WorldWideScience

Sample records for superior parietal activity

  1. Motor learning in individuals with autism spectrum disorder: activation in superior parietal lobule related to learning and repetitive behaviors.

    Science.gov (United States)

    Travers, Brittany G; Kana, Rajesh K; Klinger, Laura G; Klein, Christopher L; Klinger, Mark R

    2015-02-01

    Motor-linked implicit learning is the learning of a sequence of movements without conscious awareness. Although motor symptoms are frequently reported in individuals with autism spectrum disorder (ASD), recent behavioral studies have suggested that motor-linked implicit learning may be intact in ASD. The serial reaction time (SRT) task is one of the most common measures of motor-linked implicit learning. The present study used a 3T functional magnetic resonance imaging scanner to examine the behavioral and neural correlates of real-time motor sequence learning in adolescents and adults with ASD (n = 15) compared with age- and intelligence quotient-matched individuals with typical development (n = 15) during an SRT task. Behavioral results suggested less robust motor sequence learning in individuals with ASD. Group differences in brain activation suggested that individuals with ASD, relative to individuals with typical development, showed decreased activation in the right superior parietal lobule (SPL) and right precuneus (Brodmann areas 5 and 7, and extending into the intraparietal sulcus) during learning. Activation in these areas (and in areas such as the right putamen and right supramarginal gyrus) was found to be significantly related to behavioral learning in this task. Additionally, individuals with ASD who had more severe repetitive behavior/restricted interest symptoms demonstrated greater decreased activation in these regions during motor learning. In conjunction, these results suggest that the SPL may play an important role in motor learning and repetitive behavior in individuals with ASD.

  2. Self-face recognition shares brain regions active during proprioceptive illusion in the right inferior fronto-parietal superior longitudinal fasciculus III network.

    Science.gov (United States)

    Morita, Tomoyo; Saito, Daisuke N; Ban, Midori; Shimada, Koji; Okamoto, Yuko; Kosaka, Hirotaka; Okazawa, Hidehiko; Asada, Minoru; Naito, Eiichi

    2017-04-21

    Proprioception is somatic sensation that allows us to sense and recognize position, posture, and their changes in our body parts. It pertains directly to oneself and may contribute to bodily awareness. Likewise, one's face is a symbol of oneself, so that visual self-face recognition directly contributes to the awareness of self as distinct from others. Recently, we showed that right-hemispheric dominant activity in the inferior fronto-parietal cortices, which are connected by the inferior branch of the superior longitudinal fasciculus (SLF III), is associated with proprioceptive illusion (awareness), in concert with sensorimotor activity. Herein, we tested the hypothesis that visual self-face recognition shares brain regions active during proprioceptive illusion in the right inferior fronto-parietal SLF III network. We scanned brain activity using functional magnetic resonance imaging while twenty-two right-handed healthy adults performed two tasks. One was a proprioceptive illusion task, where blindfolded participants experienced a proprioceptive illusion of right hand movement. The other was a visual self-face recognition task, where the participants judged whether an observed face was their own. We examined whether the self-face recognition and the proprioceptive illusion commonly activated the inferior fronto-parietal cortices connected by the SLF III in a right-hemispheric dominant manner. Despite the difference in sensory modality and in the body parts involved in the two tasks, both tasks activated the right inferior fronto-parietal cortices, which are likely connected by the SLF III, in a right-side dominant manner. Here we discuss possible roles for right inferior fronto-parietal activity in bodily awareness and self-awareness. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Reduced parietal activation in cervical dystonia after parietal TMS interleaved with fMRI

    NARCIS (Netherlands)

    de Vries, Paulien M.; de Jong, Bauke M.; Bohning, Daryl E.; Hinson, Vanessa K.; George, Mark S.; Leenders, Klaus L.

    2012-01-01

    Objective: Clinically normal hand movement with altered cerebral activation patterns in cervical dystonia (CD) may imply cerebral adaptation. Since impaired sensorimotor integration appears to play a role in dystonia, left superior parietal cortex modulation with repetitive transcranial magnetic sti

  4. Neural correlates of superior intelligence: stronger recruitment of posterior parietal cortex.

    Science.gov (United States)

    Lee, Kun Ho; Choi, Yu Yong; Gray, Jeremy R; Cho, Sun Hee; Chae, Jeong-Ho; Lee, Seungheun; Kim, Kyungjin

    2006-01-15

    General intelligence (g) is a common factor in diverse cognitive abilities and a major influence on life outcomes. Neuroimaging studies in adults suggest that the lateral prefrontal and parietal cortices play a crucial role in related cognitive activities including fluid reasoning, the control of attention, and working memory. Here, we investigated the neural bases for intellectual giftedness (superior-g) in adolescents, using fMRI. The participants consisted of a superior-g group (n = 18, mean RAPM = 33.9 +/- 0.8, >99%) from the national academy for gifted adolescents and the control group (n = 18, mean RAPM = 22.8 +/- 1.6, 60%) from local high schools in Korea (mean age = 16.5 +/- 0.8). fMRI data were acquired while they performed two reasoning tasks with high and low g-loadings. In both groups, the high g-loaded tasks specifically increased regional activity in the bilateral fronto-parietal network including the lateral prefrontal, anterior cingulate, and posterior parietal cortices. However, the regional activations of the superior-g group were significantly stronger than those of the control group, especially in the posterior parietal cortex. Moreover, regression analysis revealed that activity of the superior and intraparietal cortices (BA 7/40) strongly covaried with individual differences in g (r = 0.71 to 0.81). A correlated vectors analysis implicated bilateral posterior parietal areas in g. These results suggest that superior-g may not be due to the recruitment of additional brain regions but to the functional facilitation of the fronto-parietal network particularly driven by the posterior parietal activation.

  5. Left superior parietal cortex involvement in writing: integrating fMRI with lesion evidence.

    Science.gov (United States)

    Menon, V; Desmond, J E

    2001-10-01

    Writing is a uniquely human skill that we utilize nearly everyday. Lesion studies in patients with Gerstmann's syndrome have pointed to the parietal cortex as being critical for writing. Very little information is, however, available about the precise anatomical location of brain regions subserving writing in normal healthy individuals. In this study, we used functional magnetic resonance imaging (fMRI) to investigate parietal lobe function during writing to dictation. Significant clusters of activation were observed in left superior parietal lobe (SPL) and the dorsal aspects of the inferior parietal cortex (IPC) bordering the SPL. Localized clusters of activation were also observed in the left premotor cortex, sensorimotor cortex and supplementary motor area. No activation cluster was observed in the right hemisphere. These results clearly indicate that writing appears to be primarily organized in the language-dominant hemisphere. Further analysis revealed that within the parietal cortex, activation was significantly greater in the left SPL, compared to left IPC. Together with lesion studies, findings from the present study provide further evidence for the essential role of the left SPL in writing. Deficits to the precise left hemisphere parietal cortex regions identified in the present study may specifically underlie disorders of writing observed in Gerstmann's syndrome and apractic agraphia.

  6. Visual processing of multiple elements in the dyslexic brain: evidence for a superior parietal dysfunction

    Directory of Open Access Journals (Sweden)

    Muriel Anne Lobier

    2014-07-01

    Full Text Available The visual attention (VA span deficit hypothesis of developmental dyslexia posits that impaired multiple element processing can be responsible for poor reading outcomes. In VA span impaired dyslexic children, poor performance on letter report tasks is associated with reduced parietal activations for multiple letter processing. While this hints towards a non-specific, attention-based dysfunction, it is still unclear whether reduced parietal activity generalizes to other types of stimuli. Furthermore, putative links between reduced parietal activity and reduced ventral occipito-temporal (vOT in dyslexia have yet to be explored. Using fMRI, we measured brain activity in 12 VA span impaired dyslexic adults and 12 adult skilled readers while they carried out a categorization task on single or multiple alphanumeric or non-alphanumeric characters. While healthy readers activated parietal areas more strongly for multiple than single element processing (right-sided for alphanumeric and bilateral for non-alphanumeric, similar stronger multiple element right parietal activations were absent for dyslexic participants. Contrasts between skilled and dyslexic readers revealed significantly reduced right superior parietal lobule (SPL activity for dyslexic readers regardless of stimuli type. Using a priori anatomically defined ROI, we showed that neural activity was reduced for dyslexic participants in both SPL and vOT bilaterally. Finally, we used multiple regressions to test whether SPL activity could predict vOT activity in each group. In the left hemisphere, SPL activity modulated vOT activity for both normal and dyslexic readers. In contrast, in the right hemisphere, SPL activity modulated vOT activity only for dyslexic readers. These results bring critical support to the visual attention interpretation of the VA Span deficit. In addition, they offer a new insight on how deficits in automatic vOT based word recognition could arise in developmental dyslexia.

  7. Functional Connectivity Between Superior Parietal Lobule and Primary Visual Cortex "at Rest" Predicts Visual Search Efficiency.

    Science.gov (United States)

    Bueichekú, Elisenda; Ventura-Campos, Noelia; Palomar-García, María-Ángeles; Miró-Padilla, Anna; Parcet, María-Antonia; Ávila, César

    2015-10-01

    Spatiotemporal activity that emerges spontaneously "at rest" has been proposed to reflect individual a priori biases in cognitive processing. This research focused on testing neurocognitive models of visual attention by studying the functional connectivity (FC) of the superior parietal lobule (SPL), given its central role in establishing priority maps during visual search tasks. Twenty-three human participants completed a functional magnetic resonance imaging session that featured a resting-state scan, followed by a visual search task based on the alphanumeric category effect. As expected, the behavioral results showed longer reaction times and more errors for the within-category (i.e., searching a target letter among letters) than the between-category search (i.e., searching a target letter among numbers). The within-category condition was related to greater activation of the superior and inferior parietal lobules, occipital cortex, inferior frontal cortex, dorsal anterior cingulate cortex, and the superior colliculus than the between-category search. The resting-state FC analysis of the SPL revealed a broad network that included connections with the inferotemporal cortex, dorsolateral prefrontal cortex, and dorsal frontal areas like the supplementary motor area and frontal eye field. Noteworthy, the regression analysis revealed that the more efficient participants in the visual search showed stronger FC between the SPL and areas of primary visual cortex (V1) related to the search task. We shed some light on how the SPL establishes a priority map of the environment during visual attention tasks and how FC is a valuable tool for assessing individual differences while performing cognitive tasks.

  8. The role of left superior parietal lobe in male sexual behavior: dynamics of distinct components revealed by FMRI.

    Science.gov (United States)

    Cera, Nicoletta; Di Pierro, Ezio D; Sepede, Gianna; Gambi, Francesco; Perrucci, Mauro Gianni; Merla, Arcangelo; Tartaro, Armando; Del Gratta, Cosimo; Galatioto Paradiso, Giuseppe; Vicentini, Carlo; Romani, Gian Luca; Ferretti, Antonio

    2012-06-01

    Despite the interest for the brain correlates of male sexual arousal, few studies investigated neural mechanisms underlying psychogenic erectile dysfunction (ED). Although these studies showed several brain regions active in ED patients during visual erotic stimulation, the dynamics of inhibition of sexual response is still unclear. This study investigated the dynamics of brain regions involved in the psychogenic ED. Functional magnetic resonance imaging (fMRI) and simultaneous penile tumescence (PT) were used to study brain activity evoked in 17 outpatients with psychogenic ED and 19 healthy controls during visual erotic stimulation. Patterns of brain activation related to different phases of sexual response in the two groups were compared. Simultaneous recording of blood oxygen level-dependent fMRI responses and PT during visual erotic stimulation. During visual erotic stimuli, a larger activation was observed for the patient group in the left superior parietal lobe, ventromedial prefrontal cortex, and posterior cingulate cortex, whereas the control group showed larger activation in the right middle insula and dorsal anterior cingulate cortex and hippocampus. Moreover, the left superior parietal lobe showed a larger activation in patients than controls especially during the later stage of sexual response. Our results suggest that, among regions more active in patient group, the left superior parietal lobe plays a crucial role in inhibition of sexual response. Previous studies showed that left superior parietal lobe is involved in monitoring of internal body representation. The larger activation of this region in patients during later stages of sexual response suggests a high monitoring of the internal body representation, possibly affecting the behavioral response. These findings provide insight on brain mechanisms involved in psychogenic ED. © 2012 International Society for Sexual Medicine.

  9. Decoding the superior parietal lobule connections of the superior longitudinal fasciculus/arcuate fasciculus in the human brain.

    Science.gov (United States)

    Kamali, A; Sair, H I; Radmanesh, A; Hasan, K M

    2014-09-26

    The temporo-parietal (TP) white matter connections between the inferior parietal lobule and superior temporal gyrus as part of the superior longitudinal fasciculus/arcuate fasciculus (SLF/AF) or middle longitudinal fasciculus (MdLF) have been studied in prior diffusion tensor tractography (DTT) studies. However, few studies have been focusing on the higher TP connections of the superior parietal lobule with the temporal lobe. These higher TP connections have been shown to have a role in core processes such as attention, memory, emotions, and language. Our most recent study, for the first time, hinted to the possibility of a long white matter connection interconnecting the superior parietal lobule (SPL) with the posterior temporal lobe in human brain which we call the SLF/AF TP-SPL and for a shorter abbreviation, the TP-SPL. We decided to further investigate this white matter connection using fiber assignment by continuous tracking deterministic tractography and high spatial resolution diffusion tensor imaging on 3T. Five healthy right-handed men (age range 24-37 years) were studied. We delineated the SPL connections of the SLF/AF TP bilaterally in five normal adult human brains. Using a high resolution DTT technique, we demonstrate for the first time, the trajectory of a long fiber bundle connectivity between the SPL and posterior temporal lobe, called the SLF/AF TP-SPL (or the TP-SPL), bilaterally in five healthy adult human brains. We also demonstrate the trajectory of the vertically oriented posterior TP connections, interconnecting the inferior parietal lobule (IPL) with the posterior temporal lobe (TP-IPL) in relation to the TP-SPL, arcuate fasciculus and other major language pathways. In the current study, for the first time, we categorized the TP connections into the anterior and posterior connectivity groups and subcategorized each one into the SPL or IPL connections. Published by Elsevier Ltd.

  10. Sustained attention is associated with right superior longitudinal fasciculus and superior parietal white matter microstructure in children.

    Science.gov (United States)

    Klarborg, Brith; Skak Madsen, Kathrine; Vestergaard, Martin; Skimminge, Arnold; Jernigan, Terry L; Baaré, William F C

    2013-12-01

    Sustained attention develops during childhood and has been linked to the right fronto-parietal cortices in functional imaging studies; however, less is known about its relation to white matter (WM) characteristics. Here we investigated whether the microstructure of the WM underlying and connecting the right fronto-parietal cortices was associated with sustained attention performance in a group of 76 typically developing children aged 7-13 years. Sustained attention was assessed using a rapid visual information processing paradigm. The two behavioral measures of interest were the sensitivity index d' and the coefficient of variation in reaction times (RTCV ). Diffusion-weighted imaging was performed. Mean fractional anisotropy (FA) was extracted from the WM underlying right dorsolateral prefrontal (DLPFC) and parietal cortex (PC), and the right superior longitudinal fasciculus (SLF), as well as equivalent anatomical regions-of-interest (ROIs) in the left hemisphere and mean global WM FA. When analyzed collectively, right hemisphere ROIs FA was significantly associated with d' independently of age. Follow-up analyses revealed that only FA of right SLF and the superior part of the right PC contributed significantly to this association. RTCV was significantly associated with right superior PC FA, but not with right SLF FA. Observed associations remained significant after controlling for FA of equivalent left hemisphere ROIs or global mean FA. In conclusion, better sustained attention performance was associated with higher FA of WM in regions connecting right frontal and parietal cortices. Further studies are needed to clarify to which extent these associations are driven by maturational processes, stable characteristics and/or experience.

  11. Time course of the involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum in emotional prosody perception.

    Directory of Open Access Journals (Sweden)

    Marjolijn Hoekert

    Full Text Available In verbal communication, not only the meaning of the words convey information, but also the tone of voice (prosody conveys crucial information about the emotional state and intentions of others. In various studies right frontal and right temporal regions have been found to play a role in emotional prosody perception. Here, we used triple-pulse repetitive transcranial magnetic stimulation (rTMS to shed light on the precise time course of involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum. We hypothesized that information would be processed in the right anterior superior temporal gyrus before being processed in the right fronto-parietal operculum. Right-handed healthy subjects performed an emotional prosody task. During listening to each sentence a triplet of TMS pulses was applied to one of the regions at one of six time points (400-1900 ms. Results showed a significant main effect of Time for right anterior superior temporal gyrus and right fronto-parietal operculum. The largest interference was observed half-way through the sentence. This effect was stronger for withdrawal emotions than for the approach emotion. A further experiment with the inclusion of an active control condition, TMS over the EEG site POz (midline parietal-occipital junction, revealed stronger effects at the fronto-parietal operculum and anterior superior temporal gyrus relative to the active control condition. No evidence was found for sequential processing of emotional prosodic information from right anterior superior temporal gyrus to the right fronto-parietal operculum, but the results revealed more parallel processing. Our results suggest that both right fronto-parietal operculum and right anterior superior temporal gyrus are critical for emotional prosody perception at a relatively late time period after sentence onset. This may reflect that emotional cues can still be ambiguous at the beginning of sentences, but become

  12. The Neuroanatomical Basis for Posterior Superior Parietal Lobule Control Lateralization of Visuospatial Attention.

    Science.gov (United States)

    Wu, Yan; Wang, Jiaojian; Zhang, Yun; Zheng, Dingchen; Zhang, Jinfeng; Rong, Menglin; Wu, Huawang; Wang, Yinyan; Zhou, Ke; Jiang, Tianzi

    2016-01-01

    The right hemispheric dominance in visuospatial attention in human brain has been well established. Converging evidence has documented that ventral posterior parietal cortex (PPC) plays an important role in visuospatial attention. The role of dorsal PPC subregions, especially the superior parietal lobule (SPL) in visuospatial attention is still controversial. In the current study, we used repetitive transcranial magnetic stimulation (rTMS) and diffusion magnetic resonance imaging (MRI) techniques to test the role of posterior SPL in visuospatial attention and to investigate the potential neuroanatomical basis for right hemisphere dominance in visuospatial function. Transcranial magnetic stimulation (TMS) results unraveled that the right SPL predominantly mediated visuospatial attention compared to left SPL. Anatomical connections analyses between the posterior SPL and the intrahemispheric frontal subregions and the contralateral PPC revealed that right posterior SPL has stronger anatomical connections with the ipsilateral middle frontal gyrus (MFG), with the ipsilateral inferior frontal gyrus (IFG), and with contralateral PPC than that of the left posterior SPL. Furthermore, these asymmetric anatomical connections were closely related to behavioral performances. Our findings indicate that SPL plays a crucial role in regulating visuospatial attention, and dominance of visuospatial attention results from unbalanced interactions between the bilateral fronto-parietal networks and the interhemispheric parietal network.

  13. Central and peripheral components of writing critically depend on a defined area of the dominant superior parietal gyrus.

    Science.gov (United States)

    Magrassi, Lorenzo; Bongetta, Daniele; Bianchini, Simonetta; Berardesca, Marta; Arienta, Cesare

    2010-07-30

    Classical neuropsychological models of writing separate central (linguistic) processes common to oral spelling, writing and typing from peripheral (motor) processes that are modality specific. Damage to the left superior parietal gyrus, an area of the cortex involved in peripheral processes specific to handwriting, should generate distorted graphemes but not misspelled words, while damage to other areas of the cortex like the frontal lobe should produce alterations in written and oral spelling without distorted graphemes. We describe the clinical and neuropsychological features of a patient with combined agraphia for handwriting and typewriting bearing a small glioblastoma in the left parietal lobe. His agraphia resolved after antiedema therapy and we tested by bipolar cortical stimulation his handwriting abilities during an awake neurosurgical procedure. We found that we could reversibly re-induce the same defects of writing by stimulating during surgery a limited area of the superior parietal gyrus in the same patient and in an independent patient that was never agraphic before the operation. In those patients stimulation caused spelling errors, poorly formed letters and in some cases a complete cessation of writing with minimal or no effects on oral spelling. Our results suggest that stimulating a specific area in the superior parietal gyrus we can generate different patterns of agraphia. Moreover, our findings also suggest that some of the central processes specific for typing and handwriting converge with motor processes at least in the limited portion of the superior parietal gyrus we mapped in our patients.

  14. Brain activity dynamics in human parietal regions during spontaneous switches in bistable perception.

    Science.gov (United States)

    Megumi, Fukuda; Bahrami, Bahador; Kanai, Ryota; Rees, Geraint

    2015-02-15

    The neural mechanisms underlying conscious visual perception have been extensively investigated using bistable perception paradigms. Previous functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) studies suggest that the right anterior superior parietal (r-aSPL) and the right posterior superior parietal lobule (r-pSPL) have opposite roles in triggering perceptual reversals. It has been proposed that these two areas are part of a hierarchical network whose dynamics determine perceptual switches. However, how these two parietal regions interact with each other and with the rest of the brain during bistable perception is not known. Here, we investigated such a model by recording brain activity using fMRI while participants viewed a bistable structure-from-motion stimulus. Using dynamic causal modeling (DCM), we found that resolving such perceptual ambiguity was specifically associated with reciprocal interactions between these parietal regions and V5/MT. Strikingly, the strength of bottom-up coupling between V5/MT to r-pSPL and from r-pSPL to r-aSPL predicted individual mean dominance duration. Our findings are consistent with a hierarchical predictive coding model of parietal involvement in bistable perception and suggest that visual information processing underlying spontaneous perceptual switches can be described as changes in connectivity strength between parietal and visual cortical regions.

  15. Functional integration of parietal lobe activity in early Alzheimer disease.

    Science.gov (United States)

    Jacobs, H I L; Van Boxtel, M P J; Heinecke, A; Gronenschild, E H B M; Backes, W H; Ramakers, I H G B; Jolles, J; Verhey, F R J

    2012-01-31

    Parietal lobe dysfunction is an important characteristic of early Alzheimer disease (AD). Functional studies have shown conflicting parietal activation patterns indicative of either compensatory or dysfunctional mechanisms. This study aimed at examining activation differences in early AD using a visuospatial task. We focused on functional characteristics of the parietal lobe and examined compensation or disconnection mechanisms by combining a fMRI task with effective connectivity measures from Granger causality mapping (GCM). Eighteen male patients with amnestic mild cognitive impairment (aMCI) and 18 male cognitively healthy older individuals were given a mental rotation task with different rotation angles. There were no behavioral group differences on the fMRI task. Separate measurements at each angle revealed widespread activation group differences. More temporal and parietal activation in the higher angle condition was observed in patients with aMCI. The parametric modulation, which identifies regions associated with increasing angle, confirmed these results. The GCM showed increased connectivity within the parietal lobe and between parietal and temporal regions in patients with aMCI. Decreased connectivity was found between the inferior parietal lobule and posterior cingulate gyrus. Connectivity patterns correlated with memory performance scores in patients with aMCI. Our results demonstrate increased effective temporoparietal connectivity in patients with aMCI, while maintaining intact behavioral performance. This might be a compensational mechanism to counteract a parietal-posterior cingulate gyrus disconnection. These findings highlight the importance of connectivity changes in the pathophysiology of AD. In addition, effective connectivity may be a promising method for evaluating interventions aimed at the promotion of compensatory mechanisms.

  16. Changes in Effective Connectivity of the Superior Parietal Lobe during Inhibition and Redirection of Eye Movements

    Science.gov (United States)

    Asscheman, Susanne J.; Thakkar, Katharine N.; Neggers, Sebastiaan F.W.

    2015-01-01

    Executive control is the ability to flexibly control behavior and is frequently studied with saccadic eye movements. Contrary to frontal oculomotor areas, the role of the superior parietal lobe (SPL) in the executive control of saccades remains unknown. To explore the role of SPL networks in saccade control, we performed a saccadic search-step task while acquiring functional magnetic resonance imaging data for 41 participants. Psychophysiological interaction analyses assessed task-related differences in the effective connectivity of SPL with other brain regions during the inhibition and redirection of saccades. Results indicate an increased coupling of SPL with frontal, posterior, and striatal oculomotor areas for redirected saccades versus visually guided saccades. Saccade inhibition versus unsuccessful inhibition revealed an increased coupling of SPL with dorsolateral prefrontal cortex and anterior cingulate cortex. We discuss how these findings relate to ongoing debates about the implementation of executive control and conclude that early attentional control and rapid updating of saccade goals are important signals for executive control. PMID:27147827

  17. Changes in Effective Connectivity of the Superior Parietal Lobe during Inhibition and Redirection of Eye Movements

    Directory of Open Access Journals (Sweden)

    Susanne J. Asscheman

    2015-01-01

    Full Text Available Executive control is the ability to flexibly control behavior and is frequently studied with saccadic eye movements. Contrary to frontal oculomotor areas, the role of the superior parietal lobe (SPL in the executive control of saccades remains unknown. To explore the role of SPL networks in saccade control, we performed a saccadic search-step task while acquiring functional magnetic resonance imaging data for 41 participants. Psychophysiological interaction analyses assessed task-related differences in the effective connectivity of SPL with other brain regions during the inhibition and redirection of saccades. Results indicate an increased coupling of SPL with frontal, posterior, and striatal oculomotor areas for redirected saccades versus visually guided saccades. Saccade inhibition versus unsuccessful inhibition revealed an increased coupling of SPL with dorsolateral prefrontal cortex and anterior cingulate cortex. We discuss how these findings relate to ongoing debates about the implementation of executive control and conclude that early attentional control and rapid updating of saccade goals are important signals for executive control.

  18. Changes in Effective Connectivity of the Superior Parietal Lobe during Inhibition and Redirection of Eye Movements.

    Science.gov (United States)

    Asscheman, Susanne J; Thakkar, Katharine N; Neggers, Sebastiaan F W

    2015-01-01

    Executive control is the ability to flexibly control behavior and is frequently studied with saccadic eye movements. Contrary to frontal oculomotor areas, the role of the superior parietal lobe (SPL) in the executive control of saccades remains unknown. To explore the role of SPL networks in saccade control, we performed a saccadic search-step task while acquiring functional magnetic resonance imaging data for 41 participants. Psychophysiological interaction analyses assessed task-related differences in the effective connectivity of SPL with other brain regions during the inhibition and redirection of saccades. Results indicate an increased coupling of SPL with frontal, posterior, and striatal oculomotor areas for redirected saccades versus visually guided saccades. Saccade inhibition versus unsuccessful inhibition revealed an increased coupling of SPL with dorsolateral prefrontal cortex and anterior cingulate cortex. We discuss how these findings relate to ongoing debates about the implementation of executive control and conclude that early attentional control and rapid updating of saccade goals are important signals for executive control.

  19. Reaching in depth: hand position dominates over binocular eye position in the rostral superior parietal lobule.

    Science.gov (United States)

    Ferraina, Stefano; Brunamonti, Emiliano; Giusti, Maria Assunta; Costa, Stefania; Genovesio, Aldo; Caminiti, Roberto

    2009-09-16

    Neural activity was recorded in area PE (dorsorostral part of Brodmann's area 5) of the posterior parietal cortex while monkeys performed arm reaching toward memorized targets located at different distances from the body. For any given distance, arm movements were performed while the animal kept binocular eye fixation constant. Under these conditions, the activity of a large proportion (36%) of neurons was modulated by reach distance during the memory period. By varying binocular eye position (vergence angle) and initial hand position, we found that the reaching-related activity of most neurons (61%) was influenced by changing the starting position of the hand, whereas that of a smaller, although substantial, population (13%) was influenced by changes of binocular eye position (i.e., by the angle of vergence). Furthermore, the modulation of the neural activity was better explained expressing the reach movement end-point, corresponding to the memorized target location, in terms of distance from the initial hand position, rather than from the body. These results suggest that the activity of neurons in area PE combines information about eye and hand position to encode target distance for reaching in depth predominantly in hand coordinates. This encoding mechanism is consistent with the position of PE in the functional gradient that characterizes the parieto-frontal network underlying reaching.

  20. Sustained attention is associated with right superior longitudinal fasciculus and superior parietal white matter microstructure in children

    DEFF Research Database (Denmark)

    Klarborg, Brith; Skak Madsen, Kathrine; Vestergaard, Martin

    2013-01-01

    the right fronto-parietal cortices was associated with sustained attention performance in a group of 76 typically developing children aged 7-13 years. Sustained attention was assessed using a rapid visual information processing paradigm. The two behavioral measures of interest were the sensitivity index d......Sustained attention develops during childhood and has been linked to the right fronto-parietal cortices in functional imaging studies; however, less is known about its relation to white matter (WM) characteristics. Here we investigated whether the microstructure of the WM underlying and connecting...

  1. Atypical parietal lobe activity to subliminal faces in youth with a family history of alcoholism.

    Science.gov (United States)

    Peraza, Jennifer; Cservenka, Anita; Herting, Megan M; Nagel, Bonnie J

    2015-03-01

    Adults with alcohol use disorders (AUDs) show different behavioral and neurological functioning during emotional processing tasks from healthy controls. Adults with a family history (FHP) of AUD also show different activation in limbic brain areas, such as the amygdala. However, it is unclear if this pattern exists during adolescence before any episodes of heavy alcohol use. We hypothesized that the amygdalar response to subliminally-presented fearful faces would be reduced in FHP adolescents compared to peers who were family history negative (FHN) for AUD. An adapted Masked Faces paradigm was used to examine blood oxygen level-dependent response to subliminal fearful vs. neutral faces in 14 FHP (6 females, 8 males) and 15 FHN (6 females, 9 males) youth, ages 11-15 years. Both FHP and FHN youth had no history of heavy alcohol consumption. A significant difference was seen between groups in the left superior parietal lobule FHN youth showed deactivation to fearful and neutral masked faces compared to baseline, whereas FHP youth showed deactivation only to fearful masked faces. No significant differences in amygdalar activation were seen between groups. The left superior parietal lobule is part of the fronto-parietal network, which has been implicated in attentional control. Lack of reduced neural activity to neutral faces among FHP youth may represent differences in suppressing attention networks to less salient emotional stimuli, or perhaps, a higher threshold of saliency for emotional stimuli among at-risk youth.

  2. Sleep paralysis and "the bedroom intruder": the role of the right superior parietal, phantom pain and body image projection.

    Science.gov (United States)

    Jalal, Baland; Ramachandran, Vilayanur S

    2014-12-01

    Sleep paralysis (SP) is a common condition occurring either at sleep onset or sleep offset. During SP the sleeper experiences gross motor paralysis while the sensory system is clear. Hypnogogic and hypnopompic hallucinations are common during SP and may involve seeing, hearing, and sensing the presence of menacing intruders in one's bedroom. This "intruder" is often perceived as a shadowy humanoid figure. Supernatural accounts of this hallucinated intruder are common across cultures. In this paper, we postulate that a functional disturbance of the right parietal cortex explains the shadowy nocturnal bedroom intruder hallucination during SP. This hallucination may arise due to a disturbance in the multisensory processing of body and self at the temporoparietal junction. We specifically propose that this perceived intruder is the result of a hallucinated projection of the genetically "hard-wired" body image (homunculus), in the right parietal region; namely, the same circuits that dictate aesthetic and sexual preference of body morphology. One way to test this hypothesis would be to study clinical populations who may have genetically acquired "irregularities" in their internal hard-wired body image in the right superior parietal lobule (SPL); for example, individuals with apotemnophilia or anorexia nervosa. If such individuals experience SP (e.g., induced in a sleep lab), and they hallucinate this shadowy figure, one would predict that they would see humanoid shadows and shapes with body irregularities, mirroring their own internal body image morphology. If correct, our hypothesis will offer a neurological explanation for this nocturnal bedroom intruder that has been a source of controversy, and striking and implausible cultural interpretations throughout history. Indeed, if our proposed hypothesis is tested and corroborated, dissemination of such findings would provide great relief to SP experiencers worldwide and could potentially be used in a therapeutic context.

  3. A brain-computer interface based on self-regulation of gamma-oscillations in the superior parietal cortex

    Science.gov (United States)

    Grosse-Wentrup, Moritz; Schölkopf, Bernhard

    2014-10-01

    Objective. Brain-computer interface (BCI) systems are often based on motor- and/or sensory processes that are known to be impaired in late stages of amyotrophic lateral sclerosis (ALS). We propose a novel BCI designed for patients in late stages of ALS that only requires high-level cognitive processes to transmit information from the user to the BCI. Approach. We trained subjects via EEG-based neurofeedback to self-regulate the amplitude of gamma-oscillations in the superior parietal cortex (SPC). We argue that parietal gamma-oscillations are likely to be associated with high-level attentional processes, thereby providing a communication channel that does not rely on the integrity of sensory- and/or motor-pathways impaired in late stages of ALS. Main results. Healthy subjects quickly learned to self-regulate gamma-power in the SPC by alternating between states of focused attention and relaxed wakefulness, resulting in an average decoding accuracy of 70.2%. One locked-in ALS patient (ALS-FRS-R score of zero) achieved an average decoding accuracy significantly above chance-level though insufficient for communication (55.8%). Significance. Self-regulation of gamma-power in the SPC is a feasible paradigm for brain-computer interfacing and may be preserved in late stages of ALS. This provides a novel approach to testing whether completely locked-in ALS patients retain the capacity for goal-directed thinking.

  4. Dissociable Memory- and Response-Related Activity in Parietal Cortex during Auditory Spatial Working Memory

    Directory of Open Access Journals (Sweden)

    Claude Alain

    2010-12-01

    Full Text Available Attending and responding to sound location generates increased activity in parietal cortex which may index auditory spatial working memory and/or goal-directed action. Here, we used an n-back task (Experiment 1 and an adaptation paradigm (Experiment 2 to distinguish memory-related activity from that associated with goal-directed action. In Experiment 1, participants indicated, in separate blocks of trials, whether the incoming stimulus was presented at the same location as in the previous trial (1-back or two trials ago (2-back. Prior to a block of trials, participants were told to use their left or right index finger. Accuracy and reaction times were worse for the 2-back than for the 1-back condition. The analysis of fMRI data revealed greater sustained task-related activity in the inferior parietal lobule (IPL and superior frontal sulcus during 2-back than 1-back after accounting for response-related activity elicited by the targets. Target detection and response execution were also associated with enhanced activity in the IPL bilaterally, though the activation was anterior to that associated with sustained task-related activity. In Experiment 2, we used an event-related design in which participants listened (no response required to trials that comprised four sounds presented either at the same location or at four different locations. We found larger IPL activation for changes in sound location than for sounds presented at the same location. The IPL activation overlapped with that observed during auditory spatial working memory task. Together, these results provide converging evidence supporting the role of parietal cortex in auditory spatial working memory which can be dissociated from response selection and execution.

  5. Activation in the Right Inferior Parietal Lobule Reflects the Representation of Musical Structure beyond Simple Pitch Discrimination

    Science.gov (United States)

    Royal, Isabelle; Vuvan, Dominique T.; Zendel, Benjamin Rich; Robitaille, Nicolas; Schönwiesner, Marc; Peretz, Isabelle

    2016-01-01

    Pitch discrimination tasks typically engage the superior temporal gyrus and the right inferior frontal gyrus. It is currently unclear whether these regions are equally involved in the processing of incongruous notes in melodies, which requires the representation of musical structure (tonality) in addition to pitch discrimination. To this aim, 14 participants completed two tasks while undergoing functional magnetic resonance imaging, one in which they had to identify a pitch change in a series of non-melodic repeating tones and a second in which they had to identify an incongruous note in a tonal melody. In both tasks, the deviants activated the right superior temporal gyrus. A contrast between deviants in the melodic task and deviants in the non-melodic task (melodic > non-melodic) revealed additional activity in the right inferior parietal lobule. Activation in the inferior parietal lobule likely represents processes related to the maintenance of tonal pitch structure in working memory during pitch discrimination. PMID:27195523

  6. Cognitive and metacognitive activity in mathematical problem solving: prefrontal and parietal patterns.

    Science.gov (United States)

    Anderson, John R; Betts, Shawn; Ferris, Jennifer L; Fincham, Jon M

    2011-03-01

    Students were taught an algorithm for solving a new class of mathematical problems. Occasionally in the sequence of problems, they encountered exception problems that required that they extend the algorithm. Regular and exception problems were associated with different patterns of brain activation. Some regions showed a Cognitive pattern of being active only until the problem was solved and no difference between regular or exception problems. Other regions showed a Metacognitive pattern of greater activity for exception problems and activity that extended into the post-solution period, particularly when an error was made. The Cognitive regions included some of parietal and prefrontal regions associated with the triple-code theory of (Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487-506) and associated with algebra equation solving in the ACT-R theory (Anderson, J. R. (2005). Human symbol manipulation within an 911 integrated cognitive architecture. Cognitive science, 29, 313-342. Metacognitive regions included the superior prefrontal gyrus, the angular gyrus of the triple-code theory, and frontopolar regions.

  7. Creating Colored Letters: Familial Markers of Grapheme-Color Synesthesia in Parietal Lobe Activation and Structure.

    Science.gov (United States)

    Colizoli, Olympia; Murre, Jaap M J; Scholte, H Steven; Rouw, Romke

    2017-07-01

    Perception is inherently subjective, and individual differences in phenomenology are well illustrated by the phenomenon of synesthesia (highly specific, consistent, and automatic cross-modal experiences, in which the external stimulus corresponding to the additional sensation is absent). It is unknown why some people develop synesthesia and others do not. In the current study, we tested whether neural markers related to having synesthesia in the family were evident in brain function and structure. Relatives of synesthetes (who did not have any type of synesthesia themselves) and matched controls read specially prepared books with colored letters for several weeks and were scanned before and after reading using magnetic resonance imaging. Effects of acquired letter-color associations were evident in brain activation. Training-related activation (while viewing black letters) in the right angular gyrus of the parietal lobe was directly related to the strength of the learned letter-color associations (behavioral Stroop effect). Within this obtained angular gyrus ROI, the familial trait of synesthesia related to brain activation differences while participants viewed both black and colored letters. Finally, we compared brain structure using voxel-based morphometry and diffusion tensor imaging to test for group differences and training effects. One cluster in the left superior parietal lobe had significantly more coherent white matter in the relatives compared with controls. No evidence for experience-dependent plasticity was obtained. For the first time, we present evidence suggesting that the (nonsynesthete) relatives of grapheme-color synesthetes show atypical grapheme processing as well as increased brain connectivity.

  8. Evaluating the roles of the inferior frontal gyrus and superior parietal lobule in deductive reasoning: an rTMS study.

    Science.gov (United States)

    Tsujii, Takeo; Sakatani, Kaoru; Masuda, Sayako; Akiyama, Takekazu; Watanabe, Shigeru

    2011-09-15

    This study used off-line repetitive transcranial magnetic stimulation (rTMS) to examine the roles of the superior parietal lobule (SPL) and inferior frontal gyrus (IFG) in a deductive reasoning task. Subjects performed a categorical syllogistic reasoning task involving congruent, incongruent, and abstract trials. Twenty four subjects received magnetic stimulation to the SPL region prior to the task. In the other 24 subjects, TMS was administered to the IFG region before the task. Stimulation lasted for 10min, with an inter-pulse frequency of 1Hz. We found that bilateral SPL (Brodmann area (BA) 7) stimulation disrupted performance on abstract and incongruent reasoning. Left IFG (BA 45) stimulation impaired congruent reasoning performance while paradoxically facilitating incongruent reasoning performance. This resulted in the elimination of the belief-bias. In contrast, right IFG stimulation only impaired incongruent reasoning performance, thus enhancing the belief-bias effect. These findings are largely consistent with the dual-process theory of reasoning, which proposes the existence of two different human reasoning systems: a belief-based heuristic system; and a logic-based analytic system. The present findings suggest that the left language-related IFG (BA 45) may correspond to the heuristic system, while bilateral SPL may underlie the analytic system. The right IFG may play a role in blocking the belief-based heuristic system for solving incongruent reasoning trials. This study could offer an insight about functional roles of distributed brain systems in human deductive reasoning by utilizing the rTMS approach.

  9. Parietal Epithelial Cell Activation Marker in Early Recurrence of FSGS in the Transplant

    NARCIS (Netherlands)

    Fatima, H.; Moeller, M.J.; Smeets, B.; Yang, H.C.; D'Agati, V.D.; Alpers, C.E.; Fogo, A.B.

    2012-01-01

    BACKGROUND AND OBJECTIVES: Podocyte loss is key in glomerulosclerosis. Activated parietal epithelial cells are proposed to contribute to pathogenesis of glomerulosclerosis and may serve as stem cells that can transition to podocytes. CD44 is a marker for activated parietal epithelial cells. This stu

  10. Cyclodextrin modified PLLA parietal reinforcement implant with prolonged antibacterial activity.

    Science.gov (United States)

    Vermet, G; Degoutin, S; Chai, F; Maton, M; Flores, C; Neut, C; Danjou, P E; Martel, B; Blanchemain, N

    2017-02-12

    The use of textile meshes in hernia repair is widespread in visceral surgery. Though, mesh infection is a complication that may prolong the patient recovery period and consequently presents an impact on public health economy. Such concern can be avoided thanks to a local and extended antibiotic release on the operative site. In recent developments, poly-l-lactic acid (PLLA) has been used in complement of polyethyleneterephthalate (Dacron®) (PET) or polypropylene (PP) yarns in the manufacture of semi-resorbable parietal implants. The goal of the present study consisted in assigning drug reservoir properties and prolonged antibacterial effect to a 100% PLLA knit through its functionalization with a cyclodextrin polymer (polyCD) and activation with ciprofloxacin. The study focused i) on the control of degree of polyCD functionalization of the PLLA support and on its physical and biological characterization by Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC) and cell viability, ii) on the understanding of drug/meshes interaction using mathematic model and iii) on the correlation between drug release studies in phosphate buffer saline (PBS) and microbiological evaluation of meshes and release medium against E. coli and S. aureus. All above mentioned tests highlighted the contribution of polyCD on the improved performances of the resulting antibacterial implantable material.

  11. Human middle longitudinal fascicle: Segregation and behavioral-clinical implications of two distinct fiber connections linking temporal pole and superior temporal gyrus with the angular gyrus or superior parietal lobule using multi-tensor tractography

    Science.gov (United States)

    Makris, N.; Preti, M.G.; Wassermann, D.; Rathi, Y.; Papadimitriou, G. M.; Yergatian, C.; Dickerson, B. C.; Shenton, M. E.; Kubicki, M.

    2013-01-01

    The middle longitudinal fascicle (MdLF) is a major fiber connection running principally between the superior temporal gyrus and the parietal lobe, neocortical regions of great biological and clinical interest. Although one of the most prominent cerebral association fiber tracts it has only recently been discovered in humans. In this high angular resolution diffusion imaging (HARDI) MRI study, we delineated the two major fiber connections of the human MdLF, by examining morphology, topography, cortical connections, biophysical measures, volume and length in seventy-four brains. These two fiber connections course together through the dorsal temporal pole and the superior temporal gyrus maintaining a characteristic topographic relationship in the mediolateral and ventrodorsal dimensions. As these pathways course towards the parietal lobe, they split to form separate fiber pathways, one following a ventrolateral trajectory and connecting with the angular gyrus and the other following a dorsomedial route and connecting with the superior parietal lobule. Based on the functions of their cortical affiliations, we suggest that the superior temporal-angular connection of the MdLF, i.e., STG(MdLF)AG plays a role in language and attention, whereas the superior temporal-superior parietal connection of the MdLF, i.e., STG(MdLF)SPL is involved in visuospatial and integrative audiovisual functions. Furthermore, the MdLF may have clinical implications in neurodegenerative disorders such as primary progressive aphasia, frontotemporal dementia, posterior cortical atrophy, corticobulbar degeneration and Alzheimer’s disease as well as attention-deficit/hyperactivity disorder and schizophrenia. PMID:23686576

  12. Global increase in task-related fronto-parietal activity after focal frontal lobe lesion.

    Science.gov (United States)

    Woolgar, Alexandra; Bor, Daniel; Duncan, John

    2013-09-01

    A critical question for neuropsychology is how complex brain networks react to damage. Here, we address this question for the well-known executive control or multiple-demand (MD) system, a fronto-parietal network showing increased activity with many different kinds of cognitive demand, including standard tests of fluid intelligence. Using fMRI, we ask how focal frontal lobe damage affects MD activity during a standard fluid intelligence task. Despite poor behavioral performance, frontal patients showed increased fronto-parietal activity relative to controls. The activation difference was not accounted for by difference in IQ. Moreover, rather than specific focus on perilesional or contralesional cortex, additional recruitment was distributed throughout the MD regions and surrounding cortex and included parietal MD regions distant from the injury. The data suggest that, following local frontal lobe damage, there is a global compensatory recruitment of an adaptive and integrated fronto-parietal network.

  13. Age-related changes in parietal lobe activation during an episodic memory retrieval task.

    Science.gov (United States)

    Oedekoven, Christiane S H; Jansen, Andreas; Kircher, Tilo T; Leube, Dirk T

    2013-05-01

    The crucial role of lateral parietal regions in episodic memory has been confirmed in previous studies. While aging has an influence on retrieval of episodic memory, it remains to be examined how the involvement of lateral parietal regions in episodic memory changes with age. We investigated episodic memory retrieval in two age groups, using faces as stimuli and retrieval success as a measure of episodic memory. Young and elderly participants showed activation within a similar network, including lateral and medial parietal as well as prefrontal regions, but elderly showed a higher level of brain activation regardless of condition. Furthermore, we examined functional connectivity in the two age groups and found a more extensive network in the young group, including correlations of parietal and prefrontal regions. In the elderly, the overall stronger activation related to memory performance may indicate a compensatory process for a less extensive functional network.

  14. Abnormal temporal and parietal magnetic activations during the early stages of theory of mind in schizophrenic patients.

    Science.gov (United States)

    Vistoli, Damien; Brunet-Gouet, Eric; Lemoalle, Amelia; Hardy-Baylé, Marie-Christine; Passerieux, Christine

    2011-01-01

    Schizophrenia is associated with abnormal cortical activation during theory of mind (ToM), as demonstrated by several fMRI or PET studies. Electrical and temporal characteristics of these abnormalities, especially in the early stages, remain unexplored. Nineteen medicated schizophrenic patients and 21 healthy controls underwent magnetoencephalography (MEG) recording to measure brain response evoked by nonverbal stimuli requiring mentalizing. Three conditions based on comic-strips were contrasted: attribution of intentions to others (AI), physical causality with human characters (PCCH), and physical causality with objects (PCOB). Minimum norm localization was performed in order to select regions of interest (ROIs) within bilateral temporal and parietal regions that showed significant ToM-related activations in the control group. Time-courses of each ROI were compared across group and condition. Reduced cortical activation within the 200 to 600 ms time-window was observed in the selected regions in patients. Significant group by condition interactions (i.e., reduced modulation in patients) were found in right posterior superior temporal sulcus, right temporoparietal junction, and right inferior parietal lobule during attribution of intentions. As in healthy controls, the presence of characters elicited activation in patients' left posterior temporal regions and temporoparietal junction. No group difference on evoked responses' latencies in AI was found. In conclusion, ToM processes in the early stages are functionally impaired in schizophrenia. MEG provides a promising means to refine our knowledge on schizophrenic social cognitive disorders.

  15. Task-Dependent Changes in Frontal-Parietal Activation and Connectivity During Visual Search.

    Science.gov (United States)

    Maximo, Jose O; Neupane, Ajaya; Saxena, Nitesh; Joseph, Robert M; Kana, Rajesh K

    2016-05-01

    Visual search is an important skill in navigating and locating objects (a target) among distractors in our environment. Efficient and faster target detection involves reciprocal interaction between a viewer's attentional resources as well as salient target characteristics. The neural correlates of visual search have been extensively investigated over the last decades, suggesting the involvement of a frontal-parietal network comprising the frontal eye fields (FEFs) and intraparietal sulcus (IPS). In addition, activity and connectivity of these network changes as the visual search become complex and more demanding. The current functional magnetic resonance imaging study examined the modulation of the frontal-parietal network in response to cognitive demand in 22 healthy adult participants. In addition to brain activity, changes in functional connectivity and effective connectivity in this network were examined in response to easy and difficult visual search. Results revealed significantly increased activation in FEF, IPS, and supplementary motor area, more so in difficult search than in easy search. Functional and effective connectivity analyses showed enhanced connectivity in the frontal-parietal network during difficult search and enhanced information transfer from left to right hemisphere during the difficult search process. Our overall findings suggest that cognitive demand significantly increases brain resources across all three measures of brain processing. In sum, we found that goal-directed visual search engages a network of frontal-parietal areas that are modulated in relation to cognitive demand.

  16. The Left Superior Longitudinal Fasciculus within the Primary Sensory Area of Inferior Parietal Lobe Plays a Role in Dysgraphia of Kana Omission within Sentences

    Directory of Open Access Journals (Sweden)

    Nobusada Shinoura

    2012-01-01

    Full Text Available Functional neurological changes after surgery combined with diffusion tensor imaging (DTI tractography can directly provide evidence of anatomical localization of brain function. Using these techniques, a patient with dysgraphia before surgery was analyzed at our hospital in 2011. The patient showed omission of kana within sentences before surgery, which improved after surgery. The brain tumor was relatively small and was located within the primary sensory area (S1 of the inferior parietal lobe (IPL. DTI tractography before surgery revealed compression of the branch of the superior longitudinal fasciculus (SLF by the brain tumor. These results suggest that the left SLF within the S1 of IPL plays a role in the development of dysgraphia of kana omission within sentences.

  17. Effect of the stimulus frequency and pulse number of repetitive transcranial magnetic stimulation on the inter-reversal time of perceptual reversal on the right superior parietal lobule

    Science.gov (United States)

    Nojima, Kazuhisa; Ge, Sheng; Katayama, Yoshinori; Ueno, Shoogo; Iramina, Keiji

    2010-05-01

    The aim of this study is to investigate the effect of the stimulus frequency and pulses number of repetitive transcranial magnetic stimulation (rTMS) on the inter-reversal time (IRT) of perceptual reversal on the right superior parietal lobule (SPL). The spinning wheel illusion was used as the ambiguous figures stimulation in this study. To investigate the rTMS effect over the right SPL during perceptual reversal, 0.25 Hz 60 pulse, 1 Hz 60 pulse, 0.5 Hz 120 pulse, 1 Hz 120 pulse, and 1 Hz 240 pulse biphasic rTMS at 90% of resting motor threshold was applied over the right SPL and the right posterior temporal lobe (PTL), respectively. As a control, a no TMS was also conducted. It was found that rTMS on 0.25 Hz 60 pulse and 1 Hz 60 pulse applied over the right SPL caused shorter IRT. In contrast, it was found that rTMS on 1 Hz 240-pulse applied over the right SPL caused longer IRT. On the other hand, there is no significant difference between IRTs when the rTMS on 0.5 Hz 120 pulse and 1 Hz 120 pulse were applied over the right SPL. Therefore, the applying of rTMS over the right SPL suggests that the IRT of perceptual reversal is effected by the rTMS conditions such as the stimulus frequency and the number of pulses.

  18. ERP adaptation provides direct evidence for early mirror neuron activation in the inferior parietal lobule.

    Science.gov (United States)

    Möhring, Nicole; Brandt, Emily S L; Mohr, Bettina; Pulvermüller, Friedemann; Neuhaus, Andres H

    2014-10-01

    Mirror neuron systems are frequently investigated by assessing overlapping brain activity during observation and execution of actions; however, distinct neuronal subpopulations may be activated that fall below the spatial resolution of magnetic resonance techniques. This shortfall can be resolved using repetition suppression paradigms that identify physiological adaptation processes caused by repeated activation of identical neuronal circuits. Here, event-related potentials were used to investigate the time course of mirror neuron circuit activation using repetition suppression within and across action observation and action execution modalities. In a lip-reading and speech production paradigm, the N170 component indexed stimulus repetition by adapting to both cross-modal and intra-modal repetitions in the left hemisphere. Neuronal source localization revealed activation of the left inferior parietal lobule during cross-modal relative to intra-modal trials. These results provide support for the position that the same neuronal circuits are activated in perceiving and performing articulatory actions. Moreover, our data strongly suggest that inferior parietal lobule mirror neurons are activated relatively early in time, which indicates partly automatic processes of linguistic perception and mirroring. Repetition suppression paradigms therefore help to elucidate neuronal correlates of different cognitive processes and may serve as a starting point for advanced electrophysiological research on mirror neurons.

  19. It's how you get there: Walking down a virtual alley activates premotor and parietal areas

    Directory of Open Access Journals (Sweden)

    Johanna eWagner

    2014-02-01

    Full Text Available Voluntary drive is crucial for motor learning, therefore we are interested in the role that motor planning plays in gait movements. In this study we examined the impact of an interactive Virtual Environment (VE feedback task on the EEG patterns during robot assisted walking. We compared walking in the VE modality to two control conditions: walking with a visual attention paradigm, in which visual stimuli were unrelated to the motor task; and walking with mirror feedback, in which participants observed their own movements. Eleven healthy participants were considered. Application of independent component analysis to the EEG revealed three independent component clusters in premotor and parietal areas showing increased activity during walking with the adaptive VE training paradigm compared to the control conditions. During the interactive VE walking task spectral power in frequency ranges 8-12Hz, 15-20Hz and 23-40Hz was significantly (p ≤ 0.05 decreased. This power decrease is interpreted as a correlate of an active cortical area. Furthermore activity in the premotor cortex revealed gait cycle related modulations significantly different (p ≤ 0.05 from baseline in the frequency range 23-40Hz during walking. These modulations were significantly (p ≤ 0.05 reduced depending on gait cycle phases in the interactive VE walking task compared to the control conditions.We demonstrate that premotor and parietal areas show increased activity during walking with the adaptive VE training paradigm, when compared to walking with mirror- and movement unrelated feedback. Previous research has related a premotor-parietal network to motor planning and motor intention. We argue that movement related interactive feedback enhances motor planning and motor intention. We hypothesize that this might improve gait recovery during rehabilitation.

  20. Overlapping Parietal Activity in Memory and Perception: Evidence for the Attention to Memory Model

    Science.gov (United States)

    Cabeza, Roberto; Mazuz, Yonatan S.; Stokes, Jared; Kragel, James E.; Woldorff, Marty G.; Ciaramelli, Elisa; Olson, Ingrid R.; Moscovitch, Morris

    2011-01-01

    The specific role of different parietal regions to episodic retrieval is a topic of intense debate. According to the Attention to Memory (AtoM) model, dorsal parietal cortex (DPC) mediates top-down attention processes guided by retrieval goals, whereas ventral parietal cortex (VPC) mediates bottom-up attention processes captured by the retrieval…

  1. Activation of right parietal cortex during memory retrieval of nonlinguistic auditory stimuli.

    Science.gov (United States)

    Klostermann, Ellen C; Loui, Psyche; Shimamura, Arthur P

    2009-09-01

    In neuroimaging studies, the left ventral posterior parietal cortex (PPC) is particularly active during memory retrieval. However, most studies have used verbal or verbalizable stimuli. We investigated neural activations associated with the retrieval of short, agrammatical music stimuli (Blackwood, 2004), which have been largely associated with right hemisphere processing. At study, participants listened to music stimuli and rated them on pleasantness. At test, participants made old/new recognition judgments with high/low confidence ratings. Right, but not left, ventral PPC activity was observed during the retrieval of these music stimuli. Thus, rather than indicating a special status of left PPC in retrieval, both right and left ventral PPC participate in memory retrieval, depending on the type of information that is to be remembered.

  2. Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking

    Directory of Open Access Journals (Sweden)

    Thomas C Bulea

    2015-05-01

    Full Text Available Accumulating evidence suggests cortical circuits may contribute to control of human locomotion. Here, noninvasive electroencephalography (EEG recorded from able-bodied volunteers during a novel treadmill walking paradigm was used to assess neural correlates of walking. A systematic processing method, including a recently developed subspace reconstruction algorithm, reduced movement-related EEG artifact prior to independent component analysis and dipole source localization. We quantified cortical activity while participants tracked slow and fast target speeds across two treadmill conditions: an active mode that adjusted belt speed based on user movements and a passive mode reflecting a typical treadmill. Our results reveal frequency specific, multi-focal task related changes in cortical oscillations elicited by active walking. Low γ band power, localized to the prefrontal and posterior parietal cortices, was significantly increased during double support and early swing phases, critical points in the gait cycle since the active controller adjusted speed based on pelvis position and swing foot velocity. These phasic γ band synchronizations provide evidence that prefrontal and posterior parietal networks, previously implicated in visuo-spatial and somotosensory integration, are engaged to enhance lower limb control during gait. Sustained μ and β band desynchronization within sensorimotor cortex, a neural correlate for movement, was observed during walking thereby validating our methods for isolating cortical activity. Our results also demonstrate the utility of EEG recorded during locomotion for probing the multi-regional cortical networks which underpin its execution. For example, the cortical network engagement elicited by the active treadmill suggests that it may enhance neuroplasticity for more effective motor training.

  3. Posterior Parietal Cortex Drives Inferotemporal Activations During Three-Dimensional Object Vision.

    Directory of Open Access Journals (Sweden)

    Ilse C Van Dromme

    2016-04-01

    Full Text Available The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP during functional magnetic resonance imaging (fMRI reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams.

  4. Patterns of Activity in the Human Frontal and Parietal Cortex Differentiate Large and Small Saccades

    Directory of Open Access Journals (Sweden)

    Marie-Helene Grosbras

    2016-10-01

    Full Text Available A vast literature indicates that small and large saccades, respectively, subserve different perceptual and cognitive strategies and may rely on different programming modes. While it is well established that in monkeys’ main oculomotor brain regions small and large eye movements are controlled by segregated neuronal populations, the representation of saccade amplitude in the human brain remains unclear. To address this question we used functional magnetic resonance imaging (fMRI to scan participants while they performed saccades towards targets at either short (4 degrees or large (30 degrees eccentricity. A regional multivoxel pattern analysis (MVPA reveals that patterns of activity in the frontal (FEF and parietal eye fields discriminate between the execution of large or small saccades. This was not the case in the supplementary eye fields nor in the inferior precentral cortex. These findings provide the first evidence of a representation of saccadic eye movement size in the fronto-parietal occulomotor circuit. They shed light on the respective roles of the different cortical oculomotor regions with respect to space perception and exploration, as well as on the homology of eye movement control between human and non-human primates.

  5. Prolonged rock climbing activity induces structural changes in cerebellum and parietal lobe.

    Science.gov (United States)

    Di Paola, Margherita; Caltagirone, Carlo; Petrosini, Laura

    2013-10-01

    This article analyzes whether climbing, a motor activity featured by upward movements by using both feet and hands, generation of new strategies of motor control, maintenance of not stable equilibrium and adoption of long-lasting quadrupedal posture, is able to modify specific brain areas. MRI data of 10 word-class mountain climbers (MC) and 10 age-matched controls, with no climbing experience were acquired. Combining region-of-interest analyses and voxel-based morphometry we investigated cerebellar volumes and correlation between cerebellum and whole cerebral gray matter. In comparison to controls, world-class MC showed significantly larger vermian lobules I-V volumes, with no significant difference in other cerebellar vermian lobules or hemispheres. The cerebellar enlargement was associated with an enlargement of right medial posterior parietal area. The specific features of the motor climbing skills perfectly fit with the plastic anatomical changes we found. The enlargement of the vermian lobules I-V seems to be related to highly dexterous hand movements and to eye-hand coordination in the detection of and correction of visuomotor errors. The concomitant enlargement of the parietal area is related to parallel work in predicting sensory consequences of action to make movement corrections. Motor control and sensory-motor prediction of actions make the difference between survive or not at extreme altitude. Copyright © 2012 Wiley Periodicals, Inc.

  6. Does shape discrimination by the mouth activate the parietal and occipital lobes? - near-infrared spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Tomonori Kagawa

    Full Text Available A cross-modal association between somatosensory tactile sensation and parietal and occipital activities during Braille reading was initially discovered in tests with blind subjects, with sighted and blindfolded healthy subjects used as controls. However, the neural background of oral stereognosis remains unclear. In the present study, we investigated whether the parietal and occipital cortices are activated during shape discrimination by the mouth using functional near-infrared spectroscopy (fNIRS. Following presentation of the test piece shape, a sham discrimination trial without the test pieces induced posterior parietal lobe (BA7, extrastriate cortex (BA18, BA19, and striate cortex (BA17 activation as compared with the rest session, while shape discrimination of the test pieces markedly activated those areas as compared with the rest session. Furthermore, shape discrimination of the test pieces specifically activated the posterior parietal cortex (precuneus/BA7, extrastriate cortex (BA18, 19, and striate cortex (BA17, as compared with sham sessions without a test piece. We concluded that oral tactile sensation is recognized through tactile/visual cross-modal substrates in the parietal and occipital cortices during shape discrimination by the mouth.

  7. Does Shape Discrimination by the Mouth Activate the Parietal and Occipital Lobes? – Near-Infrared Spectroscopy Study

    Science.gov (United States)

    Kagawa, Tomonori; Narita, Noriyuki; Iwaki, Sunao; Kawasaki, Shingo; Kamiya, Kazunobu; Minakuchi, Shunsuke

    2014-01-01

    A cross-modal association between somatosensory tactile sensation and parietal and occipital activities during Braille reading was initially discovered in tests with blind subjects, with sighted and blindfolded healthy subjects used as controls. However, the neural background of oral stereognosis remains unclear. In the present study, we investigated whether the parietal and occipital cortices are activated during shape discrimination by the mouth using functional near-infrared spectroscopy (fNIRS). Following presentation of the test piece shape, a sham discrimination trial without the test pieces induced posterior parietal lobe (BA7), extrastriate cortex (BA18, BA19), and striate cortex (BA17) activation as compared with the rest session, while shape discrimination of the test pieces markedly activated those areas as compared with the rest session. Furthermore, shape discrimination of the test pieces specifically activated the posterior parietal cortex (precuneus/BA7), extrastriate cortex (BA18, 19), and striate cortex (BA17), as compared with sham sessions without a test piece. We concluded that oral tactile sensation is recognized through tactile/visual cross-modal substrates in the parietal and occipital cortices during shape discrimination by the mouth. PMID:25299397

  8. Brief asymmetric tonic posturing with diffuse low-voltage fast activity in seizures arising from the mesial parietal region.

    Science.gov (United States)

    Khan, Saad A; Carney, Patrick W; Archer, John S

    2014-12-01

    Seizures originating from the parietal lobe can demonstrate variable semiology. Our aim was to describe the electroclinical features of seizures originating from the mesial parietal lobe. We identified four patients through the Comprehensive Epilepsy Program at our institution, who had strong evidence of a mesial parietal source for their epilepsy, including a mesial parietal structural lesion. Patients had very frequent brief seizures despite anticonvulsants, each lasting 10-30s, with rapid return of awareness post-event. Clinically attacks were bland, or showed asymmetric tonic posturing, often with partially preserved awareness. Ictal EEG showed diffuse low voltage fast activity. Seizures arising from the precuneus, in the mesial parietal lobe, appear to have a recognizable electroclinical phenotype. Although the clinical and EEG features might have been considered 'non-localizing', there is a striking similarity across patients. The precuneus is a key component of the default mode network (DMN), important for internal reflective thinking. Deactivation of this region has been found to be a prominent feature of generalized spike and wave epileptiform activity. The seizure semiology of these patients presumably reflects activation of this region, and ictal propagation along intrinsically connected components of the DMN. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Temporal structure in neuronal activity during working memory in Macaque parietal cortex

    CERN Document Server

    Pesaran, B; Sahami, M; Mitra, P; Andersen, R A

    2000-01-01

    A number of cortical structures are reported to have elevated single unit firing rates sustained throughout the memory period of a working memory task. How the nervous system forms and maintains these memories is unknown but reverberating neuronal network activity is thought to be important. We studied the temporal structure of single unit (SU) activity and simultaneously recorded local field potential (LFP) activity from area LIP in the inferior parietal lobe of two awake macaques during a memory-saccade task. Using multitaper techniques for spectral analysis, which play an important role in obtaining the present results, we find elevations in spectral power in a 50--90 Hz (gamma) frequency band during the memory period in both SU and LFP activity. The activity is tuned to the direction of the saccade providing evidence for temporal structure that codes for movement plans during working memory. We also find SU and LFP activity are coherent during the memory period in the 50--90 Hz gamma band and no consisten...

  10. Lightning activity during the 1999 Superior derecho

    Science.gov (United States)

    Price, Colin G.; Murphy, Brian P.

    2002-12-01

    On 4 July 1999, a severe convective windstorm, known as a derecho, caused extensive damage to forested regions along the United States/Canada border, west of Lake Superior. There were 665,000 acres of forest destroyed in the Boundary Waters Canoe Area Wilderness (BWCAW) in Minnesota and Quetico Provincial Park in Canada, with approximately 12.5 million trees blown down. This storm resulted in additional severe weather before and after the occurrence of the derecho, with continuous cloud-to-ground (CG) lightning occurring for more than 34 hours during its path across North America. At the time of the derecho the percentage of positive cloud-to-ground (+CG) lightning measured by the Canadian Lightning Detection Network (CLDN) was greater than 70% for more than three hours, with peak values reaching 97% positive CG lightning. Such high ratios of +CG are rare, and may be useful indicators of severe weather.

  11. Atypical balance between occipital and fronto-parietal activation for visual shape extraction in dyslexia.

    Science.gov (United States)

    Zhang, Ying; Whitfield-Gabrieli, Susan; Christodoulou, Joanna A; Gabrieli, John D E

    2013-01-01

    Reading requires the extraction of letter shapes from a complex background of text, and an impairment in visual shape extraction would cause difficulty in reading. To investigate the neural mechanisms of visual shape extraction in dyslexia, we used functional magnetic resonance imaging (fMRI) to examine brain activation while adults with or without dyslexia responded to the change of an arrow's direction in a complex, relative to a simple, visual background. In comparison to adults with typical reading ability, adults with dyslexia exhibited opposite patterns of atypical activation: decreased activation in occipital visual areas associated with visual perception, and increased activation in frontal and parietal regions associated with visual attention. These findings indicate that dyslexia involves atypical brain organization for fundamental processes of visual shape extraction even when reading is not involved. Overengagement in higher-order association cortices, required to compensate for underengagment in lower-order visual cortices, may result in competition for top-down attentional resources helpful for fluent reading.

  12. Atypical balance between occipital and fronto-parietal activation for visual shape extraction in dyslexia.

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    Full Text Available Reading requires the extraction of letter shapes from a complex background of text, and an impairment in visual shape extraction would cause difficulty in reading. To investigate the neural mechanisms of visual shape extraction in dyslexia, we used functional magnetic resonance imaging (fMRI to examine brain activation while adults with or without dyslexia responded to the change of an arrow's direction in a complex, relative to a simple, visual background. In comparison to adults with typical reading ability, adults with dyslexia exhibited opposite patterns of atypical activation: decreased activation in occipital visual areas associated with visual perception, and increased activation in frontal and parietal regions associated with visual attention. These findings indicate that dyslexia involves atypical brain organization for fundamental processes of visual shape extraction even when reading is not involved. Overengagement in higher-order association cortices, required to compensate for underengagment in lower-order visual cortices, may result in competition for top-down attentional resources helpful for fluent reading.

  13. Left inferior-parietal lobe activity in perspective tasks: identity statements.

    Science.gov (United States)

    Arora, Aditi; Weiss, Benjamin; Schurz, Matthias; Aichhorn, Markus; Wieshofer, Rebecca C; Perner, Josef

    2015-01-01

    We investigate the theory that the left inferior parietal lobe (IPL) is closely associated with tracking potential differences of perspective. Developmental studies find that perspective tasks are mastered at around 4 years of age. Our first study, meta-analyses of brain imaging studies shows that perspective tasks specifically activate a region in the left IPL and precuneus. These tasks include processing of false belief, visual perspective, and episodic memory. We test the location specificity theory in our second study with an unusual and novel kind of perspective task: identity statements. According to Frege's classical logical analysis, identity statements require appreciation of modes of presentation (perspectives). We show that identity statements, e.g., "the tour guide is also the driver" activate the left IPL in contrast to a control statements, "the tour guide has an apprentice." This activation overlaps with the activations found in the meta-analysis. This finding is confirmed in a third study with different types of statements and different comparisons. All studies support the theory that the left IPL has as one of its overarching functions the tracking of perspective differences. We discuss how this function relates to the bottom-up attention function proposed for the bilateral IPL.

  14. Left Inferior-Parietal Lobe Activity in Perspective Tasks: Identity statements

    Directory of Open Access Journals (Sweden)

    Aditi eArora

    2015-06-01

    Full Text Available We investigate the theory that the left inferior parietal lobe (IPL is closely associated with tracking potential differences of perspective. Developmental studies find that perspective tasks are mastered at around four years of age. Our first study, meta-analyses of brain imaging studies shows that perspective tasks specifically activate a region in the left IPL and precuneus. These tasks include processing of false belief, visual perspective, and episodic memory. We test the location specificity theory in our second study with an unusual and novel kind of perspective task: identity statements. According to Frege’s classical logical analysis, identity statements require appreciation of modes of presentation (perspectives. We show that identity statements, e.g., the tour guide is also the driver activate the left IPL in contrast to a control statements, the tour guide has an apprentice. This activation overlaps with the activations found in the meta-analysis. This finding is confirmed in a third study with different types of statements and different comparisons. All studies support the theory that the left IPL has as one of its overarching functions the tracking of perspective differences. We discuss how this function relates to the bottom-up attention function proposed for the bilateral IPL.

  15. Atypical Balance between Occipital and Fronto-Parietal Activation for Visual Shape Extraction in Dyslexia

    Science.gov (United States)

    Zhang, Ying; Whitfield-Gabrieli, Susan; Christodoulou, Joanna A.; Gabrieli, John D. E.

    2013-01-01

    Reading requires the extraction of letter shapes from a complex background of text, and an impairment in visual shape extraction would cause difficulty in reading. To investigate the neural mechanisms of visual shape extraction in dyslexia, we used functional magnetic resonance imaging (fMRI) to examine brain activation while adults with or without dyslexia responded to the change of an arrow’s direction in a complex, relative to a simple, visual background. In comparison to adults with typical reading ability, adults with dyslexia exhibited opposite patterns of atypical activation: decreased activation in occipital visual areas associated with visual perception, and increased activation in frontal and parietal regions associated with visual attention. These findings indicate that dyslexia involves atypical brain organization for fundamental processes of visual shape extraction even when reading is not involved. Overengagement in higher-order association cortices, required to compensate for underengagment in lower-order visual cortices, may result in competition for top-down attentional resources helpful for fluent reading. PMID:23825653

  16. Experienced mindfulness meditators exhibit higher parietal-occipital EEG gamma activity during NREM sleep.

    Directory of Open Access Journals (Sweden)

    Fabio Ferrarelli

    Full Text Available Over the past several years meditation practice has gained increasing attention as a non-pharmacological intervention to provide health related benefits, from promoting general wellness to alleviating the symptoms of a variety of medical conditions. However, the effects of meditation training on brain activity still need to be fully characterized. Sleep provides a unique approach to explore the meditation-related plastic changes in brain function. In this study we performed sleep high-density electroencephalographic (hdEEG recordings in long-term meditators (LTM of Buddhist meditation practices (approximately 8700 mean hours of life practice and meditation naive individuals. We found that LTM had increased parietal-occipital EEG gamma power during NREM sleep. This increase was specific for the gamma range (25-40 Hz, was not related to the level of spontaneous arousal during NREM and was positively correlated with the length of lifetime daily meditation practice. Altogether, these findings indicate that meditation practice produces measurable changes in spontaneous brain activity, and suggest that EEG gamma activity during sleep represents a sensitive measure of the long-lasting, plastic effects of meditative training on brain function.

  17. Posterior midline and ventral parietal activity is associated with retrieval success and encoding failure

    Directory of Open Access Journals (Sweden)

    Sander M Daselaar

    2009-07-01

    Full Text Available The ventral part of lateral posterior parietal cortex (VPC and the posterior midline region (PMR, including the posterior cingulate cortex and precuneus, tend to show deactivation during demanding cognitive tasks, and have been associated with the default mode of the brain. Interestingly, PMR and VPC activity has been associated with successful episodic retrieval but also with unsuccessful episodic encoding. However, the differential contributions of PMR and VPC to retrieval vs. encoding has never been demonstrated within-subjects and within the same experiment. Here, we directly tested the prediction that PMR and VPC activity should be associated with retrieval success but with encoding failure. Consistent with this prediction, we found across five different fMRI experiments that during retrieval, that activity in these regions is greater for hits than misses, whereas during encoding, it is greater for subsequent misses than hits. We also found that these regions overlap with the ones that show deactivations during conscious rest. Our findings further aid in clarifying the role of the default mode regions in learning and memory.

  18. Posterior Midline and Ventral Parietal Activity is Associated with Retrieval Success and Encoding Failure

    Science.gov (United States)

    Daselaar, Sander M.; Prince, Steven E.; Dennis, Nancy A.; Hayes, Scott M.; Kim, Hongkeun; Cabeza, Roberto

    2009-01-01

    The ventral part of lateral posterior parietal cortex (VPC) and the posterior midline region (PMR), including the posterior cingulate cortex and precuneus, tend to show deactivation during demanding cognitive tasks, and have been associated with the default mode of the brain. Interestingly, PMR and VPC activity has been associated with successful episodic retrieval but also with unsuccessful episodic encoding. However, the differential contributions of PMR and VPC to retrieval vs. encoding has never been demonstrated within-subjects and within the same experiment. Here, we directly tested the prediction that PMR and VPC activity should be associated with retrieval success but with encoding failure. Consistent with this prediction, we found across five different fMRI experiments that, during retrieval, activity in these regions is greater for hits than misses, whereas during encoding, it is greater for subsequent misses than hits. We also found that these regions overlap with the ones that show deactivations during conscious rest. Our findings further aid in clarifying the role of the default mode regions in learning and memory. PMID:19680466

  19. Experienced mindfulness meditators exhibit higher parietal-occipital EEG gamma activity during NREM sleep.

    Science.gov (United States)

    Ferrarelli, Fabio; Smith, Richard; Dentico, Daniela; Riedner, Brady A; Zennig, Corinna; Benca, Ruth M; Lutz, Antoine; Davidson, Richard J; Tononi, Giulio

    2013-01-01

    Over the past several years meditation practice has gained increasing attention as a non-pharmacological intervention to provide health related benefits, from promoting general wellness to alleviating the symptoms of a variety of medical conditions. However, the effects of meditation training on brain activity still need to be fully characterized. Sleep provides a unique approach to explore the meditation-related plastic changes in brain function. In this study we performed sleep high-density electroencephalographic (hdEEG) recordings in long-term meditators (LTM) of Buddhist meditation practices (approximately 8700 mean hours of life practice) and meditation naive individuals. We found that LTM had increased parietal-occipital EEG gamma power during NREM sleep. This increase was specific for the gamma range (25-40 Hz), was not related to the level of spontaneous arousal during NREM and was positively correlated with the length of lifetime daily meditation practice. Altogether, these findings indicate that meditation practice produces measurable changes in spontaneous brain activity, and suggest that EEG gamma activity during sleep represents a sensitive measure of the long-lasting, plastic effects of meditative training on brain function.

  20. Observed manipulation enhances left fronto-parietal activations in the processing of unfamiliar tools.

    Directory of Open Access Journals (Sweden)

    Norma Naima Rüther

    Full Text Available Tools represent a special class of objects, as functional details of tools can afford certain actions. In addition, information gained via prior experience with tools can be accessed on a semantic level, providing a basis for meaningful object interactions. Conceptual representations of tools also encompass knowledge about tool manipulation which can be acquired via direct (active manipulation or indirect (observation of others manipulating objects motor experience. The present study aimed to explore the impact of observation of manipulation on the neural processing of previously unfamiliar, manipulable objects. Brain activity was assessed by means of functional magnetic resonance imaging while participants accomplished a visual matching task involving pictures of the novel objects before and after they received object-related training. Three training session in which subjects observed an experimenter manipulating one set of objects and visually explored another set of objects were used to make subjects familiar with the tools and to allow the formation of new tool representations. A control object set was not part of the training. Training-related brain activation increases were found for observed manipulation objects compared to not trained objects in a left-hemispheric network consisting of inferior frontal gyrus (iFG pars opercularis and triangularis and supramarginal/angular gyrus. This illustrates that direct manipulation experience is not required to elicit tool-associated activation changes in the action system. While the iFG activation might indicate a close relationship between the areas involved in tool representation and those involved in observational knowledge acquisition, the parietal activation is discussed in terms of non-semantic effects of object affordances and hand-tool spatial relationships.

  1. Activity in right temporo-parietal junction is not selective for theory-of-mind.

    Science.gov (United States)

    Mitchell, Jason P

    2008-02-01

    Recent researchers have suggested that a region of right temporo-parietal junction (RTPJ) selectively subserves the attribution of beliefs to other people (Saxe R, Kanwisher N. 2003. People thinking about thinking people: fMRI investigations of theory of mind. NeuroImage. 19:1835-1842; Saxe R, Powell LJ. 2006. It's the thought that counts: specific brain regions for one component of theory of mind. Psychol Sci. 17:692-699; Saxe R, Wexler A. 2005. Making sense of another mind: the role of the right temporo-parietal junction. Neuropsychologia. 43:1391-1399). At the same time, a similar RTPJ region has been observed repeatedly in a variety of nonsocial tasks that require participants to redirect attention to task-relevant stimuli (e.g., Corbetta M, Shulman GL. 2002. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 3:201-215; Serences JT, Shomstein S, Leber AB, Golay X, Egeth HE, Yantis S. 2005. Coordination of voluntary and stimulus-driven attentional control in human cortex. Psychol Sci. 16:114-122). However, because these 2 sets of tasks have never been compared within the same participants, it remains unclear whether these observations refer to the exact same region of RTPJ or may instead involve neighboring regions with distinct functional profiles. To test the claim that there is a region of RTPJ selective for belief attribution, the current study used functional neuroimaging to examine the extent to which cortical loci identified by a "theory-of-mind localizer" also distinguish between trials on a target detection task that varied demands to reorient attention (i.e., a version of the "Posner cueing task"). Results were incompatible with claims of RTPJ selectivity for mental state attribution. Regardless of whether regions were defined from group analyses or were individually tailored for each participant, RTPJ activity was also modulated by the nonsocial attentional task. The overlap between theory-of-mind and attentional

  2. Right parietal dominance in spatial egocentric discrimination.

    Science.gov (United States)

    Loayza, F R; Fernández-Seara, M A; Aznárez-Sanado, M; Pastor, M A

    2011-03-15

    Egocentric tactile perception is crucial for skilled hand motor control. In order to better understand the brain functional underpinnings related to this basic sensorial perception, we performed a tactile perception functional magnetic resonance imaging (fMRI) experiment with two aims. The first aim consisted of characterizing the neural substrate of two types of egocentric tactile discrimination: the spatial localization (SLD) and simultaneity succession discrimination (SSD) in both hands to define hemispheric dominance for these tasks. The second goal consisted of characterizing the brain activation related to the spatial attentional load, the functional changes and their connectivity patterns induced by the psychometric performance (PP) during SLD. We used fMRI in 25 right-handed volunteers, applying pairs of sinusoidal vibratory stimuli on eight different positions in the palmar surface of both hands. Subjects were required either to identify the stimulus location with respect to an imaginary midline (SLD), to discriminate the simultaneity or succession of a stimuli pair (SSD) or to simply respond to stimulus detection. We found a fronto-parietal network for SLD and frontal network for SSD. During SLD we identified right hemispheric dominance with increased BOLD activation and functional interaction of the right supramarginal gyrus with contralateral intra-parietal sulcus for right and left hand independently. Brain activity correlated to spatial attentional load was found in bilateral structures of intra-parietal sulcus, precuneus extended to superior parietal lobule, pre-supplementary motor area, frontal eye fields and anterior insulae for both hands. We suggest that the right supramarginal gyrus and its interaction with intra-parietal lobule may play a pivotal role in the phenomenon of tactile neglect in right fronto-parietal lesions. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Preparative activities in posterior parietal cortex for self-paced movement in monkeys.

    Science.gov (United States)

    Gemba, Hisae; Matsuura-Nakao, Kazuko; Matsuzaki, Ryuichi

    2004-02-26

    Cortical field potentials were recorded by electrodes implanted chronically on the surface and at a 2.0-3.0 mm depth in various cortices in monkeys performing self-paced finger, toe, mouth, hand or trunk movements. Surface-negative, depth-positive potentials (readiness potential) appeared in the posterior parietal cortex about 1.0 s before onset of every self-paced movement, as well as in the premotor, motor and somatosensory cortices. Somatotopical distribution was seen in the readiness potential in the posterior parietal cortex, although it was not so distinct as that in the motor or somatosensory cortex. This suggests that the posterior parietal cortex is involved in preparation for self-paced movement of any body part. This study contributes to the investigation of central nervous mechanisms of voluntary movements initiated by internal stimulus.

  4. Increased Intrinsic Activity of Medial-Temporal Lobe Subregions is Associated with Decreased Cortical Thickness of Medial-Parietal Areas in Patients with Alzheimer's Disease Dementia.

    Science.gov (United States)

    Pasquini, Lorenzo; Scherr, Martin; Tahmasian, Masoud; Myers, Nicholas E; Ortner, Marion; Kurz, Alexander; Förstl, Hans; Zimmer, Claus; Grimmer, Timo; Akhrif, Atae; Wohlschläger, Afra M; Riedl, Valentin; Sorg, Christian

    2016-01-01

    In Alzheimer's disease (AD), disrupted connectivity between medial-parietal cortices and medial-temporal lobes (MTL) is linked with increased MTL local functional connectivity, and parietal atrophy is associated with increased MTL memory activation. We hypothesized that intrinsic activity in MTL subregions is increased and associated with medial-parietal degeneration and impaired memory in AD. To test this hypothesis, resting-state-functional and structural-MRI was assessed in 22 healthy controls, 22 mild cognitive impairment patients, and 21 AD-dementia patients. Intrinsic activity was measured by power-spectrum density of blood-oxygenation-level-dependent signal, medial-parietal degeneration by cortical thinning. In AD-dementia patients, intrinsic activity was increased for several right MTL subregions. Raised intrinsic activity in dentate gyrus and cornu ammonis 1 was associated with cortical thinning in posterior cingulate cortices, and at-trend with impaired delayed recall. Critically, increased intrinsic activity in the right entorhinal cortex was associated with ipsilateral posterior cingulate degeneration. Our results provide evidence that in AD, intrinsic activity in MTL subregions is increased and associated with medial-parietal atrophy. Results fit a model in which medial-parietal degeneration contributes to MTL dysconnectivity from medial-parietal cortices, potentially underpinning disinhibition-like changes in MTL activity.

  5. Posterior midline and ventral parietal activity is associated with retrieval success and encoding failure

    NARCIS (Netherlands)

    Daselaar, S.M.; Prince, S.E.; Dennis, N.A.; Hayes, S.M.; Kim, H.; Cabeza, R.

    2009-01-01

    The ventral part of lateral posterior parietal cortex (VPC) and the posterior midline region (PMR), including the posterior cingulate cortex and precuneus, tend to show deactivation during demanding cognitive tasks, and have been associated with the default mode of the brain. Interestingly, PMR and

  6. Children's Left Parietal Brain Activation during Mental Rotation Is Reliable as Well as Specific

    Science.gov (United States)

    Heil, Martin; Jansen-Osmann, Petra

    2007-01-01

    Some recent evidence suggests that mental rotation of characters in children aged 7 or 8 years might be lateralized to the left parietal hemisphere. An alternative statement exists, however, the finding might be completely unspecific for mental rotation but either be simply a function of task difficulty or a consequence of the use of characters as…

  7. [Parietal Cortices and Body Information].

    Science.gov (United States)

    Naito, Eiichi; Amemiya, Kaoru; Morita, Tomoyo

    2016-11-01

    Proprioceptive signals originating from skeletal muscles and joints contribute to the formation of both the human body schema and the body image. In this chapter, we introduce various types of bodily illusions that are elicited by proprioceptive inputs, and we discuss distinct functions implemented by different parietal cortices. First, we illustrate the primary importance of the motor network in the processing of proprioceptive (kinesthetic) signals originating from muscle spindles. Next, we argue that the right inferior parietal cortex, in concert with the inferior frontal cortex (both regions connected by the inferior branch of the superior longitudinal fasciculus-SLF III), may be involved in the conscious experience of body image. Further, we hypothesize other functions of distinct parietal regions: the association between internal hand motor representation with external object representation in the left inferior parietal cortex, visuo-kinesthetic processing in the bilateral posterior parietal cortices, and the integration of somatic signals from different body parts in the higher-order somatosensory parietal cortices. Our results indicate that a distinct parietal region, in concert with its anatomically and functionally connected frontal regions, probably plays specialized roles in the processing of body-related information.

  8. Xenomelia: a new right parietal lobe syndrome.

    Science.gov (United States)

    McGeoch, Paul D; Brang, David; Song, Tao; Lee, Roland R; Huang, Mingxiong; Ramachandran, V S

    2011-12-01

    Damage to the right parietal lobe has long been associated with various disorders of body image. The authors have recently suggested that an unusual behavioural condition in which otherwise rational individuals desire the amputation of a healthy limb might also arise from right parietal dysfunction. Four subjects who desired the amputation of healthy legs (two right, one left and one, at first, bilateral and then left only) were recruited and underwent magnetoencephalography (MEG) scans during tactile stimulation of sites above and below the desired amputation line. Regions of interest (ROIs) in each hemisphere (superior parietal lobule (SPL), inferior parietal lobule, S1, M1, insula, premotor cortex and precuneus) were defined using FreeSurfer software. Analysis of average MEG activity across the 40-140 ms post-stimulation timeframe was carried out using an unpaired t test. This revealed significantly reduced activation only in the right SPL ROI for the subjects' affected legs when compared with both subjects' unaffected legs and that of controls. The right SPL is a cortical area that appears ideally placed to unify disparate sensory inputs to create a coherent sense of having a body. The authors propose that inadequate activation of the right SPL leads to the unnatural situation in which the sufferers can feel the limb in question being touched without it actually incorporating into their body image, with a resulting desire for amputation. The authors introduce the term 'xenomelia' as a more appropriate name than apotemnophilia or body integrity identity disorder, for what appears to be an unrecognised right parietal lobe syndrome.

  9. Contribution of inferior temporal and posterior parietal activity to three-dimensional shape perception.

    Science.gov (United States)

    Verhoef, Bram-Ernst; Vogels, Rufin; Janssen, Peter

    2010-05-25

    One of the fundamental goals of neuroscience is to understand how perception arises from the activity of neurons in the brain. Stereopsis is a type of three-dimensional (3D) perception that relies on two slightly different projections of the world onto the retinas of the two eyes, i.e., binocular disparity. Neurons selective for curved surfaces defined by binocular disparity may contribute to the perception of an object's 3D structure. Such neurons have been observed in both the anterior lower bank of the superior temporal sulcus (TEs, part of the inferior temporal cortex [IT]) and the anterior intraparietal area (AIP). However, the specific contributions of IT and AIP to depth perception remain unknown. We simultaneously recorded multiunit activity in IT and AIP while monkeys discriminated between concave and convex 3D shapes. We observed a correlation between the neural activity and behavioral choice that arose early and during perceptual decision formation in IT but later and after perceptual decision formation in AIP. These results suggest a role for IT, but not AIP, in 3D shape discrimination. Furthermore, the results demonstrate that similar neuronal stimulus selectivities in two areas do not imply a similar function.

  10. Short-Term Internet-Search Training Is Associated with Increased Fractional Anisotropy in the Superior Longitudinal Fasciculus in the Parietal Lobe.

    Science.gov (United States)

    Dong, Guangheng; Li, Hui; Potenza, Marc N

    2017-01-01

    The Internet search engine has become an indispensable tool for many people, yet the ways in which Internet searching may alter brain structure and function is poorly understood. In this study, we investigated the influence of short-term Internet-search "training" on white matter microstructure using diffusion tensor imaging (DTI). Fifty-nine valid subjects (Experimental group, 43; Control group, 16) completed the whole procedure: pre- DTI scan, 6-day's training and post- DTI scan. Using track-based spatial statistics, we found increased fractional anisotropy in the right superior longitudinal fasciculus at post-test as compared to pre-test in experimental group. Within the identified region of the right superior longitudinal fasciculus, decreased radial diffusivity (RD), and unchanged axial diffusivity (AD) were observed. These results suggest that short-term Internet-search training may increase white-matter integrity in the right superior longitudinal fasciculus. A possible mechanism for the observed FA change may involve increased myelination after training, although this possibility warrants additional investigation.

  11. Early Left Parietal Activity Elicited by Direct Gaze: A High-Density EEG Study

    Science.gov (United States)

    Burra, Nicolas; Kerzel, Dirk; George, Nathalie

    2016-01-01

    Gaze is one of the most important cues for human communication and social interaction. In particular, gaze contact is the most primary form of social contact and it is thought to capture attention. A very early-differentiated brain response to direct versus averted gaze has been hypothesized. Here, we used high-density electroencephalography to test this hypothesis. Topographical analysis allowed us to uncover a very early topographic modulation (40–80 ms) of event-related responses to faces with direct as compared to averted gaze. This modulation was obtained only in the condition where intact broadband faces–as opposed to high-pass or low-pas filtered faces–were presented. Source estimation indicated that this early modulation involved the posterior parietal region, encompassing the left precuneus and inferior parietal lobule. This supports the idea that it reflected an early orienting response to direct versus averted gaze. Accordingly, in a follow-up behavioural experiment, we found faster response times to the direct gaze than to the averted gaze broadband faces. In addition, classical evoked potential analysis showed that the N170 peak amplitude was larger for averted gaze than for direct gaze. Taken together, these results suggest that direct gaze may be detected at a very early processing stage, involving a parallel route to the ventral occipito-temporal route of face perceptual analysis. PMID:27880776

  12. Sensory syndromes in parietal stroke.

    Science.gov (United States)

    Bassetti, C; Bogousslavsky, J; Regli, F

    1993-10-01

    We studied 20 patients with an acute parietal stroke with hemisensory disturbances but no visual field deficit and no or only slight motor weakness, without thalamic involvement on CT or MRI and found three main sensory syndromes. (1) The pseudothalamic sensory syndrome consists of a faciobrachiocrural impairment of elementary sensation (touch, pain, temperature, vibration). All patients have an inferior-anterior parietal stroke involving the parietal operculum, posterior insula, and, in all but one patient, underlying white matter. (2) The cortical sensory syndrome consists of an isolated loss of discriminative sensation (stereognosis, graphesthesia, position sense) involving one or two parts of the body. These patients show a superior-posterior parietal stroke. (3) The atypical sensory syndrome consists of a sensory loss involving all modalities of sensation in a partial distribution. Parietal lesions of different topography are responsible for this clinical picture, which probably represents a minor variant of the two previous sensory syndromes. Neuropsychological dysfunction was present in 17 patients. The only constant association was between conduction aphasia and right-sided pseudothalamic sensory deficit. We conclude that parietal stroke can cause different sensory syndromes depending on the topography of the underlying lesion. Sensory deficits can be monosymptomatic but never present as a "pure sensory stroke" involving face, arm, leg, and trunk together.

  13. Dysregulated left inferior parietal activity in schizophrenia and depression: functional connectivity and characterization

    Directory of Open Access Journals (Sweden)

    Veronika I. Müller

    2013-06-01

    Full Text Available The inferior parietal cortex (IPC is a heterogeneous region that is known to be involved in a multitude of diverse different tasks and processes, though its contribution to these often-complex functions is yet poorly understood. In a previous study we demonstrated that patients with depression failed to deactivate the left IPC during processing of congruent audiovisual information. We now found the same dysregulation (same region and condition in schizophrenia. By using task-independent (resting state and task-dependent (MACM analyses we aimed at characterizing this particular region with regard to its connectivity and function. Across both approaches, results revealed functional connectivity of the left inferior parietal seed region with bilateral IPC, precuneus and posterior cingulate cortex (PrC/PCC, medial orbitofrontal cortex (mOFC, left middle frontal (MFG as well as inferior frontal (IFG gyrus. Network-level functional characterization further revealed that on the one hand, all interconnected regions are part of a network involved in memory processes. On the other hand, sub-networks are formed when emotion, language, social cognition and reasoning processes are required. Thus, the IPC-region that is dysregulated in both depression and schizophrenia is functionally connected to a network of regions which, depending on task demands may form sub-networks. These results therefore indicate that dysregulation of left IPC in depression and schizophrenia might not only be connected to deficits in audiovisual integration, but is possibly also associated to impaired memory and deficits in emotion processing in these patient groups.

  14. Three-Dimensional Eye Position Signals Shape Both Peripersonal Space and Arm Movement Activity in the Medial Posterior Parietal Cortex.

    Directory of Open Access Journals (Sweden)

    Kostas eHadjidimitrakis

    2012-06-01

    Full Text Available Research conducted over the last decades has established that the medial part of posterior parietal cortex is crucial for controlling visually guided actions in human and non-human primates. Within this cortical sector there is area V6A, a crucial node of the parietofrontal network involved in arm movement control in both monkeys and humans. However, the encoding of action-in-depth by V6A cells had been not studied till recently. Recent neurophysiological studies show the existence in V6A neurons of signals related to the distance of targets from the eyes. These signals are integrated, often at the level of single cells, with information about the direction of gaze, thus encoding spatial location in 3D space. Moreover, 3D eye position signals seem to be further exploited at two additional levels of neural processing: a in determining whether targets are located in the peripersonal space or not, and b in shaping the spatial tuning of arm movement related activity towards reachable targets. These findings are in line with studies in putative homolog regions in humans and together point to a role of medial posterior parietal cortex in encoding both the vergence angle of the eyes and peripersonal space. Besides this role in spatial encoding also in depth, several findings demonstrate the involvement of this cortical sector in non-spatial processes.

  15. Atrophy of the Parietal Lobe in Preclinical Dementia

    Science.gov (United States)

    Jacobs, Heidi I. L.; Van Boxtel, Martin P. J.; Uylings, Harry B. M.; Gronenschild, Ed H. B. M.; Verhey, Frans R.; Jolles, Jelle

    2011-01-01

    Cortical grey matter atrophy patterns have been reported in healthy ageing and Alzheimer disease (AD), but less consistently in the parietal regions of the brain. We investigated cortical grey matter volume patterns in parietal areas. The grey matter of the somatosensory cortex, superior and inferior parietal lobule was measured in 75 older adults…

  16. Atrophy of the Parietal Lobe in Preclinical Dementia

    Science.gov (United States)

    Jacobs, Heidi I. L.; Van Boxtel, Martin P. J.; Uylings, Harry B. M.; Gronenschild, Ed H. B. M.; Verhey, Frans R.; Jolles, Jelle

    2011-01-01

    Cortical grey matter atrophy patterns have been reported in healthy ageing and Alzheimer disease (AD), but less consistently in the parietal regions of the brain. We investigated cortical grey matter volume patterns in parietal areas. The grey matter of the somatosensory cortex, superior and inferior parietal lobule was measured in 75 older adults…

  17. Activity in the fronto-parietal network indicates numerical inductive reasoning beyond calculation: An fMRI study combined with a cognitive model.

    Science.gov (United States)

    Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A; Borst, Jelmer P; Li, Kuncheng

    2016-05-19

    Numerical inductive reasoning refers to the process of identifying and extrapolating the rule involved in numeric materials. It is associated with calculation, and shares the common activation of the fronto-parietal regions with calculation, which suggests that numerical inductive reasoning may correspond to a general calculation process. However, compared with calculation, rule identification is critical and unique to reasoning. Previous studies have established the central role of the fronto-parietal network for relational integration during rule identification in numerical inductive reasoning. The current question of interest is whether numerical inductive reasoning exclusively corresponds to calculation or operates beyond calculation, and whether it is possible to distinguish between them based on the activity pattern in the fronto-parietal network. To directly address this issue, three types of problems were created: numerical inductive reasoning, calculation, and perceptual judgment. Our results showed that the fronto-parietal network was more active in numerical inductive reasoning which requires more exchanges between intermediate representations and long-term declarative knowledge during rule identification. These results survived even after controlling for the covariates of response time and error rate. A computational cognitive model was developed using the cognitive architecture ACT-R to account for the behavioral results and brain activity in the fronto-parietal network.

  18. Neural networks underlying parietal lobe seizures: a quantified study from intracerebral recordings.

    Science.gov (United States)

    Bartolomei, Fabrice; Gavaret, Martine; Hewett, Russell; Valton, Luc; Aubert, Sandrine; Régis, Jean; Wendling, Fabrice; Chauvel, Patrick

    2011-02-01

    In this study we have quantified the "epileptogenicity" of several brain regions in seizures originating in the posterior parietal cortex in 17 patients investigated by intracerebral recordings using stereotactic EEG (SEEG). Epileptogenicity of brain structures was quantified according to the "epileptogenicity index" (EI), a way to quantify rapid discharges at seizure onset. Seven patients had maximal epileptogenicity in the superior parietal lobule-BA area 7 (Gr1), 2 patients in the superior parietal lobule-area 5 (Gr2), 4 patients in inferior parietal lobule (Gr3) and 4 in the opercular region (Gr4). A large majority of patients (15/17 (88%)) reported to have at least one aura during the course of their disease. Somato-sensory manifestations were reported in the four groups. Vestibular disturbance was observed mainly in seizures from the superior parietal lobule (Gr1 and 2). Ipsilateral version was the most frequent objective manifestation (64%). Hyperkinetic behaviour (motor agitation) was found to be frequent, observed in 4/17 cases (23%) and observed in seizures from inferior parietal regions. In conclusion, the electrophysiological organization and the clinical manifestations of PLS are various and complex. The subjective manifestations are frequent and often suggestive, therefore must be actively sought. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions.

    Science.gov (United States)

    Johnson, P B; Ferraina, S; Bianchi, L; Caminiti, R

    1996-01-01

    The functional and structural properties of the dorsolateral frontal lobe and posterior parietal proximal arm representations were studied in macaque monkeys. Physiological mapping of primary motor (MI), dorsal premotor (PMd), and posterior parietal (area 5) cortices was performed in behaving monkeys trained in an instructed-delay reaching task. The parietofrontal corticocortical connectivities of these same areas were subsequently examined anatomically by means of retrograde tracing techniques. Signal-, set-, movement-, and position-related directional neuronal activities were distributed nonuniformly within the task-related areas in both frontal and parietal cortices. Within the frontal lobe, moving caudally from PMd to the MI, the activity that signals for the visuo-spatial events leading to target localization decreased, while the activity more directly linked to movement generation increased. Physiological recordings in the superior parietal lobule revealed a gradient-like distribution of functional properties similar to that observed in the frontal lobe. Signal- and set-related activities were encountered more frequently in the intermediate and ventral part of the medial bank of the intraparietal sulcus (IPS), in area MIP. Movement-and position-related activities were distributed more uniformly within the superior parietal lobule (SPL), in both dorsal area 5 and in MIP. Frontal and parietal regions sharing similar functional properties were preferentially connected through their association pathways. As a result of this study, area MIP, and possibly areas MDP and 7m as well, emerge as the parietal nodes by which visual information may be relayed to the frontal lobe arm region. These parietal and frontal areas, along with their association connections, represent a potential cortical network for visual reaching. The architecture of this network is ideal for coding reaching as the result of a combination between visual and somatic information.

  20. Activity in the fronto-parietal network indicates numerical inductive reasoning beyond calculation : An fMRI study combined with a cognitive model

    NARCIS (Netherlands)

    Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A; Borst, Jelmer P; Li, Kuncheng

    2016-01-01

    Numerical inductive reasoning refers to the process of identifying and extrapolating the rule involved in numeric materials. It is associated with calculation, and shares the common activation of the fronto-parietal regions with calculation, which suggests that numerical inductive reasoning may corr

  1. Viewing the motion of human body parts activates different regions of premotor, temporal, and parietal cortex.

    Science.gov (United States)

    Wheaton, Kylie J; Thompson, James C; Syngeniotis, Ari; Abbott, David F; Puce, Aina

    2004-05-01

    Activation of premotor and temporoparietal cortex occurs when we observe others movements, particularly relating to objects. Viewing the motion of different body parts without the context of an object has not been systematically evaluated. During a 3T fMRI study, 12 healthy subjects viewed human face, hand, and leg motion, which was not directed at or did not involve an object. Activation was identified relative to static images of the same human face, hand, and leg in both individual subject and group average data. Four clear activation foci emerged: (1) right MT/V5 activated to all forms of viewed motion; (2) right STS activated to face and leg motion; (3) ventral premotor cortex activated to face, hand, and leg motion in the right hemisphere and to leg motion in the left hemisphere; and (4) anterior intraparietal cortex (aIP) was active bilaterally to viewing hand motion and in the right hemisphere leg motion. In addition, in the group data, a somatotopic activation pattern for viewing face, hand, and leg motion occurred in right ventral premotor cortex. Activation patterns in STS and aIP were more complex--typically activation foci to viewing two types of human motion showed some overlap. Activation in individual subjects was similar; however, activation to hand motion also occurred in the STS with a variable location across subjects--explaining the lack of a clear activation focus in the group data. The data indicate that there are selective responses to viewing motion of different body parts in the human brain that are independent of object or tool use.

  2. Detection of activated parietal epithelial cells on the glomerular tuft distinguishes early focal segmental glomerulosclerosis from minimal change disease.

    Science.gov (United States)

    Smeets, Bart; Stucker, Fabien; Wetzels, Jack; Brocheriou, Isabelle; Ronco, Pierre; Gröne, Hermann-Josef; D'Agati, Vivette; Fogo, Agnes B; van Kuppevelt, Toin H; Fischer, Hans-Peter; Boor, Peter; Floege, Jürgen; Ostendorf, Tammo; Moeller, Marcus J

    2014-12-01

    In rodents, parietal epithelial cells (PECs) migrating onto the glomerular tuft participate in the formation of focal segmental glomerulosclerosis (FSGS) lesions. We investigated whether immunohistologic detection of PEC markers in the initial biopsies of human patients with first manifestation of idiopathic nephrotic syndrome with no immune complexes can improve the sensitivity to detect sclerotic lesions compared with standard methods. Ninety-five renal biopsies were stained for claudin-1 (PEC marker), CD44 (activated PECs), and LKIV69 (PEC matrix); 38 had been diagnosed as early primary FSGS and 57 as minimal change disease. PEC markers were detected on the tuft in 87% of the biopsies of patients diagnosed as primary FSGS. PEC markers were detected in FSGS lesions from the earliest stages of disease. In minimal change disease, no PEC activation was observed by immunohistology. However, in 25% of biopsies originally diagnosed as minimal change disease the presence of small lesions indicative of a sclerosing process were detected, which were undetectable on standard periodic acid-Schiff staining, even though only a single histologic section for each PEC marker was evaluated. Staining for LKIV69 detected lesions with the highest sensitivity. Two novel PEC markers A-kinase anchor protein 12 and annexin A3 exhibited similar sensitivity. In summary, detection of PECs on the glomerular tuft by immunostaining improves the differentiation between minimal change disease and primary FSGS and may serve to guide clinical decision making.

  3. Decreased resting state metabolic activity in frontopolar and parietal brain regions is associated with suicide plans in depressed individuals.

    Science.gov (United States)

    van Heeringen, Kees; Wu, Guo-Rong; Vervaet, Myriam; Vanderhasselt, Marie-Anne; Baeken, Chris

    2017-01-01

    Suicide plans are a major risk factor for suicide, which is a devastating outcome of depression. While structural and functional brain changes have been demonstrated in relation to suicidal thoughts and behaviour, brain mechanisms underlying suicide plans have not yet been studied. Here, we studied changes in regional cerebral metabolic activity in association with suicide plans in depressed individuals. Using (18)FDG-PET, a comparative study of regional cerebral glucose metabolism (rCMRglu) was carried out in depressed individuals with suicidal thoughts and suicide plans, depressed individuals with only suicidal thoughts, depressed individuals without suicide thoughts and plans, and healthy controls. When compared to the other groups, depressed individuals with suicide plans showed relative hypometabolism in the right middle frontal gyrus and the right inferior parietal lobe (Brodmann areas 10 and 39). Suicide plans in depressed individuals appear to be associated with reduced activity in brain areas that are involved in decision-making and choice, more particularly in exploratory behaviour. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Parietal operculum and motor cortex activities predict motor recovery in moderate to severe stroke

    Directory of Open Access Journals (Sweden)

    Firdaus Fabrice Hannanu

    2017-01-01

    In subacute stroke, fMRI brain activity related to passive movement measured in a sensorimotor network defined by activity during voluntary movement predicted motor recovery better than baseline motor-FMS alone. Furthermore, fMRI sensorimotor network activity measures considered alone allowed excellent clinical recovery prediction and may provide reliable biomarkers for assessing new therapies in clinical trial contexts. Our findings suggest that neural reorganization related to motor recovery from moderate to severe stroke results from balanced changes in ipsilesional MI (BA4a and a set of phylogenetically more archaic sensorimotor regions in the ventral sensorimotor trend, in which OP1 and OP4 processes may complement the ipsilesional dorsal motor cortex in achieving compensatory sensorimotor recovery.

  5. Experienced Mindfulness Meditators Exhibit Higher Parietal-Occipital EEG Gamma Activity during NREM Sleep

    OpenAIRE

    2013-01-01

    Over the past several years meditation practice has gained increasing attention as a non-pharmacological intervention to provide health related benefits, from promoting general wellness to alleviating the symptoms of a variety of medical conditions. However, the effects of meditation training on brain activity still need to be fully characterized. Sleep provides a unique approach to explore the meditation-related plastic changes in brain function. In this study we performed sleep high-density...

  6. Prefrontal and parietal activity is modulated by the rule complexity of inductive reasoning and can be predicted by a cognitive model.

    Science.gov (United States)

    Jia, Xiuqin; Liang, Peipeng; Shi, Lin; Wang, Defeng; Li, Kuncheng

    2015-01-01

    In neuroimaging studies, increased task complexity can lead to increased activation in task-specific regions or to activation of additional regions. How the brain adapts to increased rule complexity during inductive reasoning remains unclear. In the current study, three types of problems were created: simple rule induction (i.e., SI, with rule complexity of 1), complex rule induction (i.e., CI, with rule complexity of 2), and perceptual control. Our findings revealed that increased activations accompany increased rule complexity in the right dorsal lateral prefrontal cortex (DLPFC) and medial posterior parietal cortex (precuneus). A cognitive model predicted both the behavioral and brain imaging results. The current findings suggest that neural activity in frontal and parietal regions is modulated by rule complexity, which may shed light on the neural mechanisms of inductive reasoning.

  7. Spontaneous pre-stimulus fluctuations in the activity of right fronto-parietal areas influence inhibitory control performance

    Directory of Open Access Journals (Sweden)

    Camille F. Chavan

    2013-06-01

    Full Text Available Inhibitory control refers to the ability to suppress planned or ongoing cognitive or motor processes. Electrophysiological indices of inhibitory control failure have been found to manifest even before the presentation of the stimuli triggering the inhibition, suggesting that pre-stimulus brain-states modulate inhibition performance. However, previous electrophysiological investigations on the state-dependency of inhibitory control were based on averaged event-related potentials, a method eliminating the variability in the ongoing brain activity not time-locked to the event of interest. These studies thus left unresolved whether spontaneous variations in the brain-state immediately preceding unpredictable inhibition-triggering stimuli also influence inhibitory control performance.To address this question, we applied single-trial EEG topographic analyses on the time interval immediately preceding NoGo stimuli in conditions where the responses to NoGo trials were correctly inhibited (correct rejection vs. committed (false alarms during an auditory spatial Go/NoGo task.We found a specific configuration of the EEG voltage field manifesting more frequently before correctly inhibited responses to NoGo stimuli than before false alarms. There was no evidence for an EEG topography occurring more frequently before false alarms than before correct rejections. The visualization of distributed electrical source estimations of the EEG topography preceding successful response inhibition suggested that it resulted from the activity of a right fronto-parietal brain network.Our results suggest that the fluctuations in the ongoing brain activity immediately preceding stimulus presentation contribute to the behavioral outcomes during an inhibitory control task. Our results further suggest that the state-dependency of sensory-cognitive processing might not only concern perceptual processes, but also high-order, top-down inhibitory control mechanisms.

  8. Theta and Alpha Oscillations during the Retention Period of Working Memory by rTMS Stimulating the Parietal Lobe.

    Science.gov (United States)

    Li, Song; Jin, Jing-Na; Wang, Xin; Qi, Hong-Zhi; Liu, Zhi-Peng; Yin, Tao

    2017-01-01

    Studies on repetitive transcranial magnetic stimulation (rTMS) have shown that stimulating the parietal lobe, which plays a role in memory storage, can enhance performance during the "retention" process of working memory (WM). However, the mechanism of rTMS effect during this phase is still unclear. In this study, we stimulated the superior parietal lobe (SPL) using 5-Hz rTMS in 26 participants and recorded electroencephalography (EEG) while they performed a delayed-recognition WM task. The analyses included the comparisons of event-related spectral perturbation (ERSP) value variations in theta (4-7 Hz) and alpha (8-14 Hz) band frequencies between conditions (rTMS vs. sham), as well as the correlations between different brain areas. Following rTMS, the ERSP values of theta-band oscillations were significantly increased in the parietal and occipital-parietal brain areas (P parietal area (P parietal and left prefrontal areas were positively correlated with the response time (RT) variations (by using rTMS, the more subject RT decreased, the more ERSP value of theta oscillation increased). The ERSP value variations of alpha-band oscillations in the left parietal and bilateral prefrontal areas were negatively correlated with RT variations (by using rTMS, the more RT of the subject decreased, the more ERSP value of alpha oscillation decreased). Inter-sites phase synchronization of theta-band EEG between the left parietal and left prefrontal areas, as well as alpha-band EEG between the left parietal and bilateral prefrontal areas were enhanced by rTMS. These results indicated that activities of both parietal and prefrontal areas were required for information storage, and these activities were related to the behavioral responses. Moreover, the connectivity between these two regions was intensified following rTMS. Thus, rTMS may affect the frontal area indirectly via the frontal parietal pathway.

  9. Elaboration versus suppression of cued memories: influence of memory recall instruction and success on parietal lobe, default network, and hippocampal activity.

    Science.gov (United States)

    Gimbel, Sarah I; Brewer, James B

    2014-01-01

    Functional imaging studies of episodic memory retrieval consistently report task-evoked and memory-related activity in the medial temporal lobe, default network and parietal lobe subregions. Associated components of memory retrieval, such as attention-shifts, search, retrieval success, and post-retrieval processing also influence regional activity, but these influences remain ill-defined. To better understand how top-down control affects the neural bases of memory retrieval, we examined how regional activity responses were modulated by task goals during recall success or failure. Specifically, activity was examined during memory suppression, recall, and elaborative recall of paired-associates. Parietal lobe was subdivided into dorsal (BA 7), posterior ventral (BA 39), and anterior ventral (BA 40) regions, which were investigated separately to examine hypothesized distinctions in sub-regional functional responses related to differential attention-to-memory and memory strength. Top-down suppression of recall abolished memory strength effects in BA 39, which showed a task-negative response, and BA 40, which showed a task-positive response. The task-negative response in default network showed greater negatively-deflected signal for forgotten pairs when task goals required recall. Hippocampal activity was task-positive and was influenced by memory strength only when task goals required recall. As in previous studies, we show a memory strength effect in parietal lobe and hippocampus, but we show that this effect is top-down controlled and sensitive to whether the subject is trying to suppress or retrieve a memory. These regions are all implicated in memory recall, but their individual activity patterns show distinct memory-strength-related responses when task goals are varied. In parietal lobe, default network, and hippocampus, top-down control can override the commonly identified effects of memory strength.

  10. Biological Motion Task Performance Predicts Superior Temporal Sulcus Activity

    Science.gov (United States)

    Herrington, John D.; Nymberg, Charlotte; Schultz, Robert T.

    2011-01-01

    Numerous studies implicate superior temporal sulcus (STS) in the perception of human movement. More recent theories hold that STS is also involved in the "understanding" of human movement. However, almost no studies to date have associated STS function with observable variability in action understanding. The present study directly associated STS…

  11. Detection of activated parietal epithelial cells on the glomerular tuft distinguishes early focal segmental glomerulosclerosis from minimal change disease

    NARCIS (Netherlands)

    Smeets, B.; Stucker, F.; Wetzels, J.; Brocheriou, I.; Ronco, P.; Grone, H.J.; D'Agati, V.; Fogo, A.B.; Kuppevelt, T.H. van; Fischer, H.P.; Boor, P.; Floege, J.; Ostendorf, T.; Moeller, M.J.

    2014-01-01

    In rodents, parietal epithelial cells (PECs) migrating onto the glomerular tuft participate in the formation of focal segmental glomerulosclerosis (FSGS) lesions. We investigated whether immunohistologic detection of PEC markers in the initial biopsies of human patients with first manifestation of i

  12. Changes in cerebral activations during movement execution and imagery after parietal cortex TMS interleaved with 3T MRI

    NARCIS (Netherlands)

    de Vries, Paulien M.; de Jong, Bauke M.; Bohning, Daryl E.; Walker, John A.; George, Mark S.; Leenders, Klaus L.

    2009-01-01

    The left parietal cortex contributes to goal-directed hand movement. In this study, we targeted this region with transcranial magnetic stimulation (TMS) to assess the effects on a wider distributed circuitry related to motor control. Ten healthy subjects underwent 3 Tesla functional magnetic

  13. Changes in cerebral activations during movement execution and imagery after parietal cortex TMS interleaved with 3T MRI

    NARCIS (Netherlands)

    de Vries, Paulien M.; de Jong, Bauke M.; Bohning, Daryl E.; Walker, John A.; George, Mark S.; Leenders, Klaus L.

    2009-01-01

    The left parietal cortex contributes to goal-directed hand movement. In this study, we targeted this region with transcranial magnetic stimulation (TMS) to assess the effects on a wider distributed circuitry related to motor control. Ten healthy subjects underwent 3 Tesla functional magnetic resonan

  14. Activity in the fronto-parietal network indicates numerical inductive reasoning beyond calculation: An fMRI study combined with a cognitive model

    OpenAIRE

    Peipeng Liang; Xiuqin Jia; Niels A Taatgen; Borst, Jelmer P.; Kuncheng Li

    2016-01-01

    Numerical inductive reasoning refers to the process of identifying and extrapolating the rule involved in numeric materials. It is associated with calculation, and shares the common activation of the fronto-parietal regions with calculation, which suggests that numerical inductive reasoning may correspond to a general calculation process. However, compared with calculation, rule identification is critical and unique to reasoning. Previous studies have established the central role of the front...

  15. Superior Temporal Activation as a Function of Linguistic Knowledge: Insights from Deaf Native Signers Who Speechread

    Science.gov (United States)

    Capek, Cheryl M.; Woll, Bencie; MacSweeney, Mairead; Waters, Dafydd; McGuire, Philip K.; David, Anthony S.; Brammer, Michael J.; Campbell, Ruth

    2010-01-01

    Studies of spoken and signed language processing reliably show involvement of the posterior superior temporal cortex. This region is also reliably activated by observation of meaningless oral and manual actions. In this study we directly compared the extent to which activation in posterior superior temporal cortex is modulated by linguistic…

  16. Parietal cell vagotomy.

    Science.gov (United States)

    Cumberland, V H; Coupland, G A

    1975-07-12

    In a series of 100 consecutive patients who had parietal cell vagotomy performed, no drainage procedure was performed in 56 while 44 were drained. Dumping was significantly less in those who were not drained. All patients were tested for adequacy of vagotomy and for function of the nerve of Latarget at operation. Four patients have had further operations, two for proven recurrent ulcers. Parietal cell vagotomy has given excellent clinical results in this group of patients.

  17. Reasoning with linear orders: Differential parietal cortex activation in subclinical depression. An fMRI investigation in subclinical depression and controls

    Directory of Open Access Journals (Sweden)

    Elanor C. Hinton

    2015-01-01

    Full Text Available The capacity to learn new information and manipulate it for efficient retrieval has long been studied through reasoning paradigms, which also has applicability to the study of social behaviour. Humans can learn about the linear order within groups using reasoning, and the success of such reasoning may vary according to affective state, such as depression. We investigated the neural basis of these latter findings using functional neuroimaging. Using BDI-II criteria, 14 non-depressed and 12 mildly depressed volunteers took part in a linear-order reasoning task during fMRI. The hippocampus, parietal and prefrontal cortices were activated during the task, in accordance with previous studies. In the learning phase and in the test phase, greater activation of the parietal cortex was found in the depressed group, which may be a compensatory mechanism in order to reach the same behavioural performance as the non-depressed group, or evidence for a different reasoning strategy in the depressed group.

  18. Cluster B personality symptoms in persons at genetic risk for schizophrenia are associated with social competence and activation of the right temporo-parietal junction during emotion processing.

    Science.gov (United States)

    Goldschmidt, Micaela Giuliana; Villarreal, Mirta Fabiana; de Achával, Delfina; Drucaroff, Lucas Javier; Costanzo, Elsa Yolanda; Castro, Mariana Nair; Pahissa, Jaime; Camprodon, Joan; Nemeroff, Charles; Guinjoan, Salvador Martín

    2014-01-30

    Personality disorders are common in nonpsychotic siblings of patients with schizophrenia, and some personality traits in this group may be associated with an increased risk for full-blown psychosis. We sought to establish if faulty right-hemisphere activation induced by social cognitive tasks, as previously described in patients with schizophrenia, is associated with specific personality symptoms in their unaffected siblings. We observed that cluster B personality symptoms in this group were inversely related to activation in the right temporo parietal junction (rTPJ, a structure critical in social cognitive processing) in response to a basic emotion processing task and also to social competence, whereas in contrast to our initial hypothesis, cluster A traits were not associated with right hemisphere activation during emotion processing or with social competence. These findings suggest the existence of clinical traits in at-risk individuals which share a common neurobiological substrate with schizophrenia, in regards to social performance.

  19. Parietal cortex and representation of the mental Self

    DEFF Research Database (Denmark)

    Lou, Hans C; Luber, Bruce; Crupain, Michael

    2004-01-01

    differential activity in medial prefrontal and medial parietal cortices. With positron-emission tomography, we here show that these medial regions are functionally connected and interact with lateral regions that are activated according to the degree of self-reference. During retrieval of previous judgments...... of Oneself, Best Friend, and the Danish Queen, activation increased in the left lateral temporal cortex and decreased in the right inferior parietal region with decreasing self-reference. Functionally, the former region was preferentially connected to medial prefrontal cortex, the latter to medial parietal....... The medial parietal region may, then, be conceived of as a nodal structure in self-representation, functionally connected to both the right parietal and the medial prefrontal cortices. To determine whether medial parietal cortex in this network is essential for episodic memory retrieval with self...

  20. Is the parietal lobe necessary for recollection in humans?

    Science.gov (United States)

    Simons, Jon S; Peers, Polly V; Hwang, David Y; Ally, Brandon A; Fletcher, Paul C; Budson, Andrew E

    2008-03-07

    An intriguing puzzle in cognitive neuroscience over recent years has been the common observation of parietal lobe activation in functional neuroimaging studies during the performance of human memory tasks. These findings have surprised scientists and clinicians because they challenge decades of established thinking that the parietal lobe does not support memory function. However, direct empirical investigation of whether circumscribed parietal lobe lesions might indeed be associated with human memory impairment has been lacking. Here we confirm using functional magnetic resonance imaging that significant parietal lobe activation is observed in healthy volunteers during a task assessing recollection of the context in which events previously occurred. However, patients with parietal lobe lesions that overlap closely with the regions activated in the healthy volunteers nevertheless exhibit normal performance on the same recollection task. Thus, although the processes subserved by the human parietal lobe appear to be recruited to support memory function, they are not a necessary requirement for accurate remembering to occur.

  1. Somatosensory-motor adaptation of orofacial actions in posterior parietal and ventral premotor cortices.

    Directory of Open Access Journals (Sweden)

    Krystyna Grabski

    Full Text Available Recent studies have provided evidence for sensory-motor adaptive changes and action goal coding of visually guided manual action in premotor and posterior parietal cortices. To extend these results to orofacial actions, devoid of auditory and visual feedback, we used a repetition suppression paradigm while measuring neural activity with functional magnetic resonance imaging during repeated intransitive and silent lip, jaw and tongue movements. In the motor domain, this paradigm refers to decreased activity in specific neural populations due to repeated motor acts and has been proposed to reflect sensory-motor adaptation. Orofacial movements activated a set of largely overlapping, common brain areas forming a core neural network classically involved in orofacial motor control. Crucially, suppressed neural responses during repeated orofacial actions were specifically observed in the left ventral premotor cortex, the intraparietal sulcus, the inferior parietal lobule and the superior parietal lobule. Since no visual and auditory feedback were provided during orofacial actions, these results suggest somatosensory-motor adaptive control of intransitive and silent orofacial actions in these premotor and parietal regions.

  2. Parcellation of left parietal tool representations by functional connectivity

    Science.gov (United States)

    Garcea, Frank E.; Z. Mahon, Bradford

    2014-01-01

    Manipulating a tool according to its function requires the integration of visual, conceptual, and motor information, a process subserved in part by left parietal cortex. How these different types of information are integrated and how their integration is reflected in neural responses in the parietal lobule remains an open question. Here, participants viewed images of tools and animals during functional magnetic resonance imaging (fMRI). K-means clustering over time series data was used to parcellate left parietal cortex into subregions based on functional connectivity to a whole brain network of regions involved in tool processing. One cluster, in the inferior parietal cortex, expressed privileged functional connectivity to the left ventral premotor cortex. A second cluster, in the vicinity of the anterior intraparietal sulcus, expressed privileged functional connectivity with the left medial fusiform gyrus. A third cluster in the superior parietal lobe expressed privileged functional connectivity with dorsal occipital cortex. Control analyses using Monte Carlo style permutation tests demonstrated that the clustering solutions were outside the range of what would be observed based on chance ‘lumpiness’ in random data, or mere anatomical proximity. Finally, hierarchical clustering analyses were used to formally relate the resulting parcellation scheme of left parietal tool representations to previous work that has parcellated the left parietal lobule on purely anatomical grounds. These findings demonstrate significant heterogeneity in the functional organization of manipulable object representations in left parietal cortex, and outline a framework that generates novel predictions about the causes of some forms of upper limb apraxia. PMID:24892224

  3. Improved acylation of phytosterols catalyzed by Candida antarctica lipase A with superior catalytic activity

    DEFF Research Database (Denmark)

    Panpipat, Worawan; Xu, Xuebing; Guo, Zheng

    2013-01-01

    This work reported a novel approach to synthesize phytosterol (ˇ-sitosterol as a model) fatty acid esters by employing Candida antarctica lipase A (CAL A) which shows a superior catalytic activity to other lipases. A series of ˇ-sitosteryl fatty acid esters (C2–C18) have been successfully prepared...

  4. A Multifactorial Mechanism in the Superior Antimalarial Activity of α-C-GalCer

    Directory of Open Access Journals (Sweden)

    John Schmieg

    2010-01-01

    Full Text Available We have previously shown that the C-glycoside analog of α-galactosylceramide (α-GalCer, α-C-GalCer, displays a superior inhibitory activity against the liver stages of the rodent malaria parasite Plasmodium yoelii than its parental glycolipid, α-GalCer. In this study, we demonstrate that NK cells, as well as IL-12, are a key contributor for the superior activity displayed by α-C-GalCer. Surprisingly, the diminished production of Th2 cytokines, including IL-4, by α-C-GalCer has no affect on its superior therapeutic activity relative to α-GalCer. Finally, we show that the in vivo administration of α-C-GalCer induces prolonged maturation of dendritic cells (DCs, as well as an enhanced proliferative response of mouse invariant Vα14 (Vα14i NKT cells, both of which may also contribute to some degree to the superior activity of α-C-GalCer in vivo.

  5. Parietal cortex mediates conscious perception of illusory gestalt.

    Science.gov (United States)

    Zaretskaya, Natalia; Anstis, Stuart; Bartels, Andreas

    2013-01-09

    Grouping local elements into a holistic percept, also known as spatial binding, is crucial for meaningful perception. Previous studies have shown that neurons in early visual areas V1 and V2 can signal complex grouping-related information, such as illusory contours or object-border ownerships. However, relatively little is known about higher-level processes contributing to these signals and mediating global Gestalt perception. We used a novel bistable motion illusion that induced alternating and mutually exclusive vivid conscious experiences of either dynamic illusory contours forming a global Gestalt or moving ungrouped local elements while the visual stimulation remained the same. fMRI in healthy human volunteers revealed that activity fluctuations in two sites of the parietal cortex, the superior parietal lobe and the anterior intraparietal sulcus (aIPS), correlated specifically with the perception of the grouped illusory Gestalt as opposed to perception of ungrouped local elements. We then disturbed activity at these two sites in the same participants using transcranial magnetic stimulation (TMS). TMS over aIPS led to a selective shortening of the duration of the global Gestalt percept, with no effect on that of local elements. The results suggest that aIPS activity is directly involved in the process of spatial binding during effortless viewing in the healthy brain. Conscious perception of global Gestalt is therefore associated with aIPS function, similar to attention and perceptual selection.

  6. Theta and Alpha Oscillations during the Retention Period of Working Memory by rTMS Stimulating the Parietal Lobe

    Directory of Open Access Journals (Sweden)

    Song Li

    2017-09-01

    Full Text Available Studies on repetitive transcranial magnetic stimulation (rTMS have shown that stimulating the parietal lobe, which plays a role in memory storage, can enhance performance during the “retention” process of working memory (WM. However, the mechanism of rTMS effect during this phase is still unclear. In this study, we stimulated the superior parietal lobe (SPL using 5-Hz rTMS in 26 participants and recorded electroencephalography (EEG while they performed a delayed-recognition WM task. The analyses included the comparisons of event-related spectral perturbation (ERSP value variations in theta (4–7 Hz and alpha (8–14 Hz band frequencies between conditions (rTMS vs. sham, as well as the correlations between different brain areas. Following rTMS, the ERSP values of theta-band oscillations were significantly increased in the parietal and occipital-parietal brain areas (P < 0.05*, whereas the ERSP values of alpha-band oscillations were significantly decreased in the parietal area (P < 0.05*. The ERSP value variations of theta-band oscillations between the two conditions in the left parietal and left prefrontal areas were positively correlated with the response time (RT variations (by using rTMS, the more subject RT decreased, the more ERSP value of theta oscillation increased. The ERSP value variations of alpha-band oscillations in the left parietal and bilateral prefrontal areas were negatively correlated with RT variations (by using rTMS, the more RT of the subject decreased, the more ERSP value of alpha oscillation decreased. Inter-sites phase synchronization of theta-band EEG between the left parietal and left prefrontal areas, as well as alpha-band EEG between the left parietal and bilateral prefrontal areas were enhanced by rTMS. These results indicated that activities of both parietal and prefrontal areas were required for information storage, and these activities were related to the behavioral responses. Moreover, the connectivity

  7. Apraxia, pantomime and the parietal cortex.

    Science.gov (United States)

    Niessen, E; Fink, G R; Weiss, P H

    2014-01-01

    Apraxia, a disorder of higher motor cognition, is a frequent and outcome-relevant sequel of left hemispheric stroke. Deficient pantomiming of object use constitutes a key symptom of apraxia and is assessed when testing for apraxia. To date the neural basis of pantomime remains controversial. We here review the literature and perform a meta-analysis of the relevant structural and functional imaging (fMRI/PET) studies. Based on a systematic literature search, 10 structural and 12 functional imaging studies were selected. Structural lesion studies associated pantomiming deficits with left frontal, parietal and temporal lesions. In contrast, functional imaging studies associate pantomimes with left parietal activations, with or without concurrent frontal or temporal activations. Functional imaging studies that selectively activated parietal cortex adopted the most stringent controls. In contrast to previous suggestions, current analyses show that both lesion and functional studies support the notion of a left-hemispheric fronto-(temporal)-parietal network underlying pantomiming object use. Furthermore, our review demonstrates that the left parietal cortex plays a key role in pantomime-related processes. More specifically, stringently controlled fMRI-studies suggest that in addition to storing motor schemas, left parietal cortex is also involved in activating these motor schemas in the context of pantomiming object use. In addition to inherent differences between structural and functional imaging studies and consistent with the dedifferentiation hypothesis, the age difference between young healthy subjects (typically included in functional imaging studies) and elderly neurological patients (typically included in structural lesion studies) may well contribute to the finding of a more distributed representation of pantomiming within the motor-dominant left hemisphere in the elderly.

  8. Working memory load influences perceptual ambiguity by competing for fronto-parietal attentional resources.

    Science.gov (United States)

    Intaitė, Monika; Duarte, João Valente; Castelo-Branco, Miguel

    2016-11-01

    A visual stimulus is defined as ambiguous when observers perceive it as having at least two distinct and spontaneously alternating interpretations. Neuroimaging studies suggest an involvement of a right fronto-parietal network regulating the balance between stable percepts and the triggering of alternative interpretations. As spontaneous perceptual reversals may occur even in the absence of attention to these stimuli, we investigated neural activity patterns in response to perceptual changes of ambiguous Necker cube under different amounts of working memory load using a dual-task design. We hypothesized that the same regions that process working memory load are involved in perceptual switching and confirmed the prediction that perceptual reversals led to fMRI responses that linearly depended on load. Accordingly, posterior Superior Parietal Lobule, anterior Prefrontal and Dorsolateral Prefrontal cortices exhibited differential BOLD signal changes in response to perceptual reversals under working memory load. Our results also suggest that the posterior Superior Parietal Lobule may be directly involved in the emergence of perceptual reversals, given that it specifically reflects both perceptual versus real changes and load levels. The anterior Prefrontal and Dorsolateral Prefrontal cortices, showing a significant interaction between reversal levels and load, might subserve a modulatory role in such reversals, in a mirror symmetric way: in the former activation is suppressed by the highest loads, and in the latter deactivation is reduced by highest loads, suggesting a more direct role of the aPFC in reversal generation.

  9. Parietal lobe epilepsy.

    Science.gov (United States)

    Salanova, Vicenta

    2012-10-01

    Patients with parietal lobe epilepsy (PLE) exhibit an electroclinical epilepsy syndrome that is rarely seen even at large epilepsy centers. Clinically, most patients with PLE exhibit a somatosensory aura that may include painful dysesthesias, though vertigo, aphasia, disturbances of one's body image also occur, when ictal propagation occurs from the parietal lobe to the supplementary motor area, hypermotor manifestations are noted. When temporolimbic propagation occurs, complex visual or auditory hallucinations and automatisms may appear. Scalp electroencephalogram (EEG) is often nonlocalizing. Ictal EEG is rarely localizing in PLE, and invasive EEG is often required for definitive localization and functional mapping. Recent advances in clinical neurophysiology during the evaluation of patients with refractory partial epilepsy include Ictal magnetic source imaging (MSI). Combined EEG and functional magnetic resonance imaging (EEG-fMRI) may be useful for patients with PLE to refine the localization in patients undergoing a presurgical evaluation. High-frequency oscillations (HFOs) are more concentrated inside the seizure onset zone (SOZ), indicating that they may be used as interictal scalp EEG biomarker for the SOZ. When medical therapy fails, resective epilepsy surgery can result in seizure freedom or significant reduction especially when a lesion is present.

  10. Apraxia, pantomime and the parietal cortex

    Directory of Open Access Journals (Sweden)

    E. Niessen

    2014-01-01

    In contrast to previous suggestions, current analyses show that both lesion and functional studies support the notion of a left-hemispheric fronto-(temporal-parietal network underlying pantomiming object use. Furthermore, our review demonstrates that the left parietal cortex plays a key role in pantomime-related processes. More specifically, stringently controlled fMRI-studies suggest that in addition to storing motor schemas, left parietal cortex is also involved in activating these motor schemas in the context of pantomiming object use. In addition to inherent differences between structural and functional imaging studies and consistent with the dedifferentiation hypothesis, the age difference between young healthy subjects (typically included in functional imaging studies and elderly neurological patients (typically included in structural lesion studies may well contribute to the finding of a more distributed representation of pantomiming within the motor-dominant left hemisphere in the elderly.

  11. Gelastic seizures involving the left parietal lobe.

    Science.gov (United States)

    Machado, René Andrade; Astencio, Adriana Goicoechea

    2012-01-01

    Gelastic seizures have been described in various epilepsies arising from the temporal or frontal lobes, although the most commonly encountered form is related to the presence of a hypothalamic hamartoma. We describe a patient with gelastic seizures involving the left parietal lobe. Our patient, an 8-year-old girl, underwent interictal video/EEG monitoring and MRI. The seizures consisted of brief staring followed by smiling and laughing. Electroencephalography during the gelastic seizures showed rhythmic spikes and waves in the left parietal lobe. MRI revealed the characteristic features of focal cortical dysplasia. Our findings suggest that the left parietal lobe may actively participate in the particular epileptogenic network generating gelastic seizures. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Changes in frontal-parietal activation and math skills performance following adaptive number sense training: preliminary results from a pilot study.

    Science.gov (United States)

    Kesler, Shelli R; Sheau, Kristen; Koovakkattu, Della; Reiss, Allan L

    2011-08-01

    Number sense is believed to be critical for math development. It is putatively an implicitly learned skill and may therefore have limitations in terms of being explicitly trained, particularly in individuals with altered neurodevelopment. A case series study was conducted using an adaptive, computerised programme that focused on number sense and general problem-solving skills. The study was designed to investigate training effects on performance as well as brain function in a group of children with Turner syndrome who are at risk for math difficulties and altered development of math-related brain networks. Standardised measurements of math and math-related cognitive skills as well as functional magnetic resonance imaging (fMRI) were used to assess behavioural and neurobiological outcomes following training. Participants demonstrated significantly increased basic math skills, including number sense, and calculation as well as processing speed, cognitive flexibility and visual-spatial processing skills. With the exception of calculation, increased scores also were clinically significant (i.e., recovered) based on reliable change analysis. Participants additionally demonstrated significantly increased bilateral parietal lobe activation and decreased frontal-striatal and mesial temporal activation following the training programme. These findings show proof of concept for an accessible training approach that may be potentially associated with improved number sense, math and related skills, as well as functional changes in math-related neural systems, even among individuals at risk for altered brain development.

  13. Parietal cheiro-oral syndrome.

    Science.gov (United States)

    Yasuda, Y; Watanabe, T; Ogura, A

    2000-12-01

    Cheiro-oral syndrome due to a parietal lesion has been reported in conjuction with a brain tumor, infarction and migraine. Only six reports of cheiro-oral syndrome due to a parietal infarction have been reported to date. We treated a 45-year-old woman with cheiro-oral syndrome due to a parietal infarction. Her sensory disturbance was characterized by paresthesia in the lower face and hand on the left side, and severe involvement of stereognosis and graphesthesia in the left hand. The pathogenesis of parietal cheiro-oral syndrome is discussed.

  14. Quantitative meta-analysis of fMRI and PET studies reveals consistent activation in fronto-striatal-parietal regions and cerebellum during antisaccades and prosaccades

    Directory of Open Access Journals (Sweden)

    Sharna eJamadar

    2013-10-01

    Full Text Available The antisaccade task is a classic task of oculomotor control that requires participants to inhibit a saccade to a target and instead make a voluntary saccade to the mirror opposite location. By comparison, the prosaccade task requires participants to make a visually-guided saccade to the target. These tasks have been studied extensively using behavioural oculomotor, electrophysiological and neuroimaging in both non-human primates and humans. In humans, the antisaccade task is under active investigation as a potential endophenotype or biomarker for multiple psychiatric and neurological disorders. A large and growing body of literature has used functional magnetic resonance imaging (fMRI and positron emission tomography (PET to study the neural correlates of the antisaccade and prosaccade tasks. We present a quantitative meta-analysis of all published voxel-wise fMRI and PET studies (18 of the antisaccade task and show that consistent activation for antisaccades and prosaccades is obtained in a fronto-subcortical-parietal network encompassing frontal and supplementary eye fields, thalamus, striatum and intraparietal cortex. This network is strongly linked to oculomotor control and was activated to a greater extent for antisaccade than prosaccade trials. Antisaccade but not prosaccade trials additionally activated dorsolateral and ventrolateral prefrontal cortices. We also found that a number of additional regions not classically linked to oculomotor control were activated to a greater extent for antisaccade versus prosaccade trials; these regions are often reported in antisaccade studies but rarely commented upon. While the number of studies eligible to be included in this meta-analysis was small, the results of this systematic review reveal that antisaccade and prosaccade trials consistently activate a distributed network of regions both within and outside the classic definition of the oculomotor network.

  15. Superior Temporal Activity for the Retrieval Process of Auditory-Word Associations

    Directory of Open Access Journals (Sweden)

    Toshimune Kambara

    2011-10-01

    Full Text Available Previous neuroimaging studies have reported that learning multisensory associations involves the superior temporal regions (Tanabe et al, 2005. However, the neural mechanisms underlying the retrieval of multi-sensory associations were unclear. This functional MRI (fMRI study investigated brain activations during the retrieval of multi-sensory associations. Eighteen right-handed college-aged Japanese participants learned associations between meaningless pictures and words (Vw, meaningless sounds and words (Aw, and meaningless sounds and visual words (W. During fMRI scanning, participants were presented with old and new words and were required to judge whether the words were included in the conditions of Vw, Aw, W or New. We found that the left superior temporal region showed greater activity during the retrieval of words learned in Aw than in Vw, whereas no region showed greater activity for the Vw condition versus the Aw condition (k > 10, p < .001, uncorrected. Taken together, the left superior temporal region could play an essential role in the retrieval process of auditory-word associations.

  16. The Role of Human Parietal Cortex in Attention Networks

    Science.gov (United States)

    Han, Shihui; Jiang, Yi; Gu, Hua; Rao, Hengyi; Mao, Lihua; Cui, Yong; Zhai, Renyou

    2004-01-01

    The parietal cortex has been proposed as part of the neural network for guiding spatial attention. However, it is unclear to what degree the parietal cortex contributes to the attentional modulations of activities of the visual cortex and the engagement of the frontal cortex in the attention network. We recorded behavioural performance and…

  17. Right anterior superior temporal activation predicts auditory sentence comprehension following aphasic stroke.

    Science.gov (United States)

    Crinion, Jenny; Price, Cathy J

    2005-12-01

    Previous studies have suggested that recovery of speech comprehension after left hemisphere infarction may depend on a mechanism in the right hemisphere. However, the role that distinct right hemisphere regions play in speech comprehension following left hemisphere stroke has not been established. Here, we used functional magnetic resonance imaging (fMRI) to investigate narrative speech activation in 18 neurologically normal subjects and 17 patients with left hemisphere stroke and a history of aphasia. Activation for listening to meaningful stories relative to meaningless reversed speech was identified in the normal subjects and in each patient. Second level analyses were then used to investigate how story activation changed with the patients' auditory sentence comprehension skills and surprise story recognition memory tests post-scanning. Irrespective of lesion site, performance on tests of auditory sentence comprehension was positively correlated with activation in the right lateral superior temporal region, anterior to primary auditory cortex. In addition, when the stroke spared the left temporal cortex, good performance on tests of auditory sentence comprehension was also correlated with the left posterior superior temporal cortex (Wernicke's area). In distinct contrast to this, good story recognition memory predicted left inferior frontal and right cerebellar activation. The implication of this double dissociation in the effects of auditory sentence comprehension and story recognition memory is that left frontal and left temporal activations are dissociable. Our findings strongly support the role of the right temporal lobe in processing narrative speech and, in particular, auditory sentence comprehension following left hemisphere aphasic stroke. In addition, they highlight the importance of the right anterior superior temporal cortex where the response was dissociated from that in the left posterior temporal lobe.

  18. Apraxia and the Parietal Lobes

    Science.gov (United States)

    Goldenberg, Georg

    2009-01-01

    The widely held belief in a central role of left parietal lesions for apraxia can be traced back to Liepmann's model of a posterior to anterior stream converting mental images of intended action into motor execution. Although this model has undergone significant changes, its modern descendants still attribute the parietal contribution to the…

  19. Parietal intraparenchymal Schwannoma: case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Hwan; Chung, Tae Woong; Yoon, Woong; Jeong, Gwang Woo; Kang, Heoung Keun [Chonnam National University Hospital, Kwangju (Korea, Republic of)

    2008-10-15

    We report a case of an intraparenchymal schwannoma of the left parietal lobe. A 51-year-old woman was admitted to our hospital with complaints of intermittent headaches. Computed tomography and magnetic resonance images revealed a 1.3 cm sized intra-axial homogeneous enhancing mass in the left parietal lobe. The lesion was pathologically confirmed to be a schwannoma.

  20. Superior digit memory of abacus experts: an event-related functional MRI study.

    Science.gov (United States)

    Tanaka, Satoshi; Michimata, Chikashi; Kaminaga, Tatsuro; Honda, Manabu; Sadato, Norihiro

    2002-12-01

    Abacus experts exhibit superior short-term memory for digits, but the underlying neurophysiological mechanism remains unknown. Using event-related fMRI, we examined the brain activity of abacus experts and non-experts during the memory retention period of a delayed match-to-sample task using digits as stimuli. In controls, activity was greater in cortical areas related to verbal working memory, including Broca's area. In contrast, in experts, activity was greater in cortical areas related to visuo-spatial working memory, including the bilateral superior frontal sulcus and superior parietal lobule. This provides neurophysiological evidence that abacus experts utilize a visuo-spatial representation for digit memory.

  1. Use of explicit memory cues following parietal lobe lesions.

    Science.gov (United States)

    Dobbins, Ian G; Jaeger, Antonio; Studer, Bettina; Simons, Jon S

    2012-11-01

    The putative role of the lateral parietal lobe in episodic memory has recently become a topic of considerable debate, owing primarily to its consistent activation for studied materials during functional magnetic resonance imaging studies of recognition. Here we examined the performance of patients with parietal lobe lesions using an explicit memory cueing task in which probabilistic cues ("Likely Old" or "Likely New"; 75% validity) preceded the majority of verbal recognition memory probes. Without cues, patients and control participants did not differ in accuracy. However, group differences emerged during the "Likely New" cue condition with controls responding more accurately than parietal patients when these cues were valid (preceding new materials) and trending towards less accuracy when these cues were invalid (preceding old materials). Both effects suggest insufficient integration of external cues into memory judgments on the part of the parietal patients whose cued performance largely resembled performance in the complete absence of cues. Comparison of the parietal patients to a patient group with frontal lobe lesions suggested the pattern was specific to parietal and adjacent area lesions. Overall, the data indicate that parietal lobe patients fail to appropriately incorporate external cues of novelty into recognition attributions. This finding supports a role for the lateral parietal lobe in the adaptive biasing of memory judgments through the integration of external cues and internal memory evidence. We outline the importance of such adaptive biasing through consideration of basic signal detection predictions regarding maximum possible accuracy with and without informative environmental cues. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Non-Additive Transcriptional Profiles Underlie Dikaryotic Superiority in Pleurotus ostreatus Laccase Activity

    Science.gov (United States)

    Castanera, Raúl; Omarini, Alejandra; Santoyo, Francisco; Pérez, Gúmer; Pisabarro, Antonio G.; Ramírez, Lucía

    2013-01-01

    Background The basidiomycete Pleurotus ostreatus is an efficient producer of laccases, a group of enzymes appreciated for their use in multiple industrial processes. The aim of this study was to reveal the molecular basis of the superiority of laccase production by dikaryotic strains compared to their parental monokaryons. Methodology/Principal Findings We bred and studied a set of dikaryotic strains starting from a meiotic population of monokaryons. We then completely characterised the laccase allelic composition, the laccase gene expression and activity profiles in the dikaryotic strain N001, in two of its meiotic full-sib monokaryons and in the dikaryon formed from their mating. Conclusions/Significance Our results suggested that the dikaryotic superiority observed in laccase activity was due to non-additive transcriptional increases in lacc6 and lacc10 genes. Furthermore, the expression of these genes was divergent in glucose- vs. lignocellulose-supplemented media and was highly correlated to the detected extracellular laccase activity. Moreover, the expression profile of lacc2 in the dikaryotic strains was affected by its allelic composition, indicating a putative single locus heterozygous advantage. PMID:24039902

  3. Non-additive transcriptional profiles underlie dikaryotic superiority in Pleurotus ostreatus laccase activity.

    Directory of Open Access Journals (Sweden)

    Raúl Castanera

    Full Text Available BACKGROUND: The basidiomycete Pleurotus ostreatus is an efficient producer of laccases, a group of enzymes appreciated for their use in multiple industrial processes. The aim of this study was to reveal the molecular basis of the superiority of laccase production by dikaryotic strains compared to their parental monokaryons. METHODOLOGY/PRINCIPAL FINDINGS: We bred and studied a set of dikaryotic strains starting from a meiotic population of monokaryons. We then completely characterised the laccase allelic composition, the laccase gene expression and activity profiles in the dikaryotic strain N001, in two of its meiotic full-sib monokaryons and in the dikaryon formed from their mating. CONCLUSIONS/SIGNIFICANCE: Our results suggested that the dikaryotic superiority observed in laccase activity was due to non-additive transcriptional increases in lacc6 and lacc10 genes. Furthermore, the expression of these genes was divergent in glucose- vs. lignocellulose-supplemented media and was highly correlated to the detected extracellular laccase activity. Moreover, the expression profile of lacc2 in the dikaryotic strains was affected by its allelic composition, indicating a putative single locus heterozygous advantage.

  4. Cerebello-thalamo-cortical projections to the posterior parietal cortex in the macaque monkey.

    Science.gov (United States)

    Amino, Y; Kyuhou, S; Matsuzaki, R; Gemba, H

    2001-08-17

    The cerebello-thalamo-posterior parietal cortical projections were investigated electrophysiologically and morphologically in macaque monkeys. In anesthetized monkeys, electrical stimulation of every cerebellar nucleus evoked marked surface-positive, depth-negative (s-P, d-N) cortical field potentials in the superior parietal lobule and the cortical bank of the intraparietal sulcus, but no responses in the inferior parietal lobule. Tract-tracing experiments combining the anterograde method with the retrograde one indicated that the interposed and lateral cerebellar nuclei projected to the posterior parietal cortex mainly through the nucleus ventral lateralis caudalis of the thalamus. The significance of the projections is discussed in connection with cognitive functions.

  5. Comparison of Electromyographic Activity of the Superior and Inferior Portions of the Gluteus Maximus Muscle During Common Therapeutic Exercises.

    Science.gov (United States)

    Selkowitz, David M; Beneck, George J; Powers, Christopher M

    2016-09-01

    Study Design Controlled laboratory study, repeated-measures design. Background Previous studies have reported that the superior and inferior portions of the gluteus maximus have different functional roles. Knowledge of how the different portions of the gluteus maximus are activated during therapeutic exercise may lead to more specific exercise prescription. Objective To compare muscle activation of the superior and inferior portions of the gluteus maximus during commonly used therapeutic exercises. Methods Twenty healthy persons participated. Electromyographic (EMG) signals were obtained from the superior and inferior portions of the gluteus maximus using fine-wire electrodes. Normalized EMG signal amplitudes were compared between the superior and inferior gluteus maximus across 11 exercises using a 2-way repeated-measures analysis of variance. Results The superior portion of the gluteus maximus had significantly greater relative EMG activity than the inferior portion of the gluteus maximus during exercises that incorporated elements of hip abduction and/or external rotation (5 of 11 exercises evaluated). There was no significant difference in activation between the superior and inferior portions of the gluteus maximus during the remaining 6 exercises. Conclusion The results of the present study demonstrate preferential activation of the superior portion of the gluteus maximus during exercises that incorporate elements of hip abduction and/or external rotation. In contrast, exercises that primarily involve hip extension target both portions of the gluteus maximus to a similar extent. J Orthop Sports Phys Ther 2016;46(9):794-799. Epub 5 Aug 2016. doi:10.2519/jospt.2016.6493.

  6. Role of Doppler ultrasonography evaluation of superior mesenteric artery flow volume in the assessment of Crohn's disease activity

    Directory of Open Access Journals (Sweden)

    Fabiana Paiva Martins

    2013-09-01

    Full Text Available Objective To investigate superior mesenteric artery flow measurement by Doppler ultrasonography as a means of characterizing inflammatory activity in Crohn's disease. Materials and Methods Forty patients were examined and divided into two groups – disease activity and remission – according to their Crohn's disease activity index score. Mean superior mesenteric artery flow volume was calculated for each group and correlated with Crohn's disease activity index score. Results The mean superior mesenteric artery flow volume was significantly greater in the patients with active disease (626 ml/min ± 236 × 376 ml/min ± 190; p = 0.001. As a cut off corresponding to 500 ml/min was utilized, the superior mesenteric artery flow volume demonstrated sensitivity of 83% and specificity of 82% for the diagnosis of Crohn's disease activity. Conclusion The present results suggest that patients with active Crohn's disease have increased superior mesenteric artery flow volume as compared with patients in remission. Superior mesenteric artery flow measurement had a good performance in the assessment of disease activity in this study sample.

  7. Facile and green synthesis of cellulose nanocrystal-supported gold nanoparticles with superior catalytic activity.

    Science.gov (United States)

    Yan, Wei; Chen, Chang; Wang, Ling; Zhang, Dan; Li, Ai-Jun; Yao, Zheng; Shi, Li-Yi

    2016-04-20

    The emphasis of science and technology shifts toward environmentally friendly and sustainable resources and processes. Herein, we report a facile, one-pot and green synthesis of biomaterial-supported gold nanoparticles (AuNPs) with superior catalytic activity. Cellulose nanocrystal (CNC)-supported AuNPs were prepared by heating the aqueous mixture of HAuCl4, CNCs and polyethylene glycol, avoiding toxic chemicals, extreme condition and complicated procedure. The resultant CNC-supported AuNPs exhibited catalytic activities for the reduction of 4-nitrophenol by sodium borohydride. The maximum apparent rate constant reached 1.47×10(-2)s(-1), and the turnover frequency reached 641h(-1). The superior catalytic performance can be ascribed to the large amount of highly dispersed AuNPs with few nanometers in size which are loaded on CNCs. About 90% of the AuNPs are smaller than 10nm, and nearly 60% of the AuNPs are smaller than 5nm. The synthesis is eco-friendly, facile and low-cost, thus has great potential for industrial and medical applications.

  8. Parietal lobe epilepsy: the great imitator among focal epilepsies.

    Science.gov (United States)

    Ristić, Aleksandar J; Alexopoulos, Andreas V; So, Norman; Wong, Chong; Najm, Imad M

    2012-03-01

    Comprising large areas of association cortex, the parietal lobe is part of an extensive synaptic network elaborately intertwined with other brain regions. We hypothesize that such widespread projections are responsible for producing inaccurate localisation readings on scalp EEG and clinical semiology in patients with parietal lobe epilepsies, as opposed to frontal or temporal lobe epilepsies. Our study included 50 patients with pharmacoresistant focal epilepsy, who were subsequently rendered seizure-free for ≥12 months (median: 23 months) following resections limited to the frontal (n=17), temporal (n=17), or parietal (n=16) lobes. Interictal and ictal EEG data with accompanying seizure video recordings were extracted from archived files of scalp video-EEG monitoring. Two blinded raters independently reviewed the EEG according to predetermined criteria. Videos of seizures were then observed, as raters formulated their final electroclinical impression (ECI), identifying patients' abnormal neuronal activities with parietal, temporal, and frontal lobe epilepsy, or unspecified localisation. Groups did not differ significantly in demographics, age at epilepsy onset, or presence of MRI abnormalities. Interictal discharges in parietal lobe epilepsy showed the greatest magnitude of scatter outside the lobe of origin; the majority of patients with parietal lobe epilepsy had more than one spike population (pparietal lobe epilepsy cases (p=0.024). Whenever raters confidently limited their ECI to one lobar subtype, overall accuracy was excellent. Lobar classifications by ECI were highly accurate for temporal lobe epilepsy, vacillating in frontal lobe epilepsy, and least accurate in parietal lobe epilepsy subjects. Scalp EEG readings of parietal lobe epilepsy patients showed a more variable scatter of interictal discharges and a lower localisation value of ictal recordings compared to temporal and frontal lobe epilepsy subjects, suggesting an increased likelihood of

  9. Microwave-induced formation of platinum nanostructured networks with superior electrochemical activity and stability.

    Science.gov (United States)

    Jia, Falong; Wang, Fangfang; Lin, Yun; Zhang, Lizhi

    2011-12-16

    Platinum nanostructured networks (PNNs) can be synthesized through the chemical reduction of H(2)PtCl(6) by benzyl alcohol under microwave irradiation without the introduction of any surfactants, templates, or seeds. The synthesis route utilizes benzyl alcohol as both the reductant and the structure-directing agent, and thus, the process is particularly simple and highly repeatable. The formation of the PNN structure was ascribed to the collision-induced fusion of Pt nanocrystals owing to the cooperative functions of microwave irradiation and benzyl alcohol. Compared with a commercial Pt/C catalyst, the as-prepared PNNs possessed superior electrochemical activity and stability on the oxidation of methanol because of the unique 3D nanostructured networks and abundant defects formed during the assembly process. This study may provide a facile microwave-induced approach for the synthesis of other 3D nanostructured noble metals or their alloys.

  10. Polyvinylpyrrolidone (PVP)-capped Pt Nanocubes with Superior Peroxidase-like Activity

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Haihang; Liu, Y.; chhabra, ashima; lilla, emily; xia, xiaohu

    2017-01-01

    Peroxidase mimics of inorganic nanoparticles are expected to circumvent the inherent issues of natural peroxidases, providing enhanced performance in important applications such as diagnosis and imaging. Despite the report of a variety of peroxidase mimics in the past decade, very limited progress has been made on improving their catalytic efficiency. The catalytic efficiencies of most previously reported mimics are only up to one order of magnitude higher than those of natural peroxidases. In this work, we demonstrate a type of highly efficient peroxidase mimic – polyvinylpyrrolidone (PVP)-capped Pt nanocubes of sub-10 nm in size. These PVP-capped Pt cubes are ~200-fold more active than the natural counterparts and exhibit a record-high specific catalytic efficiency. In addition to the superior efficiency, the new mimic shows several other promising features, including excellent stabilities, well-controlled uniformity in both size and shape, controllable sizes, and facile and scalable production.

  11. Carbon supported trimetallic nickel-palladium-gold hollow nanoparticles with superior catalytic activity for methanol electrooxidation

    Science.gov (United States)

    Shang, Changshuai; Hong, Wei; Wang, Jin; Wang, Erkang

    2015-07-01

    In this paper, Ni nanoparticles (NPs) are prepared in an aqueous solution by using sodium borohydride as reducing agent. With Ni NPs as the sacrificial template, hollow NiPdAu NPs are successfully prepared via partly galvanic displacement reaction between suitable metal precursors and Ni NPs. The as-synthesized hollow NiPdAu NPs can well dispersed on the carbon substrate. Transmission electron microscopy, X-ray diffraction and inductively coupled plasma mass spectrometry are taken to analyze the morphology, structure and composition of the as-synthesized catalysts. The prepared catalysts show superior catalytic activity and stability for methanol electrooxidation in alkaline media compared with commercial Pd/C and Pt/C. Catalysts prepared in this work show great potential to be anode catalysts in direct methanol fuel cells.

  12. Superior anticancer activity of halogenated chalcones and flavonols over the natural flavonol quercetin.

    Science.gov (United States)

    Dias, Tatiana A; Duarte, Cecília L; Lima, Cristovao F; Proença, M Fernanda; Pereira-Wilson, Cristina

    2013-07-01

    A series of chalcone and flavonol derivatives were synthesized in good yield by an eco-friendly approach. A pharmacological evaluation was performed with the human colorectal carcinoma cell line HCT116 and revealed that the anticancer activity of flavonols was higher when compared with that of the respective chalcone precursors. The antiproliferative activity of halogenated derivatives increases as the substituent in the 3- or 4-positon of the B-ring goes from F to Cl and to Br. In addition, halogens in position 3 enhance anticancer activity in chalcones whereas for flavonol derivatives the best performance was registered for the 4-substituted derivatives. Flow cytometry analysis showed that compounds 3p and 4o induced cell cycle arrest and apoptosis as demonstrated by increased S, G2/M and sub-G1 phases. These data were corroborated by western blot and fluorescence microscopy analysis. In summary, halogenated chalcones and flavonols were successfully prepared and presented high anticancer activity as shown by their cell growth and cell cycle inhibitory potential against HCT116 cells, superior to that of quercetin, used as a positive control.

  13. Dendrimer-Linked Antifreeze Proteins Have Superior Activity and Thermal Recovery.

    Science.gov (United States)

    Stevens, Corey A; Drori, Ran; Zalis, Shiran; Braslavsky, Ido; Davies, Peter L

    2015-09-16

    By binding to ice, antifreeze proteins (AFPs) depress the freezing point of a solution and inhibit ice recrystallization if freezing does occur. Previous work showed that the activity of an AFP was incrementally increased by fusing it to another protein. Even larger increases in activity were achieved by doubling the number of ice-binding sites by dimerization. Here, we have combined the two strategies by linking multiple outward-facing AFPs to a dendrimer to significantly increase both the size of the molecule and the number of ice-binding sites. Using a heterobifunctional cross-linker, we attached between 6 and 11 type III AFPs to a second-generation polyamidoamine (G2-PAMAM) dendrimer with 16 reactive termini. This heterogeneous sample of dendrimer-linked type III constructs showed a greater than 4-fold increase in freezing point depression over that of monomeric type III AFP. This multimerized AFP was particularly effective at ice recrystallization inhibition activity, likely because it can simultaneously bind multiple ice surfaces. Additionally, attachment to the dendrimer has afforded the AFP superior recovery from heat denaturation. Linking AFPs together via polymers can generate novel reagents for controlling ice growth and recrystallization.

  14. Facile synthesis of bacitracin-templated palladium nanoparticles with superior electrocatalytic activity

    Science.gov (United States)

    Li, Yanji; Wang, Zi; Li, Xiaoling; Yin, Tian; Bian, Kexin; Gao, Faming; Gao, Dawei

    2017-02-01

    Palladium nanomaterials have attracted great attention on the development of electrocatalysts for fuel cells. Herein, we depicted a novel strategy in the synthesis of palladium nanoparticles with superior electrocatalytic activity. The new approach, based on the self-assembly of bacitracin biotemplate and palladium salt for the preparation of bacitracin-palladium nanoparticles (Bac-PdNPs), was simple, low-cost, and green. The complex, composed by a series of spherical Bac-PdNPs with a diameter of 70 nm, exhibited a chain-liked morphology in TEM and a face-centered cubic crystal structure in X-Ray diffraction and selected area electron diffraction. The palladium nanoparticles were mono-dispersed and stable in aqueous solution as shown in TEM and zeta potential. Most importantly, compared to the commercial palladium on carbon (Pd/C) catalyst (8.02 m2 g-1), the Bac-PdNPs showed a larger electrochemically active surface area (47.57 m2 g-1), which endowed the products an excellent electrocatalytic activity for ethanol oxidation in alkaline medium. The strategy in synthesis of Bac-PdNPs via biotemplate approach might light up new ideas in anode catalysts for direct ethanol fuel cells.

  15. Activity in the superior temporal sulcus highlights learning competence in an interaction game.

    Science.gov (United States)

    Haruno, Masahiko; Kawato, Mitsuo

    2009-04-08

    During behavioral adaptation through interaction with human and nonhuman agents, marked individual differences are seen in both real-life situations and games. However, the underlying neural mechanism is not well understood. We conducted a neuroimaging experiment in which subjects maximized monetary rewards by learning in a prisoner's dilemma game with two computer agents: agent A, a tit-for-tat player who repeats the subject's previous action, and agent B, a simple stochastic cooperator oblivious to the subject's action. Approximately 1/3 of the subjects (group I) learned optimally in relation to both A and B, while another 1/3 (group II) did so only for B. Post-experiment interviews indicated that group I exploited the agent strategies more often than group II. Significant differences in learning-related brain activity between the two groups were only found in the superior temporal sulcus (STS) for both A and B. Furthermore, the learning performance of each group I subject was predictable based on this STS activity, but not in the group II subjects. This differential activity could not be attributed to a behavioral difference since it persisted in relation to agent B for which the two groups behaved similarly. In sharp contrast, the brain structures for reward processing were recruited similarly by both groups. These results suggest that STS provides knowledge of the other agent's strategies for association between action and reward and highlights learning competence during interactive reinforcement learning.

  16. Facile synthesis of PdAgTe nanowires with superior electrocatalytic activity

    Science.gov (United States)

    Hong, Wei; Wang, Jin; Wang, Erkang

    2014-12-01

    In this work, ultrathin Te nanowires (NWs) with high-aspect-ratio are prepared by a simple hydrothermal method. By using Te NWs as the sacrificial template, we demonstrate a facile and efficient method for the synthesis of PdAgTe NWs with high-quality through the partly galvanic replacement between Te NWs and the corresponding noble metal salts precursors in an aqueous solution. The compositions of PdAgTe NWs can be tuned by simply altering the concentration of the precursors. After cyclic voltammetry treatment, multi-component PdAgTe NW with a highly active and stable surface can be obtained. The structure and composition of the as-prepared nanomaterials are analyzed by transmission electron microscope, X-ray diffraction, energy dispersive X-ray spectroscopy, inductively coupled plasma-mass spectroscopy and X-ray photoelectron spectroscopy. Electrochemical catalytic measurement results prove that the as synthesized PdAgTe NWs present superior catalytic activity toward ethanol electrooxidation in alkaline solution than the commercial Pd/C catalyst, which making them can be used as effective catalysts for the direct ethanol fuel cells.

  17. Individual structural differences in left inferior parietal area are associated with schoolchildrens’ arithmetic scores

    Directory of Open Access Journals (Sweden)

    Yongxin eLi

    2013-12-01

    Full Text Available Arithmetic skill is of critical importance for academic achievement, professional success and everyday life, and childhood is the key period to acquire this skill. Neuroimaging studies have identified that left parietal regions are a key neural substrate for representing arithmetic skill. Although the relationship between functional brain activity in left parietal regions and arithmetic skill has been studied in detail, it remains unclear about the relationship between arithmetic achievement and structural properties in left inferior parietal area in schoolchildren. The current study employed a combination of voxel-based morphometry (VBM for high-resolution T1-weighted images and fiber tracking on diffusion tensor imaging (DTI to examine the relationship between structural properties in the inferior parietal area and arithmetic achievement in 10-year-old schoolchildren. VBM of the T1-weighted images revealed that individual differences in arithmetic scores were significantly and positively correlated with the grey matter (GM volume in the left intraparietal sulcus (IPS. Fiber tracking analysis revealed that the forceps major, left superior longitudinal fasciculus (SLF, bilateral inferior longitudinal fasciculus (ILF and inferior fronto-occipital fasciculus (IFOF were the primary pathways connecting the left IPS with other brain areas. Furthermore, the regression analysis of the probabilistic pathways revealed a significant and positive correlation between the fractional anisotropy (FA values in the left SLF, ILF and bilateral IFOF and arithmetic scores. The brain structure-behavior correlation analyses indicated that the GM volumes in the left IPS and the FA values in the tract pathways connecting left IPS were both related to children’s arithmetic achievement. The present findings provide evidence that individual structural differences in the left IPS are associated with arithmetic scores in schoolchildren.

  18. Improved quantification of brain perfusion using FAIR with active suppression of superior tagging (FAIR ASST).

    Science.gov (United States)

    Li, Xiufeng; Sarkar, Subhendra N; Purdy, David E; Haley, Robert W; Briggs, Richard W

    2011-11-01

    To address two problems for perfusion studies in the middle or inferior brain regions: (1) to reduce venous artifacts due to the intrinsic superior labeling of FAIR; (2) to alleviate the discrepancy of the existence of both superior and inferior boluses, but with only the inferior bolus having a temporally defined bolus width with Q2TIPs or QUIPSS. Superior tagging suppression methods for FAIR with different combinations of pre- and postinversion superior saturation pulses were evaluated and compared with FAIR with Q2TIPS for producing perfusion maps of superior, middle, and inferior brain regions. One preinversion plus two postinversion superior saturation radio frequency pulses effectively suppressed the superior tagging of FAIR and sufficiently eliminated venous artifacts without negative effects, avoiding the overestimations of cerebral blood flow that can occur in FAIR. FAIR ASST improves FAIR with Q2TIPS and provides more reliable and accurate blood flow estimations for perfusion studies of middle and lower brain regions. FAIR ASST confers the advantages of asymmetric PASL techniques, such as PICORE, in which only the inferiorly labeled blood is used for perfusion quantification, to the symmetric PASL technique FAIR, while preserving the robustness of FAIR against MT effects. Copyright © 2011 Wiley Periodicals, Inc.

  19. Screening of Lignocellulose-Degrading Superior Mushroom Strains and Determination of Their CMCase and Laccase Activity

    Directory of Open Access Journals (Sweden)

    Li Fen

    2014-01-01

    Full Text Available In order to screen lignocellulose-degrading superior mushroom strains ten strains of mushrooms (Lentinus edodes939, Pholiota nameko, Lentinus edodes868, Coprinus comatus, Macrolepiota procera, Auricularia auricula, Hericium erinaceus, Grifola frondosa, Pleurotus nebrodensis, and Shiraia bambusicola were inoculated onto carboxymethylcellulose agar-Congo red plates to evaluate their ability to produce carbomethyl cellulase (CMCase. The results showed that the ratio of transparent circle to mycelium circle of Hericium erinaceus was 8.16 (P<0.01 higher than other strains. The filter paper culture screening test showed that Hericium erinaceus and Macrolepiota procera grew well and showed extreme decomposition of the filter paper. When cultivated in guaiacol culture medium to detect their abilities to secrete laccase, Hericium erinaceus showed the highest ability with the largest reddish brown circles of 4.330 cm. CMCase activity determination indicated that Coprinus comatus and Hericium erinaceus had the ability to produce CMCase with 33.92 U/L on the 9th day and 22.58 U/L on the 10th day, respectively, while Coprinus comatus and Pleurotus nebrodensis had the ability to produce laccase with 496.67 U/L and 489.17 U/L on the 16th day and 18th day. Based on the results, Coprinus comatus might be the most promising lignocellulose-degrading strain to produce both CMCase and laccase at high levels.

  20. Superior supercapacitive performance of hollow activated carbon nanomesh with hierarchical structure derived from poplar catkins

    Science.gov (United States)

    Su, Xiao-Li; Cheng, Ming-Yu; Fu, Lin; Yang, Jing-He; Zheng, Xiu-Cheng; Guan, Xin-Xin

    2017-09-01

    The hollow activated carbon nanomesh (PCACM) with a hierarchical porous structure is derived from biowaste-poplar catkins by in-situ calcination etching with Ni(NO3)2·6H2O and KOH in N2 flow combined with an acid dissolution technique. This procedure not only inherits the natural tube morphology of poplar catkins, but also generates a fascinating nanomesh structure on the walls. PCACM possesses a large specific surface area (SBET = 1893.0 m2 g-1) and high total pore volume (Vp = 1.495 cm3 g-1), and displays an exciting meso-macoporous structure with a concentrated pore size distribution of 4.53 nm. The specific capacitance of PCACM is as high as 314.6 F g-1 at 1.0 A g-1 when used as the electrode materials for supercapacitor. Furthermore, the symmetric supercapacitor of PCACM with 1.0 M Na2SO4 solution as the electrolyte displays a high energy density of 20.86 Wh kg-1 at a power density of 180.13 W kg-1 within a wide voltage rage of 0-1.8 V, which is comparable or even obviously higher than those of other biomass derived carbon reported. It is noteworthy that PCACM also exhibits superior cycling stability and coulombic efficiency. The excellent electrochemical behaviors enable PCACM to be a promising electrode material for supercapacitors.

  1. Mental representations of vowel features asymmetrically modulate activity in superior temporal sulcus.

    Science.gov (United States)

    Scharinger, Mathias; Domahs, Ulrike; Klein, Elise; Domahs, Frank

    2016-12-01

    Research in auditory neuroscience illustrated the importance of superior temporal sulcus (STS) for speech sound processing. However, evidence for abstract processing beyond the level of phonetics in STS has remained elusive. In this study, we follow an underspecification approach according to which the phonological representation of vowels is based on the presence vs. absence of abstract features. We hypothesized that phonological mismatch in a same/different task is governed by underspecification: A less specified vowel in second position of same/different minimal pairs (e.g. [e]) compared to its more specified counterpart in first position (e.g. [o]) should result in stronger activation in STS than in the reverse presentation. Whole-brain analyses confirmed this hypothesis in a bilateral cluster in STS. However, this effect interacted with the feature-distance between first and second vowel and was most pronounced for a minimal, one-feature distance, evidencing the benefit of phonological information for processing acoustically minimal sound differences. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Active vacuum brazing of CNT films to metal substrates for superior electron field emission performance

    Science.gov (United States)

    Longtin, Rémi; Sanchez-Valencia, Juan Ramon; Shorubalko, Ivan; Furrer, Roman; Hack, Erwin; Elsener, Hansrudolf; Gröning, Oliver; Greenwood, Paul; Rupesinghe, Nalin; Teo, Kenneth; Leinenbach, Christian; Gröning, Pierangelo

    2015-02-01

    The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag-Cu-Ti alloy and at 880 °C with a Cu-Sn-Ti-Zr alloy. The brazing methodology was elaborated in order to enable the production of highly electrically and thermally conductive CNT/metal substrate contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.35 Ω. The improved interfacial transport properties in the brazed films lead to superior electron field-emission properties when compared to the as-grown films. An emission current of 150 μA was drawn from the brazed nanotubes at an applied electric field of 0.6 V μm-1. The improvement in electron field-emission is mainly attributed to the reduction of the contact resistance between the nanotubes and the substrate. The joints have high re-melting temperatures up to the solidus temperatures of the alloys; far greater than what is achievable with standard solders, thus expanding the application potential of CNT films to high-current and high-power applications where substantial frictional or resistive heating is expected.

  3. Superior memorizers employ different neural networks for encoding and recall.

    Science.gov (United States)

    Mallow, Johannes; Bernarding, Johannes; Luchtmann, Michael; Bethmann, Anja; Brechmann, André

    2015-01-01

    Superior memorizers often employ the method of loci (MoL) to memorize large amounts of information. The MoL, known since ancient times, relies on a complex process where information to be memorized is bound to landmarks along mental routes in a previously memorized environment. However, functional magnetic resonance imaging data on groups of trained superior memorizer are rare. Based on the memorizing strategy reported by superior memorizers, we developed a scheme of the processes successively employed during memorizing and recalling digits and relate these to brain activation that is specific for the encoding and recall period. In the examined superior memorizers several regions, suggested to be involved in mental navigation and digit-to-word processing, were specifically activated during encoding: bilateral early visual cortex, retrosplenial cortex, left parahippocampus, left visual cortex, and left superior parietal cortex. Although the scheme suggests that some steps during encoding and recall seem to be analog, none of the encoding areas were specifically activated during the recall. Instead, we found strong activation in left anterior superior temporal gyrus, which we relate to recalling the sequential order of the digits, and right motor cortex that may be related to reciting the digits.

  4. Superior Memorizers Employ Different Neural Networks for Encoding and Recall

    Directory of Open Access Journals (Sweden)

    Johannes eMallow

    2015-09-01

    Full Text Available Superior memorizers often employ the method of loci (MoL to memorize large amounts of information. The method of loci, known since ancient times, relies on a complex process where information to be memorized is bound to landmarks along mental routes in a previously memorized environment. However, fMRI data on groups of trained superior memorizer are rare. Based on the memorizing strategy reported by superior memorizers we developed a scheme of the processes successively employed during memorizing and recalling digits and relate these to brain activation that is specific for the encoding and recall period. In the examined superior memorizers several regions, suggested to be involved in mental navigation and digit-to-word processing, were specifically activated during encoding: bilateral early visual cortex, retrosplenial cortex, left parahippocampus, left visual cortex, and left superior parietal cortex. Although the scheme suggests that some steps during encoding and recall seem to be analog, none of the encoding areas were specifically activated during the recall. Instead, we found strong activation in left anterior superior temporal gyrus, which we relate to recalling the sequential order of the digits, and right motor cortex that may be related to reciting the digits.

  5. Superior sensory, motor, and cognitive performance in elderly individuals with multi-year dancing activities

    Directory of Open Access Journals (Sweden)

    Jan-Christoph Kattenstroth

    2010-07-01

    Full Text Available Aging is associated with a progressive decline of mental and physical abilities. Considering the current demographic changes in many civilizations there is an urgent need for measures permitting an independent lifestyle into old age. The critical role of physical exercise in mediating and maintaining physical and mental fitness is well-acknowledged. Dance, in addition to physical activity, combines emotions, social interaction, sensory stimulation, motor coordination and music, thereby creating enriched environmental conditions for human individuals. Here we demonstrate the impact of multi-year (average 16.5 years amateur dancing (AD in a group of elderly subjects (aged 65 to 84 years as compared to education-, gender- and aged-matched controls (CG having no record of dancing or sporting activities. Besides posture and balance parameters, we tested reaction times, motor behavior, tactile and cognitive performance. In each of the different domains investigated, the AD group had a superior performance as compared to the non-dancer CG group. Analysis of individual performance revealed that the best participants of the AD group were not better than individuals of the CG group. Instead, the AD group lacked individuals showing poor performance, which was frequently observed for the CG group. This observation implies that maintaining a regular schedule of dancing into old age can preserve cognitive, motor and perceptual abilities and prevent them from degradation. We conclude that the far-reaching beneficial effects found in the AD group make dance, beyond its ability to facilitate balance and posture, a prime candidate for the preservation of everyday life competence of elderly individuals.

  6. Superior sensory, motor, and cognitive performance in elderly individuals with multi-year dancing activities.

    Science.gov (United States)

    Kattenstroth, Jan-Christoph; Kolankowska, Izabella; Kalisch, Tobias; Dinse, Hubert R

    2010-01-01

    Aging is associated with a progressive decline of mental and physical abilities. Considering the current demographic changes in many civilizations there is an urgent need for measures permitting an independent lifestyle into old age. The critical role of physical exercise in mediating and maintaining physical and mental fitness is well-acknowledged. Dance, in addition to physical activity, combines emotions, social interaction, sensory stimulation, motor coordination and music, thereby creating enriched environmental conditions for human individuals. Here we demonstrate the impact of multi-year (average 16.5 years) amateur dancing (AD) in a group of elderly subjects (aged 65-84 years) as compared to education-, gender- and aged-matched controls (CG) having no record of dancing or sporting activities. Besides posture and balance parameters, we tested reaction times, motor behavior, tactile and cognitive performance. In each of the different domains investigated, the AD group had a superior performance as compared to the non-dancer CG group. Analysis of individual performance revealed that the best participants of the AD group were not better than individuals of the CG group. Instead, the AD group lacked individuals showing poor performance, which was frequently observed for the CG group. This observation implies that maintaining a regular schedule of dancing into old age can preserve cognitive, motor and perceptual abilities and prevent them from degradation. We conclude that the far-reaching beneficial effects found in the AD group make dance, beyond its ability to facilitate balance and posture, a prime candidate for the preservation of everyday life competence of elderly individuals.

  7. Activating Developmental Reserve Capacity Via Cognitive Training or Non-invasive Brain Stimulation: Potentials for Promoting Fronto-Parietal and Hippocampal-Striatal Network Functions in Old Age.

    Science.gov (United States)

    Passow, Susanne; Thurm, Franka; Li, Shu-Chen

    2017-01-01

    Existing neurocomputational and empirical data link deficient neuromodulation of the fronto-parietal and hippocampal-striatal circuitries with aging-related increase in processing noise and declines in various cognitive functions. Specifically, the theory of aging neuronal gain control postulates that aging-related suboptimal neuromodulation may attenuate neuronal gain control, which yields computational consequences on reducing the signal-to-noise-ratio of synaptic signal transmission and hampering information processing within and between cortical networks. Intervention methods such as cognitive training and non-invasive brain stimulation, e.g., transcranial direct current stimulation (tDCS), have been considered as means to buffer cognitive functions or delay cognitive decline in old age. However, to date the reported effect sizes of immediate training gains and maintenance effects of a variety of cognitive trainings are small to moderate at best; moreover, training-related transfer effects to non-trained but closely related (i.e., near-transfer) or other (i.e., far-transfer) cognitive functions are inconsistent or lacking. Similarly, although applying different tDCS protocols to reduce aging-related cognitive impairments by inducing temporary changes in cortical excitability seem somewhat promising, evidence of effects on short- and long-term plasticity is still equivocal. In this article, we will review and critically discuss existing findings of cognitive training- and stimulation-related behavioral and neural plasticity effects in the context of cognitive aging, focusing specifically on working memory and episodic memory functions, which are subserved by the fronto-parietal and hippocampal-striatal networks, respectively. Furthermore, in line with the theory of aging neuronal gain control we will highlight that developing age-specific brain stimulation protocols and the concurrent applications of tDCS during cognitive training may potentially facilitate

  8. Auditory cortical delta-entrainment interacts with oscillatory power in multiple fronto-parietal networks.

    Science.gov (United States)

    Keitel, Anne; Ince, Robin A A; Gross, Joachim; Kayser, Christoph

    2017-02-15

    The timing of slow auditory cortical activity aligns to the rhythmic fluctuations in speech. This entrainment is considered to be a marker of the prosodic and syllabic encoding of speech, and has been shown to correlate with intelligibility. Yet, whether and how auditory cortical entrainment is influenced by the activity in other speech-relevant areas remains unknown. Using source-localized MEG data, we quantified the dependency of auditory entrainment on the state of oscillatory activity in fronto-parietal regions. We found that delta band entrainment interacted with the oscillatory activity in three distinct networks. First, entrainment in the left anterior superior temporal gyrus (STG) was modulated by beta power in orbitofrontal areas, possibly reflecting predictive top-down modulations of auditory encoding. Second, entrainment in the left Heschl's Gyrus and anterior STG was dependent on alpha power in central areas, in line with the importance of motor structures for phonological analysis. And third, entrainment in the right posterior STG modulated theta power in parietal areas, consistent with the engagement of semantic memory. These results illustrate the topographical network interactions of auditory delta entrainment and reveal distinct cross-frequency mechanisms by which entrainment can interact with different cognitive processes underlying speech perception.

  9. Superior Temporal Activation in Response to Dynamic Audio-Visual Emotional Cues

    Science.gov (United States)

    Robins, Diana L.; Hunyadi, Elinora; Schultz, Robert T.

    2009-01-01

    Perception of emotion is critical for successful social interaction, yet the neural mechanisms underlying the perception of dynamic, audio-visual emotional cues are poorly understood. Evidence from language and sensory paradigms suggests that the superior temporal sulcus and gyrus (STS/STG) play a key role in the integration of auditory and visual…

  10. Increased Activation in Superior Temporal Gyri as a Function of Increment in Phonetic Features

    Science.gov (United States)

    Osnes, Berge; Hugdahl, Kenneth; Hjelmervik, Helene; Specht, Karsten

    2011-01-01

    A common assumption is that phonetic sounds initiate unique processing in the superior temporal gyri and sulci (STG/STS). The anatomical areas subserving these processes are also implicated in the processing of non-phonetic stimuli such as music instrument sounds. The differential processing of phonetic and non-phonetic sounds was investigated in…

  11. Increased Activation in Superior Temporal Gyri as a Function of Increment in Phonetic Features

    Science.gov (United States)

    Osnes, Berge; Hugdahl, Kenneth; Hjelmervik, Helene; Specht, Karsten

    2011-01-01

    A common assumption is that phonetic sounds initiate unique processing in the superior temporal gyri and sulci (STG/STS). The anatomical areas subserving these processes are also implicated in the processing of non-phonetic stimuli such as music instrument sounds. The differential processing of phonetic and non-phonetic sounds was investigated in…

  12. Role of parietal regions in episodic memory retrieval: The dual attentional processes hypothesis

    OpenAIRE

    Cabeza, Roberto

    2008-01-01

    Although parietal cortex is frequently activated during episodic memory retrieval, damage to this region does not markedly impair episodic memory. To account for these and other findings, a new dual attentional processes (DAP) hypothesis is proposed. According to this hypothesis, dorsal parietal cortex (DPC) contributes top-down attentional processes guided by retrieval goals, whereas ventral parietal cortex (VPC) contributes bottom-up attentional processes captured by the retrieval output. C...

  13. A parcellation scheme for human left lateral parietal cortex.

    Science.gov (United States)

    Nelson, Steven M; Cohen, Alexander L; Power, Jonathan D; Wig, Gagan S; Miezin, Francis M; Wheeler, Mark E; Velanova, Katerina; Donaldson, David I; Phillips, Jeffrey S; Schlaggar, Bradley L; Petersen, Steven E

    2010-07-15

    The parietal lobe has long been viewed as a collection of architectonic and functional subdivisions. Though much parietal research has focused on mechanisms of visuospatial attention and control-related processes, more recent functional neuroimaging studies of memory retrieval have reported greater activity in left lateral parietal cortex (LLPC) when items are correctly identified as previously studied ("old") versus unstudied ("new"). These studies have suggested functional divisions within LLPC that may provide distinct contributions toward recognition memory judgments. Here, we define regions within LLPC by developing a parcellation scheme that integrates data from resting-state functional connectivity MRI and functional MRI. This combined approach results in a 6-fold parcellation of LLPC based on the presence (or absence) of memory-retrieval-related activity, dissociations in the profile of task-evoked time courses, and membership in large-scale brain networks. This parcellation should serve as a roadmap for future investigations aimed at understanding LLPC function.

  14. The {0 0 1} facets-dependent superior photocatalytic activities of BiOCl nanosheets under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yingjun [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Wang, Qin, E-mail: qinwang@imu.edu.cn [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021 (China); Liu, Baocang [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021 (China); Zhang, Jun, E-mail: cejzhang@imu.edu.cn [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021 (China)

    2015-09-15

    Graphical abstract: - Highlights: • BiOCl nanosheets were selectively synthesized via a facile hydrothermal method. • The percentage of {0 0 1} facets over BiOCl nanosheets were well controlled. • These samples manifest superior catalytic activity for the degradation of RhB dyes. - Abstract: BiOCl nanosheets with tunable lamella thickness and dominantly exposed {0 0 1} facets were selectively synthesized via a facile hydrothermal method. By modifying the synthetic parameters, such as the amount of P123 and mannitol, the reaction time, types of surfactants, the size, thickness, morphologies, and percentage of {0 0 1} facets over BiOCl nanosheets were well controlled. The exposed {0 0 1} facets with high surface energy and high density of oxygen atoms are not only conducive to the adsorption of the rhodamine B (RhB) dye but also can accumulate the photo-generated electrons, which can be captured by O{sub 2} and converted into reactive oxygen species O{sub 2}{sup −}·. Therefore, the resultant ultrathin BiOCl nanosheets with exposed {0 0 1} facets exhibit superior catalytic activity for dye photosensitization degradation under visible light irradiation. Impressively, the ultrathin BiOCl nanosheets prepared with P123 and mannitol manifest superior catalytic activity and RhB was completely degraded within 20 min. Our current work is expected to offer a new insight into photocatalytic theory for better understanding of visible light photocatalytic reactions and rational design of highly active photocatalysts.

  15. Fronto-Parietal Contributions to Phonological Processes in Successful Artificial Grammar Learning

    Science.gov (United States)

    Goranskaya, Dariya; Kreitewolf, Jens; Mueller, Jutta L.; Friederici, Angela D.; Hartwigsen, Gesa

    2016-01-01

    Sensitivity to regularities plays a crucial role in the acquisition of various linguistic features from spoken language input. Artificial grammar learning paradigms explore pattern recognition abilities in a set of structured sequences (i.e., of syllables or letters). In the present study, we investigated the functional underpinnings of learning phonological regularities in auditorily presented syllable sequences. While previous neuroimaging studies either focused on functional differences between the processing of correct vs. incorrect sequences or between different levels of sequence complexity, here the focus is on the neural foundation of the actual learning success. During functional magnetic resonance imaging (fMRI), participants were exposed to a set of syllable sequences with an underlying phonological rule system, known to ensure performance differences between participants. We expected that successful learning and rule application would require phonological segmentation and phoneme comparison. As an outcome of four alternating learning and test fMRI sessions, participants split into successful learners and non-learners. Relative to non-learners, successful learners showed increased task-related activity in a fronto-parietal network of brain areas encompassing the left lateral premotor cortex as well as bilateral superior and inferior parietal cortices during both learning and rule application. These areas were previously associated with phonological segmentation, phoneme comparison, and verbal working memory. Based on these activity patterns and the phonological strategies for rule acquisition and application, we argue that successful learning and processing of complex phonological rules in our paradigm is mediated via a fronto-parietal network for phonological processes. PMID:27877120

  16. Fronto-parietal contributions to phonological processes in successful artificial grammar learning

    Directory of Open Access Journals (Sweden)

    Dariya Goranskaya

    2016-11-01

    Full Text Available Sensitivity to regularities plays a crucial role in the acquisition of various linguistic features from spoken language input. Artificial grammar (AG learning paradigms explore pattern recognition abilities in a set of structured sequences (i.e. of syllables or letters. In the present study, we investigated the functional underpinnings of learning phonological regularities in auditorily presented syllable sequences. While previous neuroimaging studies either focused on functional differences between the processing of correct vs. incorrect sequences or between different levels of sequence complexity, here the focus is on the neural foundation of the actual learning success. During functional magnetic resonance imaging (fMRI, participants were exposed to a set of syllable sequences with an underlying phonological rule system, known to ensure performance differences between participants. We expected that successful learning and rule application would require phonological segmentation and phoneme comparison. As an outcome of four alternating learning and test fMRI sessions, participants split into successful learners and non-learners. Relative to non-learners, successful learners showed increased task-related activity in a fronto-parietal network of brain areas encompassing the left lateral premotor cortex as well as bilateral superior and inferior parietal cortices during both learning and rule application. These areas were previously associated with phonological segmentation, phoneme comparison and verbal working memory. Based on these activity patterns and the phonological strategies for rule acquisition and application, we argue that successful learning and processing of complex phonological rules in our paradigm is mediated via a fronto-parietal network for phonological processes.

  17. Role of parietal regions in episodic memory retrieval: the dual attentional processes hypothesis.

    Science.gov (United States)

    Cabeza, Roberto

    2008-01-01

    Although parietal cortex is frequently activated during episodic memory retrieval, damage to this region does not markedly impair episodic memory. To account for these and other findings, a new dual attentional processes (DAP) hypothesis is proposed. According to this hypothesis, dorsal parietal cortex (DPC) contributes top-down attentional processes guided by retrieval goals, whereas ventral parietal cortex (VPC) contributes bottom-up attentional processes captured by the retrieval output. Consistent with this hypothesis, DPC activity increases with retrieval effort whereas VPC activity increases with confidence in old and new responses. The DAP hypothesis can also account for the overlap of parietal activations across different cognitive domains and for opposing effects of parietal activity on encoding vs. retrieval. Finally, the DAP hypothesis explains why VPC lesions yield a memory neglect syndrome: a deficit in spontaneously reporting relevant memory details but not in accessing the same details when guided by specific questions.

  18. Uncertain relational reasoning in the parietal cortex.

    Science.gov (United States)

    Ragni, Marco; Franzmeier, Imke; Maier, Simon; Knauff, Markus

    2016-04-01

    The psychology of reasoning is currently transitioning from the study of deductive inferences under certainty to inferences that have degrees of uncertainty in both their premises and conclusions; however, only a few studies have explored the cortical basis of uncertain reasoning. Using transcranial magnetic stimulation (TMS), we show that areas in the right superior parietal lobe (rSPL) are necessary for solving spatial relational reasoning problems under conditions of uncertainty. Twenty-four participants had to decide whether a single presented order of objects agreed with a given set of indeterminate premises that could be interpreted in more than one way. During the presentation of the order, 10-Hz TMS was applied over the rSPL or a sham control site. Right SPL TMS during the inference phase disrupted performance in uncertain relational reasoning. Moreover, we found differences in the error rates between preferred mental models, alternative models, and inconsistent models. Our results suggest that different mechanisms are involved when people reason spatially and evaluate different kinds of uncertain conclusions.

  19. The Superior Transvelar Approach to the Fourth Ventricle and Brainstem

    OpenAIRE

    Ezer, Haim; Banerjee, Anirban Deep; Bollam, Papireddy; Guthikonda, Bharat; Nanda, Anil

    2012-01-01

    Objective The superior transvelar approach is used to access pathologies located in the fourth ventricle and brainstem. The surgical path is below the venous structures, through the superior medullary velum. Following splitting the tentorial edge, near the tentorial apex, the superior medullary velum is split in the cerebello-mesencephalic fissure. Using the supracerebellar infratentorial, transtentorial or parietal interhemispheric routes, the superior medullary velum is approached. Splittin...

  20. Expert cognitive control and individual differences associated with frontal and parietal white matter microstructure.

    Science.gov (United States)

    Roberts, R Edward; Anderson, Elaine J; Husain, Masud

    2010-12-15

    Although many functional imaging studies have reported frontal activity associated with "cognitive control" tasks, little is understood about factors underlying individual differences in performance. Here we compared the behavior and brain structure of healthy controls with fighter pilots, an expert group trained to make precision choices at speed in the presence of conflicting cues. Two different behavioral paradigms--Eriksen Flanker and change of plan tasks--were used to assess the influence of distractors and the ability to update ongoing action plans. Fighter pilots demonstrated superior cognitive control as indexed by accuracy and postconflict adaptation on the Flanker task, but also showed increased sensitivity to irrelevant, distracting choices. By contrast, when pilots were examined on their ability to inhibit a current action plan in favor of an alternative response, their performance was no better than the control group. Diffusion weighted imaging revealed differences in white matter radial diffusivity between pilots and controls not only in the right dorsomedial frontal region but also in the right parietal lobe. Moreover, analysis of individual differences in reaction time costs for conflict trials on the Flanker task demonstrated significant correlations with radial diffusivity at these locations, but in different directions. Postconflict adaptation effects, however, were confined to the dorsomedial frontal locus. The findings demonstrate that in humans expert cognitive control may surprisingly be mediated by enhanced response gain to both relevant and irrelevant stimuli, and is accompanied by structural alterations in the white matter of the frontal and parietal lobe.

  1. Double dissociation between motor and visual imagery in the posterior parietal cortex.

    Science.gov (United States)

    Pelgrims, Barbara; Andres, Michael; Olivier, Etienne

    2009-10-01

    Because motor imagery (MI) and visual imagery (VI) are influenced differently by factors such as biomechanical constraints or stimulus size, it is conceivable that they rely on separate processes, possibly involving distinct cortical networks, a view corroborated by neuroimaging and neuropsychological studies. In the posterior parietal cortex, it has been suggested that the superior parietal lobule (SPL) underlies VI, whereas MI relies on the supramarginalis gyrus (SMG). However, because several brain imaging studies have also shown an overlap of activations in SPL and SMG during VI or MI, the question arises as to which extent these 2 subregions really contribute to distinct imagery processes. To address this issue, we used repetitive transcranial magnetic stimulation to induce virtual lesions of either SMG or SPL in subjects performing a MI (hand drawing rotation) or a VI (letter rotation) task. Whatever hemisphere was stimulated, SMG lesions selectively altered MI, whereas SPL lesions only affected VI, demonstrating a double dissociation between MI and VI. Because these deficits were not influenced by the angular distance of the stimuli, we suggest that SMG and SPL are involved in the reenactment of the motor and visual representations, respectively, and not in mental rotation processes per se.

  2. The Role of Right and Left Parietal Lobes in the Conceptual Processing of Numbers

    Science.gov (United States)

    Cappelletti, Marinella; Lee, Hwee Ling; Freeman, Elliot D.; Price, Cathy J.

    2010-01-01

    Neuropsychological and functional imaging studies have associated the conceptual processing of numbers with bilateral parietal regions (including intraparietal sulcus). However, the processes driving these effects remain unclear because both left and right posterior parietal regions are activated by many other conceptual, perceptual, attention,…

  3. High Frequency rTMS over the Left Parietal Lobule Increases Non-Word Reading Accuracy

    Science.gov (United States)

    Costanzo, Floriana; Menghini, Deny; Caltagirone, Carlo; Oliveri, Massimiliano; Vicari, Stefano

    2012-01-01

    Increasing evidence in the literature supports the usefulness of Transcranial Magnetic Stimulation (TMS) in studying reading processes. Two brain regions are primarily involved in phonological decoding: the left superior temporal gyrus (STG), which is associated with the auditory representation of spoken words, and the left inferior parietal lobe…

  4. The role of human parietal area 7A as a link between sequencing in hand actions and in overt speech production

    Directory of Open Access Journals (Sweden)

    Stefan eHeim

    2012-12-01

    Full Text Available Research on the evolutionary basis of the human language faculty has proposed the mirror neuron system as a link between motor processing and speech development. Consequently, most work has focussed on the left inferior frontal cortex, in particular Broca's region, and the left inferior parietal cortex. However, the direct link between planning of hand motor and speech actions remains to be elucidated. Thus, the present study investigated whether sequencing of hand motor actions vs. speech motor actions has a common neural denominator. For the hand motor task, 25 subjects performed single, repeated, or sequenced button presses with either the left or right hand. The speech task was in analogy; the same subjects produced the syllable "po" once or repeatedly, or a sequence of different syllables (po-pi-po. Speech motor vs. hand motor effectors resulted in increased perisylvian activation including Broca's region (left area 44 and areas medially adjacent to left area 45. In contrast, common activation for sequenced vs. repeated production of button presses and syllables revealed the effector-independent involvement of left area 7A in the superior parietal lobule (SPL in sequencing. These data demonstrate that sequencing of vocal gestures, an important precondition for ordered utterances and ultimately human speech, shares area 7A, rather than inferior parietal regions, as a common cortical module with hand motor sequencing. Interestingly, area 7A has previously also been shown to be involved in the observation of hand and non-hand actions. In combination with the literature, the present data thus suggest a distinction between area 44, which is specifically recruited for (cognitive aspects of speech, and SPL area 7A for general aspects of motor sequencing. In sum, the study demonstrates a yet little considered role of the superior parietal lobule in the origins of speech, and may be discussed in the light of embodiment of speech and language in the

  5. Parietal cortex mediates perceptual Gestalt grouping independent of stimulus size.

    Science.gov (United States)

    Grassi, Pablo R; Zaretskaya, Natalia; Bartels, Andreas

    2016-06-01

    The integration of local moving elements into a unified gestalt percept has previously been linked to the posterior parietal cortex. There are two possible interpretations for the lack of involvement of other occipital regions. The first is that parietal cortex is indeed uniquely functionally specialized to perform grouping. Another possibility is that other visual regions can perform grouping as well, but that the large spatial separation of the local elements used previously exceeded their neurons' receptive field (RF) sizes, preventing their involvement. In this study we distinguished between these two alternatives. We measured whole-brain activity using fMRI in response to a bistable motion illusion that induced mutually exclusive percepts of either an illusory global Gestalt or of local elements. The stimulus was presented in two sizes, a large version known to activate IPS only, and a version sufficiently small to fit into the RFs of mid-level dorsal regions such as V5/MT. We found that none of the separately localized motion regions apart from parietal cortex showed a preference for global Gestalt perception, even for the smaller version of the stimulus. This outcome suggests that grouping-by-motion is mediated by a specialized size-invariant mechanism with parietal cortex as its anatomical substrate. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. One-step synthesis of PtPdAu ternary alloy nanoparticles on graphene with superior methanol electrooxidation activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuzhen; Gu Yonge; Lin Shaoxiong; Wei Jinping; Wang Zaihua [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Wang Chunming, E-mail: wangcm@lzu.edu.cn [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Du Yongling; Ye Weichun [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2011-10-01

    Highlights: > PtPdAu nanoparticles were synthesized on graphene sheets via chemical reduction method. > The prepared PtPdAu nanoparticles were ternary alloy with fcc structure. > The catalyst exhibited superior catalytic activity and stability for MOR in alkaline. - Abstract: Well-dispersed PtPdAu ternary alloy nanoparticles were synthesized on graphene sheets via a simple one-step chemical reduction method in ethylene glycol (EG) and water system, in which EG served as both reductive and dispersing agent. The electrocatalytic activity of PtPdAu/G was tested by methanol oxidation reaction (MOR). The catalyst was further characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), which indicated that the as-synthesized PtPdAu nanoparticles with alloy structures were successfully dispersed on the graphene sheets. Electrocatalytic properties of the catalyst for MOR in alkaline have been investigated by cyclic voltammetry (CV), chronoamperometry and Tafel curves. The electrocatalytic activity and stability of PtPdAu/G were superior to PtPd/G, PtAu/G and Pt/G. In addition, the anodic peak current on PtPdAu/G catalyst was proportional to the concentration of methanol in the range of 0.05-1.00 M. This study implies that the prepared catalyst have great potential applications in fuel cells.

  7. Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria.

    Science.gov (United States)

    Wang, Yan-Wen; Cao, Aoneng; Jiang, Yu; Zhang, Xin; Liu, Jia-Hui; Liu, Yuanfang; Wang, Haifang

    2014-02-26

    New materials with good antibacterial activity and less toxicity to other species attract numerous research interest. Taking advantage of zinc oxide (ZnO) and graphene oxide (GO), the ZnO/GO composites were prepared by a facile one-pot reaction to achieve superior antibacterial properties without damaging other species. In the composites, ZnO nanoparticles (NPs), with a size of about 4 nm, homogeneously anchored onto GO sheets. The typical bacterium Escherichia coli and HeLa cell were used to evaluate the antibacterial activity and cytotoxicity of the ZnO/GO composites, respectively. The synergistic effects of GO and ZnO NPs led to the superior antibacterial activity of the composites. GO helped the dispersion of ZnO NPs, slowed the dissolution of ZnO, acted as the storage site for the dissolved zinc ions, and enabled the intimate contact of E. coli with ZnO NPs and zinc ions as well. The close contact enhanced the local zinc concentration pitting on the bacterial membrane and the permeability of the bacterial membrane and thus induced bacterial death. In addition, the ZnO/GO composites were found to be much less toxic to HeLa cells, compared to the equivalent concentration of ZnO NPs in the composites. The results indicate that the ZnO/GO composites are promising disinfection materials to be used in surface coatings on various substrates to effectively inhibit bacterial growth, propagation, and survival in medical devices.

  8. Superior long-term activity for a Pt-Re alloy compared to Pt in methanol oxidation reactions

    Science.gov (United States)

    Duke, Audrey S.; Xie, Kangmin; Monnier, John R.; Chen, Donna A.

    2017-03-01

    Pt-Re bimetallic catalysts have shown enhanced activity compared to pure Pt for reactions involving oxidation, but the origins of this improved activity are not fully understood. Methanol oxidation on a Pt-Re alloy surface and pure Pt foil was studied in a microreactor coupled to an ultrahigh vacuum chamber. For reaction at 60 °C, the Pt-Re alloy surface exhibits superior long-term activity over a 24 h reaction period compared to pure Pt. The initial activity of Pt is 10-15% higher than on Pt-Re; however, the Pt surface gradually loses activity after 10 h online, whereas the activity of Pt-Re does not diminish. Post-reaction XPS shows that more carbon accumulates on the Pt than on Pt-Re, and the improved long-term activity is attributed to a greater ability of Pt-Re to oxidize the carbonaceous intermediates that eventually poison active sites. Both Pt and Pt-Re surfaces have almost no activity for methanol oxidation until a minimum coverage of oxygen is achieved from O2 dissociation. A comparison with methanol oxidation studies on Pt and Pt-Re in a pressure regime that is 150 times lower than in this work demonstrates that more carbon and less oxygen accumulate on the surfaces during reaction at the lower pressures.

  9. Body and movement: consciousness in the parietal lobes.

    Science.gov (United States)

    Daprati, Elena; Sirigu, Angela; Nico, Daniele

    2010-02-01

    A critical issue related to the notion of identity concerns our ability to discriminate between internally and externally generated stimuli. This basic mechanism likely relies on perceptual and motor information, and requires that both motor plans and the resulting activity be continuously mapped on a reliable body representation. It has been widely demonstrated that the parietal cortices of the two hemispheres play a crucial role, albeit differently specialized, in both monitoring internal representation of our own actions and sustaining body representation. Ample neuropsychological evidence indicates that while damage to the left parietal cortex affects the ability to generate and/or monitor an internal model of one's own movement, lesions of the right parietal lobe are largely responsible for severe perturbations of the internal representation of one's own body. In the present paper, we discuss the processes involved in body perception and self-recognition and propose a tentative model describing how the right and left parietal cortices contribute in integrating various sources of information to produce the unique, elementary experience of one's own body in motion. The ecological value of this process in constructing identity and autobiographical experience will be discussed.

  10. Chemical activation of MgH2; a new route to superior hydrogen storage materials.

    Science.gov (United States)

    Johnson, Simon R; Anderson, Paul A; Edwards, Peter P; Gameson, Ian; Prendergast, James W; Al-Mamouri, Malek; Book, David; Harris, I Rex; Speight, John D; Walton, Allan

    2005-06-14

    We report the discovery of a new, chemical route for 'activating' the hydrogen store MgH2, that results in highly effective hydrogen uptake/release characteristics, comparable to those obtained from mechanically-milled material.

  11. Abnormal parietal function in conversion paresis.

    Directory of Open Access Journals (Sweden)

    Marije van Beilen

    Full Text Available The etiology of medically unexplained symptoms such as conversion disorder is poorly understood. This is partly because the interpretation of neuroimaging results in conversion paresis has been complicated by the use of different control groups, tasks and statistical comparisons. The present study includes these different aspects in a single data set. In our study we included both normal controls and feigners to control for conversion paresis. We studied both movement execution and imagery, and we contrasted both within-group and between-group activation. Moreover, to reveal hemisphere-specific effects that have not been reported before, we performed these analyses using both flipped and unflipped data. This approach resulted in the identification of abnormal parietal activation which was specific for conversion paresis patients. Patients also showed reduced activity in the prefrontal cortex, supramarginal gyrus and precuneus, including hemisphere-specific activation that is lateralized in the same hemisphere, regardless of right- or left-sided paresis. We propose that these regions are candidates for an interface between psychological mechanisms and disturbed higher-order motor control. Our study presents an integrative neurophysiological view of the mechanisms that contribute to the etiology of this puzzling psychological disorder, which can be further investigated with other types of conversion symptoms.

  12. Abnormal Parietal Function in Conversion Paresis

    Science.gov (United States)

    van Beilen, Marije; de Jong, Bauke M.; Gieteling, Esther W.; Renken, Remco; Leenders, Klaus L.

    2011-01-01

    The etiology of medically unexplained symptoms such as conversion disorder is poorly understood. This is partly because the interpretation of neuroimaging results in conversion paresis has been complicated by the use of different control groups, tasks and statistical comparisons. The present study includes these different aspects in a single data set. In our study we included both normal controls and feigners to control for conversion paresis. We studied both movement execution and imagery, and we contrasted both within-group and between-group activation. Moreover, to reveal hemisphere-specific effects that have not been reported before, we performed these analyses using both flipped and unflipped data. This approach resulted in the identification of abnormal parietal activation which was specific for conversion paresis patients. Patients also showed reduced activity in the prefrontal cortex, supramarginal gyrus and precuneus, including hemisphere-specific activation that is lateralized in the same hemisphere, regardless of right- or left-sided paresis. We propose that these regions are candidates for an interface between psychological mechanisms and disturbed higher-order motor control. Our study presents an integrative neurophysiological view of the mechanisms that contribute to the etiology of this puzzling psychological disorder, which can be further investigated with other types of conversion symptoms. PMID:22039428

  13. Functional connectivity of parietal cortex during temporal selective attention.

    Science.gov (United States)

    Tyler, Sarah C; Dasgupta, Samhita; Agosta, Sara; Battelli, Lorella; Grossman, Emily D

    2015-04-01

    Perception of natural experiences requires allocation of attention towards features, objects, and events that are moving and changing over time. This allocation of attention is controlled by large-scale brain networks that, when damaged, cause widespread cognitive deficits. In particular, damage to ventral parietal cortex (right lateralized TPJ, STS, supramarginal and angular gyri) is associated with failures to selectively attend to and isolate features embedded within rapidly changing visual sequences (Battelli, Pascual-Leone, & Cavanagh, 2007; Husain, Shapiro, Martin, & Kennard, 1997). In this study, we used fMRI to investigate the neural activity and functional connectivity of intact parietal cortex while typical subjects judged the relative onsets and offsets of rapidly flickering tokens (a phase discrimination task in which right parietal patients are impaired). We found two regions in parietal cortex correlated with task performance: a bilateral posterior TPJ (pTPJ) and an anterior right-lateralized TPJ (R aTPJ). Both regions were deactivated when subjects engaged in the task but showed different patterns of functional connectivity. The bilateral pTPJ was strongly connected to nodes within the default mode network (DMN) and the R aTPJ was connected to the attention network. Accurate phase discriminations were associated with increased functional correlations between sensory cortex (hMT+) and the bilateral pTPJ, whereas accuracy on a control task was associated with yoked activity in the hMT+ and the R aTPJ. We conclude that temporal selective attention is particularly sensitive for revealing information pathways between sensory and core cognitive control networks that, when damaged, can lead to nonspatial attention impairments in right parietal stroke patients.

  14. Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli.

    Science.gov (United States)

    Moghimi, Roya; Ghaderi, Lida; Rafati, Hasan; Aliahmadi, Atousa; McClements, David Julian

    2016-03-01

    Natural preservatives are being extensively investigated for their potential industrial applications in foods and other products. In this work, an essential oil (Thymus daenensis) was formulated as a water-dispersible nanoemulsion (diameter=143nm) using high-intensity ultrasound. The antibacterial activity of the essential oil in both pure and nanoemulsion forms was measured against an important food-borne pathogen bacterium, Escherichia coli. Antibacterial activity was determined by measuring the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The antibacterial activity of the essential oil against E. coli was enhanced considerably when it was converted into a nanoemulsion, which was attributed to easier access of the essential oils to the bacterial cells. The mechanism of antibacterial activity was investigated by measuring potassium, protein, and nucleic acid leakage from the cells, and electron microscopy. Evaluation of the kinetics of microbial deactivation showed that the nanoemulsion killed all the bacteria in about 5min, whereas only a 1-log reduction was observed for pure essential oil. The nanoemulsion appeared to amplify the antibacterial activity of essential oils against E. coli by increasing their ability to disrupt cell membrane integrity.

  15. P-doped TiO2 with superior visible-light activity prepared by rapid microwave hydrothermal method

    Science.gov (United States)

    Niu, Jinfen; Lu, Pan; Kang, Mei; Deng, Kunfa; Yao, Binghua; Yu, Xiaojiao; Zhang, Qian

    2014-11-01

    Phosphorous-doped anatase TiO2 powders (P-TiO2) were prepared by rapid microwave hydrothermal method. The resulting materials were characterized by XRD, SEM, XPS, DRS and N2 adsorption. P-doping decreased the band gap and enlarged the surface area of P-doped samples than that of undoped TiO2 samples. Therefore, the photocatalytic degradation of methyl blue (MB) and tetracycline hydrochloride (Tc) experiments showed that the P-TiO2 catalysts, especially the two-steps-controlling products P-TiO2-2, exhibited higher degradation efficiency than the undoped TiO2 and commercial P25 under visible-light irradiation. Hydroxyl radicals (rad OH) have been confirmed to be the active species during the photocatalytic oxidation reaction. The microwave hydrothermal method confirms to be very suitable for the synthesis of superior visible-light activity P-doped samples.

  16. Preparation of AuPt alloy foam films and their superior electrocatalytic activity for the oxidation of formic acid.

    Science.gov (United States)

    Liu, Jun; Cao, Ling; Huang, Wei; Li, Zelin

    2011-09-01

    AuPt alloy films with three-dimensional (3D) hierarchical pores consisting of interconnected dendrite walls were successfully fabricated by a strategy of cathodic codeposition utilizing the hydrogen bubble dynamic template. The foam films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Due to the special porous structure, the electronic property, and the assembly effect, the AuPt alloy foam films show superior electrocatalytic activity toward the electrooxidation of formic acid in acidic solution, and the prepared 3D porous AuPt alloy films also show high activity and long stability for the electrocatalytic oxidation of methanol, where synergistic effect plays an important role in addition to the electronic effect and assembly effect. These findings provide more insights into the AuPt bimetallic nanomaterials for electrocatalytic applications.

  17. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Fernando Lazcano-Pérez

    2016-05-01

    Full Text Available The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7, voltage-gated calcium channel (CaV2.2, the A-type transient outward (IA and delayed rectifier (IDR currents of KV channels of the superior cervical ganglion (SCG neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels.

  18. Exercise Therapy for Management of Type 2 Diabetes Mellitus: Superior Efficacy of Activity Monitors over Pedometers

    Science.gov (United States)

    Umezono, Tomoya; Fukagawa, Masafumi

    2016-01-01

    We compared the efficacy of activity monitor (which displays exercise intensity and number of steps) versus that of pedometer in exercise therapy for patients with type 2 diabetes. The study subjects were divided into the activity monitor group (n = 92) and pedometer group (n = 95). The primary goal was improvement in hemoglobin A1c (HbA1c). The exercise target was set at 8,000 steps/day and 20 minutes of moderate-intensity exercise (≥3.5 metabolic equivalents). The activity monitor is equipped with a triple-axis accelerometer sensor capable of measuring medium-intensity walking duration, number of steps, walking distance, calorie consumption, and total calorie consumption. The pedometer counts the number of steps. Blood samples for laboratory tests were obtained during the visits. The first examination was conducted at the start of the study and repeated at 2 and 6 months. A significant difference in the decrease in HbA1c level was observed between the two groups at 2 months. The results suggest that the use of activity level monitor that displays information on exercise intensity, in addition to the number of steps, is useful in exercise therapy as it enhances the concept of exercise therapy and promotes lowering of HbA1c in diabetic patients. PMID:27761471

  19. Exercise Therapy for Management of Type 2 Diabetes Mellitus: Superior Efficacy of Activity Monitors over Pedometers

    Directory of Open Access Journals (Sweden)

    Masaaki Miyauchi

    2016-01-01

    Full Text Available We compared the efficacy of activity monitor (which displays exercise intensity and number of steps versus that of pedometer in exercise therapy for patients with type 2 diabetes. The study subjects were divided into the activity monitor group (n=92 and pedometer group (n=95. The primary goal was improvement in hemoglobin A1c (HbA1c. The exercise target was set at 8,000 steps/day and 20 minutes of moderate-intensity exercise (≥3.5 metabolic equivalents. The activity monitor is equipped with a triple-axis accelerometer sensor capable of measuring medium-intensity walking duration, number of steps, walking distance, calorie consumption, and total calorie consumption. The pedometer counts the number of steps. Blood samples for laboratory tests were obtained during the visits. The first examination was conducted at the start of the study and repeated at 2 and 6 months. A significant difference in the decrease in HbA1c level was observed between the two groups at 2 months. The results suggest that the use of activity level monitor that displays information on exercise intensity, in addition to the number of steps, is useful in exercise therapy as it enhances the concept of exercise therapy and promotes lowering of HbA1c in diabetic patients.

  20. Superior acidic catalytic activity and stability of Fe-doped HTaWO6 nanotubes

    KAUST Repository

    Liu, He

    2017-07-26

    Fe-doped HTaWO6 (H1-3xFexTaWO6, x = 0.23) nanotubes as highly active solid acid catalysts were prepared via an exfoliation-scrolling-exchange process. The specific surface area and pore volume of undoped nanotubes (20.8 m2 g-1, 0.057 cm3 g-1) were remarkably enhanced through Fe3+ ion-exchange (>100 m2 g-1, 0.547 cm3 g-1). Doping Fe ions into the nanotubes endowed them with improved thermal stability due to the stronger interaction between the intercalated Fe3+ ions and the host layers. This interaction also facilitated the preservation of effective Brønsted acid sites and the generation of new acid sites. The integration of these functional roles resulted in Fe-doped nanotubes with high acidic catalytic activities in the Friedel-Crafts alkylation of anisole and the esterification of acetic acid. Facile accessibility to active sites, generation of effective Brønsted acid sites, high stability of the tubular structure and strong acid sites were found to synergistically contribute to the excellent acidic catalytic efficiency. Additionally, the activity of cycled nanocatalysts can be easily recovered through annealing treatment.

  1. Superior analgesic effect of an active distraction versus pleasant unfamiliar sounds and music

    DEFF Research Database (Denmark)

    Garza Villarreal, Eduardo A.; Brattico, Elvira; Vase, Lene

    2012-01-01

    of the relationship. Forty-eight healthy volunteers received heat stimuli during an active mental arithmetic task (PASAT), and passive listening to music (Mozart), environmental sounds (rain and water), and control (noise). The participants scored the conditions according to affective scales and filled out...

  2. Abnormal Parietal Brain Function in ADHD: Replication and Extension of Previous EEG Beta Asymmetry Findings

    Directory of Open Access Journals (Sweden)

    T. Sigi eHale

    2014-07-01

    Full Text Available Background: Abundant work indicates ADHD abnormal posterior brain structure and function, including abnormal structural and functional asymmetries and reduced corpus callosum size. However, this literature has attracted considerably less research interest than fronto-striatal findings. Objective: To help address this imbalance, the current study replicates and extends our previous work showing abnormal parietal brain function in ADHD adults during the Conner’s continuous performance test (CPT. Method: Our previous study found that ADHD adults had increased rightward EEG beta (16-21 Hz asymmetry in inferior parietal brain regions during the CPT (p=.00001, and that this metric exhibited a lack of normal correlation (i.e., observed in controls with beta asymmetry at temporal-parietal regions. We re-tested these effects in a new ADHD sample, and with both new and old samples combined. We additionally examined: a EEG asymmetry in multiple frequency bands, b unilateral effects for all asymmetry findings, and c the association between EEG asymmetry and a battery of cognitive tests. Results: We replicated our original findings, again demonstrating abnormal rightward inferior parietal beta asymmetry in adults with ADHD during the CPT, and again this metric exhibited abnormal reduced correlation to temporal-parietal beta asymmetry. Novel analyses also demonstrated a broader pattern of rightward beta and theta asymmetry across inferior, superior, and temporal-parietal brain regions, and showed that rightward parietal asymmetry in ADHD was atypically associated with multiple cognitive tests. Conclusion: Abnormal increased rightward parietal EEG beta asymmetry is an important feature of ADHD. We speculate that this phenotype may occur with any form of impaired capacity for top-down task-directed control over sensory encoding functions, and that it may reflect associated increases of attentional shifting and compensatory sustained/selective attention.

  3. Complementary medicine for the management of chronic stress: superiority of active versus passive techniques.

    Science.gov (United States)

    Lucini, Daniela; Malacarne, Mara; Solaro, Nadia; Busin, Silvano; Pagani, Massimo

    2009-12-01

    Recent epidemiological data indicate that chronic stress is an important component of cardiovascular risk, implicitly suggesting that stress management might offer a useful complement to orthodox medical treatment and prevention of hypertension. In this context, information on mechanisms, such as subclinical increases in arterial pressure and sympathetic drive, is well documented. Conversely, evidence on methodologies and comparative efficacy needs to be improved. Accordingly, this study was planned to test the autonomic and subjective effects of two popular modalities of stress management. We studied 70 patients complaining of stress-related symptoms, avoiding any potential autonomic confounder, such as established hypertension or drug treatment. Patients were divided in three groups: group I (n = 30) followed a breathing-guided relaxation training (active); group II (n = 15) an oriental massage, shiatsu (passive); and group III (n = 25) followed a sham intervention. Subjective effects of stress were assessed by validated questionnaires and autonomic nervous system regulation by spectral analysis of RR interval variability. Factor analysis was used to extract information simultaneously embedded in subjective and functional data. Although the problem of a greater quantity of treatment procedure in the active group than in the passive group existed, results showed that active relaxation, further to slightly reducing arterial pressure, might be more effective in relieving symptoms of stress and inducing an improved profile of autonomic cardiovascular regulation, as compared with passive massage or sham intervention. This active technique seems capable of beneficially addressing simultaneously the individual psychological and physiopathological dimensions of stress in clinical settings, with potentially beneficial effects on cardiovascular risk profile.

  4. Semantic retrieval during overt picture description: Left anterior temporal or the parietal lobe?

    Science.gov (United States)

    Geranmayeh, Fatemeh; Leech, Robert; Wise, Richard J S

    2015-09-01

    Retrieval of semantic representations is a central process during overt speech production. There is an increasing consensus that an amodal semantic 'hub' must exist that draws together modality-specific representations of concepts. Based on the distribution of atrophy and the behavioral deficit of patients with the semantic variant of fronto-temporal lobar degeneration, it has been proposed that this hub is localized within both anterior temporal lobes (ATL), and is functionally connected with verbal 'output' systems via the left ATL. An alternative view, dating from Geschwind's proposal in 1965, is that the angular gyrus (AG) is central to object-based semantic representations. In this fMRI study we examined the connectivity of the left ATL and parietal lobe (PL) with whole brain networks known to be activated during overt picture description. We decomposed each of these two brain volumes into 15 regions of interest (ROIs), using independent component analysis. A dual regression analysis was used to establish the connectivity of each ROI with whole brain-networks. An ROI within the left anterior superior temporal sulcus (antSTS) was functionally connected to other parts of the left ATL, including anterior ventromedial left temporal cortex (partially attenuated by signal loss due to susceptibility artifact), a large left dorsolateral prefrontal region (including 'classic' Broca's area), extensive bilateral sensory-motor cortices, and the length of both superior temporal gyri. The time-course of this functionally connected network was associated with picture description but not with non-semantic baseline tasks. This system has the distribution expected for the production of overt speech with appropriate semantic content, and the auditory monitoring of the overt speech output. In contrast, the only left PL ROI that showed connectivity with brain systems most strongly activated by the picture-description task, was in the superior parietal lobe (supPL). This region

  5. Facile and green synthesis of phytochemicals capped platinum nanoparticles and in vitro their superior antibacterial activity.

    Science.gov (United States)

    Tahir, Kamran; Nazir, Sadia; Ahmad, Aftab; Li, Baoshan; Khan, Arif Ullah; Khan, Zia Ul Haq; Khan, Faheem Ullah; Khan, Qudrat Ullah; Khan, Abrar; Rahman, Aziz Ur

    2017-01-01

    The increase in the severe infectious diseases and resistance of the majority of the bacterial pathogens to the available drug is a serious problem now a day. In order to overcome this problem it is necessary to develop new therapeutic agents which are non-toxic and more effective to inhibit these microbial pathogens. For this purpose the plant extract of highly active medicinal plant, Taraxacum laevigatum was used for the synthesis of platinum nanoparticles (PtNPs) to enhance its bio-activities. The surface plasmon resonance peak appeared at 283nm clearly represent the formation of PtNPs. The results illustrate that the bio-synthesized PtNPs were uniformly dispersed, small sized (2-7nm) and spherical in shape. The green synthesized PtNPs were characterized by UV-vis spectroscopy, XRD, TEM, SEM, EDX, DLS and FTIR. These nanoparticles were tested against gram positive bacteria (Bacillus subtilis) and gram negative bacteria (Pseudomonas aeruginosa). The bio-synthesized PtNPs were examined to be more effective against both of the bacteria. The results showed, that the zone of inhibition of PtNPs against P. aeruginosa was 15 (±0.5) mm and B. subtilis was 18 (±0.8) mm. The most significant outcome of this examination is that PtNPs exhibited strong antibacterial activity against P. aeruginosa and B. subtilis which have strong defensive system against several antibiotics. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Superior Antibacterial Activity of Fe3O4-TiO2 Nanosheets under Solar Light.

    Science.gov (United States)

    Ma, Shuanglong; Zhan, Sihui; Jia, Yanan; Zhou, Qixing

    2015-10-07

    Fe3O4-TiO2 nanosheets (Fe3O4-TNS) were synthesized by means of lamellar reverse micelles and solvothermal method, which were characterized by TEM, XRD, XPS, BET, and magnetic property analysis. It can be found that Fe3O4-TNS nanosheets exhibited better photocatalytic antibacterial activity toward Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus than pure Fe3O4 and TNS, and the antibacterial efficiency could reach 87.2% and 93.7% toward E. coli and S. aureus with 100 μg/mL Fe3O4-TNS after 2 h of simulated solar light illumination, respectively. The photocatalytic destruction of bacteria was further confirmed by fluorescent-based cell live/dead test and SEM images. It was uncovered that Fe3O4-TNS inactivated G- E. coli and G+ S. aureus by different mechanisms: the destruction of outer membranes and ruptured cell bodies were responsible for the bactericidal effect against E. coli, while the antibacterial effect toward S. aureus were due to the fact that the cells were adsorbed in form of clusters by massive Fe3O4-TNS, which could restrict their activities and cause malfunction of the selective permeable barriers. Furthermore, the antibacterial mechanism was studied by employing scavengers to understand exact roles of different reactive species, indicating the key roles of h(+) and H2O2. The recovery and reusability experiments indicated that Fe3O4-TNS still retained more than 90% bacteria removal efficiency even after five cycles. Considering the easy magnetic separation, bulk availability, and high antibacterial activity of Fe3O4-TNS, it is a promising candidate for cleaning the microbial contaminated water environment.

  7. Prostate Cancer Presenting with Parietal Bone Metastasis

    Science.gov (United States)

    Pare, Abdoul Karim; Abubakar, Babagana Mustapha; Kabore, Moussa

    2017-01-01

    Bone metastases from prostate cancer are very common. They are usually located on the axial skeleton. However, cranial bone metastases especially to the parietal bone are rare. We report a case of metastatic prostate cancer presenting with left parietal bone metastasis in a patient with no urological symptoms or signs. We should consider prostate cancer in any man above 60 years presenting unusual bone lesions.

  8. Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation.

    Science.gov (United States)

    Bumajdad, Ali; Madkour, Metwally

    2014-04-28

    Although TiO2 is one of the most efficient photocatalysts, with the highest stability and the lowest cost, there are drawbacks that hinder its practical applications like its wide band gap and high recombination rate of the charge carriers. Consequently, many efforts were directed toward enhancing the photocatalytic activity of TiO2 and extending its response to the visible region. To head off these attempts, modification of TiO2 with noble metal nanoparticles (NMNPs) received considerable attention due to their role in accelerating the transfer of photoexcited electrons from TiO2 and also due to the surface plasmon resonance which induces the photocatalytic activity of TiO2 under visible light irradiation. This insightful perspective is devoted to the vital role of TiO2 photocatalysis and its drawbacks that urged researchers to find solutions such as modification with NMNPs. In a coherent context, we discussed here the characteristics which qualify NMNPs to possess a great enhancement effect for TiO2 photocatalysis. Also we tried to understand the reasons behind this effect by means of photoluminescence (PL) and electron paramagnetic resonance (EPR) spectra, and Density Functional Theory (DFT) calculations. Then the mechanism of action of NMNPs upon deposition on TiO2 is presented. Finally we introduced a survey of the behaviour of these noble metal NPs on TiO2 based on the particle size and the loading amount.

  9. One-dimensional chiral copper (II) complexes with novel nano-structures and superior antitumor activity.

    Science.gov (United States)

    Zhang, Wei Chuan; Tang, Xue; Lu, Xiaoming

    2016-03-01

    Three novel copper(II) compounds of formulas {[Cu(Phen)(Ala)]·NO3·H2O}n (1), {[Cu(Phen)(Ala)]·NO3}n (2) and [Cu(Ala)2]n (3) have been synthesized and determined by X-ray diffraction. 1 and 2 are shown in one dimensional long-chain chiral structures, and 3 is a two dimensional checkerboard-type structure. Both 1 and 2 displayed a higher anticancer activity than 3 against various cancer cells, even higher than the similar mononuclear complexes and clinical anticancer drug 5-fluorouracil. The noncancerous cell lines (CCC-HEL-1) have showed that complexes 1-3 have hardly any cytotoxicity. Transmission electron microscopy was studied to show the nano-structure and π function of two complexes. The ligand 1,10-phenanthroline inserted into its enantiomer lead complex 1 stable, and the π-π interaction outside the chain made complex 2 active, which is easy to crack and pile up together. In addition, the energy gaps, UV-vis, luminescent and cyclic voltammetry were experimented to show the stable one dimensional long-chain chiral structure and the π function of two complexes.

  10. Superior antibacterial activity of GlcN-AuNP-GO by ultraviolet irradiation.

    Science.gov (United States)

    Govindaraju, Saravanan; Samal, Monica; Yun, Kyusik

    2016-12-01

    A complete bacterialysis analysis of glucosamine-gold nanoparticle-graphene oxide (GlcN-AuNP-GO) and UV-irradiated GlcN-AuNP-GO was conducted. Analytical characterization of GlcN-AuNPs, GO and GlcN-AuNP-GO revealed UV-Vis absorbance peak at around 230 and 500nm. Microscopic characterization of prepared nanomaterials was performed by scanning electron microscope, atomic force microscopy, and high-resolution transmission microscopy. The results confirmed that the GlcN-AuNPs were uniformly decorated on the surface and edges of graphene sheets. In addition, potent antibacterial activity of GlcN-AuNP-GO that was UV irradiated for 10min and normal GlcN-AuNP-GO was detected, compared to the standard drug kanamycin, against both Gram-negative and positive bacteria. The minimum inhibitory concentration (MIC) and fluorescence intensity spectra results for Escherichia coli and Enterococcus faecalis showed that the UV-irradiated GlcN-AuNP-GO has better antibacterial activity than normal GlcN-AuNP-GO and kanamycin. Morphological changes were detected by AFM after treatment. These results confirmed that GlcN-AuNP-GO is a potent antibacterial agent with good potential for use in manufacturing medical instruments, pharmaceutical industries and in waste water treatment. Copyright © 2016. Published by Elsevier B.V.

  11. Amplicon restriction patterns associated with nitrogenase activity of root nodules for selection of superior Myrica seedlings

    Indian Academy of Sciences (India)

    Mhathung Yanthan; Arvind K Misran

    2013-11-01

    Trees of Myrica sp. grow abundantly in the forests of Meghalaya, India. These trees are actinorhizal and harbour nitrogen-fixing Frankia in their root nodules and contribute positively towards the enhancement of nitrogen status of forest areas. They can be used in rejuvenation of mine spoils and nitrogen-depleted fallow lands generated due to slash and burn agriculture practiced in the area. We have studied the association of amplicon restriction patterns (ARPs) of Myrica ribosomal RNA gene and internal transcribed spacer (ITS) region and nitrogenase activity of its root nodules. We found that ARPs thus obtained could be used as markers for early screening of seedlings that could support strains of Frankia that fix atmospheric nitrogen more efficiently.

  12. Timescales of sensory- and decision-related activity in the middle temporal and medial superior temporal areas.

    Science.gov (United States)

    Price, Nicholas S C; Born, Richard T

    2010-10-20

    The contribution of sensory neurons to perceptual decisions about external stimulus events has received much attention, but it is less clear how sensory responses are integrated over time to produce decisions that are both rapid and reliable. To address this issue, we recorded from middle temporal area and medial superior temporal area neurons in rhesus macaques performing a task requiring the detection and discrimination of unpredictable speed changes. We examined how neuronal activity encoded the sign of the speed change and predicted the animals' behavioral judgments and reaction times, with a focus on the timescales over which neuronal activity is informative. False detection trials, on which animals reported a speed change even though none had occurred, were grouped according to the animals' discrimination judgment. By comparing the neuronal responses between the two groups of false detection trials, we were able to predict the animals' choices from the sensory activity of single neurons at levels significantly better than chance. These choice probability measurements were strongest using spike counts in an 80 ms window ending 150 ms before a choice saccade began, but significant choice probabilities were observed in windows as short as 10 ms. While the maximum deviation in spiking rate following a speed change is evident in the transient response, averaging neuronal activity in longer time windows can be more informative about both the stimulus and the animals' behavioral judgments. Thus the timescales found in this study represent a trade-off between producing rapid reactions and overcoming the noise inherent in short time windows.

  13. Time course of superior temporal sulcus activity in response to eye gaze: a combined fMRI and MEG study

    Science.gov (United States)

    Kochiyama, Takanori; Uono, Shota; Yoshikawa, Sakiko

    2008-01-01

    The human superior temporal sulcus (STS) has been suggested to be involved in gaze processing, but temporal data regarding this issue are lacking. We investigated this topic by combining fMRI and MEG in four normal subjects. Photographs of faces with either averted or straight eye gazes were presented and subjects passively viewed the stimuli. First, we analyzed the brain areas involved using fMRI. A group analysis revealed activation of the STS for averted compared to straight gazes, which was confirmed in all subjects. We then measured brain activity using MEG, and conducted a 3D spatial filter analysis. The STS showed higher activity in response to averted versus straight gazes during the 150–200 ms period, peaking at around 170 ms, after stimulus onset. In contrast, the fusiform gyrus, which was detected by the main effect of stimulus presentations in fMRI analysis, exhibited comparable activity across straight and averted gazes at about 170 ms. These results indicate involvement of the human STS in rapid processing of the eye gaze of another individual. PMID:19015114

  14. Individual differences in left parietal white matter predict math scores on the Preliminary Scholastic Aptitude Test.

    Science.gov (United States)

    Matejko, Anna A; Price, Gavin R; Mazzocco, Michèle M M; Ansari, Daniel

    2013-02-01

    Mathematical skills are of critical importance, both academically and in everyday life. Neuroimaging research has primarily focused on the relationship between mathematical skills and functional brain activity. Comparatively few studies have examined which white matter regions support mathematical abilities. The current study uses diffusion tensor imaging (DTI) to test whether individual differences in white matter predict performance on the math subtest of the Preliminary Scholastic Aptitude Test (PSAT). Grades 10 and 11 PSAT scores were obtained from 30 young adults (ages 17-18) with wide-ranging math achievement levels. Tract based spatial statistics was used to examine the correlation between PSAT math scores, fractional anisotropy (FA), radial diffusivity (RD) and axial diffusivity (AD). FA in left parietal white matter was positively correlated with math PSAT scores (specifically in the left superior longitudinal fasciculus, left superior corona radiata, and left corticospinal tract) after controlling for chronological age and same grade PSAT critical reading scores. Furthermore, RD, but not AD, was correlated with PSAT math scores in these white matter microstructures. The negative correlation with RD further suggests that participants with higher PSAT math scores have greater white matter integrity in this region. Individual differences in FA and RD may reflect variability in experience dependent plasticity over the course of learning and development. These results are the first to demonstrate that individual differences in white matter are associated with mathematical abilities on a nationally administered scholastic aptitude measure.

  15. Superior antitumor activity of nanoparticle albumin-bound paclitaxel in experimental gastric cancer.

    Directory of Open Access Journals (Sweden)

    Changhua Zhang

    Full Text Available Gastric cancer is the second common cause of cancer related death worldwide and lacks highly effective treatment for advanced disease. Nab-paclitaxel is a novel microtubule-inhibitory cytotoxic agent that has not been tested in gastric cancer as of yet. In this study, human gastric cancer cell lines AGS, NCI-N87 and SNU16 were studied. Nab-paclitaxel inhibited cell proliferation with an IC50 of 5 nM in SNU16, 23 nM in AGS and 49 nM in NCI-N87 cells after 72-hour treatment, which was lower than that of oxaliplatin (1.05 μM to 1.51 μM and epirubicin (0.12 μM to 0.25 μM. Nab-paclitaxel treatment increased expression of the mitotic-spindle associated phospho-stathmin irrespective of the baseline total or phosphorylated stathmin level, and induced mitotic cell death as confirmed through increased expression of cleaved-PARP and caspase-3. After a two-week nab-paclitaxel, oxaliplatin or epirubicin treatment, the average in vivo local tumor growth inhibition rate was 77, 17.2 and 21.4 percent, respectively (p = 0.002. Effects of therapy on tumoral proliferative and apoptotic indices corresponded with tumor growth inhibition data, while expression of phospho-stathmin also increased in tissues. There was an increase in median animal survival after nab-paclitaxel treatment (93 days compared to controls (31 days, p = 0.0007, oxaliplatin (40 days, p = 0.0007 or to docetaxel therapy (81 days, p = 0.0416. The strong antitumor activity of nab-paclitaxel in experimental gastric cancer supports such microtubule-inhibitory strategy for clinical application. Nab-paclitaxel benefits were observed independent from phosphorylated stathmin expression at baseline, putting into question the consideration of nab-paclitaxel use in gastric cancer based on this putative biomarker.

  16. Gestalt perception is associated with reduced parietal beta oscillations.

    Science.gov (United States)

    Zaretskaya, Natalia; Bartels, Andreas

    2015-05-15

    The ability to perceive composite objects as a whole is fundamental for visual perception in a complex and cluttered natural environment. This ability may be mediated by increased communication between neural representations of distinct object elements, and has been linked to increased synchronization of oscillatory brain activity in the gamma band. Previous studies of perceptual grouping either guided attention between local and global aspects of a given stimulus or manipulated its physical properties to achieve grouped and ungrouped perceptual conditions. In contrast to those studies, we fully matched the physical properties underlying global and local percepts using a bistable stimulus that causes the viewer to perceive either local motion of multiple elements or global motion of two illusory shapes without any external change. To test the synchronization hypothesis we recorded brain activity with EEG, while human participants viewed the stimulus and reported changes in their perception. In contrast to previous findings we show that power of the beta-band was lower during perception of global Gestalt than during that of local elements. Source localization places these differences in the posterior parietal cortex, overlapping with a site previously associated with both attention and Gestalt perception. These findings reveal a role of parietal beta-band activity in internally, rather than externally or attention-driven processes of Gestalt perception. They also add to the growing evidence for shared neural substrates of attention and Gestalt perception, both being linked to parietal cortex. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Functional activity within the frontal eye fields, posterior parietal cortex and cerebellar vermis significantly correlates to symmetrical vergence peak velocity: An ROI-based, fMRI study of vergence training

    Directory of Open Access Journals (Sweden)

    Tara L Alvarez

    2014-06-01

    Full Text Available Convergence insufficiency (CI is a prevalent binocular vision disorder with symptoms that include double/blurred vision, eyestrain, and headaches when engaged in reading or other near work. Randomized clinical trials support that Office-Based Vergence and Accommodative Therapy with home reinforcement leads to a sustained reduction in patient symptoms. However, the underlying neurophysiological basis for treatment is unknown. Functional activity and vergence eye movements were quantified from seven binocularly normal controls (BNC and four CI patients before and after 18 hours of vergence training. An fMRI conventional block design of sustained fixation versus vergence eye movements stimulated activity in the frontal eye fields (FEF, the posterior parietal cortex (PPC and the cerebellar vermis (CV. Comparing the CI patients’ baseline measurements to the post vergence training data sets with a paired t-test revealed the following: 1 the percent change in the BOLD signal in the FEF, PPC and CV significantly increased (p<0.02, 2 the peak velocity from 4° symmetrical convergence step responses increased (p<0.01 and 3 patient symptoms assessed using the CI Symptom Survey (CISS improved (p<0.05. CI patient measurements after vergence training were more similar to levels observed within BNC. A regression analysis revealed the peak velocity from BNC and CI subjects before and after vergence training was significantly correlated to the percent BOLD signal change within the FEF, PPC and CV (r=0.6;p<0.05. Results have clinical implications for understanding the behavioral and neurophysiological changes after vergence training in patients with CI, which may lead to the sustained reduction in visual symptoms.

  18. The oft-neglected role of parietal EEG asymmetry and risk for major depressive disorder.

    Science.gov (United States)

    Stewart, Jennifer L; Towers, David N; Coan, James A; Allen, John J B

    2011-01-01

    Relatively less right parietal activity may reflect reduced arousal and signify risk for major depressive disorder (MDD). Inconsistent findings with parietal electroencephalographic (EEG) asymmetry, however, suggest issues such as anxiety comorbidity and sex differences have yet to be resolved. Resting parietal EEG asymmetry was assessed in 306 individuals (31% male) with (n=143) and without (n=163) a DSM-IV diagnosis of lifetime MDD and no comorbid anxiety disorders. Past MDD+ women displayed relatively less right parietal activity than current MDD+ and MDD- women, replicating prior work. Recent caffeine intake, an index of arousal, moderated the relationship between depression and EEG asymmetry for women and men. Findings suggest that sex differences and arousal should be examined in studies of depression and regional brain activity.

  19. Activity of superior head of human lateral pterygoid increases with increases in contralateral and protrusive jaw displacement.

    Science.gov (United States)

    Bhutada, Manish K; Phanachet, Intira; Whittle, Terry; Peck, Chris C; Murray, Greg M

    2007-08-01

    The hypothesis was that the superior head of human lateral pterygoid muscle (SHLP) plays a similar role in jaw movement as the inferior head of human lateral pterygoid muscle (IHLP). The aims were to determine the functional properties of SHLP single motor units (SMUs) and root mean square activity (RMS) of the SHLP during contralateral and protrusive jaw movement tasks and to compare these features with those identified previously for the IHLP. In 22 human subjects, SMUs were recorded intramuscularly from computer tomography-verified sites within the SHLP during standardized contralateral and protrusive jaw movement tasks recorded by a jaw-tracking device. Of the 50 SMUs discriminated, 39 were active during contralateral and 29 during protrusive jaw movements. The firing rates and RMS of the SHLP motor units increased with an increase in jaw displacement. The RMS activity across the entire trial during contralateral jaw movement was significantly greater than that during protrusion. Similarly to conclusions previously identified for the IHLP, the data are consistent with an important role for the SHLP in the control of contralateral and protrusive jaw movements. The similarities in SHLP and IHLP functional properties support the proposal that both heads should be regarded as a system of fibers acting as one muscle.

  20. Navigating actions through the rodent parietal cortex

    Directory of Open Access Journals (Sweden)

    Jonathan R. Whitlock

    2014-05-01

    Full Text Available The posterior parietal cortex (PPC participates in a manifold of cognitive functions, including visual attention, working memory, spatial processing and movement planning. Given the vast interconnectivity of PPC with sensory and motor areas, it is not surprising that neuronal recordings show that PPC often encodes mixtures of spatial information as well as the movements required to reach a goal. Recent work sought to discern the relative strength of spatial versus motor signaling in PPC by recording single unit activity in PPC of freely behaving rats during selective changes in either the spatial layout of the local environment or in the pattern of locomotor behaviors executed during navigational tasks. The results revealed unequivocally a predominant sensitivity of PPC neurons to locomotor action structure, with subsets of cells even encoding upcoming movements more than 1 second in advance. In light of these and other recent findings in the field, I propose that one of the key contributions of PPC to navigation is the synthesis of goal-directed behavioral sequences, and that the rodent PPC may serve as an apt system to investigate cellular mechanisms for spatial motor planning as traditionally studied in humans and monkeys.

  1. Thalamo-cortical projections to the posterior parietal cortex in the monkey.

    Science.gov (United States)

    Matsuzaki, Ryuichi; Kyuhou, Shin-ichi; Matsuura-Nakao, Kazuko; Gemba, Hisae

    2004-01-23

    Thalamo-cortical projections to the posterior parietal cortex (PPC) were investigated electrophysiologically in the monkey. Cortical field potentials evoked by the thalamic stimulation were recorded with electrodes chronically implanted on the cortical surface and at a 2.0-3.0 mm cortical depth in the PPC. The stimulation of the nucleus lateralis posterior (LP), nucleus ventralis posterior lateralis pars caudalis (VPLc), and nucleus pulvinaris lateralis (Pul.l) and medialis (Pul.m) induced surface-negative, depth-positive potentials in the PPC. The LP and VPLc projected mainly to the superior parietal lobule (SPL) and the anterior bank of the intraparietal sulcus (IPS), and the Pul.m mainly to the inferior parietal lobule (IPL) and the posterior bank of the IPS. The Pul.l had projections to all of the SPL, the IPL and both the banks. The significance of the projections is discussed in connection with motor functions.

  2. Parietal versus temporal lobe components in spatial cognition: Setting the mid-point of a horizontal line.

    Science.gov (United States)

    Oliveri, Massimiliano; Vallar, Giuseppe

    2009-09-01

    Recent anatomo-clinical correlation studies have extended to the superior temporal gyrus, the right hemisphere lesion sites associated with the left unilateral spatial neglect, in addition to the traditional posterior-inferior-parietal localization of the responsible lesion (supramarginal gyrus, at the temporo-parietal junction). The study aimed at teasing apart, by means of repetitive transcranial magnetic stimulation (rTMS), the contribution of the inferior parietal lobule (angular gyrus versus supramarginal gyrus) and of the superior temporal gyrus of the right hemisphere, in making judgments about the mid-point of a horizontal line, a widely used task for detecting and investigating spatial neglect. rTMS trains at 25 Hz frequency were delivered over the inferior parietal lobule (angular gyrus and supramarginal gyrus), the superior temporal gyrus and the anterior parietal lobe of the right hemisphere, in 10 neurologically unimpaired participants, performing a line bisection judgment task. rTMS of the inferior parietal lobule at the level of the supramarginal gyrus brought about a rightward error in the bisection judgment, ipsilateral to the side of the rTMS, with stimulation over the other sites being ineffective. The neural correlates of computing the mid-point of a horizontal segment include the right supramarginal gyrus in the inferior parietal lobule and do not extend to the angular gyrus and the superior temporal gyrus. These rTMS data in unimpaired subjects constrain the evidence from lesion studies in brain-damaged patients, emphasizing the major role of a subset of relevant regions.

  3. Nanoporous bimetallic Pt-Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid.

    Science.gov (United States)

    Zhang, Zhonghua; Wang, Yan; Wang, Xiaoguang

    2011-04-01

    We present a facile route to fabricate novel nanoporous bimetallic Pt-Au alloy nanocomposites by dealloying a rapidly solidified Al(75)Pt(15)Au(10) precursor under free corrosion conditions. The microstructure of the precursor and the as-dealloyed sample was characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, and energy dispersive X-ray (EDX) analysis. The Al(75)Pt(15)Au(10) precursor is composed of a single-phase Al(2)(Au,Pt) intermetallic compound, and can be fully dealloyed in a 20 wt.% NaOH or 5 wt.% HCl aqueous solution. The dealloying leads to the formation of the nanoporous Pt(60)Au(40) nanocomposites (np-Pt(60)Au(40) NCs) with an fcc structure. The morphology, size and crystal orientation of grains in the precursor can be conserved in the resultant nanoporous alloy. The np-Pt(60)Au(40) NCs consist of two zones with distinct ligament/channel sizes and compositions. The formation mechanism of these np-Pt(60)Au(40) NCs can be rationalized based upon surface diffusion of more noble elements and spinodal decomposition during dealloying. Electrochemical measurements demonstrate that the np-Pt(60)Au(40) NCs show superior catalytic activity towards the electro-oxidation of methanol and formic acid in the acid media compared to the commercial JM-Pt/C catalyst. This material can find potential applications in catalysis related areas, such as direct methanol or formic acid fuel cells. Our findings demonstrate that dealloying is an effective and simple strategy to realize the alloying of immiscible systems under mild conditions, and to fabricate novel nanostructures with superior performance.

  4. Isolation, culture and adenoviral transduction of parietal cells from mouse gastric mucosa

    Energy Technology Data Exchange (ETDEWEB)

    Gliddon, Briony L; Nguyen, Nhung V; Gunn, Priscilla A; Gleeson, Paul A; Driel, Ian R van [The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Melbourne, Victoria 3010 (Australia)], E-mail: i.vandriel@unimelb.edu.au

    2008-09-01

    Here we describe a method for the isolation of intact gastric glands from mice and primary culture and transfection of mouse gastric epithelial cells. Collagenase digestion of PBS-perfused mouse stomachs released large intact gastric glands that were plated on a basement membrane matrix. The heterogeneous gland cell cultures typically contain {approx}60% parietal cells. Isolated mouse parietal cells remain viable in culture for up to 5 days and react strongly with an antibody specific to the gastric H{sup +}/K{sup +} ATPase. Isolated intact mouse gastric glands and primary cultures of mouse parietal cells respond to the secretagogue, histamine. Typical morphological changes from a resting to an acid-secreting active parietal cell were observed. In resting cultures of mouse parietal cells, the H{sup +}/K{sup +} ATPase displayed a cytoplasmic punctate staining pattern consistent with tubulovesicle element structures. Following histamine stimulation, an expansion of internal apical vacuole structures was observed together with a pronounced redistribution of the H{sup +}/K{sup +} ATPase from the cytoplasm to the apical vacuoles. A reproducible procedure to express genes of interest exogenously in these cultures of mouse parietal cells was also established. This method combines recombinant adenoviral transduction with magnetic field-assisted transfection resulting in {approx}30% transduced parietal cells. Adenoviral-transduced parietal cells maintain their ability to undergo agonist-induced activation. This protocol will be useful for the isolation, culture and expression of genes in parietal cells from genetically modified mice and as such will be an invaluable tool for studying the complex exocytic and endocytic trafficking events of the H{sup +}/K{sup +} ATPase which underpin the regulation of acid secretion.

  5. Development of a superior frontal-intraparietal network for visuo-spatial working memory.

    Science.gov (United States)

    Klingberg, Torkel

    2006-01-01

    Working memory capacity increases throughout childhood and adolescence, which is important for the development of a wide range of cognitive abilities, including complex reasoning. The spatial-span task, in which subjects retain information about the order and position of a number of objects, is a sensitive task to measure development of spatial working memory. This review considers results from previous neuroimaging studies investigating the neural correlates of this development. Older children and adolescents, with higher capacity, have been found to have higher brain activity in the intraparietal cortex and in the posterior part of the superior frontal sulcus, during the performance of working memory tasks. The structural maturation of white matter has been investigated by diffusion tensor magnetic resonance imaging (DTI). This has revealed several regions in the frontal lobes in which white matter maturation is correlated with the development of working memory. Among these is a superior fronto-parietal white matter region, located close to the grey matter regions that are implicated in the development of working memory. Furthermore, the degree of white matter maturation is positively correlated with the degree of cortical activation in the frontal and parietal regions. This suggests that during childhood and adolescence, there is development of networks related to specific cognitive functions, such as visuo-spatial working memory. These networks not only consist of cortical areas but also the white matter tracts connecting them. For visuo-spatial working memory, this network could consist of the superior frontal and intraparietal cortex.

  6. Altered activity and functional connectivity of superior temporal gyri in anxiety disorders: A functional magnetic resonance imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaohu; Xi, Qian; Wang, Peijun; Li, Chunbo [Tong Ji Hospital of Tong Ji University, Shanghai (China); He, Hongjian [Bio-X lab, Dept. of Physics, Zhe Jiang University, Hangzhou (China)

    2014-08-15

    The prior functional MRI studies have demonstrated significantly abnormal activity in the bilateral superior temporal gyrus (STG) of anxiety patients. The purpose of the current investigation was to determine whether the abnormal activity in these regions was related to a loss of functional connectivity between these regions. Ten healthy controls and 10 anxiety patients underwent noninvasive fMRI while actively listening to emotionally neutral words alternated by silence (Task 1) or threat-related words (Task 2). The participants were instructed to silently make a judgment of each word's valence (i.e., unpleasant, pleasant, or neutral). A coherence analysis was applied to the functional MRI data to examine the functional connectivity between the left and the right STG, which was selected as the primary region of interest on the basis of our prior results. The data demonstrated that the anxiety patients exhibited significantly increased activation in the bilateral STG than the normal controls. The functional connectivity analysis indicated that the patient group showed significantly decreased degree of connectivity between the bilateral STG during processing Task 2 compared to Task 1 (t = 2.588, p = 0.029). In addition, a significantly decreased connectivity was also observed in the patient group compared to the control group during processing Task 2 (t = 2.810, p = 0.012). Anxiety patients may exhibit increased activity of the STG but decreased functional connectivity between the left and right STG, which may reflect the underlying neural abnormality of anxiety disorder, and this will provide new insights into this disease.

  7. Abnormal parietal encephalomalacia associated with schizophrenia

    Science.gov (United States)

    Pan, Fen; Wang, Jun-Yuan; Xu, Yi; Huang, Man-Li

    2017-01-01

    Abstract Rationale: It is widely believed that structural abnormalities of the brain contribute to the pathophysiology of schizophrenia. The parietal lobe is a central hub of multisensory integration, and abnormities in this region might account for the clinical features of schizophrenia. However, few cases of parietal encephalomalacia associated with schizophrenia have been described. Patient concerns and Diagnoses: In this paper, we present a case of a 25-year-old schizophrenia patient with abnormal parietal encephalomalacia. The patient had poor nutrition and frequently had upper respiratory infections during childhood and adolescence. She showed severe schizophrenic symptoms such as visual hallucinations for 2 years. After examining all her possible medical conditions, we found that the patient had a lesion consistent with the diagnosis of encephalomalacia in her right parietal lobe and slight brain atrophy. Interventions: The patient was prescribed olanzapine (10 mg per day). Outcomes: Her symptoms significantly improved after antipsychotic treatment and were still well controlled 1 year later. Lessons: This case suggested that parietal encephalomalacia, which might be caused by inflammatory and infectious conditions in early life and be aggravated by undernutrition, might be implicated in the etiology of schizophrenia. PMID:28272261

  8. Distractor evoked deviations of saccade trajectory are modulated by fixation activity in the superior colliculus: computational and behavioral evidence.

    Directory of Open Access Journals (Sweden)

    Zhiguo Wang

    Full Text Available Previous studies have shown that saccades may deviate towards or away from task irrelevant visual distractors. This observation has been attributed to active suppression (inhibition of the distractor location unfolding over time: early in time inhibition at the distractor location is incomplete causing deviation towards the distractor, while later in time when inhibition is complete the eyes deviate away from the distractor. In a recent computational study, Wang, Kruijne and Theeuwes proposed an alternative theory that the lateral interactions in the superior colliculus (SC, which are characterized by short-distance excitation and long-distance inhibition, are sufficient for generating both deviations towards and away from distractors. In the present study, we performed a meta-analysis of the literature, ran model simulations and conducted two behavioral experiments to further explore this unconventional theory. Confirming predictions generated by the model simulations, the behavioral experiments show that a saccades deviate towards close distractors and away from remote distractors, and b the amount of deviation depends on the strength of fixation activity in the SC, which can be manipulated by turning off the fixation stimulus before or after target onset (Experiment 1, or by varying the eccentricity of the target and distractor (Experiment 2.

  9. Distractor evoked deviations of saccade trajectory are modulated by fixation activity in the superior colliculus: computational and behavioral evidence.

    Science.gov (United States)

    Wang, Zhiguo; Theeuwes, Jan

    2014-01-01

    Previous studies have shown that saccades may deviate towards or away from task irrelevant visual distractors. This observation has been attributed to active suppression (inhibition) of the distractor location unfolding over time: early in time inhibition at the distractor location is incomplete causing deviation towards the distractor, while later in time when inhibition is complete the eyes deviate away from the distractor. In a recent computational study, Wang, Kruijne and Theeuwes proposed an alternative theory that the lateral interactions in the superior colliculus (SC), which are characterized by short-distance excitation and long-distance inhibition, are sufficient for generating both deviations towards and away from distractors. In the present study, we performed a meta-analysis of the literature, ran model simulations and conducted two behavioral experiments to further explore this unconventional theory. Confirming predictions generated by the model simulations, the behavioral experiments show that a) saccades deviate towards close distractors and away from remote distractors, and b) the amount of deviation depends on the strength of fixation activity in the SC, which can be manipulated by turning off the fixation stimulus before or after target onset (Experiment 1), or by varying the eccentricity of the target and distractor (Experiment 2).

  10. Fusion and Fission of Cognitive Functions in the Human Parietal Cortex

    Science.gov (United States)

    Humphreys, Gina F.; Lambon Ralph, Matthew A.

    2015-01-01

    How is higher cognitive function organized in the human parietal cortex? A century of neuropsychology and 30 years of functional neuroimaging has implicated the parietal lobe in many different verbal and nonverbal cognitive domains. There is little clarity, however, on how these functions are organized, that is, where do these functions coalesce (implying a shared, underpinning neurocomputation) and where do they divide (indicating different underlying neural functions). Until now, there has been no multi-domain synthesis in order to reveal where there is fusion or fission of functions in the parietal cortex. This aim was achieved through a large-scale activation likelihood estimation (ALE) analysis of 386 studies (3952 activation peaks) covering 8 cognitive domains. A tripartite, domain-general neuroanatomical division and 5 principles of cognitive organization were established, and these are discussed with respect to a unified theory of parietal functional organization. PMID:25205661

  11. Understanding the parietal lobe syndrome from a neurophysiological and evolutionary perspective.

    Science.gov (United States)

    Caminiti, Roberto; Chafee, Matthew V; Battaglia-Mayer, Alexandra; Averbeck, Bruno B; Crowe, David A; Georgopoulos, Apostolos P

    2010-06-01

    In human and nonhuman primates parietal cortex is formed by a multiplicity of areas. For those of the superior parietal lobule (SPL) there exists a certain homology between man and macaques. As a consequence, optic ataxia, a disturbed visual control of hand reaching, has similar features in man and monkeys. Establishing such correspondence has proven difficult for the areas of the inferior parietal lobule (IPL). This difficulty depends on many factors. First, no physiological information is available in man on the dynamic properties of cells in the IPL. Second, the number of IPL areas identified in the monkey is paradoxically higher than that so far described in man, although this issue will probably be reconsidered in future years, thanks to comparative imaging studies. Third, the consequences of parietal lesions in monkeys do not always match those observed in humans. This is another paradox if one considers that, in certain cases, the functional properties of neurons in the monkey's IPL would predict the presence of behavioral skills, such as construction capacity, that however do not seem to emerge in the wild. Therefore, constructional apraxia, which is well characterized in man, has never been described in monkeys and apes. Finally, only certain aspects, i.e. hand directional hypokinesia and gaze apraxia (Balint's psychic paralysis of gaze), of the multifaceted syndrome hemispatial neglect have been described in monkeys. These similarities, differences and paradoxes, among many others, make the study of the evolution and function of parietal cortex a challenging case.

  12. NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity

    Science.gov (United States)

    Liu, Danni; Lu, Qun; Luo, Yonglan; Sun, Xuping; Asiri, Abdullah M.

    2015-09-01

    The present communication reports the topotactic conversion of NiCo2O4 nanowires array on carbon cloth (NiCo2O4 NA/CC) into NiCo2S4 NA/CC, which is used as an efficient bifunctional electrocatalyst for water splitting with good durability and superior activity in 1.0 M KOH. This NiCo2S4 NA/CC electrode produces 100 mA cm-2 at an overpotential of 305 mV for hydrogen evolution and 100 mA cm-2 at an overpotential of 340 mV for oxygen evolution. To afford a 10 mA cm-2 water-splitting current, the alkaline water electrolyzer made from NiCo2S4 NA/CC needs a cell voltage of 1.68 V, which is 300 mV less than that for NiCo2O4 NA/CC, and has good stability.The present communication reports the topotactic conversion of NiCo2O4 nanowires array on carbon cloth (NiCo2O4 NA/CC) into NiCo2S4 NA/CC, which is used as an efficient bifunctional electrocatalyst for water splitting with good durability and superior activity in 1.0 M KOH. This NiCo2S4 NA/CC electrode produces 100 mA cm-2 at an overpotential of 305 mV for hydrogen evolution and 100 mA cm-2 at an overpotential of 340 mV for oxygen evolution. To afford a 10 mA cm-2 water-splitting current, the alkaline water electrolyzer made from NiCo2S4 NA/CC needs a cell voltage of 1.68 V, which is 300 mV less than that for NiCo2O4 NA/CC, and has good stability. Electronic supplementary information (ESI) available: Experimental section and ESI Figures. See DOI: 10.1039/c5nr04064g

  13. Parietal Lobes in Schizophrenia: Do They Matter?

    Science.gov (United States)

    Yildiz, Murat; Borgwardt, Stefan J.; Berger, Gregor E.

    2011-01-01

    Objective. Despite observations that abnormal parietal lobe (PL) function is associated with psychotic-like experiences, our knowledge about the nature of PL involvement in schizophrenia is modest. The objective of this paper is to investigate the role of the PL in schizophrenia. Method. Medline databases were searched for English language publications using the following key words: parietal lobe, combined with schizophrenia, lesions, epilepsy, cognition, rare genetic disorders, MRI, fMRI, PET, and SPECT, respectively, followed by cross-checking of references. Results. Imaging studies in childhood onset schizophrenia suggest that grey matter abnormalities start in parietal and occipital lobes and proceed to frontal regions. Although, the findings are inconsistent, several studies with patients at risk to develop schizophrenia indicate early changes in the PL. Conclusions. We want to propose that in a proportion of individuals with emerging schizophrenia structural and functional alterations may start in the PL and progress to frontal regions. PMID:22937268

  14. CPU-12, a novel synthesized oxazolo[5,4-d]pyrimidine derivative, showed superior anti-angiogenic activity.

    Science.gov (United States)

    Liu, Jiping; Deng, Ya-Hui; Yang, Ling; Chen, Yijuan; Lawali, Manzo; Sun, Li-Ping; Liu, Yu

    2015-09-01

    Angiogenesis is a crucial requirement for malignant tumor growth, progression and metastasis. Tumor-derived factors stimulate formation of new blood vessels which actively support tumor growth and spread. Various of drugs have been applied to inhibit tumor angiogenesis. CPU-12, 4-chloro-N-(4-((2-(4-methoxyphenyl)-5-methyloxazolo[5,4-d] pyrimidin-7-yl)amino)phenyl)benzamide, is a novel oxazolo[5,4-d]pyrimidine derivative that showed potent activity in inhibiting VEGF-induced angiogenesis in vitro and ex-vivo. In cell toxicity experiments, CPU-12 significantly inhibited the human umbilical vein endothelial cell (HUVEC) proliferation in a dose-dependent manner with a low IC50 value at 9.30 ± 1.24 μM. In vitro, CPU-12 remarkably inhibited HUVEC's migration, chemotactic invasion and capillary-like tube formation in a dose-dependent manner. In ex-vivo, CPU-12 effectively inhibited new microvessels sprouting from the rat aortic ring. In addition, the downstream signalings of vascular endothelial growth factor receptor-2 (VEGFR-2), including the phosphorylation of PI3K, ERK1/2 and p38 MAPK, were effectively down-regulated by CPU-12. These evidences suggested that angiogenic response via the induction of VEGFR through distinct signal transduction pathways regulating proliferation, migration and tube formation of endothelial cells was significantly inhibited by the novel small molecule compound CPU-12 in vitro and ex-vivo. In conclusion, CPU-12 showed superior anti-angiogenic activity in vitro. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  15. Solvothermal synthesis of TiO2 nanocrystals with {001} facets using titanic acid nanobelts for superior photocatalytic activity

    Science.gov (United States)

    Cao, Yuhui; Zong, Lanlan; Li, Qiuye; Li, Chen; Li, Junli; Yang, Jianjun

    2017-01-01

    Anatase TiO2 nanocrystals exposed with {001} facets were fabricated by solvothermal strategy in HF-C4H9OH mixed solution, using titanic acid nanobelts (TAN) as a precursor. The shape of TAN is a long flat plane with a high aspect ratio, and F- is easily adsorbed on the surface of the nanobelts, inducing a higher exposure of {001} facet of TiO2 nanoparticles during the structure reorganization. The exposed percentage of {001} facets could vary from 40 to 77% by adjusting the amount of HF. The as-prepared samples were characterized by transmission electron microscopy, N2 adsorption-desorption isotherms, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscope. The photocatalytic measurement showed that TiO2 nanocrystals with 77% {001} facets exhibited much superior photocatalytic activity for photodegradation of methyl orange, methylene blue, and rhodamine B. And what's more, the mineralization rate of methyl orange was as high as 96% within 60 min. The photocatalytic enhancement is due to a large amount of the high energetic {001} facets exposing, the special truncated octahedral morphology and a stronger ability for dyes adsorption.

  16. Interstratified nanohybrid assembled by alternating cationic layered double hydroxide nanosheets and anionic layered titanate nanosheets with superior photocatalytic activity.

    Science.gov (United States)

    Lin, Bizhou; Sun, Ping; Zhou, Yi; Jiang, Shaofeng; Gao, Bifen; Chen, Yilin

    2014-09-15

    Oppositely charged 2D inorganic nanosheets of ZnAl-layered double hydroxide and layered titanate were successfully assembled into an interstratified nanohybrid through simply mixing the corresponding nanosheet suspensions. Powder X-ray diffraction and high-resolution transmission electron microscope clearly revealed that the component nanosheets in the as-obtained nanohybrid ZnAl-Ti3O7 retain the 2D sheet skeletons of the pristine materials and that the two kinds of nanosheets are well arranged in a layer-by-layer alternating fashion with a basal spacing of about 1.3 nm, coincident with the thickness summation of the two component nanosheets. The effective interfacial heterojunction between them and the high specific surface area resulted in that the nanohybrid exhibits a superior photocatalytic activity in the degradation of methylene blue with a reaction constant k of 2.81 × 10(-2)min(-1), which is about 9 and 4 times higher than its precursors H2Ti3O7 and ZnAl-LDH, respectively. Based on UV-vis, XPS and photoelectrochemical measurements, a proposed photoexcitation model was provided to understand its photocatalytic behavior.

  17. Mathematically gifted adolescents use more extensive and more bilateral areas of the fronto-parietal network than controls during executive functioning and fluid reasoning tasks.

    Science.gov (United States)

    Desco, Manuel; Navas-Sanchez, Francisco J; Sanchez-González, Javier; Reig, Santiago; Robles, Olalla; Franco, Carolina; Guzmán-De-Villoria, Juan A; García-Barreno, Pedro; Arango, Celso

    2011-07-01

    The main goal of this study was to investigate the neural substrates of fluid reasoning and visuospatial working memory in adolescents with precocious mathematical ability. The study population comprised two groups of adolescents: 13 math-gifted adolescents and 14 controls with average mathematical skills. Patterns of activation specific to reasoning tasks in math-gifted subjects were examined using functional magnetic resonance images acquired while the subjects were performing Raven's Advanced Progressive Matrices (RAPM) and the Tower of London (TOL) tasks. During the tasks, both groups showed significant activations in the frontoparietal network. In the math-gifted group, clusters of activation were always bilateral and more regions were recruited, especially in the right hemisphere. In the TOL task, math-gifted adolescents showed significant hyper-activations relative to controls in the precuneus, superior occipital lobe (BA 19), and medial temporal lobe (BA 39). The maximum differences between the groups were detected during RAPM tasks at the highest level of difficulty, where math-gifted subjects showed significant activations relative to controls in the right inferior parietal lobule (BA 40), anterior cingulated gyrus (BA 32), and frontal (BA 9, and BA 6) areas. Our results support the hypothesis that greater ability for complex mathematical reasoning may be related to more bilateral patterns of activation and that increased activation in the parietal and frontal regions of math-gifted adolescents is associated with enhanced skills in visuospatial processing and logical reasoning.

  18. Activity of superior interferon α against HIV-1 in severe combined immunodeficient mice reconstituted with human peripheral blood leukocytes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; TONG Xiao; Tadashi Nakasone; YUE Xue-tian; Naoki Yamamoto; LIU Xin-yuan; YANG Rong-ge

    2011-01-01

    Background Interferon (IFN) can inhibit human immunodeficiency virus type 1 (HIV-1) replication in vitro and in clinic.However, IFN therapy for HIV infection was limited by its moderate antiviral efficacy and its frequent adverse effects. In the present study we evaluated the anti-HIV efficacy of a novel synthesized superior interferon α (slFNα).Methods We performed in vitro experiments with HIV-1 IIB infected MT4 cells, and evaluated in vivo anti-HIV efficacy of slFNα in severe combined immunodeficient (SClD) mice reconstituted with human peripheral blood leukocytes (hu-PBL-SClD mice).Results We found that the 50% effective concentrations (EC5o) of slFNα against the replication of HIV-1 in MT4 cells was 0.06 ng/ml, representing stronger antiviral activity than interferon-α in vitro. In the hu-PBL-SCID mice, a dose-dependent protection pattern was observed: with 0.45 μg and 1.35 μg slFNα daily treatments, parts of SCID mice were protected from HIV infection, whereas 2.25 μg sIFNα daily treatments resulted in a terminally complete protection.Conclusions slFNα shows good anti-HIV activity both in vitro and in SCID mice, may be a promising anti-HIV agent deserving clinical investigation, especially considering the potential of IFN-α to inhibit HIV replication in patients infected with drug-resistant variants or co-infected with hepatitis C virus (HCV).

  19. Multimodal responses induced by cortical stimulation of the parietal lobe: a stereo-electroencephalography study.

    Science.gov (United States)

    Balestrini, Simona; Francione, Stefano; Mai, Roberto; Castana, Laura; Casaceli, Giuseppe; Marino, Daniela; Provinciali, Leandro; Cardinale, Francesco; Tassi, Laura

    2015-09-01

    The functional complexity of the parietal lobe still represents a challenge for neurophysiological and functional neuroimaging studies. While the somatosensory functions of the anterior parietal cortex are well established, the posterior parietal cortex has a relevant role in processing the sensory information, including visuo-spatial perception, visual attention, visuo-motor transformations and other complex and not completely understood functions. We retrospectively analysed all the clinical manifestations induced by intracerebral bipolar electrical stimulation in 172 patients suffering from drug-resistant focal epilepsy (mean age 25.6, standard deviation 11.6; 44% females and 56% males) with at least one electrode stereotactically implanted in the parietal cortex. A total of 1186 electrical stimulations were included in the analysis, of which 88 were subsequently excluded because of eliciting pathological electric activity or inducing ictal symptomatology. In the dominant parietal lobe, clinical responses were observed for 56 (25%) of the low-frequency stimulations and for 76 (50%) of the high-frequency stimulations. In the non-dominant parietal lobe, 111 (27%) low-frequency and 176 (55%) high-frequency stimulations were associated with a clinical response. Body scheme alteration was the only clinical effect showing a lateralization, as they were evoked only in the non-dominant hemisphere. The occurrence of somatosensory sensations, motor symptoms, dysarthria and multimodal responses were significantly associated with stimulation of the postcentral gyrus (odds ratio: 5.83, P parietal cortex with the aim to evaluate the neurophysiology of this relevant brain region. Our analysis offers a general overview of the multiple roles of the parietal cortex and supports its crucial involvement in different networks related to complex integrative functions.media-1vid110.1093/brain/awv187_video_abstractawv187_video_abstract. © The Author (2015). Published by Oxford

  20. Bilateral, posterior parietal polymicrogyria as part of speech therapy ...

    African Journals Online (AJOL)

    Bilateral, posterior parietal polymicrogyria as part of speech therapy work-up. ... units to make the diagnosis of bilateral posterior parietal polymicrogyria in a child with speech pathology. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  1. Impaired perception of mnemonic oldness, but not mnemonic newness, after parietal lobe damage.

    Science.gov (United States)

    Hower, Kylie H; Wixted, John; Berryhill, Marian E; Olson, Ingrid R

    2014-04-01

    In studies of episodic memory retrieval, recognition paradigms are known to elicit robust activations in the inferior parietal lobe. However, damage to this region does not produce severe deficits in episodic memory performance as indexed by typical accuracy measures. Rather, because problems with memory confidence are frequently reported, the observed deficits may be best described as "metamemory" or subjective memory deficits. Here, we further investigated the inferior parietal lobe's role in recognition memory as well as metamemory. We tested the hypothesis that the inferior parietal lobe gauges the perceived oldness of items, given several neuroimaging findings suggesting that a portion of the left inferior parietal lobe is sensitive to perceived oldness. We tested two patients with bilateral parietal lobe lesions and matched controls on an old/new recognition task. From these data we constructed receiver operating characteristic (ROC) curves by fitting the data with the unequal-variance signal-detection (UVSD) model. The results revealed no memory impairment in terms of patients' accuracy. However, patients exhibited lower hit rates and false alarms rates at high confidence levels. Further, patients and controls differed in how they set decision criteria for making recognition responses. Patients' decision criteria for "old" responses were shifted in a conservative fashion such that they were unwilling to endorse recognized target items with high levels of confidence. These findings provide constraints on models of inferior parietal lobe contributions to episodic memory retrieval. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Spatial imagery relies on a sensory independent, though sensory sensitive, functional organization within the parietal cortex: a fMRI study of angle discrimination in sighted and congenitally blind individuals.

    Science.gov (United States)

    Bonino, Daniela; Ricciardi, Emiliano; Bernardi, Giulio; Sani, Lorenzo; Gentili, Claudio; Vecchi, Tomaso; Pietrini, Pietro

    2015-02-01

    Although vision offers distinctive information to space representation, individuals who lack vision since birth often show perceptual and representational skills comparable to those found in sighted individuals. However, congenitally blind individuals may result in impaired spatial analysis, when engaging in 'visual' spatial features (e.g., perspective or angle representation) or complex spatial mental abilities. In the present study, we measured behavioral and brain responses using functional magnetic resonance imaging in sighted and congenitally blind individuals during spatial imagery based on a modified version of the mental clock task (e.g., angle discrimination) and a simple recognition control condition, as conveyed across distinct sensory modalities: visual (sighted individuals only), tactile and auditory. Blind individuals were significantly less accurate during the auditory task, but comparable-to-sighted during the tactile task. As expected, both groups showed common neural activations in intraparietal and superior parietal regions across visual and non-visual spatial perception and imagery conditions, indicating the more abstract, sensory independent functional organization of these cortical areas, a property that we named supramodality. At the same time, however, comparisons in brain responses and functional connectivity patterns across experimental conditions demonstrated also a functional lateralization, in a way that correlated with the distinct behavioral performance in blind and sighted individuals. Specifically, blind individuals relied more on right parietal regions, mainly in the tactile and less in the auditory spatial processing. In sighted, spatial representation across modalities relied more on left parietal regions. In conclusions, intraparietal and superior parietal regions subserve supramodal spatial representations in sighted and congenitally blind individuals. Differences in their recruitment across non-visual spatial processing in

  3. Social distance evaluation in human parietal cortex.

    Science.gov (United States)

    Yamakawa, Yoshinori; Kanai, Ryota; Matsumura, Michikazu; Naito, Eiichi

    2009-01-01

    Across cultures, social relationships are often thought of, described, and acted out in terms of physical space (e.g. "close friends" "high lord"). Does this cognitive mapping of social concepts arise from shared brain resources for processing social and physical relationships? Using fMRI, we found that the tasks of evaluating social compatibility and of evaluating physical distances engage a common brain substrate in the parietal cortex. The present study shows the possibility of an analytic brain mechanism to process and represent complex networks of social relationships. Given parietal cortex's known role in constructing egocentric maps of physical space, our present findings may help to explain the linguistic, psychological and behavioural links between social and physical space.

  4. Parietal wall endometriosis: a rare case report

    Directory of Open Access Journals (Sweden)

    Mahija Sahu

    2015-04-01

    Full Text Available A 28 year old P2L1 with one previous cesarean presented with cyclical pain in periumblical area just below umbilicus for 1 year with USG finding suggestive of parietal wall endometriosis planned for surgery on her 2nd day of menstruation. She underwent diagnostic laparoscopy with complete excision of endometrioma. Diagnostic laparoscopy showed no evidence of endometrioma in the pelvic cavity except for omental adhesion at parietal wall endometrioma site, adhesiolysis of omentum, mesh repair of rectus sheath defect done. She is followed up for last 3 cycles post-operative and has no cyclical pain further. [Int J Reprod Contracept Obstet Gynecol 2015; 4(2.000: 524-526

  5. Deficits of Motor Intention following Parietal Lesions

    Directory of Open Access Journals (Sweden)

    Christopher L. Gore

    2002-01-01

    Full Text Available Patients with lesions to the right parietal lobe were tested on their ability to reach to targets, or to respond verbally to targets. The targets occurred at the same two spatial locations -- to the left and right of the patient—with the task being cued by the color of the target. Patients were able to perform both tasks separately rapidly and without error. However, when the two tasks were interleaved, they had difficulty making a response in the left (contralesional field when this was different to a response that they had just made. These results suggest that lesions to the parietal cortex may cause a deficit in the coding for motor intention, as well as attention in the contralesional field.

  6. Refractory Lesional Parietal Lobe Epilepsy: Clinical, Electroencephalographic and Neurodiagnostic Findings.

    Science.gov (United States)

    Kurşun, Oğuzhan; Karataş, Hülya; Dericioğlu, Neşe; Saygi, Serap

    2016-09-01

    Specialized centers, in the management and surgical treatment of medically refractory epilepsy, emphasize the importance of differentiating the varieties of localization related epilepsies. There has been considerable recent interest in temporal and frontal lobe epileptic syndromes and less attention has been paid to parietal and occipital lobe epilepsies. Here we report the clinical, electroencephalographic and neuroimaging characteristics of 46 patients with medically refractory lesional parietal lobe epilepsy who have been followed up for 1-10 years. In this study auras were reported in 78.3% of the patients and included sensory symptoms (72.2%), headache (36.1%), nausea and vomiting (36.1%), psychic symptoms (36.1%) and visual symptoms (16.6%). The most common ictal behavioral changes were paresthesia (69.6%) and focal clonic activity (39.1%). Tonic posture, various automatisms, head deviation, staring, sensation of pain and speech disturbances occurred to a lesser extent. Simple partial seizures were present in 69.6%. Complex partial seizures occurred in 43.5% and secondary generalized tonic clonic seizures were reported in 58.7% of the patients. Interictal routine EEG disclosed abnormal background activity in 1/3 of the patients. Nonlocalising epileptiform abnormalities were found in 34.8% of the patients. EEG findings were normal in 34.8% of the patients. The most common presumed etiologic factors were as follows: posttraumatic encephalomalacia, stroke, tumor, malformation of cortical development, atrophy, and arteriovenous malformation. Clinical, electrophysiological and neuroimaging features of the lesional symptomatic partial epilepsy patients may help us to localize the seizure focus in some patients with cryptogenic partial epilepsy. So that, the timing decision of the parietal lobe sampling with more invasive techniques like intracranial electrodes prior to epilepsy surgery would be easier.

  7. Is the Posterior Parietal Lobe Involved in Working Memory Retrieval? Evidence from Patients with Bilateral Parietal Lobe Damage

    OpenAIRE

    Marian E Berryhill; Olson, Ingrid R.

    2008-01-01

    Neuroimaging evidence suggests that the parietal lobe has an important role in memory retrieval, yet neuropsychology is largely silent on this topic. Recently, we reported that unilateral parietal lobe damage impairs various forms of visual working memory when tested by old/new recognition. Here, we investigate whether parietal lobe working memory deficits are linked to problems at retrieval. We tested two patients with bilateral parietal lobe damage in a series of visual working memory tasks...

  8. Is the posterior parietal lobe involved in working memory retrieval? Evidence from patients with bilateral parietal lobe damage

    OpenAIRE

    Berryhill, M.E; Olson, I.R.

    2008-01-01

    Neuroimaging evidence suggests that the parietal lobe has an important role in memory retrieval, yet neuropsychology is largely silent on this topic. Recently, we reported that unilateral parietal lobe damage impairs various forms of visual working memory when tested by old/new recognition. Here, we investigate whether parietal lobe working memory deficits are linked to problems at retrieval. We tested two patients with bilateral parietal lobe damage in a series of visual working memory tasks...

  9. Discrete object representation, attention switching, and task difficulty in the parietal lobe.

    Science.gov (United States)

    Cusack, Rhodri; Mitchell, Daniel J; Duncan, John

    2010-01-01

    An important component of perception, attention, and memory is the structuring of information into subsets ("objects"), which allows some parts to be considered together but kept separate from others. Portions of the posterior parietal lobe respond proportionally to the number of objects in the scope of attention and short-term memory, up to a capacity limit of around four, suggesting they have a role in this important process. This study investigates the relationship of discrete object representation to other parietal functions. Two experiments and two supplementary analyses were conducted to evaluate responsivity in parietal regions to the number of objects, the number of spatial locations, attention switching, and general task difficulty. Using transparent motion, it was found that a posterior and inferior parietal response to multiple objects persists even in the absence of a change in visual extent or the number of spatial locations. In a monitoring task, it was found that attention switching (or task difficulty) and object representation have distinct neural signatures, with the former showing greater recruitment of an anterior and lateral intraparietal sulcus (IPS) region, but the latter in a posterior and lateral region. A dissociation was also seen between selectivity for object load across tasks in the inferior IPS and feature or object-related memory load in the superior IPS.

  10. Inhibition of partially purified K+/H+-ATPase from guinea-pig isolated and enriched parietal cells by substituted benzimidazoles.

    OpenAIRE

    Beil, W.; Sewing, K F

    1984-01-01

    The cellular and subcellular distributions of adenosinetriphosphatases (ATPases) were examined in guinea-pig gastric mucosal cells. All cell types displayed Mg2+-ATPase and bicarbonate (HCO3-)-stimulated ATPase activity. K+-ATPase was located only in fractions derived from parietal cells. Differential and density-gradient centrifugation of material prepared from parietal cells revealed that K+-ATPase activity was located in a tubulo-vesicular membrane fraction. Enzyme activity was ten fold gr...

  11. Spontaneous Activity Associated with Delusions of Schizophrenia in the Left Medial Superior Frontal Gyrus: A Resting-State fMRI Study.

    Directory of Open Access Journals (Sweden)

    Bin Gao

    Full Text Available Delusions of schizophrenia have been found to be associated with alterations of some brain regions in structure and task-induced activation. However, the relationship between spontaneously occurring symptoms and spontaneous brain activity remains unclear. In the current study, 14 schizophrenic patients with delusions and 14 healthy controls underwent a resting-state functional magnetic resonance imaging (RS-fMRI scan. Patients with delusions of schizophrenia patients were rated with Positive and Negative Syndrome Scale (PANSS and Characteristics of Delusional Rating Scale (CDRS. Regional homogeneity (ReHo was calculated to measure the local synchronization of the spontaneous activity in a voxel-wise way. A two-sample t-test showed that ReHo of the right anterior cingulate gyrus and left medial superior frontal gyrus were higher in patients, and ReHo of the left superior occipital gyrus was lower, compared to healthy controls. Further, among patients, correlation analysis showed a significant difference between delusion scores of CRDS and ReHo of brain regions. ReHo of the left medial superior frontal gyrus was negatively correlated with patients' CDRS scores but not with delusional PANSS scores. These results suggested that altered local synchronization of spontaneous brain activity may be related to the pathophysiology of delusion in schizophrenia.

  12. Morbidity profile following aggressive resection of parietal lobe gliomas.

    Science.gov (United States)

    Sanai, Nader; Martino, Juan; Berger, Mitchel S

    2012-06-01

    The impact of parietal lobe gliomas is typically studied in the context of parietal lobe syndromes. However, critical language pathways traverse the parietal lobe and are susceptible during tumor resection. The authors of this study reviewed their experience with parietal gliomas to characterize the impact of resection and the morbidity associated with language. The study population included adults who had undergone resection of parietal gliomas of all grades. Tumor location was identified according to a proposed classification system for parietal region gliomas. Low- and high-grade tumors were volumetrically analyzed using FLAIR and T1-weighted contrast-enhanced MR imaging. One hundred nineteen patients with parietal gliomas were identified--34 with low-grade gliomas and 85 with high-grade gliomas. The median patient age was 45 years, and most patients (53) presented with seizures, whereas only 4 patients had an appreciable parietal lobe syndrome. The median preoperative tumor volume was 31.3 cm(3), the median extent of resection was 96%, and the median postoperative tumor volume was 0.9 cm(3). Surprisingly, the most common early postoperative neurological deficit was dysphasia (16 patients), not weakness (12 patients), sensory deficits (14 patients), or parietal lobe syndrome (10 patients). A proposed parietal glioma classification system, based on surgical anatomy, was predictive of language deficits. This is the largest reported experience with parietal lobe gliomas. The findings suggested that parietal language pathways are compromised at a surprisingly high rate. The proposed parietal glioma classification system is predictive of postoperative morbidity associated with language and can assist with preoperative planning. Taken together, these data emphasize the value of identifying language pathways when operating within the parietal lobe.

  13. Activation in a frontoparietal cortical network underlies individual differences in the performance of an embedded figures task.

    Science.gov (United States)

    Walter, Elizabeth; Dassonville, Paul

    2011-01-01

    The Embedded Figures Test (EFT) requires observers to search for a simple geometric shape hidden inside a more complex figure. Surprisingly, performance in the EFT is negatively correlated with susceptibility to illusions of spatial orientation, such as the Roelofs effect. Using fMRI, we previously demonstrated that regions in parietal cortex are involved in the contextual processing associated with the Roelofs task. In the present study, we found that similar parietal regions (superior parietal cortex and precuneus) were more active during the EFT than during a simple matching task. Importantly, these parietal activations overlapped with regions found to be involved during contextual processing in the Roelofs illusion. Additional parietal and frontal areas, in the right hemisphere, showed strong correlations between brain activity and behavioral performance during the search task. We propose that the posterior parietal regions are necessary for processing contextual information across many different, but related visuospatial tasks, with additional parietal and frontal regions serving to coordinate this processing in participants proficient in the task.

  14. Activation in a frontoparietal cortical network underlies individual differences in the performance of an embedded figures task.

    Directory of Open Access Journals (Sweden)

    Elizabeth Walter

    Full Text Available The Embedded Figures Test (EFT requires observers to search for a simple geometric shape hidden inside a more complex figure. Surprisingly, performance in the EFT is negatively correlated with susceptibility to illusions of spatial orientation, such as the Roelofs effect. Using fMRI, we previously demonstrated that regions in parietal cortex are involved in the contextual processing associated with the Roelofs task. In the present study, we found that similar parietal regions (superior parietal cortex and precuneus were more active during the EFT than during a simple matching task. Importantly, these parietal activations overlapped with regions found to be involved during contextual processing in the Roelofs illusion. Additional parietal and frontal areas, in the right hemisphere, showed strong correlations between brain activity and behavioral performance during the search task. We propose that the posterior parietal regions are necessary for processing contextual information across many different, but related visuospatial tasks, with additional parietal and frontal regions serving to coordinate this processing in participants proficient in the task.

  15. The Impact of Auditory Working Memory Training on the Fronto-Parietal Working Memory Network

    Directory of Open Access Journals (Sweden)

    Julia eSchneiders

    2012-06-01

    Full Text Available Working memory training has been widely used to investigate working memory processes. We have shown previously that visual working memory benefits only from intra-modal visual but not from across-modal auditory working memory training. In the present functional magnetic resonance imaging study we examined whether auditory working memory processes can also be trained specifically and which training-induced activation changes accompany theses effects. It was investigated whether working memory training with strongly distinct auditory materials transfers exclusively to an auditory (intra-modal working memory task or whether it generalizes to an (across-modal visual working memory task. We used an adaptive n-back training with tonal sequences and a passive control condition. The memory training led to a reliable training gain. Transfer effects were found for the (intra-modal auditory but not for the (across-modal visual 2-back task. Training-induced activation changes in the auditory 2-back task were found in two regions in the right inferior frontal gyrus. These effects confirm our previous findings in the visual modality and extends intra-modal effects to the auditory modality. These results might reflect increased neural efficiency in auditory working memory processes as in the right inferior frontal gyrus is frequently found in maintaining modality-specific auditory information. By this, these effects are analogical to the activation decreases in the right middle frontal gyrus for the visual modality in our previous study. Furthermore, task-unspecific (across-modal activation decreases in the visual and auditory 2-back task were found in the right inferior parietal lobule and the superior portion of the right middle frontal gyrus reflecting less demands on general attentional control processes. These data are in good agreement with across-modal activation decreases within the same brain regions on a visual 2-back task reported previously.

  16. Dynamic social adaptation of motion-related neurons in primate parietal cortex.

    Directory of Open Access Journals (Sweden)

    Naotaka Fujii

    Full Text Available Social brain function, which allows us to adapt our behavior to social context, is poorly understood at the single-cell level due largely to technical limitations. But the questions involved are vital: How do neurons recognize and modulate their activity in response to social context? To probe the mechanisms involved, we developed a novel recording technique, called multi-dimensional recording, and applied it simultaneously in the left parietal cortices of two monkeys while they shared a common social space. When the monkeys sat near each other but did not interact, each monkey's parietal activity showed robust response preference to action by his own right arm and almost no response to action by the other's arm. But the preference was broken if social conflict emerged between the monkeys-specifically, if both were able to reach for the same food item placed on the table between them. Under these circumstances, parietal neurons started to show complex combinatorial responses to motion of self and other. Parietal cortex adapted its response properties in the social context by discarding and recruiting different neural populations. Our results suggest that parietal neurons can recognize social events in the environment linked with current social context and form part of a larger social brain network.

  17. Changes in Enzyme Activities Involved in Starch Synthesis and Hormone Concentrations in Superior and Inferior Spikelets and Their Association with Grain Filling of Super Rice

    Institute of Scientific and Technical Information of China (English)

    FU Jing; XU Yun-ji; CHEN Lu; YUAN Li-min; WANG Zhi-qin; YANG Jian-chang

    2013-01-01

    The changes in activities of key enzymes involved in sucrose-to-starch conversion and concentrations of hormones in superior and inferior spikelets of super rice were investigated and their association with grain filling was analyzed.Four super rice cultivars,Liangyoupeijiu,Ilyou 084,Huaidao 9 and Wujing 15,and two high-yielding and elite check cultivars,Shanyou 63 and Yangfujing 8,were used.The activities of sucrose synthase (SuSase),adenosine diphosphoglucose pyrophosphorylase (AGPase),starch synthase (StSase) and starch branching enzyme (SBE),and the concentrations of zeatin + zeatin riboside (Z + ZR),indole-3-acetic acid (IAA) and abscisic acid (ABA) in superior and inferior spikelets were determined during the grain filling period and their relationships with grain filling rate were analyzed.Maximum grain filling rate,the time reaching the maximum grain-filling rate,mean grain filling rate and brown rice weight for superior spikelets showed a slight difference between the super and check rice cultivars,but were significantly lower in the super rice than in the check rice for inferior spikelets.Changes of enzyme activities and hormone concentrations in grains exhibited single peak curves during the grain filling period.The peak values and the mean activities of SuSase,AGPase,StSase and SBE were lower in inferior spikelets than in superior ones,as well as the peak values and the mean concentrations of Z + ZR and IAA.However,the peak value and the mean concentration of ABA were significantly higher in inferior spikelets than in superior ones and greater in the super rice than in the check rice.The grain filling rate was positively and significantly correlated with the activities of SuSase,AGPase and StSase and the concentrations of Z + ZR and IAA.The results suggested that the low activities of SuSase,AGPase and StSase and the low concentrations of Z + ZR and IAA might be important physiological reasons for the slow grain filling rate and light grain weight of

  18. A parietal memory network revealed by multiple MRI methods.

    Science.gov (United States)

    Gilmore, Adrian W; Nelson, Steven M; McDermott, Kathleen B

    2015-09-01

    The manner by which the human brain learns and recognizes stimuli is a matter of ongoing investigation. Through examination of meta-analyses of task-based functional MRI and resting state functional connectivity MRI, we identified a novel network strongly related to learning and memory. Activity within this network at encoding predicts subsequent item memory, and at retrieval differs for recognized and unrecognized items. The direction of activity flips as a function of recent history: from deactivation for novel stimuli to activation for stimuli that are familiar due to recent exposure. We term this network the 'parietal memory network' (PMN) to reflect its broad involvement in human memory processing. We provide a preliminary framework for understanding the key functional properties of the network. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Some surprising findings on the involvement of the parietal lobe in human memory.

    Science.gov (United States)

    Olson, Ingrid R; Berryhill, Marian

    2009-02-01

    The posterior parietal lobe is known to play some role in a far-flung list of mental processes: linking vision to action (saccadic eye movements, reaching, grasping), attending to visual space, numerical calculation, and mental rotation. Here, we review findings from humans and monkeys that illuminate an untraditional function of this region: memory. Our review draws on neuroimaging findings that have repeatedly identified parietal lobe activations associated with short-term or working memory and episodic memory. We also discuss recent neuropsychological findings showing that individuals with parietal lobe damage exhibit both working memory and long-term memory deficits. These deficits are not ubiquitous; they are only evident under certain retrieval demands. Our review elaborates on these findings and evaluates various theories about the mechanistic role of the posterior parietal lobe in memory. The available data point towards the conclusion that the posterior parietal lobe plays an important role in memory retrieval irrespective of elapsed time. However, the available data do not support simple dichotomies such as recall versus recognition, working versus long-term memory. We conclude by formalizing several open questions that are intended to encourage future research in this rapidly developing area of memory research.

  20. The ‘when’ pathway of the right parietal lobe

    Science.gov (United States)

    Battelli, Lorella; Pascual-Leone, Alvaro; Cavanagh, Patrick

    2013-01-01

    The order of events, whether two events are seen as simultaneous or successive, sets the stage for the moment-to-moment interpretation of the visual world. Evidence from patients who have lesions to the parietal lobes and transcranial magnetic stimulation studies in normal subjects suggest that the right inferior parietal lobe underlies this analysis of event timing. Judgment of temporal order, simultaneity and high-level motion are all compromised following right parietal lesions and degraded after transcranial magnetic stimulation over the right parietal but not elsewhere. The results suggest that the right parietal lobe serves as part of a when pathway for both visual fields. We propose that the disruption of this mechanism is the underlying cause of a wide range of seemingly unrelated tasks being impaired in right parietal patients. PMID:17379569

  1. The right parietal lobe is critical for visual working memory.

    Science.gov (United States)

    Berryhill, Marian E; Olson, Ingrid R

    2008-01-01

    Visual working memory (VWM) permits the maintenance of object identities and their locations across brief delays such as those accompanying eye movements. Recent neuroimaging studies have emphasized the role of the posterior parietal lobe in this process although the specific nature of this involvement in VWM remains controversial. Neuroimaging findings suggest that the parietal lobe may have a general role in remembering various types of visual information whereas neuropsychological findings suggest that parietal involvement is primarily related to motor spatial attention and spatial memory. In the present study, patients with unilateral right parietal lobe damage, lacking symptoms of neglect, were tested in several VWM old/new recognition tasks. Parietal damage lead to impaired performance on all VWM tasks, including spatial, object, and object/spatial conjunction tasks. Deficits were found across several stimulus categories. These results provide neuropsychological support for neuroimaging results, and more generally indicate that the parietal lobe serves a general role in diverse forms of VWM.

  2. Head position signals used by parietal neurons to encode locations of visual stimuli.

    Science.gov (United States)

    Brotchie, P R; Andersen, R A; Snyder, L H; Goodman, S J

    1995-05-18

    The mechanism for object location in the environment, and the perception of the external world as stable when eyes, head and body are moved, have long been thought to be centred on the posterior parietal cortex. However, head position signals, and their integration with visual and eye position signals to form a representation of space referenced to the body, have never been examined in any area of the cortex. Here we show that the visual and saccadic activities of parietal neurons are strongly affected by head position. The eye and head position effects are equivalent for individual neurons, indicating that the modulation is a function of gaze direction, regardless of whether the eyes or head are used to direct gaze. These data are consistent with the idea that the posterior parietal cortex contains a distributed representation of space in body-centred coordinates.

  3. A focus on parietal cells as a renewing cell population

    Institute of Scientific and Technical Information of China (English)

    Sherif; M; Karam

    2010-01-01

    The fact that the acidsecreting parietal cells undergo continuous renewal has been ignored by many gastroenterologists and cell biologists. In the past, it was thought that these cells were static. However, by using 3Hthymidine radioautography in combination with electron microscopy, it was possible to demonstrate that parietal cells belong to a continuously renewing epithelial cell lineage. In the gastric glands, stem cells anchored in the isthmus region are responsible for the production of parietal cells...

  4. Distinct contributions by frontal and parietal cortices support working memory.

    Science.gov (United States)

    Mackey, Wayne E; Curtis, Clayton E

    2017-07-21

    Although subregions of frontal and parietal cortex both contribute and coordinate to support working memory (WM) functions, their distinct contributions remain elusive. Here, we demonstrate that perturbations to topographically organized human frontal and parietal cortex during WM maintenance cause distinct but systematic distortions in WM. The nature of these distortions supports theories positing that parietal cortex mainly codes for retrospective sensory information, while frontal cortex codes for prospective action.

  5. Sex Differences in Parietal Lobe Structure and Development

    OpenAIRE

    Salinas, Joel; Mills, Elizabeth D.; Conrad, Amy L.; Koscik, Timothy; Andreasen, Nancy C; Nopoulos, Peg

    2012-01-01

    Structural MRI studies provide evidence for sex differences in the human brain. Differences in surface area and the proportion of gray to white matter volume are observed, particularly in the parietal lobe. To our knowledge, there are no studies examining sex differences of parietal lobe structure in younger populations or in the context of development. The current study evaluated sex difference in the structure of the parietal lobe in children (7-17 years of age). Also, by adding the cohort ...

  6. The ‘when’ pathway of the right parietal lobe

    OpenAIRE

    Battelli, Lorella; Pascual-Leone, Alvaro; Cavanagh, Patrick

    2007-01-01

    The order of events, whether two events are seen as simultaneous or successive, sets the stage for the moment-to-moment interpretation of the visual world. Evidence from patients who have lesions to the parietal lobes and transcranial magnetic stimulation studies in normal subjects suggest that the right inferior parietal lobe underlies this analysis of event timing. Judgment of temporal order, simultaneity and high-level motion are all compromised following right parietal lesions and degrade...

  7. Callosal alien hand sign following a right parietal lobe infarction.

    Science.gov (United States)

    Kim, Young-Do; Lee, Eek-Sung; Lee, Kwang-Soo; Kim, Joong-Seok

    2010-06-01

    Callosal alien hand syndrome is characterized primarily by intermanual conflict and is associated with an anterior callosal lesion. We report a patient who presented with topographical disorientation and the callosal type alien hand sign. An MRI of the brain showed a right parietal lobe infarction. This is a rare example of callosal alien hand sign associated with a right parietal lesion. The right parietal lobe appeared to be responsible for the callosal hand sign in this patient, possibly due to interference with peristriate outflow pathways toward the parietal zones, where visual somatosensory interactions are likely to occur. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Alzheimer's disease: the downside of a highly evolved parietal lobe?

    Science.gov (United States)

    Bruner, Emiliano; Jacobs, Heidi I L

    2013-01-01

    Clinical grade Alzheimer's disease (AD) is only described in humans. Recent imaging studies in early AD patients showed that the parietal areas display the most prominent metabolic impairments. So far, neuroimaging studies have not been able to explain why the medial parietal regions possess this hub characteristic in AD. Paleoneurological and neuroanatomical studies suggest that our species, Homo sapiens, has a unique and derived organization of the parietal areas, which are involved in higher cognitive functions. Combining evidence from neuroimaging, paleontology, and comparative anatomy, we suggest that the vulnerability of the parietal lobe to neurodegenerative processes may be associated with the origin of our species. The species-specific parietal morphology in modern humans largely influenced the brain spatial organization, and it involved changes in vascularization and energy management, which may underlie the sensitivity of these areas to metabolic impairment. Metabolic constraints and anatomical evolutionary changes in the medial parietal regions of modern humans may be important in early AD onset. Taking into account the species-specific adaptations of the modern human parietal areas and their association with AD, we hypothesize that AD can be the evolutionary drawback of the specialized structure of our parietal lobes. The cognitive advantage is associated with increased sensitivity to neurodegenerative processes which, being limited to the post-reproductive period, have a minor effect on the overall genetic fitness. The changes of energy requirements associated with form and size variations at the parietal areas may support the hypothesis of AD as a metabolic syndrome.

  9. Frontal and Parietal Cortices Show Different Spatiotemporal Dynamics across Problem-solving Stages.

    Science.gov (United States)

    Tschentscher, Nadja; Hauk, Olaf

    2016-08-01

    Arithmetic problem-solving can be conceptualized as a multistage process ranging from task encoding over rule and strategy selection to step-wise task execution. Previous fMRI research suggested a frontal-parietal network involved in the execution of complex numerical and nonnumerical tasks, but evidence is lacking on the particular contributions of frontal and parietal cortices across time. In an arithmetic task paradigm, we evaluated individual participants' "retrieval" and "multistep procedural" strategies on a trial-by-trial basis and contrasted those in time-resolved analyses using combined EEG and MEG. Retrieval strategies relied on direct retrieval of arithmetic facts (e.g., 2 + 3 = 5). Procedural strategies required multiple solution steps (e.g., 12 + 23 = 12 + 20 + 3 or 23 + 10 + 2). Evoked source analyses revealed independent activation dynamics within the first second of problem-solving in brain areas previously described as one network, such as the frontal-parietal cognitive control network: The right frontal cortex showed earliest effects of strategy selection for multistep procedural strategies around 300 msec, before parietal cortex activated around 700 msec. In time-frequency source power analyses, memory retrieval and multistep procedural strategies were differentially reflected in theta, alpha, and beta frequencies: Stronger beta and alpha desynchronizations emerged for procedural strategies in right frontal, parietal, and temporal regions as function of executive demands. Arithmetic fact retrieval was reflected in right prefrontal increases in theta power. Our results demonstrate differential brain dynamics within frontal-parietal networks across the time course of a problem-solving process, and analyses of different frequency bands allowed us to disentangle cortical regions supporting the underlying memory and executive functions.

  10. [Changes in the ultrastructure of the stomach mucous membrane parietal cells caused by inhibitors of hydrochloric acid secretion].

    Science.gov (United States)

    Dondukova, G V; Morozov, I A

    2002-01-01

    The study of the action of phamotidine and omeprazol on the stomach parietal cells in patients with duodenal ulcer has shown that phamotidin results in changes of secretory membrane of the parietal cells increasing its secretory potential while omeprazol reduces energetic metabolism of the lining cell by the impact on its mitochondrial apparatus. Both in children and adults with duodenal ulcer more developed mitochondrial cell activity was found after omeprazol treatment.

  11. Is the posterior parietal lobe involved in working memory retrieval? Evidence from patients with bilateral parietal lobe damage.

    Science.gov (United States)

    Berryhill, Marian E; Olson, Ingrid R

    2008-01-01

    Neuroimaging evidence suggests that the parietal lobe has an important role in memory retrieval, yet neuropsychology is largely silent on this topic. Recently, we reported that unilateral parietal lobe damage impairs various forms of visual working memory when tested by old/new recognition. Here, we investigate whether parietal lobe working memory deficits are linked to problems at retrieval. We tested two patients with bilateral parietal lobe damage in a series of visual working memory tasks that probed recall and old/new recognition. Stimuli were presented sequentially and several stimulus categories were tested. The results of these experiments show that parietal lobe damage disproportionately impairs old/new recognition as compared to cued recall across stimulus categories. The observed performance dissociation suggests that the posterior parietal lobe plays a particularly vital role in working memory retrieval.

  12. Muscarinic responses of gastric parietal cells

    Energy Technology Data Exchange (ETDEWEB)

    Wilkes, J.M.; Kajimura, M.; Scott, D.R.; Hersey, S.J.; Sachs, G. (Department of Medicine, University of California, Los Angeles (United States))

    1991-06-01

    Isolated rabbit gastric glands were used to study the nature of the muscarinic cholinergic responses of parietal cells. Carbachol stimulation of acid secretion, as measured by the accumulation of aminopyrine, was inhibited by the M1 antagonist, pirenzepine, with an IC50 of 13 microM; by the M2 antagonist, 11,2-(diethylamino)methyl-1 piperidinyl acetyl-5,11-dihydro-6H-pyrido 2,3-b 1,4 benzodiazepin-6-one (AF-DX 116), with an IC50 of 110 microM; and by the M1/M3 antagonist, diphenyl-acetoxy-4-methylpiperidinemethiodide, with an IC50 of 35 nM. The three antagonists displayed equivalent IC50 values for the inhibition of carbachol-stimulated production of 14CO2 from radiolabeled glucose, which is a measure of the turnover of the H,K-ATPase, the final step of acid secretion. Intracellular calcium levels were measured in gastric glands loaded with FURA 2. Carbachol was shown to both release calcium from an intracellular pool and to promote calcium entry across the plasma membrane. The calcium entry was inhibitable by 20 microM La3+. The relative potency of the three muscarinic antagonists for inhibition of calcium entry was essentially the same as for inhibition of acid secretion or pump related glucose oxidation. Image analysis of the glands showed the effects of carbachol, and of the antagonists, on intracellular calcium were occurring largely in the parietal cell. The rise in cell calcium due to release of calcium from intracellular stores was inhibited by 4-DAMP with an IC50 of 1.7 nM, suggesting that the release pathway was regulated by a low affinity M3 muscarinic receptor or state; Ca entry and acid secretion are regulated by a high affinity M3 muscarinic receptor or state, inhibited by higher 4-DAMP concentrations, suggesting that it is the steady-state elevation of Ca that is related to parietal cell function rather than the (Ca)i transient.

  13. The role of parietal cortex in the formation of colour and motion based concepts

    Directory of Open Access Journals (Sweden)

    Samuel William Cheadle

    2014-07-01

    Full Text Available Imaging evidence shows that separate subdivisions of parietal cortex, in and around the intraparietal sulcus (IPS, are engaged when stimuli are grouped according to colour and to motion (Zeki and Stutters 2013. Since grouping is an essential step in the formation of concepts, we wanted to learn whether parietal cortex is also engaged in the formation of concepts according to these two attributes. Using functional magnetic resonance imaging (fMRI, and choosing the recognition of concept-based colour or motion stimuli as our paradigm, we found that there was strong concept-related activity in and around the intraparietal sulcus (IPS, a region whose homologue in the macaque monkey is known to receive direct but segregated anatomical inputs from V4 and V5. Parietal activity related to colour concepts was juxtaposed but did not overlap with activity related to motion concepts, thus emphasizing the continuation of the segregation of colour and motion into the conceptual system. Concurrent retinotopic mapping experiments showed that within the parietal cortex, concept-related activity increases within later stage IPS areas.

  14. The Neural Dynamics of Fronto-Parietal Networks in Childhood Revealed using Magnetoencephalography.

    Science.gov (United States)

    Astle, Duncan E; Luckhoo, Henry; Woolrich, Mark; Kuo, Bo-Cheng; Nobre, Anna C; Scerif, Gaia

    2015-10-01

    Our ability to hold information in mind is limited, requires a high degree of cognitive control, and is necessary for many subsequent cognitive processes. Children, in particular, are highly variable in how, trial-by-trial, they manage to recruit cognitive control in service of memory. Fronto-parietal networks, typically recruited under conditions where this cognitive control is needed, undergo protracted development. We explored, for the first time, whether dynamic changes in fronto-parietal activity could account for children's variability in tests of visual short-term memory (VSTM). We recorded oscillatory brain activity using magnetoencephalography (MEG) as 9- to 12-year-old children and adults performed a VSTM task. We combined temporal independent component analysis (ICA) with general linear modeling to test whether the strength of fronto-parietal activity correlated with VSTM performance on a trial-by-trial basis. In children, but not adults, slow frequency theta (4-7 Hz) activity within a right lateralized fronto-parietal network in anticipation of the memoranda predicted the accuracy with which those memory items were subsequently retrieved. These findings suggest that inconsistent use of anticipatory control mechanism contributes significantly to trial-to-trial variability in VSTM maintenance performance.

  15. The Role of the Parietal Lobe in Visual Extinction Studied with Transcranial Magnetic Stimulation

    Science.gov (United States)

    Battelli, Lorella; Alvarez, George A.; Carlson, Thomas; Pascual-Leone, Alvaro

    2009-01-01

    Interhemispheric competition between homologous areas in the human brain is believed to be involved in a wide variety of human behaviors from motor activity to visual perception and particularly attention. For example, patients with lesions in the posterior parietal cortex are unable to selectively track objects in the contralesional side of…

  16. The Role of the Parietal Lobe in Visual Extinction Studied with Transcranial Magnetic Stimulation

    Science.gov (United States)

    Battelli, Lorella; Alvarez, George A.; Carlson, Thomas; Pascual-Leone, Alvaro

    2009-01-01

    Interhemispheric competition between homologous areas in the human brain is believed to be involved in a wide variety of human behaviors from motor activity to visual perception and particularly attention. For example, patients with lesions in the posterior parietal cortex are unable to selectively track objects in the contralesional side of…

  17. Differential parietal and temporal contributions to music perception in improvising and score-dependent musicians, an fMRI study.

    Science.gov (United States)

    Harris, Robert; de Jong, Bauke M

    2015-10-22

    Using fMRI, cerebral activations were studied in 24 classically-trained keyboard performers and 12 musically unskilled control subjects. Two groups of musicians were recruited: improvising (n=12) and score-dependent (non-improvising) musicians (n=12). While listening to both familiar and unfamiliar music, subjects either (covertly) appraised the presented music performance or imagined they were playing the music themselves. We hypothesized that improvising musicians would exhibit enhanced efficiency of audiomotor transformation reflected by stronger ventral premotor activation. Statistical Parametric Mapping revealed that, while virtually 'playing along׳ with the music, improvising musicians exhibited activation of a right-hemisphere distribution of cerebral areas including posterior-superior parietal and dorsal premotor cortex. Involvement of these right-hemisphere dorsal stream areas suggests that improvising musicians recruited an amodal spatial processing system subserving pitch-to-space transformations to facilitate their virtual motor performance. Score-dependent musicians recruited a primarily left-hemisphere pattern of motor areas together with the posterior part of the right superior temporal sulcus, suggesting a relationship between aural discrimination and symbolic representation. Activations in bilateral auditory cortex were significantly larger for improvising musicians than for score-dependent musicians, suggesting enhanced top-down effects on aural perception. Our results suggest that learning to play a music instrument primarily from notation predisposes musicians toward aural identification and discrimination, while learning by improvisation involves audio-spatial-motor transformations, not only during performance, but also perception. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Larger right posterior parietal volume in action video game experts: a behavioral and voxel-based morphometry (VBM) study.

    Science.gov (United States)

    Tanaka, Satoshi; Ikeda, Hanako; Kasahara, Kazumi; Kato, Ryo; Tsubomi, Hiroyuki; Sugawara, Sho K; Mori, Makoto; Hanakawa, Takashi; Sadato, Norihiro; Honda, Manabu; Watanabe, Katsumi

    2013-01-01

    Recent studies suggest that action video game players exhibit superior performance in visuospatial cognitive tasks compared with non-game players. However, the neural basis underlying this visuospatial cognitive performance advantage remains largely unknown. The present human behavioral and imaging study compared gray matter volume in action video game experts and non-experts using structural magnetic resonance imaging and voxel-based morphometry analysis. The results revealed significantly larger gray matter volume in the right posterior parietal cortex in experts compared with non-experts. Furthermore, the larger gray matter volume in the right posterior parietal cortex significantly correlated with individual performance in a visual working memory task in experts. These results suggest that differences in brain structure may be linked to extensive video game play, leading to superior visuospatial cognitive performance in action video game experts.

  19. El contexto del arte parietal. La tecnología de los artistas en la Cueva de Tito Bustillo (Asturias

    Directory of Open Access Journals (Sweden)

    Moure Romanillo, Alfonso

    1988-12-01

    Full Text Available This study overlaps in part with a communication presented to the «Colloque International d'Art Parietal Paléolithique» held at Perigueux-Le Thot in december 1984. The technological responses contained in a decorated zone of the cave of Tito Bustillo are analyzed, as well as the activities carried out on living floors related to the preparation and completion of the parietal art.

    El trabajo coincide parcialmente con la comunicación presentada al «Colloque International d'Art Parietal Paléolithique» celebrado en Perigueux-Le Thot, en diciembre de 1984. Se analizan las respuestas tecnológicas contenidas en un área de decoración de la cueva de Tito Bustillo (Asturias, así como las actividades en áreas de estancia relacionadas con la preparación y ejecución del arte parietal.

  20. The superior transvelar approach to the fourth ventricle and brainstem.

    Science.gov (United States)

    Ezer, Haim; Banerjee, Anirban Deep; Bollam, Papireddy; Guthikonda, Bharat; Nanda, Anil

    2012-06-01

    Objective The superior transvelar approach is used to access pathologies located in the fourth ventricle and brainstem. The surgical path is below the venous structures, through the superior medullary velum. Following splitting the tentorial edge, near the tentorial apex, the superior medullary velum is split in the cerebello-mesencephalic fissure. Using the supracerebellar infratentorial, transtentorial or parietal interhemispheric routes, the superior medullary velum is approached. Splitting this velum provides a detailed view of the fourth ventricle and its floor. Materials and Methods A total of 10 formalin-fixed specimens were dissected in a stepwise manner to simulate the superior transvelar approach to the fourth ventricle. The exposure gained the distance from the craniotomy site and the ease of access was assessed for each of the routes. We also present an illustrative case, operated by the senior author (AN). Results The superior transvelar approach provides access to the entire length of the fourth ventricle floor, from the aqueduct to the obex, when using the parietal interhemispheric route. In addition, this approach provides access to the entire width of the floor of the fourth ventricle; however, this requires retracting the superior cerebellar peduncle. Using the supracerebellar infratentorial route gives a limited exposure of the superior part of the fourth ventricle. The occipital interhemispheric route is a compromise between these two. Conclusion The superior transvelar approach to the fourth ventricle provides a route for approaching the fourth ventricle from above. This approach does not require opening the posterior fossa in the traditional way, and provides a reasonable alternative for accessing the superior fourth ventricle.

  1. Neural correlates associated with superior tactile symmetry perception in the early blind.

    Science.gov (United States)

    Bauer, Corinna; Yazzolino, Lindsay; Hirsch, Gabriella; Cattaneo, Zaira; Vecchi, Tomaso; Merabet, Lotfi B

    2015-02-01

    Symmetry is an organizational principle that is ubiquitous throughout the visual world. However, this property can also be detected through non-visual modalities such as touch. The role of prior visual experience on detecting tactile patterns containing symmetry remains unclear. We compared the behavioral performance of early blind and sighted (blindfolded) controls on a tactile symmetry detection task. The tactile patterns used were similar in design and complexity as in previous visual perceptual studies. The neural correlates associated with this behavioral task were identified with functional magnetic resonance imaging (fMRI). In line with growing evidence demonstrating enhanced tactile processing abilities in the blind, we found that early blind individuals showed significantly superior performance in detecting tactile symmetric patterns compared to sighted controls. Furthermore, comparing patterns of activation between these two groups identified common areas of activation (e.g. superior parietal cortex) but key differences also emerged. In particular, tactile symmetry detection in the early blind was also associated with activation that included peri-calcarine cortex, lateral occipital (LO), and middle temporal (MT) cortex, as well as inferior temporal and fusiform cortex. These results contribute to the growing evidence supporting superior behavioral abilities in the blind, and the neural correlates associated with crossmodal neuroplasticity following visual deprivation.

  2. Bilateral fronto-parietal integrity in young chronic cigarette smokers: a diffusion tensor imaging study.

    Directory of Open Access Journals (Sweden)

    Yanhui Liao

    Full Text Available BACKGROUND: Cigarette smoking continues to be the leading cause of preventable morbidity and mortality in China and other countries. Previous studies have demonstrated gray matter loss in chronic smokers. However, only a few studies assessed the changes of white matter integrity in this group. Based on those previous reports of alterations in white matter integrity in smokers, the aim of this study was to examine the alteration of white matter integrity in a large, well-matched sample of chronic smokers and non-smokers. METHODOLOGY/PRINCIPAL FINDINGS: Using in vivo diffusion tensor imaging (DTI to measure the differences of whole-brain white matter integrity between 44 chronic smoking subjects (mean age, 28.0±5.6 years and 44 healthy age- and sex-matched comparison non-smoking volunteers (mean age, 26.3±5.8 years. DTI was performed on a 3-Tesla Siemens scanner (Allegra; Siemens Medical System. The data revealed that smokers had higher fractional anisotropy (FA than healthy non-smokers in almost symmetrically bilateral fronto-parietal tracts consisting of a major white matter pathway, the superior longitudinal fasciculus (SLF. CONCLUSION/SIGNIFICANCE: We found the almost symmetrically bilateral fronto-parietal whiter matter changes in a relatively large sample of chronic smokers. These findings support the hypothesis that chronic cigarette smoking involves alterations of bilateral fronto-parietal connectivity.

  3. Tool-use practice induces changes in intrinsic functional connectivity of parietal areas

    Directory of Open Access Journals (Sweden)

    Kwangsun eYoo

    2013-02-01

    Full Text Available Intrinsic functional connectivity from resting state functional magnetic resonance imaging (rsfMRI has increasingly received attention as a possible predictor of cognitive function and performance. In this study, we investigated the influence of practicing skillful tool manipulation on intrinsic functional connectivity in the resting brain. Acquisition of tool-use skill has two aspects such as formation of motor representation for skillful manipulation and acquisition of the tool concept. To dissociate these two processes, we chose chopsticks-handling with the non-dominant hand. Because participants were already adept at chopsticks-handling with their dominant hand, practice with the non-dominant hand involved only acquiring the skill for tool manipulation with existing knowledge. Eight young participants practiced chopsticks-handling with their non-dominant hand for 8 weeks. They underwent fMRI sessions before and after the practice. As a result, functional connectivity among tool-use-related regions of the brain decreased after practice. We found decreased functional connectivity centered on parietal areas, mainly the supramarginal gyrus and superior parietal lobule and additionally between the primary sensorimotor area and cerebellum. These results suggest that the parietal lobe and cerebellum purely mediate motor learning for skillful tool-use. This decreased functional connectivity may represent increased efficiency of functional network.

  4. Contribution of the posterior parietal cortex in reaching, grasping, and using objects and tools

    Directory of Open Access Journals (Sweden)

    Guy eVingerhoets

    2014-03-01

    Full Text Available Neuropsychological and neuroimaging data suggest a differential contribution of posterior parietal regions during the different components of a transitive gesture. Reaching requires the integration of object location and body position coordinates and reaching tasks elicit bilateral activation in different foci along the intraparietal sulcus. Grasping requires a visuomotor match between the object’s shape and the hand’s posture. Lesion studies and neuroimaging confirm the importance of the anterior part of the intraparietal sulcus for human grasping. Reaching and grasping reveal bilateral activation that is generally more prominent on the side contralateral to the hand used or the hemifield stimulated. Purposeful behavior with objects and tools can be assessed in a variety of ways, including actual use, pantomimed use, and pure imagery of manipulation. All tasks have been shown to elicit robust activation over the left parietal cortex in neuroimaging, but lesion studies have not always confirmed these findings. Compared to pantomimed or imagined gestures, actual object and tool use typically produces activation over the left primary somatosensory region. Neuroimaging studies on pantomiming or imagery of tool use in healthy volunteers revealed neural responses in possibly separate foci in the left supramarginal gyrus. In sum, the parietal contribution of reaching and grasping of objects seems to depend on a bilateral network of intraparietal foci that appear organized along gradients of sensory and effector preferences. Dorsal and medial parietal cortex appears to contribute to the online monitoring/adjusting of the ongoing prehensile action, whereas the functional use of objects and tools seems to involve the inferior lateral parietal cortex. This functional input reveals a clear left lateralized activation pattern that may be tuned to the integration of acquired knowledge in the planning and guidance of the transitive movement.

  5. Contribution of the posterior parietal cortex in reaching, grasping, and using objects and tools.

    Science.gov (United States)

    Vingerhoets, Guy

    2014-01-01

    Neuropsychological and neuroimaging data suggest a differential contribution of posterior parietal regions during the different components of a transitive gesture. Reaching requires the integration of object location and body position coordinates and reaching tasks elicit bilateral activation in different foci along the intraparietal sulcus. Grasping requires a visuomotor match between the object's shape and the hand's posture. Lesion studies and neuroimaging confirm the importance of the anterior part of the intraparietal sulcus for human grasping. Reaching and grasping reveal bilateral activation that is generally more prominent on the side contralateral to the hand used or the hemifield stimulated. Purposeful behavior with objects and tools can be assessed in a variety of ways, including actual use, pantomimed use, and pure imagery of manipulation. All tasks have been shown to elicit robust activation over the left parietal cortex in neuroimaging, but lesion studies have not always confirmed these findings. Compared to pantomimed or imagined gestures, actual object and tool use typically produces activation over the left primary somatosensory region. Neuroimaging studies on pantomiming or imagery of tool use in healthy volunteers revealed neural responses in possibly separate foci in the left supramarginal gyrus. In sum, the parietal contribution of reaching and grasping of objects seems to depend on a bilateral network of intraparietal foci that appear organized along gradients of sensory and effector preferences. Dorsal and medial parietal cortex appears to contribute to the online monitoring/adjusting of the ongoing prehensile action, whereas the functional use of objects and tools seems to involve the inferior lateral parietal cortex. This functional input reveals a clear left lateralized activation pattern that may be tuned to the integration of acquired knowledge in the planning and guidance of the transitive movement.

  6. Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water

    Science.gov (United States)

    Hamasaki, Takeki; Harada, Gakuro; Nakamichi, Noboru; Kabayama, Shigeru; Teruya, Kiichiro; Fugetsu, Bunshi; Gong, Wei; Sakata, Ichiro; Shirahata, Sanetaka

    2017-01-01

    Electrochemically reduced water (ERW) is produced near a cathode during electrolysis and exhibits an alkaline pH, contains richly dissolved hydrogen, and contains a small amount of platinum nanoparticles. ERW has reactive oxygen species (ROS)-scavenging activity and recent studies demonstrated that hydrogen-dissolved water exhibits ROS-scavenging activity. Thus, the antioxidative capacity of ERW is postulated to be dependent on the presence of hydrogen levels; however, there is no report verifying the role of dissolved hydrogen in ERW. In this report, we clarify whether the responsive factor for antioxidative activity in ERW is dissolved hydrogen. The intracellular ROS scavenging activity of ERW and hydrogen-dissolved water was tested by both fluorescent stain method and immuno spin trapping assay. We confirm that ERW possessed electrolysis intensity-dependent intracellular ROS-scavenging activity, and ERW exerts significantly superior ROS-scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. ERW retained its ROS-scavenging activity after removal of dissolved hydrogen, but lost its activity when autoclaved. An oxygen radical absorbance capacity assay, the 2,2-diphenyl-1-picrylhydrazyl assay and chemiluminescence assay could not detect radical-scavenging activity in both ERW and hydrogen-dissolved water. These results indicate that ERW contains electrolysis-dependent hydrogen and an additional antioxidative factor predicted to be platinum nanoparticles. PMID:28182635

  7. Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water.

    Science.gov (United States)

    Hamasaki, Takeki; Harada, Gakuro; Nakamichi, Noboru; Kabayama, Shigeru; Teruya, Kiichiro; Fugetsu, Bunshi; Gong, Wei; Sakata, Ichiro; Shirahata, Sanetaka

    2017-01-01

    Electrochemically reduced water (ERW) is produced near a cathode during electrolysis and exhibits an alkaline pH, contains richly dissolved hydrogen, and contains a small amount of platinum nanoparticles. ERW has reactive oxygen species (ROS)-scavenging activity and recent studies demonstrated that hydrogen-dissolved water exhibits ROS-scavenging activity. Thus, the antioxidative capacity of ERW is postulated to be dependent on the presence of hydrogen levels; however, there is no report verifying the role of dissolved hydrogen in ERW. In this report, we clarify whether the responsive factor for antioxidative activity in ERW is dissolved hydrogen. The intracellular ROS scavenging activity of ERW and hydrogen-dissolved water was tested by both fluorescent stain method and immuno spin trapping assay. We confirm that ERW possessed electrolysis intensity-dependent intracellular ROS-scavenging activity, and ERW exerts significantly superior ROS-scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. ERW retained its ROS-scavenging activity after removal of dissolved hydrogen, but lost its activity when autoclaved. An oxygen radical absorbance capacity assay, the 2,2-diphenyl-1-picrylhydrazyl assay and chemiluminescence assay could not detect radical-scavenging activity in both ERW and hydrogen-dissolved water. These results indicate that ERW contains electrolysis-dependent hydrogen and an additional antioxidative factor predicted to be platinum nanoparticles.

  8. Superior anti-tumor activity of the MDM2 antagonist idasanutlin and the Bcl-2 inhibitor venetoclax in p53 wild-type acute myeloid leukemia models

    Directory of Open Access Journals (Sweden)

    Christian Lehmann

    2016-06-01

    Full Text Available Abstract Background Venetoclax, a small molecule BH3 mimetic which inhibits the anti-apoptotic protein Bcl-2, and idasanutlin, a selective MDM2 antagonist, have both shown activity as single-agent treatments in pre-clinical and clinical studies in acute myeloid leukemia (AML. In this study, we deliver the rationale and molecular basis for the combination of idasanutlin and venetoclax for treatment of p53 wild-type AML. Methods The effect of idasanutlin and venetoclax combination on cell viability, apoptosis, and cell cycle progression was investigated in vitro using established AML cell lines. In vivo efficacy was demonstrated in subcutaneous and orthotopic xenograft models generated in female nude or non-obese diabetic/severe combined immunodeficiency (NOD/SCID mice. Mode-of-action analyses were performed by means of cell cycle kinetic studies, RNA sequencing as well as western blotting experiments. Results Combination treatment with venetoclax and idasanutlin results in synergistic anti-tumor activity compared with the respective single-agent treatments in vitro, in p53 wild-type AML cell lines, and leads to strongly superior efficacy in vivo, in subcutaneous and orthotopic AML models. The inhibitory effects of idasanutlin were cell-cycle dependent, with cells arresting in G1 in consecutive cycles and the induction of apoptosis only evident after cells had gone through at least two cell cycles. Combination treatment with venetoclax removed this dependency, resulting in an acceleration of cell death kinetics. As expected, gene expression studies using RNA sequencing showed significant alterations to pathways associated with p53 signaling and cell cycle arrest (CCND1 pathway in response to idasanutlin treatment. Only few gene expression changes were observed for venetoclax treatment and combination treatment, indicating that their effects are mediated mainly at the post-transcriptional level. Protein expression studies demonstrated that

  9. Cognitive signals for brain-machine interfaces in posterior parietal cortex include continuous 3D trajectory commands.

    Science.gov (United States)

    Hauschild, Markus; Mulliken, Grant H; Fineman, Igor; Loeb, Gerald E; Andersen, Richard A

    2012-10-16

    Cortical neural prosthetics extract command signals from the brain with the goal to restore function in paralyzed or amputated patients. Continuous control signals can be extracted from the motor cortical areas, whereas neural activity from posterior parietal cortex (PPC) can be used to decode cognitive variables related to the goals of movement. Because typical activities of daily living comprise both continuous control tasks such as reaching, and tasks benefiting from discrete control such as typing on a keyboard, availability of both signals simultaneously would promise significant increases in performance and versatility. Here, we show that PPC can provide 3D hand trajectory information under natural conditions that would be encountered for prosthetic applications, thus allowing simultaneous extraction of continuous and discrete signals without requiring multisite surgical implants. We found that limb movements can be decoded robustly and with high accuracy from a small population of neural units under free gaze in a complex 3D point-to-point reaching task. Both animals' brain-control performance improved rapidly with practice, resulting in faster target acquisition and increasing accuracy. These findings disprove the notion that the motor cortical areas are the only candidate areas for continuous prosthetic command signals and, rather, suggests that PPC can provide equally useful trajectory signals in addition to discrete, cognitive variables. Hybrid use of continuous and discrete signals from PPC may enable a new generation of neural prostheses providing superior performance and additional flexibility in addressing individual patient needs.

  10. Caracterización del injerto parietal

    Directory of Open Access Journals (Sweden)

    José Manuel Díaz Fernández

    1996-12-01

    Full Text Available Se realizó un estudio descriptivo, longitudinal y prospectivo de 22 pacientes en los que se utilizó el injerto parietal autógeno para reconstruir defectos del cráneo, en los servicios de Cirugía Maxilofacial y Neurocirugía del Hospital Clinicoquirúrgico Docente "Saturnino Lora", de Santiago de Cuba, desde 1988 hasta 1991. El método de extracción del injerto con división in situ resultó el más empleado y el que ofreció las mejores posibilidades de reconstrucción en cuanto a forma, volumen y flexibilidad, por lo que se recomienda en los defectos pequeños y medianos, sobre todo de la región frontal y áreas adyacentes, donde el contorno y la simetría son los 2 aspectos fundamentales que se deben conseguir. El método de división, in vitro se utilizó en las reconstrucciones de las deformidades de grandes dimensiones, particularmente en aquellas que no incluían la frente. El índice de complicaciones fue bajoIt was carried out a descriptive, longitudinal and prospective study of 22 patients in whom an autogenous parietal graft was used to reconstruct cranial defects at the Maxillofacial Surgery and Neurosurgery Department of the "Saturnino Lora" Clinical and Surgical Teaching Hospital, in Santiago de Cuba, from 1988 to 1991. The graft extraction method with division in situ was the most used and offered the best possibilities for reconstruction as regards form, volume and flexibility. Therefore, it is recommended for small and medium defects, particularly of the frontal region and adjacent areas, where contour and symmetry are the two fundamental aspects to be taken into consideration. The method of division in vitro was used to reconstruct large deformities, specially those in which the forehead was not included. The complications index was low

  11. Alkaline hydrogen peroxide treatment for TiO{sub 2} nanoparticles with superior water-dispersibility and visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chung-Yi; Tu, Kuan-Ju; Lo, Yu-Shiu [Department of Biomedical Engineering and Environmental Sciences, College of Nuclear Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Pang, Yean Ling [Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor (Malaysia); Wu, Chien-Hou, E-mail: chwu@mx.nthu.edu.tw [Department of Biomedical Engineering and Environmental Sciences, College of Nuclear Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2016-09-15

    Alkaline hydrogen peroxide treatment was proposed as a simple and green way to improve the performance of commercial TiO{sub 2} powder for water-dispersibility and visible-light photocatalytic activity on the degradation of dye pollutants. The performance of treated TiO{sub 2} was evaluated as a function of NaOH concentration, H{sub 2}O{sub 2} concentration, and treatment time. The optimal conditions were determined to be 24 h in 100 mM H{sub 2}O{sub 2} and 8 M NaOH. The treated samples were characterized by Raman spectroscopy, high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), and ultraviolet–visible spectrophotometry. The analysis revealed that the crystal structure, morphology, and absorption band gap were retained, but the surface of the treated TiO{sub 2} was dramatically changed. The treated TiO{sub 2} was highly dispersible with a uniform hydrodynamic size of 41 ± 12 nm and stable over months in water at pH 3 without any stabilizing ligand and could significantly enhance the visible-light photodegradation of dye pollutants. The superior performance might be attributed to the formation of abundant surface hydroxyl groups. This treatment paves the way for developing water-dispersible TiO{sub 2} with superior visible-light induced photocatalytic degradation of dye pollutants without any complicated and expensive surface modification. - Highlights: • Alkaline hydrogen peroxide is proposed to treat commercial TiO{sub 2} powder. • The treated TiO{sub 2} powder exhibits superior water-dispersibility with a uniform size distribution. • The treated TiO{sub 2} powder can significantly enhance the visible-light photodegradation of dyes.

  12. Unexpected novelty and familiarity orienting responses in lateral parietal cortex during recognition judgment.

    Science.gov (United States)

    Jaeger, Antonio; Konkel, Alex; Dobbins, Ian G

    2013-05-01

    The role of lateral parietal cortex during recognition memory is heavily debated. We examined parietal activation during an Explicit Memory Cueing recognition paradigm that biases participants towards expecting novel or familiar stimuli on a trial-by-trial basis using anticipatory cues ("Likely Old", "Likely New"), compared to trials with neutral cues ("????"). Three qualitatively distinct patterns were observed in the left lateral parietal cortex. An unexpected novelty response occurred in left anterior intraparietal cortex (IPS)/post-central gyrus (PoCG) in which greater activation was observed for new vs. old materials following the "Likely Old" cue, but not following the "Likely New" cue. In contrast, anterior angular gyrus demonstrated an unexpected familiarity response with greater activation for old vs. new materials following the "Likely New" cue, but not the "Likely Old" cue. Thus these two regions demonstrated increased responses that were selective for either new or old materials respectively, but only when they were unexpected. In contrast, a mid IPS area demonstrated greater response for whichever class of memoranda was unanticipated given the cue condition (an unexpected memory response). Analogous response patterns in regions outside of parietal cortex, and the results of a resting state connectivity analysis, suggested these three response patterns were associated with visuo-spatial orienting following unexpected novelty, source monitoring operations following unexpected familiarity, and general executive control processes following violated expectations. These findings support a Memory Orienting Model of the left lateral parietal cortex in which the region is linked to the investigation of unexpected novelty or familiarity in the environment.

  13. Aberrant parietal cortex developmental trajectories in girls with Turner syndrome and related visual-spatial cognitive development: a preliminary study.

    Science.gov (United States)

    Green, Tamar; Chromik, Lindsay C; Mazaika, Paul K; Fierro, Kyle; Raman, Mira M; Lazzeroni, Laura C; Hong, David S; Reiss, Allan L

    2014-09-01

    Turner syndrome (TS) arises from partial or complete absence of the X-chromosome in females. Girls with TS show deficits in visual-spatial skills as well as reduced brain volume and surface area in the parietal cortex which supports these cognitive functions. Thus, measuring the developmental trajectory of the parietal cortex and the associated visual-spatial cognition in TS may provide novel insights into critical brain-behavior associations. In this longitudinal study, we acquired structural MRI data and assessed visual-spatial skills in 16 (age: 8.23 ± 2.5) girls with TS and 13 age-matched controls over two time-points. Gray and white matter volume, surface area and cortical thickness were calculated from surfaced based segmentation of bilateral parietal cortices, and the NEPSY Arrows subtest was used to assess visual-spatial ability. Volumetric and cognitive scalars were modeled to obtain estimates of age-related change. The results show aberrant growth of white matter volume (P = 0.011, corrected) and surface area (P = 0.036, corrected) of the left superior parietal regions during childhood in girls with TS. Other parietal sub-regions were significantly smaller in girls with TS at both time-points but did not show different growth trajectories relative to controls. Furthermore, we found that visual-spatial skills showed a widening deficit for girls with TS relative to controls (P = 0.003). Young girls with TS demonstrate an aberrant trajectory of parietal cortical and cognitive development during childhood. Elucidating aberrant neurodevelopmental trajectories in this population is critical for determining specific stages of brain maturation that are particularly dependent on TS-related genetic and hormonal factors. © 2014 Wiley Periodicals, Inc.

  14. Superior activity of fusion protein scFvRit : sFasL over cotreatment with rituximab and Fas agonists

    NARCIS (Netherlands)

    Bremer, Edwin; ten Cate, Bram; Samplonius, Douwe F.; Mueller, Nicole; Wajant, Harald; Stel, Aja J.; Chamuleau, Martine; de Loosdrecht, Arjan A. van; Stieglmaier, Julia; Fey, Georg H.; Helfrich, Wijnand

    2008-01-01

    The clinical efficacy of the CD20-specific chimeric monoclonal antibody rituximab is significantly hampered by intrinsic or acquired resistance to therapy. Rituximab activates antibody-dependent cellular cytotoxicity/complement-dependent cytotoxicity-dependent lysis but also induces apoptosis by cro

  15. Synthesis of agarose-metal/semiconductor nanoparticles having superior bacteriocidal activity and their simple conversion to metal-carbon composites

    Indian Academy of Sciences (India)

    K K R Datta; B Srinivasan; H Balaram; M Eswaramoorthy

    2008-11-01

    Agarose, a naturally occurring biopolymer is used for the stabilization of metal, semiconductor nanoparticles. Ag and Cu nanoparticles stabilized in agarose matrix show excellent antibacterial activity against E. coli bacteria. The well dispersed metal nanoparticles within the agarose composite films can be readily converted to carbon-metal composites of catalytic importance.

  16. The Effect of Catchment Urbanization on Nutrient Uptake and Biofilm Enzyme Activity in Lake Superior (USA) Tributary Streams

    Science.gov (United States)

    We used landscape, habitat, and chemistry variables, along with nutrient spiraling metrics and biofilm extracellular enzyme activity (EEA), to assess the response of streams to the level of urbanization within their catchments. For this study nine streams of similar catchment are...

  17. Biocatalytic production of 3′-sialyllactose by use of a modified sialidase with superior trans-sialidase activity

    DEFF Research Database (Denmark)

    Michalak, Malwina; Larsen, Dorte Møller; Jers, Carsten;

    2014-01-01

    ). The enzyme employed was a mutated sialidase, Tr6, derived from Trypanosoma rangeli, and expressed in Pichia pastoris after codon-optimization. The Tr6 contained 6 point mutations and exhibited trans-sialidase activity. The Tr6 trans-sialidase reaction conditions were tuned for maximizing Tr6 catalyzed 3...

  18. Tuning of ZIF-Derived Carbon with High Activity, Nitrogen Functionality, and Yield - A Case for Superior CO2 Capture.

    Science.gov (United States)

    Gadipelli, Srinivas; Guo, Zheng Xiao

    2015-06-22

    A highly effective and facile synthesis route is developed to create and tailor metal-decorated and nitrogen-functionalized active microporous carbon materials from ZIF-8. Clear metal- and pyrrolic-N-induced enhancements of the cyclic CO2 uptake capacities and binding energies are achieved, particularly at a much lower carbonization temperature of 700 °C than those often reported (1000 °C). The high-temperature carbonization can enhance the porosity but only at the expense of considerable losses of sample yield and metal and N functional sites. The findings are comparatively discussed with carbons derived from metal-organic frameworks (MOFs) reported previously. Furthermore, the porosity of the MOF-derived carbon is critically dependent on the structure of the precursor MOF and the crystal growth. The current strategy offers a new and effective route for the creation and tuning of highly active and functionalized carbon structures in high yields and with low energy consumption.

  19. Distractor Evoked Deviations of Saccade Trajectory Are Modulated by Fixation Activity in the Superior Colliculus: Computational and Behavioral Evidence

    OpenAIRE

    Zhiguo Wang; Jan Theeuwes

    2014-01-01

    Previous studies have shown that saccades may deviate towards or away from task irrelevant visual distractors. This observation has been attributed to active suppression (inhibition) of the distractor location unfolding over time: early in time inhibition at the distractor location is incomplete causing deviation towards the distractor, while later in time when inhibition is complete the eyes deviate away from the distractor. In a recent computational study, Wang, Kruijne and Theeuwes propose...

  20. On the Superior Activity and Selectivity of PtCo/Nb2O5 Fischer-Tropsch Catalysts

    NARCIS (Netherlands)

    den Otter, J. H.; Yoshida, H.; Ledesma, C.; Chen, D.; de Jong, K. P.

    2016-01-01

    In this study Co/Nb2O5 catalysts and the effect of Pt-promotion thereon are investigated in comparison with γ-Al2O3- and α-Al2O3-supported catalysts for the Fischer-Tropsch (FT) synthesis. Upon Pt-promotion of Co/Nb2O5 the cobalt-weight normalized FT activity was found to increase by a factor of

  1. Modality Specific Cerebro-Cerebellar Activations in Verbal Working Memory: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Matthew P. Kirschen

    2010-01-01

    Full Text Available Verbal working memory (VWM engages frontal and temporal/parietal circuits subserving the phonological loop, as well as, superior and inferior cerebellar regions which have projections from these neocortical areas. Different cerebro-cerebellar circuits may be engaged for integrating aurally- and visually-presented information for VWM. The present fMRI study investigated load (2, 4, or 6 letters and modality (auditory and visual dependent cerebro-cerebellar VWM activation using a Sternberg task. FMRI revealed modality-independent activations in left frontal (BA 6/9/44, insular, cingulate (BA 32, and bilateral inferior parietal/supramarginal (BA 40 regions, as well as in bilateral superior (HVI and right inferior (HVIII cerebellar regions. Visual presentation evoked prominent activations in right superior (HVI/CrusI cerebellum, bilateral occipital (BA19 and left parietal (BA7/40 cortex while auditory presentation showed robust activations predominately in bilateral temporal regions (BA21/22. In the cerebellum, we noted a visual to auditory emphasis of function progressing from superior to inferior and from lateral to medial regions. These results extend our previous findings of fMRI activation in cerebro-cerebellar networks during VWM, and demonstrate both modality dependent commonalities and differences in activations with increasing memory load.

  2. Modality specific cerebro-cerebellar activations in verbal working memory: an fMRI study.

    Science.gov (United States)

    Kirschen, Matthew P; Chen, S H Annabel; Desmond, John E

    2010-01-01

    Verbal working memory (VWM) engages frontal and temporal/parietal circuits subserving the phonological loop, as well as, superior and inferior cerebellar regions which have projections from these neocortical areas. Different cerebro-cerebellar circuits may be engaged for integrating aurally- and visually-presented information for VWM. The present fMRI study investigated load (2, 4, or 6 letters) and modality (auditory and visual) dependent cerebro-cerebellar VWM activation using a Sternberg task. FMRI revealed modality-independent activations in left frontal (BA 6/9/44), insular, cingulate (BA 32), and bilateral inferior parietal/supramarginal (BA 40) regions, as well as in bilateral superior (HVI) and right inferior (HVIII) cerebellar regions. Visual presentation evoked prominent activations in right superior (HVI/CrusI) cerebellum, bilateral occipital (BA19) and left parietal (BA7/40) cortex while auditory presentation showed robust activations predominantly in bilateral temporal regions (BA21/22). In the cerebellum, we noted a visual to auditory emphasis of function progressing from superior to inferior and from lateral to medial regions. These results extend our previous findings of fMRI activation in cerebro-cerebellar networks during VWM, and demonstrate both modality dependent commonalities and differences in activations with increasing memory load.

  3. The role of the right parietal lobe in anorexia nervosa.

    Science.gov (United States)

    Nico, D; Daprati, E; Nighoghossian, N; Carrier, E; Duhamel, J-R; Sirigu, A

    2010-09-01

    Patients with anorexia nervosa (AN) overestimate their size despite being severely underweight. Whether this misperception echoes an underlying emotional disturbance or also reflects a genuine body-representation deficit is debatable. Current measures inquire directly about subjective perception of body image, thus distinguishing poorly between top-down effects of emotions/attitudes towards the body and disturbances due to proprioceptive disorders/distorted body schema. Disorders of body representation also emerge following damage to the right parietal lobe. The possibility that parietal dysfunction might contribute to AN is suspected, based on the demonstrated association of spatial impairments, comparable to those found after parietal lesion, with this syndrome. We used a behavioral task to compare body knowledge in severe anorexics (n=8), healthy volunteers (n=11) and stroke patients with focal damage to the left/right parietal lobe (n=4). We applied a psychophysical procedure based on the perception, in the dark, of an approaching visual stimulus that was turned off before reaching the observer. Participants had to predict whether the stimulus would have hit/missed their body, had it continued its linear motion. Healthy volunteers and left parietal patients estimated body boundaries very close to the real ones. Conversely, anorexics and right parietal patients underestimated eccentricity of their left body boundary. These findings are in line with the role the parietal cortex plays in developing and maintaining body representation, and support the possibility for a neuropsychological component in the pathogenesis of anorexia, offering alternative approaches to treatment of the disorder.

  4. Planning Movements in Visual and Physical Space in Monkey Posterior Parietal Cortex.

    Science.gov (United States)

    Kuang, Shenbing; Morel, Pierre; Gail, Alexander

    2016-02-01

    Neurons in the posterior parietal cortex respond selectively for spatial parameters of planned goal-directed movements. Yet, it is still unclear which aspects of the movement the neurons encode: the spatial parameters of the upcoming physical movement (physical goal), or the upcoming visual limb movement (visual goal). To test this, we recorded neuronal activity from the parietal reach region while monkeys planned reaches under either normal or prism-reversed viewing conditions. We found predominant encoding of physical goals while fewer neurons were selective for visual goals during planning. In contrast, local field potentials recorded in the same brain region exhibited predominant visual goal encoding, similar to previous imaging data from humans. The visual goal encoding in individual neurons was neither related to immediate visual input nor to visual memory, but to the future visual movement. Our finding suggests that action planning in parietal cortex is not exclusively a precursor of impending physical movements, as reflected by the predominant physical goal encoding, but also contains spatial kinematic parameters of upcoming visual movement, as reflected by co-existing visual goal encoding in neuronal spiking. The co-existence of visual and physical goals adds a complementary perspective to the current understanding of parietal spatial computations in primates.

  5. Transfer of cognitive training across magnitude dimensions achieved with concurrent brain stimulation of the parietal lobe.

    Science.gov (United States)

    Cappelletti, Marinella; Gessaroli, Erica; Hithersay, Rosalyn; Mitolo, Micaela; Didino, Daniele; Kanai, Ryota; Cohen Kadosh, Roi; Walsh, Vincent

    2013-09-11

    Improvement in performance following cognitive training is known to be further enhanced when coupled with brain stimulation. Here we ask whether training-induced changes can be maintained long term and, crucially, whether they can extend to other related but untrained skills. We trained overall 40 human participants on a simple and well established paradigm assessing the ability to discriminate numerosity--or the number of items in a set--which is thought to rely on an "approximate number sense" (ANS) associated with parietal lobes. We coupled training with parietal stimulation in the form of transcranial random noise stimulation (tRNS), a noninvasive technique that modulates neural activity. This yielded significantly better and longer lasting improvement (up to 16 weeks post-training) of the precision of the ANS compared with cognitive training in absence of stimulation, stimulation in absence of cognitive training, and cognitive training coupled to stimulation to a control site (motor areas). Critically, only ANS improvement induced by parietal tRNS + Training transferred to proficiency in other parietal lobe-based quantity judgment, i.e., time and space discrimination, but not to quantity-unrelated tasks measuring attention, executive functions, and visual pattern recognition. These results indicate that coupling intensive cognitive training with tRNS to critical brain regions resulted not only in the greatest and longer lasting improvement of numerosity discrimination, but importantly in this enhancement being transferable when trained and untrained abilities are carefully chosen to share common cognitive and neuronal components.

  6. Action word Related to Walk Heard by the Ears Activates Visual Cortex and Superior Temporal Gyrus: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Naoyuki Osaka

    2012-10-01

    Full Text Available Cognitive neuroscience of language of action processing is one of the interesting issues on the cortical “seat” of word meaning and related action (Pulvermueller, 1999 Behavioral Brain Sciences 22 253–336. For example, generation of action verbs referring to various arm or leg actions (e.g., pick or kick differentially activate areas along the motor strip that overlap with those areas activated by actual movement of the fingers or feet (Hauk et al., 2004 Neuron 41 301–307. Meanwhile, mimic words like onomatopoeia have the other potential to selectively and strongly stimulate specific brain regions having a specified “seat” of action meaning. In fact, mimic words highly suggestive of laughter and gaze significantly activated the extrastriate visual /premotor cortices and the frontal eye field, respectively (Osaka et al., 2003 Neuroscience Letters 340 127–130; 2009 Neuroscience Letters 461 65–68. However, the role of a mimic word related to walk on specific brain regions has not yet been investigated. The present study showed that a mimic word highly suggestive of human walking, heard by the ears with eyes closed, significantly activated the visual cortex located in extrastriate cortex and superior temporal gyrus while hearing non-sense words that did not imply walk under the same task did not activate these areas. These areas would be a critical region for generating visual images of walking and related action.

  7. Superior analgesic effect of an active distraction versus pleasant unfamiliar sounds and music: the influence of emotion and cognitive style.

    Science.gov (United States)

    Villarreal, Eduardo A Garza; Brattico, Elvira; Vase, Lene; Østergaard, Leif; Vuust, Peter

    2012-01-01

    Listening to music has been found to reduce acute and chronic pain. The underlying mechanisms are poorly understood; however, emotion and cognitive mechanisms have been suggested to influence the analgesic effect of music. In this study we investigated the influence of familiarity, emotional and cognitive features, and cognitive style on music-induced analgesia. Forty-eight healthy participants were divided into three groups (empathizers, systemizers and balanced) and received acute pain induced by heat while listening to different sounds. Participants listened to unfamiliar Mozart music rated with high valence and low arousal, unfamiliar environmental sounds with similar valence and arousal as the music, an active distraction task (mental arithmetic) and a control, and rated the pain. Data showed that the active distraction led to significantly less pain than did the music or sounds. Both unfamiliar music and sounds reduced pain significantly when compared to the control condition; however, music was no more effective than sound to reduce pain. Furthermore, we found correlations between pain and emotion ratings. Finally, systemizers reported less pain during the mental arithmetic compared with the other two groups. These findings suggest that familiarity may be key in the influence of the cognitive and emotional mechanisms of music-induced analgesia, and that cognitive styles may influence pain perception.

  8. Linear forms of plasmid DNA are superior to supercoiled structures as active templates for gene expression in plant protoplasts.

    Science.gov (United States)

    Ballas, N; Zakai, N; Friedberg, D; Loyter, A

    1988-07-01

    Introduction of the plasmids pUC8CaMVCAT and pNOSCAT into plant protoplasts is known to result in transient expression of the chloramphenicol acetyl transferase (CAT) gene. Also, transfection with the plasmid pDO432 results in transient appearance of the luciferase enzyme. In the present work we have used these systems to study the effect of DNA topology on the expression of the above recombinant genes. Linear forms of the above plasmids exhibited much higher activity in supporting gene expression than their corresponding super-coiled structures. CAT activity in protoplasts transfected with the linear forms of pUC8CaMVCAT and pNOSCAT was up to ten-fold higher than that observed in protoplasts transfected by the supercoiled template of these plasmids. This effect was observed in protoplasts derived from two different lines of Petunia hybrida and from a Nicotiana tabacum cell line. Transfection with the relaxed form of pUC8CaMVCAT resulted in very low expression of the CAT gene.Northern blot analysis revealed that the amount of poly(A)(+) RNA extracted from protoplasts transformed with the linear forms of the DNA was about 10-fold higher than that found in protoplasts transformed with supercoiled DNA.Southern blot analysis revealed that about the same amounts of supercoiled and linear DNA molecules were present in nuclei of transfected protoplasts. No significant quantitative differences have been observed between the degradation rates of the various DNA templates used.

  9. Superior analgesic effect of an active distraction versus pleasant unfamiliar sounds and music: the influence of emotion and cognitive style.

    Directory of Open Access Journals (Sweden)

    Eduardo A Garza Villarreal

    Full Text Available Listening to music has been found to reduce acute and chronic pain. The underlying mechanisms are poorly understood; however, emotion and cognitive mechanisms have been suggested to influence the analgesic effect of music. In this study we investigated the influence of familiarity, emotional and cognitive features, and cognitive style on music-induced analgesia. Forty-eight healthy participants were divided into three groups (empathizers, systemizers and balanced and received acute pain induced by heat while listening to different sounds. Participants listened to unfamiliar Mozart music rated with high valence and low arousal, unfamiliar environmental sounds with similar valence and arousal as the music, an active distraction task (mental arithmetic and a control, and rated the pain. Data showed that the active distraction led to significantly less pain than did the music or sounds. Both unfamiliar music and sounds reduced pain significantly when compared to the control condition; however, music was no more effective than sound to reduce pain. Furthermore, we found correlations between pain and emotion ratings. Finally, systemizers reported less pain during the mental arithmetic compared with the other two groups. These findings suggest that familiarity may be key in the influence of the cognitive and emotional mechanisms of music-induced analgesia, and that cognitive styles may influence pain perception.

  10. The Effect of 10 Hz Repetitive Transcranial Magnetic Stimulation of Posterior Parietal Cortex on Visual Attention

    OpenAIRE

    Isabel Dombrowe; Georgiana Juravle; Mohsen Alavash; Carsten Gießing; Claus C Hilgetag

    2015-01-01

    Repetitive transcranial magnetic stimulation (rTMS) of the posterior parietal cortex (PPC) at frequencies lower than 5 Hz transiently inhibits the stimulated area. In healthy participants, such a protocol can induce a transient attentional bias to the visual hemifield ipsilateral to the stimulated hemisphere. This bias might be due to a relatively less active stimulated hemisphere and a relatively more active unstimulated hemisphere. In a previous study, Jin and Hilgetag (2008) tried to switc...

  11. Musicians differ from nonmusicians in brain activation despite performance matching.

    Science.gov (United States)

    Gaab, Nadine; Schlaug, Gottfried

    2003-11-01

    Brain activation patterns in a group of musicians and a group of nonmusicians (matched in performance score to the musician group) were compared during a pitch memory task using a sparse-temporal sampling functional magnetic resonance imaging experiment. Both groups showed bilateral activaton (left more than right) of the superior temporal gyrus, supramarginal gyrus, posterior middle and inferior frontal gyrus, and superior parietal lobe. Musicians showed greater right posterior temporal and supramarginal activation, whereas nonmusicians had greater activation of the left secondary auditory cortex.

  12. Superiority of wet-milled over dry-milled superfine powdered activated carbon for adsorptive 2-methylisoborneol removal.

    Science.gov (United States)

    Pan, Long; Matsui, Yoshihiko; Matsushita, Taku; Shirasaki, Nobutaka

    2016-10-01

    Superfine powdered activated carbon (SPAC), which is produced from conventionally sized powdered activated carbon (PAC) by wet milling in a bead mill, has attracted attention for its high adsorptive removal ability in both research and practice. In this study, the performance of dry-milled SPAC was investigated. 2-Methylisoborneol (MIB), an earthy-musty compound commonly targeted by water treatment systems, was used as the target adsorbate. Dry-milled SPAC exhibited lower adsorptive removal of MIB than wet-milled SPAC, even when both SPACs were produced from the same PAC and were composed of particles of the same size. One reason for the lower removal of MIB by the dry-milled SPAC was a higher degree of aggregation in the dry-milled SPAC after production; as a result the apparent particle size of dry-milled SPAC was larger than that of wet-milled SPAC. The dry-milled SPAC was also more negatively charged than the wet-milled SPAC, and, owing to its higher repulsion, it was more amenable to dispersion by ultrasonication. However, even after the dry-milled SPAC was ultrasonicated so that its apparent particle size was similar to or less than that of the wet-milled SPAC, the dry-milled SPAC was still inferior in adsorptive removal to the wet-milled SPAC. Therefore, another reason for the lower adsorptive removal of dry-milled SPAC was its lower equilibrium adsorption capacity due to the oxidation during the milling. The adsorption kinetics by SPACs with different degrees of particle aggregation were successfully simulated by a pore diffusion model and a fractal aggregation model.

  13. Active-control trials with binary data: a comparison of methods for testing superiority or non-inferiority using the odds ratio.

    Science.gov (United States)

    Siqueira, Arminda Lucia; Whitehead, Anne; Todd, Susan

    2008-02-10

    This paper considers methods for testing for superiority or non-inferiority in active-control trials with binary data, when the relative treatment effect is expressed as an odds ratio. Three asymptotic tests for the log-odds ratio based on the unconditional binary likelihood are presented, namely the likelihood ratio, Wald and score tests. All three tests can be implemented straightforwardly in standard statistical software packages, as can the corresponding confidence intervals. Simulations indicate that the three alternatives are similar in terms of the Type I error, with values close to the nominal level. However, when the non-inferiority margin becomes large, the score test slightly exceeds the nominal level. In general, the highest power is obtained from the score test, although all three tests are similar and the observed differences in power are not of practical importance.

  14. Novel third-generation water-soluble noscapine analogs as superior microtubule-interfering agents with enhanced antiproliferative activity.

    Science.gov (United States)

    Henary, Maged; Narayana, Lakshminarayana; Ahad, Shazia; Gundala, Sushma R; Mukkavilli, Rao; Sharma, Vibhuti; Owens, Eric A; Yadav, Yogesh; Nagaraju, Mulpuri; Hamelberg, Donald; Tandon, Vibha; Panda, Dulal; Aneja, Ritu

    2014-11-15

    Noscapine, an opium-derived 'kinder-gentler' microtubule-modulating drug is in Phase I/II clinical trials for cancer chemotherapy. However, its limited water solubility encumbers its development into an oral anticancer drug with clinical promise. Here we report the synthesis of 9 third-generation, water-soluble noscapine analogs with negatively charged sulfonato and positively charged quaternary ammonium groups using noscapine, 9-bromonoscapine and 9-aminonoscapine as scaffolds. The predictive free energy of solvation was found to be lower for sulfonates (6a-c; 8a-c) compared to the quaternary ammonium-substituted counterparts, explaining their higher water solubility. In addition, sulfonates showed higher charge dispersability, which may effectively shield the hydrophobicity of isoquinoline nucleus as indicated by hydrophobicity mapping methods. These in silico data underscore efficient net charge balancing, which may explain higher water solubility and thus enhanced antiproliferative efficacy and improved bioavailability. We observed that 6b, 8b and 8c strongly inhibited tubulin polymerization and demonstrated significant antiproliferative activity against four cancer cell lines compared to noscapine. Molecular simulation and docking studies of tubulin-drug complexes revealed that the brominated compound with a four-carbon chain (4b, 6b, and 8b) showed optimal binding with tubulin heterodimers. Interestingly, 6b, 8b and 8c treated PC-3 cells resulted in preponderance of mitotic cells with multipolar spindle morphology, suggesting that they stall the cell cycle. Furthermore, in vivo pharmacokinetic evaluation of 6b, 8b and 8c revealed at least 1-2-fold improvement in their bioavailability compared to noscapine. To our knowledge, this is the first report to demonstrate novel water-soluble noscapine analogs that may pave the way for future pre-clinical drug development.

  15. Evolution of posterior parietal cortex and parietal-frontal networks for specific actions in primates.

    Science.gov (United States)

    Kaas, Jon H; Stepniewska, Iwona

    2016-02-15

    Posterior parietal cortex (PPC) is an extensive region of the human brain that develops relatively late and is proportionally large compared with that of monkeys and prosimian primates. Our ongoing comparative studies have led to several conclusions about the evolution of this posterior parietal region. In early placental mammals, PPC likely was a small multisensory region much like PPC of extant rodents and tree shrews. In early primates, PPC likely resembled that of prosimian galagos, in which caudal PPC (PPCc) is visual and rostral PPC (PPCr) has eight or more multisensory domains where electrical stimulation evokes different complex motor behaviors, including reaching, hand-to-mouth, looking, protecting the face or body, and grasping. These evoked behaviors depend on connections with functionally matched domains in premotor cortex (PMC) and motor cortex (M1). Domains in each region compete with each other, and a serial arrangement of domains allows different factors to influence motor outcomes successively. Similar arrangements of domains have been retained in New and Old World monkeys, and humans appear to have at least some of these domains. The great expansion and prolonged development of PPC in humans suggest the addition of functionally distinct territories. We propose that, across primates, PMC and M1 domains are second and third levels in a number of parallel, interacting networks for mediating and selecting one type of action over others.

  16. Hippocampal Temporal-Parietal Junction Interaction in the Production of Psychotic Symptoms: A Framework for Understanding the Schizophrenic Syndrome

    Directory of Open Access Journals (Sweden)

    Cynthia Gayle Wible

    2012-06-01

    Full Text Available A framework is described for understanding the schizophrenic syndrome at the brain systems level. It is hypothesized that over-activation of dynamic gesture and social perceptual processes in the temporal-parietal occipital junction (TPJ, posterior superior temporal sulcus (PSTS and surrounding regions produce the syndrome (including positive and negative symptoms, their prevalence, prodromal signs and cognitive deficits. Hippocampal system hyper-activity and atrophy have been consistently found in schizophrenia. Hippocampal activity is highly related to activity in the TPJ and may be a source of over-excitation of the TPJ and surrounding regions. Strong evidence for this comes from in-vivo recordings in humans during psychotic episodes. The TPJ and PSTS play a key role in the perception (and production of dynamic social, emotional and attentional gestures for the self and others (e.g., body/face/eye gestures, audiovisual speech, prosody. The single cell representation of dynamic gestures is multimodal (auditory, visual, tactile, matching the predominant hallucinatory categories in schizophrenia. Inherent in the single cell perceptual signal of dynamic gesture representations is a computation of intention, agency, and anticipation or expectancy (for the self and others. The neurons are also tuned or biased to detect threat related emotions. Abnormal over-activation in this system could produce the conscious hallucination of a voice (audiovisual speech, person or a touch. Over-activation could interfere with attentional/emotional gesture perception and production (negative symptoms. It could produce the unconscious feeling of being watched, followed or of a social situation unfolding along with accompanying perception of intent and agency inherent in those representations (delusions. Cognitive disturbances in attention, predictive social processing, agency, working memory, and a bias toward the perception of threat would also be predicted.

  17. Bilateral, posterior parietal polymicrogyria as part of speech therapy ...

    African Journals Online (AJOL)

    Congenital bilateral perisylvian syndrome (CBPS) was traditionally ... mental language disorder. Magnetic ... parietal polymicrogyria in a child with speech pathology. .... did not recognise food in the mouth, no tongue movement was observed.

  18. Impaired speech repetition and left parietal lobe damage

    National Research Council Canada - National Science Library

    Fridriksson, Julius; Kjartansson, Olafur; Morgan, Paul S; Hjaltason, Haukur; Magnusdottir, Sigridur; Bonilha, Leonardo; Rorden, Christopher

    2010-01-01

    .... However, perfusion-weighted MRI revealed that tissue dysfunction, in the form of either frank damage or hypoperfusion, to the left inferior parietal lobe, rather than the underlying white matter...

  19. Antisaccade generation is impaired after parietal lobe lesions.

    Science.gov (United States)

    Sharpe, James A; Cheng, Ping; Eizenman, Moshe

    2011-09-01

    Antisaccades are directed away from visual targets. Impaired antisaccade generation has been attributed to frontal lobe damage. We studied antisaccades in patients with unilateral focal parietal lobe lesions. Normal subjects (N = 10) instructed to make 10° antisaccades opposite to a 100-ms target flash 10° to the right or left of center made antisaccades in 86.1% of trials. Patients (N = 13) made antisaccades contraversive to their lesions in 55.4% of trials and 50.5% of ipsiversive trials. In other trials, reflexive saccades occurred toward the target flash. Nine patients with imaged lesions overlapping in parietal lobe white matter showed subnormal antisaccade generation. Antisaccades provide a means of measuring voluntary saccade function of the parietal lobes independent of visual guidance. Impaired suppression of reflexive saccades and generation of antisaccades is attributed to disconnection of parietal lobe from frontal lobe ocular motor areas. © 2011 New York Academy of Sciences.

  20. Gyri of the human parietal lobe: Volumes, spatial extents, automatic labelling, and probabilistic atlases.

    Science.gov (United States)

    Wild, Heather M; Heckemann, Rolf A; Studholme, Colin; Hammers, Alexander

    2017-01-01

    Accurately describing the anatomy of individual brains enables interlaboratory communication of functional and developmental studies and is crucial for possible surgical interventions. The human parietal lobe participates in multimodal sensory integration including language processing and also contains the primary somatosensory area. We describe detailed protocols to subdivide the parietal lobe, analyze morphological and volumetric characteristics, and create probabilistic atlases in MNI152 stereotaxic space. The parietal lobe was manually delineated on 3D T1 MR images of 30 healthy subjects and divided into four regions: supramarginal gyrus (SMG), angular gyrus (AG), superior parietal lobe (supPL) and postcentral gyrus (postCG). There was the expected correlation of male gender with larger brain and intracranial volume. We examined a wide range of anatomical features of the gyri and the sulci separating them. At least a rudimentary primary intermediate sulcus of Jensen (PISJ) separating SMG and AG was identified in nearly all (59/60) hemispheres. Presence of additional gyri in SMG and AG was related to sulcal features and volumetric characteristics. The parietal lobe was slightly (2%) larger on the left, driven by leftward asymmetries of the postCG and SMG. Intersubject variability was highest for SMG and AG, and lowest for postCG. Overall the morphological characteristics tended to be symmetrical, and volumes also tended to covary between hemispheres. This may reflect developmental as well as maturation factors. To assess the accuracy with which the labels can be used to segment newly acquired (unlabelled) T1-weighted brain images, we applied multi-atlas label propagation software (MAPER) in a leave-one-out experiment and compared the resulting automatic labels with the manually prepared ones. The results showed strong agreement (mean Jaccard index 0.69, corresponding to a mean Dice index of 0.82, average mean volume error of 0.6%). Stereotaxic probabilistic

  1. A volumetric study of parietal lobe subregions in Turner syndrome

    OpenAIRE

    Brown, Wendy E.; Shelli R Kesler; Eliez, Stephan; Warsofsky, Ilana S.; Haberecht, Michael; Reiss, Allan L.

    2004-01-01

    Turner syndrome, a genetic disorder that results from the complete or partial absence of an X chromosome in females, has been associated with specific impairment in visuospatial cognition. Previous studies have demonstrated a relationship between parietal lobe abnormalities and visuospatial deficits in Turner syndrome. We used high-resolution magnetic resonance imaging to measure parietal lobe subdivisions in 14 participants with Turner syndrome (mean age 13 years 5 months, SD 5 years) and 14...

  2. Age-related temporal and parietal cortical thinning in autism spectrum disorders.

    Science.gov (United States)

    Wallace, Gregory L; Dankner, Nathan; Kenworthy, Lauren; Giedd, Jay N; Martin, Alex

    2010-12-01

    Studies of head size and brain volume in autism spectrum disorders have suggested that early cortical overgrowth may be followed by prematurely arrested growth. However, the few investigations quantifying cortical thickness have yielded inconsistent results, probably due to variable ages and/or small sample sizes. We assessed differences in cortical thickness between high-functioning adolescent and young adult males with autism spectrum disorders (n = 41) and matched typically developing males (n = 40). We hypothesized thinner cortex, particularly in frontal, parietal and temporal regions, for individuals with autism spectrum disorders in comparison with typically developing controls. Furthermore, we expected to find an age × diagnosis interaction: with increasing age, more pronounced cortical thinning would be observed in autism spectrum disorders than typically developing participants. T(1)-weighted magnetization prepared rapid gradient echo 3 T magnetic resonance imaging scans were acquired from high-functioning males with autism spectrum disorders and from typically developing males matched group-wise on age (range 12-24 years), intelligence quotient (≥ 85) and handedness. Both gyral-level and vertex-based analyses revealed significantly thinner cortex in the autism spectrum disorders group that was located predominantly in left temporal and parietal regions (i.e. the superior temporal sulcus, inferior temporal, postcentral/superior parietal and supramarginal gyri). These findings remained largely unchanged after controlling for intelligence quotient and after accounting for psychotropic medication usage and comorbid psychopathology. Furthermore, a significant age × diagnosis interaction was found in the left fusiform/inferior temporal cortex: participants with autism spectrum disorders had thinner cortex in this region with increasing age to a greater degree than did typically developing participants. Follow-up within group comparisons revealed significant

  3. Ultrafast synthesis of flower-like ordered Pd3Pb nanocrystals with superior electrocatalytic activities towards oxidation of formic acid and ethanol

    Science.gov (United States)

    Jana, Rajkumar; Subbarao, Udumula; Peter, Sebastian C.

    2016-01-01

    Ordered intermetallic nanocrystals with high surface area are highly promising as efficient catalysts for fuel cell applications because of their unique electrocatalytic properties. The present work discusses about the controlled synthesis of ordered intermetallic Pd3Pb nanocrystals in different morphologies at relatively low temperature for the first time by polyol and hydrothermal methods both in presence and absence of surfactant. Here for the first time we report surfactant free synthesis of ordered flower-like intermetallic Pd3Pb nanocrystals in 10 s. The structural characteristics of the nanocrystals are confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy. The as synthesized ordered Pd3Pb nanocrystals exhibit far superior electrocatalytic activity and durability towards formic acid and ethanol oxidation over commercially available Pd black (Pd/C). The morphological variation of nanocrystals plays a crucial role in the electrocatalytic oxidation of formic acid and ethanol. Among the catalysts, the flower-like Pd3Pb shows enhanced activity and stability in electrocatalytic formic acid and ethanol oxidation. The current density and mass activity of flower-like Pd3Pb catalyst are higher by 2.5 and 2.4 times than that of Pd/C for the formic acid oxidation and 1.5 times each for ethanol oxidation.

  4. Parietal lesion effects on cued recall following pair associate learning.

    Science.gov (United States)

    Ben-Zvi, Shir; Soroker, Nachum; Levy, Daniel A

    2015-07-01

    We investigated the involvement of the posterior parietal cortex in episodic memory in a lesion-effects study of cued recall following pair-associate learning. Groups of patients who had experienced first-incident stroke, generally in middle cerebral artery territory, and exhibited damage that included lateral posterior parietal regions, were tested within an early post-stroke time window. In three experiments, patients and matched healthy comparison groups executed repeated study and cued recall test blocks of pairs of words (Experiment 1), pairs of object pictures (Experiment 2), or pairs of object pictures and environmental sounds (Experiment 3). Patients' brain CT scans were subjected to quantitative analysis of lesion volumes. Behavioral and lesion data were used to compute correlations between area lesion extent and memory deficits, and to conduct voxel-based lesion-symptom mapping. These analyses implicated lateral ventral parietal cortex, especially the angular gyrus, in cued recall deficits, most pronouncedly in the cross-modal picture-sound pairs task, though significant parietal lesion effects were also found in the unimodal word pairs and picture pairs tasks. In contrast to an earlier study in which comparable parietal lesions did not cause deficits in item recognition, these results indicate that lateral posterior parietal areas make a substantive contribution to demanding forms of recollective retrieval as represented by cued recall, especially for complex associative representations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Sex differences in parietal lobe structure and development.

    Science.gov (United States)

    Salinas, Joel; Mills, Elizabeth D; Conrad, Amy L; Koscik, Timothy; Andreasen, Nancy C; Nopoulos, Peg

    2012-02-01

    Structural magnetic resonance imaging studies provide evidence for sex differences in the human brain. Differences in surface area and the proportion of gray to white matter volume are observed, in particular in the parietal lobe. To our knowledge, no studies have examined sex differences in parietal lobe structure in younger populations or in the context of development. The present study evaluated sex differences in the structure of the parietal lobe in children aged 7 to 17 years. In addition, by adding a cohort of previously studied adults aged 18 to 50 years, sex differences in parietal lobe structure were examined across the age span of 7 to 50 years. Compared with the adult sample, the younger sample showed that the ratio of parietal lobe cortex to white matter was greater in female brains, but no sex differences in surface area. When examining the effects of age, surface area exhibited a significant sex-age interaction. In male brains, there was essentially no decrease in surfaces area over time, whereas in female brains, there was a significant decrease in surface area over time. These findings support the notion of structural sex differences in the parietal lobe, not only in the context of cross-sectional assessment but also in terms of differences in developmental trajectories. Copyright © 2012 Elsevier HS Journals, Inc. All rights reserved.

  6. Distinct parietal sites mediate the influences of mood, arousal, and their interaction on human recognition memory.

    Science.gov (United States)

    Greene, Ciara M; Flannery, Oliver; Soto, David

    2014-12-01

    The two dimensions of emotion, mood valence and arousal, have independent effects on recognition memory. At present, however, it is not clear how those effects are reflected in the human brain. Previous research in this area has generally dealt with memory for emotionally valenced or arousing stimuli, but the manner in which interacting mood and arousal states modulate responses in memory substrates remains poorly understood. We investigated memory for emotionally neutral items while independently manipulating mood valence and arousal state by means of music exposure. Four emotional conditions were created: positive mood/high arousal, positive mood/low arousal, negative mood/high arousal, and negative mood/low arousal. We observed distinct effects of mood valence and arousal in parietal substrates of recognition memory. Positive mood increased activity in ventral posterior parietal cortex (PPC) and orbitofrontal cortex, whereas arousal condition modulated activity in dorsal PPC and the posterior cingulate. An interaction between valence and arousal was observed in left ventral PPC, notably in a parietal area distinct from the those identified for the main effects, with a stronger effect of mood on recognition memory responses here under conditions of relative high versus low arousal. We interpreted the PPC activations in terms of the attention-to-memory hypothesis: Increased arousal may lead to increased top-down control of memory, and hence dorsal PPC activation, whereas positive mood valence may result in increased activity in ventral PPC regions associated with bottom-up attention to memory. These findings indicate that distinct parietal sites mediate the influences of mood, arousal, and their interplay during recognition memory.

  7. Complementary roles for primate frontal and parietal cortex in guarding working memory from distractor stimuli.

    Science.gov (United States)

    Jacob, Simon Nikolas; Nieder, Andreas

    2014-07-02

    Prefrontal cortex (PFC) and posterior parietal cortex are important for maintaining behaviorally relevant information in working memory. Here, we challenge the commonly held view that suppression of distractors by PFC neurons is the main mechanism underlying the filtering of task-irrelevant information. We recorded single-unit activity from PFC and the ventral intraparietal area (VIP) of monkeys trained to resist distracting stimuli in a delayed-match-to-numerosity task. Surprisingly, PFC neurons preferentially encoded distractors during their presentation. Shortly after this interference, however, PFC neurons restored target information, which predicted correct behavioral decisions. In contrast, most VIP neurons only encoded target numerosities throughout the trial. Representation of target information in VIP was the earliest and most reliable neuronal correlate of behavior. Our data suggest that distracting stimuli can be bypassed by storing and retrieving target information, emphasizing active maintenance processes during working memory with complementary functions for frontal and parietal cortex in controlling memory content.

  8. Fronto-parietal regulation of media violence exposure in adolescents: a multi-method study.

    Science.gov (United States)

    Strenziok, Maren; Krueger, Frank; Deshpande, Gopikrishna; Lenroot, Rhoshel K; van der Meer, Elke; Grafman, Jordan

    2011-10-01

    Adolescents spend a significant part of their leisure time watching TV programs and movies that portray violence. It is unknown, however, how the extent of violent media use and the severity of aggression displayed affect adolescents' brain function. We investigated skin conductance responses, brain activation and functional brain connectivity to media violence in healthy adolescents. In an event-related functional magnetic resonance imaging experiment, subjects repeatedly viewed normed videos that displayed different degrees of aggressive behavior. We found a downward linear adaptation in skin conductance responses with increasing aggression and desensitization towards more aggressive videos. Our results further revealed adaptation in a fronto-parietal network including the left lateral orbitofrontal cortex (lOFC), right precuneus and bilateral inferior parietal lobules, again showing downward linear adaptations and desensitization towards more aggressive videos. Granger causality mapping analyses revealed attenuation in the left lOFC, indicating that activation during viewing aggressive media is driven by input from parietal regions that decreased over time, for more aggressive videos. We conclude that aggressive media activates an emotion-attention network that has the capability to blunt emotional responses through reduced attention with repeated viewing of aggressive media contents, which may restrict the linking of the consequences of aggression with an emotional response, and therefore potentially promotes aggressive attitudes and behavior.

  9. Uniformly active phase loaded selective catalytic reduction catalysts (V{sub 2}O{sub 5}/TNTs) with superior alkaline resistance performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiqiang; Wang, Penglu [Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University, 310058 Hangzhou (China); Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou 310027 (China); Chen, Xiongbo [South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655 (China); Wu, Zhongbiao, E-mail: zbwu@zju.edu.cn [Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University, 310058 Hangzhou (China); Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou 310027 (China)

    2017-02-15

    Highlights: • VOSO{sub 4} exhibited better synergistic effect with titanate nanotubes than NH{sub 4}VO{sub 3}. • Ion-exchange reaction occurs between VOSO{sub 4} and titanate nanotubes. • Ion-exchange resulting in uniformly vanadium distribution on titanate nanotubes. • VOSO{sub 4}-based catalyst exhibited impressive SCR activity and alkaline resistance. - Abstract: In this work, protonated titanate nanotubes was performed as a potential useful support and different vanadium precursors (NH{sub 4}VO{sub 3} and VOSO{sub 4}) were used to synthesize deNO{sub x} catalysts. The results showed that VOSO{sub 4} exhibited better synergistic effect with titanate nanotubes than NH{sub 4}VO{sub 3}, which was caused by the ion-exchange reaction. Then high loading content of vanadium, uniformly active phase distribution, better dispersion of vanadium, more acid sites, better V{sup 5+}/V{sup 4+} redox cycles and superior oxygen mobility were achieved. Besides, VOSO{sub 4}-based titanate nanotubes catalysts also showed enhanced alkaline resistance than particles (P25) based catalysts. It was strongly associated with its abundant acid sites, large surface area, flexible redox cycles and oxygen transfer ability. For the loading on protonated titanate nanotubes, active metal with cation groups was better precursors than anion ones. V{sub 2}O{sub 5}/TNTs catalyst was a promising substitute for the commercial vanadium catalysts and the work conducted herein provided a useful idea to design uniformly active phase loaded catalyst.

  10. Endoplasmic reticulum stress responses differ in meninges and associated vasculature, striatum, and parietal cortex after a neurotoxic amphetamine exposure.

    Science.gov (United States)

    Thomas, Monzy; George, Nysia I; Saini, Upasana T; Patterson, Tucker A; Hanig, Joseph P; Bowyer, John F

    2010-08-01

    Amphetamine (AMPH) is used to treat attention deficit and hyperactivity disorders, but it can produce neurotoxicity and adverse vascular effects at high doses. The endoplasmic reticulum (ER) stress response (ERSR) entails the unfolded protein response, which helps to avoid or minimize ER dysfunction. ERSR is often associated with toxicities resulting from the accumulation of unfolded or misfolded proteins and has been associated with methamphetamine toxicity in the striatum. The present study evaluates the effect of AMPH on several ERSR elements in meninges and associated vasculature (MAV), parietal cortex, and striatum. Adult, male Sprague-Dawley rats were exposed to saline, environmentally induced hyperthermia (EIH) or four consecutive doses of AMPH that produce hyperthermia. Expression changes (mRNA and protein levels) of key ERSR-related genes in MAV, striatum, and parietal cortex at 3 h or 1 day postdosing were monitored. AMPH increased the expression of some ERSR-related genes in all tissues. Atf4 (activating transcription factor 4, an indicator of Perk pathway activation), Hspa5/Grp78 (Glucose regulated protein 78, master regulator of ERSR), Pdia4 (protein disulfide isomerase, protein-folding enzyme), and Nfkb1 (nuclear factor of kappa b, ERSR sensor) mRNA increased significantly in MAV and parietal cortex 3 h after AMPH. In striatum, Atf4 and Hspa5/Grp78 mRNA significantly increased 3 h after AMPH, but Pdia4 and Nfkb11 did not. Thus, AMPH caused a robust activation of the Perk pathway in all tissues, but significant Ire1 pathway activation occurred only after AMPH treatment in the parietal cortex and striatum. Ddit3/Chop, a downstream effector of the ERSR pathway related to the neurotoxicity, was only increased in striatum and parietal cortex. Conversely, Pdia4, an enzyme protective in the ERSR, was only increased in MAV. The overall ERSR manifestation varied significantly between MAV, striatum, and parietal cortex after a neurotoxic exposure to AMPH.

  11. Beyond natural numbers: negative number representation in parietal cortex.

    Science.gov (United States)

    Blair, Kristen P; Rosenberg-Lee, Miriam; Tsang, Jessica M; Schwartz, Daniel L; Menon, Vinod

    2012-01-01

    Unlike natural numbers, negative numbers do not have natural physical referents. How does the brain represent such abstract mathematical concepts? Two competing hypotheses regarding representational systems for negative numbers are a rule-based model, in which symbolic rules are applied to negative numbers to translate them into positive numbers when assessing magnitudes, and an expanded magnitude model, in which negative numbers have a distinct magnitude representation. Using an event-related functional magnetic resonance imaging design, we examined brain responses in 22 adults while they performed magnitude comparisons of negative and positive numbers that were quantitatively near (difference 6). Reaction times (RTs) for negative numbers were slower than positive numbers, and both showed a distance effect whereby near pairs took longer to compare. A network of parietal, frontal, and occipital regions were differentially engaged by negative numbers. Specifically, compared to positive numbers, negative number processing resulted in greater activation bilaterally in intraparietal sulcus (IPS), middle frontal gyrus, and inferior lateral occipital cortex. Representational similarity analysis revealed that neural responses in the IPS were more differentiated among positive numbers than among negative numbers, and greater differentiation among negative numbers was associated with faster RTs. Our findings indicate that despite negative numbers engaging the IPS more strongly, the underlying neural representation are less distinct than that of positive numbers. We discuss our findings in the context of the two theoretical models of negative number processing and demonstrate how multivariate approaches can provide novel insights into abstract number representation.

  12. The posterior parietal cortex remaps touch into external space.

    Science.gov (United States)

    Azañón, Elena; Longo, Matthew R; Soto-Faraco, Salvador; Haggard, Patrick

    2010-07-27

    Localizing tactile events in external space is required for essential functions such as orienting, haptic exploration, and goal-directed action in peripersonal space. In order to map somatosensory input into a spatiotopic representation, information about skin location must be integrated with proprioceptive information about body posture. We investigated the neural bases of this tactile remapping mechanism in humans by disrupting neural activity in the putative human homolog of the monkey ventral intraparietal area (hVIP), within the right posterior parietal cortex (rPPC), which is thought to house external spatial representations. Participants judged the elevation of touches on their (unseen) forearm relative to touches on their face. Arm posture was passively changed along the vertical axis, so that elevation judgments required the use of an external reference frame. Single-pulse transcranial magnetic stimulation (TMS) over the rPPC significantly impaired performance compared to a control site (vertex). Crucially, proprioceptive judgments of arm elevation or tactile localization on the skin remained unaffected by rPPC TMS. This selective disruption of tactile remapping suggests a distinct computational process dissociable from pure proprioceptive and somatosensory localization. Furthermore, this finding highlights the causal role of human PPC, putatively VIP, in remapping touch into external space.

  13. Potential role of monkey inferior parietal neurons coding action semantic equivalences as precursors of parts of speech

    Science.gov (United States)

    Yamazaki, Yumiko; Yokochi, Hiroko; Tanaka, Michio; Okanoya, Kazuo; Iriki, Atsushi

    2010-01-01

    The anterior portion of the inferior parietal cortex possesses comprehensive representations of actions embedded in behavioural contexts. Mirror neurons, which respond to both self-executed and observed actions, exist in this brain region in addition to those originally found in the premotor cortex. We found that parietal mirror neurons responded differentially to identical actions embedded in different contexts. Another type of parietal mirror neuron represents an inverse and complementary property of responding equally to dissimilar actions made by itself and others for an identical purpose. Here, we propose a hypothesis that these sets of inferior parietal neurons constitute a neural basis for encoding the semantic equivalence of various actions across different agents and contexts. The neurons have mirror neuron properties, and they encoded generalization of agents, differentiation of outcomes, and categorization of actions that led to common functions. By integrating the activities of these mirror neurons with various codings, we further suggest that in the ancestral primates' brains, these various representations of meaningful action led to the gradual establishment of equivalence relations among the different types of actions, by sharing common action semantics. Such differential codings of the components of actions might represent precursors to the parts of protolanguage, such as gestural communication, which are shared among various members of a society. Finally, we suggest that the inferior parietal cortex serves as an interface between this action semantics system and other higher semantic systems, through common structures of action representation that mimic language syntax. PMID:20119879

  14. Superior Hiking Trail

    Data.gov (United States)

    Minnesota Department of Natural Resources — Superior Hiking Trail main trail, spurs, and camp spurs for completed trail throughout Cook, Lake, St. Louis and Carlton counties. These data were collected with...

  15. Bathymetry of Lake Superior

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Superior has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  16. Superior Hiking Trail Facilities

    Data.gov (United States)

    Minnesota Department of Natural Resources — Superior Hiking Trail main trail, spurs, and camp spurs for completed trail throughout Cook, Lake, St. Louis and Carlton counties. These data were collected with...

  17. Absent activation in medial prefrontal cortex and temporoparietal junction but not superior temporal sulcus during the perception of biological motion in schizophrenia: a functional MRI study

    Directory of Open Access Journals (Sweden)

    Hashimoto N

    2014-11-01

    Full Text Available Naoki Hashimoto,1,2 Atsuhito Toyomaki,1 Masahiro Hirai,3 Tamaki Miyamoto,1 Hisashi Narita,1 Ryo Okubo,1 Ichiro Kusumi1 1Department of Psychiatry, Graduate School of Medicine, Hokkaido University, Sapporo, Japan; 2Child and Adolescent Psychiatry, Department of Psychiatry, University of California, San Francisco, CA, USA; 3Center for Development of Advanced Medical Technology, Jichi Medical University, Yakushiji, Shimotsuke, Tochigi, Japan Background: Patients with schizophrenia show disturbances in both visual perception and social cognition. Perception of biological motion (BM is a higher-level visual process, and is known to be associated with social cognition. BM induces activation in the “social brain network”, including the superior temporal sulcus (STS. Although deficits in the detection of BM and atypical activation in the STS have been reported in patients with schizophrenia, it remains unclear whether other nodes of the “social brain network” are also atypical in patients with schizophrenia.Purpose: We aimed to explore whether brain regions other than STS were involved during BM perception in patients with schizophrenia, using functional magnetic resonance imaging (fMRI.Methods and patients: Seventeen patients with schizophrenia, and 17 age- and sex- matched healthy controls, underwent fMRI scanning during a one-back visual task, containing three experimental conditions: (1 BM, (2 scrambled motion (SM, and (3 static condition. We used one-sample t-tests to examine neural responses selective to BM versus SM within each group, and two-sample t-tests to directly compare neural patterns to BM versus SM in schizophrenics versus controls.Results: We found significant activation in the STS region when BM was contrasted with SM in both groups, with no significant difference between groups. On the contrary, significant activation in the medial prefrontal cortex (MPFC and bilateral temporoparietal junction (TPJ was found only in the

  18. Modulation of N-type Ca²⁺ currents by moxonidine via imidazoline I₁ receptor activation in rat superior cervical ganglion neurons.

    Science.gov (United States)

    Kim, Young-Hwan; Nam, Taick-Sang; Ahn, Duck-Sun; Chung, Seungsoo

    2011-06-17

    Moxonidine, an imidazoline deriviatives, suppress the vasopressor sympathetic outflow to produce hypotension. This effect has been known to be mediated in part by suppressing sympathetic outflow via acting imidazoline I(1) receptors (IR(1)) at postganglionic sympathetic neurons. But, the cellular mechanism of IR(1)-induced inhibition of noradrenaline (NA) release is still unknown. We therefore, investigated the effect of IR(1) activation on voltage-dependent Ca(2+) channels which is known to play an pivotal role in regulating NA in rat superior cervical ganglion (SCG) neurons, using the conventional whole-cell patch-clamp method. In the presence of rauwolscine (3 μΜ), which blocks α(2)-adrenoceptor (R(α2)), moxonidine inhibited voltage-dependent Ca(2+) current (I(Ca)) by about 30%. This moxonidine-induced inhibition was almost completely prevented by efaroxan (10 μΜ) which blocks IR(1) as well as R(α2). In addition, ω-conotoxin (CgTx) GVIA (1 μΜ) occluded moxonidine-induced inhibition of I(Ca), but, moxonidine-induced I(Ca) inhibition was not affected by pertussis toxin (PTX) nor shows any characteristics of voltage-dependent inhibition. These data suggest that moxonidine inhibit voltage-dependent N-type Ca(2+) current (I(Ca-N)) via activating IR(1). Finally, moxonidine significantly decreased the frequency of AP firing in a partially reversible manner. This inhibition of AP firing was almost completely occluded in the presence of ω-CgTx. Taken together, our results suggest that activation of IR(1) in SCG neurons reduced I(Ca-N) in a PTX-and voltage-insensitive pathway, and this inhibition attenuated repetitive AP firing in SCG neurons.

  19. Decoding the view expectation during learned maze navigation from human fronto-parietal network.

    Science.gov (United States)

    Shikauchi, Yumi; Ishii, Shin

    2015-12-03

    Humans use external cues and prior knowledge about the environment to monitor their positions during spatial navigation. View expectation is essential for correlating scene views with a cognitive map. To determine how the brain performs view expectation during spatial navigation, we applied a multiple parallel decoding technique to functional magnetic resonance imaging (fMRI) when human participants performed scene choice tasks in learned maze navigation environments. We decoded participants' view expectation from fMRI signals in parietal and medial prefrontal cortices, whereas activity patterns in occipital cortex represented various types of external cues. The decoder's output reflected participants' expectations even when they were wrong, corresponding to subjective beliefs opposed to objective reality. Thus, view expectation is subjectively represented in human brain, and the fronto-parietal network is involved in integrating external cues and prior knowledge during spatial navigation.

  20. Temporal order processing of syllables in the left parietal lobe.

    Science.gov (United States)

    Moser, Dana; Baker, Julie M; Sanchez, Carmen E; Rorden, Chris; Fridriksson, Julius

    2009-10-07

    Speech processing requires the temporal parsing of syllable order. Individuals suffering from posterior left hemisphere brain injury often exhibit temporal processing deficits as well as language deficits. Although the right posterior inferior parietal lobe has been implicated in temporal order judgments (TOJs) of visual information, there is limited evidence to support the role of the left inferior parietal lobe (IPL) in processing syllable order. The purpose of this study was to examine whether the left inferior parietal lobe is recruited during temporal order judgments of speech stimuli. Functional magnetic resonance imaging data were collected on 14 normal participants while they completed the following forced-choice tasks: (1) syllable order of multisyllabic pseudowords, (2) syllable identification of single syllables, and (3) gender identification of both multisyllabic and monosyllabic speech stimuli. Results revealed increased neural recruitment in the left inferior parietal lobe when participants made judgments about syllable order compared with both syllable identification and gender identification. These findings suggest that the left inferior parietal lobe plays an important role in processing syllable order and support the hypothesized role of this region as an interface between auditory speech and the articulatory code. Furthermore, a breakdown in this interface may explain some components of the speech deficits observed after posterior damage to the left hemisphere.

  1. Asymmetric multisensory interactions of visual and somatosensory responses in a region of the rat parietal cortex.

    Directory of Open Access Journals (Sweden)

    Michael T Lippert

    Full Text Available Perception greatly benefits from integrating multiple sensory cues into a unified percept. To study the neural mechanisms of sensory integration, model systems are required that allow the simultaneous assessment of activity and the use of techniques to affect individual neural processes in behaving animals. While rodents qualify for these requirements, little is known about multisensory integration and areas involved for this purpose in the rodent. Using optical imaging combined with laminar electrophysiological recordings, the rat parietal cortex was identified as an area where visual and somatosensory inputs converge and interact. Our results reveal similar response patterns to visual and somatosensory stimuli at the level of current source density (CSD responses and multi-unit responses within a strip in parietal cortex. Surprisingly, a selective asymmetry was observed in multisensory interactions: when the somatosensory response preceded the visual response, supra-linear summation of CSD was observed, but the reverse stimulus order resulted in sub-linear effects in the CSD. This asymmetry was not present in multi-unit activity however, which showed consistently sub-linear interactions. These interactions were restricted to a specific temporal window, and pharmacological tests revealed significant local intra-cortical contributions to this phenomenon. Our results highlight the rodent parietal cortex as a system to model the neural underpinnings of multisensory processing in behaving animals and at the cellular level.

  2. Activity changes in the left superior temporal sulcus reflect the effects of childcare training on young female students' perceptions of infants' negative facial expressions.

    Science.gov (United States)

    Ito, Ayahito; Niwano, Katsuko; Tanabe, Motoko; Sato, Yosuke; Fujii, Toshikatsu

    2017-09-12

    In many developed countries, the number of infants who experience non-parent childcare is increasing, and the role of preschool teachers is becoming more important. However, little attention has been paid to the effects of childcare training on students who are studying to become preschool teachers. We used functional magnetic resonance imaging (fMRI) to investigate whether and how childcare training affects brain responses to infants' facial expressions among young females studying to become preschool teachers. Twenty-seven subjects who attended a childcare training session (i.e., the experimental group) and 28 subjects who did not attend the training (i.e., the control group) participated in this study. The participants went through fMRI scanning twice: before and after the childcare training session. They were presented with happy, neutral, and sad infant faces one by one during fMRI scanning. The present neuroimaging results revealed that the activity patterns of the left superior temporal sulcus (STS) for sad faces were modulated by the interaction between the time point of the data collection and group differences. The present results are the first to highlight the effects of childcare training on the human brain. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  3. The complementary Erlangen active simulator for interventional endoscopy training is superior to solely clinical education in endoscopic hemostasis--the French training project: a prospective trial.

    Science.gov (United States)

    Maiss, Juergen; Prat, Frederic; Wiesnet, Johannes; Proeschel, Andreas; Matthes, Kai; Peters, Andrea; Hahn, Eckhart G; Sautereau, Denis; Chaussade, Stanislas; Hochberger, Juergen

    2006-11-01

    The Erlangen Active Simulator for Interventional Endoscopy (EASIE) using ex-vivo porcine organs was introduced in 1997. The present study should analyze whether repeated EASIE simulator training in endoscopic hemostasis led to superior performance compared with a traditionally educated group. The results were compared with a similar project in New York. Thirty-five French GI fellows were enrolled. Baseline skills evaluation was performed in four disciplines (manual skills, injection/coagulation, clip application and variceal ligation) using the compactEASIE-simulator equipped with an upper gastrointestinal organ package for bleeding simulation. The same, translated evaluation forms (from the prior New York project) were used. Subsequently, fellows were randomized into group A (n=17, only clinical education) and group B (n=18, additional three simulator trainings). Group B was trained the next day and after 4 and 7 months by experts of the French Society of Gastrointestinal Endoscopy. Both groups performed routine and emergency endoscopies at their home hospitals during the study period. Both groups were re-evaluated blindly after 9 months. The learning curve for group B showed a significant improvement in all disciplines (Psuperior ratings for group B in all disciplines (Ptraining. Complementary trainings (three workshops in 7 months) in endoscopic hemostasis using the compactEASIE improved skills compared with a solely clinical education. The results of the 'New York project' were confirmed and benefits were independent from the medical educational system.

  4. [Correlations between the coefficient of variation of RR intervals and sympathetic nerve activity following superior tilting in normotensive subjects and in patients with essential hypertension].

    Science.gov (United States)

    Shimazaki, M; Kikuchi, K; Yamaji, I; Kobayakawa, H; Yamamoto, M; Kudo, C; Wada, A; Mukai, H; Iimura, O

    1991-01-01

    The relationship between changes in sympathetic nerve activity and those in parasympathetic tone with a change in position was investigated in patients with essential hypertension using the coefficient of variation of RR intervals on electrocardiograms (CVRR). Mean arterial pressure (MAP), heart rate (HR), plasma noradrenaline concentration (pNA) and CVRR were measured in a supine position at rest and 20 min after having the head tilted 60 degrees superiorly in 10 normotensives (NT: 51.9 +/- 3.0 yrs) and 7 essential hypertensive patients (EHT: 51.0 +/- 2.8 yrs). After changing the position, CVRR decreased significantly in the NT, but not in the EHT; whereas, significant increases of both HR and pNA without significant changes in MAP were shown in both groups. A significant negative correlation between percentage changes in CVRR (% delta CVRR) and pNA (% delta pNA) were observed in the NT, but not in the EHT. However, there was no relationship of % delta CVRR to % delta MAP or to % delta HR in either group. It was suggested from the changes in CVRR that suppression of the parasympathetic tone, which occurs in the NT group corresponding to sympathetic augmentation to present a decrease in blood pressure with a change in position, may be impaired in the EHT group.

  5. rTMS over bilateral inferior parietal cortex induces decrement of spatial sustained attention

    Science.gov (United States)

    Lee, Jeyeon; Ku, Jeonghun; Han, Kiwan; Park, Jinsick; Lee, Hyeongrae; Kim, Kyung Ran; Lee, Eun; Husain, Masud; Yoon, Kang Jun; Kim, In Young; Jang, Dong Pyo; Kim, Sun I.

    2013-01-01

    Sustained attention is an essential brain function that enables a subject to maintain attention level over the time of a task. In previous work, the right inferior parietal lobe (IPL) has been reported as one of the main brain regions related to sustained attention, however, the right lateralization of vigilance/sustained attention is unclear because information about the network for sustained attention is traditionally provided by neglect patients who typically have right brain damage. Here, we investigated sustained attention by applying a virtual lesion technique, transcranial magnetic stimulation (TMS), over the left and right superior parietal lobe (SPL) and IPL. We used two different types of visual sustained attention tasks: spatial (location based) and non-spatial (feature based). When the participants performed the spatial task, repetitive TMS (rTMS) over either the right or left IPL induced a significant decrement of sustained attention causing a progressive increment of errors and response time. In contrast, participants' performance was not changed by rTMS on the non-spatial task. Also, omission errors (true negative) gradually increased with time on right and left IPL rTMS conditions, while commission errors (false positive) were relatively stable. These findings suggest that the maintenance of attention, especially in tasks regarding spatial location, is not uniquely lateralized to the right IPL, but may also involve participation of the left IPL. PMID:23403477

  6. Reduced parietal connectivity with a premotor writing area in writer's cramp.

    Science.gov (United States)

    Delnooz, Cathérine C S; Helmich, Rick C; Toni, Ivan; van de Warrenburg, Bart P C

    2012-09-15

    Writer's cramp is a task-specific form of dystonia with symptoms characterized by abnormal movements and postures of the hand and arm evident only during writing. Its pathophysiology has been related to faulty sensorimotor integration, abnormal sensory processing, and impaired motor planning. Its symptoms might appear when the computational load of writing pushes a tonically altered circuit outside its operational range. Using resting-state fMRI, we tested whether writer's cramp patients have altered intrinsic functional connectivity in the premotor-parietal circuit. Sixteen patients with right-sided writer's cramp and 19 control subjects were studied. We show that writer's cramp patients have reduced connectivity between the superior parietal lobule and a dorsal precentral region that controls writing movements. This difference between patients and controls occurred in the absence of writing and only in the hemisphere contralateral to the affected hand. This finding adds a novel element to the pathophysiological substrate for writer's cramp, namely, task-independent alterations within a writing-related circuit.

  7. rTMS over bilateral inferior parietal cortex induces decrement of spatial sustained attention

    Directory of Open Access Journals (Sweden)

    Jeyeon eLee

    2013-02-01

    Full Text Available Sustained attention is an essential brain function that enables a subject to maintain attention level over the time of a task. In previous work, the right inferior parietal lobe (IPL has been reported as one of the main brain regions related to sustained attention, however, the right lateralization of vigilance/sustained attention is unclear because information about the network for sustained attention is traditionally provided by neglect patients who typically have right brain damage. Here, we investigated sustained attention by applying a virtual lesion technique, transcranial magnetic stimulation (TMS, over the left and right superior parietal lobe (SPL and IPL. We used two different types of visual sustained attention tasks: spatial (location based and non-spatial (feature based. When the participants performed the spatial task, repetitive TMS (rTMS over either the right or left IPL induced a significant decrement of sustained attention causing a progressive increment of errors and response time. In contrast, participants’ performance was not changed by rTMS on the non-spatial task. Also, omission errors (true negative gradually increased with time on right and left IPL rTMS conditions, while commission errors (false positive were relatively stable. These findings suggest that the maintenance of attention, especially in tasks regarding spatial location, is not uniquely lateralized to the right IPL, but may also involve participation of the left IPL as well.

  8. Differential roles of the dorsal prefrontal and posterior parietal cortices in visual search: a TMS study.

    Science.gov (United States)

    Yan, Yulong; Wei, Rizhen; Zhang, Qian; Jin, Zhenlan; Li, Ling

    2016-07-25

    Although previous studies have shown that fronto-parietal attentional networks play a crucial role in bottom-up and top-down processes, the relative contribution of the frontal and parietal cortices to these processes remains elusive. Here we used transcranial magnetic stimulation (TMS) to interfere with the activity of the right dorsal prefrontal cortex (DLPFC) or the right posterior parietal cortex (PPC), immediately prior to the onset of the visual search display. Participants searched a target defined by color and orientation in "pop-out" or "search" condition. Repetitive TMS was applied to either the right DLPFC or the right PPC on different days. Performance was evaluated at baseline (no TMS), during TMS, and after TMS (Post-session). RTs were prolonged when TMS was applied over the DLPFC in the search, but not in the pop-out condition, relative to the baseline session. In comparison, TMS over the PPC prolonged RTs in the pop-out condition, and when the target appeared in the left visual field for the search condition. Taken together these findings provide evidence for a differential role of DLPFC and PPC in the visual search, indicating that DLPFC has a specific involvement in the "search" condition, while PPC is mainly involved in detecting "pop-out" targets.

  9. PERSISTENT LEFT SUPERIOR VENACAVA

    Directory of Open Access Journals (Sweden)

    Devinder Singh

    2014-05-01

    Full Text Available A Persistent Left Superior Venacava (PLSVC is the most common variation of the thoracic venous system and rare congenital vascular anomaly and is prevalent in 0.3% of the population. It may be associated with other cardiovascular abnormalities including atrial septal defect, bicuspid aortic valve, coarctation of aorta, coronary sinus ostial atresia, and cor triatriatum. Incidental rotation of a dilated coronary sinus on echocardiography should raise the suspicion of PLSVC. The diagnosis should be confirmed by saline contrast echocardiography. Condition is usually asymptomatic. Here we present a rare case of persistent left superior vena cava presented in OPD with dyspnoea & palpitations.

  10. Cross-frequency power correlations reveal the right superior temporal gyrus as a hub region during working memory maintenance.

    Science.gov (United States)

    Park, Hyojin; Kang, Eunjoo; Kang, Hyejin; Kim, June Sic; Jensen, Ole; Chung, Chun Kee; Lee, Dong Soo

    2011-01-01

    In the present study, we characterized within- and cross-frequency power correlations from magnetoencephalography (MEG) data in order to understand how different brain regions cooperate as a network to maintain working memory representations with several features. The working memory items were composed of spatially arranged dots supposedly requiring both the dorsal and the ventral stream to be engaged during maintenance. Using a beamforming technique, we localized memory-dependent sources in the alpha, beta, and gamma bands. After the single-trial power values were extracted from these frequency bands with respect to each source, we calculated the correlations within- and cross-frequency bands. The following general picture emerged: gamma power in right superior temporal gyrus (STG) during working memory maintenance was correlated with numerous other sources in the alpha band in prefrontal, parietal, and posterior regions. In addition, the power correlations within the alpha band showed correlations across posterior-parietal-frontal regions. From these findings, we suggest that the STG dominated by gamma activity serves as a hub region for the network nodes responsible for the retention of the stimulus used in this study, which is likely to depend on both the "where-" and the "what-" visual system simultaneously. The present study demonstrates how oscillatory dynamics reflecting the interaction between cortical areas can be investigated by means of cross-frequency power correlations in source space. This methodological framework could be of general utility when studying functional network properties of the working brain.

  11. Replenishment of the podocyte compartment by parietal epithelial cells.

    Science.gov (United States)

    Kopp, Jeffrey B

    2015-11-01

    While progressive podocytopenia is a characteristic feature of chronic glomerular disease, the visceral epithelial niche can be replenished from the parietal epithelium. Two new reports demonstrate this process in genetically engineered mice, using fate mapping, and in human renal biopsies manifesting segmental glomerulosclerosis in diverse settings, using cellular and extracellular matrix markers.

  12. Parietal network underlying movement control: disturbances during subcortical electrostimulation.

    Science.gov (United States)

    Almairac, Fabien; Herbet, Guillaume; Moritz-Gasser, Sylvie; Duffau, Hugues

    2014-07-01

    Our understanding of brain movement control has changed over the last two decades. Recent findings in the monkey and in humans have led to a parallel and interconnected network. Nevertheless, little is known about these networks. Here, we present two cases of patients with a parietal low-grade glioma. They underwent surgery under local anesthesia with cortical and subcortical mapping. For patient 1, subcortical electrostimulation immediately posterior to thalamocortical fibers induced movement disorders, with an inhibition of leg and arm movements medially and, more laterally, an acceleration of arm movement. For patient 2, electrostimulation of white matter immediately posterior to thalamocortical fibers induced an inhibition of both arm movement. It means that the detected fibers in the parietal lobe may be involved in the motor control modulation. They are distributed veil-like immediately posterior to thalamocortical pathways and could correspond to a fronto-parietal movement control subnetwork. These two cases highlight the major role of the subcortical connectivity in movement regulation, involving parietal lobe, thus the necessity to be identified and preserved during brain surgery.

  13. Left inferior parietal lobe engagement in social cognition and language.

    Science.gov (United States)

    Bzdok, Danilo; Hartwigsen, Gesa; Reid, Andrew; Laird, Angela R; Fox, Peter T; Eickhoff, Simon B

    2016-09-01

    Social cognition and language are two core features of the human species. Despite distributed recruitment of brain regions in each mental capacity, the left parietal lobe (LPL) represents a zone of topographical convergence. The present study quantitatively summarizes hundreds of neuroimaging studies on social cognition and language. Using connectivity-based parcellation on a meta-analytically defined volume of interest (VOI), regional coactivation patterns within this VOI allowed identifying distinct subregions. Across parcellation solutions, two clusters emerged consistently in rostro-ventral and caudo-ventral aspects of the parietal VOI. Both clusters were functionally significantly associated with social-cognitive and language processing. In particular, the rostro-ventral cluster was associated with lower-level processing facets, while the caudo-ventral cluster was associated with higher-level processing facets in both mental capacities. Contrarily, in the (less stable) dorsal parietal VOI, all clusters reflected computation of general-purpose processes, such as working memory and matching tasks, that are frequently co-recruited by social or language processes. Our results hence favour a rostro-caudal distinction of lower- versus higher-level processes underlying social cognition and language in the left inferior parietal lobe. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Left inferior parietal lobe engagement in social cognition and language

    NARCIS (Netherlands)

    Bzdok, D.; Hartwigsen, G.; Reid, A.T.; Laird, A.R.; Fox, P.T.; Eickhoff, S.B.

    2016-01-01

    Social cognition and language are two core features of the human species. Despite distributed recruitment of brain regions in each mental capacity, the left parietal lobe (LPL) represents a zone of topographical convergence. This study quantitatively summarizes previous neuroimaging studies on

  15. Multiple parietal-frontal pathways mediate grasping in macaque monkeys

    Science.gov (United States)

    Gharbawie, Omar A.; Stepniewska, Iwona; Qi, Huixin; Kaas, Jon H.

    2011-01-01

    The nodes of a parietal-frontal pathway that mediates grasping in primates are in anterior intraparietal area (AIP) and ventral premotor cortex (PMv). Nevertheless, multiple somatosensory and motor representations of the hand, respectively in parietal and frontal cortex, suggest that additional pathways remain unrealized. We explored this possibility in macaque monkeys by injecting retrograde tracers into grasp zones identified in M1, PMv, and area 2 with long train electrical stimulation. The M1 grasp zone was densely connected with other frontal cortex motor regions. The remainder of the connections originated from somatosensory areas 3a and S2/PV, and from the medial bank and fundus of the intraparietal sulcus (IPS). The PMv grasp zone was also densely connected with frontal cortex motor regions, albeit to a lesser extent than the M1 grasp zone. The remainder of the connections originated from areas S2/PV and aspects of the inferior parietal lobe such as PF, PFG, AIP, and the tip of the IPS. The area 2 grasp zone was densely connected with the hand representations of somatosensory areas 3b, 1, and S2/PV. The remainder of the connections was with areas 3a and 5 and the medial bank and fundus of the IPS. Connections with frontal cortex were relatively weak and concentrated in caudal M1. Thus, the three grasp zones may be nodes of parallel parietal-frontal pathways. Differential points of origin and termination of each pathway suggest varying functional specializations. Direct and indirect connections between those parietal-frontal pathways likely coordinate their respective functions into an accurate grasp. PMID:21832196

  16. The left inferior parietal lobe represents stored hand-postures for object use and action prediction.

    Science.gov (United States)

    van Elk, Michiel

    2014-01-01

    Action semantics enables us to plan actions with objects and to predict others' object-directed actions as well. Previous studies have suggested that action semantics are represented in a fronto-parietal action network that has also been implicated to play a role in action observation. In the present fMRI study it was investigated how activity within this network changes as a function of the predictability of an action involving multiple objects and requiring the use of action semantics. Participants performed an action prediction task in which they were required to anticipate the use of a centrally presented object that could be moved to an associated target object (e.g., hammer-nail). The availability of actor information (i.e., presenting a hand grasping the central object) and the number of possible target objects (i.e., 0, 1, or 2 target objects) were independently manipulated, resulting in different levels of predictability. It was found that making an action prediction based on actor information resulted in an increased activation in the extrastriate body area (EBA) and the fronto-parietal action observation network (AON). Predicting actions involving a target object resulted in increased activation in the bilateral IPL and frontal motor areas. Within the AON, activity in the left inferior parietal lobe (IPL) and the left premotor cortex (PMC) increased as a function of the level of action predictability. Together these findings suggest that the left IPL represents stored hand-postures that can be used for planning object-directed actions and for predicting other's actions as well.

  17. Brain activation for response inhibition under gaming cue distraction in internet gaming disorder.

    Science.gov (United States)

    Liu, Gin-Chung; Yen, Ju-Yu; Chen, Chiao-Yun; Yen, Cheng-Fang; Chen, Cheng-Sheng; Lin, Wei-Chen; Ko, Chih-Hung

    2014-01-01

    We evaluated neural substrates related to the loss of control in college students with internet gaming disorder (IGD). We hypothesized that deficit in response inhibition under gaming cue distraction was the possible mechanism for the loss of control internet use. Eleven cases of IGD and 11 controls performed Go/NoGo tasks with/without gaming distraction in the functional magnetic resonance imaging scanner. When the gaming picture was shown as background while individuals were performing Go/NoGo tasks, the IGD group committed more commission errors. The control group increased their brain activations more over the right dorsolateral prefrontal cortex (DLPFC) and superior parietal lobe under gaming cue distraction in comparison with the IGD group. Furthermore, brain activation of the right DLPFC and superior parietal lobe were negatively associated with performance of response inhibition among the IGD group. The results suggest that the function of response inhibition was impaired under gaming distraction among the IGD group, and individuals with IGD could not activate right DLPFC and superior parietal lobe to keep cognitive control and attention allocation for response inhibition under gaming cue distraction. This mechanism should be addressed in any intervention for IGD.

  18. Temporo-parietal and fronto-parietal lobe contributions to theory of mind and executive control: an fMRI study of verbal jokes.

    Science.gov (United States)

    Chan, Yu-Chen; Lavallee, Joseph P

    2015-01-01

    'Getting a joke' always requires resolving an apparent incongruity, but the particular cognitive operations called upon vary depending on the nature of the joke itself. Previous research has identified the primary neural correlates of the cognitive and affective processes called upon to respond to humor generally, but little work has been done on the substrates underlying the distinct cognitive operations required to comprehend particular joke types. This study explored the neural correlates of the cognitive processes required to successfully comprehend three joke types: bridging-inference jokes (BJs), exaggeration jokes (EJs), and ambiguity jokes (AJs). For all joke types, the left dlPFC appeared to support common cognitive mechanisms, such as script-shifting, while the vACC was associated with affective appreciation. The temporo-parietal lobe (TPJ and MTG) was associated with BJs, suggesting involvement of these regions with 'theory of mind' processing. The fronto-parietal lobe (IPL and IFG) was associated with both EJs and AJs, suggesting that it supports executive control processes such as retrieval from episodic memory, self-awareness, and language-based decoding. The social-affective appreciation of verbal jokes was associated with activity in the orbitofrontal cortex, amygdala, and parahippocampal gyrus. These results allow a more precise account of the neural processes required to support the particular cognitive operations required for the understanding of different types of humor.

  19. Air Superiority Fighter Characteristics.

    Science.gov (United States)

    1998-06-05

    many a dispute could have been deflated into a single paragraph if the disputants had just dared to define their terms.7 Aristotle ...meaningful. This section will expand on some key ideology concepts. The phrase "air superiority fighter" may bring to mind visions of fighter... biographies are useful in garnering airpower advocate theories as well as identifying key characteristics. Air campaign results, starting with World

  20. 通过创先争优活动更好地促进疾控工作%Better Promote Disease Prevention and Control Activities Through Creating and Struggling Activity in Superiorly First

    Institute of Scientific and Technical Information of China (English)

    黄钦; 黄文辉

    2014-01-01

    创先争优活动是实践科学发展观,扎实走群众路线的体现,通过创先争优活动可以更好地促进疾病控制工作。江西省的疾病预防控制工作近年来以快速、科学、和谐的势头稳步发展,与该省疾控中心深入贯彻科学发展观,落实深化医药卫生体制改革任务,创新工作机制,提升管理水平,积极深入开展创先争优活动密不可分。具体体现在疾控管理工作中,把以民为本当作根本,精细管理抓好各项工作,营造风清气正的工作氛围,形成和谐与发展良性互动。通过各种方式大力开展创先争优活动,进一步促进了党组织和广大党员更好地联系和服务群众,推动了疾控体系建设,加快了转变疾控发展方式,从而更好地服务公共卫生工作大局。%Creating and struggling activity in superiorly first can reflect practicing scientific concept of development and fol owing the mass line solidly, and bet er promote disease prevention and control job. Jiang xi province developed its disease prevention and control work steadily with rapid, scientific, harmonious momentum, which depended on that Jiangxi provincial center for disease prevention and control thoroughly implemented the scientific development concept, deepened medical and health system reform task, innovated work mechanism, enhanced the management level and developed creating and struggling activity in superiorly first. In disease management work Jiangxi provincial center for disease prevention and control taked the people as foundation, finely managed al kinds of jobs, create a fair working atmosphere and promote positive interaction between harmony and development. Through development of creating and struggling activity in superiorly first, it promoted party organizations and members bet er contacting and serving the masses, promoting the construction of disease control system, speeding up the transformation of development

  1. Parietal and Frontal Cortex Encode Stimulus-Specific Mnemonic Representations during Visual Working Memory.

    Science.gov (United States)

    Ester, Edward F; Sprague, Thomas C; Serences, John T

    2015-08-19

    Working memory (WM) enables the storage and manipulation of information in an active state. WM storage has long been associated with sustained increases in activation across a network of frontal and parietal cortical regions. However, recent evidence suggests that these regions primarily encode information related to general task goals rather than feature-selective representations of specific memoranda. These goal-related representations are thought to provide top-down feedback that coordinates the representation of fine-grained details in early sensory areas. Here, we test this model using fMRI-based reconstructions of remembered visual details from region-level activation patterns. We could reconstruct high-fidelity representations of a remembered orientation based on activation patterns in occipital visual cortex and in several sub-regions of frontal and parietal cortex, independent of sustained increases in mean activation. These results challenge models of WM that postulate disjoint frontoparietal "top-down control" and posterior sensory "feature storage" networks. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Analysis of Brain Activation during Motor Imagery Based on fMRI

    Institute of Scientific and Technical Information of China (English)

    Qin Yang; Wen Huang; Wei Liao; Hua-Fu Chen

    2009-01-01

    Brain activation during motor imagery (MI) has been studied extensively for years.Based on studies of brain activations of MI,in present study,a complex finger tapping imagery and execution experi-ment is designed to test the brain activation during MI.The experiment results show that during MI,brain activation exists mainly in the supplementary motor area (SMA) and precentral area where the dorsal premotor area (PMd) and the primary motor area (M1) mainly located;and some activation can be also observed in the primary and secondary somatosensory cortex (S1),the inferior parietal lobule (IPL) and the superior parietal lobule (SPL).Additionally,more brain activation can be observed during left-hand MI than during right-hand MI,this difference probably is caused by asymmetry of brain.

  3. Differential bilateral involvement of the parietal gyrus during predicative metaphor processing: an auditory fMRI study.

    Science.gov (United States)

    Obert, Alexandre; Gierski, Fabien; Calmus, Arnaud; Portefaix, Christophe; Declercq, Christelle; Pierot, Laurent; Caillies, Stéphanie

    2014-10-01

    Despite the growing literature on figurative language processing, there is still debate as to which cognitive processes and neural bases are involved. Furthermore, most studies have focused on nominal metaphor processing without any context, and very few have used auditory presentation. We therefore investigated the neural bases of the comprehension of predicative metaphors presented in a brief context, in an auditory, ecological way. The comprehension of their literal counterparts served as a control condition. We also investigated the link between working memory and verbal skills and regional activation. Comparisons of metaphorical and literal conditions revealed bilateral activation of parietal areas including the left angular (lAG) and right inferior parietal gyri (rIPG) and right precuneus. Only verbal skills were associated with lAG (but not rIPG) activation. These results indicated that predicative metaphor comprehension share common activations with other metaphors. Furthermore, individual verbal skills could have an impact on figurative language processing.

  4. The continuous Wagon wheel illusion and the 'when' pathway of the right parietal lobe: a repetitive transcranial magnetic stimulation study.

    Directory of Open Access Journals (Sweden)

    Rufin VanRullen

    Full Text Available A continuous periodic motion stimulus can sometimes be perceived moving in the wrong direction. These illusory reversals have been taken as evidence that part of the motion perception system samples its inputs as a series of discrete snapshots -although other explanations of the phenomenon have been proposed, that rely on the spurious activation of low-level motion detectors in early visual areas. We have hypothesized that the right inferior parietal lobe ('when' pathway plays a critical role in timing perceptual events relative to one another, and thus we examined the role of the right parietal lobe in the generation of this "continuous Wagon Wheel Illusion" (c-WWI. Consistent with our hypothesis, we found that the illusion was effectively weakened following disruption of right, but not left, parietal regions by low frequency repetitive transcranial magnetic stimulation (1 Hz, 10 min. These results were independent of whether the motion stimulus was shown in the left or the right visual field. Thus, the c-WWI appears to depend on higher-order attentional mechanisms that are supported by the 'when' pathway of the right parietal lobe.

  5. Magnetoencephalography study of right parietal lobe dysfunction of the evoked mirror neuron system in antipsychotic-free schizophrenia.

    Science.gov (United States)

    Kato, Yutaka; Muramatsu, Taro; Kato, Motoichiro; Shibukawa, Yoshiyuki; Shintani, Masuro; Mimura, Masaru

    2011-01-01

    Patients with schizophrenia commonly exhibit deficits of non-verbal communication in social contexts, which may be related to cognitive dysfunction that impairs recognition of biological motion. Although perception of biological motion is known to be mediated by the mirror neuron system, there have been few empirical studies of this system in patients with schizophrenia. Using magnetoencephalography, we examined whether antipsychotic-free schizophrenia patients displayed mirror neuron system dysfunction during observation of biological motion (jaw movement of another individual). Compared with normal controls, the patients with schizophrenia had fewer components of both the waveform and equivalent current dipole, suggesting aberrant brain activity resulting from dysfunction of the right inferior parietal cortex. They also lacked the changes of alpha band and gamma band oscillation seen in normal controls, and had weaker phase-locking factors and gamma-synchronization predominantly in right parietal cortex. Our findings demonstrate that untreated patients with schizophrenia exhibit aberrant mirror neuron system function based on the right inferior parietal cortex, which is characterized by dysfunction of gamma-synchronization in the right parietal lobe during observation of biological motion.

  6. Magnetoencephalography study of right parietal lobe dysfunction of the evoked mirror neuron system in antipsychotic-free schizophrenia.

    Directory of Open Access Journals (Sweden)

    Yutaka Kato

    Full Text Available INTRODUCTION: Patients with schizophrenia commonly exhibit deficits of non-verbal communication in social contexts, which may be related to cognitive dysfunction that impairs recognition of biological motion. Although perception of biological motion is known to be mediated by the mirror neuron system, there have been few empirical studies of this system in patients with schizophrenia. METHODS: Using magnetoencephalography, we examined whether antipsychotic-free schizophrenia patients displayed mirror neuron system dysfunction during observation of biological motion (jaw movement of another individual. RESULTS: Compared with normal controls, the patients with schizophrenia had fewer components of both the waveform and equivalent current dipole, suggesting aberrant brain activity resulting from dysfunction of the right inferior parietal cortex. They also lacked the changes of alpha band and gamma band oscillation seen in normal controls, and had weaker phase-locking factors and gamma-synchronization predominantly in right parietal cortex. CONCLUSIONS: Our findings demonstrate that untreated patients with schizophrenia exhibit aberrant mirror neuron system function based on the right inferior parietal cortex, which is characterized by dysfunction of gamma-synchronization in the right parietal lobe during observation of biological motion.

  7. Dissociation of Subtraction and Multiplication in the Right Parietal Cortex: Evidence from Intraoperative Cortical Electrostimulation

    Science.gov (United States)

    Yu, Xiaodan; Chen, Chuansheng; Pu, Song; Wu, Chenxing; Li, Yongnian; Jiang, Tao; Zhou, Xinlin

    2011-01-01

    Previous research has consistently shown that the left parietal cortex is critical for numerical processing, but the role of the right parietal lobe has been much less clear. This study used the intraoperative cortical electrical stimulation approach to investigate neural dissociation in the right parietal cortex for subtraction and…

  8. Dissociation of Subtraction and Multiplication in the Right Parietal Cortex: Evidence from Intraoperative Cortical Electrostimulation

    Science.gov (United States)

    Yu, Xiaodan; Chen, Chuansheng; Pu, Song; Wu, Chenxing; Li, Yongnian; Jiang, Tao; Zhou, Xinlin

    2011-01-01

    Previous research has consistently shown that the left parietal cortex is critical for numerical processing, but the role of the right parietal lobe has been much less clear. This study used the intraoperative cortical electrical stimulation approach to investigate neural dissociation in the right parietal cortex for subtraction and…

  9. Prefrontal and parietal cortex in human episodic memory: an interference study by repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Rossi, Simone; Pasqualetti, Patrizio; Zito, Giancarlo; Vecchio, Fabrizio; Cappa, Stefano F; Miniussi, Carlo; Babiloni, Claudio; Rossini, Paolo M

    2006-02-01

    Neuroimaging findings, including repetitive transcranial magnetic stimulation (rTMS) interference, point to an engagement of prefrontal cortex (PFC) in learning and memory. Whether parietal cortex (PC) activity is causally linked to successful episodic encoding and retrieval is still uncertain. We compared the effects of event-related active or sham rTMS (a rapid-rate train coincident to the very first phases of memoranda presentation) to the left or right intraparietal sulcus, during a standardized episodic memory task of visual scenes, with those obtained in a fully matched sample of subjects who received rTMS on left or right dorsolateral PFC during the same task. In these subjects, specific hemispheric effects of rTMS included interference with encoding after left stimulation and disruption of retrieval after right stimulation. The interference of PC-rTMS on encoding/retrieval performance was negligible, lacking specificity even when higher intensities of stimulation were applied. However, right PC-rTMS of the same intensity lengthened reaction times in the context of a purely attentive visuospatial task. These results suggest that the activity of intraparietal sulci shown in several functional magnetic resonance studies on memory, unlike that of the dorsolateral PFC, is not causally engaged to a useful degree in memory encoding and retrieval of visual scenes. The parietal activations accompanying the memorization processes could reflect the engagement of a widespread brain attentional network, in which interference on a single 'node' is insufficient for an overt disruption of memory performance.

  10. Contextual modulation of pain in masochists: involvement of the parietal operculum and insula.

    Science.gov (United States)

    Kamping, Sandra; Andoh, Jamila; Bomba, Isabelle C; Diers, Martin; Diesch, Eugen; Flor, Herta

    2016-02-01

    Pain can be modulated by contextual stimuli, such as emotions, social factors, or specific bodily perceptions. We presented painful laser stimuli together with body-related masochistic visual stimuli to persons with and without preferred masochistic sexual behavior and used neutral, positive, and negative pictures with and without painful stimuli as control. Masochists reported substantially reduced pain intensity and unpleasantness in the masochistic context compared with controls but had unaltered pain perception in the other conditions. Functional magnetic resonance imaging revealed that masochists activated brain areas involved in sensory-discriminative processing rather than affective pain processing when they received painful stimuli on a masochistic background. The masochists compared with the controls displayed attenuated functional connectivity of the parietal operculum with the left and right insulae, the central operculum, and the supramarginal gyrus. Masochists additionally showed negative correlations between the duration of interest in masochistic activities and activation of areas involved in motor activity and affective processing. We propose that the parietal operculum serves as an important relay station that attenuates the affective-motivational aspects of pain in masochists. This novel mechanism of pain modulation might be related to multisensory integration and has important implications for the assessment and treatment of pain.

  11. The timing and strength of regional brain activation associated with word recognition in children with reading difficulties

    Directory of Open Access Journals (Sweden)

    Roozbeh eRezaie

    2011-05-01

    Full Text Available The study investigates the relative degree and timing of cortical activation across parietal, temporal, and frontal regions during performance of a continuous visual word recognition task in children who experience reading difficulties (N=44, RD and typical readers (N=40, NI. Minimum norm estimates of regional neurophysiological activity were obtained from magnetoencephalographic recordings. Children with RD showed bilaterally reduced neurophysiological activity in the superior and middle temporal gyri, and increased activity in rostral middle frontal and ventral occipitotemporal cortices, bilaterally. The temporal profile of activity in the RD group, featured near-simultaneous activity peaks in temporal, inferior parietal and prefrontal regions, in contrast to a clear temporal progression of activity among these areas in the NI group. These results replicate and extend previous MEG and fMRI results demonstrating atypical, latency-dependent attributes of the brain circuit involved in word reading in children with reading difficulties.

  12. Choline acetyltransferase-containing neurons in the human parietal neocortex

    Directory of Open Access Journals (Sweden)

    V Benagiano

    2009-06-01

    Full Text Available A number of immunocytochemical studies have indicated the presence of cholinergic neurons in the cerebral cortex of various species of mammals. Whether such cholinergic neurons in the human cerebral cortex are exclusively of subcortical origin is still debated. In this immunocytochemical study, the existence of cortical cholinergic neurons was investigated on surgical samples of human parietal association neocortex using a highly specific monoclonal antibody against choline acetyltransferase (ChAT, the acetylcholine biosynthesising enzyme. ChAT immunoreactivity was detected in a subpopulation of neurons located in layers II and III. These were small or medium-sized pyramidal neurons which showed cytoplasmic immunoreactivity in the perikarya and processes, often in close association to blood microvessels. This study, providing demonstration of ChAT neurons in the human parietal neocortex, strongly supports the existence of intrinsic cholinergic innervation of the human neocortex. It is likely that these neurons contribute to the cholinergic innervation of the intracortical microvessels.

  13. A case of lipoma of parietal peritoneum causing abdominal pain.

    Science.gov (United States)

    Bang, Chang Seok; Kim, Yeon Soo; Baik, Gwang Ho; Han, Sang Hak

    2014-06-01

    Lipomas are common benign tumors of mature adipose tissue, enclosed by thin fibrous capsules. They can occur on any part of the body; however, peritoneal lipoma is extremely rare. We encountered a case of a 75-year-old man presenting with intermittent abdominal pain, who had undergone right hemicolectomy due to colon cancer. Abdominal computerized tomography showed a well-defined heterogenous fatty mass measuring 4.5 × 3.5 cm in size, suggesting fat necrosis located in the abdominal wall. Laparotomy showed a very large soft mass of peritoneum. Pathologically, the tumor was diagnosed as lipoma containing fat necrosis located in parietal peritoneum not fixed to any organs, but with small bowel adhesion. Due to its rare etiologic origin and obscure cause of development, we report on a case of lipoma of parietal peritoneum causing abdominal pain.

  14. Impaired speech repetition and left parietal lobe damage.

    Science.gov (United States)

    Fridriksson, Julius; Kjartansson, Olafur; Morgan, Paul S; Hjaltason, Haukur; Magnusdottir, Sigridur; Bonilha, Leonardo; Rorden, Christopher

    2010-08-18

    Patients with left hemisphere damage and concomitant aphasia usually have difficulty repeating others' speech. Although impaired speech repetition, the primary symptom of conduction aphasia, has been associated with involvement of the left arcuate fasciculus, its specific lesion correlate remains elusive. This research examined speech repetition among 45 stroke patients who underwent aphasia testing and MRI examination. Based on lesion-behavior mapping, the primary structural damage most closely associated with impaired speech repetition was found in the posterior portion of the left arcuate fasciculus. However, perfusion-weighted MRI revealed that tissue dysfunction, in the form of either frank damage or hypoperfusion, to the left inferior parietal lobe, rather than the underlying white matter, was associated with impaired speech repetition. This latter result suggests that integrity of the left inferior parietal lobe is important for speech repetition and, as importantly, highlights the importance of examining cerebral perfusion for the purpose of lesion-behavior mapping in acute stroke.

  15. Gelastic seizures and fever originating from a parietal cortical dysplasia

    Directory of Open Access Journals (Sweden)

    Sana Chaouki

    2013-01-01

    Full Text Available Gelastic seizures (GS is an uncommon seizure type characterized by sudden inappropriate attacks of uncontrolled and unmotivated laugh and its diagnostic criteria were elaborated by Gascon. These criteria included stereotypical recurrence of laugh, which is unjustified by the context, associated signs compatible with seizure, and ictal or interictal abnormalities. GS can be cryptogenic or symptomatic of a variety of cerebral lesions, the most common being hypothalamic hamartoma. However, GS associated with other types of cerebral lesions are exceedingly rare. The physiopathologic mechanisms of this type of seizure are still undefined. Two reports have described a non-lesional GS arising from a parietal focus. In this paper, we report the first case of lesional GS associated to the parietal area of the brain in a child and this case has associated fever that is likely an ictal symptom.

  16. El arte parietal, espejo de las sociedades paleolíticas

    Directory of Open Access Journals (Sweden)

    Georges SAUVET

    2009-12-01

    Full Text Available RESUMEN: El presente trabajo aboga por un estudio del arte parietal como instrumento del conocimiento de la geografía humana de las sociedades de cazadores y de la evolución de sus redes de alianza, durante el Paleolítico superior. Tomando como ejemplo el componente figurativo de este arte y un amplio corpus de 3981 figuras procedentes de 154 yacimientos franceses y españoles, se demuestra que las asociaciones entre especies animales diferentes obedecen a reglas simples y coherentes, que se dejan fácilmente exprimir por un modelo formal. El análisis de doce sub-conjuntos sincrónicos y diacrónicos evidencia la movilidad de las connexiones interregionales (por ejemplo el desarrollo del Solutrense cantábrico en relación con los centros peninsulares y con escaso contacto con el sudoeste francés, al contrario de la situación que prevalece durante el Magdaleniense medio-superior. Sin embargo conforta la idea que las variaciones regionales operan dentro de un sistema de pensamiento religioso relativamente estable. Una segunda fase del trabajo se propone describir la estructuración del arte parietal a un nivel mucho más fino, teniendo en cuenta la diversidad formal de cada figura y sus relaciones topológicas con las demás. Una larga base de datos está en curso de elaboración para su tratamiento con las técnicas de "extracción de conocimiento" (Knowledge Discovery in Databases. Unos resultados preliminares dejan esperar que una base de datos de este tipo servirá el objetivo y proporcionará une visión más precisa y segura de la historia de los pueblos paleolíticos, dado que la fuente del estilo propio de cada grupo debe buscarse en la construcción gráfica de paneles complejos.ABSTRACT: This paper pleads in favour of the study of parietal art as a means to investigate the human geography of palaeolithic hunter-gatherers in Europe and the evolution of their alliance networks. Taking the example of the figurative component of Rock

  17. Neuronal chains for actions in the parietal lobe: a computational model.

    Directory of Open Access Journals (Sweden)

    Fabian Chersi

    Full Text Available The inferior part of the parietal lobe (IPL is known to play a very important role in sensorimotor integration. Neurons in this region code goal-related motor acts performed with the mouth, with the hand and with the arm. It has been demonstrated that most IPL motor neurons coding a specific motor act (e.g., grasping show markedly different activation patterns according to the final goal of the action sequence in which the act is embedded (grasping for eating or grasping for placing. Some of these neurons (parietal mirror neurons show a similar selectivity also during the observation of the same action sequences when executed by others. Thus, it appears that the neuronal response occurring during the execution and the observation of a specific grasping act codes not only the executed motor act, but also the agent's final goal (intention.In this work we present a biologically inspired neural network architecture that models mechanisms of motor sequences execution and recognition. In this network, pools composed of motor and mirror neurons that encode motor acts of a sequence are arranged in form of action goal-specific neuronal chains. The execution and the recognition of actions is achieved through the propagation of activity bursts along specific chains modulated by visual and somatosensory inputs.The implemented spiking neuron network is able to reproduce the results found in neurophysiological recordings of parietal neurons during task performance and provides a biologically plausible implementation of the action selection and recognition process.Finally, the present paper proposes a mechanism for the formation of new neural chains by linking together in a sequential manner neurons that represent subsequent motor acts, thus producing goal-directed sequences.

  18. Contabilidad Financiera Superior

    OpenAIRE

    Ipiñazar Petralanda, Izaskun

    2013-01-01

    Duración (en horas): De 31 a 40 horas. Destinatario: Estudiante y Docente A través de este material se presentan las pautas necesarias para implementar un aprendizaje basado en problemas en la asignatura de Contabilidad Financiera Superior dentro de los temas “Constitución de S.A. y S.R.L.” (Tema 2), “Ampliaciones de Capital” (Tema 3) y “Reducciones de Capital” (Tema 4). En primer lugar se presentan las guías generales de la asignatura, y a continuación, las diferentes activida...

  19. Contabilidad Financiera Superior

    OpenAIRE

    Ipiñazar Petralanda, Izaskun

    2013-01-01

    Duración (en horas): De 31 a 40 horas. Destinatario: Estudiante y Docente A través de este material se presentan las pautas necesarias para implementar un aprendizaje basado en problemas en la asignatura de Contabilidad Financiera Superior dentro de los temas “Constitución de S.A. y S.R.L.” (Tema 2), “Ampliaciones de Capital” (Tema 3) y “Reducciones de Capital” (Tema 4). En primer lugar se presentan las guías generales de la asignatura, y a continuación, las diferentes activida...

  20. Bottom-up Visual Integration in the Medial Parietal Lobe.

    Science.gov (United States)

    Pflugshaupt, Tobias; Nösberger, Myriam; Gutbrod, Klemens; Weber, Konrad P; Linnebank, Michael; Brugger, Peter

    2016-03-01

    Largely based on findings from functional neuroimaging studies, the medial parietal lobe is known to contribute to internally directed cognitive processes such as visual imagery or episodic memory. Here, we present 2 patients with behavioral impairments that extend this view. Both had chronic unilateral lesions of nearly the entire medial parietal lobe, but in opposite hemispheres. Routine neuropsychological examination conducted >4 years after the onset of brain damage showed little deficits of minor severity. In contrast, both patients reported persistent unusual visual impairment. A comprehensive series of tachistoscopic experiments with lateralized stimulus presentation and comparison with healthy participants revealed partial visual hemiagnosia for stimuli presented to their contralesional hemifield, applying inferential single-case statistics to evaluate deficits and dissociations. Double dissociations were found in 4 experiments during which participants had to integrate more than one visual element, either through comparison or formation of a global gestalt. Against the background of recent neuroimaging findings, we conclude that of all medial parietal structures, the precuneus is the most likely candidate for a crucial involvement in such bottom-up visual integration. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Activity in part of the neural correlates of consciousness reflects integration.

    Science.gov (United States)

    Eriksson, Johan

    2017-07-25

    Integration is commonly viewed as a key process for generating conscious experiences. Accordingly, there should be increased activity within the neural correlates of consciousness when demands on integration increase. We used fMRI and "informational masking" to isolate the neural correlates of consciousness and measured how the associated brain activity changed as a function of required integration. Integration was manipulated by comparing the experience of hearing simple reoccurring tones to hearing harmonic tone triplets. The neural correlates of auditory consciousness included superior temporal gyrus, lateral and medial frontal regions, cerebellum, and also parietal cortex. Critically, only activity in left parietal cortex increased significantly as a function of increasing demands on integration. We conclude that integration can explain part of the neural activity associated with the generation conscious experiences, but that much of associated brain activity apparently reflects other processes. Copyright © 2017. Published by Elsevier Inc.

  2. Association of dorsal inferior frontooccipital fasciculus fibers in the deep parietal lobe with both reading and writing processes: a brain mapping study.

    Science.gov (United States)

    Motomura, Kazuya; Fujii, Masazumi; Maesawa, Satoshi; Kuramitsu, Shunichiro; Natsume, Atsushi; Wakabayashi, Toshihiko

    2014-07-01

    Alexia and agraphia are disorders common to the left inferior parietal lobule, including the angular and supramarginal gyri. However, it is still unclear how these cortical regions interact with other cortical sites and what the most important white matter tracts are in relation to reading and writing processes. Here, the authors present the case of a patient who underwent an awake craniotomy for a left inferior parietal lobule glioma using direct cortical and subcortical electrostimulation. The use of subcortical stimulation allowed identification of the specific white matter tracts associated with reading and writing. These tracts were found as portions of the dorsal inferior frontooccipital fasciculus (IFOF) fibers in the deep parietal lobe that are responsible for connecting the frontal lobe to the superior parietal lobule. These findings are consistent with previous diffusion tensor imaging tractography and functional MRI studies, which suggest that the IFOF may play a role in the reading and writing processes. This is the first report of transient alexia and agraphia elicited through intraoperative direct subcortical electrostimulation, and the findings support the crucial role of the IFOF in reading and writing.

  3. Cognitive Contributions of the Ventral Parietal Cortex: An Integrative Theoretical Account

    Science.gov (United States)

    Cabeza, Roberto; Ciaramelli, Elisa; Moscovitch, Morris

    2012-01-01

    Although ventral parietal cortex (VPC) activations can be found in a variety of cognitive domains, these activations have been typically attributed to cognitive operations specific to each domain. In this article, we propose a hypothesis that can account for VPC activations across all the cognitive domains reviewed. We first review VPC activations in the domains of perceptual and motor reorienting, episodic memory retrieval, language and number processing, theory of mind, and episodic memory encoding. Then, we consider the localization of VPC activations across domains, and conclude that they are largely overlapping with some differences around the edges. Finally, we assess how well four different hypotheses of VPC function can explain findings in various domains, and conclude that a bottom-up attention hypothesis provides the most complete and parsimonious account. PMID:22609315

  4. Cognitive contributions of the ventral parietal cortex: an integrative theoretical account.

    Science.gov (United States)

    Cabeza, Roberto; Ciaramelli, Elisa; Moscovitch, Morris

    2012-06-01

    Although ventral parietal cortex (VPC) activations can be found in a variety of cognitive domains, these activations have been typically attributed to cognitive operations specific to each domain. In this article, we propose a hypothesis that can account for VPC activations across all the cognitive domains reviewed. We first review VPC activations in the domains of perceptual and motor reorienting, episodic memory retrieval, language and number processing, theory of mind, and episodic memory encoding. Then, we consider the localization of VPC activations across domains and conclude that they are largely overlapping with some differences around the edges. Finally, we assess how well four different hypotheses of VPC function can explain findings in various domains and conclude that a bottom-up attention hypothesis provides the most complete and parsimonious account.

  5. Recency Effects in the Inferior Parietal Lobe during Verbal Recognition Memory

    Directory of Open Access Journals (Sweden)

    Bradley Russell Buchsbaum

    2011-07-01

    Full Text Available The most recently encountered information is often most easily remembered in psychological tests of memory. Recent investigations of the neural basis of such recency effects have shown that activation in the lateral inferior parietal cortex (LIPC tracks the recency of a probe item when subjects make recognition memory judgments. A key question regarding recency effects in the LIPC is whether they fundamentally reflect the storage (and strength of information in memory, or whether such effects are a consequence of task difficulty or an upswing in resting state network activity. Using functional magnetic resonance imaging (fMRI we show that recency effects in the LIPC are independent of the difficulty of recognition memory decisions, that they are not a by-product of an increase in resting state network activity, and that they appear to dissociate from regions known to be involved in verbal working memory maintenance. We conclude with a discussion of two alternative explanations – the memory strength and expectancy hypotheses, respectively -- of the parietal lobe recency effect.

  6. Emotion unfolded by motion: a role for parietal lobe in decoding dynamic facial expressions.

    Science.gov (United States)

    Sarkheil, Pegah; Goebel, Rainer; Schneider, Frank; Mathiak, Klaus

    2013-12-01

    Facial expressions convey important emotional and social information and are frequently applied in investigations of human affective processing. Dynamic faces may provide higher ecological validity to examine perceptual and cognitive processing of facial expressions. Higher order processing of emotional faces was addressed by varying the task and virtual face models systematically. Blood oxygenation level-dependent activation was assessed using functional magnetic resonance imaging in 20 healthy volunteers while viewing and evaluating either emotion or gender intensity of dynamic face stimuli. A general linear model analysis revealed that high valence activated a network of motion-responsive areas, indicating that visual motion areas support perceptual coding for the motion-based intensity of facial expressions. The comparison of emotion with gender discrimination task revealed increased activation of inferior parietal lobule, which highlights the involvement of parietal areas in processing of high level features of faces. Dynamic emotional stimuli may help to emphasize functions of the hypothesized 'extended' over the 'core' system for face processing.

  7. Recency Effects in the Inferior Parietal Lobe during Verbal Recognition Memory

    Science.gov (United States)

    Buchsbaum, Bradley R.; Ye, Donald; D'Esposito, Mark

    2011-01-01

    The most recently encountered information is often most easily remembered in psychological tests of memory. Recent investigations of the neural basis of such “recency effects” have shown that activation in the lateral inferior parietal cortex (LIPC) tracks the recency of a probe item when subjects make recognition memory judgments. A key question regarding recency effects in the LIPC is whether they fundamentally reflect the storage (and strength) of information in memory, or whether such effects are a consequence of task difficulty or an upswing in resting state network activity. Using functional magnetic resonance imaging we show that recency effects in the LIPC are independent of the difficulty of recognition memory decisions, that they are not a by-product of an increase in resting state network activity, and that they appear to dissociate from regions known to be involved in verbal working memory maintenance. We conclude with a discussion of two alternative explanations – the memory strength and “expectancy” hypotheses, respectively – of the parietal lobe recency effect. PMID:21811449

  8. Statistics of superior records

    Science.gov (United States)

    Ben-Naim, E.; Krapivsky, P. L.

    2013-08-01

    We study statistics of records in a sequence of random variables. These identical and independently distributed variables are drawn from the parent distribution ρ. The running record equals the maximum of all elements in the sequence up to a given point. We define a superior sequence as one where all running records are above the average record expected for the parent distribution ρ. We find that the fraction of superior sequences SN decays algebraically with sequence length N, SN˜N-β in the limit N→∞. Interestingly, the decay exponent β is nontrivial, being the root of an integral equation. For example, when ρ is a uniform distribution with compact support, we find β=0.450265. In general, the tail of the parent distribution governs the exponent β. We also consider the dual problem of inferior sequences, where all records are below average, and find that the fraction of inferior sequences IN decays algebraically, albeit with a different decay exponent, IN˜N-α. We use the above statistical measures to analyze earthquake data.

  9. Frenillo labial superior doble

    Directory of Open Access Journals (Sweden)

    Carlos Albornoz López del Castillo

    Full Text Available El frenillo labial superior doble no sindrómico es una anomalía del desarrollo que no hemos encontrado reportada en la revisión bibliográfica realizada. Se presenta una niña de 11 años de edad que fue remitida al servicio de Cirugía Maxilofacial del Hospital "Eduardo Agramonte Piña", de Camagüey, por presentar un frenillo labial superior doble de baja inserción. Se describen los síntomas clínicos asociados a esta anomalía y el tratamiento quirúrgico utilizado para su solución: una frenectomía y plastia sobre la banda muscular frénica anormal que provocaba exceso de tejido en la mucosa labial. Consideramos muy interesante la descripción de este caso, por no haber encontrado reporte similar en la literatura revisada.

  10. Scene-Selectivity and Retinotopy in Medial Parietal Cortex

    Science.gov (United States)

    Silson, Edward H.; Steel, Adam D.; Baker, Chris I.

    2016-01-01

    Functional imaging studies in human reliably identify a trio of scene-selective regions, one on each of the lateral [occipital place area (OPA)], ventral [parahippocampal place area (PPA)], and medial [retrosplenial complex (RSC)] cortical surfaces. Recently, we demonstrated differential retinotopic biases for the contralateral lower and upper visual fields within OPA and PPA, respectively. Here, using functional magnetic resonance imaging, we combine detailed mapping of both population receptive fields (pRF) and category-selectivity, with independently acquired resting-state functional connectivity analyses, to examine scene and retinotopic processing within medial parietal cortex. We identified a medial scene-selective region, which was contained largely within the posterior and ventral bank of the parieto-occipital sulcus (POS). While this region is typically referred to as RSC, the spatial extent of our scene-selective region typically did not extend into retrosplenial cortex, and thus we adopt the term medial place area (MPA) to refer to this visually defined scene-selective region. Intriguingly MPA co-localized with a region identified solely on the basis of retinotopic sensitivity using pRF analyses. We found that MPA demonstrates a significant contralateral visual field bias, coupled with large pRF sizes. Unlike OPA and PPA, MPA did not show a consistent bias to a single visual quadrant. MPA also co-localized with a region identified by strong differential functional connectivity with PPA and the human face-selective fusiform face area (FFA), commensurate with its functional selectivity. Functional connectivity with OPA was much weaker than with PPA, and similar to that with face-selective occipital face area (OFA), suggesting a closer link with ventral than lateral cortex. Consistent with prior research, we also observed differential functional connectivity in medial parietal cortex for anterior over posterior PPA, as well as a region on the lateral

  11. The Role of Right Inferior Parietal Cortex in Auditory Spatial Attention: A Repetitive Transcranial Magnetic Stimulation Study.

    Directory of Open Access Journals (Sweden)

    Debra S Karhson

    Full Text Available Behavioral studies support the concept of an auditory spatial attention gradient by demonstrating that attentional benefits progressively diminish as distance increases from an attended location. Damage to the right inferior parietal cortex can induce a rightward attention bias, which implicates this region in the construction of attention gradients. This study used event-related potentials (ERPs to define attention-related gradients before and after repetitive transcranial magnetic stimulation (rTMS to the right inferior parietal cortex. Subjects (n = 16 listened to noise bursts at five azimuth locations (left to right: -90°, -45°, 0° midline, +45°, +90° and responded to stimuli at one target location (-90°, +90°, separate blocks. ERPs as a function of non-target location were examined before (baseline and after 0.9 Hz rTMS. Results showed that ERP attention gradients were observed in three time windows (frontal 230-340, parietal 400-460, frontal 550-750 ms. Significant transient rTMS effects were seen in the first and third windows. The first window had a voltage decrease at the farthest location when attending to either the left or right side. The third window had on overall increase in positivity, but only when attending to the left side. These findings suggest that rTMS induced a small contraction in spatial attention gradients within the first time window. The asymmetric effect of attended location on gradients in the third time window may relate to neglect of the left hemispace after right parietal injury. Together, these results highlight the role of the right inferior parietal cortex in modulating frontal lobe attention network activity.

  12. Superior catalytic activity derived from a two-dimensional Ti3C2 precursor towards the hydrogen storage reaction of magnesium hydride.

    Science.gov (United States)

    Liu, Yongfeng; Du, Hufei; Zhang, Xin; Yang, Yaxiong; Gao, Mingxia; Pan, Hongge

    2016-01-14

    The superior catalytic effects derived from a 2D Ti3C2 (MXene), synthesized by the exfoliation of Ti3AlC2 powders, towards the hydrogen storage reaction of MgH2 were demonstrated. The 5 wt% Ti3C2-containing MgH2 releases 6.2 wt% H2 within 1 min at 300 °C and absorbs 6.1 wt% H2 within 30 s at 150 °C, exhibiting excellent dehydrogenation/hydrogenation kinetics.

  13. Multichannel NIRS analysis of brain activity during semantic differential rating of drawing stimuli containing different affective polarities.

    Science.gov (United States)

    Suzuki, Miho; Gyoba, Jiro; Sakuta, Yuiko

    2005-02-25

    We used 24-channel near-infrared spectroscopy (NIRS) to measure activity in the temporal, parietal, and frontal regions of the brain in eight Japanese women while the participants rated line drawings using semantic differential scales. Participants rated the seven line drawings on 15 bipolar semantic scales, each of which belonged to one of three semantic classes: Evaluation, Activity, or Potency. Suzuki et al. [M. Suzuki, J. Gyoba, Y. Sakuta, Multichannel near-infrared spectroscopy analysis of brain activities during semantic differential rating of drawings, Tohoku Psychologica Folia 62 (2003) 86-98.] had reported previously that the right superior temporal gyrus and the right inferior parietal lobule are associated with Activity rating, while the brain regions around the central fissure were related to Potency rating. Based on these suggestions, we investigated the brain activity in these regions during rating of stimuli containing different affective polarities. When drawings were reported as 'static' or 'calm', oxyhemoglobin concentration was higher around the right superior temporal gyrus as compared to when they were considered 'noisy' or 'excitable'. Oxyhemoglobin concentrations around the central fissure were also higher when drawings were rated as 'soft', 'smooth', or 'blunt' compared to 'hard', 'rough', or 'sharp'. Any characteristic oxyhemoglobin changes were not found during the ratings on the evaluation scales. Our results suggest that activation patterns of the temporal and parietal regions are significantly modified by semantic polarities of Activity and Potency.

  14. [Signal transudation pathways in parietal cells of the gastric mucosa in experimental stomach ulcer].

    Science.gov (United States)

    Ostapchenko, L I; Drobins'ka, O V; Chaĭka, V O; Bohun, L I; Bohdanova, O V; Kot, L I; Haĭda, L M

    2009-01-01

    The goal of the presented work was the research of signal transduction mechanism in the rat gastric parietal cells under stomach ulcer conditions. In these cells activation of adenylate cyclase (increase of cAMP level and proteinkinase A activity) and phosphoinositide (increases [Ca2+]i; cGMP and phoshatidylinocitole levels; proteinkinase C, proteinkinase G, and calmodulin-dependent-proteinkinase activity) of signals pathway was shown. An increase of plasma membrane phospholipids (PC, PS, PE, PI, LPC) level was shown. Under conditions of influence of the stress factor the membran enzymes activity (H+, K+ -ATPase, 5'-AMPase, Na+, K+ -ATPase, Ca2+, Mg2+ -ATPase and H+, K+ -ATPase) was considerably increased. The intensification of lipid peroxidation processes in rats was demonstrated.

  15. Sensorimotor experience and verb-category mapping in human sensory, motor and parietal neurons.

    Science.gov (United States)

    Yang, Ying; Dickey, Michael Walsh; Fiez, Julie; Murphy, Brian; Mitchell, Tom; Collinger, Jennifer; Tyler-Kabara, Elizabeth; Boninger, Michael; Wang, Wei

    2017-07-01

    Semantic grounding is the process of relating meaning to symbols (e.g., words). It is the foundation for creating a representational symbolic system such as language. Semantic grounding for verb meaning is hypothesized to be achieved through two mechanisms: sensorimotor mapping, i.e., directly encoding the sensorimotor experiences the verb describes, and verb-category mapping, i.e., encoding the abstract category a verb belongs to. These two mechanisms were investigated by examining neuronal-level spike (i.e. neuronal action potential) activities from the motor, somatosensory and parietal areas in two human participants. Motor and a portion of somatosensory neurons were found to be involved in primarily sensorimotor mapping, while parietal and some somatosensory neurons were found to be involved in both sensorimotor and verb-category mapping. The time course of the spike activities and the selective tuning pattern of these neurons indicate that they belong to a large neural network used for semantic processing. This study is the first step towards understanding how words are processed by neurons. Published by Elsevier Ltd.

  16. fMRI adaptation reveals mirror neurons in human inferior parietal cortex.

    Science.gov (United States)

    Chong, Trevor T-J; Cunnington, Ross; Williams, Mark A; Kanwisher, Nancy; Mattingley, Jason B

    2008-10-28

    Mirror neurons, as originally described in the macaque, have two defining properties [1, 2]: They respond specifically to a particular action (e.g., bringing an object to the mouth), and they produce their action-specific responses independent of whether the monkey executes the action or passively observes a conspecific performing the same action. In humans, action observation and action execution engage a network of frontal, parietal, and temporal areas. However, it is unclear whether these responses reflect the activity of a single population that represents both observed and executed actions in a common neural code or the activity of distinct but overlapping populations of exclusively perceptual and motor neurons [3]. Here, we used fMRI adaptation to show that the right inferior parietal lobe (IPL) responds independently to specific actions regardless of whether they are observed or executed. Specifically, responses in the right IPL were attenuated when participants observed a recently executed action relative to one that had not previously been performed. This adaptation across action and perception demonstrates that the right IPL responds selectively to the motoric and perceptual representations of actions and is the first evidence for a neural response in humans that shows both defining properties of mirror neurons.

  17. Differential roles for parietal and occipital cortices in visual working memory.

    Directory of Open Access Journals (Sweden)

    Daisuke Matsuyoshi

    Full Text Available Visual working memory (VWM is known as a highly capacity-limited cognitive system that can hold 3-4 items. Recent studies have demonstrated that activity in the intraparietal sulcus (IPS and occipital cortices correlates with the number of representations held in VWM. However, differences among those regions are poorly understood, particularly when task-irrelevant items are to be ignored. The present fMRI-based study investigated whether memory load-sensitive regions such as the IPS and occipital cortices respond differently to task-relevant information. Using a change detection task in which participants are required to remember pre-specified targets, here we show that while the IPS exhibited comparable responses to both targets and distractors, the dorsal occipital cortex manifested significantly weaker responses to an array containing distractors than to an array containing only targets, despite that the number of objects presented was the same for the two arrays. These results suggest that parietal and occipital cortices engage differently in distractor processing and that the dorsal occipital, rather than parietal, activity appears to reflect output of stimulus filtering and selection based on behavioral relevance.

  18. Characterization of the temporo-parietal junction by combining data-driven parcellation, complementary connectivity analyses, and functional decoding

    Science.gov (United States)

    Bzdok, Danilo; Langner, Robert; Schilbach, Leonhard; Jakobs, Oliver; Roski, Christian; Caspers, Svenja; Laird, Angela R.; Fox, Peter T.; Zilles, Karl; Eickhoff, Simon B.

    2016-01-01

    The right temporo-parietal junction (RTPJ) is consistently implicated in two cognitive domains, attention and social cognitions. We conducted multi-modal connectivity-based parcellation to investigate potentially separate functional modules within RTPJ implementing this cognitive dualism. Both task-constrained meta-analytic coactivation mapping and task-free resting-state connectivity analysis independently identified two distinct clusters within RTPJ, subsequently characterized by network mapping and functional forward/reverse inference. Coactivation mapping and resting-state correlations revealed that the anterior cluster increased neural activity concomitantly with a midcingulate–motor–insular network, functionally associated with attention, and decreased neural activity concomitantly with a parietal network, functionally associated with social cognition and memory retrieval. The posterior cluster showed the exact opposite association pattern. Our data thus suggest that RTPJ links two antagonistic brain networks processing external versus internal information. PMID:23689016

  19. Attention to Multiple Objects Facilitates Their Integration in Prefrontal and Parietal Cortex.

    Science.gov (United States)

    Kim, Yee-Joon; Tsai, Jeffrey J; Ojemann, Jeffrey; Verghese, Preeti

    2017-05-10

    Selective attention is known to interact with perceptual organization. In visual scenes, individual objects that are distinct and discriminable may occur on their own, or in groups such as a stack of books. The main objective of this study is to probe the neural interaction that occurs between individual objects when attention is directed toward one or more objects. Here we record steady-state visual evoked potentials via electrocorticography to directly assess the responses to individual stimuli and to their interaction. When human participants attend to two adjacent stimuli, prefrontal and parietal cortex shows a selective enhancement of only the neural interaction between stimuli, but not the responses to individual stimuli. When only one stimulus is attended, the neural response to that stimulus is selectively enhanced in prefrontal and parietal cortex. In contrast, early visual areas generally manifest responses to individual stimuli and to their interaction regardless of attentional task, although a subset of the responses is modulated similarly to prefrontal and parietal cortex. Thus, the neural representation of the visual scene as one progresses up the cortical hierarchy becomes more highly task-specific and represents either individual stimuli or their interaction, depending on the behavioral goal. Attention to multiple objects facilitates an integration of objects akin to perceptual grouping.SIGNIFICANCE STATEMENT Individual objects in a visual scene are seen as distinct entities or as parts of a whole. Here we examine how attention to multiple objects affects their neural representation. Previous studies measured single-cell or fMRI responses and obtained only aggregate measures that combined the activity to individual stimuli as well as their potential interaction. Here, we directly measure electrocorticographic steady-state responses corresponding to individual objects and to their interaction using a frequency-tagging technique. Attention to two

  20. Gastrin induces parathyroid hormone-like hormone expression in gastric parietal cells.

    Science.gov (United States)

    Al Menhali, Asma; Keeley, Theresa M; Demitrack, Elise S; Samuelson, Linda C

    2017-06-01

    Parietal cells play a fundamental role in stomach maintenance, not only by creating a pathogen-free environment through the production of gastric acid, but also by secreting growth factors important for homeostasis of the gastric epithelium. The gastrointestinal hormone gastrin is known to be a central regulator of both parietal cell function and gastric epithelial cell proliferation and differentiation. Our previous gene expression profiling studies of mouse stomach identified parathyroid hormone-like hormone (PTHLH) as a potential gastrin-regulated gastric growth factor. Although PTHLH is commonly overexpressed in gastric tumors, its normal expression, function, and regulation in the stomach are poorly understood. In this study we used pharmacologic and genetic mouse models as well as human gastric cancer cell lines to determine the cellular localization and regulation of this growth factor by the hormone gastrin. Analysis of Pthlh(LacZ/+) knock-in reporter mice localized Pthlh expression to parietal cells in the gastric corpus. Regulation by gastrin was demonstrated by increased Pthlh mRNA abundance after acute gastrin treatment in wild-type mice and reduced expression in gastrin-deficient mice. PTHLH transcripts were also observed in normal human stomach as well as in human gastric cancer cell lines. Gastrin treatment of AGS-E gastric cancer cells induced a rapid and robust increase in numerous PTHLH mRNA isoforms. This induction was largely due to increased transcriptional initiation, although analysis of mRNA half-life showed that gastrin treatment also extended the half-life of PTHLH mRNA, suggesting that gastrin regulates expression by both transcriptional and posttranscriptional mechanisms.NEW & NOTEWORTHY We show that the growth factor parathyroid hormone-like hormone (PTHLH) is expressed in acid-secreting parietal cells of the mouse stomach. We define the specific PTHLH mRNA isoforms expressed in human stomach and in human gastric cancer cell lines and

  1. Syndecan-1 in the mouse parietal peritoneum microcirculation in inflammation.

    Directory of Open Access Journals (Sweden)

    Paulina M Kowalewska

    Full Text Available BACKGROUND: The heparan sulfate proteoglycan syndecan-1 (CD138 was shown to regulate inflammatory responses by binding chemokines and cytokines and interacting with adhesion molecules, thereby modulating leukocyte trafficking to tissues. The objectives of this study were to examine the expression of syndecan-1 and its role in leukocyte recruitment and chemokine presentation in the microcirculation underlying the parietal peritoneum. METHODS: Wild-type BALB/c and syndecan-1 null mice were stimulated with an intraperitoneal injection of Staphylococcus aureus LTA, Escherichia coli LPS or TNFα and the microcirculation of the parietal peritoneum was examined by intravital microscopy after 4 hours. Fluorescence confocal microscopy was used to examine syndecan-1 expression in the peritoneal microcirculation using fluorescent antibodies. Blocking antibodies to adhesion molecules were used to examine the role of these molecules in leukocyte-endothelial cell interactions in response to LTA. To determine whether syndecan-1 co-localizes with chemokines in vivo, fluorescent antibodies to syndecan-1 were co-injected intravenously with anti-MIP-2 (CXCL2, anti-KC (CXCL1 or anti-MCP-1 (CCL2. RESULTS AND CONCLUSION: Syndecan-1 was localized to the subendothelial region of peritoneal venules and the mesothelial layer. Leukocyte rolling was significantly decreased with LPS treatment while LTA and TNFα significantly increased leukocyte adhesion compared with saline control. Leukocyte-endothelial cell interactions were not different in syndecan-1 null mice. Antibody blockade of β2 integrin (CD18, ICAM-1 (CD54 and VCAM-1 (CD106 did not decrease leukocyte adhesion in response to LTA challenge while blockade of P-selectin (CD62P abrogated leukocyte rolling. Lastly, MIP-2 expression in the peritoneal venules was not dependent on syndecan-1 in vivo. Our data suggest that syndecan-1 is expressed in the parietal peritoneum microvasculature but does not regulate leukocyte

  2. Parietal transcranial direct current stimulation modulates primary motor cortex excitability.

    Science.gov (United States)

    Rivera-Urbina, Guadalupe Nathzidy; Batsikadze, Giorgi; Molero-Chamizo, Andrés; Paulus, Walter; Kuo, Min-Fang; Nitsche, Michael A

    2015-03-01

    The posterior parietal cortex is part of the cortical network involved in motor learning and is structurally and functionally connected with the primary motor cortex (M1). Neuroplastic alterations of neuronal connectivity might be an important basis for learning processes. These have however not been explored for parieto-motor connections in humans by transcranial direct current stimulation (tDCS). Exploring tDCS effects on parieto-motor cortical connectivity might be functionally relevant, because tDCS has been shown to improve motor learning. We aimed to explore plastic alterations of parieto-motor cortical connections by tDCS in healthy humans. We measured neuroplastic changes of corticospinal excitability via motor evoked potentials (MEP) elicited by single-pulse transcranial magnetic stimulation (TMS) before and after tDCS over the left posterior parietal cortex (P3), and 3 cm posterior or lateral to P3, to explore the spatial specificity of the effects. Furthermore, short-interval intracortical inhibition/intracortical facilitation (SICI/ICF) over M1, and parieto-motor cortical connectivity were obtained before and after P3 tDCS. The results show polarity-dependent M1 excitability alterations primarily after P3 tDCS. Single-pulse TMS-elicited MEPs, M1 SICI/ICF at 5 and 7 ms and 10 and 15 ms interstimulus intervals (ISIs), and parieto-motor connectivity at 10 and 15 ms ISIs were all enhanced by anodal stimulation. Single pulse-TMS-elicited MEPs, and parieto-motor connectivity at 10 and 15 ms ISIs were reduced by cathodal tDCS. The respective corticospinal excitability alterations lasted for at least 120 min after stimulation. These results show an effect of remote stimulation of parietal areas on M1 excitability. The spatial specificity of the effects and the impact on parietal cortex-motor cortex connections suggest a relevant connectivity-driven effect.

  3. Dissociable parietal regions facilitate successful retrieval of recently learned and personally familiar information.

    Science.gov (United States)

    Elman, Jeremy A; Cohn-Sheehy, Brendan I; Shimamura, Arthur P

    2013-03-01

    In fMRI analyses, the posterior parietal cortex (PPC) is particularly active during the successful retrieval of episodic memory. To delineate the neural correlates of episodic retrieval more succinctly, we compared retrieval of recently learned spatial locations (photographs of buildings) with retrieval of previously familiar locations (photographs of familiar campus buildings). Episodic retrieval of recently learned locations activated a circumscribed region within the ventral PPC (anterior angular gyrus and adjacent regions in the supramarginal gyrus) as well as medial PPC regions (posterior cingulated gyrus and posterior precuneus). Retrieval of familiar locations activated more posterior regions in the ventral PPC (posterior angular gyrus, LOC) and more anterior regions in the medial PPC (anterior precuneus and retrosplenial cortex). These dissociable effects define more precisely PPC regions involved in the retrieval of recent, contextually bound information as opposed to regions involved in other processes, such as visual imagery, scene reconstruction, and self-referential processing.

  4. Parietal plasticity after training with a complex video game is associated with individual differences in improvements in an untrained working memory task

    Directory of Open Access Journals (Sweden)

    Aki eNikolaidis

    2014-03-01

    Full Text Available Researchers have devoted considerable attention and resources to cognitive training, yet there have been few examinations of the relationship between individual differences in patterns of brain activity during the training task and training benefits on untrained tasks (i.e., transfer. While a predominant hypothesis suggests that training will transfer if there is training-induced plasticity in brain regions important for the untrained task, this theory lacks sufficient empirical support. To address this issue we investigated the relationship between individual differences in training-induced changes in brain activity during a cognitive training videogame, and whether those changes explained individual differences in the resulting changes in performance in untrained tasks. Forty-five young adults trained with a videogame that challenges working memory, attention, and motor control for 15 2-hour sessions. Before and after training, all subjects received neuropsychological assessments targeting working memory, attention, and procedural learning to assess transfer. Subjects also underwent pre and post functional magnetic resonance imaging (fMRI scans while they played the training videogame to assess how these patterns of brain activity change in response to training. For regions implicated in working memory, such as the superior parietal lobe, individual differences in the post-minus-pre changes in activation predicted performance changes in an untrained working memory task. These findings suggest that training-induced plasticity in the functional representation of a training task may play a role in individual differences in transfer. Our data support and extend previous literature that has examined the association between training related cognitive changes and associated changes in underlying neural networks. We discuss the role of individual differences in brain function in training generalizability and make suggestions for future cognitive

  5. Sylvian Fissure and Parietal Anatomy in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Knaus, Tracey A.; Tager-Flusberg, Helen; Foundas, Anne L.

    2012-01-01

    Autism spectrum disorder (ASD) is characterized by deficits in social functioning and language and communication, with restricted interests or stereotyped behaviors. Anatomical differences have been found in the parietal cortex in children with ASD, but parietal subregions and associations between Sylvian fissure (SF) and parietal anatomy have not been explored. In this study, SF length and anterior and posterior parietal volumes were measured on MRI in 30 right-handed boys with ASD and 30 right-handed typically developing boys (7–14 years), matched on age and non-verbal IQ. There was leftward SF and anterior parietal asymmetry, and rightward posterior parietal asymmetry, across groups. There were associations between SF and parietal asymmetries, with slight group differences. Typical SF asymmetry was associated with typical anterior and posterior parietal asymmetry, in both groups. In the atypical SF asymmetry group, controls had atypical parietal asymmetry, whereas in ASD there were more equal numbers of individuals with typical as atypical anterior parietal asymmetry. We did not find significant anatomical-behavioral associations. Our findings of more individuals in the ASD group having a dissociation between cortical asymmetries warrants further investigation of these subgroups and emphasizes the importance of investigating anatomical relationships in addition to group differences in individual regions. PMID:22713374

  6. Sylvian Fissure and Parietal Anatomy in Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Tracey A. Knaus

    2012-01-01

    Full Text Available Autism spectrum disorder (ASD is characterized by deficits in social functioning and language and communication, with restricted interests or stereotyped behaviors. Anatomical differences have been found in the parietal cortex in children with ASD, but parietal subregions and associations between Sylvian fissure (SF and parietal anatomy have not been explored. In this study, SF length and anterior and posterior parietal volumes were measured on MRI in 30 right-handed boys with ASD and 30 right-handed typically developing boys (7–14 years, matched on age and non-verbal IQ. There was leftward SF and anterior parietal asymmetry, and rightward posterior parietal asymmetry, across groups. There were associations between SF and parietal asymmetries, with slight group differences. Typical SF asymmetry was associated with typical anterior and posterior parietal asymmetry, in both groups. In the atypical SF asymmetry group, controls had atypical parietal asymmetry, whereas in ASD there were more equal numbers of individuals with typical as atypical anterior parietal asymmetry. We did not find significant anatomical-behavioral associations. Our findings of more individuals in the ASD group having a dissociation between cortical asymmetries warrants further investigation of these subgroups and emphasizes the importance of investigating anatomical relationships in addition to group differences in individual regions.

  7. Hereditary cranium bifidum persisting as enlarged parietal foramina (Catlin marks) on cephalometric radiographs.

    Science.gov (United States)

    Mupparapu, Muralidhar; Binder, Robert E; Duarte, Fernando

    2006-06-01

    Cranium bifidum occultum is a rare skull ossification disorder referred to as the Catlin mark characterized by ossification defects in the parietal bones. Evidence suggests that this condition has a strong genetic heterogenicity. It is believed that, as calvarial growth continues, ossification in parietal bones fills these defects, and they can remain as parietal foramina on either side of the sagittal suture. During the conversion phase of cranium bifidum to the persistent parietal foramen, there will be periods when the brain is unprotected because of the delay in the ossification of the parietal bones. This report describes cranium bifidum occultum diagnosed as an incidental finding in a 14-year-old boy who initially had large bilateral unossified parietal bones and many congenital abnormalities. The patient underwent various surgical procedures over 6 years for the correction of cleft lip and palate. With craniofacial corrections and orthodontic treatment, the patient now has stable dentition and a firm palate with most of the parietal bones ossified. Cranioplasty was not recommended by his family physician after consultation with a neurosurgeon. Orthodontists should be familiar with this genetic abnormality because it causes delay in parietal bone ossification, and they should be able to distinguish between anatomic parietal foramina and enlarged parietal foramina (persistent unossified areas of cranium bifidum occultum), especially when craniofacial abnormalities are noticed.

  8. Cortical projections to the superior colliculus in tree shrews (Tupaia belangeri).

    Science.gov (United States)

    Baldwin, Mary K L; Wei, Haiyang; Reed, Jamie L; Bickford, Martha E; Petry, Heywood M; Kaas, Jon H

    2013-05-01

    The visuomotor functions of the superior colliculus depend not only on direct inputs from the retina, but also on inputs from neocortex. As mammals vary in the areal organization of neocortex, and in the organization of the number of visual and visuomotor areas, patterns of corticotectal projections vary. Primates in particular have a large number of visual areas projecting to the superior colliculus. As tree shrews are close relatives of primates, and they are also highly visual, we studied the distribution of cortical neurons projecting to the superior colliculus by injecting anatomical tracers into the colliculus. Since projections from visuotopically organized visual areas are expected to match the visuotopy of the superior colliculus, injections at different retinotopic locations in the superior colliculus provide information about the locations and organization of topographic areas in extrastriate cortex. Small injections in the superior colliculus labeled neurons in locations within areas 17 (V1) and 18 (V2) that are consistent with the known topography of these areas and the superior colliculus. In addition, the separate locations of clusters of labeled cells in temporal visual cortex provide evidence for five or more topographically organized areas. Injections that included deeper layers of the superior colliculus also labeled neurons in medial frontal cortex, likely in premotor cortex. Only occasional labeled neurons were observed in somatosensory or auditory cortex. Regardless of tracer injection location, we found that, unlike primates, a substantial projection to the superior colliculus from posterior parietal cortex is not a characteristic of tree shrews.

  9. Sobredentadura total superior implantosoportada

    Directory of Open Access Journals (Sweden)

    Luis Orlando Rodríguez García

    2010-06-01

    Full Text Available Se presenta un caso de un paciente desdentado total superior, rehabilitado en la consulta de implantología de la Clínica "Pedro Ortiz" del municipio Habana del Este en Ciudad de La Habana, Cuba, en el año 2009, mediante prótesis sobre implantes osteointegrados, técnica que se ha incorporado a la práctica estomatológica en Cuba como alternativa al tratamiento convencional en los pacientes desdentados totales. Se siguió un protocolo que comprendió una fase quirúrgica, procedimiento con o sin realización de colgajo y carga precoz o inmediata. Se presenta un paciente masculino de 56 años de edad, que acudió a la consulta multidisciplinaria, preocupado, porque se le habían elaborado tres prótesis en los últimos dos años y ninguna reunía los requisitos de retención que él necesitaba para sentirse seguro y cómodo con las mismas. El resultado final fue la satisfacción total del paciente, con el mejoramiento de la calidad estética y funcional.

  10. Intentional signals during saccadic and reaching delays in the human posterior parietal cortex.

    Science.gov (United States)

    Galati, Gaspare; Committeri, Giorgia; Pitzalis, Sabrina; Pelle, Gina; Patria, Fabiana; Fattori, Patrizia; Galletti, Claudio

    2011-12-01

    In the monkey posterior parietal cortex (PPC), there is clear evidence of anatomically segregated neuronal populations specialized for planning saccades and arm-reaching movements. However, functional neuroimaging studies in humans have yielded controversial results. Here we show that the human PPC contains distinct subregions responsive to salient visual cues, some of which combine spatial and action-related signals into 'intentional' signals. Participants underwent event-related functional magnetic resonance imaging while performing delayed saccades and long-range arm reaches instructed by visual cues. We focused on activity in the time period following the cue and preceding the actual movement. The use of individual cortical surface reconstructions with detailed sulcal labeling allowed the definition of six responsive regions with distinctive anatomical locations in the PPC. Each region exhibited a distinctive combination of transient and sustained signals during the delay, modulated by either the cue spatial location (contralateral vs. ipsilateral), the instructed action (saccades vs. reaching) or both. Importantly, a lateral and a medial dorsal parietal region showed sustained responses during the delay preferentially for contralateral saccadic and reaching trials, respectively. In the lateral region, preference for saccades was evident only as a more sustained response during saccadic vs. reaching delays, whereas the medial region also showed a higher transient response to cues signaling reaching vs. saccadic actions. These response profiles closely match the behavior of neurons in the macaque lateral and medial intraparietal area, respectively, and suggest that these corresponding human regions are encoding spatially directed action plans or 'intentions'.

  11. Mapping the functional neuroanatomy of spatial neglect and human parietal lobe functions: progress and challenges.

    Science.gov (United States)

    Vuilleumier, Patrik

    2013-08-01

    Spatial neglect is generally defined by various deficits in processing information from one (e.g., left) side of space contralateral to focal (e.g., right) hemisphere damage. Although classically associated with parietal lobe functions, there is now compelling evidence that neglect can follow lesions in many different cortical and subcortical sites, suggesting a dysfunction in distributed brain networks. In addition, neglect is likely to result from a combination of distinct deficits that co-occur due to concomitant damage affecting juxtaposed brain areas and their connections, but the exact nature of core deficits and their neural substrates still remains unclear. The present review describes recent progress in identifying functional components of the neglect syndrome and relating them to distinct subregions of parietal cortex. A comprehensive understanding of spatial neglect will require a more precise definition of cognitive processes implicated in different behavioral manifestations, as well as meticulous mapping of these processes onto specific brain circuits, while taking into account functional changes in activity that may arise in structurally intact areas subsequent to damage in distant portions of the relevant networks. © 2013 New York Academy of Sciences.

  12. Gastric hyperplasia and parietal cell loss in Taenia taeniaeformis inoculated immunodeficient mice.

    Science.gov (United States)

    Lagapa, Jose Trinipil; Konno, Kenjiro; Oku, Yuzaburo; Nonaka, Nariaki; Ito, Mamoru; Kamiya, Masao

    2002-03-01

    Immunodeficient mice were studied to determine their suitability as models in investigating the role of Taenia taeniaeformis larval products in the development of gastric hyperplasia. Recombinant active gene 2 (RAG2)-deficient and severe combined immune-deficient (SCID) mice were studied as candidate animal models. RAG2-deficient mice inoculated orally with T. taeniaeformis eggs developed gastric hyperplasia with alcian blue-periodic acid-Schiff-positive cell proliferation similar to those of rats. SCID mice inoculated with different doses and routes of T. taeniaeformis in vitro-hatched oncospheres and those orally inoculated with eggs resulted also in different degrees of gastric hyperplasia. Influence of inoculation forms of parasite, doses and routes of inoculation on initiation of hyperplastic gastropathy was suggested to be dependent on number and size of developed larvae. Both RAG2-deficient and SCID mice with hyperplastic mucosa were observed with significant loss of parietal cells. Apparent decrease in parietal cell number was observed in SCID mice at 2 weeks after intraperitoneal inoculation with oncospheres before hyperplastic lesions developed. Earliest occurrence of gastric hyperplasia in SCID mice was observed at 3 weeks after oral inoculation of in vitro-hatched oncospheres, sooner than orally inoculated rats. The results suggested that these immunodeficient mice could be used as animal models to study factors involved in T. taeniaeformis-induced gastric mucous cell hyperplasia.

  13. Alpha stimulation of the human parietal cortex attunes tactile perception to external space.

    Science.gov (United States)

    Ruzzoli, Manuela; Soto-Faraco, Salvador

    2014-02-03

    An intriguing question in neuroscience concerns how somatosensory events on the skin are represented in the human brain. Since Head and Holmes' [1] neuropsychological dissociation between localizing touch on the skin and localizing body parts in external space, touch is considered to operate in a variety of spatial reference frames [2]. At least two representations of space are in competition during orienting to touch: a somatotopic one, reflecting the organization of the somatosensory cortex (S1) [3], and a more abstract, external reference frame that factors postural changes in relation to body parts and/or external space [4, 5]. Previous transcranial magnetic stimulation (TMS) studies suggest that the posterior parietal cortex (PPC) plays a key role in supporting representations as well as orienting attention in an external reference frame [4, 6]. Here, we capitalized on the TMS entrainment approach [7, 8], targeting the intraparietal sulcus (IPS). We found that frequency-specific (10 Hz) tuning of the PPC induced spatially specific enhancement of tactile detection that was expressed in an external reference frame. This finding establishes a tight causal link between a concrete form of brain activity (10 Hz oscillation) and a specific type of spatial representation, revealing a fundamental property of how the parietal cortex encodes information.

  14. Asymmetries in numerical density of pyramidal neurons in the fifth layer of the human posterior parietal cortex

    Directory of Open Access Journals (Sweden)

    Đukić-Macut Nataša

    2012-01-01

    Full Text Available Background/Aim. Both superior parietal lobule (SPL of dorsolateral hemispheric surface and precuneus (PEC of medial surface are the parts of posterior parietal cortex. The aim of this study was to determine the numerical density (NV of pyramidal neurons in the layer V of SPL and PEC and their potential differences. Methods. From 20 (40 hemispheres formaline fixed human brains (both sexes; 27- 65 years tissue blocks from SPL and PEC from the left and right hemisphere were used. According to their size the brains were divided into two groups, the group I with the larger left (15 brains and the group II with the larger right hemisphere (5 brains. Serial Nissl sections (5 μm of the left and right SPL and PEC were used for stereological estimation of NV of the layer V pyramidal neurons. Results. NV of pyramidal neurons in the layer V in the left SPL of brains with larger left hemispheres was significantly higher than in the left SPL of brains with larger right hemisphere. Comparing sides in brains with larger left hemisphere, the left SPL had higher NV than the right one, and then the left PEC, and the right SPL had significantly higher NV than the right PEC. Comparing sides in brains with the larger right hemisphere, the left SPL had significantly higher NV than left PEC, but the right SPL had significantly higher NV than left SPL and the right PEC. Conclusion. Generally, there is an inverse relationship of NV between the medial and lateral areas of the human posterior parietal cortex. The obtained values were different between the brains with larger left and right hemispheres, as well as between the SPL and PEC. In all the comparisons the left SPL had the highest values of NV of pyramidal neurons in the layer V (4771.80 mm-3, except in brains with the larger right hemisphere.

  15. Whisker-related afferents in superior colliculus.

    Science.gov (United States)

    Castro-Alamancos, Manuel A; Favero, Morgana

    2016-05-01

    Rodents use their whiskers to explore the environment, and the superior colliculus is part of the neural circuits that process this sensorimotor information. Cells in the intermediate layers of the superior colliculus integrate trigeminotectal afferents from trigeminal complex and corticotectal afferents from barrel cortex. Using histological methods in mice, we found that trigeminotectal and corticotectal synapses overlap somewhat as they innervate the lower and upper portions of the intermediate granular layer, respectively. Using electrophysiological recordings and optogenetics in anesthetized mice in vivo, we showed that, similar to rats, whisker deflections produce two successive responses that are driven by trigeminotectal and corticotectal afferents. We then employed in vivo and slice experiments to characterize the response properties of these afferents. In vivo, corticotectal responses triggered by electrical stimulation of the barrel cortex evoke activity in the superior colliculus that increases with stimulus intensity and depresses with increasing frequency. In slices from adult mice, optogenetic activation of channelrhodopsin-expressing trigeminotectal and corticotectal fibers revealed that cells in the intermediate layers receive more efficacious trigeminotectal, than corticotectal, synaptic inputs. Moreover, the efficacy of trigeminotectal inputs depresses more strongly with increasing frequency than that of corticotectal inputs. The intermediate layers of superior colliculus appear to be tuned to process strong but infrequent trigeminal inputs and weak but more persistent cortical inputs, which explains features of sensory responsiveness, such as the robust rapid sensory adaptation of whisker responses in the superior colliculus. Copyright © 2016 the American Physiological Society.

  16. Sense of agency is related to gamma band coupling in an inferior parietal-preSMA circuitry

    Directory of Open Access Journals (Sweden)

    Anina eRitterband-Rosenbaum

    2014-07-01

    Full Text Available In the present study we tested whether sense of agency (SoA is reflected by changes in coupling between right medio-frontal/supplementary motor area (SMA and inferior parietal cortex (IPC. Twelve healthy adult volunteers participated in the study. They performed a variation of a line-drawing task (Nielsen, 1963;Fourneret and Jeannerod, 1998, in which they moved a cursor on a digital tablet with their right hand without seeing the hand. Visual feedback displayed on a computer monitor was either in correspondence with or deviated from the actual movement. This made participants uncertain as to the agent of the movement and they reported SoA in approximately 50% of trials when the movement was computer-generated. We tested whether IPC-preSMA coupling was associated with SoA, using dynamic causal modelling (DCM for induced responses (Chen et al., 2008;Herz et al., 2012. Nine different DCMs were constructed for the early and late phases of the task, respectively. All models included two regions: a superior medial gyrus (preSMA region and a right supramarginal gyrus (IPC region. Bayesian models selection (Stephan et al., 2009 favoured a model with input to IPC and modulation of the forward connection to SMA in the late task phase, and a model with input to preSMA and modulation of the backward connection was favoured for the early task phase. The analysis shows that IPC source activity in the 50-60Hz range modulated preSMA source activity in the 40-70 Hz range in the presence of SoA compared with no SoA in the late task phase, but the test of the early task phase did not reveal any differences between presence and absence of SoA. We show that SoA is associated with a directionally specific between frequencies coupling from IPC to preSMA in the higher gamma (ɣ band in the late task phase. This suggests that SoA is a retrospective perception, which is highly dependent on interpretation of the outcome of the performed action.

  17. Thalamic and parietal brain morphology predicts auditory category learning.

    Science.gov (United States)

    Scharinger, Mathias; Henry, Molly J; Erb, Julia; Meyer, Lars; Obleser, Jonas

    2014-01-01

    Auditory categorization is a vital skill involving the attribution of meaning to acoustic events, engaging domain-specific (i.e., auditory) as well as domain-general (e.g., executive) brain networks. A listener's ability to categorize novel acoustic stimuli should therefore depend on both, with the domain-general network being particularly relevant for adaptively changing listening strategies and directing attention to relevant acoustic cues. Here we assessed adaptive listening behavior, using complex acoustic stimuli with an initially salient (but later degraded) spectral cue and a secondary, duration cue that remained nondegraded. We employed voxel-based morphometry (VBM) to identify cortical and subcortical brain structures whose individual neuroanatomy predicted task performance and the ability to optimally switch to making use of temporal cues after spectral degradation. Behavioral listening strategies were assessed by logistic regression and revealed mainly strategy switches in the expected direction, with considerable individual differences. Gray-matter probability in the left inferior parietal lobule (BA 40) and left precentral gyrus was predictive of "optimal" strategy switch, while gray-matter probability in thalamic areas, comprising the medial geniculate body, co-varied with overall performance. Taken together, our findings suggest that successful auditory categorization relies on domain-specific neural circuits in the ascending auditory pathway, while adaptive listening behavior depends more on brain structure in parietal cortex, enabling the (re)direction of attention to salient stimulus properties.

  18. Right parietal cortex mediates recognition memory for melodies.

    Science.gov (United States)

    Schaal, Nora K; Javadi, Amir-Homayoun; Halpern, Andrea R; Pollok, Bettina; Banissy, Michael J

    2015-07-01

    Functional brain imaging studies have highlighted the significance of right-lateralized temporal, frontal and parietal brain areas for memory for melodies. The present study investigated the involvement of bilateral posterior parietal cortices (PPCs) for the recognition memory of melodies using transcranial direct current stimulation (tDCS). Participants performed a recognition task before and after tDCS. The task included an encoding phase (12 melodies), a retention period, as well as a recognition phase (24 melodies). Experiment 1 revealed that anodal tDCS over the right PPC led to a deterioration of overall memory performance compared with sham. Experiment 2 confirmed the results of Experiment 1 and further showed that anodal tDCS over the left PPC did not show a modulatory effect on memory task performance, indicating a right lateralization for musical memory. Furthermore, both experiments revealed that the decline in memory for melodies can be traced back to an interference of anodal stimulation on the recollection process (remember judgements) rather than to familiarity judgements. Taken together, this study revealed a causal involvement of the right PPC for memory for melodies and demonstrated a key role for this brain region in the recollection process of the memory task. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. 'How many' and 'how much' dissociate in the parietal lobe.

    Science.gov (United States)

    Lecce, Francesca; Walsh, Vincent; Didino, Daniele; Cappelletti, Marinella

    2015-12-01

    We investigated whether two features that are fundamental for quantity processing, namely numerosity and continuous quantity - or 'how many' versus 'how much' - may dissociate in the parietal lobe. Fourteen mathematically-normal participants performed a well-established numerosity discrimination task after receiving continuous theta burst transcranial magnetic stimulation (TBS) over the left or right intraparietal sulcus (IPS) or the Vertex. We performed a detailed analysis of accuracy (based on the Weber Fraction, wf), which distinguished between trials in which numerosity was anti-correlated or 'incongruent' to other continuous measures of quantity, and trials in which numerosity and other continuous features were 'congruent'. Congruent trials can be processed by integrating numerosity or continuous quantity features like cumulative area since they correlate. Instead incongruent trials can only be processed based on numerosity and requires inhibiting cumulative area or other continuous quantity features like dot size and would lead to incorrect judgment if these features are used as a proxy for numerosity. We found an increase of wf, i.e., weakened numerosity processing in incongruent but not congruent trials following left IPS-TBS, which suggests that numerosity processing was impaired while continuous quantity processing remained unchanged. Moreover, wf increased in congruent but not in incongruent trials following right IPS stimulation. We concluded that left and right parietal are respectively critical for numerosity discrimination, i.e., 'how many' or alternatively for response selection, and for integrating numerosity and continuous quantity features. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Children with dyslexia and right parietal lobe dysfunction: event-related potentials in response to words and pseudowords.

    Science.gov (United States)

    Wimmer, Heinz; Hutzler, Florian; Wiener, Christian

    2002-10-18

    Hari and Renvall (Trends Cogn. Sci., 5 (2001) 525) proposed that dyslexic children suffer from sluggish attention deployment due to a right parietal lobe dysfunction. To examine this hypothesis, good and poor readers (12, 11-year-old boys in each group) had to read familiar words (low attentional demand) and pseudowords (high attentional demand). The amplitude of the event-related potential at around 100 ms post-stimulus (N1) in response to words and pseudowords was used as measure of attention deployment. Consistent with the attention deficit/right parietal lobe dysfunction hypothesis, poor readers showed lower N1 amplitudes in response to pseudowords, but not in response to words at central sites of the right hemisphere. However, poor readers also showed lower N1 amplitudes to both words and pseudowords at left frontal sites suggestive of an early deficit in activating phonological codes.

  1. The role of prefrontal and parietal cortices in esthetic appreciation of representational and abstract art: a TMS study.

    Science.gov (United States)

    Cattaneo, Zaira; Lega, Carlotta; Gardelli, Chiara; Merabet, Lotfi B; Cela-Conde, Camilo J; Nadal, Marcos

    2014-10-01

    To explain the biological foundations of art appreciation is to explain one of our species' distinctive traits. Previous neuroimaging and electrophysiological studies have pointed to the prefrontal and the parietal cortex as two critical regions mediating esthetic appreciation of visual art. In this study, we applied transcranial magnetic stimulation (TMS) over the left prefrontal cortex and the right posterior parietal cortex while participants were evaluating whether they liked, and by how much, a particular painting. By depolarizing cell membranes in the targeted regions, TMS transiently interferes with the activity of specific cortical areas, which allows clarifying their role in a given task. Our results show that both regions play a fundamental role in mediating esthetic appreciation. Critically though, the effects of TMS varied depending on the type of art considered (i.e. representational vs. abstract) and on participants' a-priori inclination toward one or the other.

  2. Meta-analysis: how does posterior parietal cortex contribute to reasoning?

    Science.gov (United States)

    Wendelken, Carter

    2014-01-01

    Reasoning depends on the contribution of posterior parietal cortex (PPC). But PPC is involved in many basic operations-including spatial attention, mathematical cognition, working memory, long-term memory, and language-and the nature of its contribution to reasoning is unclear. Psychological theories of the processes underlying reasoning make divergent claims about the neural systems that are likely to be involved, and better understanding the specific contribution of PPC can help to inform these theories. We set out to address several competing hypotheses, concerning the role of PPC in reasoning: (1) reasoning involves application of formal logic and is dependent on language, with PPC activation for reasoning mainly reflective of linguistic processing; (2) reasoning involves probabilistic computation and is thus dependent on numerical processing mechanisms in PPC; and (3) reasoning is built upon the representation and processing of spatial relations, and PPC activation associated with reasoning reflects spatial processing. We conducted two separate meta-analyses. First, we pooled data from our own studies of reasoning in adults, and examined activation in PPC regions of interest (ROI). Second, we conducted an automated meta-analysis using Neurosynth, in which we examined overlap between activation maps associated with reasoning and maps associated with other key functions of PPC. In both analyses, we observed reasoning-related activation concentrated in the left Inferior Parietal Lobe (IPL). Reasoning maps demonstrated the greatest overlap with mathematical cognition. Maintenance, visuospatial, and phonological processing also demonstrated some overlap with reasoning, but a large portion of the reasoning map did not overlap with the map for any other function. This evidence suggests that the PPC's contribution to reasoning may be most closely related to its role in mathematical cognition, but that a core component of this contribution may be specific to reasoning.

  3. Meta-analysis: How does posterior parietal cortex contribute to reasoning?

    Directory of Open Access Journals (Sweden)

    Carter eWendelken

    2015-01-01

    Full Text Available Reasoning depends on the contribution of posterior parietal cortex (PPC. But PPC is involved in many basic operations -- including spatial attention, mathematical cognition, working memory, long-term memory, and language -- and the nature of its contribution to reasoning is unclear. Psychological theories of the processes underlying reasoning make divergent claims about the neural systems that are likely to be involved, and better understanding the specific contribution of PPC can help to inform these theories. We set out to address several competing hypotheses, concerning the role of PPC in reasoning: 1 reasoning involves application of formal logic and is dependent on language, with PPC activation for reasoning mainly reflective of linguistic processing, 2 reasoning involves probabilistic computation and is thus dependent on numerical processing mechanisms in PPC, and 3 reasoning is built upon the representation and processing of spatial relations, and PPC activation associated with reasoning reflects spatial processing. We conducted two separate meta-analyses. First, we pooled data from our own studies of reasoning in adults, and examined activation in PPC regions of interest. Second, we conducted an automated meta-analysis using Neurosynth, in which we examined overlap between activation maps associated with reasoning and maps associated with other key functions of PPC. In both analyses, we observed reasoning-related activation concentrated in the left Inferior Parietal Lobe (IPL. Reasoning maps demonstrated the greatest overlap with mathematical cognition. Maintenance, visuospatial, and phonological processing also demonstrated some overlap with reasoning, but a large portion of the reasoning map did not overlap with the map for any other function. This evidence suggests that the PPC’s contribution to reasoning may be most closely related to its role in mathematical cognition, but that a core component of this contribution may be specific

  4. Meta-analysis: how does posterior parietal cortex contribute to reasoning?

    Science.gov (United States)

    Wendelken, Carter

    2015-01-01

    Reasoning depends on the contribution of posterior parietal cortex (PPC). But PPC is involved in many basic operations—including spatial attention, mathematical cognition, working memory, long-term memory, and language—and the nature of its contribution to reasoning is unclear. Psychological theories of the processes underlying reasoning make divergent claims about the neural systems that are likely to be involved, and better understanding the specific contribution of PPC can help to inform these theories. We set out to address several competing hypotheses, concerning the role of PPC in reasoning: (1) reasoning involves application of formal logic and is dependent on language, with PPC activation for reasoning mainly reflective of linguistic processing; (2) reasoning involves probabilistic computation and is thus dependent on numerical processing mechanisms in PPC; and (3) reasoning is built upon the representation and processing of spatial relations, and PPC activation associated with reasoning reflects spatial processing. We conducted two separate meta-analyses. First, we pooled data from our own studies of reasoning in adults, and examined activation in PPC regions of interest (ROI). Second, we conducted an automated meta-analysis using Neurosynth, in which we examined overlap between activation maps associated with reasoning and maps associated with other key functions of PPC. In both analyses, we observed reasoning-related activation concentrated in the left Inferior Parietal Lobe (IPL). Reasoning maps demonstrated the greatest overlap with mathematical cognition. Maintenance, visuospatial, and phonological processing also demonstrated some overlap with reasoning, but a large portion of the reasoning map did not overlap with the map for any other function. This evidence suggests that the PPC’s contribution to reasoning may be most closely related to its role in mathematical cognition, but that a core component of this contribution may be specific to

  5. RNA-Seq analysis of the parietal cortex in Alzheimer's disease reveals alternatively spliced isoforms related to lipid metabolism.

    Science.gov (United States)

    Mills, James D; Nalpathamkalam, Thomas; Jacobs, Heidi I L; Janitz, Caroline; Merico, Daniele; Hu, Pingzhao; Janitz, Michael

    2013-03-01

    The parietal cortex of the human brain plays a unique role in the coordination of movement and in the integration of signals from the other cortices. Because of its extensive connections and involvement in many higher-order cognitive functions, neurodegenerative changes in the parietal lobe are believed to be crucial in the early symptoms of Alzheimer's disease (AD). Little is known about the transcriptome of this part of the human brain or how it is perturbed by the neurodegenerative process. To that end, we performed mRNA sequencing using the Illumina RNA-Seq technique on samples derived from normal and AD parietal lobes. Gene expression analysis evaluating alternatively spliced isoform expression and promoter usage revealed surprisingly elevated transcriptome activity in the AD condition. This phenomenon was particularly apparent in the alternative usage of transcriptional start sites. A Gene Ontology analysis of the differentially expressed genes revealed enrichment in the functional pathways related to lipid metabolism, thus highlighting the importance of astrocyte activity in the neurodegenerative process. We also identified an upregulation of the diazepam-binding inhibitor (DBI) gene in AD, as the result of a splicing switch toward shorter, intron-retaining isoforms driven by alternative promoters and was coupled with a simultaneous decrease in the abundance of protein-coding transcripts. These two DBI isoforms have not been described previously.

  6. [Brodmann Areas 39 and 40: Human Parietal Association Area and Higher Cortical Function].

    Science.gov (United States)

    Sakurai, Yasuhisa

    2017-04-01

    The anatomy and function of the angular gyrus (Brodmann Area 39) and supramarginal gyrus (Brodmann Area 40) are described here. Both gyri constitute the inferior part of the parietal lobe. Association fibers from the angular gyrus project to the dorsolateral prefrontal cortex via the superior longitudinal fasciculus (SLF) II/arcuate fasciculus (AF), whereas those from the supramarginal gyrus project to the ventrolateral prefrontal cortex via SLF III/AF. Damage to the left angular gyrus causes kanji agraphia (lexical agraphia) and mild anomia, whereas damage to the left supramarginal gyrus causes kana alexia (phonological dyslexia) and kana agraphia (phonological agraphia). Damage to either gyrus causes Gerstmann's syndrome (finger agnosia, left-right disorientation, agraphia and acalculia) and verbal short-term memory impairment. "Angular alexia with agraphia" results from damage to the middle occipital gyrus posterior to the angular gyrus. Alexia and agraphia, with lesions in the angular or supramarginal gyrus, are characterized by kana transposition errors in reading words, which suggests the impairment of sequential phonological processing.

  7. Sense of agency is related to gamma band coupling in an inferior parietal-preSMA circuitry

    DEFF Research Database (Denmark)

    Ritterband-Rosenbaum, Anina; Nielsen, Jens Bo; Christensen, Mark Schram

    2014-01-01

    In the present study we tested whether sense of agency (SoA) is reflected by changes in coupling between right medio-frontal/supplementary motor area (SMA) and inferior parietal cortex (IPC). Twelve healthy adult volunteers participated in the study. They performed a variation of a line-drawing t......In the present study we tested whether sense of agency (SoA) is reflected by changes in coupling between right medio-frontal/supplementary motor area (SMA) and inferior parietal cortex (IPC). Twelve healthy adult volunteers participated in the study. They performed a variation of a line...... as to the agent of the movement and they reported SoA in approximately 50% of trials when the movement was computer-generated. We tested whether IPC-preSMA coupling was associated with SoA, using dynamic causal modeling (DCM) for induced responses (Chen et al., 2008; Herz et al., 2012). Nine different DCMs were...... constructed for the early and late phases of the task, respectively. All models included two regions: a superior medial gyrus (preSMA) region and a right supramarginal gyrus (IPC) region. Bayesian models selection (Stephan et al., 2009) favored a model with input to IPC and modulation of the forward...

  8. Representation of accumulating evidence for a decision in two parietal areas.

    Science.gov (United States)

    de Lafuente, Victor; Jazayeri, Mehrdad; Shadlen, Michael N

    2015-03-11

    Decisions are often made by accumulating evidence for and against the alternatives. The momentary evidence represented by sensory neurons is accumulated by downstream structures to form a decision variable, linking the evolving decision to the formation of a motor plan. When decisions are communicated by eye movements, neurons in the lateral intraparietal area (LIP) represent the accumulation of evidence bearing on the potential targets for saccades. We now show that reach-related neurons from the medial intraparietal area (MIP) exhibit a gradual modulation of their firing rates consistent with the representation of an evolving decision variable. When decisions were communicated by saccades instead of reaches, decision-related activity was attenuated in MIP, whereas LIP neurons were active while monkeys communicated decisions by saccades or reaches. Thus, for decisions communicated by a hand movement, a parallel flow of sensory information is directed to parietal areas MIP and LIP during decision formation.

  9. Using model-based functional MRI to locate working memory updates and declarative memory retrievals in the fronto-parietal network

    OpenAIRE

    Borst, Jelmer P.; Anderson, John R.

    2013-01-01

    In this study, we used model-based functional MRI (fMRI) to locate two functions of the fronto-parietal network: declarative memory retrievals and updating of working memory. Because regions in the fronto-parietal network are by definition coherently active, locating functions within this network is difficult. To overcome this problem, we applied model-based fMRI, an analysis method that uses predictions of a computational model to inform the analysis. We applied model-based fMRI to five prev...

  10. Sex Differences in Parietal Lobe Morphology: Relationship to Mental Rotation Performance

    OpenAIRE

    Koscik, Tim; O’Leary, Dan; Moser, David J; Andreasen, Nancy C; Nopoulos, Peg

    2008-01-01

    Structural magnetic resonance imaging (MRI) studies of the human brain have reported evidence for sexual dimorphism. In addition to sex differences in overall cerebral volume, differences in the proportion of gray matter (GM) to white matter (WM) volume have been observed, particularly in the parietal lobe. To our knowledge there have been no studies examining the relationship between the sex differences in parietal lobe structure and function. The parietal lobe is thought to be involved in s...

  11. Resting-state functional connectivity of ventral parietal regions associated with attention reorienting and episodic recollection

    Directory of Open Access Journals (Sweden)

    Sander M Daselaar

    2013-02-01

    Full Text Available In functional neuroimaging studies, ventral parietal cortex (VPC is recruited by very different cognitive tasks. Explaining the contributions VPC to these tasks has become a topic of intense study and lively debate. Perception studies frequently find VPC activations during tasks involving attention-reorienting, and memory studies frequently find them during tasks involving episodic recollection. According to the Attention to Memory (AtoM model, both phenomena can be explained by the same VPC function: bottom-up attention. Yet, a recent functional MRI (fMRI meta-analysis suggested that attention-reorienting activations are more frequent in anterior VPC, whereas recollection activations are more frequent in posterior VPC. Also, there is evidence that anterior and posterior VPC regions have different functional connectivity patterns. To investigate these issues, we conducted a resting-state functional connectivity analysis using as seeds the center-of-mass of attention-reorienting and recollection activations in the meta-analysis, which were located in the supramarginal gyrus (SMG, around the temporo-parietal junction—TPJ and in the angular gyrus (AG, respectively. The SMG seed showed stronger connectivity with ventrolateral prefrontal cortex (VLPFC and occipito-temporal cortex, whereas the AG seed showed stronger connectivity with the hippocampus and default network regions. To investigate whether these connectivity differences were graded or sharp, VLPFC and hippocampal connectivity was measured in VPC regions traversing through the SMG and AG seeds. The results showed a graded pattern: VLPFC connectivity gradually decreases from SMG to AG, whereas hippocampal connectivity gradually increases from SMG to AG. Importantly, both gradients showed an abrupt break when extended beyond VPC borders. This finding suggests that functional differences between SMG and AG are more subtle than previously thought. These connectivity differences can be

  12. Neural correlates of conflict between gestures and words: A domain-specific role for a temporal-parietal complex

    Science.gov (United States)

    Noah, J. Adam; Dravida, Swethasri; Zhang, Xian; Yahil, Shaul; Hirsch, Joy

    2017-01-01

    The interpretation of social cues is a fundamental function of human social behavior, and resolution of inconsistencies between spoken and gestural cues plays an important role in successful interactions. To gain insight into these underlying neural processes, we compared neural responses in a traditional color/word conflict task and to a gesture/word conflict task to test hypotheses of domain-general and domain-specific conflict resolution. In the gesture task, recorded spoken words (“yes” and “no”) were presented simultaneously with video recordings of actors performing one of the following affirmative or negative gestures: thumbs up, thumbs down, head nodding (up and down), or head shaking (side-to-side), thereby generating congruent and incongruent communication stimuli between gesture and words. Participants identified the communicative intent of the gestures as either positive or negative. In the color task, participants were presented the words “red” and “green” in either red or green font and were asked to identify the color of the letters. We observed a classic “Stroop” behavioral interference effect, with participants showing increased response time for incongruent trials relative to congruent ones for both the gesture and color tasks. Hemodynamic signals acquired using functional near-infrared spectroscopy (fNIRS) were increased in the right dorsolateral prefrontal cortex (DLPFC) for incongruent trials relative to congruent trials for both tasks consistent with a common, domain-general mechanism for detecting conflict. However, activity in the left DLPFC and frontal eye fields and the right temporal-parietal junction (TPJ), superior temporal gyrus (STG), supramarginal gyrus (SMG), and primary and auditory association cortices was greater for the gesture task than the color task. Thus, in addition to domain-general conflict processing mechanisms, as suggested by common engagement of right DLPFC, socially specialized neural modules

  13. Starch granules size distribution in superior and inferior grains of wheat is related to enzyme activities and their gene expressions during grain filling

    DEFF Research Database (Denmark)

    Zhang, Chuanhui; Jiang, Dong; Liu, Fulai

    2010-01-01

    with the temporally change patterns of starch synthase activities and relative gene expression levels. For instance, activities of soluble and granule-bound starch synthases (designated SSS and GBSS) peaked at 20 and 24 DAF. Genes encoding isoforms of starch synthases expressed at different grain filling periods...

  14. Superior Sagittal Sinus Thrombosis Complicating Typhoid Fever in a Teenager

    Directory of Open Access Journals (Sweden)

    P. O. Okunola

    2012-01-01

    Full Text Available Cerebral venous sinus (sinovenous thrombosis (CSVT is a rare life-threatening disorder in childhood that is often misdiagnosed. CSVT encompasses cavernous sinus thrombosis, lateral sinus thrombosis, and superior sagittal sinus thrombosis (SSST. We present an adolescent girl who was well until two weeks earlier when she had a throbbing frontal headache and fever with chills; she later had dyspnoea, jaundice, melena stool, multiple seizures, nuchal rigidity, and monoparesis of the right lower limb a day before admission. Urine test for Salmonella typhi Vi antigen was positive, and Widal reaction was significant. Serial cranial computerized tomography scans revealed an expanding hypodense lesion in the parafalcine region consistent with SSST or a parasagittal abscess. Inadvertent left parietal limited craniectomy confirmed SSST. She recovered completely with subsequent conservative management. Beyond neuropsychiatric complications of Typhoid fever, CSVT should be highly considered when focal neurologic deficits are present.

  15. Herpes Simplex Encephalitis of the Parietal Lobe: A Rare Presentation

    Science.gov (United States)

    Tkachenko, Lara; Moisi, Marc; Rostad, Steven; Umeh, Randle; Zwillman, Michael E; Tubbs, R. Shane; Page, Jeni; Newell, David W.; Delashaw, Johnny B

    2016-01-01

    A 69-year-old female with a history of breast cancer and hypertension presented with a rare case of herpes simplex encephalitis (HSE) isolated to her left parietal lobe. The patient’s first biopsy was negative for herpes simplex virus (HSV) I/II antigens, but less than two weeks later, the patient tested positive on repeat biopsy. This initial failure to detect the virus and the similarities between HSE and symptoms of intracranial hemorrhage (ICH) suggests repeat testing for HSV in the presence of ICH. Due to the frequency of patients with extra temporal HSE, a diagnosis of HSE should be more readily considered, particularly when a patient may not be improving and a concrete diagnosis has not been solidified. PMID:27774355

  16. Herpes Simplex Encephalitis of the Parietal Lobe: A Rare Presentation.

    Science.gov (United States)

    Fisahn, Christian; Tkachenko, Lara; Moisi, Marc; Rostad, Steven; Umeh, Randle; Zwillman, Michael E; Tubbs, R Shane; Page, Jeni; Newell, David W; Delashaw, Johnny B

    2016-09-16

    A 69-year-old female with a history of breast cancer and hypertension presented with a rare case of herpes simplex encephalitis (HSE) isolated to her left parietal lobe. The patient's first biopsy was negative for herpes simplex virus (HSV) I/II antigens, but less than two weeks later, the patient tested positive on repeat biopsy. This initial failure to detect the virus and the similarities between HSE and symptoms of intracranial hemorrhage (ICH) suggests repeat testing for HSV in the presence of ICH. Due to the frequency of patients with extra temporal HSE, a diagnosis of HSE should be more readily considered, particularly when a patient may not be improving and a concrete diagnosis has not been solidified.

  17. Scalp Medical Tattooing Technique to Camouflage Bifid Parietal Whorls

    Science.gov (United States)

    You, Seung Hyun

    2016-01-01

    Background: To the best of the authors’ knowledge, no reports have described cosmetic problems arising from the hair direction around the parietal whorl (PW). This study was performed to evaluate the efficacy of scalp medical tattooing technique for camouflaging bifid PWs. Methods: We retrospectively examined the outcomes of scalp medical tattooing in 38 patients who were admitted for camouflage of a bifid PW. Results: All patients’ cosmetic appearance was judged, by both the patients and the surgeon, to be markedly improved. No specific complications occurred, such as infection, hair loss in the operative field, or other problems. Conclusion: Scalp medical tattooing appears to be an effective method that helps to camouflage the see-through appearance of bifid PWs. PMID:27200232

  18. Downregulation of GABA[Subscript A] Receptor Protein Subunits a6, ß2, d, e, ?2, ?, and ?2 in Superior Frontal Cortex of Subjects with Autism

    Science.gov (United States)

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rustan, Oyvind G.; Rooney, Robert J.; Thuras, Paul D.

    2014-01-01

    We measured protein and mRNA levels for nine gamma-aminobutyric acid A (GABA[subscript A]) receptor subunits in three brain regions (cerebellum, superior frontal cortex, and parietal cortex) in subjects with autism versus matched controls. We observed changes in mRNA for a number of GABA[subscript A] and GABA[subscript B] subunits and overall…

  19. Subcortical mapping of calculation processing in the right parietal lobe.

    Science.gov (United States)

    Della Puppa, Alessandro; De Pellegrin, Serena; Lazzarini, Anna; Gioffrè, Giorgio; Rustemi, Oriela; Cagnin, Annachiara; Scienza, Renato; Semenza, Carlo

    2015-05-01

    Preservation of calculation processing in brain surgery is crucial for patients' quality of life. Over the last decade, surgical electrostimulation was used to identify and preserve the cortical areas involved in such processing. Conversely, subcortical connectivity among different areas implicated in this function remains unclear, and the role of surgery in this domain has not been explored so far. The authors present the first 2 cases in which the subcortical functional sites involved in calculation were identified during right parietal lobe surgery. Two patients affected by a glioma located in the right parietal lobe underwent surgery with the aid of MRI neuronavigation. No calculation deficits were detected during preoperative assessment. Cortical and subcortical mapping were performed using a bipolar stimulator. The current intensity was determined by progressively increasing the amplitude by 0.5-mA increments (from a baseline of 1 mA) until a sensorimotor response was elicited. Then, addition and multiplication calculation tasks were administered. Corticectomy was performed according to both the MRI neuronavigation data and the functional findings obtained through cortical mapping. Direct subcortical electrostimulation was repeatedly performed during tumor resection. Subcortical functional sites for multiplication and addition were detected in both patients. Electrostimulation interfered with calculation processing during cortical mapping as well. Functional sites were spared during tumor removal. The postoperative course was uneventful, and calculation processing was preserved. Postoperative MRI showed complete resection of the tumor. The present preliminary study shows for the first time how functional mapping can be a promising method to intraoperatively identify the subcortical functional sites involved in calculation processing. This report therefore supports direct electrical stimulation as a promising tool to improve the current knowledge on

  20. Superior bactericidal activity of N-bromine compounds compared to their N-chlorine analogues can be reversed under protein load.

    Science.gov (United States)

    Gottardi, W; Klotz, S; Nagl, M

    2014-06-01

    To investigate and compare the bactericidal activity (BA) of active bromine and chlorine compounds in the absence and presence of protein load. Quantitative killing tests against Escherichia coli and Staphylococcus aureus were performed both in the absence and in the presence of peptone with pairs of isosteric active chlorine and bromine compounds: hypochlorous and hypobromous acid (HOCl and HOBr), dichloro- and dibromoisocyanuric acid, chlorantine and bromantine (1,3-dibromo- and 1,3 dichloro-5,5-dimethylhydantoine), chloramine T and bromamine T (N-chloro- and N-bromo-4-methylbenzenesulphonamide sodium), and N-chloro- and N-bromotaurine sodium. To classify the bactericidal activities on a quantitative basis, an empirical coefficient named specific bactericidal activity (SBA), founded on the parameters of killing curves, was defined: SBA= mean log reductions/(mean exposure times x concentration) [mmol 1(-1) min (-1)]. In the absence of peptone, tests with washed micro-organisms revealed a throughout higher BA of bromine compounds with only slight differences between single substances. This was in contrast to chlorine compounds, whose killing times differed by a factor of more than four decimal powers. As a consequence, also the isosteric pairs showed according differences. In the presence of peptone, however, bromine compounds showed an increased loss of BA, which partly caused a reversal of efficacy within isosteric pairs. In medical practice, weakly oxidizing active chlorine compounds like chloramines have the highest potential as topical anti-infectives in the presence of proteinaceous material (mucous membranes, open wounds). Active bromine compounds, on the other hand, have their chance at insensitive body regions with low organic matter, for example skin surfaces. The expected protein load is one of the most important parameters for selection of a suited active halogen compound. © 2014 The Society for Applied Microbiology.

  1. Paroxysmal posterior variant alien hand syndrome associated with parietal lobe infarction: case presentation.

    Science.gov (United States)

    Demiryürek, Bekir Enes; Gündogdu, Aslı Aksoy; Acar, Bilgehan Atılgan; Alagoz, Aybala Neslihan

    2016-10-01

    Alien hand syndrome (AHS) is an involuntary and rare neurological disorder emerges at upper extremity. AHS is a disconnection syndrome with the symptoms of losing sense of agency and sense of ownership, and presence of involuntary autonomic motor activity. There are frontal, callosal and posterior types of AHS and each of them occurs depend on the lesions of different of the brain. Posterior variant is a rarely encountered AHS type compared to others. AHS, generally regarded as persistent, but rarely maybe observed as paroxysmal. In this article, we present 71 year old patient with right posterior parietal lobe infarction and developed posterior variant AHS on left arm 1 month after discharge from the hospital. To discriminate AHS from conditions such as extrapyramidal movement disorders and epileptic seizures that take part in differential diagnosis should be kept in mind by the clinicians. Wrong and unnecessary treatments could be prevented in this way.

  2. Temporary interference over the posterior parietal cortices disrupts thermoregulatory control in humans.

    Directory of Open Access Journals (Sweden)

    Alberto Gallace

    Full Text Available The suggestion has recently been made that certain higher-order cortical areas involved in supporting multisensory representations of the body, and of the space around it, might also play a role in controlling thermoregulatory functions. Here we demonstrate that temporary interference with the function of one of these areas, the posterior parietal cortex, by repetitive transcranial magnetic stimulation, results in a decrease in limb temperature. By contrast, interference with the activity of a sensory-specific area (the primary somatosensory cortex had no effect on temperature. The results of this experiment suggest that associative multisensory brain areas might exert a top-down modulation over basic physiological control. Such a function might be part of a larger neural circuit responsible for maintaining the integrity of the body at both a homeostatic and a psychological level.

  3. Demands on response inhibition processes determine modulations of theta band activity in superior frontal areas and correlations with pupillometry - Implications for the norepinephrine system during inhibitory control.

    Science.gov (United States)

    Dippel, Gabriel; Mückschel, Moritz; Ziemssen, Tjalf; Beste, Christian

    2017-08-15

    Response inhibition processes are important for goal-directed behavior and particularly demanded when it is unlikely to inhibit automatically executed responses. It has been suggested that the norepinephrine (NE) system is important to consider for such likelihood effects. As an indirect measure of the NE system activity we used the pupil diameter and integrated this data with neurophysiological (EEG) data and beamforming analyses. The study shows that inhibitory control processes reflected by theta oscillations are strongly modulated by the likelihood to employ these processes and that these mechanisms were related to neural processes in the SMA and SFG. Probably, the modulations observed for theta band activity may reflect modulations in the encoding of a surprise, or conflict signal. Interestingly, correlation analyses of neuronal activity at the sensor and the source level with pupil diameter data revealed strong correlations that were only seen in the condition where inhibitory control processes were rarely demanded. On the basis of findings and theoretical models suggesting that the pupil diameter can be interpreted as a proximate of NE system activity the results may be interpreted that the NE system modulates inhibitory control processes via theta band activity in the SFB when the likelihood to inhibit a prepotent response tendency is low. From this it may be speculated that the NE system dynamically gains and loses relevance to modulate inhibitory control depending on boundary conditions that determine the mode of responding. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Surface-active derivative of inulin (Inutec® SP1) is a superior carrier for solid dispersions with a high drug load

    NARCIS (Netherlands)

    Srinarong, Parinda; Hämäläinen, Suvi; Visser, Marinella R.; Hinrichs, Wouter L.J; Ketolainen, Jarkko; Frijlink, Henderik W.

    2011-01-01

    The aim of this study was to compare the applicability of inulin, its surface-active derivative (Inutec® SP1), and polyvinylpyrrolidone (PVP) as carriers in high drug load solid dispersions (SDs) for improving the dissolution rate of a range of lipophilic drugs (diazepam, fenofibrate, ritonavir, and

  5. Superior Long-Term Synaptic Memory Induced by Combining Dual Pharmacological Activation of PKA and ERK with an Enhanced Training Protocol

    Science.gov (United States)

    Liu, Rong-Yu; Neveu, Curtis; Smolen, Paul; Cleary, Leonard J.; Byrne, John H.

    2017-01-01

    Developing treatment strategies to enhance memory is an important goal of neuroscience research. Activation of multiple biochemical signaling cascades, such as the protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) pathways, is necessary to induce long-term synaptic facilitation (LTF), a correlate of long-term memory (LTM).…

  6. The blocking activity of birch pollen-specific immunotherapy-induced IgG4 is not qualitatively superior to that of other IgG subclasses

    DEFF Research Database (Denmark)

    Ejrnaes, Anne M; Bødtger, Uffe; Larsen, Jørgen N;

    2004-01-01

    blocking activity was found in the purified IgG4 fraction. There was no significant difference in the binding avidities (1/K(d)) measured in the two IgG fractions. Thus, it appears that SIT-induced specific IgG4 contributes to the IgG blocking of allergen binding to IgE in a simple quantitative manner...

  7. POSTOPERATIVE RECOVERY OF MUSCLE FORCE THROUGH MUSCLE TONING IN ABDOMINAL PARIETAL DEFECTS

    Directory of Open Access Journals (Sweden)

    Gabriela Monica Moacă

    2015-10-01

    Full Text Available The present paper’s aim is to elaborate a program of postoperative recovery for patients suffering from abdominal parietal defects, and to indicate the beneficial implications, both of the preoperative preparations and of the postoperative physiotherapist actions. The programs of functional postoperative recovery have been elaborated individually for the 254 patients under study – of which 139 belong to lot A (operated under a scheduled regime, after the preoperative preparation and 115 belong to lot B (operated in an emergency regime, in the General Surgery Clinic III of the University Emergency Hospital of Bucharest, between 1998 and 2009. The postoperative recovery program has been individualized for each patient, depending on his / her pathology and co-morbidities, and the physiotherapist has trained and took care that the patients should execute exercises of respiratory re-education, active mobilization of their limbs, coordinated with the breath, isometric exercises for the toning of their arms and legs and of the abdomen muscles. They started the muscle toning exercises slowly and increased them progressively in duration and intensity. The recovery started with isometric-type exercises and continued with the isotonic-type ones. Though mainly the abdominal muscles are aimed at, respectively the flexor muscles of the torso, the physiotherapy program shall comprise the toning of the other muscle groups of the torso, as well. It has been noticed - for the patients in lot A, compared to those of lot B - an obvious net favorable postoperative evolution, characterized through: a reduction of the respiratory, cardiac and thromboembolic complications, a quick postoperative recovery and the immediate social reintegration. An overview of the two lots proves the importance of the cardio-respiratory and locomotive preparation of the patients suffering from big abdominal parietal defects. The simple gestures of respiratory re-education, of

  8. Neural evidence for the use of digit-image mnemonic in a superior memorist: An fMRI study

    Directory of Open Access Journals (Sweden)

    Li-Jun eYin

    2015-03-01

    Full Text Available Some superior memorists demonstrated exceptional memory for reciting a large body of information. The underlying neural correlates, however, are seldom addressed. C.L., the current holder of Guinness World Record for reciting 67,890 digits in π, participated in this functional magnetic resonance imaging (fMRI study. Thirteen participants without any mnemonics training were included as controls. Our previous studies suggested that C.L. used a digit-image mnemonic in studying and recalling lists of digits, namely associating 2-digit groups of ‘00’ to ‘99’ with images and generating vivid stories out of them (Hu, Ericsson, Yang & Lu, 2009. Thus, 2-digit condition was included, with 1-digit numbers and letters as control conditions. We hypothesized that 2-digit condition in C.L. should elicit the strongest activity in the brain regions which are associated with his mnemonic. Functional MRI results revealed that bilateral frontal poles (FPs, BA10, left superior parietal lobule (SPL, left premotor cortex (PMC, and left dorsolateral prefrontal cortex (DLPFC, were more engaged in both the study and recall phase of 2-digit condition for C.L. relative to controls. Moreover, the left middle/inferior frontal gyri (M/IFG and intraparietal sulci (IPS were less engaged in the study phase of 2-digit condition for C.L. (vs. controls. These results suggested that C.L. relied more on brain regions that are associated with episodic memory other than verbal rehearsal while he used his mnemonic strategies. This study supported theoretical accounts of restructured cognitive mechanisms for the acquisition of superior memory performance.

  9. Induction of motor associative plasticity in the posterior parietal cortex-primary motor network

    DEFF Research Database (Denmark)

    Chao, Chi-Chao; Karabanov, Anke Ninija; Paine, Rainer

    2015-01-01

    There is anatomical and functional connectivity between the primary motor cortex (M1) and posterior parietal cortex (PPC) that plays a role in sensorimotor integration. In this study, we applied corticocortical paired-associative stimuli to ipsilateral PPC and M1 (parietal ccPAS) in healthy right...

  10. Mapping different intra-hemispheric parietal-motor networks using twin Coil TMS

    DEFF Research Database (Denmark)

    Karabanov, Anke Ninija; Chao, Chi-Chao; Paine, Rainer

    2013-01-01

    Accumulating evidence suggests anatomical and functional differences in connectivity between the anterior and posterior parts of the inferior-parietal lobule (IPL) and the frontal motor areas.......Accumulating evidence suggests anatomical and functional differences in connectivity between the anterior and posterior parts of the inferior-parietal lobule (IPL) and the frontal motor areas....

  11. Dynamic CT Features of a hemangioma originating from the parietal pleura: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Kyung; Park, Jai Soung; Park, Sang Hyun; Cha, Jang Gyu; Shin, Hwa Kyoon; Koh, Eun Suk [Soonchunhyang Univ. Bucheon Hospital/Soonchunhyang Univ. College of Medicine, Bucheon (Korea, Republic of)

    2012-06-15

    A pleural hemangioma is an extremely rare disease. Few studies have reported on the radiologic appearance of chest wall hemangioma, especially originating from the parietal pleura. We describe a 45 year old female patient with a soft tissue mass in the parietal pleura showing centripetal enhancement on dynamic CT. The patient underwent surgery and the pathologic examination confirmed the presence of a capillary hemangioma.

  12. The Contribution of the Inferior Parietal Cortex to Spoken Language Production

    Science.gov (United States)

    Geranmayeh, Fatemeh; Brownsett, Sonia L. E.; Leech, Robert; Beckmann, Christian F.; Woodhead, Zoe; Wise, Richard J. S.

    2012-01-01

    This functional MRI study investigated the involvement of the left inferior parietal cortex (IPC) in spoken language production (Speech). Its role has been apparent in some studies but not others, and is not convincingly supported by clinical studies as they rarely include cases with lesions confined to the parietal lobe. We compared Speech with…

  13. Cerebral activations related to audition-driven performance imagery in professional musicians.

    Directory of Open Access Journals (Sweden)

    Robert Harris

    Full Text Available Functional Magnetic Resonance Imaging (fMRI was used to study the activation of cerebral motor networks during auditory perception of music in professional keyboard musicians (n = 12. The activation paradigm implied that subjects listened to two-part polyphonic music, while either critically appraising the performance or imagining they were performing themselves. Two-part polyphonic audition and bimanual motor imagery circumvented a hemisphere bias associated with the convention of playing the melody with the right hand. Both tasks activated ventral premotor and auditory cortices, bilaterally, and the right anterior parietal cortex, when contrasted to 12 musically unskilled controls. Although left ventral premotor activation was increased during imagery (compared to judgment, bilateral dorsal premotor and right posterior-superior parietal activations were quite unique to motor imagery. The latter suggests that musicians not only recruited their manual motor repertoire but also performed a spatial transformation from the vertically perceived pitch axis (high and low sound to the horizontal axis of the keyboard. Imagery-specific activations in controls were seen in left dorsal parietal-premotor and supplementary motor cortices. Although these activations were less strong compared to musicians, this overlapping distribution indicated the recruitment of a general 'mirror-neuron' circuitry. These two levels of sensori-motor transformations point towards common principles by which the brain organizes audition-driven music performance and visually guided task performance.

  14. Cerebral activations related to audition-driven performance imagery in professional musicians.

    Science.gov (United States)

    Harris, Robert; de Jong, Bauke M

    2014-01-01

    Functional Magnetic Resonance Imaging (fMRI) was used to study the activation of cerebral motor networks during auditory perception of music in professional keyboard musicians (n = 12). The activation paradigm implied that subjects listened to two-part polyphonic music, while either critically appraising the performance or imagining they were performing themselves. Two-part polyphonic audition and bimanual motor imagery circumvented a hemisphere bias associated with the convention of playing the melody with the right hand. Both tasks activated ventral premotor and auditory cortices, bilaterally, and the right anterior parietal cortex, when contrasted to 12 musically unskilled controls. Although left ventral premotor activation was increased during imagery (compared to judgment), bilateral dorsal premotor and right posterior-superior parietal activations were quite unique to motor imagery. The latter suggests that musicians not only recruited their manual motor repertoire but also performed a spatial transformation from the vertically perceived pitch axis (high and low sound) to the horizontal axis of the keyboard. Imagery-specific activations in controls were seen in left dorsal parietal-premotor and supplementary motor cortices. Although these activations were less strong compared to musicians, this overlapping distribution indicated the recruitment of a general 'mirror-neuron' circuitry. These two levels of sensori-motor transformations point towards common principles by which the brain organizes audition-driven music performance and visually guided task performance.

  15. Synthesis of Highly Active Sub-Nanometer Pt@Rh Core-Shell Nanocatalyst via a Photochemical Route: Porous Titania Nanoplates as a Superior Photoactive Support.

    Science.gov (United States)

    Zhan, Wen-Wen; Zhu, Qi-Long; Dang, Song; Liu, Zheng; Kitta, Mitsunori; Suenaga, Kazutomo; Zheng, Lan-Sun; Xu, Qiang

    2017-02-02

    Sub-nanometer Pt@Rh nanoparticles highly dispersed on MIL-125-derived porous TiO2 nanoplates are successfully prepared for the first time by a photochemical route, where the porous TiO2 nanoplates with a relatively high specific surface area play a dual role as both effective photoreductant and catalyst support. The resulting Pt@Rh/p-TiO2 can be utilized as a highly active catalyst.

  16. Superior results with continuous passive motion compared to active motion after periosteal transplantation. A retrospective study of human patella cartilage defect treatment.

    Science.gov (United States)

    Alfredson, H; Lorentzon, R

    1999-01-01

    Fifty-seven consecutive patients (33 men and 24 women), with a mean age of 32 years (range 16-53 years), who suffered from an isolated full-thickness cartilage defect of the patella and disabling knee pain of long duration, were treated by autologous periosteal transplantation to the cartilage defect. The first 38 consecutive patients (group A) were postoperatively treated with continuous passive motion (CPM), and the next 19 consecutive patients (group B) were treated with active motion for the first 5 days postoperatively. In both groups, the initial regimens were followed by active motion, slowly progressive strength training, and slowly progressive weight bearing. In group A, after a mean follow-up of 51 months (range 33-92 months), 29 patients (76%) were graded as excellent or good, 7 patients (19%) were graded as fair, and 2 patients (5%) were graded as poor. In group B, after a mean follow-up of 21 months (range 14-28 months), 10 patients (53%) were graded as excellent or good, 6 patients (32%) were graded as fair, and 3 patients (15%) were graded as poor. Altogether, nine of the fair or poor cases (50%) were diagnosed with chondromalacia of the patella. Our results, after performing autologous periosteal transplantation in patients with full-thickness cartilage defects of the patella and disabling knee pain, are good if CPM is used postoperatively. The clinical results using active motion postoperatively are not acceptable, especially not in patients with chondromalacia of the patella.

  17. Tris(3-hydroxypropyl)phosphine is superior to dithiothreitol for in vitro assessment of vitamin K 2,3-epoxide reductase activity.

    Science.gov (United States)

    Krettler, Christoph; Bevans, Carville G; Reinhart, Christoph; Watzka, Matthias; Oldenburg, Johannes

    2015-04-01

    Use of the reductant dithiothreitol (DTT) as a substrate for measuring vitamin K 2,3-epoxide reductase (VKOR) activity in vitro has been reported to be problematic because it enables side reactions involving the vitamin K1 2,3-epoxide (K1>O) substrate. Here we characterize specific problems when using DTT and show that tris(3-hydroxypropyl)phosphine (THPP) is a reliable alternative to DTT for in vitro assessment of VKOR enzymatic activity. In addition, the pH buffering compound imidazole was found to be problematic in enhancing DTT-dependent non-enzymatic side reactions. Using THPP and phosphate-based pH buffering, we measured apparent Michaelis-Menten constants of 1.20 μM for K1>O and 260 μM for the active neutral form of THPP. The Km value for K1>O is in agreement with the value that we previously obtained using DTT (1.24 μM). Using THPP, we successfully eliminated non-enzymatic production of 3-hydroxyvitamin K1 and its previously reported base-catalyzed conversion to K1, both of which were shown to occur when DTT and imidazole are used as the reductant and pH buffer, respectively, in the in vitro VKOR assay. Accordingly, substitution of THPP for DTT in the in vitro VKOR assay will ensure more accurate enzymatic measurements and assessment of warfarin and other 4-hydroxycoumarin inhibition constants.

  18. Cathodal transcranial direct current stimulation of the posterior parietal cortex reduces steady-state postural stability during the effect of light touch.

    Science.gov (United States)

    Ishigaki, Tomoya; Imai, Ryota; Morioka, Shu

    2016-09-28

    Touching a stable object with a fingertip using slight force (mechanical support, which is referred to as the effect of light touch (LT). In the neural mechanism of the effect of LT, the specific contribution of the cortical brain activity toward the effect of LT remains undefined, particularly the contribution toward steady-state postural sway. The aim of the present study was to investigate the cortical region responsible for the reduction of postural sway in response to the effect of LT. Active LT was applied with the right fingertip and transcranial direct current stimulation (sham or cathodal) was applied to the left primary sensorimotor cortex or the left posterior parietal cortex in the two groups. The experiments were conducted using a single-blind sham-controlled crossover design. Steady-state postural sway was compared with the factors of transcranial direct current stimulation (sham or cathodal) and time (pre or post). In the results, the effect of LT reduced postural stability in the mediolateral direction after cathodal transcranial direct current stimulation of the left posterior parietal cortex. No effect was observed after stimulation of the left primary sensorimotor cortex. This indicates that the left posterior parietal cortex is partly responsible for the effect of LT when touching a fixed point with the right fingertip during suprapostural tasks, where posture is adjusted according to the precision requirements. Cortical processing of sensory integration for voluntary postural orientation in response to touch occurs in the posterior parietal cortex.

  19. 3D nanospherical CdxZn1-xS/reduced graphene oxide composites with superior photocatalytic activity and photocorrosion resistance

    Science.gov (United States)

    Huang, Meina; Yu, Jianhua; Deng, Changshun; Huang, Yingheng; Fan, Minguang; Li, Bin; Tong, Zhangfa; Zhang, Feiyue; Dong, Lihui

    2016-03-01

    Herein, a series of CdxZn1-xS and sulfide/graphene photocatalysts with 3D nanospherical framework have been successfully fabricated by one-pot solvothermal method for the first time. The morphology and structure of samples were confirmed by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray (EDX) spectrometry, N2 adsorption, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS). The as-prepared samples exhibit excellent photocatalytic activities and photocorrosion resistance in the degradation of dyes under visible light. The Cd0.5Zn0.5S/rGO sample shows the most efficient in the photodegradation of methyl orange (MO). It takes about 30 min for degradation completely. The enhanced photocatalytic activity is mainly attributed to the slow photon enhancement of the 3D structure, and the heterojunction between the 3D nanospherical Cd0.5Zn0.5S solid solutions and a high quality 2D rGO support, which can greatly promote the separation of light-induced electrons and holes. Moreover, the large SBET and extended light absorption range also play an important role for improving the photocatalytic activity. The high photocatalytic stability is due to the successful inhibition of the photocorrosion of Cd0.5Zn0.5S/rGO by forming heterojunction between CdS and ZnS, and transferring the photogenerated electrons of Cd0.5Zn0.5S to rGO. The present work can provide rational design of graphene-based photocatalysts with large contact interface and strong interaction between the composites for other application.

  20. 3D nanospherical Cd{sub x}Zn{sub 1−x}S/reduced graphene oxide composites with superior photocatalytic activity and photocorrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Meina; Yu, Jianhua; Deng, Changshun [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Huang, Yingheng [School of Materials Science and Engineering, Guangxi University, Nanning 530004 (China); Fan, Minguang, E-mail: fanmg@gxu.edu.cn [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Guangxi Key Laboratory Petrochemical Resource Processing and Process Intensification Technology, Nanning 530004 (China); Li, Bin; Tong, Zhangfa; Zhang, Feiyue [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Dong, Lihui, E-mail: donglihui2005@126.com [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China)

    2016-03-01

    Graphical abstract: - Highlights: • 3D nanospherical Cd{sub x}Zn{sub 1−x}S/graphene was synthesized via solvothermal method. • Performance evaluation was carried out under visible light irradiation. • Samples show excellent photocatalytic activities and photocorrosion resistance. • A possible photocatalytic and anti-corrosion mechanism is proposed. • The structural effects of 3D nanosphere explain excellent performance. - Abstract: Herein, a series of Cd{sub x}Zn{sub 1−x}S and sulfide/graphene photocatalysts with 3D nanospherical framework have been successfully fabricated by one-pot solvothermal method for the first time. The morphology and structure of samples were confirmed by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray (EDX) spectrometry, N{sub 2} adsorption, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS). The as-prepared samples exhibit excellent photocatalytic activities and photocorrosion resistance in the degradation of dyes under visible light. The Cd{sub 0.5}Zn{sub 0.5}S/rGO sample shows the most efficient in the photodegradation of methyl orange (MO). It takes about 30 min for degradation completely. The enhanced photocatalytic activity is mainly attributed to the slow photon enhancement of the 3D structure, and the heterojunction between the 3D nanospherical Cd{sub 0.5}Zn{sub 0.5}S solid solutions and a high quality 2D rGO support, which can greatly promote the separation of light-induced electrons and holes. Moreover, the large S{sub BET} and extended light absorption range also play an important role for improving the photocatalytic activity. The high photocatalytic stability is due to the successful inhibition of the photocorrosion of Cd{sub 0.5}Zn{sub 0.5}S/rGO by forming heterojunction between CdS and Zn

  1. Distinct contribution of the parietal and temporal cortex to hand configuration and contextual judgements about tools.

    Science.gov (United States)

    Andres, Michael; Pelgrims, Barbara; Olivier, Etienne

    2013-09-01

    Neuropsychological studies showed that manipulatory and semantic knowledge can be independently impaired in patients with upper-limb apraxia, leading to different tool use disorders. The present study aimed to dissociate the brain regions involved in judging the hand configuration or the context associated to tool use. We focussed on the left supramarginalis gyrus (SMG) and left middle temporal gyrus (MTG), whose activation, as evidenced by functional magnetic resonance imaging (fMRI) studies, suggests that they may play a critical role in tool use. The distinctive location of SMG in the dorsal visual stream led us to postulate that this parietal region could play a role in processing incoming information about tools to shape hand posture. In contrast, we hypothesized that MTG, because of its interconnections with several cortical areas involved in semantic memory, could contribute to retrieving semantic information necessary to create a contextual representation of tool use. To test these hypotheses, we used neuronavigated transcranial magnetic stimulation (TMS) to interfere transiently with the function of either left SMG or left MTG in healthy participants performing judgement tasks about either hand configuration or context of tool use. We found that SMG virtual lesions impaired hand configuration but not contextual judgements, whereas MTG lesions selectively interfered with judgements about the context of tool use while leaving hand configuration judgements unaffected. This double dissociation demonstrates that the ability to infer a context of use or a hand posture from tool perception relies on distinct processes, performed in the temporal and parietal regions. The present findings suggest that tool use disorders caused by SMG lesions will be characterized by difficulties in selecting the appropriate hand posture for tool use, whereas MTG lesions will yield difficulties in using tools in the appropriate context.

  2. Exploring the contributions of premotor and parietal cortex to spatial compatibility using image-guided TMS.

    Science.gov (United States)

    Koski, Lisa; Molnar-Szakacs, Istvan; Iacoboni, Marco

    2005-01-15

    Functional brain imaging studies have demonstrated increased activity in dorsal premotor and posterior parietal cortex when performing spatial stimulus-response compatibility tasks (SRC). We tested the specific role of these regions in stimulus-response mapping using single-pulse transcranial magnetic stimulation (TMS). Subjects were scanned using functional magnetic resonance imaging (fMRI) prior to the TMS session during performance of a task in which spatial compatibility was manipulated. For each subject, the area of increased signal within the regions of interest was registered onto their own high-resolution T1-weighted anatomic scan. TMS was applied to these areas for each subject using a frameless stereotaxic system. Task accuracy and reaction time (RT) were measured during blocks of compatible or incompatible trials and during blocks of real TMS or sham stimulation. On each trial, a single TMS pulse was delivered at 50, 100, 150, or 200 ms after the onset of the stimulus in the left or right visual field. TMS over the left premotor cortex produced various facilitatory effects, depending on the timing of the stimulation. At short intervals, TMS appeared to prime the left dorsal premotor cortex to select a right-hand response more quickly, regardless of stimulus-response compatibility. The strongest effect of stimulation, however, occurred at the 200-ms interval, when TMS facilitated left-hand responses during the incompatible condition. Facilitation of attention to the contralateral visual hemifield was observed during stimulation over the parietal locations. We conclude that the left premotor cortex is one of the cortical regions responsible for overriding automatic stimulus-response associations.

  3. Whole network, temporal and parietal lobe contributions to the earliest phases of language production.

    Science.gov (United States)

    Principe, Alessandro; Calabria, Marco; Campo, Adrià Tauste; Cruzat, Josephine; Conesa, Gerardo; Costa, Albert; Rocamora, Rodrigo

    2017-10-01

    We investigated whether it is possible to study the network dynamics and the anatomical regions involved in the earliest moments of picture naming by using invasive electroencephalogram (EEG) traces to predict naming errors. Four right-handed participants with focal epilepsy explored with extensive stereotactic implant montages that recorded temporal, parietal and occipital regions -in two patients of both hemispheres-named a total of 228 black and white pictures in three different sessions recorded in different days. The subjects made errors that involved anomia and semantic dysphasia, which related to word frequency and not to visual complexity. Using different modalities of spectrum analysis and classification with a support vector machine (SVM) we could predict errors with rates that ranged from slightly above chance level to 100%, even in the preconscious phase, i.e., 100 msec after stimulus presentation. The highest rates were obtained using the gamma bands of all contact spectra without averaging, which implies a fine modulation of the neuronal activity at a network level. Despite no subset of nodes could match the whole set, rates close to the best prediction scores were obtained through the spectra of the temporal-parietal and temporal-occipital junction along with the temporal pole and hippocampus. When both hemispheres were explored nodes from the left side dominated in the best subsets. We argue that posterior temporal regions, especially of the dominant side, are involved very early, even in the preconscious phase (100 msec), in language production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Frontal lobe and posterior parietal contributions to the cortico-cerebellar system.

    Science.gov (United States)

    Ramnani, Narender

    2012-06-01

    Our growing understanding of how cerebral cortical areas communicate with the cerebellum in primates has enriched our understanding of the data that cerebellar circuits can access, and the neocortical areas that cerebellar activity can influence. The cerebellum is part of some large-scale networks involving several parts of the neocortex including association areas in the frontal lobe and the posterior parietal cortex that are known for their contributions to higher cognitive function. Understanding their connections with the cerebellum informs the debates around the role of the cerebellum in higher cognitive functions because they provide mechanisms through which association areas and the cerebellum can influence each others' operations. In recent years, evidence from connectional anatomy and human neuroimaging have comprehensively overturned the view that the cerebellum contributes only to motor control. The aim of this review is to examine our changing perspectives on the nature of cortico-cerebellar anatomy and the ways in which it continues to shape our views on its contributions to function. The review considers the anatomical connectivity of the cerebellar cortex with frontal lobe areas and the posterior parietal cortex. It will first focus on the anatomical organisation of these circuits in non-human primates before discussing new findings about this system in the human brain. It has been suggested that in non-human primates "although there is a modest input from medial prefrontal cortex, there is very little or none from the more lateral prefrontal areas" [33]. This review discusses anatomical investigations that challenge this claim. It also attempts to dispel the misconception that prefrontal projections to the cerebellum are from areas concerned only with the kinematic control of eye movements. Finally, I argue that our revised understanding of anatomy compels us to reconsider conventional views of how these systems operate in the human brain.

  5. Preparation and characterization of nano-sized Pt-Ru/C catalysts and their superior catalytic activities for methanol and ethanol oxidation.

    Science.gov (United States)

    Şen, Selda; Şen, Fatih; Gökağaç, Gülsün

    2011-04-21

    Carbon-supported PtRu nanoparticles (Ru/Pt: 0.25) were prepared by three different methods; simultaneous reduction of PtCl(4) and RuCl(3) (catalyst I) and changing the reduction order of PtCl(4) and RuCl(3) (catalysts II and III) to enhance the performance of the anodic catalysts for methanol and ethanol oxidation. Structure, microstructure and surface characterizations of all the catalysts were carried out by X-ray diffraction (XRD), transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The results of the XRD analysis showed that all catalysts had a face-centered cubic (fcc) structure with different and smaller lattice parameters than that of pure platinum, showing that the Ru incorporates into the Pt fcc structure by different ratios in all the catalysts. The typical particle sizes of all catalysts were in the range of 2-3 nm. The most active and stable catalyst for methanol and ethanol oxidation is catalyst III, in which a large amount (more than 90%) of PtRu alloy formation was observed. It has been found that this catalyst is about 8.0 and 33.4 times more active at ∼0.60 V towards the methanol and ethanol oxidation reactions, respectively, compared to the commercial Pt catalyst.

  6. MEG reveals a fast pathway from somatosensory cortex to occipital areas via posterior parietal cortex in a blind subject.

    Science.gov (United States)

    Ioannides, Andreas A; Liu, Lichan; Poghosyan, Vahe; Saridis, George A; Gjedde, Albert; Ptito, Maurice; Kupers, Ron

    2013-01-01

    Cross-modal activity in visual cortex of blind subjects has been reported during performance of variety of non-visual tasks. A key unanswered question is through which pathways non-visual inputs are funneled to the visual cortex. Here we used tomographic analysis of single trial magnetoencephalography (MEG) data recorded from one congenitally blind and two sighted subjects after stimulation of the left and right median nerves at three intensities: below sensory threshold, above sensory threshold and above motor threshold; the last sufficient to produce thumb twitching. We identified reproducible brain responses in the primary somatosensory (S1) and motor (M1) cortices at around 20 ms post-stimulus, which were very similar in sighted and blind subjects. Time-frequency analysis revealed strong 45-70 Hz activity at latencies of 20-50 ms in S1 and M1, and posterior parietal cortex Brodmann areas (BA) 7 and 40, which compared to lower frequencies, were substantially more pronounced in the blind than the sighted subjects. Critically, at frequencies from α-band up to 100 Hz we found clear, strong, and widespread responses in the visual cortex of the blind subject, which increased with the intensity of the somatosensory stimuli. Time-delayed mutual information (MI) revealed that in blind subject the stimulus information is funneled from the early somatosensory to visual cortex through posterior parietal BA 7 and 40, projecting first to visual areas V5 and V3, and eventually V1. The flow of information through this pathway occurred in stages characterized by convergence of activations into specific cortical regions. In sighted subjects, no linked activity was found that led from the somatosensory to the visual cortex through any of the studied brain regions. These results provide the first evidence from MEG that in blind subjects, tactile information is routed from primary somatosensory to occipital cortex via the posterior parietal cortex.

  7. MEG reveals a fast pathway from somatosensory cortex to occipital areas via posterior parietal cortex in a blind subject

    Directory of Open Access Journals (Sweden)

    Andreas A Ioannides

    2013-08-01

    Full Text Available Cross-modal activity in visual cortex of blind subjects has been reported during performance of variety of non-visual tasks. A key unanswered question is through which pathways non-visual inputs are funneled to the visual cortex. Here we used tomographic analysis of single trial magnetoencephalography (MEG data recorded from one congenitally blind and two sighted subjects after stimulation of the left and right median nerves at three intensities: below sensory threshold, above sensory threshold and above motor threshold; the last sufficient to produce thumb twitching. We identified reproducible brain responses in the primary somatosensory (S1 and motor (M1 cortices at around 20 ms post-stimulus, which were very similar in sighted and blind subjects. Time-frequency analysis revealed strong 45 to 70 Hz activity at latencies of 20 to 50 ms in S1 and M1, and posterior parietal cortex Brodmann areas (BA 7 and 40, which compared to lower frequencies, were substantially more pronounced in the blind than the sighted subjects. Critically, at frequencies from α-band up to 100 Hz we found clear, strong and widespread responses in the visual cortex of the blind subject, which increased with the intensity of the somatosensory stimuli. Time-delayed mutual information (MI revealed that in blind subject the stimulus information is funneled from the early somatosensory to visual cortex through posterior parietal BA 7 and 40, projecting first to visual areas V5 and V3, and eventually V1. The flow of information through this pathway occured in stages characterized by convergence of activations into specific cortical regions. In sighted subjects, no linked activity was found that led from the somatosensory to the visual cortex through any of the studied brain regions. These results provide the first evidence from MEG that in blind subjects, tactile information is routed from primary somatosensory to occipital cortex via the posterior parietal cortex.

  8. Activity of a novel anti-folate (PDX, 10-propargyl 10-deazaaminopterin) against human lymphoma is superior to methotrexate and correlates with tumor RFC-1 gene expression.

    Science.gov (United States)

    Wang, Eunice S; O'Connor, Owen; She, Yuhong; Zelenetz, Andrew D; Sirotnak, F M; Moore, Malcolm A S

    2003-06-01

    PDX (10-propargyl-10-deazaaminopterin) is a novel anti-folate with improved membrane transport and polyglutamylation in tumor cells. In prior studies, PDX exhibited enhanced efficacy over methotrexate (MTX) in lung and breast carcinoma xenografts. Because MTX is active in the treatment of aggressive non-Hodgkin's lymphoma (NHL), we compared the efficacy of PDX and MTX against five lymphoma cell lines: RL (transformed follicular lymphoma), HT, SKI-DLBCL-1 (diffuse large B cell), Raji (Burkitt's), and Hs445 (Hodgkin's disease). After 5-day continuous in vitro exposure, PDX demonstrated > 10-fold greater cytotoxicity than MTX in all cell lines (IC50PDX = 3-5 nM, IC50MTX = 30-50 nM). We then compared the in vivo effects of anti-folates against three established human NHL xenografts in NOD/SCID mice. Tumor bearing animals were treated with saline (control) or the maximum tolerated doses of MTX (40 mg/kg) or PDX (60 mg/kg) via an intraperitoneal route twice weekly for 2 weeks. Almost 90% of HT lymphomas treated with PDX completely regressed, whereas, those treated with MTX treatment had only modest growth delays. In two other xenografts, tumor bearing mice had complete regression rates of 56% (RL) and 30% (SKI-DLBCL-1) after PDX therapy. No regressions and only minor growth inhibition was noted after MTX therapy. RT-PCR analysis for the expression of genes involved in folate metabolism demonstrated that increased sensitivity to PDX correlated with higher RFC-1 gene expression with no difference in FPGS or FPGH levels, suggesting that measurement of tumor RFC-1 gene expression level may be a predictor of response to PDX. These results demonstrate that the PDX has markedly greater potential activity against human NHL than MTX and warrants further preclinical and clinical evaluation.

  9. Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task

    Science.gov (United States)

    Revechkis, Boris; Aflalo, Tyson NS; Kellis, Spencer; Pouratian, Nader; Andersen, Richard A.

    2014-12-01

    Objective. To date, the majority of Brain-Machine Interfaces have been used to perform simple tasks with sequences of individual targets in otherwise blank environments. In this study we developed a more practical and clinically relevant task that approximated modern computers and graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of neural decoding. Approach. A male rhesus macaque monkey was implanted with two 96-channel electrode arrays in area 5d of the superior parietal lobule. The animal was trained to perform a GUI-like ‘Face in a Crowd’ task on a computer screen that required selecting one cued, icon-like, face image from a group of alternatives (the ‘Crowd’) using a neurally controlled cursor. We assessed whether the crowd affected decodes of intended cursor movements by comparing it to a ‘Crowd Off’ condition in which only the matching target appeared without alternatives. We also examined if training a neural decoder with the Crowd On rather than Off had any effect on subsequent decode quality. Main results. Despite the additional demands of working with the Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of the crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to Off had no negative influence on subsequent decoding performance. Additionally, the subject was able to gaze around freely without influencing cursor position. Significance. Our results demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet

  10. Morphological patterns of the intraparietal sulcus and the anterior intermediate parietal sulcus of Jensen in the human brain.

    Science.gov (United States)

    Zlatkina, Veronika; Petrides, Michael

    2014-12-22

    Distinct parts of the intraparietal sulcal cortex contribute to sensorimotor integration and visual spatial attentional processing. A detailed examination of the morphological relations of the different segments of the complex intraparietal sulcal region in the human brain in standard stereotaxic space, which is a prerequisite for detailed structure-to-function studies, is not available. This study examined the intraparietal sulcus (IPS) and the related sulcus of Jensen in magnetic resonance imaging brain volumes registered in the Montreal Neurological Institute stereotaxic space. It was demonstrated that the IPS is divided into two branches: the anterior ramus and the posterior ramus of the IPS, often separated by a submerged gyral passage. The sulcus of Jensen emerges between the anterior and posterior rami of the IPS, and its ventral end is positioned between the first and second caudal branches of the superior temporal sulcus. In a small number of brains, the sulcus of Jensen may merge superficially with the first caudal branch of the superior temporal sulcus. The above morphological findings are discussed in relation to previously reported functional neuroimaging findings and provide the basis for future exploration of structure-to-function relations in the posterior parietal region of individual subjects.

  11. Transition metal (Co, Ni) nanoparticles wrapped with carbon and their superior catalytic activities for the reversible hydrogen storage of magnesium hydride.

    Science.gov (United States)

    Huang, Xu; Xiao, Xuezhang; Zhang, Wei; Fan, Xiulin; Zhang, Liuting; Cheng, Changjun; Li, Shouquan; Ge, Hongwei; Wang, Qidong; Chen, Lixin

    2017-02-01

    Magnesium hydride (MgH2) exhibits long-term stability and has recently been developed as a safe alternative to store hydrogen in the solid state, due to its high capacity of 7.6 wt% H2 and low cost compared to other metal hydrides. However, the high activation energy and poor kinetics of MgH2 lead to inadequate hydrogen storage properties, resulting in low energy efficiency. Nano-catalysis is deemed to be the most effective strategy in improving the kinetics performance of hydrogen storage materials. In this work, robust and efficient architectures of carbon-wrapped transition metal (Co/C, Ni/C) nanoparticles (8-16 nm) were prepared and used as catalysts in the MgH2 system via ball milling to improve its de/rehydrogenation kinetics. Between the two kinds of nano-catalysts, the Ni/C nanoparticles exhibit a better catalytic efficiency. MgH2 doped with 6% Ni/C (MgH2-6%Ni/C) exhibits a peak dehydrogenation temperature of 275.7 °C, which is 142.7, 54.2 and 32.5 °C lower than that of commercial MgH2, milled MgH2 and MgH2 doped with 6% Co/C (MgH2-6%Co/C), respectively. MgH2 doped with 6% Ni/C can release about 6.1 wt% H2 at 250 °C. More importantly, the dehydrogenated MgH2-6%Ni/C is even able to uptake 5.0 wt% H2 at 100 °C within 20 s. Moreover, a cycling test of MgH2 doped with 8% Ni/C demonstrates its excellent hydrogen absorption/desorption stability with respect to both capacity (up to 6.5 wt%) and kinetics (within 8 min at 275 °C for dehydrogenation and within 10 s at 200 °C for rehydrogenation). Mechanistic research reveals that the in situ formed Mg2Ni and Mg2NiH4 nanoparticles can be regarded as advanced catalytically active species in the MgH2-Ni/C system. Meanwhile, the carbon attached around the surface of transition metal nanoparticles can successfully inhibit the aggregation of the catalysts and achieve the steadily, prompting de/rehydrogenation during the subsequent cycling process. The intrinsic catalytic effects and the uniform distributions of Mg2Ni

  12. Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(VI) reduction.

    Science.gov (United States)

    Wang, Hou; Yuan, Xingzhong; Wu, Yan; Zeng, Guangming; Chen, Xiaohong; Leng, Lijian; Wu, Zhibin; Jiang, Longbo; Li, Hui

    2015-04-09

    Porous metal-organic frameworks (MOFs) have been arousing a great interest in exploring the application of MOFs as photocatalyst in environment remediation. In this work, two different MOFs, Ti-benzenedicarboxylate (MIL-125(Ti)) and amino-functionalized Ti-benzenedicarboxylate (NH2-MIL-125(Ti)) were successfully synthesized via a facile solvothermal method. The MIL-125(Ti) and NH2-MIL-125(Ti) were well characterized by XRD, SEM, XPS, N2 adsorption-desorption measurements, thermogravimetric analysis and UV-vis diffuse reflectance spectra (DRS). It is revealed that the NH2-MIL-125(Ti) has well crystalline lattice, large surface area and mesoporous structure, chemical and thermal stability, and enhanced visible-light absorption up to 520 nm, which was associated with the chromophore (amino group) in the organic linker. Compared with MIL-125(Ti), NH2-MIL-125(Ti) exhibited more efficient photocatalytic activity for Cr(VI) reduction from aqueous solution under visible-light irradiation. The addition of hole scavenger, the hole scavenger concentration and the pH value of the reaction solution played important roles in the photo-catalytic reduction of Cr(VI). The presence of Ti(3+)-Ti(4+) intervalence electron transfer was the main reason for photo-excited electrons transportation from titanium-oxo clusters to Cr(VI), facilitating the Cr(VI) reduction under the acid condition. It was demonstrated that amino-functionalized Ti(IV)-based MOFs could be promising visible-light photocatalysts for the treatment of Cr(VI)-contained wastewater.

  13. Cortical Connectivity Maps Reveal Anatomically Distinct Areas in the Parietal Cortex of the Rat

    Directory of Open Access Journals (Sweden)

    Aaron eWilber

    2015-01-01

    Full Text Available A central feature of theories of spatial navigation involves the representation of spatial relationships between objects in complex environments. The parietal cortex has long been linked to the processing of spatial visual information and recent evidence from single unit recording in rodents suggests a role for this region in encoding egocentric and world-centered frames. The rat parietal cortex can be subdivided into up to four distinct rostral-caudal and medial-lateral regions, which includes a zone previously characterized as secondary visual cortex. At present, very little is known regarding the relative connectivity of these parietal subdivisions. Thus, we set out to map the connectivity of the entire anterior-posterior and medial-lateral span of this region. To do this we used anterograde and retrograde tracers in conjunction with open source neuronal segmentation and tracer detection tools to generate whole brain connectivity maps of parietal inputs and outputs. Our present results show that inputs to the parietal cortex varied significantly along the medial-lateral, but not the rostral-caudal axis. Specifically, retrosplenial connectivity is greater medially, but connectivity with visual cortex, though generally sparse, is more significant laterally. Finally, based on connection density, the connectivity between parietal cortex and hippocampus is indirect and likely achieved largely via dysgranular retrosplenial cortex. Thus, similar to primates, the parietal cortex of rats exhibits a difference in connectivity along the medial-lateral axis, which may represent functionally distinct areas.

  14. Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(VI) reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hou [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Yuan, Xingzhong, E-mail: yxz@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Wu, Yan [College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Zeng, Guangming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Chen, Xiaohong [School of Business, Central South University, Changsha 410083 (China); Leng, Lijian; Wu, Zhibin; Jiang, Longbo [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Li, Hui [Institute of Bio-energy, Hunan Academy of Forestry, Changsha 410004 (China)

    2015-04-09

    Highlights: • NH{sub 2} functionalized MIL-125(Ti) was fabricated by a facile solvothermal method. • The photocatalyst could reduce Cr(VI)–Cr(III) under visible light irradiation. • The Ti{sup 3+}–Ti{sup 4+} intervalence electron transfer is important for Cr(VI) reduction. • Used NH{sub 2}-MIL-125(Ti) can be recycled for the photocatalytic reduction. - Abstract: Porous metal-organic frameworks (MOFs) have been arousing a great interest in exploring the application of MOFs as photocatalyst in environment remediation. In this work, two different MOFs, Ti-benzenedicarboxylate (MIL-125(Ti)) and amino-functionalized Ti-benzenedicarboxylate (NH{sub 2}-MIL-125(Ti)) were successfully synthesized via a facile solvothermal method. The MIL-125(Ti) and NH{sub 2}-MIL-125(Ti) were well characterized by XRD, SEM, XPS, N{sub 2} adsorption–desorption measurements, thermogravimetric analysis and UV–vis diffuse reflectance spectra (DRS). It is revealed that the NH{sub 2}-MIL-125(Ti) has well crystalline lattice, large surface area and mesoporous structure, chemical and thermal stability, and enhanced visible-light absorption up to 520 nm, which was associated with the chromophore (amino group) in the organic linker. Compared with MIL-125(Ti), NH{sub 2}-MIL-125(Ti) exhibited more efficient photocatalytic activity for Cr(VI) reduction from aqueous solution under visible-light irradiation. The addition of hole scavenger, the hole scavenger concentration and the pH value of the reaction solution played important roles in the photo-catalytic reduction of Cr(VI). The presence of Ti{sup 3+}–Ti{sup 4+} intervalence electron transfer was the main reason for photo-excited electrons transportation from titanium-oxo clusters to Cr(VI), facilitating the Cr(VI) reduction under the acid condition. It was demonstrated that amino-functionalized Ti(IV)-based MOFs could be promising visible-light photocatalysts for the treatment of Cr(VI)-contained wastewater.

  15. Time course and localization of brain activity in humor comprehension: An ERP/sLORETA study.

    Science.gov (United States)

    Shibata, Midori; Terasawa, Yuri; Osumi, Takahiro; Masui, Keita; Ito, Yuichi; Sato, Arisa; Umeda, Satoshi

    2017-02-15

    Although a number of studies have investigated the incongruity-detection and resolution process in humor comprehension, it is difficult to functionally and anatomically dissociate these processes. We used event-related potentials (ERP) and standardized low resolution brain electromagnetic tomography analysis (sLORETA) to examine the time course and localization of brain activity during incongruity detection and resolution. We used the same materials as in our previous fMRI study. Eighteen participants read funny and unfunny scenarios and judged whether the target sentence was funny or not. Results indicated that ERPs elicited by a funny punch line showed a P2 component followed by a P600 component over the centro-parietal electrode sites. Our sLORETA analysis of the P2 ERPs revealed a stronger activation for the funny vs. unfunny condition in the superior frontal gyrus (SFG) and medial prefrontal cortex (mPFC). For the P600 ERPs, the funny punch line elicited greater activation in the temporal-parietal regions. These results indicate that incongruity-detection processes activate the SFG and mPFC in the P2 time window, while incongruity-resolution processes generate activation at the temporal-parietal regions in the P600 time window. These results provide the evidence that verbal humor comprehension is processed in steps which start with the incongruity detection in the early P2 time window and followed by a P600 component reflecting incongruity resolution.

  16. A Neuropsychological Examination of the Underlying Deficit in Attention Deficit Hyperactivity Disorder: Frontal Lobe Versus Right Parietal Lobe Theories.

    Science.gov (United States)

    Aman, Christine J.; Roberts, Ralph J., Jr.; Pennington, Bruce F.

    1998-01-01

    Examined front and right parietal lobe theories of attention deficit hyperactivity disorder (ADHD); subjects were 10- to 14-year-old boys with or without ADHD. Found that non-ADHD boys performed better on frontal- and parietal-domain tasks than unmedicated ADHD boys, unmedicated AHDH boys had greater impairments on frontal than parietal tasks, and…

  17. Functional specialization of the left ventral parietal cortex in working memory

    Directory of Open Access Journals (Sweden)

    Jennifer Lou Langel

    2014-06-01

    Full Text Available The function of the ventral parietal cortex (VPC is subject to much debate. Many studies suggest a lateralization of function in the VPC, with the left hemisphere facilitating verbal working memory and the right subserving stimulus-driven attention. However, many attentional tasks elicit activity in the VPC bilaterally. To elucidate the potential divides across the VPC in function, we assessed the pattern of activity in the VPC bilaterally across two tasks that require different demands, an oddball attentional task with low working memory demands and a working memory task. An anterior region of the VPC was bilaterally active during novel targets in the oddball task and during retrieval in WM, while more posterior regions of the VPC displayed dissociable functions in the left and right hemisphere, with the left being active during the encoding and retrieval of WM, but not during the oddball task and the right showing the reverse pattern. These results suggest that bilateral regions of the anterior VPC subserve non-mnemonic processes, such as stimulus-driven attention during WM retrieval and oddball detection. The left posterior VPC may be important for speech-related processing important for both working memory and perception, while the right hemisphere is more lateralized for attention.

  18. Interplay Between Grip and Vision in the Monkey Medial Parietal Lobe.

    Science.gov (United States)

    Breveglieri, Rossella; De Vitis, Marina; Bosco, Annalisa; Galletti, Claudio; Fattori, Patrizia

    2017-05-03

    We aimed at understanding the relative contribution of visual information and hand shaping to the neuronal activity of medial posterior parietal area V6A, a newly added area in the monkey cortical grasping circuit. Two Macaca fascicularis performed a Reach-to-Grasp task in the dark and in the light, grasping objects of different shapes. We found that V6A contains Visual cells, activated only during grasping in the light; Motor neurons, equally activated during grasping in the dark and in the light; Visuomotor cells, differently activated while grasping in the dark and in the light. Visual, Motor, and Visuomotor neurons were moderately or highly selective during grasping, whereas they reduced their selectivity during object observation without performing grasping. The use of the same experimental design employed in the dorsolateral grasping area AIP by other authors allowed us to compare the grasp-related properties of V6A and AIP. From these data and from the literature a frame emerges with many similarities between medial grasping area V6A and lateral grasping area AIP: both areas update and control prehension, with V6A less sensitive than AIP to fine visual details of the objects to be grasped, but more involved in coordinating reaching and grasping. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Effects of L-NAME on morphometric parameters of stomach parietal cells in pregnant rats

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Hossein Noori Mugahi

    2014-05-01

    Results: Results of this study after analysis showed the significant changes in parietal cells count (mean 61.3±4.32 and its diameters (mean 16.12±1.18 µm in L-NAME group in comparison to control and the sham groups in pregnant rats (P≤0.05. Conclusion: Results of this study showed L-NAME with effects on NO synthesis can reduce the count of parietal cells and increase its diameter in pregnant rats and has destructive effects on structure of stomach parietal cells in pregnancy rats.

  20. 75 FR 28542 - Superior Resource Advisory Committee

    Science.gov (United States)

    2010-05-21

    ... orient the new Superior Resource Advisory Committee members on their roles and responsibilities. DATES... of the roles and responsibilities of the Superior Resource Advisory Committee members; Election of... Forest Service Superior Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice...

  1. Resting-state functional connectivity of ventral parietal regions associated with attention reorienting and episodic recollection

    Science.gov (United States)

    Daselaar, S. M.; Huijbers, W.; Eklund, K.; Moscovitch, M.; Cabeza, R.

    2013-01-01

    In functional neuroimaging studies, ventral parietal cortex (VPC) is recruited by very different cognitive tasks. Explaining the contributions of VPC to these tasks has become a topic of intense study and lively debate. Perception studies frequently find VPC activations during tasks involving attention-reorienting, and memory studies frequently find them during tasks involving episodic recollection. According to the Attention to Memory (AtoM) model, both phenomena can be explained by the same VPC function: bottom-up attention. Yet, a recent functional MRI (fMRI) meta-analysis suggested that attention-reorienting activations are more frequent in anterior VPC, whereas recollection activations are more frequent in posterior VPC. Also, there is evidence that anterior and posterior VPC regions have different functional connectivity patterns. To investigate these issues, we conducted a resting-state functional connectivity analysis using as seeds the center-of-mass of attention-reorienting and recollection activations in the meta-analysis, which were located in the supramarginal gyrus (SMG, around the temporo-parietal junction—TPJ) and in the angular gyrus (AG), respectively. The SMG seed showed stronger connectivity with ventrolateral prefrontal cortex (VLPFC) and occipito-temporal cortex, whereas the AG seed showed stronger connectivity with the hippocampus and default network regions. To investigate whether these connectivity differences were graded or sharp, VLPFC and hippocampal connectivity was measured in VPC regions traversing through the SMG and AG seeds. The results showed a graded pattern: VLPFC connectivity gradually decreases from SMG to AG, whereas hippocampal connectivity gradually increases from SMG to AG. Importantly, both gradients showed an abrupt break when extended beyond VPC borders. This finding suggests that functional differences between SMG and AG are more subtle than previously thought. These connectivity differences can be explained by

  2. [The superior laryngeal nerve and the superior laryngeal artery].

    Science.gov (United States)

    Lang, J; Nachbaur, S; Fischer, K; Vogel, E

    1987-01-01

    Length, diameter and anastomoses of the nervus vagus and its ganglion inferius were measured 44 halved heads. On the average, 8.65 fiber bundles of the vagus nerve leave the retro-olivary area. In the area of the jugular foramen is the near superior ganglion of the 10th cranial nerve. In this area were found 1.48 (mean value) anastomoses with the 9th cranial nerve. 11.34 mm below the margo terminalis sigmoidea branches off the ramus internus of the accessory nerve which has a length of 9.75 mm. Further anastomoses with the 10th cranial nerve were found. The inferior ganglion of the 10th nerve had a length of 25.47 mm and a diameter of 3.46 mm. Five mm below the ganglion the 10th nerve had a width of 2.9 and a thickness of 1.5 mm. The mean length of the superior sympathetic ganglion was 26.6 mm, its width 7.2 and its thickness 3.4 mm. In nearly all specimens anastomoses of the superior sympathetic ganglion with the ansa cervicalis profunda and the inferior ganglion of the 10th cranial nerve were found. The superior laryngeal nerve branches off about 36 mm below the margo terminalis sigmoidea. The width of this nerve was 1.9 mm, its thickness 0.8 mm on the right and 1.0 mm on the left side. The division in the internal and external rami was found about 21 mm below its origin. Between the n. vagus and thyreohyoid membrane the ramus internus had a length of 64 mm, the length of external ramus between the vagal nerve and the inferior pharyngeal constrictor muscle was 89 mm. Its mean length below the thyreopharyngeal part was 10.7 mm, 8.6 branchlets to the cricothyroid muscle were counted. The superior laryngeal artery had its origin in 80% of cases in the superior thyroideal artery, in 6.8% this vessel was a branch of the external carotid artery. Its average outer diameter was 1.23 mm on the right side and 1.39 mm on the left. The length of this vessel between its origin and the thyreohyoid membrane was 34 mm. In 7% on the right side and in 13% on the left, the superior

  3. Reflexive and preparatory selection and suppression of salient information in the right and left posterior parietal cortex.

    Science.gov (United States)

    Mevorach, Carmel; Humphreys, Glyn W; Shalev, Lilach

    2009-06-01

    Attentional cues can trigger activity in the parietal cortex in anticipation of visual displays, and this activity may, in turn, induce changes in other areas of the visual cortex, hence, implementing attentional selection. In a recent TMS study [Mevorach, C., Humphreys, G. W., & Shalev, L. Opposite biases in salience-based selection for the left and right posterior parietal cortex. Nature Neuroscience, 9, 740-742, 2006b], it was shown that the posterior parietal cortex (PPC) can utilize the relative saliency (a nonspatial property) of a target and a distractor to bias visual selection. Furthermore, selection was lateralized so that the right PPC is engaged when salient information must be selected and the left PPC when the salient information must be ignored. However, it is not clear how the PPC implements these complementary forms of selection. Here we used on-line triple-pulse TMS over the right or left PPC prior to or after the onset of global/local displays. When delivered after the onset of the display, TMS to the right PPC disrupted the selection of the more salient aspect of the hierarchical letter. In contrast, left PPC TMS delivered prior to the onset of the stimulus disrupted responses to the lower saliency stimulus. These findings suggest that selection and suppression of saliency, rather than being "two sides of the same coin," are fundamentally different processes. Selection of saliency seems to operate reflexively, whereas suppression of saliency relies on a preparatory phase that "sets up" the system in order to effectively ignore saliency.

  4. Integrative deficits in depression and in negative mood states as a result of fronto-parietal network dysfunctions.

    Science.gov (United States)

    Brzezicka, Aneta

    2013-01-01

    Depression is a disorder characterized not only by persistent negative mood, lack of motivation and a "ruminative" style of thinking, but also by specific deficits in cognitive functioning. These deficits are especially pronounced when integration of information is required. Previous research on linear syllogisms points to a clear pattern of cognitive disturbances present in people suffering from depressive disorders, as well as in people with elevated negative mood. Such disturbances are characterized by deficits in the integration of piecemeal information into coherent mental representations. In this review, I present evidence which suggests that the dysfunction of specific brain areas plays a crucial role in creating reasoning and information integration problems among people with depression and with heightened negative mood. As the increasingly prevalent systems neuroscience approach is spreading into the study of mental disorders, it is important to understand how and which brain networks are involved in creating certain symptoms of depression. Two large brain networks are of particular interest when considering depression: the default mode network (DMN) and the fronto-parietal (executive) network (FNP). The DMN network shows abnormally high activity in the depressed population, whereas FNP circuit activity is diminished. Disturbances within the FNP network seem to be strongly associated with cognitive problems in depression, especially those concerning executive functions. The dysfunctions within the fronto-parietal network are most probably connected to ineffective transmission of information between prefrontal and parietal regions, and also to an imbalance between FNP and DMN circuits. Inefficiency of this crucial circuits functioning may be a more general mechanism leading to problems with flexible cognition and executive functions, and could be the cause of more typical symptoms of depression like persistent rumination.

  5. Deep sleep and parietal cortex gene expression changes are related to cognitive deficits with age.

    Directory of Open Access Journals (Sweden)

    Heather M Buechel

    Full Text Available BACKGROUND: Age-related cognitive deficits negatively affect quality of life and can presage serious neurodegenerative disorders. Despite sleep disruption's well-recognized negative influence on cognition, and its prevalence with age, surprisingly few studies have tested sleep's relationship to cognitive aging. METHODOLOGY: We measured sleep stages in young adult and aged F344 rats during inactive (enhanced sleep and active (enhanced wake periods. Animals were behaviorally characterized on the Morris water maze and gene expression profiles of their parietal cortices were taken. PRINCIPAL FINDINGS: Water maze performance was impaired, and inactive period deep sleep was decreased with age. However, increased deep sleep during the active period was most strongly correlated to maze performance. Transcriptional profiles were strongly associated with behavior and age, and were validated against prior studies. Bioinformatic analysis revealed increased translation and decreased myelin/neuronal pathways. CONCLUSIONS: The F344 rat appears to serve as a reasonable model for some common sleep architecture and cognitive changes seen with age in humans, including the cognitively disrupting influence of active period deep sleep. Microarray analysis suggests that the processes engaged by this sleep are consistent with its function. Thus, active period deep sleep appears temporally misaligned but mechanistically intact, leading to the following: first, aged brain tissue appears capable of generating the slow waves necessary for deep sleep, albeit at a weaker intensity than in young. Second, this activity, presented during the active period, seems disruptive rather than beneficial to cognition. Third, this active period deep sleep may be a cognitively pathologic attempt to recover age-related loss of inactive period deep sleep. Finally, therapeutic strategies aimed at reducing active period deep sleep (e.g., by promoting active period wakefulness and/or inactive

  6. Superior-subordinate relations as organizational processes

    DEFF Research Database (Denmark)

    Asmuss, Birte; Aggerholm, Helle Kryger; Oshima, Sae

    Since the emergence of the practice turn in social sciences (Golsorkhi et al. 2010), studies have shown a number of institutionally relevant aspects as achievements across time and by means of various resources (human and non-human) (Taylor & van Every 2000, Cooren et al. 2006). Such a process view...... superior-subordinate relations in a specific institutionalized setting: performance appraisal interviews (PAIs). While one main task of PAIs is to manage and integrate organizational and employee performance (Fletcher, 2001:473), PAIs are also organizational practices where superior-subordinate relations...... are shaped, (re)confirmed and re-evaluated. This paper pursues the better understanding of the latter aspect by looking at one substantial and recurrent activity in PAIs: the evaluation of employee performance. One resource for doing the evaluation work is making assessments (e.g. Goodwin & Goodwin, 1987...

  7. Abstract categories of functions in anterior parietal lobe.

    Science.gov (United States)

    Leshinskaya, Anna; Caramazza, Alfonso

    2015-09-01

    Knowledge of function is critical for selecting objects to meet action goals, even when the affordances of those objects are not mechanical-for instance, both a painting and a vase can decorate a room. To identify neural representations of such abstract function concepts, we asked participants in an fMRI scanner to view a variety of objects and evaluate their utility to each of four goals (two Decoration goals: dress up for a night out and decorate a house, and two Protection goals: protect your body from the cold and keep objects dry in a flooded basement). These task conditions differed in the kind of functional evaluation participants had to perform over objects, but did not vary in the objects themselves. We performed a searchlight multivariate pattern analysis to identify cortical representations in which neural patterns were more similar for the pairs of similar-goal than dissimilar-goal task conditions (Decorate vs. Protect). We report such effects in anterior inferior parietal lobe (aIPL) close to regions typically reported for processing tool-related actions, and thought to be important for representing how they are manipulated. However, the current study design fully controlled for manipulation similarity, which predicted orthogonal relationships among the conditions. We conclude that the aIPL likely has nearby, but distinct, representations of both manipulation and function knowledge, and thereby may have a broader role in understanding how objects can be used, representing not just physical affordances but also abstract functional criteria such as esthetic value or purpose categories such as decorate. This pattern of localization has implications for how semantic knowledge is organized in the brain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Repetition suppression for speech processing in the associative occipital and parietal cortex of congenitally blind adults.

    Directory of Open Access Journals (Sweden)

    Laureline Arnaud

    Full Text Available In the congenitally blind (CB, sensory deprivation results in cross-modal plasticity, with visual cortical activity observed for various auditory tasks. This reorganization has been associated with enhanced auditory abilities and the recruitment of visual brain areas during sound and language processing. The questions we addressed are whether visual cortical activity might also be observed in CB during passive listening to auditory speech and whether cross-modal plasticity is associated with adaptive differences in neuronal populations compared to sighted individuals (SI. We focused on the neural substrate of vowel processing in CB and SI adults using a repetition suppression (RS paradigm. RS has been associated with enhanced or accelerated neural processing efficiency and synchronous activity between interacting brain regions. We evaluated whether cortical areas in CB were sensitive to RS during repeated vowel processing and whether there were differences across the two groups. In accordance with previous studies, both groups displayed a RS effect in the posterior temporal cortex. In the blind, however, additional occipital, temporal and parietal cortical regions were associated with predictive processing of repeated vowel sounds. The findings suggest a more expanded role for cross-modal compensatory effects in blind persons during sound and speech processing and a functional transfer of specific adaptive properties across neural regions as a consequence of sensory deprivation at birth.

  9. Parietal cortex integrates contextual and saliency signals during the encoding of natural scenes in working memory.

    Science.gov (United States)

    Santangelo, Valerio; Di Francesco, Simona Arianna; Mastroberardino, Serena; Macaluso, Emiliano

    2015-12-01

    The Brief presentation of a complex scene entails that only a few objects can be selected, processed indepth, and stored in memory. Both low-level sensory salience and high-level context-related factors (e.g., the conceptual match/mismatch between objects and scene context) contribute to this selection process, but how the interplay between these factors affects memory encoding is largely unexplored. Here, during fMRI we presented participants with pictures of everyday scenes. After a short retention interval, participants judged the position of a target object extracted from the initial scene. The target object could be either congruent or incongruent with the context of the scene, and could be located in a region of the image with maximal or minimal salience. Behaviourally, we found a reduced impact of saliency on visuospatial working memory performance when the target was out-of-context. Encoding-related fMRI results showed that context-congruent targets activated dorsoparietal regions, while context-incongruent targets de-activated the ventroparietal cortex. Saliency modulated activity both in dorsal and ventral regions, with larger context-related effects for salient targets. These findings demonstrate the joint contribution of knowledge-based and saliency-driven attention for memory encoding, highlighting a dissociation between dorsal and ventral parietal regions.

  10. Repetition Suppression for Speech Processing in the Associative Occipital and Parietal Cortex of Congenitally Blind Adults

    Science.gov (United States)

    Arnaud, Laureline; Sato, Marc; Ménard, Lucie; Gracco, Vincent L.

    2013-01-01

    In the congenitally blind (CB), sensory deprivation results in cross-modal plasticity, with visual cortical activity observed for various auditory tasks. This reorganization has been associated with enhanced auditory abilities and the recruitment of visual brain areas during sound and language processing. The questions we addressed are whether visual cortical activity might also be observed in CB during passive listening to auditory speech and whether cross-modal plasticity is associated with adaptive differences in neuronal populations compared to sighted individuals (SI). We focused on the neural substrate of vowel processing in CB and SI adults using a repetition suppression (RS) paradigm. RS has been associated with enhanced or accelerated neural processing efficiency and synchronous activity between interacting brain regions. We evaluated whether cortical areas in CB were sensitive to RS during repeated vowel processing and whether there were differences across the two groups. In accordance with previous studies, both groups displayed a RS effect in the posterior temporal cortex. In the blind, however, additional occipital, temporal and parietal cortical regions were associated with predictive processing of repeated vowel sounds. The findings suggest a more expanded role for cross-modal compensatory effects in blind persons during sound and speech processing and a functional transfer of specific adaptive properties across neural regions as a consequence of sensory deprivation at birth. PMID:23717628

  11. Visuokinesthetic Perception of Hand Movement is Mediated by Cerebro–Cerebellar Interaction between the Left Cerebellum and Right Parietal Cortex

    Science.gov (United States)

    Hagura, Nobuhiro; Oouchida, Yutaka; Aramaki, Yu; Okada, Tomohisa; Matsumura, Michikazu; Sadato, Norihiro

    2009-01-01

    Combination of visual and kinesthetic information is essential to perceive bodily movements. We conducted behavioral and functional magnetic resonance imaging experiments to investigate the neuronal correlates of visuokinesthetic combination in perception of hand movement. Participants experienced illusory flexion movement of their hand elicited by tendon vibration while they viewed video-recorded flexion (congruent: CONG) or extension (incongruent: INCONG) motions of their hand. The amount of illusory experience was graded by the visual velocities only when visual information regarding hand motion was concordant with kinesthetic information (CONG). The left posterolateral cerebellum was specifically recruited under the CONG, and this left cerebellar activation was consistent for both left and right hands. The left cerebellar activity reflected the participants' intensity of illusory hand movement under the CONG, and we further showed that coupling of activity between the left cerebellum and the “right” parietal cortex emerges during this visuokinesthetic combination/perception. The “left” cerebellum, working with the anatomically connected high-order bodily region of the “right” parietal cortex, participates in online combination of exteroceptive (vision) and interoceptive (kinesthesia) information to perceive hand movement. The cerebro–cerebellar interaction may underlie updating of one's “body image,” when perceiving bodily movement from visual and kinesthetic information. PMID:18453537

  12. Superior in vitro and in vivo activity of trastuzumab-emtansine (T-DM1) in comparison to trastuzumab, pertuzumab and their combination in epithelial ovarian carcinoma with high HER2/neu expression.

    Science.gov (United States)

    Menderes, Gulden; Bonazzoli, Elena; Bellone, Stefania; Altwerger, Gary; Black, Jonathan D; Dugan, Katherine; Pettinella, Francesca; Masserdotti, Alice; Riccio, Francesco; Bianchi, Anna; Zammataro, Luca; de Haydu, Christopher; Buza, Natalia; Hui, Pei; Wong, Serena; Huang, Gloria S; Litkouhi, Babak; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E; Santin, Alessandro D

    2017-10-01

    Epithelial ovarian cancer (EOC) remains the most lethal gynecologic malignancy. The objective of this study was to compare the anti-tumor activity of HER2/neu-targeting monoclonal antibodies, trastuzumab (T), pertuzumab (P), combination of trastuzumab and pertuzumab (T+P) and trastuzumab-emtansine (T-DM1) in EOC with high HER2/neu expression. Primary EOC cell lines were established and cell blocks were analyzed for HER2/neu expression. Cytostatic, apoptotic and antibody-dependent cell-mediated cytotoxicity (ADCC) activities of T, P, T+P and T-DM1 were evaluated in vitro. The in vivo antitumor activity was tested in xenograft models with 3+ HER2/neu expression. High (3+) HER2/neu expression was detected in 40% of the primary EOC cell lines. T, P, T+P, and T-DM1 were similarly effective in inducing strong ADCC against primary EOC cell lines expressing 3+ HER2/neu. The combination of T and P was more cytostatic when compared with that of T or P used alone (pT-DM1 induced significantly more apoptosis when compared with T+P (pT-DM1 was significantly more effective in tumor growth inhibition in vivo in EOC xenografts overexpressing HER2/neu when compared to T alone, P alone and T+P (p=0.04). In vitro and in vivo experiments with 3+ HER2/neu expressing EOC revealed limited anti-tumor activity of T or P. T-DM1 showed superior anti-tumor activity to T and P as single agents and as a combination. Our preclinical data support the design of clinical studies with T-DM1 for the treatment of chemotherapy-resistant EOC overexpressing HER2/neu. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. What are Millian Qualitative Superiorities?

    Directory of Open Access Journals (Sweden)

    Jonathan Riley

    2008-04-01

    Full Text Available In an article published in Prolegomena 2006, Christoph Schmidt-Petri has defended his interpretation and attacked mine of Mill’s idea that higher kinds of pleasure are superior in quality to lower kinds, regardless of quantity. Millian qualitative superiorities as I understand them are infinite superiorities. In this paper, I clarify my interpretation and show how Schmidt-Petri has misrepresented it and ignored the obvious textual support for it. As a result, he fails to understand how genuine Millian qualitative superiorities determine the novel structure of Mill’s pluralistic utilitarianism, in which a social code of justice that distributes equal rights and duties takes absolute priority over competing considerations. Schmidt-Petri’s own interpretation is a non-starter, because it does noteven recognize that Mill is talking about different kinds of pleasant feelings, such that the higher kinds are intrinsically more valuable than the lower. I conclude by outlining why my interpretation is free of any metaphysical commitment to the “essence” of pleasure.

  14. Isolated superior mesenteric artery dissection

    Directory of Open Access Journals (Sweden)

    Lalitha Palle

    2010-01-01

    Full Text Available Isolated superior mesenteric artery (SMA dissection without involvement of the aorta and the SMA origin is unusual. We present a case of an elderly gentleman who had chronic abdominal pain, worse after meals. CT angiography, performed on a 64-slice CT scanner, revealed SMA dissection with a thrombus. A large artery of Drummond was also seen. The patient was managed conservatively.

  15. A escrita no Ensino Superior

    Directory of Open Access Journals (Sweden)

    Maria Conceição Pillon Christofoli

    2013-01-01

    Full Text Available http://dx.doi.org/10.5902/198464445865 O presente artigo trata de apresentar resultados oriundos de pesquisa realizada no Ensino Superior, enfocando a escrita em contextos universitários. Depoimentos por parte dos acadêmicos evidenciam certa resistência ao ato de escrever, o que acaba muitas vezes distanciando o sujeito da produção de um texto. Assim sendo, mesmo que parciais, os resultados até então analisados dão conta de que: pressuposto 1 – há ruptura da ideia de coerência entre o que pensamos, o que conseguimos escrever, o que entende nosso interlocutor; pressuposto 2 – a autocorreção de textos como exercício de pesquisa é imprescindível para a qualificação da escrita; pressuposto 3 – os diários de aula representam rico instrumento para a qualificação da escrita no Ensino Superior; pressuposto 4 – há necessidade de que o aluno do Ensino Superior escreva variados tipos de escrita, ainda que a universidade cumpra com seu papel, enfatizando a escrita acadêmica; pressuposto 5 – o trabalho com a escrita no Ensino Superior deve enfatizar os componentes básicos da expressão escrita: o código escrito e a composição da escrita. Palavras-chave: Escrita; Ensino Superior; formação de professores.

  16. Torsion of a lipoma of parietal peritoneum: a rare case mimicking acute appendicitis.

    Science.gov (United States)

    Shrestha, Binod Bade; Karmacharya, Mikesh

    2014-06-18

    Lipomas are found most often on the torso, neck, upper thighs, upper arms and armpits; they can also occur almost anywhere in the body. Parietal peritoneum lipoma is a rare intraoperative finding during abdominal surgery. We present a case of a torted, pedunculated parietal wall lipoma in the right iliac fossa that gave rise to a clinical diagnosis of appendicitis. So far only one case has been reported.