WorldWideScience

Sample records for superior indoor air

  1. Indoor air quality

    DEFF Research Database (Denmark)

    Jensen, Trine Susanne; Recevska, Ieva

     The objective of the 35th specific agreement is to provide support to the EEA activities in Environment and Health (E&H) on the topic of indoor air quality. The specific objectives have been to provide an overview of indoor air related projects in EU and indoor air related policies as well...... as idenfiying "good practices" to reduce health impact of indoor air exposure and suggest areas for future improvements....

  2. Indoor air quality

    DEFF Research Database (Denmark)

    Jensen, Trine Susanne; Recevska, Ieva

     The objective of the 35th specific agreement is to provide support to the EEA activities in Environment and Health (E&H) on the topic of indoor air quality. The specific objectives have been to provide an overview of indoor air related projects in EU and indoor air related policies as well...... as idenfiying "good practices" to reduce health impact of indoor air exposure and suggest areas for future improvements....

  3. INDOOR AIR QUALITY ANALYSIS

    OpenAIRE

    Wang, Xin

    2010-01-01

    With the development of modern architecture, one of the building's interior decoration, furnishings, appliances and equipment have become increasingly demanding, making construction of the indoor environment of increasing pollution, increasing pollution, indoor environmental pollution hazards to human is also a growing the greater. This thesis summarizes the major indoor air pollution sources and major pollutants. Indoor air pollutants are formaldehyde, radon, ammonia, total volatile org...

  4. Indoor Air Pollution

    Science.gov (United States)

    We usually think of air pollution as being outdoors, but the air in your house or office could also be polluted. Sources of indoor pollution include Mold and pollen Tobacco smoke Household products ...

  5. Introduction to Indoor Air Quality

    Science.gov (United States)

    ... United States Environmental Protection Agency Search Search Indoor Air Quality (IAQ) Contact Us Share Introduction to Indoor Air Quality Health Effects Primary Causes Identifying Problems Improving IAQ ...

  6. Indoor Air Quality

    DEFF Research Database (Denmark)

    Selman, Ayser Dawod; Heiselberg, Per

    Overall purpose of the research is to provide an overview of the relevance and importance of various defined Indoor Air Quality (IAQ) parameters in a European perspective. Based on the report it should be possible to prioritize which countries to target for further activities as well as it should...

  7. Indoor Air Quality

    DEFF Research Database (Denmark)

    Selman, Ayser Dawod; Heiselberg, Per

    Overall purpose of the research is to provide an overview of the relevance and importance of various defined Indoor Air Quality (IAQ) parameters in a European perspective. Based on the report it should be possible to prioritize which countries to target for further activities as well as it should...

  8. Modeling indoor air pollution

    National Research Council Canada - National Science Library

    Pepper, D. W; Carrington, David B

    2009-01-01

    ... and ventilation from the more popular textbooks and monographs. We wish to especially acknowledge Dr. Xiuling Wang, who diligently converted many of our old FORTRAN codes into MATLAB files, and also developed the COMSOL example files. Also we thank Ms. Kathryn Nelson who developed the website for the book and indoor air quality computer codes. We are grateful to ...

  9. Indoor Air Pollution

    OpenAIRE

    Smith, Kirk R.

    2003-01-01

    Outdoor air pollution in developing-country cities is difficult to overlook. Indoor air pollution caused by burning such traditional fuels as wood, crop residues, and dung is less evident, yet it is responsible for a significant part of country and global disease burdens. The main groups affected are poor women and children in rural areas and urban slums as they go about their daily activi...

  10. Air filtration and indoor air quality

    DEFF Research Database (Denmark)

    Bekö, Gabriel

    2006-01-01

    Demands for better indoor air quality are increasing, since we spend most of our time indoors and we are more and more aware of indoor air pollution. Field studies in different parts of the world have documented that high percentage of occupants in many offices and buildings find the indoor air...... decent ventilation and air cleaning/air filtration, high indoor air quality cannot be accomplished. The need for effective air filtration has increased with increasing evidence on the hazardous effects of fine particles. Moreover, the air contains gaseous pollutants, removal of which requires various air...... cleaning techniques. Supply air filter is one of the key components in the ventilation system. Studies have shown that used ventilation filters themselves can be a significant source of indoor air pollution with consequent impact on perceived air quality, sick building syndrome symptoms and performance...

  11. Air Superiority Fighter Characteristics.

    Science.gov (United States)

    1998-06-05

    many a dispute could have been deflated into a single paragraph if the disputants had just dared to define their terms.7 Aristotle ...meaningful. This section will expand on some key ideology concepts. The phrase "air superiority fighter" may bring to mind visions of fighter... biographies are useful in garnering airpower advocate theories as well as identifying key characteristics. Air campaign results, starting with World

  12. Indoor air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Gold, D.R. (Channing Laboratory, Brigham and Women' s Hospital, Boston, MA (United States))

    1992-06-01

    This article summarizes the health effects of indoor air pollutants and the modalities available to control them. The pollutants discussed include active and passive exposure to tobacco smoke; combustion products of carbon monoxide; nitrogen dioxide; products of biofuels, including wood and coal; biologic agents leading to immune responses, such as house dust mites, cockroaches, fungi, animal dander, and urine; biologic agents associated with infection such as Legionella and tuberculosis; formaldehyde; and volatile organic compounds. An approach to assessing building-related illness and tight building' syndrome is presented. Finally, the article reviews recent data on hospital-related asthma and exposures to potential respiratory hazards such as antineoplastic agents, anesthetic gases, and ethylene oxide.88 references.

  13. School Policies and Practices that Improve Indoor Air Quality

    Science.gov (United States)

    Jones, Sherry Everett; Smith, Alisa M.; Wheeler, Lani S.; McManus, Tim

    2010-01-01

    Background: To determine whether schools with a formal indoor air quality management program were more likely than schools without a formal program to have policies and practices that promote superior indoor air quality. Methods: This study analyzed school-level data from the 2006 School Health Policies and Programs Study, a national study of…

  14. School Policies and Practices that Improve Indoor Air Quality

    Science.gov (United States)

    Jones, Sherry Everett; Smith, Alisa M.; Wheeler, Lani S.; McManus, Tim

    2010-01-01

    Background: To determine whether schools with a formal indoor air quality management program were more likely than schools without a formal program to have policies and practices that promote superior indoor air quality. Methods: This study analyzed school-level data from the 2006 School Health Policies and Programs Study, a national study of…

  15. Indoor Air Quality Test House

    Data.gov (United States)

    Federal Laboratory Consortium — Description:In order to enable studies of a range of indoor air quality and ventilation issues, EL maintains a highly instrumented three-bedroom test house. Previous...

  16. Indoor Air Quality in Schools.

    Science.gov (United States)

    Torres, Vincent M.

    Asserting that the air quality inside schools is often worse than outdoor pollution, leading to various health complaints and loss of productivity, this paper details factors contributing to schools' indoor air quality. These include the design, operation, and maintenance of heating, ventilating, and air conditioning (HVAC) systems; building…

  17. Workshop on indoor air quality research needs

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Workshop participants report on indoor air quality research needs including the monitoring of indoor air quality, report of the instrumentation subgroup of indoor air quality, health effects, and the report of the control technology session. Risk analysis studies addressing indoor environments were also summarized. (DLS)

  18. Quality and Indoor Air treatment

    Directory of Open Access Journals (Sweden)

    Cécile HORT

    2008-01-01

    Full Text Available In developed countries, between 70% and 90% of the life time are spent in confined spaces (housing, transport, etc.. Air quality in these closed spaces is generally inferior than outside. Our lifestylesand the growing use of new products and materials create cocktails of chemicals compounds (COV, CIV... that can cause an increase of worrying diseases such as asthma, allergies or even cancer. These pollutants are particularly present in indoor air. These increasing public health problems gives rise to the development of devices for the treatment of indoor air. However, indoor air contains a lot of chemical substances showing very different physicochemical properties. The “Laboratoire de Thermique, Energétique et Procédés” (LaTEP studies the coupling of treatment processes, such as biofiltration coupled to adsorption.

  19. Mind Your Indoor Air Quality

    Science.gov (United States)

    Mak, Lily

    2012-01-01

    When it comes to excelling in the classroom, it turns out the air students are breathing is just as important as the lessons they are learning. Studies show poor indoor air quality (IAQ) can lessen the comfort of students as well as staff--affecting concentration, attendance and student performance. It can even lead to lower IQs. What's more, poor…

  20. Mind Your Indoor Air Quality

    Science.gov (United States)

    Mak, Lily

    2012-01-01

    When it comes to excelling in the classroom, it turns out the air students are breathing is just as important as the lessons they are learning. Studies show poor indoor air quality (IAQ) can lessen the comfort of students as well as staff--affecting concentration, attendance and student performance. It can even lead to lower IQs. What's more, poor…

  1. Indoor air quality and health

    Science.gov (United States)

    Jones, A. P.

    During the last two decades there has been increasing concern within the scientific community over the effects of indoor air quality on health. Changes in building design devised to improve energy efficiency have meant that modern homes and offices are frequently more airtight than older structures. Furthermore, advances in construction technology have caused a much greater use of synthetic building materials. Whilst these improvements have led to more comfortable buildings with lower running costs, they also provide indoor environments in which contaminants are readily produced and may build up to much higher concentrations than are found outside. This article reviews our current understanding of the relationship between indoor air pollution and health. Indoor pollutants can emanate from a range of sources. The health impacts from indoor exposure to combustion products from heating, cooking, and the smoking of tobacco are examined. Also discussed are the symptoms associated with pollutants emitted from building materials. Of particular importance might be substances known as volatile organic compounds (VOCs), which arise from sources including paints, varnishes, solvents, and preservatives. Furthermore, if the structure of a building begins to deteriorate, exposure to asbestos may be an important risk factor for the chronic respiratory disease mesothelioma. The health effects of inhaled biological particles can be significant, as a large variety of biological materials are present in indoor environments. Their role in inducing illness through immune mechanisms, infectious processes, and direct toxicity is considered. Outdoor sources can be the main contributors to indoor concentrations of some contaminants. Of particular significance is Radon, the radioactive gas that arises from outside, yet only presents a serious health risk when found inside buildings. Radon and its decay products are now recognised as important indoor pollutants, and their effects are

  2. Indoor Air Quality Management Program.

    Science.gov (United States)

    Anne Arundel County Public Schools, Annapolis, MD.

    In an effort to provide Indoor Air Quality (IAQ) management guidance, Anne Arundel County Public Schools was selected by the Maryland State Department of Education to develop a program that could be used by other school systems. A major goal was to produce a handbook that was "user friendly." Hence, its contents are a mix of history,…

  3. VENTILATION INFLUENCE UPON INDOOR AIR RADON LEVEL

    Institute of Scientific and Technical Information of China (English)

    田德源

    1995-01-01

    Levels of indoor radon in air are studied by a continuous electrostatic radon monitor under normal living conditions to evaluate the influence of air conditioned ventilation on indoor air radon level.Results show that the indoor air radon concentrations are not much more than those without household conditioner living condition.although using household conditioner requires a sealed room which should lead to a higher radon level.Turning on air conditioner helps lower indoor radon level.Therefore.the total indoor air Rn levels are normal>ventilation>exhaust or indraft> exhaust plus indraft.

  4. Air filtration and indoor air quality

    DEFF Research Database (Denmark)

    Bekö, Gabriel

    2006-01-01

    decent ventilation and air cleaning/air filtration, high indoor air quality cannot be accomplished. The need for effective air filtration has increased with increasing evidence on the hazardous effects of fine particles. Moreover, the air contains gaseous pollutants, removal of which requires various air....... These contradictions should motivate manufacturers and researchers to develop new efficient filtration techniques and/or improve the existing ones. Development of low polluting filtration techniques, which are at the same time easy and inexpensive to maintain is the way forward in the future....

  5. Indoor Air Pollution (Environmental Health Student Portal)

    Science.gov (United States)

    Skip Navigation National Library of Medicine Environmental Health Student Portal Connecting Middle School Students to Environmental Health Information Menu Home Air Pollution Air Pollution Home Indoor Air Pollution Outdoor Air ...

  6. Indoor Air Quality and Asthma

    Directory of Open Access Journals (Sweden)

    Robert Golden

    2017-02-01

    Full Text Available Numerous contaminants in indoor air and their potential to cause or exacerbate asthma continue to be a subject of public health concern. Many agents are causally associated with or can exacerbate asthma, particularly in children. For formaldehyde, an established respiratory irritant based on numerous studies, the evidence for an association with asthma is still considered only limited or suggestive. However, there is no evidence that indicates increased sensitivity to sensory irritation to formaldehyde in people often regarded as susceptible such as asthmatics. Acrolein, but not formaldehyde, was significantly associated with asthma in a large cohort of children. This prompted an evaluation of this highly irritating chemical that had never previously been considered in the context of the indoor air/childhood asthma issue. Because acrolein is more potent than formaldehyde as a respiratory irritant and ubiquitous in indoor air, it is plausible that previous studies on potential risk factors and childhood asthma may be confounded by formaldehyde acting as an unrecognized proxy for acrolein.

  7. A Breath of Fresh Air: Addressing Indoor Air Quality

    Science.gov (United States)

    Palliser, Janna

    2011-01-01

    Indoor air pollution refers to "chemical, biological, and physical contamination of indoor air," which may result in adverse health effects (OECD 2003). The causes, sources, and types of indoor air pollutants will be addressed in this article, as well as health effects and how to reduce exposure. Learning more about potential pollutants in home…

  8. A Breath of Fresh Air: Addressing Indoor Air Quality

    Science.gov (United States)

    Palliser, Janna

    2011-01-01

    Indoor air pollution refers to "chemical, biological, and physical contamination of indoor air," which may result in adverse health effects (OECD 2003). The causes, sources, and types of indoor air pollutants will be addressed in this article, as well as health effects and how to reduce exposure. Learning more about potential pollutants in home…

  9. Indoor plants as air cleaners

    DEFF Research Database (Denmark)

    Dela Cruz, Majbrit; Christensen, Jan H.; Müller, Renate

    2015-01-01

    Plants have been used decoratively indoors for centuries. For the last 25-30 years, their beneficial abilities to reduce the levels of harmful volatile organic compounds (VOCs) from the indoor air have also been investigated. Previous studies have shown that VOCs are removed by the plant itself......, but also by microorganisms in the soil. Furthermore, the rate of removal is dependent on the plant species and can be influenced by exogenous factors such as light intensity and VOC concentration. The research within this field is, however, limited by the fact that the knowledge gained from laboratory...... be an underestimation of the plants' real potential. The next step will be to use the new system to investigate the effects of the exogenous factors temperature, light intensity and CO2 concentration on VOC removal rates....

  10. Indoor air and allergic diseases

    Energy Technology Data Exchange (ETDEWEB)

    Kunkel, G.; Rudolph, R.; Muckelmann, R.

    1982-01-01

    Allergies may be the source of a variety of clinical symptoms. With regard to indoor air, however, the subject will be limited to inhalative allergies. These are diseases which are caused and supported by allergens entering the human organism via the respiratory pathway. The fundamentals of the origin of inhalative allergies are briefly discussed as well as the antigen-antibody reaction and the differentiation between different allergic reactions (Types I and II). In addition, the importance of repetitive infections of the upper respiratory tract for the occurrence of allergies of the respiratory system is pointed out. The most common allergies develop at the mucosae of the nose (allergic rhinitis) and of the bronchiale (allergic asthma bronchiale). Their symptomatology is discussed. Out of the allergologically interesting components of indoor air the following are to be considered primarily: house dust, components of house dust (house dust mite, trogoderma angustum, tenebrio molitor), epithelia of animals, animal feeds, mildew and occupational substances. Unspecific irritants (chemico-physical irritations) which are not acting as allergens, have to be clearly separated from these most frequent allergens. As a possibility of treatment for the therapeutist and the patient, there is the allergen prophylaxis, i.e. an extensive sanitation of the patient's environment including elimination of the allergens and, in addition, an amelioration of the quality of the air with regard to unspecific irritants. To conclude, some socio-medical aspects of respiratory diseases are discussed.

  11. Inside Story: A Guide to Indoor Air Quality

    Science.gov (United States)

    ... Quality The Inside Story: A Guide to Indoor Air Quality Information provided in this safety guide is based ... be caused by indoor air pollution. Introduction Indoor Air Quality Concerns All of us face a variety of ...

  12. Indoor Air Quality: Maryland Public Schools.

    Science.gov (United States)

    Maryland State Dept. of Education, College Park. Office of Administration and Finance.

    Less than adequate indoor air quality in schools can lead to a higher risk of health problems, an increase in student and teacher absenteeism, diminished learning, and even hazardous conditions. An indoor air quality program that addresses the planning, design, maintenance, and operation of public school buildings should be implemented at the…

  13. Allegheny County Clean Indoor Air Act Exemptions

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — List and location of all the businesses and social clubs who have received an exemption from the Pennsylvania Clean Indoor Air Act. “The Clean Indoor Air Act, Act...

  14. Controlling Indoor Air Pollution from Moxibustion

    Directory of Open Access Journals (Sweden)

    Chung-Yen Lu

    2016-06-01

    Full Text Available Indoor air quality (IAQ control of hospitals plays a critical role in protecting both hospital staffs and patients, particularly those who are highly susceptible to the adverse effects of indoor noxious hazards. However, moxibustion in outpatient departments (OPDs of traditional Chinese medicine (TCM may be a source of indoor air pollution in hospitals. Some studies have investigated indoor air pollution during moxibustion in Chinese medicine clinics (CMCs and moxibustion rooms, demonstrating elevated air pollutants that pose a threat to the health of medical staff and patients. Our study investigated the indoor air pollutants of indoor carbon dioxide (CO2, carbon monoxide (CO, formaldehyde (HCHO, total volatile organic compounds (TVOCs, airborne particulate matter with a diameter of ≤10 µm (PM10 and ≤2.5 µm (PM2.5 during moxibustion in an acupuncture and moxibustion room of the OPD in a hospital in Taipei. To evaluate the different control strategies for indoor air pollution from moxibution, a comparison of air pollutants during moxibution among the methods of using alternative old moxa wools, local exhaust ventilation and an air cleaner was conducted. In this study, burning alternative old moxa wools for moxibustion obviously reduced all gaseous pollutants except for aerosols comparing burning fresh moxa wools. Using local exhaust ventilation reduced most of the aerosols after burning moxa. We also found that using an air cleaner was inefficient for controlling indoor air pollutants, particularly gaseous pollutants. Therefore, combining replacing alternative old moxa wools and local exhaust ventilation could be a suitable design for controlling indoor air pollution during moxibustion therapy.

  15. Indoor air quality in Brazilian universities.

    Science.gov (United States)

    Jurado, Sonia R; Bankoff, Antônia D P; Sanchez, Andrea

    2014-07-11

    This study evaluated the indoor air quality in Brazilian universities by comparing thirty air-conditioned (AC) (n = 15) and naturally ventilated (NV) (n = 15) classrooms. The parameters of interest were indoor carbon dioxide (CO2), temperature, relative humidity (RH), wind speed, viable mold, and airborne dust levels. The NV rooms had larger concentration of mold than the AC rooms (1001.30 ± 125.16 and 367.00 ± 88.13 cfu/m3, respectively). The average indoor airborne dust concentration exceeded the Brazilian standards (indoor air quality in Brazilian university classrooms affects the health of students. Therefore, indoor air pollution needs to be considered as an important public health problem.

  16. Office Building Occupant's Guide to Indoor Air Quality

    Science.gov (United States)

    ... United States Environmental Protection Agency Search Search Indoor Air Quality (IAQ) Contact Us Share An Office Building Occupants Guide to Indoor Air Quality Indoor Environments Division (6609J) Washington, DC 20460 EPA- ...

  17. Comprehensive Smokefree Indoor Air PDF Slides

    Data.gov (United States)

    U.S. Department of Health & Human Services — Download the comprehensive smokefree indoor air slides. These slides are available in PDF and PowerPoint formats. The PowerPoint version can be found at:...

  18. Measuring indoor air quality of hookah lounges.

    Science.gov (United States)

    Fiala, Steven C; Morris, Daniel S; Pawlak, Rebecca L

    2012-11-01

    Many states have implemented smoke-free workplace laws to protect employees and customers from exposure to secondhand smoke. However, exemptions in these laws have allowed indoor tobacco smoking in hookah lounges to proliferate in recent years. To describe the amount of secondhand smoke in hookah lounges, we measured the indoor air quality of 10 hookah lounges in Oregon. Air quality measurements ranged from "unhealthy" to "hazardous" according to Environmental Protection Agency standards, indicating a potential health risk for patrons and employees.

  19. Indoor Climate and Air Quality Problems

    DEFF Research Database (Denmark)

    Valbjørn, O.; Hagen, H.; Kukkonen, E.;

    This report presents a stepwise method for the investigation of and remedial actions for indoor climate and air quality problems. The report gives the basis for evaluation of the prevalence and causes of building related symptoms like mucosal irritation and headache. The report adresses members...... of occupational health and safety organisations, consulting engineers and architects, and also the people responsible for the operation of buildings and installations which is essential for the indoor climate and air quality....

  20. Indoor climate in air-supported structure

    OpenAIRE

    Volkov, Oleg

    2014-01-01

    The air supported structure is quite modern type of building for sport purposes. The main advantages of this structure are low cost and multigrade function. Such benefits allow to consider this type of sport facility as a perspective and modern decision for sport industry in northern countries. But what about quality of indoor climate in air domes? Does the condition of indoor environment allow to use these facilities for performing of workouts and even the sport competition? The main aim...

  1. Indoor Air Quality in Brazilian Universities

    OpenAIRE

    Sonia R. Jurado; Bankoff, Antônia D. P.; Andrea Sanchez

    2014-01-01

    This study evaluated the indoor air quality in Brazilian universities by comparing thirty air-conditioned (AC) (n = 15) and naturally ventilated (NV) (n = 15) classrooms. The parameters of interest were indoor carbon dioxide (CO2), temperature, relative humidity (RH), wind speed, viable mold, and airborne dust levels. The NV rooms had larger concentration of mold than the AC rooms (1001.30 ± 125.16 and 367.00 ± 88.13 cfu/m3, respectively). The average indoor airborne dust concentration exceed...

  2. Indoor air quality – buildings design

    Directory of Open Access Journals (Sweden)

    Juhásová Šenitková Ingrid

    2017-01-01

    Full Text Available Growing attention is being paid to indoor air quality as one of the main health and well-being factors. The indoor research is concerned mostly to indoor air chemicals within indoor engineering related to building design. The providing good indoor air quality can be achieved effectively by avoiding or reducing indoor air pollution sources and by selecting low-polluting building materials, both being low-cost and energyefficient solutions. On the base of the last large experimental monitoring results, it was possible to know the level of selected indoor chemicals occurrence, rank them as well as to predict the tendencies of occurrence and establish the priorities for the future. There has been very limited attention to rigorous analysis of buildings actual environmental impacts to date. Healthy/green/sustainable building practices are typically applied in unsystematic and inconsistent ways often without resolution of inherent conflicts between and among such practices. Designers, products manufacturers, constructors, and owners declare their buildings and the applied technologies to be beneficial to the environment without validating those claims.

  3. Source apportionment of indoor air pollution

    Science.gov (United States)

    Sexton, Ken; Hayward, Steven B.

    An understanding of the relative contributions from important pollutant sources to human exposures is necessary for the design and implementation of effective control strategies. In the past, societal efforts to control air pollution have focused almost exclusively on the outdoor (ambient) environment. As a result, substantial amounts of time and money have been spent to limit airborne discharges from mobile and stationary sources. Yet it is now recognized that exposures to elevated pollutant concentrations often occur as a result of indoor, rather than outdoor, emissions. While the major indoor sources have been identified, their relative impacts on indoor air quality have not been well defined. Application of existing source apportionment models to nonindustrial indoor environments is only just beginning. It is possible that these models might be used to distinguish between indoor and outdoor emissions, as well as to distinguish among indoor sources themselves. However, before the feasibility and suitability of source-apportionment methods for indoor applications can be assessed adequately, it is necessary to take account of model assumptions and associated data requirements. This paper examines the issue of indoor source apportionment and reviews the need for emission characterization studies to support such source-apportionment efforts.

  4. Research of indoor smoke warning and air purification equipment

    Institute of Scientific and Technical Information of China (English)

    Wangronglong; Zhaoyexing; Fuyunhua

    2015-01-01

    In order to reduce indoor smoke concentration and improve indoor air quality,we put forward the intelligent indoor smoke warning and air purification device. This device can quickly reduce the concentration of indoor smoke by the air purification and fire alarm function. It provides a suitable living environment for people.

  5. Enhancing indoor air quality –The air filter advantage

    Directory of Open Access Journals (Sweden)

    Vannan Kandi Vijayan

    2015-01-01

    Full Text Available Air pollution has become the world's single biggest environmental health risk, linked to around 7 million deaths in 2012 according to a recent World Health Organisation (WHO report. The new data further reveals a stronger link between, indoor and outdoor air pollution exposure and cardiovascular diseases, such as strokes and ischemic heart disease, as well as between air pollution and cancer. The role of air pollution in the development of respiratory diseases, including acute respiratory infections and chronic obstructive pulmonary diseases, is well known. While both indoor and outdoor pollution affect health, recent statistics on the impact of household indoor pollutants (HAP is alarming. The WHO factsheet on HAP and health states that 3.8 million premature deaths annually - including stroke, ischemic heart disease, chronic obstructive pulmonary disease (COPD and lung cancer are attributed to exposure to household air pollution. Use of air cleaners and filters are one of the suggested strategies to improve indoor air quality. This review discusses the impact of air pollutants with special focus on indoor air pollutants and the benefits of air filters in improving indoor air quality.

  6. Combustion-generated indoor air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Hollowell, C.D.; Budnitz, R.J.; Traynor, G.W.

    1976-12-01

    It is obvious from this study that elevated levels of gaseous air pollutants (CO, NO, NO/sub 2/, and SO/sub 2/) and particulate sulfur and nitrogen compounds are present in indoor environments with gas cooking and heating appliances. High levels of CO and NO/sub 2/ approach or exceed promulgated and proposed ambient air quality standards. Such findings certainly indicate a potential impact of combustion-generated indoor air pollution on human health; and if borne out by further work, they may ultimately have a large impact on the future design of epidemiological studies, on energy conservation strategies for buildings, and on the need for more stringent control of air pollution from indoor combustion sources.

  7. Indoor air quality investigations at five classrooms.

    Science.gov (United States)

    Lee, S C; Chang, M

    1999-06-01

    Five classrooms, air-conditioned or naturally ventilated, at five different schools were chosen for comparison of indoor and outdoor air quality. Temperature, relative humidity (RH), carbon dioxide (CO2), sulphur dioxide (SO2), nitric oxide (NO), nitrogen dioxide (NO2), particulate matter with diameter less than 10 microns (PM10), formaldehyde (HCHO), and total bacteria counts were monitored at indoor and outdoor locations simultaneously. Respirable particulate matter was found to be the worst among parameters measured in this study. The indoor and outdoor average PM10 concentrations exceeded the Hong Kong standards, and the maximum indoor PM10 level was even at 472 micrograms/m3. Air cleaners could be used in classrooms to reduce the high PM10 concentration. Indoor CO2 concentrations often exceeded 1,000 microliters/l indicating inadequate ventilation. Lowering the occupancy and increasing breaks between classes could alleviate the high CO2 concentrations. Though the maximum indoor CO2 level reached 5,900 microliters/l during class at one of the sites, CO2 concentrations were still at levels that pose no health threats.

  8. Indoor Air Quality in Brazilian Universities

    Directory of Open Access Journals (Sweden)

    Sonia R. Jurado

    2014-07-01

    Full Text Available This study evaluated the indoor air quality in Brazilian universities by comparing thirty air-conditioned (AC (n = 15 and naturally ventilated (NV (n = 15 classrooms. The parameters of interest were indoor carbon dioxide (CO2, temperature, relative humidity (RH, wind speed, viable mold, and airborne dust levels. The NV rooms had larger concentration of mold than the AC rooms (1001.30 ± 125.16 and 367.00 ± 88.13 cfu/m3, respectively. The average indoor airborne dust concentration exceeded the Brazilian standards (<80 µg/m3 in both NV and AC classrooms. The levels of CO2 in the AC rooms were significantly different from the NV rooms (1433.62 ± 252.80 and 520.12 ± 37.25 ppm, respectively. The indoor air quality in Brazilian university classrooms affects the health of students. Therefore, indoor air pollution needs to be considered as an important public health problem.

  9. Guide for Indoor Air Quality Surveys

    Science.gov (United States)

    1992-05-01

    Selected References. May, 1989. 18. EPA. Building Air Quality: A Guide for Building Owners and Facility Managers. December 1991. 19. Fanger , P.O...1979. 6. Fanger , P.O. Introduction of the Olf and Decipol Units to Quantify Air Pollution Perceived by Humans Indoors and Outdoors. Energy and...Buildings. 12:1-6, 1988. 7. Fanger , P. et al. Air Pollution Sources in Assembly Halls Quantified by the Olf Unit. Energy and Buildings. 12: 7-19, 1988. 8

  10. Indoor Air Quality Building Education and Assessment Model Forms

    Science.gov (United States)

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM) is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  11. Indoor Air Quality Building Education and Assessment Model

    Science.gov (United States)

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM), released in 2002, is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  12. Foliage Plants for Improving Indoor Air Quality

    Science.gov (United States)

    Wolverton, B. C.

    1988-01-01

    NASA's research with foliage houseplants during the past 10 years has produced a new concept in indoor air quality improvement. This new and exciting technology is quite simple. Both plant leaves and roots are utilized in removing trace levels of toxic vapors from inside tightly sealed buildings. Low levels of chemicals such as carbon monoxide and formaldehyde can be removed from indoor environments by plant leaves alone, while higher concentrations of numerous toxic chemicals can be removed by filtering indoor air through the plant roots surrounded by activated carbon. The activated carbon absorbs large quantities of the toxic chemicals and retains them until the plant roots and associated microorganisms degrade and assimilate these chemicals.

  13. Indoor air and human health: major indoor air pollutants and their health implications

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This publication is a collection of abstracts of papers presented at the Indoor Air and Human Health symposium. Session titles include: Radon, Microorganisms, Passive Cigarette Smoke, Combustion Products, Organics, and Panel and Audience Discussion.

  14. Flood Cleanup to Protect Indoor Air Quality

    Science.gov (United States)

    During a flood cleanup, the indoor air quality in your home or office may appear to be the least of your problems. However, failure to remove contaminated materials and to reduce moisture and humidity can present serious long-term health risks.

  15. Equivalence in Ventilation and Indoor Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  16. The right to healthy indoor air: Status by 2002

    DEFF Research Database (Denmark)

    Mølhave, Lars; Krzyzanowski, M.

    2003-01-01

    One of the reasons for the inadequate quality of indoor air arises from the poor articulation, appreciation and understanding of basic principles underlying the policies and actions related to indoor air quality. A WHO Working Group derived nine statements on rights to healthy indoor air. The dis......One of the reasons for the inadequate quality of indoor air arises from the poor articulation, appreciation and understanding of basic principles underlying the policies and actions related to indoor air quality. A WHO Working Group derived nine statements on rights to healthy indoor air....... The discussions and statements are available as a WHO report. It informs the individuals and groups responsible for healthy indoor air about their rights and obligations, and empowers the general public by making people familiar with those rights. One year after their publication the statements have been adopted...

  17. Technical Guide for Indoor Air Quality Surveys

    Science.gov (United States)

    2014-07-24

    syndrome, which was used to describe buildings with inadequate ventilation due to improper energy conservation efforts [3]. In the United States Air...improperly cleaned spills, and the lack of dusting/vacuuming can all lead to IAQ issues. Even the improper care of indoor plants can lead to microbial...minimize their exposure to molds and other airborne allergens, such as animal dander, dust mites, and pollens . For these individuals, it is prudent to

  18. Air Conditioning Does Reduce Air Pollution Indoors

    Science.gov (United States)

    Healy, Bud

    1970-01-01

    Report of the winter meeting of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. Subjects covered are--(1) title subject, (2) predictions for the human habitat in 1994, (3) fans, and (4) fire safety in buildings. (JW)

  19. Air Conditioning Does Reduce Air Pollution Indoors

    Science.gov (United States)

    Healy, Bud

    1970-01-01

    Report of the winter meeting of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. Subjects covered are--(1) title subject, (2) predictions for the human habitat in 1994, (3) fans, and (4) fire safety in buildings. (JW)

  20. Are Ventilation Filters Degrading Indoor Air Quality in California Classrooms?

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.; Destaillats, H.; Apte, M.G.; Destaillats,, Hugo; Fisk, Michael G. Apte and William J.

    2008-10-01

    Heating, ventilating, and cooling classrooms in California consume substantial electrical energy. Indoor air quality (IAQ) in classrooms affects studenthealth and performance. In addition to airborne pollutants that are emitted directly by indoor sources and those generated outdoors, secondary pollutants can be formed indoors by chemical reaction of ozone with other chemicals and materials. Filters are used in nearly all classroom heating, ventilation and air?conditioning (HVAC) systems to maintain energy-efficient HVAC performance and improve indoor air quality; however, recent evidence indicates that ozone reactions with filters may, in fact, be a source of secondary pollutants. This project quantitatively evaluated ozone deposition in HVAC filters and byproduct formation, and provided a preliminary assessment of the extent towhich filter systems are degrading indoor air quality. The preliminary information obtained will contribute to the design of subsequent research efforts and the identification of energy efficient solutions that improve indoor air quality in classrooms and the health and performance of students.

  1. Using webcam for indoor air quality monitoring

    Science.gov (United States)

    Wong, C. J.; Teo, C. K.; MatJafri, M. Z.; Abdullah, K.; Lim, H. S.

    2009-05-01

    Nowadays application of webcam becomes more and more popular. Thus webcams are being developed to have better resolution but lower cost. This has motivated us to evaluate the suitability of using webcam for indoor air quality monitoring. This monitoring involved determining the concentration of particulate matter with diameter less than 10 micron (PM10). An algorithm was developed to convert multispectral image pixel values acquired from this camera into quantitative values of the concentrations of PM10. This algorithm was developed based on the regression analysis of relationship between the measured reflectance and the reflected components from a surface material and the ambient air. The computed PM10 values were compared to other standard values measured by a DustTrakTM meter. The correlation results showed that the newly develop algorithm produced a high degree of accuracy as indicated by high correlation coefficient (R2) and low root-mean-square-error (RMS). This has showed that Webcam can be used for indoor air quality monitoring.

  2. Indoor air quality: The hidden side of the indoor environment

    NARCIS (Netherlands)

    Oliveira Fernandes, E. de; Bluyssen, P.M.; Clausen, G.H.

    1996-01-01

    The physical environment can be defined and understood in manv different ways, both from its nature, e.g., thermal, accoustic, etc., or its dimension, e.g., global, local, urban, indoors. The indoor environment is much more than the space or the light effects; it is the result of a complex concurren

  3. Indoor air pollution and preventions in college libraries

    Science.gov (United States)

    Yang, Zengzhang

    2017-05-01

    The college library is a place where it gets the comparatively high density of students often staying long time with it. Therefore, the indoor air quality will affect directly reading effect and physical health of teachers and students in colleges and universities. The paper analyzes the influenced factors in indoor air pollution of the library from the selection of green-environmental decorating materials and furniture, good ventilation maintaining, electromagnetic radiation reducing, regular disinfection, indoor green building and awareness of health and environmental protection strengthening etc. six aspects to put forward the ideas for preventions of indoor air pollution and construction of the green low-carbon library.

  4. Total volatile organic compounds (TVOC) in indoor air quality investigations

    DEFF Research Database (Denmark)

    Mølhave, L.; Clausen, Geo; Berglund, B.

    1997-01-01

    The amount of volatile organic compounds (VOCs) in indoor air, usually called TVOC (total volatile organic compounds), has been measured using different definitions and techniques which yield different results. This report recommends a definition of TVOC referring to a specified range of VOCs...... for characterizing indoor pollution and for improving source control as required from the points of view of health, comfort, energy efficiency and sustainability. (C) Indoor Air (1997)....

  5. Fungi as contaminants in indoor air

    Science.gov (United States)

    Miller, J. David

    This article reviews the subject of contamination of indoor air with fungal spores. In the last few years there have been advances in several areas of research on this subject. A number of epidemiological studies have been conducted in the U.K., U.S.A. and Canada. These suggest that exposure to dampness and mold in homes is a significant risk factor for a number of respiratory symptoms. Well-known illnesses caused by fungi include allergy and hypersensitivity pneumonitis. There is now evidence that other consequences of exposure to spores of some fungi may be important. In particular, exposure to low molecular weight compounds retained in spores of some molds such as mycotoxins and β 1,3 glucans appears to contribute to some symptoms reported. Fungal contamination of building air is almost always caused by poor design and/or maintenance. Home owners and building operators need to take evidence of fungal contamination seriously.

  6. Analysis of Indoor Air Pollution of Decoration and Control Measures

    Science.gov (United States)

    Yan, Li

    2017-05-01

    Nowadays, the human health is closely related to quality of indoor air. This article analyzes the main types of pollution to indoor air and their harms to human health, and on this basis, it sets forth the prevention measures comprehensively and proposes advices to normalize industry standards.

  7. Indoor Air Quality and Student Performance [and Case Studies].

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Radiation and Indoor Air.

    This report examines how indoor air quality (IAQ) affects a child's ability to learn and provides several case studies of schools that have successfully addressed their indoor air problems, the lessons learned from that experience, and what long-term practices and policies emerged from the effort. The report covers the effects from…

  8. Reference Guide. Indoor Air Quality Tools for Schools

    Science.gov (United States)

    US Environmental Protection Agency, 2009

    2009-01-01

    Understanding the importance of good indoor air quality (IAQ) in schools is the backbone of developing an effective Indoor Air Quality (IAQ) program. Poor IAQ can lead to a large variety of health problems and potentially affect comfort, concentration, and staff/student performance. In recognition of tight school budgets, this guidance is designed…

  9. Indoor air quality investigation on commercial aircraft.

    Science.gov (United States)

    Lee, S C; Poon, C S; Li, X D; Luk, F

    1999-09-01

    Sixteen flights had been investigated for indoor air quality (IAQ) on Cathay Pacific aircraft from June 1996 to August 1997. In general, the air quality on Cathay Pacific aircraft was within relevant air quality standards because the average age of aircraft was less than 2 years. Carbon dioxide (CO2) levels on all flights measured were below the Federal Aviation Administration (FAA) standard (30,000 ppm). The CO2 level was substantially higher during boarding and de-boarding than cruise due to low fresh air supply. Humidity on the aircraft was low, especially for long-haul flights. Minimum humidity during cruise was below the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) minimum humidity standard (20%). The average temperature was within a comfortable temperature range of 23 +/- 2 degrees C. The vertical temperature profile on aircraft was uniform and below the International Standard Organization (ISO) standard. Carbon monoxide levels were below the FAA standard (50 ppm). Trace amount of ozone detected ranged from undetectable to 90 ppb, which was below the FAA standard. Particulate level was low for most non-smoking flights, but peaks were observed during boarding and de-boarding. The average particulate level in smoking flights (138 micrograms/m3) was higher than non-smoking flights (7.6 micrograms/m3). The impact on IAQ by switching from low-mode to high-mode ventilation showed a reduction in CO2 levels, temperature, and relative humidity.

  10. Mathematical models for predicting indoor air quality from smoking activity.

    Science.gov (United States)

    Ott, W R

    1999-05-01

    Much progress has been made over four decades in developing, testing, and evaluating the performance of mathematical models for predicting pollutant concentrations from smoking in indoor settings. Although largely overlooked by the regulatory community, these models provide regulators and risk assessors with practical tools for quantitatively estimating the exposure level that people receive indoors for a given level of smoking activity. This article reviews the development of the mass balance model and its application to predicting indoor pollutant concentrations from cigarette smoke and derives the time-averaged version of the model from the basic laws of conservation of mass. A simple table is provided of computed respirable particulate concentrations for any indoor location for which the active smoking count, volume, and concentration decay rate (deposition rate combined with air exchange rate) are known. Using the indoor ventilatory air exchange rate causes slightly higher indoor concentrations and therefore errs on the side of protecting health, since it excludes particle deposition effects, whereas using the observed particle decay rate gives a more accurate prediction of indoor concentrations. This table permits easy comparisons of indoor concentrations with air quality guidelines and indoor standards for different combinations of active smoking counts and air exchange rates. The published literature on mathematical models of environmental tobacco smoke also is reviewed and indicates that these models generally give good agreement between predicted concentrations and actual indoor measurements.

  11. Standards for securing adequate indoor air quality across Europe

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Carrer, P.; de Oliveira Fernandes, E.

    2013-01-01

    and is determined mainly considering the metabolic CO2 production. It is only applicable if all other pollutants meet WHO guidelines for ambient and indoor air quality. If they do not meet these guidelines after applying source control and when air used for ventilation is clean health-based ventilation rate should......Background: Inadequate IAQ causes a loss of 2 million healthy life years annually in the EU. Europeans spend typically over 85–90% of their time indoors and the main factors that affect negatively the characteristics of the air they breathe are outdoor air used to ventilate indoor spaces and indoor...... effects of IAQ into different components: exposures to indoor and outdoor air pollutants, association with different morbidities and the way ventilation based approaches could minimise their impact. Disability adjusted life years (DALYs), a common metric to allow comparability of impacts on various types...

  12. Indoor air quality in Virginia waterpipe cafes.

    Science.gov (United States)

    Cobb, Caroline Oates; Vansickel, Andrea Rae; Blank, Melissa D; Jentink, Kade; Travers, Mark J; Eissenberg, Thomas

    2013-09-01

    A revised indoor air quality law has been implemented in Virginia to protect the public from the harmful effects of secondhand smoke exposure. This legislation contains exemptions that include allowances for smoking in a room that is structurally separated and separately ventilated. The objective of the current study was to examine the impact of this law on air quality in waterpipe cafés, as well as to compare the air quality in these cafés to restaurants that allow cigarette smoking and those where no smoking is permitted. Indoor air quality in 28 venues (17 waterpipe cafés, five cigarette smoking-permitted restaurants and six smoke-free restaurants (five with valid data)) in Virginia was assessed during 4 March to 27 May 2011. Real-time measurements of particulate matter (PM) with 2.5 μm aerodynamic diameter or smaller (PM2.5) were obtained and occupant behaviour/venue characteristics were assessed. The highest mean PM2.5 concentration was observed for waterpipe café smoking rooms (374 μg/m(3), n=17) followed by waterpipe café non-smoking rooms (123 μg/m(3), n=11), cigarette smoking-permitted restaurant smoking rooms (119 μg/m(3), n=5), cigarette smoking-permitted restaurant non-smoking rooms (26 μg/m(3), n=5) and smoke-free restaurants (9 μg/m(3), n=5). Smoking density was positively correlated with PM2.5 across smoking rooms and the smoke-free restaurants. In addition, PM2.5 was positively correlated between smoking and non-smoking rooms of venues. The PM2.5 concentrations observed among the waterpipe cafés sampled here indicated air quality in the waterpipe café smoking rooms was worse than restaurant rooms in which cigarette smoking was permitted, and state-required non-smoking rooms in waterpipe cafés may expose patrons and employees to PM2.5 concentrations above national and international air quality standards. Reducing the health risks of secondhand smoke may require smoke-free establishments in which tobacco smoking sources such as water

  13. Indoor air quality in Latino homes in Boulder, Colorado

    Science.gov (United States)

    Escobedo, Luis E.; Champion, Wyatt M.; Li, Ning; Montoya, Lupita D.

    2014-08-01

    Indoor concentrations of airborne pollutants can be several times higher than those found outdoors, often due to poor ventilation, overcrowding, and the contribution of indoor sources within a home. Americans spend most of their time indoors where exposure to poor indoor air quality (IAQ) can result in diminished respiratory and cardiovascular health. This study measured the indoor air quality in 30 homes of a low-income Latino community in Boulder, Colorado during the summer of 2012. Participants were administered a survey, which included questions on their health conditions and indoor air pollution sources like cigarette smoke, heating fuel, and building materials. Twenty-four hour samples of fine particulate matter (PM2.5) from the indoor air were collected in each home; ambient PM2.5 samples were collected each day as well. Concurrent air samples were collected onto 47 mm Teflo and Tissuquartz filter at each location. Teflo filters were analyzed gravimetrically to measure PM2.5 and their extracts were used to determine levels of proteins and endotoxins in the fine fraction. The Tissuquartz filters were analyzed for elemental and organic carbon content (EC/OC). Results indicated that the indoor air contained higher concentrations of PM2.5 than the ambient air, and that the levels of OC were much higher than EC in both indoor and outdoor samples. This community showed no smoking in their homes and kept furry pets indoors at very low rates; therefore, cooking is likely the primary source of indoor PM. For responders with significant exposure to PM, it appeared to be primarily from occupational environments or childhood exposure abroad. Our findings indicate that for immigrant communities such as this, it is important to consider not only their housing conditions but also the relevant prior exposures when conducting health assessments.

  14. Office of radiation and indoor air: Program description

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    The goal of the Environmental Protection Agency`s (EPA) Office of Radiation and Indoor Air is to protect the public and the environment from exposures to radiation and indoor air pollutants. The Office develops protection criteria, standards, and policies and works with other programs within EPA and other agencies to control radiation and indoor air pollution exposures; provides technical assistance to states through EPA`s regional offices and other agencies having radiation and indoor air protection programs; directs an environmental radiation monitoring program; responds to radiological emergencies; and evaluates and assesses the overall risk and impact of radiation and indoor air pollution. The Office is EPA`s lead office for intra- and interagency activities coordinated through the Committee for Indoor Air Quality. It coordinates with and assists the Office of Enforcement in enforcement activities where EPA has jurisdiction. The Office disseminates information and works with state and local governments, industry and professional groups, and citizens to promote actions to reduce exposures to harmful levels of radiation and indoor air pollutants.

  15. Impacts Of Passive Removal Materials On Indoor Air Quality

    DEFF Research Database (Denmark)

    Darling, Erin; Cros, Clement; Wargocki, Pawel

    2011-01-01

    Indoor air quality (IAQ) was determined in the presence of eight combinations of building materials with and without ozone. Air samples were collected in twin 30 m3 chambers to assess the C5 to C10 aldehyde content of the air while a panel of 18 to 23 human subjects assessed air quality using a c...

  16. Outdoor-indoor air pollution in urban environment: challenges and opportunity

    OpenAIRE

    Dennis Y.C. eLeung

    2015-01-01

    With the continual improvement in our quality of life, indoor air quality has become an important area of concern in the twenty-first century. Indoor air quality is affected by many factors including the type and running conditions of indoor pollution sources, ventilation conditions, as well as indoor activities. Studies revealed that the outdoor environment is also an important factor that cannot be neglected for indoor air quality studies. In this review, the indoor and outdoor air pollutio...

  17. Outdoor-indoor air pollution in urban environment: Challenges and opportunity

    OpenAIRE

    Dennis Y.C. eLeung

    2015-01-01

    With the continual improvement in our quality of life, indoor air quality has become an important area of concern in the twenty-first century. Indoor air quality is affected by many factors including the type and running conditions of indoor pollution sources, ventilation conditions, as well as indoor activities. Studies revealed that the outdoor environment is also an important factor that cannot be neglected for indoor air quality studies. In this review, the indoor and outdoor air pollutio...

  18. WSN based indoor air quality monitoring in classrooms

    Science.gov (United States)

    Wang, S. K.; Chew, S. P.; Jusoh, M. T.; Khairunissa, A.; Leong, K. Y.; Azid, A. A.

    2017-03-01

    Indoor air quality monitoring is essential as the human health is directly affected by indoor air quality. This paper presents the investigations of the impact of undergraduate students' concentration during lecture due to the indoor air quality in classroom. Three environmental parameters such as temperature, relative humidity and concentration of carbon dioxide are measured using wireless sensor network based air quality monitoring system. This simple yet reliable system is incorporated with DHT-11 and MG-811 sensors. Two classrooms were selected to install the monitoring system. The level of indoor air quality were measured and students' concentration was assessed using intelligent test during normal lecturing section. The test showed significant correlation between the collected environmental parameters and the students' level of performances in their study.

  19. Report. no. 20. Sensory evaluation of indoor air quality

    DEFF Research Database (Denmark)

    Berglund, Birgitta; Bluyssen, Philomena; Clausen, Geo

    Human subjects are indispensable in the measurement of perceived indoor air quality. Chemical and physical methods of characterisation often are insensitive to odorous and sensory irritating air pollutants, or do not take account of combinations of singular pollutants in a biologically meaningful...... way. Therefore, sensory methods many times are the only or the preferred tool for evaluation of perceived indoor air quality. This report presents background to and advice on methodologies for sensory evaluation of perceived indoor air quality. It proposes methods which apply to source assessments...... as well as field investigations. The methods will assist in labelling of building materials, characterising air quality in indoor spaces, controlling ventilation performance, and measuring occupant responses in questionnaire field studies of the sick building syndrome. The proposed methods will enable...

  20. Monitoring Indoor Air Quality for Enhanced Occupational Health.

    Science.gov (United States)

    Pitarma, Rui; Marques, Gonçalo; Ferreira, Bárbara Roque

    2017-02-01

    Indoor environments are characterized by several pollutant sources. Because people spend more than 90% of their time in indoor environments, several studies have pointed out the impact of indoor air quality on the etiopathogenesis of a wide number of non-specific symptoms which characterizes the "Sick Building Syndrome", involving the skin, the upper and lower respiratory tract, the eyes and the nervous system, as well as many building related diseases. Thus, indoor air quality (IAQ) is recognized as an important factor to be controlled for the occupants' health and comfort. The majority of the monitoring systems presently available is very expensive and only allow to collect random samples. This work describes the system (iAQ), a low-cost indoor air quality monitoring wireless sensor network system, developed using Arduino, XBee modules and micro sensors, for storage and availability of monitoring data on a web portal in real time. Five micro sensors of environmental parameters (air temperature, humidity, carbon monoxide, carbon dioxide and luminosity) were used. Other sensors can be added for monitoring specific pollutants. The results reveal that the system can provide an effective indoor air quality assessment to prevent exposure risk. In fact, the indoor air quality may be extremely different compared to what is expected for a quality living environment. Systems like this would have benefit as public health interventions to reduce the burden of symptoms and diseases related to "sick buildings".

  1. Indoor air quality and respiratory health effects in school children: The HITEA study

    NARCIS (Netherlands)

    Jacobs, J.H.

    2013-01-01

    A good air quality of the indoor environment is essential for human health; on average people spend more than 80% of their time indoors. The composition of indoor air is extremely complex and the quality can be influenced by several outdoor and indoor sources. In this thesis the effects of indoor ai

  2. Indoor Air Quality (IAQ) Schools and Universities: Overview of Indoor Air Quality Issues, and Preliminary Design Guide.

    Science.gov (United States)

    Healthy Buildings International, Inc., Fairfax, VA.

    This guide is intended to help the building design, engineering, and maintenance staff of school buildings maintain a common standard of high indoor air quality (IAQ) and a productive and comfortable workplace for students and staff. The report defines the four basic classifications of indoor environmental pollution, lists the factors impacting…

  3. CDC STATE System Tobacco Legislation - Smokefree Indoor Air

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2016. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. Legislation – Smokefree Indoor Air....

  4. CDC STATE System Tobacco Legislation - Smokefree Indoor Air Summary

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2016. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. Legislation – Smokefree Indoor Air....

  5. Outdoor air dominates burden of disease from indoor exposures

    DEFF Research Database (Denmark)

    Hänninen, O.; Asikainen, A.; Carrer, P.

    2014-01-01

    Both indoor and outdoor sources of air pollution have significant public health impacts in Europe. Based on quantitative modelling of the burden of disease the outdoor sources dominate the impacts by a clear margin.......Both indoor and outdoor sources of air pollution have significant public health impacts in Europe. Based on quantitative modelling of the burden of disease the outdoor sources dominate the impacts by a clear margin....

  6. Indoor Air Quality in the Metro System in North Taiwan

    OpenAIRE

    Ying-Yi Chen; Fung-Chang Sung; Mei-Lien Chen; I-Fang Mao; Chung-Yen Lu

    2016-01-01

    Indoor air pollution is an increasing health concern, especially in enclosed environments such as underground subway stations because of increased global usage by urban populations. This study measured the indoor air quality of underground platforms at 10 metro stations of the Taipei Rapid Transit system (TRTS) in Taiwan, including humidity, temperature, carbon monoxide (CO), carbon dioxide (CO2), formaldehyde (HCHO), total volatile organic compounds (TVOCs), ozone (O3), airborne particulate ...

  7. Effects of Indoor Air Pollution on Human Health

    DEFF Research Database (Denmark)

    Berglund, B.; Brunekreef, B.; Knöppel, H.

    1992-01-01

    This article contains a summary discussion of human health effects linked to indoor air pollution (UP) in homes and other non-industrial environments. Rather than discussing the health effects of the many different pollutants which can be found in indoor air, the approach has been to group broad...... the number of people contracting resparatory disease or alhgies, or experiencing irritative effects due to exposure to indoor pollution. The effects of IAP on reproduction, cardiovascular disease and on other systems and organs have not been well documented to date. To a certain extent, this may mean...

  8. Uptake of chemicals from indoor air: Pathways and health effects

    DEFF Research Database (Denmark)

    Bekö, Gabriel

    2016-01-01

    Building occupants are exposed to manufactured chemicals. Exposure in the indoor environment can occur via non-dietary ingestion (e.g. indoor dust), inhalation and dermal absorption including dermal uptake directly from air. The extent of dermal uptake from air has been previously studied...... intake from inhalation. Further experiments have been conducted with nicotine and the results are similar. Some of the SVOCs present indoors may have adverse health effects or are categorized as potential endocrine-disrupting compounds. It has been suggested that the health effects of a chemical may...

  9. An Innovative Reactor Technology to Improve Indoor Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Rempel, Jane [TIAX LLC., Lexington, MA (United States)

    2013-03-30

    As residential buildings achieve tighter envelopes in order to minimize energy used for space heating and cooling, accumulation of indoor air pollutants such as volatile organic compounds (VOCs), becomes a major concern causing poor air quality and increased health risks. Current VOC removal methods include sorbents, ultraviolet photocatalytic oxidation (UVPCO), and increased ventilation, but these methods do not capture or destroy all VOCs or are prohibitively expensive to implement. TIAX's objective in this program was to develop a new VOC removal technology for residential buildings. This novel air purification technology is based on an innovative reactor and light source design along with UVPCO properties of the chosen catalyst to purify indoor air and enhance indoor air quality (IAQ). During the program we designed, fabricated and tested a prototype air purifier to demonstrate its feasibility and effectiveness. We also measured kinetics of VOC destruction on photocatalysts, providing deep insight into reactor design.

  10. Chemical Characterization of the Indoor Air Quality of a University Hospital: Penetration of Outdoor Air Pollutants

    NARCIS (Netherlands)

    Scheepers, P.T.J.; Wel, L. van; Beckmann, G.; Anzion, R.B.M.

    2017-01-01

    For healthcare centers, local outdoor sources of air pollution represent a potential threat to indoor air quality (IAQ). The aim of this study was to study the impact of local outdoor sources of air pollution on the IAQ of a university hospital. IAQ was characterized at thirteen indoor and two

  11. Indoor air quality environmental information handbook: Combustion sources

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This environmental information handbook was prepared to assist both the non-technical reader (i.e., homeowner) and technical persons (such as researchers, policy analysts, and builders/designers) in understanding the current state of knowledge regarding combustion sources of indoor air pollution. Quantitative and descriptive data addressing the emissions, indoor concentrations, factors influencing indoor concentrations, and health effects of combustion-generated pollutants are provided. In addition, a review of the models, controls, and standards applicable to indoor air pollution from combustion sources is presented. The emphasis is on the residential environment. The data presented here have been compiled from government and privately-funded research results, conference proceedings, technical journals, and recent publications. It is intended to provide the technical reader with a comprehensive overview and reference source on the major indoor air quality aspects relating to indoor combustion activities, including tobacco smoking. In addition, techniques for determining potential concentrations of pollutants in residential settings are presented. This is an update of a 1985 study documenting the state of knowledge of combustion-generated pollutants in the indoor environment. 191 refs., 51 figs., 71 tabs.

  12. CFD simulation research on residential indoor air quality.

    Science.gov (United States)

    Yang, Li; Ye, Miao; He, Bao-Jie

    2014-02-15

    Nowadays people are excessively depending on air conditioning to create a comfortable indoor environment, but it could cause some health problems in a long run. In this paper, wind velocity field, temperature field and air age field in a bedroom with wall-hanging air conditioning running in summer are analyzed by CFD numerical simulation technology. The results show that wall-hanging air conditioning system can undertake indoor heat load and conduct good indoor thermal comfort. In terms of wind velocity, air speed in activity area where people sit and stand is moderate, most of which cannot feel wind flow and meet the summer indoor wind comfort requirement. However, for air quality, there are local areas without ventilation and toxic gases not discharged in time. Therefore it is necessary to take effective measures to improve air quality. Compared with the traditional measurement method, CFD software has many advantages in simulating indoor environment, so it is hopeful for humans to create a more comfortable, healthy living environment by CFD in the future.

  13. Indoor air quality and occupational exposures at a bus terminal.

    Science.gov (United States)

    El-Fadel, Mutasem; El-Hougeiri, Nisrine

    2003-07-01

    This article presents an assessment of indoor air quality at a bus terminal. For this purpose, field surveys were conducted, and air samples were collected and analyzed for the presence of selected indoor air quality indicators. Mathematical modeling was performed to simulate bus emission rates, occupational exposure, and ventilation requirements to maintain acceptable indoor air quality. A sensitivity analysis based on literature-derived emission rates estimates was conducted to evaluate the effect of seasonal temperature changes within the terminal. Control measures to improve indoor air quality at the terminal are also outlined. While carbon monoxide concentrations were below the corresponding American Conference of Governmental Industrial Hygienists' (ACGIH) standards under normal operating conditions, they exceeded the 8-hr recommended average standard at peak hours and the World Health Organization (WHO) standard at all times. Total suspended particulates levels, on the other hand, were above the 24-hr American Society of Heating, Refrigerating and Air Conditioning Engineers' (ASHRAE) standard. Carbon monoxide emission rates that were estimated using the transient mass balance model correlated relatively well with those reported in the literature. Modeling results showed that the natural ventilation rate should be at least doubled for acceptable indoor air quality. While pollutant exposure levels depended on the individual activity patterns and the pollutant concentration, pollutant emissions rates within the terminal were affected mostly by the temperature with a 20-25 percent variation in carbon monoxide levels due to changes in seasonal temperatures.

  14. Which ornamental plant species effectively remove benzene from indoor air?

    Science.gov (United States)

    Liu, Yan-Ju; Mu, Yu-Jing; Zhu, Yong-Guan; Ding, Hui; Crystal Arens, Nan

    Phytoremediation—using plants to remove toxins—is an attractive and cost effective way to improve indoor air quality. This study screened ornamental plants for their ability to remove volatile organic compounds from air by fumigating 73 plant species with 150 ppb benzene, an important indoor air pollutant that poses a risk to human health. The 10 species found to be most effective at removing benzene from air were fumigated for two more days (8 h per day) to quantify their benzene removal capacity. Crassula portulacea, Hydrangea macrophylla, Cymbidium Golden Elf., Ficus microcarpa var. fuyuensis, Dendranthema morifolium, Citrus medica var. sarcodactylis, Dieffenbachia amoena cv. Tropic Snow; Spathiphyllum Supreme; Nephrolepis exaltata cv. Bostoniensis; Dracaena deremensis cv. Variegata emerged as the species with the greatest capacity to remove benzene from indoor air.

  15. Microbiological Quality of Indoor Air in University Libraries

    Institute of Scientific and Technical Information of China (English)

    Samuel Fekadu Hayleeyesus; Abayneh Melaku Manaye

    2014-01-01

    Objective: To evaluate the concentration of bacteria and fungi in the indoor environment of Jimma University libraries, so as to estimate the health hazard and to create standards for indoor air quality control.Methods:determined. The settle plate method using open Petri-dishes containing different culture media was employed to collect sample twice daily. Isolates were identified according to standard methods.Results:The concentrations of bacteria and fungi aerosols in the indoor environment of the The microbial quality of indoor air of eight libraries of Jimma University was university libraries ranged between 367-2595 CFU/m3. According to the sanitary standards classification of European Commission, almost all the libraries indoor air of Jimma University was heavily contaminated with bacteria and fungi. In spite of their major source difference, the average fungi density found in the indoor air of libraries did appear to follow the same trend with bacterial density (P=0.001). The bacteria isolates included Micrococcus sp., Staphylococcus aureus, Streptococcus pyogenes, Bacillus sp. and Neisseria sp. while Cladosporium sp., Alternaria sp.,Penicillium sp. and Aspergillus sp. were the most isolated fungi. Conclusions: The indoor air of all libraries were in the range above highly contaminated according to European Commission classification and the most isolates are considered as potential candidates involved in the establishment of sick building syndromes and often associated with clinical manifestations like allergy, rhinitis, asthma and conjunctivitis. Thus, attention must be given to control those environmental factors which favor the growth and multiplication of microbes in indoor environment of libraries to safeguard the health of users and workers.

  16. Microbiological Quality of Indoor Air in University Libraries

    Science.gov (United States)

    Hayleeyesus, Samuel Fekadu; Manaye, Abayneh Melaku

    2014-01-01

    Objective To evaluate the concentration of bacteria and fungi in the indoor environment of Jimma University libraries, so as to estimate the health hazard and to create standards for indoor air quality control. Methods The microbial quality of indoor air of eight libraries of Jimma University was determined. The settle plate method using open Petri-dishes containing different culture media was employed to collect sample twice daily. Isolates were identified according to standard methods. Results The concentrations of bacteria and fungi aerosols in the indoor environment of the university libraries ranged between 367-2595 CFU/m3. According to the sanitary standards classification of European Commission, almost all the libraries indoor air of Jimma University was heavily contaminated with bacteria and fungi. In spite of their major source difference, the average fungi density found in the indoor air of libraries did appear to follow the same trend with bacterial density (P=0.001). The bacteria isolates included Micrococcus sp., Staphylococcus aureus, Streptococcus pyogenes, Bacillus sp. and Neisseria sp. while Cladosporium sp., Alternaria sp., Penicillium sp. and Aspergillus sp. were the most isolated fungi. Conclusions The indoor air of all libraries were in the range above highly contaminated according to European Commission classification and the most isolates are considered as potential candidates involved in the establishment of sick building syndromes and often associated with clinical manifestations like allergy, rhinitis, asthma and conjunctivitis. Thus, attention must be given to control those environmental factors which favor the growth and multiplication of microbes in indoor environment of libraries to safeguard the health of users and workers. PMID:25183103

  17. Lead and cadmium in indoor air and the urban environment

    Energy Technology Data Exchange (ETDEWEB)

    Komarnicki, Guenter J.K. [Department of Ecotoxicology, Center of Public Health, Medical University of Vienna, Waehringer Str. 10, A-1090 Vienna (Austria)]. E-mail: guenter.komarnicki@meduniwien.ac.at

    2005-07-15

    The present study was conducted to find potential terrestrial biomonitors for heavy metals in indoor air in an urban environment. TSP, PM{sub 10}, and PM{sub 2.5} were collected in three retirement facilities in the urban area of Vienna. In addition, particulate matter and soil, vegetation, and isopods (Porcellio scaber L.) were collected in the adjacent garden areas. Aerosols were sampled with a low-volume air sampler. The sampled materials were wet ashed and total lead and cadmium contents were determined. Water-soluble heavy metal concentrations were measured in aqueous extracts from air exposed filters, soil, and vegetation. Lead and cadmium were analyzed by graphite furnace AAS. Lead contents in the vegetation were inferred from water-soluble lead in soils. Lead in isopods generally reflected the contents in vegetation. Cadmium in plants probably derived from soil solutions as well as from atmospheric input. Isopods reflected the total cadmium contents in soils. Particulate matter was dominated by PM{sub 2.5}, both with respect to mass concentrations and to heavy metal contents. The indoor aerosol was found to be influenced by human activity, indoor sources, and outdoor particles. Relationships between indoor airborne heavy metals and the contents in vegetation (lead and cadmium: positive) and isopods (lead: negative) were identified to have the potential for biomonitoring indoor air quality. - Urban vegetation and isopods are potential indicators for indoor aerial heavy metals.

  18. Indoor air quality and the law in Singapore.

    Science.gov (United States)

    Chan, P

    1999-12-01

    With the greater use of air-conditioned offices in Singapore, achieving good indoor air quality has become an important issue. The laws that impose duties upon designers and contractors with respect to the design and construction of air-conditioning and mechanical ventilation (ACMV) systems are set out in the Building Control Regulations and the Singapore Standard Code of Practice for Mechanical Ventilation and Air-conditioning in Buildings (hereinafter "SS CP 13:1980"). ACMV maintenance is governed by the Environmental Public Health Act, the Building and Common Property (Maintenance and Management) Act, and the Land Titles (Strata) Act, as well as by lease or tenancy agreements. Designers, contractors, developers, building owners and management corporations may also be liable to the workers, occupants and other premises users for indoor air quality (IAQ)-related injuries under the general principles of contract and tort. Recently, the Guidelines for Good Indoor Air Quality in Office Premises was issued by the Ministry of Environment to complement SS CP 13:1980 toward improving the indoor air quality of air-conditioned office premises. Although the Guidelines have no statutory effect, they may be adopted as contractual requirements in construction, lease and maintenance contracts. They may also be used to determine the relevant standard of duty of care required to discharge tortious liability. This paper looks at the existing laws and rules affecting the design, construction and maintenance of air-conditioned offices in light of Part III of the Ministry's Guidelines.

  19. THE ASSESSMENT OF MICROBIOLOGICAL INDOOR AIR QUALITY IN BAKERIES

    Directory of Open Access Journals (Sweden)

    Elżbieta Wołejko

    2016-05-01

    Full Text Available The aim of this study was to assess microbiological indoor air quality of selected bakeries located in the region of Podlasie. The microbiological studies were conducted in autumn in 2014 in three selected bakeries. Microbiological air counts were measured by impaction using an air sampler MAS-100 NT. The microbiological air studies, comprised the determination of the total number of psychrophilic and mesophilic bacteria, namely indicator bacteria such as: bacteria of the species Pseudomonas fluorescens, mannitol-positive and mannitol-negative Staphylococc, the total number of bacteria from the Enterobacteriaceae family and fungi found in atmospheric air. The results of the study of indoor air polluted with the analyzed groups of microorganisms differed depending on the type of test air and the location of the manufacturing plant. In the plants, the concentration of mesophilic bacteria and mannitol–positive and mannitol-negative Staphylococcus exceeded the limit values of unpolluted air, according to the Polish Standard recommendations.

  20. Dynamic behavior of semivolatile organic compounds in indoor air

    Energy Technology Data Exchange (ETDEWEB)

    Loy, Michael David Van [Univ. of California, Berkeley, CA (United States)

    1998-12-09

    Exposures to a wide range of air pollutants are often dominated by those occurring in buildings because of three factors: 1) most people spend a large fraction of their time indoors, 2) many pollutants have strong indoor sources, and 3) the dilution volume in buildings is generally several orders of magnitude smaller than that of an urban airshed. Semivolatile organic compounds (SVOCS) are emitted by numerous indoor sources, including tobacco combustion, cooking, carpets, paints, resins, and glues, so indoor gasphase concentrations of these compounds are likely to be elevated relative to ambient levels. The rates of uptake and release of reversibly sorbing SVOCS by indoor materials directly affect both peak concentrations and persistence of the pollutants indoors after source elimination. Thus, accurate predictions of SVOC dynamics in indoor air require an understanding of contaminant sorption on surface materials such as carpet and wallboard. The dynamic behaviors of gas-phase nicotine and phenanthrene were investigated in a 20 ms stainless steel chamber containing carpet and painted wallboard. Each compound was studied independently, first in the empty chamber, then with each sorbent individually, and finally with both sorbents in the chamber.

  1. Polybrominated Diphenyl Ethers (PBDEs in Indoor Air: Levels and Exposure

    Directory of Open Access Journals (Sweden)

    S Hazrati

    2005-10-01

    Full Text Available PBDE levels in 26 different indoor microenvironments including 13 homes, 12 offices and a private car were investigated. A mean indoor air concentration of 143.8 pg/m3 was determined with the offices being more contaminated than residential homes. The most abundant congener was identified to be BDE 47 followed by #s 99, 100, and 28, respectively. ΣPBDE concentrations in indoor air were on average ~ 7 times higher than HiVol derived outdoor air levels providing a significant source of these compounds to outdoor ambient air. The average daily human inhalation exposure to PBDEs was estimated to be 4.3 ng/person with a maximum intake value of 21.8 ng/person.

  2. Report. no. 20. Sensory evaluation of indoor air quality

    DEFF Research Database (Denmark)

    Berglund, Birgitta; Bluyssen, Philomena; Clausen, Geo

    as well as field investigations. The methods will assist in labelling of building materials, characterising air quality in indoor spaces, controlling ventilation performance, and measuring occupant responses in questionnaire field studies of the sick building syndrome. The proposed methods will enable...... designers, manufacturers, chemical and ventilating engineers, consumers, building and health authorities, and other decision makers to compare and select appropriate building materials, furnishings etc. Thereby the design, supply and control for good perceived air quality in indoor spaces will be easified......Human subjects are indispensable in the measurement of perceived indoor air quality. Chemical and physical methods of characterisation often are insensitive to odorous and sensory irritating air pollutants, or do not take account of combinations of singular pollutants in a biologically meaningful...

  3. Indoor Air Quality in the Metro System in North Taiwan.

    Science.gov (United States)

    Chen, Ying-Yi; Sung, Fung-Chang; Chen, Mei-Lien; Mao, I-Fang; Lu, Chung-Yen

    2016-12-02

    Indoor air pollution is an increasing health concern, especially in enclosed environments such as underground subway stations because of increased global usage by urban populations. This study measured the indoor air quality of underground platforms at 10 metro stations of the Taipei Rapid Transit system (TRTS) in Taiwan, including humidity, temperature, carbon monoxide (CO), carbon dioxide (CO₂), formaldehyde (HCHO), total volatile organic compounds (TVOCs), ozone (O₃), airborne particulate matter (PM10 and PM2.5), bacteria and fungi. Results showed that the CO₂, CO and HCHO levels met the stipulated standards as regulated by Taiwan's Indoor Air Quality Management Act (TIAQMA). However, elevated PM10 and PM2.5 levels were measured at most stations. TVOCs and bacterial concentrations at some stations measured in summer were higher than the regulated standards stipulated by Taiwan's Environmental Protection Administration. Further studies should be conducted to reduce particulate matters, TVOCs and bacteria in the air of subway stations.

  4. Microbiological Quality of Indoor Air in University Libraries

    Directory of Open Access Journals (Sweden)

    Samuel Fekadu Hayleeyesus

    2014-05-01

    Conclusions: The indoor air of all libraries were in the range above highly contaminated according to European Commission classification and the most isolates are considered as potential candidates involved in the establishment of sick building syndromes and often associated with clinical manifestations like allergy, rhinitis, asthma and conjunctivitis. Thus, attention must be given to control those environmental factors which favor the growth and multiplication of microbes in indoor environment of libraries to safeguard the health of users and workers.

  5. Negotiating indoor air-case report on negotiation of teachers' union, school board on air contaminants.

    Science.gov (United States)

    Gibson, Sarah; Levenstein, Charles

    2010-01-01

    School districts increasingly understand the need for an indoor air quality plan, but may have difficulty in producing a plan that all necessary parties will accept. This article provides a case study of how one Massachusetts school district, after experiencing environmental problems in an elementary school, worked with parents and unions to develop a comprehensive indoor air quality plan.

  6. Heating, Ventilation and Air-Conditioning Systems, Part of Indoor Air Quality Design Tools for Schools

    Science.gov (United States)

    The main purposes of a Heating, Ventilation, and Air-Conditioning system are to help maintain good indoor air quality through adequate ventilation with filtration and provide thermal comfort. HVAC systems are among the largest energy consumers in schools.

  7. Indoor air pollution: Sources and control. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The bibliography contains citations concerning indoor air pollution in residential, commercial, industrial, and institutional buildings. Indoor air quality assessment, health hazard evaluation, and contaminant identification and measurement are discussed. Indoor air pollution control methods and equipment are evaluated. Air quality analyses of energy efficient buildings are presented. Indoor air pollution from radon and asbestos are discussed in other bibliographies. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  8. Indoor air pollution: Sources and control. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The bibliography contains citations concerning indoor air pollution in residential, commercial, industrial, and institutional buildings. Indoor air quality assessment, health hazard evaluation, and contaminant identification and measurement are discussed. Indoor air pollution control methods and equipment are evaluated. Air quality analyses of energy efficient buildings are presented. Indoor air pollution from radon and asbestos are discussed in other bibliographies.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  9. Could houseplants improve indoor air quality in schools?

    Science.gov (United States)

    Pegas, P N; Alves, C A; Nunes, T; Bate-Epey, E F; Evtyugina, M; Pio, C A

    2012-01-01

    Previous studies performed by the National Aeronautics Space Administration (NASA) indicated that plants and associated soil microorganisms may be used to reduce indoor pollutant levels. This study investigated the ability of plants to improve indoor air quality in schools. A 9-wk intensive monitoring campaign of indoor and outdoor air pollution was carried out in 2011 in a primary school of Aveiro, Portugal. Measurements included temperature, carbon dioxide (CO₂), carbon monoxide (CO), concentrations of volatile organic compounds (VOC), carbonyls, and particulate matter (PM₁₀) without and with plants in a classroom. PM₁₀ samples were analyzed for the water-soluble inorganic ions, as well for carbonaceous fractions. After 6 potted plants were hung from the ceiling, the mean CO₂ concentration decreased from 2004 to 1121 ppm. The total VOC average concentrations in the indoor air during periods of occupancy without and with the presence of potted plants were, respectively, 933 and 249 μg/m³. The daily PM₁₀ levels in the classroom during the occupancy periods were always higher than those outdoors. The presence of potted plants likely favored a decrease of approximately 30% in PM₁₀ concentrations. Our findings corroborate the results of NASA studies suggesting that plants might improve indoor air and make interior breathing spaces healthier.

  10. Lead and cadmium in indoor air and the urban environment.

    Science.gov (United States)

    Komarnicki, Günter J K

    2005-07-01

    The present study was conducted to find potential terrestrial biomonitors for heavy metals in indoor air in an urban environment. TSP, PM(10), and PM(2.5) were collected in three retirement facilities in the urban area of Vienna. In addition, particulate matter and soil, vegetation, and isopods (Porcellio scaber L.) were collected in the adjacent garden areas. Aerosols were sampled with a low-volume air sampler. The sampled materials were wet ashed and total lead and cadmium contents were determined. Water-soluble heavy metal concentrations were measured in aqueous extracts from air exposed filters, soil, and vegetation. Lead and cadmium were analyzed by graphite furnace AAS. Lead contents in the vegetation were inferred from water-soluble lead in soils. Lead in isopods generally reflected the contents in vegetation. Cadmium in plants probably derived from soil solutions as well as from atmospheric input. Isopods reflected the total cadmium contents in soils. Particulate matter was dominated by PM(2.5), both with respect to mass concentrations and to heavy metal contents. The indoor aerosol was found to be influenced by human activity, indoor sources, and outdoor particles. Relationships between indoor airborne heavy metals and the contents in vegetation (lead and cadmium: positive) and isopods (lead: negative) were identified to have the potential for biomonitoring indoor air quality.

  11. Development of Indoor Air Pollution Concentration Prediction by Geospatial Analysis

    Directory of Open Access Journals (Sweden)

    Adyati Pradini Yudison

    2015-07-01

    Full Text Available People living near busy roads are potentially exposed to traffic-induced air pollutants. The pollutants may intrude into the indoor environment, causing health risks to the occupants. Prediction of pollutant exposure therefore is of great importance for impact assessment and policy making related to environmentally sustainable transport. This study involved the selection of spatial interpolation methods that can be used for prediction of indoor air quality based on outdoor pollutant mapping without indoor measurement data. The research was undertaken in the densely populated area of Karees, Bandung, Indonesia. The air pollutant NO2 was monitored in this area as a preliminary study. Nitrogen dioxide concentrations were measured by passive diffusion tube. Outdoor NO2 concentrations were measured at 94 locations, consisting of 30 roadside and 64 outdoor locations. Residential indoor NO2 concentrations were measured at 64 locations. To obtain a spatially continuous air quality map, the spatial interpolation methods of inverse distance weighting (IDW and Kriging were applied. Selection of interpolation method was done based on the smallest root mean square error (RMSE and standard deviation (SD. The most appropriate interpolation method for outdoor NO2 concentration mapping was Kriging with an SD value of 5.45 µg/m3 and an RMSE value of 5.45 µg/m3, while for indoor NO2 concentration mapping the IDW was best fitted with an RMSE value of 5.92 µg/m3 and an SD value of 5.92 µg/m3.

  12. Outdoor-indoor air pollution in urban environment: Challenges and opportunity

    Directory of Open Access Journals (Sweden)

    Dennis Y.C. eLeung

    2015-01-01

    Full Text Available With the continual improvement in our quality of life, indoor air quality has become an important area of concern in the 21st century. Indoor air quality is affected by many factors including the type and running conditions of indoor pollution sources, ventilation conditions, as well as indoor activities. Studies revealed that the outdoor environment is also an important factor that cannot be neglected for indoor air quality studies. In this review, the indoor and outdoor air pollution relationships obtained from different studies are discussed in order to identify the key factors affecting the indoor air quality. As climate change is recognized as imposing impacts on the environment, how it affects the indoor air quality and the health impacts to the occupants will be evaluated in this paper. The major challenges and opportunities in indoor/outdoor air pollution studies will be highlighted.

  13. Impacts of contaminant storage on indoor air quality: Model development

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.; Hult, Erin L.

    2013-02-26

    A first-order, lumped capacitance model is used to describe the buffering of airborne chemical species by building materials and furnishings in the indoor environment. The model is applied to describe the interaction between formaldehyde in building materials and the concentration of the species in the indoor air. Storage buffering can decrease the effect of ventilation on the indoor concentration, compared to the inverse dependence of indoor concentration on the air exchange rate that is consistent with a constant emission rate source. If the exposure time of an occupant is long relative to the time scale of depletion of the compound from the storage medium, however, the total exposure will depend inversely on the air exchange rate. This lumped capacitance model is also applied to moisture buffering in the indoor environment, which occurs over much shorter depletion timescales of the order of days. This model provides a framework to interpret the impact of storage buffering on time-varying concentrations of chemical species and resulting occupant exposure. Pseudo-steady state behavior is validated using field measurements. Model behavior over longer times is consistent with formaldehyde and moisture concentration measurements in previous studies.

  14. [Bipolar ionisation of indoor air through ion generators mountable into inflow ventilation and conditioning].

    Science.gov (United States)

    Dudarev, A A; Spichkin, G L; Denisikhina, D M; Burtsev, S I

    2010-01-01

    Experimental studies and digital modelling of artificial indoor air ionisation through bipolar ionisers mountable into inflow ventilation and conditioning proved possible creation of continuous even bipolar ion background in indoor air, similar to the natural one.

  15. Links Related to the Indoor Air Quality Building Education and Assessment Model

    Science.gov (United States)

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM) is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  16. Bibliography for the Indoor Air Quality Building Education and Assessment Model

    Science.gov (United States)

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM) is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  17. Interior Landscape Plants for Indoor Air Pollution Abatement

    Science.gov (United States)

    Wolverton, B. C.; Johnson, Anne; Bounds, Keith

    1989-01-01

    In this study, the leaves, roots, soil, and associated microorganisms of plants have been evaluated as a possible means of reducing indoor air pollutants. Additionally, a novel approach of using plant systems for removing high concentrations of indoor air pollutants such as cigarette smoke, organic solvents, and possibly radon has been designed from this work. This air filter design combines plants with an activated carbon filter. The rationale for this design, which evolved from wastewater treatment studies, is based on moving large volumes of contaminated air through an activated carbon bed where smoke, organic chemicals, pathogenic microorganisms (if present), and possibly radon are absorbed by the carbon filter. Plant roots and their associated microorganisms then destroy the pathogenic viruses, bacteria, and the organic chemicals, eventually converting all of these air pollutants into new plant tissue. It is believed that the decayed radon products would be taken up the plant roots and retained in the plant tissue.

  18. Indoor air quality at Salarjung Museum, Hyderabad, India.

    Science.gov (United States)

    Reddy, M K; Suneela, M; Sumathi, M; Reddy, R C

    2005-06-01

    Deterioration of art objects at Salarjung Museum has been noticed such as blackening of white and pink pigments of Indian miniature paintings and other objects like pigments, paints, varnishes, coatings, silver ware, zari works, textiles, which are displayed in museum galleries. The cause of deterioration of the artifacts is attributed to air pollution. The outdoor air pollution levels with respect to suspended particulate matter, sulphur dioxide, oxides of nitrogen, ammonia, aldehydes and oxidants are observed to be high when compared with background environment and ambient air quality standards for sensitive areas. The indoor air quality levels in terms of various parameters including temperature and relative humidity (RH) observed to be more than the threshold limits. The climatic conditions coupled with polluted indoor air are the main causes for the deterioration of art objects. Hence remedial measures are suggested to avoid further deterioration of objects.

  19. Indoor Air Purification by Potted Plants

    DEFF Research Database (Denmark)

    Dela Cruz, Majbrit

    Volatile organic compounds (VOC) are ubiquitous in the indoor environment and can affect human health negatively. Potted plants are a potential green technology solution for removal of VOCs. This PhD project aimed at reviewing current literature on VOC removal by potted plants, developing a dynam...... community structure was, however, not the same for two consecutive experiments indicating that several bacteria can degrade VOCs...

  20. Indoor air quality of canteens and cafeterias - The sample of Tunceli University

    OpenAIRE

    IŞIK, Erdem; ÇİBUK, Serkan

    2015-01-01

    Indoor air quality has become important today because it's directly related to human health and working performance. Indoor air quality is often important for people living in closed spaces. In particular, indoor air quality has significant and positive effects for health and learning performance of students in university canteens and cafeterias. The main purpose of this study is, primarily through the analysis of indoor air quality in higher education institutions which is new and incre...

  1. Indoor air radon concentration in schools in Prizren, Kosovo.

    Science.gov (United States)

    Bahtijari, Meleq; Stegnar, Peter; Shemsidini, Zahadin; Kobal, Ivan; Vaupotic, Janja

    2006-01-01

    Indoor air radon ((222)Rn) concentrations were measured in spring and winter in 30 rooms of 9 elementary schools and 19 rooms of 6 high schools in Prizren, Kosovo, using alpha scintillation cells. Only in three rooms of elementary schools and four rooms of high schools did winter concentrations exceed 400 Bq m(-3).

  2. Ventilation, indoor air quality, and health in homes undergoing weatherization.

    Science.gov (United States)

    Francisco, P W; Jacobs, D E; Targos, L; Dixon, S L; Breysse, J; Rose, W; Cali, S

    2017-03-01

    Ventilation standards, health, and indoor air quality have not been adequately examined for residential weatherization. This randomized trial showed how ASHRAE 62-1989 (n=39 houses) and ASHRAE 62.2-2010 (n=42 houses) influenced ventilation rates, moisture balance, indoor air quality, and self-reported physical and mental health outcomes. Average total airflow was nearly twice as high for ASHRAE 62.2-2010 (79 vs. 39 cfm). Volatile organic compounds, formaldehyde and carbon dioxide were all significantly reduced for the newer standard and first-floor radon was marginally lower, but for the older standard, only formaldehyde significantly decreased. Humidity in the ASHRAE 62.2-2010 group was only about half that of the ASHRAE 62-1989 group using the moisture balance metric. Radon was higher in the basement but lower on the first floor for ASHRAE 62.2-2010. Children in each group had fewer headaches, eczema, and skin allergies after weatherization and adults had improvements in psychological distress. Indoor air quality and health improve when weatherization is accompanied by an ASHRAE residential ventilation standard, and the 2010 ASHRAE standard has greater improvements in certain outcomes compared to the 1989 standard. Weatherization, home repair, and energy conservation projects should use the newer ASHRAE standard to improve indoor air quality and health. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Assessment of Indoor Air Pollution in Homes with Infants

    Directory of Open Access Journals (Sweden)

    Michelle L. Bell

    2011-12-01

    Full Text Available Infants spend most of their indoor time at home; however, residential air quality is poorly understood. We investigated the air quality of infants’ homes in the New England area of the U.S. Participants (N = 53 were parents of infants (0–6 months who completed telephone surveys to identify potential pollutant sources in their residence. Carbon monoxide (CO, carbon dioxide (CO2, particulate matter with aerodynamic diameter ≤0.5 µm (PM0.5, and total volatile organic compounds (TVOCs were measured in 10 homes over 4–7 days, and levels were compared with health-based guidelines. Pollutant levels varied substantially across homes and within homes with overall levels for some homes up to 20 times higher than for other homes. Average levels were 0.85 ppm, 663.2 ppm, 18.7 µg/m3, and 1626 µg/m3 for CO, CO2, PM0.5, and TVOCs, respectively. CO2, TVOCs, and PM0.5 levels exceeded health-based indoor air quality guidelines. Survey results suggest that nursery renovations and related potential pollutant sources may be associated with differences in urbanicity, income, and presence of older children with respiratory ailments, which could potentially confound health studies. While there are no standards for indoor residential air quality, our findings suggest that additional research is needed to assess indoor pollution exposure for infants, which may be a vulnerable population.

  4. Assessment of Indoor Air Pollution in Homes with Infants

    Science.gov (United States)

    Pickett, Anna Ruth; Bell, Michelle L.

    2011-01-01

    Infants spend most of their indoor time at home; however, residential air quality is poorly understood. We investigated the air quality of infants’ homes in the New England area of the U.S. Participants (N = 53) were parents of infants (0–6 months) who completed telephone surveys to identify potential pollutant sources in their residence. Carbon monoxide (CO), carbon dioxide (CO2), particulate matter with aerodynamic diameter ≤0.5 µm (PM0.5), and total volatile organic compounds (TVOCs) were measured in 10 homes over 4–7 days, and levels were compared with health-based guidelines. Pollutant levels varied substantially across homes and within homes with overall levels for some homes up to 20 times higher than for other homes. Average levels were 0.85 ppm, 663.2 ppm, 18.7 µg/m3, and 1626 µg/m3 for CO, CO2, PM0.5, and TVOCs, respectively. CO2, TVOCs, and PM0.5 levels exceeded health-based indoor air quality guidelines. Survey results suggest that nursery renovations and related potential pollutant sources may be associated with differences in urbanicity, income, and presence of older children with respiratory ailments, which could potentially confound health studies. While there are no standards for indoor residential air quality, our findings suggest that additional research is needed to assess indoor pollution exposure for infants, which may be a vulnerable population. PMID:22408586

  5. Ventilation, good indoor air quality and rational use of energy

    DEFF Research Database (Denmark)

    Clausen, Geo; Fernandes, E. D. O.; DeGids, W.;

    2003-01-01

    The aim of this report is to provide information and advice to policy and decission makers, researchers, architects, designers, and manufacturers on strategies for achieving a good balance between good indoor air quality (IAQ) and the rational use of Energy in buildings, available guidelines...

  6. Recommended Concentration Limits of Typical Indoor Air Contaminants

    Institute of Scientific and Technical Information of China (English)

    LV Chao; JIANG Yun-tao; ZHAO Jia-ning

    2009-01-01

    From the view of both objective and subjective factors.the indoor air quality(IAQ)evaluation was considered.Carbon dioxide (CO2) and formaldehyde (HCHO) were selected as the typical contaminants of indoor air,and the evaluation method of logarithmic index was adopted as the evaluation means of IAQ.Then the recommended limits (RL) of typical contaminants CO2 and HCHO were given through analysis and calcula-tion.The limits of CO2 and HCHO in Indoor Air Quahty Standard of China or other existing standards probably correspond to the level of PD=25(%).The result shows that the existing standards fail to meet the require-ment of the definition of"acceptable indoor air quality",that is to say,less than 20% of the people express dis-satisfaction.When PD=20%,RL of CO2 and HCHO are 728×10-6 and 0.068×10-6 respectively,which are stricter than the limits in the existing standards.The method proposed in this paper is applicable to 13.1%≤PD≤86.7%.

  7. Air quality inside subway metro indoor environment worldwide: A review.

    Science.gov (United States)

    Xu, Bin; Hao, Jinliang

    2017-10-01

    The air quality in the subway metro indoor microenvironment has been of particular public concern. With specific reference to the growing demand of green transportation and sustainable development, subway metro systems have been rapidly developed worldwide in last decades. The number of metro commuters has continuously increased over recent years in metropolitan cities. In some cities, metro system has become the primary public transportation mode. Although commuters typically spend only 30-40min in metros, the air pollutants emitted from various interior components of metro system as well as air pollutants carried by ventilation supply air are significant sources of harmful air pollutants that could lead to unhealthy human exposure. Commuters' exposure to various air pollutants in metro carriages may cause perceivable health risk as reported by many environmental health studies. This review summarizes significant findings in the literature on air quality inside metro indoor environment, including pollutant concentration levels, chemical species, related sources and health risk assessment. More than 160 relevant studies performed across over 20 countries were carefully reviewed. These comprised more than 2000 individual measurement trips. Particulate matters, aromatic hydrocarbons, carbonyls and airborne bacteria have been identified as the primary air pollutants inside metro system. On this basis, future work could focus on investigating the chronic health risks of exposure to various air pollutants other than PM, and/or further developing advanced air purification unit to improve metro in-station air quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Indoor airPLUS constructores profesionales

    Science.gov (United States)

    El Programa Interior de airPLUS es una asociación entre EPA, los constructores, raters, las utilidades, y organizaciones sanitarias e interiores ambientales de mejorar aire interior en nuevas casas casas verdes.

  9. Indoor Air Quality in Chemistry Laboratories.

    Science.gov (United States)

    Hays, Steve M.

    This paper presents air quality and ventilation data from an existing chemical laboratory facility and discusses the work practice changes implemented in response to deficiencies in ventilation. General methods for improving air quality in existing laboratories are presented and investigation techniques for characterizing air quality are…

  10. Does air conditioning impact on hygienic quality of indoor air on seagoing vessels?

    Science.gov (United States)

    Meyer, Gabriele; Schepers, Bernd-Fred

    2007-01-01

    According to observations by occupational health physicians, nearly 50 % of the seamen on German vessels will get diseases of the upper respiratory tract. An impact of the air-conditioning systems on these diseases has been suggested. To examine the hygienic quality of indoor air on seagoing vessels, a pilot study was initiated by the See-Berufsgenossenschaft. Air samples were taken on-site at different sampling sites and analysed for the occurrence of microorganisms. Bacteria showed the highest cell numbers and the highest distribution in indoor air on vessels, whereby the maximum level was determined in the air of crew cabins. The identification of bacteria showed that beside common airborne species, pathogens existed. Air-conditioning seems to influence the quality of indoor air on seagoing vessels. Interim results of the study indicate that regular maintenance of air-conditioning systems is essential.

  11. Solid waste transuranic storage and assay facility indoor air sampling

    Energy Technology Data Exchange (ETDEWEB)

    Pingel, L.A., Westinghouse Hanford

    1996-08-20

    The purpose of the study is to collect and analyze samples of the indoor air at the Transuranic Storage and Assay Facility (TRUSAF), Westinghouse Hanford. A modified US EPA TO-14 methodology, using gas chromatography/mass spectrography, may be used for the collection and analysis of the samples. The information obtained will be used to estimate the total release of volatile organic compounds from TRUSAF to determine the need for air emmission permits.

  12. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios.

    Science.gov (United States)

    Shen, Rui; Suuberg, Eric M

    2016-02-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures.

  13. Human perception, productivity and symptoms related to indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Wargocki, P.

    1998-08-01

    Three objectives of the present study are formulated: (1) to investigate whether total sensory pollution load on the air in space can be estimated by adding sensory pollution loads from the individual pollution sources; (2) to develop alternative reference exposures which can be used to calibrate sensory evaluations of the air quality indoors made by trained subjects; and (3) to investigate whether decreasing the pollution loads on the air indoors is an effective measure for improving the perceived air quality, reducing the prevalence of health symptoms and increasing people`s productivity. Limited data exist on the addition of families of sensory pollution, sources, i.e., building materials, people and tobacco smoke (research was mainly performed on building materials), and that no field study on addition has been carried out previously. Consequently, laboratory and field experiments on the addition of families of sensory pollution sources were undertaken. Reducing the sensory pollution load on the air indoors proved to be an effective and energy-efficient measure to improve the perceived quality of air, to lower the prevalence of symptoms and to improve productivity. Suggestions for future experiments are made including, i.a., using other sub-populations of subjects stratified for age, sensitivity and type of work, other pollution sources, as well as the independent measures design and repeated exposures to the same environmental conditions. (EG) 209 refs.

  14. A Study on Public Opinion Poll and Policy on Indoor Air Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.S.; Lee, H.S.; Kong, S.Y.; Ku, H.J. [Korea Environment Institute, Seoul (Korea)

    2001-12-01

    The purpose of this study is to review previous studies on indoor air pollution and to propose national strategies and policy measures for protecting public health from indoor air pollution based on the results of public survey research. Indoor air has the potential to be polluted by hazardous materials that might lead to serious health problems. It is well known that the indoor spaces are more polluted than outdoor ones, which can be a major health problem for those that live in urban areas who spend most of their time indoors. In Korea, studies on indoor air pollution are usually conducted under the auspices of academic research, which only focus on particular types of indoor spaces and certain concepts of indoor air quality. Thus, at present, the studies on the policies or policy measures concerning indoor air quality management are difficult to find in the country. The governmental agencies that are presently involved in the management of indoor air quality include: the Ministry of Health and Welfare, Ministry of Construction and Transportation, Ministry of Education and Human Resources Development, and Ministry of Environment. However, due to differing regulatory standards between the concerned agencies, the national management of indoor air quality has so far proven to be ineffective. Although the Ministry of Environment recently proposed a law to manage indoor air quality, it is only focuses on managing particular types of indoor spaces not regulated by other governmental bodies and is not effective in the effort towards a national managing system for indoor air pollution. According to a survey conducted by the Korea Environment Institute (KEI), the residents of the Seoul metropolitan area have been felt that environmental pollution negatively affects their health, and especially consider outdoor air pollution to be the most harmful type of pollution. Although these urban residents spend more than 20 hours a day indoors, the survey shows that they do not

  15. Yeast-like fungi isolated from indoor air in school buildings and the surrounding outdoor air

    Directory of Open Access Journals (Sweden)

    Elżbieta Ejdys

    2013-12-01

    Full Text Available A total of 111 isolates of yeast-like fungi and yeasts belonging to 40 species of 19 genera were identified in indoor air and outdoor air. Only one species, Kluyveromyces marxianus, was recorded in both types of air and seasons (spring and autumn. Kluyveromyces lactis and Yarrowia lipolytica, a species having the greatest symbiotic abilities, dominated in indoor air and outdoor air, respectively. Intensely used rooms, especially those with limited access of air, have the broadest range of species of yeast-like fungi. A comparison of both habitats shows that school rooms pose a greater epidemiological risk of yeast-like infections than outdoor air. The indoor as well as outdoor mycobiota undergoes phenological changes although it is determined by other biotic and abiotic factors.

  16. Design of a fifth generation air superiority fighter

    Science.gov (United States)

    Atique, Md. Saifuddin Ahmed; Barman, Shuvrodeb; Nafi, Asif Shahriar; Bellah, Masum; Salam, Md. Abdus

    2016-07-01

    Air Superiority Fighter is considered to be an effective dogfighter which is stealthy & highly maneuverable to surprise enemy along with improve survivability against the missile fire. This new generation fighter aircraft requires fantastic aerodynamics design, low wing loading (W/S), high thrust to weight ratio (T/W) with super cruise ability. Conceptual design is the first step to design an aircraft. In this paper conceptual design of an Air Superiority Fighter Aircraft is proposed to carry 1 crew member (pilot) that can fly at maximum Mach No of 2.3 covering a range of 1500 km with maximum ceiling of 61,000 ft. Payload capacity of this proposed aircraft is 6000 lb that covers two advanced missiles & one advanced gun. The Air Superiority Fighter Aircraft was designed to undertake all the following missions like: combat air petrol, air to air combat, maritime attack, close air support, suppression, destruction of enemy air defense and reconnaissance.

  17. Indoor air pollution in slum neighbourhoods of Addis Ababa, Ethiopia

    Science.gov (United States)

    Sanbata, Habtamu; Asfaw, Araya; Kumie, Abera

    2014-06-01

    An estimated 95% of the population of Ethiopia uses traditional biomass fuels, such as wood, dung, charcoal, or crop residues, to meet household energy needs. As a result of the harmful smoke emitted from the combustion of biomass fuels, indoor air pollution is responsible for more than 50,000 deaths annually and causes nearly 5% of the burden of disease in Ethiopia. Very limited research on indoor air pollution and its health impacts exists in Ethiopia. This study was, therefore, undertaken to assess the magnitude of indoor air pollution from household fuel use in Addis Ababa, the capital city of Ethiopia. During January and February, 2012, the concentration of fine particulate matter (PM2.5) in 59 households was measured using the University of California at Berkeley Particle Monitor (UCB PM). The raw data was analysed using Statistical Package of Social Science (SPSS version 20.0) software to determine variance between groups and descriptive statistics. The geometric mean of 24-h indoor PM2.5 concentration is approximately 818 μg m-3 (Standard deviation (SD = 3.61)). The highest 24-h geometric mean of PM2.5 concentration observed were 1134 μg m-3 (SD = 3.36), 637 μg m-3 (SD = 4.44), and 335 μg m-3 (SD = 2.51), respectively, in households using predominantly solid fuel, kerosene, and clean fuel. Although 24-h mean PM2.5 concentration between fuel types differed statistically (P 0.05). The study revealed indoor air pollution is a major environmental and health hazard from home using biomass fuel in Addis Ababa. The use of clean fuels and efficient cooking stoves is recommended.

  18. Residential indoor air quality guideline : moulds

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-03-15

    Mould growth in residential buildings can pose a health hazard. This guide was developed to describe the physical and chemical properties of mould, as well as discuss the causes of mould growth. The results of literature reviews have demonstrated that exposure to indoor mould can increase the prevalence of asthma-related symptoms. The instillation of fungal antigens and fungal cell components in laboratory animals has resulted in inflammatory responses in the lungs of rodents. The instillation of Stachybotrys chartarum spores results in severe biochemical and histological changes. Significant associations in several studies have demonstrated links between dampness in the home and the risk of developing asthma. However, it is currently not possible to derive exposure limits for mould species and strains. It was concluded that humidity in houses should be controlled, and water damage in residences should be repaired in order to prevent mould growth. All visible or concealed mould growing in residential buildings should be thoroughly cleaned. 8 refs.

  19. Indoor air quality at the Correr Museum, Venice, Italy.

    Science.gov (United States)

    Camuffo, D; Brimblecombe, P; Van Grieken, R; Busse, H J; Sturaro, G; Valentino, A; Bernardi, A; Blades, N; Shooter, D; De Bock, L; Gysels, K; Wieser, M; Kim, O

    1999-09-15

    Two multidisciplinary field surveys, one in winter and the other in summer have monitored the indoor microclimate, air pollution, deposition and origin of the suspended particulate matter and microorganisms of the Correr Museum, Venice. In addition, this study was focused to identify the problems caused by the heating and air conditioning system (HAC) and the effects due to the presence of carpets. Heating and air conditioning systems (HACs), when chiefly designed for human welfare, are not suitable for conservation and can cause dangerous temperature and humidity fluctuations. Improvements at the Correr Museum have been achieved with the assistance of environmental monitoring. The carpet has a negative influence as it retains particles and bacteria which are resuspended each time people walk on it. The indoor/outdoor pollutants ratio is greater in the summertime, when doors and windows are more frequently open to allow for better ventilation, illustrating that this ratio is mainly governed by the free exchange of the air masses. The chemical composition, size and origin of the suspended particulate matter have been identified, as well as the bacteria potentially dangerous to the paintings. Some general suggestions for improving indoor air quality are reported in the conclusions.

  20. Influence of Visitors' Flows on Indoor Air Quality of Museum Premises

    Science.gov (United States)

    Dovgaliuk, Volodymyr; Lysak, Pavlo

    2012-06-01

    The article considers the influence of visitors' flows on indoor air quality of museum premises and work of ventilation and air conditioning systems. The article provides the analysis of the heat input from visitors, the results of mathematical simulation of visitors flow influence on indoor air quality. Several advice options are provided on application of variable air volume systems for provision of constant indoor air quality.

  1. Endocrine disrupting chemicals in indoor and outdoor air

    Science.gov (United States)

    Rudel, Ruthann A.; Perovich, Laura J.

    The past 50 years have seen rapid development of new building materials, furnishings, and consumer products and a corresponding explosion in new chemicals in the built environment. While exposure levels are largely undocumented, they are likely to have increased as a wider variety of chemicals came into use, people began spending more time indoors, and air exchange rates decreased to improve energy efficiency. As a result of weak regulatory requirements for chemical safety testing, only limited toxicity data are available for these chemicals. Over the past 15 years, some chemical classes commonly used in building materials, furnishings, and consumer products have been shown to be endocrine disrupting chemicals - that is they interfere with the action of endogenous hormones. These include PCBs, used in electrical equipment, caulking, paints and surface coatings; chlorinated and brominated flame retardants, used in electronics, furniture, and textiles; pesticides, used to control insects, weeds, and other pests in agriculture, lawn maintenance, and the built environment; phthalates, used in vinyl, plastics, fragrances, and other products; alkylphenols, used in detergents, pesticide formulations, and polystyrene plastics; and parabens, used to preserve products like lotions and sunscreens. This paper summarizes reported indoor and outdoor air concentrations, chemical use and sources, and toxicity data for each of these chemical classes. While industrial and transportation-related pollutants have been shown to migrate indoors from outdoor sources, it is expected that indoor sources predominate for these consumer product chemicals; and some studies have identified indoor sources as the predominant factor influencing outdoor ambient air concentrations in densely populated areas. Mechanisms of action, adverse effects, and dose-response relationships for many of these chemicals are poorly understood and no systematic screening of common chemicals for endocrine disrupting

  2. Can ornamental potted plants remove volatile organic compounds from indoor air? - a review

    DEFF Research Database (Denmark)

    Dela Cruz, Majbrit; Christensen, Jan H.; Thomsen, Jane Dyrhauge;

    2014-01-01

    Volatile organic compounds (VOCs) are found in indoor air, and many of these can affect human health (e.g. formaldehyde and benzene are carcinogenic). Plants affect the levels of VOCs in indoor environments, thus they represent a potential green solution for improving indoor air quality...

  3. Predicting indoor pollutant concentrations, and applications to air quality management

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzetti, David M.

    2002-10-01

    Because most people spend more than 90% of their time indoors, predicting exposure to airborne pollutants requires models that incorporate the effect of buildings. Buildings affect the exposure of their occupants in a number of ways, both by design (for example, filters in ventilation systems remove particles) and incidentally (for example, sorption on walls can reduce peak concentrations, but prolong exposure to semivolatile organic compounds). Furthermore, building materials and occupant activities can generate pollutants. Indoor air quality depends not only on outdoor air quality, but also on the design, maintenance, and use of the building. For example, ''sick building'' symptoms such as respiratory problems and headaches have been related to the presence of air-conditioning systems, to carpeting, to low ventilation rates, and to high occupant density (1). The physical processes of interest apply even in simple structures such as homes. Indoor air quality models simulate the processes, such as ventilation and filtration, that control pollutant concentrations in a building. Section 2 describes the modeling approach, and the important transport processes in buildings. Because advection usually dominates among the transport processes, Sections 3 and 4 describe methods for predicting airflows. The concluding section summarizes the application of these models.

  4. Indoor Air Quality in the Metro System in North Taiwan

    Directory of Open Access Journals (Sweden)

    Ying-Yi Chen

    2016-12-01

    Full Text Available Indoor air pollution is an increasing health concern, especially in enclosed environments such as underground subway stations because of increased global usage by urban populations. This study measured the indoor air quality of underground platforms at 10 metro stations of the Taipei Rapid Transit system (TRTS in Taiwan, including humidity, temperature, carbon monoxide (CO, carbon dioxide (CO2, formaldehyde (HCHO, total volatile organic compounds (TVOCs, ozone (O3, airborne particulate matter (PM10 and PM2.5, bacteria and fungi. Results showed that the CO2, CO and HCHO levels met the stipulated standards as regulated by Taiwan’s Indoor Air Quality Management Act (TIAQMA. However, elevated PM10 and PM2.5 levels were measured at most stations. TVOCs and bacterial concentrations at some stations measured in summer were higher than the regulated standards stipulated by Taiwan’s Environmental Protection Administration. Further studies should be conducted to reduce particulate matters, TVOCs and bacteria in the air of subway stations.

  5. Microbiological assessment of indoor air quality at different hospital sites.

    Science.gov (United States)

    Cabo Verde, Sandra; Almeida, Susana Marta; Matos, João; Guerreiro, Duarte; Meneses, Marcia; Faria, Tiago; Botelho, Daniel; Santos, Mateus; Viegas, Carla

    2015-09-01

    Poor hospital indoor air quality (IAQ) may lead to hospital-acquired infections, sick hospital syndrome and various occupational hazards. Air-control measures are crucial for reducing dissemination of airborne biological particles in hospitals. The objective of this study was to perform a survey of bioaerosol quality in different sites in a Portuguese Hospital, namely the operating theater (OT), the emergency service (ES) and the surgical ward (SW). Aerobic mesophilic bacterial counts (BCs) and fungal load (FL) were assessed by impaction directly onto tryptic soy agar and malt extract agar supplemented with antibiotic chloramphenicol (0.05%) plates, respectively using a MAS-100 air sampler. The ES revealed the highest airborne microbial concentrations (BC range 240-736 CFU/m(3) CFU/m(3); FL range 27-933 CFU/m(3)), exceeding, at several sampling sites, conformity criteria defined in national legislation [6]. Bacterial concentrations in the SW (BC range 99-495 CFU/m(3)) and the OT (BC range 12-170 CFU/m(3)) were under recommended criteria. While fungal levels were below 1 CFU/m(3) in the OT, in the SW (range 1-32 CFU/m(3)), there existed a site with fungal indoor concentrations higher than those detected outdoors. Airborne Gram-positive cocci were the most frequent phenotype (88%) detected from the measured bacterial population in all indoor environments. Staphylococcus (51%) and Micrococcus (37%) were dominant among the bacterial genera identified in the present study. Concerning indoor fungal characterization, the prevalent genera were Penicillium (41%) and Aspergillus (24%). Regular monitoring is essential for assessing air control efficiency and for detecting irregular introduction of airborne particles via clothing of visitors and medical staff or carriage by personal and medical materials. Furthermore, microbiological survey data should be used to clearly define specific air quality guidelines for controlled environments in hospital settings.

  6. Indoor air quality in typical temperate zone Australian dwellings

    Science.gov (United States)

    Molloy, S. B.; Cheng, M.; Galbally, I. E.; Keywood, M. D.; Lawson, S. J.; Powell, J. C.; Gillett, R.; Dunne, E.; Selleck, P. W.

    2012-07-01

    We report the results of a comprehensive study of indoor air quality in typical temperate zone Australian dwellings. Forty dwellings located over an 800 km2 area in the south-east of Melbourne with a range of ages, materials and structures representative of Australian dwellings were selected. A range of indoor air quality pollutants were sampled both inside and outside for one week each in Winter/Spring 2008 and Summer/Autumn 2009. Information was collected on house characteristics, the surrounding areas and occupant activities during the sampling. Weekly indoor averaged CO2 (536 ± 121 ppm), CO (0.3 ± 0.2 ppm), PM2.5 (8.4 ± 4.0 μg m-3), temperatures (21.2 ± 2.0 °C), water vapour mixing ratios (7.9 ± 1.3 g kg-1), benzene (1.3 ± 1.1 μg m-3), toluene (8.8 ± 7.9 μg m-3) and xylenes (6.2 ± 6.7 μg m-3) varied from 1.1 to approximately three times higher compared to the equivalent outdoors concentrations. Formaldehyde (12.2 ± 4.7 ppb), other carbonyls (7.9 ± 2.6 ppb) and total volatile organic compounds (181.1 ± 89.5 μg m-3) had indoor concentrations of factors between eight and 12 times higher compared to outdoor concentrations. Weekly averaged indoor ozone (0.7 ± 0.7 ppb), NO2 (8.4 ± 3.9 ppb) and PM10 (20.4 ± 8.1 μg m-3) were significantly lower than outdoors. Correlations and factor analysis showed the major influences on this indoor air quality were (a) dwelling age, whereby dwellings constructed in recent decades compared to older buildings were found to have increased concentrations of the highly elevated species formaldehyde, other carbonyls and total volatile organic compounds, and (b) combustion and cooking activities that increased the concentrations of multiple species including CO, CO2, NO2, H2O and particles. The indoor pollutant concentrations from this study were in general comparable with or lower than other Australian or overseas studies.

  7. Estimating the radon concentration in water and indoor air.

    Science.gov (United States)

    Maged, A F

    2009-05-01

    The paper presents the results of radon concentration measurements in the vicinity of water, indoor air and in contact to building walls. The investigations were carried out using CR-39 track detectors. Samples of ground water flowing out of many springs mostly in Arabian Gulf area except one from Germany have been studied. The results are compared with international recommendations and the values are found to be lower than the recommended value. Measuring the mean indoor radon concentrations in air and in contact to building walls in the dwellings of Kuwait University Campus were found 24.2 +/- 7.7, and 462 +/- 422 Bq m(-3) respectively. These values lead to average effective dose equivalent rates of 1.3 +/- 0.4 and 23 +/- 21 mSv year(-1), respectively.

  8. Determining indoor air quality and identifying the origin of odour episodes in indoor environments

    Institute of Scientific and Technical Information of China (English)

    Eva Gallego; Xavier Roca; Jose Francisco Perales; Xavier Guardino

    2009-01-01

    A methodology for identifying volatile organic compounds (VOC) and determining air quality of indoor air has been developed. The air samples are collected using pump samplers by the inhabitants when they perceive odorous and/or discomfort episodes. Glass multi-sorbent tubes are connected to the pump samplers for the retention of VOC. The analysis is performed by automatic thermal desorption (ATD) coupled with gas chromatography-mass spectrometry (GC/MS). This methodology can be applied in cases of sick building syndrome (SBS) evaluation, in which building occupants experience a series of varied symptoms that appear to be linked to time spent in the building. Chemical pollutants concentrations (e.g., VOC) have been described to contribute to SBS. To exemplify the methodology, a qualitative determination and an evaluation of VOC present were performed in a dwelling where the occupants experienced the SBS symptoms. Higher total VOC (TVOC) value was detected in episodes in indoor air (1.33 ( 1.53 mg/m3) compared to outdoor air (0.71 ( 0.46 mg/m3). The concentrations of individual VOCs, such as ethanol, acetone, isopropanol, 1-butanol, acetic acid, acetonitrile and 1-metoxy-2-propanol, were also higher than the expected for a standard dwelling. The external source of VOC was found to be a not declared activity of storage and manipulation of solvents located at the bottom of a contiguous building.

  9. An indoor air aerosol model for outdoor contaminant transmission into occupied rooms

    Institute of Scientific and Technical Information of China (English)

    XIE Hui; ZHAO Shen; CAO Guo-qing

    2014-01-01

    The paper presents a simple model for outdoor air contaminant transmission into occupied rooms. In the model, several factors such as filtration, ventilation, deposition, re-emission, outdoor concentration and indoor sources are included. The model results show that the air exchange rate plays an important role in the transmission of outdoor contaminants into the indoor environment. The model shows that increasing the value of the filtration efficiency decreases the mass concentration of indoor particles. In addition, if outdoor aerosol particles have a periodic behaviour, indoor aerosol particles also behave periodically but smoother. Indoor sources are found to be able to increase indoor concentrations greatly and continuously.

  10. Investigation of Indoor Air Quality in Houses of Macedonia.

    Science.gov (United States)

    Vilčeková, Silvia; Apostoloski, Ilija Zoran; Mečiarová, Ľudmila; Burdová, Eva Krídlová; Kiseľák, Jozef

    2017-01-01

    People who live in buildings are exposed to harmful effects of indoor air pollution for many years. Therefore, our research is aimed to investigate the indoor air quality in family houses. The measurements of indoor air temperature, relative humidity, total volatile organic compounds (TVOC), particulate matters (PM) and sound pressure level were carried out in 25 houses in several cities of the Republic of Macedonia. Mean values of indoor air temperature and relative humidity ranged from 18.9 °C to 25.6 °C and from 34.1% to 68.0%, respectively. With regard to TVOC, it can be stated that excessive occurrence was recorded. Mean values ranged from 50 μg/m³ to 2610 μg/m³. Recommended value (200 μg/m³) for human exposure to TVOC was exceeded in 32% of houses. Mean concentrations of PM2.5 (particular matter with diameter less than 2.5 μm) and PM10 (diameter less than 10 μm) are determined to be from 16.80 μg/m³ to 30.70 μg/m³ and from 38.30 μg/m³ to 74.60 μg/m³ individually. Mean values of sound pressure level ranged from 29.8 dB(A) to 50.6 dB(A). Dependence between characteristics of buildings (Year of construction, Year of renovation, Smoke and Heating system) and data from measurements (Temperature, Relative humidity, TVOC, PM2.5 and PM10) were analyzed using R software. Van der Waerden test shows dependence of Smoke on TVOC and PM2.5. Permutational multivariate analysis of variance shows the effect of interaction of Renovation and Smoke.

  11. Indoor air and human health revisited: A recent IAQ symposium

    Energy Technology Data Exchange (ETDEWEB)

    Gammage, R.B.

    1994-12-31

    Indoor Air and Human Health Revisited was a speciality symposium examining the scientific underpinnings of sensory and sensitivity effects, allergy and respiratory disease, neurotoxicity and cancer. An organizing committee selected four persons to chain the sessions and invite experts to give state-of-the-art presentations that will be published as a book. A summary of the presentations is made and some critical issues identified.

  12. Investigation of Indoor Air Quality in Houses of Macedonia

    Science.gov (United States)

    Vilčeková, Silvia; Apostoloski, Ilija Zoran; Mečiarová, Ľudmila; Krídlová Burdová, Eva; Kiseľák, Jozef

    2017-01-01

    People who live in buildings are exposed to harmful effects of indoor air pollution for many years. Therefore, our research is aimed to investigate the indoor air quality in family houses. The measurements of indoor air temperature, relative humidity, total volatile organic compounds (TVOC), particulate matters (PM) and sound pressure level were carried out in 25 houses in several cities of the Republic of Macedonia. Mean values of indoor air temperature and relative humidity ranged from 18.9 °C to 25.6 °C and from 34.1% to 68.0%, respectively. With regard to TVOC, it can be stated that excessive occurrence was recorded. Mean values ranged from 50 μg/m3 to 2610 μg/m3. Recommended value (200 μg/m3) for human exposure to TVOC was exceeded in 32% of houses. Mean concentrations of PM2.5 (particular matter with diameter less than 2.5 µm) and PM10 (diameter less than 10 µm) are determined to be from 16.80 µg/m3 to 30.70 µg/m3 and from 38.30 µg/m3 to 74.60 µg/m3 individually. Mean values of sound pressure level ranged from 29.8 dB(A) to 50.6 dB(A). Dependence between characteristics of buildings (Year of construction, Year of renovation, Smoke and Heating system) and data from measurements (Temperature, Relative humidity, TVOC, PM2.5 and PM10) were analyzed using R software. Van der Waerden test shows dependence of Smoke on TVOC and PM2.5. Permutational multivariate analysis of variance shows the effect of interaction of Renovation and Smoke. PMID:28045447

  13. Endocrine disrupting chemicals in indoor and outdoor air

    OpenAIRE

    Rudel, Ruthann A; Perovich, Laura J.

    2009-01-01

    The past 50 years have seen rapid development of new building materials, furnishings, and consumer products and a corresponding explosion in new chemicals in the built environment. While exposure levels are largely undocumented, they are likely to have increased as a wider variety of chemicals came into use, people began spending more time indoors, and air exchange rates decreased to improve energy efficiency. As a result of weak regulatory requirements for chemical safety testing, only limit...

  14. Impact of operating wood-burning stoves on indoor air quality

    DEFF Research Database (Denmark)

    Afshari, Alireza; Jensen, Ole Michael; Bergsøe, Niels Christian;

    2011-01-01

    A field study on the impact of operating and reloading wood-burning stoves on the indoor air quality was carried out during two consecutive winters. In contrast to the majority of recent studies, which focussed on the ambient air quality and the penetration of particles to the indoor air, this st......A field study on the impact of operating and reloading wood-burning stoves on the indoor air quality was carried out during two consecutive winters. In contrast to the majority of recent studies, which focussed on the ambient air quality and the penetration of particles to the indoor air...

  15. Indoor air quality in the university libraries of Modena (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Fantuzzi, Guglielmina; Aggazzotti, Gabriella; Righi, Elena; Cavazzuti, Lucia; Predieri, Guerrino [Dipartimento di Scienze Biomediche, Sezione di Igiene e Microbiologia, Universitadi Modena, Modena (Italy); Franceschelli, Armando [Servizio di Igiene Pubblica Azienda, USL Modena, Modena (Italy)

    1996-11-29

    We carried out a survey in 16 libraries of the University of Modena, Northern Italy, to assess the indoor exposure to volatile organic compounds (VOCs), including formaldehyde, and total dusts. Data were collected on the main structural characteristics of the buildings; indoor microclimate parameters, such as temperature, relative humidity and ventilation rate were measured and air samples taken inside and outside the libraries. The mean value of total dusts was 190{+-}130 {mu}g/m{sup 3} with a wide range of values. Formaldehyde was found in only ten out of 16 libraries and the indoor concentrations ranged from 1.70 to 67.8 {mu}g/m{sup 3} with an average value of 32.7{+-}23.9 {mu}g/m{sup 3}. On the whole, VOCs were present in all the libraries investigated with an average value of 433{+-}267 {mu}g/m{sup 3} (range 102-936 {mu}g/m{sup 3}). No correlation was found among VOCs, formaldehyde and total dusts nor was a significant association observed with microclimatic parameters or the structural characteristics of the buildings. The general situation found in this study suggests no major problems related to indoor pollution. However, some of the pollutants investigated such as total dust and total VOCs deserve further investigation. It is important to identify the possible sources of contaminants and to define the relationship between indoor and outdoor levels of pollutants more accurately, taking into account the effects of air recycling due to natural ventilation systems

  16. Indoor air pollution from gas cooking and infant neurodevelopment.

    Science.gov (United States)

    Vrijheid, Martine; Martinez, David; Aguilera, Inma; Bustamante, Mariona; Ballester, Ferran; Estarlich, Marisa; Fernandez-Somoano, Ana; Guxens, Mònica; Lertxundi, Nerea; Martinez, M Dolores; Tardon, Adonina; Sunyer, Jordi

    2012-01-01

    Gas cooking is a main source of indoor air pollutants, including nitrogen dioxide and particles. Because concerns are emerging for neurodevelopmental effects of air pollutants, we examined the relationship between indoor gas cooking during pregnancy and infant neurodevelopment. Pregnant mothers were recruited between 2004 and 2008 to a prospective birth cohort study (INfancia y Medio Ambiente) in Spain during the first trimester of pregnancy. Third-trimester questionnaires collected information about the use of gas appliances at home. At age 11 to 22 months, children were assessed for mental development using the Bayley Scales of Infant Development. Linear regression models examined the association of gas cooking and standardized mental development scores (n = 1887 mother-child pairs). Gas cookers were present in 44% of homes. Gas cooking was related to a small decrease in the mental development score compared with use of other cookers (-2.5 points [95% confidence interval = -4.0 to -0.9]) independent of social class, maternal education, and other measured potential confounders. This decrease was strongest in children tested after the age of 14 months (-3.1 points [-5.1 to -1.1]) and when gas cooking was combined with less frequent use of an extractor fan. The negative association with gas cooking was relatively consistent across strata defined by social class, education, and other covariates. This study suggests a small adverse effect of indoor air pollution from gas cookers on the mental development of young children.

  17. Plants Clean Air and Water for Indoor Environments

    Science.gov (United States)

    2007-01-01

    Wolverton Environmental Services Inc., founded by longtime government environmental scientist B.C. "Bill" Wolverton, is an environmental consulting firm that gives customers access to the results of his decades of cutting-edge bioremediation research. Findings about how to use plants to improve indoor air quality have been published in dozens of NASA technical papers and in the book, "How to Grow Fresh Air: 50 Houseplants That Purify Your Home or Office." The book has now been translated into 12 languages and has been on the shelves of bookstores for nearly 10 years. A companion book, "Growing Clean Water: Nature's Solution to Water Pollution," explains how plants can clean waste water. Other discoveries include that the more air that is allowed to circulate through the roots of the plants, the more effective they are at cleaning polluted air; and that plants play a psychological role in welfare in that people recover from illness faster in the presence of plants. Wolverton Environmental is also working in partnership with Syracuse University, to engineer systems consisting of modular wicking filters tied into duct work and water supplies, essentially tying plant-based filters into heating, ventilation, and air conditioning (HVAC) systems. Also, the company has recently begun to assess the ability of the EcoPlanter to remove formaldehyde from interior environments. Wolverton Environmental is also in talks with designers of the new Stennis Visitor's Center, who are interested in using its designs for indoor air-quality filters

  18. Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants

    OpenAIRE

    Gawrońska, H.; Bakera, B.

    2014-01-01

    Higher plants, including spider plants, are able to take up and degrade/detoxify various pollutants in the air. Although nearly 120 plant species have been tested for indoor air phytoremediation, to the best of the authors’ knowledge, data on particulate matter (PM) phytoremediation from indoor air are not yet available in literature. This work determined the ability of spider plants to take up PM, one of the most harmful pollutants to man, in the indoor air of five rooms housing different ac...

  19. Indoor Air Quality in Selected Samples of Primary Schools in Kuala Terengganu, Malaysia

    OpenAIRE

    Marzuki Ismail

    2010-01-01

    Studies have found out that indoor air quality affects human especially children and the elderly more compared to ambient atmospheric air. This study aims to investigate indoor air pollutants concentration in selected vernacular schools with different surrounding human activities in Kuala Terengganu, the administrative and commercial center of Terengganu state. Failure to identify and establish indoor air pollution status can increase the chance of long-term and short-term health problems for...

  20. Indoor Air Quality: part II--what it does.

    Science.gov (United States)

    Pike-Paris, Ann

    2005-01-01

    Newton, MA. A recent report indicated air quality samples taken from several rooms in the town's North High School had elevated CO2 levels of 2,000 parts per million (ppm) (Viser, 2004). State standards set 800 ppm as the optimum reading. Although not an immediate health issue, high CO2 levels are indicative of poor air circulation--clean air comes in but stale air is not vented out. Safety issues arise in the school setting when chemicals or toxic substances are in use and cannot be vented, therefore posing the health risk (Viser, 2004). Poor Indoor Air Quality (IAQ) in schools can result in decreased academic performance and days lost due to illness in the school age population (Environmental Protection Agency [EPA], 2003). As the school nurse at North High School, what would you do?

  1. Emerging developments in the standardized chemical characterization of indoor air quality.

    Science.gov (United States)

    Nehr, Sascha; Hösen, Elisabeth; Tanabe, Shin-Ichi

    2017-01-01

    Despite the fact that the special characteristics of indoor air pollution make closed environments quite different from outdoor environments, the conceptual ideas for assessing air quality indoors and outdoors are similar. Therefore, the elaboration of International Standards for air quality characterization in view of controlling indoor air quality should resort to this common basis. In this short review we describe the possibilities of standardization of tools dedicated to indoor air quality characterization with a focus on the tools permitting to study the indoor air chemistry. The link between indoor exposure and health as well as the critical processes driving the indoor air quality are introduced. Available International Standards for the assessment of indoor air quality are depicted. The standards comprise requirements for the sampling on site, the analytical procedures, and the determination of material emissions. To date, these standardized procedures assure that indoor air, settled dust and material samples are analyzed in a comparable manner. However, existing International Standards exclusively specify conventional, event-driven target-screening using discontinuous measurement methods for long-lived pollutants. Therefore, this review draws a parallel between physico-chemical processes in indoor and outdoor environments. The achievements in atmospheric sciences also improve our understanding of indoor environments. The community of atmospheric scientists can be both ideal and supporter for researchers in the area of indoor air quality characterization. This short review concludes with propositions for future standardization activities for the chemical characterization of indoor air quality. Future standardization efforts should focus on: (i) the elaboration of standardized measurement methods and measurement strategies for online monitoring of long-lived and short-lived pollutants, (ii) the assessment of the potential and the limitations of non

  2. Perceived indoor air quality and its relationship to air pollutants in French dwellings.

    Science.gov (United States)

    Langer, S; Ramalho, O; Le Ponner, E; Derbez, M; Kirchner, S; Mandin, C

    2017-05-05

    Perception of indoor air quality (PIAQ) was evaluated in a nationwide survey of 567 French dwellings, and this survey was combined with measurements of gaseous and particulate matter (PM10 and PM2.5 ) indoor air pollutants and indoor climate parameters. The perception was assessed on a nine-grade scale by both the occupants of the dwellings and the inspectors who performed the measurements. The occupants perceived the air quality in their homes as more pleasant than the inspectors. The inspectors perceived the air quality as more unpleasant in dwellings in which the residents smoked indoors. Significant associations between PIAQ and indoor air pollutant concentrations were observed for both the inspectors and, to a lesser extent, the occupants. Introducing confounding parameters, such as building and personal characteristics, into a multivariate model suppressed most of the observed bivariate correlations and identified the tenure status of the occupants and their occupation as the parameters that most influenced their PIAQ. For the inspectors, perceived air quality was affected by the presence of smokers, the season, the type of ventilation, retrofitting, and the concentrations of acetaldehyde and acrolein. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Improving indoor air quality through botanical air filtration in energy efficient residences

    Science.gov (United States)

    Newkirk, Daniel W.

    According to the U.S. EPA, the average American spends 90% of their time indoors where pollutants are two to five times more prevalent than outside. The consequences of these pollutants are estimated to cost the U.S. 125 billion dollars in lost health and productivity. Background literature suggests botanical air filtration may be able to solve this problem by leveraging the natural ability of plants to purify indoor air. By improving indoor air quality, energy consumption can also be reduced by bringing in less outside air to dilute contaminants within the space. A botanical air filter, called the Biowall, was designed and grown aeroponically in a sealed environmental chamber. Precise measurements of air temperature, air humidity, air quality and energy consumption were made under various lighting levels, plant species and watering strategies to optimize its performance. It was found to reduce indoor air pollutants 60 percent and has the potential to reduce heating and cooling energy consumption by 20 to 30 percent.

  4. Indoor air quality in hairdressing salons in Taipei.

    Science.gov (United States)

    Chang, C-J; Cheng, S-F; Chang, P-T; Tsai, S-W

    2017-08-04

    To improve indoor air quality and to protect public health, Taiwan has enacted the "Indoor Air Quality Act (IAQ Act)" in 2012. For the general public, the indoor air quality in hair salons is important because it is a popular location that people will often visit for hair treatments. However, only a few exposure assessments regarding air pollutants have previously been performed in hair salons. To assess the air quality of hairdressing environments in Taipei, ten hairdressing salons were included for a walk-through survey in this study. In addition, the airborne concentrations of formaldehyde, volatile organic compounds (VOCs), CO2 , and phthalate esters were also determined in 5 salons. Charcoal, XAD-2, and OVS-Tenax tubes were used for the air sampling, while the samples were analyzed with gas chromatography/mass spectrometer. It was found that the products used in hair salons contained various chemicals. In fact, from the walk-through survey, a total of 387 different ingredients were found on 129 hair product labels. The hair salons were not well ventilated, with CO2 levels of 600 to 3576 ppm. The formaldehyde concentrations determined in this study ranged from 12.40 to 1.04 × 10(3)  μg m(-3) , and the maximum level was above the permissible exposure limit (PEL) of US Occupational Safety and Health Administration (US OSHA). Additionally, 83% of the samples were with levels higher than the standard regulated by Taiwan's IAQ Act. The concentrations of VOCs and phthalate esters were below the occupational exposure limits (OELs), but higher than what was found in general residential environments. The hair products were considered as the major source of air pollutants because significantly higher concentrations were found around the working areas. The number of perming treatments, the number of workers, and the frequency of using formaldehyde releasing products, were found to be associated with the levels of formaldehyde. This study indicates that efforts are

  5. Indoor air problems among employees at a hotel in Copenhagen

    DEFF Research Database (Denmark)

    Holst, Gitte Juel; Harboe, Henrik; Sigsgaard, Torben

    The aim of the study was to investigate indoor air related complaints and symptoms among the employees at a hotel in Copenhagen. A technical inspection of the office environment was performed and showed only minor problems with mould spore counts within normal range. Moreover a questionnaire...... reporting these unexpected findings a hotel employee drew our attention to the hotel’s smoking room, a shelter in the basement of the hotel building without ventilation. However, a lot of the hotel staff smoked down there so an ozone generator was installed in order to clean the air. After this meeting...

  6. Indoor air problems among employees at a hotel in Copenhagen

    DEFF Research Database (Denmark)

    Holst, Gitte Juel; Harboe, Henrik; Sigsgaard, Torben

    The aim of the study was to investigate indoor air related complaints and symptoms among the employees at a hotel in Copenhagen. A technical inspection of the office environment was performed and showed only minor problems with mould spore counts within normal range. Moreover a questionnaire...... reporting these unexpected findings a hotel employee drew our attention to the hotel’s smoking room, a shelter in the basement of the hotel building without ventilation. However, a lot of the hotel staff smoked down there so an ozone generator was installed in order to clean the air. After this meeting...

  7. Detection of volatile organic peroxides in indoor air.

    Science.gov (United States)

    Hong, J; Maguhn, J; Freitag, D; Kettrup, A

    2001-12-01

    A supercritical fluid extraction cell filled with adsorbent (Carbotrap and Carbotrap C) was used directly as a sampling tube to enrich volatile organic compounds in air. After sampling, the analytes were extracted by supercritical fluid CO2 with methanol as modifier. Collected organic peroxides were then determined by a RP-HPLC method developed and validated previously using post-column derivatization and fluorescence detection. Some volatile organic peroxides were found in indoor air in a new car and a newly decorated kitchen in the lower microg m(-3) range. tert-Butyl perbenzoate, di-tert-butyl peroxide, and tert-butylcumyl peroxide could be identified.

  8. Impacts of Mixing on Acceptable Indoor Air Quality in Homes

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.; Walker, Iain I.

    2010-01-01

    Ventilation reduces occupant exposure to indoor contaminants by diluting or removing them. In a multi-zone environment such as a house, every zone will have different dilution rates and contaminant source strengths. The total ventilation rate is the most important factor in determining occupant exposure to given contaminant sources, but the zone-specific distribution of exhaust and supply air and the mixing of ventilation air can play significant roles. Different types of ventilation systems will provide different amounts of mixing depending on several factors such as air leakage, air distribution system, and contaminant source and occupant locations. Most U.S. and Canadian homes have central heating, ventilation, and air conditioning systems, which tend to mix the air; thus, the indoor air in different zones tends to be well mixed for significant fractions of the year. This article reports recent results of investigations to determine the impact of air mixing on exposures of residential occupants to prototypical contaminants of concern. We summarize existing literature and extend past analyses to determine the parameters than affect air mixing as well as the impacts of mixing on occupant exposure, and to draw conclusions that are relevant for standards development and for practitioners designing and installing home ventilation systems. The primary conclusion is that mixing will not substantially affect the mean indoor air quality across a broad population of occupants, homes, and ventilation systems, but it can reduce the number of occupants who are exposed to extreme pollutant levels. If the policy objective is to minimize the number of people exposed above a given pollutant threshold, some amount of mixing will be of net benefit even though it does not benefit average exposure. If the policy is to minimize exposure on average, then mixing air in homes is detrimental and should not be encouraged. We also conclude that most homes in the US have adequate mixing

  9. Feasibility of Carbonaceous Nanomaterial-Assisted Photocatalysts Calcined at Different Temperatures for Indoor Air Applications

    Directory of Open Access Journals (Sweden)

    Wan-Kuen Jo

    2012-01-01

    Full Text Available This study examined the characteristics and photocatalytic activity of multiwall carbon nanotube-assisted TiO2 (MWNT-TiO2 nanocomposites calcined at different temperatures to assess their potential indoor air applications. It was confirmed that the composites calcined at low temperatures (300 and 400°C contained TiO2 nanoparticles bound intimately to the MWNT networks. Meanwhile, almost no MWNTs were observed when the calcination temperature was increased to 500 and 600°C. The MWNT-TiO2 composites calcined at low temperatures showed higher photocatalytic decomposition efficiencies for aromatic hydrocarbons at indoor concentrations than those calcined at high temperatures. The mean efficiencies for benzene, toluene, ethyl benzene, and o-xylene (BTEX by the composite calcined at 300°C were 32, 70, 79, and 79%, respectively, whereas they were 33, 71, 78, and 78% for the composite calcined at 400°C, respectively. In contrast, the efficiencies decreased to close to zero when the calcination temperature was increased to 600°C. Moreover, the MWNT-TiO2 exhibited superior photocatalytic performance for the decomposition efficiencies compared to TiO2 under conventional UV-lamp irradiations. Consequently, these carbonaceous nanomaterial-assisted photocatalysts can be applied effectively to indoor air applications depending upon the calcination temperature.

  10. Can a photocatalytic air purifier be used to improve the perceived air quality indoors?

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Wargocki, Pawel

    2010-01-01

    The effect of a photocatalytic air purifier on perceived air quality(PAQ) was examined in rooms polluted by typical sources of indoor pollution.The rooms were ventilated at three different outdoor air supply rates. The air quality was assessed by a sensory panel when the purifier was in operation...... that the photocatalytic air purifier can supplement ventilation when the indoor air is polluted by building- related sources, but should not be used in spaces where human bioeffluents constitute the main source of pollution.......The effect of a photocatalytic air purifier on perceived air quality(PAQ) was examined in rooms polluted by typical sources of indoor pollution.The rooms were ventilated at three different outdoor air supply rates. The air quality was assessed by a sensory panel when the purifier was in operation...... monitors. The effect cor-responded to approximately doubling the outdoor air supply rate. Operation of the purifier significantly worsened the PAQ in rooms with human bioeffluents, probably due to incomplete oxidation of alcohols which are one of the main pollutants emitted by humans. Present results show...

  11. Combating the 'Sick Building Syndrome' by Improving Indoor Air Quality

    Directory of Open Access Journals (Sweden)

    Pongchai Nimcharoenwon

    2012-11-01

    Full Text Available Research indicates that many of symptoms attributed to the Sick Building Syndrome in air-conditioned office buildings are a result of considerably reduced negative ions in the internal atmosphere and that replacing the depleted negative ions can improve indoor air quality. This paper describes a method used to develop a formula (DOF-NIL formula for calculating the amount of negative ions to be added to air-conditioned buildings, to improve air quality. The formula enables estimates to be made based on how negative ions in the air are reduced by three main factors namely, Video Display Terminals (VDT; heating, ventilation and air conditioning (HVAC and Building Contents (BC. Calculations for a typical air-conditioned office, are compared with an Air Ion Counter instrument. The results show that the formula, when applied to a typical air-conditioned office, provides an accurate estimate for design purposes. The typical rate of additional negative-ions (ion-generating for a negative ion condition is found to be approximately 12.0 billion ions/hr for at least 4 hour ion-generating.

  12. Arabidopsis thaliana as Bioindicator of Fungal VOCs in Indoor Air

    Science.gov (United States)

    Hung, Richard; Yin, Guohua; Klich, Maren A.; Grimm, Casey; Bennett, Joan W.

    2016-01-01

    In this paper, we demonstrate the ability of Arabidopsis thaliana to detect different mixtures of volatile organic compounds (VOCs) emitted by the common indoor fungus, Aspergillus versicolor, and demonstrate the potential usage of the plant as a bioindicator to monitor fungal VOCs in indoor air. We evaluated the volatile production of Aspergillus versicolor strains SRRC 108 (NRRL 3449) and SRRC 2559 (ATCC 32662) grown on nutrient rich fungal medium, and grown under conditions to mimic the substrate encountered in the built environment where fungi would typically grow indoors (moist wallboard and ceiling tiles). Using headspace solid phase microextraction/gas chromatography-mass spectrometry, we analyzed VOC profiles of the two strains. The most abundant compound produced by both strains on all three media was 1-octen-3-ol. Strain SRRC 2559 made several terpenes not detected from strain SRRC 108. Using a split-plate bioassay, we grew Arabidopsis thaliana in a shared atmosphere with VOCs from the two strains of Aspergillus versicolor grown on yeast extract sucrose medium. The VOCs emitted by SRRC 2559 had an adverse impact on seed germination and plant growth. Chemical standards of individual VOCs from the Aspergillus versicolor mixture (2-methyl-1-butanol, 3-methyl-1-butanol, 1-octen-3-ol, limonene, and β-farnesene), and β-caryophyllene were tested one by one in seed germination and vegetative plant growth assays. The most inhibitory compound to both seed germination and plant growth was 1-octen-3-ol. Our data suggest that Arabidopsis is a useful model for monitoring indoor air quality as it is sensitive to naturally emitted fungal volatile mixtures as well as to chemical standards of individual compounds, and it exhibits relatively quick concentration- and duration-dependent responses.

  13. Indoor air quality in ice skating rinks in Hong Kong.

    Science.gov (United States)

    Guo, H; Lee, S C; Chan, L Y

    2004-03-01

    Indoor air quality in ice skating rinks has become a public concern due to the use of propane- or gasoline-powered ice resurfacers and edgers. In this study, the indoor air quality in three ice rinks with different volumes and resurfacer power sources (propane and gasoline) was monitored during usual operating hours. The measurements included continuous recording of carbon monoxide (CO), carbon dioxide (CO(2)), total volatile organic compounds (TVOC), particulate matter with a diameter less than 2.5 microm (PM(2.5)), particulate matter with diameter less than 10 microm (PM(10)), nitric oxide (NO), nitrogen dioxide (NO(2)), nitrogen oxide (NO(x)), and sulfur dioxide (SO(2)). The average CO, CO(2), and TVOC concentrations ranged from 3190 to 6749 microg/m(3), 851 to 1329 ppm, and 550 to 765 microg/m(3), respectively. The average NO and NO(2) concentrations ranged from 69 to 1006 microg/m(3) and 58 to 242 microg/m(3), respectively. The highest CO and TVOC levels were observed in the ice rink which a gasoline-fueled resurfacer was used. The highest NO and NO(2) levels were recorded in the ice rink with propane-fueled ice resurfacers. The air quality parameters of PM(2.5), PM(10), and SO(2) were fully acceptable in these ice rinks according to HKIAQO standards. Overall, ice resurfacers with combustion engines cause indoor air pollution in ice rinks in Hong Kong. This conclusion is similar to those of previous studies in Europe and North America.

  14. Houseplants, Indoor Air Pollutants, and Allergic Reactions

    Science.gov (United States)

    Wolverton, B. C.

    1986-01-01

    The technology of using houseplant leaves for reducing volatile organics inside closed facilities has been demonstrated with formaldehyde and benzene. Philodendrons are among the most effective plants tested to date. Philodendron domesticum had demonstrated the ability to remove formaldehyde from small experimental chambers at a rate of 4.31 micro-g/sq cm leaf surface area with initial starting concentrations of 22 ppm. At initial starting concentrations of 2.3 ppm a formaldehyde removal rate of 0.57 micro-g/sq cm was achieved during a 24 hour test. Aleo vera demonstrated a much higher formaldehyde efficiency removal rate than Philodendron domesticum at low formaldehyde concentrations. During a 24 hour exposure period 5 ppm of formaldehyde were reduced to 0.5 ppm demonstrating a removal efficiency rate of 3.27 micro-g/sq cm. Removal efficiency rates can be expected to decrease with concentration levels because fewer molecules of chemicals come in contact with the leaf surface area. Several centimeters of small washed gravel should be used to cover the surface of pot plants when large numbers of plants are kept in the home. The reason for this is to reduce the exposed area of damp potting soil which encourages the growth of molds (fungi). The leaves of Philodendron domesticum and golden pothos (Scindapsus aureus) have also demonstrated their ability to remove benzene and carbon monoxide from closed chambers. A combination of activated carbon and plant roots have demonstrated the greatest potential for removing large volumes of volatile organics along with smoke and possible radon from closed systems. Although fewer plants are required for this concept a mechanical blower motor must be used to pull or push the air through the carbon-root filter. NASA studies on motor sizes and bioregeneration rates should be completed by 1988.

  15. Actions to reduce the impact of construction products on indoor air: Outcomes of the European Project HealthyAir

    NARCIS (Netherlands)

    Bluyssen, P.M.; Richemont, S.de; Crump, D.; Maupetit, F.; Witterseh, T.; Gajdos, P.

    2010-01-01

    The European project - HealthyAir is a network project involving six institutions in Europe on actions and activities that address the effects of construction products on indoor air. Different ways to improve indoor air quality were reviewed, ranging from source control to education of occupants on

  16. Research on indoor air pollution of newly decorated buildings in Chongqing

    Institute of Scientific and Technical Information of China (English)

    LI Juan; SHAO Mao-qing; HE Mei

    2005-01-01

    The investigation of indoor-air quality in newly built and newly decorated residences in Chongqing revealed that the average concentration of formaldehyde and ammonia in these residences exceeded the upper limits of the standard. The situation of indoor air pollution varied with the type of rooms. The results of investigation show that the indoor-air pollutants caused by decoration work should not be ignored anymore.

  17. Impact of temperature and humidity on perceived indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Lei

    1997-11-01

    This thesis deals with the impact of temperature and humidity on the emission of pollutants from five building materials and on the perception of air polluted by the material emissions. The impact was studied in the temperature range 18-28 deg. C and the humidity range 30-70%RH, corresponding to conditions often pertaining in normal non-industrial indoor environments. The five building materials used in the study were: PVC flooring, waterborne acrylic floor varnish, loomed polyamide carpet with latex backing, waterborn acrylic wall paint and acrylic sealant; all these materials are commonly use din buildings. The effect of temperature and humidity on emission and perception of air pollutant emitted from the five building materials is described, using a specially developed exposure system. A computer-controlled exposure system was developed. The design of the system allowed the impact of temperature and humidity on the emission of pollutants from the materials to be judged separately from the impact on perception. The effect of temperature and humidity on emission and on perception was investigated at nine different combinations of three temperature levels 18 deg. C, 23 deg. C, 28 deg. C and three relative humidity levels 30%, 50%, 70%. A sensory panel assessed the acceptability of the air after facial exposure. Chemical measurements of the pollutants emitted were also made. The impact of temperature and humidity on perception of air quality during whole-body exposure is discussed. The influence of the pre-exposure temperature/humidity on perception of air quality and the time course of adaptation of air quality perception with different combinations of temperature and humidity were also investigated. It is recommended that future ventilation standards should include the effect of indoor air temperature and humidity in ventilation requirements. (EG) 86 refs.

  18. Indoor air quality study of forty east Tennessee homes

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, A.R.; Gammage, R.B.; Dudney, C.S.; Hingerty, B.E.; Schuresko, D.D.; Parzyck, D.C.; Womack, D.R.; Morris, S.A.; Westley, R.R.; White, D.A.

    1984-12-01

    Over a one-year period, measurements of indoor air pollutants (CO/sub x/, NO/sub x/, formaldehyde, volatile organics, particulates, and radon) were made in 40 homes in East Tennessee. The houses were of various ages with different types of insulation and heating. Over one-half of the houses exceeded the ASHRAE indoor ceiling guideline of 0.1 ppM for formaldehyde on at least one occasion. Over the duration of the study, older houses averaged 0.04 ppM of formaldehyde while houses less than 5 years old averaged 0.08 ppM (P < 0.01). The highest concentration of formaldehyde measured was 0.4 ppM in a new home. Diurnal and seasonal fluctuations in levels of formaldehyde in some homes were as much as twofold and tenfold, respectively. The highest levels of formaldehyde were usually recorded during summer months. The concentration in indoor air of various organics was at least tenfold higher than in outdoor air. Carbon monoxide and nitrgen oxides were usually <2 and <0.02 ppM, respectively, except when gas stoves or kerosene space heaters were operating, or when a car was running in the garage. In 30% of the houses, the annual indoor guideline for radon, 4 pCi/L, was exceeded. The mean radon level in houses built on the ridgelines was 4.4 pCi/L, while houses located in the valleys had a mean level of 1.7 pCi/L (P < 0.01). The factor having the most impact on infiltration was operation of the central duct fan of the heating, ventilation, and air conditioning system. The mean rate of air exchange increased from 0.39 to 0.74 h/sup -1/ when the duct fan was operated (measurements prior to December 1982). This report presents the study design and implementation, describes the monitoring protocols, and provides a complete set of the data collected during the project. 25 references, 29 figures, 42 tables.

  19. Clearing the air: a model for investigating indoor air quality in Texas schools.

    Science.gov (United States)

    Petronella, Sharon A; Thomas, Rachel; Stone, James A; Goldblum, Randall M; Brooks, Edward G

    2005-06-01

    This pilot project focused on the assessment of indoor air quality at a local high school in Galveston, Texas, using methods based on guidelines for the U.S. Environmental Protection Agency's Indoor Air Quality Tools for Schools program. Tools for Schools, developed for evaluating and ensuring acceptable air quality for schools, takes a low-cost, minimal-involvement, primarily educational approach. The authors also compared the findings from this approach with the results of an air-sampling program. The overall goal was to determine if use of Tools for Schools was sufficient to identify conditions with the potential to cause adverse health effects. The primary objectives were to 1) establish an indoor air quality committee for the school to implement Tools for Schools assessments and management strategies, 2) collect air quality data in high-risk areas identified within the school by the indoor air quality committee, 3) collect outdoor air quality data at or in close proximity to the school, and 4) develop methods and instruments for assessing environmental risks associated with daily school attendance. Data were gathered on levels of formaldehyde and other volatile organic compounds (VOCs), ozone, particulate matter (PM10), mold, relative humidity, and temperature. Data values for each sampled pollutant were compared with federal standards, recommended values established by the American Conference of Governmental Industrial Hygienists for non-industrial populations, and effects screening levels developed by the Texas Commission on Environmental Quality. Levels of all VOCs except formaldehyde were found to be well within guidelines, as were ozone and particulate-matter levels. Mold, however, was widespread, including both common species and species associated with allergy and asthma, such as Aspergillus and Alternaria. In general, Tools for Schools provides an excellent foundation for a school indoor air quality program, although the authors did find it necessary

  20. The effect of a photocatalytic air purifier on indoor air quality quantified using different measuring methods

    DEFF Research Database (Denmark)

    Kolarik, Barbara; Wargocki, Pawel; Skorek-Osikowska, A.;

    2010-01-01

    The effect on indoor air quality of an air purifier based on photocatalytic oxidation (PCO) was determined by different measuring techniques: sensory assessments of air quality made by human subjects, Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) and chromatographic methods (Gas...... Chromatography/Mass Spectrometry and High-Pressure Liquid Chromatography with UV detection). The experiment was conducted in a simulated office, ventilated with 0.6 h(-1), 2.5 h(-1) and 6 h(-1), in the presence of additional pollution sources (carpet, chipboard and linoleum). At the lowest air change rate......, additional measurements were made with no pollution sources present in the office. All conditions were tested with the photocatalytic air purifier turned on and off. The results show that operation of the air purifier in the presence of pollutants emitted by building materials and furniture improves indoor...

  1. Development of an indoor air quality checklist for risk assessment of indoor air pollutants by semiquantitative score in nonindustrial workplaces

    Directory of Open Access Journals (Sweden)

    Syazwan AI

    2012-04-01

    Full Text Available AI Syazwan1, B Mohd Rafee1, Juahir Hafizan2, AZF Azman1, AM Nizar3, Z Izwyn4, AA Muhaimin5, MA Syafiq Yunos6, AR Anita1, J Muhamad Hanafiah1, MS Shaharuddin1, A Mohd Ibthisham7, Mohd Hasmadi Ismail8, MN Mohamad Azhar1, HS Azizan1, I Zulfadhli9, J Othman101Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; 2Department of Environmental Science, Faculty of Environmental Studies, Universiti Putra Malaysia, Selangor, Malaysia; 3Pharmacology Unit, Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; 4Department of Therapy and Rehabilitation, Faculty of Health Science and Biomedical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia; 5Department of Environmental Management, Faculty of Environmental Studies, Universiti Putra Malaysia, Selangor, Malaysia; 6Plant Assessment Technology (PAT, Industrial Technology Division (BTI, Malaysian Nuclear Agency (Nuklear Malaysia, Bangi, Kajang, Malaysia; 7Department of Mechanical Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia; 8Department of Forest Production, Faculty of Forestry, Universiti Putra Malaysia, Selangor, Malaysia; 9Faculty of Built Environment and Architect, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia; 10Department of Counsellor Education and Counselling Psychology (DCECP, Faculty of Educational Studies, Universiti Putra Malaysia, Selangor, MalaysiaBackground: To meet the current diversified health needs in workplaces, especially in nonindustrial workplaces in developing countries, an indoor air quality (IAQ component of a participatory occupational safety and health survey should be included.Objectives: The purpose of this study was to evaluate and suggest a multidisciplinary, integrated IAQ checklist for evaluating the health risk of building occupants. This IAQ checklist proposed to support

  2. A survey of perfluoroalkyl sulfonamides in indoor and outdoor air using passive air samplers

    Energy Technology Data Exchange (ETDEWEB)

    Shoeib, M.; Harner, T. [Meteorological Service of Canada, Environment Canada (Canada); Wilford, B.; Jones, K. [Lancaster Univ. (United Kingdom). Environmental Science; Zhu, J. [Chemistry Research Division, Health Canada, Tunney' s Pasture, Ottawa (Canada)

    2004-09-15

    Perfluorooctane sulfonate (PFOS) has recently emerged as a priority environmental pollutant due to its widespread detection in biological samples from remote regions including the Arctic and the Mid-North Pacific Ocean. Because PFOS is fairly involatile, it is hypothesized that its occurrence in remote regions is the result of atmospheric transport of more volatile precursor compounds such as the perfluoroalkyl sulfonamides (PFASs). PFASs are used in variety of consumer products for water and oil resistance including surface treatments for fabric, upholstery, carpet, paper and leather. In a recent pilot study employing high volume air samples, indoor air concentrations of PFASs were approximately 100 times greater than outdoor levels. This is of significance because people typically spend about 90% of their time indoors 5 and this exposure may serve as an important uptake pathway. Indoor air also serves as a source of PFASs to the outside where PFASs are ultimately transported and distributed throughout the environment. The current study is intended to be a more comprehensive survey of indoor and outdoor air allowing more confident conclusions to be made. Passive air samplers comprised of polyurethane foam (PUF) disks were used. These are quiet, non-intrusive samplers that operate without the aid of a pump or electricity. Air movement delivers chemical to the sampler which has a high retention capacity for persistent organic pollutants (POPs). PUF disks samplers have been previously used successfully to monitor different classes of hydrophobic persistent organic pollutants POPs.

  3. Survey of Indoor Air Quality in the University of Alaska

    DEFF Research Database (Denmark)

    Kotol, Martin; Craven, Colin; Rode, Carsten

    2014-01-01

    problem which is poor indoor air quality (IAQ). During summer 2012 four student homes were built in Fairbanks, Alaska as a part of Sustainable Village project. The aim of this project is to promote sustainable ways of living in the Arctic and to study new technologies and their applicability in the cold......In cold climates living inside the heated space requires considerable amounts of heat. With the intention to decrease the heating demand, people are insulating their homes and make them more air tight. With the natural infiltration being brought close to zero there has been an increase of a new...... north. This paper presents the results of an IAQ survey performed in the homes during two weeks in December 2012. During this survey the air temperature, relative humidity (RH) and CO2 concentration were measured in all occupied bedrooms along with monitoring of the ventilation units. The results have...

  4. Association of indoor air pollution with rhinitis symptoms, atopy and nitric oxide levels in exhaled air

    DEFF Research Database (Denmark)

    Hersoug, Lars-Georg; Husemoen, Lise Lotte N; Thomsen, Simon Francis

    2010-01-01

    Exposure to particulate matter (PM) outdoors can induce airway inflammation and exacerbation of asthma in adults. However, there is limited knowledge about the effects of exposure to indoor PM. The aim of this study was to investigate the association of exposure to indoor sources of PM with rhini......Exposure to particulate matter (PM) outdoors can induce airway inflammation and exacerbation of asthma in adults. However, there is limited knowledge about the effects of exposure to indoor PM. The aim of this study was to investigate the association of exposure to indoor sources of PM...... with rhinitis symptoms, atopy and nitric oxide in exhaled air (FeNO) as a measure of airway inflammation....

  5. Indoor Air Quality Assessment of the San Francisco Federal Building

    Energy Technology Data Exchange (ETDEWEB)

    Apte, Michael; Bennett, Deborah H.; Faulkner, David; Maddalena, Randy L.; Russell, Marion L.; Spears, Michael; Sullivan, Douglas P; Trout, Amber L.

    2008-07-01

    An assessment of the indoor air quality (IAQ) of the San Francisco Federal Building (SFFB) was conducted on May 12 and 14, 2009 at the request of the General Services Administration (GSA). The purpose of the assessment was for a general screening of IAQ parameters typically indicative of well functioning building systems. One naturally ventilated space and one mechanically ventilated space were studied. In both zones, the levels of indoor air contaminants, including CO2, CO, particulate matter, volatile organic compounds, and aldehydes, were low, relative to reference exposure levels and air quality standards for comparable office buildings. We found slightly elevated levels of volatile organic compounds (VOCs) including two compounds often found in"green" cleaning products. In addition, we found two industrial solvents at levels higher than typically seen in office buildings, but the levels were not sufficient to be of a health concern. The ventilation rates in the two study spaces were high by any standard. Ventilation rates in the building should be further investigated and adjusted to be in line with the building design. Based on our measurements, we conclude that the IAQ is satisfactory in the zone we tested, but IAQ may need to be re-checked after the ventilation rates have been lowered.

  6. Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances.

    Science.gov (United States)

    Adams, Rachel I; Miletto, Marzia; Taylor, John W; Bruns, Thomas D

    2013-07-01

    The indoor microbiome is a complex system that is thought to depend on dispersal from the outdoor biome and the occupants' microbiome combined with selective pressures imposed by the occupants' behaviors and the building itself. We set out to determine the pattern of fungal diversity and composition in indoor air on a local scale and to identify processes behind that pattern. We surveyed airborne fungal assemblages within 1-month time periods at two seasons, with high replication, indoors and outdoors, within and across standardized residences at a university housing facility. Fungal assemblages indoors were diverse and strongly determined by dispersal from outdoors, and no fungal taxa were found as indicators of indoor air. There was a seasonal effect on the fungi found in both indoor and outdoor air, and quantitatively more fungal biomass was detected outdoors than indoors. A strong signal of isolation by distance existed in both outdoor and indoor airborne fungal assemblages, despite the small geographic scale in which this study was undertaken (effect on the fungi found in indoor air. These results show that at the local level, outdoor air fungi dominate the patterning of indoor air. More broadly, they provide additional support for the growing evidence that dispersal limitation, even on small geographic scales, is a key process in structuring the often-observed distance-decay biogeographic pattern in microbial communities.

  7. Indoor air quality in energy efficient buildings. A literature review

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, Judith; Berge, Magnar

    2012-07-01

    There is currently a major focus on measures to reduce global warming. Several international studies show that the energy efficiency of buildings is the easiest and most cost-effective climate action. Passive houses are characterized of that the buildings are more airtight, have more insulation and has balanced mechanical ventilation with heat recovery. This report discusses about this one-sided focus on energy conservation, and if {sup c}hange{sup }in building methods can have a negative impact on indoor air quality and people's health. (Author)

  8. Strategies to determine and control the contributions of indoor air pollution to total inhalation exposure (STRATEX)

    DEFF Research Database (Denmark)

    Cochet, C.; Fernandes, E.O.; Jantunen, M.

    ECA-IAQ (European Collaborative Action, Urban Air, Indoor Environment and Human Exposure), 2006. Strategies to determine and control the contributions of indoor air pollution to total inhalation exposure (STRATEX), Report No 25. EUR 22503 EN. Luxembourg: Office for Official Publications...... of the European Communities It is now well established that indoor air pollution contributes significantly to the global burden of disease of the population. Therefore, the knowledge of this contribution is essential in view of risk assessment and management. The ECA STRATEX report collates the respective...... information and describes the strategies to determine population exposure to indoor air pollutants. Its major goal is to emphasise the importance of the contribution of indoor air to total air exposure. Taking this contribution into account is a prerequisite for sound risk assessment of air pollution...

  9. Indoor air quality handbook for designers, builders and users of energy efficient residences

    Science.gov (United States)

    1982-09-01

    The purpose of the handbook is to assist designers, builders, and users of energy efficient residences to achieve the goals of energy efficiency and maintenance of high indoor air quality simultaneously. Basic concepts of contaminants and their concentrations, sources and removal mechanisms, contaminant distribution, heat transfer, and air exchange are discussed. The effects of the building system on indoor air quality are examined. The effects of the external environment, building envelope, environmental control systems, interior design, furnishings, and inhabitants on the emission, dispersion, and removal of indoor air contaminants as well as direct and indirect effects of energy efficient features are discussed. The health effects of specific air contaminants and the health standards developed for them are examined. Available methods for predicting and measuring contaminants and for evaluating human responses are discussed. Methods and equipment available for the control of indoor air pollution once the contaminants have been identified are also evaluated. The potential legal aspects control indoor air pollution are discussed.

  10. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A.; Bergey, D.

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  11. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [Building Science Corporation, Somerville, MA (United States); Bergey, Daniel [Building Science Corporation, Somerville, MA (United States)

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  12. Comparison of indoor and outdoor concentrations of CO at a public school. Evaluation of an indoor air quality model

    Science.gov (United States)

    Chaloulakou, A.; Mavroidis, I.

    A field study was carried out to investigate the internal and external carbon monoxide (CO) concentration levels of a public school building in Athens, Greece. Simultaneous measurements of indoor and outdoor CO concentrations were conducted using a non-dispersive infrared analyzer. Measurements of mean hourly CO concentrations inside and outside the sampling room were conducted on a 24-h basis for 13 consecutive days during May and June 1999 and for 14 consecutive days during December 1999. The aim of the study was to investigate the attenuation pattern of external pollution levels within the building. The diurnal concentration variations reported for different days during the week show that indoor CO concentrations are in general lower than the respective outdoor levels, and that the morning peaks of indoor concentrations show a delay of 1 h or less compared to the morning peaks of outdoor concentrations. The measured indoor to outdoor concentration ratios show a seasonal variation. An indoor air quality model for the prediction of indoor concentration levels developed by Hayes (J. Air Pollut. Control Assoc. 39 (11) (1989) 1453; J. Air Waste Manage. Assoc. 41 (2) (1991) 161) is coded as a computer program and evaluated using the experimental data. The model results are in good agreement with the indoor concentration measurements, although in some cases the model cannot respond adequately to sharp outdoor concentration changes. The ratio between measured and predicted daily maximum indoor concentration ranges between 0.88 and 1.23. The regression curve between predicted by the model and measured hourly indoor concentrations, for a continuous period of 96 h, has a slope of 0.64 and a coefficient of determination ( R2) of 0.69.

  13. Indoor air quality investigation at air-conditioned and non-air-conditioned markets in Hong Kong.

    Science.gov (United States)

    Guo, H; Lee, S C; Chan, L Y

    2004-05-05

    To characterize indoor air quality at the markets in Hong Kong, three non-air-conditioned and two air-conditioned markets were selected for this study. The indoor air pollutants measured included PM(10) (particulate matters with aerodynamic diameter less than 10 microm), total bacteria count (TBC), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO(2)) and sulfur dioxide (SO(2)). The indoor and outdoor concentrations of these target air pollutants at these markets were measured and compared. The effects of air conditioning, temperature/relative humidity variation and different stalls on the indoor air quality were also investigated. The results indicated that all of the average indoor concentrations of PM(10), TBC, CO and NO(2) at the markets were below the Hong Kong Indoor Air Quality Objectives (HKIAQO) standards with a few exceptions for PM(10) and TBC. The elevated PM(10) concentrations at Hung Hom, Ngau Tau Kok and Wan Chai markets were probably due to the air filtration of outdoor airborne particulates emitted from vehicular exhaust, whereas high concentrations of airborne bacteria at Sai Ying Pun and Tin Shing markets were linked to the use of air conditioning. Correlation analysis demonstrated that indoor bacteria concentrations were correlated with temperature and relative humidity. The operation of air conditioning did not significantly reduce the levels of air pollutants at the markets. However, the higher indoor/outdoor ratios demonstrated that the operation of air conditioning had influence on the levels of bacteria at the markets. It was found that average PM(10) concentration at poultry stalls was higher than the HKIAQO standard of 180 microg/m(3), and was over two times that measured at vegetable, fish and meat stalls. Furthermore, the concentration of airborne bacteria at the poultry stalls was as high as 1031 CFU/m(3), which was above the HKIAQO standard of 1000 CFU/m(3). The bacteria levels at other three stalls were all below the

  14. Indoor air quality measurements in 38 Pacific Northwest commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Turk, B.H.; Brown, J.T.; Geisling-Sobotka, K.; Froehlich, D.A.; Grimsrud, D.T.; Harrison, J.; Revzan, K.L.

    1986-06-01

    A Bonneville Power Administration-funded study monitored ventilation rates and a variety of indoor air pollutants in 38 Pacific Northwest commercial buildings. The buildings ranged in age from 6 months to 90 years, in size from 864 to 34,280 m/sup 2/, and occupancy from 25 to 2500 people. Building average formaldehyde (HCHO) concentrations were below the 20 ppB detection limit in 48% of the buildings. Nitrogen dioxide (NO/sub 2/) concentration averages ranged from 5 ppB to 43 ppB and were lower than outdoor concentrations in 8 of 13 buildings. At only one site, an elementary school classroom, did carbon dioxide (CO/sub 2/) exceed 1000 ppM. Radon (Rn) levels were elevated in one building with an average concentration of 7.4 pCiL/sup -1/. Respirable particles (RSP) concentrations in smoking areas in 32 buildings had a geometric mean of 44 ..mu..g m/sup -3/ and ranged up to 308 ..mu..g m/sup -3/ at one site. In non-smoking areas the geometric mean RSP was 15 ..mu..g m/sup -3/. Outside air ventilation rates did not appear to be the single dominant parameter in determining indoor pollutant concentrations. Measured pollutant concentrations in 2 ''complaint'' buildings were below accepted guidelines. The cause of the complaints was not identified.

  15. Indoor air contamination during a waterpipe (narghile) smoking session.

    Science.gov (United States)

    Fromme, Hermann; Dietrich, Silvio; Heitmann, Dieter; Dressel, Holger; Diemer, Jürgen; Schulz, Thomas; Jörres, Rudolf A; Berlin, Knut; Völkel, Wolfgang

    2009-07-01

    The smoke of waterpipe contains numerous substances of health concern, but people mistakenly believe that this smoking method is less harmful and addictive than cigarettes. An experiment was performed in a 57 m3 room on two dates with no smoking on the first date and waterpipe smoking for 4h on the second date. We measured volatile organic compounds (VOC), polycyclic aromatic hydrocarbons (PAH), metals, carbon monoxide (CO), nitrogen oxides (e.g. NO), as well as particle mass (PM), particle number concentration (PNC) and particle surface area in indoor air. High concentrations were observed for the target analytes during the 4-h smoking event. The median (90th percentile) values of PM(2.5), PNC, CO and NO were 393 (737 microg/m(3)), 289,000 (550,000 particles/cm(3)), 51 (65 ppm) and 0.11 (0.13 ppm), respectively. The particle size distribution has a maximum of particles relating to a diameter of 17 nm. The seven carcinogenic PAH were found to be a factor 2.6 higher during the smoking session compared to the control day. In conclusion, the observed indoor air contamination of different harmful substances during a WP session is high, and exposure may pose a health risk for smokers but in particular for non-smokers who are exposed to ETS.

  16. Guidelines for indoor air hygiene in school buildings

    Energy Technology Data Exchange (ETDEWEB)

    Moriske, Heinz-Joern; Szewzyk, Regine (eds.)

    2008-08-15

    The new guidelines for indoor air hygiene in school buildings are intended as a response to current requirements in school practice. The recommendations aim to help to avoid mistakes in modernising school buildings and to provide hygiene-specific support in planning of new school buildings. The guidelines are laid out as follows: (a) In the general section the targets of the guidelines and the target groups are addressed. The current indoor hygiene situation in German schools is described, followed by the parameters with regard to peripheral issues which will not be dealt with further; (b) Part A deals with the hygiene requirements in the practical running of schools. Besides general requirements for maintenance and operation the important issues of cleaning and ventilation are considered, as well as minor building works; (c) Part B provides an overview of important chemical and biological contaminants in schools; (d) Part C looks at building and air conditioning requirements. The important issues of acoustic requirements is also addressed; (e) Part D shows how to deal practically with problem cases and list case studies with 'typical' procedures; (f) Part E provides a brief overview of existing renovation guidelines.

  17. A Study of Interior Landscape Plants for Indoor Air Pollution Abatement

    Science.gov (United States)

    Wolverton, B. C.; Douglas, Willard L.; Bounds, Keith

    1989-01-01

    Previously, preliminary data on the ability of a group of common indoor plants to remove organic chemical from indoor air was presented. The group of plants chosen for this study was determined by joint agreement between NASA and the Associated Landscape Contractors of America. The chemicals chosen for study were benzene, trichloroethylene, and formaldehyde. The results show that plants can play a major role in removal of organic chemicals from indoor air.

  18. Standards for securing adequate indoor air quality across Europe

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Carrer, P.; de Oliveira Fernandes, E.

    2013-01-01

    sources of pollution. Ventilation is one of many factors determining IAQ. The aim of DG SANCO funded HealthVent project was to assess how ventilation should be defined in terms of achieving conditions for securing health. Methods: Review of the available literature was made so as to break down the health...... effects of IAQ into different components: exposures to indoor and outdoor air pollutants, association with different morbidities and the way ventilation based approaches could minimise their impact. Disability adjusted life years (DALYs), a common metric to allow comparability of impacts on various types...... of diseases and mortality was used in risk analysis. Ventilation rate was defined as volume of fresh air introduced into the space per person (L/sp). Results: The data in the reviewed studies on ventilation and health were found inadequate to set the health-based ventilation rates mainly because the studies...

  19. Impact of kerosene space heaters on indoor air quality.

    Science.gov (United States)

    Hanoune, B; Carteret, M

    2015-09-01

    In recent years, the use of kerosene space heaters as additional or principal heat source has been increasing, because these heaters allow a continuous control on the energy cost. These devices are unvented, and all combustion products are released into the room where the heaters are operated. The indoor air quality of seven private homes using wick-type or electronic injection-type kerosene space heaters was investigated. Concentrations of CO, CO2, NOx, formaldehyde and particulate matter (0.02-10 μm) were measured, using time-resolved instruments when available. All heaters tested are significant sources of submicron particles, NOx and CO2. The average NO2 and CO2 concentrations are determined by the duration of use of the kerosene heaters. These results stress the need to regulate the use of unvented combustion appliances to decrease the exposure of people to air contaminants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Study of indoor air pollution by carbonyl compounds

    Energy Technology Data Exchange (ETDEWEB)

    Grimaldi, F.; Botti, P.; Bouthiba, M.; Gouezo, F.; Viala, A. [Faculte de Medecine, 13 - Marseille (France)

    1996-01-01

    Carbonyl compounds reach indoor occasionally high air concentrations. They must be taken into attentive considerations, particularly because of their irritative and possibly carcinogenic effects. They were sampled in air through dinitro-2,4- phenylhydrazinc (DNPH)-Silica cartridges. The 2,4-dinitrophenylhydrazones formed were then eluted with acetonitrile and determined by high-performance liquid chromatography. The used method is selective and gives a linear reproducible and sensitive response. The obtained results (for formaldehyde, acetaldehyde, acetone, acrolein, crotonaldehyde, butyraldehyde, benzaldehyde, isovaleraldehyde, o-tolualdehyde) inside teaching and other premises showed that it is necessary to avoid the stopping up, to ensure an efficient ventilation and to eliminate, at less to restrict a possible release, by using appropriate building and coating material and furniture. (authors). 14 refs., 2 figs., 5 tabs.

  1. The effects of evaporating essential oils on indoor air quality

    Science.gov (United States)

    Su, Huey-Jen; Chao, Chung-Jen; Chang, Ho-Yuan; Wu, Pei-Chih

    Essential oils, predominantly comprised of a group of aromatic chemicals, have attracted increasing attention as they are introduced into indoor environments through various forms of consumer products via different venues. Our study aimed to characterize the profiles and concentrations of emitted volatile organic compounds (VOCs) when evaporating essential oils indoors. Three popular essential oils in the market, lavender, eucalyptus, and tea tree, based on a nation-wide questionnaire survey, were tested. Specific aromatic compounds of interest were sampled during evaporating the essential oils, and analyzed by GC-MS. Indoor carbon monoxide (CO), carbon dioxide (CO 2), total volatile organic compounds (TVOCs), and particulate matters (PM 10) were measured by real-time, continuous monitors, and duplicate samples for airborne fungi and bacteria were collected in different periods of the evaporation. Indoor CO (average concentration 1.48 vs. 0.47 ppm at test vs. background), CO 2 (543.21 vs. 435.47 ppm), and TVOCs (0.74 vs. 0.48 ppm) levels have increased significantly after evaporating essential oils, but not the PM 10 (2.45 vs. 2.42 ppm). The anti-microbial activity on airborne microbes, an effect claimed by the use of many essential oils, could only be found at the first 30-60 min after the evaporation began as the highest levels of volatile components in these essential oils appeared to emit into the air, especially in the case of tea tree oil. High emissions of linalool (0.092-0.787 mg m -3), eucalyptol (0.007-0.856 mg m -3), D-limonene (0.004-0.153 mg m -3), ρ-cymene (0.019-0.141 mg m -3), and terpinene-4-ol-1 (0.029-0.978 mg m -3), all from the family of terpenes, were observed, and warranted for further examination for their health implications, especially for their potential contribution to the increasing indoor levels of secondary pollutants such as formaldehyde and secondary organic aerosols (SOAs) in the presence of ozone.

  2. Characterization of indoor aerosol temporal variations for the real-time management of indoor air quality

    Science.gov (United States)

    Ciuzas, Darius; Prasauskas, Tadas; Krugly, Edvinas; Sidaraviciute, Ruta; Jurelionis, Andrius; Seduikyte, Lina; Kauneliene, Violeta; Wierzbicka, Aneta; Martuzevicius, Dainius

    2015-10-01

    The study presents the characterization of dynamic patterns of indoor particulate matter (PM) during various pollution episodes for real-time IAQ management. The variation of PM concentrations was assessed for 20 indoor activities, including cooking related sources, other thermal sources, personal care and household products. The pollution episodes were modelled in full-scale test chamber representing a standard usual living room with the forced ventilation of 0.5 h-1. In most of the pollution episodes, the maximum concentration of particles in exhaust air was reached within a few minutes. The most rapid increase in particle concentration was during thermal source episodes such as candle, cigarette, incense stick burning and cooking related sources, while the slowest decay of concentrations was associated with sources, emitting ultrafine particle precursors, such as furniture polisher spraying, floor wet mopping with detergent etc. Placement of the particle sensors in the ventilation exhaust vs. in the centre of the ceiling yielded comparable results for both measured maximum concentrations and temporal variations, indicating that both locations were suitable for the placement of sensors for the management of IAQ. The obtained data provides information that may be utilized considering measurements of aerosol particles as indicators for the real-time management of IAQ.

  3. Air-Sense: indoor environment monitoring evaluation system based on ZigBee network

    Science.gov (United States)

    Huang, Yang; Hu, Liang; Yang, Disheng; Liu, Hengchang

    2017-08-01

    In the modern life, people spend most of their time indoors. However, indoor environmental quality problems have always been affecting people’s social activities. In general, indoor environmental quality is also related to our indoor activities. Since most of the organic irritants and volatile gases are colorless, odorless and too tiny to be seen, because we have been unconsciously overlooked indoor environment quality. Consequently, our body suffer a great health problem. In this work, we propose Air-Sense system which utilizes the platform of ZigBee Network to collect and detect the real-time indoor environment quality. What’s more, Air-Sense system can also provide data analysis, and visualizing the results of the indoor environment to the user.

  4. Modeling indoor air pollution of outdoor origin in homes of SAPALDIA subjects in Switzerland.

    Science.gov (United States)

    Meier, Reto; Schindler, Christian; Eeftens, Marloes; Aguilera, Inmaculada; Ducret-Stich, Regina E; Ineichen, Alex; Davey, Mark; Phuleria, Harish C; Probst-Hensch, Nicole; Tsai, Ming-Yi; Künzli, Nino

    2015-09-01

    Given the shrinking spatial contrasts in outdoor air pollution in Switzerland and the trends toward tightly insulated buildings, the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) needs to understand to what extent outdoor air pollution remains a determinant for residential indoor exposure. The objectives of this paper are to identify determining factors for indoor air pollution concentrations of particulate matter (PM), ultrafine particles in the size range from 15 to 300nm, black smoke measured as light absorbance of PM (PMabsorbance) and nitrogen dioxide (NO2) and to develop predictive indoor models for SAPALDIA. Multivariable regression models were developed based on indoor and outdoor measurements among homes of selected SAPALDIA participants in three urban (Basel, Geneva, Lugano) and one rural region (Wald ZH) in Switzerland, various home characteristics and reported indoor sources such as cooking. Outdoor levels of air pollutants were important predictors for indoor air pollutants, except for the coarse particle fraction. The fractions of outdoor concentrations infiltrating indoors were between 30% and 66%, the highest one was observed for PMabsorbance. A modifying effect of open windows was found for NO2 and the ultrafine particle number concentration. Cooking was associated with increased particle and NO2 levels. This study shows that outdoor air pollution remains an important determinant of residential indoor air pollution in Switzerland.

  5. Strategies to determine and control the contributions of indoor air pollution to total inhalation exposure (STRATEX)

    DEFF Research Database (Denmark)

    Cochet, C.; Fernandes, E.O.; Jantunen, M.;

    ECA-IAQ (European Collaborative Action, Urban Air, Indoor Environment and Human Exposure), 2006. Strategies to determine and control the contributions of indoor air pollution to total inhalation exposure (STRATEX), Report No 25. EUR 22503 EN. Luxembourg: Office for Official Publications of the Eu...

  6. Law and features of TVOC and Formaldehyde pollution in urban indoor air

    Science.gov (United States)

    Chi, Chenchen; Chen, Weidong; Guo, Min; Weng, Mili; Yan, Gang; Shen, Xueyou

    2016-05-01

    There are several categories of indoor air pollutants. Organic pollutants are the most common ones. This study chooses TVOC and Formaldehyde, two of the typical pollutants, as indicators of evaluating household indoor air pollution and improves the TVOC concentration prediction model through the samples of indoor air taken from 3122 households. This study also categorizes and explains the features of household indoor air pollution based on the TVOC and Formaldehyde models as well as a large amount of sample measurement. Moreover, this study combines the TVOC model with the Formaldehyde model to calculate and verify the critical values of each type of indoor air pollution. In this study, indoor air pollution is categorized into three types: decoration pollution, consumption pollution and transition pollution. During the first 12 months after decoration, decoration pollution is the primary pollution type, both TVOC and Formaldehyde are highly concentrated while sometimes seriously over the standard. Pollutants mainly come from volatile sources. After the first 12 month but before 24 months the indoor air pollution is transition pollution. Both decoration materials and human activates affect the indoor air quality. 24 months after decoration, it transits into consumption pollution. In this stage, the main pollutants come from combustion sources, and concentration of pollutants fluctuates with the appearance and disappearance of the sources.

  7. The study of indoor air pollution by means of magnetometry

    Science.gov (United States)

    Jelenska, M.; Górka-Kostrubiec, B.; Król, E.

    2012-04-01

    The aim of this study is to establish what kind of outside pollution penetrate into indoor spaces. Here we report preliminary results of magnetic monitoring study of indoor air pollution by particulate matter (PM) measured inside flats and houses placed in different locations in Warsaw area. Indoor air pollution level was evaluated by measuring magnetic properties of dust taken from vacuum cleaners used in private flats. The dust samples were taken from about 180 locations in Warsaw distributed in such polluted places as city centre or communication lines with heavy traffic and in unpolluted suburb places. The locations were also distributed according to height above ground level. There were taken in flats situated from first to 16th floors. The basic magnetic parameters such us, χ mass magnetic susceptibility, hysteresis loop parameters: coercive force (Hc), coercivity of remanence (Hcr), saturation magnetization (Ms) and saturation remanent magnetization (Mrs or SIRM) and χfd frequency dependence of susceptibility, have been used to identify indoor pollution level and to characterize domain state and granulometry of magnetic minerals. Identification of magnetic minerals have been made by measuring decay curve of SIRM during heating to temperature of 700 °C. For chosen samples concentration of 20 elements were measured. The most frequent values of susceptibility of dust are between 50 and 150 10-8 m3/kg with the maximum around 100 10-8 m3/kg. Thermomagnetic analysis for dust differs from that for soil samples taken in the vicinity. SIRM(T) curves for dust show remanence loss at 320 °C and at 520- 540 °C. This is diagnostic for pyrrhotite and magnetite as dominant magnetic minerals. Some samples demonstrate loss of remanence at 160 °C and at temperature characteristic for magnetite. Soil samples do not show pyrrhotite presence or loss of remanence at 160 °C. Display of hysteresis parameters on Day-Dunlop plot indicates predominance of SD/MD grains with

  8. Windsor, Ontario Exposure Assessment Study: Design and Methods Validation of Personal, Indoor and Outdoor Air Pollution Monitoring

    Science.gov (United States)

    The Windsor, Ontario Exposure Assessment Study evaluated the contribution of ambient air pollutants to personal and indoor exposures of adults and asthmatic children living in Windsor, Ontario, Canada. In addition, the role of personal, indoor, and outdoor air pollution exposures...

  9. Indoor air pollution by different heating systems: coal burning, open fireplace and central heating.

    Science.gov (United States)

    Moriske, H J; Drews, M; Ebert, G; Menk, G; Scheller, C; Schöndube, M; Konieczny, L

    1996-11-01

    Investigations of indoor air pollution by different heating systems in private homes are described. Sixteen homes, 7 with coal burning, 1 with open fireplace (wood burning) and 8 with central heating have been investigated. We measured the concentrations of carbon monoxide, carbon dioxide and sedimented dust in indoor air, of total suspended particulates, heavy metals and of polycyclic aromatic hydrocarbons in indoor and outdoor air. Measurements were taken during winter (heating period) and during summer (non-heating period). Generally, we found higher indoor air pollution in homes with coal burning and open fireplace than in homes with central heating. Especially, the concentrations of carbon monoxide, sedimented dust and of some heavy metals were higher. In one case, we found also high indoor air pollution in a home with central heating. This apartment is on the ground floor of a block of flats, and the central heating system in the basement showed a malfunctioning of the exhaust system.

  10. Reducing burden of disease from residential indoor air exposures in Europe (HEALTHVENT project)

    DEFF Research Database (Denmark)

    Asikainen, Arja; Carrer, Paolo; Kephalopoulos, Stylianos

    2016-01-01

    included countries, but the importance of the other pollutants varied by country. Conclusions: The present modelling shows, that combination of controlling the indoor air sources and selecting appropriate ventilation rate was the most effective to reduce health risks. If indoor sources cannot be removed......Background: The annual burden of disease caused indoor air pollution, including polluted outdoor air used to ventilate indoor spaces, is estimated to correspond to a loss of over 2 million healthy life years in the European Union (EU). Based on measurements of the European Environment Agency (EEA......), approximately 90 % of EU citizens live in areas where the World Health Organization (WHO) guidelines for air quality of particulate matter sized pollution reside in both indoor and outdoor air, selecting the most appropriate ventilation strategy is not a simple...

  11. Sequential box models for indoor air quality: Application to airliner cabin air quality

    Science.gov (United States)

    Ryan, P. Barry; Spengler, John D.; Halfpenny, Paul F.

    In this paper we present the development and application of a model for indoor air quality. The model represents a departure from the standard box models typically used for indoor environments which has applicability in residences and office buildings. The model has been developed for a physical system consisting of sequential compartments which communicate only with adjacent compartments. Each compartment may contain various source and sink terms for a pollutant as well as leakage, and air transfer from adjacent compartments. The mathematical derivation affords rapid calculation of equilibrium concentrations in an essentially unlimited number of compartments. The model has been applied to air quality in the passenger cabin of three commercial aircraft. Simulations have been performed for environmental tobacco smoke (ETS) under two scenarios, CO 2 and water vapor. Additionally, concentrations in one aircraft have been simulated under conditions different from the standard configuration. Results of the simulations suggest the potential for elevated concentrations of ETS in smoking sections of non-air-recirculating aircraft and throughout the aircraft when air is recirculated. Concentrations of CO 2 and water vapor are consistent with expected results. We conclude that this model may be a useful tool in understanding indoor air quality in general and on aircraft in particular.

  12. Spatial flow influence factor: A novel concept for indoor air pollutant control

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper puts forward a novel concept, the spatial flow influence factor (SFIF), which provides a new insight into the airflow structure. This concept is very helpful in the control of indoor air pollutants since: (1) for a given indoor airflow and given sources of volatile organic compounds (VOCs), the optimal arrangement of the VOC sources can easily be obtained; (2) for given positions of VOC sources and occupied regions (or target regions), the optimal indoor airflow pattern or organization can be determined; (3) the SFIF for an indoor space can also be regarded as the indoor air safety index of that space. To illustrate this concept, we present several examples of applying a SFIF to indoor air VOC control.

  13. Prediction of Indoor Air Exposure from Outdoor Air Quality Using an Artificial Neural Network Model for Inner City Commercial Buildings

    Directory of Open Access Journals (Sweden)

    Avril Challoner

    2015-12-01

    Full Text Available NO2 and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person’s well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM, to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO2 indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO2 exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts.

  14. Indoor Air Quality and Ventilation in Residential Deep Energy Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Less, Brennan; Walker, Iain

    2014-06-01

    Because airtightening is a significant part of Deep Energy Retrofits (DERs), concerns about ventilation and Indoor Air Quality (IAQ) have emerged. To investigate this, ventilation and IAQ were assessed in 17 non-smoking California Deep Energy Retrofit homes. Inspections and surveys were used to assess household activities and ventilation systems. Pollutant sampling performed in 12 homes included six-day passive samples of nitrogen dioxide (NO2), formaldehyde and air exchange rate (AER); time-resolved data loggers were used to measure particle counts. Half of the homes provided continuous mechanical ventilation. Despite these homes being twice as airtight (3.0 and 7.6 ACH50, respectively), their median AER was indistinguishable from naturally vented homes (0.36 versus 0.37 hr--1). Numerous problems were found with ventilation systems; however, pollutant levels did not reach levels of concern in most homes. Ambient NO2 standards were exceeded in some gas cooking homes that used legacy ranges with standing pilots, and in Passive House-style homes without range hoods exhausted to outside. Cooking exhaust systems were installed and used inconsistently. The majority of homes reported using low-emitting materials, and formaldehyde levels were approximately half those in conventional new CA homes (19.7 versus 36 ?g/m3), with emissions rates nearly 40percent less (12.3 versus 20.6 ?g/m2/hr.). Presence of air filtration systems led to lower indoor particle number concentrations (PN>0.5: 8.80E+06 PN/m3 versus 2.99E+06; PN>2.5: 5.46E+0.5 PN/m3 versus 2.59E+05). The results indicate that DERs can provide adequate ventilation and IAQ, and that DERs should prioritize source control, particle filtration and well-designed local exhaust systems, while still providing adequate continuous ventilation.

  15. Measurement of indoor air quality in two new test houses

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, A.T.

    1996-01-01

    This study assessed indoor air quality in two similar, new houses being evaluated for energy performance. One house (A) was built conventionally. The other (B) was an energy-efficient structure. Air samples for individual volatile organic compounds (VOCs), total VOCs (TVOC) and formaldehyde were collected following completion of the interiors of the houses and on several occasions during the following year. Ventilation rates were also determined so that source strengths of airborne contaminants could be estimated with a mass- balance model. There were no substantial differences in indoor air quality between the houses. The TVOC concentrations in House A ranged from 1,700 - 4,400 {mu}p m{sup -3}, with the highest value coinciding with the lowest ventilation rate. The TVOC concentrations in House B were 2,400 - 2,800 {mu}g m{sup -3}. These values are elevated compared to a median value of 700 {mu}g m{sup -3} measured for a large residential study. Formaldehyde concentrations ranged up to 74 {mu}g m{sup -3}. The dominant VOC in both houses was hexanal, an odorous chemical irritant. The concentrations of acetone, pentanal, toluene, alpha-pinene and other aldehydes were also relatively high in both houses. The source strengths of many of the analytes did not decline substantially over the course of the study. The OSB was estimated to contribute substantially to concentrations of formaldehyde and acetone in the houses. The results also suggested that OSB was not the dominant source of pentanal, hexanal and alpha-pinene, all of which had elevated emissions in the houses, possibly from a single source.

  16. [European community guidelines and standards in indoor air quality: what proposals for Italy].

    Science.gov (United States)

    Settimo, Gaetano; D'Alessandro, Daniela

    2014-01-01

    Indoor air quality is an issue on which to focus because of the increasing number of exposed population and in view of the strong public feeling on this issue. This paper reports the rules of EU and several European countries about indoor air quality, focusing on the initiatives performed in Italy to respond to WHO recommendations. Several EU countries have introduced in their legislation rules relating to indoor air quality. At the moment, in Italy, a reference rule has not been issued. For this reason, up to date main informations concerning some guidelines or reference values in indoor air, to be used for a first comparison, are those obtained by the scientific literature, or by the guidelines issued by other European countries or, for analogy, by other standard values such as limit or reference values regarding outdoor air. Even the EU, while reaffirming the priority of energy efficiency measures, recommends healthier indoor environments and the development of a specific European strategy on the issue of indoor air quality. The National Study Group on indoor pollution of the Italian National Health Institute (ISS), is working for the development of shared technical and scientific documents, in order to provide greater uniformity of actions at national level, waiting for a legal framework for indoor air quality, in the light of the indication already produced by the WHO.

  17. Room air quality as a challenge. Interview mit Bjarne W. Olesen about the 2008 Indoor Air Congress in Copenhagen; Raumluftqualitaet als Aufgabenstellung. Interview mit Bjarne W. Olesen zum Indoor Air Kongress 2008 in Kopenhagen

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, W.

    2008-01-15

    The upcoming Indoor Air - Eleventh International Conference on Room Air Quality and Climate from 17 to 22 August 2008 in Copenhagen in Denmark will for the first time feature a one-day event dedicated especially to architects. Wolfgang Schmid, a freelance journalist specialising in technical building equipment, spoke with Professor Bjarne Olesen, President of the 2008 Indoor Air, about the Congress agenda as well as about important trends of development in the area of well-being, health and indoor climate.

  18. Plant leaves as indoor air passive samplers for volatile organic compounds (VOCs).

    Science.gov (United States)

    Wetzel, Todd A; Doucette, William J

    2015-03-01

    Volatile organic compounds (VOCs) enter indoor environments through internal and external sources. Indoor air concentrations of VOCs vary greatly but are generally higher than outdoors. Plants have been promoted as indoor air purifiers for decades, but reports of their effectiveness differ. However, while air-purifying applications may be questionable, the waxy cuticle coating on leaves may provide a simple, cost-effective approach to sampling indoor air for VOCs. To investigate the potential use of plants as indoor air VOC samplers, a static headspace approach was used to examine the relationship between leaf and air concentrations, leaf lipid contents and octanol-air partition coefficients (Koa) for six VOCs and four plant species. The relationship between leaf and air concentrations was further examined in an actual residence after the introduction of several chlorinated VOC emission sources. Leaf-air concentration factors (LACFs), calculated from linear regressions of the laboratory headspace data, were found to increase as the solvent extractable leaf lipid content and Koa value of the VOC increased. In the studies conducted in the residence, leaf concentrations paralleled the changing air concentrations, indicating a relatively rapid air to leaf VOC exchange. Overall, the data from the laboratory and residential studies illustrate the potential for plant leaves to be used as cost effective, real-time indoor air VOC samplers.

  19. Indoor air quality in Virginia waterpipe cafés

    Science.gov (United States)

    Cobb, Caroline Oates; Vansickel, Andrea Rae; Blank, Melissa D; Jentink, Kade; Travers, Mark J; Eissenberg, Thomas

    2014-01-01

    Introduction A revised indoor air quality law has been implemented in Virginia to protect the public from the harmful effects of secondhand smoke exposure. This legislation contains exemptions that include allowances for smoking in a room that is structurally separated and separately ventilated. The objective of the current study was to examine the impact of this law on air quality in waterpipe cafés, as well as to compare the air quality in these cafés to restaurants that allow cigarette smoking and those where no smoking is permitted. Methods Indoor air quality in 28 venues (17 waterpipe cafés, five cigarette smoking-permitted restaurants and six smoke-free restaurants (five with valid data)) in Virginia was assessed during 4 March to 27 May 2011. Real-time measurements of particulate matter (PM) with 2.5 µm aerodynamic diameter or smaller (PM2.5) were obtained and occupant behaviour/venue characteristics were assessed. Results The highest mean PM2.5 concentration was observed for waterpipe café smoking rooms (374 µg/m3, n=17) followed by waterpipe café non-smoking rooms (123 µg/m3, n=11), cigarette smoking-permitted restaurant smoking rooms (119 µg/m3, n=5), cigarette smoking-permitted restaurant non-smoking rooms (26 µg/m3, n=5) and smoke-free restaurants (9 µg/m3, n=5). Smoking density was positively correlated with PM2.5 across smoking rooms and the smoke-free restaurants. In addition, PM2.5 was positively correlated between smoking and non-smoking rooms of venues. Conclusions The PM2.5 concentrations observed among the waterpipe cafés sampled here indicated air quality in the waterpipe café smoking rooms was worse than restaurant rooms in which cigarette smoking was permitted, and state-required non-smoking rooms in waterpipe cafés may expose patrons and employees to PM2.5 concentrations above national and international air quality standards. Reducing the health risks of secondhand smoke may require smoke-free establishments in which tobacco

  20. Chemical Characterization of the Indoor Air Quality of a University Hospital: Penetration of Outdoor Air Pollutants

    Science.gov (United States)

    Scheepers, Paul T. J.; Van Wel, Luuk; Beckmann, Gwendolyn; Anzion, Rob B. M.

    2017-01-01

    For healthcare centers, local outdoor sources of air pollution represent a potential threat to indoor air quality (IAQ). The aim of this study was to study the impact of local outdoor sources of air pollution on the IAQ of a university hospital. IAQ was characterized at thirteen indoor and two outdoor locations and source samples were collected from a helicopter and an emergency power supply. Volatile organic compounds (VOC), acrolein, formaldehyde, nitrogen dioxide (NO2), respirable particulate matter (PM-4.0 and PM-2.5) and their respective benz(a)pyrene contents were determined over a period of two weeks. Time-weighted average concentrations of NO2 (4.9–17.4 μg/m3) and formaldehyde (2.5–6.4 μg/m3) were similar on all indoor and outdoor locations. The median concentration VOC in indoor air was 119 μg/m3 (range: 33.1–2450 μg/m3) and was fivefold higher in laboratories (316 μg/m3) compared to offices (57.0 μg/m3). PM-4.0 and benzo(a)pyrene concentration were lower in buildings serviced by a >99.95% efficiency particle filter, compared to buildings using a standard 80–90% efficiency filter (p < 0.01). No indications were found that support a significant contribution of known local sources such as fuels or combustion engines to any of the IAQ parameters measured in this study. Chemical IAQ was primarily driven by known indoor sources and activities. PMID:28481324

  1. Ten questions concerning green buildings and indoor air quality

    DEFF Research Database (Denmark)

    Steinemann, Anne; Wargocki, Pawel; Rismanchi, Behzad

    2017-01-01

    This paper investigates the concern that green buildings may promote energy efficiency and other aspects of sustainability, but not necessarily the health and well-being of occupants through better indoor air quality (IAQ). We ask ten questions to explore IAQ challenges for green buildings as well...... as opportunities to improve IAQ within green buildings and their programs. Our focus is on IAQ, while recognizing that many factors influence human health and the healthfulness of a building. We begin with an overview of green buildings, IAQ, and whether and how green building certifications address IAQ. Next, we...... questions, that can help green buildings to more effectively promote IAQ. This article supports a growing recognition of the importance of IAQ in green buildings, and the opportunities for improvements. As the World Green Building Council [95] and others have emphasized, people are the most valuable asset...

  2. Wireless sensor networks for indoor air quality monitoring.

    Science.gov (United States)

    Yu, Tsang-Chu; Lin, Chung-Chih; Chen, Chun-Chang; Lee, Wei-Lun; Lee, Ren-Guey; Tseng, Chao-Heng; Liu, Shi-Ping

    2013-02-01

    The purpose of this study is to build an indoor air quality monitoring system based on wireless sensor networks (WSNs) technology. The main functions of the system include (1) remote parameter adjustment and firmware update mechanism for the sensors to enhance the flexibility and convenience of the system, (2) sensor nodes are designed by referring to the IEEE 1451.4 standard. This way, sensor nodes can automatically adjust and be plug and play, and (3) calibration method to strength the measurement value's sensitivity and accuracy. The experimental results show that transmission speed improves 30% than Trickle, transmission volume reduced to 42% of the original volume, updating task in 5*5 network topology can be executed 1.79 times and power consumption reduced to 30%. When baseline drifts, we can use the firmware update mechanism to adjust the reference value. The way can reduce error percentage from 15% to 7%. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Passive sampling of polychlorinated biphenyls (PCB) in indoor air

    DEFF Research Database (Denmark)

    Vorkamp, Katrin; Mayer, Philipp

    two phases and comments from experts in the field of PCB containing construction materials, a kinetic sampler (petri dish with silicone) and a potential equilibrium sampler (silicone-coated paper) were tested in buildings. Calibration and validation were based on conventional active sampling, for both...... methods in their kinetic sampling phase. The methods were sensitive and precise, but tended to overestimate the concentration obtained by active sampling. More work will be needed to test the silicone-coated paper under equilibrium sampling conditions.......PCBs were widely used in construction materials in the 1906s and 1970s, a period of high building activity in Denmark. The objective of this study was therefore to use passive sampling techniques to develop a simple and cost-effective screening tool for PCBs in indoor air. The study proceeded...

  4. The effect of a photocatalytic air purifier on indoor air quality quantified using different measuring methods

    Energy Technology Data Exchange (ETDEWEB)

    Kolarik, Barbara [Technical University of Denmark, International Centre for Indoor Environment and Energy, Faculty of Civil Engineering, Lyngby (Denmark); Silesian University of Technology, 44-100 Gliwice (Poland); Danish Building Research Institute (SBi), Department of Construction and Health, Dr Neergaards Vej 15, 2970 Hoersholm (Denmark); Wargocki, Pawel [Technical University of Denmark, International Centre for Indoor Environment and Energy, Faculty of Civil Engineering, Lyngby (Denmark); Skorek-Osikowska, Anna [Silesian University of Technology, 44-100 Gliwice (Poland); Wisthaler, Armin [Institute of Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck (Austria)

    2010-06-15

    The effect on indoor air quality of an air purifier based on photocatalytic oxidation (PCO) was determined by different measuring techniques: sensory assessments of air quality made by human subjects, Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) and chromatographic methods (Gas Chromatography/Mass Spectrometry and High-Pressure Liquid Chromatography with UV detection). The experiment was conducted in a simulated office, ventilated with 0.6 h{sup -1}, 2.5 h{sup -1} and 6 h{sup -1}, in the presence of additional pollution sources (carpet, chipboard and linoleum). At the lowest air change rate, additional measurements were made with no pollution sources present in the office. All conditions were tested with the photocatalytic air purifier turned on and off. The results show that operation of the air purifier in the presence of pollutants emitted by building materials and furniture improves indoor air quality, as documented by sensory assessments made by human subjects. It also reduces concentrations of many chemical compounds present in the air as documented by the PTR-MS technique. For the lowest ventilation, results from measurements using the chromatographic methods have similar tendency, however many of the 50 compounds that were targeted for analysis were not detected at all, independent of whether the purifier was on or off. For the two conditions with higher ventilation the results were inconclusive. (author)

  5. Reducing indoor air pollution by air conditioning is associated with improvements in cardiovascular health among the general population.

    Science.gov (United States)

    Lin, Lian-Yu; Chuang, Hsiao-Chi; Liu, I-Jung; Chen, Hua-Wei; Chuang, Kai-Jen

    2013-10-01

    Indoor air pollution is associated with cardiovascular effects, however, little is known about the effects of improving indoor air quality on cardiovascular health. The aim of this study was to explore whether improving indoor air quality through air conditioning can improve cardiovascular health in human subjects. We recruited a panel of 300 healthy subjects from Taipei, aged 20 and over, to participate in six home visits each, to measure a variety of cardiovascular endpoints, including high sensitivity-C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG), fibrinogen in plasma and heart rate variability (HRV). Indoor particles and total volatile organic compounds (VOCs) were measured simultaneously at the participant's home during each visit. Three exposure conditions were investigated in this study: participants were requested to keep their windows open during the first two visits, close their windows during the next two visits, and close the windows and turn on their air conditioners during the last two visits. We used linear mixed-effects models to associate the cardiovascular endpoints with individual indoor air pollutants. The results showed that increases in hs-CRP, 8-OHdG and fibrinogen, and decreases in HRV indices were associated with increased levels of indoor particles and total VOCs in single-pollutant and two-pollutant models. The effects of indoor particles and total VOCs on cardiovascular endpoints were greatest during visits with the windows open. During visits with the air conditioners turned on, no significant changes in cardiovascular endpoints were observed. In conclusion, indoor air pollution is associated with inflammation, oxidative stress, blood coagulation and autonomic dysfunction. Reductions in indoor air pollution and subsequent improvements in cardiovascular health can be achieved by closing windows and turning on air conditioners at home. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances

    OpenAIRE

    2013-01-01

    The indoor microbiome is a complex system that is thought to depend on dispersal from the outdoor biome and the occupants' microbiome combined with selective pressures imposed by the occupants' behaviors and the building itself. We set out to determine the pattern of fungal diversity and composition in indoor air on a local scale and to identify processes behind that pattern. We surveyed airborne fungal assemblages within 1-month time periods at two seasons, with high replication, indoors and...

  7. House-plant placement for indoor air purification and health benefits on asthmatics

    OpenAIRE

    2014-01-01

    Objectives Some plants were placed in indoor locations frequented by asthmatics in order to evaluate the quality of indoor air and examine the health benefits to asthmatics. Methods The present study classified the participants into two groups: households of continuation and households of withdrawal by a quasi-experimental design. The households of continuation spent the two observation terms with indoor plants, whereas the households of withdrawal passed the former observation terms with ind...

  8. Measurement and improvement of indoor air quality in an information technology classroom

    Directory of Open Access Journals (Sweden)

    Tomić Mladen A.

    2014-01-01

    Full Text Available With the rapid development of information technology equipment and its use in the teaching and learning activities, the working environment (especially indoor air quality in which students and pupils spend a great deal of time in educational institutions has been changing. Therefore, special attention must be paid to indoor air quality and comfort. It is of great importance to maintain indoor air quality in an object, such as information technology classrooms, where a large number of students spend long periods of time. Poor indoor environment can negatively affect scholarly performances and cause discomfort and poor work performance. The problem of indoor air quality in educational institutions can be more serious than in other types of objects, because of the higher concentration of students and information technology equipment. This paper analyzes the changes in air quality in an information technology classrooms, when occupied with students, for the period from March to April. The changes of indoor air temperature, relative humidity, and carbon dioxide concentration are monitored in the classroom, as well as outdoor temperature and relative humidity. Several cases are studied: the classroom with closed windows and doors (closed classroom, the classroom with natural ventilation, the classroom cooled with a split system (cooled classroom. Responses of students are followed for each case. The analysis is performed based on the measurement results and numerical simulations using the computational fluid dynamics package, and measures are proposed to improve the indoor air quality in the considered classroom.

  9. Comparison of mold concentrations quantified by MSQPCR in indoor and outdoor air sampled simultaneously

    OpenAIRE

    Meklin, Teija; Reponen, Tiina; McKinstry, Craig; Cho, Seung-Hyun; Grinshpun, Sergey A.; Nevalainen, Aino; Vepsäläinen, Asko; Haugland, Richard A.; LeMasters, Grace; Vesper, Stephen J.

    2007-01-01

    Mold specific quantitative PCR (MSQPCR) was used to measure the concentrations of the 36 mold species in indoor and outdoor air samples that were taken simultaneously for 48 h in and around 17 homes in Cincinnati, Ohio. The total spore concentrations of 353 per m3 of indoor air and 827 per m3 of outdoor air samples were significantly different (p≤0.05). However, only the concentrations of Aspergillus penicillioides, Cladosporium cladosporioides types 1 and 2 and Cladosporium herbarum were cor...

  10. Indoor Air Quality and Ventilation Strategies in the Use of Combustion Space Heating Appliances in Housing

    OpenAIRE

    Setiani, Onny

    1994-01-01

    Indoor air quality (IAQ) in the use of combustion appliances is important for adequate evaluation of air pollution health risks. Since people spend most of their time inside buildings, especially the elderly and children, their exposure to indoor air contaminants can increase health problems in the community. Combustion materials emitted from combustion space heating appliances in housing during the winter may become a serious problem to health, since sources of ventilation are usually left c...

  11. Design and Development of a Nearable Wireless System to Control Indoor Air Quality and Indoor Lighting Quality.

    Science.gov (United States)

    Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Galanos, Theodore; Ghellere, Matteo; Meroni, Italo

    2017-05-04

    The article describes the results of the project "open source smart lamp" aimed at designing and developing a smart object able to manage and control the indoor environmental quality (IEQ) of the built environment. A first version of this smart object, built following a do-it-yourself (DIY) approach using a microcontroller, an integrated temperature and relative humidity sensor, and techniques of additive manufacturing, allows the adjustment of the indoor thermal comfort quality (ICQ), by interacting directly with the air conditioner. As is well known, the IEQ is a holistic concept including indoor air quality (IAQ), indoor lighting quality (ILQ) and acoustic comfort, besides thermal comfort. The upgrade of the smart lamp bridges the gap of the first version of the device providing the possibility of interaction with the air exchange unit and lighting system in order to get an overview of the potential of a nearable device in the management of the IEQ. The upgraded version was tested in a real office equipped with mechanical ventilation and an air conditioning system. This office was occupied by four workers. The experiment is compared with a baseline scenario and the results show how the application of the nearable device effectively optimizes both IAQ and ILQ.

  12. Design and Development of a Nearable Wireless System to Control Indoor Air Quality and Indoor Lighting Quality

    Directory of Open Access Journals (Sweden)

    Francesco Salamone

    2017-05-01

    Full Text Available The article describes the results of the project “open source smart lamp” aimed at designing and developing a smart object able to manage and control the indoor environmental quality (IEQ of the built environment. A first version of this smart object, built following a do-it-yourself (DIY approach using a microcontroller, an integrated temperature and relative humidity sensor, and techniques of additive manufacturing, allows the adjustment of the indoor thermal comfort quality (ICQ, by interacting directly with the air conditioner. As is well known, the IEQ is a holistic concept including indoor air quality (IAQ, indoor lighting quality (ILQ and acoustic comfort, besides thermal comfort. The upgrade of the smart lamp bridges the gap of the first version of the device providing the possibility of interaction with the air exchange unit and lighting system in order to get an overview of the potential of a nearable device in the management of the IEQ. The upgraded version was tested in a real office equipped with mechanical ventilation and an air conditioning system. This office was occupied by four workers. The experiment is compared with a baseline scenario and the results show how the application of the nearable device effectively optimizes both IAQ and ILQ.

  13. Quantifying the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building.

    Science.gov (United States)

    Tong, Zheming; Chen, Yujiao; Malkawi, Ali; Adamkiewicz, Gary; Spengler, John D

    2016-01-01

    Improper natural ventilation practices may deteriorate indoor air quality when in close proximity to roadways, although the intention is often to reduce energy consumption. In this study, we employed a CFD-based air quality model to quantify the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. Our study found that the building envelope restricts dispersion and dilution of particulate matter. The indoor concentration in the baseline condition located 10m away from the roadway is roughly 16-21% greater than that at the edge of the roadway. The indoor flow recirculation creates a well-mixed zone with little variation in fine particle concentration (i.e., 253nm). For ultrafine particles (road is observed due to Brownian and turbulent diffusion. In addition, the indoor concentration strongly depends on the distance between the roadway and building, particle size, wind condition, and window size and location. A break-even point is observed at D'~2.1 (normalized distance from the roadway by the width of the road). The indoor particle concentration is greater than that at the highway where D'air intakes are important to the indoor air quality of existing buildings adjacent to roadways.

  14. Modelling the impact of room temperature on concentrations of polychlorinated biphenyls (PCBs) in indoor air

    DEFF Research Database (Denmark)

    Lyng, Nadja; Clausen, Per Axel; Lundsgaard, Claus;

    2016-01-01

    Buildings contaminated with polychlorinated biphenyls (PCBs) are a health concern for the building occupants. Inhalation exposure is linked to indoor air concentrations of PCBs, which are known to be affected by indoor temperatures. In this study, a highly PCB contaminated room was heated to six...... temperature levels between 20 and 30 C, i.e. within the normal fluctuation of indoor temperatures, while the air exchange rate was constant. The steady-state air concentrations of seven PCBs were determined at each temperature level. A model based on Clausius–Clapeyron equation, ln(P) = −H/RT + a0, where...... changes in steady-state air concentrations in relation to temperature, was tested. The model was valid for PCB-28, PCB-52 and PCB-101; the four other congeners were sporadic or non-detected. For each congener, the model described a large proportion (R2>94%) of the variation in indoor air PCB levels...

  15. Comparison of mold concentrations quantified by MSQPCR in indoor and outdoor air sampled simultaneously.

    Science.gov (United States)

    Meklin, Teija; Reponen, Tiina; McKinstry, Craig; Cho, Seung-Hyun; Grinshpun, Sergey A; Nevalainen, Aino; Vepsäläinen, Asko; Haugland, Richard A; Lemasters, Grace; Vesper, Stephen J

    2007-08-15

    Mold specific quantitative PCR (MSQPCR) was used to measure the concentrations of the 36 mold species in indoor and outdoor air samples that were taken simultaneously for 48 h in and around 17 homes in Cincinnati, Ohio. The total spore concentrations of 353 per m(3) of indoor air and 827 per m(3) of outdoor air samples were significantly different (pAspergillus penicillioides, Cladosporium cladosporioides types 1 and 2 and Cladosporium herbarum were correlated in indoor and outdoor air samples (p-valueor=0.5). These results suggest that interpretation of the meaning of short-term (<48 h) mold measurements in indoor and outdoor air samples must be made with caution.

  16. Physiologically based pharmacokinetic (PB-PK) modeling of indoor air pollutant degradation by houseplants

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E.K.; El-Masri, H.A.; Tessari, J.D.; Yang, R.S.H.; Reardon, K.F. [Colorado State Univ., Fort Collins, CO (United States)

    1994-12-31

    In the US, indoor air pollutant levels commonly exceed outdoor levels by a factor of 7 or more. Since people typically spend more than 90% percent of their time indoors, indoor air pollution has the potential for greater consequences on human health. A NASA researcher has reported that certain houseplants will reduce closed chamber concentrations of common indoor air pollutants by more than 75%. The authors are expanding this research; common houseplants and PB-PK modeling can be combined to predict the reduction rates of frequently detected indoor air pollutants, and be used as an environmental remediation approach. The approach to measuring plant gas uptake of indoor air pollutants provides a more quantitative and controlled approach than previous studies. Construction of the closed chamber system linked to a computerized gas chromatograph is complete. This system measures plant uptake of volatile organic chemicals. In experiments using initial concentrations of 21--2,100 ppm of the common indoor air pollutant trichloroethylene (TCE) with peace lily in soil, between 27--34% of TCE was removed during a 12-hour test period. In similar experiments, plants in abiotic potting media removed only 4--13% of TCE from the closed system, suggesting that microbial degradation or soil adsorption of TCE are significant factors.

  17. Influence of indoor air conditions on radon concentration in a detached house.

    Science.gov (United States)

    Akbari, Keramatollah; Mahmoudi, Jafar; Ghanbari, Mahdi

    2013-02-01

    Radon is released from soil and building materials and can accumulate in residential buildings. Breathing radon and radon progeny for extended periods hazardous to health and can lead to lung cancer. Indoor air conditions and ventilation systems strongly influence indoor radon concentrations. This paper focuses on effects of air change rate, indoor temperature and relative humidity on indoor radon concentrations in a one family detached house in Stockholm, Sweden. In this study a heat recovery ventilation system unit was used to control the ventilation rate and a continuous radon monitor (CRM) was used to measure radon levels. FLUENT, a computational fluid dynamics (CFD) software package was used to simulate radon entry into the building and air change rate, indoor temperature and relative humidity effects using a numerical approach. The results from analytical solution, measurements and numerical simulations showed that air change rate, indoor temperature and moisture had significant effects on indoor radon concentration. Increasing air change rate reduces radon level and for a specific air change rate (in this work Ach = 0.5) there was a range of temperature and relative humidity that minimized radon levels. In this case study minimum radon levels were obtained at temperatures between 20 and 22 °C and a relative humidity of 50-60%.

  18. Indoor Air Quality and Ventilation in Residential Deep Energy Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Less, Brennan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-06-01

    Because airtightening is a significant part of Deep Energy Retrofits (DERs), concerns about ventilation and Indoor Air Quality (IAQ) have emerged. To investigate this, ventilation and IAQ were assessed in 17 non-smoking California Deep Energy Retrofit homes. Inspections and surveys were used to assess household activities and ventilation systems. Pollutant sampling performed in 12 homes included six-day passive samples of nitrogen dioxide (NO2), formaldehyde and air exchange rate (AER); time-resolved data loggers were used to measure particle counts. Half of the homes provided continuous mechanical ventilation. Despite these homes being twice as airtight (3.0 and 7.6 ACH50, respectively), their median AER was indistinguishable from naturally vented homes (0.36 versus 0.37 hr-1). Numerous problems were found with ventilation systems; however, pollutant levels did not reach levels of concern in most homes. Ambient NO2 standards were exceeded in some gas cooking homes that used legacy ranges with standing pilots, and in Passive House-style homes without range hoods exhausted to outside. Cooking exhaust systems were installed and used inconsistently. The majority of homes reported using low-emitting materials, and formaldehyde levels were approximately half those in conventional new CA homes (19.7 versus 36 μg/m3), with emissions rates nearly 40percent less (12.3 versus 20.6 μg/m2/hr.). Presence of air filtration systems led to lower indoor particle number concentrations (PN>0.5: 8.80E+06 PN/m3 versus 2.99E+06; PN>2.5: 5.46E+0.5 PN/m3 versus 2.59E+05). The results indicate that DERs can provide adequate ventilation and IAQ, and that DERs should prioritize source control, particle filtration and well-designed local exhaust systems, while still providing adequate continuous ventilation.

  19. Easy 3D mapping for indoor navigation of unmanned micro air vehicles

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Totu, Luminita Cristiana; La Cour-Harbo, Anders

    2017-01-01

    Indoor operation of micro air vehicles (UAS or UAV) is significantly simplified with the availability of some means for indoor localization as well as a sufficiently precise 3D map of the facility. Creation of 3D maps based on the available architectural information should on the one hand provide...

  20. Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Price, P.N.; Shehabi, A.; Chan, R.W.; Gadgil, A.J.

    2006-06-01

    We compiled and analyzed available data concerning indoor-outdoor air leakage rates and building leakiness parameters for commercial buildings and apartments. We analyzed the data, and reviewed the related literature, to determine the current state of knowledge of the statistical distribution of air exchange rates and related parameters for California buildings, and to identify significant gaps in the current knowledge and data. Very few data were found from California buildings, so we compiled data from other states and some other countries. Even when data from other developed countries were included, data were sparse and few conclusive statements were possible. Little systematic variation in building leakage with construction type, building activity type, height, size, or location within the u.s. was observed. Commercial buildings and apartments seem to be about twice as leaky as single-family houses, per unit of building envelope area. Although further work collecting and analyzing leakage data might be useful, we suggest that a more important issue may be the transport of pollutants between units in apartments and mixed-use buildings, an under-studied phenomenon that may expose occupants to high levels of pollutants such as tobacco smoke or dry cleaning fumes.

  1. Indoor air quality issues related to the acquisition of conservation in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, M.C.; Hadley, D.L.; Marseille, T.J.

    1990-09-01

    The quality of indoor air in commercial buildings is dependent on the complex interaction between sources of indoor pollutants, environmental factors within buildings such as temperature and humidity, the removal of air pollutants by air-cleaning devices, and the removal and dilution of pollutants from outside air. To the extent that energy conservation measures (ECMs) may affect a number of these factors, the relationship between ECMs and indoor air quality is difficult to predict. Energy conservation measures may affect pollutant levels in other ways. Conservation measures, such as caulking and insulation, may introduce sources of indoor pollutants. Measures that reduce mechanical ventilation may allow pollutants to build up inside structures. Finally, heating, ventilation, and air-conditioning (HVAC) systems may provide surface areas for the growth of biogenic agents, or may encourage the dissemination of pollutants throughout a building. Information about indoor air quality and ventilation in both new and existing commercial buildings is summarized in this report. Sick building syndrome and specific pollutants are discussed, as are broader issues such as ventilation, general mitigation techniques, and the interaction between energy conservation activities and indoor air quality. Pacific Northwest Laboratory (PNL) prepared this review to aid the Bonneville Power Administration (Bonneville) in its assessment of potential environmental effects resulting from conservation activities in commercial buildings. 76 refs., 2 figs., 19 tabs.

  2. Indoor air quality in urban nurseries at Porto city: Particulate matter assessment

    Science.gov (United States)

    Branco, P. T. B. S.; Alvim-Ferraz, M. C. M.; Martins, F. G.; Sousa, S. I. V.

    2014-02-01

    Indoor air quality in nurseries is an interesting case of study mainly due to children's high vulnerability to exposure to air pollution (with special attention to younger ones), and because nursery is the public environment where young children spend most of their time. Particulate matter (PM) constitutes one of the air pollutants with greater interest. In fact, it can cause acute effects on children's health, as well as may contribute to the prevalence of chronic respiratory diseases like asthma. Thus, the main objectives of this study were: i) to evaluate indoor concentrations of particulate matter (PM1, PM2.5, PM10 and PMTotal) on different indoor microenvironments in urban nurseries of Porto city; and ii) to analyse those concentrations according to guidelines and references for indoor air quality and children's health. Indoor PM measurements were performed in several class and lunch rooms in three nurseries on weekdays and weekends. Outdoor PM10 concentrations were also obtained to determine I/O ratios. PM concentrations were often found high in the studied classrooms, especially for the finer fractions, reaching maxima hourly mean concentrations of 145 μg m-3 for PM1 and 158 μg m-3 PM2.5, being often above the limits recommended by WHO, reaching 80% of exceedances for PM2.5, which is concerning in terms of exposure effects on children's health. Mean I/O ratios were always above 1 and most times above 2 showing that indoor sources (re-suspension phenomena due to children's activities, cleaning and cooking) were clearly the main contributors to indoor PM concentrations when compared with the outdoor influence. Though, poor ventilation to outdoors in classrooms affected indoor air quality by increasing the PM accumulation. So, enhancing air renovation rate and performing cleaning activities after the occupancy period could be good practices to reduce PM indoor air concentrations in nurseries and, consequently, to improve children's health and welfare.

  3. Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light.

    Science.gov (United States)

    Ai, Zhihui; Ho, Wingkei; Lee, Shuncheng; Zhang, Lizhi

    2009-06-01

    In this study, hierarchical bismuth oxybromide (BiOBr) nanoplate microspheres were used to remove NO in indoor air under visible light irradiation. The BiOBr microspheres were synthesized with a nonaqueous sol-gel method by using bismuth nitrate and cetyltrimethyl ammonium bromide as the precursors. On degradation of NO under visible light irradiation (lambda > 420 nm) at 400 part-per-billion level, which is typical concentration for indoor air quality, these nonaqueous sol-gel synthesized hierarchical BiOBr microspheres exhibited superior photocatalytic activity to the chemical precipitation synthesized counterpart BiOBr bulk powder and Degussa TiO2 P25 as well as C doped TiO2. The excellent catalytic activity and the long-term activity of nonaqueous sol-gel synthesized BiOBr microspheres were attributed to their special hierarchical structure, which was favorable for the diffusion of intermediates and final products of NO oxidation. Ion chromatograph results confirmed that nitric acid was produced on the surface of BiOBr microspheres during the photooxidation of NO in gas phase. This work suggests that the nonaqueous sol-gel synthesized BiOBr nanoplate microspheres are promising photocatalytic materials for indoor air purification.

  4. School Indoor Air Quality Assessments Go Mobile / EPA Launches School IAQ Assessment Mobile App

    Science.gov (United States)

    WASHINGTON -- The U.S. Environmental Protection Agency (EPA) today launched a new mobile app to assist schools and school districts with performing comprehensive indoor air quality (IAQ) facility assessments to protect the health of children and sch

  5. Indoor Air Quality and Sick Building Syndrome Study at Two Selected Libraries in Johor Bahru, Malaysia

    Directory of Open Access Journals (Sweden)

    Z. Sulaiman

    2011-01-01

    Full Text Available This study was carried out to investigate the association between sick building syndrome (SBS and indoor air pollutants in two libraries. 101 workers in both libraries responded to the questionnaire, which was based on Malaysian Industry Code of Practice on Indoor Air Quality 2010 (MCPIAQ for the measurement of SBS occurrences. Measurements of indoor air quality were also performed according to the MCPIAQ methods. Higher prevalence of SBS recorded in Perpustakaan Sultanah Zanariah (PSZ, Universiti Teknologi Malaysia, compared to Perpustakaan Sultan Ismail (PSI (X2 = 38.81, p = 0.000, Johor Bahru City. Significantly higher levels of indoor air pollutants were detected in PSZ compare to PSI for CO, CO2, temperature, bacteria, fungi and Total Volatile Organic Compounds (TVOC, while PSI indicated higher level of relative humidity (RH. The levels of CO2, temperature, humidity, TVOC and bacteria counts were the possible major factors contributing to SBS complaints among the workers of both libraries.

  6. Temperature and Humidity Control in Air-Conditioned Buildings with lower Energy Demand and increased Indoor Air Quality

    DEFF Research Database (Denmark)

    Paul, Joachim; Martos, E. T.

    2003-01-01

    %. For indoor air temperature and humidity control, the use of an ice slurry (´Binary Ice´)was compared to conventional chilled water. The use of Binary Ice instead of chilled water makes the air handling and air distribution installation much simpler, recirculation of air becomes obsolete, and a higher portion....... Binary Ice as secondary refrigerant for air-conditioning purposes is an economical and technically feasible solution in any climate. Whatever chilled water can do in an air-conditioning installation ? Binary Ice can do it better....... of ambient air can be supplied, thus improving the indoor air quality still further. Reheating of air is not necessary when using Binary Ice. The introduction of chilled air into a room requires a different type of air outlet, however. When using Binary Ice, energy savings are high for climates with low...

  7. The effects of an energy efficiency retrofit on indoor air quality.

    Science.gov (United States)

    Frey, S E; Destaillats, H; Cohn, S; Ahrentzen, S; Fraser, M P

    2015-04-01

    To investigate the impacts of an energy efficiency retrofit, indoor air quality and resident health were evaluated at a low-income senior housing apartment complex in Phoenix, Arizona, before and after a green energy building renovation. Indoor and outdoor air quality sampling was carried out simultaneously with a questionnaire to characterize personal habits and general health of residents. Measured indoor formaldehyde levels before the building retrofit routinely exceeded reference exposure limits, but in the long-term follow-up sampling, indoor formaldehyde decreased for the entire study population by a statistically significant margin. Indoor PM levels were dominated by fine particles and showed a statistically significant decrease in the long-term follow-up sampling within certain resident subpopulations (i.e. residents who report smoking and residents who had lived longer at the apartment complex).

  8. Indoor Air Quality Investigations on Particulate Matter, Carbonyls, and Tobacco Specific Nitrosamines

    Science.gov (United States)

    Frey, Sarah E.

    Americans spend upwards of 90% of their time indoors, hence indoor air quality (IAQ) and the impact of IAQ on human health is a major public health concern. IAQ can be negatively impacted by outdoor pollution infiltrating indoors, the emission of indoor pollutants, indoor atmospheric chemistry and poor ventilation. Energy saving measures like retrofits to seal the building envelope to prevent the leakage of heated or cooled air will impact IAQ. However, existing studies have been inconclusive as to whether increased energy efficiency is leading to detrimental IAQ. In this work, field campaigns were conducted in apartment homes in Phoenix, Arizona to evaluate IAQ as it relates to particulate matter (PM), carbonyls, and tobacco specific nitrosamines (TSNA). To investigate the impacts of an energy efficiency retrofit on IAQ, indoor and outdoor air quality sampling was carried out at Sunnyslope Manor, a city-subsidized senior living apartment complex. Measured indoor formaldehyde levels before the building retrofit exceeded reference exposure limits, but in the long term follow-up sampling, indoor formaldehyde decreased for the entire study population by a statistically significant margin. Indoor PM levels were dominated by fine particles and showed a statistically significant decrease in the long term follow-up sampling within certain resident subpopulations (i.e. residents who reported smoking and residents who had lived longer at the apartment complex). Additionally, indoor glyoxal and methylglyoxal exceeded outdoor concentrations, with methylglyoxal being more prevalent pre-retrofit than glyoxal, suggesting different chemical pathways are involved. Indoor concentrations reported are larger than previous studies. TSNAs, specifically N'-nitrosonornicotine (NNN), 4-(methyl-nitrosamino)-4-(3-pyridyl)-butanal (NNA) and 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK) were evaluated post-retrofit at Sunnyslope Manor. Of the units tested, 86% of the smoking units and

  9. Indoor air quality investigation according to age of the school buildings in Korea.

    Science.gov (United States)

    Sohn, Jongryeul; Yang, Wonho; Kim, Jihwan; Son, Busoon; Park, Jinchul

    2009-01-01

    Since the majority of schools are housed in buildings dating from the 1960s and 1970s, a comprehensive construction and renovation program of school buildings has been carried out to improve the educational conditions in Korea. However, classrooms and computer rooms, with pressed wood desks, chairs and furnishings, as well as construction materials, might have negative effects on the indoor air quality. Furthermore, most schools have naturally ventilated classrooms. The purpose of this study was to characterize the concentrations of different indoor air pollutants within Korean schools and to compare their indoor levels within schools according to the age of school buildings. Indoor and outdoor air samples of carbon monoxide (CO), carbon dioxide (CO(2)), particulate matter (PM(10)), total microbial count (TBC), total volatile organic compounds (TVOCs) and formaldehyde (HCHO) were obtained during summer, autumn and winter from three sites; a classroom, a laboratory and a computer classroom at 55 different schools. The selection of the schools was based on the number of years since the schools had been constructed. The problems causing indoor air pollution at the schools were chemicals emitted by building materials or furnishings, and insufficient ventilation rates. The I/O ratio for HCHO was 6.32 during the autumn, and the indoor HCHO concentrations (mean = 0.16 ppm) in schools constructed within 1 year were significantly higher than the Korean Indoor Air Standard, indicating that schools have indoor sources of HCHO. Therefore, increasing the ventilation rate by means of a mechanical system and the use of low-emission furnishings can play key roles in improving the indoor air quality within schools.

  10. THE PROBLEM OF THE STUDYING OF RADON INDOOR AIR CONCENTRATION IN THE JEWISH AUTONOMOUS REGION

    Directory of Open Access Journals (Sweden)

    O. V. Surits

    2012-01-01

    Full Text Available An article presents the results of radon indoor air concentration estimations for dwellings and public buildings of the Jewish Autonomous region in 2000–2011. More than 15 000 measurements were carried out in all areas of the region during the entire observation period. Areas with an enhanced radon content in indoor air were revealed. The maximum values are registered in Obluchensky area, in separate buildings reaching 2 000 Bq/m3.

  11. [Dust particles and metals in outdoor and indoor air of Upper Silesia].

    Science.gov (United States)

    Górny, R L; Jedrzejczak, A; Pastuszka, J S

    1995-01-01

    This work contains the results of the aerosol mass size distribution and preliminary studies on concentrations and size distribution of heavy metals (Pb, Zn, Cu, Mn, Fe and Cd) in indoor and outdoor environment in Upper Silesia (the highly industrialized region in the southern part of Poland). In studies, the measurements of aerosol concentration, mass size distribution, and evaluation of heavy metals concentration were made from December 1992 to April 1994 in some apartments in five towns in Upper Silesia and in one village in the Beskidy Mountains in both indoor and outdoor environments. The particles were fractionated in Andersen cascade impactor. The sampling time was 6-7 days and 4-5 days for indoor and outdoor respectively. Aerosol particulates were collected on A-type glass fiber collection substrate used later for determination of heavy concentrations by atomic absorption spectrophotometry (AAS 3, Carl Zeiss Jena). The dust was mineralized by the means of the mixture of hydrofluoric and nitric acids. The results of mass size distribution as well as the measurements of TSP for indoor and outdoor aerosol show that the main source of particulate matter indoors, in this region, are heavy polluted outdoor air and cigarette smoking. It can be said that, except homes in Knurów and Sosnowiec with hard smokers, the indoor levels of particulate pollution were significant lower than the outdoors levels. Whenever in the indoor environment appear additional source of particulate emission situation can changed. When we compare mass size distribution for outdoor aerosol and indoor aerosol contaminated by tobacco smoke, we can observed considerable increase of indoor aerosol level in the 0.33-0.54 microns size range. Besides, indoor aerosol status may be changed by coal stove emission (displacement of maximum peak to direction of coarse particles). The observed differences in concentration of particulate matter may also indicate the important differences in chemical and

  12. Assessment of microbiological indoor air quality in an Italian office building equipped with an HVAC system.

    Science.gov (United States)

    Bonetta, Sa; Bonetta, Si; Mosso, S; Sampò, S; Carraro, E

    2010-02-01

    The purpose of this study was to evaluate the level and composition of bacteria and fungi in the indoor air of an Italian office building equipped with a heating, ventilation and air conditioning (HVAC) system. Airborne bacteria and fungi were collected in three open-space offices during different seasons. The microbial levels in the outdoor air, supply air diffusers, fan coil air flow and air treatment unit humidification water tank were used to evaluate the influence of the HVAC system on indoor air quality (IAQ). A medium-low level of bacterial contamination (50-500 CFU/m(3)) was found in indoor air. Staphylococcus and Micrococcus were the most commonly found genera, probably due to human presence. A high fungal concentration was measured due to a flood that occurred during the winter. The indoor seasonal distribution of fungal genera was related to the fungal outdoor distribution. Significant seasonal and daily variation in airborne microorganisms was found, underlining a relationship with the frequency of HVAC system switching on/off. The results of this monitoring highlight the role of the HVAC system on IAQ and could be useful to better characterise bacterial and fungal population in the indoor air of office buildings.

  13. Development of indoor environmental index: Air quality index and thermal comfort index

    Science.gov (United States)

    Saad, S. M.; Shakaff, A. Y. M.; Saad, A. R. M.; Yusof, A. M.; Andrew, A. M.; Zakaria, A.; Adom, A. H.

    2017-03-01

    In this paper, index for indoor air quality (also known as IAQI) and thermal comfort index (TCI) have been developed. The IAQI was actually modified from previous outdoor air quality index (AQI) designed by the United States Environmental Protection Agency (US EPA). In order to measure the index, a real-time monitoring system to monitor indoor air quality level was developed. The proposed system consists of three parts: sensor module cloud, base station and service-oriented client. The sensor module cloud (SMC) contains collections of sensor modules that measures the air quality data and transmit the captured data to base station through wireless. Each sensor modules includes an integrated sensor array that can measure indoor air parameters like Carbon Dioxide, Carbon Monoxide, Ozone, Nitrogen Dioxide, Oxygen, Volatile Organic Compound and Particulate Matter. Temperature and humidity were also being measured in order to determine comfort condition in indoor environment. The result from several experiments show that the system is able to measure the air quality presented in IAQI and TCI in many indoor environment settings like air-conditioner, chemical present and cigarette smoke that may impact the air quality. It also shows that the air quality are changing dramatically, thus real-time monitoring system is essential.

  14. House Owners’ Interests and Actions in Relation to Indoor Temperature, Air Quality and Energy Use

    DEFF Research Database (Denmark)

    Knudsen, Henrik Nellemose; Andersen, Rune Korsholm; Hansen, Anders Rhiger

    2016-01-01

    for each other in the family. Actions are taken in relation to the temperature in the way that house owners are trying to keep different temperatures in differently heated rooms, e.g. to sleep in a cool bedroom or to save heat. Besides they wear warmer clothing, slippers or thick socks indoors during...... to indoor temperature, air quality and energy consumption by Danish house owners living in single-family detached houses with district heating. The house owners state that they are interested in, and concerned about, the indoor temperature and air quality and that it is an important element in caring...

  15. House Owners’ Interests and Actions in Relation to Indoor Temperature, Air Quality and Energy Consumption

    DEFF Research Database (Denmark)

    Knudsen, Henrik Nellemose; Andersen, Rune K.; Hansen, Anders Rhiger

    2016-01-01

    for each other in the family. Actions are taken in relation to the temperature in the way that house owners are trying to keep different temperatures in differently heated rooms, e.g. to sleep in a cool bedroom or to save heat. Besides they wear warmer clothing, slippers or thick socks indoors during...... to indoor temperature, air quality and energy consumption by Danish house owners living in single-family detached houses with district heating. The house owners state that they are interested in, and concerned about, the indoor temperature and air quality and that it is an important element in caring...

  16. Indoor air pollution in developing countries: recommendations for research

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.R. [University of California at Berkeley, Berkeley, CA (USA)

    2002-09-01

    Available studies indicate that indoor air pollution (IAP) from household cooking and space heating apparently causes substantial ill-health in developing countries where the majority of households rely on solid fuels (coal or biomass as wood, crop residues, and dung), but there are many remaining uncertainties. To pin down impacts in order to effectively target interventions, research is particularly needed in three areas: (1) epidemiology: case-control studies for tuberculosis (TB) and cardiovascular disease in women and randomized intervention trials for childhood acute respiratory diseases and adverse pregnancy outcomes; (2) exposure assessment: techniques and equipment for inexpensive exposure assessment at large scale, including national level surveys; (3) interventions: engineering and dissemination approaches for improved stoves, fuels, ventilation, and behavior that reliably and economically reduce exposure. There are also important potential synergisms between efforts to reduce greenhouse gas emissions and those to reduce health-damaging emissions from solid-fuel stoves. The substitution of biomass by coal being considered in some countries should be pursued with caution because of the known serious health effects of household coal use.

  17. The role of volatile organic compounds in the assessment of indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Ingegerd [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemistry and Karolinska Inst., Stockholm (Sweden). Inst. of Environmental Medicine

    1999-07-01

    The main aim of this thesis is to assess and evaluate the relevance of air pollutants, especially volatile organic compounds (VOC), for indoor air quality (IAQ) in non industrial environments. Another attempt is to find out whether indoor-air VOC may be linked to human health and sensory effects. The experiments included the development of a method to sample and analyze VOC in indoor air (adsorptive sampling/ gas chromatographic separation/mass spectrometric identification) as well as the application of this method in studies of adsorption/desorption of VOC in building materials and ventilation systems, and the occurrence and behavior of VOC in healthy and sick buildings. The method developed is well suited for indoor air VOC analysis, especially for the fine division in temporal intervals needed for the assessment of VOC in occupied rooms. The empirical results show that there is a continuous interplay, regarding VOC and semi volatile organic compounds (SVOC), between indoor materials and indoor air, between ventilation components and supply air, as well as among indoor materials. The results also show that there is an accumulation indoors of outdoor compounds, that are brought indoors by ventilation supply or by materials, such as clothes. Comparatively new statistical pattern analyses were applied to data obtained from indoor air VOC analyses in different locations in a sick and a healthy preschool. The results indicate that this approach may offer an opportunity to distinguish among different buildings and among different locations within buildings with regard to the indoor air composition of VOC. Although promising, further studies of the link between chemical pattern and sensory effects are needed. In a psychophysical experiment, it was shown that formaldehyde at the very low concentrations typical for indoor-air VOC could reliably be scaled with regard to perceived intensity and sensory detection thresholds be determined. Two methods of formaldehyde

  18. Influence of a portable air treatment unit on health-related quality indicators of indoor air in a classroom.

    NARCIS (Netherlands)

    Scheepers, P.T.J.; Cremers, R.G.H.M.; Hout, S.P. van; Anzion, R.B.M.

    2012-01-01

    During periods of two weeks in February and June 2010 the performance of portable air treatment units (PATUs) was evaluated in a primary school classroom using indicators of indoor air quality. Air samples were collected in an undisturbed setting on weekend days and in an occupied setting during tea

  19. Relationship between the Particulate Matter Concentrations in the Indoor and Ambient Air of the Tehran Children Hospital in 2007

    OpenAIRE

    Soheila Rezaei; Kazem Naddafi; Hossain Jabbari; Masoud Yonesian; Arsalan Jamshidi; Abdolmohamad Sadat; Alireza Raygan Shirazinejad

    2013-01-01

    Background and Objectives: In recent years exposure to fine airborne particles has been identified as an important factor affecting human health. Epidemiological studies have showed that the aerosol laden air can be an agent for microorganisms’ dispersion. Ignoring internal sources, ambient air quality significantly affects indoor air quality. Since people spend most of their times in the indoor spaces and little data are available on the general understanding of the indoor air quality, the...

  20. European database on indoor air pollution sources in buildings: Current status of database structure and software

    NARCIS (Netherlands)

    Molina, J.L.; Clausen, G.H.; Saarela, K.; Plokker, W.; Bluyssen, P.M.; Bishop, W.; Oliveira Fernandes, E. de

    1996-01-01

    the European Joule II Project European Data Base for Indoor Air Pollution Sources in Buildings. The aim of the project is to produce a tool which would be used by designers to take into account the actual pollution of the air from the building elements and ventilation and air conditioning system com

  1. European database on indoor air pollution sources in buildings: Current status of database structure and software

    NARCIS (Netherlands)

    Molina, J.L.; Clausen, G.H.; Saarela, K.; Plokker, W.; Bluyssen, P.M.; Bishop, W.; Oliveira Fernandes, E. de

    1996-01-01

    the European Joule II Project European Data Base for Indoor Air Pollution Sources in Buildings. The aim of the project is to produce a tool which would be used by designers to take into account the actual pollution of the air from the building elements and ventilation and air conditioning system

  2. Natural radioactivity content in soil and indoor air of Chellanam.

    Science.gov (United States)

    Mathew, S; Rajagopalan, M; Abraham, J P; Balakrishnan, D; Umadevi, A G

    2012-11-01

    Contribution of terrestrial radiation due to the presence of naturally occurring radionuclides in soil and air constitutes a significant component of the background radiation exposure to the population. The concentrations of natural radionuclides in the soil and indoor air of Chellanam were investigated with an aim of evaluating the environmental radioactivity level and radiation hazard to the population. Chellanam is in the suburbs of Cochin, with the Arabian Sea in the west and the Cochin backwaters in the east. Chellanam is situated at ∼25 km from the sites of these factories. The data obtained serve as a reference in documenting changes to the environmental radioactivity due to technical activities. Soil samples were collected from 30 locations of the study area. The activity concentrations of (232)Th, (238)U and (40)K in the samples were analysed using gamma spectrometry. The gamma dose rates were calculated using conversion factors recommended by UNSCEAR [United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation. UNSCEAR (2000)]. The ambient radiation exposure rates measured in the area ranged from 74 to 195 nGy h(-1) with a mean value of 131 nGy h(-1). The significant radionuclides being (232)Th, (238)U and (40)K, their activities were used to arrive at the absorbed gamma dose rate with a mean value of 131 nGy h(-1) and the radium equivalent activity with a mean value of 162 Bq kg(-1). The radon progeny levels varied from 0.21 to 1.4 mWL with a mean value of 0.6 mWL. The thoron progeny varied from 0.34 to 2.9 mWL with a mean value of 0.85 mWL. The ratio between thoron and radon progenies varied from 1.4 to 2.3 with a mean of 1.6. The details of the study, analysis and results are discussed.

  3. A Comprehensive Real-Time Indoor Air-Quality Level Indicator

    Directory of Open Access Journals (Sweden)

    Jungho Kang

    2016-09-01

    Full Text Available The growing concern about Indoor Air-Quality has accelerated the development of small, low-cost air-quality monitoring systems. These systems are capable of monitoring various indoor air pollutants in real time, notifying users about the current air-quality status and gathering the information to the central server. However, most Internet of Things (IoT-based air-quality monitoring systems numerically present the sensed value per pollutant, making it difficult for general users to identify how polluted the air is. Therefore, in this paper, we first introduce a tiny air-quality monitoring system that we developed and, based on the system, we also test the applicability of the comprehensive Air-Quality Index (AQI, which is widely used all over the world, in terms of its capacity for a comprehensive indoor air-quality indication. We also develop design considerations for an IoT-based air-quality monitoring system and propose a real-time comprehensive indoor air-quality level indication method, which effectively copes with dynamic changes and is efficient in terms of processing and memory overhead.

  4. Numerical Simulation and Experimental Research on Indoor Environment Separated with Down-Feed Air Curtain

    Institute of Scientific and Technical Information of China (English)

    GUO Chunmei; ZHANG Yufeng; CHANG Ru; WANG Xiaodong

    2009-01-01

    Indoor environment separated with down.feed air curtain was numerically simulated and experimentally researched.Indoor airflow and temperature fields separated with air curtain were numerically simulated.Resuits show that both polluted airflow and thermal air current can be separated with a down.feed air curtain to prevent contaminants from spreading in the room space.In a test chamber.the smoke of burning Tibetan incense served as the source of contaminants.and the probe test shows that 1.0 pm is the prevailing diameter of the smoke particles.During the release of the smoke.the particle concentration of the indoor air was tested with a laser particle counter at the points of three different heights from the floor when the air curtain was running or not.Experimental results show that the higher the test point is located,the lower the particle concentration is,implying that the separating or isolating eflfect decreases as the air velocity of the curtain reduces along with the height descends.According to both simulation and experimental results.down.feed air curtain can separate indoor environment effectively when the supply air velocity of air curtain is not less than 3 m/s.In order to strengthen separation effect,it is suggested that the supply air velocity be speeded up to 5 m/s.

  5. Indoor air pollution, nighttime heart rate variability and coffee consumption among convenient store workers.

    Directory of Open Access Journals (Sweden)

    Kai-Jen Chuang

    Full Text Available BACKGROUND: The association between ambient air pollution and heart rate variability (HRV has been well-documented. Little is known about the association of HRV at night with indoor air pollution and coffee consumption. The aim of this study was to investigate the association of HRV indices with indoor air pollution, working time and coffee consumption. METHODS: We recruited 60 young healthy convenient store workers to monitor indoor PM2.5 (particulate matter with an aerodynamic diameter ≤ 2.5 µm exposures, coffee consumption (yes vs. no and HRV indices during daytime (0700-1500 hours and nighttime (2300-0700 hours. We used linear mixed effects models to assess the associations of HRV indices with indoor PM2.5 exposures and coffee consumption. RESULTS: We observed the inverse association between indoor PM2.5 exposures and HRV indices, with a decrease in all HRV indices with increased indoor PM2.5 exposures. However, the decrease was most pronounced during nighttime, where a 1 interquartile range (IQR increase in indoor PM2.5 at 4-hr time-weighted moving average was associated with a change of -4.78% 5-min standard deviation (SD of normal-to-normal intervals for 5-min segment (SDNN and -3.23% 5-min square root of the mean squared differences of successive intervals for 5-min segment (r-MSSD. Effects of indoor PM2.5 were lowest for participants with coffee consumption during daytime. CONCLUSIONS: Indoor PM2.5 exposures were associated with decreased 5-min SDNN and 5-min r-MSSD, especially during nighttime. The effect of indoor PM2.5 on HRV indices may be modified by coffee consumption in young healthy convenient store workers.

  6. Indoor air quality of houses located in the urban environment of Agra, India.

    Science.gov (United States)

    Taneja, Ajay; Saini, Renuka; Masih, Amit

    2008-10-01

    Increased concern over the adverse health effects of air pollution has highlighted the need for air-pollution measurements, especially in urban areas, where many sources of air pollutants are normally monitored outdoors as part of obligations under the National Air Quality Strategies. Very little is known about air pollution indoors. In fact, the largest exposure to health-damaging indoor pollution probably occurs in the developing world, not in households, schools, and offices of developed countries where most research and control efforts have been focused to date. As a result much of the health impacts from air pollution worldwide seem to occur among the poorest and most vulnerable populations. The authors in their earlier studies have confirmed the importance of ambient air in determining the quality of air indoors. In this study an observation of air quality indoors and outdoors of domestic homes located in an urban environment from October 2004 to December 2005 in Agra, north central India, is performed. The purpose of this study was to characterize the indoor/outdoor (I/O) relationship of airborne pollutants and recognize their probable source in all three seasons, that is, winter, summer, and rainy season. Concentrations of SO(2), NO(2), CO(2), Cl(2), H(2)S, NH(3), RSPM, and PAH were monitored simultaneously and I/O ratios were calculated. In order to investigate the effect of seasonality on indoor and ambient air quality, winter to summer and winter to monsoon average ratios were calculated. It is apparent that there is a general pattern of increasing levels from monsoon to summer to winter, and similarly from outdoor to indoor air. Regressions analysis had been done to further investigate the influence of outdoor air-pollutant concentrations on indoor concentrations. The most probable categories of sources for these pollutants have been identified by using principal-component analysis. Indoor air pollution is a complex function of energy housing and

  7. Indoor air quality in the 21st century: search for excellence

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    2000-01-01

    as elements behind a new philosophy of excellence: 1) better indoor air quality increases productivity and decreases SBS symptoms; 2) unnecessary indoor pollution sources should be avoided; 3) the air should be served cool and dry to the occupants; 4) "personalized air", i.e. a small amount of clean air......, should be served gently, close to the breathing zone of each individual; and 5) individual control of the thermal environment should be provided. These principles of excellence are compatible with energy efficiency and sustainability....

  8. Indoor air quality in the Karns research houses: baseline measurements and impact of indoor environmental parameters on formaldehyde concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, T. G.; Fung, K. W.; Tromberg, B. J.; Hawthorne, A. R.

    1985-12-01

    Baseline indoor air quality measurements, a nine-month radon study, and an environmental parameters study examining the impact of indoor temperature (T) and relative humidity (RH) levels on formaldehyde (CH2O) concentrations have been performed in three unoccupied research homes located in Karns, Tennessee. Inter-house comparison measurements of (1) CH2O concentration, (2) CH20 emission rates from primary CH20 emission sources, (3) radon and radon daughter concentrations, and (4) air exchange rates indicate that the three homes are similar. The results of the nine-month radon study indicate indoor concentrations consistently below the EPA recommended level of 4 pCi/L. Evidence was found that crawl-space concentrations may be reduced using heat pump systems whose outdoor units circulate fresh air through the crawl-spaoe. The modeled results of the environmental parameters study indicate approximate fourfold increases in CH20 concentrations from 0.07 to 0.27 ppm for seasonal T and RH conditions of 20°C, 30% RH and 29°C, 80% RH, respectively. Evaluation of these environmental parameters study data with steady-state CH2O concentration models developed from laboratory studies of the environmental dependence of CH2O emissions from particleboard underlayment indicate good correlations between the laboratory and field studies.

  9. Indoor Air Quality in Selected Samples of Primary Schools in Kuala Terengganu, Malaysia

    Directory of Open Access Journals (Sweden)

    Marzuki Ismail

    2010-01-01

    Full Text Available Studies have found out that indoor air quality affects human especially children and the elderly more compared to ambient atmospheric air. This study aims to investigate indoor air pollutants concentration in selected vernacular schools with different surrounding human activities in Kuala Terengganu, the administrative and commercial center of Terengganu state. Failure to identify and establish indoor air pollution status can increase the chance of long-term and short-term health problems for these young students and staff; reduction in productivity of teachers; and degrade the youngsters learning environment and comfort. Indoor air quality (IAQ parameters in three primary schools were conducted during the monsoon season of November 2008 for the purposes of assessing ventilation rates, levels of particulate matter (PM10 and air quality differences between schools. In each classroom, carbon monoxide (CO, CO2, air velocity, relative humidity and temperature were performed during school hours, and a complete walkthrough survey was completed. Results show a statistically significant difference for the five IAQ parameters between the three schools at the 95.0% confidence level. We conclude our findings by confirming the important influence of surrounding human activities on indoor concentrations of pollutants in selected vernacular schools in Kuala Terengganu.

  10. Indoor Air Quality In Maine Schools: Report of the Task Force To Examine the Establishment and Implementation of State Standards for Indoor Air Quality in Maine Schools.

    Science.gov (United States)

    Malcolm, Judith

    Asserting that in Maine and across the nation, school buildings are becoming increasingly plagued with indoor air quality (IAQ) problems which contribute to a variety of illnesses in children and adults, this report from a Maine state legislative task force identifies appropriate policies and identifies actions necessary for the prevention and…

  11. Assessment of indoor air quality in comparison using air conditioning and fan system in printing premise

    Directory of Open Access Journals (Sweden)

    Ramlan Nazirah

    2017-01-01

    Full Text Available Printers contribute to various emissions consist with chemical contaminants. High concentration of the particulate matter can cause serious health problems. This study focuses on the indoor air quality in printing premise unit in Universiti Tun Hussein Onn, Malaysia. Field testing involving air sampling methods were taken from 900 hours to 1600 hours, for every 30 minutes using physical measurement which is Multi-Channel Air Quality Monitor (YESAIR, E-Sampler and Ozone Meter. Air sampling was recorded based on one sampling point and most suitable point for production. A comparison based on different ventilation using fan and air-conditioning were also taken and results is being compared based on OSHA and NIOSH standards. Besides that, the statistical analysis is being conducted in order to predict the effect on number of printers. From the result, the O3 concentrations show, 10% reduced for printing premise using fan ventilation compared to air-conditioning but remain the same value for PM2.5. The concentration of O3 increased when the number of printers decreased, while the concentration of PM2.5 increased the increase of printers number. Overall, the use of fan in printing premise is more suggested since the level is slightly lower than the printing premise using air-conditioning.

  12. Magnetic signature of indoor air pollution: Household dust study

    National Research Council Canada - National Science Library

    Górka-Kostrubiec, Beata; Jeleńska, Maria; Król, Elżbieta

    2014-01-01

    The combination of magnetic and geochemical methods was used to determine the mineralogy, grain size and domain structure of magnetic particles in indoor dust collected in 195 sites in Warsaw, Poland...

  13. Personal, indoor and outdoor air pollution levels among pregnant women

    Science.gov (United States)

    Schembari, Anna; Triguero-Mas, Margarita; de Nazelle, Audrey; Dadvand, Payam; Vrijheid, Martine; Cirach, Marta; Martinez, David; Figueras, Francesc; Querol, Xavier; Basagaña, Xavier; Eeftens, Marloes; Meliefste, Kees; Nieuwenhuijsen, Mark J.

    2013-01-01

    AimThe aims of this study were to investigate the relationship between pregnant women's personal exposures to NOx, NO2, PM2.5 concentration and absorbance as a marker for black carbon and their indoor and outdoor concentration levels at their residence, and also to identify predictors of personal exposure and indoor levels using questionnaire and time activity data. MethodWe recruited 54 pregnant women in Barcelona who carried a personal PM2.5 sampler for two days and NOx/NO2 passive badges for one week, while indoor and outdoor PM2.5 and NOx/NO2 levels at their residence were simultaneously measured. Time activity and house characteristics were recorded. Gravimetry determinations for PM2.5 concentration and absorbance measurements were carried out on the PM2.5 filter samples. ResultsLevels of personal exposure to NOx, PM2.5 and absorbance were slightly higher than indoor and outdoor levels (geometric mean of personal NOx = 61.9 vs indoor NOx = 60.6 μg m-3), while for NO2 the indoor levels were slightly higher than the personal ones. Generally, there was a high statistically significant correlation between personal exposure and indoor levels (Spearman's r between 0.78 and 0.84). Women spent more than 60% of their time indoors at home. Ventilation of the house by opening the windows, the time spent cooking and indicators for traffic intensity were re-occurring statistically significant determinants of the personal and indoor pollutants levels with models for NOx explaining the 55% and 60% of the variability respectively, and models for NO2 explaining the 39% and 16% of the variability respectively. Models for PM2.5 and absorbance explained the least of the variability. ConclusionOur findings improve the current understanding of the characterization and inter-associations between personal, indoor and outdoor pollution levels among pregnant women. Variability in personal and indoor NOx and to a lesser extent NO2 levels could be explained well, but not the variability

  14. Mathematical models for predicting indoor air quality from smoking activity.

    OpenAIRE

    Ott, W R

    1999-01-01

    Much progress has been made over four decades in developing, testing, and evaluating the performance of mathematical models for predicting pollutant concentrations from smoking in indoor settings. Although largely overlooked by the regulatory community, these models provide regulators and risk assessors with practical tools for quantitatively estimating the exposure level that people receive indoors for a given level of smoking activity. This article reviews the development of the mass balanc...

  15. [Impact of air fresheners and deodorizers on the indoor total volatile organic compounds].

    Science.gov (United States)

    Jinno, Hideto; Tanaka-Kagawa, Toshiko; Obama, Tomoko; Miyagawa, Makoto; Yoshikawa, Jun; Komatsu, Kazuhiro; Tokunaga, Hiroshi

    2007-01-01

    Indoor air quality is a growing health concern because of the increased incidence of the building-related illness, such as sick-building syndrome and multiple chemical sensitivity/idiopathic environmental intolerance. In order to effectively reduce the unnecessary chemical exposure in the indoor environment, it would be important to quantitatively compare the emissions from many types of sources. Besides the chemical emissions from the building materials, daily use of household products may contribute at significant levels to the indoor volatile organic compounds (VOCs). In this study, we investigated the emission rate of VOCs and carbonyl compounds for 30 air fresheners and deodorizers by the standard small chamber test method (JIS A 1901). The total VOC (TVOC) emission rates of these household products ranged from the undetectable level (< 20 microg/unit/h) to 6,900 microg/unit/h. The mean TVOC emission rate of the air fresheners for indoor use (16 products) was 1,400 microg/unit/ h and that of the deodorizers for indoor use (6 products) was 58 microg/unit/h, indicating that the fragrances in the products account for the major part of the TVOC emissions. Based on the emission rates, the impacts on the indoor TVOC were estimated by the simple model with a volume of 17.4 m3 and a ventilation frequency of 0.5 times/h. The mean of the TVOC increment for the indoor air fresheners was 170 microg/m3, accounting for 40% of the current provisional target value, 400 microg/m3. These results suggest that daily use of household products can significantly influence the indoor air quality.

  16. Accumulative effects of indoor air pollution exposure on leukocyte telomere length among non-smokers.

    Science.gov (United States)

    Lin, Nan; Mu, Xinlin; Wang, Guilian; Ren, Yu'ang; Su, Shu; Li, Zhiwen; Wang, Bin; Tao, Shu

    2017-08-01

    Indoor air pollution is an important environmental factor that contributes to the burden of various diseases. Long-term exposure to ambient air pollution is associated with telomere shortening. However, the association between chronic indoor air pollution from household fuel combustion and leukocyte telomere length has not been studied. In our study, 137 cancer-free non-smokers were recruited. Their exposure levels to indoor air pollution from 1985 to 2014 were assessed using a face-to-face interview questionnaire, and leukocyte telomere length (LTL) was measured using a monochrome multiplex quantitative PCR method. Accumulative exposure to solid fuel usage for cooking was negatively correlated with LTL. The LTL of residents who were exposed to solid fuel combustion for three decades (LTL = 0.70 ± 0.17) was significantly shorter than that of other populations. In addition, education and occupation were related to both exposure to solid fuel and LTL. Sociodemographic factors may play a mediating role in the correlation between leukocyte telomere length and environmental exposure to indoor air pollution. In conclusion, long-term exposure to indoor air pollution may cause LTL dysfunction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Integrating Human Indoor Air Pollutant Exposure within Life Cycle Impact Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hellweg, Stefanie; Demou, Evangelia; Bruzzi, Raffaella; Meijer, Arjen; Rosenbaum, Ralph K.; Huijbregts, Mark A.J.; McKone, Thomas E.

    2008-12-21

    Neglecting health effects from indoor pollutant emissions and exposure, as currently done in Life Cycle Assessment (LCA), may result in product or process optimizations at the expense of workers? or consumers? health. To close this gap, methods for considering indoor exposure to chemicals are needed to complement the methods for outdoor human exposure assessment already in use. This paper summarizes the work of an international expert group on the integration of human indoor and outdoor exposure in LCA, within the UNEP/SETAC Life Cycle Initiative. A new methodological framework is proposed for a general procedure to include human-health effects from indoor exposure in LCA. Exposure models from occupational hygiene and household indoor air quality studies and practices are critically reviewed and recommendations are provided on the appropriateness of various model alternatives in the context of LCA. A single-compartment box model is recommended for use as a default in LCA, enabling one to screen occupational and household exposures consistent with the existing models to assess outdoor emission in a multimedia environment. An initial set of model parameter values was collected. The comparison between indoor and outdoor human exposure per unit of emission shows that for many pollutants, intake per unit of indoor emission may be several orders of magnitude higher than for outdoor emissions. It is concluded that indoor exposure should be routinely addressed within LCA.

  18. Indoor air quality in a multifamily apartment building before and after energy renovation

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Földváry, Veronika; Langer, Sarka

    2016-01-01

    Buildings are responsible for a substantial portion of global energy consumption. Most of the multifamily residential buildings in central Europe built in the 20th century do not satisfy the current requirements on energy efficiency. Nationwide remedial measures are taken to improve the energy...... efficiency of these buildings and reduce their energy consumption. Since the impact of these measures on the indoor air quality is rarely considered, they often compromise indoor air quality due to decreased ventilation and infiltration rate. We compared the indoor air quality in a multifamily apartment....... The occupants indicated more dissatisfaction and a higher prevalence of some sick building syndrome symptoms after renovation. When residential buildings in central Europe are upgraded to more energy efficient ones, the retrofitting effort should include improved ventilation in order to ensure sufficient air...

  19. Predictors of Indoor Air Concentrations in Smoking and Non-Smoking Residences

    Directory of Open Access Journals (Sweden)

    Mireille Guay

    2010-08-01

    Full Text Available Indoor concentrations of air pollutants (benzene, toluene, formaldehyde, acetaldehyde, acrolein, nitrogen dioxide, particulate matter, elemental carbon and ozone were measured in residences in Regina, Saskatchewan, Canada. Data were collected in 106 homes in winter and 111 homes in summer of 2007, with 71 homes participating in both seasons. In addition, data for relative humidity, temperature, air exchange rates, housing characteristics and occupants’ activities during sampling were collected. Multiple linear regression analysis was used to construct season-specific models for the air pollutants. Where smoking was a major contributor to indoor concentrations, separate models were constructed for all homes and for those homes with no cigarette smoke exposure. The housing characteristics and occupants’ activities investigated in this study explained between 11% and 53% of the variability in indoor air pollutant concentrations, with ventilation, age of home and attached garage being important predictors for many pollutants.

  20. Simulations of the potential revenue from investment in improved indoor air quality in an office building

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Djukanovic, Rade

    2005-01-01

    -effective. The annual benefit due to improved air quality was up to 115 times higher than the increase in annual energy and maintenance costs. LCC analysis showed that productivity benefits resulting from a better indoor air quality were up to 60 times higher than the increased costs; the simple and discounted pay......-back time were below 2.1 years; and the annual rate of return was 4-7 times higher than the minimum rate set at 3.2%. Present data, although obtained by simulations, constitute a strong incentive for providing indoor air of a quality that is better than the minimum levels required by present standards....

  1. Measurement of Indoor Air Quality by Means of a Breathing Thermal Manikin

    DEFF Research Database (Denmark)

    Brohus, Henrik

    When a person is located in a contaminant field with significant gradients the contaminant distribution is modified locally due to the entrainment and transport of room air in the human convective boundary layer as well as due to the effect of the person acting as an obstacle to the flow field, e....... The local modification of the concentration distribution may affect the personal exposure significantly and, thus, the indoor air quality actually experienced. In this paper measurements of indoor air quality by means of a Breathing Thermal Manikin (BTM) are presented....

  2. Influence of combined dust reducing carpet and compact air filtration unit on the indoor air quality of a classroom

    NARCIS (Netherlands)

    Scheepers, P.T.J.; Hartog, J.J. de; Reijnaerts, J.; Beckmann, G.; Anzion, R.B.M.; Poels, K.; Godderis, L.

    2015-01-01

    Primary schools mostly rely on natural ventilation but also have an interest in affordable technology to improve indoor air quality (IAQ). Laboratory tests show promising results for dust reducing carpets and compact air filtration systems but there is no information available on the performance of

  3. Thermal comfort and indoor air quality in rooms with integrated personalized ventilation and under-floor air distribution systems

    DEFF Research Database (Denmark)

    Li, Ruixin; Sekhar ., S. C.; Melikov, Arsen Krikor

    2011-01-01

    A comprehensive study comprising physical measurements and human subject experiments was conducted to explore the potential for improving occupants' thermal comfort and indoor air quality (IAQ) using a personalized ventilation (PV) system combined with an under-floor air distribution(UFAD) system...

  4. Indoor Air Quality in Schools (IAQ): The Importance of Monitoring Carbon Dioxide Levels.

    Science.gov (United States)

    Sundersingh, David; Bearg, David W.

    This article highlights indoor air quality and exposure to pollutants at school. Typical air pollutants within schools include environmental tobacco smoke, formaldehyde, volatile organic compounds, nitrogen oxides, carbon monoxide, carbon dioxide, allergens, pathogens, radon, pesticides, lead, and dust. Inadequate ventilation, inefficient…

  5. Characteristics of indoor radon and its progeny in a Japanese dwelling while using air appliances.

    Science.gov (United States)

    Pornnumpa, C; Tokonami, S; Sorimachi, A; Kranrod, C

    2015-11-01

    Characteristics of radon and its progeny were investigated in different air conditions by turning four types of indoor air appliances on and off in a two-story concrete Japanese dwelling. The four appliances were air conditioner, air cleaner, gas heater and cooker hood. The measurements were done using two devices: (1) a Si-based semiconductor detector for continuous measurement of indoor radon concentration and (2) a ZnS(Ag) scintillation counting system for equilibrium-equivalent radon concentration. Throughout the entire experiment, the cooker hood was the most effective in decreasing indoor radon concentration over a long period of time and the less effective was the air conditioner, while the air cleaner and gas heater did not affect the concentration of radon. However, the results measured in each air condition will differ according to the lifestyles and activities of the inhabitants. In this study, indoor radon and its progeny in a Japanese dwelling will be characterised by the different air conditions.

  6. Recommended Carbon Dioxide and Relative Humidity Levels for Maintaining Acceptable Indoor Air Quality

    Science.gov (United States)

    1990-10-01

    Science Digest; February 1986, 46-51, 80-81. 19. Fanger , PO; Introduction of the Olf and Decipol Units to Quantify Air Pollution Per(eived by Humans...Indoors and Outdoors. Energy and Buildings; 12:1-6, 1988. 20. Fanger , P. et al; Air Pollution Sources in Assembly Halls Quantified by the 01f Unit. Energy

  7. Indoor Air Quality Assessment in a Radiantly Cooled Tropical Building: a Case Study

    Directory of Open Access Journals (Sweden)

    Qi Jie KWONG

    2015-10-01

    Full Text Available Background: Many studies have been conducted to assess the indoor air quality (IAQ of buildings throughout the world because it is closely related to comfort, safety and work productivity of occupants. However, there is still lack of available literature about IAQ in tropical buildings that apply radiant cooling systems in conditioning the indoor air.Methods: This paper reports the results obtained from an IAQ audit that was conducted in a new radiantly cooled building in Malaysia, by focusing on the IAQ and thermal comfort parameters.Results: It was identified that the measured concentration levels for the five indoor air contaminants (CO, CO2, TVOC, formaldehyde and respirable particulates were within the threshold limit values (TLVs specified in the IAQ guidelines. Besides, no significant difference was found between the contaminant levels in each floor of the studied building, and a majority of the respondents did not encounter any form of physical discomfort. There is a risk of condensation problem, judging from the measured RH level.Conclusion: An increase of airflow rate and more dehumidification work in the studied building can be made to improve IAQ and prevention of condensation problem. Nevertheless, these schemes should be implemented carefully to avoid occupants’ discomfort. Relocation of workstations was suggested, especially for the lower floors, which had higher occupancy levels. Keywords: Indoor air quality (IAQ, Radiant cooling systems, IAQ audit, Indoor air contaminants, Condensation 

  8. Outdoor-indoor air quality in Riyadh: SO2, NH3, and HCHO.

    Science.gov (United States)

    Al-Rehaili, A M

    2002-11-01

    A funded research project was conducted during the period July 1992 through November 1994. The project was designed to evaluate indoor and ambient air quality in and around buildings of different types and uses in Riyadh, the capital of Saudi Arabia. Thirty intercity buildings and two outercity (background) sites were carefully selected and monitored for air quality. Ten air pollutants, together with relevant meteorological parameters, were monitored indoor and outdoor at each site continuously and simultaneously for a period of two weeks covering summer and winter seasons. This article discusses the results obtained for sulfur dioxide (SO2), ammonia (NH3) and formaldehyde (HCHO). Results of this investigation revealed that most sites had on the average exceeded the recommended standards for SO2 and NH3 both indoor and outdoor, with indoor levels being worse than outdoor during winter time. Several sites also showed high levels of HCHO, with outdoor levels being consistently higher than indoor. Statistical and frequency analyses were performed on the collected data, showing seasonal and sector by sector variability, and outdoor-indoor correlations.

  9. THE INFLUENCE OF THE DAILY FLUCTUATIONS OF OUTSIDE AIR TEMPERATURE ON THE INDOOR CLIMATE

    Directory of Open Access Journals (Sweden)

    A. E. Zakharevich

    2016-01-01

    Full Text Available The investigation of indoor air temperature fluctuations within the occupied zone (habitable zone induced by the periodic changes of outdoor air temperature was carried out with the use of numerical simulation of heat transfer processes in the heated room. The developed and programme-implemented two-dimensional physical and mathematical model takes into account unsteady nature of the complex conjugate heat transfer in building envelopes and indoor air spaces when using different types of heating devices. The design features of building structures and windows are considered. The model includes the equations of radiative heat transfer between indoor surfaces, window panes and outdoor environment. In the study, the harmonic changes of outside temperature are specified by the cosine law with the twenty-four-hour period. Two types of heaters are examined: radiator and underfloor heating. Heating output of the devices is specified time-invariable according to the thermal balance defined by the traditional method. Simulations are performed for the three combinations of heat-transfer properties of building structures. The quantitative characteristics of the induced indoor air temperature fluctuations within the occupied zone depending on the building envelope thermal inertia and the type of used heater were found out. The analysis of results yielded the following conclusions. Reducing inertia of glazing leads to more rapid penetration of outdoor temperature wave into the room. While the amplitude of the indoor air temperature fluctuations within the occupied zone remains constant by reason of the unchanged thermal inertia of the main building structures. The significant increase in the amplitude of harmonic changes of indoor air temperature within the occupied zone is observed when reducing inertia of walls and floors whereas the delay with respect to outside air temperature fluctuations remains almost invariable.

  10. Generic aspects of the airborne spread of human pathogens indoors and emerging air decontamination technologies.

    Science.gov (United States)

    Ijaz, M Khalid; Zargar, Bahram; Wright, Kathryn E; Rubino, Joseph R; Sattar, Syed A

    2016-09-02

    Indoor air can be an important vehicle for a variety of human pathogens. This review provides examples of airborne transmission of infectious agents from experimental and field studies and discusses how airborne pathogens can contaminate other parts of the environment to give rise to secondary vehicles leading air-surface-air nexus with possible transmission to susceptible hosts. The following groups of human pathogens are covered because of their known or potential airborne spread: vegetative bacteria (staphylococci and legionellae), fungi (Aspergillus, Penicillium, and Cladosporium spp and Stachybotrys chartarum), enteric viruses (noro- and rotaviruses), respiratory viruses (influenza and coronaviruses), mycobacteria (tuberculous and nontuberculous), and bacterial spore formers (Clostridium difficile and Bacillus anthracis). An overview of methods for experimentally generating and recovering airborne human pathogens is included, along with a discussion of factors that influence microbial survival in indoor air. Available guidelines from the U.S. Environmental Protection Agency and other global regulatory bodies for the study of airborne pathogens are critically reviewed with particular reference to microbial surrogates that are recommended. Recent developments in experimental facilities to contaminate indoor air with microbial aerosols are presented, along with emerging technologies to decontaminate indoor air under field-relevant conditions. Furthermore, the role that air decontamination may play in reducing the contamination of environmental surfaces and its combined impact on interrupting the risk of pathogen spread in both domestic and institutional settings is discussed.

  11. Indoor air quality : Tools for schools action kits for Canadian schools

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    Few people realize that indoor air pollution can contribute to health effects like asthma. Several agencies, notably the United States Environmental Protection Agency (EPA), have indicated that levels of indoor pollutants can be significantly higher than those found outside. As such, poor indoor air quality (IAQ) could impact the health of students and staff, as well as the educational process and costs. Many factors can influence IAQ, including building materials, furnishings, cleaning agents, pesticides, printing and copying devices, and more. Reduction in IAQ can also result from tighter buildings and reduced ventilation. This kit was developed by Health Canada in collaboration with the Indoor Air Quality Working Group of the Federal-Provincial-Territorial Committee on Environmental and Occupational Health (CEOH) to provide school officials with the tools to prevent, identify, assess, and address most indoor air problems while minimizing cost and involvement. It was suggested that trained professionals should perform the limited and well-defined set of operations and maintenance activities described in the kit.

  12. [Indoor air and human health--sick house syndrome and multiple chemical sensitivity].

    Science.gov (United States)

    Ando, Masanori

    2002-01-01

    The number of complaints about the quality of indoor air has increased during the past two decades. These complaints have been frequent enough that the term "Sick House Syndrome or Sick Building Syndrome" and "Multiple Chemical Sensitivity" has been coined. Complaints are likely related to the increased use of synthetic organic materials in house, furnishing, and consumer products; and the buildings, furnishings, and consumer products; and the decreased ventilation for energy conservation in homes. Approximately thousand volatile chemicals have been identified in indoor air. The main sources of these chemicals are house materials, combustion fumes, cleaning compounds, and paints or stains. Exposure to high levels of these emissions and to others, coupled with the fact that most people spend more time indoors than outdoors, raises the possibility that the risk to human health from indoor air pollution may be potentially greater than the risk posed from outdoor pollutants. The complaints most frequently voiced with respect to Sick House Syndrome are irritations of the eye, nose, and throat; cough and hoarseness of voice; headache and mental fatigue. The syndrome of multiple chemical sensitivities is controversial subject with increasing impact on the field of indoor air quality. The controversy surrounding Multiple Chemical Sensitivity includes its definition, theories of etiology and pathogenesis, diagnostic, and life style. Multiple Chemical Sensitivity is considered the hypothesis that is a disease caused by exposure to many chemically distinct environmental substances at very low.

  13. Volatile organic compounds in indoor air: A review ofconcentrations measured in North America since 1990

    Energy Technology Data Exchange (ETDEWEB)

    ATHodgson@lbl.gov

    2003-04-01

    Central tendency and upper limit concentrations of volatile organic compounds (VOCs) measured in indoor air are summarized and reviewed. Data were obtained from published cross-sectional studies of residential and office buildings conducted in North America from 1990through the present. VOC concentrations in existing residences reported in 12 studies comprise the majority of the data set. Central tendency and maximum concentrations are compared between new and existing residences and between existing residences and office buildings. Historical changes in indoor VOC concentrations since the Clean Air Act Amendments of 1990 are explored by comparing the current data set with two published reviews of previous data obtained primarily in the 1980s. These historical comparisons suggest average indoor concentrations of some toxic air contaminants, such as 1,1,1-trichloroethane have decreased.

  14. Indoor tests of a hot-air solar collector

    Science.gov (United States)

    1979-01-01

    Data taken relating indoor testing using solar simulator at Marshall Space Center has been compared with data taken during outdoor tests in previous studies. Data includes tests on thermal performance, time constance, and incidence-angle modifier tests in table/graph form.

  15. JV Task 86 - Identifying the Source of Benzene in Indoor Air Using Different Compound Classes from TO-15 Data

    Energy Technology Data Exchange (ETDEWEB)

    Steven B. Hawthorne

    2007-04-15

    Volatile organic compound (VOC) data that had already been collected using EPA method TO-15 at four different sites under regulatory scrutiny (a school, strip mall, apartment complex, and business/residential neighborhood) were evaluated to determine whether the source of indoor air benzene was outdoor air or vapor intrusion from contaminated soil. Both the use of tracer organics characteristic of different sources and principal component statistical analysis demonstrated that the source of indoor air at virtually all indoor sampling locations was a result of outdoor air, and not contaminated soil in and near the indoor air-sampling locations. These results show that proposed remediation activities to remove benzene-contaminated soil are highly unlikely to reduce indoor air benzene concentrations. A manuscript describing these results is presently being prepared for submission to a peer-reviewed journal.

  16. An Analysis of the Indoor Air Quality and Mould Growth in a Multi-zone Building

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Ashfaque Ahmed, E-mail: a.chowdhury@cqu.edu.au; Rasul, M. G.; Khan, M. M. K. [Central Queensland University, College of Engineering and Built Environment, Faculty of Sciences, Engineering and Health (Australia)

    2009-12-15

    The effects of poor indoor air quality and mould growth in working environment are major problems in built environment, and there is a need to look for improvement of the health, comfort and productivity of the building occupants. Airborne mould sampling studies were conducted in a reference building located in Rockhampton, Central Queensland, Australia. Both indoor culturable and mould spore levels were observed. It was found through the indoor-outdoor ratios of the species that indoor concentrations are mostly related to the outdoor mould levels. The moulds differ in their relative humidity and temperature requirements to support surface growth. Indoor humidity has a significant effect on occupants comfort, perceived air quality, occupants' health, building durability, emissions and energy efficiency. Practical hygrothermal simulation models are employed to analyse the combined heat and moisture behaviour within the built environment. A review of the current modelling options available to predict building performance based on energy and mass transport simulation is presented, and then a case study is presented with the assessment of indoor built environment to avoid mould problem.

  17. Energy performance and indoor air quality in modern buildings in Greenland

    DEFF Research Database (Denmark)

    Kotol, Martin; Rode, Carsten; Vahala, Jan

    2015-01-01

    A new dormitory for engineering students "Apisseq" was built in Sisimiut, Greenland in 2010. Its purpose is not only to provide accommodation for students, but thanks to its complex monitoring system, it enables researchers to evaluate the building's energy performance and indoor air quality. Some......, which have negative effects on the energy performance and indoor air quality. The heat demand in 2011 was 26.5% higher than expected. One of the main causes of the extra heat demand is the fact that the ventilation system was over-dimensioned, and although it is running on the lowest fan power...

  18. Modelling the impact of room temperature on concentrations of polychlorinated biphenyls (PCBs) in indoor air

    DEFF Research Database (Denmark)

    Lyng, Nadja; Clausen, Per Axel; Lundsgaard, Claus

    2016-01-01

    Buildings contaminated with polychlorinated biphenyls (PCBs) are a health concern for the building occupants. Inhalation exposure is linked to indoor air concentrations of PCBs, which are known to be affected by indoor temperatures. In this study, a highly PCB contaminated room was heated to six....... The results showed that one easured concentration of PCB at a known steady-state temperature can be used to predict the steady-state concentrations at other temperatures under circumstances where e.g. direct sunlight does not influence temperatures and the air exchange rate is constant. The model was also...

  19. Detection and Solution of Indoor Air Quality Problems in a Danish Town Hall

    DEFF Research Database (Denmark)

    Hyldgård, Carl-Erik; Brohus, Henrik

    In connection with the research programme "Healthy Buildings", a building with indoor air quality problems was selected for further investigations. A Danish town hall was chosen because of many complaints over several years. A full-scale mock-up of a typical town hall office was built in the clim......In connection with the research programme "Healthy Buildings", a building with indoor air quality problems was selected for further investigations. A Danish town hall was chosen because of many complaints over several years. A full-scale mock-up of a typical town hall office was built...

  20. Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review

    DEFF Research Database (Denmark)

    Zhang, Yinping; Mo, Jinhan; Li, Yuguo

    2011-01-01

    Air cleaning techniques have been applied worldwide with the goal of improving indoor air quality. The effectiveness of applying these techniques varies widely, and pollutant removal efficiency is usually determined in controlled laboratory environments which may not be realized in practice. Some...... air cleaners are largely ineffective, and some produce harmful by-products. To summarize what is known regarding the effectiveness of fan-driven air cleaning technologies, a state-of-the-art review of the scientific literature was undertaken by a multidisciplinary panel of experts from Europe, North...... technologies was able to effectively remove all indoor pollutants and many were found to generate undesirable by-products during operation. (2) Particle filtration and sorption of gaseous pollutants were among the most effective air cleaning technologies, but there is insufficient information regarding long...

  1. Nitric oxide in exhaled and aspirated nasal air as an objective measure of human response to indoor air pollution

    DEFF Research Database (Denmark)

    Kolarik, Barbara; Lagercrantz, L.; Sundell, Jan

    2009-01-01

    The concentration of nitric oxide (NO) in exhaled and aspirated nasal air was used to objectively assess human response to indoor air pollutants in a climate chamber exposure experiment. The concentration of NO was measured before exposure, after 2, and 4.5 h of exposure, using a chemiluminescence...... air was observed. After exposure to the reference condition the mean NO concentration was significantly reduced compared to pre-exposure. Together these changes resulted in significant differences in exhaled NO between exposure to reference and polluted conditions. NO in nasal air was not affected...... NO analyzer. Sixteen healthy female subjects were exposed to two indoor air pollutants and to a clean reference condition for 4.5 h. Subjective assessments of the environment were obtained by questionnaires. After exposure (4.5 h) to the two polluted conditions a small increase in NO concentration in exhaled...

  2. Seasonal Variations of Indoor Microbial Exposures and Their Relation to Temperature, Relative Humidity, and Air Exchange Rate

    DEFF Research Database (Denmark)

    Frankel, Mika; Bekö, Gabriel; Timm, Michael;

    2012-01-01

    inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m3) and were lowest in winter (median, 26 CFU/m3). Indoor...... bacteria peaked in spring (median, 2,165 CFU/m3) and were lowest in summer (median, 240 CFU/m3). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass...

  3. Analysis of feature selection with Probabilistic Neural Network (PNN) to classify sources influencing indoor air quality

    Science.gov (United States)

    Saad, S. M.; Shakaff, A. Y. M.; Saad, A. R. M.; Yusof, A. M.; Andrew, A. M.; Zakaria, A.; Adom, A. H.

    2017-03-01

    There are various sources influencing indoor air quality (IAQ) which could emit dangerous gases such as carbon monoxide (CO), carbon dioxide (CO2), ozone (O3) and particulate matter. These gases are usually safe for us to breathe in if they are emitted in safe quantity but if the amount of these gases exceeded the safe level, they might be hazardous to human being especially children and people with asthmatic problem. Therefore, a smart indoor air quality monitoring system (IAQMS) is needed that able to tell the occupants about which sources that trigger the indoor air pollution. In this project, an IAQMS that able to classify sources influencing IAQ has been developed. This IAQMS applies a classification method based on Probabilistic Neural Network (PNN). It is used to classify the sources of indoor air pollution based on five conditions: ambient air, human activity, presence of chemical products, presence of food and beverage, and presence of fragrance. In order to get good and best classification accuracy, an analysis of several feature selection based on data pre-processing method is done to discriminate among the sources. The output from each data pre-processing method has been used as the input for the neural network. The result shows that PNN analysis with the data pre-processing method give good classification accuracy of 99.89% and able to classify the sources influencing IAQ high classification rate.

  4. Perfluoroalkyl acids and their precursors in indoor air sampled in children's bedrooms.

    Science.gov (United States)

    Winkens, Kerstin; Koponen, Jani; Schuster, Jasmin; Shoeib, Mahiba; Vestergren, Robin; Berger, Urs; Karvonen, Anne M; Pekkanen, Juha; Kiviranta, Hannu; Cousins, Ian T

    2017-03-01

    The contamination levels and patterns of perfluoroalkyl acids (PFAAs) and their precursors in indoor air of children's bedrooms in Finland, Northern Europe, were investigated. Our study is among the most comprehensive indoor air monitoring studies (n = 57) and to our knowledge the first one to analyse air in children's bedrooms for PFASs (17 PFAAs and 9 precursors, including two acrylates, 6:2 FTAC and 6:2 FTMAC). The most frequently detected compound was 8:2 fluorotelomer alcohol (8:2 FTOH) with the highest median concentration (3570 pg/m(3)). FTOH concentrations were generally similar to previous studies, indicating that in 2014/2015 the impact of the industrial transition had been minor on FTOH levels in indoor air. However, in contrast to earlier studies (with one exception), median concentrations of 6:2 FTOH were higher than 10:2 FTOH. The C8 PFAAs are still the most abundant acids, even though they have now been phased out by major manufacturers. The mean concentrations of FOSE/As, especially MeFOSE (89.9 pg/m(3)), were at least an order of magnitude lower compared to previous studies. Collectively the comparison of FTOHs, PFAAs and FOSE/FOSAs with previous studies indicates that indoor air levels of PFASs display a time lag to changes in production of several years. This is the first indoor air study investigating 6:2 FTMAC, which was frequently detected (58%) and displayed some of the highest maximum concentrations (13 000 pg/m(3)). There were several statistically significant correlations between particular house and room characteristics and PFAS concentrations, most interestingly higher EtFOSE air concentrations in rooms with plastic floors compared to wood or laminate.

  5. Indoor Air Pollution by Methylsiloxane in Household and Automobile Settings.

    Science.gov (United States)

    Meng, Fanyong; Wu, Hao

    2015-01-01

    This study examines characteristics of atmospheric methylsiloxane pollution in indoor settings where interior renovation/redecoration is being undertaken, in addition to ordinary family homes and inside family cars. Concentrations of atmospheric methylsiloxane in these locations were approximately one order of magnitude higher than that in outdoor areas. The average indoor concentration of methylsiloxane where renovation was being undertaken was 9.4 μg/m3, which is slightly higher than that in an ordinary family home (7.88 μg/m3), while samples from family cars showed lower concentration (3.10 μg/m3). The indoor atmospheric concentration during renovation/redecoration work was significantly positively correlated with the duration of the work. The structure of atmospheric methylsiloxane pollution is basically the same in these three venues. The concentration of annulus siloxane was much higher than that of linear compounds (85% of the total methylsiloxane concentrations). Household dust in average family homes showed total methylsiloxane concentration of 9.5 μg/m3 (average); the structure mainly consisted of linear siloxane (approximately 98% of total concentration), thereby differing from that of atmospheric methylsiloxane pollution. The comparatively high concentration of methylsiloxane in these three venues indicates that interior renovation and decoration work, and even travelling in cars, can involve exposure to more serious siloxane contamination during everyday activities.

  6. Indoor Air Pollution by Methylsiloxane in Household and Automobile Settings.

    Directory of Open Access Journals (Sweden)

    Fanyong Meng

    Full Text Available This study examines characteristics of atmospheric methylsiloxane pollution in indoor settings where interior renovation/redecoration is being undertaken, in addition to ordinary family homes and inside family cars. Concentrations of atmospheric methylsiloxane in these locations were approximately one order of magnitude higher than that in outdoor areas. The average indoor concentration of methylsiloxane where renovation was being undertaken was 9.4 μg/m3, which is slightly higher than that in an ordinary family home (7.88 μg/m3, while samples from family cars showed lower concentration (3.10 μg/m3. The indoor atmospheric concentration during renovation/redecoration work was significantly positively correlated with the duration of the work. The structure of atmospheric methylsiloxane pollution is basically the same in these three venues. The concentration of annulus siloxane was much higher than that of linear compounds (85% of the total methylsiloxane concentrations. Household dust in average family homes showed total methylsiloxane concentration of 9.5 μg/m3 (average; the structure mainly consisted of linear siloxane (approximately 98% of total concentration, thereby differing from that of atmospheric methylsiloxane pollution. The comparatively high concentration of methylsiloxane in these three venues indicates that interior renovation and decoration work, and even travelling in cars, can involve exposure to more serious siloxane contamination during everyday activities.

  7. Indoor air quality in the Swedish housing stock and its dependence on building characteristics

    DEFF Research Database (Denmark)

    Langer, Sarka; Bekö, Gabriel

    2013-01-01

    Data from a recent Swedish survey on the status of the housing stock and indoor air quality were placed in the public domain by the Swedish National Board of Housing, Building and Planning in 2011. The available parameters included the year of construction, dwelling location, type of ventilation...... system, temperature, relative humidity, air exchange rate (AER), and concentrations of nitrogen dioxide (NO2), formaldehyde and Total Volatile Organic Compounds (TVOC) from 157 single-family houses and 148 apartments. The median AER was lower in the single-family houses than in apartments (0.33h-1 vs. 0...... exchange rate was a significant predictor of the concentrations of all three indoor pollutants. While ventilation seemed to be a source of NO2, increased ventilation rate appeared to decrease the indoor concentrations of formaldehyde and TVOC. © 2013 Elsevier Ltd....

  8. Indoor air pollution caused by wood-burning in Brazilian and Danish dwellings

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo; Jensen, Ole Michael; da Cruz Tarelho, Luís António

    2013-01-01

    Residential wood-burning is considered by the scientific community as the 4th major cause of deaths in the developing countries due to the indoor air contamination and a cause of regional air pollution in the northern countries. In the first case, wood is being used by low income people that still...... rely on it for cooking purposes and in the second case is commonly used as an economical heating fuel for creating a cozy atmosphere. In both cases, wood-burning stoves cause the exposure of the building occupants to overheating and indoor pollution, in the equatorial regions in naturally ventilated...... households and in northern Europe in low energy houses. This article aims to compare the level of both indoor particles and temperature in two different types of buildings in two extremely different world regions. The field research was conducted under the same operating conditions of wood-burning stoves...

  9. Phthalate esters (PAEs) in indoor PM10/PM2.5 and human exposure to PAEs via inhalation of indoor air in Tianjin, China

    Science.gov (United States)

    Zhang, Leibo; Wang, Fumei; Ji, Yaqin; Jiao, Jiao; Zou, Dekun; Liu, Lingling; Shan, Chunyan; Bai, Zhipeng; Sun, Zengrong

    2014-03-01

    In this study, filter samples of six Phthalate esters (PAEs) in indoor PM10 and PM2.5 were collected from thirteen homes in Tianjin, China. The results showed that the concentrations of Σ6PAEs in indoor PM10 and PM2.5 were in the range of 13.878-1591.277 ng m-3 and 7.266-1244.178 ng m-3, respectively. Dibutyl phthalate (DBP) was the most abundant compounds followed by di-2-ethylhexyl phthalate (DEHP) in indoor PM10 and PM2.5. Whereas DBP and dimethyl phthalate (DMP) were the predominant compounds in indoor air (gas-phase + particle-phase), the median values were 573.467 and 368.364 ng m-3 respectively. The earlier construction time, the lesser indoor area, the old decoration, the very crowded items coated with plastic and a lower frequency of dusting may lead to a higher level of PAEs in indoor environment. The six PAEs in indoor PM10 and PM2.5 were higher in summer than those in winter. The daily intake (DI) of six PAEs for five age groups through air inhalation in indoor air in Tianjin was estimated. The results indicated that the highest exposure dose was DBP in every age group, and infants experienced the highest total DIs (median: 664.332 ng kg-bw-1 day-1) to ∑6PAEs, whereas adults experienced the lowest total DIs (median: 155.850 ng kg-bw-1 day-1) to ∑6PAEs. So, more attention should be paid on infants in the aspect of indoor inhalation exposure to PAEs.

  10. Exposure to Air Ions in Indoor Environments: Experimental Study with Healthy Adults

    Directory of Open Access Journals (Sweden)

    Peter Wallner

    2015-11-01

    Full Text Available Since the beginning of the 20th century there has been a scientific debate about the potential effects of air ions on biological tissues, wellbeing and health. Effects on the cardiovascular and respiratory system as well as on mental health have been described. In recent years, there has been a renewed interest in this topic. In an experimental indoor setting we conducted a double-blind cross-over trial to determine if higher levels of air ions, generated by a special wall paint, affect cognitive performance, wellbeing, lung function, and cardiovascular function. Twenty healthy non-smoking volunteers (10 female, 10 male participated in the study. Levels of air ions, volatile organic compounds and indoor climate factors were determined by standardized measurement procedures. Air ions affected the autonomous nervous system (in terms of an increase of sympathetic activity accompanied by a small decrease of vagal efferent activity: In the test room with higher levels of air ions (2194/cm3 vs. 1038/cm3 a significantly higher low to high frequency ratio of the electrocardiography (ECG beat-to-beat interval spectrogram was found. Furthermore, six of nine subtests of a cognitive performance test were solved better, three of them statistically significant (verbal factor, reasoning, and perceptual speed, in the room with higher ion concentration. There was no influence of air ions on lung function and on wellbeing. Our results indicate slightly activating and cognitive performance enhancing effects of a short-term exposure to higher indoor air ion concentrations.

  11. Comfort, Indoor Air Quality, and Energy Consumption in Low Energy Homes

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann, P.; Roth, K.; Tiefenbeck, V.

    2013-01-01

    This report documents the results of an in-depth evaluation of energy consumption and thermal comfort for two potential net zero-energy homes (NZEHs) in Massachusetts, as well as an indoor air quality (IAQ) evaluation performed in conjunction with Lawrence Berkeley National Laboratory (LBNL).

  12. Ventilation behaviour and indoor air problems in different types of newly built dwellings

    NARCIS (Netherlands)

    Dongen, J.E.F. van; Phaff, J.C.

    1989-01-01

    In four types of newly built single family dwellings and in apartments of a block of flats in the Netherlands, the behaviour and motivations of the occupants are studied with respect to their response to heating and ventilation, as well as their judgment on indoor air and climate variables such as t

  13. Indoor air pollution: a poverty-related cause of mortality among the children of the world.

    Science.gov (United States)

    Emmelin, Anders; Wall, Stig

    2007-11-01

    This article reviews the research on the relation between indoor air pollution exposure and acute respiratory infection (ARI) in children in developing countries. ARI is a cause of death globally, causing approximately 19% of all deaths before the age of 5 years, according to a World Health Organization estimate. Indoor air pollution from biomass fuels, which is strongly poverty related, has long been regarded as an important risk factor for ARI morbidity and mortality. The empirical base for this view is comparatively narrow, with few empirical studies in relation to the magnitude of the global public health importance of the problem. Most existing reports consistently indicate that indoor air pollution is indeed a risk factor for ARI, but studies are generally small and use indirect indicators of pollution, such as use of biomass fuel or type of stove. Exposure assessment for indoor air pollution in developing countries is recognized as a major obstacle because of high cost and infrastructural limitations to chemical pollution sampling. Use of proxy indicators without measurement support may increase the risk of both misclassification of exposure and of confounding by other poverty-related factors. The issue of sufficient sample size further underlines the need for decisions to invest in this research field. Areas where further research is needed also include exploring qualitatively options for interventions that are culturally and economically acceptable to local communities.

  14. Using nicotine measurements and parental reports to assess indoor air : The PIAMA birth cohort study

    NARCIS (Netherlands)

    Brunekreef, B; Leaderer, BP; van Strien, R; Oldenwening, M; Smit, HA; Koopman, L; Kerkhof, M

    2000-01-01

    We used two methods to collect data on indoor smoking exposure of 3-month-old infants. First, parents of approximately 100 children completed a questionnaire. We then measured nicotine in the air of the living rooms in smoking and non-smoking households with a passive sampler for a period of 2 weeks

  15. Ventilation behaviour and indoor air problems in different types of newly built dwellings

    NARCIS (Netherlands)

    Dongen, J.E.F. van; Phaff, J.C.

    1989-01-01

    In four types of newly built single family dwellings and in apartments of a block of flats in the Netherlands, the behaviour and motivations of the occupants are studied with respect to their response to heating and ventilation, as well as their judgment on indoor air and climate variables such as

  16. Seasonal variation of indoor air radon concentration in schools in Kosovo

    Energy Technology Data Exchange (ETDEWEB)

    Bahtijari, M. [Faculty of Education, University of Prishtina, Kosovo (Country Unknown); Stegnar, P. [Randon Center, Jozef Stefan Institute, P.O. Box 3000, 1001 Ljublajna (Slovenia); Shemsidini, Z. [Faculty of Education, University of Prishtina, Kosovo (Country Unknown); Ajazaj, H. [Faculty of Education, University of Prishtina, Kosovo (Country Unknown); Halimi, Y. [Faculty of Medicine, University of Prishtina, Kosovo (Country Unknown); Vaupotic, J. [Randon Center, Jozef Stefan Institute, P.O. Box 3000, 1001 Ljublajna (Slovenia); Kobal, I. [Randon Center, Jozef Stefan Institute, P.O. Box 3000, 1001 Ljublajna (Slovenia)]. E-mail: ivan.kobal@ijs.si

    2007-02-15

    Indoor air radon (Rn222) concentrations were measured in March, May, August and December in 15 rooms of five elementary and in six rooms of one high school in Sharr, Kosovo, using alpha scintillation cells. Only in one room did the value exceed 200Bqm{sup -3}. Values decreased from December to August, and from basement to first floor.

  17. The impact of a photocatalytic paint on indoor air pollutants: Sensory assessments

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Toftum, Jørn

    2012-01-01

    was illuminated by bulbs emitting visible/UV light. A mixture of common indoor pollutants, including emissions from chipboard, linoleum and carpet, as well as human bioffluents and isopropanol, were used to test the efficacy of the paint. A sensory panel of 35 subjects assessed the air quality in the test...

  18. Weatherization and Indoor Air Quality: Measured Impacts in Single Family Homes Under the Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Pigg, Scott [Energy Center of Wisconsin, Madison, WI (United States); Cautley, Dan [Energy Center of Wisconsin, Madison, WI (United States); Francisco, Paul [Univ. of Illinois, Urbana-Champaign, IL (United States); Hawkins, Beth A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brennan, Terry M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    This report summarizes findings from a national field study of indoor air quality parameters in homes treated under the Weatherization Assistance Program (WAP). The study involved testing and monitoring in 514 single-family homes (including mobile homes) located in 35 states and served by 88 local weatherization agencies.

  19. Setting an indoor air exposure limit for formaldehyde: Factors of concern

    NARCIS (Netherlands)

    Arts, J.H.E.; Muijser, H.; Kuper, C.F.; Woutersen, R.A.

    2008-01-01

    The paper aims to evaluate the indoor air limit of 1 μg/m3 (0.8 ppb) formaldehyde as advised by the European Commission [the INDEX project; Kotzias, D., Koistinen, K., Kephalopoulos, S., Schlitt, C., Carrer, P., Maroni, M., Jantunen, M., Cochet, C., Kirchner, S., Lindvall, T., McLaughlin, J.,

  20. Experiments probing the influence of air exchange rates on secondary organic aerosols derived from indoor chemistry

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Shields, H.C.

    2003-01-01

    Reactions between ozone and terpenes have been shown to increase the concentrations of submicron particles in indoor settings. The present study was designed to examine the influence of air exchange rates on the concentrations of these secondary organic aerosols as well as on the evolution...

  1. The effect of mercuric chloride treatment as biocide for herbaria on the indoor air quality

    NARCIS (Netherlands)

    Havermans, J.B.G.A.; Dekker, R.; Sportel, R.

    2015-01-01

    One of the most previous conservation treatments for plant specimen in herbarium collections was mercuric chloride (HgCl2). However, due time HgCl2 may decompose and it may cause (metallic) mercury (Hg) emission. Hg vapour in indoor air should be avoided as mercury poisoning can already occur at lev

  2. COST ANALYSIS OF ACTIVATED CARBON VERSUS PHOTOCATALYTIC OXIDATION FOR REMOVING ORGANIC COMPOUNDS FROM INDOOR AIR

    Science.gov (United States)

    A cost comparison has been conducted of 1 m3/s indoor air cleaners using granular activated carbon (GAC) vs. photocatalytic oxidation (PCO) for treating a steady-state inlet volatile organic compound (VOC) concentration of 0.3 mg/m3. The commercial GAC unit was costed assuming t...

  3. Setting an indoor air exposure limit for formaldehyde: Factors of concern

    NARCIS (Netherlands)

    Arts, J.H.E.; Muijser, H.; Kuper, C.F.; Woutersen, R.A.

    2008-01-01

    The paper aims to evaluate the indoor air limit of 1 μg/m3 (0.8 ppb) formaldehyde as advised by the European Commission [the INDEX project; Kotzias, D., Koistinen, K., Kephalopoulos, S., Schlitt, C., Carrer, P., Maroni, M., Jantunen, M., Cochet, C., Kirchner, S., Lindvall, T., McLaughlin, J., Mølhav

  4. Comparison of mold concentrations quantified by MSQPCR in indoor and outdoor air sampled simultaneously

    Energy Technology Data Exchange (ETDEWEB)

    Meklin, Teija; Reponen, Tina; McKinstry, Craig A.; Cho, Seung H.; Grinshpun, Sergey A.; Nevalainen, Aino; Vepsalainen, Asko; Haugland, Richard A.; Lemasters, Grace; Vesper, Sephen J.

    2007-08-15

    Mold specific quantitative PCR (MSQPCR) was used to measure the concentrations of 36 mold species in dust and in indoor and in outdoor air samples that were taken simultaneously in 17 homes in Cincinnati with no-known water damage. The total spore concentrations in the indoor (I) and outdoor (O) air samples were statistically significantly different and the concentrations in the three sample types of many of the individual species were significantly different (p < 0.05 based on the Wilcoxon Signed Rank Test). The I/O ratios of the averages or geometric means of the individual species were generally less than 1; but these I/O ratios were quite variable ranging from 0.03 for A. sydowii to 1.2 for Acremonium strictum. There were no significant correlations for the 36 specific mold concentrations between the dust samples and the indoor or outdoor air samples (based on the Spearman’s Rho test). The indoor and outdoor air concentrations of 32 of the species were not correlated. Only Aspergillus penicillioides, C. cladosporioides types 1 and 2 and C. herbarum had sufficient data to estimate a correlation at rho > 0.5 with signicance (p < 0.05) In six of these homes, a previous dust sample had been collected and analyzed 2 years earlier. The ERMI© values for the dust samples taken in the same home two years apart were not significantly different (p=0.22) based on Wilcoxon Signed Rank Test.

  5. Investigation of the Indoor Environment in a Passive House Apartment Building Heated by Ventilation Air

    DEFF Research Database (Denmark)

    Lysholt Hansen, MathiasYoung Bok; Koulani, Chrysanthi Sofia; Peuhkuri, Ruut Hannele

    2014-01-01

    building project finished medio 2012. The design challenge was met with a concept of air heating that is individually controlled in every room. It also applies external solar shading. This study used indoor climate measurements and dynamic simulations in one of these apartment buildings to evaluate thermal...

  6. CANDLES AND INCENSE AS POTENTIAL SOURCES OF INDOOR AIR POLLUTION: MARKET ANALYSIS AND LITERATURE SEARCH

    Science.gov (United States)

    The report summarizes available information on candles and incense as potential sources of indoor air pollution. It covers market information and a review of the scientific literature. The market information collected focuses on production and sales data, typical uses in the U.S....

  7. Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors

    NARCIS (Netherlands)

    Solanki, S.C.; Dubey, Swapnil; Tiwari, Arvind

    2009-01-01

    An indoor standard test procedure has been developed for thermal and electrical testing of PV/T collectors connected in series. For this, a PV/T solar air heater has been designed, fabricated and its performance over different operating parameters were studied. Based on the energy balance equations,

  8. [Establishing IAQ Metrics and Baseline Measures.] "Indoor Air Quality Tools for Schools" Update #20

    Science.gov (United States)

    US Environmental Protection Agency, 2009

    2009-01-01

    This issue of "Indoor Air Quality Tools for Schools" Update ("IAQ TfS" Update) contains the following items: (1) News and Events; (2) IAQ Profile: Establishing Your Baseline for Long-Term Success (Feature Article); (3) Insight into Excellence: Belleville Township High School District #201, 2009 Leadership Award Winner; and (4) Have Your Questions…

  9. Sewer Gas: An Indoor Air Source of PCE to Consider During Vapor Intrusion Investigations.

    Science.gov (United States)

    Pennell, Kelly G; Scammell, Madeleine Kangsen; McClean, Michael D; Ames, Jennifer; Weldon, Brittany; Friguglietti, Leigh; Suuberg, Eric M; Shen, Rui; Indeglia, Paul A; Heiger-Bernays, Wendy J

    2013-01-01

    The United States Environmental Protection Agency (USEPA) is finalizing its vapor intrusion guidelines. One of the important issues related to vapor intrusion is background concentrations of volatile organic chemicals (VOCs) in indoor air, typically attributed to consumer products and building materials. Background concentrations can exist even in the absence of vapor intrusion and are an important consideration when conducting site assessments. In addition, the development of accurate conceptual models that depict pathways for vapor entry into buildings is important during vapor intrusion site assessments. Sewer gas, either as a contributor to background concentrations or as part of the site conceptual model, is not routinely evaluated during vapor intrusion site assessments. The research described herein identifies an instance where vapors emanating directly from a sanitary sewer pipe within a residence were determined to be a source of tetrachloroethylene (PCE) detected in indoor air. Concentrations of PCE in the bathroom range from 2.1 to 190 ug/m(3) and exceed typical indoor air concentrations by orders of magnitude resulting in human health risk classified as an "Imminent Hazard" condition. The results suggest that infiltration of sewer gas resulted in PCE concentrations in indoor air that were nearly two-orders of magnitude higher as compared to when infiltration of sewer gas was not known to be occurring. This previously understudied pathway whereby sewers serve as sources of PCE (and potentially other VOC) vapors is highlighted. Implications for vapor intrusion investigations are also discussed.

  10. Comfort, Indoor Air Quality, and Energy Consumption in Low Energy Homes

    Energy Technology Data Exchange (ETDEWEB)

    Englemann, P. [Fraunhofer Center for Sustainable Energy Systems, Cambridge, MA (United States); Roth, K. [Fraunhofer Center for Sustainable Energy Systems, Cambridge, MA (United States); Tiefenbeck, V. [Fraunhofer Center for Sustainable Energy Systems, Cambridge, MA (United States)

    2013-01-01

    This report documents the results of an in-depth evaluation of energy consumption and thermal comfort for two potential net zero-energy homes (NZEHs) in Massachusetts, as well as an indoor air quality (IAQ) evaluation performed in conjunction with Lawrence Berkeley National Laboratory (LBNL).

  11. Emissions of indoor air pollutants from six user scenarios in a model room

    Science.gov (United States)

    Höllbacher, Eva; Ters, Thomas; Rieder-Gradinger, Cornelia; Srebotnik, Ewald

    2017-02-01

    In this study six common user scenarios putatively influencing indoor air quality were performed in a model room constructed according to the specifications of the European Reference Room given in the new horizontal prestandard prEN 16516 to gain further information about the influence of user activities on indoor air quality. These scenarios included the use of cleaning agent, an electric air freshener, an ethanol fireplace and cosmetics as well as cigarette smoking and peeling of oranges. Four common indoor air pollutants were monitored: volatile organic compounds (VOC), particulate matter (PM), carbonyl compounds and CO2. The development of all pollutants was determined during and after the test performance. For each measured pollutant, well-defined maximum values could be assigned to one or more of the individual user scenarios. The highest VOC concentration was measured during orange-peeling reaching a maximum value of 3547 μg m-3. Carbonyl compounds and PM were strongly elevated while cigarette smoking. Here, a maximum formaldehyde concentration of 76 μg m-3 and PM concentration of 378 μg m-3 were measured. CO2 was only slightly affected by most of the tests except the use of the ethanol fireplace where a maximum concentration of 1612 ppm was reached. Generally, the user scenarios resulted in a distinct increase of several indoor pollutants that usually decreased rapidly after the removal of the source.

  12. Energy performance and Indoor Air Quality in Modern Buildings in Greenland

    DEFF Research Database (Denmark)

    Kotol, Martin; Rode, Carsten

    2012-01-01

    A new dormitory for engineering students “Apisseq” was built in the town of Sisimiut, Greenland in 2010. Its purpose is not only to provide accommodation for students. Thanks to its complex monitoring system it enables researchers to evaluate the building’s energy performance and indoor air quali...

  13. Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors

    NARCIS (Netherlands)

    Solanki, S.C.; Dubey, Swapnil; Tiwari, A.

    2009-01-01

    An indoor standard test procedure has been developed for thermal and electrical testing of PV/T collectors connected in series. For this, a PV/T solar air heater has been designed, fabricated and its performance over different operating parameters were studied. Based on the energy balance equations,

  14. Indoor particles affect vascular function in the aged - An air filtration-based intervention study

    DEFF Research Database (Denmark)

    Brauner, E.V.; Forchhammer, L.; Moller, P.

    2008-01-01

    factors, P-selectin, plasma amyloid A, C-reactive protein, fibrinogen, IL-6, tumor necrosis factor-alpha, protein oxidation measured as 2-aminoadipic semialdehyde in plasma, urinary 8-iso-prostaglandin F-2 alpha, and blood pressure. Indoor air filtration significantly improved MVF by 8.1% (95% confidence...

  15. Evaluation of a Combined Ultraviolet Photocatalytic Oxidation(UVPCO)/Chemisorbent Air Cleaner for Indoor Air Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, Alfred T.; Destaillats, Hugo; Hotchi, Toshifumi; Fisk,William J.

    2007-02-01

    We previously reported that gas-phase byproducts of incomplete oxidation were generated when a prototype ultraviolet photocatalytic oxidation (UVPCO) air cleaner was operated in the laboratory with indoor-relevant mixtures of VOCs at realistic concentrations. Under these conditions, there was net production of formaldehyde and acetaldehyde, two important indoor air toxicants. Here, we further explore the issue of byproduct generation. Using the same UVPCO air cleaner, we conducted experiments to identify common VOCs that lead to the production of formaldehyde and acetaldehyde and to quantify their production rates. We sought to reduce the production of formaldehyde and acetaldehyde to acceptable levels by employing different chemisorbent scrubbers downstream of the UVPCO device. Additionally, we made preliminary measurements to estimate the capacity and expected lifetime of the chemisorbent media. For most experiments, the system was operated at 680-780 m{sup 3}/h (400-460 cfm). A set of experiments was conducted with common VOCs introduced into the UVPCO device individually and in mixture. Compound conversion efficiencies and the production of formaldehyde and acetaldehyde were determined by comparison of compound concentrations upstream and downstream of the reactor. There was general agreement between compound conversions efficiencies determined individually and in the mixture. This suggests that competition among compounds for active sites on the photocatalyst surface will not limit the performance of the UVPCO device when the total VOC concentration is low. A possible exception was the very volatile alcohols, for which there were some indications of competitive adsorption. The results also showed that formaldehyde was produced from many commonly encountered VOCs, while acetaldehyde was generated by specific VOCs, particularly ethanol. The implication is that formaldehyde concentrations are likely to increase when an effective UVPCO air cleaner is used in

  16. Indoor/Outdoor Air Quality Assessment at School near the Steel Plant in Taranto (Italy

    Directory of Open Access Journals (Sweden)

    A. Di Gilio

    2017-01-01

    Full Text Available This study aims to investigate the air quality in primary school placed in district of Taranto (south of Italy, an area of high environmental risk because of closeness between large industrial complex and urban settlement. The chemical characterization of PM2.5 was performed to identify origin of pollutants detected inside school and the comparison between indoor and outdoor levels of PAHs and metals allowed evaluating intrusion of outdoor pollutants or the existence of specific indoor sources. The results showed that the indoor and outdoor levels of PM2.5, BaP, Cd, Ni, As, and Pb never exceeded the target values issued by World Health Organization (WHO. Nevertheless, high metals and PAHs concentrations were detected especially when school were downwind to the steel plant. The I/O ratio showed the impact of outdoor pollutants, especially of industrial markers as Fe, Mn, Zn, and Pb, on indoor air quality. This result was confirmed by values of diagnostic ratio as B(aP/B(gP, IP/(IP + BgP, BaP/Chry, and BaP/(BaP + Chry, which showed range characteristics of coke and coal combustion. However, Ni and As showed I/O ratio of 2.5 and 1.4, respectively, suggesting the presence of indoor sources.

  17. Indoor air quality, ventilation and respiratory health in elderly residents living in nursing homes in Europe

    DEFF Research Database (Denmark)

    Bentayeb, Malek; Norback, Dan; Bednarek, Micha

    2015-01-01

    European countries. 600 elderly people from 50 nursing homes underwent a medical examination and completed a standardised questionnaire. Air quality and comfort parameters were objectively assessed in situ in the nursing home. Mean concentrations of air pollutants did not exceed the existing standards...... cough. Elderly subjects aged ≥80 years were at higher risk. Pollutant effects were more pronounced in the case of poor ventilation. Even at low levels, indoor air quality affected respiratory health in elderly people permanently living in nursing homes, with frailty increasing with age. The effects were......Few data exist on respiratory effects of indoor air quality and comfort parameters in the elderly. In the context of the GERIE study, we investigated for the first time the relationships of these factors to respiratory morbidity among elderly people permanently living in nursing homes in seven...

  18. Influences of the Indoor Environment on Heat, Air, and Moisture Conditions in the Component

    DEFF Research Database (Denmark)

    Steskens, Paul Wilhelmus Maria Hermanus; Rode, Carsten; Janssen, Hans

    2008-01-01

    Current models to predict heat, air and moisture (HAM) conditions in building components assume uniform boundary conditions, both for the temperature and relative humidity of the air in an indoor space as well as for the heat and moisture surface transfer coefficients. The heat and moisture surface...... transfer coefficients strongly depend on the local air velocity, local temperature, water-material interactions, water content at the material surface, and the surface texture of the material. Moreover, due to local heat and moisture sources, imperfect mixing and microclimatic effects, temperature...... and relative humidity in the adjacent air are seldom uniform. In order to obtain a reliable prediction of the HAM conditions in a building component, an accurate description of the indoor (and outdoor) boundary conditions is required. The objective of the present paper is to analyze the influence...

  19. Indoor air quality, ventilation and respiratory health in elderly residents living in nursing homes in Europe.

    Science.gov (United States)

    Bentayeb, Malek; Norback, Dan; Bednarek, Micha; Bernard, Alfred; Cai, Guihong; Cerrai, Sonia; Eleftheriou, Konstantinos Kostas; Gratziou, Christina; Holst, Gitte Juel; Lavaud, François; Nasilowski, Jacek; Sestini, Piersante; Sarno, Giuseppe; Sigsgaard, Torben; Wieslander, Gunilla; Zielinski, Jan; Viegi, Giovanni; Annesi-Maesano, Isabella

    2015-05-01

    Few data exist on respiratory effects of indoor air quality and comfort parameters in the elderly. In the context of the GERIE study, we investigated for the first time the relationships of these factors to respiratory morbidity among elderly people permanently living in nursing homes in seven European countries. 600 elderly people from 50 nursing homes underwent a medical examination and completed a standardised questionnaire. Air quality and comfort parameters were objectively assessed in situ in the nursing home. Mean concentrations of air pollutants did not exceed the existing standards. Forced expiratory volume in 1 s/forced vital capacity ratio was highly significantly related to elevated levels of particles with a 50% cut-off aerodynamic diameter of indoor air quality affected respiratory health in elderly people permanently living in nursing homes, with frailty increasing with age. The effects were modulated by ventilation. Copyright ©ERS 2015.

  20. Association of outdoor air pollution and indoor renovation with early childhood ear infection in China.

    Science.gov (United States)

    Deng, Qihong; Lu, Chan; Jiang, Wei; Zhao, Jinping; Deng, Linjing; Xiang, Yuguang

    2017-02-01

    Otitis media (OM) is a common infection in early childhood with repeated attacks that lead to long-term complications and sequelae, but its risk factors still remain unclear. To examine the risk of childhood OM for different indoor and outdoor air pollutants during different timing windows, with a purpose to identify critical windows of exposure and key components of air pollution in the development of OM. We conducted a retrospective cohort study of 1617 children aged 3-4 years in Changsha, China (2011-2012). Children's life-time prevalence of OM and exposure to indoor air pollution related to home renovation activities were surveyed by a questionnaire administered by the parents. Children's exposure to outdoor air pollution, including nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter with an aerodynamic diameter ≤ 10 μm (PM10), was estimated using the measured concentrations at municipal monitoring stations. The odds ratio (OR) and 95% confidence interval (CI) of childhood OM for prenatal and postnatal exposure to indoor and outdoor air pollution were examined by using logistic regression model. Life-time prevalence of OM in preschool children (7.3%) was associated not only with prenatal exposure to industrial air pollutant with adjusted OR (95% CI) = 1.44 (1.09-1.88) for a 27 μg/m(3) increase in SO2 but also with postnatal exposure to indoor renovations with OR (95% CI) = 1.62 (1.05-2.49) for new furniture and 1.81 (1.12-2.91) for redecoration, particularly in girls. Combined exposure to outdoor SO2 and indoor renovation significantly increased OM risk. Furthermore, we found that exposure to outdoor SO2 and indoor renovation were significantly associated with the onset but not repeated attacks of OM. Prenatal exposure to outdoor industrial air pollution and postnatal exposure to indoor renovation are independently associated with early childhood OM in China and may cause the OM onset. Copyright © 2016 Elsevier Ltd. All rights

  1. Numerical Assessment of Indoor Air Exposure Risk from Subsurface NAPL Contamination under Hydrologic Uncertainties

    Science.gov (United States)

    Unger, A.; Yu, S.

    2007-12-01

    Understanding the risk of indoor air exposure to residual contaminants in the subsurface following the redevelopment of contaminated land redevelopment project is a central issue at many brownfield sites. In this study, we examine various mechanisms controlling vapor phase intrusion into the indoor air of a typical residential dwelling from a NAPL source located below the water table, and consequently assess the indoor air exposure risk under multiple hydrologic uncertainties. For this purpose, a multi-phase multi-component numerical model, CompFlow Bio is used to simulate the evolution of a TCE source zone and dissolved plume in a variably saturated heterogeneous aquifer, along with the transport of dissolved TCE upwards through the capillary fringe with subsequent migration of TCE vapors in the vadose zone subject to barometric pressure fluctuations. The TCE vapors then enter the basement of the residential dwelling through a crack in the foundation slab, driven by a slight vacuum within the basement relative to the ambient atmosphere as well as the barometric pressure fluctuations. Hydrologic uncertainties affecting the indoor air concentration of TCE include the vacuum in the basement, the aperture of the crack in the foundation slab, the heterogeneous permeability field, the thickness of the capillary fringe, barometric fluctuations, recharge rates and the location of the TCE source zone. CompFlow Bio is then used to determine the future concentration of TCE into the basement as a consequence of imperfect knowledge in the various hydrologic parameters, and to evaluate the effectiveness of alternative remedial and foundation design options to minimize the exposure risk to the indoor air conditional upon the available data collected at the site. The outcome of this approach is two-fold. First, the owner of the site can reasonably evaluate the future indoor air exposure risk following the redevelopment of a formerly contaminated site following remediation

  2. Improvement of the indoor air quality. An integral approach; Verbetering van de luchtkwaliteit. Een integrale benadering

    Energy Technology Data Exchange (ETDEWEB)

    Bluyssen, Ph. M. [TNO Bouw en Ondergrond, Delft (Netherlands)

    2009-10-15

    There seems to be a discrepancy between current Indoor Air Quality standards and end-users wishes and demands. Indoor air quality can be approached from three points of view: (1) the human, (2) the indoor air of the space and (3) the sources contributing to indoor air pollution. Standards currently in use mainly address the indoor air of the space. Other or additional recommendations and guidelines are required to improve indoor air quality. Even though we do not fully understand the mechanisms behind the physical, chemical, physiological and psychological processes, it is still possible to identify the different ways to be taken: regulatory, political and social (awareness), technical (process and product) and scientific. Besides the fact that there is an urgent need to involve medicine and neuropsychology in research to investigate the mechanisms behind dose-response, health effects and interactions between and with the other factors and parameters of the indoor environment and the human body and mind, a holistic approach is required including the sources, the air and last but not least the human beings (occupants) themselves. This paper mainly focuses on the European situation. [Dutch] Er lijkt een discrepantie te bestaan tussen de huidige richtlijnen voor binnenluchtkwaliteit en de wensen en eisen van eindgebruikers. Binnenluchtkwaliteit kan op drie manieren worden benaderd: vanuit de mens, de binnenlucht in de ruimte en vanuit de bronnen die aan de binnenluchtverontreiniging bijdragen. Huidige richtlijnen adresseren vooral de binnenlucht in een ruimte. Andere of extra aanbevelingen en richtlijnen zijn nodig om de binnenluchtkwaliteit te verbeteren. Ondanks dat we de mechanismen achter de fysieke, chemische, fysiologische en psychologische processen niet volledig begrijpen, is het toch mogelijk, om de verschillende wegen (regelgeving, politiek-sociale (besef/bewustzijn), technisch (proces en product) en wetenschappelijk), die bewandeld kunnen worden uit te

  3. Lista de socios de Indoor airPLUS

    Science.gov (United States)

    El Programa Interior de airPLUS es una asociación entre EPA, los constructores, raters, las utilidades, y organizaciones sanitarias e interiores ambientales de mejorar aire interior en nuevas casas casas verdes.

  4. ¿Qué es Indoor airPLUS?

    Science.gov (United States)

    El Programa Interior de airPLUS es una asociación entre EPA, los constructores, raters, las utilidades, y organizaciones sanitarias e interiores ambientales de mejorar aire interior en nuevas casas casas verdes.

  5. Características de Indoor airPLUS

    Science.gov (United States)

    El Programa Interior de airPLUS es una asociación entre EPA, los constructores, raters, las utilidades, y organizaciones sanitarias e interiores ambientales de mejorar aire interior en nuevas casas casas verdes.

  6. A multidisciplinary approach to the air quality and health problems in indoor arenas

    Energy Technology Data Exchange (ETDEWEB)

    Salonen, R.O.; Pennanen, A.S.; Alm, S.; Randell, J.T.; Haelinen, A.I.; Husman, T.; Jantunen, M.J. [National Public Health Inst., Kuopio (Finland). Div. of Environmental Health; Eklund, T. [Technical Research Centre of Finland, Espoo (Finland); Lee, Kiyoung; Spengler, J.D. [Harvard School of Public Health, Boston (United States). Dept. of Environmental Health

    1995-12-31

    Most ice resurfacing machines used in indoor ice arenas have internal combustion engines. They use either propane or petrol as fuel. The main exhaust pollutants are carbon monoxide (CO), nitrogen oxides (NO{sub x}), volatile organic compounds (VOC) and fine particles. In general, propane engines emit more NO{sub x} than petrol engines, but their CO emissions are smaller. The levels of these pollutants in indoor air depend on total amount of emissions volume of arena and effectiveness of ventilation. However, due to large variations in engine emissions the air quality in any single arena cannot be estimated without direct measurements. High levels of CO and nitrogen dioxide (NO{sub 2}) have been measured in indoor ice arenas of North America since 1960`s, and it is only recently that high NO{sub 2} levels have been measured also in Sweden. In health studies, attention has been paid mostly to epidemic acute poisonings among ice hockey players and spectators caused by large concentrations of CO. However, some cases of acute NO{sub 2} poisonings have also been described. The aims of this project are: (1) to examine the air quality in Finnish indoor ice arenas, (2) to study associations between the air quality and the major technical features of the arenas, (3) to assess personal exposures of ice hockey players, spectators and maintenance personnel to CO and NO{sub 2}, (4) to investigate short-term and longer-term health effects of CO and NO{sub 2} exposures on ice hockey players and maintenance personnel, (5) to inform the managers of ice arenas and the health authorities on the current air quality problems and health risks in Finnish indoor ice arenas. (author)

  7. Measuring Infiltration Rates in Homes as a Basis for Understanding Indoor Air Quality

    Science.gov (United States)

    Jerz, G. G.; Lamb, B. K.; Pressley, S. N.; O'Keeffe, P.; Fuchs, M.; Kirk, M.

    2015-12-01

    Infiltration rates, or the rate of air exchange, of houses are important to understand because ventilation can be a dominate factor in determining indoor air quality. There are chemicals that are emitted from surfaces or point sources inside the home which are harmful to humans; these chemicals come from various objects including furniture, cleaning supplies, building materials, gas stoves, and the surrounding environment. The use of proper ventilation to cycle cleaner outdoor air into the house can be crucial for maintaining healthy living conditions in the home. At the same time, there can also be outdoor pollutants which infiltrate the house and contribute to poor indoor air quality. In either case, it is important to determine infiltration rates as a function of outdoor weather conditions, the house structure properties and indoor heating and cooling systems. In this work, the objective is to measure ventilation rates using periodic releases of a tracer gas and measuring how quickly the tracer concentration decays. CO2 will be used as the tracer gas because it is inert and harmless at low levels. An Arduino timer is connected to a release valve which controls the release of 9.00 SLPM of CO2 into the uptake vent within the test home. CO2 will be released until there is at least a 200 to 300 ppm increase above ambient indoor levels. Computers with CO2 sensors and temperature/pressure sensors attached will be used to record data from different locations within the home which will continuously record data up to a week. The results from these periodic ventilation measurements will be analyzed with respect to outdoor wind and temperature conditions and house structure properties. The data will be used to evaluate an established indoor air quality model.

  8. Indoor air quality: recommendations relevant to aircraft passenger cabins.

    Science.gov (United States)

    Hocking, M B

    1998-07-01

    To evaluate the human component of aircraft cabin air quality the effects of respiration of a resting adult on air quality in an enclosed space are estimated using standard equations. Results are illustrated for different air volumes per person, with zero air exchange, and with various air change rates. Calculated ventilation rates required to achieve a specified air quality for a wide range of conditions based on theory agree to within 2% of the requirements determined using a standard empirical formula. These calculations quantitatively confirm that the air changes per hour per person necessary for ventilation of an enclosed space vary inversely with the volume of the enclosed space. However, they also establish that the ventilation required to achieve a target carbon dioxide concentration in the air of an enclosed space with a resting adult remains the same regardless of the volume of the enclosed space. Concentration equilibria resulting from the interaction of the respiration of a resting adult with various ventilation conditions are compared with the rated air exchange rates of samples of current passenger aircraft, both with and without air recirculation capability. Aircraft cabin carbon dioxide concentrations calculated from the published ventilation ratings are found to be intermediate to these sets of results obtained by actual measurement. These findings are used to arrive at recommendations for aircraft builders and operators to help improve aircraft cabin air quality at minimum cost. Passenger responses are suggested to help improve their comfort and decrease their exposure to disease transmission, particularly on long flights.

  9. Sources and perceptions of indoor and ambient air pollution in rural Alaska.

    Science.gov (United States)

    Ware, Desirae; Lewis, Johnnye; Hopkins, Scarlett; Boyer, Bert; Noonan, Curtis; Ward, Tony

    2013-08-01

    Even though Alaska is the largest state in the United States, much of the population resides in rural and underserved areas with documented disparities in respiratory health. This is especially true in the Yukon-Kuskokwim (southwest) and Ahtna (southcentral) Regions of Alaska. In working with community members, the goal of this study was to identify the air pollution issues (both indoors and outdoors) of concern within these two regions. Over a two-year period, 328 air quality surveys were disseminated within seven communities in rural Alaska. The surveys focused on understanding the demographics, home heating practices, indoor activities, community/outdoor activities, and air quality perceptions within each community. Results from these surveys showed that there is elevated potential for PM10/PM2.5 exposures in rural Alaska communities. Top indoor air quality concerns included mold, lack of ventilation or fresh air, and dust. Top outdoor air pollution concerns identified were open burning/smoke, road dust, and vehicle exhaust (e.g., snow machines, ATVs, etc.). These data can now be used to seek additional funding for interventions, implementing long-term, sustainable solutions to the identified problems. Further research is needed to assess exposures to PM10/PM2.5 and the associated impacts on respiratory health, particularly among susceptible populations such as young children.

  10. Measurement of CO concentrations in indoor and atmospheric ambient air of Birjand (September 2012 to March 2013

    Directory of Open Access Journals (Sweden)

    Ali Naghizadeh

    2015-10-01

    Full Text Available Background and Aim: One of the notorious  air pllutants on which air quality is determined is  carbon monoxide (CO. The aim of the present study was to measure the concentration of CO outdoor and indoor urban environments and compare it with air quality standards within buildings  and open spaces. Materials and Methods: This research was a descriptive-analytical study of CO estimation in outdoor and indoor air of Birjand. Concentration of CO at the height of 150 cm and in the closest street leading to the specific building and also, inside the building (i.e.drawing room-at the hight of 75 cm was measured using a CO meter. For data analysis, statistical softwares SPSS (V:18 and Excel were used applying Mann-Whitney, Friedman, and Wilcoxon statistical tests. Results: It was found that the highest concentrations of CO in the outdoor air in Birjand were 11 and 10 ppm in December and March, respectively. And highest concentrations of CO in indoor air were 11 and 9 ppm in February, respectively. But, in general, the average concentration of CO measured in outdoor and indoor air quality in both months were less than the standard measure air pollution outside (9ppm and the quality of indoor air pollution (25ppm. Conclusion: Regarding to results of the present study, concentrations of indoor and outdoor CO of Birjand air were in standard ranges.

  11. Indoor Air Pollution and Prevention%室内污染与防护

    Institute of Scientific and Technical Information of China (English)

    周卫红

    2012-01-01

    阐述了室内装修对及生活习惯对室内空气的影响,分析了室内污染物的来源及其对人体健康的危害,提出了室内污染的防治措施。%The paper explains the effects of interior decoration and people's living habits on the indoor air, analyzes the sources of indoor pollutants and their harms to people's health and proposes some preventive measures.

  12. Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review

    Science.gov (United States)

    Zhang, Yinping; Mo, Jinhan; Li, Yuguo; Sundell, Jan; Wargocki, Pawel; Zhang, Jensen; Little, John C.; Corsi, Richard; Deng, Qihong; Leung, Michael H. K.; Fang, Lei; Chen, Wenhao; Li, Jinguang; Sun, Yuexia

    2011-08-01

    Air cleaning techniques have been applied worldwide with the goal of improving indoor air quality. The effectiveness of applying these techniques varies widely, and pollutant removal efficiency is usually determined in controlled laboratory environments which may not be realized in practice. Some air cleaners are largely ineffective, and some produce harmful by-products. To summarize what is known regarding the effectiveness of fan-driven air cleaning technologies, a state-of-the-art review of the scientific literature was undertaken by a multidisciplinary panel of experts from Europe, North America, and Asia with expertise in air cleaning, aerosol science, medicine, chemistry and ventilation. The effects on health were not examined. Over 26,000 articles were identified in major literature databases; 400 were selected as being relevant based on their titles and abstracts by the first two authors, who further reduced the number of articles to 160 based on the full texts. These articles were reviewed by the panel using predefined inclusion criteria during their first meeting. Additions were also made by the panel. Of these, 133 articles were finally selected for detailed review. Each article was assessed independently by two members of the panel and then judged by the entire panel during a consensus meeting. During this process 59 articles were deemed conclusive and their results were used for final reporting at their second meeting. The conclusions are that: (1) None of the reviewed technologies was able to effectively remove all indoor pollutants and many were found to generate undesirable by-products during operation. (2) Particle filtration and sorption of gaseous pollutants were among the most effective air cleaning technologies, but there is insufficient information regarding long-term performance and proper maintenance. (3) The existing data make it difficult to extract information such as Clean Air Delivery Rate (CADR), which represents a common benchmark for

  13. Can ornamental potted plants remove volatile organic compounds from indoor air? A review.

    Science.gov (United States)

    Dela Cruz, Majbrit; Christensen, Jan H; Thomsen, Jane Dyrhauge; Müller, Renate

    2014-12-01

    Volatile organic compounds (VOCs) are found in indoor air, and many of these can affect human health (e.g. formaldehyde and benzene are carcinogenic). Plants affect the levels of VOCs in indoor environments, thus they represent a potential green solution for improving indoor air quality that at the same time can improve human health. This article reviews scientific studies of plants' ability to remove VOCs from indoor air. The focus of the review is on pathways of VOC removal by the plants and factors affecting the efficiency and rate of VOC removal by plants. Laboratory based studies indicate that plant induced removal of VOCs is a combination of direct (e.g. absorption) and indirect (e.g. biotransformation by microorganisms) mechanisms. They also demonstrate that plants' rate of reducing the level of VOCs is influenced by a number of factors such as plant species, light intensity and VOC concentration. For instance, an increase in light intensity has in some studies been shown to lead to an increase in removal of a pollutant. Studies conducted in real-life settings such as offices and homes are few and show mixed results.

  14. Critical evaluation of approaches in setting indoor air quality guidelines and reference values.

    Science.gov (United States)

    Salthammer, Tunga

    2011-03-01

    The importance of good indoor air quality for the health of the individual was recognized as long as 150 years ago and that period also saw recommendations, which essentially related to questions of ventilation and carbon dioxide. The first evaluation standards for organic and inorganic substances were laid down in the 1970s, often on an empirical basis. It was in the mid-1980s of the 20th century that a shift occurred towards systematically evaluating the results of indoor air measurements, carrying out representative environmental surveys and deriving guideline values and reference values on the basis of toxicological, epidemiological and statistical criteria. Generally speaking the indoor environment is an area which can only be assessed with difficulty since its occupants are in most cases exposed to mixtures of substances and there can be great local and temporal variations in the substance spectrum. Data are available today for a large number of substances and this makes it possible, with the aid of statistically derived reference values and toxicologically based guideline values, to make useful recommendations regarding good indoor air quality. Nevertheless, it is still difficult to evaluate reactive compounds and reaction products. What is disadvantageous, however, is the fact that different guideline values may be published for one and the same substance, whose justification and area of application are often not transparent. A guideline or reference value can only be regarded as rational when necessary and when a strategy for its verification is available. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Indoor air quality in a restaurant kitchen using margarine for deep-frying.

    Science.gov (United States)

    Sofuoglu, Sait C; Toprak, Melis; Inal, Fikret; Cimrin, Arif H

    2015-10-01

    Indoor air quality has a great impact on human health. Cooking, in particular frying, is one of the most important sources of indoor air pollution. Indoor air CO, CO2, particulate matter (PM), and volatile organic compound (VOC) concentrations, including aldehydes, were measured in the kitchen of a small establishment where a special deep-frying margarine was used. The objective was to assess occupational exposure concentrations for cooks of such restaurants. While individual VOC and PM2.5 concentrations were measured before, during, and after frying events using active sampling, TVOC, PM10, CO, CO2, temperature, and relative humidity were continuously monitored through the whole period. VOC and aldehyde concentrations did not increase to considerable levels with deep-frying compared to the background and public indoor environment levels, whereas PM10 increased significantly (1.85 to 6.6 folds). The average PM2.5 concentration of the whole period ranged between 76 and 249 μg/m(3). Hence, considerable PM exposures could occur during deep-frying with the special margarine, which might be sufficiently high to cause health effects on cooks considering their chronic occupational exposures.

  16. Chamber bioaerosol study: outdoor air and human occupants as sources of indoor airborne microbes.

    Science.gov (United States)

    Adams, Rachel I; Bhangar, Seema; Pasut, Wilmer; Arens, Edward A; Taylor, John W; Lindow, Steven E; Nazaroff, William W; Bruns, Thomas D

    2015-01-01

    Human occupants are an important source of microbes in indoor environments. In this study, we used DNA sequencing of filter samples to assess the fungal and bacterial composition of air in an environmental chamber under different levels of occupancy, activity, and exposed or covered carpeting. In this office-like, mechanically ventilated environment, results showed a strong influence of outdoor-derived particles, with the indoor microbial composition tracking that of outdoor air for the 2-hour sampling periods. The number of occupants and their activity played a significant but smaller role influencing the composition of indoor bioaerosols. Human-associated taxa were observed but were not particularly abundant, except in the case of one fungus that appeared to be transported into the chamber on the clothing of a study participant. Overall, this study revealed a smaller signature of human body-associated taxa than had been expected based on recent studies of indoor microbiomes, suggesting that occupants may not exert a strong influence on bioaerosol microbial composition in a space that, like many offices, is well ventilated with air that is moderately filtered and moderately occupied.

  17. Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Logue, J.M.; Price, P.N.; Sherman, M.H.; Singer, B.C.

    2011-07-01

    Intake of chemical air pollutants in residences represents an important and substantial health hazard. Sealing homes to reduce air infiltration can save space conditioning energy, but can also increase indoor pollutant concentrations. Mechanical ventilation ensures a minimum amount of outdoor airflow that helps reduce concentrations of indoor emitted pollutants while requiring some energy for fan(s) and thermal conditioning of the added airflow. This work demonstrates a physics based, data driven modeling framework for comparing the costs and benefits of whole-house mechanical ventilation and applied the framework to new California homes. The results indicate that, on a population basis, the health benefits from reduced exposure to indoor pollutants in New California homes are worth the energy costs of adding mechanical ventilation as specified by ASHRAE Standard 62.2.This study determines the health burden for a subset of pollutants in indoor air and the costs and benefits of ASHRAE's mechanical ventilation standard (62.2) for new California homes. Results indicate that, on a population basis, the health benefits of new home mechanical ventilation justify the energy costs.

  18. Monitoring of Microscopic Filamentous Fungi in Indoor Air of Transplant Unit.

    Science.gov (United States)

    Holý, Ondřej; Matoušková, Ivanka; Kubátová, Alena; Hamal, Petr; Svobodová, Lucie; Jurásková, Eva; Raida, Luděk

    2015-12-01

    The aim of the study was to control the microbial contamination of indoor air monitored monthly at the Transplant Unit of the University Hospital Olomouc from August 2010 to July 2011. The unit is equipped with a three-stage air filtration system with HEPA filters. The MAS-100 air sampler (Merck, GER) was used. Twenty locations were singled out for the purposes of collecting a total of 720 samplings of the indoor air. Swabs of the HVAC diffusers at the sampling locations were always carried out after the sampling of the indoor air. In total, 480 samples of the indoor air were taken for Sabouraud chloramphenicol agar. In 11 cases (2.29%) the cultivation verified the presence of microscopic filamentous fungi. Only two cases involved the sanitary facilities of a patient isolation box; the other positive findings were from the facilities. The most frequent established genus was Aspergillus spp. (4x), followed by Trichoderma spp. (2x) and Penicillium spp. (2x), Paecilomyces spp., Eurotium spp., and Chrysonilia spp. (1x each). In 2 cases the cultivation established sterile aerial mycelium, unfortunately no further identification was possible. A total of 726 swabs of HVAC diffusers were collected (2 positive-0.28%). The study results demonstrated the efficacy of the HVAC equipment. With the continuing increase in the number of severely immunocompromised patients, hospitals are faced with the growing problem of invasive aspergillosis and other opportunistic infections. Preventive monitoring of microbial air contaminants is of major importance for the control of invasive aspergillosis. Copyright© by the National Institute of Public Health, Prague 2015.

  19. Changes in airborne fungi from the outdoors to indoor air; large HVAC systems in nonproblem buildings in two different climates.

    Science.gov (United States)

    Kemp, P C; Neumeister-Kemp, H G; Esposito, B; Lysek, G; Murray, F

    2003-01-01

    Little is known about the changes in occurrence and distribution of airborne fungi as they are transported in the airstream from the outdoor air through the heating, ventilation, and air conditioning (HVAC) system to the indoor air. To better understand this, airborne fungi were analyzed in the HVAC systems of two large office buildings in different climate zones. Fungal samples were taken in each of the walk-in chambers of the HVAC systems using a six-stage Andersen Sampler with malt extract agar. Results showed that fungal species changed with different locations in the HVAC systems. The outdoor air intake produced the greatest filtration effect for both the counts and species of outdoor air fungi. The colony forming unit (CFU) counts and species diversity was further reduced in the air directly after the filters. The cooling coils also had a substantial filtration effect. However, in room air the CFU counts were double and the mixture of fungal species was different from the air leaving the HVAC system at the supply air outlet in most locations. Diffusion of outdoor air fungi to the indoors did not explain the changes in the mixture of airborne fungi from the outdoor air to the indoor air, and some of the fungi present in the indoor air did not appear to be transported indoors by the HVAC systems.

  20. Detection of 34 plasticizers and 25 flame retardants in indoor air from houses in Sapporo, Japan.

    Science.gov (United States)

    Takeuchi, Shinji; Kojima, Hiroyuki; Saito, Ikue; Jin, Kazuo; Kobayashi, Satoshi; Tanaka-Kagawa, Toshiko; Jinno, Hideto

    2014-09-01

    Various plasticizers and flame retardants are contained in building materials and furniture produced for indoor environments. However, some of these material inclusions have been reported to cause endocrine-disrupting and mucosa-irritating effects. Because of the local climate, buildings in Sapporo are better insulated against cold weather than those in many other areas in Japan. In this study, we measured 59 compounds, including plasticizers (phthalates, adipates, and others) and flame retardants (organo-phosphates and brominated compounds), from indoor air samples from six houses in Sapporo. These compounds were measured separately in the gas phase and the particle phase using a two-stage cartridge equipped with a quartz fiber filter (1 μm mesh) and C18 solid-phase extraction disk for sampling and analyzed by GC/MS and LC/MS/MS (for the detection of brominated flame retardants). Among the 59 compounds measured in this study, 34 compounds were detected from the indoor air of the six houses. The highest concentration among the 34 compounds found in a newly built house was 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate (TXIB) at 20.8 μg/m(3). Di(2-ethyl-1-hexyl)terephthalate (DEHT), which has been used in recent years as an alternative to di(2-ethyl-1-hexyl)phthalate (DEHP), was found in all six houses, although at low concentrations ranging from 0.005 to 0.027 μg/m(3). To our knowledge, this is the first report of DEHT in indoor air in Japan. Among the compounds detected in this study, those with lower molecular weights tended to be captured in the C18 solid-phase extraction disk rather than in the quartz fiber filter. These results suggest that compounds with higher volatility exist preferentially in the gas phase, whereas compounds with lower volatility exist preferentially in the particulate phase in indoor air.

  1. Indoor air pollutants, ventilation rate determinants and potential control strategies in Chinese dwellings: A literature review.

    Science.gov (United States)

    Ye, Wei; Zhang, Xu; Gao, Jun; Cao, Guangyu; Zhou, Xiang; Su, Xing

    2017-05-15

    After nearly twenty years of rapid modernization and urbanization in China, huge achievements have transformed the daily lives of the Chinese people. However, unprecedented environmental consequences in both indoor and outdoor environments have accompanied this progress and have triggered public awareness and demands for improved living standards, especially in residential environments. Indoor pollution data measured for >7000 dwellings (approximately 1/3 were newly decorated and were tested for volatile organic compound (VOC) measurements, while the rest were tested for particles, phthalates and other semi-volatile organic compounds (SVOCs), moisture/mold, inorganic gases and radon) in China within the last ten years were reviewed, summarized and compared with indoor concentration recommendations based on sensory or health end-points. Ubiquitous pollutants that exceed the concentration recommendations, including particulate matter, formaldehyde, benzene and other VOCs, moisture/mold, inorganic gases and radon, were found, indicating a common indoor air quality (IAQ) issue in Chinese dwellings. With very little prevention, oral, inhalation and dermal exposure to those pollutants at unhealthy concentration levels is almost inevitable. CO2, VOCs, humidity and radon can serve as ventilation determinants, each with different ventilation demands and strategies, at typical occupant densities in China; and particle reduction should be a prerequisite for determining ventilation requirements. Two directional ventilation modes would have profound impacts on improving IAQ for Chinese residences are: 1) natural (or window) ventilation with an air cleaner and 2) mechanical ventilation with an air filtration unit, these two modes were reviewed and compared for their applicability and advantages and disadvantages for reducing human exposure to indoor air pollutants. In general, mode 2 can more reliably ensure good IAQ for occupants; while mode 1 is more applicable due to its low

  2. An International Project on Indoor Air Quality Design and Control in Low Energy Residential Buildings

    DEFF Research Database (Denmark)

    Rode, Carsten; Abadie, Marc; Qin, Menghao

    2016-01-01

    comfortable and healthy indoor environments. New paradigms for demand control of ventilation will be investigated, which consider the pollution loads and occupancy in buildings. As well, the thermal and moisture conditions of such advanced building shall be considered because of interactions between...... focal points to limiting energy consumption for thermally conditioning the indoor environment will be to possibly reducing the ventilation rate, or making it in a new way demand controlled. However, this must be done such that it does not have adverse effects on indoor air quality (IAQ). Annex 68...... the hygrothermal parameters, the chemical conditions, ventilation and the wellbeing of occupants. The project is divided into the five subtasks: 1. Defining the metrics. 2. Pollutant loads in residential buildings. 3. Modeling. 4. Strategies for design and control of buildings. 5. Field measurements and case...

  3. Ventilation of indoor formaldehyde and estimation of its emission and air exchange rate

    Institute of Scientific and Technical Information of China (English)

    WANG Kun; ZHAO Qing-liang; LI Wen-pu; LI Yu-hua

    2007-01-01

    Residents living in the cold areas such as Harbin generally experience a residence time of approximately 6 months in chilly winter without frequent natural ventilation. To find out the influence of a short period of ventilation on the indoor formaldehyde concentration inside a new building, an investigation was conducted for the instance of twice ventilation in a day through window opening. The results showed that the initial concentration of formaldehyde was 3.53 - 8.48 times as high as the concentration after 10 min ventilation. After closing the window, the indoor formaldehyde concentration increased with time and followed an exponential equation of C = C0exp( - b * t) + (a + Cw) [ 1 - exp( - b * t) ] with correlation coefficient (R2) of 0. 945 -0. 999, based on the statistical analysis of 14 groups of measurement data. The developed equation can be used to estimate the emission rate of indoor formaldehyde sources and the air exchange rate of the test room simultaneously.

  4. Influences of the Indoor Environment on Heat, Air, and Moisture Conditions in the Component

    DEFF Research Database (Denmark)

    Steskens, Paul Wilhelmus Maria Hermanus; Rode, Carsten; Janssen, Hans

    2008-01-01

    Current models to predict heat, air and moisture (HAM) conditions in building components assume uniform boundary conditions, both for the temperature and relative humidity of the air in an indoor space as well as for the heat and moisture surface transfer coefficients. The heat and moisture surface...... and relative humidity in the adjacent air are seldom uniform. In order to obtain a reliable prediction of the HAM conditions in a building component, an accurate description of the indoor (and outdoor) boundary conditions is required. The objective of the present paper is to analyze the influence...... of the variations of the surface transfer coefficients near the surface of a building component on the HAM conditions in the component. A parameter study has been used to investigate this influence. The research showed that the surface transfer coefficients have a relatively large influence on the redicted HAM...

  5. Assessing microbial decontamination of indoor air with particular focus on human pathogenic viruses.

    Science.gov (United States)

    Duchaine, Caroline

    2016-09-01

    Transmission of bacterial, fungal, and viral pathogens is of primary importance in public and occupational health and infection control. Although several standardized protocols have been proposed to target microbes on fomites through surface decontamination, use of microbicidal agents, and cleaning processes, only limited guidance is available on microbial decontamination of indoor air to reduce the risk of pathogen transmission between individuals. This article reviews the salient aspects of airborne transmission of infectious agents, exposure assessment, in vitro assessment of microbicidal agents, and processes for air decontamination for infection prevention and control. Laboratory-scale testing (eg, rotating chambers, wind tunnels) and promising field-scale methodologies to decontaminate indoor air are also presented. The potential of bacteriophages as potential surrogates for the study of airborne human pathogenic viruses is also discussed.

  6. Indoor Air Contaminant Adsorption By Palm Shell Activated Carbon Filter – A Proposed Study

    Directory of Open Access Journals (Sweden)

    Leman A.M

    2016-01-01

    Full Text Available Indoor air contaminant is a public issue. High Volatile Organic Compound (VOC, Carbon monoxide (CO, Carbon dioxide (CO2, and particulate matter is becoming main issue that needs to solve. Therefore, this study focus on improving indoor air quality by using activated carbon (AC for Ventilation and Air-Conditioning (VAC. It investigated because AC is widely explored but developing AC as a filter for VAC is not developed yet. The AC prepared by physical and chemical activation process and combination both of process and it was activated by H3PO4 and NaOH. Characterization and analysis process are consists of water content, ash content, bulk density, adsorption capacity, iodine number and indoor air filtering analysis. Treated activated carbon potential in achieving higher surface area of the structure to the range of 950 to 1150 m2/g for gas phase application. The higher surface area will adsorb more air pollution. Maintained properties of activated carbon such as hardness, density, pore, extractable ash, particle size (12 by 40 mesh and pH are becoming the main concern in achieving high quality of activated carbon.

  7. An indoor air filtration study in homes of elderly

    DEFF Research Database (Denmark)

    Karottki, Dorina Gabriela; Spilak, Michal; Frederiksen, Marie

    2013-01-01

    Exposure to particulate air pollution increases respiratory and cardiovascular morbidity and mortality, especially in elderly, possibly through inflammation and vascular dysfunction.......Exposure to particulate air pollution increases respiratory and cardiovascular morbidity and mortality, especially in elderly, possibly through inflammation and vascular dysfunction....

  8. An indoor air filtration study in homes of elderly

    DEFF Research Database (Denmark)

    Karottki, Dorina Gabriela; Spilak, Michal; Frederiksen, Marie

    2013-01-01

    Exposure to particulate air pollution increases respiratory and cardiovascular morbidity and mortality, especially in elderly, possibly through inflammation and vascular dysfunction.......Exposure to particulate air pollution increases respiratory and cardiovascular morbidity and mortality, especially in elderly, possibly through inflammation and vascular dysfunction....

  9. Carbon Dioxide Detection and Indoor Air Quality Control.

    Science.gov (United States)

    Bonino, Steve

    2016-04-01

    When building ventilation is reduced, energy is saved because it is not necessary to heat or cool as much outside air. Reduced ventilation can result in higher levels of carbon dioxide, which may cause building occupants to experience symptoms. Heating or cooling for ventilation air can be enhanced by a DCV system, which can save energy while providing a comfortable environment. Carbon dioxide concentrations within a building are often used to indicate whether adequate fresh air is being supplied to the building. These DCV systems use carbon dioxide sensors in each space or in the return air and adjust the ventilation based on carbon dioxide concentration; the higher the concentration, the more people occupy the space relative to the ventilation rate. With a carbon dioxide sensor DCV system, the fresh air ventilation rate varies based on the number ofpeople in the space, saving energy while maintaining a safe and comfortable environment.

  10. Concentrations of propoxur in air following repeated indoor applications.

    Science.gov (United States)

    Miller, C W; Shafik, T M

    1974-01-01

    The insecticide propoxur was applied as 2 non-overlapping bands approximately 1 m wide to the interior of houses in El Salvador once every 35 days for a period of 9 months. Air samples were collected from the interior of the houses once every seventh day during the entire period. In the study area, air temperatures remain relatively constant, while rainfall varies seasonally. It was found that volatilization of propoxur, as determined by the amounts detectable in air, represented release of the chemical from the treated surface and that the volatilization process was most influenced by the amount of moisture present in the air. Higher air concentrations of propoxur occurred during periods of high relative humidity than in periods of low relative humidity. The principles involved in this process and its bearing on the value of propoxur in malaria control programmes are discussed.

  11. An assessment of indoor air quality in recent Mexican immigrant housing in Commerce City, Colorado

    Science.gov (United States)

    Miller, Shelly L.; Scaramella, Peter; Campe, Joseph; Goss, Cynthia W.; Diaz-Castillo, Sandra; Hendrikson, Ed; DiGuiseppi, Carolyn; Litt, Jill

    An indoor air quality assessment was conducted on 100 homes of recent Mexican immigrants in Commerce City, Colorado, an urban industrial community north of Denver. Head of households were administered a family health survey, filled out an activity diary, and participated in a home inspection. Carbon monoxide (CO) and carbon dioxide (CO 2) were measured for 24 h inside the main living area and outside of the homes. Harvard Impactors were used to collect 24-h samples of PM 2.5 at the same locations for gravimetric analysis. Dust samples were collected by vacuuming carpeting and flooring at four locations within the home and analyzed by ELISA for seven allergens. Mean indoor and outdoor PM 2.5 levels were 27.2 and 8.5 μg m -3, respectively. Indoor PM 2.5 and CO 2 were elevated in homes for which the number of hours with door/window open was zero compared to homes in which the number of hours was high (>15 h). Indoor PM 2.5 levels did not correlate with outdoor levels and tended to increase with number of inhabitants, and results indicate that the source of indoor particles were occupants and their activities, excluding smoking and cooking. Mean indoor CO 2 and CO levels were 1170 and 2.4 ppm, respectively. Carbon monoxide was higher than the 24-h National Ambient Air Quality Standard in 3 of the homes. The predominant allergens were cat ( Fel d 1) and mouse ( Mus m 1) allergens, found in 20 and 34 homes, respectively.

  12. Technology Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    Energy Technology Data Exchange (ETDEWEB)

    A. Rudd and D. Bergey

    2015-08-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs.

  13. The development trend of indoor air purifier%室内空气净化器的发展趋势

    Institute of Scientific and Technical Information of China (English)

    乔鑫; 罗卫东; 刘晶茹; 杨晓涵; 黄嘉诚

    2015-01-01

    In view of current indoor air pollution problems,this paper elaborated the development process of indoor air purifier,introduced its production and sales situation,summed up the characteristics of several common indoor air purifier technology,in order to improve the air purifi-cation technology level,to improve indoor air quality.%针对现今室内空气污染的问题,阐述了室内空气净化器的发展历史,并对其产销量现状进行了介绍,归纳总结了几种常见的室内净化器技术的特点,以提高空气净化技术水平,从而改善室内空气质量。

  14. Effect of chimneys on indoor air concentrations of PM 10 and benzo[a]pyrene in Xuan Wei, China

    Science.gov (United States)

    Tian, Linwei; Lan, Qing; Yang, Dong; He, Xingzhou; Yu, Ignatius T. S.; Hammond, S. Katharine

    This paper reports the effect of chimneys in reducing indoor air pollution in a lung cancer epidemic area of rural China. Household indoor air pollution concentrations were measured during unvented burning (chimneys blocked) and vented burning (chimneys open) of bituminous coal in Xuan Wei, China. Concentrations of particulate matter with an aerodynamic diameter of 10 μm or less (PM 10) and of benzo[a]pyrene (BaP) were measured in 43 homes during normal activities. The use of chimneys led to significant decreases in indoor air concentrations of particulate matter with an aerodynamic diameter of 10 μm or less (PM 10) by 66% and of benzo[a]pyrene (BaP) by 84%. The average BaP content of PM 10 also decreased by 55% with the installation of a chimney. The reduction of indoor pollution levels by the installation of a chimney supports the epidemiology findings on the health benefits of stove improvement. However, even in the presence of a chimney, the indoor air concentrations for both PM 10 and BaP still exceeded the indoor air quality standards of China. Movement up the energy ladder to cleaner liquid or gaseous fuels is probably the only sustainable indoor air pollution control measure.

  15. Effect of chimneys on indoor air concentrations of PM10 and benzo(a)pyrene in Xuan Wei, China

    Energy Technology Data Exchange (ETDEWEB)

    Tian, L.W.; Lan, Q.; Yang, D.; He, X.Z.; Yu, I.T.S.; Hammond, S.K. [Chinese University of Hong Kong, Hong Kong (China). School for Public Health

    2009-07-15

    This paper reports the effect of chimneys in reducing indoor air pollution in a lung cancer epidemic area of rural China. Household indoor air pollution concentrations were measured during unvented burning (chimneys blocked) and vented burning (chimneys open) of bituminous coal in Xuan Wei, China. Concentrations of particulate matter with an aerodynamic diameter of 10 {mu} m or less (PM10) and of benzo(a)pyrene (BaP) were measured in 43 homes during normal activities. The use of chimneys led to significant decreases in indoor air concentrations of particulate matter with an aerodynamic diameter of 10 mu m or less (PM10) by 66% and of benzo(a)pyrene (BaP) by 84%. The average BaP content of PM10 also decreased by 55% with the installation of a chimney. The reduction of indoor pollution levels by the installation of a chimney supports the epidemiology findings on the health benefits of stove improvement. However, even in the presence of a chimney, the indoor air concentrations for both PM10 and BaP still exceeded the indoor air quality standards of China. Movement up the energy ladder to cleaner liquid or gaseous fuels is probably the only sustainable indoor air pollution control measure.

  16. VOLATILE ORGANIC COMPOUND EMISSIONS FROM LATEX PAINT-PART 2. TEST HOUSE STUDIES AND INDOOR AIR QUALITY (IAQ) MODELING

    Science.gov (United States)

    Emission models developed using small chamber data were combined with an Indoor Air Quality (IAQ) model to analyze the impact of volatile organic compound (VOC) emissions from latex paint on indoor environments. Test house experiments were conducted to verify the IAQ model's pred...

  17. In vitro exposure of human lung cells to emissions of several indoor air sources created in a climate chamber

    NARCIS (Netherlands)

    Bluyssen, P.M.; Alblas, M.J.; Tuinman, I.L.

    2013-01-01

    In the last decade, studies on indoor air pollution suggest a link between exposure to indoor particulate matter and compounds, in particular ultrafine particles and secondary organic aerosols, and several health effects. The mechanisms of how those complex mixtures relate to health effects are stil

  18. Highly efficient indoor air purification using adsorption-enhanced-photocatalysis-based microporous TiO2 at short residence time.

    Science.gov (United States)

    Lv, Jinze; Zhu, Lizhong

    2013-01-01

    A short residence time is a key design parameter for the removal of organic pollutants in catalyst-based indoor air purification systems. In this study, we synthesized a series of TiO2 with different micropore volumes and studied their removal efficiency of indoor carbonyl pollutants at a short residence time. Our results indicated that the superior adsorption capability of TiO2 with micropores improved its performance in the photocatalytic degradation of cyclohexanone, while the photocatalytic removal of the pollutant successfully kept porous TiO2 from becoming saturated. When treated with 1 mg m(-3) cyclohexanone at a relatively humidity of 18%, the adsorption amount on microporous TiO2 was 5.4-7.9 times higher than that on P25. Removal efficiency via photocatalysis followed'the same order as the adsorption amount: TiO2-5 > TiO2-20 > TiO2-60 > TiO2-180 > P25. The advantage of microporous TiO2 over P25 became more pronounced when the residence time declined from 0.072 to 0.036 s. Moreover, as the concentration of cyclohexanone deceased from 1000 ppb to 500 ppb, removal efficiency by microporous TiO2 increased more rapidly than P25.

  19. Impacts Of Passive Removal Materials On Indoor Air Quality

    DEFF Research Database (Denmark)

    Darling, Erin; Cros, Clement; Wargocki, Pawel;

    2011-01-01

    a continuous acceptability scale. Materials were either new carpet that was aired out for three weeks, clay plaster applied to gypsum wallboard that was aired out for up to one month, both materials, or neither. Perceived Air Quality (PAQ) assessed by the panel was most acceptable and concentrations...... of aldehydes were lowest when only clay plaster or both clay plaster and carpet were in the chambers without ozone. The least acceptable PAQ and the highest concentrations of aldehydes were observed when carpet and ozone were present together; addition of clay plaster for this condition improved PAQ...

  20. Increased office productivity through improved indoor air quality

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    2002-01-01

    Building Syndrome (SBS) symptoms and improve the productivity of office workers. In these experiments, the performance of simulated office work (text typing, addition and proof-reading, all typical office tasks requiring concentration) improved monotonically as the proportion of persons dissatisfied......, future developments in HVCAC technology may include "personalized air ", new ways of improving the quality of supply air (e.g., by filtration), more extensive use of heat recovery from exhaust air and systematic selection of low-polluting building and furnishing materials....

  1. Evaluation of the Indoor Air Quality Procedure for Use in Retail Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, Spencer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chan, Wanyu R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mendell, Mark J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barrios, Marcella [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Parthasarathy, Srinandini [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sidheswaran, Meera [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sullivan, Douglas P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Eliseeva, Katerina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-02-01

    California's building efficiency standards (Title 24) mandate minimum prescribed ventilation rates (VRs) for commercial buildings. Title 24 standards currently include a prescriptive procedure similar to ASHRAE’s prescriptive “ventilation rate procedure”, but does not include an alternative procedure, akin to ASHRAE’s non-prescriptive “indoor air quality procedure” (IAQP). The IAQP determines minimum VRs based on objectively and subjectively evaluated indoor air quality (IAQ). The first primary goal of this study was to determine, in a set of California retail stores, the adequacy of Title 24 VRs and observed current measured VRs in providing the level of IAQ specified through an IAQP process, The second primary goal was to evaluate whether several VRs implemented experimentally in a big box store would achieve adequate IAQ, assessed objectively and subjectively. For the first goal, a list of contaminants of concern (CoCs) and reference exposure levels (RELs) were selected for evaluating IAQ. Ventilation rates and indoor and outdoor CoC concentrations were measured in 13 stores, including one “big box” store. Mass balance models were employed to calculate indoor contaminant source strengths for CoCs in each store. Using these source strengths and typical outdoor air contaminant concentrations, mass balance models were again used to calculate for each store the “IAQP” VR that would maintain indoor CoC concentrations below selected RELs. These IAQP VRs were compared to the observed VRs and to the Title 24- prescribed VRs. For the second goal, a VR intervention study was performed in the big box store to determine how objectively assessed indoor contaminant levels and subjectively assessed IAQ varied with VR. The three intervention study VRs included an approximation of the store’s current VR [0.24 air changes per hour (ACH)], the Title 24-prescribed VR [0.69 ACH], and the calculated IAQPbased VR [1.51 ACH]). Calculations of IAQP-based VRs

  2. Child exposure to indoor and outdoor air pollutants in schools in Barcelona, Spain.

    Science.gov (United States)

    Rivas, I; Viana, M; Moreno, T; Pandolfi, M; Amato, F; Reche, C; Bouso, L; Àlvarez-Pedrerol, M; Alastuey, A; Sunyer, J; Querol, X

    2014-08-01

    Proximity to road traffic involves higher health risks because of atmospheric pollutants. In addition to outdoor air, indoor air quality contributes to overall exposure. In the framework of the BREATHE study, indoor and outdoor air pollution was assessed in 39 schools in Barcelona. The study quantifies indoor and outdoor air quality during school hours of the BREATHE schools. High levels of fine particles (PM2.5), nitrogen dioxide (NO2), equivalent black carbon (EBC), ultrafine particle (UFP) number concentration and road traffic related trace metals were detected in school playgrounds and indoor environments. PM2.5 almost doubled (factor of 1.7) the usual urban background (UB) levels reported for Barcelona owing to high school-sourced PM2.5 contributions: [1] an indoor-generated source characterised mainly by organic carbon (OC) from organic textile fibres, cooking and other organic emissions, and by calcium and strontium (chalk dust) and; [2] mineral elements from sand-filled playgrounds, detected both indoors and outdoors. The levels of mineral elements are unusually high in PM2.5 because of the breakdown of mineral particles during playground activities. Moreover, anthropogenic PM components (such as OC and arsenic) are dry/wet deposited in this mineral matter. Therefore, PM2.5 cannot be considered a good tracer of traffic emissions in schools despite being influenced by them. On the other hand, outdoor NO2, EBC, UFP, and antimony appear to be good indicators of traffic emissions. The concentrations of NO2 are 1.2 times higher at schools than UB, suggesting the proximity of some schools to road traffic. Indoor levels of these traffic-sourced pollutants are very similar to those detected outdoors, indicating easy penetration of atmospheric pollutants. Spatial variation shows higher levels of EBC, NO2, UFP and, partially, PM2.5 in schools in the centre than in the outskirts of Barcelona, highlighting the influence of traffic emissions. Mean child exposure to

  3. Natural Ventilation of Indoor Air Temperature: A Case Study of the Traditional Malay House in Penang

    Directory of Open Access Journals (Sweden)

    Ahmad S. Hassan

    2010-01-01

    Full Text Available Problem statement: It was the aim of the study to analyze the level of performance of natural air ventilation with a case study of the traditional Malay house in Penang, Malaysia. This study provided information on the architectural design in relation to natural air ventilation. It promoted passive design in contrast to most housing design which has poor natural air ventilation because the design was orientated to energy consumption that slightly more than one third of the electric energy was used for heating, ventilating and air conditioning systems. Approach: This analysis used quantitative method which measured temperature, humidity and wind speed of the traditional house. The result indicated the level of performance of cross air ventilation and stack effect. Results: The analysis showed that the traditional house has a design integrated with natural air ventilation system. The indoor house temperature and relative humidity had slightly lower than its outdoor area. However, the indoor area had lower wind speed level than the outdoor area. Conclusion: The study showed that maximum openings on the building walls created high air intakes outside the house to give poor performance of stack effect. The design had more emphasis to cross air ventilation.

  4. Quantification of ozone levels in indoor environments generated by ionization and ozonolysis air purifiers.

    Science.gov (United States)

    Britigan, Nicole; Alshawa, Ahmad; Nizkorodov, Sergey A

    2006-05-01

    Indoor air purifiers are advertised as safe household products for health-conscious individuals, especially for those suffering from allergies and asthma. However, certain air purifiers produce ozone (O3) during operation, either intentionally or as a byproduct of air ionization. This is a serious concern, because O3 is a criteria air pollutant regulated by health-related federal and state standards. Several types of air purifiers were tested for their ability to produce ozone in various indoor environments at 40-50% relative humidity, including office rooms, bathrooms, bedrooms, and cars. O3 levels generated by personal wearable air purifiers were also tested. In many cases, O3 concentrations were well in excess of public and/or industrial safety levels established by U.S. Environmental Protection Agency, California Air Resources Board, and Occupational Safety and Health Administration. Simple kinetic equations were obtained that can predict the steady-state level of O3 in a room from the O3 emission rate of the air purifier and the first-order decay rate of O3 in the room. The additivity of O3 levels generated by independent O3 generators was experimentally demonstrated.

  5. Effects of exposure to noise and indoor air pollution on human perception and symptoms

    DEFF Research Database (Denmark)

    Witterseh, Thomas; Wargocki, Pawel; Fang, Lei

    1999-01-01

    was modified by playing a recording of ventilation noise. Thirty female subjects, six at a time, occupied the office for 4.4 hours. The subjects assessed the air quality, the noise, and the indoor environment upon entering the office and on six occasions during occupation. Furthermore, SBS symptoms......The objective of the present study was to investigate human perception and SBS symptoms when people are exposed simultaneously to different levels of air pollution and ventilation noise. The air quality in an office was modified by placing or removing a carpet and the background noise level...

  6. Effects of energy-efficient ventilation rates on indoor air quality at an Ohio elementary school

    Science.gov (United States)

    Berk, J. V.; Young, R.; Hollowell, C. D.; Turiel, I.; Pepper, J.

    1980-04-01

    A mobile laboratory was used to monitor air outdoors and at three indoor sites (two classrooms and a large multipurpose room); tests were made at three different ventilation rates. The parameters measured were outside air flow rates, odor perception, microbial burden, particulate mass, total aldehydes, carbon dioxide, ozone, and nitrogen oxides. The results of these measurements are given and compared with the existing outdoor air quality standards. Carbon dioxide concentrations increased as the ventilation rate decreased, but still did not exceed current standards. Odor perceptibility increased slightly at the lowest ventilation rate. Other pollutants showed very low concentrations, which did not change with reductions in ventilation rate.

  7. Indoor Air Pollution and Health Risks among Rural Dwellers in ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    occurrence of air pollution related health problems among the rural dwellers, one questionnaire was administered to a male or ... with carbon dioxide in biomass smoke have been identified as ... approximate population size is put at 19,819.

  8. Indoor air quality at life and work environments in Rome, Italy.

    Science.gov (United States)

    Romagnoli, P; Balducci, C; Perilli, M; Vichi, F; Imperiali, A; Cecinato, A

    2016-02-01

    The air quality of three different microenvironments (school, dwelling, and coffee bar) located in the city of Rome, Italy, was assessed. Indoor and outdoor concentrations of polycyclic aromatic hydrocarbons (PAHs) associated with PM2.5 particles were determined during an intensive 3-week sampling campaign conducted in March 2013. In interiors, total particulate PAHs ranged from 1.53 to 4.96 ng/m(3) while outdoor air contained from 2.75 to 3.48 ng/m(3). In addition, gaseous toxicants, i.e., NO2, NOx , SO2, O3, and BTEX (benzene, toluene, ethyl-benzene, and xylene isomers), were determined both in internal and external air. To solve the origin of indoor and outdoor PAHs, several source apportionment methods were applied. Multivariate analysis revealed that emissions from motor vehicles, biomass burning for heating purposes, and soil resuspension were the major sources of PAHs in the city. No linear correlation was established between indoor and outdoor values for PM2.5 and BTEX; the respective indoor/outdoor concentration ratios exceed unity except for PM2.5 in the no smoking home and benzene in all school floors. This suggests that important internal sources such as tobacco smoking, cleaning products, and resuspension dust contributed to indoor pollution. Using the monitoring stations of ARPA Lazio regional network as reference, the percentage within PAH group of benzo[a]pyrene, which is the WHO marker for the carcinogenic risk estimates, was ca. 50% higher in all locations investigated.

  9. Assessment of exposure to indoor air contaminants from combustion sources: methodology and application.

    Science.gov (United States)

    Leaderer, B P; Zagraniski, R T; Berwick, M; Stolwijk, J A

    1986-08-01

    A methodology for assessing indoor air pollutant exposures is presented, with specific application to unvented combustion by-products. This paper describes the method as applied to a study of acute respiratory illness associated with the use of unvented kerosene space heaters in 333 residences in the New Haven, Connecticut, area from September 1982 to April 1983. The protocol serves as a prototype for a nested design of exposure assessment which could be applied to large-scale field studies of indoor air contaminant levels. Questionnaires, secondary records, and several methods of air monitoring offer a reliable method of estimating environmental exposures for assessing associations with health effects at a reasonable cost. Indoor to outdoor ratios of NO2 concentrations were found to be 0.58 +/- 0.31 for residences without known sources of NO2. Levels of NO2 were found to be comparable for homes with a kerosene heater only and those with a gas cooking stove only. Homes with a kerosene heater and a gas stove had average two-week NO2 levels approximately double those with only one source. Presence of tobacco smokers had a small but significant impact on indoor NO2 levels. Two-week average levels of indoor NO2 were found to be excellent predictors of total personal NO2 exposure for a small sample of adults. Residences with kerosene space heaters had SO2 levels corresponding to the number of hours of heater use and the sulfur content of the fuel. Formaldehyde levels were found to be low and not related to unvented combustion sources. NO2, SO2, and CO2 levels measured in some of the residences were found to exceed those levels specified in current national health standards.

  10. Simultaneous removal of formaldehyde and benzene in indoor air with a combination of sorption- and decomposition-type air filters.

    Science.gov (United States)

    Sekine, Yoshika; Fukuda, Mitsuru; Takao, Yosuke; Ozano, Takahiro; Sakuramoto, Hikaru; Wang, Kuan Wei

    2011-12-01

    Urgent measures for indoor air pollution caused by volatile organic compounds are required in urban areas of China. Considering indoor air concentration levels and hazardous properties, formaldehyde and benzene should be given priority for pollution control in China. The authors proposed the use of air-cleaning devices, including stand-alone room air cleaners and in-duct devices. This study aimed to find the best combination of sorption and decomposition filters for the simultaneous removal of formaldehyde and benzene, employing four types of air filter units: an activated charcoal filter (ACF), an ACF impregnated with a trapping agent for acidic gases (ACID), a MnO2 filter (MDF) for oxidative decomposition of formaldehyde at room temperature and a photocatalyst filter (PHOTO) coupled with a parallel beam ultraviolet (UV) irradiation device. The performance of the combined systems under air flow rates of 35-165 m3 h(-1) was evaluated in a test chamber (2 m3) with a constant gas generation system. The experimental results and data analysis using a kinetic approach showed the combined system of ACF, PHOTO and MDF significantly reduced both concentrations of formaldehyde and benzene in air without any unpleasant odours caused by the UV-induced photocatalytic reaction. The system was then evaluated in a full-size laboratory (22 m3). This test proved the practical performance of the system even at full scale, and also suggested that the filters should be arranged in the order of PHOTO/ACF/MDF from upstream to downstream. The proposed system has the potential of being used for improving indoor air quality of houses and buildings in China.

  11. Indoor air quality in the 21st century: search for excellence.

    Science.gov (United States)

    Fanger, P O

    2000-06-01

    Field studies demonstrate that there are substantial numbers of dissatisfied people in many buildings, among them those suffering from sick building syndrome (SBS) symptoms, even though existing standards and guidelines are met. The reason is that the requirements specified in these standards are rather low, allowing a substantial group of people to become dissatisfied and to be adversely affected. A paradigm shift from rather mediocre to excellent indoor environments is foreseen in the 21st century. Based on existing information and on new research results, five principles are suggested as elements behind a new philosophy of excellence: 1) better indoor air quality increases productivity and decreases SBS symptoms; 2) unnecessary indoor pollution sources should be avoided; 3) the air should be served cool and dry to the occupants; 4) "personalized air", i.e. a small amount of clean air, should be served gently, close to the breathing zone of each individual; and 5) individual control of the thermal environment should be provided. These principles of excellence are compatible with energy efficiency and sustainability.

  12. Symptoms and perceived indoor air quality among occupants of houses and apartments with different ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Ruotsalainen, R.; Roennberg, R.; Majanen, A.; Seppaenen, O. (Laboratory of Heating, Ventilating and Air Conditioning, Helsinki University of Technology, Espoo (Finland)); Jaakkola, J.J.K. (Laboratory of Heating, Ventilating and Air Conditioning, Helsinki University of Technology, Espoo (Finland) Department of Public Health, University of Helsinki (Finland))

    1991-01-01

    The purpose of the study was to evaluate the occurrence of symptoms and the perception of poor indoor air quality among the occupants of houses and apartments with different ventilation systems. The study population consisted of the 473 occupants of 242 dwellings in the Helsinki metropolitan area who responded to a self-administered questionnaire (response rate 93.1%) after a two-week period of indoor air quality measurements. The symptoms of interest were those often related to poor indoor air quality including dryness or itching of the skin; dryness, irritation or itching of the eyes; nasal congestion (''blocked nose''); nasal dryness; nasal discharge (''runny nose''); sneezing; cough; breathlessness; headache or migraine; and lethargy, weakness or nausea. Perception of coldness; warmness; draught; dryness; stuffiness; and sufficiency of air exchange was also requested. The age-standardized period prevalences of the symptoms and complaints were systematically more common among the occupants of the apartments than those of the houses. The occupants of the houses with natural ventilation seemed to have more symptoms and complaints than those with balanced ventilation. However, in the apartments with blanced ventilation the occupants reported, in general, more symptoms and complaints than those with natural ventilation. (au) (9 refs.).

  13. Ventilation, indoor air quality, and human health and comfort in dwellings and day-care centers

    Energy Technology Data Exchange (ETDEWEB)

    Ruotsalainen, R.

    1995-12-31

    The objective of the study was to assess the actual ventilation and indoor air quality in the Finnish building stock (dwellings and day-care centers) with special reference to the existing guideline values. Furthermore, the objective was to evaluate the occurrence of symptoms and perceptions among occupants (adult residents, children, workers) in relation to ventilation system, ventilation rate and dampness. The measurements of ventilation and indoor air quality in the dwellings and day-care centers included ventilation rate, CO{sub 2} concentration, and temperature and humidity. Self- and parent-administered questionnaires were distributed to the occupants inquiring their personal characteristics, occurrence of symptoms of interest, perceived indoor air quality and details of their home and work environments. Airflows and air change rates varied remarkably both in the dwellings and day-care centers. In the majority of the dwellings and day-care centers, the Finnish guideline values of ventilation rates were not achieved. No consistent associations were observed between the magnitude of mechanical ventilation rates and the occurrence of eye, respiratory, skin and general symptoms, that is, symptoms of sick building syndrome (SBS) among the day-care workers. The results indicate that there is much room for improvement in the ventilation and indoor air quality of Finnish dwellings and day-care centers. The control of ventilation, temperature and humidity and the prevention of water damage are important issues on which to concentrate in the future. There is need to improve the quality in all phases of construction: design, installation, adjustment, operation, and maintenance

  14. Indoor air pollution, cookstove quality, and housing characteristics in two Honduran communities.

    Science.gov (United States)

    Clark, Maggie L; Reynolds, Stephen J; Burch, James B; Conway, Stuart; Bachand, Annette M; Peel, Jennifer L

    2010-01-01

    Elevated indoor air pollution exposures associated with the burning of biomass fuels in developing countries are well established. Improved cookstoves have the potential to substantially reduce these exposures. However, few studies have quantitatively evaluated exposure reductions associated with the introduction of improved stoves, likely due to the cost and time-intensive nature of such evaluations. Several studies have demonstrated the value of estimating indoor air pollution exposures by evaluating personal cooking practices and household parameters in addition to stove type. We assessed carbon monoxide (n=54) and fine particulate matter (PM(2.5)) (n=58) levels among non-smoking Honduran women cooking with traditional or improved wood-burning cookstoves in two communities, one semi-urban and one rural. Exposure concentrations were assessed via 8-h indoor monitoring, as well as 8-h personal PM(2.5) monitoring. Housing characteristics were determined to indicate ventilation that may affect carbon monoxide and PM(2.5). Stove quality was assessed using a four-level subjective scale representing the potential for indoor emissions, ranging from poorly functioning traditional stoves to well-functioning improved stoves. Univariately, the stove scale as compared to stove type (traditional versus improved) accounted for a higher percent of the variation in pollutant concentrations; for example, the stove scale predicted 79% of the variation and the stove type predicted 54% of the variation in indoor carbon monoxide concentrations. In multivariable models, the stove scale, age of the stove, and ventilation factors predicted more than 50% of the variation in personal and indoor PM(2.5) and 85% of the variation in indoor carbon monoxide. Results indicate that using type of stove alone as a proxy for exposure may lead to exposure misclassification and potentially biased exposure and health effects relationships. Utilizing stove quality and housing characteristics that

  15. THE PRINCIPLES OF MODELING OF DYNAMICS OF IONIC COMPOSITION OF INDOOR AIR

    Directory of Open Access Journals (Sweden)

    О. Запорожець

    2011-02-01

    Full Text Available Ionic composition of indoor air is one of the most significant physical factors of influence on human health. Nowadays research in this field  are continued, and mainly it is directed to  development of equipment for normalization of ionic composition of air and equipment for control of ionic composition of air. At  the same time researches in the field of development of  mathematical apparatus for modeling time and spatial changes of concentrations of air ions are not numerous. In the article authors proposed to use continuity equation for description of dynamics of spreading of air ions indoors. It’s transformed to linear differential equation of order 1 with usage of  simplification and transformation, and for it’s solution was used Bernoulli equation. Solution of equation shows that concentration of air ions increases with approaching  to source, that was  confirmed by experiment. Also in article is proposed to use diffusion coefficient for characterizing of spreading of air ions, it allows to get linear nonhomogenous equation of order 2. In general  results of solution of such equation correlate with experimental data satisfactorily

  16. An Evaluation of Antifungal Agents for the Treatment of Fungal Contamination in Indoor Air Environments

    Directory of Open Access Journals (Sweden)

    Senthaamarai Rogawansamy

    2015-06-01

    Full Text Available Fungal contamination in indoor environments has been associated with adverse health effects for the inhabitants. Remediation of fungal contamination requires removal of the fungi present and modifying the indoor environment to become less favourable to growth.  This may include treatment of indoor environments with an antifungal agent to prevent future growth. However there are limited published data or advice on chemical agents suitable for indoor fungal remediation. The aim of this study was to assess the relative efficacies of five commercially available cleaning agents with published or anecdotal use for indoor fungal remediation. The five agents included two common multi-purpose industrial disinfectants (Cavicide® and Virkon®, 70% ethanol, vinegar (4.0%-4.2% acetic acid, and a plant-derived compound (tea tree (Melaleuca alternifolia oil tested in both a liquid and vapour form. Tea tree oil has recently generated interest for its antimicrobial efficacy in clinical settings, but has not been widely employed for fungal remediation. Each antifungal agent was assessed for fungal growth inhibition using a disc diffusion method against a representative species from two common fungal genera, (Aspergillus fumigatus and Penicillium chrysogenum, which were isolated from air samples and are commonly found in indoor air. Tea tree oil demonstrated the greatest inhibitory effect on the growth of both fungi, applied in either a liquid or vapour form. Cavicide® and Virkon® demonstrated similar, although less, growth inhibition of both genera. Vinegar (4.0%–4.2% acetic acid was found to only inhibit the growth of P. chrysogenum, while 70% ethanol was found to have no inhibitory effect on the growth of either fungi. There was a notable inhibition in sporulation, distinct from growth inhibition after exposure to tea tree oil, Virkon®, Cavicide® and vinegar. Results demonstrate that common cleaning and antifungal agents differ in their capacity to

  17. Effects of indoor air pollution on respiratory symptoms of non-smoking women in Niš, Serbia

    Directory of Open Access Journals (Sweden)

    Stanković Aleksandra

    2011-12-01

    Full Text Available Abstract Rationale The aim of this study was to determine the effects of indoor air pollution exposure on respiratory symptoms and illnesses in non-smoking women in Niš, Serbia. Materials and methods The study was carried out in 1,082 never-smoking females, aged 20-40 years, who were not occupationally exposed to indoor air pollution. The prevalence of respiratory symptoms and illnesses was assessed using the American Thoracic Society questionnaires. Multivariate methods were used in the analysis. Results A strong association was found between respiratory symptoms and indoor air pollution. The associations between home dampness and sinusitis and bronchitis were also found to be statistically significant. Conclusions Indoor air pollution exposure is an important risk factor for respiratory symptoms and illnesses in non-smoking women in Niš, Serbia.

  18. A Simple Introduction of Indoor Air Purification%浅谈净化室内空气的方法

    Institute of Scientific and Technical Information of China (English)

    何花

    2014-01-01

    Indoor environment pollution has become a under-recognized influence to everybody’ s health nowa-days;This article introduces the harm of Indoor air pollutants to human being, the advantages and disadvantages of several method of indoor air purifications, Finally several suggestions were given in choosing air purification equip-ment according to different kinds of indoor air pollutants.%目前室内环境污染已成为影响人们健康的“隐形”杀手。本文介绍了室内空气污染物对人体的危害,对多种空气净化技术的优缺点进行了阐述,并对室内不同的污染物选择与之相应的空气净化设备给出了建议。

  19. Particulate matter in the indoor air of classrooms—exploratory results from Munich and surrounding area

    Science.gov (United States)

    Fromme, H.; Twardella, D.; Dietrich, S.; Heitmann, D.; Schierl, R.; Liebl, B.; Rüden, H.

    Numerous epidemiological studies have demonstrated the association between particle mass (PM) concentration in outside air and the occurrence of health related problems and/or diseases. However, much less is known about indoor PM concentrations and associated health risks. In particular, data are needed on air quality in schools, since children are assumed to be more vulnerable to health hazards and spend a large part of their time in classrooms. On this background, we evaluated indoor air quality in 64 schools in the city of Munich and a neighbouring district outside the city boundary. In winter 2004-2005 in 92 classrooms, and in summer 2005 in 75 classrooms, data on indoor air climate parameters (temperature, relative humidity), carbon dioxide (CO 2) and various dust particle fractions (PM 10, PM 2.5) were collected; for the latter both gravimetrical and continuous measurements by laser aerosol spectrometer (LAS) were implemented. In the summer period, the particle number concentration (PNC), was determined using a scanning mobility particle sizer (SMPS). Additionally, data on room and building characteristics were collected by use of a standardized form. Only data collected during teaching hours were considered in analysis. For continuously measured parameters the daily median was used to describe the exposure level in a classroom. The median indoor CO 2 concentration in a classroom was 1603 ppm in winter and 405 ppm in summer. With LAS in winter, median PM concentrations of 19.8 μg m -3 (PM 2.5) and 91.5 μg m -3 (PM 10) were observed, in summer PM concentrations were significantly reduced (median PM 2.5=12.7 μg m -3, median PM 10=64.9 μg m -3). PM 2.5 concentrations determined by the gravimetric method were in general higher (median in winter: 36.7 μg m -3, median in summer: 20.2 μg m -3) but correlated strongly with the LAS-measured results. In explorative analysis, we identified a significant increase of LAS-measured PM 2.5 by 1.7 μg m -3 per increase

  20. Indoor air treatment by coupling biofiltration and adsortion

    OpenAIRE

    Luengas Muñoz, Angela Tatiana

    2015-01-01

    225 p. La calidad del aire interior juega un papel importante en la salud de las personas y su bienestar puesto que la población pasa una parte importante de su vida dentro de lugares cerrados. Los Compuestos Orgánicos Volátiles (COVs) representan un grupo prioritario dentro de la lista de contaminantes de aires interiores. Si bien la concentración individual de cada uno de los contaminantes es generalmente baja, cientos de ellos pueden encontrarse simultáneamente, lo que ha llevado a que ...

  1. Efficiency of deodorant materials for ammonia reduction in indoor air

    DEFF Research Database (Denmark)

    Bivolarova, Mariya Petrova; Mizutani, Chiyomi; Melikov, Arsen Krikor;

    2014-01-01

    A comparative study about the removability of ammonia gas in the air by activated carbon fiber (ACF) felt chemically treated with acid and a cotton fabric processed with iron phthalocyanine with copper (Cu) was performed in small-scale experiments. The test rig consisted of a heated plate and its...... proved activated carbon fiber felt with acid to be highly efficient in removing ammonia gas. Air temperature did not have profound effect on ACF performance. However, efficiency of the carbon fiber felt decreased when relative humidity was raised from 20 to 80%....

  2. Analysis of indoor air quality data from East Tennessee field studies

    Energy Technology Data Exchange (ETDEWEB)

    Dudney, C.S.; Hawthorne, A.R.

    1985-08-01

    This report presents the results of follow-up experimental activities and data analyses of an indoor air quality study conducted in 40 East Tennessee homes during 1982-1983. Included are: (1) additional experimental data on radon levels in all homes, repeat measurements in house No. 7 with elevated formaldehyde levels, and energy audit information on the participants' homes; (2) further data analyses, especially of the large formaldehyde data base, to ascertain relationships of pollutant levels vs environmental factors and house characteristics; (3) indoor air quality data base considerations and development of the study data base for distribution on magnetic media for both mainframe and desktop computer use; and (4) identification of design and data collection considerations for future field studies. A bibliography of additional publications related to this effort is also presented.

  3. [Rural women's use of indoor air pollutants in Alexandria Governorate: relationship with sociodemographic characteristics and illness].

    Science.gov (United States)

    El Asaal, Amal El Sayed

    2008-01-01

    This study determined the relationship between women's use of indoor air pollutants and sociodemographic variables and illness. Data were collected by observation and interview of 240 rural women in Alexandria Governorate. The use of chemical and microbial indoor air pollutants was high in 87.5% and 67.5% of the women respectively. Also, 27.5% of the women had chronic headache, 25.5% respiratory diseases and 16.3% eye diseases. There was a significant positive relationship between women's level of use and number of sons, type of family and number of family members; there was a significant negative relationship with women's education and their son's education. There were significant positive relationships between illness and overuse of insecticides, garbage burning in front of the house and having an unclean house.

  4. Sources of Indoor Air Pollution and Respiratory Health in Preschool Children

    Directory of Open Access Journals (Sweden)

    Virginia Fuentes-Leonarte

    2009-01-01

    Full Text Available We carried out bibliographic searches in PubMed and Embase.com for the period from 1996 to 2008 with the aim of reviewing the scientific literature on the relationship between various sources of indoor air pollution and the respiratory health of children under the age of five. Those studies that included adjusted correlation measurements for the most important confounding variables and which had an adequate population size were considered to be more relevant. The results concerning the relationship between gas energy sources and children's respiratory health were heterogeneous. Indoor air pollution from biomass combustion in the poorest countries was found to be an important risk factor for lower respiratory tract infections. Solvents involved in redecorating, DYI work, painting, and so forth, were found to be related to an increased risk for general respiratory problems. The distribution of papers depending on the pollution source showed a clear relationship with life-style and the level of development.

  5. Effects by inhalation of abundant fragrances in indoor air - An overview.

    Science.gov (United States)

    Wolkoff, Peder; Nielsen, Gunnar D

    2017-04-01

    Odorous compounds (odors) like fragrances may cause adverse health effects. To assess their importance by inhalation, we have reviewed how the four major abundant and common airborne fragrances (α-pinene (APN), limonene (LIM), linalool (LIL), and eugenol (EUG)) impact the perceived indoor air quality as odor annoyance, sensory irritation and sensitization in the airways. Breathing and cardiovascular effects, and work performance, and the impact in the airways of ozone-initiated gas- and particle phase reactions products have also been assessed. Measured maximum indoor concentrations for APN, LIM and LIL are close to or above their odor thresholds, but far below their thresholds for sensory irritation in the eyes and upper airways; no information could be traced for EUG. Likewise, reported risk values for long-term effects are far above reported indoor concentrations. Human exposure studies with mixtures of APN and LIM and supported by animal inhalation models do not support sensitization of the airways at indoor levels by inhalation that include other selected fragrances. Human exposure studies, in general, indicate that reported lung function effects are likely due to the perception rather than toxic effects of the fragrances. In general, effects on the breathing rate and mood by exposure to the fragrances are inconclusive. The fragrances may increase the high-frequency heart rate variability, but aerosol exposure during cleaning activities may result in a reduction. Distractive effects influencing the work performance by fragrance/odor exposure are consistently reported, but their persistence over time is unknown. Mice inhalation studies indicate that LIM or its reaction mixture may possess anti-inflammatory properties. There is insufficient information that ozone-initiated reactions with APN or LIM at typical indoor levels cause airway effects in humans. Limited experimental information is available on long-term effects of ozone-initiated reaction products of

  6. Classifying Sources Influencing Indoor Air Quality (IAQ) Using Artificial Neural Network (ANN)

    OpenAIRE

    2015-01-01

    Monitoring indoor air quality (IAQ) is deemed important nowadays. A sophisticated IAQ monitoring system which could classify the source influencing the IAQ is definitely going to be very helpful to the users. Therefore, in this paper, an IAQ monitoring system has been proposed with a newly added feature which enables the system to identify the sources influencing the level of IAQ. In order to achieve this, the data collected has been trained with artificial neural network or ANN—a proven meth...

  7. Study on Model of Indoor Air Pollution Forecast for Decoration Under Natural Ventilation Condition

    Institute of Scientific and Technical Information of China (English)

    YAN-FENG HONG; XUN CHEN; NING XU

    2005-01-01

    Objective To establish the model of indoor air pollution forecast for decoration. Methods The model was based on the balance model for diffusing mass. Results The data between testing concentration and estimating concentration were compared. The maximal error was less than 30% and average error was 14.6%. Conclusion The model can easily predict whether the pollution for decoration exceeds the standard and how long the room is decorated.

  8. Resolving the ambiguities: An industrial hygiene Indoor Air Quality (IAQ) symposium

    Energy Technology Data Exchange (ETDEWEB)

    Gammage, R.B.

    1995-01-01

    Resolving the Ambiguities: An Industrial Hygiene (IAQ) Symposium was a one-day event designed to inform practicing industrial hygienists about highlight presentations made at Indoor Air `93. A broad range of topics was presented by invited speakers. Topics included were attempts to deal with guidelines and standards, questionnaires, odors and sensory irritation, respiratory allergies, neuroses, sick building syndrome (SBS), and multiple chemical sensitivity (MCS).

  9. Socio-Economic Consequences of Improved Indoor Air Quality in Danish Primary Schools

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Foldbjerg, Peter; Eriksen, Kurt Emil;

    2014-01-01

    This paper reports an attempt to estimate the socio-economic effects of upgrading the indoor air quality in Danish schools to the level of Swedish schools. The OECD “PISA” score is used to quantify the effects together with the Danish Rational Economic Agent Model (DREAM). The following effects a...... in the Gross Domestic Product (GDP) of €173 million per annum, and in the public finances of €37 million per annum...

  10. Microbiological assessment of indoor air of a teaching hospital in Nigeria

    Institute of Scientific and Technical Information of China (English)

    Awosika SA; Olajubu FA; Amusa NA

    2012-01-01

    Objective:To investigate the quality of indoor air of different wards and units of Olabisi Onabanjo University Teaching Hospital, Sagamu, to ascertain their contribution to infection rate in the hospital. Methods: The microbial quality of indoor air of nine wards/units of Olabisi Onabanjo University Teaching Hospital, Sagamu, Nigeria was conducted. Sedimentation technique using open Petri-dishes containing different culture media was employed and samplings were done twice daily, one in the morning shortly after cleaning and before influx of people/patients into the wards/units and the other in the evening when a lot of activities would have taken place in these wards. Isolates were identified according to standard methods. Results: Results showed that there was a statistically significant difference (χ²=6.016 7) in the bacteria population of the different sampling time whereas it was not so for fungi population (χ²= 0.285 7). Male medical ward (MMW) and male surgical general (MSG) recorded the highest bacterial and fungal growth while the operating theatre (OT) was almost free of microbial burden. The bacteria isolates were Staphylococcus aureus, Klebsiella sp., Bacillus cereus, Bacillus subtilis, Streptococcus pyogenes and Serratia marscences while the fungi isolates included Aspergillus flavus, Penicillium sp., Fusarium sp., Candida albicans and Alternaria sp. Staphylococcus aureus was the predominantly isolated bacterium while Penicillium sp. was the most isolated fungus. Conclusions: Though most of the microbial isolates were potential and or opportunistic pathogens, there was no correlation between the isolates in this study and the surveillance report of nosocomial infection during the period of study, hence the contribution of the indoor air cannot be established. From the reduction noticed in the morning samples, stringent measures such as proper disinfection and regular cleaning, restriction of patient relatives’ movement in and out of the wards

  11. Indoor Air Quality in 24 California Residences Designed as High-Performance Homes

    Energy Technology Data Exchange (ETDEWEB)

    Less, Brennan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mullen, Nasim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-07-01

    Today’s high performance green homes are reaching previously unheard of levels of airtightness and are using new materials, technologies and strategies, whose impacts on Indoor Air Quality (IAQ) cannot be fully anticipated from prior studies. This research study used pollutant measurements, home inspections, diagnostic testing and occupant surveys to assess IAQ in 24 new or deeply retrofitted homes designed to be high performance green buildings in California.

  12. An Assessment of Indoor Air Quality before, during and after Unrestricted Use of E-Cigarettes in a Small Room

    OpenAIRE

    Grant O'Connell; Stéphane Colard; Xavier Cahours; Pritchard, John D.

    2015-01-01

    Airborne chemicals in the indoor environment arise from a wide variety of sources such as burning fuels and cooking, construction materials and furniture, environmental tobacco smoke as well as outdoor sources. To understand the contribution of exhaled e-cigarette aerosol to the pre-existing chemicals in the ambient air, an indoor air quality study was conducted to measure volatile organic compounds (including nicotine and low molecular weight carbonyls), polycyclic aromatic hydrocarbons, tob...

  13. Electronic Cigarettes and Indoor Air Quality: A Simple Approach to Modeling Potential Bystander Exposures to Nicotine

    Directory of Open Access Journals (Sweden)

    Stéphane Colard

    2014-12-01

    Full Text Available There has been rapid growth in the use of electronic cigarettes (“vaping” in Europe, North America and elsewhere. With such increased prevalence, there is currently a debate on whether the aerosol exhaled following the use of e-cigarettes has implications for the quality of air breathed by bystanders. Conducting chemical analysis of the indoor environment can be costly and resource intensive, limiting the number of studies which can be conducted. However, this can be modelled reasonably accurately based on empirical emissions data and using some basic assumptions. Here, we present a simplified model, based on physical principles, which considers aerosol propagation, dilution and extraction to determine the potential contribution of a single puff from an e-cigarette to indoor air. From this, it was then possible to simulate the cumulative effect of vaping over time. The model was applied to a virtual, but plausible, scenario considering an e-cigarette user and a non-user working in the same office space. The model was also used to reproduce published experimental studies and showed good agreement with the published values of indoor air nicotine concentration. With some additional refinements, such an approach may be a cost-effective and rapid way of assessing the potential exposure of bystanders to exhaled e-cigarette aerosol constituents.

  14. Occupational asthma caused by chloramines in indoor swimming-pool air.

    Science.gov (United States)

    Thickett, K M; McCoach, J S; Gerber, J M; Sadhra, S; Burge, P S

    2002-05-01

    The first series of three workers who developed occupational asthma following exposure to airborne chloramines in indoor chlorinated swimming pools is reported. Health problems of swimmers in indoor pools have traditionally been attributed to the chlorine in the water. Chlorine reacts with bodily proteins to form chloramines; the most volatile and prevalent in the air above swimming pools is nitrogen trichloride. Two lifeguards and one swimming teacher with symptoms suggestive of occupational asthma kept 2-hourly measurements of peak expiratory flow at home and at work, analysed using the occupational asthma system (OASYS) plotter, and/or had specific bronchial challenge testing to nitrogen trichloride, or a workplace challenge. Air measurement in one of the pools showed the nitrogen trichloride levels to be 0.1-0.57 mg x m(-3), which was similar to other studies. Two workers had peak expiratory flow measurements showing occupational asthma (OASYS-2 scores 2.88 and 3.8), both had a positive specific challenge to nitrogen trichloride at 0.5 mg x m(-3) with negative challenges to chlorine released from sodium hypochlorite. The third worker had a positive workplace challenge. Swimming-pool asthma due to airborne nitrogen trichloride can occur in workers who do not enter the water because of this chloramine. The air above indoor swimming pools therefore needs to be assessed and managed as carefully as the water.

  15. Abatement and degradation pathways of toluene in indoor air by positive corona discharge.

    Science.gov (United States)

    Van Durme, J; Dewulf, J; Sysmans, W; Leys, C; Van Langenhove, H

    2007-08-01

    Indoor air concentrations of volatile organic compounds often exceed outdoor levels by a factor of 5. There is much interest in developing new technologies in order to improve indoor air quality. In this work non-thermal plasma (DC positive corona discharge) is explored as an innovative technology for indoor air purification. An inlet gas stream of 10 l min(-1) containing 0.50+/-0.02 ppm toluene was treated by the plasma reactor in atmospheric conditions. Toluene removal proved to be achievable with a characteristic energy density epsilon(0) of 50 J l(-1). Removal efficiencies were higher for 26% relative humidity (epsilon(0)=35 J l(-1)), compared with those at increased humidities (50% relative humidity, epsilon(0)=49 J l(-1)). Reaction products such as formic acid, benzaldehyde, benzyl alcohol, 3-methyl-4-nitrophenol, 4-methyl-2-nitrophenol, 4-methyl-2-propyl furan, 5-methyl-2-nitrophenol, 4-nitrophenol, 2-methyl-4,6-dinitrophenol are identified by means of mass spectrometry. Based on these by-products a toluene degradation mechanism is proposed.

  16. Simulating an exclusion zone for vapour intrusion of TCE from groundwater into indoor air.

    Science.gov (United States)

    Wang, Xiaomin; Unger, Andre J A; Parker, Beth L

    2012-10-01

    This paper is an extension of the work by Yu et al. (2009) to examine exposure pathways of volatile organic compounds (VOCs) originating from a NAPL source zone located below the water table, and their potential impact on multiple residential dwellings down-gradient of the source zone. The three-dimensional problem geometry is based on the Rivett (1995) field experiment in the Borden aquifer, and contains houses located both above and adjacent to the groundwater plume in order to define an exclusion zone. Simulation results using the numerical model CompFlow Bio indicate that houses which are laterally offset from the groundwater plume are less affected by vapour intrusion than those located directly above the plume due to limited transverse horizontal flux of TCE within the groundwater plume, in agreement with the ASTM (2008) guidance. Uncertainty in the simulated indoor air concentration is sensitive to heterogeneity in the permeability structure of a stratigraphically continuous aquifer, with uncertainty defined as the probability of simulated indoor air concentrations exceeding the NYSDOH (2005) regulatory limit. Within this uncertainty framework, this work shows that the Johnson and Ettinger (1991), ASTM (2008) and CompFlow Bio models all delineate an identical exclusion zone at a 99.9% confidence interval of indoor air concentrations based on the probability of exceedence.

  17. Electronic cigarettes and indoor air quality: a simple approach to modeling potential bystander exposures to nicotine.

    Science.gov (United States)

    Colard, Stéphane; O'Connell, Grant; Verron, Thomas; Cahours, Xavier; Pritchard, John D

    2014-12-24

    There has been rapid growth in the use of electronic cigarettes ("vaping") in Europe, North America and elsewhere. With such increased prevalence, there is currently a debate on whether the aerosol exhaled following the use of e-cigarettes has implications for the quality of air breathed by bystanders. Conducting chemical analysis of the indoor environment can be costly and resource intensive, limiting the number of studies which can be conducted. However, this can be modelled reasonably accurately based on empirical emissions data and using some basic assumptions. Here, we present a simplified model, based on physical principles, which considers aerosol propagation, dilution and extraction to determine the potential contribution of a single puff from an e-cigarette to indoor air. From this, it was then possible to simulate the cumulative effect of vaping over time. The model was applied to a virtual, but plausible, scenario considering an e-cigarette user and a non-user working in the same office space. The model was also used to reproduce published experimental studies and showed good agreement with the published values of indoor air nicotine concentration. With some additional refinements, such an approach may be a cost-effective and rapid way of assessing the potential exposure of bystanders to exhaled e-cigarette aerosol constituents.

  18. Prevention Measures of Indoor Air Pollutant%室内空气污染的防治措施

    Institute of Scientific and Technical Information of China (English)

    农柳燕

    2015-01-01

    Health is the precondition of happy life. According to modern medical certificate, about eighty-five percent of human diseases are related to indoor air pollution. The indoor air pollution has become a hot issue in today's society. A wide variety of indoor air pollutants endanger human body health. It is particularly important to effective control and purify the polluted indoor air. The control of indoor air pollution sources and prevention to reduce the concentrations of indoor air pollutants were introduced.%健康是人们幸福生活的前提。据现代医学证明,人类约有百分之八十五的疾病都与室内空气污染有关。室内空气污染已经成为当今社会的热点问题。室内空气污染的种类繁多,污染源广,严重危害人们的身体健康,高效控制和净化室内空气污染显得尤为重要。本文详细介绍了室内空气污染源的控制以及降低室内空气污染物浓度的防治措施。

  19. [Health evaluation of trichloroethylene in indoor air : communication from the German ad-hoc working group on indoor guidelines of the Indoor Air Hygiene Committee and of the states' supreme health authorities].

    Science.gov (United States)

    2015-07-01

    In the European Hazardous Substances Regulation No 1272/2008 trichloroethylene has been classified as a probable human carcinogen and a suspected mutagen. According to several Committees (German Committee on Hazardous Substances, European Scientific Committee on Occupational Exposure Limits, European Chemicals Agency´s Committee for Risk Assessment (ECHA-RAC)) concentrations of trichloroethylene cytotoxic to renal tubuli may increase the risk to develop renal cancer. At non-cytotoxic concentrations of trichloroethylene a much lower cancer risk may be assumed. Therefore, evaluating the cancer risk to the public following inhalation of trichloroethylene ECHA-RAC has assumed a sublinear exposure-response relationship for carcinogenicity of trichloroethylene. Specifically, ECHA-RAC assessed a cancer risk of 6.4 × 10(- 5) (mg/m(3))(- 1) following life time exposure to trichloroethylene below a NOAEC for renal cytotoxicity of 6 mg trichloroethylene/m(3). Further evaluation yields a life-time risk of 10(- 6) corresponding to 0.02 mg trichloroethylene/m(3). This concentration is well above the reference (e.g. background) concentration of trichloroethylene in indoor air. Consequently the Ad-hoc Working Group on Indoor Guidelines recommends 0.02 mg trichloroethylene/m(3) as a risk-related guideline for indoor air. Measures to reduce exposure are considered inappropriate at concentrations below this guideline.

  20. Assessment of the impact of oxidation processes on indoor air pollution using the new time-resolved INCA-Indoor model

    Science.gov (United States)

    Mendez, Maxence; Blond, Nadège; Blondeau, Patrice; Schoemaecker, Coralie; Hauglustaine, Didier A.

    2015-12-01

    INCA-Indoor, a new indoor air quality (IAQ) model, has been developed to simulate the concentrations of volatile organic compounds (VOC) and oxidants considering indoor air specific processes such as: emission, ventilation, surface interactions (sorption, deposition, uptake). Based on the detailed version of SAPRC-07 chemical mechanism, INCA-Indoor is able to analyze the contribution of the production and loss pathways of key chemical species (VOCs, oxidants, radical species). The potential of this model has been tested through three complementary analyses: a comparison with the most detailed IAQ model found in the literature, focusing on oxidant species; realistic scenarios covering a large range of conditions, involving variable OH sources like HONO; and the investigation of alkenes ozonolysis under a large range of indoor conditions that can increase OH and HO2 concentrations. Simulations have been run changing nitrous acid (HONO) concentrations, NOx levels, photolysis rates and ventilation rates, showing that HONO can be the main source of indoor OH. Cleaning events using products containing D-limonene have been simulated at different periods of the day. These scenarios show that HOX concentrations can significantly increase in specific conditions. An assessment of the impact of indoor chemistry on the potential formation of secondary species such as formaldehyde (HCHO) and acetaldehyde (CH3CHO) has been carried out under various room configuration scenarios and a study of the HOx budget for different realistic scenarios has been performed. It has been shown that, under the simulation conditions, formaldehyde can be affected by oxidant concentrations via chemical production which can account for more than 10% of the total production, representing 6.5 ppb/h. On the other hand, acetaldehyde production is affected more by oxidation processes. When the photolysis rates are high, chemical processes are responsible for about 50% of the total production of

  1. AIR SEPARATION BY PRESSURE SWING ADSORPTION USING SUPERIOR ADSORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    Ralph T. Yang

    2001-08-31

    Li-X zeolite (Si/Al = 1.0) is currently the best sorbent for use in the separation of air by adsorption processes. In particular, pressure swing adsorption (PSA) using zeolite sorbents is being increasingly used for air separation. Silver is also known to strongly affect the adsorptive properties of zeolites; and it is known that thermal vacuum dehydration of silver zeolites leads to the formation of silver clusters within the zeolite. In this work we have synthesized type X zeolites containing Ag and also varying mixtures of Li and Ag. In this project, we developed the Ag-containing zeolite as the best sorbent for air separation. We have also studied Co-ligand compounds as oxygen-selective sorbents. Syntheses, structural characterization and adsorption properties have been performed on all sorbents. The results are described in detail in 5 chapters.

  2. The Effects of Workplace Clean Indoor Air Law Coverage on Workers' Smoking-Related Outcomes.

    Science.gov (United States)

    Cheng, Kai-Wen; Liu, Feng; Gonzalez, MariaElena; Glantz, Stanton

    2017-02-01

    This study investigated the effects of workplace clean indoor air law (CIAL) coverage on worksite compliance with CIALs, smoking participation among indoor workers, and secondhand smoke (SHS) exposure among nonsmoker indoor workers. This study improved on previous research by using the probability of a resident in a county covered by workplace CIALs, taking into account the state, county, and city legislation. The county-level probability of being covered by a CIAL is merged into two large nationally representative US surveys on smoking behaviors: Tobacco Use Supplement of the Current Population Survey (2001-2010) and Behavioral Risk Factor Surveillance System (2000-2006) based on the year of the survey and respondent's geographic location to identify respondents' CIAL coverage. This study estimated several model specifications of including and not including state or county fixed effects, and the effects of workplace CIALs are consistent across models. Increased coverage by workplace CIALs significantly increased likelihood of reporting a complete smoking restriction by 8% and 10% for the two different datasets, decreased smoking participation among indoor workers by 12%, and decreased SHS exposure among nonsmokers by 28%. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Seasonal variations of indoor microbial exposures and their relation to temperature, relative humidity, and air exchange rate.

    Science.gov (United States)

    Frankel, Mika; Bekö, Gabriel; Timm, Michael; Gustavsen, Sine; Hansen, Erik Wind; Madsen, Anne Mette

    2012-12-01

    Indoor microbial exposure has been related to adverse pulmonary health effects. Exposure assessment is not standardized, and various factors may affect the measured exposure. The aim of this study was to investigate the seasonal variation of selected microbial exposures and their associations with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m(3)) and were lowest in winter (median, 26 CFU/m(3)). Indoor bacteria peaked in spring (median, 2,165 CFU/m(3)) and were lowest in summer (median, 240 CFU/m(3)). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly associated with several indoor microbial exposures, they could not fully explain the observed seasonal variations when tested in a mixed statistical model. In conclusion, the season significantly affects indoor microbial exposures, which are influenced by temperature, relative humidity, and air exchange rates.

  4. Preliminary assessment of BTEX concentrations in indoor air of residential buildings and atmospheric ambient air in Ardabil, Iran

    Science.gov (United States)

    Hazrati, Sadegh; Rostami, Roohollah; Farjaminezhad, Manoochehr; Fazlzadeh, Mehdi

    2016-05-01

    BTEX concentrations in indoor and outdoor air of 50 homes were studied in Ardabil city and their influencing parameters including; heating system, using gas stove and samovar, tobacco smoking, the floors in which the monitored homes were located, and kitchen plan were considered in the study. Risk assessment analysis was carried out with the obtained concentrations based on EPA IRIS reference doses. BTEX compounds were sampled by charcoal tubes and the samples were analyzed by a GC-FID. Concentrations of benzene (15.18 μg/m3 vs. 8.65 μg/m3), toluene (69.70 μg/m3 vs. 40.56 μg/m3), ethylbenzene (12.07 μg/m3 vs. 4.92 μg/m3) and xylene (48.08 μg/m3 vs. 7.44 μg/m3) in indoor air were significantly (p < 0.05) higher than the levels quantified for outdoor air. The obtained concentrations of benzene were considerably higher than the recommended value of 5 μg/m3 established by Iran environmental protection organization. Among the BTEX compounds, benzene (HQ = 0.51) and xylene (HQ = 0.47) had notable hazard quotient and were the main pollutants responsible for high hazard index in the monitored homes (HI = 1.003). The results showed considerably high cancer risk for lifetime exposure to the indoor (125 × 10-6) and outdoor (71 × 10-6) benzene. Indoor benzene concentrations in homes were significantly influenced by type of heating system, story, and natural gas appliances.

  5. Experimental Study on Indoor Air Cleaning Technique of Nano-Titania Catalysis Under Plasma Discharge

    Institute of Scientific and Technical Information of China (English)

    GAO Deli; YANG Xuechang; ZHOU Fei; WU Yuhuang

    2008-01-01

    In this study, a new technique of air cleaning by plasma combined with catalyst was proposed, which consisted of electrostatic precipitation, volatile organic compounds (VOCs) decomposition and sterilization. A novel indoor air purifier based on this technique was adopted. The experimental results showed that formaldehyde decomposition by the plasma-catalyst hybrid system was more efficient than that by plasma only. Positive discharge was better than negative discharge in formaldehyde removal. Meanwhile, the outlet concentration of ozone byproduct was effectively reduced by the nano-titania catalyst.

  6. Study on Decomposition of Indoor Air Contaminants by Pulsed Atmospheric Microplasma

    OpenAIRE

    Tomoya Kuwabara; Marius Blajan; Kazuo Shimizu

    2012-01-01

    Decomposition of formaldehyde (HCHO) by a microplasma reactor in order to improve Indoor Air Quality (IAQ) was achieved. HCHO was removed from air using one pass through reactor treatment (5 L/min). From an initial concentration of HCHO of 0.7 ppm about 96% was removed in one pass treatment using a discharge power of 0.3 W provided by a high voltage amplifier and a Marx Generator with MOSFET switches as pulsed power supplies. Moreover microplasma driven by the Marx Generator did not generate ...

  7. Disinfection of indoor air microorganisms in stack room of university library using gaseous chlorine dioxide.

    Science.gov (United States)

    Hsu, Ching-Shan; Lu, Ming-Chun; Huang, Da-Ji

    2015-02-01

    As with all indoor public spaces in Taiwan, the stack rooms in public libraries should meet the air quality guidelines laid down by the Taiwan Environmental Protection Administration. Accordingly, utilizing a university library in Taiwan for experimental purposes, this study investigates the efficiency of gaseous chlorine dioxide (ClO2) as a disinfection agent when applied using three different treatment modes, namely a single-daily disinfection mode (SIM), a twice-daily disinfection mode (TWM), and a triple-daily disinfection mode (TRM). For each treatment mode, the ClO2 is applied using an ultrasonic aerosol device and is performed both under natural lighting conditions and under artificial lighting conditions. The indoor air quality is evaluated before and after each treatment session by measuring the bioaerosol levels of bacteria and fungi. The results show that for all three disinfection modes, the application of ClO2 reduces the indoor bacteria and fungi concentrations to levels lower than those specified by the Taiwan EPA (i.e., bacteria disinfection process is performed. For each disinfection mode, a better disinfection efficiency is obtained under natural lighting conditions since ClO2 readily decomposes under strong luminance levels. Among the three treatment modes, the disinfection efficiencies of the TWM and TRM modes are very similar under natural lighting conditions and are significantly better than that of the SIM mode. Thus, overall, the results suggest that the TWM treatment protocol represents the most cost-effective and efficient method for meeting the indoor air quality requirements of the Taiwan EPA.

  8. A ventilation intervention study in classrooms to improve indoor air quality: the FRESH study.

    Science.gov (United States)

    Rosbach, Jeannette T M; Vonk, Machiel; Duijm, Frans; van Ginkel, Jan T; Gehring, Ulrike; Brunekreef, Bert

    2013-12-17

    Classroom ventilation rates often do not meet building standards, although it is considered to be important to improve indoor air quality. Poor indoor air quality is thought to influence both children's health and performance. Poor ventilation in The Netherlands most often occurs in the heating season. To improve classroom ventilation a tailor made mechanical ventilation device was developed to improve outdoor air supply. This paper studies the effect of this intervention. The FRESH study (Forced-ventilation Related Environmental School Health) was designed to investigate the effect of a CO2 controlled mechanical ventilation intervention on classroom CO2 levels using a longitudinal cross-over design. Target CO2 concentrations were 800 and 1200 parts per million (ppm), respectively. The study included 18 classrooms from 17 schools from the north-eastern part of The Netherlands, 12 experimental classrooms and 6 control classrooms. Data on indoor levels of CO2, temperature and relative humidity were collected during three consecutive weeks per school during the heating seasons of 2010-2012. Associations between the intervention and weekly average indoor CO2 levels, classroom temperature and relative humidity were assessed by means of mixed models with random school-effects. At baseline, mean CO2 concentration for all schools was 1335 ppm (range: 763-2000 ppm). The intervention was able to significantly decrease CO2 levels in the intervention classrooms (F (2,10) = 17.59, p < 0.001), with a mean decrease of 491 ppm. With the target set at 800 ppm, mean CO2 was 841 ppm (range: 743-925 ppm); with the target set at 1200 ppm, mean CO2 was 975 ppm (range: 887-1077 ppm). Although the device was not capable of precisely achieving the two predefined levels of CO2, our study showed that classroom CO2 levels can be reduced by intervening on classroom ventilation using a CO2 controlled mechanical ventilation system.

  9. Permeation passive sampling as a tool for the evaluation of indoor air quality

    Science.gov (United States)

    Zabiegała, B.; Górecki, T.; Przyk, E.; Namieśnik, J.

    Time-weighted average concentrations of selected volatile organic air pollutants were determined in eight apartments in the city of Gdańsk (Poland) using permeation passive sampling. The samplers were recalibrated prior to use by controlled exposure to standard gaseous mixtures of the analytes. Small but statistically significant differences were found between the calibration constants determined initially and after one year of field use of the samplers for some of the analytes. The results obtained by the passive sampling technique were compared to those obtained by dynamic sampling using active charcoal-filled tubes, and dynamic sampling using Tenax-TA tubes. Overall, the results obtained by the three techniques were similar. Maximum allowable concentrations of the analytes were not exceeded in any of the apartments examined. The results of total volatile organic compounds determination indicated that some VOCs were unaccounted for in the experiment. The effect of outside air infiltration on indoor air quality was evaluated by comparing analyte concentrations in indoor air and in outdoor air in the very vicinity of the apartment. This effect was found to be minimal.

  10. The effects of reduced ventilation on indoor air quality in an office building

    Science.gov (United States)

    Turiel, I.; Hollowell, C. D.; Miksch, R. R.; Rudy, J. V.; Young, R. A.; Coye, M. J.

    Indoor air quality was monitored at an office building in San Francisco, CA where occupants had registered eye, nose and throat irritation complaints. Portable air pollution monitoring equipment was placed on site to monitor air outdoors and at three indoor sites (a waiting room, an interview room and an office room), and data were taken under two different ventilation rates. The parameters measured were outside air flow rates, temperature, relative humidity, odor perception, microbial burden, particulate mass, formaldehyde and other organics, carbon dioxide, carbon monoxide and nitrogen dioxide. Carbon dioxide concentrations increased as the ventilation rate decreased; odor perceptibility increased slightly at the lowest ventilation rate, and other pollutants generally showed very low concentrations, which increased when ventilation was reduced. In no case, however, did levels exceed current health standards for outdoor air, nor was any one contaminant found to be responsible for the medical symptoms reported by occupants. It is possible that a synergistic effect of the various contaminants and environmental conditions may account for the discomfort of occupants.

  11. Purification/deodorization of indoor air and gaseous effluents by TiO{sub 2} photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Pichat, P.; Disdier, J.; Hoang-Van, C.; Mas, D.; Goutailler, G.; Gaysse, C. [Laboratoire ' Photocatalyse, Catalyse et Environnement' , CNRS UMR ' IFoS' , Ecole Centrale de Lyon, BP 163, 69131 Ecully Cedex (France)

    2000-12-25

    Our objective was to further assess the capabilities of TiO{sub 2} to purify/deodorize indoor air and industrial gaseous effluents. Using a laboratory photoreactor including a lamp emitting around 365nm and a TiO{sub 2}-coated fiber glass mesh, we first determined that the removal rate of three very different pollutants (CO, n-octane, pyridine) was 5-10{mu}mol per Wh consumed by the lamp for 50-2000ppmv concentrations and 25-50lh{sup -1} flow rates (dry air or O{sub 2}). We inferred that this order of magnitude allows, by use of a reasonable-size apparatus, the abatement of pollutants in constantly renewed indoor air, except CO and CH{sub 4} that are too concentrated. Using a TiO{sub 2} photocatalysis-based individual air purifier prototype, we showed, through distinctive analytical measurements, that the average concentrations of benzene, toluene and xylenes were indeed reduced by a factor of 2-3 in an ordinary non-airtight room. We also showed that O{sub 3} addition in O{sub 2} very markedly increases the mineralization percentage of n-octane, under otherwise identical conditions, in the laboratory photoreactor without photoexcitation of O{sub 3}; this property of O{sub 3} can expand the application field of photocatalytic air purification in industry, at least in some cases.

  12. Flame retardants in indoor dust and air of a hotel in Japan.

    Science.gov (United States)

    Takigami, Hidetaka; Suzuki, Go; Hirai, Yasuhiro; Ishikawa, Yukari; Sunami, Masakiyo; Sakai, Shin-ichi

    2009-05-01

    Occurrence of flame retardants (FRs) in the indoor environment of highly flame-retarded public facilities is an important concern from the viewpoint of exposure because it is likely that FRs are used to a greater degree in these facilities than in homes. For this study, brominated flame-retardants (BFRs) and organophosphate flame-retardants and plasticizers (OPs), and brominated dibenzo-p-dioxins/furans (PBDD/DFs) were measured in eight floor dust samples taken from a Japanese commercial hotel that was assumed to have many flame-retardant materials. Concentrations of polybrominated diphenylethers (PBDEs) and hexabromocyclododecanes (HBCDs) varied by about two orders of magnitude, from 9.8-1700 ng/g (median of 1200 ng/g) and from 72-1300 ng/g (median of 740 ng/g), respectively. Concentrations of the two types of BFRs described above were most dominant among the investigated BFRs in the dust samples. It is inferred that BFR and PBDD/DF concentrations are on the same level as those in house and office dust samples reported based on past studies. Regarding concentrations of 11 OPs, 7 OPs were detected on the order of micrograms per gram, which are equivalent to or exceed the BFR concentrations such as PBDEs and HBCDs. Concentrations of the investigated compounds were not uniform among dust samples collected throughout the hotel: concentrations differed among floors, suggesting that localization of source products is associated with FR concentrations in dust. Passive air sampling was also conducted to monitor BFRs in the indoor air of hotel rooms: the performance of an air cleaner placed in the room was evaluated in terms of reducing airborne BFR concentrations. Monitoring results suggest that operation of an appropriate air cleaner can reduce both gaseous and particulate BFRs in indoor air.

  13. Fungal monitoring of the indoor air of the Museo de La Plata Herbarium, Argentina.

    Science.gov (United States)

    Mallo, Andrea C; Elíades, Lorena A; Nitiu, Daniela S; Saparrat, Mario C N

    Biological agents, such as fungal spores in the air in places where scientific collections are stored, can attack and deteriorate them. The aim of this study was to gather information on the indoor air quality of the Herbarium of Vascular Plants of the Museo de Ciencias Naturales de La Plata, Argentina, in relation to fungal propagules and inert particles. This study was made using a volumetric system and two complementary sampling methods: (1) a non-viable method for direct evaluation, and (2) a viable method by culture for viable fungal propagules. The non-viable method led to ten spore morphotypes being found from related fungal sources. A total of 4401.88spores/m(3) and 32135.18 inert suspended particles/m(3) were recorded. The viable method led to the finding of nine fungal taxa as viable spores that mostly belonged to anamorphic forms of Ascomycota, although the pigmented yeast Rhodotorula F.C. Harrison (Basidiomycota) was also found. A total count of 40,500fungal CFU/m(3) air was estimated for all the sites sampled. Both the non-viable and viable sampling methods were necessary to monitor the bio-aerosol load in the La Plata Herbarium. The indoor air of this institution seems to be reasonably adequate for the conservation of vascular plants due to the low indoor/outdoor index, low concentrations of air spores, and/or lack of indicators of moisture problems. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Comparison of indoor air sampling and dust collection methods for fungal exposure assessment using quantitative PCR.

    Science.gov (United States)

    Cox, Jennie; Indugula, Reshmi; Vesper, Stephen; Zhu, Zheng; Jandarov, Roman; Reponen, Tiina

    2017-08-31

    Evaluating fungal contamination indoors is complicated because of the many different sampling methods utilized. In this study, fungal contamination was evaluated using five sampling methods and four matrices for results. The five sampling methods were a 48 hour indoor air sample collected with a Button™ inhalable aerosol sampler and four types of dust samples: a vacuumed floor dust sample, newly settled dust collected for four weeks onto two types of electrostatic dust cloths (EDCs) in trays, and a wipe sample of dust from above floor surfaces. The samples were obtained in the bedrooms of asthmatic children (n = 14). Quantitative polymerase chain reaction (qPCR) was used to analyze the dust and air samples for the 36 fungal species that make up the Environmental Relative Moldiness Index (ERMI). The results from the samples were compared by four matrices: total concentration of fungal cells, concentration of fungal species associated with indoor environments, concentration of fungal species associated with outdoor environments, and ERMI values (or ERMI-like values for air samples). The ERMI values for the dust samples and the ERMI-like values for the 48 hour air samples were not significantly different. The total cell concentrations of the 36 species obtained with the four dust collection methods correlated significantly (r = 0.64-0.79, p sampling methods (r = 0.68-0.86, p samples primarily because of differences in concentrations of Cladosporium cladosporioides Type 1 and Epicoccum nigrum. A representative type of dust sample and a 48 hour air sample might both provide useful information about fungal exposures.

  15. Moulds and indoor air quality - a man-made problem; Muggsopp i inneklima - et menneskeskapt problem

    Energy Technology Data Exchange (ETDEWEB)

    Langvad, Finn

    2002-07-01

    In the 1970s and 1980s, many house owners in Norway, in order to save energy, insulated their houses by injecting torn-up mineral wool into the entire cavity of the wall. This made the house warmer to live in, but it also created serious condensation problems followed by rot and mould. The extensive use of gypsum boards is also alarming. If gypsum becomes really wet because of a water leakage, it becomes a ticking bomb from the micro-biologic point of view as it provides growth conditions for some of the most dangerous indoor mould fungi known, the Stachybotrys chart arum. The article discusses the danger of this fungus and surveys some of the ways that mould affect human health. There is at present no definition of a normal number of fungus spores per unit volume of air. But the following principles can be taken as guidelines: (1) The concentration of spores indoor must be lower than outdoors. Otherwise extra spores have been generated in the house. (2) The species composition of the air must be approximately the same indoors and outdoors.

  16. A Critical Review of Naphthalene Sources and Exposures Relevant to Indoor and Outdoor Air

    Directory of Open Access Journals (Sweden)

    Chunrong Jia

    2010-07-01

    Full Text Available Both the recent classification of naphthalene as a possible human carcinogen and its ubiquitous presence motivate this critical review of naphthalene’s sources and exposures. We evaluate the environmental literature on naphthalene published since 1990, drawing on nearly 150 studies that report emissions and concentrations in indoor, outdoor and personal air. While naphthalene is both a volatile organic compound and a polycyclic aromatic hydrocarbon, concentrations and exposures are poorly characterized relative to many other pollutants. Most airborne emissions result from combustion, and key sources include industry, open burning, tailpipe emissions, and cigarettes. The second largest source is off-gassing, specifically from naphthalene’s use as a deodorizer, repellent and fumigant. In the U.S., naphthalene’s use as a moth repellant has been reduced in favor of para-dichlorobenzene, but extensive use continues in mothballs, which appears responsible for some of the highest indoor exposures, along with off-label uses. Among the studies judged to be representative, average concentrations ranged from 0.18 to 1.7 μg m-3 in non-smoker’s homes, and from 0.02 to 0.31 μg m-3 outdoors in urban areas. Personal exposures have been reported in only three European studies. Indoor sources are the major contributor to (non-occupational exposure. While its central tendencies fall well below guideline levels relevant to acute health impacts, several studies have reported maximum concentrations exceeding 100 μg m-3, far above guideline levels. Using current but draft estimates of cancer risks, naphthalene is a major environmental risk driver, with typical individual risk levels in the 10-4 range, which is high and notable given that millions of individuals are exposed. Several factors influence indoor and outdoor concentrations, but the literature is inconsistent on their effects. Further investigation is needed to better characterize naphthalene

  17. Impact of Partial and Comprehensive Smoke-Free Regulations on Indoor Air Quality in Bars.

    Science.gov (United States)

    Kim, Jeonghoon; Ban, Hyunkyung; Hwang, Yunhyung; Ha, Kwonchul; Lee, Kiyoung

    2016-07-26

    In Korea, smoke-free regulations have been gradually implemented in bars based on venue size. Smoking bans were implemented in 2013 for bars ≥150 m², in 2014 for bars ≥100 m², and in 2015 for bars of all sizes. The purpose of this study was to determine indoor fine particle (PM2.5) concentrations in bars before and after implementation of the smoke-free policies based on venue size. Indoor PM2.5 concentrations were measured with real-time aerosol monitors at four time points: (1) pre-regulation (n = 75); (2) after implementing the ban in bars ≥150 m² (n = 75); (3) after implementing the ban in bars ≥100 m² (n = 107); and (4) when all bars were smoke-free (n = 79). Our results showed that the geometric mean of the indoor PM2.5 concentrations of all bars decreased from 98.4 μg/m³ pre-regulation to 79.5, 42.9, and 26.6 μg/m³ after the ban on smoking in bars ≥150 m², ≥100 m², and all bars, respectively. Indoor PM2.5 concentrations in bars of each size decreased only after the corresponding regulations were implemented. Although smoking was not observed in Seoul bars after smoking was banned in all bars, smoking was observed in 4 of 21 bars in Changwon. Our study concludes that the greatest decrease in PM2.5 concentrations in bars was observed after the regulation covering all bars was implemented. However, despite the comprehensive ban, smoking was observed in bars in Changwon. Strict compliance with the regulations is needed to improve indoor air quality further.

  18. Real-time sensors for indoor air monitoring and challenges ahead in deploying them to urban buildings.

    Science.gov (United States)

    Kumar, Prashant; Skouloudis, Andreas N; Bell, Margaret; Viana, Mar; Carotta, M Cristina; Biskos, George; Morawska, Lidia

    2016-08-01

    Household air pollution is ranked the 9(th) largest Global Burden of Disease risk (Forouzanfar et al., The Lancet 2015). People, particularly urban dwellers, typically spend over 90% of their daily time indoors, where levels of air pollution often surpass those of outdoor environments. Indoor air quality (IAQ) standards and approaches for assessment and control of indoor air require measurements of pollutant concentrations and thermal comfort using conventional instruments. However, the outcomes of such measurements are usually averages over long integrated time periods, which become available after the exposure has already occurred. Moreover, conventional monitoring is generally incapable of addressing temporal and spatial heterogeneity of indoor air pollution, or providing information on peak exposures that occur when specific indoor sources are in operation. This article provides a review of new air pollution sensing methods to determine IAQ and discusses how real-time sensing could bring a paradigm shift in controlling the concentration of key air pollutants in billions of urban houses worldwide. We also show that besides the opportunities, challenges still remain in terms of maturing technologies, or data mining and their interpretation. Moreover, we discuss further research and essential development needed to close gaps between what is available today and needed tomorrow. In particular, we demonstrate that awareness of IAQ risks and availability of appropriate regulation are lagging behind the technologies.

  19. An Assessment of Indoor Air Quality before, during and after Unrestricted Use of E-Cigarettes in a Small Room

    Directory of Open Access Journals (Sweden)

    Grant O'Connell

    2015-05-01

    Full Text Available Airborne chemicals in the indoor environment arise from a wide variety of sources such as burning fuels and cooking, construction materials and furniture, environmental tobacco smoke as well as outdoor sources. To understand the contribution of exhaled e-cigarette aerosol to the pre-existing chemicals in the ambient air, an indoor air quality study was conducted to measure volatile organic compounds (including nicotine and low molecular weight carbonyls, polycyclic aromatic hydrocarbons, tobacco-specific nitrosamines and trace metal levels in the air before, during and after e-cigarette use in a typical small office meeting room. Measurements were compared with human Health Criteria Values, such as indoor air quality guidelines or workplace exposure limits where established, to provide a context for potential bystander exposures. In this study, the data suggest that any additional chemicals present in indoor air from the exhaled e-cigarette aerosol, are unlikely to present an air quality issue to bystanders at the levels measured when compared to the regulatory standards that are used for workplaces or general indoor air quality.

  20. An Assessment of Indoor Air Quality before, during and after Unrestricted Use of E-Cigarettes in a Small Room.

    Science.gov (United States)

    O'Connell, Grant; Colard, Stéphane; Cahours, Xavier; Pritchard, John D

    2015-05-06

    Airborne chemicals in the indoor environment arise from a wide variety of sources such as burning fuels and cooking, construction materials and furniture, environmental tobacco smoke as well as outdoor sources. To understand the contribution of exhaled e-cigarette aerosol to the pre-existing chemicals in the ambient air, an indoor air quality study was conducted to measure volatile organic compounds (including nicotine and low molecular weight carbonyls), polycyclic aromatic hydrocarbons, tobacco-specific nitrosamines and trace metal levels in the air before, during and after e-cigarette use in a typical small office meeting room. Measurements were compared with human Health Criteria Values, such as indoor air quality guidelines or workplace exposure limits where established, to provide a context for potential bystander exposures. In this study, the data suggest that any additional chemicals present in indoor air from the exhaled e-cigarette aerosol, are unlikely to present an air quality issue to bystanders at the levels measured when compared to the regulatory standards that are used for workplaces or general indoor air quality.

  1. The use of biofilters to improve indoor air quality: the removal of toluene, TCE, and formaldehyde.

    Science.gov (United States)

    Darlington, A; Dixon, M A; Pilger, C

    1998-01-01

    A biofilter composed of a scrubber, a hydroponic planting system, and an aquatic system with green plants as a base maintained air quality within part of a modern office building. The scrubber was composed of five parallel fiberglass modules with external faces of porous lava rock. The face, largely covered with mosses, was wetted by recirculating water. Air was drawn through the scrubber and the immediately adjacent hydroponic region by a dedicated air handling system. The system was challenged for 4 weeks with three common indoor organic pollutants and removed significant amounts of all compounds. A single pass through the scrubber removed 10% of the trichloroethylene and 50% of the toluene. A single pass lowered formaldehyde air concentrations to 13 micrograms m-3 irrespective of influent levels (ranging between 30 and 90 micrograms m-3). The aquatic system accumulated trichloroethylene but neither toluene nor formaldehyde, suggesting the rapid breakdown of these materials. The botanical components removed some pollutants.

  2. Effects of exposure to noise and indoor air pollution on human perception and symptoms

    DEFF Research Database (Denmark)

    Witterseh, Thomas; Wargocki, Pawel; Fang, Lei

    1999-01-01

    The objective of the present study was to investigate human perception and SBS symptoms when people are exposed simultaneously to different levels of air pollution and ventilation noise. The air quality in an office was modified by placing or removing a carpet and the background noise level...... was modified by playing a recording of ventilation noise. Thirty female subjects, six at a time, occupied the office for 4.4 hours. The subjects assessed the air quality, the noise, and the indoor environment upon entering the office and on six occasions during occupation. Furthermore, SBS symptoms...... of the occupants were recorded throughout the exposure period. During occupation, the subjects performed simulated office work. The results show that elevated air pollution and noise in an office can interact and negatively affect office workers by increasing the prevalence of SBS symptoms. A moderate increase...

  3. The Effect of Ventilation, Filtration and Passive Sorption on Indoor Air Quality in Museum Storage Rooms

    DEFF Research Database (Denmark)

    Ryhl-Svendsen, M.; Clausen, Geo

    2009-01-01

    A study was conducted in five storage rooms at the National Museum of Denmark, in which the effect on indoor air quality of mechanical ventilation, filtration and passive sorption was investigated. Mechanical ventilation and recirculation/filtration was initiated by introducing new ventilation...... and filtration units. Passive sorption was initiated by hanging sheets of sorptive materials oil walls. The control strategies were evaluated in terms of their ability to lower the concentration of internally, generated pollutants, and the indoor-to-outdoor concentration ratio of outdoor pollutants. The overall...... environmental impact for each method was evaluated by the use of material dosimeters. It was found that passive sorption performed better in a small room compared to a large room. Mechanical ventilation and filtration with activated charcoal gave a high protection against ozone, but were less effective...

  4. The health risks of incense use in the home: an underestimated source of indoor air pollution?

    Science.gov (United States)

    Roberts, Debbie; Pontin, David

    2016-03-01

    The health impact of indoor air pollution is a growing area of interest for public health professionals. People typically spend up to 90 per cent of their time indoors, particularly women, young children and elders. Although the adverse health effects of second-hand tobacco smoke are well recognised, the impact of burning incense in the home has received little attention in Western literature. Incense burning in the home is common in a number of cultures (particularly Asian, North African or Arabic). Many health visitors (HVs) work with communities who use incense regularly for religious/cultural reasons and it is a neglected area of study and research.The literature suggests that home incense use can have significant adverse health effects, particularly on cardiopulmonary morbidity and mortality. Further research is needed to identify which individuals are most susceptible, which types of incense are most harmful, and whether any actions can be taken to minimise exposure.

  5. Impact of room fragrance products on indoor air quality

    Science.gov (United States)

    Uhde, Erik; Schulz, Nicole

    2015-04-01

    Everyday life can no longer be imagined without fragrances and scented products. For the consumer, countless products exists which are solely or partly intended to give off a certain scent in sufficient concentrations to odorize a complete room. Sprays, diffusers and evaporators, scented candles and automatic devices for the distribution of fragrance liquids are typical examples of such products. If the consumer uses such products, his consent to the release of certain chemicals in his home can be implied, however, he may not know what kind of fragrance substances and solvents will be present in which concentrations. In this study, we determined the volatile emissions of a number of fragrance products in detail. Measurements were carried out under controlled conditions in test chambers. The products were tested in a passive (unused) and an active state, wherever applicable. Following a defined test protocol, the release of volatile organic compounds, ultrafine particles and NOx was monitored for each product. The potential for forming secondary organic aerosols under the influence of ozone was studied, and for a selection of products the long-term emission behavior was assessed. A remarkable variety of fragrance substances was found and more than 100 relevant compounds were identified and quantified. While it is the intended function of such products to release fragrance substances, also considerable amounts of non-odorous solvents and by-products were found to be released from several air fresheners. Emissions rates exceeding 2 mg/(unit*h) were measured for the five most common solvents.

  6. Integrated photocatalytic filtration array for indoor air quality control.

    Science.gov (United States)

    Denny, Frans; Permana, Eric; Scott, Jason; Wang, Jing; Pui, David Y H; Amal, Rose

    2010-07-15

    Photocatalytic and filtration technologies were integrated to develop a hybrid system capable of removing and oxidizing organic pollutants from an air stream. A fluidized bed aerosol generator (FBAG) was adapted to prepare TiO(2)-loaded ventilation filters for the photodegradation of gas phase ethanol. Compared to a manually loaded filter, the ethanol photodegradation rate constant for the FBAG coated filter increased by 361%. Additionally, the presence of the photogenerated intermediate product, acetaldehyde, was reduced and the time for mineralization to CO(2) was accelerated. These improvements were attributed to the FBAG system providing a more uniform distribution of TiO(2) particles across the filter surface leading to greater accessibility by the UV light. A dual-UV-lamp system, as opposed to a single-lamp system, enhanced photocatalytic filter performance demonstrating the importance of high light irradiance and light distribution across the filter surface. Substituting the blacklight blue lamps with a UV-light-emitting-diode (UV-LED) array led to further improvement as well as suppressed the electrical energy per order (EE/O) by a factor of 6. These improvements derived from the more uniform distribution of light irradiance as well as the higher efficiency of UV-LEDs in converting electrical energy to photons.

  7. The emerging role of outdoor and indoor air pollution in cardiovascular disease.

    Science.gov (United States)

    Uzoigwe, Jacinta C; Prum, Thavaleak; Bresnahan, Eric; Garelnabi, Mahdi

    2013-08-01

    Outdoor and indoor air pollution poses a significant cardiovascular risk, and has been associated with atherosclerosis, the main underlying pathology in many cardiovascular diseases. Although, it is well known that exposure to air pollution causes pulmonary disease, recent studies have shown that cardiovascular health consequences of air pollution generally equal or exceed those due to pulmonary diseases. The objective of this article is to evaluate the current evidence on the emerging role of environmental air pollutions in cardiovascular disease, with specific focus on the types of air pollutants and mechanisms of air pollution-induced cardiotoxicity. Published literature on pollution was systematically reviewed and cited in this article. It is hoped that this review will provide a better understanding of the harmful cardiovascular effects induced by air pollution exposure. This will help to bring a better understanding on the possible preventive health measures and will also serve regulatory agencies and researchers. In addition, elucidating the biological mechanisms underlying the link between air pollution and cardiovascular disease is an essential target in developing novel pharmacological strategies aimed at decreasing adverse effects of air pollution on cardiovascular system.

  8. Field study of thermal comfort and indoor air quality in gymnasium

    Institute of Scientific and Technical Information of China (English)

    谢慧; 甘晓爱; 马飞

    2009-01-01

    To analyze the thermal comfort and indoor air quality (IAQ) in a medium-sized mechanically ventilated gymnasium in Beijing,a field study was carried out. PHOENICS,one of the CFD software,was chosen to simulate the distribution of the indicators of indoor air in the gymnasium to check the air-conditioning parameters reasonable or not. And there was a questionnaire for audiences and staff about the acceptance and satisfaction of the thermal comfort,simultaneously,some environmental parameters were monitored. Then an experiment was carried out in gymnasium with the plate sedimentation to the biological aerosol in the air. Finally,the thermal comfort and IAQ in the gymnasium were assessed based on the results of above questionnaire survey and measurements. The results show that most parameters of the environmental are within the standard limits of thermal comfort and IAQ in the monitored period,and the biological contaminants initially come from human beings. The main species in the gymnasium are streptobacillus,coccus,cladosporium,penicillium and neurospora.

  9. EFFECT OF INDOOR AIR POLLUTION ON POSTURAL BALANCE CONTROL AMONG SCHOOL STUDENTS

    Directory of Open Access Journals (Sweden)

    Heba M Youssr El-Basatiny

    2014-12-01

    Full Text Available Background: To study the effect of indoor air pollution levels on postural balance control among Saudi school students. Methods: Ninety healthy students (age from 12-16 years were selected randomly from several preparatory schools representing two areas of different air pollution load and sources in the Eastern Province of Saudi Arabia (group A and B. Levels of carbon monoxide gas (CO, volatile organic compounds (VOCs and particulate matter less than 10 microns (PM10 were measured at different sites inside the selected schools. The postural control was measured for each participant using Biodex Balance System in bipedal stance with eyes open at the most and least stable levels for 20s. Results: There was no statistical significant difference for the mean values of overall stability index between both groups A and B at the most stable level (p=0.17, while there was a statistical significant difference at the least stable level with mean ± SD of group A and B 2.01±0.48 and 2.61±0.68 respectively. In addition, there were statistical significant differences between the mean levels of all measured air pollutants and overall stability index at the two stability levels in both groups (p<0.01. Conclusion: Indoor air pollution, particularly exposure of students to VOCs, PM10 and CO, has an adverse effect on postural balance control among school students even at low exposure levels.

  10. Measure Guideline: Combustion Safety for Natural Draft Appliances Using Indoor Air

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States)

    2014-04-01

    This measure guideline covers how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. A separate measure guideline addresses combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage that use outdoor air for combustion. This document is for inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.

  11. Photocatalytic elimination of indoor air biological and chemical pollution in realistic conditions.

    Science.gov (United States)

    Sánchez, Benigno; Sánchez-Muñoz, Marta; Muñoz-Vicente, María; Cobas, Guillermo; Portela, Raquel; Suárez, Silvia; González, Aldo E; Rodríguez, Nuria; Amils, Ricardo

    2012-05-01

    The photocatalytic elimination of microorganisms from indoor air in realistic conditions and the feasibility of simultaneous elimination of chemical contaminants have been studied at laboratory scale. Transparent polymeric monoliths have been coated with sol-gel TiO(2) films and used as photocatalyst to treat real indoor air in a laboratory-scale single-step annular photocatalytic reactor. The analytical techniques used to characterize the air quality and analyze the results of the photocatalytic tests were: colony counting, microscopy and PCR with subsequent sequencing for microbial quantification and identification; automated thermal desorption coupled to gas chromatography with mass spectrometry detection for chemical analysis. The first experiments performed proved that photocatalysis based on UVA-irradiated TiO(2) for the reduction of the concentration of bacteria in the air could compete with the conventional photolytic treatment with UVC radiation, more expensive and hazardous. Simultaneously to the disinfection, the concentration of volatile organic compounds was greatly reduced, which adds value to this technology for real applications. The fungal colony number was not apparently modified.

  12. Removal of fine and ultrafine particles from indoor air environments by the unipolar ion emission

    Science.gov (United States)

    Uk Lee, Byung; Yermakov, Mikhail; Grinshpun, Sergey A.

    2004-09-01

    The continuous emission of unipolar ions was evaluated in order to determine its ability to remove fine and ultrafine particles from indoor air environments. The evolution of the indoor aerosol concentration and particle size distribution was measured in real time with the ELPI in a room-size (24.3 m3) test chamber where the ion emitter was operating. After the results were compared with the natural decay, the air cleaning factor was determined. The particle aerodynamic size range of ∼0.04-2 μm was targeted because it represents many bioaerosol agents that cause emerging diseases, as well as those that can be used for biological warfare or in the event of bioterrorism. The particle electric charge distribution (also measured in the test chamber with the ELPI) was rapidly affected by the ion emission. It was concluded that the corona discharge ion emitters (either positive or negative), which are capable of creating an ion density of 105-106 e± cm-3, can be efficient in controlling fine and ultrafine aerosol pollutants in indoor air environments, such as a typical office or residential room. At a high ion emission rate, the particle mobility becomes sufficient so that the particle migration results in their deposition on the walls and other indoor surfaces. Within the tested ranges of the particle size and ion density, the particles were charged primarily due to the diffusion charging mechanism. The particle removal efficiency was not significantly affected by the particle size, while it increased with increasing ion emission rate and the time of emission. The performance characteristics of three commercially available ionic air purifiers, which produce unipolar ions by corona discharge at relatively high emission rates, were evaluated. A 30-minute operation of the most powerful device among those tested resulted in the removal of about 97% of 0.1 μm particles and about 95% of 1 μm particles from the air in addition to the natural decay effect.

  13. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas

    Energy Technology Data Exchange (ETDEWEB)

    2015-08-01

    ?Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy.

  14. Impact of reaction products from building materials and furnishings on indoor air quality—A review of recent advances in indoor chemistry

    Science.gov (United States)

    Uhde, E.; Salthammer, T.

    The variety of chemical substances present in modern building products, household products and furnishings provides potential for chemical reactions in the material (case 1), on the material surface (case 2) and in the gas phase (case 3). Such "indoor chemistry" is known as one of the main reasons for primary and secondary emissions. The conditions of production often cause unwanted side reactions and a number of new compounds can be found in finished products. Elevated temperatures are responsible for the degradation of cellulose, decomposition of non-heat-resistant additives and other thermally induced reactions like Diels-Alder synthesis. Heterogeneous chemistry takes place on the surface of materials. Well-known examples are the formation of aliphatic aldehydes from the oxidation of unsaturated fatty acids or the cleavage of photoinitiators under the influence of light. In case of composite flooring structures hydrolysis is one of the major pathways for the appearance of alcohols from esters. If different kinds of material are fixed together, emissions of new VOCs formed by inter-species reactions are possible. Other indoor air pollutants are formed by rearrangement of cleavage products or by metabolism. Compounds with -C dbnd C- bonds like terpenes, styrene, 4-phenylcyclohexene, etc. undergo gas phase reactions with O 3, NO x, OH and other reactive gases. It has been shown that such products derived from indoor-related reactions may have a negative impact on indoor air quality due to their low odor threshold or health-related properties. Therefore, the understanding of primary and secondary emissions and the chemical processes behind is essential for the evaluation of indoor air quality. This publication gives an overview on the current state of research and new findings regarding primary and secondary emissions from building products and furnishings.

  15. Effects of indoor air purification by an air cleaning system (Koala technology) on semen parameters in male factor infertility: results of a pilot study.

    Science.gov (United States)

    Paradisi, R; Vanella, S; Barzanti, R; Cani, C; Battaglia, C; Seracchioli, R; Venturoli, S

    2009-06-01

    A number of studies indicated a clear decline in semen quality in the past 30-50 years and there is accumulating evidence that this decline might result from exposure to high levels of air pollution. To examine the impact of environment on male reproductive ability, we undertook for the first time a pilot study on semen quality of infertile men exposed to purification of indoor air. Ten subjects with a history of unexplained male infertility and poor semen quality were exposed for at least 1 year to a cleaning indoor air system (Koala technology). The key feature of this air purifier is the unique innovative multiple filtering system. The treatment of total purification of indoor air showed neither improvements in semen parameters nor variation in reproductive hormones (P = N.S.), but induced an evident increase (P indoor air does not seem enough to improve semen quality, although the increase in leucocytic concentrations could indicate an activation of the role of immunosurveillance in a purified indoor air environment.

  16. An overview of indoor air quality and its impact on respiratory health among Malaysian school-aged children.

    Science.gov (United States)

    Choo, Chua Poh; Jalaludin, Juliana

    2015-01-01

    The indoor environment is a major source of human exposure to pollutants. Some pollutants can have concentrations that are several times higher indoors than outdoors. Prolonged exposure may lead to adverse biologic effects, even at low concentrations. Several studies done in Malaysia had underlined the role of indoor air pollution in affecting respiratory health, especially for school-aged children. A critical review was conducted on the quantitative literature linking indoor air pollution with respiratory illnesses among school-aged children. This paper reviews evidence of the association between indoor air quality (IAQ) and its implications on respiratory health among Malaysian school-aged children. This review summarizes six relevant studies conducted in Malaysia for the past 10 years. Previous epidemiologic studies relevant to indoor air pollutants and their implications on school-aged children's respiratory health were obtained from electronic database and included as a reference in this review. The existing reviewed data emphasize the impact of IAQ parameters, namely, indoor temperature, ventilation rates, indoor concentration of carbon dioxide (CO2), carbon monoxide (CO), particulate matters (PM), volatile organic compounds (VOCs), nitrogen dioxide (NO2) and airborne microbes, on children's respiratory health. The study found that most of the Malaysian school-aged children are exposed to the inadequate environment during their times spent either in their houses or in their classrooms, which is not in compliance with the established standards. Children living in households or studying in schools in urban areas are more likely to suffer from respiratory illnesses compared with children living in homes or studying in schools in rural areas.

  17. Natural Gas and Indoor Air Pollution: A Comparison With Coal Gas and Liquefied Petroleum Gas

    Institute of Scientific and Technical Information of China (English)

    YUE ZHANG; BAO-SHENG CHEN; GUANG-QUAN LIU; JU-NING WANG; ZHEN-HUA ZHAO; LIAN-QING LIN

    2003-01-01

    The study was designed to compare the combustion products of coal gas, liquefied petroleum gas and natural gas in relation to indoor air pollution. Methods Regular pollutants including B(a)P were monitored and 1-hydroxy pyrene were tested in urine of the enrolled subjects.Radon concentrations and their changes in four seasons were also monitored in the city natural gas from its source plant and transfer stations to final users. To analyze organic components of coal gas,liquefied petroleum gas and natural gas, a high-flow sampling device specially designed was used to collect their combustion products, and semi-volatile organic compounds contained in the particles were detected by gas chromatograph-mass spectrograph (GC/MS). Results Findings in the study showed that the regular indoor air pollutants particles and CO were all above the standard in winter when heating facilities were operated in the city, but they were lowest in kitchens using natural gas;furthermore, although NO2 and CO2 were slightly higher in natural gas, B(a)P concentration was lower in this group and 1-hydroxy pyrene was lowest in urine of the subjects exposed to natural gas.Organic compounds were more complicated in coal gas and liquefied petroleum gas than in natural gas. The concentration of radon in natural gas accounted for less than 1‰ of its effective dose contributing to indoor air pollution in Beijing households. Conclusion Compared to traditional fuels, gases are deemed as clean ones, and natural gas is shown to be cleaner than the other two gases.

  18. Indoor air pollution by particulate matter; Ryushijo busshitsu ni yoru osen

    Energy Technology Data Exchange (ETDEWEB)

    Irie, T. [Shinshu Univ., Nagano (Japan). Faculty of Education

    1995-07-31

    This paper explains the standards and the purport of the law for maintenance of sanitation in buildings, the outbreak of sickness relating to the sick-building syndrome and its countermeasures, etc., in connection with particulate matters in the indoor environment. The law of 1970 specified 0.15mg/m{sup 3} as the standard of indoor maintenance control for suspended particulate matters. As a number of data were subsequently accumulated, however, it was revealed that tobacco smoke particles were the very cause of the indoor particulate pollution though it was unpredicted at the beginning. As a result, it led to the development of high level filters, improvement of air conditioning operation, measures for smoking, and so on, for which the regulation of 0.15mg/m{sup 3} has been believed to be correct after all. The most frequently disqualified item was particulate matters at the initial enforcement of the law, but the moisture standard has been ranked first in recent years. The problems of tobacco smoke, asbestos and allergens are particularly to be watched among many problems involved. 10 refs., 2 figs., 3 tabs.

  19. Polybrominated diphenyl ethers in indoor air during waste TV recycling process.

    Science.gov (United States)

    Guo, Jie; Lin, Kuangfei; Deng, Jingjing; Fu, Xiaoxu; Xu, Zhenming

    2015-01-01

    Recycling process for waste TV sets mainly consists of dismantling, printed wiring board (PWB) heating, PWB recycling, and plastic crushing in formal recycling plant. Polybrominated diphenyl ethers (PBDEs) contained in waste TV sets are released to indoor air. Air samples at 4 different workshops were collected to measure the PBDEs concentrations in both gaseous and particulate phases. The mean concentrations of ∑PBDEs in indoor air were in the range of 6780-2,280,000 pg/m(3). The highest concentration in gaseous phase (291,000 pg/m(3)) was detected in the PWB heating workshop. The ∑12PBDEs concentrations in PM2.5 and PM10 at the 4 workshops ranged in 6.8-6670 μg/g and 32.6-6790 μg/g, respectively. The gas-particle partitioning of PBDEs was disrupted as PBDEs were continuously released during the recycling processes. Occupational exposure assessment showed that only the exposure concentration of BDE-47 (0.118 μg/kg/day) through inhalation in the PWB heating workshop for workers without facemask exceeded the reference dose (0.1 μg/kg/day), posing a health hazard to workers. All the results demonstrated that recycling of TV sets was an important source of PBDEs emission, and PBDEs emission pollution was related to the composition of TV sets, interior dust, and recycling process.

  20. Indoor air quality scenario in India-An outline of household fuel combustion

    Science.gov (United States)

    Rohra, Himanshi; Taneja, Ajay

    2016-03-01

    Most of the research around the world has been on outdoor air pollution, but in India we have a more severe problem of Indoor Air Pollution (IAP). The foremost factor cited for is burning of fossil fuels for cooking. Among the 70% of the country's rural population, about 80% households rely on biomass fuel making India to top the list of countries with largest population lacking access to cleaner fuel for cooking. 4 million deaths and 5% disability-adjusted life-years is an upshot of exposure to IAP from unhealthy cooking making it globally the most critical environmental risk factor. India alone bears the highest burden (28% needless deaths) among developing countries. Moreover, about ¼ of ambient PM2.5 in the country comes from household cookfuels. These considerations have prompted the discussion of the present knowledge on the disastrous health effects of pollutants emitted by biomass combustion in India. Additionally, Particulate Matter as an indoor air pollutant is highlighted with main focus on its spatial temporal variation and some recent Indian studies are further explored. As there are no specific norms for IAP in India, urgent need has arisen for implementing the strategies to create public awareness. Moreover improvement in ventilation and modification in the pattern of fuel will also contribute to eradicate this national health issue.

  1. Indoor air quality in energy-efficient dwellings: levels and sources of pollutants.

    Science.gov (United States)

    Derbez, Mickaël; Wyart, Guillaume; Le Ponner, Eline; Ramalho, Olivier; Ribéron, Jacques; Mandin, Corinne

    2017-09-28

    Worldwide, public policies are promoting energy-efficient buildings and accelerating the thermal renovation of existing buildings. The effects of these changes on the indoor air quality (IAQ) in these buildings remain insufficiently understood. In this context, a field study was conducted in 72 energy-efficient dwellings to describe the pollutants known to be associated with health concerns. Measured parameters included the concentrations of 19 volatile organic compounds and aldehydes, nitrogen dioxide, particulate matter (PM2.5 ), radon, temperature and relative humidity. The air stuffiness index and night-time air exchange rate were calculated from the monitored carbon dioxide (CO2 ) concentrations. Indoor and outdoor measurements were performed at each dwelling during one week in each of the two following seasons: heating and non-heating. Moreover, questionnaires were completed by the occupants to characterize the building, equipment, household and occupants' habits. Perspective on our results was provided by previous measurements made in low-energy European dwellings. Statistical comparisons with the French housing stock and a pilot study showed higher concentrations of terpenes, i.e., alpha-pinene and limonene, and hexaldehyde in our study than in previous studies. Alpha-pinene and hexaldehyde are emitted by wood or wood-based products used for the construction, insulation, decoration and furnishings of the dwellings, whereas limonene is more associated with discontinuous sources related to human activities. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Should Title 24 Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure?

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, Spencer M.; Mendell, Mark J.; Chan, Wanyu R.

    2013-05-13

    Minimum outdoor air ventilation rates (VRs) for buildings are specified in standards, including California?s Title 24 standards. The ASHRAE ventilation standard includes two options for mechanically-ventilated buildings ? a prescriptive ventilation rate procedure (VRP) that specifies minimum VRs that vary among occupancy classes, and a performance-based indoor air quality procedure (IAQP) that may result in lower VRs than the VRP, with associated energy savings, if IAQ meeting specified criteria can be demonstrated. The California Energy Commission has been considering the addition of an IAQP to the Title 24 standards. This paper, based on a review of prior data and new analyses of the IAQP, evaluates four future options for Title 24: no IAQP; adding an alternate VRP, adding an equivalent indoor air quality procedure (EIAQP), and adding an improved ASHRAE-like IAQP. Criteria were established for selecting among options, and feedback was obtained in a workshop of stakeholders. Based on this review, the addition of an alternate VRP is recommended. This procedure would allow lower minimum VRs if a specified set of actions were taken to maintain acceptable IAQ. An alternate VRP could also be a valuable supplement to ASHRAE?s ventilation standard.

  3. Estimating the health benefit of reducing indoor air pollution in a randomized environmental intervention

    Science.gov (United States)

    Peng, Roger D.; Butz, Arlene M.; Hackstadt, Amber J.; Williams, D'Ann L.; Diette, Gregory B.; Breysse, Patrick N.; Matsui, Elizabeth C.

    2016-01-01

    Recent intervention studies targeted at reducing indoor air pollution have demonstrated both the ability to improve respiratory health outcomes and to reduce particulate matter (PM) levels in the home. However, these studies generally do not address whether it is the reduction of PM levels specifically that improves respiratory health. In this paper we apply the method of principal stratification to data from a randomized air cleaner intervention designed to reduce indoor PM in homes of children with asthma. We estimate the health benefit of the intervention amongst study subjects who would experience a substantial reduction in PM in response to the intervention. For those subjects we find an increase in symptom-free days that is almost three times as large as the overall intention-to-treat effect. We also explore the presence of treatment effects amongst those subjects whose PM levels would not respond to the air cleaner. This analysis demonstrates the usefulness of principal stratification for environmental intervention trials and its potential for much broader application in this area. PMID:27695203

  4. Simultaneous determination of 18 pyrethroids in indoor air by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Yoshida, Toshiaki

    2009-06-26

    An analytical method was developed for the simultaneous measurement of 18 pyrethroids (allethrin, bifenthrin, cyfluthrin, cypermethrin, cyphenothrin, deltamethrin, empenthrin, fenpropathrin, furamethrin, imiprothrin, metofluthrin, permethrin, phenothrin, prallethrin, profluthrin, resmethrin, tetramethrin and transfluthrin) in indoor air. The pyrethroids were collected for 24 h using a combination of adsorbents (quartz fiber filter disk and Empore C18 disk), with protection from light, and then extracted with acetone, concentrated, and analyzed by GC/MS. They could be determined accurately and precisely (detection limits: ca. 1 ng/m(3)). The collected pyrethroid samples could be stored for up to one month at 4 degrees C in a refrigerator.

  5. Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors

    Energy Technology Data Exchange (ETDEWEB)

    Solanki, S.C.; Dubey, Swapnil [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Tiwari, Arvind [Department of Design, Production and Management, University of Twente, Enschede (Netherlands)

    2009-11-15

    An indoor standard test procedure has been developed for thermal and electrical testing of PV/T collectors connected in series. For this, a PV/T solar air heater has been designed, fabricated and its performance over different operating parameters were studied. Based on the energy balance equations, in a steady state condition, a thermal model has been developed. Comparison between experimental and theoretical results were also been carried out. The thermal and electrical efficiency of the solar heater is 42% and 8.4%, respectively. This test procedure can be used by manufacturers for testing of different types of PV modules in order to optimize its products. (author)

  6. Indoor air quality in passive and conventional new houses in Sweden

    DEFF Research Database (Denmark)

    Langer, Sarka; Bekö, Gabriel; Bloom, Erica;

    2015-01-01

    flora were measured. Air exchange rates (AER) were estimated from the CO2 concentrations measured in the bedrooms. The median AER was slightly higher in the passive houses than in the conventional ones (0.68h-1 vs. 0.60h-1). The median concentrations in the passive and the conventional buildings were 10...... sources of formaldehyde may have been more pronounced in the conventional houses. In contrast to the passive houses, the indoor microbiological flora indicated possible mould or moisture problems in six (29%) of the conventionally built houses. When compared with the results previously reported...

  7. Investigation on particle matter concentration and bacterial bioaerosols in indoor air of prisons

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Sekhavatjou

    2014-03-01

    Conclusion: Based on the results, the maximum contamination load and exceeded concentration was observed in public sections and bedchambers. This findings were attributed to the daily entry of new prisoners, high population density in prison, presence of ill prisoners, prisoners with hidden respiratory disease showing no symptoms yet, old building, climatic conditions of the region, low efficiency of ventilation systems, and influx of particulates. To filter and purify prison indoor air, it is crucial to take serious action plans such as reducing criminal population density, sanitary and engineering measures

  8. Human requirements to the indoor air quality and the thermal environment

    Science.gov (United States)

    Fanger, P. Ole

    Perceived air quality, general thermal sensation of the occupants and risk of draft, aspects which human comfort in a space depends upon, are reviewed separately based on European Guidelines for Ventilation Requirements in Buildings and on a modified ISO (International Standards Organization) standard 7730 on thermal comfort. The perceived air quality is expressed in decipol or percentage of dissatisfied occupants. The general thermal sensation is expressed by the PMV/PPD indices. The perception of draft is expressed by the model of draft risk. Indoor air quality is mediocre and causes complaints in many buildings. The reason for this is often hidden pollution sources in the building, hitherto ignored in previous ventilation standards. To determine the required ventilation, a method is used in the European Guidelines. The new Guidelines acknowledge all pollution sources in the building, expressed in olfs. The method is based on the desired air quality in the space, the available quality of the outdoor air, the ventilation effectiveness and on the total pollution load in the space. The model of draft risk predicts the percentage of occupants feeling draft as a function of the mean air velocity, the turbulence intensity and the air temperature.

  9. Causes of Indoor Air Quality Problems in Schools: Summary of Scientific Research

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, C.W.

    2001-02-22

    In the modern urban setting, most individuals spend about 80% of their time indoors and are therefore exposed to the indoor environment to a much greater extent than to the outdoors (Lebowitz 1992). Concomitant with this increased habitation in urban buildings, there have been numerous reports of adverse health effects related to indoor air quality (IAQ) (sick buildings). Most of these buildings were built in the last two decades and were constructed to be energy-efficient. The quality of air in the indoor environment can be altered by a number of factors: release of volatile compounds from furnishings, floor and wall coverings, and other finishing materials or machinery; inadequate ventilation; poor temperature and humidity control; re-entrainment of outdoor volatile organic compounds (VOCs); and the contamination of the indoor environment by microbes (particularly fungi). Armstrong Laboratory (1992) found that the three most frequent causes of IAQ are (1) inadequate design and/or maintenance of the heating, ventilation, and air-conditioning (HVAC) system, (2) a shortage of fresh air, and (3) lack of humidity control. A similar study by the National Institute for Occupational Safety and Health (NIOSH 1989) recognized inadequate ventilation as the most frequent source of IAQ problems in the work environment (52% of the time). Poor IAQ due to microbial contamination can be the result of the complex interactions of physical, chemical, and biological factors. Harmful fungal populations, once established in the HVAC system or occupied space of a modern building, may episodically produce or intensify what is known as sick building syndrome (SBS) (Cummings and Withers 1998). Indeed, SBS caused by fungi may be more enduring and recalcitrant to treatment than SBS from multiple chemical exposures (Andrae 1988). An understanding of the microbial ecology of the indoor environment is crucial to ultimately resolving many IAQ problems. The incidence of SBS related to multiple

  10. Temporal variation of indoor air quality in an enclosed swine confinement building.

    Science.gov (United States)

    O'Shaughnessy, P T; Achutan, C; Karsten, A W

    2002-11-01

    Human health hazards can exist in swine confinement buildings due to poor indoor air quality (IAQ). During this study, airborne dust and ammonia concentrations were monitored within a working farrowing facility as indicators of IAQ. The purposes of this study were to assess the temporal variability of the airborne dust and ammonia levels over both a daily and seasonal basis, and to determine the accuracy of real-time sensors relative to actively sampled data. An ammonia sensor, aerosol photometer, indoor relative humidity sensor, and datalogger containing an indoor temperature sensor were mounted on a board 180 cm above the floor in the center of a room in the facility. Sensor readings were taken once every 4 minutes during animal occupancy (3-week intervals). Measurements of total and respirable dust concentrations by standard method, aerosol size distribution, and ammonia concentrations were taken once per week, in addition to temperature and relative humidity measurements using a thermometer and sling psychrometer, respectively. Samples were taken between September 1999 and August 2000. Diurnal variations in airborne dust revealed an inverse relationship with changes in indoor temperature and, by association, changes in airflow rate. Ammonia levels changed despite relatively stable internal temperatures. This change may be related to both changes in flow rates and in volatility rates. As expected, contaminant concentrations increased during the cold weather months, but these differences were not significantly different from other seasons. However, total dust concentrations were very low (geometric mean = 0.8 mg/m3) throughout the year. Likewise, ammonia concentrations averaged only 3.6 ppm in the well-maintained study site.

  11. Determination of lead, cations, and anions concentration in indoor and outdoor air at the primary schools in Kuala Lumpur.

    Science.gov (United States)

    Awang, Normah; Jamaluddin, Farhana

    2014-01-01

    This study was carried out to determine the concentration of lead (Pb), anions, and cations at six primary schools located around Kuala Lumpur. Low volume sampler (MiniVol PM10) was used to collect the suspended particulates in indoor and outdoor air. Results showed that the concentration of Pb in indoor air was in the range of 5.18 ± 1.08 μg/g-7.01 ± 0.08 μg/g. All the concentrations of Pb in indoor air were higher than in outdoor air at all sampling stations. The concentrations of cations and anions were higher in outdoor air than in indoor air. The concentration of Ca(2+) (39.51 ± 5.01 mg/g-65.13 ± 9.42 mg/g) was the highest because the cation existed naturally in soil dusts, while the concentrations of NO3 (-) and SO4 (2-) were higher in outdoor air because there were more sources of exposure for anions in outdoor air, such as highly congested traffic and motor vehicles emissions. In comparison, the concentration of NO3 (-) (29.72 ± 0.31 μg/g-32.00 ± 0.75 μg/g) was slightly higher than SO4 (2-). The concentrations of most of the parameters in this study, such as Mg(2+), Ca(2+), NO3 (-), SO4 (2-), and Pb(2+), were higher in outdoor air than in indoor air at all sampling stations.

  12. Indoor air quality levels in a University Hospital in the Eastern Province of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Mahmoud F El-Sharkawy

    2014-01-01

    Full Text Available Aim of the Study: The complex hospital environment requires special attention to ensure a healthy indoor air quality (IAQ to protect patients and healthcare workers against hospital-acquired infections and occupational diseases. Poor hospital IAQ may cause outbreaks of building-related illness such as headaches, fatigue, eye, and skin irritations, and other symptoms. The general objective for this study was to assess IAQ inside a large University hospital at Al-Khobar City in the Eastern Province of Saudi Arabia. Materials and Methods: Different locations representing areas where most activities and tasks are performed were selected as sampling points for air pollutants in the selected hospital. In addition, several factors were studied to determine those that were most likely to affect the IAQ levels. The temperature and relative percent humidity of different air pollutants were measured simultaneously at each location. Results: The outdoor levels of all air pollutant levels, except volatile organic compounds (VOCs, were higher than the indoor levels which meant that the IAQ inside healthcare facilities (HCFs were greatly affected by outdoor sources, particularly traffic. The highest levels of total suspended particulates (TSPs and those less than 10 microns (PM 10 inside the selected hospital were found at locations that are characterized with m4ore human activity. Conclusions:Levels of particulate matter (both PM 10 and TSP were higher than the Air Quality Guidelines (AQGs. The highest concentrations of the fungal species recorded were Cladosporium and Penicillium. Education of occupants of HCF on IAQ is critical. They must be informed about the sources and effects of contaminants and the proper operation of the ventilation system.

  13. Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, Robert D.; Hadley, Donald L.; Armstrong, Peter R.; Buck, John W.; Hoopes, Bonnie L.; Janus, Michael C.

    2001-03-01

    Indoor air quality effects on human health are of increasing concern to public health agencies and building owners. The prevention and treatment of 'sick building' syndrome and the spread of air-borne diseases in hospitals, for example, are well known priorities. However, increasing attention is being directed to the vulnerability of our public buildings/places, public security and national defense facilities to terrorist attack or the accidental release of air-borne biological pathogens, harmful chemicals, or radioactive contaminants. The Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System (IA-NBC-HMAS) was developed to serve as a health impact analysis tool for use in addressing these concerns. The overall goal was to develop a user-friendly fully functional prototype Health Modeling and Assessment system, which will operate under the PNNL FRAMES system for ease of use and to maximize its integration with other modeling and assessment capabilities accessible within the FRAMES system (e.g., ambient air fate and transport models, water borne fate and transport models, Physiologically Based Pharmacokinetic models, etc.). The prototype IA-NBC-HMAS is designed to serve as a functional Health Modeling and Assessment system that can be easily tailored to meet specific building analysis needs of a customer. The prototype system was developed and tested using an actual building (i.e., the Churchville Building located at the Aberdeen Proving Ground) and release scenario (i.e., the release and measurement of tracer materials within the building) to ensure realism and practicality in the design and development of the prototype system. A user-friendly "demo" accompanies this report to allow the reader the opportunity for a "hands on" review of the prototype system's capability.

  14. Effectiveness of HVAC duct cleaning procedures in improving indoor air quality.

    Science.gov (United States)

    Ahmad, I; Tansel, B; Mitrani, J D

    2001-12-01

    Indoor air quality has become one of the most serious environmental concerns as an average person spends about 22 hr indoors on a daily basis. The study reported in this article, was conducted to determine the effectiveness of three commercial HVAC (Heating Ventilation Air Conditioning) duct cleaning processes in reducing the level of airborne particulate matter and viable bioaerosols. The three HVAC sanitation processes were: (1) Contact method (use of conventional vacuum cleaning of interior duct surfaces); (2) Air sweep method (use of compressed air to dislodging dirt and debris); (3) Rotary brush method (insertion of a rotary brush into the ductwork to agitate and dislodge the debris). Effectiveness of these sanitation processes was evaluated in terms of airborne particulate and viable bioaerosol concentrations in residential homes. Eight identical homes were selected in the same neighborhood. Two homes were cleaned using each procedure and two were used as controls. It was found that both particle count readings and bioaerosol concentrations were higher when cleaning was being performed than before or after cleaning, which suggests that dirt, debris and other pollutants may become airborne as a result of disturbances caused by the cleaning processes. Particle count readings at 0.3 micron size were found to have increased due to cigarette smoking. Particle counts at 1.0 micron size were reduced due to HVAC duct cleaning. Post-level bioaerosol concentrations, taken two days after cleaning, were found to be lower than the pre-level concentrations suggesting that the cleaning procedures were effective to some extent. Homes cleaned with the Air Sweep procedure showed the highest degree of reduction in bioaerosol concentration among the three procedures investigated.

  15. Simultaneous sampling and analysis of indoor air infested with Cimex lectularius L. (Hemiptera: Cimicidae) by solid phase microextraction, thin film microextraction and needle trap device.

    Science.gov (United States)

    Eom, In-Yong; Risticevic, Sanja; Pawliszyn, Janusz

    2012-02-24

    Air in a room infested by Cimex lectularius L. (Hemiptera: Cimicidae) was sampled simultaneously by three different sampling devices including solid phase microextraction (SPME) fiber coatings, thin film microextraction (TFME) devices, and needle trap devices (NTDs) and then analyzed by gas chromatography-mass spectrometry (GC-MS). The main focus of this study was to fully characterize indoor air by identifying compounds extracted by three different microextraction formats and, therefore, perform both the device comparison and more complete characterization of C. lectularius pheromone. The NTD technique was capable of extracting both (E)-2-hexenal and (E)-2-octenal, which were previously identified as alarm pheromones of bedbugs, and superior NTD recoveries for these two components allowed reliable identification based on mass spectral library searching and linear temperature programmed retention index (LTPRI) technique. While the use of DVB/CAR/PDMS SPME fiber coatings provided complementary sample fingerprinting and profiling results, TFME sampling devices provided discriminative extraction coverage toward highly volatile analytes. In addition to two alarm pheromones, relative abundances of all other analytes were recorded for all three devices and aligned across all examined samples, namely, highly infested area, less infested area, and control samples which were characterized by different bedbug populations. The results presented in the current study illustrate comprehensive characterization of infested indoor air samples through the use of three different non-invasive SPME formats and identification of novel components comprising C. lectularius pheromone, therefore, promising future alternatives for use of potential synthetic pheromones for detection of infestations.

  16. Cat serum contamination by phthalates, PCBs, and PBDEs versus food and indoor air.

    Science.gov (United States)

    Braouezec, Clélie; Enriquez, Brigitte; Blanchard, Martine; Chevreuil, Marc; Teil, Marie-Jeanne

    2016-05-01

    A wide variety of endocrine disrupting compounds (EDCs) with semi-volatile properties are emitted to indoor air and, thus, humans might get exposed to these compounds. Pet cats spend the major part of their lifetime at home and might integrate indoor contamination so that they could mirror the human exposure. Three classes of EDCs, polybromodiphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and phthalates (PAEs), were simultaneously considered and quantified in the serum of cats (Felis silvestris catus) living in the Paris area (France). The main compound concentrations by decreasing importance order were as follows: for PAEs, di-n-butyl phthalate (79,900 ng L(-1)) next di-iso-butyl phthalate (53,200 ng L(-1)), di-iso-nonyl phthalate (43,800 ng L(-1)), and di-ethylhexyl phthalate (32,830 ng L(-1)); for PCBs, CB153 (1378 ng L(-1)) next CB52 (509 ng L(-1)), CB101 (355 ng L(-1)), CB110 (264 ng L(-1)), and CB118 (165 ng L(-1)); and for PBDEs, BDE 153/154 (35 ng L(-1)) next BDE47 (10.7 ng L(-1)). Total serum concentrations as mean ± standard deviation were 107 ± 98 μg L(-1) for ∑9PAEs, 2799 ± 944 ng L(-1) for ∑19PCBs, and 56 ± 21 ng L(-1) for ∑9BDEs. The three chemical groups were found in cat food: 0.088 ng g(-1) for ∑9BDEs, 1.7 ng g(-1) for ∑19PCBs, and 2292 ng g(-1) for ∑9PAEs and in indoor air: 0.063 ng m(-3) for ∑9BDEs, 1.5 ng m(-3) for ∑19PCBs, and 848 ng m(-3) for ∑9PAEs. Contaminant intake by food ingestion was approximately 100-fold higher than that by indoor air inhalation.

  17. Heterogeneous photocatalysis of aromatic and chlorinated volatile organic compounds (VOCs) for non-occupational indoor air application.

    Science.gov (United States)

    Jo, Wan-Kuen; Park, Kun-Ho

    2004-11-01

    The current study evaluated the technical feasibility of applying TiO2 photocatalysis to the removal of low-ppb concentrations of volatile organic compounds (VOCs) commonly associated with non-occupational indoor air quality issues. A series of experiments was conducted to evaluate five parameters (relative humidity (RH), hydraulic diameter (HD), feeding type (FT) for VOCs, photocatalytic oxidation (PCO) reactor material (RM), and inlet port size (IPS) of PCO reactor) in relation to the PCO destruction efficiencies of the selected target VOCs. None of the target VOCs exhibited any significant dependence on the RH, which is inconsistent with a previous study where, under conditions of low humidity and a ppm toluene inlet level, a drop in the PCO efficiency was reported with a decreasing humidity. However, the other four parameters (HD, RM, FT, and IPS) were found to be important for better VOC removal efficiencies as regards the application of TiO2 photocatalytic technology for cleansing non-occupational indoor air. The PCO destruction of VOCs at concentrations associated with non-occupational indoor air quality issues was up to nearly 100%, and the CO generated during PCO was a negligible addition to indoor CO levels. Accordingly, a PCO reactor would appear to be an important tool in the effort to improve non-occupational indoor air quality.

  18. Transient analysis and improvement of indoor thermal comfort for an air-conditioned room with thermal insulations

    Directory of Open Access Journals (Sweden)

    D. Prakash

    2015-09-01

    Full Text Available Thermal insulations over the building envelop reduce the heat gain due to solar radiation and may enhance good and uniform indoor thermal comfort for the occupants. In this paper, the insulation layer-wood wool is laid over the roof and exposed wall of an air-conditioned room and its performance on indoor thermal comfort is studied by computational fluid dynamics (CFD technique. From this study, 3% of indoor thermal comfort index-predicted mean vote (PMV is improved by providing wood wool layer. In addition, the optimum supply air temperature of air-conditioning unit for good thermal comfort is predicted as in the range of 299–300 K (26–27 °C.

  19. Indoor weather related to the energy consumption of air conditioned classroom: Monitoring system for energy efficient building plan

    Science.gov (United States)

    Rattanongphisat, W.; Suwannakom, A.; Harfield, A.

    2016-08-01

    The current research aims to investigate the relation of indoor weather to energy consumption of air conditioned classroom by design and construct the indoor weather and energy monitoring systems. In this research, a combined temperature and humidity sensor in conjunction with a microcontroller was constructed for the indoor weather monitoring system. The wire sensor network for the temperature-humidity sensor nodes is the Controller Area Network (CAN). Another part is using a nonintrusive method where a wireless current transformer sending the signal to the data collection box then transmitted by the radio frequency to the computer where the Ethernet application software was installed for the energy monitoring system. The results show that the setting air temperature, outdoor ambient temperature and operating time impact to the energy consumption of the air conditioned classroom.

  20. Building characteristics, indoor air quality and recurrent wheezing in very young children (BAMSE).

    Science.gov (United States)

    Emenius, G; Svartengren, M; Korsgaard, J; Nordvall, L; Pershagen, G; Wickman, M

    2004-02-01

    This study was conducted to examine the impact of building characteristics and indoor air quality on recurrent wheezing in infants. We followed a birth cohort (BAMSE) comprising 4089 children, born in predefined areas of Stockholm, during their first 2 years of life. Information on exposures was obtained from parental questionnaires when the children were 2 months and on symptoms and diseases when the children were 1 and 2 years old. Children with recurrent wheezing, and two age-matched controls per case, were identified and enrolled in a nested case-control study. The homes were investigated and ventilation rate, humidity, temperature and NO2 measured. We found that living in an apartment erected after 1939, or in a private home with crawl space/concrete slab foundation were associated with an increased risk of recurrent wheezing, odds ratio (OR) 2.5 (1.3-4.8) and 2.5 (1.1-5.4), respectively. The same was true for living in homes with absolute indoor humidity >5.8 g/kg, OR 1.7 (1.0-2.9) and in homes where windowpane condensation was consistently reported over several years, OR 2.2 (1.1-4.5). However, air change rate and type of ventilation system did not seem to affect the risk. In conclusion, relatively new apartment buildings, single-family homes with crawl space/concrete slab foundation, elevated indoor humidity, and reported wintertime windowpane condensation were associated with recurrent wheezing in infants. Thus, improvements of the building quality may have potential to prevent infant wheezing.

  1. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.

    Science.gov (United States)

    Levy, Jonathan I; Clougherty, Jane E; Baxter, Lisa K; Houseman, E Andres; Paciorek, Christopher J

    2010-12-01

    Previous studies have identified associations between traffic exposures and a variety of adverse health effects, but many of these studies relied on proximity measures rather than measured or modeled concentrations of specific air pollutants, complicating interpretability of the findings. An increasing number of studies have used land-use regression (LUR) or other techniques to model small-scale variability in concentrations of specific air pollutants. However, these studies have generally considered a limited number of pollutants, focused on outdoor concentrations (or indoor concentrations of ambient origin) when indoor concentrations are better proxies for personal exposures, and have not taken full advantage of statistical methods for source apportionment that may have provided insight about the structure of the LUR models and the interpretability of model results. Given these issues, the primary objective of our study was to determine predictors of indoor and outdoor residential concentrations of multiple traffic-related air pollutants within an urban area, based on a combination of central site monitoring data; geographic information system (GIS) covariates reflecting traffic and other outdoor sources; questionnaire data reflecting indoor sources and activities that affect ventilation rates; and factor-analytic methods to better infer source contributions. As part of a prospective birth cohort study assessing asthma etiology in urban Boston, we collected indoor and/or outdoor 3-to-4 day samples of nitrogen dioxide (NO2) and fine particulate matter with an aerodynamic diameter or = 2.5 pm (PM2.5) at 44 residences during multiple seasons of the year from 2003 through 2005. We performed reflectance analysis, x-ray fluorescence spectroscopy (XRF), and high-resolution inductively coupled plasma-mass spectrometry (ICP-MS) on particle filters to estimate the concentrations of elemental carbon (EC), trace elements, and water-soluble metals, respectively. We derived

  2. Nitric oxide in exhaled and aspirated nasal air as an objective measure of human response to isopropanol oxidation products and pthtalate esters in indoor air

    DEFF Research Database (Denmark)

    Lagercrantz, Love Per; Famula, Basia; Sundell, Jan

    2005-01-01

    The use of Nitric Oxide (NO) concentration in exhaled and aspirated nasal air to assess human response to indoor air pollution was tested in a climate chamber exposure experiment. The concentration of NO was measured using a chemiluminescence NO analyser. Sixteen healthy female subjects were expo...

  3. Environmental assessment of three egg production systems--Part I: Monitoring system and indoor air quality.

    Science.gov (United States)

    Zhao, Y; Shepherd, T A; Li, H; Xin, H

    2015-03-01

    To comprehensively assess conventional vs. some alternative laying-hen housing systems under U.S. production conditions, a multi-institute and multi-disciplinary project, known as the Coalition for Sustainable Egg Supply (CSES) study, was carried out at a commercial egg production farm in the Midwestern United States over two single-cycle production flocks. The housing systems studied include a conventional cage house (200,000 hen capacity), an aviary house (50,000 hen capacity), and an enriched colony house (50,000 hen capacity). As an integral part of the CSES project, continual environmental monitoring over a 27-month period described in this paper quantifies indoor gaseous and particulate matter concentrations, thermal environment, and building ventilation rate of each house. Results showed that similar indoor thermal environments in all three houses were maintained through ventilation management and environmental control. Gaseous and particulate matter concentrations of the enriched colony house were comparable with those of the conventional cage house. In comparison, the aviary house had poorer indoor air quality, especially in wintertime, resulting from the presence of floor litter (higher ammonia levels) and hens' activities (higher particulate matter levels) in it. Specifically, daily mean indoor ammonia concentrations had the 95% confidence interval values of 3.8 to 4.2 (overall mean of 4.0) ppm for the conventional cage house; 6.2 to 7.2 (overall mean of 6.7) ppm for the aviary house; and 2.7 to 3.0 (overall mean of 2.8) ppm for the enriched colony house. The 95% confidence interval (overall mean) values of daily mean indoor carbon dioxide concentrations were 1997 to 2170 (2083) ppm for the conventional cage house, 2367 to 2582 (2475) ppm for the aviary house, and 2124 to 2309 (2216) ppm for the enriched colony house. Daily mean indoor methane concentrations were similar for all three houses, with 95% confidence interval values of 11.1 to 11.9 (overall

  4. α-Pinene, 3-carene and d-limonene in indoor air of Polish apartments: the impact on air quality and human exposure.

    Science.gov (United States)

    Król, Sylwia; Namieśnik, Jacek; Zabiegała, Bożena

    2014-01-15

    Monoterpenes are among most ubiquitous volatile organic compounds (VOCs) to be detected in indoor air. Since the quality of indoor air is considered important for inhabitants' well-being, the present study aimed at investigating impact of human activity on levels of selected monoterpenes applying passive sampling technique followed by thermal desorption and gas chromatography coupled mass spectrometry. One of the objectives of the present work was to identify and characterize main emission sources as well as to investigate relationship between selected monoterpenes in indoor air. Concentration levels obtained for studied monoterpenes varied from 3 μg m(-3) for 3-carene to 1261 μg m(-3) for d-limonene. D-limonene was reported the most abundant of studied monoterpenes in indoor air. The strong correlation observed between monoterpenes suggests that studied compounds originate from same emission sources, while the I/O >1 proves the strong contribution of endogenous emission sources. The in-depth study of day-night fluctuations in concentrations of monoterpenes lead to the conclusion that human presence and specific pattern of behavior strongly influences presence and concentrations of VOCs in indoor environment. The evaluation of human exposure to selected monoterpenes via inhalation of air revealed that infants, toddlers and young children were the highly exposed individuals.

  5. A Pilot Study to Understand the Variation in Indoor Air Quality in Different Economic Zones of Delhi University

    Science.gov (United States)

    Garg, Abhinav; Ghosh, Chirashree

    Today, one of the most grave environmental health problems being faced by the urban population is the poor air quality one breathes in. To testify the above statement, the recent survey report, World health statistics (WHO, 2012) reflects the fact that childhood mortality ratio from acute respiratory infection is one of the top leading causes of death in developing countries like India. Urban areas have a complex social stratification which ultimately results in forming different urban economic zones. This research attempts to understand the Indoor Air Quality (IAQ) by taking into consideration different lifestyle of occupants inhabiting these economic zones. The Study tries to evaluate the outdoor and indoor air quality by understanding the variation of selected pollutants (SPM, SOx, NOx) for the duration of four months - from October, 2012-January, 2013. For this, three economic zones (EZ) of Delhi University’s North Campus, were selected - Urban Slum (EZ I), Clerical (EZ II) and Faculty residence (EZ III). The statistical study indicates that Urban Slum (EZ I) was the most polluted site reporting maximum concentration of outdoor pollutants, whereas no significant difference in pollution load was observed in EZ II and EZ III. Further, the indoor air quality was evaluated by quantifying the indoor and outdoor pollution concentration ratios that shows EZ III have most inferior indoor air quality, followed by EZ I and EZ II. Moreover, it was also observed that ratio (phenomenon of infiltration) was dominant at the EZ II but was low for the EZ I and EZ III. With the evidence of high Indoor air pollution, the risk of pulmonary diseases and respiratory infections also increases, calling for an urgent requisite for making reforms to improve IAQ. Key words: Urban Area, Slum, IAQ, SOx, NOx, SPM

  6. Portable formaldehyde monitoring device using porous glass sensor and its applications in indoor air quality studies.

    Science.gov (United States)

    Maruo, Yasuko Yamada; Nakamura, Jiro

    2011-09-30

    We have developed a portable device for formaldehyde monitoring with both high sensitivity and high temporal resolution, and carried out indoor air formaldehyde concentration analysis. The absorbance difference of the sensor element was measured in the monitoring device at regular intervals of, for example, one hour or 30 min, and the result was converted into the formaldehyde concentration. This was possible because we found that the lutidine derivative that was formed as a yellow product of the reaction between 1-phenyl-1,3-butandione and formaldehyde was stable in porous glass for at least six months. We estimated the reaction rate and to be 0.049 min(-1) and the reaction occurred quickly enough for us to monitor hourly changes in the formaldehyde concentration. The detection limit was 5 μg m(-3) h. We achieved hourly formaldehyde monitoring using the developed device under several indoor conditions, and estimated the air exchange rate and formaldehyde adsorption rate, which we adopted as a new term in the mass balance equation for formaldehyde, in one office.

  7. Consequence of indoor air pollution in rural area of Nepal: a simplified measurement approach

    Directory of Open Access Journals (Sweden)

    Chhabi Lal Ranabhat

    2015-01-01

    Full Text Available People of developing countries especially from rural area are commonly exposed to high levels of household pollution for 3–7 hours daily using biomass in their kitchen. Such biomass produces harmful smoke and makes indoor air pollution. Community based cross-sectional study was performed to identify effects of indoor air pollution (IAP by simplified measurement approach in Sunsari district of Nepal. Representative samples of 157 housewives from household, involving more than 5 years in kitchen were included by cluster sampling. Data was analyzed by SPSS and logistic regression was applied for the statistical test. Most (87.3% housewives used biomass as a cooking fuel. Tearing of eyes, difficulty in breathing and productive cough were the main reported health problems and traditional mud stoves and use of unrefined biomass were statistically significant (p 2 with health problems related to IAP. The treatment cost and episodes of acute respiratory infection (ARI was >2 folders higher in severe IAP than mild IAP. Simplified measurement approach could be helpful to measure IAP in rural area. Some effective intervention is suggested to reduce the severe level of IAP considering women and children.

  8. Dioxin-like PCB in indoor air contaminated with different sources

    Energy Technology Data Exchange (ETDEWEB)

    Heinzow, B.G.J.; Mohr, S.; Ostendorp, G. [Landesamt fuer Gesundheit und Arbeitssicherheit des Landes Schleswig-Holstein, Flintbek (Germany); Kerst, M.; Koerner, W. [Bayerisches Landesamt fuer Umweltschutz, Augsburg (Germany)

    2004-09-15

    Polychlorinated biphenyls (PCB) have been used in public building constructions for various purposes in the 1960s and 1970s, mainly as an additive to concrete, caulking, grout, paints, as a major constitutent of permanent elastic Thiokol rubber sealants and flame retardant coatings of acoustic ceiling tiles. Offgazing of semivolatile PCB from building materials can nowadays still result in considerable house-dust contamination and in indoor air concentrations exceeding 10,000 ng/m{sup 3}. In Germany, PCB levels in indoor air in non-occupational settings have been regulated with a tolerable total PCB concentration of 300 ng /m{sup 3} and an intervention level of 3000 ng/m{sup 3}. Lower re-entry criteria have been proposed by Michaud et al. Technical mixtures of PCB contain dioxin-like non- and mono-ortho substituted PCB congeners and are contaminated with trace amounts of polychlorinated dibenzodioxins (PCDD) and mainly dibenzofurans (PCDF), sharing overlapping toxic effects and physicochemical properties. We report here on levels of dioxinlike PCB measured in buildings with various PCB sources and correlations among PCDD/PCDF and dioxin-like PCB and di-ortho PCB.

  9. Indoor Air Quality and Respiratory Health among Malay Preschool Children in Selangor

    Directory of Open Access Journals (Sweden)

    Nur Azwani Mohd Nor Rawi

    2015-01-01

    Full Text Available Indoor air quality (IAQ has been the object of several studies due to its adverse health effects on children. Methods. A cross-sectional comparative study was carried out among Malay children in Balakong (2 studied preschools and Bangi (2 comparative preschools, Selangor, with the aims of determining IAQ and its association with respiratory health. 61 and 50 children aged 5-6 years were selected as studied and comparative groups. A questionnaire was used to obtain an exposure history and respiratory symptoms. Lung function test was carried out. IAQ parameters obtained include indoor concentration of particulate matter (PM, volatile organic compounds (VOCs, carbon monoxide (CO, carbon dioxide (CO2, temperature, air velocity (AV, and relative humidity. Results. There was a significant difference between IAQ in studied and comparative preschools for all parameters measured (P<0.001 except for CO2 and AV. Studied preschools had higher PM and CO concentration. FVC, FEV1, FVC% and FEV1% predicted values were significantly lower among studied group. Exposures to PM, VOCs, and CO were associated with wheezing. Conclusion. The finding concluded that exposures to poor IAQ might increase the risk of getting lung function abnormality and respiratory problems among study respondents.

  10. Dioxin-like PCB in indoor air contaminated with different sources

    Energy Technology Data Exchange (ETDEWEB)

    Heinzow, B.G.J.; Mohr, S.; Ostendorp, G. [Landesamt fuer Gesundheit und Arbeitssicherheit des Landes Schleswig-Holstein, Flintbek (Germany); Kerst, M.; Koerner, W. [Bayerisches Landesamt fuer Umweltschutz, Augsburg (Germany)

    2004-09-15

    Polychlorinated biphenyls (PCB) have been used in public building constructions for various purposes in the 1960s and 1970s, mainly as an additive to concrete, caulking, grout, paints, as a major constitutent of permanent elastic Thiokol rubber sealants and flame retardant coatings of acoustic ceiling tiles. Offgazing of semivolatile PCB from building materials can nowadays still result in considerable house-dust contamination and in indoor air concentrations exceeding 10,000 ng/m{sup 3}. In Germany, PCB levels in indoor air in non-occupational settings have been regulated with a tolerable total PCB concentration of 300 ng /m{sup 3} and an intervention level of 3000 ng/m{sup 3}. Lower re-entry criteria have been proposed by Michaud et al. Technical mixtures of PCB contain dioxin-like non- and mono-ortho substituted PCB congeners and are contaminated with trace amounts of polychlorinated dibenzodioxins (PCDD) and mainly dibenzofurans (PCDF), sharing overlapping toxic effects and physicochemical properties. We report here on levels of dioxinlike PCB measured in buildings with various PCB sources and correlations among PCDD/PCDF and dioxin-like PCB and di-ortho PCB.

  11. Energy Code Enforcement Training Manual : Covering the Washington State Energy Code and the Ventilation and Indoor Air Quality Code.

    Energy Technology Data Exchange (ETDEWEB)

    Washington State Energy Code Program

    1992-05-01

    This manual is designed to provide building department personnel with specific inspection and plan review skills and information on provisions of the 1991 edition of the Washington State Energy Code (WSEC). It also provides information on provisions of the new stand-alone Ventilation and Indoor Air Quality (VIAQ) Code.The intent of the WSEC is to reduce the amount of energy used by requiring energy-efficient construction. Such conservation reduces energy requirements, and, as a result, reduces the use of finite resources, such as gas or oil. Lowering energy demand helps everyone by keeping electricity costs down. (It is less expensive to use existing electrical capacity efficiently than it is to develop new and additional capacity needed to heat or cool inefficient buildings.) The new VIAQ Code (effective July, 1991) is a natural companion to the energy code. Whether energy-efficient or not, an homes have potential indoor air quality problems. Studies have shown that indoor air is often more polluted than outdoor air. The VIAQ Code provides a means of exchanging stale air for fresh, without compromising energy savings, by setting standards for a controlled ventilation system. It also offers requirements meant to prevent indoor air pollution from building products or radon.

  12. Experimental research on the indoor temperature and humidity fields in radiant ceiling air-conditioning system under natural ventilation

    Science.gov (United States)

    Huang, Tao; Xiang, Yutong; Wang, Yonghong

    2017-05-01

    In this paper, the indoor temperature and humidity fields of the air in a metal ceiling radiant panel air conditioning system with fresh air under natural ventilation were researched. The temperature and humidity distributions at different height and different position were compared. Through the computation analysis of partial pressure of water vapor, the self-recovery characteristics of humidity after the natural ventilation was discussed.

  13. The effect of indoor air pollutants on otitis media and asthma in children

    Energy Technology Data Exchange (ETDEWEB)

    Daigler, G.E.; Markello, S.J.; Cummings, K.M. (State Univ. of New York, Buffalo (USA))

    1991-03-01

    This case-control study investigated the possible association between home environmental air pollutants and their effect on otitis media and asthma in children. Patients with physician-diagnosed otitis (n = 125, 74% response), with asthma (n = 137, 80% response), and controls (n = 237, 72% response) from a private pediatric practice seen between October 1986 and May 1987 were studied. A questionnaire inquired about housing characteristics (i.e., age, insulation, heating system) and sources of indoor air pollution such as cigarette smoking, use of woodburning stoves, household pets, etc. Analysis of the responses confirmed previous findings of significant relationships between maternal smoking (P = .021), and the presence of pets (P = .034) and the occurrence of asthma. A newly reported relationship between exposure to woodburning stoves and the occurrence of otitis (P less than .05) was reported. This implicates yet another risk factor (wood burning) in the etiology of otitis media.

  14. Polybrominated diphenyl ethers in indoor air during waste TV recycling process

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jie [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Lin, Kuangfei; Deng, Jingjing; Fu, Xiaoxu [State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2015-02-11

    Graphical abstract: - Highlights: • Air in the workshops was seriously contaminated by TV recycling activities. • PBDEs profiles and levels varied with particulate matters and different workshops. • Equilibrium between gas-particle partitioning was disrupted by recycling process. • The highest occupational exposure concentrations occurred during heating process. - Abstract: Recycling process for waste TV sets mainly consists of dismantling, printed wiring board (PWB) heating, PWB recycling, and plastic crushing in formal recycling plant. Polybrominated diphenyl ethers (PBDEs) contained in waste TV sets are released to indoor air. Air samples at 4 different workshops were collected to measure the PBDEs concentrations in both gaseous and particulate phases. The mean concentrations of ∑PBDEs in indoor air were in the range of 6780–2,280,000 pg/m{sup 3}. The highest concentration in gaseous phase (291,000 pg/m{sup 3}) was detected in the PWB heating workshop. The ∑{sub 12}PBDEs concentrations in PM{sub 2.5} and PM{sub 10} at the 4 workshops ranged in 6.8–6670 μg/g and 32.6–6790 μg/g, respectively. The gas-particle partitioning of PBDEs was disrupted as PBDEs were continuously released during the recycling processes. Occupational exposure assessment showed that only the exposure concentration of BDE-47 (0.118 μg/kg/day) through inhalation in the PWB heating workshop for workers without facemask exceeded the reference dose (0.1 μg/kg/day), posing a health hazard to workers. All the results demonstrated that recycling of TV sets was an important source of PBDEs emission, and PBDEs emission pollution was related to the composition of TV sets, interior dust, and recycling process.

  15. Seasonal dynamics of water and air chemistry in an indoor chlorinated swimming pool.

    Science.gov (United States)

    Zare Afifi, Mehrnaz; Blatchley, Ernest R

    2015-01-01

    Although swimming is known to be beneficial in terms of cardiovascular health, as well as for some forms of rehabilitation, swimming is also known to present risks to human health, largely in the form of exposure to microbial pathogens and disinfection byproducts (DBPs). Relatively little information is available in the literature to characterize the seasonal dynamics of air and water chemistry in indoor chlorinated swimming pools. To address this issue, water samples were collected five days per week from an indoor chlorinated swimming pool facility at a high school during the academic year and once per week during summer over a fourteen-month period. The samples were analyzed for free and combined chlorine, urea, volatile DBPs, pH, temperature and total alkalinity. Membrane Introduction Mass Spectrometry (MIMS) was used to identify and measure the concentrations of eleven aqueous-phase volatile DBPs. Variability in the concentrations of these DBPs was observed. Factors that influenced variability included bather loading and mixing by swimmers. These compounds have the ability to adversely affect water and air quality and human health. A large fraction of the existing literature regarding swimming pool air quality has focused on trichloramine (NCl₃). For this work, gas-phase NCl₃ was analyzed by an air sparging-DPD/KI method. The results showed that gas-phase NCl₃ concentration is influenced by bather loading and liquid-phase NCl₃ concentration. Urea is the dominant organic-N compound in human urine and sweat, and is known to be an important precursor for producing NCl₃ in swimming pools. Results of daily measurements of urea indicated a link between bather load and urea concentration in the pool.

  16. CATALOG OF MATERIALS AS POTENTIAL SOURCES OF INDOOR AIR EMISSIONS - VOLUME 1. INSULATION, WALLCOVERINGS, RESI- LIENT FLOOR COVERINGS, CARPET, ADHESIVES, SEALANTS AND CAULKS, AND PESTICIDES

    Science.gov (United States)

    The report discusses and presents data on constituents and emissions from products that have the potential to impact the indoor air environment. t is a tool to be used by researchers to help organize the study of materials as potential sources of indoor air emissions. ncluded are...

  17. Evaluation of the indoor air quality minimum ventilation rate procedure for use in California retail buildings.

    Science.gov (United States)

    Dutton, S M; Mendell, M J; Chan, W R; Barrios, M; Sidheswaran, M A; Sullivan, D P; Eliseeva, E A; Fisk, W J

    2015-02-01

    This research assesses benefits of adding to California Title-24 ventilation rate (VR) standards a performance-based option, similar to the American Society of Heating, Refrigerating, and Air Conditioning Engineers 'Indoor Air Quality Procedure' (IAQP) for retail spaces. Ventilation rates and concentrations of contaminants of concern (CoC) were measured in 13 stores. Mass balance models were used to estimate 'IAQP-based' VRs that would maintain concentrations of all CoCs below health- or odor-based reference concentration limits. An intervention study in a 'big box' store assessed how the current VR, the Title 24-prescribed VR, and the IAQP-based VR (0.24, 0.69, and 1.51 air changes per hour) influenced measured IAQ and perceived of IAQ. Neither current VRs nor Title 24-prescribed VRs would maintain all CoCs below reference limits in 12 of 13 stores. In the big box store, the IAQP-based VR kept all CoCs below limits. More than 80% of subjects reported acceptable air quality at all three VRs. In 11 of 13 buildings, saving energy through lower VRs while maintaining acceptable IAQ would require source reduction or gas-phase air cleaning for CoCs. In only one of the 13 retail stores surveyed, application of the IAQP would have allowed reduced VRs without additional contaminant-reduction strategies. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  18. PM2.5 Indoor Air Quality at Two Sites in London Ontario - A Case Study

    Science.gov (United States)

    Mates, A. V.; Xu, X.; Gilliland, J.; Maltby, M. J.

    2010-12-01

    Studies have shown an association between ambient fine particulate matter (PM2.5) and health impacts, particularly for the elderly and children. As part of a larger study, PM2.5 concentrations were measured using the DustTrak (Model 8520, TSI, St. Paul, MN, USA) at two schools within the city of London, Ontario (Canada). Site A was in a suburban environment while site B was in an urban setting. Monitoring took place for 3 weeks during winter (Feb. 16 - Mar. 8) and 3 weeks during spring (May 05 - 25) of 2010. The winter campaign monitored indoor PM2.5 only, while the spring campaign added outdoor monitors (PM2.5 and CO2) after the first week. Ten min. concentrations were used for analysis. Indoor measurements were split into weekday and weekend. For the same time interval, the outdoor concentrations showed mean values of 18 and 21 μg/m3 for sites A & B, respectively, both under the Canada Wide Standard of 30 μg/m3. Measurements at the two sites showed good associations (R^2 = 0.44), during the spring campaign. This indicates that the outdoor PM2.5 had similar sources. For indoor concentrations, Site B showed a significantly different mean concentration 5 times higher compared to site A during the winter ( 8.1 vs. 1.5 μg/m3 ) and 3 times higher (11.9 vs. 3.7 μg/m3) during the spring campaign. Since the outdoor concentrations were similar the large difference in indoor concentrations could be attributed to the following factors: site B being an older building, and the different physical characteristics between the two sites. The spring measurements showed an increase of 50% from weekday to weekend for site A and 22% for site B. The higher level of PM2.5 during weekends is possibly due to the infiltration of outdoor air while the ventilation/filtration system is shut off. During the winter campaign, Site A showed a 14% higher concentration during weekdays compared to weekends while site B weekend concentrations were 17% higher compared to weekday, which will be

  19. Contribution of (222)Rn-bearing water to indoor radon and indoor air quality assessment in hot spring hotels of Guangdong, China.

    Science.gov (United States)

    Song, Gang; Wang, Xinming; Chen, Diyun; Chen, Yongheng

    2011-04-01

    This study investigates the contribution of radon ((222)Rn)-bearing water to indoor (222)Rn in thermal baths. The (222)Rn concentrations in air were monitored in the bathroom and the bedroom. Particulate matter (PM, both PM(10) and PM(2.5)) and carbon dioxide (CO(2)) were also monitored with portable analyzers. The bathrooms were supplied with hot spring water containing 66-260 kBq m(-3) of (222)Rn. The results show that the spray of hot spring water from the bath spouts is the dominant mechanism by which (222)Rn is released into the air of the bathroom, and then it diffuses into the bedroom. Average (222)Rn level was 110-410% higher in the bedrooms and 510-1200% higher in the bathrooms compared to the corresponding average levels when there was no use of hot spring water. The indoor (222)Rn levels were influenced by the (222)Rn concentrations in the hot spring water and the bathing times. The average (222)Rn transfer coefficients from water to air were 6.2 × 10(-4)-4.1 × 10(-3). The 24-h average levels of CO(2) and PM(10) in the hotel rooms were 89% and 22% higher than the present Indoor Air Quality (IAQ) standard of China. The main particle pollutant in the hotel rooms was PM(2.5). Radon and PM(10) levels in some hotel rooms were at much higher concentrations than guideline levels, and thus the potential health risks to tourists and especially to the hotel workers should be of great concern, and measures should be taken to lower inhalation exposure to these air pollutants.

  20. Spatiotemporal variability of tetrachloroethylene in residential indoor air due to vapor intrusion: a longitudinal, community-based study.

    Science.gov (United States)

    Johnston, Jill E; Gibson, Jacqueline MacDonald

    2014-11-01

    The migration of volatile contaminants from groundwater and soil into indoor air is a potential health threat at thousands of contaminated sites across the country. This phenomenon, known as vapor intrusion, is characterized by spatial and temporal heterogeneity. This study examined short-term fluctuations in concentrations of tetrachloroethylene (PCE) in the indoor air of residential homes due to vapor intrusion in a community in San Antonio, Texas, that sits atop an extensive, shallow plume of contaminated groundwater. Using a community-based design, we removed potential indoor sources of PCE and then collected twelve 3-day passive indoor air samples in each of the 20 homes. Results demonstrated a one-order-of-magnitude variability in concentration across both space and time among the study homes, although all measured concentrations were below risk-based screening levels. We found that within any given home, indoor concentrations increase with the magnitude of the barometric pressure drop (P=0.048) and humidity (P<0.001), while concentrations decrease as wind speed increases (P<0.001) and also during winter (P=0.001). In a second analysis to examine sources of spatial variability, we found that indoor air PCE concentrations between homes increase with groundwater concentration (P=0.030) and a slab-on-grade (as compared with a crawl space) foundation (P=0.028), whereas concentrations decrease in homes without air conditioners (P=0.015). This study offers insights into the drivers of temporal and spatial variability in vapor intrusion that can inform decisions regarding monitoring and exposure assessment at affected sites.