky, Mark; Dutton, Zachary; Sanghera, Jasbinder; Pureza, Paul; Aggarwal, Ishwar

    2006-12-11

    Stimulated Brillouin scattering was investigated for the first time in As(2)S(3) single-mode fibers, and also in As(2)Se(3). The propagation loss and numerical aperture of the fibers at 1.56 mum, along with the threshold intensity for the stimulated Brillouin scattering process were measured. From the threshold values we estimate the Brillouin gain coefficient and demonstrate record figure of merit for slow-light based applications in chalcogenide fibers.

  15. Secure optical communication using stimulated Brillouin scattering in optical fiber

    Science.gov (United States)

    Yi, Lilin; Zhang, Tao; Li, Zhengxuan; Zhou, Junhe; Dong, Yi; Hu, Weisheng

    2013-03-01

    We propose to encrypt/decrypt high-speed optical signal using stimulated Brillouin scattering (SBS) effect in optical fiber for the first time. The broadened SBS gain or loss distorts the amplitude and phase of the optical signal so as to realize all-optical encryption. The corresponding SBS loss or gain with the same bandwidth and amplitude recovers the distorted signal to implement optical decryption. The encryption/decryption keys could be the SBS gain amplitude, bandwidth, central wavelength and the spectral shape, which are configurable and can be flexibly controlled by the users. The operation principle of the SBS based encryption and decryption is explained in detail. Complete encryption and error-free decryption for a 10.86-Gb/s on-off-keying signal has been experimentally demonstrated using broadband SBS amplification and absorption. The immunity of the proposed encryption method to the eavesdropper's attack is also analyzed. The SBS based secure optical communication is compatible with the current optical communication systems.

  16. Microresonator Brillouin Laser Stabilization Using a Microfabricated Rubidium Cell

    CERN Document Server

    Loh, William; Leopardi, Holly F; Fortier, Tara M; Quinlan, Frank; Kitching, John; Papp, Scott B; Diddams, Scott A

    2016-01-01

    We frequency stabilize the output of a miniature stimulated Brillouin scattering (SBS) laser to rubidium atoms in a microfabricated cell to realize a laser system with frequency stability at the $10^{-11}$ level over seven decades in averaging time. In addition, our system has the advantages of robustness, low cost and the potential for integration that would lead to still further miniaturization. The SBS laser operating at 1560 nm exhibits a spectral linewidth of 820 Hz, but its frequency drifts over a few MHz on the 1 hour timescale. By locking the second harmonic of the SBS laser to the Rb reference, we reduce this drift by a factor of $10^3$ to the level of a few kHz over the course of an hour. For our combined SBS and Rb laser system, we measure a frequency noise of $4\\times10^4$ $Hz^2/Hz$ at 10 Hz offset frequency which rapidly rolls off to a level of 0.2 $Hz^2/Hz$ at 100 kHz offset. The corresponding Allan deviation is $\\leq2\\times10^{-11}$ for averaging times spanning $10^{-4}$ to $10^3$ s. By optical...

  17. Electric and magnetic superlattices in trilayer graphene

    Science.gov (United States)

    Uddin, Salah; Chan, K. S.

    2016-01-01

    The properties of one dimensional Kronig-Penney type of periodic electric and vector potential on ABC-trilayer graphene superlattices are investigated. The energy spectra obtained with periodic vector potentials shows the emergence of extra Dirac points in the energy spectrum with finite energies. For identical barrier and well widths, the original as well as the extra Dirac points are located in the ky = 0 plane. An asymmetry between the barrier and well widths causes a shift in the extra Dirac points away from the ky = 0 plane. Extra Dirac points having same electron hole crossing energy as that of the original Dirac point as well as finite energy Dirac points are generated in the energy spectrum when periodic electric potential is applied to the system. By applying electric and vector potential together, the symmetry of the energy spectrum about the Fermi level is broken. A tunable band gap is induced in the energy spectrum by applying both electric and vector potential simultaneously with different barrier and well widths.

  18. Negative capacitance in multidomain ferroelectric superlattices

    Science.gov (United States)

    Zubko, Pavlo; Wojdeł, Jacek C.; Hadjimichael, Marios; Fernandez-Pena, Stéphanie; Sené, Anaïs; Luk'Yanchuk, Igor; Triscone, Jean-Marc; Íñiguez, Jorge

    2016-06-01

    The stability of spontaneous electrical polarization in ferroelectrics is fundamental to many of their current applications, which range from the simple electric cigarette lighter to non-volatile random access memories. Research on nanoscale ferroelectrics reveals that their behaviour is profoundly different from that in bulk ferroelectrics, which could lead to new phenomena with potential for future devices. As ferroelectrics become thinner, maintaining a stable polarization becomes increasingly challenging. On the other hand, intentionally destabilizing this polarization can cause the effective electric permittivity of a ferroelectric to become negative, enabling it to behave as a negative capacitance when integrated in a heterostructure. Negative capacitance has been proposed as a way of overcoming fundamental limitations on the power consumption of field-effect transistors. However, experimental demonstrations of this phenomenon remain contentious. The prevalent interpretations based on homogeneous polarization models are difficult to reconcile with the expected strong tendency for domain formation, but the effect of domains on negative capacitance has received little attention. Here we report negative capacitance in a model system of multidomain ferroelectric-dielectric superlattices across a wide range of temperatures, in both the ferroelectric and paraelectric phases. Using a phenomenological model, we show that domain-wall motion not only gives rise to negative permittivity, but can also enhance, rather than limit, its temperature range. Our first-principles-based atomistic simulations provide detailed microscopic insight into the origin of this phenomenon, identifying the dominant contribution of near-interface layers and paving the way for its future exploitation.

  19. Intrinsic noncollinear magnetization in Fe/Cr superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Yartseva, N.S., E-mail: yartseva@imp.uran.ru [Institute of Metal Physics, UD of RAS, Ekaterinburg 620990 (Russian Federation); Yartsev, S.V. [ZAO NPO “Spektr”, 14 Berezovskiy 623700 (Russian Federation); Demangeat, C. [UFR de Physique et d’Ingéniérie, Université de Strasbourg, 3 rue de l’Université, 67000 Strasbourg (France)

    2014-12-15

    Magnetic moments distribution in Fe{sub 3}Cr{sub n} superlattice series with fixed middle Fe monolayer and number of Cr monolayers (MLs) n from 1 to 45 is computed in the framework of collinear and noncollinear Periodic Anderson model. The superlattices are composed of layers in (0 0 1) and (1 1 0) plane with ideal interface. The total energy shows that noncollinear orientation of the magnetic moments remains the ground state for all superlattices with Cr thickness above 5 MLs. Distribution of the magnetic moments for Fe/Cr(0 0 1) superlattices depends on parity of the Cr MLs. For odd numbers Cr magnetic moments are canted and symmetrically distributed between the neighboring Fe slabs. The values of Cr moments are enhanced at the interface and weakened to the bulk in the middle. For even numbers of Cr MLs quasi-helicoidal magnetic moments distribution consisting of two interleaved spirals is found. The moments are screwing sequentially from Fe/Cr interface to perpendicular orientation, keeping the angles and moments for some successive MLs, and then continue screwing towards the next interface. In Fe/Cr(1 1 0) superlattices the magnetic moments of two nonequivalent atoms in the monolayer are canted to each other near Fe/Cr interface and then swing the direction on perpendicular to the fixed Fe moments. - Highlights: • Frustration destroys the collinear magnetization in Fe/Cr superlattices. • Spin spiral were investigated within basic noncollinear Periodic Anderson Model. • Total energy of the spin spiral is generally more stable than collinear magnetization. • Neither step nor alloying at the Fe/Cr interface is necessary for Spin Spiral stability. • The two interleaved spirals calculated are similar to Fishman’s helical state.

  20. Raman-induced Spin-Orbit Coupling in Optical Superlattices

    Science.gov (United States)

    Li, Junru; Huang, Wujie; Shteynas, Boris; Burchesky, Sean; Top, Furkan; Jamison, Alan; Ketterle, Wolfgang

    2016-05-01

    We demonstrate a new scheme for spin-orbit coupling (SOC) of ultracold atoms. Instead of internal (hyperfine) states, two lowest bands in an optical superlattice were used as pseudospins. A Raman process was implemented to provide coupling between pseudospin and momentum. With single internal state and far-detuned beams used, our new scheme will allow convenient generalisation to a wide range of atoms. Pseudospin interaction is tuneable by controlling the superlattice, allowing us to study many-body phenomena in SOC systems such as the stripe phase.

  1. Spontaneous Superlattice Formation in Nanorods through PartialCation Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Richard D.; Sadtler, Bryce; Demchenko, Denis O.; Erdonmez, Can K.; Wang, Lin-Wang; Alivisatos, A. Paul

    2007-03-14

    Lattice mismatch strains are widely known to controlnanoscale pattern formation in heteroepitaxy, but such effects have notbeen exploited in colloidal nanocrystal growth. We demonstrate acolloidal route to synthesizing CdS-Ag2S nanorod superlattices throughpartial cation exchange. Strain induces the spontaneous formation ofperiodic structures. Ab initio calculations of the interfacial energy andmodeling of strain energies show that these forces drive theself-organization. The nanorod superlattices exhibit high stabilityagainst ripening and phase mixing. These materials are tunablenear-infrared emitters with potential applications as nanometer-scaleoptoelectronic devices.

  2. The solition properties of dipole domains in superlattices

    Institute of Scientific and Technical Information of China (English)

    张启义; 田强

    2002-01-01

    The formation and propagation of dipole domains in superlattices are studied both by the modified discrete drift model and by the nonlinear schroedinger equation,the spatiotemporal distribution of the electric field and electron density are presented.The numerical results are compared with the soliton solutions of the nonlinear Schroedinger equation and analysed.It is shown that the numerical solutions agree with the soliton solutions of the nonlinear Schroedinger equation.The dipole electric-field domains in semiconductor superlattices have the properties of solitons.

  3. Spin-dependent terahertz oscillator based on hybrid graphene superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Díaz, E.; Miralles, K.; Domínguez-Adame, F. [GISC, Departamento Física de Materiales, Universidad Complutense, E-28040 Madrid (Spain); Gaul, C., E-mail: cgaul@pks.mpg.de [Max Planck Institute for the Physics of Complex Systems, 01187 Dresden (Germany)

    2014-09-08

    We theoretically study the occurrence of Bloch oscillations in biased hybrid graphene systems with spin-dependent superlattices. The spin-dependent potential is realized by a set of ferromagnetic insulator strips deposited on top of a gapped graphene nanoribbon, which induce a proximity exchange splitting of the electronic states in the graphene monolayer. We numerically solve the Dirac equation and study Bloch oscillations in the lowest conduction band of the spin-dependent superlattice. While the Bloch frequency is the same for both spins, we find the Bloch amplitude to be spin dependent. This difference results in a spin-polarized ac electric current in the THz range.

  4. Photon BLOCH oscillations in porous silicon optical superlattices.

    Science.gov (United States)

    Agarwal, V; del Río, J A; Malpuech, G; Zamfirescu, M; Kavokin, A; Coquillat, D; Scalbert, D; Vladimirova, M; Gil, B

    2004-03-01

    We report the first observation of oscillations of the electromagnetic field in an optical superlattice based on porous silicon. These oscillations are an optical equivalent of well-known electronic Bloch oscillations in crystals. Elementary cells of our structure are composed by microcavities whose coupling gives rise to the extended collective modes forming optical minigaps and minibands. By varying thicknesses of the cavities along the structure axis, we have created an effective electric field for photons. A very high quality factor of the confined optical state of the Wannier-Stark ladder may allow lasing in porous silicon-based superlattices.

  5. Binding Graphene Sheets Together Using Silicon: Graphene/Silicon Superlattice

    Directory of Open Access Journals (Sweden)

    Zhang Yong

    2010-01-01

    Full Text Available Abstract We propose a superlattice consisting of graphene and monolayer thick Si sheets and investigate it using a first-principles density functional theory. The Si layer is found to not only strengthen the interlayer binding between the graphene sheets compared to that in graphite, but also inject electrons into graphene, yet without altering the most unique property of graphene: the Dirac fermion-like electronic structure. The superlattice approach represents a new direction for exploring basic science and applications of graphene-based materials.

  6. Characterization of Brillouin fiber generator and amplifier for optimized working condition of distributed sensors

    Science.gov (United States)

    Ravet, Fabien; Bao, Xiaoyi; Snoddy, Jeff; Li, Yun; Chen, Liang

    2009-06-01

    The Brillouin fiber amplifier (BFA) has been used in Brillouin optical time and frequency domain analyzer based sensors. For BFA based distributed sensor the optimized working condition is to have the highest Brillouin gain, i.e., highest SNR, which avoids high pump depletion induced gain saturation. We have found that the optimum working condition for distributed sensor system is associated with the stimulated Brillouin scattering (SBS) threshold for BFA, which can be experimentally determined with Stokes power inflexion and/or Stokes spectrum linewidth minimum methods. This threshold depends on both pump and probe power instead of just the pump power as in Brillouin fiber generator (BFG), as well as on sensing length as confirmed by our experimental results and theoretical simulation. This was achieved by introducing the concept of absorption coefficient of the sensing medium defined as the ratio of the total output power to the total input power. We find that the medium absorption is minimized when input Stokes power is an order of magnitude lower than BFA threshold. This minimum is a signature of the balance between maximum Stokes gain and pump depletion which is also the reason why Stokes spectrum linewidth goes through a minimum.

  7. Small-scale self-focusing of 200 ps laser pulses in Brillouin amplification

    Science.gov (United States)

    Yuan, Hang; Wang, Yu-Lei; Lü, Zhi-Wei; Zheng, Zhen-Xing

    2015-09-01

    Brillouin amplification is a new method to obtain high power hundred-picosecond laser pulses for shock ignition. The laser pulse’s intensity can be amplified to 10 GW/cm2 through this method. In order to determine the near-field quality, the relationship between the Brillouin amplification gain and the B integral in the stimulated Brillouin scattering (SBS) energy transfer process was studied, and numerical simulations and calculations were carried out to explain the process. For achieving an output intensity of 10 GW/cm2 under the condition that the effect of small-scale self-focusing is insignificant in the Brillouin amplification, the influence of the configuration parameters on the Brillouin amplification and the B integral was investigated. The results showed that the 10 GW/cm2 high power output can be obtained by optimizing the intensities of the pump and Stokes light and choosing an appropriate SBS medium. Project supported by the National Natural Science Foundation of China (Grant Nos. 61378007 and 61138005) and the Fundamental Research Funds for the Central Universities, China (Grant No. HIT. IBRSEM. A. 201409).

  8. Nonlinear Brillouin amplification of finite-duration seeds in the strong coupling regime

    Science.gov (United States)

    Lehmann, G.; Spatschek, K. H.

    2013-07-01

    Parametric plasma processes received renewed interest in the context of generating ultra-intense and ultra-short laser pulses up to the exawatt-zetawatt regime. Both Raman as well as Brillouin amplifications of seed pulses were proposed. Here, we investigate Brillouin processes in the one-dimensional (1D) backscattering geometry with the help of numerical simulations. For optimal seed amplification, Brillouin scattering is considered in the so called strong coupling (sc) regime. Special emphasis lies on the dependence of the amplification process on the finite duration of the initial seed pulses. First, the standard plane-wave instability predictions are generalized to pulse models, and the changes of initial seed pulse forms due to parametric instabilities are investigated. Three-wave-interaction results are compared to predictions by a new (kinetic) Vlasov code. The calculations are then extended to the nonlinear region with pump depletion. Generation of different seed layers is interpreted by self-similar solutions of the three-wave interaction model. Similar to Raman amplification, shadowing of the rear layers by the leading layers of the seed occurs. The shadowing is more pronounced for initially broad seed pulses. The effect is quantified for Brillouin amplification. Kinetic Vlasov simulations agree with the three-wave interaction predictions and thereby affirm the universal validity of self-similar layer formation during Brillouin seed amplification in the strong coupling regime.

  9. Brillouin scattering, piezobirefringence, and dispersion of photoelastic coefficients of CdS and ZnO

    DEFF Research Database (Denmark)

    Berkowicz, R.; Skettrup, Torben

    1975-01-01

    We have measured the dispersion of the Brillouin scattering from acoustoelectrical domains in CdS and ZnO. These spectra are compared with the birefringence spectra obtained by applying uniaxial stress. The resonant cancellation of the Brillouin scattering occurs at the spectral position of the i......We have measured the dispersion of the Brillouin scattering from acoustoelectrical domains in CdS and ZnO. These spectra are compared with the birefringence spectra obtained by applying uniaxial stress. The resonant cancellation of the Brillouin scattering occurs at the spectral position...... of the isotropic point of the stress-induced birefringence. From these spectra it is concluded that the Brillouin scattering in CdS and ZnO is determined by elasto-optic effects alone. The spectra of some of the photoelastic coefficients have been determined. A model dielectric constant is derived where both....... It is found that the exchange interaction between the excitons may change the values of the photoelastic coefficients in ZnO about 10%....

  10. Stimulated Brillouin scattering-induced phase noise in an interferometric fiber sensing system

    Institute of Scientific and Technical Information of China (English)

    Chen Wei; Meng Zhou; Zhou Hui-Juan; Luo Hong

    2012-01-01

    Stimulated Brillouin scattering-induced phase noise is harmful to interferometric fiber sensing systems. Thelocalized fluctuating model is used to study the intensity noise caused by the stimulated Brillouin scattering in a single-mode fiber.The phase noise structure is analyzed for an interferometric fiber sensing system,and an unbalanced Michelson interferometer with an optical path difference of 1 m,as well as the phase-generated carrier technique,is used to measure the phase noise.It is found that the phase noise is small when the input power is below the stimulated Brillouin scattering threshold,increases dramatically at first and then gradually becomes fiat when the input power is above the threshold,which is similar to the variation in relative intensity noise.It can be inferred that the increase in phase noise is mainly due to the broadening of the laser linewidth caused by stimulated Brillouin scattering,which is verified through linewidth measurements in the absence and presence of the stimulated Brillouin scattering.

  11. Type II superlattice technology for LWIR detectors

    Science.gov (United States)

    Klipstein, P. C.; Avnon, E.; Azulai, D.; Benny, Y.; Fraenkel, R.; Glozman, A.; Hojman, E.; Klin, O.; Krasovitsky, L.; Langof, L.; Lukomsky, I.; Nitzani, M.; Shtrichman, I.; Rappaport, N.; Snapi, N.; Weiss, E.; Tuito, A.

    2016-05-01

    SCD has developed a range of advanced infrared detectors based on III-V semiconductor heterostructures grown on GaSb. The XBn/XBp family of barrier detectors enables diffusion limited dark currents, comparable with MCT Rule-07, and high quantum efficiencies. This work describes some of the technical challenges that were overcome, and the ultimate performance that was finally achieved, for SCD's new 15 μm pitch "Pelican-D LW" type II superlattice (T2SL) XBp array detector. This detector is the first of SCD's line of high performance two dimensional arrays working in the LWIR spectral range, and was designed with a ~9.3 micron cut-off wavelength and a format of 640 x 512 pixels. It contains InAs/GaSb and InAs/AlSb T2SLs, engineered using k • p modeling of the energy bands and photo-response. The wafers are grown by molecular beam epitaxy and are fabricated into Focal Plane Array (FPA) detectors using standard FPA processes, including wet and dry etching, indium bump hybridization, under-fill, and back-side polishing. The FPA has a quantum efficiency of nearly 50%, and operates at 77 K and F/2.7 with background limited performance. The pixel operability of the FPA is above 99% and it exhibits a stable residual non uniformity (RNU) of better than 0.04% of the dynamic range. The FPA uses a new digital read-out integrated circuit (ROIC), and the complete detector closely follows the interfaces of SCD's MWIR Pelican-D detector. The Pelican- D LW detector is now in the final stages of qualification and transfer to production, with first prototypes already integrated into new electro-optical systems.

  12. Superlattice conductivity sign change induced by intense electromagnetic radiation

    Science.gov (United States)

    Kryuchkov, S. V.; Kukhar', E. I.; Ionkina, E. S.

    2016-07-01

    The current density in a superlattice exposed to a quantizing electric field and the terahertz field has been calculated. The calculations have been carried out taking into account inelastic scattering of charge carriers by phonons. The possibility of an absolute negative conductivity, i.e., the emergence of electric current opposing the direction of the quantizing electric field, has been demonstrated.

  13. Strong impact of impurity bands on domain formation in superlattices

    DEFF Research Database (Denmark)

    Wacker, Andreas; Jauho, Antti-Pekka

    1998-01-01

    The formation of electric field domains in doped semiconductor superlattices is described within a microscopic model. Due to the presence of impurity bands in low-doped samples the current-voltage characteristic is essentially different compared to medium-doped samples. (C) 1998 Published by Else...

  14. Coherent magnetic structures in terbium/holmium superlattices

    DEFF Research Database (Denmark)

    Bryn-Jacobsen, C.; Cowley, R.A.; McMorrow, D.F.;

    1997-01-01

    Neutron-scattering techniques have been used to investigate the magnetic properties of three Tb/Ho superlattices grown by molecular-beam epitaxy. It is revealed that for temperatures in the range T = 10 to T-N(Ho)approximate to 130 K, there is a basal-plane ferromagnetic alignment of Tb moments...

  15. The structural and magnetic properties of holmium/scandium superlattices

    DEFF Research Database (Denmark)

    Bryn-Jacobsen, C.; Cowley, R.A.; McMorrow, D.F.;

    1997-01-01

    The properties of Ho/Sc superlattices grown by molecular beam epitaxy (MBE) have been investigated using X-ray and neutron diffraction techniques. Structural studies reveal the novel existence of more than one a lattice parameter. Examining the magnetic properties, it is found that the Ho 4f...

  16. Magnetic structures of holmium-lutetium alloys and superlattices

    DEFF Research Database (Denmark)

    Swaddling, P.P.; Cowley, R.A.; Ward, R.C.C.;

    1996-01-01

    Alloys and superlattices of Ho and Lu have been grown using molecular beam epitaxy and their magnetic structures determined using neutron-scattering techniques. The 4f moments in the alloys form a helix at all compositions with the moments aligned in the basal plane perpendicular to the wave vector...

  17. Bypassing of a barrier by dissociated and superlattice dislocations

    DEFF Research Database (Denmark)

    Bhushan, Karihaloo

    1975-01-01

    Very simple procedures are used to calculate the upper and lower bounds for the applied stress required for the leading extended (superlattice) dislocation in a group of n coplanar screw dislocations of like sign with Burgers vector b to bypass a noncoplanar perfect screw dislocation with Burgers...... vector mb (m...

  18. Type-II superlattice photodiodes: an alternative for VLWIR detection

    Science.gov (United States)

    Brown, Gail J.; Houston, Shanee; Szmulowicz, Frank; Mahalingam, Krishnamur; Haugan, Heather; Wei, Yajun; Gin, Aaron; Razeghi, Manijeh

    2003-09-01

    In the very long wavelength infrared (VLWIR) band, λ>14 microns, the detector materials are currently limited to extrinsic semiconductors. These extrinsic materials can be either heavily doped bulk semiconductor, like silicon or germanium, or a doped quantum well heterostructure. An alternative choice that provides the opportunity for higher temperature operation for VLWIR sensing is an intrinsic material based on a type-II InAs/Ga(In)Sb superlattice. There are many possible designs for these superlattices which will produce the same narrow band gap by adjusting individual layer thicknesses, indium content or substrate orientation. The infrared properties of various compositions and designs of these type-II superlattices have been studied. In the past few years, excellent results have been obtained on photoconductive and photodiode samples designed for infrared detection beyond 15 microns. An overview of the status of this material system will be presented. In addition, the latest experimental results for superlattice photodiodes with cut-off wavelengths as long as 30 microns will be covered.

  19. Heterojunction and superlattice detectors for infrared to ultraviolet

    Science.gov (United States)

    Perera, A. G. U.

    2016-07-01

    The interest in Infrared and Ultraviolet detectors has increased immensely due to the emergence of important applications over a wide range of activities. Detectors based on free carrier absorption known as Hetero-junction Interfacial Workfunction Internal Photoemission (HEIWIP) detectors and variations of these heterojunction structures to be used as intervalence band detectors for a wide wavelength region are presented. Although this internal photoemission concept is valid for all semiconductor materials systems, using a well-studied III-V system of GaAs/AlxGa1-x As to cover a wide wavelength range from UV to far-infrared (THz) is an important development in detector technology. Using the intervalence band (heavy hole, light hole and split off) transitions for high operating temperature detection of mid Infrared radiation is also discussed. A promising new way to extend the detection wavelength threshold beyond the standard threshold connected with the energy gap in a GaAs/AlxGa1-x As system is also presented. Superlattice detector technology, which is another promising detector architecture, can be optimized using both Type I and Type II heterostructures. Here the focus will be on Type II Strained Layer (T2SL) Superlattice detectors. T2SL Superlattices based on InAs/(In,GA)Sb have made significant improvements demonstrating focal plane arrays operating around 80 K and with multiple band detection capability. A novel spectroscopic method to evaluate the band offsets of both heterojunction and superlattice detectors is also discussed.

  20. Hot electrons in superlattices: quantum transport versus Boltzmann equation

    DEFF Research Database (Denmark)

    Wacker, Andreas; Jauho, Antti-Pekka; Rott, S.;

    1999-01-01

    A self-consistent solution of the transport equation is presented for semiconductor superlattices within different approaches: (i) a full quantum transport model based on nonequilibrium Green functions, (ii) the semiclassical Boltzmann equation for electrons in a miniband, and (iii) Boltzmann...

  1. Designing Optical Properties in DNA-Programmed Nanoparticle Superlattices

    Science.gov (United States)

    Ross, Michael Brendan

    A grand challenge of modern science has been the ability to predict and design the properties of new materials. This approach to the a priori design of materials presents a number of challenges including: predictable properties of the material building blocks, a programmable means for arranging such building blocks into well understood architectures, and robust models that can predict the properties of these new materials. In this dissertation, we present a series of studies that describe how optical properties in DNA-programmed nanoparticle superlattices can be predicted prior to their synthesis. The first chapter provides a history and introduction to the study of metal nanoparticle arrays. Chapter 2 surveys and compares several geometric models and electrodynamics simulations with the measured optical properties of DNA-nanoparticle superlattices. Chapter 3 describes silver nanoparticle superlattices (rather than gold) and identifies their promise as plasmonic metamaterials. In chapter 4, the concept of plasmonic metallurgy is introduced, whereby it is demonstrated that concepts from materials science and metallurgy can be applied to the optical properties of mixed metallic plasmonic materials, unveiling rich and tunable optical properties such as color and asymmetric reflectivity. Chapter 5 presents a comprehensive theoretical exploration of anisotropy (non-spherical) in nanoparticle superlattice architectures. The role of anisotropy is discussed both on the nanoscale, where several desirable metamaterial properties can be tuned from the ultraviolet to near-infrared, and on the mesoscale, where the size and shape of a superlattice is demonstrated to have a pronounced effect on the observed far-field optical properties. Chapter 6 builds upon those theoretical data presented in chapter 5, including the experimental realization of size and shape dependent properties in DNA-programmed superlattices. Specifically, nanoparticle spacing is explored as a parameter that

  2. Brillouin optical time-domain analyzer for extended sensing range using probe dithering and cyclic coding

    Science.gov (United States)

    Iribas, Haritz; Loayssa, Alayn; Sauser, Florian; Llera, Miguel; Le Floch, Sébastien

    2017-04-01

    We present an enhanced performance Brillouin optical time-domain analysis sensor that uses dual probes waves with optical frequency modulation and cyclic coding. The frequency modulation serves to increase the probe power that can be injected in the fiber before the onset of non-local effects and noise generated by spontaneous Brillouin scattering. This leads to higher detected signal-to-noise ratio (SNR), which is further increased by the coding gain. The enhanced SNR translates to extended range for the sensor, with experiments demonstrating 1-m spatial resolution over a 164 km fiber loop with a 3-MHz Brillouin frequency shift measurement precision at the worst contrast position. In addition, we introduce a study of the power limits that can be injected in the fiber with cyclic coding before the appearance of distortions in the decoded signal.

  3. High-Performance Versatile Setup for Simultaneous Brillouin-Raman Microspectroscopy

    Directory of Open Access Journals (Sweden)

    F. Scarponi

    2017-07-01

    Full Text Available Brillouin and Raman scattering spectroscopy are established techniques for the nondestructive contactless and label-free readout of mechanical, chemical, and structural properties of condensed matter. Brillouin-Raman investigations currently require separate measurements and a site-matched approach to obtain complementary information from a sample. Here, we demonstrate a new concept of fully scanning multimodal microspectroscopy for simultaneous detection of Brillouin and Raman light scattering in an exceptionally wide spectral range, from fractions of GHz to hundreds of THz. It yields an unprecedented 150-dB contrast, which is especially important for the analysis of opaque or turbid media such as biomedical samples, and spatial resolution on a subcellular scale. We report the first applications of this new multimodal method to a range of systems, from a single cell to the fast reaction kinetics of a curing process, and the mechanochemical mapping of highly scattering biological samples.

  4. Seven-year-long crack detection monitoring by Brillouin-based fiber optic strain sensor

    Science.gov (United States)

    Imai, Michio

    2015-03-01

    As an optical fiber is able to act as a sensing medium, a Brillouin-based sensor provides continuous strain information along an optical fiber. The sensor has been used in a wide range of civil engineering applications because no other tool can satisfactorily detect discontinuity such as a crack. Cracking generates a local strain change on the embedded optical fiber, thus Brillouin optical correlation domain analysis (BOCDA), which offers a high spatial resolution by stimulated Brillouin scattering, is expected to detect a fine crack on concrete structures. The author installed the surface-mounted optical fiber on a concrete deck and periodically monitored strain distribution for seven years. This paper demonstrates how a BOCDA-based strain sensor can be employed to monitor cracks in a concrete surface. Additionally, focusing on another advantage of the sensor, the natural frequency of the deck is successfully measured by dynamic strain history.

  5. High-Performance Versatile Setup for Simultaneous Brillouin-Raman Microspectroscopy

    Science.gov (United States)

    Scarponi, F.; Mattana, S.; Corezzi, S.; Caponi, S.; Comez, L.; Sassi, P.; Morresi, A.; Paolantoni, M.; Urbanelli, L.; Emiliani, C.; Roscini, L.; Corte, L.; Cardinali, G.; Palombo, F.; Sandercock, J. R.; Fioretto, D.

    2017-07-01

    Brillouin and Raman scattering spectroscopy are established techniques for the nondestructive contactless and label-free readout of mechanical, chemical, and structural properties of condensed matter. Brillouin-Raman investigations currently require separate measurements and a site-matched approach to obtain complementary information from a sample. Here, we demonstrate a new concept of fully scanning multimodal microspectroscopy for simultaneous detection of Brillouin and Raman light scattering in an exceptionally wide spectral range, from fractions of GHz to hundreds of THz. It yields an unprecedented 150-dB contrast, which is especially important for the analysis of opaque or turbid media such as biomedical samples, and spatial resolution on a subcellular scale. We report the first applications of this new multimodal method to a range of systems, from a single cell to the fast reaction kinetics of a curing process, and the mechanochemical mapping of highly scattering biological samples.

  6. Multistability, chaos, and random signal generation in semiconductor superlattices

    Science.gov (United States)

    Ying, Lei; Huang, Danhong; Lai, Ying-Cheng

    2016-06-01

    Historically, semiconductor superlattices, artificial periodic structures of different semiconductor materials, were invented with the purpose of engineering or manipulating the electronic properties of semiconductor devices. A key application lies in generating radiation sources, amplifiers, and detectors in the "unusual" spectral range of subterahertz and terahertz (0.1-10 THz), which cannot be readily realized using conventional radiation sources, the so-called THz gap. Efforts in the past three decades have demonstrated various nonlinear dynamical behaviors including chaos, suggesting the potential to exploit chaos in semiconductor superlattices as random signal sources (e.g., random number generators) in the THz frequency range. We consider a realistic model of hot electrons in semiconductor superlattice, taking into account the induced space charge field. Through a systematic exploration of the phase space we find that, when the system is subject to an external electrical driving of a single frequency, chaos is typically associated with the occurrence of multistability. That is, for a given parameter setting, while there are initial conditions that lead to chaotic trajectories, simultaneously there are other initial conditions that lead to regular motions. Transition to multistability, i.e., the emergence of multistability with chaos as a system parameter passes through a critical point, is found and argued to be abrupt. Multistability thus presents an obstacle to utilizing the superlattice system as a reliable and robust random signal source. However, we demonstrate that, when an additional driving field of incommensurate frequency is applied, multistability can be eliminated, with chaos representing the only possible asymptotic behavior of the system. In such a case, a random initial condition will lead to a trajectory landing in a chaotic attractor with probability 1, making quasiperiodically driven semiconductor superlattices potentially as a reliable

  7. Characterization of red blood cells (RBCs) using dual Brillouin/Raman micro-spectroscopy

    Science.gov (United States)

    Meng, Zhaokai; Bustamante-Lopez, Sandra C.; Yakovlev, Vladislav V.; Meissner, Kenith E.

    2016-04-01

    Erythrocytes, or red blood cells, transport oxygen to and carbon dioxide from the body's tissues and organs. Red blood cell mechanical properties are altered in a number of diseases such as sickle cell anaemia and malaria. Additionally, mechanically modified red blood cell ghosts are being considered as a long-term, biocompatible carrier for drug delivery and for blood analyte sensing. Brillouin spectroscopy enables viscoelastic characterization of samples at the microscale. In this report, Brillouin spectroscopy is applied to characterize the mechanical properties of red blood cells and red blood cell ghosts.

  8. Guided acoustic and optical waves in silicon-on-insulator for Brillouin scattering and optomechanics

    Science.gov (United States)

    Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.

    2016-10-01

    We numerically study silicon waveguides on silica showing that it is possible to simultaneously guide optical and acoustic waves in the technologically important silicon on insulator (SOI) material system. Thin waveguides, or fins, exhibit geometrically softened mechanical modes at gigahertz frequencies with phase velocities below the Rayleigh velocity in glass, eliminating acoustic radiation losses. We propose slot waveguides on glass with telecom optical frequencies and strong radiation pressure forces resulting in Brillouin gains on the order of 500 and 50 000 W-1m-1 for backward and forward Brillouin scattering, respectively.

  9. Essential criteria for efficient pulse amplification via Raman and Brillouin scattering

    CERN Document Server

    Trines, R M G M; Webb, E; Vieira, J; Fiuza, F; Fonseca, R A; Silva, L O; Sadler, J; Ratan, N; Ceurvorst, L; Kasim, M F; Tabak, M; Froula, D; Haberberger, D; Norreys, P A; Cairns, R A; Bingham, R

    2016-01-01

    Raman and Brillouin amplification are two schemes for amplifying and compressing short laser pulses in plasma. Analytical models have already been derived for both schemes, but the full consequences of these models are little known or used. Here, we present new criteria that govern the evolution of the attractor solution for the seed pulse in Raman and Brillouin amplification, and show how the initial laser pulses need to be shaped to control the properties of the final amplified seed and improve the amplification efficiency.

  10. Brillouin-scattering measurements of the acoustic absorption coefficient in liquid CS2

    Science.gov (United States)

    Coakley, R. W.; Detenbeck, R. W.

    1975-01-01

    High-resolution Brillouin spectra were recorded for light scattered at small angles from liquid CS2. The use of a single-mode He-Ne laser, locked in frequency to a Fabry-Perot interferometer, permitted measurements of line widths of the order of 10 MHz for frequencies in the range 300-1000 MHz. These measurements extend previous Brillouin line-width measurements at higher frequencies into the region where relaxation effects are dominant and connect the optical measurements with lower-frequency acoustical data.

  11. Diagnostic techniques for photonic materials based on Raman and Brillouin spectroscopies

    Institute of Scientific and Technical Information of China (English)

    M. Mattarelli; M. Ferrari; Y. Jestin; G. Nunzi Conti; S. Pelli; G.C. Righini; S.Caponi; A. Chiappini; M. Montagna; E. Moser; F. Rossi; C.Tosello; C. Armellini; A. Chiasera

    2007-01-01

    The elastic and vibrational properties of a material, bulk or planar waveguide, are studied by Brillouin and Raman spectroscopy to follow the process of nanocrystals growth in glass-ceramics. The nanoparticles cause the appearance, in the low frequency Raman spectrum, of characteristic peaks, whose position depends on the size of the crystals. At the same time, sharp crystal peaks, due to optical phonons, appear in the Raman spectra, allowing the determination of the nucleated phase, and a frequency shift of the Brillouin peaks is observed.

  12. Controllable optical delay line using a Brillouin optical fiber ring laser

    Institute of Scientific and Technical Information of China (English)

    Yongkang Dong; Zhiwei Lü; Qiang Li; Wei Gao

    2006-01-01

    A controllable optical delay line using a Brillouin optical fiber ring laser is demonstrated and a large timedelay is obtained by cascading two optical fiber segments. In experiment, a single-mode Brillouin opticalfiber ring laser is used to provide Stokes wave as probe wave. We achieve a maximum tunable time delayof 61 ns using two cascading optical fiber segments, about 1.5 times of the input probe pulse width of 40ns. In the meantime, a considerable pulse broadening is observed, which agrees well with the theoreticalprediction based on linear theory.

  13. Performance Analysis of Temperature and Strain Simultaneous Measurement System Based on Heterodyne Detection of Brillouin Scattering

    Institute of Scientific and Technical Information of China (English)

    Ji-Sheng Zhang; Yong-Qian Li; Shuo Zhang; Li-Juan Zhao

    2008-01-01

    Microwave heterodyne detection can be used to measure the temperature and strain distribution along a fiber with high accuracy in a Brillouin optical time domain reflectometry (BOTDR) system. This method involves simultaneous measurement of Brillouin scattering and Rayleigh scattering in fiber, and scanning of Briliouin spectrum to obtain the desired information. This paper presents a simultaneous measurement system of temperature and strain based on microwave detection and analyzed the system performances such as measurement accuracy, dynamic range, and spatial resolution theoretically. The analysis shows that the system can achieve a temperature resolution of 1℃ and a strain resolution of 100 με.

  14. Brillouin precursor waveforms pertaining to UWB noise radar signals propagating through dispersive media

    Science.gov (United States)

    Dawood, M.; Alejos, A. V.

    2011-06-01

    The electromagnetic (EM) waves propagating through causal, linear, and lossy dispersive media (soil, foliage, plasma, water, biological tissue, etc.), experience frequency-dependent attenuation and phase distortion. This has assumed significant importance for systems operating with ultrawideband (UWB) spectrum. This paper analyzes the dynamical evolution of UWB noise radar signals through dispersive media. The effects on the signal propagation due to the evolution of the Brillouin precursor through dispersive media are discussed. The evolving waveforms are then compared with the Brillouin precursor due to rectangular sine-modulated deterministic signals. The advantages of random noise waveforms through dispersive media are also discussed.

  15. Determination of the threshold for instability in four-wave mixing mediated by Brillouin scattering

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, D.E. (Los Alamos National Lab., NM (United States)); Scott, A.M.; Ridley, K.D. (Royal Signals and Radar Establishment, Malvern (United Kingdom))

    1990-12-01

    The threshold for instability in Brillouin-enhanced four-wave mixing has been experimentally determined as a function of both the phase mismatch and the ratio of the pump beam intensities, and is shown to agree with theoretical modeling. The effective input noise intensity for four-wave mixing in the unstable regime is compared to the noise in a stimulated Brillouin scattering amplifier and is found to be higher by a factor of three in the forward direction. Competition between two input signals has been investigated and it is shown that the signal which arrives first dominates the interaction in the unstable regime.

  16. ``Bloch wave'' modification of stimulated Raman by stimulated Brillouin scattering

    Science.gov (United States)

    Dodd, E. S.; Vu, H. X.; DuBois, D. F.; Bezzerides, B.

    2013-03-01

    Using the reduced-description particle-in-cell (RPIC) method, we study the coupling of backward stimulated Raman scattering (BSRS) and backward stimulated Brillouin scattering (BSBS) in regimes where the reflectivity involves the nonlinear behavior of particles trapped in the daughter plasma waves. The temporal envelope of a Langmuir wave (LW) obeys a Schrödinger equation where the potential is the periodic electron density fluctuation resulting from an ion-acoustic wave (IAW). The BSRS-driven LWs in this case have a Bloch wave structure and a modified dispersion due to the BSBS-driven spatially periodic IAW, which includes frequency band gaps at kLW˜kIAW/2˜k0 (kLW, kIAW, and k0 are the wave number of the LW, IAW, and incident pump electromagnetic wave, respectively). This band structure and the associated Bloch wave harmonic components are distinctly observed in RPIC calculations of the electron density fluctuation spectra and this structure may be observable in Thomson scatter. Bloch wave components grow up in the LW spectrum, and are not the result of isolated BSRS. Self-Thomson scattered light from these Bloch wave components can have forward scattering components. The distortion of the LW dispersion curve implies that the usual relationship connecting the frequency shift of the BSRS-scattered light and the density of origin of this light may become inaccurate. The modified LW frequency results in a time-dependent frequency shift that increases as the IAW grows, detunes the BSRS frequency matching condition, and reduces BSRS growth. A dependence of the BSRS reflectivity on the IAW Landau damping results because this damping determines the levels of IAWs. The time-dependent reflectivity in our simulations is characterized by bursts of sub-picosecond pulses of BSRS alternating with multi-ps pulses of BSBS, and BSRS is observed to decline precipitously as soon as SBS begins to grow from low levels. In strong BSBS regimes, the Bloch wave effects in BSRS are

  17. Determination of the elastic constants of portlandite by Brillouin spectroscopy

    KAUST Repository

    Speziale, S.

    2008-10-01

    The single crystal elastic constants Cij and the shear and adiabatic bulk modulus of a natural portlandite (Ca(OH)2) crystal were determined by Brillouin spectroscopy at ambient conditions. The elastic constants, expressed in GPa, are: C11 = 102.0(± 2.0), C12 = 32.1(± 1.0), C13 = 8.4(± 0.4), C14 = 4.5(± 0.2), C33 = 33.6(± 0.7), C44 = 12.0(± 0.3), C66 = (C11-C12)/2 = 35.0(± 1.1), where the numbers in parentheses are 1σ standard deviations. The Reuss bounds of the adiabatic bulk and shear moduli are K0S = 26.0(± 0.3) GPa and G0 = 17.5(± 0.4) GPa, respectively, while the Voigt bounds of these moduli are K0S = 37.3(± 0.4) GPa and G0 = 24.4(± 0.3) GPa. The Reuss and Voigt bounds for the aggregate Young\\'s modulus are 42.8(± 1.0) GPa and 60.0(± 0.8) GPa respectively, while the aggregate Poisson\\'s ratio is equal to 0.23(± 0.01). Portlandite exhibits both large compressional elastic anisotropy with C11/C33 = 3.03(± 0.09) equivalent to that of the isostructural hydroxide brucite (Mg(OH)2), and large shear anisotropy with C66/C44 = 2.92(± 0.12) which is 11% larger than brucite. The comparison between the bulk modulus of portlandite and that of lime (CaO) confirms a systematic linear relationship between the bulk moduli of brucite-type simple hydroxides and the corresponding NaCl-type oxides. © 2008 Elsevier Ltd. All rights reserved.

  18. Piezoelectrics by Design: A Route through Short-period Perovskite Superlattices

    CERN Document Server

    Das, Hena; Saha-Dasgupta, T

    2010-01-01

    Using first-principles density functional theory, we study piezoelectricity in short-period superlattices made with combination of ferroelectric and paraelectric components and exhibiting polar discontinuities. We show that piezoelectric response of such a superlattice can be tuned both in terms of sign and magnitude with a choice of its components. As these superlattices with nonswitchable polarization do not undergo ferroelectric transitions, we predict them to exhibit a robust piezoelectric response with weaker temperature dependence compared to their bulk counterparts.

  19. Picosecond luminescence approach to vertical transport in GaAs/GaAlAs superlattices

    Science.gov (United States)

    Deveaud, B.; Chomette, A.; Lambert, B.; Regreny, A.; Romestain, R.; Edel, P.

    1986-03-01

    Picosecond luminescence of GaAs/GaAlAs superlattices has been measured at 5 K. Asymetrical structures where one larger well is introduced at 9000 Å from the surface are studied. It is then possible to estimate the mean transfer time of photoexcited carriers through 9000 Å of superlattice. This time is found to be about 4 nsec in a 40/40 Å superlattice and 800 psec in a 30/30 Å one. This evidences the rather high mobility of small period superlattices in the growth direction.

  20. A GaAssolarAlAs superlattice autocorrelator for picosecond THz radiation pulses

    Science.gov (United States)

    Winnerl, S.; Pesahl, S.; Schomburg, E.; Grenzer, J.; Renk, K. F.; Pellemans, H. P. M.; van der Meer, A. F. G.; Pavel'ev, D. G.; Koschurinov, Yu.; Ignatov, A. A.; Melzer, B.; Ustinov, V.; Ivanov, S.; Kop'ev, P. S.

    1999-01-01

    We report on a GaAs/AlAs, wide-miniband, superlattice autocorrelator for picosecond THz radiation pulses (operated at room temperature); the autocorrelator is based on the THz radiation-induced reduction of current through the superlattice. THz radiation (frequency 7.2 THz) from the FELIX (free-electron laser for infrared experiments) was coupled into the superlattice with an antenna system. We measured the current reduction for two time-delayed pulses and found that the signal decreased when the time delay was smaller than the pulse duration. With this superlattice autocorrelator we were able to resolve laser pulses that had a duration of a few picoseconds.

  1. Quasiperiodic AlGaAs superlattices for neuromorphic networks and nonlinear control systems

    Energy Technology Data Exchange (ETDEWEB)

    Malyshev, K. V., E-mail: malyshev@bmstu.ru [Electronics and Laser Technology Department, Bauman Moscow State Technical University, Moscow 105005 (Russian Federation)

    2015-01-28

    The application of quasiperiodic AlGaAs superlattices as a nonlinear element of the FitzHugh–Nagumo neuromorphic network is proposed and theoretically investigated on the example of Fibonacci and figurate superlattices. The sequences of symbols for the figurate superlattices were produced by decomposition of the Fibonacci superlattices' symbolic sequences. A length of each segment of the decomposition was equal to the corresponding figurate number. It is shown that a nonlinear network based upon Fibonacci and figurate superlattices provides better parallel filtration of a half-tone picture; then, a network based upon traditional diodes which have cubic voltage-current characteristics. It was found that the figurate superlattice F{sup 0}{sub 11}(1) as a nonlinear network's element provides the filtration error almost twice less than the conventional “cubic” diode. These advantages are explained by a wavelike shape of the decreasing part of the quasiperiodic superlattice's voltage-current characteristic, which leads to multistability of the network's cell. This multistability promises new interesting nonlinear dynamical phenomena. A variety of wavy forms of voltage-current characteristics opens up new interesting possibilities for quasiperiodic superlattices and especially for figurate superlattices in many areas—from nervous system modeling to nonlinear control systems development.

  2. Quasi free-standing silicene in a superlattice with hexagonal boron nitride

    KAUST Repository

    Kaloni, T. P.

    2013-11-12

    We study a superlattice of silicene and hexagonal boron nitride by first principles calculations and demonstrate that the interaction between the layers of the superlattice is very small. As a consequence, quasi free-standing silicene is realized in this superlattice. In particular, the Dirac cone of silicene is preserved. Due to the wide band gap of hexagonal boron nitride, the superlattice realizes the characteristic physical phenomena of free-standing silicene. In particular, we address by model calculations the combined effect of the intrinsic spin-orbit coupling and an external electric field, which induces a transition from a semimetal to a topological insulator and further to a band insulator.

  3. Feshbach shape resonance for high Tc pairing in superlattices of quantum stripes and quantum wells

    Directory of Open Access Journals (Sweden)

    A Bianconi

    2006-09-01

    Full Text Available   The Feshbach shape resonances in the interband pairing in superconducting superlattices of quantum wells or quantum stripes is shown to provide the mechanism for high Tc superconductivity. This mechanism provides the Tc amplification driven by the architecture of material: superlattices of quantum wells (intercalated graphite or diborides and superlattices of quantum stripes (doped high Tc cuprate perovskites where the chemical potential is tuned to a Van Hove-Lifshitz singularity (vHs in the electronic energy spectrum of the superlattice associated with the change of the Fermi surface dimensionality in one of the subbands.

  4. Quasiperiodic AlGaAs superlattices for neuromorphic networks and nonlinear control systems

    Science.gov (United States)

    Malyshev, K. V.

    2015-01-01

    The application of quasiperiodic AlGaAs superlattices as a nonlinear element of the FitzHugh-Nagumo neuromorphic network is proposed and theoretically investigated on the example of Fibonacci and figurate superlattices. The sequences of symbols for the figurate superlattices were produced by decomposition of the Fibonacci superlattices' symbolic sequences. A length of each segment of the decomposition was equal to the corresponding figurate number. It is shown that a nonlinear network based upon Fibonacci and figurate superlattices provides better parallel filtration of a half-tone picture; then, a network based upon traditional diodes which have cubic voltage-current characteristics. It was found that the figurate superlattice F011(1) as a nonlinear network's element provides the filtration error almost twice less than the conventional "cubic" diode. These advantages are explained by a wavelike shape of the decreasing part of the quasiperiodic superlattice's voltage-current characteristic, which leads to multistability of the network's cell. This multistability promises new interesting nonlinear dynamical phenomena. A variety of wavy forms of voltage-current characteristics opens up new interesting possibilities for quasiperiodic superlattices and especially for figurate superlattices in many areas—from nervous system modeling to nonlinear control systems development.

  5. High Coefficient of Performance HgCdTe And Metallic Superlattice-Based Thermoelectric Coolers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the development of nanoscale superlattices (SLs) as the active elements of high efficiency thermoelectric coolers. Recent models predict that the...

  6. All solid-state diode pumped Nd:YAG MOPA with stimulated Brillouin phase conjugate mirror

    NARCIS (Netherlands)

    Offerhaus, H.L.; Godfried, H.P.; Witteman, W.J.

    1996-01-01

    At the Nederlands Centrum voor Laser Research (NCLR) a 1 kHz diode-pumped Nd:YAG Master Oscillator Power Amplifier (MOPA) chain with a Stimulated Brillouin Scattering (SBS) Phase Conjugate mirror is designed and operated. A small Brewster angle Nd:YAG slab (2 by 2 by 20 mm) is side pumped with 200 μ

  7. Brillouin scattering study of the ferroelectric phase transition in tris-sarcosine calcium chloride

    Science.gov (United States)

    Hikita, Tomoyuki; Schnackenberg, Paul; Schmidt, V. Hugo

    1985-01-01

    Brillouin spectra from longitudinal phonons in ferroelectric tris-sarcosine calcium chloride propagating along [100], [010], and [001] have been measured as functions of temperature. Large anomalies were found in the Brillouin shift and linewidth in the [100] and [001] phonons. These anomalies are interpreted as arising from the linear coupling of the polarization and the phonons. From the temperature where the linewidth is maximum, the relaxation time of the polarization fluctuations is estimated to be τ=3.1×10-12/(Tc-T) sec, where Tc is the ferroelectric transition temperature. We also observed anomalies in Brillouin shift and linewidth of the [010] phonons which propagate along the ferroelectric b axis. These anomalies are interpreted as coming from electro- strictive coupling. The energy-relaxation time was estimated to be τE=2.5×10-10/(T-Tc) sec in the paraelectric phase and τE=1.0×10-9/(Tc-T) sec in the ferroelectric phase, by comparing our Brillouin results with those of the ultrasonic measurements.

  8. KrF laser amplifier with phase-conjugate Brillouin retroreflectors.

    Science.gov (United States)

    Gower, M C

    1982-09-01

    We have demonstrated the use of phase-conjugate stimulated Brillouin scattering mirrors to produce high-quality, short-pulse KrF laser beams from angular multiplexed and regenerative amplifiers. The mirror was also shown to isolate systems optically from amplifier spontaneous emission. Automatic alignment of targets using this mirror as a retroreflector was also demonstrated.

  9. Dependence of Brillouin frequency shift on water absorption ratio in polymer optical fibers

    Science.gov (United States)

    Minakawa, Kazunari; Koike, Kotaro; Hayashi, Neisei; Koike, Yasuhiro; Mizuno, Yosuke; Nakamura, Kentaro

    2016-06-01

    We studied the dependence of the Brillouin frequency shift (BFS) on the water-absorption ratio in poly(methyl methacrylate)-based polymer optical fibers (POFs) to clarify the effect of the humidity on POF-based Brillouin sensors. The BFS, deduced indirectly using an ultrasonic pulse-echo technique, decreased monotonically as the water absorption ratio increased, mainly because of the decrease in the Young's modulus. For the same water absorption ratio, the BFS change was larger at a higher temperature. The maximal BFS changes (absolute values) at 40, 60, and 80 °C were 158, 285, and 510 MHz, respectively (corresponding to the temperature changes of ˜9 °C, ˜16 °C, and ˜30 °C). Thus, some countermeasure against the humidity is indispensable in implementing strain/temperature sensors based on Brillouin scattering in POFs, especially at a higher temperature. On the other hand, Brillouin-based distributed humidity sensors might be developed by exploiting the BFS dependence on water absorption in POFs.

  10. Nonlinear Evolutions of Stimulated Raman and Brillouin Scattering Processes in Partially Stripped-Ion Plasmas

    Institute of Scientific and Technical Information of China (English)

    胡业民; 胡希伟

    2001-01-01

    Numerical analyses for the nonlinear evolutions of stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) processes are given. Various effects of the second- and third-order nonlinear susceptibilities on the SRS and SBS processes are studied. The nonlinear evolutions of SRS and SBS processes are atfected more efficiently than their linear growth rates by the nonlinear susceptibility.

  11. An L-band multi-wavelength Brillouin-erbium fiber laser with switchable frequency spacing

    Science.gov (United States)

    Zhou, Xuefang; Hu, Kongwen; Wei, Yizhen; Bi, Meihua; Yang, Guowei

    2017-01-01

    In this paper, a novel L-band multi-wavelength Brillouin-erbium fiber laser consisting of two ring cavities is proposed and demonstrated. The frequency spacing can be switched, corresponding to the single and double Brillouin frequency shifts, by toggling the optical switch. Under a 980 nm pump power of 600 mw, and a Brillouin pump power of 4 mW and wavelength of 1599.4 nm, up to 16 Stokes signals with a frequency spacing of 0.089 nm and 5 Stokes signals with double spacing of 0.178 nm are generated. A wavelength tunability of 15 nm (1593 nm  -  1608 nm) is realized for both frequency spacings. The fluctuation of Stokes signals for both single and double Brillouin spacing regimes in the proposed setup is less than 1.5 dB throughout a 30 min time span.

  12. The performance analysis of distributed Brillouin corrosion sensors for steel reinforced concrete structures.

    Science.gov (United States)

    Wei, Heming; Zhao, Xuefeng; Kong, Xianglong; Zhang, Pinglei; Cui, Yanjun; Sun, Changsen

    2013-12-27

    The Brillouin optical time-domain analysis (BOTDA)-based optical fiber method has been proposed to measure strain variations caused by corrosion expansion. Spatial resolutions of 1 m can be achieved with this kind of Brillouin sensor for detecting the distributed strain. However, when the sensing fiber is wound around the steel rebar in a number of circles in a range of several meters, this spatial resolution still has limitations for corrosion monitoring. Here, we employed a low-coherent fiber-optic strain sensor (LCFS) to survey the performance of Brillouin sensors based on the fact that the deformation measured by the LCFS equals the integral of the strains obtained from Brillouin sensors. An electrochemical accelerated corrosion experiment was carried out and the corrosion expansion was monitored by both BOTDA and the LCFS. Results demonstrated that the BOTDA can only measure the expansion strain of about 1,000 με, which was generated by the 18 mm steel rebar corrosion, but, the LCFS had high sensitivity from the beginning of corrosion to the destruction of the structure, and no obvious difference in expansion speed was observed during the acceleration stage of the corrosion developed in the reinforced concrete (RC) specimens. These results proved that the BOTDA method could only be employed to monitor the corrosion inside the structure in the early stage.

  13. Statistical properties of the Stokes signal in stimulated Brillouin scattering pulse compressors

    NARCIS (Netherlands)

    Velchev, I.; Ubachs, W.M.G.

    2005-01-01

    Spontaneous scattering noise is incorporated as a build-up source in a fully transient stimulated Brillouin scattering (SBS) model. This powerful simulation tool is successfully applied for a quantitative investigation of the fluctuations in the output pulse duration of SBS pulse compressors. The pr

  14. Photoacoustic transformation of Bessel light beams in magnetoactive superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Mityurich, G. S., E-mail: George-mityurich@mail.ru [Belarusian Trade and Economics University of Consumer Cooperatives (Belarus); Chernenok, E. V.; Sviridova, V. V.; Serdyukov, A. N. [Gomel State University (Belarus)

    2015-03-15

    Photoacoustic transformation of the TE mode of a Bessel light beam (BLB) has been studied for piezoelectric detection in short-period superlattices formed by magnetoactive crystals of bismuth germanate (Bi{sub 12}GeO{sub 20}) and bismuth silicate (Bi{sub 12}SiO{sub 20}) types. It is shown that the resulting signal amplitude can be controlled using optical schemes of BLB formation with a tunable cone angle. A resonant increase in the signal amplitude has been found in the megahertz range of modulation frequencies and its dependences on the BLB modulation frequency, geometric sizes of the two-layer structure and piezoelectric transducer, radial coordinate of the polarization BLB mode, and dissipative superlattice parameters are analyzed.

  15. Thermodynamics and Magnetocaloric properties of Fe/Cr Superlattices

    Science.gov (United States)

    Mukherjee, T.; Michalski, S.; Skomski, R.; Sellmyer, D. J.; Binek, Ch.

    2011-03-01

    We explore MC properties of tailored Fe/Cr superlattices involving simple 3d metals. Our multilayers are fabricated by pulsed laser deposition with emphasis on maximizing magnetic entropy changes near room temperature. We use nanostructuring to tailor magnetic interaction and exploit geometrical confinement in order to fit the FM to paramagnetic transition temperature of the FM constituent films. In concert this leads to an optimized global metamagnetic transition maximizing the isothermal entropy change. Thermodynamic and MC properties of such Fe/Cr superlattices are studied with the help of SQUID magnetometry. Entropy changes are deduced via the Maxwell relation in single phase regions and via the Clausis-Clapeyron relations at first order metamagnetic transitions, X-ray diffraction and X-ray reflectivity are used to correlate structural data with the magnetic properties. Financial support by NRI, and NSF through EPSCoR, Career DMR-0547887, and MRSEC Grant No. 0820521.

  16. Isolated structures in two-dimensional optical superlattice

    Science.gov (United States)

    Zou, Xin-Hao; Yang, Bao-Guo; Xu, Xia; Tang, Peng-Ju; Zhou, Xiao-Ji

    2017-10-01

    Overlaying commensurate optical lattices with various configurations called superlattices can lead to exotic lattice topologies and, in turn, a discovery of novel physics. In this study, by overlapping the maxima of lattices, a new isolated structure is created, while the interference of minima can generate various "sublattice" patterns. Three different kinds of primitive lattices are used to demonstrate isolated square, triangular, and hexagonal "sublattice" structures in a two-dimensional optical superlattice, the patterns of which can be manipulated dynamically by tuning the polarization, frequency, and intensity of laser beams. In addition, we propose the method of altering the relative phase to adjust the tunneling amplitudes in "sublattices". Our configurations provide unique opportunities to study particle entanglement in "lattices" formed by intersecting wells and to implement special quantum logic gates in exotic lattice geometries.

  17. Measuring spin correlations in optical lattices using superlattice potentials

    DEFF Research Database (Denmark)

    Pedersen, Kim Georg Lind; Andersen, Brian Møller; Bruun, Georg Morten;

    2011-01-01

    We suggest two experimental methods for probing both short- and long-range spin correlations of atoms in optical lattices using superlattice potentials. The first method involves an adiabatic doubling of the periodicity of the underlying lattice to probe neighboring singlet (triplet) correlations...... for fermions (bosons) by the occupation of the resulting vibrational ground state. The second method utilizes a time-dependent superlattice potential to generate spin-dependent transport by any number of prescribed lattice sites, and probes correlations by the resulting number of doubly occupied sites....... For experimentally relevant parameters, we demonstrate how both methods yield large signatures of antiferromagnetic correlations of strongly repulsive fermionic atoms in a single shot of the experiment. Lastly, we show how this method may also be applied to probe d-wave pairing, a possible ground-state candidate...

  18. Electronic structure of a graphene superlattice with massive Dirac fermions

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Jonas R. F., E-mail: jonas.iasd@gmail.com [Instituto de Ciencia de Materiales de Madrid (CSIC) - Cantoblanco, Madrid 28049 (Spain)

    2015-02-28

    We study the electronic and transport properties of a graphene-based superlattice theoretically by using an effective Dirac equation. The superlattice consists of a periodic potential applied on a single-layer graphene deposited on a substrate that opens an energy gap of 2Δ in its electronic structure. We find that extra Dirac points appear in the electronic band structure under certain conditions, so it is possible to close the gap between the conduction and valence minibands. We show that the energy gap E{sub g} can be tuned in the range 0 ≤ E{sub g} ≤ 2Δ by changing the periodic potential. We analyze the low energy electronic structure around the contact points and find that the effective Fermi velocity in very anisotropic and depends on the energy gap. We show that the extra Dirac points obtained here behave differently compared to previously studied systems.

  19. Nonlinear thermoelectric efficiency of superlattice-structured nanowires

    Science.gov (United States)

    Karbaschi, Hossein; Lovén, John; Courteaut, Klara; Wacker, Andreas; Leijnse, Martin

    2016-09-01

    We theoretically investigate nonlinear ballistic thermoelectric transport in a superlattice-structured nanowire. By a special choice of nonuniform widths of the superlattice barriers—analogous to antireflection coating in optical systems—it is possible to achieve a transmission which comes close to a square profile as a function of energy. We calculate the low-temperature output power and power-conversion efficiency of a thermoelectric generator based on such a structure and show that the efficiency remains high also when operating at a significant power. To provide guidelines for experiments, we study how the results depend on the nanowire radius, the number of barriers, and on random imperfections in barrier width and separation. Our results indicate that high efficiencies can indeed be achieved with today's capabilities in epitaxial nanowire growth.

  20. Coupled bloch-phonon oscillations in semiconductor superlattices

    Science.gov (United States)

    Dekorsy; Bartels; Kurz; Kohler; Hey; Ploog

    2000-07-31

    We investigate coherent Bloch oscillations in GaAs/AlxGa1-xAs superlattices with electronic miniband widths larger than the optical phonon energy. In these superlattices the Bloch frequency can be tuned into resonance with the optical phonon. Close to resonance a direct coupling of Bloch oscillations to LO phonons is observed which gives rise to the coherent excitation of LO phonons. The density necessary for driving coherent LO phonons via Bloch oscillations is about 2 orders of magnitude smaller than the density necessary to drive coherent LO phonons in bulk GaAs. The experimental observations are confirmed by the theoretical description of this phenomenon [A.W. Ghosh et al., Phys. Rev. Lett. 85, 1084 (2000)].

  1. Resonant tunnelling in a Fibonacci bilayer graphene superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, S.; Sinha, C. [Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal (India); Biswas, R. [Department of Physics, PK College, Contai, Purba Medinipur, West Bengal (India)

    2010-02-15

    The transmission coefficients (TCs) and angularly averaged conductance for quasi-particle transport are studied for a bilayer graphene superlattice arranged according to the Fibonacci sequence. The transmission is found to be symmetric around the superlattice growth direction and highly sensitive to the direction of the quasi-particle incidence. The transmission spectra are fragmented and appear in groups due to the quasi-periodicity of the system. The average conductance shows interesting structures sharply dependent on the height of the potential barriers between two graphene strips. The low-energy conductance due to Klein transmission is substantially modified by the inclusion of quasi-periodicity in the system. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  2. Phonons in Ge/Si superlattices with Ge quantum dots

    CERN Document Server

    Milekhin, A G; Pchelyakov, O P; Schulze, S; Zahn, D R T

    2001-01-01

    Ge/Si superlattices with Ge quantum dots obtained by means of molecular-beam epitaxy were investigated by means of light Raman scattering under resonance conditions. These structures are shown to have oscillation properties of both two-dimensional and zero-dimensional objects. Within spectrum low-frequency range one observes twisted acoustic phonons (up to 15 order) typical for planar superlattices. Lines of acoustic phonons are overlapped with a wide band of continuous emission. Analysis of frequencies of Ge and Ge-Si optical phonons shows that Ge quantum dots are pseudoamorphous ones and mixing of Ge and Si atoms is a negligible one. One detected low-frequency shift of longitudinal optical phonons at laser excitation energy increase (2.54-2.71 eV)

  3. Isolated Structures in Two-Dimensional Optical Superlattice

    CERN Document Server

    Zou, Xinhao; Xu, Xia; Tang, Pengju; Zhou, Xiaoji

    2016-01-01

    Overlaying commensurate optical lattices with various configurations called superlattices can lead to exotic lattice topologies and, in turn, a discovery of novel physics. In this study, by overlapping the maxima of lattices, a new isolated structure is created, while the interference of minima can generate various "sublattice" patterns. Three different kinds of primitive lattices are used to demonstrate isolated square, triangular, and hexagonal "sublattice" structures in a two-dimensional optical superlattice, the patterns of which can be manipulated dynamically by tuning the polarization, frequency, and intensity of laser beams. In addition, we propose the method of altering the relative phase to adjust the tunneling amplitudes in "sublattices." Our configurations provide unique opportunities to study particle entanglement in "lattices" formed by intersecting wells and to implement special quantum logic gates in exotic lattice geometries.

  4. Heterogenous Material Integration and Band Engineering With Type II Superlattice

    Science.gov (United States)

    2015-10-26

    of chemical vapor deposited graphene transferred to SiO2 . Appl. Phys. Lett. 99, 122108 (2011). 113 Ferrari, A. C. Raman spectroscopy of graphene ...extrinsic performance limits of graphene devices on SiO2 . Nat. Nanotechnol. 3, 206-209 (2008). 130 Fang, T., Konar, A., Xing, H. & Jena, D. Mobility...AlSb strained layer superlattices. 15. SUBJECT TERMS crystal growth, characterization, semiconductor fabrication, infrared detectors, graphene

  5. High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis.

    Science.gov (United States)

    Elooz, David; Antman, Yair; Levanon, Nadav; Zadok, Avi

    2014-03-24

    A new scheme for distributed Brillouin sensing of strain and temperature in optical fibers is proposed, analyzed and demonstrated experimentally. The technique combines between time-domain and correlation-domain analysis. Both Brillouin pump and signal waves are repeatedly co-modulated by a relatively short, high-rate phase sequence, which introduces Brillouin interactions in a large number of discrete correlation peaks. In addition, the pump wave is also modulated by a single amplitude pulse, which leads to a temporal separation between the generation of different peaks. The Brillouin amplification of the signal wave at individual peak locations is resolved in the time domain. The technique provides the high spatial resolution and long range of unambiguous measurement offered by correlation-domain Brillouin analysis, together with reduced acquisition time through the simultaneous interrogation of a large number of resolution points. In addition, perfect Golomb codes are used in the phase modulation of the two waves instead of random sequences, in order to reduce noise due to residual, off-peak Brillouin interactions. The principle of the method is supported by extensive numerical simulations. Using the proposed scheme, the Brillouin gain spectrum is mapped experimentally along a 400 m-long fiber under test with a spatial resolution of 2 cm, or 20,000 resolution points, with only 127 scans per choice of frequency offset between pump and signal. Compared with corresponding phase-coded, Brillouin correlation domain analysis schemes with equal range and resolution, the acquisition time is reduced by a factor of over 150. A 5 cm-long hot spot, located towards the output end of the pump wave, is properly identified in the measurements. The method represents a significant advance towards practical high-resolution and long range Brillouin sensing systems.

  6. Transparent conducting oxides: a δ-doped superlattice approach.

    Science.gov (United States)

    Cooper, Valentino R; Seo, Sung S Ambrose; Lee, Suyoun; Kim, Jun Sung; Choi, Woo Seok; Okamoto, Satoshi; Lee, Ho Nyung

    2014-08-11

    Metallic states appearing at interfaces between dissimilar insulating oxides exhibit intriguing phenomena such as superconductivity and magnetism. Despite tremendous progress in understanding their origins, very little is known about how to control the conduction pathways and the distribution of charge carriers. Using optical spectroscopic measurements and density-functional theory (DFT) simulations, we examine the effect of SrTiO3 (STO) spacer layer thickness on the optical transparency and carrier distribution in La δ-doped STO superlattices. We experimentally observe that these metallic superlattices remain highly transparent to visible light; a direct consequence of the appropriately large gap between the O 2p and Ti 3d states. In superlattices with relatively thin STO layers, we predict that three-dimensional conduction would occur due to appreciable overlap of quantum mechanical wavefunctions between neighboring δ-doped layers. These results highlight the potential for using oxide heterostructures in optoelectronic devices by providing a unique route for creating novel transparent conducting oxides.

  7. Interface disorder and transport properties in HTC/CMR superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Haberkorn, N.; Guimpel, J.; Sirena, M.; Steren, L.B.; Campillo, G.; Saldarriaga, W.; Gomez, M.E

    2004-08-01

    The physical properties of superlattices are affected by interface disorder, like roughness and interdiffusion. X-ray diffraction allows its measurement through modeling and structure refinement. The high-T{sub c} RBa{sub 2}Cu{sub 3}O{sub 7} (RBCO) and colossal magnetoresistance La{sub x}A{sub 1-x}MnO{sub 3} (LAMO) perovskites are interesting superlattice partners given their similar lattice parameters and because the combination of magnetic and superconducting properties is interesting for both basic and applied research. We have investigated the structural and transport properties of YBCO/La{sub 2/3}Ca{sub 1/3}MnO{sub 3} and GdBCO/La{sub 0.6}Sr{sub 0.04}MnO{sub 3} superlattices grown by sputtering on (1 0 0)MgO. We find a roughness of 1 RBCO unit cell and a 30% interdiffusion in the same length from the interfaces for all samples. The superconducting behavior is found strongly dependent on the LAMO layer thickness.

  8. Shape-Anisotropy Driven Symmetry Transformations in Nanocrystal Superlattice Polymorphs

    KAUST Repository

    Bian, Kaifu

    2011-04-26

    Despite intense research efforts by research groups worldwide, the potential of self-assembled nanocrystal superlattices (NCSLs) has not been realized due to an incomplete understanding of the fundamental molecular interactions governing the self-assembly process. Because NCSLs reside naturally at length-scales between atomic crystals and colloidal assemblies, synthetic control over the properties of constituent nanocrystal (NC) building blocks and their coupling in ordered assemblies is expected to yield a new class of materials with remarkable optical, electronic, and vibrational characteristics. Progress toward the formation of suitable test structures and subsequent development of NCSL-based technologies has been held back by the limited control over superlattice spacing and symmetry. Here we show that NCSL symmetry can be controlled by manipulating molecular interactions between ligands bound to the NC surface and the surrounding solvent. Specifically, we demonstrate solvent vapor-mediated NCSL symmetry transformations that are driven by the orientational ordering of NCs within the lattice. The assembly of various superlattice polymorphs, including face-centered cubic (fcc), body-centered cubic (bcc), and body-centered tetragonal (bct) structures, is studied in real time using in situ grazing incidence small-angle X-ray scattering (GISAXS) under controlled solvent vapor exposure. This approach provides quantitative insights into the molecular level physics that controls solvent-ligand interactions and assembly of NCSLs. Computer simulations based on all-atom molecular dynamics techniques confirm several key insights gained from experiment. © 2011 American Chemical Society.

  9. Theory of THz harmonic generation in semiconductor superlattices (Conference Presentation)

    Science.gov (United States)

    Pereira, Mauro F.; Winge, David O.; Wacker, Andreas

    2016-10-01

    Superlattices are artificial structures with a wide range of applications and open possibilities for controlling and study transport and optical [M.F. Pereira Jr., Phys. Rev. B 52, (1995)] properties of semiconductors. In this work, we start from the full Nonequilibrium Greens Functions approach [A. Wacker et a, IEEE Journal of Sel. Top. in Quantum Electron.,19 1200611, (2013),T. Schmielau and M.F. Pereira, Appl. Phys. Lett. 95 231111, (2009)] to obtain Voltage-Current curves and compare them with experiments. By adjusting the numerical solutions of the corresponding Dyson equations to a simple model, analytical solutions are given for the nonlinear response of a biased superlattice under sub-THz radiation. The frequency multiplication process leading to multiple harmonicgeneration is described. This hybrid approach leads to predictive simulations and may have important application for a new generation of devices where the superlattices are used as both sources and detectors and may be particular useful for high resolution transient spectroscopy [A.A. Yablokov et at, IEEE Transactions on THz Science and Technology 5, 845 (2015)].

  10. Manganite/Cuprate Superlattice as Artificial Reentrant Spin Glass

    KAUST Repository

    Ding, Junfeng

    2016-05-04

    Emerging physical phenomena at the unit-cell-controlled interfaces of transition-metal oxides have attracted lots of interest because of the rich physics and application opportunities. This work reports a reentrant spin glass behavior with strong magnetic memory effect discovered in oxide heterostructures composed of ultrathin manganite La0.7Sr0.3MnO3 (LSMO) and cuprate La2CuO4 (LCO) layers. These heterostructures are featured with enhanced ferromagnetism before entering the spin glass state: a Curie temperature of 246 K is observed in the superlattice with six-unit-cell LSMO layers, while the reference LSMO film with the same thickness shows much weaker magnetism. Furthermore, an insulator-metal transition emerges at the Curie temperature, and below the freezing temperature the superlattices can be considered as a glassy ferromagnetic insulator. These experimental results are closely related to the interfacial spin reconstruction revealed by the first-principles calculations, and the dependence of the reentrant spin glass behavior on the LSMO layer thickness is in line with the general phase diagram of a spin system derived from the infinite-range SK model. The results of this work underscore the manganite/cuprate superlattices as a versatile platform of creating artificial materials with tailored interfacial spin coupling and physical properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Bose-Hubbard model on a checkerboard superlattice

    Science.gov (United States)

    Iskin, Menderes

    2011-05-01

    We study the ground-state phases of the Bose-Hubbard model on a checkerboard superlattice in two dimensions, including the superfluid phase and the Mott and charge-density-wave insulators. First, we discuss the single-particle Hofstadter problem, and show that the presence of a checkerboard superlattice gives rise to a magnetic flux-independent energy gap in the excitation spectrum. Then, we consider the many-particle problem, and derive an analytical mean-field expression for the superfluid-Mott and superfluid-charge-density-wave insulator phase transition boundaries. Finally, since the phase diagram of the Bose-Hubbard model on a checkerboard superlattice is in many ways similar to that of the extended Bose-Hubbard model, we comment on the effects of magnetic field on the latter model, and derive an analytical mean-field expression for the superfluid-insulator phase transition boundaries as well. This work is supported by Marie Curie International Reintegration Grant (FP7-PEOPLE-IRG-2010-268239).

  12. Spectral properties of Fibonacci superlattices formed using armchair graphene nanoribbons

    Science.gov (United States)

    Korol, A. M.; Litvynchuk, S. I.; Bagliuk, S. V.; Lazarenko, M. V.

    2016-03-01

    We discuss and analyze the dependence spectra of the transmission coefficient T on the quasiparticle energy E of one variety of graphene-based Fibonacci superlattices (SL). The SL is built from armchair graphene nanoribbons (GNR), and the quasi-periodicity is produced by metal-like (MGNR) and semiconductor (SCGNR) ribbons, placed along the lattice growth axis in accordance with the Fibonacci sequence, which are used as individual SL elements. It is shown that the difference in the values of quantized transverse quasi-momentum of electrons in MGNR and SCGNR is enough to form an effective quasi-periodic modulation in the examined structure (no additional factors required), and the optimal nanoribbon width range for this purpose is determined. We also analyzed the dependence of the spectral properties of the test structure on the geometric parameters of the superlattice, and the external electrostatic potential. We paid particular attention to the fact that each Fibonacci generation had a Dirac superlattice band gap. The results of the study can be useful in the determination of optimal parameters for graphene-based nanoelectronic devices.

  13. Thermoelectric properties of strontium titanate superlattices incorporating niobium oxide nanolayers

    KAUST Repository

    Sarath Kumar, S. R.

    2014-04-22

    A novel superlattice structure based on epitaxial nanoscale layers of NbOx and Nb-doped SrTiO3 is fabricated using a layer-by-layer approach on lattice matched LAO substrates. The absolute Seebeck coefficient and electrical conductivity of the [(NbOx) a/(Nb-doped SrTiO3)b]20 superlattices (SLs) were found to increase with decreasing layer thickness ratio (a/b ratio), reaching, at high temperatures, a power factor that is comparable to epitaxial Nb-doped SrTiO3 (STNO) films (∼0.7 W m-1 K-1). High temperature studies reveal that the SLs behave as n-type semiconductors and undergo an irreversible change at a varying crossover temperature that depends on the a/b ratio. By use of high resolution X-ray photoelectron spectroscopy and X-ray diffraction, the irreversible changes are identified to be due to a phase transformation from cubic NbO to orthorhombic Nb2O5, which limits the highest temperature of stable operation of the superlattice to 950 K. © 2014 American Chemical Society.

  14. Structure and magnetic properties of thin films and superlattices

    CERN Document Server

    Bentall, M J

    2002-01-01

    Thin layers of rare earth elements and Laves phase superlattices were grown using molecular beam epitaxy. Their structure and magnetic properties have been probed using x-ray and neutron scattering, magnetisation measurements and high resolution electron microscopy. When holmium is grown on yttrium, the x-ray scattering from layers with a thickness below T sub c ' 115 A is characteristic of a pseudomorphic layer with the same in-plane lattice parameter as the yttrium substrate to within 0.05%. For layers above T sub c ' there is a sharp reduction in misfit strain which is probably due to the creation of edge dislocations. When gadolinium is grown on yttrium, no sharp change of strain of the thin layer was observed up to a thickness of 2920 A. This is characteristic of a pseudomorphic layer, and a failure to nucleate dislocations. For the Laves phase superlattices, a study of the x-ray scattering near several Bragg reflections revealed the presence of numerous superlattice peaks, showing that the samples exhib...

  15. Reversible solvent vapor-mediated phase changes in nanocrystal superlattices.

    Science.gov (United States)

    Goodfellow, Brian W; Korgel, Brian A

    2011-04-26

    Colloidal nanocrystals are being explored for use in a variety of applications, from solar cells to transistors to medical diagnostics and therapy. Ordered assemblies of nanocrystals, or superlattices, are one particularly interesting class of these materials, in which the nanocrystals serve as modular building blocks to construct nanostructures by self-assembly with spatial and temporal complexity and unique properties. From a fundamental perspective, the nanocrystals are simple molecular models that can be manipulated and studied to test statistical mechanical and thermodynamic models of crystallization and disorder. An article by Bian et al. in this issue of ACS Nano reports surprising new phase behavior in semiconductor nanocrystal superlattices: reversible transitions between non-close-packed body-centered cubic (bcc) and body-centered tetragonal (bct) structures, and close-packed face-centered cubic (fcc) structures, observed by real-time in situ grazing incidence small-angle X-ray scattering (GISAXS) measurements, upon solvent vapor exposure and increased interparticle separation. These studies offer new insight and raise new questions about superlattice structure and the forces that control self-assembly. Accompanying computer simulations show that ligand-ligand interactions are important. Furthermore, it appears that ligand-coated nanocrystals have more in common with soft microphase-separated materials, like diblock copolymers and surfactant assemblies, than previously realized.

  16. Shape-anisotropy driven symmetry transformations in nanocrystal superlattice polymorphs.

    Science.gov (United States)

    Bian, Kaifu; Choi, Joshua J; Kaushik, Ananth; Clancy, Paulette; Smilgies, Detlef-M; Hanrath, Tobias

    2011-04-26

    Despite intense research efforts by research groups worldwide, the potential of self-assembled nanocrystal superlattices (NCSLs) has not been realized due to an incomplete understanding of the fundamental molecular interactions governing the self-assembly process. Because NCSLs reside naturally at length-scales between atomic crystals and colloidal assemblies, synthetic control over the properties of constituent nanocrystal (NC) building blocks and their coupling in ordered assemblies is expected to yield a new class of materials with remarkable optical, electronic, and vibrational characteristics. Progress toward the formation of suitable test structures and subsequent development of NCSL-based technologies has been held back by the limited control over superlattice spacing and symmetry. Here we show that NCSL symmetry can be controlled by manipulating molecular interactions between ligands bound to the NC surface and the surrounding solvent. Specifically, we demonstrate solvent vapor-mediated NCSL symmetry transformations that are driven by the orientational ordering of NCs within the lattice. The assembly of various superlattice polymorphs, including face-centered cubic (fcc), body-centered cubic (bcc), and body-centered tetragonal (bct) structures, is studied in real time using in situ grazing incidence small-angle X-ray scattering (GISAXS) under controlled solvent vapor exposure. This approach provides quantitative insights into the molecular level physics that controls solvent-ligand interactions and assembly of NCSLs. Computer simulations based on all-atom molecular dynamics techniques confirm several key insights gained from experiment.

  17. Spin Filtering in a Nanowire Superlattice by Dresselhause Spin-Orbit Coupling

    Institute of Scientific and Technical Information of China (English)

    Samad Javidan

    2011-01-01

    @@ An InAs/GaSb nanowire Superlattice using GaAs for the impure layers is proposed.Dresselhaus spin-orbit coupling eliminates spin degeneracy, induces one miniband in the superlattices to split into two minibands and leads to complete spin polarization and excellent filtering by optimizing the well and barrier widths and GaAs layer distances.

  18. Quantum dynamical phenomena of independent electrons in semiconductor superlattices subject to a uniform electric field

    Energy Technology Data Exchange (ETDEWEB)

    Bouchard, A.M.

    1994-07-27

    This report discusses the following topics: Bloch oscillations and other dynamical phenomena of electrons in semiconductor superlattices; solvable dynamical model of an electron in a one-dimensional aperiodic lattice subject to a uniform electric field; and quantum dynamical phenomena of electrons in aperiodic semiconductor superlattices.

  19. Terahertz radiation induced chaotic electron transport in semiconductor superlattices with a tilted magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C., E-mail: cwang@mail.sim.ac.cn; Wang, F.; Cao, J. C., E-mail: jccao@mail.sim.ac.cn [Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China)

    2014-09-01

    Chaotic electron transport in semiconductor superlattice induced by terahertz electric field that is superimposed on a dc electric field along the superlattice axis are studied using the semiclassical motion equations including the effect of dissipation. A magnetic field that is tilted relative to the superlattice axis is also applied to the system. Numerical simulation shows that electrons in superlattice miniband exhibit complicate nonlinear oscillating modes with the influence of terahertz radiation. Transitions between frequency-locking and chaos via pattern forming bifurcations are observed with the varying of terahertz amplitude. It is found that the chaotic regions gradually contract as the dissipation increases. We attribute the appearance of complicate nonlinear oscillation in superlattice to the interaction between terahertz radiation and internal cooperative oscillating mode relative to Bloch oscillation and cyclotron oscillation.

  20. Nonlinear optical response in Kronig-Penney type graphene superlattice in terahertz regime

    Science.gov (United States)

    Jiang, Lijuan; Yuan, Rui-Yang; Zhao, Xin; Lv, Jing; Yan, Hui

    2015-05-01

    The terahertz nonlinear optical response in Kronig-Penney (KP) type graphene superlattice is demonstrated. The single-, triple- and quintuple-frequencies of the fifth-order nonlinear responses are investigated for different frequencies and temperatures with the angle φ along the periodicity of the superlattice toward the external field tuning from 0 to π/2. The results show that the fifth-order nonlinear optical conductance of graphene superlattice is enhanced in the terahertz regime when φ = 0, i.e. an external field is applied along the periodicity of the superlattice. The fifth-order nonlinear optical conductances at φ = 0 for different frequencies and temperatures are calculated. The results show that the nonlinear optical conductance is enhanced in low frequency and low temperature. Our results suggest that KP type graphene superlattices are preferred structures for developing graphene-based nonlinear photonics and optoelectronics devices.

  1. ON THE CHARACTERIZATION OF METALLIC SUPERLATTICE STRUCTURES BY X—RAY DIFFRACTION

    Institute of Scientific and Technical Information of China (English)

    MINGXU; WenxueYU; 等

    1999-01-01

    To solve the problem on the microstructural characterization of metallic superlattices,taking the NiFe/Cu superlattices as example,we show that the sturctures of metallic superlattices can be characterized exactly by combining low-angle X-ray diffraction with high-angle X-ray diffraction.First,we determine exactly the total film thickness by a straightforward and precise method based on a modified Bragg law from the subsidiary maxima around the low-angle X-ray diffraction peak.Then.by combining with the simulation of high-angle X-ray diffraction.we obtain the sturctural parameters such as the superlattice period,the sublayer and buffer thickness,This characterization procedure is also applicable to other types of metallic superlattices.

  2. Single-passband microwave photonic filter based on a self-seeded multiwavelength Brillouin-erbium fiber laser

    Science.gov (United States)

    Xu, Ronghui; Zhang, Xuping; Hu, Junhui; Xia, Lan

    2015-03-01

    In this paper, a single-passband microwave photonic filter based on a self-seeded multiwavelength Brillouin-erbium fiber laser is demonstrated experimentally. In the filter, the multiwavelength Brillouin comb generated from the laser is used as the filter taps. The Brillouin comb is with the feature of quasi-Gaussian continuous distribution, which can ensure the filter realizes single-passband characteristic. The baseband response is suppressed effectively with the help of phase modulation. The single-passband filter has an out-of-band rejection of 25 dB. By adjusting the Brillouin multiwavelengh, the 3-dB bandwidth and the center frequency of the filter can be changed.

  3. Optimization of output coupling ratio on the performance of a ring-cavity Brillouin-erbium fiber laser.

    Science.gov (United States)

    Hambali, Nor Azura Malini A; Mahdi, Mohd Adzir; Al-Mansoori, Mohammed Hayder; Saripan, M Iqbal; Abas, Ahmad Fauzi

    2009-09-20

    The operation of a single-wavelength Brillouin-erbium fiber laser (BEFL) system with a Brillouin pump preamplified technique for different output coupling ratios in a ring cavity is experimentally demonstrated. The characteristics of Brillouin Stokes power and tunability were investigated in this research. The efficiency of the BEFL operation was obtained at an optimum output coupling ratio of 95%. By fixing the Brillouin pump wavelength at 1550 nm while its power was set at 1.6 mW and the 1480 pump power was set to its maximum value of 135 mW, the Brillioun Stokes power was found to be 28.7 mW. The Stokes signal can be tuned within a range of 60 nm from 1520 to 1580 nm without appearances of the self-lasing cavity modes in the laser system.

  4. Distributed fiber Brillouin strain and temperature sensor with centimeter spatial resolution by coherent probe-pump technique

    Science.gov (United States)

    Zou, Lufan; Bao, Xiaoyi; Wan, Yidun; Ravet, Fabien; Chen, Liang

    2005-05-01

    We present a sensing principle of the distributed fiber Brillouin strain and temperature sensor by coherent probe-pump technique that offers a new method to achieve centimeter spatial resolution with high frequency resolution. A combination of continuous wave (cw) and pulse source as the probe (Stokes) beam and cw laser as the pump beam have resulted in stronger Brillouin interaction of Stokes and pump inside the pulse-length in the form of cw-pump and pulse-pump interactions. We find that the coherent portion inside the pulse-length of these two interactions due to the same phase has a very high Brillouin amplification. The Brillouin profile originating from the coherent interaction of pulse-pump with cw-pump results in high temperature and strain accuracy with centimeter resolution, which has been verified by successfully detecting 1.5 cm out-layer crack on an optical ground wire (OPGW) cable.

  5. Detrimental Effect Elimination of Laser Frequency Instability in Brillouin Optical Time Domain Reflectometer by Using Self-Heterodyne Detection

    Directory of Open Access Journals (Sweden)

    Yongqian Li

    2017-03-01

    Full Text Available A useful method for eliminating the detrimental effect of laser frequency instability on Brillouin signals by employing the self-heterodyne detection of Rayleigh and Brillouin scattering is presented. From the analysis of Brillouin scattering spectra from fibers with different lengths measured by heterodyne detection, the maximum usable pulse width immune to laser frequency instability is obtained to be about 4 µs in a self-heterodyne detection Brillouin optical time domain reflectometer (BOTDR system using a broad-band laser with low frequency stability. Applying the self-heterodyne detection of Rayleigh and Brillouin scattering in BOTDR system, we successfully demonstrate that the detrimental effect of laser frequency instability on Brillouin signals can be eliminated effectively. Employing the broad-band laser modulated by a 130-ns wide pulse driven electro-optic modulator, the observed maximum errors in temperatures measured by the local heterodyne and self-heterodyne detection BOTDR systems are 7.9 °C and 1.2 °C, respectively.

  6. Photonic crystal fibre Brillouin laser based on Bragg grating Fabry-Perot cavity

    Institute of Scientific and Technical Information of China (English)

    Geng Dan; Yang Dong-Xiao; Shen Guo-Feng; Zhang Xian-Min

    2008-01-01

    A photonic crystal fibre Brillouin laser based on fibre Bragg grating Fabry-Perot cavity is presented. A highly nonlinear photonic crystal fibre 25 m in length is used as Brillouin gain medium and fibre Bragg grating Fabry-Perot cavity is chosen in order to enhance the laser conversion efficiency and suppress the higher-order Stokes waves. The laser reaches the threshold at input power of 35 mW, and the experimental laser conversion efficiency achieves 18% of the input power of 140 mW and does not show higher-order Stokes waves. A photonic crystal fibre BriUouin laser withshorter fibre length and lower threshold is experimentally realized.

  7. Investigation of burn effect on skin using simultaneous Raman-Brillouin spectroscopy, and fluorescence microspectroscopy

    Science.gov (United States)

    Coker, Zachary; Meng, Zhaokai; Troyanova-Wood, Maria; Traverso, Andrew; Ballmann, Charles; Petrov, Georgi; Ibey, Bennett L.; Yakovlev, Vladislav

    2017-02-01

    Burns are thermal injuries that can completely damage or at least compromise the protective function of skin, and affect the ability of tissues to manage moisture. Burn-damaged tissues exhibit lower elasticity than healthy tissues, due to significantly reduced water concentrations and plasma retention. Current methods for determining burn intensity are limited to visual inspection, and potential hospital x-ray examination. We present a unique confocal microscope capable of measuring Raman and Brillouin spectra simultaneously, with concurrent fluorescence investigation from a single spatial location, and demonstrate application by investigating and characterizing the properties of burn-afflicted tissue on chicken skin model. Raman and Brillouin scattering offer complementary information about a material's chemical and mechanical structure, while fluorescence can serve as a useful diagnostic indicator and imaging tool. The developed instrument has the potential for very diverse analytical applications in basic biomedical science and biomedical diagnostics and imaging.

  8. High speed data encryption and decryption using stimulated Brillouin scattering effect in optical fiber

    Science.gov (United States)

    Yi, Lilin; Zhang, Tao; Hu, Weisheng

    2011-11-01

    A novel all-optical encryption/decryption method based on stimulated Brillouin scattering (SBS) effect in optical fiber is proposed for the first time. The operation principle is explained in detail and the encryption and decryption performance is experimentally evaluated. The encryption keys could be the SBS gain amplitude, bandwidth, central wavelength and spectral shape, which are configurable and flexibly controlled by the users. We experimentally demonstrate the SBS encryption/decryption process of a 10.86-Gb/s non-return-to-zero (NRZ) data by using both phase-modulated and current-dithered Brillouin pumps for proof-of-concept. Unlike the traditional optical encryption methods of chaotic communications and optical code-division-multiplexing access (OCDMA), the SBS based encryption/decryption technique can directly upgrade the current optical communication system to a secure communication system without changing the terminal transceivers, which is completely compatible with the current optical communication systems.

  9. Production of petawatt laser pulses of picosecond duration via Brillouin amplification of nanosecond laser beams

    CERN Document Server

    Humphrey, Kathryn; Alves, Paulo; Fiuza, Frederico; Speirs, David; Bingham, Robert; Cairns, Alan; Fonseca, Ricardo; Silva, Luis; Norreys, Peter

    2013-01-01

    Previous studies have shown that Raman amplification in plasma is a potential route for the production of petawatt pulses of picosecond duration at 351 nm [Trines et al., Phys. Rev. Lett. 107, 105002 (2011)]. In this paper we show, through analytic theory and particle-in-cell simulations, that similar results can also be obtained through Brillouin amplification of a short seed laser beam off a long pump beam at moderate intensity. Scaling laws governing the optimal parameter space for pump beam, seed beam and plasma will be derived using a self-similar model for Brillouin scattering, and verified via simulations. A comparison with Raman scattering will be made, to determine which scheme is most suitable for a range of laser-plasma configurations.

  10. Power-penalty-free all-optical decryption using stimulated Brillouin scattering in optical fiber

    Science.gov (United States)

    Yi, L. L.; Zhang, T.; Li, Z. X.; Zhang, Y.; Dong, Y.; Hu, W. S.

    2013-04-01

    We propose to all-optically encrypt and decrypt high-speed optical signals using the stimulated Brillouin scattering (SBS) effect in optical fiber for the first time. The spectral-shaped SBS gain or loss distorts the broadband optical signal so as to realize optical encryption. A corresponding SBS loss or gain with the same spectral shape and amplitude recovers the distorted signal to implement optical decryption. We experimentally demonstrate the SBS encryption/decryption process on 10.86 Gb s-1 non-return-to-zero-on-off-keying (NRZ-OOK) data using phase-modulated Brillouin pumps to generate a spectral-shaped SBS gain/loss encryption key, and no power penalty is observed for the best decryption case. The proposed all-optical encryption/decryption method is completely compatible with existing fiber-optic communication systems.

  11. Pressure and temperature dependences of the acoustic behaviors of biocompatible silk studied by using Brillouin spectroscopy

    Science.gov (United States)

    Lee, Byoung Wan; Ryeom, Junho; Ko, Jae-Hyeon; Kim, Dong Wook; Park, Chan Hum; Park, Jaehoon; Ko, Young Ho; Kim, Kwang Joo

    2016-07-01

    The elastic properties of a biocompatible silk film were investigated under temperature and pressure variations by using Brillouin spectroscopy. The Brillouin frequency shift decreased monotonically upon heating and showed a sudden change at the glass transition temperature. The existence of water molecules in the film increased the longitudinal modulus by approximately 10% and induced a relaxation peak in the hypersonic damping at ~60 ◦ C. The pressure dependences of the sound velocities of the longitudinal and the transverse acoustic modes and the refractive index were determined for the first time at pressures up to ~15.5 GPa. All these properties increased upon compression; these changes indicated that the free volume in the silk film collapsed at a pressure of about 3 GPa.

  12. Distributed Temperature and Strain Discrimination with Stimulated Brillouin Scattering and Rayleigh Backscatter in an Optical Fiber

    Directory of Open Access Journals (Sweden)

    Xiaoyi Bao

    2013-01-01

    Full Text Available A distributed optical fiber sensor with the capability of simultaneously measuring temperature and strain is proposed using a large effective area non-zero dispersion shifted fiber (LEAF with sub-meter spatial resolution. The Brillouin frequency shift is measured using Brillouin optical time-domain analysis (BOTDA with differential pulse-width pair technique, while the spectrum shift of the Rayleigh backscatter is measured using optical frequency-domain reflectometry (OFDR. These shifts are the functions of both temperature and strain, and can be used as two independent parameters for the discrimination of temperature and strain. A 92 m measurable range with the spatial resolution of 50 cm is demonstrated experimentally, and accuracies of ±1.2 °C in temperature and ±15 με in strain could be achieved.

  13. Brillouin optical correlation analysis system using a simplified frequency-modulated time division method

    Science.gov (United States)

    Choi, Bo-Hun; Kwon, Il-Bum

    2014-01-01

    A time-division Brillouin optical correlation domain analysis system was successfully achieved using simplified laser diode (LD) modulation and pump lightwave optimization. A complicated transfer function for a precise output waveform of a LD was required for the conventional system. However, a very simple modulation function gave a power output very close to a required ideal rectangle waveform without sacrificing optical output spectrum. An electrical input waveform applied into a gate in the pump lightwave path was also optimized for eliminating a probe lightwave included in a pump lightwave and for passing consecutive pump pulses alternatively. So the stimulated Brillouin scattering gain was attained without seriously distorting FM modulation, and the targeted spatial resolution was clearly accomplished. Additionally, using high speed response of a semiconductor optical amplifier (SOA), unlike an erbium-doped fiber amplifier (EDFA), the possibility was investigated that an SOA was going to replace an EDFA and a modulator used as a gate in the same time.

  14. Unified approach to cascaded stimulated Brillouin scattering and frequency-comb generation

    Science.gov (United States)

    Dong, Mark; Winful, Herbert G.

    2016-04-01

    We present a unified approach to cascaded stimulated Brillouin scattering and frequency-comb generation in which the multitude of interacting pump, Stokes, and anti-Stokes optical fields is described by a single forward wave and a single backward wave at a single carrier frequency. The envelopes of these two waves are modulated through coupling to a single acoustic oscillation and through four-wave mixing. Starting from a single pump field, we observe the emergence of a comb of frequencies as the intensity is increased. The set of three differential equations derived here is sufficient to describe the generation of any number of Brillouin sidebands in oscillator systems that would have required hundreds of coupled equations in the standard approach. We test this approach on some published experiments and find excellent agreement with the results.

  15. Phase-locking in Multi-Frequency Brillouin Oscillator via Four Wave Mixing

    CERN Document Server

    Buettner, Thomas F S; Hudson, Darren D; Pant, Ravi; Poulton, Christopher G; Judge, Alexander C; Eggleton, Benjamin J

    2014-01-01

    Stimulated Brillouin scattering (SBS) and Kerr-nonlinear four wave-mixing (FWM) are among the most important and widely studied nonlinear effects in optical fibres. At high powers SBS can be cascaded producing multiple Stokes waves spaced by the Brillouin frequency shift. Here, we investigate the complex nonlinear interaction of the cascade of Stokes waves, generated in a Fabry-Perot chalcogenide fibre resonator through the combined action of SBS and FWM. We demonstrate the existence of parameter regimes, in which pump and Stokes waves attain a phase-locked steady state. Real-time measurements of 40ps pulses with 8GHz repetition rate are presented, confirming short-and long-term stability. Numerical simulations qualitatively agree with experiments and show the significance of FWM in phase-locking of pump and Stokes waves. Our findings can be applied for the design of novel picosecond pulse sources with GHz repetition rate for optical communication systems.

  16. Remote-sensing gas measurements with coherent Rayleigh-Brillouin scattering

    Science.gov (United States)

    Gerakis, A.; Shneider, M. N.; Stratton, B. C.

    2016-07-01

    We measure the coherent Rayleigh-Brillouin scattering (CRBS) signal integral as a function of the recorded gas pressure in He, Co2, SF6, and air, and we confirm the already established quadratic dependence of the signal on the gas density. We propose the use of CRBS as an effective diagnostic for the remote measurement of gas' density (pressure) and temperature, as well as polarizability, for gases of known composition.

  17. Pulse temporal compression by two-stage stimulated Brillouin scattering and laser-induced breakdown

    Science.gov (United States)

    Liu, Zhaohong; Wang, Yulei; Wang, Hongli; Bai, Zhenxu; Li, Sensen; Zhang, Hengkang; Wang, Yirui; He, Weiming; Lin, Dianyang; Lu, Zhiwei

    2017-06-01

    A laser pulse temporal compression technique combining stimulated Brillouin scattering (SBS) and laser-induced breakdown (LIB) is proposed in which the leading edge of the laser pulse is compressed using SBS, and the low intensity trailing edge of the laser pulse is truncated by LIB. The feasibility of the proposed scheme is demonstrated by experiments in which a pulse duration of 8 ns is compressed to 170 ps. Higher compression ratios and higher efficiency are expected under optimal experimental conditions.

  18. Stimulated Brillouin Scattering Suppression in Fiber Amplifiers via Chirped Diode Lasers

    Science.gov (United States)

    2011-09-01

    1.55-µm diode laser at 1014 Hz/s using a phase-locked loop and a fiber -optic Michelson interferometer (9). The chirp has now been extended to 5×1015...diode lasers. By incorporating a fiber interferometer , the technique has been extended to chirp a (single) laser diode at 1015 Hz/s in an extremely...Stimulated Brillouin Scattering Suppression in Fiber Amplifiers via Chirped Diode Lasers by Jeffrey O. White, George Rakuljic, and Carl E

  19. Modeling the effects of laser-beam smoothing on filamentation and stimulated Brillouin backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Berger, R.L.; Kaiser, T.B.; Lasinski, B.F. [and others

    1996-06-01

    Using the three-dimensional code (F3D), the authors compute the filamentation and backscattering of laser light. The results show that filamentation can be controlled and stimulated Brillouin backscattering (SBBS) can be reduced by using random phase plates (RPP) and small f-numbers or smoothing by spectral dispersion (SSD) with large bandwidth. An interesting result is that, for uniform plasmas, the SBBS amplification takes place over several laser axial coherence lengths (coherence length = speckle length).

  20. Brillouin Corrosion Expansion Sensors for Steel Reinforced Concrete Structures Using a Fiber Optic Coil Winding Method

    Directory of Open Access Journals (Sweden)

    Xingjun Lv

    2011-11-01

    Full Text Available In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  1. Imaging of Keratoconic and normal human cornea with a Brillouin imaging system (Conference Presentation)

    Science.gov (United States)

    Besner, Sebastien; Shao, Peng; Scarcelli, Giuliano; Pineda, Roberto; Yun, Seok-Hyun (Andy)

    2016-03-01

    Keratoconus is a degenerative disorder of the eye characterized by human cornea thinning and morphological change to a more conical shape. Current diagnosis of this disease relies on topographic imaging of the cornea. Early and differential diagnosis is difficult. In keratoconus, mechanical properties are found to be compromised. A clinically available invasive technique capable of measuring the mechanical properties of the cornea is of significant importance for understanding the mechanism of keratoconus development and improve detection and intervention in keratoconus. The capability of Brillouin imaging to detect local longitudinal modulus in human cornea has been demonstrated previously. We report our non-contact, non-invasive, clinically viable Brillouin imaging system engineered to evaluate mechanical properties human cornea in vivo. The system takes advantage of a highly dispersive 2-stage virtually imaged phased array (VIPA) to detect weak Brillouin scattering signal from biological samples. With a 1.5-mW light beam from a 780-nm single-wavelength laser source, the system is able to detect Brillouin frequency shift of a single point in human cornea less than 0.3 second, at a 5μm/30μm lateral/axial resolution. Sensitivity of the system was quantified to be ~ 10 MHz. A-scans at different sample locations on a human cornea with a motorized human interface. We imaged both normal and keratoconic human corneas with this system. Whereas no significantly difference were observed outside keratocnic cones compared with normal cornea, a highly statistically significantly decrease was found in the cone regions.

  2. Local analysis of stimulated Brillouin interaction in installed fiber optics cables

    OpenAIRE

    Nikles, M.; Thévenaz, Luc; Salina, P.; Robert, P. A.

    1996-01-01

    Brillouin gain spectrum measurement along an optical fiber has recently gained a lot of interests owing to its potentiality for strain monitoring in installed telecom cables. The purpose of the paper is to show that this potentiality is now effective, since field measurements of installed fiber optics cables currently in operation are demonstrated. A portable instrument has been developed, based on an original experimental configuration developed in our Institute which is briefly described

  3. Reduction of Guided Acoustic Wave Brillouin Scattering in Photonic Crystal Fibers

    CERN Document Server

    Elser, D; Gloeckl, O; Korn, A; Leuchs, G; Lorenz, S; Marquardt, C; Marquardt, Ch.

    2005-01-01

    Guided Acoustic Wave Brillouin Scattering (GAWBS) generates phase and polarization noise of light propagating in glass fibers. This excess noise affects the performance of various experiments operating at the quantum noise limit. We experimentally demonstrate the reduction of GAWBS noise in a photonic crystal fiber in a broad frequency range using cavity sound dynamics. We compare the noise spectrum to the one of a standard fiber and observe a roughly 10-fold noise reduction in the frequency range up to 200 MHz.

  4. Mandel'shtam-Brillouin scattering of laser light as a remote sensing tool.

    Science.gov (United States)

    Daniels, A.

    1972-01-01

    The mathematical relations regarding the intensity of scattered light are derived. The nature of density inhomogeneities in air is discussed together with scattering due to moving isothermal pressure fluctuations, the spectral distribution of scattering from static isobaric density fluctuations, and applications of Mandel'shtam-Brillouin (M-B) scattering to atmospheric sensing. It is concluded that M-B scattering of laser light from the atmosphere has an outstanding potential for remote atmospheric sensing.

  5. Brillouin corrosion expansion sensors for steel reinforced concrete structures using a fiber optic coil winding method.

    Science.gov (United States)

    Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping

    2011-01-01

    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  6. Wentzel-Kramers-Brillouin Approximation for Dynamic Systems with Kinetic Coupling in Entangled State Representations

    Institute of Scientific and Technical Information of China (English)

    范洪义

    2002-01-01

    We study the Wentzel-Kramers-Brillouin (WKB) approximation for dynamic systems with kinetic couplings inentangled state representations. The result shows that the kinetic coupling will affect the position of classicalturning points where the condition of using the WKB approximation breaks down. The modified WKB approx-imation formula is derived in the entangled state representation, for example, the common eigenvector of therelative coordinate and the total momentum of two particles. The corresponding Bohr-Sommerfeld quantizationrule is also derived.

  7. Tunable narrowband microwave photonic filter created by stimulated Brillouin scattering from a Silicon nanowire

    CERN Document Server

    Casas-Bedoya, Alvaro; Pagani, Mattia; Marpaung, David; Eggleton, Benjamin J

    2015-01-01

    We demonstrate the first functional signal processing device based on stimulated Brillouin scattering in a silicon nanowire. We use only 1 dB of on-chip SBS gain to create an RF photonic notch filter with 48 dB of suppression, 98 MHz linewidth, and 6 GHz frequency tuning. This device has potential applications in on-chip microwave signal processing and establishes the foundation for the first CMOS-compatible high performance RF photonic filter.

  8. Effect of signal frequency on four-wave mixing through stimulated Brillouin scattering

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, D.E. (Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, NM (USA)); Scott, A.M.; Ridley, K.D. (Royal Signals and Radar Establishment, Great Malvern, Worcestershire (England))

    1990-11-15

    We present measurements of the dependence of the phase-conjugate reflectivity on signal frequency for Brillouin-enhanced four-wave mixing at pump intensities above the threshold instability. The measurements were made in TiCl{sub 4} at {lambda}=1 {mu}m and are consistent with a computer model of the reflectivity. We have observed that the frequency of the conjugate beam is independent of the frequency of the input signal beam in the unstable regime.

  9. Full-scale monitoring system for structural prestress loss based on distributed brillouin sensing technique

    Science.gov (United States)

    Chunguang, Lan; Liguang, Zhou; Zhiyu, Huo

    2017-08-01

    Prestress loss is critical to impact the safety of prestressed structures. Unfortunately, up to date, there are no qualified techniques to handle this issue due to the fact that it is too hard for sensors to survive the harsh construction environments and the time-dependent service life of the large-span prestressed structures. This paper proposes a novel technique to monitor prestress loss in prestressed beams using Brillouin optical fiber sensors. A novel smart steel strand based on the sensing technique of full-scale Brillouin optical fiber sensors was introduced. Two kinds of prestressed structure were used to verify the concept of monitoring prestress loss using smart steel strands. The prestress loss data have been taken by Brillouin optical fiber sensors. And the monitoring results agree well with those from the conventional sensors. The monitoring data can reveal both the full-scale distribution and the time history of prestress loss during the construction stage and also in-service phrase.

  10. Single-crystal Brillouin spectroscopy with CO{sub 2} laser heating and variable q

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jin S.; Bass, Jay D. [Department of Geology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Zhu, Gaohua [Materials Research Department, Toyota Research Institute of North America, Ann Arbor, Michigan 48105 (United States)

    2015-06-15

    We describe a Brillouin spectroscopy system integrated with CO{sub 2} laser-heating and Raman spectroscopic capabilities. Temperature is determined by measurements of the grey-body thermal radiation emitted by the hot sample, with the system response calibrated relative to a standard tungsten ribbon lamp. High-pressure laser-heating Brillouin scattering measurements of acoustic velocities on liquid water and ice compressed in a diamond-anvil cell were performed at temperatures up to 2500 ± 150 K at high pressure. Single-crystal laser-heating Brillouin measurements were made on the (111) plane of San Carlos olivine at ∼13 GPa, 1300 ± 200 K. The pressure as measured by ruby fluorescence is shown to be within ±0.5 GPa of the pressure on the olivine sample during laser heating when KCl and KBr are used as pressure-transmitting media. In addition, the system is designed for continuously variable scattering angles from forward scattering (near 0° scattering angle) up to near back scattering (∼141°). This novel setup allows us to probe a wide range of wave vectors q for investigation of phonon dispersion on, for example, crystals with large unit cells (on the scale of hundreds of nm)

  11. Single-crystal Brillouin spectroscopy with CO2 laser heating and variable q

    Science.gov (United States)

    Zhang, Jin S.; Bass, Jay D.; Zhu, Gaohua

    2015-06-01

    We describe a Brillouin spectroscopy system integrated with CO2 laser-heating and Raman spectroscopic capabilities. Temperature is determined by measurements of the grey-body thermal radiation emitted by the hot sample, with the system response calibrated relative to a standard tungsten ribbon lamp. High-pressure laser-heating Brillouin scattering measurements of acoustic velocities on liquid water and ice compressed in a diamond-anvil cell were performed at temperatures up to 2500 ± 150 K at high pressure. Single-crystal laser-heating Brillouin measurements were made on the (111) plane of San Carlos olivine at ˜13 GPa, 1300 ± 200 K. The pressure as measured by ruby fluorescence is shown to be within ±0.5 GPa of the pressure on the olivine sample during laser heating when KCl and KBr are used as pressure-transmitting media. In addition, the system is designed for continuously variable scattering angles from forward scattering (near 0° scattering angle) up to near back scattering (˜141°). This novel setup allows us to probe a wide range of wave vectors q for investigation of phonon dispersion on, for example, crystals with large unit cells (on the scale of hundreds of nm).

  12. Brillouin spectroscopy reveals changes in muscular viscoelasticity in Drosophila POMT mutants

    Science.gov (United States)

    Meng, Zhaokai; Baker, Ryan; Panin, Vladislav M.; Yakovlev, Vladislav V.

    2015-03-01

    Muscular dystrophy (MD) is a group of muscle diseases that induce weakness in skeletal muscle and cause progressive muscle degeneration. The muscular mechanical properties (i.e., viscoelasticity), however, have not been thoroughly examined before and after MD. On the other hand, Brillouin spectroscopy (BS) provides a non-invasive approach to probing the local sound speed within a small volume. Moreover, recent advances in background-free Brillouin spectroscopy enable investigators to imaging not only transparent samples, but also turbid ones. In this study, we investigated the mechanical properties of muscles while employing Drosophila model of dystroglycanopathies, human congenital muscular dystrophies resulting from abnormal glycosylation of alphadystroglycan. Specifically, we analyzed larval abdominal muscles of Drosophila with mutations in protein Omannosyltransferase (POMT) genes. As a comparison, we have also examined muscular tissues dissected from wildtype Drosophila. The Brillouin spectra were obtained by a background free VIPA (virtually imaged phased array) spectrometer described in the previous report. As a reference, the Raman spectra were also acquired for each test. Our current results indicated that POMT defects cause changes in muscle elasticity, which suggests that muscular dystrophy conditions may be also associated with abnormalities in muscle elastic properties.

  13. Study on forward stimulated Brillouin scattering in a backward pumped fiber Raman amplifier

    Institute of Scientific and Technical Information of China (English)

    Zaixuan Zhang(张在宣); Dawei Fang(方达伟); Songlin Zhuang(庄松林); Laixiao Li(李来晓); Dan Geng(耿丹); Bizhi Dai(戴碧智); Yongxing Jin(金永兴); Honglin Liu(刘红林); Insoo S.Kim; Jianfeng Wang(王剑锋); Xiaobiao Wu(吴孝彪)

    2004-01-01

    Strong multi-order forward stimulated Brillouin scattering (SBS) has been observed in the backward pumped S-band distributed fiber Raman amplifier (FRA) with tunable narrow signal source (less than 100 MHz) when the pump power of FRA reached the SBS threshold. This does not obey the theory that only weak backward SBS lines exist according to the conservation of energy and momentum and the wave vector selected rule. This is because the sound waveguide characteristic weakens the wave vector rule, and the forward transmitted sound waveguide Brillouin scattering lines are generated and amplified in FRA.When the pump power is further increased, 11 orders of SBS lines and comb-like profile are observed. For the excited line, the frequency is 197.2296 THz and the power is 0 dBm. The even order SBS lines are stronger than odd order SBS lines, the power of the 2nd and 4th order SBS lines is 1.75 dBm, which is 16 dB higher than that of the 1st and 3rd order SBS lines. The odd order SBS lines are named BrillouinRayleigh scattering lines.

  14. Brillouin-scattering determination of the acoustic properties and their pressure dependence for three polymeric elastomers

    Science.gov (United States)

    Stevens, Lewis L.; Orler, E. Bruce; Dattelbaum, Dana M.; Ahart, Muhtar; Hemley, Russell J.

    2007-09-01

    The acoustic properties of three polymer elastomers, a cross-linked poly(dimethylsiloxane) (Sylgard® 184), a cross-linked terpolymer poly(ethylene-vinyl acetate-vinyl alcohol), and a segmented thermoplastic poly(ester urethane) copolymer (Estane® 5703), have been measured from ambient pressure to approximately 12GPa by using Brillouin scattering in high-pressure diamond anvil cells. The Brillouin-scattering technique is a powerful tool for aiding in the determination of equations of state for a variety of materials, but to date has not been applied to polymers at pressures exceeding a few kilobars. For the three elastomers, both transverse and longitudinal acoustic modes were observed, though the transverse modes were observed only at elevated pressures (>0.7GPa) in all cases. From the Brillouin frequency shifts, longitudinal and transverse sound speeds were calculated, as were the C11 and C12 elastic constants, bulk, shear, and Young's moduli, and Poisson's ratios, and their respective pressure dependencies. P-V isotherms were then constructed, and fit to several empirical/semiempirical equations of state to extract the isothermal bulk modulus and its pressure derivative for each material. Finally, the lack of shear waves observed for any polymer at ambient pressure, and the pressure dependency of their appearance is discussed with regard to instrumental and material considerations.

  15. Temporal characterization of a multi-wavelength Brillouin-erbium fiber laser

    Science.gov (United States)

    Lambin Iezzi, Victor; Büttner, Thomas F. S.; Tehranchi, Amirhossein; Loranger, Sébastien; Kabakova, Irina V.; Eggleton, Benjamin J.; Kashyap, Raman

    2016-05-01

    This paper provides the first detailed temporal characterization of a multi-wavelength-Brillouin-erbium fiber laser (MWBEFL) by measuring the optical intensity of the individual frequency channels with high temporal resolution. It is found that the power in each channel is highly unstable due to the excitation of several cavity modes for typical conditions of operation. Also provided is the real-time measurements of the MWBEFL output power for two configurations that were previously reported to emit phase-locked picosecond pulse trains, concluded from their autocorrelation measurements. Real-time measurements reveal a high degree of instability without the formation of a stable pulse train. Finally, we model the MWBEFL using coupled wave equations describing the evolution of the Brillouin pump, Stokes and acoustic waves in the presence of stimulated Brillouin scattering, and the optical Kerr effect. A good qualitative consistency between the simulation and experimental results is evident, in which the interference signal at the output shows strong instability as well as the chaotic behavior due to the dynamics of participating pump and Stokes waves.

  16. Experimental and numerical study of high order Stokes lines in Brillouin-erbium fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Yijun [Department of Electronic and Information Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, Guangdong Province 518055 (China); College of Physics Science and Engineering Technology, Yichun University, Yichun, Jiangxi Province 336000 (China); Yao, Yong, E-mail: yaoyong@hit.edu.cn; Xiao, Jun Jun; Yang, Yanfu; Tian, Jiajun; Liu, Chao [Department of Electronic and Information Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, Guangdong Province 518055 (China)

    2014-01-28

    We experimentally study the dependences of high-order Stokes lines on the erbium-doped fiber (EDF) pump power P{sub EDF}, the Brillouin pump (BP) power P{sub BP}, and its working wavelength in a multiwavelength Brillouin erbium-doped fiber laser (MBEFL). By using the rate and propagation equations, and the coupled wave equations of stimulated Brillouin scattering, we establish a lumped model to describe the MBEFL. Numerical simulations show that the number of Stokes lines can be increased by decreasing the spacing between the BP wavelength and the EDF peak gain or P{sub BP} as long as it is larger than a critical value P{sub BP}{sup (cr)}=1.7 mW, or by increasing P{sub EDF} without reaching a saturation value P{sub EDF}{sup (cr)}=250 mW. However, when P{sub BP} and P{sub EDF} are varied beyond P{sub BP}{sup (cr)} and P{sub EDF}{sup (cr)}, respectively, the number of Stokes lines is reduced, accompanied by some self-lasing cavity modes. These results by numerical simulation are consistent with experimental observations from the MBEFL.

  17. Dynamics of alkyl chains in monolayer protected metal clusters and their superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, R [Solid State Physics Division, BARC, Mumbai 400085 (India); Mitra, S [Solid State Physics Division, BARC, Mumbai 400085 (India); Johnson, M [Institute Lau-Langevin, BP156, F-38042, Grenoble, Cedex 9 (France); Pradeep, T [Department of Chemistry and SAIF, IITm, Chennai 600 036 (India)

    2007-12-15

    Alkyl chains dynamics in monolayer protected metal cluster (MPC) systems of gold and silver have been studied by the quasielastic neutron scattering (QENS) technique. Isolated MPCs investigated are 6, 12 and 18 carbon n-alkyl chain thiolate protected 4 nm diameter gold clusters while the superlattices are their silver analogues. Evolution of dynamics with temperature is found to be very different in the isolated clusters and their superlattices. While continuous evolution of the dynamics of the monolayer was observed in isolated MPCs, it is abrupt in superlattice systems and occurs at a temperature consistent with the superlattice melting detected in calorimetry measurements. A model where the chain undergoes uniaxial rotational diffusion with additional body axis fluctuation was found to describe the data consistently. For the superlattice systems, the chains are found to be held by strong inter-chain interactions below the superlattice melting. The data from the planar silver thiolate systems show similar behavior like the superlattice systems, consistent with the calorimetric data.

  18. The Role of Ligand Packing Frustration in Body-Centered Cubic (bcc) Superlattices of Colloidal Nanocrystals.

    Science.gov (United States)

    Goodfellow, Brian W; Yu, Yixuan; Bosoy, Christian A; Smilgies, Detlef-M; Korgel, Brian A

    2015-07-02

    This paper addresses the assembly of body centered-cubic (bcc) superlattices of organic ligand-coated nanocrystals. First, examples of bcc superlattices of dodecanethiol-capped Au nanocrystals and oleic acid-capped PbS and PbSe nanocrystals are presented and examined by transmission electron microscopy (TEM) and grazing incidence small-angle X-ray scattering (GISAXS). These superlattices tend to orient on their densest (110) superlattice planes and exhibit a significant amount of {112} twinning. The same nanocrystals deposit as monolayers with hexagonal packing, and these thin films can coexist with thicker bcc superlattice layers, even though there is no hexagonal plane in a bcc lattice. Both the preference of bcc in bulk films over the denser face-centered cubic (fcc) superlattice structure and the transition to hexagonal monolayers can be rationalized in terms of packing frustration of the ligands. A model is presented to calculate the difference in entropy associated with capping ligand packing frustration in bcc and fcc superlattices.

  19. Progress in MBE grown type-II superlattice photodiodes

    Science.gov (United States)

    Hill, Cory J.; Li, Jian V.; Mumolo, Jason M.; Gunapala, Sarath D.

    2006-01-01

    We report on the status of GaSb/InAs type-II superlattice diodes grown and fabricated at the Jet Propulsion Laboratory designed for infrared absorption in the 8-12(mu)m range. Recent devices have produced detectivities as high as 8x10 to the tenth power Jones with a differential resistance-area product greater than 6 Ohmcm(sup 2) at 80K with a long wavelength cutoff of approximately 12(mu)m. The measured quantum efficiency of these front-side illuminated devices is close to 30% in the 10-11(mu)m range without antireflection coatings.

  20. Zener tunneling of light waves in an optical superlattice.

    Science.gov (United States)

    Ghulinyan, Mher; Oton, Claudio J; Gaburro, Zeno; Pavesi, Lorenzo; Toninelli, Costanza; Wiersma, Diederik S

    2005-04-01

    We report on the observation of Zener tunneling of light waves in spectral and time-resolved transmission measurements, performed on an optical superlattice made of porous silicon. The structure was designed to have two photonic minibands, spaced by a narrow frequency gap. A gradient in the refractive index was introduced to create two optical Wannier-Stark ladders and, at a critical value of the optical gradient, tunneling between energy bands was observed in the form of an enhanced transmission peak and a characteristic time dependence of the transmission.

  1. Theory of the Fermi-level energy in semiconductor superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Luscombe, J.H. (Central Research Laboratories, Texas Instruments Incorporated, Dallas, Texas (USA)); Aggarwal, R. (Central Research Laboratories, Texas Instruments Incorporated, Dallas, Texas (USA) Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts (USA)); Reed, M.A. (Central Research Laboratories, Texas Instruments Incorporated, Dallas, Texas (USA) Department of Electrical Engineering, Yale University, New Haven, Connecticut (USA)); Frensley, W.R. (Central Research Laboratories, Texas Instruments Incorporated, Dallas, Texas (USA) Department of Electrical Engineering, University of Texas at Dallas, Richardson, Texas (USA)); Luban, M. (Iowa Univ., Iowa City, IA (USA). Dept. of Physics and Astronomy Ames Lab., IA (USA))

    1991-09-15

    A theoretical study of the properties of the Fermi level in semiconductor superlattices (SL's) is made which is based upon the carrier occupation of the minibands in thermal equilibrium. We find, for a fixed carrier density and temperature, that the SL Fermi level can differ significantly from that obtained using commonly employed three-dimensional approximations, depending upon the relative spacings and widths of the minibands, with the SL Fermi level being higher than the corresponding bulk value. We find that the SL Fermi level is a sensitive function of the relative widths of the quantum wells and barriers.

  2. The DUV Stability of Superlattice-Doped CMOS Detector Arrays

    Science.gov (United States)

    Hoenk, M. E.; Carver, A. G.; Jones, T.; Dickie, M.; Cheng, P.; Greer, H. F.; Nikzad, S.; Sgro, J.; Tsur, S.

    2013-01-01

    JPL and Alacron have recently developed a high performance, DUV camera with a superlattice doped CMOS imaging detector. Supperlattice doped detectors achieve nearly 100% internal quantum efficiency in the deep and far ultraviolet, and a single layer, Al2O3 antireflection coating enables 64% external quantum efficiency at 263nm. In lifetime tests performed at Applied Materials using 263 nm pulsed, solid state and 193 nm pulsed excimer laser, the quantum efficiency and dark current of the JPL/Alacron camera remained stable to better than 1% precision during long-term exposure to several billion laser pulses, with no measurable degradation, no blooming and no image memory at 1000 fps.

  3. Electronic Bloch oscillation in bilayer graphene gradient superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hemeng; Li, Changan; Song, Yun [Department of Physics, Beijing Normal University, Beijing 100875 (China); Ma, Tianxing, E-mail: txma@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China); Beijing Computational Science Research Center, Beijing 100084 (China); Wang, Li-Gang, E-mail: sxwlg@yahoo.com [Department of Physics, Zhejiang University, Hangzhou 310027 (China); Lin, Hai-Qing [Beijing Computational Science Research Center, Beijing 100084 (China)

    2014-08-18

    We investigate the electronic Bloch oscillation in bilayer graphene gradient superlattices using transfer matrix method. By introducing two kinds of gradient potentials of square barriers along electrons propagation direction, we find that Bloch oscillations up to terahertz can occur. Wannier-Stark ladders, as the counterpart of Bloch oscillation, are obtained as a series of equidistant transmission peaks, and the localization of the electronic wave function is also signature of Bloch oscillation. Furthermore, the period of Bloch oscillation decreases linearly with increasing gradient of barrier potentials.

  4. Surface photovoltage spectroscopy of quantum wells and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Bachrach-Ashkenasy, N.; Kronik, L.; Shapira, Y. [Department of Physical Electronics, Faculty of Engineering, Tel-Aviv University, Ramat-Aviv 69978 (Israel); Rosenwaks, Y.; Hanna, M.C. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Leibovitch, M.; Ram, P. [Physics Department, Brooklyn College of the City University of New York, Brooklyn, New York 11210 (United States)

    1996-02-01

    Surface photovoltage spectroscopy (SPS) has been employed to monitor optical transitions in quantum well and superlattice structures at room temperature. Excellent agreement is found between theoretical predictions of heavy hole and electron energy level positions and the observed transitions. The results show that using this technique, the complete band diagram of the quantum structure may be constructed. SPS emerges as a powerful tool capable of monitoring optical transitions above the lowest one in a simple to interpret, contactless, and nondestructive way. {copyright} {ital 1996 American Institute of Physics.}

  5. Elastic superlattices with simultaneously negative effective mass density and shear modulus

    Science.gov (United States)

    Solís-Mora, I. S.; Palomino-Ovando, M. A.; Pérez-Rodríguez, F.

    2013-03-01

    We investigate the vibrational properties of superlattices with layers of rubber and polyurethane foam, which can be either conventional or auxetic. Phononic dispersion calculations show a second pass band for transverse modes inside the lowest band gap of the longitudinal modes. In such a band, the superlattices behave as a double-negative elastic metamaterial since the effective dynamic mass density and shear modulus are both negative. The pass band is associated to a Fabry-Perot resonance band which turns out to be very narrow as a consequence of the high contrast between the acoustic impedances of the superlattice components.

  6. Physical properties of ferroelectric superlattice A3/B3 system in electric field

    Institute of Scientific and Technical Information of China (English)

    Jiang Wei; Lo Veng-Cheong; Bai Bao-Dong

    2005-01-01

    Based on the differential operator technique, a transverse Ising model (TIM) in the effective-field theory is developed to study the physical properties of a ferroelectric superlattice A3/B3 system. The effects of an external electric field on the polarization, susceptibility and pyroelectric coefficient of the ferroelectric superlattice A3/B3 system are discussed in detail. The susceptibility of the ferroelectric superlattice A3/B3 system decreases with the increase of the electric field, implying that the polarization is weak.

  7. The intensive terahertz electroluminescence induced by Bloch oscillations in SiC natural superlattices.

    Science.gov (United States)

    Sankin, Vladimir; Andrianov, Alexandr; Petrov, Alexey; Zakhar'in, Alexey; Lepneva, Ala; Shkrebiy, Pavel

    2012-10-09

    : We report on efficient terahertz (THz) emission from high-electric-field-biased SiC structures with a natural superlattice at liquid helium temperatures. The emission spectrum demonstrates a single line, the maximum of which shifts linearly with increases in bias field. We attribute this emission to steady-state Bloch oscillations of electrons in the SiC natural superlattice. The properties of the THz emission agree fairly with the parameters of the Bloch oscillator regime, which have been proven by high-field electron transport studies of SiC structures with natural superlattices.

  8. InN/GaN Superlattices: Band Structures and Their Pressure Dependence

    DEFF Research Database (Denmark)

    Gorczyca, Iza; Suski, Tadek; Staszczak, Grzegorz

    2013-01-01

    Creation of short-period InN/GaN superlattices is one of the possible ways of conducting band gap engineering in the green-blue range of the spectrum. The present paper reports results of photoluminescence experiments, including pressure effects, on a superlattice sample consisting of unit cells...... density approximation (LDA) with a semi-empirical correction for the ‘‘LDA gap error’’. A similarity is observed between the results of calculations for an InGaN/GaN superlattice (with one monolayer of InGaN) and the experimental results. This indicates that the fabricated InN quantum wells may contain...

  9. Effect of the degree of disorder on electronic and optical properties in random superlattices

    Science.gov (United States)

    Wang, E. G.; Su, W. P.; Ting, C. S.

    1994-01-01

    A three-dimensional tight-binding calculation is developed and used to study disorder effects in a realistic random superlattice. With increasing disorder, a tendency of possible indirect-direct band-gap transition is suggested. Direct evidence of mobility edges between localized and extended states in three-dimensional random systems is given. As system disorder increases, the optical absorption intensities increase dramatically from five to forty-five times stronger than the ordered (GaAs)(sub 1)/(AlAs)(sub 1) superlattice. It is believed that the degree of disorder significantly affects electronic and optical properties of GaAs/AlAs random superlattices.

  10. Optical Properties of Self-Organized PbS Quantum Dot Superlattices

    Institute of Scientific and Technical Information of China (English)

    YE Chang-Hui; YAO Lian-Zeng; MU Ji-Mei; SHI Gang; ZHANG Li-De

    2000-01-01

    Self-organization of PbS into quantum dot superlattices has been demonstrated for the first time, and hexaplanar colloidal crystals 1 - 10 μm in size made from PbS quantum dots 3 - 6 nm in diameter are revealed in transmissionelectron microscope micrographs, and the inner structures of the superlattices can be seen by a high resolution transmission electron microscopy. The optical absorption and photoluminescence spectra have been recorded. The ordering of the superlattices is crucial for the understanding of the fundamental properties of quantum-dot arrays, as well as for their optimal utilization in optical and electronic applications.

  11. Low dark current N structure superlattice MWIR photodetectors

    Science.gov (United States)

    Salihoglu, Omer; Muti, Abdullah; Turan, Rasit; Ergun, Yuksel; Aydinli, Atilla

    2014-06-01

    Commercially available read out integrated circuits (ROICs) require the FPA to have high dynamic resistance area product at zero bias (R0A) which is directly related to dark current of the detector. Dark current arises from bulk and surface contributions. Recent band structure engineering studies significantly suppressed the bulk contribution of the type-II superlattice infrared photodetectors (N structure, M structure, W structure). In this letter, we will present improved dark current results for unipolar barrier complex supercell superlattice system which is called as "N structure". The unique electronic band structure of the N structure increases electron-hole overlap under bias, significantly. N structure aims to improve absorption by manipulating electron and hole wavefunctions that are spatially separated in T2SLs, increasing the absorption while decreasing the dark current. In order to engineer the wavefunctions, we introduce a thin AlSb layer between InAs and GaSb layers in the growth direction which also acts as a unipolar electron barrier. Despite the difficulty of perfect lattice matching of InAs and AlSb, such a design is expected to reduce dark current. Experiments were carried out on Single pixel with mesa sizes of 100 × 100 - 700 × 700 μm photodiodes. Temperature dependent dark current with corresponding R0A resistance values are reported.

  12. Beating the amorphous limit in thermal conductivity by superlattices design.

    Science.gov (United States)

    Mizuno, Hideyuki; Mossa, Stefano; Barrat, Jean-Louis

    2015-09-16

    The value measured in the amorphous structure with the same chemical composition is often considered as a lower bound for the thermal conductivity of any material: the heat carriers are strongly scattered by disorder, and their lifetimes reach the minimum time scale of thermal vibrations. An appropriate design at the nano-scale, however, may allow one to reduce the thermal conductivity even below the amorphous limit. In the present contribution, using molecular-dynamics simulation and the Green-Kubo formulation, we study systematically the thermal conductivity of layered phononic materials (superlattices), by tuning different parameters that can characterize such structures. We have discovered that the key to reach a lower-than-amorphous thermal conductivity is to block almost completely the propagation of the heat carriers, the superlattice phonons. We demonstrate that a large mass difference in the two intercalated layers, or weakened interactions across the interface between layers result in materials with very low thermal conductivity, below the values of the corresponding amorphous counterparts.

  13. Type-ii binary superlattices for infrared detector

    Energy Technology Data Exchange (ETDEWEB)

    Razeghi, M.; Mohseni, H. [Northwestern Univ., Evanston (United States); Brown, G. J. [WPAFB, Colombus (United States)

    2001-12-01

    III-V quantum wells and superlattices based on InAs/GaSb/AlSb, and related compounds have attracted many attentions due to their unique band alignments and physical properties. Recently, novel electronic and optoelectronic heterostructures have been proposed from this material system for hundred gigahertz logic circuits, terahertz transistors. RTDs, infrared lasers, and infrared detectors. In this paper we will describe the ongoing research at the Center for Quantum Devices to develop the theory, modeling, growth, characterization, and device fabrication techniques for this material system. We have demonstarted the first uncooled infrared detectors from type-II superlattices. The measured detectivity is more than 1 x 10{sup 8} cmHz{sup 1/2}/W at 10.6 {mu}m at room temperature which is higher than the commercially available uncooled photon detectors at similar wavelength. In paralle, we have demonstraed the first high-performance p-i-n type-II photodiode in the very long wavelength infrared (VLWIR) range operating at T=80K. The devices with cutoff wavelength of 16 mm showed a responsivity of 3.5 A/W at 80 K leading to a detectivity of {approx}1.51x10{sup 10} cmHz{sup 1/2}/W. Similar devices with cutoff wavelengths up to 25 {mu}m was demonstrated at 80 K. To enhance this technology further, we plan to move from quantum wells to quantum wire and quantum dots.

  14. Microemulsion-based synthesis of copper nanodisk superlattices

    Science.gov (United States)

    Sun, Lei; Zhao, Yanbao; Guo, Wenjing; Tao, Xiaojun; Zhang, Zhijun

    2011-06-01

    Nanocrystal superlattices (NCSs) comprised of self-assembled copper nanodisks were successfully synthesized in quaternary W/O microemulsions containing Span 80-Tween 80, liquid paraffin and n-butanol. Morphologies, structure and thermal properties of the Cu nanocrystals were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectra, thermogravimetry (TG) and differential thermogravimetry (DTG). The reaction conditions which effect the growth of the Cu nanodisks were explored, and a mechanism for the formation of the Cu NCSs is proposed. XRD and TEM studies show that the as-synthesized Cu nanodisks exhibit a cubic crystal structure, and FT-IR and TG analysis show that the surfaces of the Cu nanodisks are covered with surfactants, which assist in the formation of the superlattice and prevent the oxidation of the Cu nanocrystals. Variation of the reaction parameters such as mass ratio of the surfactants and the presence of oleic acid is found to have a significant effect on the formation of the Cu nanodisks.

  15. Commensurability oscillations in a two-dimensional lateral superlattice

    Science.gov (United States)

    Davies, John; Long, Andrew; Grant, David; Chowdhury, Suja

    2000-03-01

    We have calculated and measured conduction in a two-dimensional electron gas subject to a weak two-dimensional periodic potential and a normal magnetic field. Simulations with a potential Vx \\cos(2π x/a) + Vy \\cos(2π y/a) show the usual commensurability oscillations in ρ_xx(B) with Vx alone. The introduction of Vy suppresses these oscillations, rather than introducing the additional oscillations in ρ_yy(B) expected from previous perturbation theories. We explain this in terms of drift of the guiding center of cyclotron motion along contours of an effective potential: open orbits of the guiding center contribute to conduction but closed orbits do not. All orbits are closed in a symmetric superlattice with |V_x| = |V_y| and commensurability oscillations are therefore quenched. Experiments on etched superlattices confirm this picture. Conventional lattice-matched samples give a symmetric potential and weak oscillations; the symmetry is broken by the piezoelectric effect in stressed samples, leading to strong oscillations. Periodic modulation of the magnetic field can be treated in the same way, which explains previous experimental results.

  16. Magnetic domain wall energy in Ni/Co superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Toyoki, Kentaro; Nishimura, Takashi; Harimoto, Shotaro; Shiratsuchi, Yu, E-mail: shiratsuchi@mat.eng.osaka-u.ac.jp; Nakatani, Ryoichi

    2014-12-15

    The magnetic domain wall energy density σ{sub W} of a Ni/Co superlattice possessing perpendicular magnetic anisotropy was determined using the magnetic domain theory derived by Kooy and Enz (1960). To determine σ{sub W}, we obtained the saturation magnetization, magnetic domain period, and perpendicular magnetic anisotropy energy by individual measurements. Using the magnetic domain period and the ferromagnetic layer thickness, we first determined the dipolar length. The estimated dipolar length was about 15–25 nm, which is in good agreement with the change in the magnetization curve with the ferromagnetic layer thickness. By using the dipolar length and saturation magnetization, the σ{sub W} was calculated to be 4–7 erg/cm{sup 2}. - Highlights: • Magnetic domain wall energy of a Ni/Co superlattice was determined experimentally. • The magnetic domain wall energy was estimated to be 4–8 erg/cm{sup 2}. • Using estimated value, the magnetization curves were reproduced well. • The estimated value is reasonable compared with the other ferromagnetic materials.

  17. Artificially engineered Heusler ferrimagnetic superlattice exhibiting perpendicular magnetic anisotropy

    Science.gov (United States)

    Ma, Q. L.; Zhang, X. M.; Miyazaki, T.; Mizukami, S.

    2015-01-01

    To extend density limits in magnetic recording industry, two separate strategies were developed to build the storage bit in last decade, introduction of perpendicular magnetic anisotropy (PMA) and adoption of ferrimagnetism/antiferromagnetism. Meanwhile, these properties significantly improve device performance, such as reducing spin-transfer torque energy consumption and decreasing signal-amplitude-loss. However, materials combining PMA and antiferromagnetism rather than transition-metal/rare-earth system were rarely developed. Here, we develop a new type of ferrimagnetic superlattice exhibiting PMA based on abundant Heusler alloy families. The superlattice is formed by [MnGa/Co2FeAl] unit with their magnetizations antiparallel aligned. The effective anisotropy (Kueff) over 6 Merg/cm3 is obtained, and the SL can be easily built on various substrates with flexible lattice constants. The coercive force, saturation magnetization and Kueff of SLs are highly controllable by varying the thickness of MnGa and Co2FeAl layers. The SLs will supply a new choice for magnetic recording and spintronics memory application such as magnetic random access memory.

  18. Fine structure of the exciton electroabsorption in semiconductor superlattices

    Science.gov (United States)

    Monozon, B. S.; Schmelcher, P.

    2017-02-01

    Wannier-Mott excitons in a semiconductor layered superlattice (SL) are investigated analytically for the case that the period of the superlattice is much smaller than the 2D exciton Bohr radius. Additionally we assume the presence of a longitudinal external static electric field directed parallel to the SL axis. The exciton states and the optical absorption coefficient are derived in the tight-binding and adiabatic approximations. Strong and weak electric fields providing spatially localized and extended electron and hole states, respectively, are studied. The dependencies of the exciton states and the exciton absorption spectrum on the SL parameters and the electric field strength are presented in an explicit form. We focus on the fine structure of the ground quasi-2D exciton level formed by the series of closely spaced energy levels adjacent from the high frequencies. These levels are related to the adiabatically slow relative exciton longitudinal motion governed by the potential formed by the in-plane exciton state. It is shown that the external electric fields compress the fine structure energy levels, decrease the intensities of the corresponding optical peaks and increase the exciton binding energy. A possible experimental study of the fine structure of the exciton electroabsorption is discussed.

  19. Broadband mid-infrared superlattice light-emitting diodes

    Science.gov (United States)

    Ricker, R. J.; Provence, S. R.; Norton, D. T.; Boggess, T. F.; Prineas, J. P.

    2017-05-01

    InAs/GaSb type-II superlattice light-emitting diodes were fabricated to form a device that provides emission over the entire 3-5 μm mid-infrared transmission window. Variable bandgap emission regions were coupled together using tunnel junctions to emit at peak wavelengths of 3.3 μm, 3.5 μm, 3.7 μm, 3.9 μm, 4.1 μm, 4.4 μm, 4.7 μm, and 5.0 μm. Cascading the structure recycles the electrons in each emission region to emit several wavelengths simultaneously. At high current densities, the light-emitting diode spectra broadened into a continuous, broadband spectrum that covered the entire mid-infrared band. When cooled to 77 K, radiances of over 1 W/cm2 sr were achieved, demonstrating apparent temperatures above 1000 K over the 3-5 μm band. InAs/GaSb type-II superlattices are capable of emitting from 3 μm to 30 μm, and the device design can be expanded to include longer emission wavelengths.

  20. Dimensional control of cobalt spin state in oxide superlattices

    Science.gov (United States)

    Jeong, Da Woon; Choi, W. S.; Okamoto, S.; Sohn, C. H.; Park, H. J.; Kim, J.-Y.; Lee, H. N.; Kim, K. W.; Moon, S. J.; Noh, T. W.

    2013-03-01

    Perovskite cobalt oxide is a very intriguing system with various spin states owing to the delicate balance between crystal field splitting and Hund exchange energy. In this talk, we show that its spin state can be altered through dimensional control, enabled by digital synthesis of perovskite cobalt oxide superlattices. We employed a few unit cells of LaCoO3 as an active magnetic layer, separated by LaAlO3 spacer layer. High quality [(LaCoO3) n (LaAlO3) n ]8 (n = 2, 6, and 10) superlattices were fabricated using pulsed laser epitaxy. Spectroscopic tools including x-ray absorption spectroscopy and optical spectroscopy revealed clear evolution of the electronic structure and resultant spin state by changing dimensionality. Specifically, the spin state changed from a high to a low spin state with a larger optical band gap, as the dimension reduced from 3D to 2D. Dynamic mean field calculation supported the critical role of dimensionality on the spin state and electronic structure of LaCoO3.

  1. Artificially engineered Heusler ferrimagnetic superlattice exhibiting perpendicular magnetic anisotropy.

    Science.gov (United States)

    Ma, Q L; Zhang, X M; Miyazaki, T; Mizukami, S

    2015-01-19

    To extend density limits in magnetic recording industry, two separate strategies were developed to build the storage bit in last decade, introduction of perpendicular magnetic anisotropy (PMA) and adoption of ferrimagnetism/antiferromagnetism. Meanwhile, these properties significantly improve device performance, such as reducing spin-transfer torque energy consumption and decreasing signal-amplitude-loss. However, materials combining PMA and antiferromagnetism rather than transition-metal/rare-earth system were rarely developed. Here, we develop a new type of ferrimagnetic superlattice exhibiting PMA based on abundant Heusler alloy families. The superlattice is formed by [MnGa/Co2FeAl] unit with their magnetizations antiparallel aligned. The effective anisotropy (K(u)(eff)) over 6 Merg/cm(3) is obtained, and the SL can be easily built on various substrates with flexible lattice constants. The coercive force, saturation magnetization and K(u)(eff) of SLs are highly controllable by varying the thickness of MnGa and Co2FeAl layers. The SLs will supply a new choice for magnetic recording and spintronics memory application such as magnetic random access memory.

  2. Controlling Nanocrystal Superlattice Symmetry and Shape-Anisotropic Interactions through Variable Ligand Surface Coverage

    KAUST Repository

    Choi, Joshua J.

    2011-03-09

    The assembly of colloidal nanocrystals (NCs) into superstructures with long-range translational and orientational order is sensitive to the molecular interactions between ligands bound to the NC surface. We illustrate how ligand coverage on colloidal PbS NCs can be exploited as a tunable parameter to direct the self-assembly of superlattices with predefined symmetry. We show that PbS NCs with dense ligand coverage assemble into face-centered cubic (fcc) superlattices whereas NCs with sparse ligand coverage assemble into body-centered cubic (bcc) superlattices which also exhibit orientational ordering of NCs in their lattice sites. Surface chemistry characterization combined with density functional theory calculations suggest that the loss of ligands occurs preferentially on {100} than on reconstructed {111} NC facets. The resulting anisotropic ligand distribution amplifies the role of NC shape in the assembly and leads to the formation of superlattices with translational and orientational order. © 2011 American Chemical Society.

  3. Simple theoretical analysis of the Einstein’s photoemission from quantum confined superlattices

    Science.gov (United States)

    Pahari, S.; Bhattacharya, S.; Roy, S.; Saha, A.; De, D.; Ghatak, K. P.

    2009-11-01

    In this paper, we study the Einstein's photoemission from III-V, II-VI, IV-VI and HgTe/CdTe quantum well superlattices (QWSLs) with graded interfaces and quantum well effective mass superlattices in the presence of a quantizing magnetic field on the basis of newly formulated dispersion relations in the respective cases. Besides, the same has been studied from the afore-mentioned quantum dot superlattices and it appears that the photoemission oscillates with increasing carrier degeneracy and quantizing magnetic field in different manners. In addition, the photoemission oscillates with film thickness and increasing photon energy in quantum steps together with the fact that the solution of the Boltzmann transport equation will introduce new physical ideas and new experimental findings under different external conditions. The influence of band structure is apparent from all the figures and we have suggested three applications of the analyses of this paper in the fields of superlattices and microstructures.

  4. InN/GaN Superlattices: Band Structures and Their Pressure Dependence

    DEFF Research Database (Denmark)

    Gorczyca, Iza; Suski, Tadek; Staszczak, Grzegorz;

    2013-01-01

    with one monolayer of InN and 40 monolayers of GaN. The results are compared with calculations performed for different types of superlattices: InN/GaN, InGaN/GaN, and InN/InGaN/GaN with single monolayers of InN and/or InGaN. The superlattices are simulated by band structure calculations based on the local......Creation of short-period InN/GaN superlattices is one of the possible ways of conducting band gap engineering in the green-blue range of the spectrum. The present paper reports results of photoluminescence experiments, including pressure effects, on a superlattice sample consisting of unit cells...

  5. High-Detectivity Type-II Superlattice Detectors for 6-14 um Infrared Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SVT Associates proposes an novel type II superlattice structure to extend the cutoff wavelength and CBIRD SL photo diode structure with unipolar barriers to suppress...

  6. High Electric Field Quantum Transport: Submillimeter Wave AC Stark Localization in Vertical and Lateral Superlattices.

    Science.gov (United States)

    2007-11-02

    superlattices. These experiments have opened the arena of photon assisted transport to semiconductor devices and paved the way for future teraherz: electronics based on quantum transport in semiconductor nanostructures.

  7. Engineering the electronic structure of graphene superlattices via Fermi velocity modulation

    Science.gov (United States)

    Lima, Jonas R. F.

    2017-01-01

    Graphene superlattices have attracted much research interest in the last years, since it is possible to manipulate the electronic properties of graphene in these structures. It has been verified that extra Dirac points appear in the electronic structure of the system. The electronic structure in the vicinity of these points has been studied for a gapless and gapped graphene superlattice and for a graphene superlattice with a spatially modulated energy gap. In each case a different behavior was obtained. In this work we show that via Fermi velocity engineering it is possible to tune the electronic properties of a graphene superlattice to match all the previous cases studied. We also obtained new features of the system never observed before, reveling that the electronic structure of graphene is very sensitive to the modulation of the Fermi velocity. The results obtained here are relevant for the development of novel graphene-based electronic devices.

  8. Huge spin-transfer torque in a magnetic tunnel junction by a superlattice barrier

    Science.gov (United States)

    Chen, C. H.; Tseng, P.; Ko, C. W.; Hsueh, W. J.

    2017-09-01

    Huge spin-transfer torque (STT) in a magnetic tunnel junction (MTJ) achieved by superlattice barrier composed of alternate layers of a nonmagnetic metal and an insulator is proposed. The magnitude of the STT depends on the number of cells in the superlattice barrier and the nonmagnetic metal layer's thickness. The result shows that the STT of the novel superlattice-barrier MTJ can reach values up to four orders of magnitude greater than those of traditional single-barrier stacks based on three cells superlattice by designing the nonmagnetic metal layer's thickness. In addition, the spin-transfer torque of the proposed MTJ can also be thousands of magnitude greater than those of traditional double-barrier MTJs.

  9. Harmonic hexagonal superlattice pattern in a dielectric barrier discharge at atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    DONG LiFang; XIE WeiXia; ZHAO HaiTao; FAN WeiLi

    2009-01-01

    We report a harmonic hexagonal superlattice pattern in a dielectric barrier discharge in air/argon mixture at atmospheric pressure.The bifurcation scenario of harmonic hexagonal superlattice pattern with the applied voltage increasing is given.The phase diagram of the pattern types as a function of the applied voltage and the air-concentration is obtained.The hysteresis of pattern transitions at the upward and downward stage of the applied voltage is observed.The correlation measurements indicate that harmonic hexagonal superlattice pattern is an interleaving of two different transient sublattices.The spatial power spectrum demonstrates that harmonic hexagonal superlattice pattern has two separate wave vectors.Both small wave vector qh and big wave vector Kh,belong to the harmonic mode,and they obey a triad resonant interaction q1h + q2h,=Kh.

  10. Influence of Fermi velocity engineering on electronic and optical properties of graphene superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Aram, Tahereh Nemati [Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of); Université Grenoble Alpes, Institut Neel, 38042 Grenoble (France); Asgari, Asghar, E-mail: asgari@tabrizu.ac.ir [Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of); School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Crawley, WA 6009 (Australia)

    2015-06-05

    In this paper, using Kronig–Penney model, the electronic states in graphene-based superlattices with various substrates and considering exact electron Fermi velocity values are investigated. The analysis of our results clearly indicates that the difference between Fermi velocity values of gaped and gapless graphene regions determines the patency rate of band gap. Also, using transfer matrix method (TMM) the absorbance spectrum of mentioned structures is calculated. The more important result is that the absorbance of these structures is significantly near zero. - Highlights: • The electronic states in graphene superlattices with various substrates are investigated. • The exact electron Fermi velocity values are considered. • Using TMM the absorbance spectrum of two graphene-based superlattices is calculated. • The widest (narrowest) energy band gap belong to quartz–SiC (quartz–h-BN) superlattice.

  11. Interwell and intrawell magnetoexcitons in GaAs/AlGaAs superlattices

    DEFF Research Database (Denmark)

    Timofeev, V. B.; Filin, A. I.; Tartakovskii, A. I.

    1997-01-01

    The formation of spatially indirect (interwell) excitons in superlattices (SLs) with different barrier widths (different tunneling coupling) is experimentally investigated in a strong enough magnetic field with the use of photoluminescence (PL), photoluminescence excitation (PLE), reflectance spec...

  12. Thermal conductivity measurement of InGaAs/InGaAsP superlattice thin films

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhen; YANG Juekuan; ZHUANG Ping; CHEN Minhua; ZHU Jian; CHEN Yunfei

    2006-01-01

    The thermal conductivities of InGaAs/InGaAsP superlattices with different period lengths were measured from 100 to 320 K using 3ω method.In this temperature range, the thermal conductivities were found to decrease with an increase in temperature. For the period length-dependant thermal conductivity, the minimum value does exist at a certain period length, which demonstrates that at a short period length, superlattice thermal conductivity increases with a decrease in the period length. When the period is longer than a certain period length, the interface thermal resistance dominates in phonon transport. The experimental and theoretical results confirmed the previous predictions from the lattice dynamics analysis, i.e. with the increase in period length, the dominant mechanisms of phonon transport in superlattices will shift from wave mode to particle mode. This is crucial for the cutoff of the phonons and lays a sound foundation for the design of superlattice structures.

  13. Structural and magnetic properties of holmium-scandium alloys and superlattices

    DEFF Research Database (Denmark)

    Bryn-Jacobsen, C.; Cowley, R.A.; McMorrow, D.F.

    1997-01-01

    The properties of Ho-Sc alloys and superlattices grown by molecular-beam epitaxy have been investigated using x-ray and neutron-diffraction techniques. Structural studies reveal that the alloy samples have different a lattice parameters for the Sc-seed layer and the Ho:Sc alloy grown on top...... of the seed layer; while the superlattices have different a lattice parameters for the Sc seed, and for both the Ho and Sc in the superlattice layers. The structural characteristics are related to the large lattice mismatches (of the order 7%) between the constituent elements. The magnetic moments....... It is found that a good description of the dependence of T-N upon concentration is given by a virtual-crystal model where the peak in the conduction-electron susceptibility varies linearly between that of the pure constituents. In the superlattices, the moments also form a basal-plane helix at T...

  14. [A Brillouin Scattering Spectrum Feature Extraction Based on Flies Optimization Algorithm with Adaptive Mutation and Generalized Regression Neural Network].

    Science.gov (United States)

    Zhang, Yan-jun; Liu, Wen-zhe; Fu, Xing-hu; Bi, Wei-hong

    2015-10-01

    According to the high precision extracting characteristics of scattering spectrum in Brillouin optical time domain reflection optical fiber sensing system, this paper proposes a new algorithm based on flies optimization algorithm with adaptive mutation and generalized regression neural network. The method takes advantages of the generalized regression neural network which has the ability of the approximation ability, learning speed and generalization of the model. Moreover, by using the strong search ability of flies optimization algorithm with adaptive mutation, it can enhance the learning ability of the neural network. Thus the fitting degree of Brillouin scattering spectrum and the extraction accuracy of frequency shift is improved. Model of actual Brillouin spectrum are constructed by Gaussian white noise on theoretical spectrum, whose center frequency is 11.213 GHz and the linewidths are 40-50, 30-60 and 20-70 MHz, respectively. Comparing the algorithm with the Levenberg-Marquardt fitting method based on finite element analysis, hybrid algorithm particle swarm optimization, Levenberg-Marquardt and the least square method, the maximum frequency shift error of the new algorithm is 0.4 MHz, the fitting degree is 0.991 2 and the root mean square error is 0.024 1. The simulation results show that the proposed algorithm has good fitting degree and minimum absolute error. Therefore, the algorithm can be used on distributed optical fiber sensing system based on Brillouin optical time domain reflection, which can improve the fitting of Brillouin scattering spectrum and the precision of frequency shift extraction effectively.

  15. Structure property relationships of nitride superlattice hard coatings prepared by pulsed laser deposition

    Science.gov (United States)

    Patel, Nitin

    Today, more than 40% of all cutting tools used in machining applications are covered with coatings. Coatings improve wear resistance, increase tool life, enable use at higher speed, and broaden the application range. Superlattices, where thin layers (typically deposited in an alternating fashion, are widely used commercially. Importantly, the hardness value of a superlattice (e.g. TiN/AlN) can significantly exceed the rule of mixture value. Superlattice coatings built from crystallographically dissimilar materials are not widely studied but hold promise for improvements in performance by allowing for both hardness and toughness to be simultaneously optimized. This is what this thesis is concerned with: a structure-property comparison of isostructural superlattices with corresponding non-isostructural superlattices. In order to grow both isostructural and non-isostructural superlattices from the same set of materials, it is necessary to grow monolithic films in different phases. Towards this end, the synthesis of different phases of AlN, (Ti,Al)N, TaN, and TiN was investigated. Films were grown by pulsed laser deposition in two different chambers that had different base pressures to study the effect of background gases on the phases and orientations of the films. Growth of AlN and (Ti,Al)N films is strongly affected in a chamber that had a base pressure of 10-6 Torr, but the films adopt their stable nitride structures in a chamber with the lower base pressure of 10-8 Torr. TaN adopts either the cubic rock salt structure or its stable hexagonal structure, depending on the growth temperature, while TiN grows as rock salt in all conditions. Single crystal epitaxial superlattices were then grown with different compositions, periodicities, and crystallographic orientations to compare the effect of chemistry, nanostructure, and crystallographic texture on hardness. Finally, the structure-property relationships of non-isostructural (cubic/hexagonal) superlattices are

  16. Transport in weakly-coupled superlattices: A quantitative approach for photon-assisted tunneling

    DEFF Research Database (Denmark)

    Wacker, Andreas; Jauho, Antti-Pekka

    1997-01-01

    Photon-assisted tunneling is studied in weakly-coupled semiconductor superlattices under THz irradiation. Using a microscopic transport model we find excellent quantitative agreement with experimental data for two different samples without using any fitting parameters.......Photon-assisted tunneling is studied in weakly-coupled semiconductor superlattices under THz irradiation. Using a microscopic transport model we find excellent quantitative agreement with experimental data for two different samples without using any fitting parameters....

  17. Electron transport across a quantum wire embedding a saw-tooth superlattice

    Institute of Scientific and Technical Information of China (English)

    Chen Yuan-Ping; Yan Xiao-Hong; Lu Mao-Wang; Deng Yu-Xiang

    2004-01-01

    By developing the recursive Green function method, the transport properties through a quantum wire embedding a finite-length saw-tooth superlattice are studied in the presence of magnetic field. The effects of magnetic modulation and the geometric structures of the superlattice on transmission coefficient are discussed. It is shown that resonant electron gas. The transmission spectrum can be tailored to match requirements through adjusting the size of saw-tooth quantum dot and field strength.

  18. Photonic band structure of one-dimensional aperiodic superlattices composed of negative refraction metamaterials

    Science.gov (United States)

    Tyc, Michał H.; Salejda, Włodzimierz; Klauzer-Kruszyna, Agnieszka; Tarnowski, Karol

    2007-05-01

    The dispersion relation for polarized light transmitting through a one-dimensional superlattice composed of aperiodically arranged layers made of ordinary dielectric and negative refraction metamaterials is calculated with finite element method. Generalized Fibonacci, generalized Thue-Morse, double-periodic and Rudin-Shapiro superlattices are investigated, using their periodic approximants. Strong dispersion of metamaterials is taken into account. Group velocities and effective refraction indices in the structures are calculated. The self-similar structure of the transmission spectra is observed.

  19. Tunable Negative Differential Resistance in Planer Graphene Superlattice Resonant Tunneling Diode

    OpenAIRE

    Sattari-Esfahlan, S. M.; Fouladi-Oskuei, J.; S. Shojaei

    2017-01-01

    In this paper, we report on the controllable negative differential resistance (NDR) in a proposed planar graphene superlattice structure. High value of peak to valley ratio (PVR) is predicted. This is significant because of appearance of NDR with high PVR at low biases. Our finding is important since beside the other potential applications of the graphene, proposes implementation of the graphene based superlattice in electronic devices such as resonant tunneling diode and filters.

  20. Moire superlattice effects in graphene/boron-nitride van der Waals heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Wallbank, John R.; Chen, Xi; Fal' ko, Vladimir I. [Department of Physics, Lancaster University, Lancaster (United Kingdom); Mucha-Kruczynski, Marcin [Department of Physics, University of Bath (United Kingdom)

    2015-06-15

    Van der Waals heterostructures of graphene and hexagonal boron nitride feature a moire superlattice for graphene's Dirac electrons. Here, we review the effects generated by this superlattice, including a specific miniband structure featuring gaps and secondary Dirac points, and a fractal spectrum of magnetic minibands known as Hofstadter's butterfly. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Supersolid Phase in One-Dimensional Hard-Core Boson Hubbard Model with a Superlattice Potential

    Institute of Scientific and Technical Information of China (English)

    GUO Huai-Ming; LIANG Ying

    2008-01-01

    The ground state of the one-dimensional hard-core boson Hubbard model with a superlattice potential is studied by quantum Monte Carlo methods. We demonstrate that besides the CDW phase and the Mort insulator phase, the supersolid phase emerges due to the presence of the superlattice potential, which reflects the competition with the hopping term. We also study the densities of sublattices and have a clear idea about the distribution of the bosons on the lattice.

  2. Self-Organization of PbS into Quantum Dots Superlattices

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Self-organization of PbS into quantum dots superlattices is demonstrated for the first time, and hexaplanar colloidal crystals 1-10m m in size made from PbS quantum dots 4nm in diameter are shown in Transmission Electron Microscope (TEM) micrograph, and the inner structures of the superlattices can be seen from the High Resolution Transmission Electron Microscope (HRTEM).

  3. Controlling Chaos Probability of a Bose-Einstein Condensate in a Weak Optical Superlattice

    Institute of Scientific and Technical Information of China (English)

    XU Jun; LUO Xiao-Bing

    2009-01-01

    @@ The spatial chaos probability of a Bose-Einstein condensate perturbed by a weak optical superlattice is studied. It is demonstrated that the spatial chaotic solution appears with a certain probability in a given parameter region under a random boundary condition. The effects of the lattice depths and wave vectors on the chaos probability are illustrated, and different regions associated with different chaos probabilities are found. This suggests a feasible scheme for suppressing and strengthening chaos by adjusting the optical superlattice experimentally.

  4. Study on band gap structure of Fibonacci quantum superlattices by using the transfer matrix method

    Science.gov (United States)

    Ferrando, V.; Castro-Palacio, J. C.; Marí, B.; Monsoriu, J. A.

    2014-02-01

    The scattering properties of particles in a one-dimensional Fibonacci sequence based potential have been analyzed by means of the Transfer Matrix Method. The electronic band gaps are examined comparatively with those obtained using the corresponding periodic potentials. The reflection coefficient shows self-similar properties for the Fibonacci superlattices. Moreover, by using the generalized Bragg's condition, the band gaps positions are derived from the golden mean involved in the design of the superlattice structure.

  5. Minority Carrier Lifetime in Beryllium-Doped InAs/InAsSb Strained Layer Superlattices

    Science.gov (United States)

    2014-06-03

    SECURITY CLASSIFICATION OF: Minority carrier lifetimes in undoped and Beryllium -doped Type-2 Ga-free, InAs/InAsSb strained layer superlattices (SLS) with...is unlimited. Minority Carrier Lifetime in Beryllium -Doped InAs/InAsSb Strained Layer Superlattices The views, opinions and/or findings contained in...Brook University W-5510 Melville Library West Sayville, NY 11796 -3362 1 ABSTRACT Minority Carrier Lifetime in Beryllium -Doped InAs/InAsSb Strained

  6. Manganites in Perovskite Superlattices: Structural and Electronic Properties

    KAUST Repository

    Jilili, Jiwuer

    2016-07-13

    Perovskite oxides have the general chemical formula ABO3, where A is a rare-earth or alkali-metal cation and B is a transition metal cation. Perovskite oxides can be formed with a variety of constituent elements and exhibit a wide range of properties ranging from insulators, metals to even superconductors. With the development of growth and characterization techniques, more information on their physical and chemical properties has been revealed, which diversified their technological applications. Perovskite manganites are widely investigated compounds due to the discovery of the colossal magnetoresistance effect in 1994. They have a broad range of structural, electronic, magnetic properties and potential device applications in sensors and spintronics. There is not only the technological importance but also the need to understand the fundamental mechanisms of the unusual magnetic and transport properties that drive enormous attention. Manganites combined with other perovskite oxides are gaining interest due to novel properties especially at the interface, such as interfacial ferromagnetism, exchange bias, interfacial conductivity. Doped manganites exhibit diverse electrical properties as compared to the parent compounds. For instance, hole doped La0.7Sr0.3MnO3 is a ferromagnetic metal, whereas LaMnO3 is an antiferromagnetic insulator. Since manganites are strongly correlated systems, heterojunctions composed of manganites and other perovskite oxides are sunject to complex coupling of the spin, orbit, charge, and lattice degrees of freedom and exhibit unique electronic, magnetic, and transport properties. Electronic reconstructions, O defects, doping, intersite disorder, magnetic proximity, magnetic exchange, and polar catastrophe are some effects to explain these interfacial phenomena. In our work we use first-principles calculations to study the structural, electronic, and magnetic properties of manganite based superlattices. Firstly, we investigate the electronic

  7. Design of MWIR Type-II Superlattices for Infrared Photon Detectors

    Science.gov (United States)

    Grein, Christoph

    The Type II InAs/GaInSb and InAs/InAsSb superlattices are material systems for implementation as photodetector absorbers in infrared imaging applications. In addition to cutoff wavelengths spanning the infrared spectrum, they offer degrees of freedom in their materials design (e.g. layer thicknesses, alloy compositions, number of layers in one superlattice period) that permit the optimization of an infrared photon detector's figures of merit such as detectivity through the tuning of material properties like generation/recombination lifetimes and optical absorption. We describe efforts to obtain accurate electronic band structures of superlattice semiconductors with infrared energy gaps, and employing them to evaluate nonradiative minority carrier lifetimes. Simple device models are utilized to suggest potential performance enhancements that arise from employing superlattices as infrared absorber. We also discuss current efforts to simulate the molecular beam epitaxial growth of InAs/InAsSb superlattices to predict dominant native point defects and other growth nonidealities. Design of MWIR Type-II Superlattices for Infrared Photon Detectors.

  8. High-temperature crystallization of nanocrystals into three-dimensional superlattices

    Science.gov (United States)

    Wu, Liheng; Willis, Joshua J.; McKay, Ian Salmon; Diroll, Benjamin T.; Qin, Jian; Cargnello, Matteo; Tassone, Christopher J.

    2017-08-01

    Crystallization of colloidal nanocrystals into superlattices represents a practical bottom-up process with which to create ordered metamaterials with emergent functionalities. With precise control over the size, shape and composition of individual nanocrystals, various single- and multi-component nanocrystal superlattices have been produced, the lattice structures and chemical compositions of which can be accurately engineered. Nanocrystal superlattices are typically prepared by carefully controlling the assembly process through solvent evaporation or destabilization or through DNA-guided crystallization. Slow solvent evaporation or cooling of nanocrystal solutions (over hours or days) is the key element for successful crystallization processes. Here we report the rapid growth (seconds) of micrometre-sized, face-centred-cubic, three-dimensional nanocrystal superlattices during colloidal synthesis at high temperatures (more than 230 degrees Celsius). Using in situ small-angle X-ray scattering, we observe continuous growth of individual nanocrystals within the lattices, which results in simultaneous lattice expansion and fine nanocrystal size control due to the superlattice templates. Thermodynamic models demonstrate that balanced attractive and repulsive interparticle interactions dictated by the ligand coverage on nanocrystal surfaces and nanocrystal core size are responsible for the crystallization process. The interparticle interactions can also be controlled to form different superlattice structures, such as hexagonal close-packed lattices. The rational assembly of various nanocrystal systems into novel materials is thus facilitated for both fundamental research and for practical applications in the fields of magnetics, electronics and catalysis.

  9. Molecular dynamics study of the lattice thermal conductivity of Kr/Ar superlattice nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yunfei; Li Deyu; Yang Juekuan; Wu Yonghua; Lukes, J.R.; Majumdar, Arun

    2004-06-15

    The nonequilibrium molecular dynamics (NEMD) method has been used to calculate the lattice thermal conductivities of Ar and Kr/Ar nanostructures in order to study the effects of interface scattering, boundary scattering, and elastic strain on lattice thermal conductivity. Results show that interface scattering poses significant resistance to phonon transport in superlattices and superlattice nanowires. The thermal conductivity of the Kr/Ar superlattice nanowire is only about ((1)/(3)) of that for pure Ar nanowires with the same cross-sectional area and total length due to the additional interfacial thermal resistance. It is found that nanowire boundary scattering provides significant resistance to phonon transport. As the cross-sectional area increases, the nanowire boundary scattering decreases, which leads to increased nanowire thermal conductivity. The ratio of the interfacial thermal resistance to the total effective thermal resistance increases from 30% for the superlattice nanowire to 42% for the superlattice film. Period length is another important factor affecting the effective thermal conductivity of the nanostructures. Increasing the period length will lead to increased acoustic mismatch between the adjacent layers, and hence increased interfacial thermal resistance. However, if the total length of the superlattice nanowire is fixed, reducing the period length will lead to decreased effective thermal conductivity due to the increased number of interfaces. Finally, it is found that the interfacial thermal resistance decreases as the reference temperature increases, which might be due to the inelastic interface scattering.

  10. Transport in semiconductor nanowire superlattices described by coupled quantum mechanical and kinetic models.

    Science.gov (United States)

    Alvaro, M; Bonilla, L L; Carretero, M; Melnik, R V N; Prabhakar, S

    2013-08-21

    In this paper we develop a kinetic model for the analysis of semiconductor superlattices, accounting for quantum effects. The model consists of a Boltzmann-Poisson type system of equations with simplified Bhatnagar-Gross-Krook collisions, obtained from the general time-dependent Schrödinger-Poisson model using Wigner functions. This system for superlattice transport is supplemented by the quantum mechanical part of the model based on the Ben-Daniel-Duke form of the Schrödinger equation for a cylindrical superlattice of finite radius. The resulting energy spectrum is used to characterize the Fermi-Dirac distribution that appears in the Bhatnagar-Gross-Krook collision, thereby coupling the quantum mechanical and kinetic parts of the model. The kinetic model uses the dispersion relation obtained by the generalized Kronig-Penney method, and allows us to estimate radii of quantum wire superlattices that have the same miniband widths as in experiments. It also allows us to determine more accurately the time-dependent characteristics of superlattices, in particular their current density. Results, for several experimentally grown superlattices, are discussed in the context of self-sustained coherent oscillations of the current density which are important in an increasing range of current and potential applications.

  11. Evolving random fractal Cantor superlattices for the infrared using a genetic algorithm.

    Science.gov (United States)

    Bossard, Jeremy A; Lin, Lan; Werner, Douglas H

    2016-01-01

    Ordered and chaotic superlattices have been identified in Nature that give rise to a variety of colours reflected by the skin of various organisms. In particular, organisms such as silvery fish possess superlattices that reflect a broad range of light from the visible to the UV. Such superlattices have previously been identified as 'chaotic', but we propose that apparent 'chaotic' natural structures, which have been previously modelled as completely random structures, should have an underlying fractal geometry. Fractal geometry, often described as the geometry of Nature, can be used to mimic structures found in Nature, but deterministic fractals produce structures that are too 'perfect' to appear natural. Introducing variability into fractals produces structures that appear more natural. We suggest that the 'chaotic' (purely random) superlattices identified in Nature are more accurately modelled by multi-generator fractals. Furthermore, we introduce fractal random Cantor bars as a candidate for generating both ordered and 'chaotic' superlattices, such as the ones found in silvery fish. A genetic algorithm is used to evolve optimal fractal random Cantor bars with multiple generators targeting several desired optical functions in the mid-infrared and the near-infrared. We present optimized superlattices demonstrating broadband reflection as well as single and multiple pass bands in the near-infrared regime.

  12. Photonic methods of millimeter-wave generation based on Brillouin fiber laser

    Science.gov (United States)

    Al-Dabbagh, R. K.; Al-Raweshidy, H. S.

    2016-05-01

    In optical communication link, generation and delivering millimeter-wave (mm-waves) in radio over fiber (RoF) systems has limitation due to fiber non-linearity effects. To solve this problem, photonic methods of mm-wave generation based on characterizations of Brillouin fiber laser are proposed in this work for the first time. Three novel photonic approaches for mm-wave generation methods based on Brillouin fiber laser and phase modulator are proposed and demonstrated by simulation. According to our theoretical analysis and simulation, mm-waves with frequency up to 80 GHz and good signal to noise ratio (SNR) up to 90 dB are generated by new and cost effective methods of generation that make them suitable for applications of the fifth generation (5G) networks. The proposed configurations increase the stability and the quality of the mm-wave generation system by using a single laser source as a pump wave and the fiber non-linearity effects are reduced. A key advantage of this research is that proposed a number of very simple generation methods and cost effective which only use standard components of optical telecommunications. Stimulated Brillouin Scattering (SBS) effect that exists in the optical fiber is studied with the characterization of phase modulator. An all optically stable mm-wave carriers are achieved successfully in the three different methods with different frequencies from 20 GHz up to 80 GHz. Simulation results show that all these carriers have low phase noise, good SNR ranging between 60 and 90 dB and tuning capability in comparison with previous methods reported. This makes them suitable for mm-wave transmission in RoF systems to transmit data in the next generation networks.

  13. Thermoelectric properties of IV–VI-based heterostructures and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Borges, P.D., E-mail: pabloborges@ufv.br [Instituto de Ciências Exatas e Tec., Universidade Federal de Viçosa, Rio Paranaíba, MG (Brazil); Department of Physics, Texas State University, San Marcos, TX 78666 (United States); Petersen, J.E.; Scolfaro, L. [Department of Physics, Texas State University, San Marcos, TX 78666 (United States); Leite Alves, H.W. [Departamento de Ciências Naturais, Universidade Federal de São João Del Rei, Caixa Postal 110, São João Del Rei 36300-000, MG (Brazil); Myers, T.H. [Department of Physics, Texas State University, San Marcos, TX 78666 (United States)

    2015-07-15

    Doping in a manner that introduces anisotropy in order to reduce thermal conductivity is a significant focus in thermoelectric research today. By solving the semiclassical Boltzmann transport equations in the constant scattering time (τ) approximation, in conjunction with ab initio electronic structure calculations, within Density Functional Theory, we compare the Seebeck coefficient (S) and figure of merit (ZT) of bulk PbTe to PbTe/SnTe/PbTe heterostructures and PbTe doping superlattices (SLs) with periodically doped planes. Bismuth and Thallium were used as the n- and p-type impurities, respectively. The effects of carrier concentration are considered via chemical potential variation in a rigid band approximation. The impurity bands near the Fermi level in the electronic structure of PbTe SLs are of Tl s- and Bi p-character, and this feature is independent of the doping concentration or the distance between impurity planes. We observe the impurity bands to have a metallic nature in the directions perpendicular to the doping planes, yet no improvement on the values of ZT is found when compared to bulk PbTe. For the PbTe/SnTe/PbTe heterostructures, the calculated S presents good agreement with recent experimental data, and an anisotropic behavior is observed for low carrier concentrations (n<10{sup 18} cm{sup −3}). A large value of ZT{sub ||} (parallel to the growth direction) of 3.0 is predicted for n=4.7×10{sup 18} cm{sup −3} and T=700 K, whereas ZT{sub p} (perpendicular to the growth direction) is found to peak at 1.5 for n=1.7×10{sup 17} cm{sup −3}. Both electrical conductivity enhancement and thermal conductivity reduction are analyzed. - Graphical abstract: Figure of merit for PbTe/SnTe/PbTe heterostructure along the [0 0 1] direction, P.D. Borges, J.E. Petersen, L. Scolfaro, H.W. Leite Alves, T.H. Myers, Improved thermoelectric properties of IV–VI-based heterostructures and superlattices. - Highlights: • Thermoelectric properties of IV

  14. Two-dimensional Confinement of Heavy Fermions in Artificial Superlattices

    Science.gov (United States)

    Shishido, Hiroaki

    2011-03-01

    Low dimensionality and strong electron-electron Coulomb interactions are both key parameters for novel quantum states of condensed matter. A metallic system with the strongest electron correlations is reported in rare-earth and actinide compounds with f electrons, known as heavy-fermion compounds, where the effective mass of the conduction electrons are strikingly enhanced by the electron correlations up to some hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. We realized experimentally a two-dimensional heavy fermion system, adjusting the dimensionality in a controllable fashion. We grew artificial superlattices of CeIn 3 (m)/ LaIn 3 (n), in which m -layers of heavy-fermion antiferromagnet CeIn 3 and n -layers of a non-magnetic isostructual compound LaIn 3 are stacked alternately, by a molecular beam epitaxy. By reducing the thickness of the CeIn 3 layers, the magnetic order was suppressed and the effective electron mass was further enhanced. The Néel temperature becomes zero at around m = 2 , concomitant with striking deviations from the standard Fermi liquid low-temperature electronic properties. Standard Fermi liquid behaviors are, however, recovered under high magnetic field. These behaviors imply new ``dimensional tuning'' towards a quantum critical point. We also succeeded to fabricate artificial superlattices of a heavy fermion superconductor CeCoIn 5 and non-magnetic divalent Yb-compound YbCoIn 5 . Superconductivity survives even in CeCoIn 5 (3)/ YbCoIn 5 (5) films, while the thickness of CeCoIn 5 layer, 2.3 nm, is comparable to the c -axis coherence length ξc ~ 2 nm. This work has been done in collaboration with Y. Mizukami, S. Yasumoto, M. Shimozawa, H. Kontani, T. Shibauchi, T. Terashima and Y. Matsuda.superconductivity is realized in the artificial superlattices. This work has been done in collaboration with Y. Mizukami, S. Yasumoto, M. Shimozawa, H. Kontani, T

  15. High-pressure acoustic properties of glycerol studied by Brillouin spectroscopy

    Science.gov (United States)

    Jeong, Min-Seok; Ko, Jae-Hyeon; Ko, Young Ho; Kim, Kwang Joo

    2015-12-01

    Acoustic properties of glycerol was investigated in a wide pressure range from ambient pressure to 30.9 GPa by using a multi-pass Fabry-Perot interferometer and a diamond anvil cell. Pressure dependences of the sound velocity and the Brillouin linewidth showed substantial changes at low pressures below ~4 GPa. This was attributed to the coupling between the main structural relaxation process and the longitudinal acoustic waves. The pressure dependence of the refractive index and the density of glycerol could be obtained by using two scattering geometries and the Lorentz-Lorenz relation.

  16. High-pressure acoustic properties of glycerol studied by Brillouin spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Min-Seok [Department of Physics, Hallym University, Chuncheon, Gangwondo 200-702 (Korea, Republic of); Ko, Jae-Hyeon, E-mail: hwangko@hallym.ac.kr [Department of Physics, Hallym University, Chuncheon, Gangwondo 200-702 (Korea, Republic of); Ko, Young Ho; Kim, Kwang Joo [Agency for Defense Development, 4-2-2, P.O. Box 35, Yuseong, Daejeon 305-600 (Korea, Republic of)

    2015-12-01

    Acoustic properties of glycerol was investigated in a wide pressure range from ambient pressure to 30.9 GPa by using a multi-pass Fabry–Perot interferometer and a diamond anvil cell. Pressure dependences of the sound velocity and the Brillouin linewidth showed substantial changes at low pressures below ~4 GPa. This was attributed to the coupling between the main structural relaxation process and the longitudinal acoustic waves. The pressure dependence of the refractive index and the density of glycerol could be obtained by using two scattering geometries and the Lorentz–Lorenz relation.

  17. Suppression of stimulated Brillouin scattering with phase modulator in soliton pulse compression

    Institute of Scientific and Technical Information of China (English)

    Bo Lü; Taorong Gong; Ming Chen; Muguang Wang; Tangjun Li; Genxiang Chen; Shuisheng Jian

    2009-01-01

    A phase modulator is employed in the scheme of soliton pulse compression with dispersion shifted fiber (DSF). Stimulated Brillouin scattering (SBS) effect, as a negative influence here, can be dramatically suppressed after optical phase modulation. The experimental result shows that the launched power required for high-order soliton pulse compression has been significantly increased by 11 dB under the condition of 100-MHz phase modulation. Accordingly, the experiment of picosecond pulse compression generated from electro-absorption sampling window (EASW) has also been implemented.

  18. Distributed Strain Measurement along a Concrete Beam via Stimulated Brillouin Scattering in Optical Fibers

    Directory of Open Access Journals (Sweden)

    Romeo Bernini

    2011-01-01

    Full Text Available The structural strain measurement of tension and compression in a 4 m long concrete beam was demonstrated with a distributed fiber-optic sensor portable system based on Brillouin scattering. Strain measurements provided by the fiber-optic sensor permitted to detect the formation of a crack in the beam resulting from the external applied load. The sensor system is valuable for structural monitoring applications, enabling the long-term performance and health of structures to be efficiently monitored.

  19. Elastic properties of aspirin in its crystalline and glassy phases studied by micro-Brillouin scattering

    Science.gov (United States)

    Ko, Jae-Hyeon; Lee, Kwang-Sei; Ike, Yuji; Kojima, Seiji

    2008-11-01

    The acoustic waves propagating along the direction perpendicular to the (1 0 0) cleavage plane of aspirin crystal were investigated using micro-Brillouin spectroscopy from which C11, C55 and C66 were obtained. The temperature dependence of the longitudinal acoustic waves could be explained by normal anharmonic lattice models, while the transverse acoustic waves showed an abnormal increase in the hypersonic attenuation at low temperatures indicating their coupling to local remnant dynamics. The sound velocity as well as the attenuation of the longitudinal acoustic waves of glassy aspirin showed a substantial change at ˜235 K confirming a transition from glassy to supercooled liquid state in vitreous aspirin.

  20. Pressure dependence of acoustic anomalies of polydimethylsiloxane studied by Brillouin spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seonhyeop [Department of Physics, Hallym University, Chuncheon, Gangwondo 200-702, South Korea (Korea, Republic of); Ko, Jae-Hyeon, E-mail: hwangko@hallym.ac.kr [Department of Physics, Hallym University, Chuncheon, Gangwondo 200-702, South Korea (Korea, Republic of); Park, Jaehoon [Department of Electronic Engineering, Hallym University, Chuncheon, Gangwondo 200-702 (Korea, Republic of); Ko, Young Ho; Kim, Kwang Joo [4-2-2, Agency for Defense Development, P.O. Box 35, Yuseong, Daejeon 305-600 (Korea, Republic of)

    2015-06-15

    The acoustic properties of polydimethylsiloxane elastomer was investigated as a function of pressure by using a multi-pass Fabry–Perot interferometer and a diamond anvil cell. Pressure dependence of the sound velocity, the Brillouin linewidth, and the refractive index was determined up to ~8.7 GPa. Acoustic properties exhibited a crossover behavior at approximately 1 GPa, which was attributed to the complete collapse of the free volume content in this polymer. The refractive index increased from 1.46 at ambient condition to ~1.63 at 8.67 GPa, which reflected the corresponding increase in density.

  1. Sound dispersion and attenuation in concentrated H2SO4 by visible and ultraviolet Brillouin spectroscopy.

    Science.gov (United States)

    Benassi, P; Nardone, M; Giugni, A

    2011-07-21

    The acoustic properties of highly concentrated H(2)SO(4) are investigated performing visible and ultraviolet Brillouin scattering measurements. We analyzed the isotropic and anisotropic spectra of this molecular liquid in a wide temperature and exchanged wavector range in order to study the evolution of its sound velocity and viscosity. This allows us to extract the parameters required to describe its viscoelastic relaxation behavior. We found that the behavior of the hydrodynamic parameters of this molecular liquid shares some similarities with that of water indicating a rather high increase of sound velocity if compared to that measured by ultrasonics.

  2. Analysis of stimulated Brillouin scattering in multi-mode fiber by numerical solution

    Institute of Scientific and Technical Information of China (English)

    周涛; 陈军

    2003-01-01

    Stimulated Brillouin scattering in optical fibers is described by a theoretical model and numerical analysis. The results showed that, for an optical fiber pumped by a laser beam with ns-order-pulse width and kW-order peak-power, SBS reflectivity tends to saturate when the fiber length exceeds a limit, named "effective fiber length". Using small core-diameter and long enough fiber, the SBS reflectivity level could be raised but is limited by optical damage of the entrance surface of the fiber. Therefore, just a small dynamic range can be obtained.

  3. Triple-resonant Brillouin light scattering in magneto-optical cavities

    CERN Document Server

    Haigh, J A; Ramsay, A J; Ferguson, A J

    2016-01-01

    An enhancement in Brillouin light scattering of optical photons with magnons is demonstrated in magneto-optical whispering gallery mode resonators tuned to a triple resonance point. This occurs when both the input and output optical modes are resonant with those of the whispering gallery resonator, with a separation given by the ferromagnetic resonance (FMR) frequency. The identification and excitation of specific optical modes allows us to gain a clear understanding of the mode-matching conditions. A selection rule due to wavevector matching leads to an intrinsic single-sideband excitation. Strong suppression of one sideband is essential for one-to-one frequency mapping in coherent optical-to-microwave conversion.

  4. A distributed fiber optic sensor system for dike monitoring using Brillouin optical frequency domain analysis

    Science.gov (United States)

    Nöther, Nils; Wosniok, Aleksander; Krebber, Katerina; Thiele, Elke

    2008-03-01

    We report on the development of a complete system for spatially resolved detection of critical soil displacement in river embankments. The system uses Brillouin frequency domain analysis (BOFDA) for distributed measurement of strain in silica optical fibers. Our development consists of the measurement unit, an adequate coating for the optical fibers and a technique to integrate the coated optical fibers into geotextiles as they are commonly used in dike construction. We present several laboratory and field tests that prove the capability of the system to detect areas of soil displacement as small as 2 meters. These are the first tests of truly distributed strain measurements on optical fibers embedded into geosynthetics.

  5. Reduced Brillouin scattering from multiline CO2 laser interaction with a plasma

    Science.gov (United States)

    Giles, R.; Fedosejevs, R.; Offenberger, A. A.

    1982-08-01

    Experimental verification of reduced stimulated Brillouin scattering (SBS) is reported for multiline CO2 laser radiation interacting with high-density plasma. For long-pulse (40-nsec) irradiation SBS was observed to decrease from 15% to a negligible level when the spectrum of the incident laser pulse was changed from 1 to 2 or more well-separated frequencies. Results for both long- and short-pulse multiline laser conditions are in general accord with the expected behavior for varying Δωγ0, where Δω is the frequency separation and γ0 is the homogeneous growth rate.

  6. Structural and electronic properties of germanene/MoS2 monolayer and silicene/MoS2 monolayer superlattices

    OpenAIRE

    Li, Xiaodan; Wu, Shunqing; Zhou, Sen; Zhu, Zizhong

    2014-01-01

    Superlattice provides a new approach to enrich the class of materials with novel properties. Here, we report the structural and electronic properties of superlattices made with alternate stacking of two-dimensional hexagonal germanene (or silicene) and a MoS2 monolayer using the first principles approach. The results are compared with those of graphene/MoS2 superlattice. The distortions of the geometry of germanene, silicene, and MoS2 layers due to the formation of the superlattices are all r...

  7. Assessing the effect of a high-fat diet on rodents' adipose tissue using Brillouin and Raman spectroscopy

    Science.gov (United States)

    Troyanova-Wood, Maria; Gobbell, Cassidy; Meng, Zhaokai; Yakovlev, Vladislav V.

    2016-03-01

    The purpose of this study is to evaluate the effect of a high-lipid diet on elasticity of adipose tissue. We employed dual Raman/Brillouin microspectroscopy to analyze brown and white adipose tissues obtained from adult rats. The rats were divided into two groups, one of which received a high-fat feed, while the other served as a control. We hypothesized that the changes in the elasticity of adipose tissues between the two groups can be successfully assessed using Brillouin spectroscopy. We found that the brown adipose tissue possessed a lesser Brillouin shift than the white adipose within each group and that the elastic modulus of both adipose tissues increases in the high-fat diet group. The Raman spectra provided supplementary chemical information and indicated an increase in the lipid-to-protein ratio in the brown adipose, but not in the white adipose.

  8. Multi-parameter sensor based on stimulated Brillouin scattering in inverse-parabolic graded-index fiber.

    Science.gov (United States)

    Xu, Yanping; Ren, Meiqi; Lu, Yang; Lu, Ping; Lu, Ping; Bao, Xiaoyi; Wang, Lixian; Messaddeq, Younès; LaRochelle, Sophie

    2016-03-15

    We propose a unique multi-parameter optical fiber sensor based on intramodal stimulated Brillouin scattering of higher-order acoustic modes in inverse-parabolic graded-index fiber (IPGIF) without a mode converter. Both optical modes and acoustic modes guided in the IPGIF are characterized and demonstrated theoretically and experimentally. Simulation analysis shows that the multi-peak feature in the Brillouin gain spectrum of the IPGIF is attributed to the couplings between the guided optical mode and the higher-order acoustic modes. Thanks to the distinct acoustic properties of the peaks induced by the sharp refractive index profile of the IPGIF, the different temperature and strain dependences of the first three Brillouin peaks enable the discrimination of the temperature and strain at an accuracy of 0.85°C and 17.4 με.

  9. Dual-frequency Brillouin fiber laser for optical generation of tunable low-noise radio frequency/microwave frequency.

    Science.gov (United States)

    Geng, Jihong; Staines, Sean; Jiang, Shibin

    2008-01-01

    We demonstrate a new approach, i.e., a cw dual-frequency Brillouin fiber laser pumped by two independent single-frequency Er-doped fiber lasers, for the generation of tunable low-noise rf/microwave optical signals. Its inherent features of both linewidth narrowing effect in a Brillouin fiber cavity and common mode noise cancellation between two laser modes sharing a common cavity allow us to achieve high frequency stability without using a supercavity. Beat frequency of the dual-frequency Brillouin fiber laser can be tuned from tens of megahertz up to 100 GHz by thermally tuning the wavelengths of the two pump lasers with tuning sensitivity of approximately 1.4 GHz/ degrees C. Allan variance measurements show the beat signals have the hertz-level frequency stability.

  10. Effective negative refractive index in ferromagnet-semiconductor superlattices.

    Science.gov (United States)

    Tarkanyan, Roland H; Niarchos, Dimitris G

    2006-06-12

    Problem of anomalous refraction of electromagnetic waves is analyzed in a superlattice which consists of alternating layers of ferromagnetic insulator and nonmagnetic semiconductor. Effective permittivity and permeability tensors are derived in the presence of an external magnetic field parallel to the plane of the layers. It is shown that in the case of the Voigt configuration, the structure behaves as a left-handed medium with respect to TE-type polarized wave, in the low-frequency region of propagation. The relative orientation of the Poynting vector and the refractive wave vector is examined in different frequency ranges. It is shown that the frequency region of existence for the backward mode can be changed using external magnetic field as tuning parameter.

  11. Superlattices assembled through shape-induced directional binding.

    Science.gov (United States)

    Lu, Fang; Yager, Kevin G; Zhang, Yugang; Xin, Huolin; Gang, Oleg

    2015-01-01

    Organization of spherical particles into lattices is typically driven by packing considerations. Although the addition of directional binding can significantly broaden structural diversity, nanoscale implementation remains challenging. Here we investigate the assembly of clusters and lattices in which anisotropic polyhedral blocks coordinate isotropic spherical nanoparticles via shape-induced directional interactions facilitated by DNA recognition. We show that these polyhedral blocks--cubes and octahedrons--when mixed with spheres, promote the assembly of clusters with architecture determined by polyhedron symmetry. Moreover, three-dimensional binary superlattices are formed when DNA shells accommodate the shape disparity between nanoparticle interfaces. The crystallographic symmetry of assembled lattices is determined by the spatial symmetry of the block's facets, while structural order depends on DNA-tuned interactions and particle size ratio. The presented lattice assembly strategy, exploiting shape for defining the global structure and DNA-mediation locally, opens novel possibilities for by-design fabrication of binary lattices.

  12. Dynamical Axion Field in a Magnetic Topological Insulator Superlattice

    Science.gov (United States)

    Wang, Jing; Lian, Biao; Zhang, Shou-Cheng

    We propose that the dynamical axion field can be realized in a magnetic topological insulator superlattice or a topological paramagnetic insulator. The magnetic fluctuations of these systems produce a pseudoscalar field which has an axionic coupling to the electromagnetic field, and thus it gives a condensed-matter realization of the axion electrodynamics. Compared to the previously proposed dynamical axion materials where a long range antiferromagnetic order is required, the systems proposed here have the advantage that only an uniform magnetization or a paramagnetic state is needed for the dynamic axion. We further propose several experiments to detect such a dynamical axion field. This work is supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No. DE-AC02-76SF00515.

  13. Kinetics of electron transfer from photoexcited superlattice electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Nozik, A.J.; Turner, J.A.; Peterson, M.W.

    1988-05-05

    A kinetic model has been developed that quantitatively describes electron transfer from photoexcited superlattice electrodes into liquid solutions. The model permits electron transfer from all quantum levels as well as from surface states; it also takes into account recombination in the bulk, space charge layer, and surfaces states, and band-edge movement. The model calculations define the values of the rate constants for heterogeneous electron transfer and hot electron thermalization among the various energy levels in the supperlattice quantum wells that are necessary to achieve hot electron transfer from excited quantum states. The question of whether hot electron transfer is manifested by a dependence of the photocurrent action spectra on acceptor redox potential is examined in detail.

  14. Plasmon modes of a massive Dirac plasma, and their superlattices

    Science.gov (United States)

    Sachdeva, Rashi; Thakur, Anmol; Vignale, Giovanni; Agarwal, Amit

    2015-05-01

    We explore the collective density oscillations of a collection of charged massive Dirac particles, in one, two, and three dimensions, and their one-dimensional (1D) superlattice. We calculate the long-wavelength limit of the dynamical polarization function analytically, and use the random phase approximation to obtain the plasmon dispersion. The density dependence of the long-wavelength plasmon frequency in massive Dirac systems is found to be different compared to systems with parabolic and gapless Dirac dispersion. We also calculate the long-wavelength plasmon dispersion of a 1D metamaterial made from 1D and 2D massive Dirac plasma. Our analytical results will be useful for exploring the use of massive Dirac materials as electrostatically tunable plasmonic metamaterials and can be experimentally verified by infrared spectroscopy, as in the case of graphene [L. Ju et al., Nat. Nanotechnol. 6, 630 (2011), 10.1038/nnano.2011.146].

  15. Electronic and magnetic properties of zincblende half-metal superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Fong, C Y; Qian, M C; Pask, J; Yang, L H; Dag, S

    2003-11-05

    Zincblende half-metallic compounds such as CrAs, with large magnetic moments and high Curie temperatures, are promising materials for spintronic applications. They explore layered materials, consisting of alternating layers of zincblende half-metals, by first principles calculations, and find that superlattices of (CrAs){sub 1}(MnAs){sub 1} and (CrAs){sub 2}(MnAs){sub 2} are half-metallic with magnetic moments of 7.0{mu}{sub B} and 14.0{mu}{sub B} per unit cell, respectively. They discuss the nature of the bonding and half-metallicity in these materials and, based on the understanding acquired, develop a simple expression for the magnetic moment in such materials. They explore the range of lattice constants over which half-metallicity is manifested, and suggest corresponding substrates for growth in thin film form.

  16. Photon transport enhanced by transverse Anderson localization in disordered superlattices

    CERN Document Server

    Hsieh, Pin-Chun; McMillan, James; Tsai, Min-An; Lu, Ming; Panoiu, Nicolae; Wong, Chee Wei

    2014-01-01

    One of the daunting challenges in optical physics is to accurately control the flow of light at the subwavelength scale, by patterning the optical medium one can design anisotropic media. The light transport can also be significantly affected by Anderson localization, namely the wave localization in a disordered medium, a ubiquitous phenomenon in wave physics. Here we report the photon transport and collimation enhanced by transverse Anderson localization in chip-scale dispersion engineered anisotropic media. We demonstrate a new type of anisotropic photonic structure in which diffraction is nearly completely arrested by cascaded resonant tunneling through transverse guided resonances. By perturbing the shape of more than 4,000 scatterers in these superlattices we add structural disordered in a controlled manner and uncover the mechanism of disorder-induced transverse localization at the chip-scale. Arrested spatial divergence is captured in the power-law scaling, along with exponential asymmetric mode profil...

  17. Optical Studies on Antimonide Superlattice Infrared Detector Material

    Science.gov (United States)

    Hoglund, Linda; Soibel, Alexander; Hill, Cory J.; Ting, David Z.; Khoshakhlagh, Arezou; Liao, Anna; Keo, Sam; Lee, Michael C.; Nguyen, Jean; Mumolo, Jason M.; hide

    2010-01-01

    In this study the material quality and optical properties of type II InAs/GaSb superlattices are investigated using transmission and photoluminescence (PL) spectroscopy. The influence of the material quality on the intensity of the luminescence and on the electrical properties of the detectors is studied and a good correlation between the photodetector current-voltage (IV) characteristics and the PL intensity is observed. Studies of the temperature dependence of the PL reveal that Shockley-Read-Hall processes are limiting the minority carrier lifetime in both the mid-IR wavelength and the long-IR wavelength detector material studied. These results demonstrate that PL spectroscopy is a valuable tool for optimization of infrared detectors.

  18. Tunable anisotropic superfluidity in an optical kagome superlattice

    Science.gov (United States)

    Zhang, Xue-Feng; Wang, Tao; Eggert, Sebastian; Pelster, Axel

    2015-07-01

    We study the phase diagram of the Bose-Hubbard model on the kagome lattice with a broken sublattice symmetry. Such a superlattice structure can naturally be created and tuned by changing the potential offset of one sublattice in the optical generation of the frustrated lattice. The superstructure gives rise to a rich quantum phase diagram, which is analyzed by combining quantum Monte Carlo simulations with the generalized effective potential Landau theory. Mott phases with noninteger filling and a characteristic order along stripes are found, which show a transition to a superfluid phase with an anisotropic superfluid density. Surprisingly, the direction of the superfluid anisotropy can be tuned by changing the particle number, the hopping strength, or the interaction. Finally, we discuss characteristic signatures of anisotropic phases in time-of-flight absorption measurements.

  19. Laser induced structural transformation in chalcogenide based superlattices

    Science.gov (United States)

    Zallo, Eugenio; Wang, Ruining; Bragaglia, Valeria; Calarco, Raffaella

    2016-05-01

    Superlattices made of alternating layers of nominal GeTe and Sb2Te3 have been studied by micro-Raman spectroscopy. A structural irreversible transformation into ordered GeSbTe alloy is induced by high power laser light exposure. The intensity ratio of anti-Stokes and Stokes scattering under laser illumination gives a maximum average temperature in the sample of 177 °C. The latter is lower than the growth temperature and of 400 °C necessary by annealing to transform the structure in a GeSbTe alloy. The absence of this configuration after in situ annealing even up to 300 °C evidences an electronic excitation induced-transition which brings the system into a different and stable crystalline state.

  20. Transport properties of graphene under periodic and quasiperiodic magnetic superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Tao, E-mail: luweitao@lyu.edu.cn [School of Science, Linyi University, 276005 Linyi (China); Institute of Condensed Matter Physics, Linyi University, 276005 Linyi (China); Wang, Shun-Jin [Department of Physics, Sichuan University, 610064 Chengdu (China); Wang, Yong-Long; Jiang, Hua [School of Science, Linyi University, 276005 Linyi (China); Institute of Condensed Matter Physics, Linyi University, 276005 Linyi (China); Li, Wen [School of Science, Linyi University, 276005 Linyi (China)

    2013-08-15

    We study the transmission of Dirac electrons through the one-dimensional periodic, Fibonacci, and Thue–Morse magnetic superlattices (MS), which can be realized by two different magnetic blocks arranged in certain sequences in graphene. The numerical results show that the transmission as a function of incident energy presents regular resonance splitting effect in periodic MS due to the split energy spectrum. For the quasiperiodic MS with more layers, they exhibit rich transmission patterns. In particular, the transmission in Fibonacci MS presents scaling property and fragmented behavior with self-similarity, while the transmission in Thue–Morse MS presents more perfect resonant peaks which are related to the completely transparent states. Furthermore, these interesting properties are robust against the profile of MS, but dependent on the magnetic structure parameters and the transverse wave vector.

  1. Influence of impurity on electronic properties of carbon nanotube superlattices

    Directory of Open Access Journals (Sweden)

    AA Shokri

    2013-09-01

    Full Text Available   In this paper, electronic properties of single-wall armchair and zigzag carbon nanotubes (CNTs superlattices, n(12,0/m(6,6 and n(12,0/m(11,0 are investigated. For this reason, the topological defects of pentagon–heptagon pairs at interfaces of carbon hexagonal network appear. These defects break the symmetry of the system, and then change the electrical properties. The calculations include two parts: investigation of the structures in the absence and presence of the impurity effect, which are calculated by the nearest-neighbor tight binding model . Out numerical results can be useful in designing nanoelectronic devices based on carbon nanotubes.

  2. An organic donor/acceptor lateral superlattice at the nanoscale.

    Science.gov (United States)

    Otero, Roberto; Ecija, David; Fernandez, Gustavo; Gallego, José María; Sanchez, Luis; Martín, Nazario; Miranda, Rodolfo

    2007-09-01

    A precise control of the nanometer-scale morphology in systems containing mixtures of donor/acceptor molecules is a key factor to improve the efficiency of organic photovoltaic devices. Here we report on a scanning tunneling microscopy study of the first stages of growth of 2-[9-(1,3-dithiol-2-ylidene)anthracen-10(9H)-ylidene]-1,3-dithiole, as electron donor, and phenyl-C61-butyric acid methyl ester, as electron acceptor, on a Au(111) substrate under ultrahigh vacuum conditions. Due to differences in bonding strength with the substrate and different interactions with the Au(111) herringbone surface reconstruction, mixed thin films spontaneously segregate into a lateral superlattice of interdigitated nanoscale stripes with a characteristic width of about 10-20 nm, a morphology that has been predicted to optimize the efficiency of organic solar cells.

  3. Spin-polarized transport in graphene nanoribbon superlattices

    Institute of Scientific and Technical Information of China (English)

    Yu Xin-Xin; Xie Yue-E; OuYang Tao; Chen Yuan-Ping

    2012-01-01

    By the Green's function method,we investigate spin transport properties of a zigzag graphene nanoribbon superlattice (ZGNS) under a ferromagnetic insulator and edge effect.The exchange splitting induced by the ferromagnetic insulator eliminates the spin degeneracy,which leads to spin-polarized transport in structure.Spin-dependent minibands and minigaps are exhibited in the conductance profile near the Fermi energy.The location and width of the miniband are associated with the geometry of the ZGNS.In the optimal structure,the spin-up and spin-down minibands can be separated completely near the Fermi energy.Therefore,a wide,perfect spin polarization with clear stepwise pattern is observed,i.e.,the perfect spin-polarized transport can be tuned from spin up to spin down by varying the electron energy.

  4. Titanium-based silicide quantum dot superlattices for thermoelectrics applications.

    Science.gov (United States)

    Savelli, Guillaume; Stein, Sergio Silveira; Bernard-Granger, Guillaume; Faucherand, Pascal; Montès, Laurent; Dilhaire, Stefan; Pernot, Gilles

    2015-07-10

    Ti-based silicide quantum dot superlattices (QDSLs) are grown by reduced-pressure chemical vapor deposition. They are made of titanium-based silicide nanodots scattered in an n-doped SiGe matrix. This is the first time that such nanostructured materials have been grown in both monocrystalline and polycrystalline QDSLs. We studied their crystallographic structures and chemical properties, as well as the size and the density of the quantum dots. The thermoelectric properties of the QDSLs are measured and compared to equivalent SiGe thin films to evaluate the influence of the nanodots. Our studies revealed an increase in their thermoelectric properties-specifically, up to a trifold increase in the power factor, with a decrease in the thermal conductivity-making them very good candidates for further thermoelectric applications in cooling or energy-harvesting fields.

  5. Designing magnetic superlattices that are composed of single domain nanomagnets

    Directory of Open Access Journals (Sweden)

    Derek M. Forrester

    2014-07-01

    Full Text Available Background: The complex nature of the magnetic interactions between any number of nanosized elements of a magnetic superlattice can be described by the generic behavior that is presented here. The hysteresis characteristics of interacting elliptical nanomagnets are described by a quasi-static method that identifies the critical boundaries between magnetic phases. A full dynamical analysis is conducted in complement to this and the deviations from the quasi-static analysis are highlighted. Each phase is defined by the configuration of the magnetic moments of the chain of single domain nanomagnets and correspondingly the existence of parallel, anti-parallel and canting average magnetization states.Results: We give examples of the phase diagrams in terms of anisotropy and coupling strength for two, three and four magnetic layers. Each phase diagrams character is defined by the shape of the magnetic hysteresis profile for a system in an applied magnetic field. We present the analytical solutions that enable one to define the “phase” boundaries between the emergence of spin-flop, anti-parallel and parallel configurations. The shape of the hysteresis profile is a function of the coupling strength between the nanomagnets and examples are given of how it dictates a systems magnetic response. Many different paths between metastable states can exist and this can lead to instabilities and fluctuations in the magnetization.Conclusion: With these phase diagrams one can find the most stable magnetic configurations against perturbations so as to create magnetic devices. On the other hand, one may require a magnetic system that can easily be switched between phases, and so one can use the information herein to design superlattices of the required shape and character by choosing parameters close to the phase boundaries. This work will be useful when designing future spintronic devices, especially those manipulating the properties of CoFeB compounds.

  6. Raman-assisted Brillouin optical time-domain analysis with sub-meter resolution over 100 km.

    Science.gov (United States)

    Angulo-Vinuesa, X; Martin-Lopez, S; Corredera, P; Gonzalez-Herraez, M

    2012-05-21

    Sub-meter resolution in long-distance Brillouin Optical Time Domain Analysis (BOTDA) cannot be trivially achieved due to several issues including: resolution-uncertainty trade-offs, self-phase modulation, fiber attenuation, depletion, etc. In this paper we show that combining Raman assistance, differential pulse-width pair (DPP) measurements and a novel numerical de-noising procedure, we could obtain sub-meter resolution Brillouin optical time-domain analysis over a range of 100 km. We successfully demonstrate the detection of a 0.5 meter hot-spot in the position of worst contrast along the fiber.

  7. Theoretical demonstration of Brillouin lasing effect in racetrack resonators based on germanium waveguides in the mid-infrared.

    Science.gov (United States)

    De Leonardis, Francesco; Troia, Benedetto; Soref, Richard A; Passaro, Vittorio M N

    2016-01-15

    In this Letter, we present a theoretical investigation of integrated racetrack Brillouin lasers based on germanium waveguides that are buried in silicon nitride and operate at a wavelength of 4 μm. General design equations in a steady-state regime have been carried out to determine the threshold power and the emitted Stokes power as a function of the resonance mismatch and coupling factor. The pulling effect as induced by the Brillouin gain dispersion and the pushing effects originated by SPM and XPM effects have been accurately investigated to predict the lasing frequency.

  8. Precise Determination of Brillouin Scattering Spectrum Using a Virtually Imaged Phase Array (VIPA) Spectrometer and Charge-Coupled Device (CCD) Camera.

    Science.gov (United States)

    Meng, Zhaokai; Yakovlev, Vladislav V

    2016-08-01

    Brillouin spectroscopy is an emerging tool for microscopic optical imaging as it allows noninvasive assessment of viscoelastic properties of materials. The use of atomic-molecular absorption cells as ultra-narrow notch filters allows acquisition of Brillouin spectra from turbid samples despite their strong elastic scattering. However, such systems alter the shapes of the Brillouin lines, making the precise determination of the Brillouin shift difficult. In this report, we propose a simple method for analyzing the Brillouin spectrum using a customized least-square fitting algorithm. The absorption spectrum induced by the atomic-molecular cell was taken into consideration. The capability of the method is confirmed by processing experimental spectroscopic data from the pure water at different temperatures. The accuracy of the measurements of ±1 MHz spectral line shift is experimentally demonstrated.

  9. Single-crystal elasticity of diaspore, AlOOH, to 12 GPa by Brillouin scattering

    Science.gov (United States)

    Jiang, Fuming; Majzlan, Juraj; Speziale, Sergio; He, Duanwei; Duffy, Thomas S.

    2008-11-01

    The high-pressure elasticity of diaspore (AlOOH) has been determined by Brillouin spectroscopy to 12 GPa in diamond anvil cells. Experiments were carried out using a 16:3:1 methanol-ethanol-water mixture as pressure medium, and ruby as pressure standard. Acoustic velocities were measured in three roughly orthogonal planes at ambient and eight elevated pressures. The nine individual elastic stiffness constants of the orthorhombic crystal were obtained by fitting the velocity data to Christoffel's equation. Aggregate elastic moduli and pressure derivatives were calculated from the Cijs by fits to Eulerian finite strain equations, yielding: K=152(1) GPa, G0 = 117.2(5) GPa, (/∂P)T=3.7(1),   (=1.5(1) for the Voigt-Reuss-Hill average. All individual Cijs increase with pressure but C23 and C55 exhibit anomalously low pressure derivatives. From calculated linear compressibilities, the a-axis is the most compressible. The b-axis becomes the least compressible axis at high pressures. Over the examined pressure range, the azimuthal P-wave anisotropy decreased from 22% to 16%, while the azimuthal S-wave anisotropy increased from 15% to 21%. Both volume and axial compression curves calculated using our Brillouin results are in good agreement with the results from static compression studies. High-pressure sound velocities in diaspore exceed those of other hydrous minerals as well as many anhydrous phases relevant to Earth's upper mantle.

  10. Attometer resolution spectral analysis based on polarization pulling assisted Brillouin scattering merged with heterodyne detection.

    Science.gov (United States)

    Preussler, Stefan; Schneider, Thomas

    2015-10-05

    Spectral analysis is essential for measuring and monitoring advanced optical communication systems and the characterization of active and passive devices like amplifiers, filters and especially frequency combs. Conventional devices have a limited resolution or tuning range. Therefore, the true spectral shape of the signal remains hidden. In this work, a small part of the signal under test is preselected with help of the polarization pulling effect of stimulated Brillouin scattering where all unwanted spectral components are suppressed. Subsequently, this part is analyzed more deeply through heterodyne detection. Thereby, the local oscillator is generated from a narrow linewidth fiber laser which acts also as pump wave for Brillouin scattering. By scanning the pump wave together with the local oscillator through the signal spectrum, the whole signal is measured. The method is tunable over a broad wavelength range, is not affected by unwanted mixing products and utilizes a conventional narrow bandwidth photo diode. First proof of concept experiments show the measurement of the power spectral density function with a resolution in the attometer or lower kilohertz range at 1550 nm.

  11. A systematic study of Rayleigh-Brillouin scattering in air, N2 and O2 gases

    CERN Document Server

    Gu, Ziyu

    2014-01-01

    Spontaneous Rayleigh-Brillouin scattering experiments in air, N2 and O2 have been performed for a wide range of temperatures and pressures at a wavelength of 403 nm and at a 90 degrees scattering angle. Measurements of the Rayleigh-Brillouin spectral scattering profile were conducted at high signal-to-noise ratio for all three species, yielding high-quality spectra unambiguously showing the small differences between scattering in air, and its constituents N2 and O2. Comparison of the experimental spectra with calculations using the Tenti S6 model, developed in 1970s based on linearized kinetic equations for molecular gases, demonstrates that this model is valid to high accuracy. After previous measurements performed at 366 nm, the Tenti S6 model is here verified for a second wavelength of 403 nm. Values for the bulk viscosity for the gases are derived by optimizing the model to the measurements. It is verified that the bulk viscosity parameters obtained from previous experiments at 366 nm, are valid for wavel...

  12. Phase-locking and Pulse Generation in Multi-Frequency Brillouin Oscillator via Four Wave Mixing

    Science.gov (United States)

    Büttner, Thomas F. S.; Kabakova, Irina V.; Hudson, Darren D.; Pant, Ravi; Poulton, Christopher G.; Judge, Alexander C.; Eggleton, Benjamin J.

    2014-01-01

    There is an increasing demand for pulsed all-fibre lasers with gigahertz repetition rates for applications in telecommunications and metrology. The repetition rate of conventional passively mode-locked fibre lasers is fundamentally linked to the laser cavity length and is therefore typically ~10–100 MHz, which is orders of magnitude lower than required. Cascading stimulated Brillouin scattering (SBS) in nonlinear resonators, however, enables the formation of Brillouin frequency combs (BFCs) with GHz line spacing, which is determined by the acoustic properties of the medium and is independent of the resonator length. Phase-locking of such combs therefore holds a promise to achieve gigahertz repetition rate lasers. The interplay of SBS and Kerr-nonlinear four-wave mixing (FWM) in nonlinear resonators has been previously investigated, yet the phase relationship of the waves has not been considered. Here, we present for the first time experimental and numerical results that demonstrate phase-locking of BFCs generated in a nonlinear waveguide cavity. Using real-time measurements we demonstrate stable 40 ps pulse trains with 8 GHz repetition rate based on a chalcogenide fibre cavity, without the aid of any additional phase-locking element. Detailed numerical modelling, which is in agreement with the experimental results, highlight the essential role of FWM in phase-locking of the BFC. PMID:24849053

  13. Study on two-cell stimulated Brillouin scattering system with mixture medium

    Institute of Scientific and Technical Information of China (English)

    HASI Wuliji; L(U) ZhiWei; LI Qiang; BA DeXin; HE WeiMing

    2007-01-01

    In this paper, a method of choosing mixture medium in two-cell stimulated Brillouin scattering (SBS) system to improve the system performance is proposed. The Brillouin frequency shift (BFS) of mixture medium varies with the mixing ratio and thus the difference of the BFS between the two cells can be eliminated. The two-cell SBS system with acetone (C3H6O) in its generator cell and mixture liquid of CCl4/C2Cl4 in its amplifier cell is investigated. The C3H6O has a high optical break- down threshold and the mixture liquid of CCl4/C2Cl4 has a small absorption coefficient and the same BFS as that of C3H6O when the volume fraction of CCl4 is 4%. Compared with two-cell SBS system with the same liquid (C2Cl4) or different liquid (C3H6O and C2Cl4) in generator and amplifier cell, the SBS system with mixture liquid (CCl4/C2Cl4) in amplifier cell and C3H6O in generator cell improves the power-load, energy reflectivity (ER), phase conjugation (PC) fidelity and ER stability.

  14. Bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering in optical fiber.

    Science.gov (United States)

    Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng

    2014-09-22

    We propose a rectangular optical filter based on stimulated Brillouin scattering (SBS) in optical fiber with bandwidth tuning from 50 MHz to 4 GHz at less than 15-MHz resolution. The rectangular shape of the filter is precisely achieved utilizing digital feedback control of the comb-like pump spectral lines. The passband ripple is suppressed to ~1 dB by mitigating the nonlinearity influences of the comb-like pump lines generated in electrical and optical components and fibers. Moreover a fiber with a single Brillouin peak is employed to further reduce the in-band ripple and the out-of-band SBS gain at the same time. Finally, we analyze the noise performance of the filter at different bandwidth cases and demonstrate the system performance of the proposed filter with 2.1-GHz bandwidth and 19-dB gain by amplifying a 2-GHz orthogonal frequency-division-multiplexing (OFDM) signal with quadrature-phase-shift-keying (QPSK) and 16-quadrature-amplitude-modulation (16-QAM) on each subscriber.

  15. Phase-locking and Pulse Generation in Multi-Frequency Brillouin Oscillator via Four Wave Mixing

    Science.gov (United States)

    Büttner, Thomas F. S.; Kabakova, Irina V.; Hudson, Darren D.; Pant, Ravi; Poulton, Christopher G.; Judge, Alexander C.; Eggleton, Benjamin J.

    2014-05-01

    There is an increasing demand for pulsed all-fibre lasers with gigahertz repetition rates for applications in telecommunications and metrology. The repetition rate of conventional passively mode-locked fibre lasers is fundamentally linked to the laser cavity length and is therefore typically ~10-100 MHz, which is orders of magnitude lower than required. Cascading stimulated Brillouin scattering (SBS) in nonlinear resonators, however, enables the formation of Brillouin frequency combs (BFCs) with GHz line spacing, which is determined by the acoustic properties of the medium and is independent of the resonator length. Phase-locking of such combs therefore holds a promise to achieve gigahertz repetition rate lasers. The interplay of SBS and Kerr-nonlinear four-wave mixing (FWM) in nonlinear resonators has been previously investigated, yet the phase relationship of the waves has not been considered. Here, we present for the first time experimental and numerical results that demonstrate phase-locking of BFCs generated in a nonlinear waveguide cavity. Using real-time measurements we demonstrate stable 40 ps pulse trains with 8 GHz repetition rate based on a chalcogenide fibre cavity, without the aid of any additional phase-locking element. Detailed numerical modelling, which is in agreement with the experimental results, highlight the essential role of FWM in phase-locking of the BFC.

  16. Stability of Brillouin flow in the presence of slow-wave structure

    Science.gov (United States)

    Simon, D. H.; Lau, Y. Y.; Greening, G.; Wong, P.; Hoff, B.; Gilgenbach, R. M.

    2016-09-01

    Including a slow-wave structure (SWS) on the anode in the conventional, planar, and inverted magnetron, we systematically study the linear stability of Brillouin flow, which is the prevalent flow in crossed-field devices. The analytic treatment is fully relativistic and fully electromagnetic, and it incorporates the equilibrium density profile, flow profile, and electric field and magnetic field profiles in the linear stability analysis. Using parameters similar to the University of Michigan's recirculating planar magnetron, the numerical data show that the resonant interaction of the vacuum circuit mode and the corresponding smooth-bore diocotron-like mode is the dominant cause for instability. This resonant interaction is far more important than the intrinsic negative (positive) mass property of electrons in the inverted (conventional) magnetron geometry. It is absent in either the smooth-bore magnetron or under the electrostatic assumption, one or both of which was almost always adopted in prior analytical formulation. This resonant interaction severely restricts the wavenumber for instability to the narrow range in which the cold tube frequency of the SWS is within a few percent of the corresponding smooth bore diocotron-like mode in the Brillouin flow.

  17. A microrod-resonator Brillouin laser with 240 Hz absolute linewidth

    CERN Document Server

    Loh, William; Cole, Daniel C; Coillet, Aurelien; Baynes, Fred N; Papp, Scott B; Diddams, Scott A

    2015-01-01

    We demonstrate an ultralow-noise microrod-resonator based laser that oscillates on the gain supplied by the stimulated Brillouin scattering optical nonlinearity. Microresonator Brillouin lasers are known to offer an outstanding frequency noise floor, which is limited by fundamental thermal fluctuations. Here, we show experimental evidence that thermal effects also dominate the close-to-carrier frequency fluctuations. The 6-mm diameter microrod resonator used in our experiments has a large optical mode area of ~100 {\\mu}m$^2$, and hence its 10 ms thermal time constant filters the close-to-carrier optical frequency noise. The result is an absolute laser linewidth of 240 Hz with a corresponding white-frequency noise floor of 0.1 Hz$^2$/Hz. We explain the steady-state performance of this laser by measurements of its operation state and of its mode detuning and lineshape. Our results highlight a mechanism for noise that is common to many microresonator devices due to the inherent coupling between intracavity power...

  18. Research on Structural Stress Optical Fiber Testing Technology Based on Brillouin Scattering

    Directory of Open Access Journals (Sweden)

    Wang Xian-Jin

    2016-01-01

    Full Text Available In this paper, the principle of distributed optical fiber measurement and measurement of axial stress is introduced by analyzing the principle of Brillouin scattering in an optical fiber with a certain power. Making the experimental device, measuring the individual strain model, analyzing the wave shape of the scattered wave, and preliminary understanding of the image characteristics of the stress in the optical fiber Brillouin scattering spectrum. The effect of stress on the different position of the fiber, and the difference between them and the scattering waveform obtained from the stress free action poetry are compared, and the effect of the light pulse on the optical fiber transmission is studied. The results show that the effect of the stress is different in the position of the action, and the effect of the propagation of the pulse light is mainly affected by the Stokes and anti Stokes light scattering. The research can provide reference for distributed optical fiber measurement, and it can promote the application of distributed optical fiber in measuring micro deformation. The innovative point of this study is to use the pulley method to solve the effect of the different position of the same stress in the distribution of optical fiber.

  19. Experimental observation of stochastic, periodic, and localized light structures in a brillouin cavity system

    Science.gov (United States)

    Ding, Yingchun; Feng, Qi; Zhang, Bin; Liu, Zhongxuan; Tang, Xin; Lin, Chengyou; Chen, Zhaoyang

    2017-06-01

    It has been an important research subject to find new nonlinear optical phenomena. In this paper, we report the experimental observation of stochastic, periodic, and localized light structures in a super long single-mode standard fiber with external optical feedback provided by the fiber end. The end facet reflection provides an analogous Fabry-Perot stimulated Brillouin resonator cavity. By increasing the pump power to exceed stimulated Brillouin scattering threshold, we observed light structures exhibiting extremely rich temporal-pulse characteristics that had never been reported in literature before, including supercontinuum background generation, the localization of periodic optical structure formation, fission, and compression. These optical structures are of period-doubling distribution and have different recurrence rates. What is more interesting is that we have observed sets of low frequency bipolar cycle-pulse trains that is often seen in the electrical field and hardly seen in pure optical system. Real-time specification of dynamical temporal regimes of laser operation may bring new insight into rich underlying nonlinear physics of practical fiber cavity systems. Therefore, some new nonlinear optical phenomena have been observed.

  20. Spatial structure and coherence properties of Brillouin scatter from CO2 laser-target interaction

    Science.gov (United States)

    Mitchel, G. R.; Grek, B.; Johnston, T. W.; Pépin, H.; Church, P.; Martin, F.

    1982-05-01

    The spatial structure and coherence properties of 10.6-μm light scattered from CO2 laser-target interactions in oblique incidence show many unexpected features. It is found that the Brillouin backscatter is neither a phase conjugate nor a ray retrace of the incident beam. Rather, it shows a preference for scattering directions other than those exactly antiparallel to the incident beam, apparently related to the angular distribution of the scattering source and also of the plasma corona that serves as the Brillouin amplifying medium. As well, the backscatter phasefront is strongly perturbed with respect to the incident phasefront. This is an indication of turbulence in the corona and/or memory of the structure in the source that is then amplified. Small-scale structures seen in the reimaged backscatter are due to phase perturbation and cannot be simply interpreted as geometric images of a (filamented) source. The phasefront of light that is scattered obliquely from the plasma is much more coherent.

  1. Investigation of Anisotropic Thermal Conductivity of GaAs/AlAs Superlattices

    Science.gov (United States)

    Li, Ran

    The thermal conductivities of superlattices are essential to improve the properties of thermoelectrics and optoelectronics; however, limited results in relation to both the in-plane and cross-plane thermal conductivities have been reported. A convenient, effective, and accurate experimental method is required to improve the current research on the thermal properties of superlattices. We conducted an experimental research study on two GaAs/AlAs superlattice samples with a total superlattice layer thickness of 2 microm using a combination of the 2-omega and 3-omega techniques. The samples have period thicknesses of 4 nm and 10 nm, respectively. To explore the thermal conductivities of the substrate and insulation layer of the superlattice samples indirectly, a controlled sample with the same structure, but without a superlattice layer, is used. We obtained the thermal conductivities of the GaAs substrate and insulation layer (SiO2 thin film) using the 3-omega technique and FEM simulation model. We also explored the deviation of the experimental results of the 2-omega technique from the Fourier's Law through the controlled sample. These parameters obtained from the controlled sample are used in the data analysis in the following superlattice research. In the superlattice study, we combine the 3-omega and 2-omega techniques to characterize the anisotropic thermal conductivity of GaAs/AlAs superlattice from the same wafer. The in-plane thermal conductivity, cross-plane thermal conductivity, and anisotropy are obtained from the same wafer by comparing the experimental results with the FEM simulated results. This combination works fine in general and demonstrates a significant reduction in thermal conductivity compared to that of equivalent bulk materials. Superlattices with different period thicknesses but the same total superlattice thickness present a significant difference in both the in-plane and cross-plane thermal conductivities of the superlattices. However, we

  2. Tight-binding model for topological insulators: Analysis of helical surface modes over the whole Brillouin zone

    Science.gov (United States)

    Mao, Shijun; Yamakage, Ai; Kuramoto, Yoshio

    2011-09-01

    A tight-binding model is constructed for Bi2Se3-type topological insulators with rhombohedral crystal structure. The model takes full account of the spin-orbit interaction, and realizes both strong (S) and weak (W) topological insulators (TIs) depending on the mass parameter that causes the band inversion. It is found that there are two separate STIs with either a single or three Dirac cones on the surface, while the WTI realizes either zero or four surface Dirac cones keeping the same Z2 indices. Closing of the bulk direct gap gives rise to transition between either STI and WTI, or TI and an ordinary insulator. On the other hand, closing of the indirect gap keeps intact the surface Dirac cones in both STIs and WTIs. As a result, helical modes can remain even in semimetals. It is found that reentrant helical modes appear in finite-momentum regions in some cases in STIs, and even in ordinary insulators with strong particle-hole asymmetry. All results are obtained analytically.

  3. Dispersion relation for localized magnetic polaritons propagating at the junction of two ferromagnetic/ non-magnetic superlattices

    Indian Academy of Sciences (India)

    R T Tagiyeva

    2004-09-01

    Localized magnetic polaritons are investigated in the systems consisting of two magnetic superlattices, coupled by a ferromagnetic contact layer. The general dispersion relation for localized magnetic polaritons are derived in the framework of the electromagnetic wave theory in the Voigt geometry by the `transfer' matrix method. The numerical calculations were carried out for different parameters of the superlattices and contact layer and then discussed.

  4. Suppression of Brillouin scattering in fibre-optical parametric amplifier by applying temperature control and phase modulation

    DEFF Research Database (Denmark)

    Lorenzen, Michael Rodas; Noordegraaf, Danny; Nielsen, Carsten Vandel

    2009-01-01

    An increased gain in a fibre-optical parametric amplifier through suppression of stimulated Brillouin scattering is demonstrated by applying a temperature distribution along the fibre for a fixed phase modulation of the pump. The temperature distribution slightly impacts the gain spectrum....

  5. Giant piezoelectric response in piezoelectric/dielectric superlattices due to flexoelectric effect

    Science.gov (United States)

    Liu, Chang; Wu, Huaping; Wang, Jie

    2016-11-01

    Flexoelectricity describes the linear response of electrical polarization to a strain gradient, which can be used to enhance the piezoelectric effect of piezoelectric material or realize the piezoelectric effect in nonpiezoelectric materials. Here, we demonstrate from thermodynamics theory that a giant piezoelectric effect exists in piezoelectric/dielectric superlattices due to flexoelectric effect. The apparent piezoelectric coefficient is calculated from the closed-form of analytical expression of the polarization distribution in the piezoelectric/dielectric superlattice subjected to a normal stress, in which the flexoelectric effect is included. It is found that there exists a strong nonlinear coupling between the flexoelectric and piezoelectric effects, which significantly enhances the apparent piezoelectric coefficient in the piezoelectric/dielectric superlattice. For a specific thickness ratio of the piezoelectric and dielectric layers, the enhanced apparent piezoelectric coefficient in the superlattice is ten times larger than that of its pure piezoelectric counterpart. The present work suggests an effective way to obtain giant apparent piezoelectric effect in piezoelectric/dielectric superlattices through flexoelectric effect.

  6. Temperature-Dependent X-ray Diffraction Measurements of Infrared Superlattices Grown by MBE

    Directory of Open Access Journals (Sweden)

    Charles J. Reyner

    2016-11-01

    Full Text Available Strained-layer superlattices (SLSs are an active research topic in the molecular beam epitaxy (MBE and infrared focal plane array communities. These structures undergo a >500 K temperature change between deposition and operation. As a result, the lattice constants of the substrate and superlattice are expected to change by approximately 0.3%, and at approximately the same rate. However, we present the first temperature-dependent X-ray diffraction (XRD measurements of SLS material on GaSb and show that the superlattice does not contract in the same manner as the substrate. In both InAs/InAs0.65Sb0.35 and In0.8Ga0.2As/InAs0.65Sb0.35 SLS structures, the apparent out-of-plane strain states of the superlattices switch from tensile at deposition to compressive at operation. These changes have ramifications for material characterization, defect generation, carrier lifetime, and overall device performance of superlattices grown by MBE.

  7. Spin-dependent Seebeck effects in a graphene superlattice p–n junction with different shapes

    Science.gov (United States)

    Zhou, Benhu; Zhou, Benliang; Yao, Yagang; Zhou, Guanghui; Hu, Ming

    2017-10-01

    We theoretically calculate the spin-dependent transmission probability and spin Seebeck coefficient for a zigzag-edge graphene nanoribbon p–n junction with periodically attached stubs under a perpendicular magnetic field and a ferromagnetic insulator. By using the nonequilibrium Green’s function method combining with the tight-binding Hamiltonian, it is demonstrated that the spin-dependent transmission probability and spin Seebeck coefficient for two types of superlattices can be modulated by the potential drop, the magnetization strength, the number of periods of the superlattice, the strength of the perpendicular magnetic field, and the Anderson disorder strength. Interestingly, a metal to semiconductor transition occurs as the number of the superlattice for a crossed superlattice p–n junction increases, and its spin Seebeck coefficient is much larger than that for the T-shaped one around the zero Fermi energy. Furthermore, the spin Seebeck coefficient for crossed systems can be much pronounced and their maximum absolute value can reach 528 μV K-1 by choosing optimized parameters. Besides, the spin Seebeck coefficient for crossed p–n junction is strongly enhanced around the zero Fermi energy for a weak magnetic field. Our results provide theoretical references for modulating the thermoelectric properties of a graphene superlattice p–n junction by tuning its geometric structure and physical parameters.

  8. MgO/Cu2O Superlattices: Growth of Epitaxial Two-Dimensional Nanostructures

    Science.gov (United States)

    Yang, M. J.; Wadekar, P. V.; Hsieh, W. C.; Huang, H. C.; Lin, C. W.; Chou, J. W.; Liao, C. H.; Chang, C. F.; Seo, H. W.; You, S. T.; Tu, L. W.; Lo, I. K.; Ho, N. J.; Yeh, S. W.; Liao, H. H.; Chen, Q. Y.; Chu, W. K.

    2016-12-01

    Alternated stacking of dissimilar layers can produce novel superlattice materials with multiple functionalities. The majority of such work reported in literature on epitaxial superlattices has been on alternating layers with the same space group (SG) and crystal structure (CS), whereas superlattices with the same CS but different SG have not been studied as much. We have grown superlattices with two well-known oxide materials, viz. cuprite (Cu2O, CS = cubic and SG = Pn bar{3} m) and magnesium oxide (MgO, CS = cubic, SG = Fm bar{3} m). An MgO buffer layer grown near 650°C at the film-substrate interface was found to be essential to achieving reasonable long-range atomic order. Grazing-angle x-ray diffraction, x-ray reflectivity, and electron diffraction analyses as well as transmission electron microscopy were used to investigate the interface abruptness, smoothness, and general crystallinity of the individual layers. Interdiffusion between MgO and Cu2O near interfacial regions places a limit of 250°C on the growth temperature for fabrication of superlattices with reasonably sharp interfaces.

  9. Aberration Corrected Scanning Transmission Electron Microscopy of (Ca , Sr)Fe2O5 Brownmillerite superlattices

    Science.gov (United States)

    Mukherjee, Debangshu; Stone, Greg; Moon, Eun Ju; Young, Joshua; Gopalan, Venkatraman; Rondinelli, James; May, Steven; Alem, Nasim

    The brownmillerite phase A2B2O5 consists of ordered oxygen vacancies in alternate perovskite layers forming chiral tetrahedral chains. The handedness of these tetrahedral chains control the polarization of the structure. The current study focuses on 1-1 brownmillerite superlattices grown on a SrTiO3 substrates using molecular beam epitaxy. The B-site in this structure is iron throughout the superlattice film, while the A-site alternates between calcium and strontium in the superlattice layers. In this study, we use atomic resolution aberration corrected scanning transmission electron microscopy (STEM) to investigate the structure and chemistry of the film-substrate interface as well as the chemical structure of the superlattice. Atom positions are determined to measure displacement vectors of A-site cations in the superlattice structure. D.M., G.A.S., V.G. and N.A. were supported by the National Science Foundation under Grant No. DMR-1420620. E.J.M. and S.J.M. were supported by the National Science Foundation under Grant No. DMR-1151649.

  10. Energy landscape of self-assembled superlattices of PbSe nanocrystals.

    Science.gov (United States)

    Quan, Zewei; Wu, Di; Zhu, Jinlong; Evers, Wiel H; Boncella, James M; Siebbeles, Laurens D A; Wang, Zhongwu; Navrotsky, Alexandra; Xu, Hongwu

    2014-06-24

    Self-assembly of nanocrystals (NCs) into superlattices is an intriguing multiscale phenomenon that may lead to materials with novel collective properties, in addition to the unique properties of individual NCs compared with their bulk counterparts. By using different dispersion solvents, we synthesized three types of PbSe NC superlattices--body-centered cubic (bcc), body-centered tetragonal (bct), and face-centered cubic (fcc)--as confirmed by synchrotron small-angle X-ray scattering. Solution calorimetric measurements in hexane show that the enthalpy of formation of the superlattice from dispersed NCs is on the order of -2 kJ/mol. The calorimetric measurements reveal that the bcc superlattice is the energetically most stable polymorph, with the bct being 0.32 and the fcc 0.55 kJ/mol higher in enthalpy. This stability sequence is consistent with the decreased packing efficiency of PbSe NCs from bcc (17.2%) to bct (16.0%) and to fcc (15.2%). The small enthalpy differences among the three polymorphs confirm a closely spaced energy landscape and explain the ease of formation of different NC superlattices at slightly different synthesis conditions.

  11. Stimulated Brillouin scattering mirror system, high power laser and laser peening method and system using same

    Science.gov (United States)

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-04-24

    A laser system, such as a master oscillator/power amplifier system, comprises a gain medium and a stimulated Brillouin scattering SBS mirror system. The SBS mirror system includes an in situ filtered SBS medium that comprises a compound having a small negative non-linear index of refraction, such as a perfluoro compound. An SBS relay telescope having a telescope focal point includes a baffle at the telescope focal point which blocks off angle beams. A beam splitter is placed between the SBS mirror system and the SBS relay telescope, directing a fraction of the beam to an alternate beam path for an alignment fiducial. The SBS mirror system has a collimated SBS cell and a focused SBS cell. An adjustable attenuator is placed between the collimated SBS cell and the focused SBS cell, by which pulse width of the reflected beam can be adjusted.

  12. Method for pulse control in a laser including a stimulated brillouin scattering mirror system

    Science.gov (United States)

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-10-23

    A laser system, such as a master oscillator/power amplifier system, comprises a gain medium and a stimulated Brillouin scattering SBS mirror system. The SBS mirror system includes an in situ filtered SBS medium that comprises a compound having a small negative non-linear index of refraction, such as a perfluoro compound. An SBS relay telescope having a telescope focal point includes a baffle at the telescope focal point which blocks off angle beams. A beam splitter is placed between the SBS mirror system and the SBS relay telescope, directing a fraction of the beam to an alternate beam path for an alignment fiducial. The SBS mirror system has a collimated SBS cell and a focused SBS cell. An adjustable attenuator is placed between the collimated SBS cell and the focused SBS cell, by which pulse width of the reflected beam can be adjusted.

  13. Depolarized guided acoustic wave Brillouin scattering in hollow-core photonic crystal fibers

    CERN Document Server

    Zhong, Wenjia Elser née; Elser, Dominique; Heim, Bettina; Marquardt, Christoph; Leuchs, Gerd

    2015-01-01

    By performing quantum-noise-limited optical heterodyne detection, we observe polarization noise in light after propagation through a hollow-core photonic crystal fiber (PCF). We compare the noise spectrum to the one of a standard fiber and find an increase of noise even though the light is mainly transmitted in air in a hollow-core PCF. Combined with our simulation of the acoustic vibrational modes in the hollow-core PCF, we are offering an explanation for the polarization noise with a variation of guided acoustic wave Brillouin scattering (GAWBS). Here, instead of modulating the strain in the fiber core as in a solid core fiber, the acoustic vibrations in hollow-core PCF influence the effective refractive index by modulating the geometry of the photonic crystal structure. This induces polarization noise in the light guided by the photonic crystal structure.

  14. Ultra-high Q sphere-like cavities for cascaded stimulated Brillouin lasing

    Science.gov (United States)

    Che, Kaijun; Zhang, Pan; Guo, Changlei; Tang, Deyu; Ren, Changyan; Xu, Huiying; Luo, Zhengqian; Cai, Zhiping

    2017-03-01

    High Q microsphere optical cavity is usually fabricated from a single mode fiber. Here, we propose a new method to fabricate sphere-like cavity by melting the tip of rotating quartz-rod with a CO2 laser. The cavities with diameter from 200 μm to 700 μm and resonant Q factors above 108 are obtained. Due to the rich resonances of the sphere-like cavity, up to 15-order cascaded stimulated Brillouin lasings(SBL) near 1.55 μm are observed in a cavity with a diameter of 760 μm by simply tuning the pump wavelength to a finely-selected resonance. We wish the ultra-high Q cavities with rich resonances and bulk rod mount can have practical applications in nonlinear optics and microwave photonics as an optical component.

  15. Brillouin-Wigner theory for Floquet topological phase transitions in spin-orbit-coupled materials

    Science.gov (United States)

    Mohan, Priyanka; Saxena, Ruchi; Kundu, Arijit; Rao, Sumathi

    2016-12-01

    We develop the high-frequency expansion based on the Brillouin-Wigner (B-W) perturbation theory for driven systems with spin-orbit coupling which is applicable to the cases of silicene, germanene, and stanene. We compute the effective Hamiltonian in the zero-photon subspace not only to order O (ω-1) but by keeping all the important terms to order O (ω-2) and obtain the photoassisted correction terms to both the hopping and the spin-orbit terms, as well as longer-ranged hopping terms. We then use the effective static Hamiltonian to compute the phase diagram in the high-frequency limit and compare it with the results of direct numerical computation of the Chern numbers of the Floquet bands and show that at sufficiently large frequencies, the B-W theory high-frequency expansion works well even in the presence of spin-orbit-coupling terms.

  16. Stimulated Brillouin scatter and stimulated ion Bernstein scatter during electron gyroharmonic heating experiments

    Science.gov (United States)

    Fu, H.; Scales, W. A.; Bernhardt, P. A.; Samimi, A.; Mahmoudian, A.; Briczinski, S. J.; McCarrick, M. J.

    2013-09-01

    Results of secondary radiation, Stimulated Electromagnetic Emission (SEE), produced during ionospheric modification experiments using ground-based high-power radio waves are reported. These results obtained at the High Frequency Active Auroral Research Program (HAARP) facility specifically considered the generation of Magnetized Stimulated Brillouin Scatter (MSBS) and Stimulated Ion Bernstein Scatter (SIBS) lines in the SEE spectrum when the transmitter frequency is near harmonics of the electron gyrofrequency. The heater antenna beam angle effect was investigated on MSBS in detail and shows a new spectral line postulated to be generated near the upper hybrid resonance region due to ion acoustic wave interaction. Frequency sweeping experiments near the electron gyroharmonics show for the first time the transition from MSBS to SIBS lines as the heater pump frequency approaches the gyroharmonic. Significantly far from the gyroharmonic, MSBS lines dominate, while close to the gyroharmonic, SIBS lines strengthen while MSBS lines weaken. New possibilities for diagnostic information are discussed in light of these new observations.

  17. Stimulated Brillouin scattering continuous wave phase conjugation in step-index fiber optics.

    Science.gov (United States)

    Massey, Steven M; Spring, Justin B; Russell, Timothy H

    2008-07-21

    Continuous wave (CW) stimulated Brillouin scattering (SBS) phase conjugation in step-index optical fibers was studied experimentally and modeled as a function of fiber length. A phase conjugate fidelity over 80% was measured from SBS in a 40 m fiber using a pinhole technique. Fidelity decreases with fiber length, and a fiber with a numerical aperture (NA) of 0.06 was found to generate good phase conjugation fidelity over longer lengths than a fiber with 0.13 NA. Modeling and experiment support previous work showing the maximum interaction length which yields a high fidelity phase conjugate beam is inversely proportional to the fiber NA(2), but find that fidelity remains high over much longer fiber lengths than previous models calculated. Conditions for SBS beam cleanup in step-index fibers are discussed.

  18. Net on-chip Brillouin gain based on suspended silicon nanowires

    CERN Document Server

    Van Laer, Raphaël; Kuyken, Bart; Baets, Roel; Van Thourhout, Dries

    2015-01-01

    The century-old study of photon-phonon coupling has seen a remarkable revival in the past decade. Driven by early observations of dynamical back-action, the field progressed to ground-state cooling and the counting of individual phonons. A recent branch investigates the potential of traveling-wave, optically broadband photon-phonon interaction in silicon circuits. Here, we report continuous-wave Brillouin gain exceeding the optical losses in a series of suspended silicon beams, a step towards selective on-chip amplifiers. We obtain efficiencies up to $10^{4} \\, \\text{W}^{-1}\\text{m}^{-1}$, the highest to date in the phononic gigahertz range. We also find indications that geometric disorder poses a significant challenge towards nanoscale phonon-based technologies.

  19. Effect of the magnetic field on coexisting stimulated Raman and Brillouin backscattering of an extraordinary mode

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, Ashish, E-mail: ashishvyas.optics@gmail.com; Singh, Ram Kishor, E-mail: ram007kishor@gmail.com; Sharma, R. P., E-mail: rpsharma@ces.iitd.ernet.in [Centre for Energy Studies, IIT Delhi, Delhi 110016 (India)

    2016-01-15

    This paper presents a model to study the interplay between the stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) in the presence of background magnetic field. This formalism is applicable to laser produced plasma as well as to heating mechanism in toroidal system by an extraordinary electromagnetic wave. In the former case, the magnetic field is self-generated, while in the latter case (toroidal plasmas) magnetic field is applied externally. The behavior of one scattering process is explicitly dependent on the coexisting scattering process as well as on the magnetic field. Explicit expressions for the back-reflectivity of scattered beams (SRS and SBS) are presented. It has been demonstrated that due to the magnetic field and coexistence of the scattering processes (SRS and SBS) the back-reflectivity gets modified significantly. Results are also compared with the three wave interaction case (isolated SRS or SBS case)

  20. IBIS: an inverse geometry Brillouin inelastic neutron spectrometer for the SNS.

    Science.gov (United States)

    Zhao, J K Jinkui; Wildgruber, Christoph U; Robertson, Lee; Herwig, Kenneth W

    2013-02-01

    The high power target station at the Spallation Neutron Source (SNS) currently has about 20 completed neutron scattering instruments. With a broad coverage of the momentum transfer (Q)-energy (E) space, these instruments serve an extensive user community. In an effort to further expand the scientific capabilities of the SNS instrument suites, we propose a low background, inverse geometry Brillouin inelastic spectrometer for the SNS which will expand the Q-E coverage of the current instrument suite and facilitate the study of inelastic and quasi-elastic scatterings at low Q values. The possible location for the proposed instrument is either beamline 8 which views the decoupled water moderator, or beamline 14A, which views a cold, coupled super critical hydrogen moderator. The instrument parameters, optimizations, and performances at these two beamline locations are discussed.

  1. Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing

    Science.gov (United States)

    Preussler, Stefan; Schneider, Thomas

    2016-03-01

    Stimulated Brillouin scattering (SBS) is one of the most dominant nonlinear effects in standard single-mode fibers and its unique spectral characteristics, especially the narrow bandwidth, enable many different applications. Most of the applications would benefit from a narrower bandwidth. Different methods for the bandwidth reduction of SBS in optical fibers are presented and discussed. A bandwidth reduction down to 17% of the natural gain can be achieved by the superposition of the gain with two losses or the utilization of a multistage system. Furthermore, applications in the field of microwave photonics and optical signal processing like high-resolution spectroscopy of communication signals, the storage of optical data packets as well as the processing of frequency combs including generation of millimeter waves and ideal sinc-shaped Nyquist pulses are presented.

  2. Brillouin backscattering from a double-pulse CO/sub 2/ laser incident on planar targets

    Energy Technology Data Exchange (ETDEWEB)

    Decoste, R.; Lavigne, P.; Pepin, H.; Mitchel, G.R.; Kieffer, J.

    1982-05-01

    The Brillouin backscattering instability is studied for a range of preformed plasma conditions and using a CO/sub 2/ laser in the 10/sup 12/--10/sup 13/ W/cm/sup 2/ regime. A short prepulse is incident on a planar target ahead of the main-pulse to produce the preformed plasma. The instability appears in a short burst of back-reflected light. Saturation of the backscatter level is observed for an individual increase of the prepulse energy, main-pulse intensity, and prepulse-to-main-pulse delay. Ion Landau damping is strong and average back-reflected intensities are limited to less than 30% of incident. Backscattered light spectra suggest that the critical surface is involved in the backscatter process when the laser beam is at best focus onto the target surface. Otherwise, the spectral signature is similar to those obtained from underdense plasmas.

  3. Paraxial Wentzel-Kramers-Brillouin method applied to the lower hybrid wave propagation

    Energy Technology Data Exchange (ETDEWEB)

    Bertelli, N.; Phillips, C. K.; Valeo, E.; Wilson, J. R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Maj, O.; Poli, E. [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748, Garching (Germany); Harvey, R. [CompX, Del Mar, California 92014 (United States); Wright, J. C.; Bonoli, P. T. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Smirnov, A. P. [Lomonosov Moscow State University, Moscow (Russian Federation)

    2012-08-15

    The paraxial Wentzel-Kramers-Brillouin (pWKB) approximation, also called beam tracing method, has been employed in order to study the propagation of lower hybrid waves in a tokamak plasma. Analogous to the well-know ray tracing method, this approach reduces Maxwell's equations to a set of ordinary differential equations, while, in addition, retains the effects of the finite beam cross-section, and, thus, the effects of diffraction. A new code, LHBEAM (lower hybrid BEAM tracing), is presented, which solves the pWKB equations in tokamak geometry for arbitrary launching conditions and for analytic and experimental plasma equilibria. In addition, LHBEAM includes linear electron Landau damping for the evaluation of the absorbed power density and the reconstruction of the wave electric field in both the physical and Fourier space. Illustrative LHBEAM calculations are presented along with a comparison with the ray tracing code GENRAY and the full wave solver TORIC-LH.

  4. Failure of relativistic codes in the non-relativistic limit: the role of Brillouin configurations

    CERN Document Server

    Indelicato, P J; Desclaux, J P

    2004-01-01

    In the present letter we solve a long standing problem with relativistic calculations done with the widely used Multi-Configuration Dirac-Fock Method. We show, using Relativistic Many-Body Perturbation Theory (RMBPT), how even for relatively high-$Z$, relaxation or correlation causes the non-relativistic limit of states of different total angular momentum but identical orbital angular momentum to have different energies. We identify the role of single excitations obeying to Brillouin's theorem in this problem. We show that with large scale calculations in which this problem is properly treated, we can reproduce very accurately recent high-precision measurements in F-like Ar, and turn then into precise test of QED

  5. Beyond the random phase approximation: Stimulated Brillouin backscatter for finite laser coherence times

    Energy Technology Data Exchange (ETDEWEB)

    Korotkevich, Alexander O.; Lushnikov, Pavel M., E-mail: plushnik@math.unm.edu [Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Landau Institute for Theoretical Physics, 2 Kosygin Str., Moscow 119334 (Russian Federation); Rose, Harvey A. [Theoretical Division, Los Alamos National Laboratory, MS-B213, Los Alamos, New Mexico 87545 (United States); New Mexico Consortium, Los Alamos, New Mexico 87544 (United States)

    2015-01-15

    We developed a linear theory of backward stimulated Brillouin scatter (BSBS) of a spatially and temporally random laser beam relevant for laser fusion. Our analysis reveals a new collective regime of BSBS (CBSBS). Its intensity threshold is controlled by diffraction, once cT{sub c} exceeds a laser speckle length, with T{sub c} the laser coherence time. The BSBS spatial gain rate is approximately the sum of that due to CBSBS, and a part which is independent of diffraction and varies linearly with T{sub c}. The CBSBS spatial gain rate may be reduced significantly by the temporal bandwidth of KrF-based laser systems compared to the bandwidth currently available to temporally smoothed glass-based laser systems.

  6. Brillouin light scattering study of spin waves in NiFe/Co exchange spring bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Haldar, Arabinda; Banerjee, Chandrima; Laha, Pinaki; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700098 (India)

    2014-04-07

    Spin waves are investigated in Permalloy(Ni{sub 80}Fe{sub 20})/Cobalt(Co) exchange spring bilayer thin films using Brillouin light scattering (BLS) experiment. The magnetic hysteresis loops measured by magneto-optical Kerr effect show a monotonic decrease in coercivity of the bilayer films with increasing Py thickness. BLS study shows two distinct modes, which are modelled as Damon-Eshbach and perpendicular standing wave modes. Linewidths of the frequency peaks are found to increase significantly with decreasing Py layer thickness. Interfacial roughness causes to fluctuate exchange coupling at the nanoscale regimes and the effect is stronger for thinner Py films. A quantitative analysis of the magnon linewidths shows the presence of strong local exchange coupling field which is much larger compared to macroscopic exchange field.

  7. Angle-resolved spin wave band diagrams of square antidot lattices studied by Brillouin light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gubbiotti, G.; Tacchi, S. [Istituto Officina dei Materiali del Consiglio Nazionale delle Ricerche (IOM-CNR), Sede di Perugia, c/o Dipartimento di Fisica e Geologia, Via A. Pascoli, I-06123 Perugia (Italy); Montoncello, F.; Giovannini, L. [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via G. Saragat 1, I-44122 Ferrara (Italy); Madami, M.; Carlotti, G. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06123 Perugia (Italy); Ding, J.; Adeyeye, A. O. [Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2015-06-29

    The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained by dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission.

  8. Acoustic profilometry of interphases in epoxy due to segregation and diffusion using Brillouin microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, U; Bactavatchalou, R; Baller, J; Philipp, M; Sanctuary, R; Zielinski, B; Krueger, J K [Laboratoire de Physique des Materiaux, Universite du Luxembourg, 162A, Avenue de la Faiencerie, L-1115 Luxembourg (Luxembourg); Alnot, P; Possart, W [Laboratoire Europeen de Recherche Universitaire Saarland-Lorraine (Germany)], E-mail: mail@tauron.de

    2008-02-15

    Reactive network forming polymer systems like epoxies are of huge technological interest because of their adhesive properties based on specific interactions with a large variety of materials. These specific interactions alter the morphology of the epoxy within areas determined by the correlation length of these interactions. The changed morphology leads to interphases with altered (mechanical) properties. Besides these surface-induced interphases, bulk interphases do occur due to segregation, crystallization, diffusion, etc. A new experimental technique to characterize such mechanical interphases is {mu}-Brillouin spectroscopy ({mu}-BS). With {mu}-BS, we studied interphases and their formation in epoxies due to segregation of the constituent components and due to selective diffusion of one component. In the latter case, we will demonstrate the influence of changing the boundary conditions of the diffusion process on the shape of the interphase.

  9. Highly precise distributed Brillouin scattering sensor for structural health monitoring of optical ground wire cable

    Science.gov (United States)

    Zou, Lufan; Ravet, Fabien; Bao, Xiaoyi; Chen, Liang

    2004-07-01

    A distributed Brillouin scattering sensor with high special precision has been developed for the measurement of small damages/cracks of 1.5 cm. The out-layer damaged regions in an optical ground wire (OPGW) cable have been identified successfully by measuring the strain distributions every 5 cm using this technology. The stress increased to 127 kN which corresponds to more than 7500 micro-strain in the fibers. The locations of structural indentations comprising repaired and undamaged regions are found and distinguished using their corresponding strain data. The elongation of repaired region increases with time on 127 kN. These results are quantified in terms of the fiber orientation, stress, and behavior relative to undamaged sections.

  10. Influence of medium parameters on power limiting characteristic in stimulated Brillouin scattering process

    Institute of Scientific and Technical Information of China (English)

    Huaping Gong; Zhiwei Lü; Dianyang Lin; Songjiang Liu

    2007-01-01

    By adopting noise initiation model of stimulated Brillouin scattering (SBS), the influence of phonon lifetime and gain coefficient of medium on power limiting characteristic is numerically investigated. Through using actual parameters of three media, CCl4, acetone, and CS2, the waveforms of transmitted pulses are simulated. The result shows that different media have little effect on the front peak of waveform,while have an obvious effect on the height of power limiting platform. When the medium which has short phonon lifetime and small gain coefficient is used, the height of power limiting platform is comparatively high. In experiment, by focusing 1064-nm, 8-ns, 18-mJ pulses into these three media, the waveforms of transmitted pulses are obtained. The experimental results are in good agreement with conclusions of theoretical simulations.

  11. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices

    Science.gov (United States)

    Ravichandran, Jayakanth; Yadav, Ajay K.; Cheaito, Ramez; Rossen, Pim B.; Soukiassian, Arsen; Suresha, S. J.; Duda, John C.; Foley, Brian M.; Lee, Che-Hui; Zhu, Ye; Lichtenberger, Arthur W.; Moore, Joel E.; Muller, David A.; Schlom, Darrell G.; Hopkins, Patrick E.; Majumdar, Arun; Ramesh, Ramamoorthy; Zurbuchen, Mark A.

    2014-02-01

    Elementary particles such as electrons or photons are frequent subjects of wave-nature-driven investigations, unlike collective excitations such as phonons. The demonstration of wave-particle crossover, in terms of macroscopic properties, is crucial to the understanding and application of the wave behaviour of matter. We present an unambiguous demonstration of the theoretically predicted crossover from diffuse (particle-like) to specular (wave-like) phonon scattering in epitaxial oxide superlattices, manifested by a minimum in lattice thermal conductivity as a function of interface density. We do so by synthesizing superlattices of electrically insulating perovskite oxides and systematically varying the interface density, with unit-cell precision, using two different epitaxial-growth techniques. These observations open up opportunities for studies on the wave nature of phonons, particularly phonon interference effects, using oxide superlattices as model systems, with extensive applications in thermoelectrics and thermal management.

  12. Controllable spin and valley polarized current through a superlattice of normal/ferromagnetic/normal silicene junction

    Science.gov (United States)

    Rashidian, Z.; Hajati, Y.; Rezaeipour, S.; Baher, S.

    2017-02-01

    The spin and valley transports in a superlattice of normal/ferromagnetic/normal silicene junction are studied theoretically. Transport properties in particular valley-resolved conductance, spin and valley polarization have been computed by the Landauer Buttiker formula. We achieve fully valley and spin polarized current in the superlattice N/F/N structure. Our findings also imply that by increasing the number of ferromagnetic barriers, the onset of fully spin and valley polarized current always occur for lower values of staggered potential(Δz/E) and length of the ferromagnetic region (Kf L) in the silicene supelattice structure as compared with N/F/N silicene junction. Fully spin and valley polarizations make silicene superlattice a suitable candidate for spin-valleytronics applications.

  13. The Tip-Induced Twisted Bilayer Graphene Superlattice on HOPG: Capillary Attraction Effect

    CERN Document Server

    Yin, Long Jing; Feng, Ke Ke; Dou, Rui-Fen; Nie, Jia-Cai

    2014-01-01

    We use the tip of the scanning tunneling microscope (STM) to manipulate single weakly bound nanometer-sized sheets on the the highly oriented pyrolytic graphite (HOPG) surface through artifically increasing the tip and sample interaction in humid environment. By this means it is possible to tear apart a graphite sheet againt a step and fold this part onto the HOPG surface and thus generate the gaphene superlattices with hexagonal symmetry. The tip and sample surface interactions, including the van der Waals force, eletrostatic force and capillary attraction force originating from the Laplace pressure due to the formation of a highly curved fluid meniscus connecting the tip and sample, are discussed in details to understand the fromation mechnism of graphen superlattice induced by the STM tip. Especially, the capillary force is the key role in manipulating the graphite surface sheet in the hunmidity condition. Our approach may provides a simple and feasible route to prepare the controllable superlattices and g...

  14. Noise-enhanced spontaneous chaos in semiconductor superlattices at room temperature

    Science.gov (United States)

    Alvaro, M.; Carretero, M.; Bonilla, L. L.

    2014-08-01

    Physical systems exhibiting fast spontaneous chaotic oscillations are used to generate high-quality true random sequences in random number generators. The concept of using fast practical entropy sources to produce true random sequences is crucial to make storage and transfer of data more secure at very high speeds. While the first high-speed devices were chaotic semiconductor lasers, the discovery of spontaneous chaos in semiconductor superlattices at room temperature provides a valuable nanotechnology alternative. Spontaneous chaos was observed in 1996 experiments at temperatures below liquid nitrogen. Here we show spontaneous chaos at room temperature appears in idealized superlattices for voltage ranges where sharp transitions between different oscillation modes occur. Internal and external noises broaden these voltage ranges and enhance the sensitivity to initial conditions in the superlattice snail-shaped chaotic attractor thereby rendering spontaneous chaos more robust.

  15. Optically and Electrically Tunable Dirac Points and Zitterbewegung in Graphene-Based Photonic Superlattices

    CERN Document Server

    Deng, Hanying; Malomed, Boris A; Chen, Xianfeng; Panoiu, Nicolae C

    2015-01-01

    We demonstrate that graphene-based photonic superlattices provide a versatile platform for electrical and all-optical control of photonic beams with deep-subwavelength accuracy. Specifically, by inserting graphene sheets into periodic metallo-dielectric structures one can design optical superlattices that posses photonic Dirac points (DPs) at frequencies at which the spatial average of the permittivity of the superlattice, $\\bar{ \\varepsilon}$, vanishes. Similar to the well-known zero-$\\bar{n}$ bandgaps, we show that these zero-$\\bar{\\varepsilon}$ DPs are highly robust against structural disorder. We also show that, by tuning the graphene permittivity via the optical Kerr effect or electrical doping, one can induce a spectral variation of the DP exceeding \\SI{30}{\

  16. Bulk elastic waves with unidirectional backscattering-immune topological states in a time-dependent superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Swinteck, N., E-mail: swinteck@email.arizona.edu; Matsuo, S.; Runge, K.; Lucas, P.; Deymier, P. A. [Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721 (United States); Vasseur, J. O. [Institut d' Electronique, de Micro-électronique et de Nanotechnologie, UMR CNRS 8520, Cité Scientifique, 59652 Villeneuve d' Ascq Cedex (France)

    2015-08-14

    Recent progress in electronic and electromagnetic topological insulators has led to the demonstration of one way propagation of electron and photon edge states and the possibility of immunity to backscattering by edge defects. Unfortunately, such topologically protected propagation of waves in the bulk of a material has not been observed. We show, in the case of sound/elastic waves, that bulk waves with unidirectional backscattering-immune topological states can be observed in a time-dependent elastic superlattice. The superlattice is realized via spatial and temporal modulation of the stiffness of an elastic material. Bulk elastic waves in this superlattice are supported by a manifold in momentum space with the topology of a single twist Möbius strip. Our results demonstrate the possibility of attaining one way transport and immunity to scattering of bulk elastic waves.

  17. Lattice Thermal Conductivity of Superlattices from an Adiabatic Bond Charge Model

    Science.gov (United States)

    Ward, Alistair; Broido, David

    2007-03-01

    The adiabatic bond charge model (ABCM) has successfully rendered phonon dispersions of a host of bulk semiconductors [1,2] and has also been used to calculate the phonon dispersions in quantum well superlattices [3]. We have developed an ABCM for superlattices and combined it with a symmetry-based representation of the anharmonic interatomic forces to calculate the lattice thermal conductivity of short-period superlattices, using an iterative solution to the Boltzmann-Peierls equation [4]. We compare our ABCM results with those obtained from some commonly used models for the interatomic forces in semiconductors to assess the importance of accurate descriptions of the phonon dispersions in thermal conductivity calculations. [1] W. Weber, Physical Review B 15, 4789 (1977). [2] K. C. Rustagi and W. Weber, Solid State Communications 18, 673 (1976). [3] S. K. Yip and Y. C. Chang, Physical Review B 30 7037 (1984). [4] D. A. Broido, A. Ward, and N. Mingo, Physical Review B 72, 014308 (2005).

  18. Synthesis and electrical properties of In2O3(ZnO)m superlattice nanobelt

    Institute of Scientific and Technical Information of China (English)

    唐欣月; 高红; 武立立; 温静; 潘思明; 刘欣; 张喜田

    2015-01-01

    One-dimensional (1D) In2O3(ZnO)m superlattice nanobelts are synthesized by chemical vapor deposition method. The formation of In2O3(ZnO)m superlattice is verified by the high-resolution transmission electron microscopy images. The typical zigzag boundaries could be clearly observed. An additional peak at 614 cm−1 is found in the Raman spec-trum, which may correspond to the superlattice structure. The study about the electrical transport properties reveals that the In2O3(ZnO)m nanobelts exhibit peculiar nonlinear I–V characteristics even under the Ohmic contact measurement con-dition, which are different from the Ohmic behaviors of the In-doped ZnO nanobelts. The photoelectrical measurements show the differences in photocurrent property between them, and their transport mechanisms are also discussed.

  19. Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Michael B.; Ku, Jessie C.; Vaccarezza, Victoria M.; Schatz, George C.; Mirkin , Chad A. (NWU)

    2016-06-15

    The nanoscale manipulation of matter allows properties to be created in a material that would be difficult or even impossible to achieve in the bulk state. Progress towards such functional nanoscale architectures requires the development of methods to precisely locate nanoscale objects in three dimensions and for the formation of rigorous structure–function relationships across multiple size regimes (beginning from the nanoscale). Here, we use DNA as a programmable ligand to show that two- and three-dimensional mesoscale superlattice crystals with precisely engineered optical properties can be assembled from the bottom up. The superlattices can transition from exhibiting the properties of the constituent plasmonic nanoparticles to adopting the photonic properties defined by the mesoscale crystal (here a rhombic dodecahedron) by controlling the spacing between the gold nanoparticle building blocks. Furthermore, we develop a generally applicable theoretical framework that illustrates how crystal habit can be a design consideration for controlling far-field extinction and light confinement in plasmonic metamaterial superlattices.

  20. Wannier-Stark localization and terahertz electroluminescence of natural SiC superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Sankin, V. I.; Andrianov, A. V.; Petrov, A. G.; Zakhar' in, A. O. [A.F. Ioffe Physical Technical Institute, 194021 St. Petersburg (Russian Federation)

    2013-12-04

    We report on efficient terahertz electroluminescence in the region of 1.5-2 THz from high electric field biased 6H-SiC n{sup +}−n{sup −}−n{sup +} structures with a natural superlattice at 7 K. The properties of the terahertz emission allow it to be attributed to spontaneous radiation resulting from electron Bloch oscillations in SiC natural superlattice. The use of the unique object, namely, natural superlattice of SiC allowed us to demonstrate a whole series of remarkable effects of Wannier-Stark localization and to get the intensive terahertz emission under steady-state electrical excitation of Bloch oscillations.