Energy Technology Data Exchange (ETDEWEB)
Yamamoto, Takuaki; Iwamoto, Yukihide [Kyushu University, Department of Orthopaedic Surgery, Fukuoka (Japan); Schneider, Robert [Hospital for Special Surgery, Department of Radiology, New York (United States); Bullough, Peter G. [Hospital for Special Surgery, Department of Laboratory Medicine, New York, NY (United States)
2010-02-15
A 57-year-old woman suffered rapid destruction of both hip joints over a 10 months period. At the first visit, her radiographs demonstrated slight joint space narrowing and acetabular cyst formation in both hips. Five months later, joint space narrowing had further progressed, and intra-articular injection of steroid was given in both hips. However, the hip pain gradually became worse. Five months later, both joint spaces had totally disappeared and both femoral heads had undergone massive collapse. At gross examination, both resected femoral heads showed extensive opaque yellow areas consistent with osteonecrosis. Microscopic examination of these areas revealed evidence of both extensive fracture and callus formation, as well as necrosis throughout, indicating that the osteonecrosis observed in this case was a secondary phenomenon superimposed on pre-existing osteoarthritis and subchondral fracture. There were many pseudogranulomatous lesions in the marrow space and necrotic area, where tiny fragments of bone and articular cartilage, surrounded by histiocytes and giant cells, were embedded, such as are typically seen in rapidly destructive arthrosis. No radiologic or morphologic evidence of primary osteonecrosis was noted. This case indicates that at least some cases of rapidly destructive arthritis are the result of subchondral fracture with superimposed secondary osteonecrosis. (orig.)
International Nuclear Information System (INIS)
Yamamoto, Takuaki; Iwamoto, Yukihide; Schneider, Robert; Bullough, Peter G.
2010-01-01
A 57-year-old woman suffered rapid destruction of both hip joints over a 10 months period. At the first visit, her radiographs demonstrated slight joint space narrowing and acetabular cyst formation in both hips. Five months later, joint space narrowing had further progressed, and intra-articular injection of steroid was given in both hips. However, the hip pain gradually became worse. Five months later, both joint spaces had totally disappeared and both femoral heads had undergone massive collapse. At gross examination, both resected femoral heads showed extensive opaque yellow areas consistent with osteonecrosis. Microscopic examination of these areas revealed evidence of both extensive fracture and callus formation, as well as necrosis throughout, indicating that the osteonecrosis observed in this case was a secondary phenomenon superimposed on pre-existing osteoarthritis and subchondral fracture. There were many pseudogranulomatous lesions in the marrow space and necrotic area, where tiny fragments of bone and articular cartilage, surrounded by histiocytes and giant cells, were embedded, such as are typically seen in rapidly destructive arthrosis. No radiologic or morphologic evidence of primary osteonecrosis was noted. This case indicates that at least some cases of rapidly destructive arthritis are the result of subchondral fracture with superimposed secondary osteonecrosis. (orig.)
Fracture predictions for cracks exposed to superimposed normal and shear stresses
International Nuclear Information System (INIS)
Richard, H.A.
1985-01-01
The author developed a special device and a fracture mechanics specimen and proposed a procedure for determining the fracture toughness when Mixed Mode and Mode II stresses are applied. This device makes it possible to generate pure normal stresses, superimposed normal and shearing stresses as well as pure shearing stresses in the cross section of the crack in the specimen, as desired. The so-called CTS fracture mechanics specimen has an edge crack. The load is transferred statically determind from the device to the specimen by means of six studs altogether. The experiments described, which were carried out with specimens made of the brittle materials PMMA (Plexiglas) and Araldit B, clearly show that it is possible to evaluate the validity of the individual fracture hypotheses by suitable experiments. It is also found that the fracture behaviour of different materials varies considerably both in quality and quantity. In conclusion, a practice-oriented fracture criterion is indicated which enables a practice-conforming evaluation of Mixed-Mode crack problems, as is shown by way of examples. (orig./HP) [de
International Nuclear Information System (INIS)
Lowhaphandu, P.; Montgomery, S.L.; Lewandowski, J.J.
1999-01-01
Recent successes in producing bulk amorphous alloys have renewed interest in this class of materials. Although amorphous metallic alloys have been shown to exhibit strengths in excess of 2.0 GPa, most of the earlier studies on such materials were conducted on tape or ribbon specimens due to the high cooling rates required to achieve the amorphous structure. The primary purpose of this investigation was to determine the effects of superimposed hydrostatic pressure on the flow and fracture behavior of a Zr-Ti-Ni-Cu-Be bulk metallic glass utilizing procedures successfully utilized on a range of structural materials, as reviewed recently. In general, few studies of this type have been conducted on metallic glasses, although thin ribbons (i.e., 300 microm thick) of a Pd-Cu-Si amorphous material tested with superimposed pressure have been reported previously. In particular, the effects of superimposed hydrostatic pressure over levels ranging from 50 MPa to 575 MPa on the flow/fracture behavior of cylindrical tensile specimens were compared to the flow and fracture behavior of identical materials tested in uniaxial tension and compression. It is shown that changes in stress triaxiality, defined as σ m /bar σ, over the range of -0.33 to 0.33 produced a negligible effect on the fracture stress and fracture strain, while the orientation of the macroscopic fracture plane with respect to the loading axis was significantly affected by changes in σ m /bar σ
Discrete fracture network code development
Energy Technology Data Exchange (ETDEWEB)
Dershowitz, W.; Doe, T.; Shuttle, D.; Eiben, T.; Fox, A.; Emsley, S.; Ahlstrom, E. [Golder Associates Inc., Redmond, Washington (United States)
1999-02-01
This report presents the results of fracture flow model development and application performed by Golder Associates Inc. during the fiscal year 1998. The primary objective of the Golder Associates work scope was to provide theoretical and modelling support to the JNC performance assessment effort in fiscal year 2000. In addition, Golder Associates provided technical support to JNC for the Aespoe project. Major efforts for performance assessment support included extensive flow and transport simulations, analysis of pathway simplification, research on excavation damage zone effects, software verification and cross-verification, and analysis of confidence bounds on Monte Carlo simulations. In addition, a Fickian diffusion algorithm was implemented for Laplace Transform Galerkin solute transport. Support for the Aespoe project included predictive modelling of sorbing tracer transport in the TRUE-1 rock block, analysis of 1 km geochemical transport pathways for Task 5', and data analysis and experimental design for the TRUE Block Scale experiment. Technical information about Golder Associates support to JNC is provided in the appendices to this report. (author)
Compartmentalization analysis using discrete fracture network models
Energy Technology Data Exchange (ETDEWEB)
La Pointe, P.R.; Eiben, T.; Dershowitz, W. [Golder Associates, Redmond, VA (United States); Wadleigh, E. [Marathon Oil Co., Midland, TX (United States)
1997-08-01
This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.
Quantifying Discrete Fracture Network Connectivity in Hydraulic Fracturing Stimulation
Urbancic, T.; Ardakani, E. P.; Baig, A.
2017-12-01
Hydraulic fracture stimulations generally result in microseismicity that is associated with the activation or extension of pre-existing microfractures and discontinuities. Microseismic events acquired under 3D downhole sensor coverage provide accurate event locations outlining hydraulic fracture growth. Combined with source characteristics, these events provide a high quality input for seismic moment tensor inversion and eventually constructing the representative discrete fracture network (DFN). In this study, we investigate the strain and stress state, identified fracture orientation, and DFN connectivity and performance for example stages in a multistage perf and plug completion in a North American shale play. We use topology, the familiar concept in many areas of structural geology, to further describe the relationships between the activated fractures and their effectiveness in enhancing permeability. We explore how local perturbations of stress state lead to the activation of different fractures sets and how that effects the DFN interaction and complexity. In particular, we observe that a more heterogeneous stress state shows a higher percentage of sub-horizontal fractures or bedding plane slips. Based on topology, the fractures are evenly distributed from the injection point, with decreasing numbers of connections by distance. The dimensionless measure of connection per branch and connection per line are used for quantifying the DFN connectivity. In order to connect the concept of connectivity back to productive volume and stimulation efficiency, the connectivity is compared with the character of deformation in the reservoir as deduced from the collective behavior of microseismicity using robustly determined source parameters.
Discrete fracture modelling for the Stripa tracer validation experiment predictions
International Nuclear Information System (INIS)
Dershowitz, W.; Wallmann, P.
1992-02-01
Groundwater flow and transport through three-dimensional networks of discrete fractures was modeled to predict the recovery of tracer from tracer injection experiments conducted during phase 3 of the Stripa site characterization and validation protect. Predictions were made on the basis of an updated version of the site scale discrete fracture conceptual model used for flow predictions and preliminary transport modelling. In this model, individual fractures were treated as stochastic features described by probability distributions of geometric and hydrologic properties. Fractures were divided into three populations: Fractures in fracture zones near the drift, non-fracture zone fractures within 31 m of the drift, and fractures in fracture zones over 31 meters from the drift axis. Fractures outside fracture zones are not modelled beyond 31 meters from the drift axis. Transport predictions were produced using the FracMan discrete fracture modelling package for each of five tracer experiments. Output was produced in the seven formats specified by the Stripa task force on fracture flow modelling. (au)
Normani, S. D.; Sykes, J. F.; Jensen, M. R.
2009-04-01
A high resolution sub-regional scale (84 km2) density-dependent, fracture zone network groundwater flow model with hydromechanical coupling and pseudo-permafrost, was developed from a larger 5734 km2 regional scale groundwater flow model of a Canadian Shield setting in fractured crystalline rock. The objective of the work is to illustrate aspects of regional and sub-regional groundwater flow that are relevant to the long-term performance of a hypothetical nuclear fuel repository. The discrete fracture dual continuum numerical model FRAC3DVS-OPG was used for all simulations. A discrete fracture zone network model delineated from surface features was superimposed onto an 789887 element flow domain mesh. Orthogonal fracture faces (between adjacent finite element grid blocks) were used to best represent the irregular discrete fracture zone network. The crystalline rock between these structural discontinuities was assigned properties characteristic of those reported for the Canadian Shield at the Underground Research Laboratory at Pinawa, Manitoba. Interconnectivity of permeable fracture features is an important pathway for the possibly relatively rapid migration of average water particles and subsequent reduction in residence times. The multiple 121000 year North American continental scale paleoclimate simulations are provided by W.R. Peltier using the University of Toronto Glacial Systems Model (UofT GSM). Values of ice sheet normal stress, and proglacial lake depth from the UofT GSM are applied to the sub-regional model as surface boundary conditions, using a freshwater head equivalent to the normal stress imposed by the ice sheet at its base. Permafrost depth is applied as a permeability reduction to both three-dimensional grid blocks and fractures that lie within the time varying permafrost zone. Two different paleoclimate simulations are applied to the sub-regional model to investigate the effect on the depth of glacial meltwater migration into the subsurface. In
Discrete fracture network for the Forsmark site
Energy Technology Data Exchange (ETDEWEB)
Darcel, C. [Itasca Consultants, Ecully (France); Davy, P.; Bour, O.; Dreuzy, J.R. de [Geosciences, Rennes (France)
2006-08-15
In this report, we aim at defining a self-consistent method for analyzing the fracture patterns from boreholes, outcrops and lineaments. The objective was both to point out some variations in the fracture network parameters, and to define the global scaling fracture models that can encompass all the constraints brought by the different datasets. Although a full description of the DFN model variability is obviously fundamental for the future, we have put emphasis on the determination of mean parameters. The main parameters of the disc-shaped DFN model are the fracture size, orientations and spatial density distribution. The scaling model is defined as an extrapolation of existing i) observations at specific scales and ii) local fitting models to the whole range of scales. The range of possible models is restricted to the power-law scaling models. During the project we have put emphasize on the definition of the theory and methodology necessary to assess a sound comparison between data taken at different scales, with different techniques. Both 'local' and 'global' models have been investigated. Local models are linked exactly to the dataset they represent. Then, the global DFN models arise from the association of local models, different scales and different sample support shapes. Discrepancies between local and global model illustrate the variability associated to the DFN models. We define two possible Global Scaling Models (GSM). The first one is consistent with the scaling measured in the outcrops (Model A). Its scaling exponent is a{sub 3d}=3.5 (eq. to k{sub r}=2.5); it overestimates the fracture densities observed in the lineament maps. The second one assumes that both lineaments and outcrops belong to the same distribution model (Model B), which entails a scaling exponent a{sub 3d}=3.9 (eq. to k{sub r}=2.9). Both models have been tested by looking for the best consistency in the fracture density-dip relationships, between boreholes data at
Discrete fracture network for the Forsmark site
International Nuclear Information System (INIS)
Darcel, C.; Davy, P.; Bour, O.; Dreuzy, J.R. de
2006-08-01
In this report, we aim at defining a self-consistent method for analyzing the fracture patterns from boreholes, outcrops and lineaments. The objective was both to point out some variations in the fracture network parameters, and to define the global scaling fracture models that can encompass all the constraints brought by the different datasets. Although a full description of the DFN model variability is obviously fundamental for the future, we have put emphasis on the determination of mean parameters. The main parameters of the disc-shaped DFN model are the fracture size, orientations and spatial density distribution. The scaling model is defined as an extrapolation of existing i) observations at specific scales and ii) local fitting models to the whole range of scales. The range of possible models is restricted to the power-law scaling models. During the project we have put emphasize on the definition of the theory and methodology necessary to assess a sound comparison between data taken at different scales, with different techniques. Both 'local' and 'global' models have been investigated. Local models are linked exactly to the dataset they represent. Then, the global DFN models arise from the association of local models, different scales and different sample support shapes. Discrepancies between local and global model illustrate the variability associated to the DFN models. We define two possible Global Scaling Models (GSM). The first one is consistent with the scaling measured in the outcrops (Model A). Its scaling exponent is a 3d =3.5 (eq. to k r =2.5); it overestimates the fracture densities observed in the lineament maps. The second one assumes that both lineaments and outcrops belong to the same distribution model (Model B), which entails a scaling exponent a 3d =3.9 (eq. to k r =2.9). Both models have been tested by looking for the best consistency in the fracture density-dip relationships, between boreholes data at depth (based on boreholes KFM02A, KFM
The Effect of Loading Rate on Hydraulic Fracturing in Synthetic Granite - a Discrete Element Study
Tomac, I.; Gutierrez, M.
2015-12-01
Hydraulic fracture initiation and propagation from a borehole in hard synthetic rock is modeled using the two dimensional Discrete Element Method (DEM). DEM uses previously established procedure for modeling the strength and deformation parameters of quasi-brittle rocks with the Bonded Particle Model (Itasca, 2004). A series of simulations of laboratory tests on granite in DEM serve as a reference for synthetic rock behavior. Fracturing is enabled by breaking parallel bonds between DEM particles as a result of the local stress state. Subsequent bond breakage induces fracture propagation during a time-stepping procedure. Hydraulic fracturing occurs when pressurized fluid induces hoop stresses around the wellbore which cause rock fracturing and serves for geo-reservoir permeability enhancement in oil, gas and geothermal industries. In DEM, a network of fluid pipes and reservoirs is used for mathematical calculation of fluid flow through narrow channels between DEM particles, where the hydro-mechanical coupling is fully enabled. The fluid flow calculation is superimposed with DEM stress-strain calculation at each time step. As a result, the fluid pressures during borehole pressurization in hydraulic fracturing, as well as, during the fracture propagation from the borehole, can be simulated. The objective of this study is to investigate numerically a hypothesis that fluid pressurization rate, or the fluid flow rate, influences upon character, shape and velocity of fracture propagation in rock. The second objective is to better understand and define constraints which are important for successful fracture propagation in quasi-brittle rock from the perspective of flow rate, fluid density, viscosity and compressibility relative to the rock physical properties. Results from this study indicate that not only too high fluid flow rates cause fracture arrest and multiple fracture branching from the borehole, but also that the relative compressibility of fracturing fluid and
New approach for simulating groundwater flow in discrete fracture network
Fang, H.; Zhu, J.
2017-12-01
In this study, we develop a new approach to calculate groundwater flowrate and hydraulic head distribution in two-dimensional discrete fracture network (DFN) where both laminar and turbulent flows co-exist in individual fractures. The cubic law is used to calculate hydraulic head distribution and flow behaviors in fractures where flow is laminar, while the Forchheimer's law is used to quantify turbulent flow behaviors. Reynolds number is used to distinguish flow characteristics in individual fractures. The combination of linear and non-linear equations is solved iteratively to determine flowrates in all fractures and hydraulic heads at all intersections. We examine potential errors in both flowrate and hydraulic head from the approach of uniform flow assumption. Applying the cubic law in all fractures regardless of actual flow conditions overestimates the flowrate when turbulent flow may exist while applying the Forchheimer's law indiscriminately underestimate the flowrate when laminar flows exist in the network. The contrast of apertures of large and small fractures in the DFN has significant impact on the potential errors of using only the cubic law or the Forchheimer's law. Both the cubic law and Forchheimer's law simulate similar hydraulic head distributions as the main difference between these two approaches lies in predicting different flowrates. Fracture irregularity does not significantly affect the potential errors from using only the cubic law or the Forchheimer's law if network configuration remains similar. Relative density of fractures does not significantly affect the relative performance of the cubic law and Forchheimer's law.
Discrete fracture modelling of the Finnsjoen rock mass: Phase 2
International Nuclear Information System (INIS)
Geier, J.E.; Axelsson, C.L.; Haessler, L.; Benabderrahmane, A.
1992-04-01
A discrete fracture network (DFN) model of the Finnsjoen site was derived from field data, and used to predict block-scale flow and transport properties. The DFN model was based on a compound Poisson process, with stochastic fracture zones, and individual fracture concentrated around the fracture zones. This formulation was used to represent the multitude of fracture zones at the site which could be observed on lineament maps and in boreholes, but were not the focus of detailed characterization efforts. Due to a shortage of data for fracture geometry at depth, distributions of fracture orientation and size were assumed to be uniform throughout the site. Transmissivity within individual fracture planes was assumed to vary according to a fractal model. Constant-head packer tests were simulated with the model, and the observed transient responses were compared with actual tests in terms of distributions of interpreted transmissivity and flow dimension, to partially validate the model. Both simulated and actual tests showed a range of flow dimension from sublinear to spherical, indicating local variations in the connectivity of the fracture population. A methodology was developed for estimation of an effective stochastic continuum from the DFN model, but this was only partly demonstrated. Directional conductivities for 40 m block were estimated using the DFN model. These show extremely poor correlation with results of multiple packer tests in the same blocks, indicating possible limitation of small-scale packer tests for predicting block-scale properties. Estimates are given of effective flow porosity and flow wetted surface, based on the block-scale flow fields calculated by the DFN model, and probabilistic models for the relationships among local fracture transmissivity, void space, and specific surface. The database for constructing these models is extremely limited. A review is given of the existing database for single fracture hydrologic properties. (127 refs
Electrical Conductivity Distributions in Discrete Fluid-Filled Fractures
James, S. C.; Ahmmed, B.; Knox, H. A.; Johnson, T.; Dunbar, J. A.
2017-12-01
It is commonly asserted that hydraulic fracturing enhances permeability by generating new fractures in the reservoir. Furthermore, it is assumed that in the fractured system predominant flow occurs in these newly formed and pre-existing fractures. Among the phenomenology that remains enigmatic are fluid distributions inside fractures. Therefore, determining fluid distribution and their associated temporal and spatial evolution in fractures is critical for safe and efficient hydraulic fracturing. Previous studies have used both forward modeling and inversion of electrical data to show that a geologic system consisting of fluid filled fractures has a conductivity distribution, where fractures act as electrically conductive bodies when the fluids are more conductive than the host material. We will use electrical inversion for estimating electrical conductivity distribution within multiple fractures from synthetic and measured data. Specifically, we will use data and well geometries from an experiment performed at Blue Canyon Dome in Socorro, NM, which was used as a study site for subsurface technology, engineering, and research (SubTER) funded by DOE. This project used a central borehole for energetically stimulating the system and four monitoring boreholes, emplaced in the cardinal directions. The electrical data taken during this project used 16 temporary electrodes deployed in the stimulation borehole and 64 permanent electrodes in the monitoring wells (16 each). We present results derived using E4D from scenarios with two discrete fractures, thereby discovering the electric potential response of both spatially and temporarily variant fluid distribution and the resolution of fluid and fracture boundaries. These two fractures have dimensions of 3m × 0.01m × 7m and are separated by 1m. These results can be used to develop stimulation and flow tests at the meso-scale that will be important for model validation. Sandia National Laboratories is a multi
Energy Technology Data Exchange (ETDEWEB)
Dershowitz, William S.; Einstein, Herbert H.; LaPoint, Paul R.; Eiben, Thorsten; Wadleigh, Eugene; Ivanova, Violeta
1998-12-01
This report summarizes research conducted for the Fractured Reservoir Discrete Feature Network Technologies Project. The five areas studied are development of hierarchical fracture models; fractured reservoir compartmentalization, block size, and tributary volume analysis; development and demonstration of fractured reservoir discrete feature data analysis tools; development of tools for data integration and reservoir simulation through application of discrete feature network technologies for tertiary oil production; quantitative evaluation of the economic value of this analysis approach.
Directory of Open Access Journals (Sweden)
Wang Yueying
2017-08-01
Full Text Available Isolated fractures usually exist in fractured media systems, where the capillary pressure in the fracture is lower than that of the matrix, causing the discrepancy in oil recoveries between fractured and non-fractured porous media. Experiments, analytical solutions and conventional simulation methods based on the continuum model approach are incompetent or insufficient in describing media containing isolated fractures. In this paper, the simulation of the counter-current imbibition in fractured media is based on the discrete-fracture model (DFM. The interlocking or arrangement of matrix and fracture system within the model resembles the traditional discrete fracture network model and the hybrid-mixed-finite-element method is employed to solve the associated equations. The Behbahani experimental data validates our simulation solution for consistency. The simulation results of the fractured media show that the isolated-fractures affect the imbibition in the matrix block. Moreover, the isolated fracture parameters such as fracture length and fracture location influence the trend of the recovery curves. Thus, the counter-current imbibition behavior of media with isolated fractures can be predicted using this method based on the discrete-fracture model.
El-Amin, Mohamed F.; Kou, Jisheng; Sun, Shuyu
2017-01-01
Recently, applications of nanoparticles have been considered in many branches of petroleum engineering, especially, enhanced oil recovery. The current paper is devoted to investigate the problem of nanoparticles transport in fractured porous media, numerically. We employed the discrete-fracture model (DFM) to represent the flow and transport in the fractured formations. The system of the governing equations consists of the mass conservation law, Darcy's law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat. The variation of porosity and permeability due to the nanoparticles deposition/entrapment on/in the pores is also considered. We employ the multiscale time-splitting strategy to control different time-step sizes for different physics, such as pressure and concentration. The cell-centered finite difference (CCFD) method is used for the spatial discretization. Numerical examples are provided to demonstrate the efficiency of the proposed multiscale time splitting approach.
El-Amin, Mohamed F.
2017-06-06
Recently, applications of nanoparticles have been considered in many branches of petroleum engineering, especially, enhanced oil recovery. The current paper is devoted to investigate the problem of nanoparticles transport in fractured porous media, numerically. We employed the discrete-fracture model (DFM) to represent the flow and transport in the fractured formations. The system of the governing equations consists of the mass conservation law, Darcy\\'s law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat. The variation of porosity and permeability due to the nanoparticles deposition/entrapment on/in the pores is also considered. We employ the multiscale time-splitting strategy to control different time-step sizes for different physics, such as pressure and concentration. The cell-centered finite difference (CCFD) method is used for the spatial discretization. Numerical examples are provided to demonstrate the efficiency of the proposed multiscale time splitting approach.
An efficient hydro-mechanical model for coupled multi-porosity and discrete fracture porous media
Yan, Xia; Huang, Zhaoqin; Yao, Jun; Li, Yang; Fan, Dongyan; Zhang, Kai
2018-02-01
In this paper, a numerical model is developed for coupled analysis of deforming fractured porous media with multiscale fractures. In this model, the macro-fractures are modeled explicitly by the embedded discrete fracture model, and the supporting effects of fluid and fillings in these fractures are represented explicitly in the geomechanics model. On the other hand, matrix and micro-fractures are modeled by a multi-porosity model, which aims to accurately describe the transient matrix-fracture fluid exchange process. A stabilized extended finite element method scheme is developed based on the polynomial pressure projection technique to address the displacement oscillation along macro-fracture boundaries. After that, the mixed space discretization and modified fixed stress sequential implicit methods based on non-matching grids are applied to solve the coupling model. Finally, we demonstrate the accuracy and application of the proposed method to capture the coupled hydro-mechanical impacts of multiscale fractures on fractured porous media.
Donado-Garzon, L. D.; Pardo, Y.
2013-12-01
Fractured media are very heterogeneous systems where occur complex physical and chemical processes to model. One of the possible approaches to conceptualize this type of massifs is the Discrete Fracture Network (DFN). Donado et al., modeled flow and transport in a granitic batholith based on this approach and found good fitting with hydraulic and tracer tests, but the computational cost was excessive due to a gigantic amount of elements to model. We present in this work a methodology based on percolation theory for reducing the number of elements and in consequence, to reduce the bandwidth of the conductance matrix and the execution time of each network. DFN poses as an excellent representation of all the set of fractures of the media, but not all the fractures of the media are part of the conductive network. Percolation theory is used to identify which nodes or fractures are not conductive, based on the occupation probability or percolation threshold. In a fractured system, connectivity determines the flow pattern in the fractured rock mass. This volume of fluid is driven through connection paths formed by the fractures, when the permeability of the rock is negligible compared to the fractures. In a population of distributed fractures, each of this that has no intersection with any connected fracture do not contribute to generate a flow field. This algorithm also permits us to erase these elements however they are water conducting and hence, refine even more the backbone of the network. We used 100 different generations of DFN that were optimized in this study using percolation theory. In each of the networks calibrate hydrodynamic parameters as hydraulic conductivity and specific storage coefficient, for each of the five families of fractures, yielding a total of 10 parameters to estimate, at each generation. Since the effects of the distribution of fault orientation changes the value of the percolation threshold, but not the universal laws of classical
Numerical simulation on ferrofluid flow in fractured porous media based on discrete-fracture model
Huang, Tao; Yao, Jun; Huang, Zhaoqin; Yin, Xiaolong; Xie, Haojun; Zhang, Jianguang
2017-06-01
Water flooding is an efficient approach to maintain reservoir pressure and has been widely used to enhance oil recovery. However, preferential water pathways such as fractures can significantly decrease the sweep efficiency. Therefore, the utilization ratio of injected water is seriously affected. How to develop new flooding technology to further improve the oil recovery in this situation is a pressing problem. For the past few years, controllable ferrofluid has caused the extensive concern in oil industry as a new functional material. In the presence of a gradient in the magnetic field strength, a magnetic body force is produced on the ferrofluid so that the attractive magnetic forces allow the ferrofluid to be manipulated to flow in any desired direction through the control of the external magnetic field. In view of these properties, the potential application of using the ferrofluid as a new kind of displacing fluid for flooding in fractured porous media is been studied in this paper for the first time. Considering the physical process of the mobilization of ferrofluid through porous media by arrangement of strong external magnetic fields, the magnetic body force was introduced into the Darcy equation and deals with fractures based on the discrete-fracture model. The fully implicit finite volume method is used to solve mathematical model and the validity and accuracy of numerical simulation, which is demonstrated through an experiment with ferrofluid flowing in a single fractured oil-saturated sand in a 2-D horizontal cell. At last, the water flooding and ferrofluid flooding in a complex fractured porous media have been studied. The results showed that the ferrofluid can be manipulated to flow in desired direction through control of the external magnetic field, so that using ferrofluid for flooding can raise the scope of the whole displacement. As a consequence, the oil recovery has been greatly improved in comparison to water flooding. Thus, the ferrofluid
Yushi, Zou; Xinfang, Ma; Tong, Zhou; Ning, Li; Ming, Chen; Sihai, Li; Yinuo, Zhang; Han, Li
2017-09-01
Hydraulic fracture (HF) height containment tends to occur in layered formations, and it significantly influences the entire HF geometry or the stimulated reservoir volume. This study aims to explore the influence of preexisting bedding planes (BPs) on the HF height growth in layered formations. Laboratory fracturing experiments were performed to confirm the occurrence of HF height containment in natural shale that contains multiple weak and high-permeability BPs under triaxial stresses. Numerical simulations were then conducted to further illustrate the manner in which vertical stress, BP permeability, BP density(or spacing), pump rate, and fluid viscosity control HF height growth using a 3D discrete element method-based fracturing model. In this model, the rock matrix was considered transversely isotropic and multiple BPs can be explicitly represented. Experimental and numerical results show that the vertically growing HF tends to be limited by multi-high-permeability BPs, even under higher vertical stress. When the vertically growing HF intersects with the multi-high-permeability BPs, the injection pressure will be sharply reduced. If a low pumping rate or a low-viscosity fluid is used, the excess fracturing fluid leak-off into the BPs obviously decreases the rate of pressure build up, which will then limit the growth of HF. Otherwise, a higher pumping rate and/or a higher viscosity will reduce the leak-off time and fluid volume, but increase the injection pressure to drive the HF to grow and to penetrate through the BPs.
Energy Technology Data Exchange (ETDEWEB)
Stafford, Paige L. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Geological Sciences
1996-05-01
Simulations of a tritium tracer experiment in fractured shale saprolite, conducted at the Oak Ridge National Laboratory, were performed using 1D and 2D equivalent porous medium (EPM) and discrete-fracture/matrix-diffusion (DFMD) models. The models successfully reproduced the general shape of the breakthrough curves in down-gradient monitoring wells which are characterized by rapid first arrival, a slow-moving center of mass, and a persistent ``tail`` of low concentration. In plan view, the plume shows a large degree of transverse spreading with the width almost as great as the length. EPM models were sensitive to dispersivity coefficient values which had to be large (relative to the 3.7m distance between the injection and monitoring wells) to fit the tail and transverse spreading. For example, to fit the tail a longitudinal dispersivity coefficient, α_{L}, of 0.8 meters for the 2D simulations was used. To fit the transverse spreading, a transverse dispersivity coefficient, α_{T}, of 0.8 to 0.08 meters was used indicating an α_{L}/α_{T} ratio between 10 and 1. Transverse spreading trends were also simulated using a 2D DFMD model using a few larger aperture fractures superimposed onto an EPM. Of the fracture networks studied, only those with truncated fractures caused transverse spreading. Simulated tritium levels in all of the cases were larger than observed values by a factor of approximately 100. Although this is partly due to input of too much tritium mass by the models it appears that dilution in the wells, which were not purged prior to sampling, is also a significant factor. The 1D and 2D EPM models were fitted to monitoring data from the first five years of the experiment and then used to predict future tritium concentrations.
International Nuclear Information System (INIS)
Stafford, P.L.
1996-05-01
Simulations of a tritium tracer experiment in fractured shale saprolite, conducted at the Oak Ridge National Laboratory, were performed using 1D and 2D equivalent porous medium (EPM) and discrete-fracture/matrix-diffusion (DFMD) models. The models successfully reproduced the general shape of the breakthrough curves in down-gradient monitoring wells which are characterized by rapid first arrival, a slow-moving center of mass, and a persistent ''tail'' of low concentration. In plan view, the plume shows a large degree of transverse spreading with the width almost as great as the length. EPM models were sensitive to dispersivity coefficient values which had to be large (relative to the 3.7m distance between the injection and monitoring wells) to fit the tail and transverse spreading. For example, to fit the tail a longitudinal dispersivity coefficient, α L , of 0.8 meters for the 2D simulations was used. To fit the transverse spreading, a transverse dispersivity coefficient, α T , of 0.8 to 0.08 meters was used indicating an α L /α T ratio between 10 and 1. Transverse spreading trends were also simulated using a 2D DFMD model using a few larger aperture fractures superimposed onto an EPM. Of the fracture networks studied, only those with truncated fractures caused transverse spreading. Simulated tritium levels in all of the cases were larger than observed values by a factor of approximately 100. Although this is partly due to input of too much tritium mass by the models it appears that dilution in the wells, which were not purged prior to sampling, is also a significant factor. The 1D and 2D EPM models were fitted to monitoring data from the first five years of the experiment and then used to predict future tritium concentrations
Discrete fracture in quasi-brittle materials under compressive and tensile stress states
CSIR Research Space (South Africa)
Klerck, PA
2004-01-01
Full Text Available A method for modelling discrete fracture in geomaterials under tensile and compressive stress fields has been developed based on a Mohr-Coulomb failure surface in compression and three independent anisotropic rotating crack models in tension...
Energy Technology Data Exchange (ETDEWEB)
Huang, Hai; Plummer, Mitchell; Podgorney, Robert
2013-02-01
Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.
An implicit finite element method for discrete dynamic fracture
Energy Technology Data Exchange (ETDEWEB)
Gerken, Jobie M. [Colorado State Univ., Fort Collins, CO (United States)
1999-12-01
A method for modeling the discrete fracture of two-dimensional linear elastic structures with a distribution of small cracks subject to dynamic conditions has been developed. The foundation for this numerical model is a plane element formulated from the Hu-Washizu energy principle. The distribution of small cracks is incorporated into the numerical model by including a small crack at each element interface. The additional strain field in an element adjacent to this crack is treated as an externally applied strain field in the Hu-Washizu energy principle. The resulting stiffness matrix is that of a standard plane element. The resulting load vector is that of a standard plane element with an additional term that includes the externally applied strain field. Except for the crack strain field equations, all terms of the stiffness matrix and load vector are integrated symbolically in Maple V so that fully integrated plane stress and plane strain elements are constructed. The crack strain field equations are integrated numerically. The modeling of dynamic behavior of simple structures was demonstrated within acceptable engineering accuracy. In the model of axial and transverse vibration of a beam and the breathing mode of vibration of a thin ring, the dynamic characteristics were shown to be within expected limits. The models dominated by tensile forces (the axially loaded beam and the pressurized ring) were within 0.5% of the theoretical values while the shear dominated model (the transversely loaded beam) is within 5% of the calculated theoretical value. The constant strain field of the tensile problems can be modeled exactly by the numerical model. The numerical results should therefore, be exact. The discrepancies can be accounted for by errors in the calculation of frequency from the numerical results. The linear strain field of the transverse model must be modeled by a series of constant strain elements. This is an approximation to the true strain field, so some
Discrete fracture modelling of the Finnsjoen rock mass. Phase 1: Feasibility study
International Nuclear Information System (INIS)
Geier, J.E.; Axelsson, C.L.
1991-03-01
The geometry and properties of discrete fractures are expected to control local heterogeneity in flow and solute transport within crystalline rock in the Finnsjoen area. The present report describes the first phase of a discrete-fracture modelling study, the goal of which is to develop stochastic-continuum and hydrologic properties. In the first phase of this study, the FracMan discrete fracture modelling package was used to analyse discrete fracture geometrical and hyrological data. Constant-pressure packer tests were analysed using fractional dimensional methods to estimate effective transmissivities and flow dimension for the packer test intervals. Discrete fracture data on orientation, size, shape, and location were combined with hydrologic data to develop a preliminary conceptual model for the conductive fractures at the site. The variability of fracture properties was expressed in the model by probability distributions. The preliminary conceptual model was used to simulate three-dimensional populations of conductive fractures in 25 m and 50 m cubes of rock. Transient packer tests were simulated in these fracture populations, and the simulated results were used to validate the preliminary conceptual model. The calibrated model was used to estimate the components of effective conductivity tensors for the rock by simulating steady-state groundwater flow through the cubes in three orthogonal directions. Monte Carlo stochastic simulations were performed for alternative realizations of the conceptual model. The number of simulations was insufficient to give a quantitative prediction of the effective conductivity heterogeneity and anisotropy on the scales of the cubes. However, the results give preliminary, rough estimates of these properties, and provide a demonstration of how the discrete-fracture network concept can be applied to derive data that is necessary for stochastic continuum and channel network modelling. (authors)
Directory of Open Access Journals (Sweden)
Jae-Yeol Cheong
2017-12-01
Full Text Available In instances of damage to engineered barriers containing nuclear waste material, surrounding bedrock is a natural barrier that retards radionuclide movement by way of adsorption and delay due to groundwater flow through highly tortuous fractured rock pathways. At the Gyeongju nuclear waste disposal site, groundwater mainly flows through granitic and sedimentary rock fractures. Therefore, to understand the nuclide migration path, it is necessary to understand discrete fracture networks based on heterogeneous fracture orientations, densities, and size characteristics. In this study, detailed heterogeneous fracture distribution, including the density and orientation of the fractures, was considered for a region that has undergone long periods of change from various geological activities at and around the Gyeongju site. A site-scale discrete fracture network (DFN model was constructed taking into account: (i regional fracture heterogeneity constrained by a multiple linear regression analysis of fracture intensity on faults and electrical resistivity; and (ii the connectivity of conductive fractures having fracture hydraulic parameters, using transient flow simulation. Geometric and hydraulic heterogeneity of the DFN was upscaled into equivalent porous media for flow and transport simulation for a large-scale model.
A new computer code for discrete fracture network modelling
Xu, Chaoshui; Dowd, Peter
2010-03-01
The authors describe a comprehensive software package for two- and three-dimensional stochastic rock fracture simulation using marked point processes. Fracture locations can be modelled by a Poisson, a non-homogeneous, a cluster or a Cox point process; fracture geometries and properties are modelled by their respective probability distributions. Virtual sampling tools such as plane, window and scanline sampling are included in the software together with a comprehensive set of statistical tools including histogram analysis, probability plots, rose diagrams and hemispherical projections. The paper describes in detail the theoretical basis of the implementation and provides a case study in rock fracture modelling to demonstrate the application of the software.
Qin, Guan; Bi, Linfeng; Popov, Peter; Efendiev, Yalchin; Espedal, Magne
2010-01-01
, fractures and their interconnectivities in coarse-scale simulation models. In this paper, we present a procedure based on our previously proposed Stokes-Brinkman model (SPE 125593) and the discrete fracture network method for accurate and efficient upscaling
International Nuclear Information System (INIS)
Geier, J.E.; Thomas, A.L.
1996-08-01
This report describes the statistical derivation and partial validation of discrete-fracture network (DFN) models for the rock beneath the island of Aespoe in southeastern Sweden. The purpose was to develop DFN representations of the rock mass within a hypothetical, spent-fuel repository, located under Aespoe. Analyses are presented for four major lithologic types, with separate analyses of the rock within fracture zones, the rock excluding fracture zones, and all rock. Complete DFN models are proposed as descriptions of the rock mass in the near field. The procedure for validation, by comparison between actual and simulated packer tests, was found to be useful for discriminating among candidate DFN models. In particular, the validation approach was shown to be sensitive to a change in the fracture location (clustering) model, and to a change in the variance of single-fracture transmissivity. The proposed models are defined in terms of stochastic processes and statistical distributions, and thus are descriptive of the variability of the fracture system. This report includes discussion of the numerous sources of uncertainty in the models, including uncertainty that results from the variability of the natural system. 62 refs
International Nuclear Information System (INIS)
Dershowitz, W.S.
1994-01-01
The Stripa project has played a major role in developing discrete fracture analysis from a theoretical research topic to a practical repository evaluation tool. The Site Characterization and Validation (SCV) program positively answered questions regarding: (1) the validation of discrete fracture models, (2) the feasibility of collecting data for discrete fracture models, (3) the ability of discrete fracture models to simulate flow in a rock volume of approximately 10 6 cubic meters using modest computing resources, and (4) the ability to model transport in discrete fractures. The SCV program also made progress on such continuing issues as the importance of in-plane fracture heterogeneity and coupled effects. (author). 16 refs., 2 tabs., 6 figs
International Nuclear Information System (INIS)
Hartley, Lee; Roberts, David
2013-04-01
The Swedish Nuclear Fuel and Waste Management Company (SKB) is responsible for the development of a deep geological repository for spent nuclear fuel. The permitting of such a repository is informed by assessment studies to estimate the risks of the disposal method. One of the potential risks involves the transport of radionuclides in groundwater from defective canisters in the repository to the accessible environment. The Swedish programme for geological disposal of spent nuclear fuel has involved undertaking detailed surface-based site characterisation studies at two different sites, Forsmark and Laxemar-Simpevarp. A key component of the hydrogeological modelling of these two sites has been the development of Discrete Fracture Network (DFN) concepts of groundwater flow through the fractures in the crystalline rocks present. A discrete fracture network model represents some of the characteristics of fractures explicitly, such as their, orientation, intensity, size, spatial distribution, shape and transmissivity. This report summarises how the discrete fracture network methodology has been applied to model groundwater flow and transport at Forsmark and Laxemar. The account has involved summarising reports previously published by SKB between 2001 and 2011. The report describes the conceptual framework and assumptions used in interpreting site data, and in particular how data has been used to calibrate the various parameters that define the discrete fracture network representation of bedrock hydrogeology against borehole geologic and hydraulic data. Steps taken to confirm whether the developed discrete fracture network models provide a description of regional-scale groundwater flow and solute transport consistent with wider hydraulic tests hydrochemical data from Forsmark and Laxemar are discussed. It illustrates the use of derived hydrogeological DFN models in the simulations of the temperate period hydrogeology that provided input to radionuclide transport
Energy Technology Data Exchange (ETDEWEB)
Hartley, Lee; Roberts, David
2013-04-15
The Swedish Nuclear Fuel and Waste Management Company (SKB) is responsible for the development of a deep geological repository for spent nuclear fuel. The permitting of such a repository is informed by assessment studies to estimate the risks of the disposal method. One of the potential risks involves the transport of radionuclides in groundwater from defective canisters in the repository to the accessible environment. The Swedish programme for geological disposal of spent nuclear fuel has involved undertaking detailed surface-based site characterisation studies at two different sites, Forsmark and Laxemar-Simpevarp. A key component of the hydrogeological modelling of these two sites has been the development of Discrete Fracture Network (DFN) concepts of groundwater flow through the fractures in the crystalline rocks present. A discrete fracture network model represents some of the characteristics of fractures explicitly, such as their, orientation, intensity, size, spatial distribution, shape and transmissivity. This report summarises how the discrete fracture network methodology has been applied to model groundwater flow and transport at Forsmark and Laxemar. The account has involved summarising reports previously published by SKB between 2001 and 2011. The report describes the conceptual framework and assumptions used in interpreting site data, and in particular how data has been used to calibrate the various parameters that define the discrete fracture network representation of bedrock hydrogeology against borehole geologic and hydraulic data. Steps taken to confirm whether the developed discrete fracture network models provide a description of regional-scale groundwater flow and solute transport consistent with wider hydraulic tests hydrochemical data from Forsmark and Laxemar are discussed. It illustrates the use of derived hydrogeological DFN models in the simulations of the temperate period hydrogeology that provided input to radionuclide transport
International Nuclear Information System (INIS)
Kanehiro, B.Y.; Lai, C.H.; Stow, S.H.
1987-05-01
Conceptual models for sedimentary rock settings that could be used in future evaluation and suitability studies are being examined through the DOE Repository Technology Program. One area of concern for the hydrologic aspects of these models is discrete fracture flow analysis as related to the estimation of the size of the representative elementary volume, evaluation of the appropriateness of continuum assumptions and estimation of the large-scale permeabilities of sedimentary rocks. A basis for preliminary analysis of flow in fracture systems of the types that might be expected to occur in low permeability sedimentary rocks is presented. The approach used involves numerical modeling of discrete fracture flow for the configuration of a large-scale hydrologic field test directed at estimation of the size of the representative elementary volume and large-scale permeability. Analysis of fracture data on the basis of this configuration is expected to provide a preliminary indication of the scale at which continuum assumptions can be made
Discrete Dual Porosity Modeling of Electrical Current Flow in Fractured Media
Roubinet, D.; Irving, J.
2013-12-01
The study of fractured rocks is highly important in a variety of research fields and applications such as hydrogeology, geothermal energy, hydrocarbon extraction, and the long-term storage of toxic waste. Fractured media are characterized by a large contrast in permeability between the fractures and the rock matrix. For hydrocarbon extraction, the presence of highly conductive fractures is an advantage as they allow for quick and easy access to the resource. For toxic waste storage, however, the fractures represent a significant drawback as there is an increased risk of leakage and migration of pollutants deep into the subsurface. In both cases, the identification of fracture network characteristics is a critical, challenging, and required step. A number of previous studies have indicated that the presence of fractures in geological materials can have a significant impact on geophysical electrical resistivity measurements. It thus appears that, in some cases, geoelectrical surveys might be used to obtain useful information regarding fracture network characteristics. However, existing geoelectrical modeling tools and inversion methods are not properly adapted to deal with the specific challenges of fractured media. This prevents us from fully exploring the potential of the method to characterize fracture network properties. We thus require, as a first step, the development of accurate and efficient numerical modeling tools specifically designed for fractured domains. Building on the discrete fracture network (DFN) approach that has been widely used for modeling groundwater flow in fractured rocks, we have developed a discrete dual-porosity model for electrical current flow in fractured media. Our novel approach combines an explicit representation of the fractures with fracture-matrix electrical flow exchange at the block-scale. Tests in two dimensions show the ability of our method to deal with highly heterogeneous fracture networks in a highly computationally
Discrete Dislocation Plasticity Analysis of Cracks and Fracture
Giessen, Erik van der; Pippan, R; Gumbsch, P
2010-01-01
Fracture in plastically deforming crystals involves several length scales for cleavage-like crack growth. The relevant length scales range from that of the macroscale object to the atomic scale, including the various microstructural length scales in between that are associated with, for example,
Prediction of Fracture Behavior in Rock and Rock-like Materials Using Discrete Element Models
Katsaga, T.; Young, P.
2009-05-01
The study of fracture initiation and propagation in heterogeneous materials such as rock and rock-like materials are of principal interest in the field of rock mechanics and rock engineering. It is crucial to study and investigate failure prediction and safety measures in civil and mining structures. Our work offers a practical approach to predict fracture behaviour using discrete element models. In this approach, the microstructures of materials are presented through the combination of clusters of bonded particles with different inter-cluster particle and bond properties, and intra-cluster bond properties. The geometry of clusters is transferred from information available from thin sections, computed tomography (CT) images and other visual presentation of the modeled material using customized AutoCAD built-in dialog- based Visual Basic Application. Exact microstructures of the tested sample, including fractures, faults, inclusions and void spaces can be duplicated in the discrete element models. Although the microstructural fabrics of rocks and rock-like structures may have different scale, fracture formation and propagation through these materials are alike and will follow similar mechanics. Synthetic material provides an excellent condition for validating the modelling approaches, as fracture behaviours are known with the well-defined composite's properties. Calibration of the macro-properties of matrix material and inclusions (aggregates), were followed with the overall mechanical material responses calibration by adjusting the interfacial properties. The discrete element model predicted similar fracture propagation features and path as that of the real sample material. The path of the fractures and matrix-inclusion interaction was compared using computed tomography images. Initiation and fracture formation in the model and real material were compared using Acoustic Emission data. Analysing the temporal and spatial evolution of AE events, collected during the
Energy Technology Data Exchange (ETDEWEB)
Dershowitz, W.S.; La Pointe, P.R.; Einstein, H.H.; Ivanova, V.
1998-01-01
This report describes progress on the project, {open_quotes}Fractured Reservoir Discrete Feature Network Technologies{close_quotes} during the period March 7, 1996 to February 28, 1997. The report presents summaries of technology development for the following research areas: (1) development of hierarchical fracture models, (2) fractured reservoir compartmentalization and tributary volume, (3) fractured reservoir data analysis, and (4) integration of fractured reservoir data and production technologies. In addition, the report provides information on project status, publications submitted, data collection activities, and technology transfer through the world wide web (WWW). Research on hierarchical fracture models included geological, mathematical, and computer code development. The project built a foundation of quantitative, geological and geometrical information about the regional geology of the Permian Basin, including detailed information on the lithology, stratigraphy, and fracturing of Permian rocks in the project study area (Tracts 17 and 49 in the Yates field). Based on the accumulated knowledge of regional and local geology, project team members started the interpretation of fracture genesis mechanisms and the conceptual modeling of the fracture system in the study area. Research on fractured reservoir compartmentalization included basic research, technology development, and application of compartmentalized reservoir analyses for the project study site. Procedures were developed to analyze compartmentalization, tributary drainage volume, and reservoir matrix block size. These algorithms were implemented as a Windows 95 compartmentalization code, FraCluster.
Simulation of water flow in fractured porous medium by using discretized virtual internal bond
Peng, Shujun; Zhang, Zhennan; Li, Chunfang; He, Guofu; Miao, Guoqing
2017-12-01
The discretized virtual internal bond (DVIB) is adopted to simulate the water flow in fractured porous medium. The intact porous medium is permeable because it contains numerous micro cracks and pores. These micro discontinuities construct a fluid channel network. The representative volume of this fluid channel network is modeled as a lattice bond cell with finite number of bonds in statistical sense. Each bond serves as a fluid channel. In fractured porous medium, many bond cells are cut by macro fractures. The conductivity of the fracture facet in a bond cell is taken over by the bonds parallel to the flow direction. The equivalent permeability and volumetric storage coefficient of a micro bond are calibrated based on the ideal bond cell conception, which makes it unnecessary to consider the detailed geometry of a specific element. Such parameter calibration method is flexible and applicable to any type of element. The accuracy check results suggest this method has a satisfying accuracy in both the steady and transient flow simulation. To simulate the massive fractures in rockmass, the bond cells intersected by fracture are assigned aperture values, which are assumed random numbers following a certain distribution law. By this method, any number of fractures can be implicitly incorporated into the background mesh, avoiding the setup of fracture element and mesh modification. The fracture aperture heterogeneity is well represented by this means. The simulation examples suggest that the present method is a feasible, simple and efficient approach to the numerical simulation of water flow in fractured porous medium.
Visualization and Hierarchical Analysis of Flow in Discrete Fracture Network Models
Aldrich, G. A.; Gable, C. W.; Painter, S. L.; Makedonska, N.; Hamann, B.; Woodring, J.
2013-12-01
Flow and transport in low permeability fractured rock is primary in interconnected fracture networks. Prediction and characterization of flow and transport in fractured rock has important implications in underground repositories for hazardous materials (eg. nuclear and chemical waste), contaminant migration and remediation, groundwater resource management, and hydrocarbon extraction. We have developed methods to explicitly model flow in discrete fracture networks and track flow paths using passive particle tracking algorithms. Visualization and analysis of particle trajectory through the fracture network is important to understanding fracture connectivity, flow patterns, potential contaminant pathways and fast paths through the network. However, occlusion due to the large number of highly tessellated and intersecting fracture polygons preclude the effective use of traditional visualization methods. We would also like quantitative analysis methods to characterize the trajectory of a large number of particle paths. We have solved these problems by defining a hierarchal flow network representing the topology of particle flow through the fracture network. This approach allows us to analyses the flow and the dynamics of the system as a whole. We are able to easily query the flow network, and use paint-and-link style framework to filter the fracture geometry and particle traces based on the flow analytics. This allows us to greatly reduce occlusion while emphasizing salient features such as the principal transport pathways. Examples are shown that demonstrate the methodology and highlight how use of this new method allows quantitative analysis and characterization of flow and transport in a number of representative fracture networks.
International Nuclear Information System (INIS)
Normani, S.D.; Sykes, J.F.
2011-01-01
A high resolution three-dimensional sub-regional scale (104 km 2 ) density-dependent, discretely fractured groundwater flow model with hydro-mechanical coupling and pseudo-permafrost was developed from a larger 5734 km 2 regional-scale groundwater flow model of a Canadian Shield setting. The objective of the work is to determine the sensitivity of modelled groundwater system evolution to the hydro-mechanical parameters. The discrete fracture dual continuum numerical model FRAC3DVS-OPG was used for all simulations. A discrete fracture network model delineated from surface features was superimposed onto an approximate 790 000 element domain mesh with approximately 850 000 nodes. Orthogonal fracture faces (between adjacent finite element grid blocks) were used to best represent the irregular discrete fracture zone network. Interconnectivity of the permeable fracture zones is an important pathway for the possible migration and subsequent reduction in groundwater and contaminant residence times. The crystalline rock matrix between these structural discontinuities was assigned mechanical and flow properties characteristic of those reported for the Canadian Shield. The variation of total dissolved solids with depth was assigned using literature data for the Canadian Shield. Performance measures for the sensitivity analysis include equivalent freshwater heads, environmental heads, linear velocities, and depth of penetration by conservative non-decaying tracers released at the surface. A 121 000 year North American continental scale paleo-climate simulation was applied to the domain with ice-sheet histories estimated by the University of Toronto Glacial Systems Model (UofT GSM). Hydro-mechanical coupling between the rock matrix and the pore fluid, due to the ice sheet normal stress, was included in the simulations. The flow model included the influence of vertical strain and assumed that areal loads were homogeneous. Permafrost depth was applied as a permeability reduction
Charles, Joanna M; Roberts, Jessica L; Din, Nafees Ud; Williams, Nefyn H; Yeo, Seow Tien; Edwards, Rhiannon T
2018-05-14
As part of a wider feasibility study, the feasibility of gaining older patients' views for hip fracture rehabilitation services was tested using a discrete choice experiment in a UK context. Discrete choice experiment is a method used for eliciting individuals' preferences about goods and services. The discrete choice experiment was administered to 41 participants who had experienced hip fracture (mean age 79.3 years; standard deviation (SD) 7.5 years), recruited from a larger feasibility study exploring a new multidisciplinary rehabilitation for hip fracture. Attributes and levels for this discrete choice experiment were identified from a systematic review and focus groups. The questionnaire was administered at the 3-month follow-up. Participants indicated a significant preference for a fully-qualified physiotherapist or occupational therapist to deliver the rehabilitation sessions (β = 0·605, 95% confidence interval (95% CI) 0.462-0.879), and for their rehabilitation session to last less than 90 min (β = -0.192, 95% CI -0.381 to -0.051). The design of the discrete choice experiment using attributes associated with service configuration could have the potential to inform service implementation, and assist rehabilitation service design that incorporates the preferences of patients.
A Discrete Fracture Network Model with Stress-Driven Nucleation and Growth
Lavoine, E.; Darcel, C.; Munier, R.; Davy, P.
2017-12-01
The realism of Discrete Fracture Network (DFN) models, beyond the bulk statistical properties, relies on the spatial organization of fractures, which is not issued by purely stochastic DFN models. The realism can be improved by injecting prior information in DFN from a better knowledge of the geological fracturing processes. We first develop a model using simple kinematic rules for mimicking the growth of fractures from nucleation to arrest, in order to evaluate the consequences of the DFN structure on the network connectivity and flow properties. The model generates fracture networks with power-law scaling distributions and a percentage of T-intersections that are consistent with field observations. Nevertheless, a larger complexity relying on the spatial variability of natural fractures positions cannot be explained by the random nucleation process. We propose to introduce a stress-driven nucleation in the timewise process of this kinematic model to study the correlations between nucleation, growth and existing fracture patterns. The method uses the stress field generated by existing fractures and remote stress as an input for a Monte-Carlo sampling of nuclei centers at each time step. Networks so generated are found to have correlations over a large range of scales, with a correlation dimension that varies with time and with the function that relates the nucleation probability to stress. A sensibility analysis of input parameters has been performed in 3D to quantify the influence of fractures and remote stress field orientations.
Numerical Experiments on Advective Transport in Large Three-Dimensional Discrete Fracture Networks
Makedonska, N.; Painter, S. L.; Karra, S.; Gable, C. W.
2013-12-01
Modeling of flow and solute transport in discrete fracture networks is an important approach for understanding the migration of contaminants in impermeable hard rocks such as granite, where fractures provide dominant flow and transport pathways. The discrete fracture network (DFN) model attempts to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. An integrated DFN meshing [1], flow, and particle tracking [2] simulation capability that enables accurate flow and particle tracking simulation on large DFNs has recently been developed. The new capability has been used in numerical experiments on advective transport in large DFNs with tens of thousands of fractures and millions of computational cells. The modeling procedure starts from the fracture network generation using a stochastic model derived from site data. A high-quality computational mesh is then generated [1]. Flow is then solved using the highly parallel PFLOTRAN [3] code. PFLOTRAN uses the finite volume approach, which is locally mass conserving and thus eliminates mass balance problems during particle tracking. The flow solver provides the scalar fluxes on each control volume face. From the obtained fluxes the Darcy velocity is reconstructed for each node in the network [4]. Velocities can then be continuously interpolated to any point in the domain of interest, thus enabling random walk particle tracking. In order to describe the flow field on fractures intersections, the control volume cells on intersections are split into four planar polygons, where each polygon corresponds to a piece of a fracture near the intersection line. Thus
Geological discrete-fracture network model (version 1) for the Olkiluoto site, Finland
International Nuclear Information System (INIS)
Fox, A.; Buoro, A.; Dahlbo, K.; Wiren, L.
2009-10-01
This report describes the methods, analyses, and conclusions of the modelling team in the production of a discrete-fracture network (DFN) model for the Olkiluoto Site in Finland. The geological DFN is a statistical model for stochastically simulating rock fractures and minor faults at a scale ranging from approximately 0.05 m to approximately 500 m; an upper scale limit is not expressly defined, but the DFN model explicitly excludes structures at deformation-zone scales (∼ 500 m) and larger. The DFN model is presented as a series of tables summarizing probability distributions for several parameters necessary for fracture modelling: fracture orientation, fracture size, fracture intensity, and associated spatial constraints. The geological DFN is built from data collected during site characterization (SC) activities at Olkiluoto, which is currently planned to function as a final deep geological repository for spent fuel and nuclear waste from the Finnish nuclear power program. Data used in the DFN analyses include fracture maps from surface outcrops and trenches (as of July 2007), geological and structural data from cored boreholes (as of July 2007), and fracture information collected during the construction of the main tunnels and shafts at the ONKALO laboratory (January 2008). The modelling results suggest that the rock volume at Olkiluoto surrounding the ONKALO tunnel can be separated into three distinct volumes (fracture domains): an upper block, an intermediate block, and a lower block. The three fracture domains are bounded horizontally and vertically by large deformation zones. Fracture properties, such as fracture orientation and relative orientation set intensity, vary between fracture domains. The rock volume at Olkiluoto is dominated by three distinct fracture sets: subhorizontally-dipping fractures striking north-northeast and dipping to the east, a subvertically-dipping fracture set striking roughly north-south, and a subverticallydipping fracture set
[Superimposed lichen planus pigmentosus].
Monteagudo, Benigno; Suarez-Amor, Óscar; Cabanillas, Miguel; de Las Heras, Cristina; Álvarez, Juan Carlos
2014-05-16
Lichen planus pigmentosus is an uncommon variant of lichen planus that is characterized by the insidious onset of dark brown macules in sun-exposed areas and flexural folds. Superimposed linear lichen planus is an exceedingly rare disorder, but it has been found in both lichen planopilaris and lichen planus types. A 39-year-old woman is presented showing a segmental and linear lichen planus associated with non-segmental lesions meeting all criteria for the diagnosis of superimposed linear planus pigmentosus. The segmental lesions were always more pronounced.
Investigation of discrete-fracture network conceptual model uncertainty at Forsmark
International Nuclear Information System (INIS)
Geier, Joel
2011-04-01
In the present work a discrete fracture model has been further developed and implemented using the latest SKB site investigation data. The model can be used for analysing the fracture network and to model flow through the rock in Forsmark. The aim has been to study uncertainties in the hydrological discrete fracture network (DFN) for the repository model. More specifically the objective has been to study to which extent available data limits uncertainties in the DFN model and how data that can be obtained in future underground work can further limit these uncertainties. Moreover, the effects on deposition hole utilisation and placement have been investigated as well as the effects on the flow to deposition holes
International Nuclear Information System (INIS)
Dershowitz, B.; Eiben, T.; Follin, S.; Andersson, Johan
1999-08-01
As part of studies into the siting of a deep repository for nuclear waste, Swedish Nuclear Fuel and Waste Management Company (SKB) has commissioned the Alternative Models Project (AMP). The AMP is a comparison of three alternative modeling approaches for geosphere performance assessment for a single hypothetical site. The hypothetical site, arbitrarily named Aberg is based on parameters from the Aespoe Hard Rock Laboratory in southern Sweden. The Aberg model domain, boundary conditions and canister locations are defined as a common reference case to facilitate comparisons between approaches. This report presents the results of a discrete fracture pathways analysis of the Aberg site, within the context of the SR 97 performance assessment exercise. The Aberg discrete fracture network (DFN) site model is based on consensus Aberg parameters related to the Aespoe HRL site. Discrete fracture pathways are identified from canister locations in a prototype repository design to the surface of the island or to the sea bottom. The discrete fracture pathways analysis presented in this report is used to provide the following parameters for SKB's performance assessment transport codes FARF31 and COMP23: * F-factor: Flow wetted surface normalized with regards to flow rate (yields an appreciation of the contact area available for diffusion and sorption processes) [TL -1 ]. * Travel Time: Advective transport time from a canister location to the environmental discharge [T]. * Canister Flux: Darcy flux (flow rate per unit area) past a representative canister location [LT -1 ]. In addition to the above, the discrete fracture pathways analysis in this report also provides information about: additional pathway parameters such as pathway length, pathway width, transport aperture, reactive surface area and transmissivity, percentage of canister locations with pathways to the surface discharge, spatial pattern of pathways and pathway discharges, visualization of pathways, and statistical
Energy Technology Data Exchange (ETDEWEB)
Dershowitz, B.; Eiben, T. [Golder Associates Inc., Seattle (United States); Follin, S.; Andersson, Johan [Golder Grundteknik KB, Stockholm (Sweden)
1999-08-01
As part of studies into the siting of a deep repository for nuclear waste, Swedish Nuclear Fuel and Waste Management Company (SKB) has commissioned the Alternative Models Project (AMP). The AMP is a comparison of three alternative modeling approaches for geosphere performance assessment for a single hypothetical site. The hypothetical site, arbitrarily named Aberg is based on parameters from the Aespoe Hard Rock Laboratory in southern Sweden. The Aberg model domain, boundary conditions and canister locations are defined as a common reference case to facilitate comparisons between approaches. This report presents the results of a discrete fracture pathways analysis of the Aberg site, within the context of the SR 97 performance assessment exercise. The Aberg discrete fracture network (DFN) site model is based on consensus Aberg parameters related to the Aespoe HRL site. Discrete fracture pathways are identified from canister locations in a prototype repository design to the surface of the island or to the sea bottom. The discrete fracture pathways analysis presented in this report is used to provide the following parameters for SKB's performance assessment transport codes FARF31 and COMP23: * F-factor: Flow wetted surface normalized with regards to flow rate (yields an appreciation of the contact area available for diffusion and sorption processes) [TL{sup -1}]. * Travel Time: Advective transport time from a canister location to the environmental discharge [T]. * Canister Flux: Darcy flux (flow rate per unit area) past a representative canister location [LT{sup -1}]. In addition to the above, the discrete fracture pathways analysis in this report also provides information about: additional pathway parameters such as pathway length, pathway width, transport aperture, reactive surface area and transmissivity, percentage of canister locations with pathways to the surface discharge, spatial pattern of pathways and pathway discharges, visualization of pathways, and
Frampton, A.; Hyman, J.; Zou, L.
2017-12-01
Analysing flow and transport in sparsely fractured media is important for understanding how crystalline bedrock environments function as barriers to transport of contaminants, with important applications towards subsurface repositories for storage of spent nuclear fuel. Crystalline bedrocks are particularly favourable due to their geological stability, low advective flow and strong hydrogeochemical retention properties, which can delay transport of radionuclides, allowing decay to limit release to the biosphere. There are however many challenges involved in quantifying and modelling subsurface flow and transport in fractured media, largely due to geological complexity and heterogeneity, where the interplay between advective and dispersive flow strongly impacts both inert and reactive transport. A key to modelling transport in a Lagrangian framework involves quantifying pathway travel times and the hydrodynamic control of retention, and both these quantities strongly depend on heterogeneity of the fracture network at different scales. In this contribution, we present recent analysis of flow and transport considering fracture networks with single-fracture heterogeneity described by different multivariate normal distributions. A coherent triad of fields with identical correlation length and variance are created but which greatly differ in structure, corresponding to textures with well-connected low, medium and high permeability structures. Through numerical modelling of multiple scales in a stochastic setting we quantify the relative impact of texture type and correlation length against network topological measures, and identify key thresholds for cases where flow dispersion is controlled by single-fracture heterogeneity versus network-scale heterogeneity. This is achieved by using a recently developed novel numerical discrete fracture network model. Furthermore, we highlight enhanced flow channelling for cases where correlation structure continues across
Hyman, J.; Aldrich, G. A.; Viswanathan, H. S.; Makedonska, N.; Karra, S.
2016-12-01
We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semi-correlation, and non-correlation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected so that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same.We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. These observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.
Infantile osteopetrosis with superimposed rickets.
Gonen, Korcan Aysun; Yazici, Zeynep; Gokalp, Gokhan; Ucar, Ayse Kalyoncu
2013-01-01
Rickets is a complication of infantile osteopetrosis and pre-treatment recognition of this complication is important. To describe four children with infantile osteopetrosis complicated by rickets (osteopetrorickets) and review the relevant literature. Retrospective chart analysis of four infants with osteopetrorickets and a systematic review of the relevant literature. We saw five children with infantile osteopetrosis, of whom four had superimposed rickets, for a period of 12 years. The review of the literature (including the current four children), yielded 20 children with infantile osteopetrorickets. The children ranged in age from 2 months to 12 months. In all children, hepatosplenomegaly was found. Sixteen (80%) children had visual impairments and eight (40%) children had hearing impairments. Serum calcium-phosphorus product was less than 30 in 18 children (90%). Twelve children (60%) were hypocalcemic and 18 (90%) were hypophosphatemic. In all children, the radiological examination demonstrated diffuse bony sclerosis and metaphyseal splaying and fraying of long bones. Five children (25%) had pathological fracture of extremities and 15 (75%) had rachitic rosary. Rickets as a complication to infantile osteopetrosis is not uncommon. Skeletal roentgenograms are of critical importance in the diagnosis of both osteopetrosis and superimposed rickets.
Directory of Open Access Journals (Sweden)
Yongbin Zhang
2015-06-01
Full Text Available In this study, a 3D multicomponent multiphase simulator with a new fracture characterization technique is developed to simulate the enhanced recovery of coalbed methane. In this new model, the diffusion source from the matrix is calculated using the traditional dual-continuum approach, while in the Darcy flow scale, the Discrete Fracture Model (DFM is introduced to explicitly represent the flow interaction between cleats and large-scale fractures. For this purpose, a general formulation is proposed to model the multicomponent multiphase flow through the fractured coal media. The S&D model and a revised P&M model are incorporated to represent the geomechanical effects. Then a finite volume based discretization and solution strategies are constructed to solve the general ECBM equations. The prismatic meshing algorism is used to construct the grids for 3D reservoirs with complex fracture geometry. The simulator is validated with a benchmark case in which the results show close agreement with GEM. Finally, simulation of a synthetic heterogeneous 3D coal reservoir modified from a published literature is performed to evaluate the production performance and the effects of injected gas composition, well pattern and gas buoyancy.
A discrete-element model for viscoelastic deformation and fracture of glacial ice
Riikilä, T. I.; Tallinen, T.; Åström, J.; Timonen, J.
2015-10-01
A discrete-element model was developed to study the behavior of viscoelastic materials that are allowed to fracture. Applicable to many materials, the main objective of this analysis was to develop a model specifically for ice dynamics. A realistic model of glacial ice must include elasticity, brittle fracture and slow viscous deformations. Here the model is described in detail and tested with several benchmark simulations. The model was used to simulate various ice-specific applications with resulting flow rates that were compatible with Glen's law, and produced under fragmentation fragment-size distributions that agreed with the known analytical and experimental results.
International Nuclear Information System (INIS)
Tanaka, Tatsuya; Ando, Kenichi; Hashimoto, Shuuji; Saegusa, Hiromitsu; Takeuchi, Shinji; Amano, Kenji
2007-01-01
This study aims to establish comprehensive techniques for site descriptive modelling considering the hydraulic heterogeneity due to the Water Conducting Features in fractured rocks. The WCFs was defined by the interpretation and integration of geological and hydrogeological data obtained from the deep borehole investigation campaign in the Mizunami URL project and Regional Hydrogeological Study. As a result of surface based investigation phase, the block-scale hydrogeological descriptive model was generated using hydraulic discrete fracture networks. Uncertainties and remaining issues associated with the assumption in interpreting the data and its modelling were addressed in a systematic way. (author)
Geological discrete fracture network model for the Olkiluoto site, Eurajoki, Finland. Version 2.0
International Nuclear Information System (INIS)
Fox, A.; Forchhammer, K.; Pettersson, A.; La Pointe, P.; Lim, D-H.
2012-06-01
This report describes the methods, analyses, and conclusions of the modeling team in the production of the 2010 revision to the geological discrete fracture network (DFN) model for the Olkiluoto Site in Finland. The geological DFN is a statistical model for stochastically simulating rock fractures and minor faults at a scale ranging from approximately 0.05 m to approximately 565m; deformation zones are expressly excluded from the DFN model. The DFN model is presented as a series of tables summarizing probability distributions for several parameters necessary for fracture modeling: fracture orientation, fracture size, fracture intensity, and associated spatial constraints. The geological DFN is built from data collected during site characterization (SC) activities at Olkiluoto, which is selected to function as a final deep geological repository for spent fuel and nuclear waste from the Finnish nuclear power program. Data used in the DFN analyses include fracture maps from surface outcrops and trenches, geological and structural data from cored drillholes, and fracture information collected during the construction of the main tunnels and shafts at the ONKALO laboratory. Unlike the initial geological DFN, which was focused on the vicinity of the ONKALO tunnel, the 2010 revisions present a model parameterization for the entire island. Fracture domains are based on the tectonic subdivisions at the site (northern, central, and southern tectonic units) presented in the Geological Site Model (GSM), and are further subdivided along the intersection of major brittle-ductile zones. The rock volume at Olkiluoto is dominated by three distinct fracture sets: subhorizontally-dipping fractures striking north-northeast and dipping to the east that is subparallel to the mean bedrock foliation direction, a subvertically-dipping fracture set striking roughly north-south, and a subvertically-dipping fracture set striking approximately east-west. The subhorizontally-dipping fractures
Geological discrete fracture network model for the Olkiluoto site, Eurajoki, Finland. Version 2.0
Energy Technology Data Exchange (ETDEWEB)
Fox, A.; Forchhammer, K.; Pettersson, A. [Golder Associates AB, Stockholm (Sweden); La Pointe, P.; Lim, D-H. [Golder Associates Inc. (Finland)
2012-06-15
This report describes the methods, analyses, and conclusions of the modeling team in the production of the 2010 revision to the geological discrete fracture network (DFN) model for the Olkiluoto Site in Finland. The geological DFN is a statistical model for stochastically simulating rock fractures and minor faults at a scale ranging from approximately 0.05 m to approximately 565m; deformation zones are expressly excluded from the DFN model. The DFN model is presented as a series of tables summarizing probability distributions for several parameters necessary for fracture modeling: fracture orientation, fracture size, fracture intensity, and associated spatial constraints. The geological DFN is built from data collected during site characterization (SC) activities at Olkiluoto, which is selected to function as a final deep geological repository for spent fuel and nuclear waste from the Finnish nuclear power program. Data used in the DFN analyses include fracture maps from surface outcrops and trenches, geological and structural data from cored drillholes, and fracture information collected during the construction of the main tunnels and shafts at the ONKALO laboratory. Unlike the initial geological DFN, which was focused on the vicinity of the ONKALO tunnel, the 2010 revisions present a model parameterization for the entire island. Fracture domains are based on the tectonic subdivisions at the site (northern, central, and southern tectonic units) presented in the Geological Site Model (GSM), and are further subdivided along the intersection of major brittle-ductile zones. The rock volume at Olkiluoto is dominated by three distinct fracture sets: subhorizontally-dipping fractures striking north-northeast and dipping to the east that is subparallel to the mean bedrock foliation direction, a subvertically-dipping fracture set striking roughly north-south, and a subvertically-dipping fracture set striking approximately east-west. The subhorizontally-dipping fractures
Shale Fracture Analysis using the Combined Finite-Discrete Element Method
Carey, J. W.; Lei, Z.; Rougier, E.; Knight, E. E.; Viswanathan, H.
2014-12-01
Hydraulic fracturing (hydrofrac) is a successful method used to extract oil and gas from highly carbonate rocks like shale. However, challenges exist for industry experts estimate that for a single $10 million dollar lateral wellbore fracking operation, only 10% of the hydrocarbons contained in the rock are extracted. To better understand how to improve hydrofrac recovery efficiencies and to lower its costs, LANL recently funded the Laboratory Directed Research and Development (LDRD) project: "Discovery Science of Hydraulic Fracturing: Innovative Working Fluids and Their Interactions with Rocks, Fractures, and Hydrocarbons". Under the support of this project, the LDRD modeling team is working with the experimental team to understand fracture initiation and propagation in shale rocks. LANL's hybrid hydro-mechanical (HM) tool, the Hybrid Optimization Software Suite (HOSS), is being used to simulate the complex fracture and fragment processes under a variety of different boundary conditions. HOSS is based on the combined finite-discrete element method (FDEM) and has been proven to be a superior computational tool for multi-fracturing problems. In this work, the comparison of HOSS simulation results to triaxial core flooding experiments will be presented.
A discrete element model for damage and fracture of geomaterials under fatigue loading
Gao, Xiaofeng; Koval, Georg; Chazallon, Cyrille
2017-06-01
Failure processes in geomaterials (concrete, asphalt concrete, masonry, etc.) under fatigue loading (repeated moving loads, cycles of temperature, etc.) are responsible for most of the dysfunctions in pavements, brick structures, etc. In the beginning of the lifetime of a structure, the material presents only inner defects (micro cracks, voids, etc.). Due to the effect of the cyclic loading, these small defects tend to grow in size and quantity which damage the material, reducing its stiffness. With a relatively high number of cycles, these growing micro cracks become large cracks, which characterizes the fracture behavior. From a theoretical point of view, both mechanisms are treated differently. Fracture is usually described locally, with the propagation of cracks defined by the energy release rate at the crack tip; damage is usually associated to non-local approaches. In the present work, damage and fracture mechanics are combined in a local discrete element approach.
Directory of Open Access Journals (Sweden)
Z. M. Jaini
Full Text Available Abstract Numerical modeling of fracture failure is challenging due to various issues in the constitutive law and the transition of continuum to discrete bodies. Therefore, this study presents the application of the combined finite-discrete element method to investigate the fracture failure of reinforced concrete slabs subjected to blast loading. In numerical modeling, the interaction of non-uniform blast loading on the concrete slab was modeled using the incorporation of the finite element method with a crack rotating approach and the discrete element method to model crack, fracture onset and its post-failures. A time varying pressure-time history based on the mapping method was adopted to define blast loading. The Mohr-Coulomb with Rankine cut-off and von-Mises criteria were applied for concrete and steel reinforcement respectively. The results of scabbing, spalling and fracture show a reliable prediction of damage and fracture.
Ahmed, Raheel; Edwards, Michael G.; Lamine, Sadok; Huisman, Bastiaan A. H.; Pal, Mayur
2017-11-01
Two novel control-volume methods are presented for flow in fractured media, and involve coupling the control-volume distributed multi-point flux approximation (CVD-MPFA) constructed with full pressure support (FPS), to two types of discrete fracture-matrix approximation for simulation on unstructured grids; (i) involving hybrid grids and (ii) a lower dimensional fracture model. Flow is governed by Darcy's law together with mass conservation both in the matrix and the fractures, where large discontinuities in permeability tensors can occur. Finite-volume FPS schemes are more robust than the earlier CVD-MPFA triangular pressure support (TPS) schemes for problems involving highly anisotropic homogeneous and heterogeneous full-tensor permeability fields. We use a cell-centred hybrid-grid method, where fractures are modelled by lower-dimensional interfaces between matrix cells in the physical mesh but expanded to equi-dimensional cells in the computational domain. We present a simple procedure to form a consistent hybrid-grid locally for a dual-cell. We also propose a novel hybrid-grid for intersecting fractures, for the FPS method, which reduces the condition number of the global linear system and leads to larger time steps for tracer transport. The transport equation for tracer flow is coupled with the pressure equation and provides flow parameter assessment of the fracture models. Transport results obtained via TPS and FPS hybrid-grid formulations are compared with the corresponding results of fine-scale explicit equi-dimensional formulations. The results show that the hybrid-grid FPS method applies to general full-tensor fields and provides improved robust approximations compared to the hybrid-grid TPS method for fractured domains, for both weakly anisotropic permeability fields and very strong anisotropic full-tensor permeability fields where the TPS scheme exhibits spurious oscillations. The hybrid-grid FPS formulation is extended to compressible flow and the
International Nuclear Information System (INIS)
Darcel, C.; Davy, P.; Le Goc, R.; Dreuzy, J.R. de; Bour, O.
2009-11-01
the other, addresses the issue of the nature of the transition. We develop a new 'mechanistic' model that could help in modeling why and where this transition can occur. The transition between both regimes would occur for a fracture length of 1-10 m and even at a smaller scale for the few outcrops that follow the self-similar density model. A consequence for the disposal issue is that the model that is likely to apply in the 'blind' scale window between 10-100 m is the self-similar model as it is defined for large-scale lineaments. The self-similar model, as it is measured for some outcrops and most lineament maps, is definitely worth being investigated as a reference for scales above 1-10 m. In the rest of the report, we develop a methodology for incorporating uncertainty and variability into the DFN modeling. Fracturing properties arise from complex processes which produce an intrinsic variability; characterizing this variability as an admissible variation of model parameter or as the division of the site into subdomains with distinct DFN models is a critical point of the modeling effort. Moreover, the DFN model encompasses a part of uncertainty, due to data inherent uncertainties and sampling limits. Both effects must be quantified and incorporated into the DFN site model definition process. In that context, all available borehole data including recording of fracture intercept positions, pole orientation and relative uncertainties are used as the basis for the methodological development and further site model assessment. An elementary dataset contains a set of discrete fracture intercepts from which a parent orientation/density distribution can be computed. The elementary bricks of the site, from which these initial parent density distributions are computed, rely on the former Single Hole Interpretation division of the boreholes into sections whose local boundaries are expected to reflect - locally - geology and fracturing properties main characteristics. From that
Discrete Modeling of Early-Life Thermal Fracture in Ceramic Nuclear Fuel
Energy Technology Data Exchange (ETDEWEB)
Spencer, Benjamin W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Huang, Hai [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dolbow, John E. [Duke Univ., Durham, NC (United States); Hales, Jason D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-03-01
Fracturing of ceramic fuel pellets heavily influences performance of light water reactor (LWR) fuel. Early in the life of fuel, starting with the initial power ramp, large thermal gradients cause high tensile hoop and axial stresses in the outer region of the fuel pellets, resulting in the formation of radial and axial cracks. Circumferential cracks form due to thermal gradients that occur when the power is ramped down. These thermal cracks cause the fuel to expand radially, closing the pellet/cladding gap and enhancing the thermal conductance across that gap, while decreasing the effective conductivity of the fuel in directions normal to the cracking. At lower length scales, formation of microcracks is an important contributor to the decrease in bulk thermal conductivity that occurs over the life of the fuel as the burnup increases. Because of the important effects that fracture has on fuel performance, a realistic, physically based fracture modeling capability is essential to predict fuel behavior in a wide variety of normal and abnormal conditions. Modeling fracture within the context of the finite element method, which is based on continuous interpolations of solution variables, has always been challenging because fracture is an inherently discontinuous phenomenon. Work is underway at Idaho National Laboratory to apply two modeling techniques model fracture as a discrete displacement discontinuity to nuclear fuel: The extended finite element method (XFEM), and discrete element method (DEM). XFEM is based on the standard finite element method, but with enhancements to represent discontinuous behavior. DEM represents a solid as a network of particles connected by bonds, which can arbitrarily fail if a fracture criterion is reached. This paper presents initial results applying the aforementioned techniques to model fuel fracturing. This work has initially focused on early life behavior of ceramic LWR fuel. A coupled thermal-mechanical XFEM method that includes
Energy Technology Data Exchange (ETDEWEB)
La Pointe, Paul; Fox, Aaron (Golder Associates Inc (United States)); Hermanson, Jan; Oehman, Johan (Golder Associates AB, Stockholm (Sweden))
2008-12-15
The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site characterization at two different locations, Forsmark and Laxemar, in order to locate a site for a final geologic repository for spent nuclear fuel. The program is built upon the development of Site Descriptive Models (SDMs) at specific timed data freezes. Each SDM is formed from discipline-specific reports from across the scientific spectrum. This report describes the methods, analyses, and conclusions of the modelling team in the production of the SDM-Site Laxemar geological discrete-fracture network (DFN) model. The DFN builds upon the work of other geological models, including the deformation zone and rock domain models. The geological DFN is a statistical model for stochastically simulating rock fractures and minor deformation zones at a scale of less than 1,000 m (the lower cut-off of the DZ models). The geological DFN is valid within six distinct fracture domains inside the Laxemar local model subarea: FSM{sub C}, FSM{sub E}W007, FSM{sub N}, FSM{sub N}E005, FSM{sub S}, and FSM{sub W}. The models are built using data from detailed surface outcrop maps, geophysical lineament maps, and the cored borehole record at Laxemar. The conceptual model for the SDM-Site Laxemar geological DFN model revolves around the identification of fracture domains based on relative fracture set intensities, orientation clustering, and the regional tectonic framework (including deformation zones). A single coupled fracture size/fracture intensity concept (the Base Model) based on a Pareto (power-law) distribution for fracture sizes was chosen as the recommended parameterisation. A slew of alternative size-intensity models were also carried through the fracture analyses and into the uncertainty and model verification analyses. Uncertainty is modelled by analysing the effects on fracture intensity (P32) that alternative model cases can have. Uncertainty is parameterised as a ratio between the P32 of the
International Nuclear Information System (INIS)
La Pointe, Paul; Fox, Aaron; Hermanson, Jan; Oehman, Johan
2008-10-01
The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site characterization at two different locations, Forsmark and Laxemar, in order to locate a site for a final geologic repository for spent nuclear fuel. The program is built upon the development of Site Descriptive Models (SDMs) at specific timed data freezes. Each SDM is formed from discipline-specific reports from across the scientific spectrum. This report describes the methods, analyses, and conclusions of the modelling team in the production of the SDM-Site Laxemar geological discrete-fracture network (DFN) model. The DFN builds upon the work of other geological models, including the deformation zone and rock domain models. The geological DFN is a statistical model for stochastically simulating rock fractures and minor deformation zones at a scale of less than 1,000 m (the lower cut-off of the DZ models). The geological DFN is valid within six distinct fracture domains inside the Laxemar local model subarea: FSM C , FSM E W007, FSM N , FSM N E005, FSM S , and FSM W . The models are built using data from detailed surface outcrop maps, geophysical lineament maps, and the cored borehole record at Laxemar. The conceptual model for the SDM-Site Laxemar geological DFN model revolves around the identification of fracture domains based on relative fracture set intensities, orientation clustering, and the regional tectonic framework (including deformation zones). A single coupled fracture size/fracture intensity concept (the Base Model) based on a Pareto (power-law) distribution for fracture sizes was chosen as the recommended parameterisation. A slew of alternative size-intensity models were also carried through the fracture analyses and into the uncertainty and model verification analyses. Uncertainty is modelled by analysing the effects on fracture intensity (P32) that alternative model cases can have. Uncertainty is parameterised as a ratio between the P32 of the alternative model and the P
Energy Technology Data Exchange (ETDEWEB)
Darcel, C. (Itasca Consultants SAS (France)); Davy, P.; Le Goc, R.; Dreuzy, J.R. de; Bour, O. (Geosciences Rennes, UMR 6118 CNRS, Univ. def Rennes, Rennes (France))
2009-11-15
the lineament scale (k{sub t} = 2) on the other, addresses the issue of the nature of the transition. We develop a new 'mechanistic' model that could help in modeling why and where this transition can occur. The transition between both regimes would occur for a fracture length of 1-10 m and even at a smaller scale for the few outcrops that follow the self-similar density model. A consequence for the disposal issue is that the model that is likely to apply in the 'blind' scale window between 10-100 m is the self-similar model as it is defined for large-scale lineaments. The self-similar model, as it is measured for some outcrops and most lineament maps, is definitely worth being investigated as a reference for scales above 1-10 m. In the rest of the report, we develop a methodology for incorporating uncertainty and variability into the DFN modeling. Fracturing properties arise from complex processes which produce an intrinsic variability; characterizing this variability as an admissible variation of model parameter or as the division of the site into subdomains with distinct DFN models is a critical point of the modeling effort. Moreover, the DFN model encompasses a part of uncertainty, due to data inherent uncertainties and sampling limits. Both effects must be quantified and incorporated into the DFN site model definition process. In that context, all available borehole data including recording of fracture intercept positions, pole orientation and relative uncertainties are used as the basis for the methodological development and further site model assessment. An elementary dataset contains a set of discrete fracture intercepts from which a parent orientation/density distribution can be computed. The elementary bricks of the site, from which these initial parent density distributions are computed, rely on the former Single Hole Interpretation division of the boreholes into sections whose local boundaries are expected to reflect - locally - geology
Riahi, A.; Damjanac, B.
2013-12-01
Viability of an enhanced or engineered geothermal reservoir is determined by the rate of produced fluid at production wells and the rate of temperature drawdown in the reservoir as well as that of the produced fluid. Meeting required targets demands sufficient permeability and flow circulation in a relatively large volume of rock mass. In-situ conditions such overall permeability of the bedrock formation, magnitude and orientation of stresses, and the characteristics of the existing Discrete Fracture Network (DFN) greatly affect sustainable heat production. Because much of the EGS resources are in formations with low permeability, different stimulation techniques are required prior to the production phase to enhance fluid circulation. Shear stimulation or hydro-shearing is the method of injecting a fluid into the reservoir with the aim of increasing the fluid pressure in the naturally fractured rock and inducing shear failure or slip events. This mechanism can enhance the system's permeability through permanent dilatational opening of the sheared fractures. Using a computational modeling approach, the correlation between heat production and DFN statistical characteristics, namely the fracture length distribution, fracture orientation, and also fracture density is studied in this paper. Numerical analyses were completed using two-dimensional distinct element code UDEC (Itasca, 2011), which represents rock masses as an assembly of interacting blocks separated by fractures. UDEC allows for simulation of fracture propagation along the predefined planes only (i.e., the trajectory of the hydraulic fracture is not part of the solution of the problem). Thus, the hydraulic fracture is assumed to be planar, aligned with the direction of the major principal stress. The pre-existing fractures were represented explicitly. They are discontinuities which deform elastically, but also can open and slip (Coulomb slip law) as a function of pressure and total stress changes. The fluid
Predictions of first passage times in sparse discrete fracture networks using graph-based reductions
Hyman, J.; Hagberg, A.; Srinivasan, G.; Mohd-Yusof, J.; Viswanathan, H. S.
2017-12-01
We present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths. First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. Accurate estimates of first passage times are obtained with an order of magnitude reduction of CPU time and mesh size using the proposed method.
Discrete Fracture Network Models for Risk Assessment of Carbon Sequestration in Coal
Energy Technology Data Exchange (ETDEWEB)
Jack Pashin; Guohai Jin; Chunmiao Zheng; Song Chen; Marcella McIntyre
2008-07-01
A software package called DFNModeler has been developed to assess the potential risks associated with carbon sequestration in coal. Natural fractures provide the principal conduits for fluid flow in coal-bearing strata, and these fractures present the most tangible risks for the leakage of injected carbon dioxide. The objectives of this study were to develop discrete fracture network (DFN) modeling tools for risk assessment and to use these tools to assess risks in the Black Warrior Basin of Alabama, where coal-bearing strata have high potential for carbon sequestration and enhanced coalbed methane recovery. DFNModeler provides a user-friendly interface for the construction, visualization, and analysis of DFN models. DFNModeler employs an OpenGL graphics engine that enables real-time manipulation of DFN models. Analytical capabilities in DFNModeler include display of structural and hydrologic parameters, compartmentalization analysis, and fluid pathways analysis. DFN models can be exported to third-party software packages for flow modeling. DFN models were constructed to simulate fracturing in coal-bearing strata of the upper Pottsville Formation in the Black Warrior Basin. Outcrops and wireline cores were used to characterize fracture systems, which include joint systems, cleat systems, and fault-related shear fractures. DFN models were constructed to simulate jointing, cleating, faulting, and hydraulic fracturing. Analysis of DFN models indicates that strata-bound jointing compartmentalizes the Pottsville hydrologic system and helps protect shallow aquifers from injection operations at reservoir depth. Analysis of fault zones, however, suggests that faulting can facilitate cross-formational flow. For this reason, faults should be avoided when siting injection wells. DFN-based flow models constructed in TOUGH2 indicate that fracture aperture and connectivity are critical variables affecting the leakage of injected CO{sub 2} from coal. Highly transmissive joints
International Nuclear Information System (INIS)
Senapati, Rajeev; Zhang Jianmei
2010-01-01
Advanced ceramic materials have been extensively applied in aerospace, automobile and other industries. However, the reliability of the advanced ceramics is a major concern because of the brittle nature of the materials. In this paper, combination of nondestructive testing and numerical modeling Discrete Element Method is proposed to identify the fracture origin in ceramics. The nondestructive testing--laser scattering technology is first performed on the ceramic components to reveal the machining-induced damage such as cracks and the material-inherent flaws such as voids, then followed by the four point bending test. Discrete Element software package PFC 2D is used to simulate the four point bending test and try to identify where the fractures start. The numerical representation of the ceramic materials is done by generating a densely packed particle system using the specimen genesis procedure and then applying the suitable microparameters to the particle system. Simulation of four point bending test is performed on materials having no defects, materials having manufacturing-induced defects like cracks, and materials having material-inherent flaws like voids. The initiation and propagation of defects is modeled and the mean contact force on the loading ball is also plotted. The simulation prediction results are well in accordance with the nondestructive testing results.
Energy Technology Data Exchange (ETDEWEB)
Birkholzer, J.; Karasaki, K. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.
1996-07-01
Fracture network simulators have extensively been used in the past for obtaining a better understanding of flow and transport processes in fractured rock. However, most of these models do not account for fluid or solute exchange between the fractures and the porous matrix, although diffusion into the matrix pores can have a major impact on the spreading of contaminants. In the present paper a new finite element code TRIPOLY is introduced which combines a powerful fracture network simulator with an efficient method to account for the diffusive interaction between the fractures and the adjacent matrix blocks. The fracture network simulator used in TRIPOLY features a mixed Lagrangian-Eulerian solution scheme for the transport in fractures, combined with an adaptive gridding technique to account for sharp concentration fronts. The fracture-matrix interaction is calculated with an efficient method which has been successfully used in the past for dual-porosity models. Discrete fractures and matrix blocks are treated as two different systems, and the interaction is modeled by introducing sink/source terms in both systems. It is assumed that diffusive transport in the matrix can be approximated as a one-dimensional process, perpendicular to the adjacent fracture surfaces. A direct solution scheme is employed to solve the coupled fracture and matrix equations. The newly developed combination of the fracture network simulator and the fracture-matrix interaction module allows for detailed studies of spreading processes in fractured porous rock. The authors present a sample application which demonstrate the codes ability of handling large-scale fracture-matrix systems comprising individual fractures and matrix blocks of arbitrary size and shape.
Qin, Guan
2010-01-01
Naturally-fractured carbonate karst reservoirs are characterized by various-sized solution caves that are connected via fracture networks at multiple scales. These complex geologic features can not be fully resolved in reservoir simulations due to the underlying uncertainty in geologic models and the large computational resource requirement. They also bring in multiple flow physics which adds to the modeling difficulties. It is thus necessary to develop a method to accurately represent the effect of caves, fractures and their interconnectivities in coarse-scale simulation models. In this paper, we present a procedure based on our previously proposed Stokes-Brinkman model (SPE 125593) and the discrete fracture network method for accurate and efficient upscaling of naturally fractured carbonate karst reservoirs.
Discrete fracture network modelling of a KBS-3H repository at Olkiluoto
Energy Technology Data Exchange (ETDEWEB)
Lanyon, G.W. (Fracture Systems Ltd, St Ives (United Kingdom)); Marschall, P. (Nagra, Wettingen (Switzerland))
2008-06-15
This report presents Discrete Fracture Network (DFN) models of groundwater flow around a KBS-3H repository situated at Olkiluoto. The study was performed in support of the Safety Case for the KBS-3H Concept, being jointly studied by SKB and Posiva. As part of the preliminary assessment of long term safety of a KBS-3H repository, a Process Report and an Evolution Report (evolution of the disposal system from the emplacement of the first canister to the long term) are being produced. In the course of the task definition the project team identified the need for complementary modelling studies aimed at increasing insight into the hydrodynamic evolution of the disposal system after waste emplacement. In particular, the following issues were identified as requiring input from hydrodynamic models: Probability of high inflow points which may cause buffer erosion. Time transients of inflows after construction of deposition drifts. Interference between deposition drifts and transport tunnels. The DFN models represent the fault and fracture system in the planned repository volume at Olkiluoto. In particular, they represent the hydro geologically significant features. The types of hydrogeological features included in the models are: Major Fracture Zones (MFZs). Local Fracture Zones (LFZs) and associated water conducting features (LFZ-WCFs). Water Conducting Features in the background rock (BR-WCFs). These feature types are derived from the current geological and hydrogeological interpretations developed by Posiva. Several model variants were developed during the study and these variants were used for geometric simulations of the WCF network around the deposition drifts. A simple layout adaptation scheme has been applied to the network models to derive statistics for performance measures relating to the deposition drifts, compartments, plugs and super-containers. A single fracture transient flow model was developed to provide insight to transient flow behaviour around
Discrete fracture network modelling of a KBS-3H repository at Olkiluoto
International Nuclear Information System (INIS)
Lanyon, G.W.; Marschall, P.
2008-06-01
This report presents Discrete Fracture Network (DFN) models of groundwater flow around a KBS-3H repository situated at Olkiluoto. The study was performed in support of the Safety Case for the KBS-3H Concept, being jointly studied by SKB and Posiva. As part of the preliminary assessment of long term safety of a KBS-3H repository, a Process Report and an Evolution Report (evolution of the disposal system from the emplacement of the first canister to the long term) are being produced. In the course of the task definition the project team identified the need for complementary modelling studies aimed at increasing insight into the hydrodynamic evolution of the disposal system after waste emplacement. In particular, the following issues were identified as requiring input from hydrodynamic models: Probability of high inflow points which may cause buffer erosion. Time transients of inflows after construction of deposition drifts. Interference between deposition drifts and transport tunnels. The DFN models represent the fault and fracture system in the planned repository volume at Olkiluoto. In particular, they represent the hydro geologically significant features. The types of hydrogeological features included in the models are: Major Fracture Zones (MFZs). Local Fracture Zones (LFZs) and associated water conducting features (LFZ-WCFs). Water Conducting Features in the background rock (BR-WCFs). These feature types are derived from the current geological and hydrogeological interpretations developed by Posiva. Several model variants were developed during the study and these variants were used for geometric simulations of the WCF network around the deposition drifts. A simple layout adaptation scheme has been applied to the network models to derive statistics for performance measures relating to the deposition drifts, compartments, plugs and super-containers. A single fracture transient flow model was developed to provide insight to transient flow behaviour around
Directory of Open Access Journals (Sweden)
Yongliang Wang
2018-01-01
Full Text Available Hydrofracturing technology of perforated horizontal well has been widely used to stimulate the tight hydrocarbon reservoirs for gas production. To predict the hydraulic fracture propagation, the microseismicity can be used to infer hydraulic fractures state; by the effective numerical methods, microseismic events can be addressed from changes of the computed stresses. In numerical models, due to the challenges in accurately representing the complex structure of naturally fractured reservoir, the interaction between hydraulic and pre-existing fractures has not yet been considered and handled satisfactorily. To overcome these challenges, the adaptive finite element-discrete element method is used to refine mesh, effectively identify the fractures propagation, and investigate microseismic modelling. Numerical models are composed of hydraulic fractures, pre-existing fractures, and microscale pores, and the seepage analysis based on the Darcy’s law is used to determine fluid flow; then moment tensors in microseismicity are computed based on the computed stresses. Unfractured and naturally fractured models are compared to assess the influences of pre-existing fractures on hydrofracturing. The damaged and contact slip events were detected by the magnitudes, B-values, Hudson source type plots, and focal spheres.
SUPERIMPOSED MESH PLOTTING IN MCNP
Energy Technology Data Exchange (ETDEWEB)
J. HENDRICKS
2001-02-01
The capability to plot superimposed meshes has been added to MCNP{trademark}. MCNP4C featured a superimposed mesh weight window generator which enabled users to set up geometries without having to subdivide geometric cells for variance reduction. The variance reduction was performed with weight windows on a rectangular or cylindrical mesh superimposed over the physical geometry. Experience with the new capability was favorable but also indicated that a number of enhancements would be very beneficial, particularly a means of visualizing the mesh and its values. The mathematics for plotting the mesh and its values is described here along with a description of other upgrades.
International Nuclear Information System (INIS)
Sun, Zhi-xue; Zhang, Xu; Xu, Yi; Yao, Jun; Wang, Hao-xuan; Lv, Shuhuan; Sun, Zhi-lei; Huang, Yong; Cai, Ming-yu; Huang, Xiaoxue
2017-01-01
The Enhanced Geothermal System (EGS) creates an artificial geothermal reservoir by hydraulic fracturing which allows heat transmission through the fractures by the circulating fluids as they extract heat from Hot Dry Rock (HDR). The technique involves complex thermal–hydraulic–mechanical (THM) coupling process. A numerical approach is presented in this paper to simulate and analyze the heat extraction process in EGS. The reservoir is regarded as fractured porous media consisting of rock matrix blocks and discrete fracture networks. Based on thermal non-equilibrium theory, the mathematical model of THM coupling process in fractured rock mass is used. The proposed model is validated by comparing it with several analytical solutions. An EGS case from Cooper Basin, Australia is simulated with 2D stochastically generated fracture model to study the characteristics of fluid flow, heat transfer and mechanical response in geothermal reservoir. The main parameters controlling the outlet temperature of EGS are also studied by sensitivity analysis. The results shows the significance of taking into account the THM coupling effects when investigating the efficiency and performance of EGS. - Highlights: • EGS reservoir comprising discrete fracture networks and matrix rock is modeled. • A THM coupling model is proposed for simulating the heat extraction in EGS. • The numerical model is validated by comparing with several analytical solutions. • A case study is presented for understanding the main characteristics of EGS. • The THM coupling effects are shown to be significant factors to EGS's running performance.
Directory of Open Access Journals (Sweden)
Arthur Coré
2017-01-01
Full Text Available This paper deals with the characterization and the numerical modelling of the collapse of composite hollow spherical structures developed to absorb energy during high velocity impacts. The structure is composed of hollow spheres (ϕ=2–30 mm made of epoxy resin and mineral powder. First of all, quasi-static and dynamic (v=5 mm·min−1 to v=2 m·s−1 compression tests are conducted at room temperature on a single sphere to study energy dissipation mechanisms. Fracture of the material appears to be predominant. A numerical model based on the discrete element method is investigated to simulate the single sphere crushing. The stress-strain-time relationship of the material based on the Ree-Eyring law is numerically implemented. The DEM modelling takes naturally into account the dynamic fracture and the crack path computed is close to the one observed experimentally in uniaxial compression. Eventually, high velocity impacts (v>100 m·s−1 of a hollow sphere on a rigid surface are conducted with an air cannon. The numerical results are in good agreement with the experimental data and demonstrate the ability of the present model to correctly describe the mechanical behavior of brittle materials at high strain rate.
Directory of Open Access Journals (Sweden)
Qi Zhao
2014-12-01
Full Text Available Hydraulic fracturing (HF technique has been extensively used for the exploitation of unconventional oil and gas reservoirs. HF enhances the connectivity of less permeable oil and gas-bearing rock formations by fluid injection, which creates an interconnected fracture network and increases the hydrocarbon production. Meanwhile, microseismic (MS monitoring is one of the most effective approaches to evaluate such stimulation process. In this paper, the combined finite-discrete element method (FDEM is adopted to numerically simulate HF and associated MS. Several post-processing tools, including frequency-magnitude distribution (b-value, fractal dimension (D-value, and seismic events clustering, are utilized to interpret numerical results. A non-parametric clustering algorithm designed specifically for FDEM is used to reduce the mesh dependency and extract more realistic seismic information. Simulation results indicated that at the local scale, the HF process tends to propagate following the rock mass discontinuities; while at the reservoir scale, it tends to develop in the direction parallel to the maximum in-situ stress.
El-Amin, Mohamed
2017-11-23
In this article, we consider a two-phase immiscible incompressible flow including nanoparticles transport in fractured heterogeneous porous media. The system of the governing equations consists of water saturation, Darcy’s law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat, as well as, porosity and permeability variation due to the nanoparticles deposition/entrapment on/in the pores. The discrete-fracture model (DFM) is used to describe the flow and transport in fractured porous media. Moreover, multiscale time-splitting strategy has been employed to manage different time-step sizes for different physics, such as saturation, concentration, etc. Numerical examples are provided to demonstrate the efficiency of the proposed multi-scale time splitting approach.
El-Amin, Mohamed; Kou, Jisheng; Sun, Shuyu
2017-01-01
In this article, we consider a two-phase immiscible incompressible flow including nanoparticles transport in fractured heterogeneous porous media. The system of the governing equations consists of water saturation, Darcy’s law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat, as well as, porosity and permeability variation due to the nanoparticles deposition/entrapment on/in the pores. The discrete-fracture model (DFM) is used to describe the flow and transport in fractured porous media. Moreover, multiscale time-splitting strategy has been employed to manage different time-step sizes for different physics, such as saturation, concentration, etc. Numerical examples are provided to demonstrate the efficiency of the proposed multi-scale time splitting approach.
Pyatkov, A. A.; Kosyakov, V. P.; Rodionov, S. P.; Botalov, A. Y.
2018-03-01
In this work was the study of the processes of isothermal and non-isothermal flow of high viscosity oil in a fractured-porous reservoir. The numerical experiment was done using our own reservoir simulator with the possibility of modeling of fluid motion in conditions of non-isothermal processes and long fractures in the formation.
Jenkins, Paul J; McDonald, David A; Van Der Meer, Robert; Morton, Alec; Nugent, Margaret; Rymaszewski, Lech A
2017-01-01
Objective Healthcare faces the continual challenge of improving outcome while aiming to reduce cost. The aim of this study was to determine the micro cost differences of the Glasgow non-operative trauma virtual pathway in comparison to a traditional pathway. Design Discrete event simulation was used to model and analyse cost and resource utilisation with an activity-based costing approach. Data for a full comparison before the process change was unavailable so we used a modelling approach, comparing a virtual fracture clinic (VFC) with a simulated traditional fracture clinic (TFC). Setting The orthopaedic unit VFC pathway pioneered at Glasgow Royal Infirmary has attracted significant attention and interest and is the focus of this cost study. Outcome measures Our study focused exclusively on patients with non-operative trauma attending emergency department or the minor injuries unit and the subsequent step in the patient pathway. Retrospective studies of patient outcomes as a result of the protocol introductions for specific injuries are presented in association with activity costs from the models. Results Patients are satisfied with the new pathway, the information provided and the outcome of their injuries (Evidence Level IV). There was a 65% reduction in the number of first outpatient face-to-face (f2f) attendances in orthopaedics. In the VFC pathway, the resources required per day were significantly lower for all staff groups (p≤0.001). The overall cost per patient of the VFC pathway was £22.84 (95% CI 21.74 to 23.92) per patient compared with £36.81 (95% CI 35.65 to 37.97) for the TFC pathway. Conclusions Our results give a clearer picture of the cost comparison of the virtual pathway over a wholly traditional f2f clinic system. The use of simulation-based stochastic costings in healthcare economic analysis has been limited to date, but this study provides evidence for adoption of this method as a basis for its application in other healthcare settings
Anderson, Gillian H; Jenkins, Paul J; McDonald, David A; Van Der Meer, Robert; Morton, Alec; Nugent, Margaret; Rymaszewski, Lech A
2017-09-07
Healthcare faces the continual challenge of improving outcome while aiming to reduce cost. The aim of this study was to determine the micro cost differences of the Glasgow non-operative trauma virtual pathway in comparison to a traditional pathway. Discrete event simulation was used to model and analyse cost and resource utilisation with an activity-based costing approach. Data for a full comparison before the process change was unavailable so we used a modelling approach, comparing a virtual fracture clinic (VFC) with a simulated traditional fracture clinic (TFC). The orthopaedic unit VFC pathway pioneered at Glasgow Royal Infirmary has attracted significant attention and interest and is the focus of this cost study. Our study focused exclusively on patients with non-operative trauma attending emergency department or the minor injuries unit and the subsequent step in the patient pathway. Retrospective studies of patient outcomes as a result of the protocol introductions for specific injuries are presented in association with activity costs from the models. Patients are satisfied with the new pathway, the information provided and the outcome of their injuries (Evidence Level IV). There was a 65% reduction in the number of first outpatient face-to-face (f2f) attendances in orthopaedics. In the VFC pathway, the resources required per day were significantly lower for all staff groups (p≤0.001). The overall cost per patient of the VFC pathway was £22.84 (95% CI 21.74 to 23.92) per patient compared with £36.81 (95% CI 35.65 to 37.97) for the TFC pathway. Our results give a clearer picture of the cost comparison of the virtual pathway over a wholly traditional f2f clinic system. The use of simulation-based stochastic costings in healthcare economic analysis has been limited to date, but this study provides evidence for adoption of this method as a basis for its application in other healthcare settings. © Article author(s) (or their employer(s) unless otherwise
DEFF Research Database (Denmark)
Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamid
2016-01-01
networks, digitized from outcropping pavements. These networks cover a wide range of possible geometries and spatial distributions. The geometrically based method predicts the average hydraulic aperture and equivalent permeability of fractured porous media with error margins of less than 5%....
Energy Technology Data Exchange (ETDEWEB)
Fu, P; Johnson, S M; Hao, Y; Carrigan, C R
2011-01-18
The primary objective of our current research is to develop a computational test bed for evaluating borehole techniques to enhance fluid flow and heat transfer in enhanced geothermal systems (EGS). Simulating processes resulting in hydraulic fracturing and/or the remobilization of existing fractures, especially the interaction between propagating fractures and existing fractures, represents a critical goal of our project. To this end, we are continuing to develop a hydraulic fracturing simulation capability within the Livermore Distinct Element Code (LDEC), a combined FEM/DEM analysis code with explicit solid-fluid mechanics coupling. LDEC simulations start from an initial fracture distribution which can be stochastically generated or upscaled from the statistics of an actual fracture distribution. During the hydraulic stimulation process, LDEC tracks the propagation of fractures and other modifications to the fracture system. The output is transferred to the Non-isothermal Unsaturated Flow and Transport (NUFT) code to capture heat transfer and flow at the reservoir scale. This approach is intended to offer flexibility in the types of analyses we can perform, including evaluating the effects of different system heterogeneities on the heat extraction rate as well as seismicity associated with geothermal operations. This paper details the basic methodology of our approach. Two numerical examples showing the capability and effectiveness of our simulator are also presented.
International Nuclear Information System (INIS)
Andre, Damien; Iordanoff, Ivan; Charles, Jean-luc; Jebahi, Mohamed; Neauport, Jerome
2013-01-01
The mechanical behavior of materials is usually simulated by a continuous mechanics approach. However, non-continuous phenomena such as multi-fracturing cannot be accurately simulated using a continuous description. The discrete element method (DEM) naturally accounts for discontinuities and is therefore a good alternative to the continuum approach. This work uses a discrete element model based on interaction given by 3D beam model. This model has proved to correctly simulate the elastic properties at the macroscopic scale. The simulation of brittle cracks is now tackled. This goal is attained by computing a failure criterion based on an equivalent hydrostatic stress. This microscopic criterion is then calibrated to fit experimental values of the macroscopic failure stress. Then, the simulation results are compared to experimental results of indentation tests in which a spherical indenter is used to load a silica glass, which is considered to be a perfectly brittle elastic material. (authors)
DEFF Research Database (Denmark)
Bisdom, Kevin; Nick, Hamid; Bertotti, Giovanni
2017-01-01
stresssensitive fracture permeability and matrix flow to determine the full permeability tensor. The applicability of this workflow is illustrated using an outcropping carbonate pavement in the Potiguar basin in Brazil, from which 1082 fractures are digitised. The permeability tensor for a range of matrix...
Jiang, Yawen; Ni, Weiyi
2016-11-01
This work was undertaken to provide an estimation of expected lifetime numbers, risks, and burden of fractures for 50-year-old Chinese women. A discrete event simulation model was developed to simulate the lifetime fractures of 50-year-old Chinese women at average risk of osteoporotic fracture. Main events in the model included hip fracture, clinical vertebral fracture, wrist fracture, humerus fracture, and other fracture. Fracture risks were calculated using the FRAX ® tool. Simulations of 50-year-old Chinese women without fracture risks were also carried out as a comparison to determine the burden of fractures. A 50-year-old Chinese woman at average risk of fracture is expected to experience 0.135 (95 % CI: 0.134-0.137) hip fractures, 0.120 (95 % CI: 0.119-0.122) clinical vertebral fractures, 0.095 (95 % CI: 0.094-0.096) wrist fractures, 0.079 (95 % CI: 0.078-0.080) humerus fractures, and 0.407 (95 % CI: 0.404-0.410) other fractures over the remainder of her life. The residual lifetime risk of any fracture, hip fracture, clinical vertebral fracture, wrist fracture, humerus fracture, and other fracture for a 50-year-old Chinese woman is 37.36, 11.77, 10.47, 8.61, 7.30, and 27.80 %, respectively. The fracture-attributable excess quality-adjusted life year (QALY) loss and lifetime costs are estimated at 0.11 QALYs (95 % CI: 0.00-0.22 QALYs) and US $714.61 (95 % CI: US $709.20-720.02), totaling a net monetary benefit loss of US $1,104.43 (95 % CI: US $904.09-1,304.78). Chinese women 50 years of age are at high risk of osteoporotic fracture, and the expected economic and quality-of-life burden attributable to osteoporotic fractures among Chinese women is substantial.
International Nuclear Information System (INIS)
Bazr-Afkan, S.
2012-01-01
To simulate fluid flow in Naturally Fractured Reservoirs (NFRs), a new Descrete Fracture and Matrix (DFM) simulation technique is developed as a physically more realistic alternative to the dual continuum approach. This Finite-Element Centered Finite-Volume method (FECFVM) has the advantage over earlier FECFVM approaches that it honors saturation dicontinuities that can arise at material interfaces from the interplay of viscous, capillary and gravitational forces. By contrast with an earlier embedded-discontinuity DFEFVM method, the FECFVM achieves this without introducing additional degrees of freedom. It also allows to simulate capillary- and other fracture-matrix exchange processes using a lower dimensional representation of fractures, simplifying model construction and unstructured meshing as well as speeding up computations. A further step-up is obtained by solving the two-phase fluid-flow and saturation transport equations only on 'active elements'. This also diminishes round-off and truncation errors, reducing numerical diffusion during the solution of the transport equation. The FECFVM is verified by comparing IMPES operator-splitting sequential solutions with analytical ones, as well as benchmarking it against commercial reservoir simulators on simple geometries that these can represent. This testing confirms that my 2D FECFVM implementation simulates gravitational segregation, capillary redistribution, capillary barriers, and combinations thereof physically realistically, achieving (at least) first-order solution accuracy. Following this verification, the FECFVM is applied to study Gas-Oil Gravity Drainage (GOGD) process in cross-sectional models of layered NFRs. Here comparisons with dual continua simulations show that these do not capture a range of block-to-block effects, yielding over-optimistic drainage rates. Observations made on individual matrix blocks in the DFM simulations further reveal that their saturation evolution is at odds with the
Jiang, Jiamin; Younis, Rami M.
2017-06-01
The first-order methods commonly employed in reservoir simulation for computing the convective fluxes introduce excessive numerical diffusion leading to severe smoothing of displacement fronts. We present a fully-implicit cell-centered finite-volume (CCFV) framework that can achieve second-order spatial accuracy on smooth solutions, while at the same time maintain robustness and nonlinear convergence performance. A novel multislope MUSCL method is proposed to construct the required values at edge centroids in a straightforward and effective way by taking advantage of the triangular mesh geometry. In contrast to the monoslope methods in which a unique limited gradient is used, the multislope concept constructs specific scalar slopes for the interpolations on each edge of a given element. Through the edge centroids, the numerical diffusion caused by mesh skewness is reduced, and optimal second order accuracy can be achieved. Moreover, an improved smooth flux-limiter is introduced to ensure monotonicity on non-uniform meshes. The flux-limiter provides high accuracy without degrading nonlinear convergence performance. The CCFV framework is adapted to accommodate a lower-dimensional discrete fracture-matrix (DFM) model. Several numerical tests with discrete fractured system are carried out to demonstrate the efficiency and robustness of the numerical model.
International Nuclear Information System (INIS)
Hawkins, I.; Swift, B.; Hoch, A.; Wendling, J.
2010-01-01
Document available in extended abstract form only. Andra is studying the Callovo-Oxfordian mud-stones, located at a depth of approximately 500 m beneath the borders of the Meuse and the Haute-Marne Departements, in order to assess the feasibility of constructing a repository for radioactive waste in this low-permeability geological formation. The construction of a repository will lead to the formation of a zone adjacent to the repository (the Excavation Damaged Zone, or EDZ) in which the rock suffers mechanical damage. In the EDZ, fractures and cracks will develop, and therefore the hydraulic properties (including the permeability) will be different from those of the undamaged rock. There are some experimental data which, despite significant uncertainties, allow a conceptual model of the fractures to be defined. The objectives of this study were: - To develop a Discrete Fracture Network (DFN) model of the EDZ; - To derive effective properties for both single continuum and Multiple Interacting Continua (MINC) models from the DFN model; and - To use the various models to simulate desaturation of the rock during the operational phase of the repository, and subsequent re-saturation of a tunnel post-closure (a period of thousands of years). The approaches to modelling flow and transport in fractured systems fall into two rough classes: DFN models; and continuum models. DFN models account explicitly for the effects of individual fractures on fluid flow and solute transport, and usually do not consider the interaction between the fractures and the rock matrix. Continuum models may be single continuum, double continuum or MINC. Single continuum models are applicable when the interaction between the fractures and the rock matrix is sufficient to establish a local equilibrium. Double continuum models account for the two interacting systems (i.e. fractures and rock matrix) by conceptualising each as a continuum occupying the entire domain. An exchange function describes mass
Fischer, P.; Jardani, A.; Lecoq, N.
2018-02-01
In this paper, we present a novel inverse modeling method called Discrete Network Deterministic Inversion (DNDI) for mapping the geometry and property of the discrete network of conduits and fractures in the karstified aquifers. The DNDI algorithm is based on a coupled discrete-continuum concept to simulate numerically water flows in a model and a deterministic optimization algorithm to invert a set of observed piezometric data recorded during multiple pumping tests. In this method, the model is partioned in subspaces piloted by a set of parameters (matrix transmissivity, and geometry and equivalent transmissivity of the conduits) that are considered as unknown. In this way, the deterministic optimization process can iteratively correct the geometry of the network and the values of the properties, until it converges to a global network geometry in a solution model able to reproduce the set of data. An uncertainty analysis of this result can be performed from the maps of posterior uncertainties on the network geometry or on the property values. This method has been successfully tested for three different theoretical and simplified study cases with hydraulic responses data generated from hypothetical karstic models with an increasing complexity of the network geometry, and of the matrix heterogeneity.
Xiong, Ziming; Wang, Mingyang; Shi, ShaoShuai; Xia, YuanPu; Lu, Hao; Bu, Lin
2017-12-01
The construction of tunnels and underground engineering in China has developed rapidly in recent years in both the number and the length of tunnels. However, with the development of tunnel construction technology, risk assessment of the tunnels has become increasingly important. Water inrush is one of the most important causes of engineering accidents worldwide, resulting in considerable economic and environmental losses. Accordingly, water inrush prediction is important for ensuring the safety of tunnel construction. Therefore, in this study, we constructed a three-dimensional discrete network fracture model using the Monte Carlo method first with the basic data from the engineering geological map of the Longmen Mountain area, the location of the Longmen Mountain tunnel. Subsequently, we transformed the discrete fracture networks into a pipe network model. Next, the DEM of the study area was analysed and a submerged analysis was conducted to determine the water storage area. Finally, we attempted to predict the water inrush along the Longmen Mountain tunnel based on the Darcy flow equation. Based on the contrast of water inrush between the proposed approach, groundwater dynamics and precipitation infiltration method, we conclude the following: the water inflow determined using the groundwater dynamics simulation results are basically consistent with those in the D2K91+020 to D2K110+150 mileage. Specifically, in the D2K91+020 to D2K94+060, D2K96+440 to D2K98+100 and other sections of the tunnel, the simulated and measured results are in close agreement and show that this method is effective. In general, we can predict the water inflow in the area of the Longmen Mountain tunnel based on the existing fracture joint parameters and the hydrogeological data of the Longmen Mountain area, providing a water inrush simulation and guiding the tunnel excavation and construction stages.
International Nuclear Information System (INIS)
Billaux, D.; Guerin, F.; Riss, J.; Dewiere, L.; Fillion, E.
2000-01-01
The sitting of a nuclear waste repository in a geological medium involves, among other aspects, predicting water inflows in the shafts and drifts, and evaluating possible geometries for the waste handling and storage galleries. In sedimentary host rocks, porous medium hydrogeology can be used easily to provide water inflow estimates, while geology will describe the geometry of the various layers, as well as the limited number of faults that may cut them. However, crystalline rocks such as the Vienne site, may be cut by numerous faults and fractures. To deal with such host rocks, we need new concepts - which have been under development during the last 15 years - in order to describe properly the spatial arrangement of discontinuities, its consequences in terms of the site hydrogeology, and in terms of the geometry of volumes available between faults for designing the underground storage cavities. A starting point is building a model of the fractures, using the statistical description of the investigated fracture field, including dips, dip directions, sizes, and intensities noted in boreholes or on outcrops. Such a model can then be used to compute flows. It is based on idealizing fractures as planar objects, often disks, with statistical geometrical properties inferred from available data. The model realism can be improved by conditioning the geometry on data, either directly observed - by fixing in space observed fractures - or indirectly inferred - by integrating the results of hydraulic, or even tracer tests. Discrete fracture models can then be used for many treatments, well beyond simple flow and transport computations. We illustrate this through two studies applied to the crystalline Vienne massif. First, image analysis techniques that were first developed for two dimensions, and have been recently extended to three dimensions, help with describing the space available between discontinuities, in order to define the sound rock blocks available for the waste
Statistical geological discrete fracture network model. Forsmark modelling stage 2.2
International Nuclear Information System (INIS)
Fox, Aaron; La Pointe, Paul; Simeonov, Assen; Hermanson, Jan; Oehman, Johan
2007-11-01
The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site characterization at two different locations, Forsmark and Laxemar, in order to locate a site for a final geologic repository for spent nuclear fuel. The program is built upon the development of Site Descriptive Models (SDMs) at specific timed data freezes. Each SDM is formed from discipline-specific reports from across the scientific spectrum. This report describes the methods, analyses, and conclusions of the geological modeling team with respect to a geological and statistical model of fractures and minor deformation zones (henceforth referred to as the geological DFN), version 2.2, at the Forsmark site. The geological DFN builds upon the work of other geological modelers, including the deformation zone (DZ), rock domain (RD), and fracture domain (FD) models. The geological DFN is a statistical model for stochastically simulating rock fractures and minor deformation zones as a scale of less than 1,000 m (the lower cut-off of the DZ models). The geological DFN is valid within four specific fracture domains inside the local model region, and encompassing the candidate volume at Forsmark: FFM01, FFM02, FFM03, and FFM06. The models are build using data from detailed surface outcrop maps and the cored borehole record at Forsmark. The conceptual model for the Forsmark 2.2 geological revolves around the concept of orientation sets; for each fracture domain, other model parameters such as size and intensity are tied to the orientation sets. Two classes of orientation sets were described; Global sets, which are encountered everywhere in the model region, and Local sets, which represent highly localized stress environments. Orientation sets were described in terms of their general cardinal direction (NE, NW, etc). Two alternatives are presented for fracture size modeling: - the tectonic continuum approach (TCM, TCMF) described by coupled size-intensity scaling following power law distributions
Statistical geological discrete fracture network model. Forsmark modelling stage 2.2
Energy Technology Data Exchange (ETDEWEB)
Fox, Aaron; La Pointe, Paul [Golder Associates Inc (United States); Simeonov, Assen [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Hermanson, Jan; Oehman, Johan [Golder Associates AB, Stockholm (Sweden)
2007-11-15
The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site characterization at two different locations, Forsmark and Laxemar, in order to locate a site for a final geologic repository for spent nuclear fuel. The program is built upon the development of Site Descriptive Models (SDMs) at specific timed data freezes. Each SDM is formed from discipline-specific reports from across the scientific spectrum. This report describes the methods, analyses, and conclusions of the geological modeling team with respect to a geological and statistical model of fractures and minor deformation zones (henceforth referred to as the geological DFN), version 2.2, at the Forsmark site. The geological DFN builds upon the work of other geological modelers, including the deformation zone (DZ), rock domain (RD), and fracture domain (FD) models. The geological DFN is a statistical model for stochastically simulating rock fractures and minor deformation zones as a scale of less than 1,000 m (the lower cut-off of the DZ models). The geological DFN is valid within four specific fracture domains inside the local model region, and encompassing the candidate volume at Forsmark: FFM01, FFM02, FFM03, and FFM06. The models are build using data from detailed surface outcrop maps and the cored borehole record at Forsmark. The conceptual model for the Forsmark 2.2 geological revolves around the concept of orientation sets; for each fracture domain, other model parameters such as size and intensity are tied to the orientation sets. Two classes of orientation sets were described; Global sets, which are encountered everywhere in the model region, and Local sets, which represent highly localized stress environments. Orientation sets were described in terms of their general cardinal direction (NE, NW, etc). Two alternatives are presented for fracture size modeling: - the tectonic continuum approach (TCM, TCMF) described by coupled size-intensity scaling following power law distributions
Townsend, Kevin C; Thomas-Aitken, Holly D; Rudert, M James; Kern, Andrew M; Willey, Michael C; Anderson, Donald D; Goetz, Jessica E
2018-01-23
Evaluation of abnormalities in joint contact stress that develop after inaccurate reduction of an acetabular fracture may provide a potential means for predicting the risk of developing post-traumatic osteoarthritis. Discrete element analysis (DEA) is a computational technique for calculating intra-articular contact stress distributions in a fraction of the time required to obtain the same information using the more commonly employed finite element analysis technique. The goal of this work was to validate the accuracy of DEA-computed contact stress against physical measurements of contact stress made in cadaveric hips using Tekscan sensors. Four static loading tests in a variety of poses from heel-strike to toe-off were performed in two different cadaveric hip specimens with the acetabulum intact and again with an intentionally malreduced posterior wall acetabular fracture. DEA-computed contact stress was compared on a point-by-point basis to stress measured from the physical experiments. There was good agreement between computed and measured contact stress over the entire contact area (correlation coefficients ranged from 0.88 to 0.99). DEA-computed peak contact stress was within an average of 0.5 MPa (range 0.2-0.8 MPa) of the Tekscan peak stress for intact hips, and within an average of 0.6 MPa (range 0-1.6 MPa) for fractured cases. DEA-computed contact areas were within an average of 33% of the Tekscan-measured areas (range: 1.4-60%). These results indicate that the DEA methodology is a valid method for accurately estimating contact stress in both intact and fractured hips. Copyright © 2017 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Pooya Hamdi
2015-12-01
Full Text Available Heterogeneity is an inherent component of rock and may be present in different forms including mineral heterogeneity, geometrical heterogeneity, weak grain boundaries and micro-defects. Microcracks are usually observed in crystalline rocks in two forms: natural and stress-induced; the amount of stress-induced microcracking increases with depth and in-situ stress. Laboratory results indicate that the physical properties of rocks such as strength, deformability, P-wave velocity and permeability are influenced by increase in microcrack intensity. In this study, the finite-discrete element method (FDEM is used to model microcrack heterogeneity by introducing into a model sample sets of microcracks using the proposed micro discrete fracture network (μDFN approach. The characteristics of the microcracks required to create μDFN models are obtained through image analyses of thin sections of Lac du Bonnet granite adopted from published literature. A suite of two-dimensional laboratory tests including uniaxial, triaxial compression and Brazilian tests is simulated and the results are compared with laboratory data. The FDEM-μDFN models indicate that micro-heterogeneity has a profound influence on both the mechanical behavior and resultant fracture pattern. An increase in the microcrack intensity leads to a reduction in the strength of the sample and changes the character of the rock strength envelope. Spalling and axial splitting dominate the failure mode at low confinement while shear failure is the dominant failure mode at high confinement. Numerical results from simulated compression tests show that microcracking reduces the cohesive component of strength alone, and the frictional strength component remains unaffected. Results from simulated Brazilian tests show that the tensile strength is influenced by the presence of microcracks, with a reduction in tensile strength as microcrack intensity increases. The importance of microcrack heterogeneity in
Sensitivity analysis of a discrete fracture network model for performance assessment of Aberg
International Nuclear Information System (INIS)
Outters, N.; Shuttle, D.
2000-12-01
This report presents a sensitivity analysis of pathway simulations in a DFN model. The DFN model consists of two sets of stochastic fractures at different scales and the canister locations of a hypothetical repository layout. The hydrogeological base case model is defined by constant head boundary conditions on the edges of a 2000 x 2000 x 1000 m 3 block. The pathway analysis carried out by the program PAWorks provides pathway parameters (pathway length, pathway width, transport aperture, reactive surface area, pathway transmissivity), canister statistics (average number of pathways per canister, percentage of canister locations with pathways) and visualisation of pathways. The project provided the following results from the alternative cases: Case 1: Model with a 100 m thick fracture network at the repository scale instead of 50 m in the base case. The model is little sensitive to the increase of the thickness of the local fracture network. Case 2: Model including fracture networks where the mean size and size standard deviation is twice the ones used in the base case. The travel times to the biosphere is slightly shortened by increasing the fracture diameter. Case 3: Two models with alternative hydraulic boundary conditions: two different flux boundary conditions are tested instead of head boundary conditions in the base case. The advective travel time is shortened by changing the boundary conditions in both alternative cases; in some cases it is reduced to less than a year. Case 4: Study of alternative pathway search algorithms: the pathway search is here based on minimum travel time. The pathway search algorithm of PAWorks based on minimum travel time gives much more optimistic results than the base case where the maximum flow rate was used. The mean travel time is about 5000 years. Due to editorial reasons only a subset of all this information is treated in this report
International Nuclear Information System (INIS)
Chan, T.; Scheier, N.W.; O'Connor, P.A.
1997-10-01
A numerical study has been conducted to investigate the effects of a discrete fracture and an excavation damage zone (EDZ) on groundwater mediated transport of I2 9 from a hypothetical nuclear fuel waste disposal vault through saturated, sparsely fractured plutonic rock to the biosphere. The reference disposal system simulated in the present work is based on the median value case of the postclosure assessment case study presented by AECL to support the Environmental Impact Statement (EIS) submitted to the Canadian Environmental Assessment Agency (CEAA). In particular, the reference geosphere is based mainly on hydrogeological characteristics at the site of AECL's Underground Research Laboratory in the Whiteshell Research Area, southeastern Manitoba. Several features not explicitly simulated in the EIS postclosure assessment case study are investigated in this study. These include the hypothetical possibility of a discrete fracture or a narrow fracture zone existing in the rock in the immediate vicinity of the disposal vault. This hypothetical fracture is modeled as a discrete fracture that connects or almost connects the vault to nearby fracture zone LD1. Simulations are performed using a combination of three-dimensional flow model and corresponding two-dimensional transport models, and the MOTIF finite-element code. It should be emphasized that the primary purpose of the present study it to investigate the relative importance of the various possible features in the rock in the immediate vicinity of the vault. Detailed numerical modelling of the effectiveness of various engineered barriers that could be used to mitigate any negative effects of such features is beyond the scope of this study
Preliminary - discrete fracture network modelling of tracer migration experiments at the SCV site
International Nuclear Information System (INIS)
Dershowitz, W.S.; Wallmann, P.; Geier, J.E.; Lee, G.
1991-09-01
This report describes a numerical modelling study of solute transport within the Site Characterization and Validation (SCV) block at the Stripa site. The study was carried out with the FracMan/MAFIC package, utilizing statistics from stages 3 and 4 of the Stripa phase 3 Site Characterization and Validation project. Simulations were carried out to calibrate fracture solute transport properties against observations in the first stage of saline injection radar experiments. These results were then used to predict the performance of planned tracer experiments, using both particle tracking network solute transport, and pathways analysis approaches. Simulations were also carried out to predict results of the second stage of saline injection radar experiments. (au) (34 refs.)
Electrical stimulation superimposed onto voluntary muscular contraction.
Paillard, Thierry; Noé, Frédéric; Passelergue, Philippe; Dupui, Philippe
2005-01-01
Electrical stimulation (ES) reverses the order of recruitment of motor units (MU) observed with voluntary muscular contraction (VOL) since under ES, large MU are recruited before small MU. The superimposition of ES onto VOL (superimposed technique: application of an electrical stimulus during a voluntary muscle action) can theoretically activate more motor units than VOL performed alone, which can engender an increase of the contraction force. Two superimposed techniques can be used: (i) the twitch interpolation technique (ITT), which consists of interjecting an electrical stimulus onto the muscle nerve; and (ii) the percutaneous superimposed electrical stimulation technique (PST), where the stimulation is applied to the muscle belly. These two superimposed techniques can be used to evaluate the ability to fully activate a muscle. They can thus be employed to distinguish the central or peripheral nature of fatigue after exhausting exercise. In general, whatever the technique employed, the superimposition of ES onto volitional exercise does not recruit more MU than VOL, except with eccentric actions. Nevertheless, the neuromuscular response associated with the use of the superimposed technique (ITT and PST) depends on the parameter of the superimposed current. The sex and the training level of the subjects can also modify the physiological impact of the superimposed technique. Although the motor control differs drastically between training with ES and VOL, the integration of the superimposed technique in training programmes with healthy subjects does not reveal significant benefits compared with programmes performed only with voluntary exercises. Nevertheless, in a therapeutic context, training programmes using ES superimposition compensate volume and muscle strength deficit with more efficiency than programmes using VOL or ES separately.
Directory of Open Access Journals (Sweden)
Chong Shi
2017-10-01
Full Text Available Fractured seepage is an important factor affecting the interface stability of rock mass. It is closely related to fracture properties and hydraulic conditions. In this study, the law of seepage in a single fracture surface based on modified cubic law is described, and the three-dimensional discrete element method is used to simulate the dam foundation structure of the Capulin San Pablo (Costa Rica hydropower station. The effect of construction joints and developed structure on dam stability is studied, and its permeability law and sliding stability are also evaluated. It is found that the hydraulic-mechanical coupling with strength reduction method in DEM is more appropriate to use to study the seepage-related problems of fractured rock mass, which considers practical conditions, such as the roughness of and the width of fracture. The strength reduction method provides a more accurate safety factor of dam when considering the deformation coordination with bedrocks. It is an important method with which to study the stability of seepage conditions in complex structures. The discrete method also provided an effective and reasonable way of determining seepage control measures.
Energy Technology Data Exchange (ETDEWEB)
Zhou, Jing [Idaho National Lab. (INL), Idaho Falls, ID (United States); Huang, Hai [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mattson, Earl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Herb F. [Univ. of Wisconsin, Madison, WI (United States); Haimson, Bezalel C. [Univ. of Wisconsin, Madison, WI (United States); Doe, Thomas W. [Golder Associates Inc., Redmond, VA (United States); Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dobson, Patrick F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2017-02-01
Aimed at supporting the design of hydraulic fracturing experiments at the kISMET site, ~1500 m below ground in a deep mine, we performed pre-experimental hydraulic fracturing simulations in order to estimate the breakdown pressure, propagation pressure, fracture geometry, and the magnitude of induced seismicity using a newly developed fully coupled three-dimensional (3D) network flow and quasi-static discrete element model (DEM). The quasi-static DEM model, which is constructed by Delaunay tessellation of the rock volume, considers rock fabric heterogeneities by using the “disordered” DEM mesh and adding random perturbations to the stiffness and tensile/shear strengths of individual DEM elements and the elastic beams between them. A conjugate 3D flow network based on the DEM lattice is constructed to calculate the fluid flow in both the fracture and porous matrix. One distinctive advantage of the model is that fracturing is naturally described by the breakage of elastic beams between DEM elements. It is also extremely convenient to introduce mechanical anisotropy into the model by simply assigning orientation-dependent tensile/shear strengths to the elastic beams. In this paper, the 3D hydraulic fracturing model was verified against the analytic solution for a penny-shaped crack model. We applied the model to simulate fracture propagation from a vertical open borehole based on initial estimates of rock mechanical properties and in-situ stress conditions. The breakdown pressure and propagation pressure are directly obtained from the simulation. In addition, the released elastic strain energies of individual fracturing events were calculated and used as a conservative estimate for the magnitudes of the potential induced seismic activities associated with fracturing. The comparisons between model predictions and experimental results are still ongoing.
Energy Technology Data Exchange (ETDEWEB)
Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kwicklis, Edward Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harrod, Jeremy Ashcraft [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-10-18
This progress report for fiscal year 2015 (FY15) describes the development of discrete fracture network (DFN) models for Pahute Mesa. DFN models will be used to upscale parameters for simulations of subsurface flow and transport in fractured media in Pahute Mesa. The research focuses on modeling of groundwater flow and contaminant transport using DFNs generated according to fracture characteristics observed in the Topopah Spring Aquifer (TSA) and the Lava Flow Aquifer (LFA). This work will improve the representation of radionuclide transport processes in large-scale, regulatory-focused models with a view to reduce pessimistic bounding approximations and provide more realistic contaminant boundary calculations that can be used to describe the future extent of contaminated groundwater. Our goal is to refine a modeling approach that can translate parameters to larger-scale models that account for local-scale flow and transport processes, which tend to attenuate migration.
Controlled acceleration of superimposed Bessel beams
CSIR Research Space (South Africa)
Dudley, Angela L
2013-06-01
Full Text Available spatial light modulator (SLM) to create superimposed, non-canonical, higher-order Bessel beams and a CCD camera to investigate the propagation of the resulting field. It is already known that the intensity profile of the resulting field experiences...
Statistical properties of superimposed stationary spike trains.
Deger, Moritz; Helias, Moritz; Boucsein, Clemens; Rotter, Stefan
2012-06-01
The Poisson process is an often employed model for the activity of neuronal populations. It is known, though, that superpositions of realistic, non- Poisson spike trains are not in general Poisson processes, not even for large numbers of superimposed processes. Here we construct superimposed spike trains from intracellular in vivo recordings from rat neocortex neurons and compare their statistics to specific point process models. The constructed superimposed spike trains reveal strong deviations from the Poisson model. We find that superpositions of model spike trains that take the effective refractoriness of the neurons into account yield a much better description. A minimal model of this kind is the Poisson process with dead-time (PPD). For this process, and for superpositions thereof, we obtain analytical expressions for some second-order statistical quantities-like the count variability, inter-spike interval (ISI) variability and ISI correlations-and demonstrate the match with the in vivo data. We conclude that effective refractoriness is the key property that shapes the statistical properties of the superposition spike trains. We present new, efficient algorithms to generate superpositions of PPDs and of gamma processes that can be used to provide more realistic background input in simulations of networks of spiking neurons. Using these generators, we show in simulations that neurons which receive superimposed spike trains as input are highly sensitive for the statistical effects induced by neuronal refractoriness.
Paroxysmal Nocturnal Hemoglobinuria Superimposed with Preeclampsia
Directory of Open Access Journals (Sweden)
Mann-Ling Chen
2006-09-01
Conclusion: The most frequent causes of PNH-related fetomaternal morbidity and mortality are hemolysis and thrombosis. The situation becomes even more complicated when PNH is superimposed with preeclampsia. Appropriate clinical surveillance, awareness of the potential risks of hemolysis and thrombosis, as well as evaluation of fetal wellbeing are essential.
Williams, T. R. N.; Baxter, S.; Hartley, L.; Appleyard, P.; Koskinen, L.; Vanhanarkaus, O.; Selroos, J. O.; Munier, R.
2017-12-01
Discrete fracture network (DFN) models provide a natural analysis framework for rock conditions where flow is predominately through a series of connected discrete features. Mechanistic models to predict the structural patterns of networks are generally intractable due to inherent uncertainties (e.g. deformation history) and as such fracture characterisation typically involves empirical descriptions of fracture statistics for location, intensity, orientation, size, aperture etc. from analyses of field data. These DFN models are used to make probabilistic predictions of likely flow or solute transport conditions for a range of applications in underground resource and construction projects. However, there are many instances when the volumes in which predictions are most valuable are close to data sources. For example, in the disposal of hazardous materials such as radioactive waste, accurate predictions of flow-rates and network connectivity around disposal areas are required for long-term safety evaluation. The problem at hand is thus: how can probabilistic predictions be conditioned on local-scale measurements? This presentation demonstrates conditioning of a DFN model based on the current structural and hydraulic characterisation of the Demonstration Area at the ONKALO underground research facility. The conditioned realisations honour (to a required level of similarity) the locations, orientations and trace lengths of fractures mapped on the surfaces of the nearby ONKALO tunnels and pilot drillholes. Other data used as constraints include measurements from hydraulic injection tests performed in pilot drillholes and inflows to the subsequently reamed experimental deposition holes. Numerical simulations using this suite of conditioned DFN models provides a series of prediction-outcome exercises detailing the reliability of the DFN model to make local-scale predictions of measured geometric and hydraulic properties of the fracture system; and provides an understanding
[Electroencephalography in delirium superimposed on dementia].
Hanemaaijer, Judith I; Wijnen, Viona J M; van Gool, W A
2017-09-01
Recognizing delirium superimposed on pre-existing cognitive impairment or dementia, 'delirium superimposed on dementia' (DSD), is challenging because signs of delirium might be interpreted as symptoms of pre-existing cognitive dysfunction.In this paper, we review the literature on the role of electrencephalography (EEG) in the differential diagnosis of delirium, dementia and DSD.Conventional EEG, applying twenty to thirty electrodes, taking thirty minutes registration, is not feasible in psychogeriatric patients. Recent studies suggest that it is possible to reliably detect delirium using only a limited number of EEG electrodes for a short period of time.With this, use of EEG in the detection of delirium in patients with cognitive impairment or clinically manifest dementia could be possible.
Directory of Open Access Journals (Sweden)
Bingqing Lu
2018-01-01
Full Text Available Fractional calculus provides efficient physical models to quantify non-Fickian dynamics broadly observed within the Earth system. The potential advantages of using fractional partial differential equations (fPDEs for real-world problems are often limited by the current lack of understanding of how earth system properties influence observed non-Fickian dynamics. This study explores non-Fickian dynamics for pollutant transport in field-scale discrete fracture networks (DFNs, by investigating how fracture and rock matrix properties influence the leading and tailing edges of pollutant breakthrough curves (BTCs. Fractured reservoirs exhibit erratic internal structures and multi-scale heterogeneity, resulting in complex non-Fickian dynamics. A Monte Carlo approach is used to simulate pollutant transport through DFNs with a systematic variation of system properties, and the resultant non-Fickian transport is upscaled using a tempered-stable fractional in time advection–dispersion equation. Numerical results serve as a basis for determining both qualitative and quantitative relationships between BTC characteristics and model parameters, in addition to the impacts of fracture density, orientation, and rock matrix permeability on non-Fickian dynamics. The observed impacts of medium heterogeneity on tracer transport at late times tend to enhance the applicability of fPDEs that may be parameterized using measurable fracture–matrix characteristics.
International Nuclear Information System (INIS)
Tien, N.-C.; Li Shihhai
2002-01-01
Many physical and chemical processes dominate the transport of radionuclides in groundwater. Among these processes, the decay chain process of radionuclides was frequently disregarded in previous research. However, the daughter products may travel much farther than their parents along the fracture. Therefore, some models neglecting the effect of the decay chain may underestimate the transport radionuclide concentration in geological media. The transport of radionuclides in groundwater is also controlled by colloidal particles. The radionuclides may be enhanced or retarded by the colloids, according to the mobility of these colloidal particles. This work describes a novel model of the transport of a two-member decay chain of radionuclides through a discrete fracture in a porous rock matrix in the presence of colloids. The model addresses the following processes: (a) advective transport in the fracture, (b) mechanical dispersion and molecular diffusion along the fracture, (c) molecular diffusion from the fracture to the rock matrix, (d) adsorption onto the fracture wall, (e) adsorption in the rock matrix, and (f) radioactive decay. Furthermore, colloids are assumed to be excluded from the matrix pores because of their size. A fully developed concentration profile system with nonreactive colloids is used to understand the effect of colloidal sizes by using hydrodynamic chromatography. The external forces acting on the colloid surface, such as the inertial, the van der Waals attractive force, the double layer force, and the gravitational force are accounted for. The parameters, the average velocity of the colloid, the dispersion coefficient of the colloid, and the distribution coefficient of radionuclides with colloids are modified according to the colloidal size. The transport equations for the parent radionuclides are solved analytically using the Laplace transformation and inversion method. However, for the transformed solution of the daughter products along the
Holton, D.; Frampton, A.; Cvetkovic, V.
2006-12-01
The Onkalo underground research facility for rock characterisation for nuclear waste disposal is located at Olkiluoto island, just off the Finnish coast in the Baltic Sea. Prior to the start of the excavation of the Onkalo facility, an extensive amount of hydraulic data has been collected during various pumping experiments from a large number of boreholes placed throughout an area of approximately 10 km2, reaching depths of 1000 meters below sea level. In particular, the hydraulic borehole data includes classical measurements of pressure, but also new measurements of flow rate and flow direction in boreholes (so called flow-logging). These measurements indicate large variations in heterogeneity and are a clear reflection of the discrete nature of the system. Here we present results from an ongoing project which aims to explore and asses the implications of these new flow-logging measurements to site descriptive modelling and modelling at performance assessment scales. The main challange of the first phase of this project is to obtain a greater understanding of a strongly heterogenious and anisotropic groundwater system in which open boreholes are located; that is, a system in which the observation boreholes themselves create new hydraulic conductive features of the groundwater system. The results presented are from recent hydraulic flow modelling simulations with a combined continuous porous media and discrete fracture network approach using a commercial finite-element software. An advantage of this approach is we may adapt a continuum mesh on the regional scale, were only a few conductive features are known, together with a local scale discrete fracture network approach, where detailed site-investigation has revealed a large amount of conductive features. Current findings indicate the system is sensitive to certain combinations of hydraulic features, and we quantify the significance of including these variations in terms of their implications for reduction of
Temperature fluctuations superimposed on background temperature change
International Nuclear Information System (INIS)
Otto, James; Roberts, J.A.
2016-01-01
Proxy data allows the temperature of the Earth to be mapped over long periods of time. In this work the temperature fluctuations for over 200 proxy data sets were examined and from this set 50 sets were analyzed to test for periodic and quasi-periodic fluctuations in the data sets. Temperature reconstructions over 4 different time scales were analyzed to see if patterns emerged. Data were put into four time intervals; 4,000 years, 14,000 years, 1,000,000 years, and 3,000,000 years and analyzed with a goal to understanding periodic and quasi-periodic patterns in global temperature change superimposed on a “background” average temperature change. Quasi-periodic signatures were identified that predate the Industrial Revolution, during much of which direct data on temperature are not available. These data indicate that Earth temperatures have undergone a number of periodic and quasi-periodic intervals that contain both global warming and global cooling cycles. The fluctuations are superimposed on a background of temperature change that has a declining slope during the two periods, pre-ice age and post ice age with a transition about 12,000 BCE. The data are divided into “events” that span the time periods 3,000,000 BCE to “0” CE, 1,000,000 BCE to “0” CE, 12,000 BCE to 2,000 CE and 2,000 BCE to 2,000 CE. An equation using a quasi-periodic (frequency modulated sine waves) patterns was developed to analyze the date sets for quasi-periodic patterns. “Periodicities” which show reasonable agreement with the predictions of Milankovitch and other investigators were found in the data sets.
Selroos, J. O.; Appleyard, P.; Bym, T.; Follin, S.; Hartley, L.; Joyce, S.; Munier, R.
2015-12-01
In 2011 the Swedish Nuclear Fuel and Waste Management Company (SKB) applied for a license to start construction of a final repository for spent nuclear fuel at Forsmark in Northern Uppland, Sweden. The repository is to be built at approximately 500 m depth in crystalline rock. A stochastic, discrete fracture network (DFN) concept was chosen for interpreting the surface-based (incl. boreholes) data, and for assessing the safety of the repository in terms of groundwater flow and flow pathways to and from the repository. Once repository construction starts, also underground data such as tunnel pilot borehole and tunnel trace data will become available. It is deemed crucial that DFN models developed at this stage honors the mapped structures both in terms of location and geometry, and in terms of flow characteristics. The originally fully stochastic models will thus increase determinism towards the repository. Applying the adopted probabilistic framework, predictive modeling to support acceptance criteria for layout and disposal can be performed with the goal of minimizing risks associated with the repository. This presentation describes and illustrates various methodologies that have been developed to condition stochastic realizations of fracture networks around underground openings using borehole and tunnel trace data, as well as using hydraulic measurements of inflows or hydraulic interference tests. The methodologies, implemented in the numerical simulators ConnectFlow and FracMan/MAFIC, are described in some detail, and verification tests and realistic example cases are shown. Specifically, geometric and hydraulic data are obtained from numerical synthetic realities approximating Forsmark conditions, and are used to test the constraining power of the developed methodologies by conditioning unconditional DFN simulations following the same underlying fracture network statistics. Various metrics are developed to assess how well the conditional simulations compare to
Li, Mingchao; Han, Shuai; Zhou, Sibao; Zhang, Ye
2018-06-01
Based on a 3D model of a discrete fracture network (DFN) in a rock mass, an improved projective method for computing the 3D mechanical connectivity rate was proposed. The Monte Carlo simulation method, 2D Poisson process and 3D geological modeling technique were integrated into a polyhedral DFN modeling approach, and the simulation results were verified by numerical tests and graphical inspection. Next, the traditional projective approach for calculating the rock mass connectivity rate was improved using the 3D DFN models by (1) using the polyhedral model to replace the Baecher disk model; (2) taking the real cross section of the rock mass, rather than a part of the cross section, as the test plane; and (3) dynamically searching the joint connectivity rates using different dip directions and dip angles at different elevations to calculate the maximum, minimum and average values of the joint connectivity at each elevation. In a case study, the improved method and traditional method were used to compute the mechanical connectivity rate of the slope of a dam abutment. The results of the two methods were further used to compute the cohesive force of the rock masses. Finally, a comparison showed that the cohesive force derived from the traditional method had a higher error, whereas the cohesive force derived from the improved method was consistent with the suggested values. According to the comparison, the effectivity and validity of the improved method were verified indirectly.
Dynamic and static strain gauge using superimposed fiber Bragg gratings
International Nuclear Information System (INIS)
Ma, Y C; Yang, Y H; Yang, M W; Li, J M; Tang, J; Liang, T
2012-01-01
This paper demonstrates a simple and fast interrogation method for the dynamic and/or static strain gauge using a reflection spectrum from two superimposed fiber Bragg gratings (FBGs). The superimposed FBGs are designed to decrease nonequidistant space of generated a sensing pulse train in a time domain during dynamic strain gauge. By combining centroid finding with smooth filtering methods, both the interrogation speed and accuracy are improved. A four times increase in the interrogation speed of dynamic strain, by generating a 2 kHz optical sensing pulse train from a 500 Hz scanning frequency, is demonstrated experimentally. The interrogation uncertainty and total harmonic distortion characterization of superimposed FBGs are tested and less than 4 pm standard deviation is obtained. (paper)
Selective attention in vision: recognition memory for superimposed line drawings.
Goldstein, E B; Fink, S I
1981-10-01
These experiments show that observers can selectively attend to one of two stationary superimposed pictures. If superimposed line drawings are presented to observers who are told to attend to one line drawing in the pair and to ignore the other line drawing in the pair, then a subsequent recognition test in which the pictures are presently singly, the attended picture in each pair is recognized much more frequently than the unattended picture in each pair. This selective recognition occurs both with large (11 degrees-22 degrees) displays in which observers are free to make eye movements during a 3-sec exposure and with small (1 degree) displays in which observers are instructed to fixate steadily on a point during a 1-sec exposure. The results of the steady fixation experiments show that in the absence of eye movements, attention to one of two superimposed stimuli can cause an observer to remember the attended image and not to remember the other, clearly visible, unattended image in a superimposed pair.
Selective Attention in Vision: Recognition Memory for Superimposed Line Drawings.
Goldstein, E. Bruce; Fink, Susan I.
1981-01-01
Four experiments show that observers can selectively attend to one of two stationary superimposed pictures. Selective recognition occurred with large displays in which observers were free to make eye movements during a 3-sec exposure and with small displays in which observers were instructed to fixate steadily on a point. (Author/RD)
Tools to Detect Delirium Superimposed on Dementia: A Systematic Review
Morandi, Alessandro; McCurley, Jessica; Vasilevskis, Eduard E.; Fick, Donna M.; Bellelli, Giuseppe; Lee, Patricia; Jackson, James C.; Shenkin, Susan D.; Trabucchi, Marco; Schnelle, John; Inouye, Sharon K.; Ely, Wesley E.; MacLullich, Alasdair
2012-01-01
Background Delirium commonly occurs in patients with dementia. Though several tools for detecting delirium exist, it is unclear which are valid in patients with delirium superimposed on dementia. Objectives Identify valid tools to diagnose delirium superimposed on dementia Design We performed a systematic review of studies of delirium tools, which explicitly included patients with dementia. Setting In-hospital patients Participants Studies were included if delirium assessment tools were validated against standard criteria, and the presence of dementia was assessed according to standard criteria that used validated instruments. Measurements PubMed, Embase, and Web of Science databases were searched for articles in English published between January 1960 and January 2012. Results Nine studies fulfilled the selection criteria. Of the total of 1569 patients, 401 had dementia, and 50 had delirium superimposed on dementia. Six delirium tools were evaluated. One studyusing the Confusion Assessment Method (CAM) with 85% patients with dementia showed a high specificity (96–100%) and moderate sensitivity (77%).Two intensive care unit studies that used the CAM for the Intensive Care Unit (CAM-ICU) ICU reported 100% sensitivity and specificity for delirium among 23 dementia patients. One study using electroencephalography reported a sensitivity of 67% and a specificity of 91% among a population with 100% prevalence of dementia. No studies examined potential effects of dementia severity or subtype upon diagnostic accuracy. Conclusions The evidence base on tools for detection of delirium superimposed on dementia is limited, although some existing tools show promise. Further studies of existing or refined tools with larger samples and more detailed characterization of dementia are now required to address the identification of delirium superimposed on dementia. PMID:23039270
Cao, Wenzhuo; Lei, Qinghua
2018-01-01
Natural fractures are ubiquitous in the Earth's crust and often deeply buried in the subsurface. Due to the difficulty in accessing to their three-dimensional structures, the study of fracture network geometry is usually achieved by sampling two-dimensional (2D) exposures at the Earth's surface through outcrop mapping or aerial photograph techniques. However, the measurement results can be considerably affected by the coverage of forests and other plant species over the exposed fracture patterns. We quantitatively study such effects using numerical simulation. We consider the scenario of nominally isotropic natural fracture systems and represent them using 2D discrete fracture network models governed by fractal and length scaling parameters. The groundcover is modelled as random patches superimposing onto the 2D fracture patterns. The effects of localisation and total coverage of landscape patches are further investigated. The fractal dimension and length exponent of the covered fracture networks are measured and compared with those of the original non-covered patterns. The results show that the measured length exponent increases with the reduced localisation and increased coverage of landscape patches, which is more evident for networks dominated by very large fractures (i.e. small underlying length exponent). However, the landscape coverage seems to have a minor impact on the fractal dimension measurement. The research findings of this paper have important implications for field survey and statistical analysis of geological systems.
Valencia's Palau d'En Bou. Superimposed architectures.
Directory of Open Access Journals (Sweden)
Rafael Soler Verdú
1997-09-01
Full Text Available The restoration of the Palau díen Bou is a sample of the complexity that arises when practising an intervention on a building with indefinite superimposed architectures, in other words, an accumulation of interventions from different periods and in different styles, but difficult to understand in its original condition. Architect Rafael Soler describes his reading and interpretation of the building during the initial study and the solutions recommended by research that were applied during the restoration stage
DEFF Research Database (Denmark)
Sørensen, John Aasted
2011-01-01
The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...
Physicochemical analog for modeling superimposed and coded memories
Ensanian, Minas
1992-07-01
The mammalian brain is distinguished by a life-time of memories being stored within the same general region of physicochemical space, and having two extraordinary features. First, memories to varying degrees are superimposed, as well as coded. Second, instantaneous recall of past events can often be affected by relatively simple, and seemingly unrelated sensory clues. For the purposes of attempting to mathematically model such complex behavior, and for gaining additional insights, it would be highly advantageous to be able to simulate or mimic similar behavior in a nonbiological entity where some analogical parameters of interest can reasonably be controlled. It has recently been discovered that in nonlinear accumulative metal fatigue memories (related to mechanical deformation) can be superimposed and coded in the crystal lattice, and that memory, that is, the total number of stress cycles can be recalled (determined) by scanning not the surfaces but the `edges' of the objects. The new scanning technique known as electrotopography (ETG) now makes the state space modeling of metallic networks possible. The author provides an overview of the new field and outlines the areas that are of immediate interest to the science of artificial neural networks.
Brantley, W A; Luebke, N H; Luebke, F L; Mitchell, J C
1994-05-01
A laboratory study was performed on Gates Glidden and Peeso drills to determine the incidence of shaft fracture when a bending deflection was superimposed on the rotating drills. Samples of sizes #1 to #6 stainless steel Gates Glidden drills, sizes #1 to #6 stainless steel and carbon steel-type P Peeso drills, and sizes #009 to #023 carbon steel-type B-1 Peeso drills from each of two manufacturers were evaluated with a unique apparatus that applied a 2-mm bending deflection while rotating the instruments. The apparatus did not restrict movement of the bur head during rotation. The test drills were rotated at 2500, 4000, and 7000 revolutions per minute, and the number of revolutions at failure was recorded. Scanning electron microscopic observations established that the stainless steel Gates Glidden and Peeso drills failed by ductile fracture, whereas the carbon steel Peeso drills failed by brittle fracture. Instrument fracture was always near the handpiece shank with this test, and the length of the fractured drills was measured from the working tip. It is recommended that this additional test be adopted to determine fatigue properties of engine-driven rotary endodontic instruments in establishing international performance standards.
Energy Technology Data Exchange (ETDEWEB)
Johnston, Henry [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Cong [Colorado School of Mines; Winterfeld, Philip [Colorado School of Mines; Wu, Yu-Shu [Colorado School of Mines
2018-02-14
An efficient modeling approach is described for incorporating arbitrary 3D, discrete fractures, such as hydraulic fractures or faults, into modeling fracture-dominated fluid flow and heat transfer in fractured geothermal reservoirs. This technique allows 3D discrete fractures to be discretized independently from surrounding rock volume and inserted explicitly into a primary fracture/matrix grid, generated without including 3D discrete fractures in prior. An effective computational algorithm is developed to discretize these 3D discrete fractures and construct local connections between 3D fractures and fracture/matrix grid blocks of representing the surrounding rock volume. The constructed gridding information on 3D fractures is then added to the primary grid. This embedded fracture modeling approach can be directly implemented into a developed geothermal reservoir simulator via the integral finite difference (IFD) method or with TOUGH2 technology This embedded fracture modeling approach is very promising and computationally efficient to handle realistic 3D discrete fractures with complicated geometries, connections, and spatial distributions. Compared with other fracture modeling approaches, it avoids cumbersome 3D unstructured, local refining procedures, and increases computational efficiency by simplifying Jacobian matrix size and sparsity, while keeps sufficient accuracy. Several numeral simulations are present to demonstrate the utility and robustness of the proposed technique. Our numerical experiments show that this approach captures all the key patterns about fluid flow and heat transfer dominated by fractures in these cases. Thus, this approach is readily available to simulation of fractured geothermal reservoirs with both artificial and natural fractures.
DEFF Research Database (Denmark)
Sørensen, John Aasted
2011-01-01
; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics...... to new problems. Relations and functions: Define a product set; define and apply equivalence relations; construct and apply functions. Apply these concepts to new problems. Natural numbers and induction: Define the natural numbers; apply the principle of induction to verify a selection of properties...
DEFF Research Database (Denmark)
Busch, Peter Andre; Zinner Henriksen, Helle
2018-01-01
discretion is suggested to reduce this footprint by influencing or replacing their discretionary practices using ICT. What is less researched is whether digital discretion can cause changes in public policy outcomes, and under what conditions such changes can occur. Using the concept of public service values......This study reviews 44 peer-reviewed articles on digital discretion published in the period from 1998 to January 2017. Street-level bureaucrats have traditionally had a wide ability to exercise discretion stirring debate since they can add their personal footprint on public policies. Digital......, we suggest that digital discretion can strengthen ethical and democratic values but weaken professional and relational values. Furthermore, we conclude that contextual factors such as considerations made by policy makers on the macro-level and the degree of professionalization of street...
DEFF Research Database (Denmark)
Sørensen, John Aasted
2010-01-01
The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18...
DEFF Research Database (Denmark)
Sørensen, John Aasted
2010-01-01
The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15...
Discharge Characteristic of VHF-DC Superimposed Magnetron Sputtering System
Toyoda, Hirotaka; Fukuoka, Yushi; Fukui, Takashi; Takada, Noriharu; Sasai, Kensuke
2014-10-01
Magnetron plasmas are one of the most important tools for sputter deposition of thin films. However, energetic particles from the sputtered target such as backscattered rare gas atoms or oxygen negative ions from oxide targets sometimes induce physical and chemical damages as well as surface roughening to the deposited film surface during the sputtering processes. To suppress kinetic energy of such particles, superposition of RF or VHF power to the DC power has been investigated. In this study, influence of the VHF power superposition on the DC target voltage, which is important factor to determine kinetic energy of high energy particles, is investigated. In the study, 40 MHz VHF power was superimposed to an ITO target and decrease in the target DC voltage was measured as well as deposited film deposition properties such as deposition rate or electrical conductivity. From systematic measurement of the target voltage, it was revealed that the target voltage can be determined by a very simple parameter, i.e., a ratio of VHF power to the total input power (DC and VHF powers) in spite of the DC discharge current. Part of this work was supported by ASTEP, JST.
Superimposed Training-Based Channel Estimation for MIMO Relay Networks
Directory of Open Access Journals (Sweden)
Xiaoyan Xu
2012-01-01
Full Text Available We introduce the superimposed training strategy into the multiple-input multiple-output (MIMO amplify-and-forward (AF one-way relay network (OWRN to perform the individual channel estimation at the destination. Through the superposition of a group of additional training vectors at the relay subject to power allocation, the separated estimates of the source-relay and relay-destination channels can be obtained directly at the destination, and the accordance with the two-hop AF strategy can be guaranteed at the same time. The closed-form Bayesian Cramér-Rao lower bound (CRLB is derived for the estimation of two sets of flat-fading MIMO channel under random channel parameters and further exploited to design the optimal training vectors. A specific suboptimal channel estimation algorithm is applied in the MIMO AF OWRN using the optimal training sequences, and the normalized mean square error performance for the estimation is provided to verify the Bayesian CRLB results.
Speed and the coherence of superimposed chromatic gratings.
Bosten, J M; Smith, L; Mollon, J D
2016-05-01
On the basis of measurements of the perceived coherence of superimposed drifting gratings, Krauskopf and Farell (1990) proposed that motion is analysed independently in different chromatic channels. They found that two gratings appeared to slip if each modulated one of the two 'cardinal' color mechanisms S/(L+M) and L/(L+M). If the gratings were defined along intermediate color directions, observers reported a plaid, moving coherently. We hypothesised that slippage might occur in chromatic gratings if the motion signal from the S/(L+M) channel is weak and equivalent to a lower speed. We asked observers to judge coherence in two conditions. In one, S/(L+M) and L/(L+M) gratings were physically the same speed. In the other, the two gratings had perceptually matched speeds. We found that the relative incoherence of cardinal gratings is the same whether gratings are physically or perceptually matched in speed. Thus our hypothesis was firmly contradicted. In a control condition, observers were asked to judge the coherence of stationary gratings. Interestingly, the difference in judged coherence between cardinal and intermediate gratings remained as strong as it was when the gratings moved. Our results suggest a possible alternative interpretation of Krauskopf and Farell's result: the processes of object segregation may precede the analysis of the motion of chromatic gratings, and the same grouping signals may prompt object segregation in the stationary and moving cases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Decision making by superimposing information from parallel cognitive channels
Aityan, Sergey K.
1993-08-01
A theory of decision making with perception through parallel information channels is presented. Decision making is considered a parallel competitive process. Every channel can provide confirmation or rejection of a decision concept. Different channels provide different impact on the specific concepts caused by the goals and individual cognitive features. All concepts are divided into semantic clusters due to the goals and the system defaults. The clusters can be alternative or complimentary. The 'winner-take-all' concept nodes firing takes place within the alternative cluster. Concepts can be independently activated in the complimentary cluster. A cognitive channel affects a decision concept by sending an activating or inhibitory signal. The complimentary clusters serve for building up complex concepts by superimposing activation received from various channels. The decision making is provided by the alternative clusters. Every active concept in the alternative cluster tends to suppress the competitive concepts in the cluster by sending inhibitory signals to the other nodes of the cluster. The model accounts for a time delay in signal transmission between the nodes and explains decreasing of the reaction time if information is confirmed by different channels and increasing of the reaction time if deceiving information received from the channels.
The Diagnosis of Delirium Superimposed on Dementia: An Emerging Challenge
Morandi, Alessandro; Davis, Daniel; Bellelli, Giuseppe; Arora, Rakesh C.; Caplan, Gideon A.; Kamholz, Barbara; Kolanowski, Ann; Fick, Donna Marie; Kreisel, Stefan; MacLullich, Alasdair; (UK), MRCP; Meagher, David; Neufeld, Karen; Pandharipande, Pratik P.; Richardson, Sarah; Slooter, Arjen J.C.; Taylor, John P.; Thomas, Christine; Tieges, Zoë; Teodorczuk, Andrew; Voyer, Philippe; Rudolph, James L.
2017-01-01
Delirium occurring in patients with dementia is referred to as delirium superimposed on dementia (DSD). People who are older with dementia and who are institutionalized are at increased risk of developing delirium when hospitalized. In addition, their prior cognitive impairment makes detecting their delirium a challenge. The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition and the International Statistical Classification of Diseases and Related Health Problems, 10th Revision are considered the standard reference for the diagnosis of delirium and include criteria of impairments in cognitive processes such as attention, additional cognitive disturbances, or altered level of arousal. The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition and the International Statistical Classification of Diseases and Related Health Problems, 10th Revision does not provide guidance regarding specific tests for assessment of the cognitive process impaired in delirium. Importantly, the assessment or inclusion of preexisting cognitive impairment is also not addressed by these standards. The challenge of DSD gets more complex as types of dementia, particularly dementia with Lewy bodies, which has features of both delirium and dementia, are considered. The objective of this article is to critically review key elements for the diagnosis of DSD, including the challenge of neuropsychological assessment in patients with dementia and the influence of particular tests used to diagnose DSD. To address the challenges of DSD diagnosis, we present a framework for guiding the focus of future research efforts to develop a reliable reference standard to diagnose DSD. A key feature of a reliable reference standard will improve the ability to clinically diagnose DSD in facility-based patients and research studies. PMID:27650668
Palatoplasty with flap superimposed in dog - Case report
Directory of Open Access Journals (Sweden)
Luis Gustavo Gosuen Gonçalves Dias
2015-10-01
Full Text Available ABSTRACT. Gonçalves Dias L.G.G., Gonçalves Dias F.G.G., Ikenaga F.M., Honsho C.S., Souza F.F., Selmi A.L. & Mattos Junior E. [Palatoplasty with flap superimposed in dog - Case report.] Palatoplastia com retalho sobreposto em cão - Relato de caso. Revista Brasileira de Medicina Veterinária, 37(3:179-185, 2015. Curso de Graduação em Medicina Veterinária e Programa de Pós-Graduação Stricto Sensu em Medicina Veterinária de Pequenos Animais, Universidade de Franca, Av. Dr. Armando Salles de Oliveira, 201, Parque Universitário, Cx. Postal 82, Franca, SP 14404-600, Brasil. E-mail: luisgd@unifran.br The oral cleft palate deformities are characterized by disruption in the integrity of the bone and palatal mucosa, having variable extensions and multifactorial etiologic character. Frequently are unnoticed by owners and veterinarians at birth and are diagnosed only when the animal begins to demonstrate clinical respiratory signs. Affected patients have direct communication between the oral and nasal cavity, which can cause aspiration pneumonia and hinder the negative intraoral pressure necessary for the suction of milk, these being factors contributors to the deficit in body growth and death. This paper aimed to highlight important points about this rare oral disease in small animals, moreover, report the case of a dog with cleft palate treated successfully with the technique of overlapping flap palatoplasty.
International Nuclear Information System (INIS)
Jang, Dong Il; Jeong, Gyeong Seop; Han, Min Gu
1992-08-01
This book introduces basic theory and analytical solution of fracture mechanics, linear fracture mechanics, non-linear fracture mechanics, dynamic fracture mechanics, environmental fracture and fatigue fracture, application on design fracture mechanics, application on analysis of structural safety, engineering approach method on fracture mechanics, stochastic fracture mechanics, numerical analysis code and fracture toughness test and fracture toughness data. It gives descriptions of fracture mechanics to theory and analysis from application of engineering.
Caltagirone, Jean-Paul
2014-01-01
This book presents the fundamental principles of mechanics to re-establish the equations of Discrete Mechanics. It introduces physics and thermodynamics associated to the physical modeling. The development and the complementarity of sciences lead to review today the old concepts that were the basis for the development of continuum mechanics. The differential geometry is used to review the conservation laws of mechanics. For instance, this formalism requires a different location of vector and scalar quantities in space. The equations of Discrete Mechanics form a system of equations where the H
International Nuclear Information System (INIS)
Lee, T.D.
1985-01-01
This paper reviews the role of time throughout all phases of mechanics: classical mechanics, non-relativistic quantum mechanics, and relativistic quantum theory. As an example of the relativistic quantum field theory, the case of a massless scalar field interacting with an arbitrary external current is discussed. The comparison between the new discrete theory and the usual continuum formalism is presented. An example is given of a two-dimensional random lattice and its duel. The author notes that there is no evidence that the discrete mechanics is more appropriate than the usual continuum mechanics
RESEARCH PROGRAM ON FRACTURED PETROLEUM RESERVOIRS
Energy Technology Data Exchange (ETDEWEB)
Abbas Firoozabadi
2002-04-12
Numerical simulation of water injection in discrete fractured media with capillary pressure is a challenge. Dual-porosity models in view of their strength and simplicity can be mainly used for sugar-cube representation of fractured media. In such a representation, the transfer function between the fracture and the matrix block can be readily calculated for water-wet media. For a mixed-wet system, the evaluation of the transfer function becomes complicated due to the effect of gravity. In this work, they use a discrete-fracture model in which the fractures are discretized as one dimensional entities to account for fracture thickness by an integral form of the flow equations. This simple step greatly improves the numerical solution. Then the discrete-fracture model is implemented using a Galerkin finite element method. The robustness and the accuracy of the approach are shown through several examples. First they consider a single fracture in a rock matrix and compare the results of the discrete-fracture model with a single-porosity model. Then, they use the discrete-fracture model in more complex configurations. Numerical simulations are carried out in water-wet media as well as in mixed-wet media to study the effect of matrix and fracture capillary pressures.
Optical stress investigations of notched bars with superimposed types of loads
International Nuclear Information System (INIS)
Richard, H.A.; Theis, W.
1982-01-01
Starting from the notch effect for various types of load, notch stresses are determined by optical methods for superimposed tensile and shearing stress and for superimposed tensile and bending stress. The superimposed stresses are induced by a device developed at the Technical Mechanics Department of Kaiserslautern University; only tensile stress needs to be applied to this testing device. The investigations have shown that in notched bars subject to superimposed tensile and shearing stress, stress increases will be higher than the maximum values of the two types of stress. For superimposed tensile and bending stress, notches on the outer side of the test piece and eccentric notches on the inner side may lead to a considerable stress increase. However, the stress distribution can be improved by an optimum arrangement of notches. (orig.) [de
Diagnostic dilemma: osteopetrosis with superimposed rickets causing neonatal hypocalcemia.
Olgaç, Asburçe; Tümer, Leyla; Boyunağa, Öznur; Kızılkaya, Metehan; Hasanoğlu, Alev
2015-04-01
Osteopetrosis is a rare genetic condition of reduced osteoclastic bone resorption which causes defective bone remodeling and skeletal sclerosis during growth, having effects on many organs and tissues. Mutation of T-cell immune regulator 1 (TCRG1) gene is the most common genetic defect leading to osteopetrosis, with poor prognosis. The autosomal recessive form presents in the infantile period (also known as malignant infantile osteopetrosis--MIOP), and is characterized by fractures, short stature, hepatosplenomegaly, compressive neuropathies, hypocalcemia and pancytopenia. Being a rare disease with non-specific clinical manifestations, the diagnosis is difficult and usually delayed. Rickets is a characteristic feature of MIOP which results from the defect in osteoclasts to provide a normal Ca/P balance resulting in the poor mineralization of the osteoid. Various treatment options have been suggested for osteopetrosis, but hematopoietic stem cell transplantation still remains the only curative treatment option presently. The authors report the case of a 46-day-old girl with late-onset neonatal hypocalcemia and rickets that was later diagnosed as osteopetrosis. This case report emphasizes that infantile osteopetrosis is an important cause of neonatal hypocalcemia. As irreversible complications develop within the first months of life, immediate diagnosis and early intervention are crucial and may be life-saving. © The Author [2015]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Tuning Fractures With Dynamic Data
Yao, Mengbi; Chang, Haibin; Li, Xiang; Zhang, Dongxiao
2018-02-01
Flow in fractured porous media is crucial for production of oil/gas reservoirs and exploitation of geothermal energy. Flow behaviors in such media are mainly dictated by the distribution of fractures. Measuring and inferring the distribution of fractures is subject to large uncertainty, which, in turn, leads to great uncertainty in the prediction of flow behaviors. Inverse modeling with dynamic data may assist to constrain fracture distributions, thus reducing the uncertainty of flow prediction. However, inverse modeling for flow in fractured reservoirs is challenging, owing to the discrete and non-Gaussian distribution of fractures, as well as strong nonlinearity in the relationship between flow responses and model parameters. In this work, building upon a series of recent advances, an inverse modeling approach is proposed to efficiently update the flow model to match the dynamic data while retaining geological realism in the distribution of fractures. In the approach, the Hough-transform method is employed to parameterize non-Gaussian fracture fields with continuous parameter fields, thus rendering desirable properties required by many inverse modeling methods. In addition, a recently developed forward simulation method, the embedded discrete fracture method (EDFM), is utilized to model the fractures. The EDFM maintains computational efficiency while preserving the ability to capture the geometrical details of fractures because the matrix is discretized as structured grid, while the fractures being handled as planes are inserted into the matrix grids. The combination of Hough representation of fractures with the EDFM makes it possible to tune the fractures (through updating their existence, location, orientation, length, and other properties) without requiring either unstructured grids or regridding during updating. Such a treatment is amenable to numerous inverse modeling approaches, such as the iterative inverse modeling method employed in this study, which is
Parker, R Gary
1988-01-01
This book treats the fundamental issues and algorithmic strategies emerging as the core of the discipline of discrete optimization in a comprehensive and rigorous fashion. Following an introductory chapter on computational complexity, the basic algorithmic results for the two major models of polynomial algorithms are introduced--models using matroids and linear programming. Further chapters treat the major non-polynomial algorithms: branch-and-bound and cutting planes. The text concludes with a chapter on heuristic algorithms.Several appendixes are included which review the fundamental ideas o
Superimposed disturbance in the ionosphere triggered by spacecraft launches in China
L. M. He; L. X. Wu; L. X. Wu; S. J. Liu; S. N. Liu
2015-01-01
Using GPS dual-frequency observations collected by continuously operating GPS tracking stations in China, superimposed disturbances caused by the integrated action of spacecraft's physical effect and chemical effect on ionosphere during the launches of the spacecrafts Tiangong-1 and Shenzhou-8 in China were firstly determined. The results show that the superimposed disturbance was composed of remarkable ionospheric waves and significant ionospheric depletion emerged after bo...
Discrete gradients in discrete classical mechanics
International Nuclear Information System (INIS)
Renna, L.
1987-01-01
A simple model of discrete classical mechanics is given where, starting from the continuous Hamilton equations, discrete equations of motion are established together with a proper discrete gradient definition. The conservation laws of the total discrete momentum, angular momentum, and energy are demonstrated
Discrete Feature Model (DFM) User Documentation
International Nuclear Information System (INIS)
Geier, Joel
2008-06-01
This manual describes the Discrete-Feature Model (DFM) software package for modelling groundwater flow and solute transport in networks of discrete features. A discrete-feature conceptual model represents fractures and other water-conducting features around a repository as discrete conductors surrounded by a rock matrix which is usually treated as impermeable. This approximation may be valid for crystalline rocks such as granite or basalt, which have very low permeability if macroscopic fractures are excluded. A discrete feature is any entity that can conduct water and permit solute transport through bedrock, and can be reasonably represented as a piecewise-planar conductor. Examples of such entities may include individual natural fractures (joints or faults), fracture zones, and disturbed-zone features around tunnels (e.g. blasting-induced fractures or stress-concentration induced 'onion skin' fractures around underground openings). In a more abstract sense, the effectively discontinuous nature of pathways through fractured crystalline bedrock may be idealized as discrete, equivalent transmissive features that reproduce large-scale observations, even if the details of connective paths (and unconnected domains) are not precisely known. A discrete-feature model explicitly represents the fundamentally discontinuous and irregularly connected nature of systems of such systems, by constraining flow and transport to occur only within such features and their intersections. Pathways for flow and solute transport in this conceptualization are a consequence not just of the boundary conditions and hydrologic properties (as with continuum models), but also the irregularity of connections between conductive/transmissive features. The DFM software package described here is an extensible code for investigating problems of flow and transport in geological (natural or human-altered) systems that can be characterized effectively in terms of discrete features. With this software, the
Discrete Feature Model (DFM) User Documentation
Energy Technology Data Exchange (ETDEWEB)
Geier, Joel (Clearwater Hardrock Consulting, Corvallis, OR (United States))
2008-06-15
This manual describes the Discrete-Feature Model (DFM) software package for modelling groundwater flow and solute transport in networks of discrete features. A discrete-feature conceptual model represents fractures and other water-conducting features around a repository as discrete conductors surrounded by a rock matrix which is usually treated as impermeable. This approximation may be valid for crystalline rocks such as granite or basalt, which have very low permeability if macroscopic fractures are excluded. A discrete feature is any entity that can conduct water and permit solute transport through bedrock, and can be reasonably represented as a piecewise-planar conductor. Examples of such entities may include individual natural fractures (joints or faults), fracture zones, and disturbed-zone features around tunnels (e.g. blasting-induced fractures or stress-concentration induced 'onion skin' fractures around underground openings). In a more abstract sense, the effectively discontinuous nature of pathways through fractured crystalline bedrock may be idealized as discrete, equivalent transmissive features that reproduce large-scale observations, even if the details of connective paths (and unconnected domains) are not precisely known. A discrete-feature model explicitly represents the fundamentally discontinuous and irregularly connected nature of systems of such systems, by constraining flow and transport to occur only within such features and their intersections. Pathways for flow and solute transport in this conceptualization are a consequence not just of the boundary conditions and hydrologic properties (as with continuum models), but also the irregularity of connections between conductive/transmissive features. The DFM software package described here is an extensible code for investigating problems of flow and transport in geological (natural or human-altered) systems that can be characterized effectively in terms of discrete features. With this
Firth, Jean M
1992-01-01
The analysis of signals and systems using transform methods is a very important aspect of the examination of processes and problems in an increasingly wide range of applications. Whereas the initial impetus in the development of methods appropriate for handling discrete sets of data occurred mainly in an electrical engineering context (for example in the design of digital filters), the same techniques are in use in such disciplines as cardiology, optics, speech analysis and management, as well as in other branches of science and engineering. This text is aimed at a readership whose mathematical background includes some acquaintance with complex numbers, linear differen tial equations, matrix algebra, and series. Specifically, a familiarity with Fourier series (in trigonometric and exponential forms) is assumed, and an exposure to the concept of a continuous integral transform is desirable. Such a background can be expected, for example, on completion of the first year of a science or engineering degree cour...
Superimpose of images by appending two simple video amplifier circuits to color television
International Nuclear Information System (INIS)
Kojima, Kazuhiko; Hiraki, Tatsunosuke; Koshida, Kichiro; Maekawa, Ryuichi; Hisada, Kinichi.
1979-01-01
Images are very useful to obtain diagnostic informations in medical fields. Also by superimposing two or three images obtained from the same patient, various informations, for example a degree of overlapping and anatomical land mark, which can not be found in only one image, can be often found. In this paper characteristics of our trial color television system for the purpose of superimposing x-ray images and/or radionuclide images are described. This color television system superimposing two images in each different color consists of two monochromatic vidicon cameras and 20 inches conventional color television in which only two simple video amplifier circuits are added. Signals from vidicon cameras are amplified about 40 dB and are directly applied to cathode terminals of color CRT in the television. This system is very simple and economical color displays, and enhance a degree of overlapping and displacement between images. As one of typical clinical applications, pancreas images were superimposed in color by this method. As a result, size and position of pancreas was enhanced. Also x-ray image and radionuclide image were superimposed to find exactly the position of tumors. Furthermore this system was very useful for color display of multinuclides scintigraphy. (author)
Superimpose of images by appending two simple video amplifier circuits to color television
Energy Technology Data Exchange (ETDEWEB)
Kojima, K; Hiraki, T; Koshida, K; Maekawa, R [Kanazawa Univ. (Japan). School of Paramedicine; Hisada, K
1979-09-01
Images are very useful to obtain diagnostic informations in medical fields. Also by superimposing two or three images obtained from the same patient, various informations, for example a degree of overlapping and anatomical land mark, which can not be found in only one image, can be often found. In this paper characteristics of our trial color television system for the purpose of superimposing x-ray images and/or radionuclide images are described. This color television system superimposing two images in each different color consists of two monochromatic vidicon cameras and 20 inches conventional color television in which only two simple video amplifier circuits are added. Signals from vidicon cameras are amplified about 40 dB and are directly applied to cathode terminals of color CRT in the television. This system is very simple and economical color displays, and enhance a degree of overlapping and displacement between images. As one of typical clinical applications, pancreas images were superimposed in color by this method. As a result, size and position of pancreas was enhanced. Also x-ray image and radionuclide image were superimposed to find exactly the position of tumors. Furthermore this system was very useful for color display of multinuclides scintigraphy.
Discrete Curvatures and Discrete Minimal Surfaces
Sun, Xiang
2012-01-01
This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads
LI, S.
2017-12-01
Identification of igneous rocks in the basin environment is of great significance to the exploration for hydrocarbon reservoirs hosted in igneous rocks. Magnetic methods are often used to alleviate the difficulties faced by seismic imaging in basins with thick cover and complicated superimposed structures. We present a case study on identification of igneous rocks in a superimposed basin through integrated interpretation based on magnetic and other geophysical data sets. The study area is located in the deepest depression with sedimentary cover of 14,000 m in Huanghua basin, which is a Cenozoic basin superimposed on a residual pre-Cenozoic basin above the North China craton. Cenozoic and Mesozoic igneous rocks that are dominantly intermediate-basic volcanic and intrusive rocks are widespread at depth in the basin. Drilling and seismic data reveal some volcanic units and intrusive rocks in Cenozoic stratum at depths of about 4,000 m. The question remains to identify the lateral extent of igneous rocks in large depth and adjacent areas. In order to tackle the difficulties for interpretation of magnetic data arisen from weak magnetic anomaly and remanent magnetization of igneous rocks buried deep in the superimposed basin, we use the preferential continuation approach to extract the anomaly and magnetic amplitude inversion to image the 3D magnetic units. The resultant distribution of effective susceptibility not only correlates well with the locations of Cenozoic igneous rocks known previously through drilling and seismic imaging, but also identifies the larger scale distribution of Mesozoic igneous rocks at greater depth in the west of the basin. The integrated interpretation results dominantly based on magnetic data shows that the above strategy is effective for identification of igneous rocks deep buried in the superimposed basin. Keywords: Identification of igneous rocks; Superimposed basin; Magnetic data
A dual-wavelength tunable laser with superimposed fiber Bragg gratings
International Nuclear Information System (INIS)
Álvarez-Tamayo, R I; Durán-Sánchez, M; Pottiez, O; Ibarra-Escamilla, B; Kuzin, E A; Cruz, J L; Andrés, M V
2013-01-01
We report a dual-wavelength tunable fiber laser. The cavity is formed by two superimposed fiber Bragg gratings (FBGs) and a temperature tunable high-birefringence fiber optical loop mirror (FOLM). FBGs with wavelengths of 1548.5 and 1538.5 nm were printed in the same section of a fiber using two different masks. The superimposed FBGs were placed on a mechanical mount that allows stretch or compression of the FBGs. As a result of the FBG strain both lines are shifted simultaneously. Dual-wavelength generation requires a fine adjustment of the cavity loss for both wavelengths. (paper)
Additive non-uniform random sampling in superimposed fiber Bragg grating strain gauge
International Nuclear Information System (INIS)
Ma, Y C; Liu, H Y; Yan, S B; Li, J M; Tang, J; Yang, Y H; Yang, M W
2013-01-01
This paper demonstrates an additive non-uniform random sampling and interrogation method for dynamic and/or static strain gauge using a reflection spectrum from two superimposed fiber Bragg gratings (FBGs). The superimposed FBGs are designed to generate non-equidistant space of a sensing pulse train in the time domain during dynamic strain gauge. By combining centroid finding with smooth filtering methods, both the interrogation speed and accuracy are improved. A 1.9 kHz dynamic strain is measured by generating an additive non-uniform randomly distributed 2 kHz optical sensing pulse train from a mean 500 Hz triangular periodically changing scanning frequency. (paper)
Additive non-uniform random sampling in superimposed fiber Bragg grating strain gauge
Ma, Y. C.; Liu, H. Y.; Yan, S. B.; Yang, Y. H.; Yang, M. W.; Li, J. M.; Tang, J.
2013-05-01
This paper demonstrates an additive non-uniform random sampling and interrogation method for dynamic and/or static strain gauge using a reflection spectrum from two superimposed fiber Bragg gratings (FBGs). The superimposed FBGs are designed to generate non-equidistant space of a sensing pulse train in the time domain during dynamic strain gauge. By combining centroid finding with smooth filtering methods, both the interrogation speed and accuracy are improved. A 1.9 kHz dynamic strain is measured by generating an additive non-uniform randomly distributed 2 kHz optical sensing pulse train from a mean 500 Hz triangular periodically changing scanning frequency.
Discrete Curvatures and Discrete Minimal Surfaces
Sun, Xiang
2012-06-01
This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads to great interest in studying discrete surfaces. With the rich smooth surface theory in hand, one would hope that this elegant theory can still be applied to the discrete counter part. Such a generalization, however, is not always successful. While discrete surfaces have the advantage of being finite dimensional, thus easier to treat, their geometric properties such as curvatures are not well defined in the classical sense. Furthermore, the powerful calculus tool can hardly be applied. The methods in this thesis, including angular defect formula, cotangent formula, parallel meshes, relative geometry etc. are approaches based on offset meshes or generalized offset meshes. As an important application, we discuss discrete minimal surfaces and discrete Koenigs meshes.
Glucose clearance in aged trained skeletal muscle during maximal insulin with superimposed exercise
DEFF Research Database (Denmark)
Dela, Flemming; Mikines, K J; Larsen, J J
1999-01-01
Insulin and muscle contractions are major stimuli for glucose uptake in skeletal muscle and have in young healthy people been shown to be additive. We studied the effect of superimposed exercise during a maximal insulin stimulus on glucose uptake and clearance in trained (T) (1-legged bicycle tra...
Modelling snow ice and superimposed ice on landfast sea ice in Kongsfjorden, Svalbard
Directory of Open Access Journals (Sweden)
Caixin Wang
2015-08-01
Full Text Available Snow ice and superimposed ice formation on landfast sea ice in a Svalbard fjord, Kongsfjorden, was investigated with a high-resolution thermodynamic snow and sea-ice model, applying meteorological weather station data as external forcing. The model shows that sea-ice formation occurs both at the ice bottom and at the snow/ice interface. Modelling results indicated that the total snow ice and superimposed ice, which formed at the snow/ice interface, was about 14 cm during the simulation period, accounting for about 15% of the total ice mass and 35% of the total ice growth. Introducing a time-dependent snow density improved the modelled results, and a time-dependent oceanic heat flux parameterization yielded reasonable ice growth at the ice bottom. Model results suggest that weather conditions, in particular air temperature and precipitation, as well as snow thermal properties and surface albedo are the most critical factors for the development of snow ice and superimposed ice in Kongsfjorden. While both warming air and higher precipitation led to increased snow ice and superimposed ice forming in Kongsfjorden in the model runs, the processes were more sensitive to precipitation than to air temperature.
Superimposed chirped pulse parameter estimation based on the extended Kalman filter (EKF)
CSIR Research Space (South Africa)
Olivier, JC
2009-05-01
Full Text Available An extended Kalman filter (EKF) is proposed to estimate the frequencies and chirp rate of multiple superimposed chirped pulses. The estimation problem is a difficult one, where maximum likelyhood methods are very complex especially if more than two...
Resemblance of the properties of superimposed volume holograms to the properties of human memory
Orlov, V. V.
2006-09-01
According to current concepts in psychology, a collection of patterns stored in human memory has the property of integrity and contains new information not contained in the individual patterns. It is shown that superimposed volume holograms possess similar properties if the information in them is written by a method that excludes the appearance of crosstalk of the holograms.
Directory of Open Access Journals (Sweden)
Nicolas Wirtz, Christoph Zinner, Ulrike Doermann, Heinz Kleinoeder, Joachim Mester
2016-03-01
Full Text Available The aim of the present study was to investigate the effects of a multiple set squat exercise training intervention with superimposed electromyostimulation (EMS on strength and power, sprint and jump performance. Twenty athletes from different disciplines participated and were divided into two groups: strength training (S or strength training with superimposed EMS (S+E. Both groups completed the same training program twice a week over a six week period consisting of four sets of the 10 repetition maximum of back squats. Additionally, the S+E group had EMS superimposed to the squat exercise with simultaneous stimulation of leg and trunk muscles. EMS intensity was adjusted to 70% of individual pain threshold to ensure dynamic movement. Strength and power of different muscle groups, sprint, and vertical jump performance were assessed one week before (pre, one week after (post and three weeks (re following the training period. Both groups showed improvements in leg press strength and power, countermovement and squat jump performance and pendulum sprint (p < 0.05, with no changes for linear sprint. Differences between groups were only evident at the leg curl machine with greater improvements for the S+E group (p < 0.05. Common squat exercise training and squat exercise with superimposed EMS improves maximum strength and power, as well as jumping abilities in athletes from different disciplines. The greater improvements in strength performance of leg curl muscles caused by superimposed EMS with improvements in strength of antagonistic hamstrings in the S+E group are suggesting the potential of EMS to unloaded (antagonistic muscle groups.
Numerical Simulation of Damage during Forging with Superimposed Hydrostatic Pressure by Active Media
International Nuclear Information System (INIS)
Behrens, B.-A.; Hagen, T.; Roehr, S.; Sidhu, K. B.
2007-01-01
The effective reduction of energy consumption and a reasonable treatment of resources can be achieved by minimizing a component's weight using lightweight metals. In this context, aluminum alloys play a major role. Due to their material-sided restricted formability, the mentioned aluminum materials are difficult to form. The plasticity of a material is ascertained by its maximum forming limit. It is attained, when the deformation causes mechanical damage within the material. Damage of that sort is reached more rapidly, the greater the tensile strength rate in relation to total tension rate. A promising approach of handling these low ductile, high-strength aluminum alloys within a forming process, is forming with a synchronized superposition of comprehensive stress by active media such as by controlling oil pressure. The influence of superimposed hydrostatic pressure on the flow stress was analyzed as well as the formability for different procedures at different hydrostatic pressures and temperature levels. It was observed that flow stress is independent of superimposed hydrostatic pressure. Neither the superimposed pressure has an influence on the plastic deformation, nor does a pressure dependent material hardening due to increasing hydrostatic pressure take place. The formability increases with rising hydrostatic pressure. The relative gain at room temperature and increase of the superimposed pressure from 0 to 600 bar for tested materials was at least 140 % and max. 220 %. Therefore in this paper, based on these experimental observations, it is the intended to develop a numerical simulation in order to predict ductile damage that occurs in the bulk forging process with superimposed hydrostatic pressure based Lemaitre's damage model
International Nuclear Information System (INIS)
Pusch, R.; Erlstroem, M.; Boergesson, L.
1985-12-01
The major water-bearing fractures in granite usually from fairly regular sets but the extension and degree of connectivity is varying. This means that only a few fractures that are interconnected with the deposition holes and larger water-bearing structures in a HLW repository are expected and if they can be identified and cut off through sealing it would be possible to improve the isolation of waste packages very effectively. Nature's own fracture sealing mechanisms may be simulated and a survey of the involved processes actually suggests a number of possible filling methods and substances. Most of them require high temperature and pressure and correspondingly sophisticated techniques, but some are of potential interest for immediate application with rather moderate effort. Such a technique is to fill the fractures with clayey substances which stay flexible and low-permeable provided that they remain physically and chemically intact. It is demonstrated in the report that effective grouting requires a very low viscosity and shear strength of the substance and this can be achieved by mechanical agitation as demonstrated in this report. Thus, by superimposing static pressure and shear waves induced by percussion hammering at a suitable frequency, clays and fine-grained silts as well as cement can be driven into fractures with an average aperture as small as 0.1 mm. Experiments were made in the laboratory using concrete and steel plates, and a field pilot test was also conducted under realistic conditions on site in Stripa. They all demonstrated the practicality of the 'dynamic injection technique' and that the fluid condition of the grouts yielded complete filling of the injected space to a considerable distance from the injection point. The field test indicated a good sealing ability as well as a surprisingly high resistance to erosion and piping. (author)
Energy Technology Data Exchange (ETDEWEB)
Zhang, Boning [Univ. of Colorado, Boulder, CO (United States); Herbold, Eric B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homel, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Regueiro, Richard A. [Univ. of Colorado, Boulder, CO (United States)
2015-12-01
An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.
Mimetic discretization methods
Castillo, Jose E
2013-01-01
To help solve physical and engineering problems, mimetic or compatible algebraic discretization methods employ discrete constructs to mimic the continuous identities and theorems found in vector calculus. Mimetic Discretization Methods focuses on the recent mimetic discretization method co-developed by the first author. Based on the Castillo-Grone operators, this simple mimetic discretization method is invariably valid for spatial dimensions no greater than three. The book also presents a numerical method for obtaining corresponding discrete operators that mimic the continuum differential and
... hip fractures in people of all ages. In older adults, a hip fracture is most often a result of a fall from a standing height. In people with very weak bones, a hip fracture can occur simply by standing on the leg and twisting. Risk factors The rate of hip fractures increases substantially with ...
Superimposed disturbance in the ionosphere triggered by spacecraft launches in China
He, L. M.; Wu, L. X.; Liu, S. J.; Liu, S. N.
2015-11-01
Using GPS dual-frequency observations collected by continuously operating GPS tracking stations in China, superimposed disturbances caused by the integrated action of spacecraft's physical effect and chemical effect on ionosphere during the launches of the spacecrafts Tiangong-1 and Shenzhou-8 in China were firstly determined. The results show that the superimposed disturbance was composed of remarkable ionospheric waves and significant ionospheric depletion emerged after both launches. Meanwhile, we found for the first time that the ionospheric waves were made up of two periods of wave by wavelet analysis. The first period of ∼ 4 min shows one event in the near stations and two sub-events in the few far stations. The second period of ∼ 9 min shows only one event in all the observed stations. Finally, the time characteristics for ionospheric waves and depletions were examined.
Superimposed disturbance in the ionosphere triggered by spacecraft launches in China
Directory of Open Access Journals (Sweden)
L. M. He
2015-11-01
Full Text Available Using GPS dual-frequency observations collected by continuously operating GPS tracking stations in China, superimposed disturbances caused by the integrated action of spacecraft's physical effect and chemical effect on ionosphere during the launches of the spacecrafts Tiangong-1 and Shenzhou-8 in China were firstly determined. The results show that the superimposed disturbance was composed of remarkable ionospheric waves and significant ionospheric depletion emerged after both launches. Meanwhile, we found for the first time that the ionospheric waves were made up of two periods of wave by wavelet analysis. The first period of ∼ 4 min shows one event in the near stations and two sub-events in the few far stations. The second period of ∼ 9 min shows only one event in all the observed stations. Finally, the time characteristics for ionospheric waves and depletions were examined.
Investigation on the Productivity Behaviour in Deformable Heterogeneous Fractured Reservoirs
DEFF Research Database (Denmark)
Kadeethum, Teeratorn; Salimzadeh, Saeed; Nick, Hamid
reasons for this reduction. Discrete fracture and matrix (DFM) modelling is selected in this investigation because of its ability to represent fracture behaviours more realistically. Moreover, it has become a preferential method for modelling flow in fractured formations for the past decade (Bisdom et al...
Controlling total spot power from holographic laser by superimposing a binary phase grating.
Liu, Xiang; Zhang, Jian; Gan, Yu; Wu, Liying
2011-04-25
By superimposing a tunable binary phase grating with a conventional computer-generated hologram, the total power of multiple holographic 3D spots can be easily controlled by changing the phase depth of grating with high accuracy to a random power value for real-time optical manipulation without extra power loss. Simulation and experiment results indicate that a resolution of 0.002 can be achieved at a lower time cost for normalized total spot power.
Spatial mapping of multi-year superimposed ice on the glacier Kongsvegen, Svalbard
DEFF Research Database (Denmark)
Brandt, Ola; Kohler, Jack; Lüthje, Mikael
2008-01-01
by GPR. Using the SI spatial depth distribution, we estimate the mean annual accumulation of superimposed ice to be 0.16 +/- 0.06 mw.e.a(-1) (locally up to 0.43 ma(-1) w.e.). This corresponds to similar to 15-33% of the local winter balance and similar to 5-10% of the total winter balance measured since...
Tymko, Michael M.; Rickards, Caroline A.; Skow, Rachel J.; Ingram?Cotton, Nathan C.; Howatt, Michael K.; Day, Trevor A.
2016-01-01
Abstract Steady?state tilt has no effect on cerebrovascular reactivity to increases in the partial pressure of end?tidal carbon dioxide (PETCO 2). However, the anterior and posterior cerebral circulations may respond differently to a variety of stimuli that alter central blood volume, including lower body negative pressure (LBNP). Little is known about the superimposed effects of head?up tilt (HUT; decreased central blood volume and intracranial pressure) and head?down tilt (HDT; increased ce...
Chronic hypertension and the risk for adverse pregnancy outcome after superimposed pre-eclampsia.
Vanek, M; Sheiner, E; Levy, A; Mazor, M
2004-07-01
To determine the risk factors and pregnancy outcome of patients with chronic hypertension during pregnancy after controlling for superimposed preeclampsia. A comparison of all singleton term (>36 weeks) deliveries occurring between 1988 and 1999, with and without chronic hypertension, was performed. Stratified analyses, using the Mantel-Haenszel technique, and a multiple logistic regression model were performed to control for confounders. Chronic hypertension complicated 1.6% (n=1807) of all deliveries included in the study (n=113156). Using a multivariable analysis, the following factors were found to be independently associated with chronic hypertension: maternal age >40 years (OR=3.1; 95% CI 2.7-3.6), diabetes mellitus (OR=3.6; 95% CI 3.3-4.1), recurrent abortions (OR=1.5; 95% CI 1.3-1.8), infertility treatment (OR=2.9; 95% CI 2.3-3.7), and previous cesarean delivery (CD; OR=1.8 CI 1.6-2.0). After adjustment for superimposed preeclampsia, using the Mantel-Haenszel technique, pregnancies complicated with chronic hypertension had higher rates of CD (OR=2.7; 95% CI 2.4-3.0), intra uterine growth restriction (OR=1.7; 95% CI 1.3-2.2), perinatal mortality (OR=1.6; 95% CI 1.01-2.6) and post-partum hemorrhage (OR=2.2; 95% CI 1.4-3.7). Chronic hypertension is associated with adverse pregnancy outcome, regardless of superimposed preeclampsia.
Additional ion bombardment in PVD processes generated by a superimposed pulse bias voltage
International Nuclear Information System (INIS)
Olbrich, W.; Kampschulte, G.
1993-01-01
The superimposed pulse bias voltage is a tool to apply an additional ion bombardment during deposition in physical vapour deposition (PVD) processes. It is generated by the combination of a d.c. ground voltage and a higher d.c. pulse voltage. Using a superimposed pulse bias voltage in ion-assisted PVD processes effects an additional all-around ion bombardment on the surface with ions of higher energy. Both metal and reactive or inert-gas ions are accelerated to the surface. The basic principles and important characteristics of this newly developed process such as ion fluxes or deposition rates are shown. Because of pulsing the high voltage, the deposition temperature does not increase much. The adhesion, structure, morphology and internal stresses are influenced by these additional ion impacts. The columnar growth of the deposited films could be suppressed by using the superimposed pulse bias voltage without increasing the deposition temperature. Different metallizations (Cr and Cu) produced by arc and sputter ion plating are investigated. Carbon-fibre-reinforced epoxy are coated with PVD copper films for further treatment in electrochemical processes. (orig.)
Time Discretization Techniques
Gottlieb, S.; Ketcheson, David I.
2016-01-01
The time discretization of hyperbolic partial differential equations is typically the evolution of a system of ordinary differential equations obtained by spatial discretization of the original problem. Methods for this time evolution include
Hydraulic fracture propagation modeling and data-based fracture identification
Zhou, Jing
Successful shale gas and tight oil production is enabled by the engineering innovation of horizontal drilling and hydraulic fracturing. Hydraulically induced fractures will most likely deviate from the bi-wing planar pattern and generate complex fracture networks due to mechanical interactions and reservoir heterogeneity, both of which render the conventional fracture simulators insufficient to characterize the fractured reservoir. Moreover, in reservoirs with ultra-low permeability, the natural fractures are widely distributed, which will result in hydraulic fractures branching and merging at the interface and consequently lead to the creation of more complex fracture networks. Thus, developing a reliable hydraulic fracturing simulator, including both mechanical interaction and fluid flow, is critical in maximizing hydrocarbon recovery and optimizing fracture/well design and completion strategy in multistage horizontal wells. A novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple nonplanar fractures' propagation in both homogeneous and heterogeneous reservoirs with or without pre-existing natural fractures. Initiation, growth, and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. This physics-based modeling approach leads to realistic fracture patterns without using the empirical rock failure and fracture propagation criteria required in conventional continuum methods. Based on this model, a sensitivity study is performed to investigate the effects of perforation spacing, in-situ stress anisotropy, rock properties (Young's modulus, Poisson's ratio, and compressive strength), fluid properties, and natural fracture properties on hydraulic fracture propagation. In addition, since reservoirs are buried thousands of feet below the surface, the
A Two-Scale Reduced Model for Darcy Flow in Fractured Porous Media
Chen, Huangxin; Sun, Shuyu
2016-01-01
scale, and the effect of fractures on each coarse scale grid cell intersecting with fractures is represented by the discrete fracture model (DFM) on the fine scale. In the DFM used on the fine scale, the matrix-fracture system are resolved
... Video) Achilles Tendon Tear Additional Content Medical News Rib Fractures By Thomas G. Weiser, MD, MPH, Associate Professor, ... Tamponade Hemothorax Injury to the Aorta Pulmonary Contusion Rib Fractures Tension Pneumothorax Traumatic Pneumothorax (See also Introduction to ...
DEFF Research Database (Denmark)
Andreasen, Jens Ove; Christensen, Søren Steno Ahrensburg; Tsilingaridis, Georgios
2012-01-01
The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed....
Observation and modeling of snow melt and superimposed ice formation on sea ice
Nicolaus, Marcel; Haas, Christian
2004-01-01
Sea ice plays a key role within the global climate system. It covers some 7% of earths surface and processes a strong seasonal cycle. Snow on sea ice even amplifies the importance of sea ice in the coupled atmosphere-ice-ocean system, because it dominates surface properties and energy balance (incl. albedo).Several quantitative observations of summer sea ice and its snow cover show the formation of superimposed ice and a gap layer underneath, which was found to be associated to high standing ...
Experimental Verification and Capacity Prediction of FE-OCDMA Using Superimposed FBG
Ayotte, Simon; Rochette, Martin; Magné, Julien; Rusch, Leslie A.; Larochelle, Sophie
2005-02-01
This paper presents the experimental demonstration and simulation results of a frequency-encoded optical code-division multiple-access (FE-OCDMA) system using broad-band incoherent source, superimposed fiber Bragg gratings for encoding/decoding of unipolar m -sequence codes, and balanced detection. The bit-error rate is measured for up to four simultaneous users at 155 and 622 Mb/s. Exploiting the excellent match between simulation and experiment, the paper concludes with a prediction of the potential capacity of an optimized FE-CDMA system.
Properties of DLC coatings deposited by dc and dc with superimposed pulsed vacuum arc
International Nuclear Information System (INIS)
Zavaleyev, V.; Walkowicz, J.; Aksyonov, D.S.; Luchaninov, A.A.; Reshetnyak, E.N.; Strel'nitskij, V.E.
2014-01-01
Comparative studies of the structure, mechanical and tribological properties of DLC coatings deposited in DC and DC with superimposed high current pulse modes of operation vacuum-arc plasma source with the graphite cathode are presented. Imposition the pulses of high current on DC vacuum-arc discharge allows both increase the deposition rate of DLC coating and reduce the residual compressive stress in the coatings what promotes substantial improvement the adhesion to the substrate. Effect of vacuum arc plasma filtration with Venetian blind filter on the deposition rate and tribological characteristics of the coatings analyzed.
Stress fractures Overview Stress fractures are tiny cracks in a bone. They're caused by repetitive force, often from overuse — such as repeatedly jumping up and down or running long distances. Stress fractures can also arise from normal use of ...
Discrete Feature Approach for Heterogeneous Reservoir Production Enhancement
Energy Technology Data Exchange (ETDEWEB)
Dershowitz, William S.; Cladouhos, Trenton
2001-09-06
This progress report describes activities during the period January 1, 1999 to June 30, 1999. Work was carried out on 21 tasks. The major activity during the reporting period was the development and preliminary application of discrete fracture network (DFN) models for Stoney Point, South Oregon Basin, and North Oregon Basins project study sites. In addition, research was carried out on analysis algorithms for discrete future orientation.
Discrete modeling of multiple discontinuities in rock mass using XFEM
Das, Kamal C.; Ausas, Roberto Federico; Carol, Ignacio; Rodrigues, Eduardo; Sandeep, Sandra; Vargas, P. E.; Gonzalez, Nubia Aurora; Segura, Josep María; Lakshmikantha, Ramasesha Mookanahallipatna; Mello,, U.
2017-01-01
Modeling of discontinuities (fractures and fault surfaces) is of major importance to assess the geomechanical behavior of oil and gas reservoirs, especially for tight and unconventional reservoirs. Numerical analysis of discrete discontinuities traditionally has been studied using interface element concepts, however more recently there are attempts to use extended finite element method (XFEM). The development of an XFEM tool for geo-mechanical fractures/faults modeling has significant industr...
Directory of Open Access Journals (Sweden)
Fernando Martín del Campo
2009-01-01
with the information, a series of known symbols, whose analysis is used to define the parameters of the filters that remove the distortion of the data. Nevertheless, a part of the available bandwidth has to be destined to these symbols. Until now, no alternative solution has demonstrated to be fully satisfying for commercial use, but one technique that looks promising is superimposed training (ST. This work describes a hybrid software-hardware FPGA implementation of a recent algorithm that belongs to the ST family, known as Data-dependent Superimposed Training (DDST, which does not need extra bandwidth for its training sequences (TS as it adds them arithmetically to the data. DDST also adds a third sequence known as data-dependent sequence, that destroys the interference caused by the data over the TS. As DDST's computational burden is too high for the commercial processors used in mobile systems, a System on a Programmable Chip (SOPC approach is used in order to solve the problem.
International Nuclear Information System (INIS)
Matsushita, Teruo; Yamafuji, Kaoru; Sakamoto, Nobuyoshi.
1977-01-01
In case of applying superconductors to electric machinery or high intensity field magnets for fusion reactors, the superconductors are generally expected to be sensible to small field fluctuation besides DC magnetic field. The behavior of superconductors in DC magnetic field superimposed with small AC magnetic field has been investigated often experimentally, and the result has been obtained that the critical current at which DC flow voltage begins to appear extremely decreased or disappeared. Some theoretical investigations have been carried out on this phenomenon so far, however, their application has been limited to the region where frequency is sufficiently low or which is close to the critical magnetic field. Purpose of this report is to deal with the phenomenon in more unified way by analyzing the behavior of magnetic flux lines in a superconductor under a superimposed small AC field using the criticalstate model including viscous force. In order to solve the fundamental equation in this report, first the solution has been obtained in the quasi-static state neglecting viscous force, then about the cases that current density J is not more than Jc and J is larger than Jc, concerning the deviation from the quasi-static limit by employing successive approximation. Current-voltage characteristics have been determined by utilizing the above results. This method seems to be most promising at present except the case of extremely high frequency. (Wakatsuki, Y.)
Fluid transfers in fractured media: scale effects
International Nuclear Information System (INIS)
Bour, Olivier
1996-01-01
As there has been a growing interest in the study of fluid circulations in fractured media for the last fifteen years, for example for projects of underground storage of different waste types, or to improve water resources, or for exploitation of underground oil products or geothermal resources, this research thesis first gives a large overview of the modelling and transport properties of fractured media. He presents the main notions related to fluid transfers in fractured media (structures of fracture networks, hydraulic properties of fractured media), and the various adopted approaches (the effective medium theory, the percolation theory, double porosity models, deterministic discrete fracture models, equivalent discontinuous model, fractal models), and outlines the originality of the approach developed in this research: scale change, conceptual hypotheses, methodology, tools). The second part addresses scale rules in fracture networks: presentation of fracture networks (mechanical aspects, statistical analysis), distribution of fracture lengths and of fracture networks, length-position relationship, modelling attempt, lessons learned and consequences in terms of hydraulic and mechanical properties, and of relationship between length distribution and fractal dimension. The third part proposes two articles published by the author and addressing the connectivity properties of fracture networks. The fifth chapter reports the application to natural media. It contains an article on the application of percolation theory to 2D natural fracture networks, and reports information collected on a site [fr
Directory of Open Access Journals (Sweden)
Chad Correa
2017-09-01
Full Text Available History of present illness: A 77-year-old female presented to her primary care physician (PCP with right hip pain after a mechanical fall. She did not lose consciousness or have any other traumatic injuries. She was unable to ambulate post-fall, so X-rays were ordered by her PCP. Her X-rays were concerning for a right acetabular fracture (see purple arrows, so the patient was referred to the emergency department where a computed tomography (CT scan was ordered. Significant findings: The non-contrast CT images show a minimally displaced comminuted fracture of the right acetabulum involving the acetabular roof, medial and anterior walls (red arrows, with associated obturator muscle hematoma (blue oval. Discussion: Acetabular fractures are quite rare. There are 37 pelvic fractures per 100,000 people in the United States annually, and only 10% of these involve the acetabulum. They occur more frequently in the elderly totaling an estimated 4,000 per year. High-energy trauma is the primary cause of acetabular fractures in younger individuals and these fractures are commonly associated with other fractures and pelvic ring disruptions. Fractures secondary to moderate or minimal trauma are increasingly of concern in patients of advanced age.1 Classification of acetabular fractures can be challenging. However, the approach can be simplified by remembering the three basic types of acetabular fractures (column, transverse, and wall and their corresponding radiologic views. First, column fractures should be evaluated with coronally oriented CT images. This type of fracture demonstrates a coronal fracture line running caudad to craniad, essentially breaking the acetabulum into two halves: a front half and a back half. Secondly, transverse fractures should be evaluated by sagittally oriented CT images. By definition, a transverse fracture separates the acetabulum into superior and inferior halves with the fracture line extending from anterior to posterior
Baecklund transformations for discrete Painleve equations: Discrete PII-PV
International Nuclear Information System (INIS)
Sakka, A.; Mugan, U.
2006-01-01
Transformation properties of discrete Painleve equations are investigated by using an algorithmic method. This method yields explicit transformations which relates the solutions of discrete Painleve equations, discrete P II -P V , with different values of parameters. The particular solutions which are expressible in terms of the discrete analogue of the classical special functions of discrete Painleve equations can also be obtained from these transformations
Discrete Gabor transform and discrete Zak transform
Bastiaans, M.J.; Namazi, N.M.; Matthews, K.
1996-01-01
Gabor's expansion of a discrete-time signal into a set of shifted and modulated versions of an elementary signal or synthesis window is introduced, along with the inverse operation, i.e. the Gabor transform, which uses an analysis window that is related to the synthesis window and with the help of
Discrete Mathematics Re "Tooled."
Grassl, Richard M.; Mingus, Tabitha T. Y.
1999-01-01
Indicates the importance of teaching discrete mathematics. Describes how the use of technology can enhance the teaching and learning of discrete mathematics. Explorations using Excel, Derive, and the TI-92 proved how preservice and inservice teachers experienced a new dimension in problem solving and discovery. (ASK)
Homogenization of discrete media
International Nuclear Information System (INIS)
Pradel, F.; Sab, K.
1998-01-01
Material such as granular media, beam assembly are easily seen as discrete media. They look like geometrical points linked together thanks to energetic expressions. Our purpose is to extend discrete kinematics to the one of an equivalent continuous material. First we explain how we build the localisation tool for periodic materials according to estimated continuum medium type (classical Cauchy, and Cosserat media). Once the bridge built between discrete and continuum media, we exhibit its application over two bidimensional beam assembly structures : the honey comb and a structural reinforced variation. The new behavior is then applied for the simple plan shear problem in a Cosserat continuum and compared with the real discrete solution. By the mean of this example, we establish the agreement of our new model with real structures. The exposed method has a longer range than mechanics and can be applied to every discrete problems like electromagnetism in which relationship between geometrical points can be summed up by an energetic function. (orig.)
International Nuclear Information System (INIS)
Aydin, Alhun; Sisman, Altug
2016-01-01
By considering the quantum-mechanically minimum allowable energy interval, we exactly count number of states (NOS) and introduce discrete density of states (DOS) concept for a particle in a box for various dimensions. Expressions for bounded and unbounded continua are analytically recovered from discrete ones. Even though substantial fluctuations prevail in discrete DOS, they're almost completely flattened out after summation or integration operation. It's seen that relative errors of analytical expressions of bounded/unbounded continua rapidly decrease for high NOS values (weak confinement or high energy conditions), while the proposed analytical expressions based on Weyl's conjecture always preserve their lower error characteristic. - Highlights: • Discrete density of states considering minimum energy difference is proposed. • Analytical DOS and NOS formulas based on Weyl conjecture are given. • Discrete DOS and NOS functions are examined for various dimensions. • Relative errors of analytical formulas are much better than the conventional ones.
Energy Technology Data Exchange (ETDEWEB)
Aydin, Alhun; Sisman, Altug, E-mail: sismanal@itu.edu.tr
2016-03-22
By considering the quantum-mechanically minimum allowable energy interval, we exactly count number of states (NOS) and introduce discrete density of states (DOS) concept for a particle in a box for various dimensions. Expressions for bounded and unbounded continua are analytically recovered from discrete ones. Even though substantial fluctuations prevail in discrete DOS, they're almost completely flattened out after summation or integration operation. It's seen that relative errors of analytical expressions of bounded/unbounded continua rapidly decrease for high NOS values (weak confinement or high energy conditions), while the proposed analytical expressions based on Weyl's conjecture always preserve their lower error characteristic. - Highlights: • Discrete density of states considering minimum energy difference is proposed. • Analytical DOS and NOS formulas based on Weyl conjecture are given. • Discrete DOS and NOS functions are examined for various dimensions. • Relative errors of analytical formulas are much better than the conventional ones.
Okuyama, Yoshifumi
2014-01-01
Discrete Control Systems establishes a basis for the analysis and design of discretized/quantized control systemsfor continuous physical systems. Beginning with the necessary mathematical foundations and system-model descriptions, the text moves on to derive a robust stability condition. To keep a practical perspective on the uncertain physical systems considered, most of the methods treated are carried out in the frequency domain. As part of the design procedure, modified Nyquist–Hall and Nichols diagrams are presented and discretized proportional–integral–derivative control schemes are reconsidered. Schemes for model-reference feedback and discrete-type observers are proposed. Although single-loop feedback systems form the core of the text, some consideration is given to multiple loops and nonlinearities. The robust control performance and stability of interval systems (with multiple uncertainties) are outlined. Finally, the monograph describes the relationship between feedback-control and discrete ev...
Discrete repulsive oscillator wavefunctions
International Nuclear Information System (INIS)
Munoz, Carlos A; Rueda-Paz, Juvenal; Wolf, Kurt Bernardo
2009-01-01
For the study of infinite discrete systems on phase space, the three-dimensional Lorentz algebra and group, so(2,1) and SO(2,1), provide a discrete model of the repulsive oscillator. Its eigenfunctions are found in the principal irreducible representation series, where the compact generator-that we identify with the position operator-has the infinite discrete spectrum of the integers Z, while the spectrum of energies is a double continuum. The right- and left-moving wavefunctions are given by hypergeometric functions that form a Dirac basis for l 2 (Z). Under contraction, the discrete system limits to the well-known quantum repulsive oscillator. Numerical computations of finite approximations raise further questions on the use of Dirac bases for infinite discrete systems.
Energy Technology Data Exchange (ETDEWEB)
Morris, J; Johnson, S
2007-12-03
The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.
Suppachoknirun, Theerapat; Tutuncu, Azra N.
2017-12-01
With increasing production from shale gas and tight oil reservoirs, horizontal drilling and multistage hydraulic fracturing processes have become a routine procedure in unconventional field development efforts. Natural fractures play a critical role in hydraulic fracture growth, subsequently affecting stimulated reservoir volume and the production efficiency. Moreover, the existing fractures can also contribute to the pressure-dependent fluid leak-off during the operations. Hence, a reliable identification of the discrete fracture network covering the zone of interest prior to the hydraulic fracturing design needs to be incorporated into the hydraulic fracturing and reservoir simulations for realistic representation of the in situ reservoir conditions. In this research study, an integrated 3-D fracture and fluid flow model have been developed using a new approach to simulate the fluid flow and deliver reliable production forecasting in naturally fractured and hydraulically stimulated tight reservoirs. The model was created with three key modules. A complex 3-D discrete fracture network model introduces realistic natural fracture geometry with the associated fractured reservoir characteristics. A hydraulic fracturing model is created utilizing the discrete fracture network for simulation of the hydraulic fracture and flow in the complex discrete fracture network. Finally, a reservoir model with the production grid system is used allowing the user to efficiently perform the fluid flow simulation in tight formations with complex fracture networks. The complex discrete natural fracture model, the integrated discrete fracture model for the hydraulic fracturing, the fluid flow model, and the input dataset have been validated against microseismic fracture mapping and commingled production data obtained from a well pad with three horizontal production wells located in the Eagle Ford oil window in south Texas. Two other fracturing geometries were also evaluated to optimize
International Nuclear Information System (INIS)
Eichler, B.
1996-01-01
Thermochemical relationships are derived describing the gas adsorption chromatographic transport of carrier-free radionuclides. Especially, complex adsorption processes such as dissociative, associative and substitutive adsorption are dealt with. The comparison of experimental with calculated data allows the determination of the type of adsorption reaction, which is the basis of the respective gas chromatographic process. The behaviour of carrier-free radionuclides of elements Pu, Ce, Ru, Co and Cr in thermochromatographic experiments with chlorinating carrier gases can be described as dissociative adsorption of chlorides in higher oxidation states. The gas adsorption chromatographic transport of Zr with oxygen and chlorine containing carrier gas is shown to be a substitutive adsorption process. The consequences of superimposed chemical reactions on the interpretation of results and the conception of gas adsorption chromatographic experiments with carrier-free radionuclides in isothermal columns and in temperature gradient tubes is discussed. (orig.)
Dubrez, B; Baehni, P; Cimasoni, G
1996-06-01
A 17-year-old male patient with localized juvenile periodontitis was treated by subgingival instrumentation with full thickness flap on the lower molars, combined with a 3-week course of systemic tetracycline, and a programme of supervised oral hygiene. The treatment was rapidly followed by dramatic clinical and microbiological improvement. However, despite good oral hygiene, gingival inflammation recurred at regular intervals. It was necessary to maintain the clinical results by periodic subgingival instrumentation with an ultrasonic scaler. Healing of alveolar bone was monitored in the lower 1st molar regions over 3 years by using superimposable radiographs. Quantitative analysis of bone density performed with a high-resolution digitalisation technique showed a considerable improvement 1 year after therapy. However, continuous remodelling, probably related to variations in inflammation, occurred during the 3 postoperative years.
International Nuclear Information System (INIS)
Hall, S.H.
1990-02-01
Leakage from a liquid waste storage and solar evaporation basin at the Hanford Site in southeastern Washington State has resulted in a ground-water contaminant plume characterized by nitrate, hexavalent chromium, uranium, and technetium-99. The plume is superimposed on a larger, pre-existing plume extending from upgradient sites and having the same suite of contaminants. However, the relative abundance of contaminant species is quite different for each plume source. Thus, characteristic concentration ratios, rather than concentrations of individual species, are used as geochemical tracers, with emphasis on graphical analysis. Accordingly, it has been possible to resolve the boundaries of the smaller plume and to estimate the contribution of each plume to the observed contamination downgradient from the storage basin. 11 refs., 7 figs
Application of Semantic Tagging to Generate Superimposed Information on a Digital Encyclopedia
Garrido, Piedad; Tramullas, Jesus; Martinez, Francisco J.
We can find in the literature several works regarding the automatic or semi-automatic processing of textual documents with historic information using free software technologies. However, more research work is needed to integrate the analysis of the context and provide coverage to the peculiarities of the Spanish language from a semantic point of view. This research work proposes a novel knowledge-based strategy based on combining subject-centric computing, a topic-oriented approach, and superimposed information. It subsequent combination with artificial intelligence techniques led to an automatic analysis after implementing a made-to-measure interpreted algorithm which, in turn, produced a good number of associations and events with 90% reliability.
The theoretical shear strength of fcc crystals under superimposed triaxial stress
Energy Technology Data Exchange (ETDEWEB)
Cerny, M., E-mail: cerny.m@fme.vutbr.cz [Institute of Engineering Physics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, CZ-616 69 Brno (Czech Republic); Pokluda, J. [Institute of Engineering Physics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, CZ-616 69 Brno (Czech Republic)
2010-05-15
The influence of a triaxial stress applied normally to shear planes and shear direction during affine shear deformation of face-centered cubic crystals on the theoretical shear strength is studied for the <112-bar >{l_brace}111{r_brace} shear system using first-principles methods. The applied relaxation procedure guarantees that the modeled system is subjected to a superposition of shear, normal and in-plane stresses with individually adjustable in-plane and normal stress values. The theoretical shear strengths of individual elements prove to be qualitatively different functions of the superimposed stresses. In the special case of hydrostatic loading, however, these functions are qualitatively uniform. This behavior is discussed in terms of the electronic structure.
Monte Carlo, hypothesis-tests for rare events superimposed on a background
International Nuclear Information System (INIS)
Avignone, F.T. III; Miley, H.S.; Padgett, W.J.; Weier, D.W.
1985-01-01
We describe two techniques to search for small numbers of counts under a peak of known shape and superimposed on a background with statistical fluctuations. Many comparisons of a single experimental spectrum with computer simulations of the peak and background are made. From these we calculate the probability that y hypothesized counts in the peaks of the simulations, will result in a number larger than that observed in a given energy interval (bin) in the experimental spectrum. This is done for many values of the hypothesized number y. One procedure is very similar to testing a statistical hypothesis and can be analytically applied. Another is presented which is related to pattern recognition techniques and is less sensitive to the uncertainty in the mean. Sample applications to double beta decay data are presented. (orig.)
Numerical Simulation of the Propagation of Hydraulic and Natural Fracture Using Dijkstra’s Algorithm
Directory of Open Access Journals (Sweden)
Yanfang Wu
2016-07-01
Full Text Available Utilization of hydraulic-fracturing technology is dramatically increasing in exploitation of natural gas extraction. However the prediction of the configuration of propagated hydraulic fracture is extremely challenging. This paper presents a numerical method of obtaining the configuration of the propagated hydraulic fracture into discrete natural fracture network system. The method is developed on the basis of weighted fracture which is derived in combination of Dijkstra’s algorithm energy theory and vector method. Numerical results along with experimental data demonstrated that proposed method is capable of predicting the propagated hydraulic fracture configuration reasonably with high computation efficiency. Sensitivity analysis reveals a number of interesting observation results: the shortest path weight value decreases with increasing of fracture density and length, and increases with increasing of the angle between fractures to the maximum principal stress direction. Our method is helpful for evaluating the complexity of the discrete fracture network, to obtain the extension direction of the fracture.
International Nuclear Information System (INIS)
Ijiri, Yuji; Sawada, Atsushi; Uchida, Masahiro; Ishiguro, Katsuhiko; Umeki, Hiroyuki; Sakamoto, Kazuhiko; Ohnishi, Yuzo
2001-01-01
It is important to take into account scale effects on fracture geometry if the modeling scale is much larger than the in-situ observation scale. The scale effect on fracture trace length, which is the most scale dependent parameter, is investigated using fracture maps obtained at various scales in tunnel and dam sites. We found that the distribution of fracture trace length follows negative power law distribution in regardless of locations and rock types. The hydraulic characteristics of fractured rock is also investigated by numerical analysis of discrete fracture network (DFN) model where power law distribution of fracture radius is adopted. We found that as the exponent of power law distribution become larger, the hydraulic conductivity of DFN model increases and the travel time in DFN model decreases. (author)
Energy Technology Data Exchange (ETDEWEB)
Marcondes, Francisco [Federal University of Ceara, Fortaleza (Brazil). Dept. of Metallurgical Engineering and Material Science], e-mail: marcondes@ufc.br; Varavei, Abdoljalil; Sepehrnoori, Kamy [The University of Texas at Austin (United States). Petroleum and Geosystems Engineering Dept.], e-mails: varavei@mail.utexas.edu, kamys@mail.utexas.edu
2010-07-01
An element-based finite-volume approach in conjunction with unstructured grids for naturally fractured compositional reservoir simulation is presented. In this approach, both the discrete fracture and the matrix mass balances are taken into account without any additional models to couple the matrix and discrete fractures. The mesh, for two dimensional domains, can be built of triangles, quadrilaterals, or a mix of these elements. However, due to the available mesh generator to handle both matrix and discrete fractures, only results using triangular elements will be presented. The discrete fractures are located along the edges of each element. To obtain the approximated matrix equation, each element is divided into three sub-elements and then the mass balance equations for each component are integrated along each interface of the sub-elements. The finite-volume conservation equations are assembled from the contribution of all the elements that share a vertex, creating a cell vertex approach. The discrete fracture equations are discretized only along the edges of each element and then summed up with the matrix equations in order to obtain a conservative equation for both matrix and discrete fractures. In order to mimic real field simulations, the capillary pressure is included in both matrix and discrete fracture media. In the implemented model, the saturation field in the matrix and discrete fractures can be different, but the potential of each phase in the matrix and discrete fracture interface needs to be the same. The results for several naturally fractured reservoirs are presented to demonstrate the applicability of the method. (author)
Seismic Characterizations of Fractures: Dynamic Diagnostics
Pyrak-Nolte, L. J.
2017-12-01
Fracture geometry controls fluid flow in a fracture, affects mechanical stability and influences energy partitioning that affects wave scattering. Our ability to detect and monitor fracture evolution is controlled by the frequency of the signal used to probe a fracture system, i.e. frequency selects the scales. No matter the frequency chosen, some set of discontinuities will be optimal for detection because different wavelengths sample different subsets of fractures. The select subset of fractures is based on the stiffness of the fractures which in turn is linked to fluid flow. A goal is obtaining information from scales outside the optimal detection regime. Fracture geometry trajectories are a potential approach to drive a fracture system across observation scales, i.e. moving systems between effective medium and scattering regimes. Dynamic trajectories (such as perturbing stress, fluid pressure, chemical alteration, etc.) can be used to perturb fracture geometry to enhance scattering or give rise to discrete modes that are intimately related to the micro-structural evolution of a fracture. However, identification of these signal features will require methods for identifying these micro-structural signatures in complicated scattered fields. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022).
Pickrell, Brent B; Serebrakian, Arman T; Maricevich, Renata S
2017-05-01
Mandible fractures account for a significant portion of maxillofacial injuries and the evaluation, diagnosis, and management of these fractures remain challenging despite improved imaging technology and fixation techniques. Understanding appropriate surgical management can prevent complications such as malocclusion, pain, and revision procedures. Depending on the type and location of the fractures, various open and closed surgical reduction techniques can be utilized. In this article, the authors review the diagnostic evaluation, treatment options, and common complications of mandible fractures. Special considerations are described for pediatric and atrophic mandibles.
Ductile fracture theories for pressurised pipes and containers
Erdogan, F.
1976-01-01
Two mechanisms of fracture are distinguished. Plane strain fractures occur in materials which do not undergo large-scale plastic deformations prior to and during a possible fracture deformation. Plane stress or high energy fractures are generally accompanied by large inelastic deformations. Theories for analyzing plane stress are based on the concepts of critical crack opening stretch, K(R) characterization, J-integral, and plastic instability. This last is considered in some detail. The ductile fracture process involves fracture initiation followed by a stable crack growth and the onset of unstable fracture propagation. The ductile fracture propagation process may be characterized by either a multiparameter (discrete) model, or some type of a resistance curve which may be considered as a continuous model expressed graphically. These models are studied and an alternative model is also proposed for ductile fractures which cannot be modeled as progressive crack growth phenomena.
Computed tomographic evaluation of comminuted middle phalangeal fractures in the horse
International Nuclear Information System (INIS)
Rose, P.L.; Seeherman, H.; O'Callaghan, M.
1997-01-01
Comminuted fractures of the middle phalanx have been well described in the horse. Choice of treatment, surgical planning and prognosis have traditionally been based upon evaluation of radiographs. However, the complex nature of comminuted fractures makes radiographic interpretation difficult. Computed tomography (CT) allows the production of cross-sectional images with spatial separation of structures which are superimposed on survey radiographs. This allows accurate assessment of the number and direction of fracture lines within the bone. In this paper we report the use of CT in the evaluation of 6 comminuted middle phalangeal fractures. Computed tomography is potentially useful in deciding the type of treatment, surgical planning and determining the prognosis
Izadi, F A; Bagirov, G
2009-01-01
With its origins stretching back several centuries, discrete calculus is now an increasingly central methodology for many problems related to discrete systems and algorithms. The topics covered here usually arise in many branches of science and technology, especially in discrete mathematics, numerical analysis, statistics and probability theory as well as in electrical engineering, but our viewpoint here is that these topics belong to a much more general realm of mathematics; namely calculus and differential equations because of the remarkable analogy of the subject to this branch of mathemati
Ghosh, Rajarshi; Gopalkrishnan, Kulandaswamy
2018-06-01
The aim of this study is to retrospectively analyze the incidence of facial fractures along with age, gender predilection, etiology, commonest site, associated dental injuries, and any complications of patients operated in Craniofacial Unit of SDM College of Dental Sciences and Hospital. This retrospective study was conducted at the Department of OMFS, SDM College of Dental Sciences, Dharwad from January 2003 to December 2013. Data were recorded for the cause of injury, age and gender distribution, frequency and type of injury, localization and frequency of soft tissue injuries, dentoalveolar trauma, facial bone fractures, complications, concomitant injuries, and different treatment protocols.All the data were analyzed using statistical analysis that is chi-squared test. A total of 1146 patients reported at our unit with facial fractures during these 10 years. Males accounted for a higher frequency of facial fractures (88.8%). Mandible was the commonest bone to be fractured among all the facial bones (71.2%). Maxillary central incisors were the most common teeth to be injured (33.8%) and avulsion was the most common type of injury (44.6%). Commonest postoperative complication was plate infection (11%) leading to plate removal. Other injuries associated with facial fractures were rib fractures, head injuries, upper and lower limb fractures, etc., among these rib fractures were seen most frequently (21.6%). This study was performed to compare the different etiologic factors leading to diverse facial fracture patterns. By statistical analysis of this record the authors come to know about the relationship of facial fractures with gender, age, associated comorbidities, etc.
DEFF Research Database (Denmark)
Choi, Ui-Min; Ma, Ke; Blaabjerg, Frede
2018-01-01
In this paper, the lifetime prediction of power device modules based on the linear damage accumulation is studied in conjunction with simple mission profiles of converters. Superimposed power cycling conditions, which are called simple mission profiles in this paper, are made based on a lifetime ...... prediction of IGBT modules under power converter applications.......In this paper, the lifetime prediction of power device modules based on the linear damage accumulation is studied in conjunction with simple mission profiles of converters. Superimposed power cycling conditions, which are called simple mission profiles in this paper, are made based on a lifetime...... model in respect to junction temperature swing duration. This model has been built based on 39 power cycling test results of 600-V 30-A three-phase-molded IGBT modules. Six tests are performed under three superimposed power cycling conditions using an advanced power cycling test setup. The experimental...
Directory of Open Access Journals (Sweden)
Dogra A
1995-04-01
Full Text Available An extremely rare case of combined transverse and vertical fracture of sacrum with neurological deficit is reported here with a six month follow-up. The patient also had an L1 compression fracture. The patient has recovered significantly with conservative management.
Finite Discrete Gabor Analysis
DEFF Research Database (Denmark)
Søndergaard, Peter Lempel
2007-01-01
frequency bands at certain times. Gabor theory can be formulated for both functions on the real line and for discrete signals of finite length. The two theories are largely the same because many aspects come from the same underlying theory of locally compact Abelian groups. The two types of Gabor systems...... can also be related by sampling and periodization. This thesis extends on this theory by showing new results for window construction. It also provides a discussion of the problems associated to discrete Gabor bases. The sampling and periodization connection is handy because it allows Gabor systems...... on the real line to be well approximated by finite and discrete Gabor frames. This method of approximation is especially attractive because efficient numerical methods exists for doing computations with finite, discrete Gabor systems. This thesis presents new algorithms for the efficient computation of finite...
Adaptive Discrete Hypergraph Matching.
Yan, Junchi; Li, Changsheng; Li, Yin; Cao, Guitao
2018-02-01
This paper addresses the problem of hypergraph matching using higher-order affinity information. We propose a solver that iteratively updates the solution in the discrete domain by linear assignment approximation. The proposed method is guaranteed to converge to a stationary discrete solution and avoids the annealing procedure and ad-hoc post binarization step that are required in several previous methods. Specifically, we start with a simple iterative discrete gradient assignment solver. This solver can be trapped in an -circle sequence under moderate conditions, where is the order of the graph matching problem. We then devise an adaptive relaxation mechanism to jump out this degenerating case and show that the resulting new path will converge to a fixed solution in the discrete domain. The proposed method is tested on both synthetic and real-world benchmarks. The experimental results corroborate the efficacy of our method.
Goodrich, Christopher
2015-01-01
This text provides the first comprehensive treatment of the discrete fractional calculus. Experienced researchers will find the text useful as a reference for discrete fractional calculus and topics of current interest. Students who are interested in learning about discrete fractional calculus will find this text to provide a useful starting point. Several exercises are offered at the end of each chapter and select answers have been provided at the end of the book. The presentation of the content is designed to give ample flexibility for potential use in a myriad of courses and for independent study. The novel approach taken by the authors includes a simultaneous treatment of the fractional- and integer-order difference calculus (on a variety of time scales, including both the usual forward and backwards difference operators). The reader will acquire a solid foundation in the classical topics of the discrete calculus while being introduced to exciting recent developments, bringing them to the frontiers of the...
International Nuclear Information System (INIS)
Williams, Ruth M
2006-01-01
A review is given of a number of approaches to discrete quantum gravity, with a restriction to those likely to be relevant in four dimensions. This paper is dedicated to Rafael Sorkin on the occasion of his sixtieth birthday
Zehnder, Alan T
2012-01-01
Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge. Alan Zehnder joined the faculty at Cornell University in 1988. Since then he has served in a number of leadership roles including Chair of the Department of Theoretical and Applied Mechanics, and Director of the Sibley School of Mechanical and Aerospace Engineering. He teaches applied mechanics and his research t...
Discrete computational structures
Korfhage, Robert R
1974-01-01
Discrete Computational Structures describes discrete mathematical concepts that are important to computing, covering necessary mathematical fundamentals, computer representation of sets, graph theory, storage minimization, and bandwidth. The book also explains conceptual framework (Gorn trees, searching, subroutines) and directed graphs (flowcharts, critical paths, information network). The text discusses algebra particularly as it applies to concentrates on semigroups, groups, lattices, propositional calculus, including a new tabular method of Boolean function minimization. The text emphasize
Directory of Open Access Journals (Sweden)
Rubén Graffe
2010-01-01
Full Text Available Este trabajo describe la formulación, implementación y aplicación de un modelo discreto de fisura cohesiva el cual permite simular el proceso de fractura en modo I de vigas de concreto simple cuya trayectoria de fisuración está definida. En el proceso de fractura se establece una relación entre el esfuerzo normal de cohesión y la apertura de una fisura, donde el material ubicado fuera de la zona de fractura conserva un comportamiento elástico lineal en carga o descarga, mientras que el material en el interior de la zona de fractura tiene un comportamiento inelástico con ablandamiento por deformación. En la malla se ubican parejas de nudos en la misma posición espacial sobre la trayectoria de la fisura, las cuales desligan a los elementos bidimensionales contiguos. Estos nudos duplicados están conectados entre sí por resortes elasto - plásticos que representan el proceso de fractura. Se simulan numéricamente tres vigas de concreto de diferentes dimensiones que soportan una carga en el centro de la luz. Cada simulación es un análisis no lineal estático con elementos finitos en condición plana de esfuerzos, considerando deformaciones infinitesimales y aplicando un desplazamiento vertical incremental sobre la cara superior de la mitad de la luz de la viga. Se obtuvieron resultados satisfactorios de la respuesta estructural de las vigas, en comparación con los ensayos experimentales y modelaciones numéricas desarrolladas por otros autores.This work describes the formulation, implementation and application of a cohesive crack discrete model, which can simulate the fracture process in mode I of simple concrete beams with defined cracking pattern. In the fracture process, a relationship between the cohesive normal stress and crack opening is established, where the material outside the fracture zone has a lineal elastic behavior in loading and unloading, whereas the material inside the fracture zone has an inelastic behavior with
Optical superimposed vortex beams generated by integrated holographic plates with blazed grating
Zhang, Xue-Dong; Su, Ya-Hui; Ni, Jin-Cheng; Wang, Zhong-Yu; Wang, Yu-Long; Wang, Chao-Wei; Ren, Fei-Fei; Zhang, Zhen; Fan, Hua; Zhang, Wei-Jie; Li, Guo-Qiang; Hu, Yan-Lei; Li, Jia-Wen; Wu, Dong; Chu, Jia-Ru
2017-08-01
In this paper, we demonstrate that the superposition of two vortex beams with controlled topological charges can be realized by integrating two holographic plates with blazed grating. First, the holographic plate with blazed grating was designed and fabricated by laser direct writing for generating well-separated vortex beam. Then, the relationship between the periods of blazed grating and the discrete angles of vortex beams was systemically investigated. Finally, through setting the discrete angle and different revolving direction of the holographic plates, the composite fork-shaped field was realized by the superposition of two vortex beams in a particular position. The topological charges of composite fork-shaped field (l = 1, 0, 3, and 4) depend on the topological charges of compositional vortex beams, which are well agreed with the theoretical simulation. The method opens up a wide range of opportunities and possibilities for applying in optical communication, optical manipulations, and photonic integrated circuits.
Dataset of red light induced pupil constriction superimposed on post-illumination pupil response
Directory of Open Access Journals (Sweden)
Shaobo Lei
2016-09-01
Full Text Available We collected and analyzed pupil diameter data from of 7 visually normal participants to compare the maximum pupil constriction (MPC induced by “Red Only” vs. “Blue+Red” visual stimulation conditions.The “Red Only” condition consisted of red light (640±10 nm stimuli of variable intensity and duration presented to dark-adapted eyes with pupils at resting state. This condition stimulates the cone-driven activity of the intrinsically photosensitive retinal ganglion cells (ipRGC. The “Blue+Red” condition consisted of the same red light stimulus presented during ongoing blue (470±17 nm light-induced post-illumination pupil response (PIPR, representing the cone-driven ipRGC activity superimposed on the melanopsin-driven intrinsic activity of the ipRGCs (“The Absence of Attenuating Effect of Red light Exposure on Pre-existing Melanopsin-Driven Post-illumination Pupil Response” Lei et al. (2016 [1].MPC induced by the “Red Only” condition was compared with the MPC induced by the “Blue+Red” condition by multiple paired sample t-tests with Bonferroni correction. Keywords: Pupil light reflex, Chromatic pupillometry, Melanopsin, Post-illumination pupil response
Superimposed noninterfering probes to extend the capabilities of phase Doppler anemometry.
Onofri, Fabrice; Lenoble, Anne; Radev, Stefan
2002-06-20
We propose using multiple superimposed noninterfering probes (SNIPs) of the same wavelength but different beam angles to extend the capabilities of phase Doppler anemometry. When a particle is moving in a SNIP the Doppler signals that are produced exhibit multiple Doppler frequencies and phase shifts. The resolution of the measurements of particle size (i.e., by fringe spacing and Doppler frequency) increases with beam angle. Then, with the solution proposed, even with only two detectors several measurements of size can be obtained for the same particle with increasing resolution if we consider higher frequencies in the signal. Several optical solutions to produce SNIPs as well as a signal-processing algorithm to treat the multiple-frequency Doppler signals are proposed. Experimental validations of the sizing of spherical and cylindrical particles demonstrate the applicability of this technique for particle measurement. We believe that this new technique can be of great interest when high resolution of size, velocity, and even refractive index is required.
Directory of Open Access Journals (Sweden)
E. Romero-Aguirre
2012-01-01
Full Text Available In this paper, a configurable superimposed training (ST/data-dependent ST (DDST transmitter and architecture based on array processors (APs for DDST channel estimation are presented. Both architectures, designed under full-hardware paradigm, were described using Verilog HDL, targeted in Xilinx Virtex-5 and they were compared with existent approaches. The synthesis results showed a FPGA slice consumption of 1% for the transmitter and 3% for the estimator with 160 and 115 MHz operating frequencies, respectively. The signal-to-quantization-noise ratio (SQNR performance of the transmitter is about 82 dB to support 4/16/64-QAM modulation. A Monte Carlo simulation demonstrates that the mean square error (MSE of the channel estimator implemented in hardware is practically the same as the one obtained with the floating-point golden model. The high performance and reduced hardware of the proposed architectures lead to the conclusion that the DDST concept can be applied in current communications standards.
Optimal Superimposed Training Sequences for Channel Estimation in MIMO-OFDM Systems
Directory of Open Access Journals (Sweden)
Ratnam V. Raja Kumar
2010-01-01
Full Text Available In this work an iterative time domain Least Squares (LS based channel estimation method using superimposed training (ST for a Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM system over time varying frequency selective fading channels is proposed. The performance of the channel estimator is analyzed in terms of the Mean Square Estimation Error (MSEE and its impact on the uncoded Bit Error Rate (BER of the MIMO-OFDM system is studied. A new selection criterion for the training sequences that jointly optimizes the MSEE and the BER of the OFDM system is proposed. Chirp based sequences are proposed and shown to satisfy the same. These are compared with the other sequences proposed in the literature and are found to yield a superior performance. The sequences, one for each transmitting antenna, offers fairness through providing equal interference in all the data carriers unlike earlier proposals. The effectiveness of the mathematical analysis presented is demonstrated through a comparison with the simulation studies. Experimental studies are carried out to study and validate the improved performance of the proposed scheme. The scheme is applied to the IEEE 802.16e OFDM standard and a case is made with the required design of the sequence.
Norte, Grant E; Frye, Jamie L; Hart, Joseph M
2015-11-01
The superimposed-burst (SIB) technique is commonly used to quantify central activation failure after knee-joint injury, but its reliability has not been established in pathologic cohorts. To assess within-session and between-sessions reliability of the SIB technique in patients with patellofemoral pain. Descriptive laboratory study. University laboratory. A total of 10 patients with self-reported patellofemoral pain (1 man, 9 women; age = 24.1 ± 3.8 years, height = 167.8 ± 15.2 cm, mass = 71.6 ± 17.5 kg) and 10 healthy control participants (3 men, 7 women; age = 27.4 ± 5.0 years, height = 173.5 ± 9.9 cm, mass = 78.2 ± 16.5 kg) volunteered. Participants were assessed at 6 intervals spanning 21 days. Intraclass correlation coefficients (ICCs [3,3]) were used to assess reliability. Quadriceps central activation ratio, knee-extension maximal voluntary isometric contraction force, and SIB force. The quadriceps central activation ratio was highly reliable within session (ICC [3,3] = 0.97) and between sessions through day 21 (ICC [3,3] = 0.90-0.95). Acceptable reliability of knee extension (ICC [3,3] = 0.75-0.91) and SIB force (ICC [3,3] = 0.77-0.89) was observed through day 21. The SIB technique was reliable for clinical research up to 21 days in patients with patellofemoral pain.
RF-superimposed DC and pulsed DC sputtering for deposition of transparent conductive oxides
International Nuclear Information System (INIS)
Stowell, Michael; Mueller, Joachim; Ruske, Manfred; Lutz, Mark; Linz, Thomas
2007-01-01
Transparent conductive oxide films are widely used materials for electronic applications such as flat panel displays and solar cells. The superposition of DC and pulsed DC power by a certain fraction of RF power was applied to deposit indium tin oxide films. This technique allows an additional tuning of different parameters relevant to film growth, and yields high quality films even under kinetically limited conditions. A long-term stable RF/DC process could be realized by using different combinations of standard power supply components, which includes a fully reliable arc handling system for both the RF and DC generators. The effectiveness of the arc handling system is illustrated by the current and voltage behavior recorded for actual arcing events. The resistivity of indium tin oxide films is strongly influenced by the respective sputtering mode. The best resistivity values of 145-148 μΩ cm were obtained by RF-superimposed pulsed DC sputtering at a pulse frequency between 100 and 200 kHz and a substrate temperature as low as 140 deg. C. In addition, the films were extremely smooth with a surface roughness of 1-2.5 nm
Homogenization of discrete media
Energy Technology Data Exchange (ETDEWEB)
Pradel, F.; Sab, K. [CERAM-ENPC, Marne-la-Vallee (France)
1998-11-01
Material such as granular media, beam assembly are easily seen as discrete media. They look like geometrical points linked together thanks to energetic expressions. Our purpose is to extend discrete kinematics to the one of an equivalent continuous material. First we explain how we build the localisation tool for periodic materials according to estimated continuum medium type (classical Cauchy, and Cosserat media). Once the bridge built between discrete and continuum media, we exhibit its application over two bidimensional beam assembly structures : the honey comb and a structural reinforced variation. The new behavior is then applied for the simple plan shear problem in a Cosserat continuum and compared with the real discrete solution. By the mean of this example, we establish the agreement of our new model with real structures. The exposed method has a longer range than mechanics and can be applied to every discrete problems like electromagnetism in which relationship between geometrical points can be summed up by an energetic function. (orig.) 7 refs.
Yan, K.; Yamamoto, T.; Kanazawa, S.; Ohkubo, T.; Nomoto, Y.; Chang, Jen-Shih
2001-01-01
In this paper, the effects of the applied voltage modes on the positive corona discharge morphology and NO removal characteristics from air streams are experimentally investigated. By using a DC superimposed high frequency AC power supply (10-60 kHz), a uniform streamer corona can be generated,
Energy Technology Data Exchange (ETDEWEB)
Pflueger, J.; Nikitina, Y.M. [DESY/HASYLAB, Hamburg (Germany)
1995-12-31
For the VUV-FEL at the TESLA Test Facility an undulator with a total length of 30 m is needed. In this study three different approaches to realize an undulator with a sinusoidal plus a superimposed quadrupolar field were studied with the 3D code MAFIA.
International Nuclear Information System (INIS)
Mouthier, B.
1988-01-01
Two superimposed early hydrothermal alterations have been recognized in the Proterozoic Saraya leucogranite. Successively are described a major dequartzification leading to an episyenite infilled with carbonaceous matter and sulfate during an interruption of the system, succeeded by a mobilization of U and other elements during an albitization. A dolomite filling up followed by a silicopotassic feed-back alteration, close down the system [fr
Perez, Nestor
2017-01-01
The second edition of this textbook includes a refined presentation of concepts in each chapter, additional examples; new problems and sections, such as conformal mapping and mechanical behavior of wood; while retaining all the features of the original book. The material included in this book is based upon the development of analytical and numerical procedures pertinent to particular fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-mode-loading interaction. The mathematical approach undertaken herein is coupled with a brief review of several fracture theories available in cited references, along with many color images and figures. Dynamic fracture mechanics is included through the field of fatigue and Charpy impact testing. Explains computational and engineering approaches for solving crack-related problems using straightforward mathematics that facilitate comprehension of the physical meaning of crack growth processes; Expands computational understandin...
International Nuclear Information System (INIS)
Ueng, Tzoushin; Towse, D.
1991-01-01
Fractures are not only the weak planes of a rock mass, but also the easy passages for the fluid flow. Their spacing, orientation, and aperture will affect the deformability, strength, heat transmittal, and fluid transporting properties of the rock mass. To understand the thermomechanical and hydrological behaviors of the rock surrounding the heater emplacement borehole, the location, orientation, and aperture of the fractures of the rock mass should be known. Borehole television and borescope surveys were performed to map the location, orientation, and aperture of the fractures intersecting the boreholes drilled in the Prototype Engineered Barrier System Field Tests (PEBSFT) at G-Tunnel. Core logging was also performed during drilling. However, because the core was not oriented and the depth of the fracture cannot be accurately determined, the results of the core logging were only used as reference and will not be discussed here
Ricketts, Sophie; Gill, Hameet S; Fialkov, Jeffery A; Matic, Damir B; Antonyshyn, Oleh M
2016-02-01
After reading this article, the participant should be able to: 1. Demonstrate an understanding of some of the changes in aspects of facial fracture management. 2. Assess a patient presenting with facial fractures. 3. Understand indications and timing of surgery. 4. Recognize exposures of the craniomaxillofacial skeleton. 5. Identify methods for repair of typical facial fracture patterns. 6. Discuss the common complications seen with facial fractures. Restoration of the facial skeleton and associated soft tissues after trauma involves accurate clinical and radiologic assessment to effectively plan a management approach for these injuries. When surgical intervention is necessary, timing, exposure, sequencing, and execution of repair are all integral to achieving the best long-term outcomes for these patients.
International Nuclear Information System (INIS)
Fleege, M.A.; Jebson, P.J.; Renfrew, D.L.; El-Khoury, G.Y.; Steyers, C.M. Jr.
1991-01-01
Fractures of the pisiform are often missed due to improper radiographic evaluation and a tendency to focus on other, more obvious injuries. Delayed diagnosis may result in disabling sequelae. A high index of clinical suspicion and appropriate radiographic examination will establish the correct diagnosis. Ten patients with pisiform fracture are presented. The anatomy, mechanism of injury, clinical presentation, radiographic features, and evaluation of this injury are discussed. (orig.)
International Nuclear Information System (INIS)
Berquist, T.H.; Cooper, K.L.; Pritchard, D.J.
1985-01-01
The diagnosis of a stress fracture should be considered in patients presented with pain after a change in activity, especially if the activity is strenuous and the pain is in the lower extremities. Since evidence of the stress fracture may not be apparent for weeks on routine radiographs, proper use of other imaging techniques will allow an earlier diagnosis. Prompt diagnosis is especially important in the femur, where displacement may occur
DISCRETE MATHEMATICS/NUMBER THEORY
Mrs. Manju Devi*
2017-01-01
Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous. In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics such as integers, graphs, and statements do not vary smoothly in this way, but have distinct, separated values. Discrete mathematics therefore excludes topics in "continuous mathematics" such as calculus and analysis. Discrete objects can often be enumerated by ...
Directory of Open Access Journals (Sweden)
Prateek Sharma
2015-04-01
Full Text Available Abstract Simulation can be regarded as the emulation of the behavior of a real-world system over an interval of time. The process of simulation relies upon the generation of the history of a system and then analyzing that history to predict the outcome and improve the working of real systems. Simulations can be of various kinds but the topic of interest here is one of the most important kind of simulation which is Discrete-Event Simulation which models the system as a discrete sequence of events in time. So this paper aims at introducing about Discrete-Event Simulation and analyzing how it is beneficial to the real world systems.
Discrete systems and integrability
Hietarinta, J; Nijhoff, F W
2016-01-01
This first introductory text to discrete integrable systems introduces key notions of integrability from the vantage point of discrete systems, also making connections with the continuous theory where relevant. While treating the material at an elementary level, the book also highlights many recent developments. Topics include: Darboux and Bäcklund transformations; difference equations and special functions; multidimensional consistency of integrable lattice equations; associated linear problems (Lax pairs); connections with Padé approximants and convergence algorithms; singularities and geometry; Hirota's bilinear formalism for lattices; intriguing properties of discrete Painlevé equations; and the novel theory of Lagrangian multiforms. The book builds the material in an organic way, emphasizing interconnections between the various approaches, while the exposition is mostly done through explicit computations on key examples. Written by respected experts in the field, the numerous exercises and the thoroug...
Exarchakis, Georgios; Lücke, Jörg
2017-11-01
Sparse coding algorithms with continuous latent variables have been the subject of a large number of studies. However, discrete latent spaces for sparse coding have been largely ignored. In this work, we study sparse coding with latents described by discrete instead of continuous prior distributions. We consider the general case in which the latents (while being sparse) can take on any value of a finite set of possible values and in which we learn the prior probability of any value from data. This approach can be applied to any data generated by discrete causes, and it can be applied as an approximation of continuous causes. As the prior probabilities are learned, the approach then allows for estimating the prior shape without assuming specific functional forms. To efficiently train the parameters of our probabilistic generative model, we apply a truncated expectation-maximization approach (expectation truncation) that we modify to work with a general discrete prior. We evaluate the performance of the algorithm by applying it to a variety of tasks: (1) we use artificial data to verify that the algorithm can recover the generating parameters from a random initialization, (2) use image patches of natural images and discuss the role of the prior for the extraction of image components, (3) use extracellular recordings of neurons to present a novel method of analysis for spiking neurons that includes an intuitive discretization strategy, and (4) apply the algorithm on the task of encoding audio waveforms of human speech. The diverse set of numerical experiments presented in this letter suggests that discrete sparse coding algorithms can scale efficiently to work with realistic data sets and provide novel statistical quantities to describe the structure of the data.
Introductory discrete mathematics
Balakrishnan, V K
2010-01-01
This concise text offers an introduction to discrete mathematics for undergraduate students in computer science and mathematics. Mathematics educators consider it vital that their students be exposed to a course in discrete methods that introduces them to combinatorial mathematics and to algebraic and logical structures focusing on the interplay between computer science and mathematics. The present volume emphasizes combinatorics, graph theory with applications to some stand network optimization problems, and algorithms to solve these problems.Chapters 0-3 cover fundamental operations involv
Prateek Sharma
2015-01-01
Abstract Simulation can be regarded as the emulation of the behavior of a real-world system over an interval of time. The process of simulation relies upon the generation of the history of a system and then analyzing that history to predict the outcome and improve the working of real systems. Simulations can be of various kinds but the topic of interest here is one of the most important kind of simulation which is Discrete-Event Simulation which models the system as a discrete sequence of ev...
Directory of Open Access Journals (Sweden)
Esther Kim, BS
2018-04-01
Full Text Available History of present illness: A 25-year-old, right-handed male presented to the emergency department with left wrist pain after falling from a skateboard onto an outstretched hand two-weeks prior. He otherwise had no additional concerns, including no complaints of weakness or loss of sensation. On physical exam, there was tenderness to palpation within the anatomical snuff box. The neurovascular exam was intact. Plain films of the left wrist and hand were obtained. Significant findings: The anteroposterior (AP plain film of this patient demonstrates a full thickness fracture through the middle third of the scaphoid (red arrow, with some apparent displacement (yellow lines and subtle angulation of the fracture fragments (blue line. Discussion: The scaphoid bone is the most commonly fractured carpal bone accounting for 70%-80% of carpal fractures.1 Classically, it is sustained following a fall onto an outstretched hand (FOOSH. Patients should be evaluated for tenderness with palpation over the anatomical snuffbox, which has a sensitivity of 100% and specificity of 40%.2 Plain films are the initial diagnostic modality of choice and have a sensitivity of 70%, but are commonly falsely negative in the first two to six weeks of injury (false negative of 20%.3 The Mayo classification organizes scaphoid fractures as involving the proximal, mid, and distal portions of the scaphoid bone with mid-fractures being the most common.3 The proximal scaphoid is highly susceptible to vascular compromise because it depends on retrograde blood flow from the radial artery. Therefore, disruption can lead to serious sequelae including osteonecrosis, arthrosis, and functional impairment. Thus, a low threshold should be maintained for neurovascular evaluation and surgical referral. Patients with non-displaced scaphoid fractures should be placed in a thumb spica splint.3 Patients with even suspected scaphoid fractures should be placed in a thumb spica splint and re
Well test analysis in fractured media
Energy Technology Data Exchange (ETDEWEB)
Karasaki, K.
1986-04-01
In this study the behavior of fracture systems under well test conditions and methods for analyzing well test data from fractured media are investigated. Several analytical models are developed to be used for analyzing well test data from fractured media. Numerical tools that may be used to simulate fluid flow in fractured media are also presented. Three types of composite models for constant flux tests are investigated. Several slug test models with different geometric conditions that may be present in fractured media are also investigated. A finite element model that can simulate transient fluid flow in fracture networks is used to study the behavior of various two-dimensional fracture systems under well test conditions. A mesh generator that can be used to model mass and heat flow in a fractured-porous media is presented. This model develops an explicit solution in the porous matrix as well as in the discrete fractures. Because the model does not require the assumptions of the conventional double porosity approach, it may be used to simulate cases where double porosity models fail.
Sehgel, Nancy L; Sun, Zhe; Hong, Zhongkui; Hunter, William C; Hill, Michael A; Vatner, Dorothy E; Vatner, Stephen F; Meininger, Gerald A
2015-02-01
Hypertension and aging are both recognized to increase aortic stiffness, but their interactions are not completely understood. Most previous studies have attributed increased aortic stiffness to changes in extracellular matrix proteins that alter the mechanical properties of the vascular wall. Alternatively, we hypothesized that a significant component of increased vascular stiffness in hypertension is due to changes in the mechanical and adhesive properties of vascular smooth muscle cells, and that aging would augment the contribution from vascular smooth muscle cells when compared with the extracellular matrix. Accordingly, we studied aortic stiffness in young (16-week-old) and old (64-week-old) spontaneously hypertensive rats and Wistar-Kyoto wild-type controls. Systolic and pulse pressures were significantly increased in young spontaneously hypertensive rats when compared with young Wistar-Kyoto rats, and these continued to rise in old spontaneously hypertensive rats when compared with age-matched controls. Excised aortic ring segments exhibited significantly greater elastic moduli in both young and old spontaneously hypertensive rats versus Wistar-Kyoto rats. were isolated from the thoracic aorta, and stiffness and adhesion to fibronectin were measured by atomic force microscopy. Hypertension increased both vascular smooth muscle cell stiffness and vascular smooth muscle cell adhesion, and these increases were both augmented with aging. By contrast, hypertension did not affect histological measures of aortic collagen and elastin, which were predominantly changed by aging. These findings support the concept that stiffness and adhesive properties of vascular smooth muscle cells are novel mechanisms contributing to the increased aortic stiffness occurring with hypertension superimposed on aging. © 2014 American Heart Association, Inc.
International Nuclear Information System (INIS)
Schinke, B.; Malmberg, T.
1987-01-01
In recent years various containment codes for Fast Breeder Reactor accidents have been assessed by comparison with explosion tests in water-filled vessels (COVA experiments). Common to the various codes, a systematic underestimation of the circumferential vessel strains was found. In the COVA tests high frequency pressure oscillations in the ultrasonic range were observed and thus it has been conjectured that the phenomenon of ''acoustic softening'' might be relevant in explaining the discrepancies in the strains. To validate this conjecture a hydro-pneumatic tensile test apparatus was developed which allows dynamic tensile testing at room temperature with and without superimposed ultrasonic oscillations. The dynamic tensile tests on the COVA sheet material (stainless steel AISI 321) without ultrasonic insonation show a linear dependence of the flow stress on the logarithm of the strain rate. The results at low strain rates (10 -3 s -1 ) agree favourably with previous measurements but at high rates (50 s -1 ) at 20% lower flow stress is observed. The dynamic tensile tests with continuous and intermittent insonation show the phenomenon of ''acoustic softening'': The average flow stress is reduced by an amount of about half the oscillating amplitude. At high strain rates the reduction is less. A severe ''acoustic softening'' observed by several authors for various metals at low strain rates was not observed. The experimental results were compared with the theory of the superpositon mechanism assuming a rate-independent elastic-plastic and an elastic-viscoplastic constitutive model. Although the rate-independent model is capable to predict qualitatively some of the observed effects, a better description is obtained with the viscoplastic model. The conclusion is that the ''acoustic softening'' of the COVA material is far too small to explain the discrepancies between measured and computed strains found in the containment code validation studies. (orig.)
Tymko, Michael M; Rickards, Caroline A; Skow, Rachel J; Ingram-Cotton, Nathan C; Howatt, Michael K; Day, Trevor A
2016-09-01
Steady-state tilt has no effect on cerebrovascular reactivity to increases in the partial pressure of end-tidal carbon dioxide (PETCO2). However, the anterior and posterior cerebral circulations may respond differently to a variety of stimuli that alter central blood volume, including lower body negative pressure (LBNP). Little is known about the superimposed effects of head-up tilt (HUT; decreased central blood volume and intracranial pressure) and head-down tilt (HDT; increased central blood volume and intracranial pressure), and LBNP on cerebral blood flow (CBF) responses. We hypothesized that (a) cerebral blood velocity (CBV; an index of CBF) responses during LBNP would not change with HUT and HDT, and (b) CBV in the anterior cerebral circulation would decrease to a greater extent compared to posterior CBV during LBNP when controlling PETCO2 In 13 male participants, we measured CBV in the anterior (middle cerebral artery, MCAv) and posterior (posterior cerebral artery, PCAv) cerebral circulations using transcranial Doppler ultrasound during LBNP stress (-50 mmHg) in three body positions (45°HUT, supine, 45°HDT). PETCO2 was measured continuously and maintained at constant levels during LBNP through coached breathing. Our main findings were that (a) steady-state tilt had no effect on CBV responses during LBNP in both the MCA (P = 0.077) and PCA (P = 0.583), and (b) despite controlling for PETCO2, both the MCAv and PCAv decreased by the same magnitude during LBNP in HUT (P = 0.348), supine (P = 0.694), and HDT (P = 0.407). Here, we demonstrate that there are no differences in anterior and posterior circulations in response to LBNP in different body positions. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Indian Academy of Sciences (India)
We also describe discrete-time systems in terms of difference ... A more modern alternative, especially for larger systems, is to convert ... In other words, ..... picture?) State-variable equations are also called state-space equations because the ...
Discrete Lorentzian quantum gravity
Loll, R.
2000-01-01
Just as for non-abelian gauge theories at strong coupling, discrete lattice methods are a natural tool in the study of non-perturbative quantum gravity. They have to reflect the fact that the geometric degrees of freedom are dynamical, and that therefore also the lattice theory must be formulated
Sharp, Karen Tobey
This paper cites information received from a number of sources, e.g., mathematics teachers in two-year colleges, publishers, and convention speakers, about the nature of discrete mathematics and about what topics a course in this subject should contain. Note is taken of the book edited by Ralston and Young which discusses the future of college…
International Nuclear Information System (INIS)
LORENZ, JOHN C.; COOPER, SCOTT P.
2001-01-01
Sandstones that overlie or that are interbedded with evaporitic or other ductile strata commonly contain numerous localized domains of fractures, each covering an area of a few square miles. Fractures within the Entrada Sandstone at the Salt Valley Anticline are associated with salt mobility within the underlying Paradox Formation. The fracture relationships observed at Salt Valley (along with examples from Paleozoic strata at the southern edge of the Holbrook basin in northeastern Arizona, and sandstones of the Frontier Formation along the western edge of the Green River basin in southwestern Wyoming), show that although each fracture domain may contain consistently oriented fractures, the orientations and patterns of the fractures vary considerably from domain to domain. Most of the fracture patterns in the brittle sandstones are related to local stresses created by subtle, irregular flexures resulting from mobility of the associated, interbedded ductile strata (halite or shale). Sequential episodes of evaporite dissolution and/or mobility in different directions can result in multiple, superimposed fracture sets in the associated sandstones. Multiple sets of superimposed fractures create reservoir-quality fracture interconnectivity within restricted localities of a formation. However, it is difficult to predict the orientations and characteristics of this type of fracturing in the subsurface. This is primarily because the orientations and characteristics of these fractures typically have little relationship to the regional tectonic stresses that might be used to predict fracture characteristics prior to drilling. Nevertheless, the high probability of numerous, intersecting fractures in such settings attests to the importance of determining fracture orientations in these types of fractured reservoirs
International Nuclear Information System (INIS)
Dershowitz, W; Herbert, A.; Long, J.
1989-03-01
The hydrology of the SCV site will be modelled utilizing discrete fracture flow models. These models are complex, and can not be fully cerified by comparison to analytical solutions. The best approach for verification of these codes is therefore cross-verification between different codes. This is complicated by the variation in assumptions and solution techniques utilized in different codes. Cross-verification procedures are defined which allow comparison of the codes developed by Harwell Laboratory, Lawrence Berkeley Laboratory, and Golder Associates Inc. Six cross-verification datasets are defined for deterministic and stochastic verification of geometric and flow features of the codes. Additional datasets for verification of transport features will be documented in a future report. (13 figs., 7 tabs., 10 refs.) (authors)
Discrete Exterior Calculus Discretization of Incompressible Navier-Stokes Equations
Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi
2017-01-01
A conservative discretization of incompressible Navier-Stokes equations over surface simplicial meshes is developed using discrete exterior calculus (DEC). Numerical experiments for flows over surfaces reveal a second order accuracy
Amir, Sahar Z.
2017-06-09
A Hybrid Embedded Fracture (HEF) model was developed to reduce various computational costs while maintaining physical accuracy (Amir and Sun, 2016). HEF splits the computations into fine scale and coarse scale. Fine scale solves analytically for the matrix-fracture flux exchange parameter. Coarse scale solves for the properties of the entire system. In literature, fractures were assumed to be either vertical or horizontal for simplification (Warren and Root, 1963). Matrix-fracture flux exchange parameter was given few equations built on that assumption (Kazemi, 1968; Lemonnier and Bourbiaux, 2010). However, such simplified cases do not apply directly for actual random fracture shapes, directions, orientations …etc. This paper shows that the HEF fine scale analytic solution (Amir and Sun, 2016) generates the flux exchange parameter found in literature for vertical and horizontal fracture cases. For other fracture cases, the flux exchange parameter changes according to the angle, slop, direction, … etc. This conclusion rises from the analysis of both: the Discrete Fracture Network (DFN) and the HEF schemes. The behavior of both schemes is analyzed with exactly similar fracture conditions and the results are shown and discussed. Then, a generalization is illustrated for any slightly compressible single-phase fluid within fractured porous media and its results are discussed.
Amir, Sahar Z.; Chen, Huangxin; Sun, Shuyu
2017-01-01
A Hybrid Embedded Fracture (HEF) model was developed to reduce various computational costs while maintaining physical accuracy (Amir and Sun, 2016). HEF splits the computations into fine scale and coarse scale. Fine scale solves analytically for the matrix-fracture flux exchange parameter. Coarse scale solves for the properties of the entire system. In literature, fractures were assumed to be either vertical or horizontal for simplification (Warren and Root, 1963). Matrix-fracture flux exchange parameter was given few equations built on that assumption (Kazemi, 1968; Lemonnier and Bourbiaux, 2010). However, such simplified cases do not apply directly for actual random fracture shapes, directions, orientations …etc. This paper shows that the HEF fine scale analytic solution (Amir and Sun, 2016) generates the flux exchange parameter found in literature for vertical and horizontal fracture cases. For other fracture cases, the flux exchange parameter changes according to the angle, slop, direction, … etc. This conclusion rises from the analysis of both: the Discrete Fracture Network (DFN) and the HEF schemes. The behavior of both schemes is analyzed with exactly similar fracture conditions and the results are shown and discussed. Then, a generalization is illustrated for any slightly compressible single-phase fluid within fractured porous media and its results are discussed.
Discrete mKdV and discrete sine-Gordon flows on discrete space curves
International Nuclear Information System (INIS)
Inoguchi, Jun-ichi; Kajiwara, Kenji; Matsuura, Nozomu; Ohta, Yasuhiro
2014-01-01
In this paper, we consider the discrete deformation of the discrete space curves with constant torsion described by the discrete mKdV or the discrete sine-Gordon equations, and show that it is formulated as the torsion-preserving equidistant deformation on the osculating plane which satisfies the isoperimetric condition. The curve is reconstructed from the deformation data by using the Sym–Tafel formula. The isoperimetric equidistant deformation of the space curves does not preserve the torsion in general. However, it is possible to construct the torsion-preserving deformation by tuning the deformation parameters. Further, it is also possible to make an arbitrary choice of the deformation described by the discrete mKdV equation or by the discrete sine-Gordon equation at each step. We finally show that the discrete deformation of discrete space curves yields the discrete K-surfaces. (paper)
International Nuclear Information System (INIS)
Herrlin, K.; Stroemberg, T.; Lidgren, L.; Walloee, A.; Pettersson, H.; Lund Univ.
1988-01-01
Four hundred and thirty trochanteric factures operated upon with McLaughlin, Ender or Richard's osteosynthesis were divided into 6 different types based on their radiographic appearance before and immediately after reposition with special reference to the medial cortical support. A significant correlation was found between the fracture type and subsequent mechanical complications where types 1 and 2 gave less, and types 4 and 5 more complications. A comparison of the various osteosyntheses showed that Richard's had significantly fewer complications than either the Ender or McLaughlin types. For Richard's osteosynthesis alone no correlation to fracture type could be made because of the small number of complications in this group. (orig.)
Directory of Open Access Journals (Sweden)
Uebbing, Claire M
2011-02-01
Full Text Available Fracture blisters are a relatively uncommon complication of fractures in locations of the body, such as the ankle, wrist elbow and foot, where skin adheres tightly to bone with little subcutaneous fat cushioning. The blister that results resembles that of a second degree burn.These blisters significantly alter treatment, making it difficult to splint or cast and often overlying ideal surgical incision sites. Review of the literature reveals no consensus on management; however, most authors agree on early treatment prior to blister formation or delay until blister resolution before attempting surgical correction or stabilization. [West J Emerg Med. 2011;12(1;131-133.
Moussa, Hind N; Leon, Mateo G; Marti, Ana; Chediak, Alissar; Pedroza, Claudia; Blackwell, Sean C; Sibai, Baha M
2017-03-01
Objective The American Congress of Obstetricians and Gynecologists (ACOG) task force on hypertension in pregnancy introduced a new definition of superimposed preeclampsia (SIP) adding severe features (SF) as new criteria to define severe disease. They also recommended that those with SIP be delivered ≥ 37 weeks, whereas those with SF be delivered ≤ 34 weeks. Our aim was to investigate the validity of this new definition by comparing adverse pregnancy outcomes in SIP with (SIP-SF) and without SF (SIP). Study Design Women with chronic hypertension (CHTN) enrolled in a multicenter trial were studied. SIP was reclassified according to the new definition to SIP and SIP-SF (persistent systolic blood pressure [BP] > 160 or diastolic BP > 110, platelets 70, creatinine > 1.1, or persistent central nervous system/abdominal symptoms). Composite adverse outcomes including rates of indicated preterm birth, abruptio placentae, postpartum hemorrhage, and maternal death were compared by chi-square. Adjustment was done with a multivariate logistic-regression analysis and all statistical tests were two-sided. Results A total of 216 women (28%) out of 774 with CHTN developed SIP, 87 (11%) had SIP-SF, and 129 (17%) didn't have SF. Baseline characteristics including maternal age, baseline BP, and assignment to low-dose aspirin were similar between groups. Using univariate analysis, the composite adverse outcome was higher among the SIP-SF group ( p = 0.04), as well as indicated preterm birth ( p = 0.02), cesarean section ( p = 0.02), and SGA ( p = 0.02). After adjustment, composite adverse outcomes were not significantly different between groups. The rate of SGA, however, was higher among SIP-SF (adjusted odds ratio: 3.12, p = 0.02). Conclusion The rate of SIP-SF in this study was 11% of all women with CHTN. Surprisingly, pregnancy outcomes were not significantly different in those with and without SF. We suggest a
Luigetti, Marco; Vollaro, Stefano; Corbetto, Marzia; Salomone, Gaetano; Dicuonzo, Giordano; Scoppettuolo, Giancarlo; Di Lazzaro, Vincenzo
2014-12-01
Lyme disease is a diffuse zoonosis caused by spirochaetes of the Borrelia burgdorferi species complex. Neurological manifestations of the disease, involving central or peripheral nervous system, are common. This study describes four consecutive patients with an MRI-proven lumbosacral spondylosis, who complained of progressive worsening of symptoms in the last months in which serological evaluation suggested a superimposed B. Burgdorferi infection. Four patients, all from the Lazio region, were admitted to the Department of Neurology. Extensive laboratory studies and clinical, anamnestic and neurophysiological evaluation were performed in all cases. In all cases, anamnesis revealed a previous diagnosis of lumbosacral foraminal stenosis. Clinical and neurophysiological findings were consistent with a lumbosacral multiradiculopathy. Considering serological evaluation suggestive of a superimposed B. burgdorferi infection a proper antibiotic therapy was started. All cases showed a marked improvement of symptoms. Clinicians should be aware that in all cases of lumbosacral multiradiculopathy, even if a mechanical cause is documented, B. burgdorferi may be a simply treatable condition.
International Nuclear Information System (INIS)
Gerhauser, H.
1980-02-01
Two superimposed miscible liquids are separated by a diffuse boundary layer providing a steady transition of density. If the heavy fluid is on top of the light one, Rayleigh-Taylor-instabilities develop and cause a rapid interchange and eventually an intermixing. This process can be subjected to dynamic stabilization by enforcing vertical oscillations upon the whole system. However, since only part of the unstable mode spectrum is completely stabilized, the remaining weakly unstable modes lead to turbulent transport processes through the boundary layer ('anomalous diffusion'), so that only a quasistationary equilibrium is achieved. In the present paper, previous experimental results on the dynamic stabilization of water superimposed by an aqueous ZnJ-solution are theoretically interpreted, and the observed spatial structure as well as the time development of the density profiles are explained. There exists an analogy between these phenomena and turbulent transport processes in tokamak discharges such as the sawtooth oscillations of internal disruptions. (orig.) [de
4. 7s nearly periodic oscillations superimposed on the solar microwave great burst of 28 March 1976
Energy Technology Data Exchange (ETDEWEB)
Kaufmann, P; Piazza, L R; Raffaelli, J C [Universidade Mackenzie, Sao Paulo (Brazil). Centro de Radio-Astronomia e Astrofisica
1977-09-01
An unusual fast oscillation was found superimposed on the solar great burst on 28 March 1976, as measured at 7 GHz. The period of the oscillation was 4.7 +- 0.9 s, defined over the entire duration of the event. The amplitude of the oscillation was proportional to the flux density in the range 50
Discrete mathematics with applications
Koshy, Thomas
2003-01-01
This approachable text studies discrete objects and the relationsips that bind them. It helps students understand and apply the power of discrete math to digital computer systems and other modern applications. It provides excellent preparation for courses in linear algebra, number theory, and modern/abstract algebra and for computer science courses in data structures, algorithms, programming languages, compilers, databases, and computation.* Covers all recommended topics in a self-contained, comprehensive, and understandable format for students and new professionals * Emphasizes problem-solving techniques, pattern recognition, conjecturing, induction, applications of varying nature, proof techniques, algorithm development and correctness, and numeric computations* Weaves numerous applications into the text* Helps students learn by doing with a wealth of examples and exercises: - 560 examples worked out in detail - More than 3,700 exercises - More than 150 computer assignments - More than 600 writing projects*...
Discrete and computational geometry
Devadoss, Satyan L
2011-01-01
Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also fe...
2002-01-01
Discrete geometry investigates combinatorial properties of configurations of geometric objects. To a working mathematician or computer scientist, it offers sophisticated results and techniques of great diversity and it is a foundation for fields such as computational geometry or combinatorial optimization. This book is primarily a textbook introduction to various areas of discrete geometry. In each area, it explains several key results and methods, in an accessible and concrete manner. It also contains more advanced material in separate sections and thus it can serve as a collection of surveys in several narrower subfields. The main topics include: basics on convex sets, convex polytopes, and hyperplane arrangements; combinatorial complexity of geometric configurations; intersection patterns and transversals of convex sets; geometric Ramsey-type results; polyhedral combinatorics and high-dimensional convexity; and lastly, embeddings of finite metric spaces into normed spaces. Jiri Matousek is Professor of Com...
Time Discretization Techniques
Gottlieb, S.
2016-10-12
The time discretization of hyperbolic partial differential equations is typically the evolution of a system of ordinary differential equations obtained by spatial discretization of the original problem. Methods for this time evolution include multistep, multistage, or multiderivative methods, as well as a combination of these approaches. The time step constraint is mainly a result of the absolute stability requirement, as well as additional conditions that mimic physical properties of the solution, such as positivity or total variation stability. These conditions may be required for stability when the solution develops shocks or sharp gradients. This chapter contains a review of some of the methods historically used for the evolution of hyperbolic PDEs, as well as cutting edge methods that are now commonly used.
Fracture Patterns within the Shale Hills Critical Zone Observatory
Singha, K.; White, T.; Perron, J.; Chattopadhyay, P. B.; Duffy, C.
2012-12-01
Rock fractures are known to exist within the deep Critical Zone and are expected to influence groundwater flow, but there are limited data on their orientation and spatial arrangement and no general framework for systematically predicting their effects. Here, we explore fracture patterns within the Susquehanna-Shale Hills Critical Zone Observatory, and consider how they may be influenced by weathering, rock structure, and stress via field observations of variable fracture orientation within the site, with implications for the spatial variability of structural control on hydrologic processes. Based on field observations from 16-m deep boreholes and surface outcrop, we suggest that the appropriate structural model for the watershed is steeply dipping strata with meter- to decimeter-scale folds superimposed, including a superimposed fold at the mouth of the watershed that creates a short fold limb with gently dipping strata. These settings would produce an anisotropy in the hydraulic conductivity and perhaps also flow, especially within the context of the imposed stress field. Recently conducted 2-D numerical stress modeling indicates that the proxy for shear fracture declines more rapidly with depth beneath valleys than beneath ridgelines, which may produce or enhance the spatial variability in permeability. Even if topographic stresses do not cause new fractures, they could activate and cause displacement on old fractures, making the rocks easier to erode and increasing the permeability, and potentially driving a positive feedback that enhances the growth of valley relief. Calculated stress fields are consistent with field observations, which show a rapid decline in fracture abundance with increasing depth below the valley floor, and predict a more gradual trend beneath ridgetops, leading to a more consistent (and lower) hydraulic conductivity with depth on the ridgetops when compared to the valley, where values are higher but more variable with depth. Hydraulic
Czech Academy of Sciences Publication Activity Database
Mesiar, Radko; Li, J.; Pap, E.
2013-01-01
Roč. 54, č. 3 (2013), s. 357-364 ISSN 0888-613X R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : concave integral * pseudo-addition * pseudo-multiplication Subject RIV: BA - General Mathematics Impact factor: 1.977, year: 2013 http://library.utia.cas.cz/separaty/2013/E/mesiar-discrete pseudo-integrals.pdf
Discrete variational Hamiltonian mechanics
International Nuclear Information System (INIS)
Lall, S; West, M
2006-01-01
The main contribution of this paper is to present a canonical choice of a Hamiltonian theory corresponding to the theory of discrete Lagrangian mechanics. We make use of Lagrange duality and follow a path parallel to that used for construction of the Pontryagin principle in optimal control theory. We use duality results regarding sensitivity and separability to show the relationship between generating functions and symplectic integrators. We also discuss connections to optimal control theory and numerical algorithms
International Nuclear Information System (INIS)
Jalnapurkar, Sameer M; Leok, Melvin; Marsden, Jerrold E; West, Matthew
2006-01-01
This paper develops the theory of Abelian Routh reduction for discrete mechanical systems and applies it to the variational integration of mechanical systems with Abelian symmetry. The reduction of variational Runge-Kutta discretizations is considered, as well as the extent to which symmetry reduction and discretization commute. These reduced methods allow the direct simulation of dynamical features such as relative equilibria and relative periodic orbits that can be obscured or difficult to identify in the unreduced dynamics. The methods are demonstrated for the dynamics of an Earth orbiting satellite with a non-spherical J 2 correction, as well as the double spherical pendulum. The J 2 problem is interesting because in the unreduced picture, geometric phases inherent in the model and those due to numerical discretization can be hard to distinguish, but this issue does not appear in the reduced algorithm, where one can directly observe interesting dynamical structures in the reduced phase space (the cotangent bundle of shape space), in which the geometric phases have been removed. The main feature of the double spherical pendulum example is that it has a non-trivial magnetic term in its reduced symplectic form. Our method is still efficient as it can directly handle the essential non-canonical nature of the symplectic structure. In contrast, a traditional symplectic method for canonical systems could require repeated coordinate changes if one is evoking Darboux' theorem to transform the symplectic structure into canonical form, thereby incurring additional computational cost. Our method allows one to design reduced symplectic integrators in a natural way, despite the non-canonical nature of the symplectic structure
Discrete port-Hamiltonian systems
Talasila, V.; Clemente-Gallardo, J.; Schaft, A.J. van der
2006-01-01
Either from a control theoretic viewpoint or from an analysis viewpoint it is necessary to convert smooth systems to discrete systems, which can then be implemented on computers for numerical simulations. Discrete models can be obtained either by discretizing a smooth model, or by directly modeling
A paradigm for discrete physics
International Nuclear Information System (INIS)
Noyes, H.P.; McGoveran, D.; Etter, T.; Manthey, M.J.; Gefwert, C.
1987-01-01
An example is outlined for constructing a discrete physics using as a starting point the insight from quantum physics that events are discrete, indivisible and non-local. Initial postulates are finiteness, discreteness, finite computability, absolute nonuniqueness (i.e., homogeneity in the absence of specific cause) and additivity
... is also an important factor when treating elbow fractures. Casts are used more frequently in children, as their risk of developing elbow stiffness is small; however, in an adult, elbow stiffness is much more likely. Rehabilitation directed by your doctor is often used to ...
... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Wrist Fractures Email to a friend * required fields ...
... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Shoulder Fractures Email to a friend * required fields ...
Efficient and robust compositional two-phase reservoir simulation in fractured media
Zidane, A.; Firoozabadi, A.
2015-12-01
Compositional and compressible two-phase flow in fractured media has wide applications including CO2 injection. Accurate simulations are currently based on the discrete fracture approach using the cross-flow equilibrium model. In this approach the fractures and a small part of the matrix blocks are combined to form a grid cell. The major drawback is low computational efficiency. In this work we use the discrete-fracture approach to model the fractures where the fracture entities are described explicitly in the computational domain. We use the concept of cross-flow equilibrium in the fractures (FCFE). This allows using large matrix elements in the neighborhood of the fractures. We solve the fracture transport equations implicitly to overcome the Courant-Freidricks-Levy (CFL) condition in the small fracture elements. Our implicit approach is based on calculation of the derivative of the molar concentration of component i in phase (cαi ) with respect to the total molar concentration (ci ) at constant volume V and temperature T. This contributes to significant speed up of the code. The hybrid mixed finite element method (MFE) is used to solve for the velocity in both the matrix and the fractures coupled with the discontinuous Galerkin (DG) method to solve the species transport equations in the matrix, and a finite volume (FV) discretization in the fractures. In large scale problems the proposed approach is orders of magnitude faster than the existing models.
Fundamental aspects of brittle damage processes -- discrete systems
International Nuclear Information System (INIS)
Krajcinovic, D.; Lubarda, V.
1993-01-01
The analysis of cooperative brittle processes are performed on simple discrete models admitting closed form solutions. A connection between the damage and fracture mechanics is derived and utilized to illustrate the relation between two theories. The performed analyses suggest that the stress concentrations (direct interaction between defects) represent a second order effect during the hardening part of the response in the case of disordered solids
Two new discrete integrable systems
International Nuclear Information System (INIS)
Chen Xiao-Hong; Zhang Hong-Qing
2013-01-01
In this paper, we focus on the construction of new (1+1)-dimensional discrete integrable systems according to a subalgebra of loop algebra Ã 1 . By designing two new (1+1)-dimensional discrete spectral problems, two new discrete integrable systems are obtained, namely, a 2-field lattice hierarchy and a 3-field lattice hierarchy. When deriving the two new discrete integrable systems, we find the generalized relativistic Toda lattice hierarchy and the generalized modified Toda lattice hierarchy. Moreover, we also obtain the Hamiltonian structures of the two lattice hierarchies by means of the discrete trace identity
Directory of Open Access Journals (Sweden)
Thiago J Avelino-Silva
2017-03-01
Full Text Available Hospitalized older adults with preexisting dementia have increased risk of having delirium, but little is known regarding the effect of delirium superimposed on dementia (DSD on the outcomes of these patients. Our aim was to investigate the association between DSD and hospital mortality and 12-mo mortality in hospitalized older adults.This was a prospective cohort study completed in the geriatric ward of a university hospital in São Paulo, Brazil. We included 1,409 hospitalizations of acutely ill patients aged 60 y and over from January 2009 to June 2015. Main variables and measures included dementia and dementia severity (Informant Questionnaire on Cognitive Decline in the Elderly, Clinical Dementia Rating and delirium (Confusion Assessment Method. Primary outcomes were time to death in the hospital and time to death in 12 mo (for the discharged sample. Comprehensive geriatric assessment was performed at admission, and additional clinical data were documented upon death or discharge. Cases were categorized into four groups (no delirium or dementia, dementia alone, delirium alone, and DSD. The no delirium/dementia group was defined as the referent category for comparisons, and multivariate analyses were performed using Cox proportional hazards models adjusted for possible confounders (sociodemographic information, medical history and physical examination data, functional and nutritional status, polypharmacy, and laboratory covariates. Overall, 61% were women and 39% had dementia, with a mean age of 80 y. Dementia alone was observed in 13% of the cases, with delirium alone in 21% and DSD in 26% of the cases. In-hospital mortality was 8% for patients without delirium or dementia, 12% for patients with dementia alone, 29% for patients with delirium alone, and 32% for DSD patients (Pearson Chi-square = 112, p < 0.001. DSD and delirium alone were independently associated with in-hospital mortality, with respective hazard ratios (HRs of 2.14 (95% CI
Bimalleolar ankle fracture with proximal fibular fracture
Colenbrander, R. J.; Struijs, P. A. A.; Ultee, J. M.
2005-01-01
A 56-year-old female patient suffered a bimalleolar ankle fracture with an additional proximal fibular fracture. This is an unusual fracture type, seldom reported in literature. It was operatively treated by open reduction and internal fixation of the lateral malleolar fracture. The proximal fibular
Ogata, K.; Senger, K.; Braathen, A.; Tveranger, J.; Petrie, E.; Evans, J.P.
2012-01-01
Fault- And fold-related fractures influence the fluid circulation in the subsurface, thus being of high importance for CO2 storage site assessment, especially in terms of reservoir connectivity and leakage. In this context, discrete regions of concentrated sub-parallel fracturing known as fracture
Oldenburg, C. M.; Zhou, Q.; Birkholzer, J. T.
2017-12-01
The injection of supercritical CO2 (scCO2) in fractured reservoirs has been conducted at several storage sites. However, no site-specific dual-continuum modeling for fractured reservoirs has been reported and modeling studies have generally underestimated the fracture-matrix interactions. We developed a conceptual model for enhanced CO2 storage to take into account global scCO2 migration in the fracture continuum, local storage of scCO2 and dissolved CO2 (dsCO2) in the matrix continuum, and driving forces for scCO2 invasion and dsCO2 diffusion from fractures. High-resolution discrete fracture-matrix models were developed for a column of idealized matrix blocks bounded by vertical and horizontal fractures and for a km-scale fractured reservoir. The column-scale simulation results show that equilibrium storage efficiency strongly depends on matrix entry capillary pressure and matrix-matrix connectivity while the time scale to reach equilibrium is sensitive to fracture spacing and matrix flow properties. The reservoir-scale modeling results shows that the preferential migration of scCO2 through fractures is coupled with bulk storage in the rock matrix that in turn retards the fracture scCO2 plume. We also developed unified-form diffusive flux equations to account for dsCO2 storage in brine-filled matrix blocks and found solubility trapping is significant in fractured reservoirs with low-permeability matrix.
International Nuclear Information System (INIS)
Miannay, D.P.
1995-01-01
This book entitle ''Fracture Mechanics'', the first one of the monograph ''Materiologie'' is geared to design engineers, material engineers, non destructive inspectors and safety experts. This book covers fracture mechanics in isotropic homogeneous continuum. Only the monotonic static loading is considered. This book intended to be a reference with the current state of the art gives the fundamental of the issues under concern and avoids the developments too complicated or not yet mastered for not making reading cumbersome. The subject matter is organized as going from an easy to a more complicated level and thus follows the chronological evolution in the field. Similarly the microscopic scale is considered before the macroscopic scale, the physical understanding of phenomena linked to the experimental observation of the material preceded the understanding of the macroscopic behaviour of structures. In this latter field the relatively recent contribution of finite element computations with some analogy with the experimental observation is determining. However more sensitive analysis is not skipped
Hirsch, M; Peinado, E; Valle, J W F
2010-01-01
We propose a new motivation for the stability of dark matter (DM). We suggest that the same non-abelian discrete flavor symmetry which accounts for the observed pattern of neutrino oscillations, spontaneously breaks to a Z2 subgroup which renders DM stable. The simplest scheme leads to a scalar doublet DM potentially detectable in nuclear recoil experiments, inverse neutrino mass hierarchy, hence a neutrinoless double beta decay rate accessible to upcoming searches, while reactor angle equal to zero gives no CP violation in neutrino oscillations.
Wuensche, Andrew
DDLab is interactive graphics software for creating, visualizing, and analyzing many aspects of Cellular Automata, Random Boolean Networks, and Discrete Dynamical Networks in general and studying their behavior, both from the time-series perspective — space-time patterns, and from the state-space perspective — attractor basins. DDLab is relevant to research, applications, and education in the fields of complexity, self-organization, emergent phenomena, chaos, collision-based computing, neural networks, content addressable memory, genetic regulatory networks, dynamical encryption, generative art and music, and the study of the abstract mathematical/physical/dynamical phenomena in their own right.
Permeability and Dispersion Coefficients in Rocks with Fracture Network - 12140
Energy Technology Data Exchange (ETDEWEB)
Lee, C.K.; Htway, M.Z. [Handong Global University, 3 Namsong-ri, Heunghae-eub, Buk-gu, Pohang, Kyungbuk, 791-708 (Korea, Republic of); Yim, S.P. [Korea Atomic Energy Research Institute, P.O.Box 150, Yusong, Daejon, 305-600 (Korea, Republic of)
2012-07-01
Fluid flow and solute transport are considered for a rock medium with a fracture network with regard to the effective permeability and the dispersion coefficients. To investigate the effects of individual fractures a three-fracture system is chosen in which two are parallel and the third one connects the two at different angles. Specifically the micro-cell boundary-value problems(defined through multiple scale analysis) are solved numerically by using finite elements to calculate the permeability and dispersion coefficients. It is shown that the permeability depends significantly on the pattern of the fracture distribution and the dispersion coefficient is influenced by both the externally imposed pressure gradient (which also reflects the flow field) and the direction of the gradient of solute concentration on the macro-scale. From the calculations of the permeability and dispersion coefficients for solute in a rock medium with a fracture network the following conclusions are drawn. 1. The permeability of fractured medium depends on the primary orientation of the fracture network and is influenced by the connecting fractures in the medium. 2. The cross permeability, e.g., permeability in the direction normal to the direction of the external pressure gradient is rather insensitive to the orientation of the fracture network. 3. Calculation of permeability is most efficiently achieved with optimal discretization across individual fractures and is rather insensitive to the discretization along the fracture.. 4. The longitudinal dispersion coefficient Dxx of a fractured medium depends on both the macro-scale concentration gradient and the direction of the flow (pressure gradient). Hence both features must be considered when investigating solute transport in a fractured medium. (authors)
International Nuclear Information System (INIS)
Souza, Manoelito M. de
1997-01-01
We discuss the physical meaning and the geometric interpretation of implementation in classical field theories. The origin of infinities and other inconsistencies in field theories is traced to fields defined with support on the light cone; a finite and consistent field theory requires a light-cone generator as the field support. Then, we introduce a classical field theory with support on the light cone generators. It results on a description of discrete (point-like) interactions in terms of localized particle-like fields. We find the propagators of these particle-like fields and discuss their physical meaning, properties and consequences. They are conformally invariant, singularity-free, and describing a manifestly covariant (1 + 1)-dimensional dynamics in a (3 = 1) spacetime. Remarkably this conformal symmetry remains even for the propagation of a massive field in four spacetime dimensions. We apply this formalism to Classical electrodynamics and to the General Relativity Theory. The standard formalism with its distributed fields is retrieved in terms of spacetime average of the discrete field. Singularities are the by-products of the averaging process. This new formalism enlighten the meaning and the problem of field theory, and may allow a softer transition to a quantum theory. (author)
Discrete Exterior Calculus Discretization of Incompressible Navier-Stokes Equations
Mohamed, Mamdouh S.
2017-05-23
A conservative discretization of incompressible Navier-Stokes equations over surface simplicial meshes is developed using discrete exterior calculus (DEC). Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy otherwise. The mimetic character of many of the DEC operators provides exact conservation of both mass and vorticity, in addition to superior kinetic energy conservation. The employment of barycentric Hodge star allows the discretization to admit arbitrary simplicial meshes. The discretization scheme is presented along with various numerical test cases demonstrating its main characteristics.
Basalt microlapilli in deep sea sediments of Indian Ocean in the vicinity of Vityaz fracture zone
Digital Repository Service at National Institute of Oceanography (India)
Nath, B.N.; Iyer, S.D.
Two cores recovered from the flanks of Mid-India oceanic ridge in the vicinity of Vityaz fracture zone consist of discrete pyroclastic layers at various depths. These layers are composed of coarse-grained, angular basaltic microlapilli in which...
Transverse discrete breathers in unstrained graphene
Barani, Elham; Lobzenko, Ivan P.; Korznikova, Elena A.; Soboleva, Elvira G.; Dmitriev, Sergey V.; Zhou, Kun; Marjaneh, Aliakbar Moradi
2017-02-01
Discrete breathers (DB) are spatially localized vibrational modes of large amplitude in defect-free nonlinear lattices. The search for DBs in graphene is of high importance, taking into account that this one atom thick layer of carbon is promising for a number of applications. There exist several reports on successful excitation of DBs in graphene, based on molecular dynamics and ab initio simulations. In a recent work by Hizhnyakov with co-authors the possibility to excite a DB with atoms oscillating normal to the graphene sheet has been reported. In the present study we use a systematic approach for finding initial conditions to excite transverse DBs in graphene. The approach is based on the analysis of the frequency-amplitude dependence for a delocalized, short-wavelength vibrational mode. This mode is a symmetry-dictated exact solution to the dynamic equations of the atomic motion, regardless the mode amplitude and regardless the type of interatomic potentials used in the simulations. It is demonstrated that if the AIREBO potential is used, the mode frequency increases with the amplitude bifurcating from the upper edge of the phonon spectrum for out-of-plane phonons. Then a bell-shaped function is superimposed on this delocalized mode to obtain a spatially localized vibrational mode, i.e., a DB. Placing the center of the bell-shaped function at different positions with respect to the lattice sites, three different DBs are found. Typically, the degree of spatial localization of DBs increases with the DB amplitude, but the transverse DBs in graphene reported here demonstrate the opposite trend. The results are compared to those obtained with the use of the Savin interatomic potential and no transverse DBs are found in this case. The results of this study contribute to a better understanding of the nonlinear dynamics of graphene and they call for the ab initio simulations to verify which of the two potentials used in this study is more precise.
Hydromechanical modeling of clay rock including fracture damage
Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.
2012-12-01
Argillaceous rock typically acts as a flow barrier, but under certain conditions significant and potentially conductive fractures may be present. Fracture formation is well-known to occur in the vicinity of underground excavations in a region known as the excavation disturbed zone. Such problems are of particular importance for low-permeability, mechanically weak rock such as clays and shales because fractures can be relatively transient as a result of fracture self-sealing processes. Perhaps not as well appreciated is the fact that natural fractures can form in argillaceous rock as a result of hydraulic overpressure caused by phenomena such as disequlibrium compaction, changes in tectonic stress, and mineral dehydration. Overpressure conditions can cause hydraulic fracturing if the fluid pressure leads to tensile effective stresses that exceed the tensile strength of the material. Quantitative modeling of this type of process requires coupling between hydrogeologic processes and geomechanical processes including fracture initiation and propagation. Here we present a computational method for three-dimensional, hydromechanical coupled processes including fracture damage. Fractures are represented as discrete features in a fracture network that interact with a porous rock matrix. Fracture configurations are mapped onto an unstructured, three-dimensonal, Voronoi grid, which is based on a random set of spatial points. Discrete fracture networks (DFN) are represented by the connections of the edges of a Voronoi cells. This methodology has the advantage that fractures can be more easily introduced in response to coupled hydro-mechanical processes and generally eliminates several potential issues associated with the geometry of DFN and numerical gridding. A geomechanical and fracture-damage model is developed here using the Rigid-Body-Spring-Network (RBSN) numerical method. The hydrogelogic and geomechanical models share the same geometrical information from a 3D Voronoi
Estimating the hydraulic conductivity of two-dimensional fracture networks
Leung, C. T.; Zimmerman, R. W.
2010-12-01
Most oil and gas reservoirs, as well as most potential sites for nuclear waste disposal, are naturally fractured. In these sites, the network of fractures will provide the main path for fluid to flow through the rock mass. In many cases, the fracture density is so high as to make it impractical to model it with a discrete fracture network (DFN) approach. For such rock masses, it would be useful to have recourse to analytical, or semi-analytical, methods to estimate the macroscopic hydraulic conductivity of the fracture network. We have investigated single-phase fluid flow through stochastically generated two-dimensional fracture networks. The centres and orientations of the fractures are uniformly distributed, whereas their lengths follow either a lognormal distribution or a power law distribution. We have considered the case where the fractures in the network each have the same aperture, as well as the case where the aperture of each fracture is directly proportional to the fracture length. The discrete fracture network flow and transport simulator NAPSAC, developed by Serco (Didcot, UK), is used to establish the “true” macroscopic hydraulic conductivity of the network. We then attempt to match this conductivity using a simple estimation method that does not require extensive computation. For our calculations, fracture networks are represented as networks composed of conducting segments (bonds) between nodes. Each bond represents the region of a single fracture between two adjacent intersections with other fractures. We assume that the bonds are arranged on a kagome lattice, with some fraction of the bonds randomly missing. The conductance of each bond is then replaced with some effective conductance, Ceff, which we take to be the arithmetic mean of the individual conductances, averaged over each bond, rather than over each fracture. This is in contrast to the usual approximation used in effective medium theories, wherein the geometric mean is used. Our
FTRANS, Radionuclide Flow in Groundwater and Fractured Rock
International Nuclear Information System (INIS)
Huyakorn, P.; Golis, M.J.
1987-01-01
1 - Description of program or function: FTRANS (Fractured flow and Transport of Radionuclides) is a two-dimensional finite-element code designed to simulate ground-water flow and transport of radioactive nuclides in a fractured porous return medium. FTRANS takes into account fluid interactions between the fractures and porous matrix blocks, advective-dispersive transport in the fractures and diffusion in the porous matrix blocks, and chain reactions of radionuclide components. It has the capability to model the fractured system using either the dual-porosity or the discrete- fracture modeling approach or a combination of both. FTRANS can be used to perform two-dimensional near-field or far-field predictive analyses of ground-water flow and to perform risk assessments of radionuclide transport from nuclear waste repository subsystems to the biosphere. 2 - Restrictions on the complexity of the problem: Although FTRANS does cannot account for deformation processes which can affect the flow capacity and velocity field
Advances in discrete differential geometry
2016-01-01
This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, ...
Poisson hierarchy of discrete strings
International Nuclear Information System (INIS)
Ioannidou, Theodora; Niemi, Antti J.
2016-01-01
The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.
Poisson hierarchy of discrete strings
Energy Technology Data Exchange (ETDEWEB)
Ioannidou, Theodora, E-mail: ti3@auth.gr [Faculty of Civil Engineering, School of Engineering, Aristotle University of Thessaloniki, 54249, Thessaloniki (Greece); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200, Tours (France); Department of Physics, Beijing Institute of Technology, Haidian District, Beijing 100081 (China)
2016-01-28
The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.
Gorb, Yuliya; Walton, Jay R.
2010-01-01
We model and analyze the response of nonlinear, residually stressed elastic bodies subjected to small amplitude vibrations superimposed upon large deformations. The problem derives from modeling the use of intravascular ultrasound (IVUS) imaging
Site characterization and validation - validation drift fracture data, stage 4
International Nuclear Information System (INIS)
Bursey, G.; Gale, J.; MacLeod, R.; Straahle, A.; Tiren, S.
1991-08-01
This report describes the mapping procedures and the data collected during fracture mapping in the validation drift. Fracture characteristics examined include orientation, trace length, termination mode, and fracture minerals. These data have been compared and analysed together with fracture data from the D-boreholes to determine the adequacy of the borehole mapping procedures and to assess the nature and degree of orientation bias in the borehole data. The analysis of the validation drift data also includes a series of corrections to account for orientation, truncation, and censoring biases. This analysis has identified at least 4 geologically significant fracture sets in the rock mass defined by the validation drift. An analysis of the fracture orientations in both the good rock and the H-zone has defined groups of 7 clusters and 4 clusters, respectively. Subsequent analysis of the fracture patterns in five consecutive sections along the validation drift further identified heterogeneity through the rock mass, with respect to fracture orientations. These results are in stark contrast to the results form the D-borehole analysis, where a strong orientation bias resulted in a consistent pattern of measured fracture orientations through the rock. In the validation drift, fractures in the good rock also display a greater mean variance in length than those in the H-zone. These results provide strong support for a distinction being made between fractures in the good rock and the H-zone, and possibly between different areas of the good rock itself, for discrete modelling purposes. (au) (20 refs.)
Transverse dispersion in heterogeneous fractures
International Nuclear Information System (INIS)
Dershowitz, Bill; Shuttle, Dawn; Klise, Kate; Outters, Nils; Hermanson, Jan
2004-12-01
This report evaluates the significance of transverse dispersion processes for solute transport in a single fracture. Transverse dispersion is a potentially significant process because it increases the fracture surface area available for sorptive and diffusive properties, and has the potential to transport solute between what would otherwise be distinctive, streamline pathways. Transverse dispersion processes are generally ignored in one-dimensional repository performance assessment approaches. This report provides an initial assessment of the magnitude of transverse dispersion effect in a single heterogeneous fracture on repository safety assessment. This study builds on a previous report which considered the network effects on transport dispersion including streamline routing and mixing at fracture intersections. The project uses FracMan software. This platform has been extensively used by SKB in other projects. FracMan software is designed to generate and analyze DFN's as well as to compute fluid flow in DFN's with the MAFIC Finite element method (FEM) code. Solute transport was modeled using the particle tracking inside MAFIC, the 2-D Laplace Transform Galerkin inside PAWorks/LTG, and the 1-D Laplace Transform approach designed to replicate FARF31 inside GoldSim.The study reported here focuses on a single, 20-meter scale discrete fracture, with simplified boundary conditions intended to represent the position of this fracture within a fracture network. The range of assumptions made regarding fracture heterogeneity were as follows: Base case, Heterogeneous fracture, geostatistical field, correlation length 0.01 m. Case 1a, Homogeneous fracture, transmissivity = 10 -7 m 2 /s. Case 1b, Heterogeneous fracture, non-channeled geostatistical field correlation length 5 m. Case 1c, Heterogeneous fracture, channeled, anisotropic geostatistical field. Case 1d, Heterogeneous fracture, fracture intersection zone (FIZ) permeability enhanced. Case 5, Simple channelized
Roubinet, D.; Linde, N.; Jougnot, D.; Irving, J.
2016-05-01
Numerous field experiments suggest that the self-potential (SP) geophysical method may allow for the detection of hydraulically active fractures and provide information about fracture properties. However, a lack of suitable numerical tools for modeling streaming potentials in fractured media prevents quantitative interpretation and limits our understanding of how the SP method can be used in this regard. To address this issue, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid flow and associated self-potential problems in fractured rock. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.
Principles of discrete time mechanics
Jaroszkiewicz, George
2014-01-01
Could time be discrete on some unimaginably small scale? Exploring the idea in depth, this unique introduction to discrete time mechanics systematically builds the theory up from scratch, beginning with the historical, physical and mathematical background to the chronon hypothesis. Covering classical and quantum discrete time mechanics, this book presents all the tools needed to formulate and develop applications of discrete time mechanics in a number of areas, including spreadsheet mechanics, classical and quantum register mechanics, and classical and quantum mechanics and field theories. A consistent emphasis on contextuality and the observer-system relationship is maintained throughout.
Dark discrete gauge symmetries
International Nuclear Information System (INIS)
Batell, Brian
2011-01-01
We investigate scenarios in which dark matter is stabilized by an Abelian Z N discrete gauge symmetry. Models are surveyed according to symmetries and matter content. Multicomponent dark matter arises when N is not prime and Z N contains one or more subgroups. The dark sector interacts with the visible sector through the renormalizable kinetic mixing and Higgs portal operators, and we highlight the basic phenomenology in these scenarios. In particular, multiple species of dark matter can lead to an unconventional nuclear recoil spectrum in direct detection experiments, while the presence of new light states in the dark sector can dramatically affect the decays of the Higgs at the Tevatron and LHC, thus providing a window into the gauge origin of the stability of dark matter.
International Nuclear Information System (INIS)
Noyes, H.P.; Starson, S.
1991-03-01
Discrete physics, because it replaces time evolution generated by the energy operator with a global bit-string generator (program universe) and replaces ''fields'' with the relativistic Wheeler-Feynman ''action at a distance,'' allows the consistent formulation of the concept of signed gravitational charge for massive particles. The resulting prediction made by this version of the theory is that free anti-particles near the surface of the earth will ''fall'' up with the same acceleration that the corresponding particles fall down. So far as we can see, no current experimental information is in conflict with this prediction of our theory. The experiment crusis will be one of the anti-proton or anti-hydrogen experiments at CERN. Our prediction should be much easier to test than the small effects which those experiments are currently designed to detect or bound. 23 refs
... neck fracture repair - discharge; Trochanteric fracture repair - discharge; Hip pinning surgery - discharge ... in the hospital for surgery to repair a hip fracture, a break in the upper part of ...
International Nuclear Information System (INIS)
Xu Jun; Papanikolaou, Nikos; Shi Chengyu; Jiang, Steve B
2009-01-01
Synchronized moving aperture radiation therapy (SMART) has been proposed to account for tumor motions during radiotherapy in prior work. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator (DMLC) with the tumor motion induced by respiration. In this paper, a two-dimensional (2D) superimposing leaf sequencing method is presented for SMART. A leaf sequence optimization strategy was generated to assure the SMART delivery under realistic delivery conditions. The study of delivery performance using the Varian LINAC and the Millennium DMLC showed that clinical factors such as collimator angle, dose rate, initial phase and machine tolerance affect the delivery accuracy and efficiency. An in-house leaf sequencing software was developed to implement the 2D superimposing leaf sequencing method and optimize the motion-corrected leaf sequence under realistic clinical conditions. The analysis of dynamic log (Dynalog) files showed that optimization of the leaf sequence for various clinical factors can avoid beam hold-offs which break the synchronization of SMART and fail the SMART dose delivery. Through comparison between the simulated delivered fluence map and the planed fluence map, it was shown that the motion-corrected leaf sequence can greatly reduce the dose error.
International Nuclear Information System (INIS)
Khan, M. Fawad; Maataoui, Adel; Gurung, Jessen; Schiemann, Mirko; Vogl, Thomas J.; Dogan, Selami; Ackermann, Hanns; Wesarg, Stefan; Sakas, Georgios
2005-01-01
The aim of this work was to determine the accuracy of a new navigational system, Medarpa, with a transparent display superimposing computed tomography (CT) reality on the site of intervention. Medarpa uses an optical and an electromagnetic tracking system which allows tracking of instruments, the radiologist and the transparent display. The display superimposes a CT view of a phantom chest on a phantom chest model, in real time. In group A, needle positioning was performed using the Medarpa system. Three targets (diameter 1.5 mm) located inside the phantom were punctured. In group B, the same targets were used to perform standard CT-guided puncturing using the single-slice technique. The same needles were used in both groups (15 G, 15 cm). A total of 42 punctures were performed in each group. Post puncture, CT scans were made to verify needle tip positions. The mean deviation from the needle tip to the targets was 6.65±1.61 mm for group A (range 3.54-9.51 mm) and 7.05±1.33 mm for group B (range 4.10-9.45 mm). No significant difference was found between group A and group B for any target (p>0.05). No significant difference was found between the targets of the same group (p>0.05). The accuracy in needle puncturing using the augmented reality system, Medarpa, matches the accuracy achieved by CT-guided puncturing technique. (orig.)
Wellman, Tristan; Shapiro, Allen M.; Hill, Mary C.
2009-01-01
While it is widely recognized that highly permeable 'large-scale' fractures dominate chemical migration in many fractured aquifers, recent studies suggest that the pervasive 'small-scale' fracturing once considered of less significance can be equally important for characterizing the spatial extent and residence time associated with transport processes. A detailed examination of chemical migration through fracture-controlled aquifers is used to advance this conceptual understanding. The influence of fracture structure is evaluated by quantifying the effects to transport caused by a systematic removal of fractures from three-dimensional discrete fracture models whose attributes are derived from geologic and hydrologic conditions at multiple field sites. Results indicate that the effects to transport caused by network simplification are sensitive to the fracture network characteristics, degree of network simplification, and plume travel distance, but primarily in an indirect sense since correlation to individual attributes is limited. Transport processes can be 'enhanced' or 'restricted' from network simplification meaning that the elimination of fractures may increase or decrease mass migration, mean travel time, dispersion, and tailing of the concentration plume. The results demonstrate why, for instance, chemical migration may not follow the classic advection-dispersion equation where dispersion approximates the effect of the ignored geologic structure as a strictly additive process to the mean flow. The analyses further reveal that the prediction error caused by fracture network simplification is reduced by at least 50% using the median estimate from an ensemble of simplified fracture network models, and that the error from network simplification is at least 70% less than the stochastic variability from multiple realizations. Copyright 2009 by the American Geophysical Union.
Vicente, Justo Serrano; Grande, Maria Luz Domínguez; Torre, Jose Rafael Infante; Madrid, Juan Ignacio Rayo; Barquero, Carmen Durán; Bernardo, Lucía García; Sánchez, Román Sánchez
2013-04-01
We show a patient who presented leg pain triggered by intense exercise. The most likely diagnosis was a possible tibial stress fracture or a "shin splint" syndrome (soleus enthesopathy). We performed a bone scintigraphy including SPECT/CT that revealed the presence of the two concomitant pathologies. SPECT/CT identified the hot spot superimposed with bone lesion in the tibial stress fracture and only remodeling activity without evidence of cortical lesions in the enthesopathy processes.
Webb, Lawrence X
2002-01-01
Fractures of the proximal femur include fractures of the head, neck, intertrochanteric, and subtrochanteric regions. Head fractures commonly accompany dislocations. Neck fractures and intertrochanteric fractures occur with greatest frequency in elderly patients with a low bone mineral density and are produced by low-energy mechanisms. Subtrochanteric fractures occur in a predominantly strong cortical osseous region which is exposed to large compressive stresses. Implants used to address these fractures must be able to accommodate significant loads while the fractures consolidate. Complications secondary to these injuries produce significant morbidity and include infection, nonunion, malunion, decubitus ulcers, fat emboli, deep venous thrombosis, pulmonary embolus, pneumonia, myocardial infarction, stroke, and death.
Zhang, Rui-Han; Zhang, Lie-Hui; Wang, Rui-He; Zhao, Yu-Long; Huang, Rui
2018-06-01
Reservoir development for unconventional resources such as tight gas reservoirs is in increasing demand due to the rapid decline of production in conventional reserves. Compared with conventional reservoirs, fluid flow in water-bearing tight gas reservoirs is subject to more nonlinear multiphase flow and gas slippage in nano/micro matrix pores because of the strong collisions between rock and gas molecules. Economic gas production from tight gas reservoirs depends on extensive application of water-based hydraulic fracturing of horizontal wells, associated with non-Darcy flow at a high flow rate, geomechanical stress sensitivity of un-propped natural fractures, complex flow geometry and multiscale heterogeneity. How to efficiently and accurately predict the production performance of a multistage fractured horizontal well (MFHW) is challenging. In this paper, a novel multicontinuum, multimechanism, two-phase simulator is established based on unstructured meshes and the control volume finite element method to analyze the production performance of MFHWs. The multiple interacting continua model and discrete fracture model are coupled to integrate the unstimulated fractured reservoir, induced fracture networks (stimulated reservoir volumes, SRVs) and irregular discrete hydraulic fractures. Several simulations and sensitivity analyses are performed with the developed simulator for determining the key factors affecting the production performance of MFHWs. Two widely applied fracturing models, classic hydraulic fracturing which generates long double-wing fractures and the volumetric fracturing aimed at creating large SRVs, are compared to identify which of them can make better use of tight gas reserves.
Control of Discrete Event Systems
Smedinga, Rein
1989-01-01
Systemen met discrete gebeurtenissen spelen in vele gebieden een rol. In dit proefschrift staat de volgorde van gebeurtenissen centraal en worden tijdsaspecten buiten beschouwing gelaten. In dat geval kunnen systemen met discrete gebeurtenissen goed worden gemodelleerd door gebruik te maken van
Discrete Mathematics and Its Applications
Oxley, Alan
2010-01-01
The article gives ideas that lecturers of undergraduate Discrete Mathematics courses can use in order to make the subject more interesting for students and encourage them to undertake further studies in the subject. It is possible to teach Discrete Mathematics with little or no reference to computing. However, students are more likely to be…
Discrete Mathematics and Curriculum Reform.
Kenney, Margaret J.
1996-01-01
Defines discrete mathematics as the mathematics necessary to effect reasoned decision making in finite situations and explains how its use supports the current view of mathematics education. Discrete mathematics can be used by curriculum developers to improve the curriculum for students of all ages and abilities. (SLD)
Connections on discrete fibre bundles
International Nuclear Information System (INIS)
Manton, N.S.; Cambridge Univ.
1987-01-01
A new approach to gauge fields on a discrete space-time is proposed, in which the fundamental object is a discrete version of a principal fibre bundle. If the bundle is twisted, the gauge fields are topologically non-trivial automatically. (orig.)
Fluid transport in reaction induced fractures
Ulven, Ole Ivar; Sun, WaiChing; Malthe-Sørenssen, Anders
2015-04-01
The process of fracture formation due to a volume increasing chemical reaction has been studied in a variety of different settings, e.g. weathering of dolerites by Røyne et al. te{royne}, serpentinization and carbonation of peridotite by Rudge et al. te{rudge} and replacement reactions in silica-poor igneous rocks by Jamtveit et al. te{jamtveit}. It is generally assumed that fracture formation will increase the net permeability of the rock, and thus increase the reactant transport rate and subsequently the total rate of material conversion, as summarised by Kelemen et al. te{kelemen}. Ulven et al. te{ulven_1} have shown that for fluid-mediated processes the ratio between chemical reaction rate and fluid transport rate in bulk rock controls the fracture pattern formed, and Ulven et al. te{ulven_2} have shown that instantaneous fluid transport in fractures lead to a significant increase in the total rate of the volume expanding process. However, instantaneous fluid transport in fractures is clearly an overestimate, and achievable fluid transport rates in fractures have apparently not been studied in any detail. Fractures cutting through an entire domain might experience relatively fast advective reactant transport, whereas dead-end fractures will be limited to diffusion of reactants in the fluid, internal fluid mixing in the fracture or capillary flow into newly formed fractures. Understanding the feedback process between fracture formation and permeability changes is essential in assessing industrial scale CO2 sequestration in ultramafic rock, but little is seemingly known about how large the permeability change will be in reaction-induced fracturing. In this work, we study the feedback between fracture formation during volume expansion and fluid transport in different fracture settings. We combine a discrete element model (DEM) describing a volume expanding process and the related fracture formation with different models that describe the fluid transport in the
Discrete dynamics versus analytic dynamics
DEFF Research Database (Denmark)
Toxværd, Søren
2014-01-01
For discrete classical Molecular dynamics obtained by the “Verlet” algorithm (VA) with the time increment h there exists a shadow Hamiltonian H˜ with energy E˜(h) , for which the discrete particle positions lie on the analytic trajectories for H˜ . Here, we proof that there, independent...... of such an analytic analogy, exists an exact hidden energy invariance E * for VA dynamics. The fact that the discrete VA dynamics has the same invariances as Newtonian dynamics raises the question, which of the formulations that are correct, or alternatively, the most appropriate formulation of classical dynamics....... In this context the relation between the discrete VA dynamics and the (general) discrete dynamics investigated by Lee [Phys. Lett. B122, 217 (1983)] is presented and discussed....
Modern approaches to discrete curvature
Romon, Pascal
2017-01-01
This book provides a valuable glimpse into discrete curvature, a rich new field of research which blends discrete mathematics, differential geometry, probability and computer graphics. It includes a vast collection of ideas and tools which will offer something new to all interested readers. Discrete geometry has arisen as much as a theoretical development as in response to unforeseen challenges coming from applications. Discrete and continuous geometries have turned out to be intimately connected. Discrete curvature is the key concept connecting them through many bridges in numerous fields: metric spaces, Riemannian and Euclidean geometries, geometric measure theory, topology, partial differential equations, calculus of variations, gradient flows, asymptotic analysis, probability, harmonic analysis, graph theory, etc. In spite of its crucial importance both in theoretical mathematics and in applications, up to now, almost no books have provided a coherent outlook on this emerging field.
Nick, H.M.; Paluszny, A.; Blunt, M.J.; Matthai, S.K.
2011-01-01
A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media.We study the impact of the fractures on mass transport and dispersion. To model flowand transport,
Discretion and Disproportionality
Directory of Open Access Journals (Sweden)
Jason A. Grissom
2015-12-01
Full Text Available Students of color are underrepresented in gifted programs relative to White students, but the reasons for this underrepresentation are poorly understood. We investigate the predictors of gifted assignment using nationally representative, longitudinal data on elementary students. We document that even among students with high standardized test scores, Black students are less likely to be assigned to gifted services in both math and reading, a pattern that persists when controlling for other background factors, such as health and socioeconomic status, and characteristics of classrooms and schools. We then investigate the role of teacher discretion, leveraging research from political science suggesting that clients of government services from traditionally underrepresented groups benefit from diversity in the providers of those services, including teachers. Even after conditioning on test scores and other factors, Black students indeed are referred to gifted programs, particularly in reading, at significantly lower rates when taught by non-Black teachers, a concerning result given the relatively low incidence of assignment to own-race teachers among Black students.
International Nuclear Information System (INIS)
Vlad, Valentin I.; Ionescu-Pallas, Nicholas
2000-10-01
The Planck radiation spectrum of ideal cubic and spherical cavities, in the region of small adiabatic invariance, γ = TV 1/3 , is shown to be discrete and strongly dependent on the cavity geometry and temperature. This behavior is the consequence of the random distribution of the state weights in the cubic cavity and of the random overlapping of the successive multiplet components, for the spherical cavity. The total energy (obtained by summing up the exact contributions of the eigenvalues and their weights, for low values of the adiabatic invariance) does not obey any longer Stefan-Boltzmann law. The new law includes a corrective factor depending on γ and imposes a faster decrease of the total energy to zero, for γ → 0. We have defined the double quantized regime both for cubic and spherical cavities by the superior and inferior limits put on the principal quantum numbers or the adiabatic invariance. The total energy of the double quantized cavities shows large differences from the classical calculations over unexpected large intervals, which are measurable and put in evidence important macroscopic quantum effects. (author)
The brush model - a new approach to numerical modeling of matrix diffusion in fractured clay stone
International Nuclear Information System (INIS)
Lege, T.; Shao, H.
1998-01-01
A special approach for numerical modeling of contaminant transport in fractured clay stone is presented. The rock matrix and the fractures are simulated with individual formulations for FE grids and transport, coupled into a single model. The capacity of the rock matrix to take up contaminants is taken into consideration with a discrete simulation of matrix diffusion. Thus, the natural process of retardation due to matrix diffusion can be better simulated than by a standard introduction of an empirical parameter into the transport equation. Transport in groundwater in fractured clay stone can be simulated using a model called a 'brush model'. The 'brush handle' is discretized by 2-D finite elements. Advective-dispersive transport in groundwater in the fractures is assumed. The contaminant diffuses into 1D finite elements perpendicular to the fractures, i.e., the 'bristles of the brush'. The conclusion is drawn that matrix diffusion is an important property of fractured clay stone for contaminant retardation. (author)
Thermal shale fracturing simulation using the Cohesive Zone Method (CZM)
Enayatpour, Saeid; van Oort, Eric; Patzek, Tadeusz
2018-01-01
Extensive research has been conducted over the past two decades to improve hydraulic fracturing methods used for hydrocarbon recovery from tight reservoir rocks such as shales. Our focus in this paper is on thermal fracturing of such tight rocks to enhance hydraulic fracturing efficiency. Thermal fracturing is effective in generating small fractures in the near-wellbore zone - or in the vicinity of natural or induced fractures - that may act as initiation points for larger fractures. Previous analytical and numerical results indicate that thermal fracturing in tight rock significantly enhances rock permeability, thereby enhancing hydrocarbon recovery. Here, we present a more powerful way of simulating the initiation and propagation of thermally induced fractures in tight formations using the Cohesive Zone Method (CZM). The advantages of CZM are: 1) CZM simulation is fast compared to similar models which are based on the spring-mass particle method or Discrete Element Method (DEM); 2) unlike DEM, rock material complexities such as scale-dependent failure behavior can be incorporated in a CZM simulation; 3) CZM is capable of predicting the extent of fracture propagation in rock, which is more difficult to determine in a classic finite element approach. We demonstrate that CZM delivers results for the challenging fracture propagation problem of similar accuracy to the eXtended Finite Element Method (XFEM) while reducing complexity and computational effort. Simulation results for thermal fracturing in the near-wellbore zone show the effect of stress anisotropy in fracture propagation in the direction of the maximum horizontal stress. It is shown that CZM can be used to readily obtain the extent and the pattern of induced thermal fractures.
Thermal shale fracturing simulation using the Cohesive Zone Method (CZM)
Enayatpour, Saeid
2018-05-17
Extensive research has been conducted over the past two decades to improve hydraulic fracturing methods used for hydrocarbon recovery from tight reservoir rocks such as shales. Our focus in this paper is on thermal fracturing of such tight rocks to enhance hydraulic fracturing efficiency. Thermal fracturing is effective in generating small fractures in the near-wellbore zone - or in the vicinity of natural or induced fractures - that may act as initiation points for larger fractures. Previous analytical and numerical results indicate that thermal fracturing in tight rock significantly enhances rock permeability, thereby enhancing hydrocarbon recovery. Here, we present a more powerful way of simulating the initiation and propagation of thermally induced fractures in tight formations using the Cohesive Zone Method (CZM). The advantages of CZM are: 1) CZM simulation is fast compared to similar models which are based on the spring-mass particle method or Discrete Element Method (DEM); 2) unlike DEM, rock material complexities such as scale-dependent failure behavior can be incorporated in a CZM simulation; 3) CZM is capable of predicting the extent of fracture propagation in rock, which is more difficult to determine in a classic finite element approach. We demonstrate that CZM delivers results for the challenging fracture propagation problem of similar accuracy to the eXtended Finite Element Method (XFEM) while reducing complexity and computational effort. Simulation results for thermal fracturing in the near-wellbore zone show the effect of stress anisotropy in fracture propagation in the direction of the maximum horizontal stress. It is shown that CZM can be used to readily obtain the extent and the pattern of induced thermal fractures.
Couple stresses and the fracture of rock.
Atkinson, Colin; Coman, Ciprian D; Aldazabal, Javier
2015-03-28
An assessment is made here of the role played by the micropolar continuum theory on the cracked Brazilian disc test used for determining rock fracture toughness. By analytically solving the corresponding mixed boundary-value problems and employing singular-perturbation arguments, we provide closed-form expressions for the energy release rate and the corresponding stress-intensity factors for both mode I and mode II loading. These theoretical results are augmented by a set of fracture toughness experiments on both sandstone and marble rocks. It is further shown that the morphology of the fracturing process in our centrally pre-cracked circular samples correlates very well with discrete element simulations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Hsu, Pi-Fem
2014-12-01
Taiwan's global budgeting for hospital health care, in comparison to other countries, assigns a regional budget cap for hospitals' medical benefits claimed on the basis of fee-for-service (FFS) payments. This study uses a stays-hospitals-years database comprising acute myocardial infarction inpatients to examine whether the reimbursement policy mitigates the medical benefits claimed to a third-payer party during 2000-2008. The estimated results of a nested random-effects model showed that hospitals attempted to increase their medical benefit claims under the influence of initial implementation of global budgeting. The magnitudes of hospitals' responses to global budgeting were significantly attributed to hospital ownership, accreditation status, and market competitiveness of a region. The results imply that the regional budget cap superimposed on FFS payments provides only blunt incentive to the hospitals to cooperate to contain medical resource utilization, unless a monitoring mechanism attached with the payment system.
Traumatic thoracolumbar spine fractures
J. Siebenga (Jan)
2013-01-01
textabstractTraumatic spinal fractures have the lowest functional outcomes and the lowest rates of return to work after injury of all major organ systems.1 This thesis will cover traumatic thoracolumbar spine fractures and not osteoporotic spine fractures because of the difference in fracture
Fractures in multiple sclerosis
DEFF Research Database (Denmark)
Stenager, E; Jensen, K
1991-01-01
In a cross-sectional study of 299 MS patients 22 have had fractures and of these 17 after onset of MS. The fractures most frequently involved the femoral neck and trochanter (41%). Three patients had had more than one fracture. Only 1 patient had osteoporosis. The percentage of fractures increase...
International Nuclear Information System (INIS)
Kanis, John A.; Johansson, Helena; Oden, Anders; McCloskey, Eugene V.
2009-01-01
Fractures are a common complication of osteoporosis. Although osteoporosis is defined by bone mineral density at the femoral neck, other sites and validated techniques can be used for fracture prediction. Several clinical risk factors contribute to fracture risk independently of BMD. These include age, prior fragility fracture, smoking, excess alcohol, family history of hip fracture, rheumatoid arthritis and the use of oral glucocorticoids. These risk factors in conjunction with BMD can be integrated to provide estimates of fracture probability using the FRAX tool. Fracture probability rather than BMD alone can be used to fashion strategies for the assessment and treatment of osteoporosis.
Perfect discretization of path integrals
International Nuclear Information System (INIS)
Steinhaus, Sebastian
2012-01-01
In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discussed. Furthermore we show that a reparametrization invariant path integral implies discretization independence and acts as a projector onto physical states.
Perfect discretization of path integrals
Steinhaus, Sebastian
2012-05-01
In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discussed. Furthermore we show that a reparametrization invariant path integral implies discretization independence and acts as a projector onto physical states.
The origin of discrete particles
Bastin, T
2009-01-01
This book is a unique summary of the results of a long research project undertaken by the authors on discreteness in modern physics. In contrast with the usual expectation that discreteness is the result of mathematical tools for insertion into a continuous theory, this more basic treatment builds up the world from the discrimination of discrete entities. This gives an algebraic structure in which certain fixed numbers arise. As such, one agrees with the measured value of the fine-structure constant to one part in 10,000,000 (10 7 ). Sample Chapter(s). Foreword (56 KB). Chapter 1: Introduction
Understanding hydraulic fracturing: a multi-scale problem
Hyman, J. D.; Jiménez-Martínez, J.; Viswanathan, H. S.; Carey, J. W.; Porter, M. L.; Rougier, E.; Karra, S.; Kang, Q.; Frash, L.; Chen, L.; Lei, Z.; O’Malley, D.; Makedonska, N.
2016-01-01
Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nanometres to kilometres. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical and experimental efforts/methods. At the field scale, we use discrete fracture network modelling to simulate production of a hydraulically fractured well from a fracture network that is based on the site characterization of a shale gas reservoir. At the core scale, we use triaxial fracture experiments and a finite-discrete element model to study dynamic fracture/crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and shale rock micromodels to study pore-scale flow and transport phenomena, including multi-phase flow and fluids mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs. Finally, we discuss the potential of CO2 as an alternative working fluid, both in fracturing and re-stimulating activities, beyond its environmental advantages. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597789
Synchronization Techniques in Parallel Discrete Event Simulation
Lindén, Jonatan
2018-01-01
Discrete event simulation is an important tool for evaluating system models in many fields of science and engineering. To improve the performance of large-scale discrete event simulations, several techniques to parallelize discrete event simulation have been developed. In parallel discrete event simulation, the work of a single discrete event simulation is distributed over multiple processing elements. A key challenge in parallel discrete event simulation is to ensure that causally dependent ...
3-D Discrete Analytical Ridgelet Transform
Helbert , David; Carré , Philippe; Andrès , Éric
2006-01-01
International audience; In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines:...
Water flow and solute transport through fractured rock
International Nuclear Information System (INIS)
Bolt, J.E.; Bourke, P.J.; Pascoe, D.M.; Watkins, V.M.B.; Kingdon, R.D.
1990-09-01
In densely fractured slate at the Nirex research site in Cornwall, the positions, orientations and hydraulic conductivities of the 380 fractures intersecting a drill hole between 9 and 50 m depth have been individually measured. These data have been used: to determine the dimensions of statistically representative volumes of the network of fractures and to predict, using discrete flow path modelling and the NAPSAC code, the total flows into the fractures when large numbers are simultaneously pressurised along various lengths of the hole. Corresponding measurements, which validated the NAPSAC code to factor of two accuracy for the Cornish site, are reported. Possibilities accounting for this factor are noted for experimental investigation, and continuing, more extensive, inter hole flow and transport measurements are outlined. The application of this experimental and theoretical approach for calculating radionuclide transport in less densely fractured rock suitable for waste disposal is discussed. (Author)
Water flow and solute transport through fractured rock
International Nuclear Information System (INIS)
Bourke, P.J.; Kingdon, R.D.; Bolt, J.E.; Pascoe, D.M.; Watkins, V.M.B.
1991-01-01
In densely fractured slate at the Nirex research site in Cornwall, the positions, orientations and hydraulic conductivities of the 380 fractures intersecting a drill hole between 9 and 50 m depths have been individually measured. These data have been used: - to determine the dimensions of statistically representative volumes of the sheetwork of fractures; - to predict; using discrete flowpath modelling and the NAPSAC code; the total flows into the fractures when large numbers are simultaneously pressurised along various lengths of the hole; Corresponding measurements, which proved the modelling and validated the code to factor of two accuracy, are reported. Possibilities accounting for this factor are noted for experimental investigation, and continuing, more extensive inter-hole flow and transport measurements are outlined. The application of this experimental and theoretical approach for calculating radionuclide transport in less densely fractured rock suitable for waste disposal is discussed. 7 figs., 9 refs
Wang, Yang; Ma, Guowei; Ren, Feng; Li, Tuo
2017-12-01
A constrained Delaunay discretization method is developed to generate high-quality doubly adaptive meshes of highly discontinuous geological media. Complex features such as three-dimensional discrete fracture networks (DFNs), tunnels, shafts, slopes, boreholes, water curtains, and drainage systems are taken into account in the mesh generation. The constrained Delaunay triangulation method is used to create adaptive triangular elements on planar fractures. Persson's algorithm (Persson, 2005), based on an analogy between triangular elements and spring networks, is enriched to automatically discretize a planar fracture into mesh points with varying density and smooth-quality gradient. The triangulated planar fractures are treated as planar straight-line graphs (PSLGs) to construct piecewise-linear complex (PLC) for constrained Delaunay tetrahedralization. This guarantees the doubly adaptive characteristic of the resulted mesh: the mesh is adaptive not only along fractures but also in space. The quality of elements is compared with the results from an existing method. It is verified that the present method can generate smoother elements and a better distribution of element aspect ratios. Two numerical simulations are implemented to demonstrate that the present method can be applied to various simulations of complex geological media that contain a large number of discontinuities.
Statistical analysis of fracture data, adapted for modelling Discrete Fracture Networks-Version 2
Energy Technology Data Exchange (ETDEWEB)
Munier, Raymond
2004-04-01
The report describes the parameters which are necessary for DFN modelling, the way in which they can be extracted from the data base acquired during site investigations, and their assignment to geometrical objects in the geological model. The purpose here is to present a methodology for use in SKB modelling projects. Though the methodology is deliberately tuned to facilitate subsequent DFN modelling with other tools, some of the recommendations presented here are applicable to other aspects of geo-modelling as well. For instance, we here recommend a nomenclature to be used within SKB modelling projects, which are truly multidisciplinary, to ease communications between scientific disciplines and avoid misunderstanding of common concepts. This report originally occurred as an appendix to a strategy report for geological modelling (SKB-R--03-07). Strategy reports were intended to be successively updated to include experience gained during site investigations and site modelling. Rather than updating the entire strategy report, we choose to present the update of the appendix as a stand-alone document. This document thus replaces Appendix A2 in SKB-R--03-07. In short, the update consists of the following: The target audience has been broadened and as a consequence thereof, the purpose of the document. Correction of errors found in various formulae. All expressions have been rewritten. Inclusion of more worked examples in each section. A new section describing area normalisation. A new section on spatial correlation. A new section describing anisotropy. A new chapter describing the expected output from DFN modelling, within SKB projects.
Statistical analysis of fracture data, adapted for modelling Discrete Fracture Networks-Version 2
International Nuclear Information System (INIS)
Munier, Raymond
2004-04-01
The report describes the parameters which are necessary for DFN modelling, the way in which they can be extracted from the data base acquired during site investigations, and their assignment to geometrical objects in the geological model. The purpose here is to present a methodology for use in SKB modelling projects. Though the methodology is deliberately tuned to facilitate subsequent DFN modelling with other tools, some of the recommendations presented here are applicable to other aspects of geo-modelling as well. For instance, we here recommend a nomenclature to be used within SKB modelling projects, which are truly multidisciplinary, to ease communications between scientific disciplines and avoid misunderstanding of common concepts. This report originally occurred as an appendix to a strategy report for geological modelling (SKB-R--03-07). Strategy reports were intended to be successively updated to include experience gained during site investigations and site modelling. Rather than updating the entire strategy report, we choose to present the update of the appendix as a stand-alone document. This document thus replaces Appendix A2 in SKB-R--03-07. In short, the update consists of the following: The target audience has been broadened and as a consequence thereof, the purpose of the document. Correction of errors found in various formulae. All expressions have been rewritten. Inclusion of more worked examples in each section. A new section describing area normalisation. A new section on spatial correlation. A new section describing anisotropy. A new chapter describing the expected output from DFN modelling, within SKB projects
Exact analysis of discrete data
Hirji, Karim F
2005-01-01
Researchers in fields ranging from biology and medicine to the social sciences, law, and economics regularly encounter variables that are discrete or categorical in nature. While there is no dearth of books on the analysis and interpretation of such data, these generally focus on large sample methods. When sample sizes are not large or the data are otherwise sparse, exact methods--methods not based on asymptotic theory--are more accurate and therefore preferable.This book introduces the statistical theory, analysis methods, and computation techniques for exact analysis of discrete data. After reviewing the relevant discrete distributions, the author develops the exact methods from the ground up in a conceptually integrated manner. The topics covered range from univariate discrete data analysis, a single and several 2 x 2 tables, a single and several 2 x K tables, incidence density and inverse sampling designs, unmatched and matched case -control studies, paired binary and trinomial response models, and Markov...
Discrete geometric structures for architecture
Pottmann, Helmut
2010-01-01
. The talk will provide an overview of recent progress in this field, with a particular focus on discrete geometric structures. Most of these result from practical requirements on segmenting a freeform shape into planar panels and on the physical realization
Causal Dynamics of Discrete Surfaces
Directory of Open Access Journals (Sweden)
Pablo Arrighi
2014-03-01
Full Text Available We formalize the intuitive idea of a labelled discrete surface which evolves in time, subject to two natural constraints: the evolution does not propagate information too fast; and it acts everywhere the same.
Representative elements: A step to large-scale fracture system simulation
International Nuclear Information System (INIS)
Clemo, T.M.
1987-01-01
Large-scale simulation of flow and transport in fractured media requires the development of a technique to represent the effect of a large number of fractures. Representative elements are used as a tool to model a subset of a fracture system as a single distributed entity. Representative elements are part of a modeling concept called dual permeability. Dual permeability modeling combines discrete fracture simulation of the most important fractures with the distributed modeling of the less important fracture of a fracture system. This study investigates the use of stochastic analysis to determine properties of representative elements. Given an assumption of fully developed laminar flow, the net fracture conductivities and hence flow velocities can be determined from descriptive statistics of fracture spacing, orientation, aperture, and extent. The distribution of physical characteristics about their mean leads to a distribution of the associated conductivities. The variance of hydraulic conductivity induces dispersion into the transport process. Simple fracture systems are treated to demonstrate the usefulness of stochastic analysis. Explicit equations for conductivity of an element are developed and the dispersion characteristics are shown. Explicit formulation of the hydraulic conductivity and transport dispersion reveals the dependence of these important characteristics on the parameters used to describe the fracture system. Understanding these dependencies will help to focus efforts to identify the characteristics of fracture systems. Simulations of stochastically generated fracture sets do not provide this explicit functional dependence on the fracture system parameters. 12 refs., 6 figs
Perfect discretization of path integrals
Steinhaus, Sebastian
2011-01-01
In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discu...
Origin of Permeability and Structure of Flows in Fractured Media
De Dreuzy, J.; Darcel, C.; Davy, P.; Erhel, J.; Le Goc, R.; Maillot, J.; Meheust, Y.; Pichot, G.; Poirriez, B.
2013-12-01
its consequence for crustal hydromechanics, Journal of Geophysical Research-Solid Earth, 115, 13. de Dreuzy, J.-R., et al. (2012a), Influence of fracture scale heterogeneity on the flow properties of three-dimensional Discrete Fracture Networks (DFN), J. Geophys. Res.-Earth Surf., 117(B11207), 21 PP. de Dreuzy, J.-R., et al. (2012b), Synthetic benchmark for modeling flow in 3D fractured media, Computers and Geosciences(0). Pichot, G., et al. (2010), A Mixed Hybrid Mortar Method for solving flow in Discrete Fracture Networks, Applicable Analysis, 89(10), 1729-1643. Pichot, G., et al. (2012), Flow simulation in 3D multi-scale fractured networks using non-matching meshes, SIAM Journal on Scientific Computing (SISC), 34(1). Figure: (a) Fracture network with a broad-range of fracture lengths. (b) Flows (log-scale) with homogeneous fractures. (c) Flows (log-scale) with heterogeneous fractures [de Dreuzy et al., 2012a]. The impact of the fracture apertures (c) is illustrated on the organization of flows.
Alfa, Attahiru S
2016-01-01
This book introduces the theoretical fundamentals for modeling queues in discrete-time, and the basic procedures for developing queuing models in discrete-time. There is a focus on applications in modern telecommunication systems. It presents how most queueing models in discrete-time can be set up as discrete-time Markov chains. Techniques such as matrix-analytic methods (MAM) that can used to analyze the resulting Markov chains are included. This book covers single node systems, tandem system and queueing networks. It shows how queues with time-varying parameters can be analyzed, and illustrates numerical issues associated with computations for the discrete-time queueing systems. Optimal control of queues is also covered. Applied Discrete-Time Queues targets researchers, advanced-level students and analysts in the field of telecommunication networks. It is suitable as a reference book and can also be used as a secondary text book in computer engineering and computer science. Examples and exercises are includ...
Paratrooper's ankle fracture: posterior malleolar fracture.
Young, Ki Won; Kim, Jin-su; Cho, Jae Ho; Kim, Hyung Seuk; Cho, Hun Ki; Lee, Kyung Tai
2015-03-01
We assessed the frequency and types of ankle fractures that frequently occur during parachute landings of special operation unit personnel and analyzed the causes. Fifty-six members of the special force brigade of the military who had sustained ankle fractures during parachute landings between January 2005 and April 2010 were retrospectively analyzed. The injury sites and fracture sites were identified and the fracture types were categorized by the Lauge-Hansen and Weber classifications. Follow-up surveys were performed with respect to the American Orthopedic Foot and Ankle Society ankle-hindfoot score, patient satisfaction, and return to preinjury activity. The patients were all males with a mean age of 23.6 years. There were 28 right and 28 left ankle fractures. Twenty-two patients had simple fractures and 34 patients had comminuted fractures. The average number of injury and fractures sites per person was 2.07 (116 injuries including a syndesmosis injury and a deltoid injury) and 1.75 (98 fracture sites), respectively. Twenty-three cases (41.07%) were accompanied by posterior malleolar fractures. Fifty-five patients underwent surgery; of these, 30 had plate internal fixations. Weber type A, B, and C fractures were found in 4, 38, and 14 cases, respectively. Based on the Lauge-Hansen classification, supination-external rotation injuries were found in 20 cases, supination-adduction injuries in 22 cases, pronation-external rotation injuries in 11 cases, tibiofibular fractures in 2 cases, and simple medial malleolar fractures in 2 cases. The mean follow-up period was 23.8 months, and the average follow-up American Orthopedic Foot and Ankle Society ankle-hindfoot score was 85.42. Forty-five patients (80.36%) reported excellent or good satisfaction with the outcome. Posterior malleolar fractures occurred in 41.07% of ankle fractures sustained in parachute landings. Because most of the ankle fractures in parachute injuries were compound fractures, most cases had to
Fracture mechanical materials characterisation
International Nuclear Information System (INIS)
Wallin, K.; Planman, T.; Nevalainen, M.
1998-01-01
The experimental fracture mechanics development has been focused on the determination of reliable lower-bound fracture toughness estimates from small and miniature specimens, in particular considering the statistical aspects and loading rate effects of fracture mechanical material properties. Additionally, materials aspects in fracture assessment of surface cracks, with emphasis on the transferability of fracture toughness data to structures with surface flaws have been investigated. Further a modified crack-arrest fracture toughness test method, to increase the effectiveness of testing, has been developed. (orig.)
Discrete Curvature Theories and Applications
Sun, Xiang
2016-08-25
Discrete Di erential Geometry (DDG) concerns discrete counterparts of notions and methods in di erential geometry. This thesis deals with a core subject in DDG, discrete curvature theories on various types of polyhedral surfaces that are practically important for free-form architecture, sunlight-redirecting shading systems, and face recognition. Modeled as polyhedral surfaces, the shapes of free-form structures may have to satisfy di erent geometric or physical constraints. We study a combination of geometry and physics { the discrete surfaces that can stand on their own, as well as having proper shapes for the manufacture. These proper shapes, known as circular and conical meshes, are closely related to discrete principal curvatures. We study curvature theories that make such surfaces possible. Shading systems of freeform building skins are new types of energy-saving structures that can re-direct the sunlight. From these systems, discrete line congruences across polyhedral surfaces can be abstracted. We develop a new curvature theory for polyhedral surfaces equipped with normal congruences { a particular type of congruences de ned by linear interpolation of vertex normals. The main results are a discussion of various de nitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula. In addition to architecture, we consider the role of discrete curvatures in face recognition. We use geometric measure theory to introduce the notion of asymptotic cones associated with a singular subspace of a Riemannian manifold, which is an extension of the classical notion of asymptotic directions. We get a simple expression of these cones for polyhedral surfaces, as well as convergence and approximation theorems. We use the asymptotic cones as facial descriptors and demonstrate the
Lang, Joerg; Brandes, Christian; Winsemann, Jutta
2017-04-01
The facies distribution and architecture of submarine fans can be strongly impacted by erosion and deposition by supercritical density flows. We present field examples from the Sandino Forearc Basin (southern Central America), where cyclic-step and antidune deposits represent important sedimentary facies of coarse-grained channel-levée complexes. These bedforms occur in all sub-environments of the depositional systems and relate to the different stages of avulsion, bypass, levée construction and channel backfilling. Large-scale scours (18 to 29 m deep, 18 to 25 m wide, 60 to >120 m long) with an amalgamated infill, comprising massive, normally coarse-tail graded or spaced subhorizontally stratified conglomerates and pebbly sandstones, are interpreted as deposits of the hydraulic-jump zone of cyclic steps. These cyclic steps probably formed during avulsion, when high-density flows were routed into the evolving channel. The large-scale scour fills can be distinguished from small-scale channel fills based on the preservation of a steep upper margin and a coarse-grained infill comprising mainly amalgamated hydraulic-jump deposits. Channel fills include repetitive successions deposited by cyclic steps with superimposed antidunes. The hydraulic-jump zone of cyclic-step deposits comprises regularly spaced scours (0.2 to 2.6 m deep, 0.8 to 23 m wide), which are infilled by intraclast-rich conglomerates or pebbly sandstones and display normal coarse-tail grading or backsets. Laterally and vertically these deposits are associated with subhorizontally stratified, low-angle cross-stratified or sinusoidal stratified pebbly sandstones and sandstones (wavelength 0.5 to 18 m), interpreted as representing antidune deposits formed on the stoss-side of the cyclic steps during flow re-acceleration. The field examples indicate that so-called crudely or spaced stratified deposits may commonly represent antidune deposits with varying stratification styles controlled by the aggradation
Modeling of brittle-viscous flow using discrete particles
Thordén Haug, Øystein; Barabasch, Jessica; Virgo, Simon; Souche, Alban; Galland, Olivier; Mair, Karen; Abe, Steffen; Urai, Janos L.
2017-04-01
Many geological processes involve both viscous flow and brittle fractures, e.g. boudinage, folding and magmatic intrusions. Numerical modeling of such viscous-brittle materials poses challenges: one has to account for the discrete fracturing, the continuous viscous flow, the coupling between them, and potential pressure dependence of the flow. The Discrete Element Method (DEM) is a numerical technique, widely used for studying fracture of geomaterials. However, the implementation of viscous fluid flow in discrete element models is not trivial. In this study, we model quasi-viscous fluid flow behavior using Esys-Particle software (Abe et al., 2004). We build on the methodology of Abe and Urai (2012) where a combination of elastic repulsion and dashpot interactions between the discrete particles is implemented. Several benchmarks are presented to illustrate the material properties. Here, we present extensive, systematic material tests to characterize the rheology of quasi-viscous DEM particle packing. We present two tests: a simple shear test and a channel flow test, both in 2D and 3D. In the simple shear tests, simulations were performed in a box, where the upper wall is moved with a constant velocity in the x-direction, causing shear deformation of the particle assemblage. Here, the boundary conditions are periodic on the sides, with constant forces on the upper and lower walls. In the channel flow tests, a piston pushes a sample through a channel by Poisseuille flow. For both setups, we present the resulting stress-strain relationships over a range of material parameters, confining stress and strain rate. Results show power-law dependence between stress and strain rate, with a non-linear dependence on confining force. The material is strain softening under some conditions (which). Additionally, volumetric strain can be dilatant or compactant, depending on porosity, confining pressure and strain rate. Constitutive relations are implemented in a way that limits the
Analysis of Discrete Mittag - Leffler Functions
Directory of Open Access Journals (Sweden)
N. Shobanadevi
2015-03-01
Full Text Available Discrete Mittag - Leffler functions play a major role in the development of the theory of discrete fractional calculus. In the present article, we analyze qualitative properties of discrete Mittag - Leffler functions and establish sufficient conditions for convergence, oscillation and summability of the infinite series associated with discrete Mittag - Leffler functions.
Foundations of a discrete physics
International Nuclear Information System (INIS)
McGoveran, D.; Noyes, P.
1988-01-01
Starting from the principles of finiteness, discreteness, finite computability and absolute nonuniqueness, we develop the ordering operator calculus, a strictly constructive mathematical system having the empirical properties required by quantum mechanical and special relativistic phenomena. We show how to construct discrete distance functions, and both rectangular and spherical coordinate systems(with a discrete version of ''π''). The richest discrete space constructible without a preferred axis and preserving translational and rotational invariance is shown to be a discrete 3-space with the usual symmetries. We introduce a local ordering parameter with local (proper) time-like properties and universal ordering parameters with global (cosmological) time-like properties. Constructed ''attribute velocities'' connect ensembles with attributes that are invariant as the appropriate time-like parameter increases. For each such attribute, we show how to construct attribute velocities which must satisfy the '' relativistic Doppler shift'' and the ''relativistic velocity composition law,'' as well as the Lorentz transformations. By construction, these velocities have finite maximum and minimum values. In the space of all attributes, the minimum of these maximum velocities will predominate in all multiple attribute computations, and hence can be identified as a fundamental limiting velocity, General commutation relations are constructed which under the physical interpretation are shown to reduce to the usual quantum mechanical commutation relations. 50 refs., 18 figs
Discrete-Feature Model Implementation of SDM-Site Forsmark
International Nuclear Information System (INIS)
Geier, Joel
2010-03-01
A discrete-feature model (DFM) was implemented for the Forsmark repository site based on the final site descriptive model from surface based investigations. The discrete-feature conceptual model represents deformation zones, individual fractures, and other water-conducting features around a repository as discrete conductors surrounded by a rock matrix which, in the present study, is treated as impermeable. This approximation is reasonable for sites in crystalline rock which has very low permeability, apart from that which results from macroscopic fracturing. Models are constructed based on the geological and hydrogeological description of the sites and engineering designs. Hydraulic heads and flows through the network of water-conducting features are calculated by the finite-element method, and are used in turn to simulate migration of non-reacting solute by a particle-tracking method, in order to estimate the properties of pathways by which radionuclides could be released to the biosphere. Stochastic simulation is used to evaluate portions of the model that can only be characterized in statistical terms, since many water-conducting features within the model volume cannot be characterized deterministically. Chapter 2 describes the methodology by which discrete features are derived to represent water-conducting features around the hypothetical repository at Forsmark (including both natural features and features that result from the disturbance of excavation), and then assembled to produce a discrete-feature network model for numerical simulation of flow and transport. Chapter 3 describes how site-specific data and repository design are adapted to produce the discrete-feature model. Chapter 4 presents results of the calculations. These include utilization factors for deposition tunnels based on the emplacement criteria that have been set forth by the implementers, flow distributions to the deposition holes, and calculated properties of discharge paths as well as
Discrete-Feature Model Implementation of SDM-Site Forsmark
Energy Technology Data Exchange (ETDEWEB)
Geier, Joel (Clearwater Hardrock Consulting, Corvallis, OR (United States))
2010-03-15
A discrete-feature model (DFM) was implemented for the Forsmark repository site based on the final site descriptive model from surface based investigations. The discrete-feature conceptual model represents deformation zones, individual fractures, and other water-conducting features around a repository as discrete conductors surrounded by a rock matrix which, in the present study, is treated as impermeable. This approximation is reasonable for sites in crystalline rock which has very low permeability, apart from that which results from macroscopic fracturing. Models are constructed based on the geological and hydrogeological description of the sites and engineering designs. Hydraulic heads and flows through the network of water-conducting features are calculated by the finite-element method, and are used in turn to simulate migration of non-reacting solute by a particle-tracking method, in order to estimate the properties of pathways by which radionuclides could be released to the biosphere. Stochastic simulation is used to evaluate portions of the model that can only be characterized in statistical terms, since many water-conducting features within the model volume cannot be characterized deterministically. Chapter 2 describes the methodology by which discrete features are derived to represent water-conducting features around the hypothetical repository at Forsmark (including both natural features and features that result from the disturbance of excavation), and then assembled to produce a discrete-feature network model for numerical simulation of flow and transport. Chapter 3 describes how site-specific data and repository design are adapted to produce the discrete-feature model. Chapter 4 presents results of the calculations. These include utilization factors for deposition tunnels based on the emplacement criteria that have been set forth by the implementers, flow distributions to the deposition holes, and calculated properties of discharge paths as well as
Chen, Tao; Clauser, Christoph; Marquart, Gabriele; Willbrand, Karen; Hiller, Thomas
2018-02-01
Upscaling permeability of grid blocks is crucial for groundwater models. A novel upscaling method for three-dimensional fractured porous rocks is presented. The objective of the study was to compare this method with the commonly used Oda upscaling method and the volume averaging method. First, the multiple boundary method and its computational framework were defined for three-dimensional stochastic fracture networks. Then, the different upscaling methods were compared for a set of rotated fractures, for tortuous fractures, and for two discrete fracture networks. The results computed by the multiple boundary method are comparable with those of the other two methods and fit best the analytical solution for a set of rotated fractures. The errors in flow rate of the equivalent fracture model decrease when using the multiple boundary method. Furthermore, the errors of the equivalent fracture models increase from well-connected fracture networks to poorly connected ones. Finally, the diagonal components of the equivalent permeability tensors tend to follow a normal or log-normal distribution for the well-connected fracture network model with infinite fracture size. By contrast, they exhibit a power-law distribution for the poorly connected fracture network with multiple scale fractures. The study demonstrates the accuracy and the flexibility of the multiple boundary upscaling concept. This makes it attractive for being incorporated into any existing flow-based upscaling procedures, which helps in reducing the uncertainty of groundwater models.
Fractures (Broken Bones): First Aid
First aid Fractures (broken bones) Fractures (broken bones): First aid By Mayo Clinic Staff A fracture is a ... 10, 2018 Original article: http://www.mayoclinic.org/first-aid/first-aid-fractures/basics/ART-20056641 . Mayo Clinic ...
Ongoing Model Development Analyzing Glass Fracture
DEFF Research Database (Denmark)
Molnar, G.; Bojtar, I.; Nielsen, Jens Henrik
2013-01-01
Present subject deals with an ongoing experimental and numerical analysis of inplane loaded glass plates. The main goal of the investigation is to develop a hybrid – discrete and finite element – model which could follow the fracture process in annealed and in tempered glass. Measurements of the ...... an overview of the structure of the research and a summary of current status archived so far.......Present subject deals with an ongoing experimental and numerical analysis of inplane loaded glass plates. The main goal of the investigation is to develop a hybrid – discrete and finite element – model which could follow the fracture process in annealed and in tempered glass. Measurements...... of the residual stress state before failure and high-speed camera recordings of the failure are being performed in order to verify the numerical model. The primary goal of this research is to follow the overall fracture of a structural element – e.g. beam – loaded inplane. Present paper would like to give...
An Efficient Mesh Generation Method for Fractured Network System Based on Dynamic Grid Deformation
Directory of Open Access Journals (Sweden)
Shuli Sun
2013-01-01
Full Text Available Meshing quality of the discrete model influences the accuracy, convergence, and efficiency of the solution for fractured network system in geological problem. However, modeling and meshing of such a fractured network system are usually tedious and difficult due to geometric complexity of the computational domain induced by existence and extension of fractures. The traditional meshing method to deal with fractures usually involves boundary recovery operation based on topological transformation, which relies on many complicated techniques and skills. This paper presents an alternative and efficient approach for meshing fractured network system. The method firstly presets points on fractures and then performs Delaunay triangulation to obtain preliminary mesh by point-by-point centroid insertion algorithm. Then the fractures are exactly recovered by local correction with revised dynamic grid deformation approach. Smoothing algorithm is finally applied to improve the quality of mesh. The proposed approach is efficient, easy to implement, and applicable to the cases of initial existing fractures and extension of fractures. The method is successfully applied to modeling of two- and three-dimensional discrete fractured network (DFN system in geological problems to demonstrate its effectiveness and high efficiency.
Zhang, Junwei; Hong, Xuezhi; Liu, Jie; Guo, Changjian
2018-04-01
In this work, we investigate and experimentally demonstrate an orthogonal frequency division multiplexing (OFDM) based high speed wavelength-division multiplexed (WDM) visible light communication (VLC) system using an inter-block data precoding and superimposed pilots (DP-SP) based channel estimation (CE) scheme. The residual signal-to-pilot interference (SPI) can be eliminated by using inter-block data precoding, resulting in a significant improvement in estimated accuracy and the overall system performance compared with uncoded SP based CE scheme. We also study the power allocation/overhead problem of the training for DP-SP, uncoded SP and conventional preamble based CE schemes, from which we obtain the optimum signal-to-pilot power ratio (SPR)/overhead percentage for all above cases. Intra-symbol frequency-domain averaging (ISFA) is also adopted to further enhance the accuracy of CE. By using the DP-SP based CE scheme, aggregate data rates of 1.87-Gbit/s and 1.57-Gbit/s are experimentally demonstrated over 0.8-m and 2-m indoor free space transmission, respectively, using a commercially available red, green and blue (RGB) light emitting diode (LED) with WDM. Experimental results show that the DP-SP based CE scheme is comparable to the conventional preamble based CE scheme in term of received Q factor and data rate while entailing a much smaller overhead-size.
Rosenthal, T; Bass, A; Grossman, E; Shani, M; Griffel, B; Adar, R
1987-09-01
Renovascular hypertension superimposed on essential hypertension, a condition encountered in the elderly, was studied. An experimental animal model consisting of a two-kidney one-clip Goldblatt preparation in the spontaneous hypertensive (SHR) rat, that would simulate this condition, was designed. A 0.25 mm silver clip was placed on the left renal artery of SHR male rats. The same procedure performed on WKY rats served as control. All experiments were performed on low, normal, and rich sodium diet. Systolic blood pressure (BP) was measured by tail-cuff method. Plasma renin concentration (PRC) was determined before and after clipping of the renal artery. Results were as follows: Mean systolic BP increased significantly in clipped rats fed with normal and rich sodium diets. SHR showed an increase from 144 +/- 3 (mean + s.e.m.) to 168 +/- 3 mmHg, and WKY rats showed an increase from 120 +/- 2 to 139 +/- 5 mmHg. There was a two- to threefold rise in PRC. A low-salt diet given prior to clipping prevented the appearance of renovascular hypertension despite a significant rise in PRC. We concluded that renal artery narrowing plays a significant role in the rise of BP in the basically essential type of hypertension.
Persistent 1.5s oscillations superimposed to a solar burst observed at two mm-wavelengths
International Nuclear Information System (INIS)
Zodi, A.M.; Kaufmann, P.; Zirin, H.
1983-05-01
Long-enduring quasi-periodic oscillations (1.5s) superimposed to a solar burst were by the first time observed simultaneously at two different mm-wayelengths (22 GHz and 44 GHz). The oscillations were present throughout the burst duration (about 10 min), and were delayed at 44 GHz with respect to 22 GHz by 0.3s. The relative amplitude of the oscillation was of about 20 percent at 44 GHz and of about 5 percent at 22 GHz. Interferometer measurements at 10.6 GHz indicated the burst source stable within 1 arcsec. HeD3 line flare indicated two persistent small spots separated by about 10 arcsec. The 22/44 GHz burst position has good correspondence with the HeD3 spots' location. The oscillations display features which appear to distinguish them from ultrafast time structures found in other bursts. One possible interpretation was suggested by assuming a modulation of the gyrosynchrotron emission of trapped electrons by a variable magnetic field on a double burst source, optically thin at 44 GHz and with optical thickness > or equivalent 0.3 at 22 GHz. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Imbard, G.; Lemaire, J.E. [CEA Centre d`Etudes de la Vallee du Rhone, 30 - Marcoule (France). Dept. d`Exploitation du Retraitement et de Demantelement; Carcreff, H.; Marchand, L.; Thellier, G. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Reacteurs Experimentaux
1994-12-31
Mapping the gamma activity of irradiating zones is often an important prerequisite in dismantling nuclear facilities. The operation is necessary to define a suitable decommissioning strategy before any work begins; it is also required during the procedure to measure the residual activity wherever dose rates are too high to allow human intervention. This report summarizes the work carried out under CEC contract FIED-0055, covering a prototype imaging system designed to display radioactive sources superimposed in real time over a visible light image on a video monitor. This project was developed from an earlier off-line system. The gamma photons are collimated by a double cone system. The imaging system comprises a transparent scintillator bonded to the fiber-optic window of an ultrasensitive camera. The camera was miniaturized to meet specification requirements: with its radiological shielding, the gamma camera weighs 40 kg and is 120 mm in diameter. The processing system is compatible with a realtime camera, and small enough for use at any nuclear. The point-source angular resolution is 1.4 deg. for {sup 60} Co and 0.8 deg. for {sup 137} Cs. The dose rate sensitivity limit is approximately 0.01 mGy.h{sup -1}. Process reliability was confirmed by tests in a high-level radio-metallurgy cell at actual decommissioning site. (authors). 7 figs.
Morikawa, Junko
2015-05-01
The mobile type apparatus for a quantitative micro-scale thermography using a micro-bolometer was developed based on our original techniques such as an achromatic lens design to capture a micro-scale image in long-wave infrared, a video signal superimposing for the real time emissivity correction, and a pseudo acceleration of a timeframe. The total size of the instrument was designed as it was put in the 17 cm x 28 cm x 26 cm size carrying box. The video signal synthesizer enabled to record a direct digital signal of monitoring temperature or positioning data. The encoded digital signal data embedded in each image was decoded to read out. The protocol to encode/decode the measured data was originally defined. The mixed signals of IR camera and the imposed data were applied to the pixel by pixel emissivity corrections and the pseudo-acceleration of the periodical thermal phenomena. Because the emissivity of industrial materials and biological tissues were usually inhomogeneous, it has the different temperature dependence on each pixel. The time-scale resolution for the periodic thermal event was improved with the algorithm for "pseudoacceleration". It contributes to reduce the noise by integrating the multiple image data, keeping a time resolution. The anisotropic thermal properties of some composite materials such as thermal insulating materials of cellular plastics and the biometric composite materials were analyzed using these techniques.
High-quality and small-capacity e-learning video featuring lecturer-superimposing PC screen images
Nomura, Yoshihiko; Murakami, Michinobu; Sakamoto, Ryota; Sugiura, Tokuhiro; Matsui, Hirokazu; Kato, Norihiko
2006-10-01
Information processing and communication technology are progressing quickly, and are prevailing throughout various technological fields. Therefore, the development of such technology should respond to the needs for improvement of quality in the e-learning education system. The authors propose a new video-image compression processing system that ingeniously employs the features of the lecturing scene. While dynamic lecturing scene is shot by a digital video camera, screen images are electronically stored by a PC screen image capturing software in relatively long period at a practical class. Then, a lecturer and a lecture stick are extracted from the digital video images by pattern recognition techniques, and the extracted images are superimposed on the appropriate PC screen images by off-line processing. Thus, we have succeeded to create a high-quality and small-capacity (HQ/SC) video-on-demand educational content featuring the advantages: the high quality of image sharpness, the small electronic file capacity, and the realistic lecturer motion.
Fracture toughness correlations
International Nuclear Information System (INIS)
Wallin, Kim
1986-09-01
In this study existing fracture parameter correlations are reviewed. Their applicability and reliability are discussed in detail. A new K IC -CVN-correlation, based on a theoretical brittle fracture model, is presented
... this page: //medlineplus.gov/ency/patientinstructions/000539.htm Rib fracture - aftercare To use the sharing features on this page, please enable JavaScript. A rib fracture is a crack or break in one or ...
Sprains, Strains and Fractures
... fractures. Many fractures and sprains occur during sports. Football players are particularly vulnerable to foot and ankle ... feet and ankles and take a complete medical history. He or she will also order tests, including ...
Skull fractures may occur with head injuries. Although the skull is both tough and resilient and provides excellent ... or blow can result in fracture of the skull and may be accompanied by injury to the ...
... this page: //medlineplus.gov/ency/patientinstructions/000548.htm Ankle fracture - aftercare To use the sharing features on this page, please enable JavaScript. An ankle fracture is a break in 1 or more ankle ...
International Nuclear Information System (INIS)
Wang, J.S.Y.; Narasimhan, T.N.
1984-10-01
In contrast to the saturated zone where fluid moves rapidly along fractures, the fractures (with apertures large relative to the size of matrix pores) will desaturate first during drainage process and the bulk of fluid flow would be through interconnected pores in the matrix. Within a partially drained fracture, the presence of a relatively continuous air phase will produce practically an infinite resistance to liquid flow in the direction parallel to the fracture. The residual liquid will be held by capillary force in regions around fracture contact areas where the apertures are small. Normal to the fracture surfaces, the drained portion of the fractures will reduce the effective area for liquid flow from one matrix block to another matrix block. A general statistical theory is constructed for flow along the fracture and for flow between the matrix blocks to the fractures under partially saturated conditions. Results are obtained from an aperture distribution model for fracture saturation, hydraulic conductivity, and effective matrix-fracture flow areas as functions of pressure. Drainage from a fractured tuff column is simulated. The parameters for the simulations are deduced from fracture surface characteristics, spacings and orientations based on core analyses, and from matrix characteristics curve based on laboratory measurements. From the cases simulated for the fractured, porous column with discrete vertical and horizontal fractures and porous matrix blocks explicitly taken into account, it is observed that the highly transient changes from fully saturated conditions to partially saturated conditions are extremely sensitive to the fracture properties. However, the quasi-steady changes of the fluid flow of a partially saturated, fractured, porous system could be approximately simulated without taking the fractures into account. 22 references, 16 figures
Discrete differential geometry. Consistency as integrability
Bobenko, Alexander I.; Suris, Yuri B.
2005-01-01
A new field of discrete differential geometry is presently emerging on the border between differential and discrete geometry. Whereas classical differential geometry investigates smooth geometric shapes (such as surfaces), and discrete geometry studies geometric shapes with finite number of elements (such as polyhedra), the discrete differential geometry aims at the development of discrete equivalents of notions and methods of smooth surface theory. Current interest in this field derives not ...
Integrable structure in discrete shell membrane theory.
Schief, W K
2014-05-08
We present natural discrete analogues of two integrable classes of shell membranes. By construction, these discrete shell membranes are in equilibrium with respect to suitably chosen internal stresses and external forces. The integrability of the underlying equilibrium equations is proved by relating the geometry of the discrete shell membranes to discrete O surface theory. We establish connections with generalized barycentric coordinates and nine-point centres and identify a discrete version of the classical Gauss equation of surface theory.
Directory of Open Access Journals (Sweden)
Yung-Shih Lee
2017-10-01
Conclusion: Child-bearing in solid organ transplantation recipients has become more promising nowadays, even for a difficult case of pancreas-alone transplant recipient complicated with chronic renal insufficiency and superimposed pre-eclampsia. Thorough antepartum counseling and cautious monitoring of maternal, fetal and graft conditions by multidisciplinary specialties are key to favorable pregnancy outcomes.
Degree distribution in discrete case
International Nuclear Information System (INIS)
Wang, Li-Na; Chen, Bin; Yan, Zai-Zai
2011-01-01
Vertex degree of many network models and real-life networks is limited to non-negative integer. By means of measure and integral, the relation of the degree distribution and the cumulative degree distribution in discrete case is analyzed. The degree distribution, obtained by the differential of its cumulative, is only suitable for continuous case or discrete case with constant degree change. When degree change is not a constant but proportional to degree itself, power-law degree distribution and its cumulative have the same exponent and the mean value is finite for power-law exponent greater than 1. -- Highlights: → Degree change is the crux for using the cumulative degree distribution method. → It suits for discrete case with constant degree change. → If degree change is proportional to degree, power-law degree distribution and its cumulative have the same exponent. → In addition, the mean value is finite for power-law exponent greater than 1.
Adaptive mixed finite element methods for Darcy flow in fractured porous media
Chen, Huangxin; Salama, Amgad; Sun, Shuyu
2016-01-01
In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.
Correlation Between Fracture Network Properties and Stress Variability in Geological Media
Lei, Qinghua; Gao, Ke
2018-05-01
We quantitatively investigate the stress variability in fractured geological media under tectonic stresses. The fracture systems studied include synthetic fracture networks following power law length scaling and natural fracture patterns based on outcrop mapping. The stress field is derived from a finite-discrete element model, and its variability is analyzed using a set of mathematical formulations that honor the tensorial nature of stress data. We show that local stress perturbation, quantified by the Euclidean distance of a local stress tensor to the mean stress tensor, has a positive, linear correlation with local fracture intensity, defined as the total fracture length per unit area within a local sampling window. We also evaluate the stress dispersion of the entire stress field using the effective variance, that is, a scalar-valued measure of the overall stress variability. The results show that a well-connected fracture system under a critically stressed state exhibits strong local and global stress variabilities.
Adaptive mixed finite element methods for Darcy flow in fractured porous media
Chen, Huangxin
2016-09-21
In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.
Koray Aydogdu
2014-01-01
Rib fractures are usually seen after a trauma, while atraumatic spontaneous rib fractures are quite rare. A first rib fracture identified in our 17 years old female patient who had not a history of trauma except lifting a heavy weight was examined in details in terms of the potential complications and followed-up for a long time. We presented our experience on this case with atraumatic first rib fracture that has different views for the etiology in light of the literature.
Metatarsal stress fractures - aftercare
... Metatarsal stress fracture. In: Safran MR, Zachazewski J, Stone DA, eds. Instructions for Sports Medicine Patients . 2nd ed. Elsevier Saunders; 2012:648-652. Smith MS. Metatarsal fractures. In: Eiff PM, Hatch R, eds. Fracture Management for Primary Care . 3rd ed. ...
Relationships between fractures
Peacock, D. C. P.; Sanderson, D. J.; Rotevatn, A.
2018-01-01
Fracture systems comprise many fractures that may be grouped into sets based on their orientation, type and relative age. The fractures are often arranged in a network that involves fracture branches that interact with one another. Interacting fractures are termed geometrically coupled when they share an intersection line and/or kinematically coupled when the displacements, stresses and strains of one fracture influences those of the other. Fracture interactions are characterised in terms of the following. 1) Fracture type: for example, whether they have opening (e.g., joints, veins, dykes), closing (stylolites, compaction bands), shearing (e.g., faults, deformation bands) or mixed-mode displacements. 2) Geometry (e.g., relative orientations) and topology (the arrangement of the fractures, including their connectivity). 3) Chronology: the relative ages of the fractures. 4) Kinematics: the displacement distributions of the interacting fractures. It is also suggested that interaction can be characterised in terms of mechanics, e.g., the effects of the interaction on the stress field. It is insufficient to describe only the components of a fracture network, with fuller understanding coming from determining the interactions between the different components of the network.
Gonnelli, Stefano; Caffarelli, Carla; Nuti, Ranuccio
2014-01-01
Obesity and osteoporosis are two common diseases with an increasing prevalence and a high impact on morbidity and mortality. Obese women have always been considered protected against osteoporosis and osteoporotic fractures. However, several recent studies have challenged the widespread belief that obesity is protective against fracture and have suggested that obesity is a risk factor for certain fractures.
Imaging of insufficiency fractures
Energy Technology Data Exchange (ETDEWEB)
Krestan, Christian [Department of Radiology, Medical University of Vienna, Vienna General Hospital, Waehringerstr. 18-20, 1090 Vienna (Austria)], E-mail: christian.krestan@meduniwien.ac.at; Hojreh, Azadeh [Department of Radiology, Medical University of Vienna, Vienna General Hospital, Waehringerstr. 18-20, 1090 Vienna (Austria)
2009-09-15
This review focuses on the occurrence, imaging and differential diagnosis of insufficiency fractures. Prevalence, the most common sites of insufficiency fractures and their clinical implications are discussed. Insufficiency fractures occur with normal stress exerted on weakened bone. Postmenopausal osteoporosis is the most common cause of insufficiency fractures. Other conditions which affect bone turnover include osteomalacia, hyperparathyroidism, chronic renal failure and high-dose glucocorticoid therapy. It is a challenge for the radiologist to detect and diagnose insufficiency fractures, and to differentiate them from other bone lesions. Radiographs are still the most widely used imaging method for identification of insufficiency fractures, but sensitivity is limited, depending on the location of the fractures. Magnetic resonance imaging (MRI) is a very sensitive tool to visualize bone marrow abnormalities associated with insufficiency fractures. Thin section, multi-detector computed tomography (MDCT) depicts subtle fracture lines allowing direct visualization of cortical and trabecular bone. Bone scintigraphy still plays a role in detecting fractures, with good sensitivity but limited specificity. The most important differential diagnosis is underlying malignant disease leading to pathologic fractures. Bone densitometry and clinical history may also be helpful in confirming the diagnosis of insufficiency fractures.
On the discrete Gabor transform and the discrete Zak transform
Bastiaans, M.J.; Geilen, M.C.W.
1996-01-01
Gabor's expansion of a discrete-time signal into a set of shifted and modulated versions of an elementary signal (or synthesis window) and the inverse operation -- the Gabor transform -- with which Gabor's expansion coefficients can be determined, are introduced. It is shown how, in the case of a
Discrete Choice and Rational Inattention
DEFF Research Database (Denmark)
Fosgerau, Mogens; Melo, Emerson; de Palma, André
2017-01-01
This paper establishes a general equivalence between discrete choice and rational inattention models. Matejka and McKay (2015, AER) showed that when information costs are modelled using the Shannon entropy, the result- ing choice probabilities in the rational inattention model take the multinomial...... logit form. We show that when information costs are modelled using a class of generalized entropies, then the choice probabilities in any rational inattention model are observationally equivalent to some additive random utility discrete choice model and vice versa. This equivalence arises from convex...
Estimation of fracture roughness from the acoustic borehole televiewer image
International Nuclear Information System (INIS)
Bae, Dae Soek; Kim, Chun Soo; Kim, Kyung Soo; Park, Byung Yoon; Koh, Yong Kweon
2000-12-01
Estimation of fracture roughness - as one of the basic hydraulic fracture parameters - is very important in assessing ground water flow described by using discrete fracture network modeling. Former manual estimation of the roughness for each fracture surface of drill cores is above all a tedious, time-consuming work and will often cause some ambiguities of roughness interpretation partly due to the subjective judgements of observers, and partly due to the measuring procedure itself. However, recently, indebt to the highly reliable Televiewer data for the fracture discrimination, it has led to a guess to develop a relationship between the traditional roughness method based on a linear profiles and the method from the Televiewer image based on a ellipsoidal profile. Hence, the aim of this work is to develop an automatic evaluation algorithm for measuring the roughness from the Televiewer images. A highly reliable software named 'FRAFA' has been developed and realized to the extent that its utility merits. In the developing procedure, various problems - such as the examination of a new base line(ellipsoidal) for measuring the unevenness of fracture, the elimination of overlapping fracture signatures or noise, the wavelet estimation according to the type of fractures and the digitalization of roughness etc. - were considered. With these consideration in mind, the newly devised algorithm for the estimation of roughness curves showed a great potential not only for avoiding ambiguities of roughness interpretation but also for the judgement of roughness classification
Permeability testing of fractures in climax stock granite at the Nevada Test Site
International Nuclear Information System (INIS)
Murray, W.A.
1980-01-01
Permeability tests conducted in the Climax stock granitic rock mass indicate that the bulk rock permeability can be highly variable. If moderately to highly fractured zones are encountered, the permeability values may lie in the range of 10 -4 to 10 -1 darcies. If, on the other hand, only intact rock or healed fractures are encountered, the permeability is found to be less than 10 -9 darcies. In order to assess the thermomechanical effect on fracture permeability, discrete fractures will be packed off and tested periodically throughout the thermal cycle caused by the emplacement of spent nuclear fuel in the Climax stock
Liu, Zhiyuan; Wang, Shijie; Zhao, Haiyang; Wang, Lei; Li, Wei; Geng, Yudi; Tao, Shan; Zhang, Guangqing; Chen, Mian
2018-02-01
Natural fractures have a significant influence on the propagation geometry of hydraulic fractures in fractured reservoirs. True triaxial volumetric fracturing experiments, in which random natural fractures are created by placing cement blocks of different dimensions in a cuboid mold and filling the mold with additional cement to create the final test specimen, were used to study the factors that influence the hydraulic fracture propagation geometry. These factors include the presence of natural fractures around the wellbore, the dimension and volumetric density of random natural fractures and the horizontal differential stress. The results show that volumetric fractures preferentially formed when natural fractures occurred around the wellbore, the natural fractures are medium to long and have a volumetric density of 6-9%, and the stress difference is less than 11 MPa. The volumetric fracture geometries are mainly major multi-branch fractures with fracture networks or major multi-branch fractures (2-4 fractures). The angles between the major fractures and the maximum horizontal in situ stress are 30°-45°, and fracture networks are located at the intersections of major multi-branch fractures. Short natural fractures rarely led to the formation of fracture networks. Thus, the interaction between hydraulic fractures and short natural fractures has little engineering significance. The conclusions are important for field applications and for gaining a deeper understanding of the formation process of volumetric fractures.
Role of MRI in hip fractures, including stress fractures, occult fractures, avulsion fractures
International Nuclear Information System (INIS)
Nachtrab, O.; Cassar-Pullicino, V.N.; Lalam, R.; Tins, B.; Tyrrell, P.N.M.; Singh, J.
2012-01-01
MR imaging plays a vital role in the diagnosis and management of hip fractures in all age groups, in a large spectrum of patient groups spanning the elderly and sporting population. It allows a confident exclusion of fracture, differentiation of bony from soft tissue injury and an early confident detection of fractures. There is a spectrum of MR findings which in part is dictated by the type and cause of the fracture which the radiologist needs to be familiar with. Judicious but prompt utilisation of MR in patients with suspected hip fractures has a positive therapeutic impact with healthcare cost benefits as well as social care benefits.
Discrete Hamiltonian evolution and quantum gravity
International Nuclear Information System (INIS)
Husain, Viqar; Winkler, Oliver
2004-01-01
We study constrained Hamiltonian systems by utilizing general forms of time discretization. We show that for explicit discretizations, the requirement of preserving the canonical Poisson bracket under discrete evolution imposes strong conditions on both allowable discretizations and Hamiltonians. These conditions permit time discretizations for a limited class of Hamiltonians, which does not include homogeneous cosmological models. We also present two general classes of implicit discretizations which preserve Poisson brackets for any Hamiltonian. Both types of discretizations generically do not preserve first class constraint algebras. Using this observation, we show that time discretization provides a complicated time gauge fixing for quantum gravity models, which may be compared with the alternative procedure of gauge fixing before discretization
Dynamic characterisation of the specific surface area for fracture networks
Cvetkovic, V.
2017-12-01
One important application of chemical transport is geological disposal of high-level nuclear waste for which crystalline rock is a prime candidate for instance in Scandinavia. Interconnected heterogeneous fractures of sparsely fractured rock such as granite, act as conduits for transport of dissolved tracers. Fluid flow is known to be highly channelized in such rocks. Channels imply narrow flow paths, adjacent to essentially stagnant water in the fracture and/or the rock matrix. Tracers are transported along channelised flow paths and retained by minerals and/or stagnant water, depending on their sorption properties; this mechanism is critical for rocks to act as a barrier and ultimately provide safety for a geological repository. The sorbing tracers are retained by diffusion and sorption on mineral surfaces, whereas non-sorbing tracers can be retained only by diffusion into stagnant water of fractures. The retention and transport properties of a sparsely fractured rock will primarily depend on the specific surface area (SSA) of the fracture network which is determined by the heterogeneous structure and flow. The main challenge when characterising SSA on the field-scale is its dependence on the flow dynamics. We first define SSA as a physical quantity and clarify its importance for chemical transport. A methodology for dynamic characterisation of SSA in fracture networks is proposed that relies on three sets of data: i) Flow rate data as obtained by a flow logging procedure; ii) transmissivity data as obtained by pumping tests; iii) fracture network data as obtained from outcrop and geophysical observations. The proposed methodology utilises these data directly as well as indirectly through flow and particle tracking simulations in three-dimensional discrete fracture networks. The methodology is exemplified using specific data from the Swedish site Laxemar. The potential impact of uncertainties is of particular significance and is illustrated for radionuclide
Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi
2016-01-01
A conservative discretization of incompressible Navier–Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a
Solving discrete zero point problems
van der Laan, G.; Talman, A.J.J.; Yang, Z.F.
2004-01-01
In this paper an algorithm is proposed to .nd a discrete zero point of a function on the collection of integral points in the n-dimensional Euclidean space IRn.Starting with a given integral point, the algorithm generates a .nite sequence of adjacent integral simplices of varying dimension and
Succinct Sampling from Discrete Distributions
DEFF Research Database (Denmark)
Bringmann, Karl; Larsen, Kasper Green
2013-01-01
We revisit the classic problem of sampling from a discrete distribution: Given n non-negative w-bit integers x_1,...,x_n, the task is to build a data structure that allows sampling i with probability proportional to x_i. The classic solution is Walker's alias method that takes, when implemented...
Symplectomorphisms and discrete braid invariants
Czechowski, Aleksander; Vandervorst, Robert
2017-01-01
Area and orientation preserving diffeomorphisms of the standard 2-disc, referred to as symplectomorphisms of D2, allow decompositions in terms of positive twist diffeomorphisms. Using the latter decomposition, we utilize the Conley index theory of discrete braid classes as introduced in Ghrist et
The remarkable discreteness of being
Indian Academy of Sciences (India)
Life is a discrete, stochastic phenomenon: for a biological organism, the time of the two most important events of its life (reproduction and death) is random and these events change the number of individuals of the species by single units. These facts can have surprising, counterintuitive consequences. I review here three ...
Discrete tomography in neutron radiography
International Nuclear Information System (INIS)
Kuba, Attila; Rodek, Lajos; Kiss, Zoltan; Rusko, Laszlo; Nagy, Antal; Balasko, Marton
2005-01-01
Discrete tomography (DT) is an imaging technique for reconstructing discrete images from their projections using the knowledge that the object to be reconstructed contains only a few homogeneous materials characterized by known discrete absorption values. One of the main reasons for applying DT is that we will hopefully require relatively few projections. Using discreteness and some a priori information (such as an approximate shape of the object) we can apply two DT methods in neutron imaging by reducing the problem to an optimization task. The first method is a special one because it is only suitable if the object is composed of cylinders and sphere shapes. The second method is a general one in the sense that it can be used for reconstructing objects of any shape. Software was developed and physical experiments performed in order to investigate the effects of several reconstruction parameters: the number of projections, noise levels, and complexity of the object to be reconstructed. We give a summary of the experimental results and make a comparison of the results obtained using a classical reconstruction technique (FBP). The programs we developed are available in our DT reconstruction program package DIRECT
Directory of Open Access Journals (Sweden)
Jeffrey M Joseph
2011-01-01
Full Text Available Jeffrey M Joseph, Ioannis P GlavasDivision of Ophthalmic Plastic and Reconstructive Surgery, Department of Ophthalmology, School of Medicine, New York University, New York, NY, USA; Manhattan Eye, Ear, and Throat Hospital, New York, NY, USAAbstract: This review of orbital fractures has three goals: 1 to understand the clinically relevant orbital anatomy with regard to periorbital trauma and orbital fractures, 2 to explain how to assess and examine a patient after periorbital trauma, and 3 to understand the medical and surgical management of orbital fractures. The article aims to summarize the evaluation and management of commonly encountered orbital fractures from the ophthalmologic perspective and to provide an overview for all practicing ophthalmologists and ophthalmologists in training.Keywords: orbit, trauma, fracture, orbital floor, medial wall, zygomatic, zygomatic complex, zmc fracture, zygomaticomaxillary complex fractures
Mechanics of Hydraulic Fractures
Detournay, Emmanuel
2016-01-01
Hydraulic fractures represent a particular class of tensile fractures that propagate in solid media under pre-existing compressive stresses as a result of internal pressurization by an injected viscous fluid. The main application of engineered hydraulic fractures is the stimulation of oil and gas wells to increase production. Several physical processes affect the propagation of these fractures, including the flow of viscous fluid, creation of solid surfaces, and leak-off of fracturing fluid. The interplay and the competition between these processes lead to multiple length scales and timescales in the system, which reveal the shifting influence of the far-field stress, viscous dissipation, fracture energy, and leak-off as the fracture propagates.
DEFF Research Database (Denmark)
Hassager, Ole
Fracture is a phenomenon that is generally associated with solids. A key element in fracture theory is the so-called weakest link idea that fracture initiates from the largest pre-existing material imperfection. However, recent work has demonstrated that fracture can also happen in liquids, where...... surface tension will act to suppress such imperfections. Therefore, the weakest link idea does not seem immediately applicable to fracture in liquids. This presentation will review fracture in liquids and argue that fracture in soft liquids is a material property independent of pre-existing imperfections....... The following questions then emerge: What is the material description needed to predict crack initiation, crack speed and crack shape in soft materials and liquids....
Nick, H. M.
2011-11-04
A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media. We study the impact of the fractures on mass transport and dispersion. To model flow and transport, pressure and transport equations are integrated using a finite-element, node-centered finite-volume approach. Fracture geometries are incrementally developed from a random distributions of material flaws using an adoptive geomechanical finite-element model that also produces fracture aperture distributions. This quasistatic propagation assumes a linear elastic rock matrix, and crack propagation is governed by a subcritical crack growth failure criterion. Fracture propagation, intersection, and closure are handled geometrically. The flow and transport simulations are separately conducted for a range of fracture densities that are generated by the geomechanical finite-element model. These computations show that the most influential parameters for solute transport in fractured porous media are as follows: fracture density and fracture-matrix flux ratio that is influenced by matrix permeability. Using an equivalent fracture aperture size, computed on the basis of equivalent permeability of the system, we also obtain an acceptable prediction of the macrodispersion of poorly interconnected fracture networks. The results hold for fractures at relatively low density. © 2011 American Physical Society.
Nick, H. M.; Paluszny, A.; Blunt, M. J.; Matthai, S. K.
2011-01-01
A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media. We study the impact of the fractures on mass transport and dispersion. To model flow and transport, pressure and transport equations are integrated using a finite-element, node-centered finite-volume approach. Fracture geometries are incrementally developed from a random distributions of material flaws using an adoptive geomechanical finite-element model that also produces fracture aperture distributions. This quasistatic propagation assumes a linear elastic rock matrix, and crack propagation is governed by a subcritical crack growth failure criterion. Fracture propagation, intersection, and closure are handled geometrically. The flow and transport simulations are separately conducted for a range of fracture densities that are generated by the geomechanical finite-element model. These computations show that the most influential parameters for solute transport in fractured porous media are as follows: fracture density and fracture-matrix flux ratio that is influenced by matrix permeability. Using an equivalent fracture aperture size, computed on the basis of equivalent permeability of the system, we also obtain an acceptable prediction of the macrodispersion of poorly interconnected fracture networks. The results hold for fractures at relatively low density. © 2011 American Physical Society.
Incorporating Scale-Dependent Fracture Stiffness for Improved Reservoir Performance Prediction
Crawford, B. R.; Tsenn, M. C.; Homburg, J. M.; Stehle, R. C.; Freysteinson, J. A.; Reese, W. C.
2017-12-01
We present a novel technique for predicting dynamic fracture network response to production-driven changes in effective stress, with the potential for optimizing depletion planning and improving recovery prediction in stress-sensitive naturally fractured reservoirs. A key component of the method involves laboratory geomechanics testing of single fractures in order to develop a unique scaling relationship between fracture normal stiffness and initial mechanical aperture. Details of the workflow are as follows: tensile, opening mode fractures are created in a variety of low matrix permeability rocks with initial, unstressed apertures in the micrometer to millimeter range, as determined from image analyses of X-ray CT scans; subsequent hydrostatic compression of these fractured samples with synchronous radial strain and flow measurement indicates that both mechanical and hydraulic aperture reduction varies linearly with the natural logarithm of effective normal stress; these stress-sensitive single-fracture laboratory observations are then upscaled to networks with fracture populations displaying frequency-length and length-aperture scaling laws commonly exhibited by natural fracture arrays; functional relationships between reservoir pressure reduction and fracture network porosity, compressibility and directional permeabilities as generated by such discrete fracture network modeling are then exported to the reservoir simulator for improved naturally fractured reservoir performance prediction.
Problems in the diagnosis of metaphyseal fractures
International Nuclear Information System (INIS)
Kleinman, Paul K.
The radiographic projection influences the appearance of the metaphyseal fragment. If the long axis of the metaphysis and the radiographic projection are at right angles, the thicker peripheral margin of the metaphyseal fragment will be viewed end-on as a relatively discrete triangular bony fragment. A caudally or cranially angulated radiographic projection results in a curvilinear bony density that represents the dense peripheral margin of the fracture fragment that has been separated from the metaphysis. Thus, in one projection a fragment may appear as a corner fracture, and in another view, as a bucket-handle lesion. From autopsy and clinical studies it is evident that bruising overlying CMLs is often absent. (orig.)
Anomalous Transport in Natural Fracture Networks Induced by Tectonic Stress
Kang, P. K.; Lei, Q.; Lee, S.; Dentz, M.; Juanes, R.
2017-12-01
Fluid flow and transport in fractured rock controls many natural and engineered processes in the subsurface. However, characterizing flow and transport through fractured media is challenging due to the high uncertainty and large heterogeneity associated with fractured rock properties. In addition to these "static" challenges, geologic fractures are always under significant overburden stress, and changes in the stress state can lead to changes in the fracture's ability to conduct fluids. While confining stress has been shown to impact fluid flow through fractures in a fundamental way, the impact of confining stress on transportthrough fractured rock remains poorly understood. The link between anomalous (non-Fickian) transport and confining stress has been shown, only recently, at the level of a single rough fracture [1]. Here, we investigate the impact of geologic (tectonic) stress on flow and tracer transport through natural fracture networks. We model geomechanical effects in 2D fractured rock by means of a finite-discrete element method (FEMDEM) [2], which can capture the deformation of matrix blocks, reactivation of pre-existing fractures, and propagation of new cracks, upon changes in the stress field. We apply the model to a fracture network extracted from the geological map of an actual rock outcrop to obtain the aperture field at different stress conditions. We then simulate fluid flow and particle transport through the stressed fracture networks. We observe that anomalous transport emerges in response to confining stress on the fracture network, and show that the stress state is a powerful determinant of transport behavior: (1) An anisotropic stress state induces preferential flow paths through shear dilation; (2) An increase in geologic stress increases aperture heterogeneity that induces late-time tailing of particle breakthrough curves. Finally, we develop an effective transport model that captures the anomalous transport through the stressed fracture
CHARACTERIZATION OF IN-SITU STRESS AND PERMEABILITY IN FRACTURED RESERVOIRS
Energy Technology Data Exchange (ETDEWEB)
Daniel R. Burns; M. Nafi Toksoz
2004-07-19
Expanded details and additional results are presented on two methods for estimating fracture orientation and density in subsurface reservoirs from scattered seismic wavefield signals. In the first, fracture density is estimated from the wavenumber spectra of the integrated amplitudes of the scattered waves as a function of offset in pre-stack data. Spectral peaks correctly identified the 50m, 35m, and 25m fracture spacings from numerical model data using a 40Hz source wavelet. The second method, referred to as the Transfer Function-Scattering Index Method, is based upon observations from 3D finite difference modeling that regularly spaced, discrete vertical fractures impart a ringing coda-type signature to any seismic energy that is transmitted through or reflected off of them. This coda energy is greatest when the acquisition direction is parallel to the fractures, the seismic wavelengths are tuned to the fracture spacing, and when the fractures have low stiffness. The method uses surface seismic reflection traces to derive a transfer function, which quantifies the change in an apparent source wavelet propagating through a fractured interval. The transfer function for an interval with low scattering will be more spike-like and temporally compact. The transfer function for an interval with high scattering will ring and be less temporally compact. A Scattering Index is developed based on a time lag weighting of the transfer function. When a 3D survey is acquired with a full range of azimuths, the Scattering Index allows the identification of subsurface areas with high fracturing and the orientation (or strike) of those fractures. The method was calibrated with model data and then applied to field data from a fractured reservoir giving results that agree with known field measurements. As an aid to understanding the scattered wavefield seen in finite difference models, a series of simple point scatterers was used to create synthetic seismic shot records collected over
Discrete elements method of neutron transport
International Nuclear Information System (INIS)
Mathews, K.A.
1988-01-01
In this paper a new neutron transport method, called discrete elements (L N ) is derived and compared to discrete ordinates methods, theoretically and by numerical experimentation. The discrete elements method is based on discretizing the Boltzmann equation over a set of elements of angle. The discrete elements method is shown to be more cost-effective than discrete ordinates, in terms of accuracy versus execution time and storage, for the cases tested. In a two-dimensional test case, a vacuum duct in a shield, the L N method is more consistently convergent toward a Monte Carlo benchmark solution
Efendiev, Yalchin R.
2015-06-05
In this paper, we develop a multiscale finite element method for solving flows in fractured media. Our approach is based on generalized multiscale finite element method (GMsFEM), where we represent the fracture effects on a coarse grid via multiscale basis functions. These multiscale basis functions are constructed in the offline stage via local spectral problems following GMsFEM. To represent the fractures on the fine grid, we consider two approaches (1) discrete fracture model (DFM) (2) embedded fracture model (EFM) and their combination. In DFM, the fractures are resolved via the fine grid, while in EFM the fracture and the fine grid block interaction is represented as a source term. In the proposed multiscale method, additional multiscale basis functions are used to represent the long fractures, while short-size fractures are collectively represented by a single basis functions. The procedure is automatically done via local spectral problems. In this regard, our approach shares common concepts with several approaches proposed in the literature as we discuss. We would like to emphasize that our goal is not to compare DFM with EFM, but rather to develop GMsFEM framework which uses these (DFM or EFM) fine-grid discretization techniques. Numerical results are presented, where we demonstrate how one can adaptively add basis functions in the regions of interest based on error indicators. We also discuss the use of randomized snapshots (Calo et al. Randomized oversampling for generalized multiscale finite element methods, 2014), which reduces the offline computational cost.
Jones, Brendon R.; Brouwers, Luke B.; Dippenaar, Matthys A.
2018-05-01
Fractures are both rough and irregular but can be expressed by a simple model concept of two smooth parallel plates and the associated cubic law governing discharge through saturated fractures. However, in natural conditions and in the intermediate vadose zone, these assumptions are likely violated. This paper presents a qualitative experimental study investigating the cubic law under variable saturation in initially dry free-draining discrete fractures. The study comprised flow visualisation experiments conducted on transparent replicas of smooth parallel plates with inlet conditions of constant pressure and differing flow rates over both vertical and horizontal inclination. Flow conditions were altered to investigate the influence of intermittent and continuous influx scenarios. Findings from this research proved, for instance, that saturated laminar flow is not likely achieved, especially in nonhorizontal fractures. In vertical fractures, preferential flow occupies the minority of cross-sectional area despite the water supply. Movement of water through the fractured vadose zone therefore becomes a matter of the continuity principle, whereby water should theoretically be transported downward at significantly higher flow rates given the very low degree of water saturation. Current techniques that aim to quantify discrete fracture flow, notably at partial saturation, are questionable. Inspired by the results of this study, it is therefore hypothetically improbable to achieve saturation in vertical fractures under free-draining wetting conditions. It does become possible under extremely excessive water inflows or when not free-draining; however, the converse is not true, as a wet vertical fracture can be drained.
Jones, Brendon R.; Brouwers, Luke B.; Dippenaar, Matthys A.
2017-11-01
Fractures are both rough and irregular but can be expressed by a simple model concept of two smooth parallel plates and the associated cubic law governing discharge through saturated fractures. However, in natural conditions and in the intermediate vadose zone, these assumptions are likely violated. This paper presents a qualitative experimental study investigating the cubic law under variable saturation in initially dry free-draining discrete fractures. The study comprised flow visualisation experiments conducted on transparent replicas of smooth parallel plates with inlet conditions of constant pressure and differing flow rates over both vertical and horizontal inclination. Flow conditions were altered to investigate the influence of intermittent and continuous influx scenarios. Findings from this research proved, for instance, that saturated laminar flow is not likely achieved, especially in nonhorizontal fractures. In vertical fractures, preferential flow occupies the minority of cross-sectional area despite the water supply. Movement of water through the fractured vadose zone therefore becomes a matter of the continuity principle, whereby water should theoretically be transported downward at significantly higher flow rates given the very low degree of water saturation. Current techniques that aim to quantify discrete fracture flow, notably at partial saturation, are questionable. Inspired by the results of this study, it is therefore hypothetically improbable to achieve saturation in vertical fractures under free-draining wetting conditions. It does become possible under extremely excessive water inflows or when not free-draining; however, the converse is not true, as a wet vertical fracture can be drained.
Modeling contaminant plumes in fractured limestone aquifers
DEFF Research Database (Denmark)
Mosthaf, Klaus; Brauns, Bentje; Fjordbøge, Annika Sidelmann
Determining the fate and transport of contaminant plumes from contaminated sites in limestone aquifers is important because they are a major drinking water resource. This is challenging because they are often heavily fractured and contain chert layers and nodules, resulting in a complex transport...... model. The paper concludes with recommendations on how to identify and employ suitable models to advance the conceptual understanding and as decision support tools for risk assessment and the planning of remedial actions....... behavior. Improved conceptual models are needed for this type of site. Here conceptual models are developed by combining numerical models with field data. Several types of fracture flow and transport models are available for the modeling of contaminant transport in fractured media. These include...... the established approaches of the equivalent porous medium, discrete fracture and dual continuum models. However, these modeling concepts are not well tested for contaminant plume migration in limestone geologies. Our goal was to develop and evaluate approaches for modeling the transport of dissolved contaminant...
Discrete gauge symmetries in discrete MSSM-like orientifolds
International Nuclear Information System (INIS)
Ibáñez, L.E.; Schellekens, A.N.; Uranga, A.M.
2012-01-01
Motivated by the necessity of discrete Z N symmetries in the MSSM to insure baryon stability, we study the origin of discrete gauge symmetries from open string sector U(1)'s in orientifolds based on rational conformal field theory. By means of an explicit construction, we find an integral basis for the couplings of axions and U(1) factors for all simple current MIPFs and orientifolds of all 168 Gepner models, a total of 32 990 distinct cases. We discuss how the presence of discrete symmetries surviving as a subgroup of broken U(1)'s can be derived using this basis. We apply this procedure to models with MSSM chiral spectrum, concretely to all known U(3)×U(2)×U(1)×U(1) and U(3)×Sp(2)×U(1)×U(1) configurations with chiral bi-fundamentals, but no chiral tensors, as well as some SU(5) GUT models. We find examples of models with Z 2 (R-parity) and Z 3 symmetries that forbid certain B and/or L violating MSSM couplings. Their presence is however relatively rare, at the level of a few percent of all cases.
Ballistic fractures: indirect fracture to bone.
Dougherty, Paul J; Sherman, Don; Dau, Nathan; Bir, Cynthia
2011-11-01
Two mechanisms of injury, the temporary cavity and the sonic wave, have been proposed to produce indirect fractures as a projectile passes nearby in tissue. The purpose of this study is to evaluate the temporal relationship of pressure waves using strain gauge technology and high-speed video to elucidate whether the sonic wave, the temporary cavity, or both are responsible for the formation of indirect fractures. Twenty-eight fresh frozen cadaveric diaphyseal tibia (2) and femurs (26) were implanted into ordnance gelatin blocks. Shots were fired using 9- and 5.56-mm bullets traversing through the gelatin only, passing close to the edge of the bone, but not touching, to produce an indirect fracture. High-speed video of the impact event was collected at 20,000 frames/s. Acquisition of the strain data were synchronized with the video at 20,000 Hz. The exact time of fracture was determined by analyzing and comparing the strain gauge output and video. Twenty-eight shots were fired, 2 with 9-mm bullets and 26 with 5.56-mm bullets. Eight indirect fractures that occurred were of a simple (oblique or wedge) pattern. Comparison of the average distance of the projectile from the bone was 9.68 mm (range, 3-20 mm) for fractured specimens and 15.15 mm (range, 7-28 mm) for nonfractured specimens (Student's t test, p = 0.036). In this study, indirect fractures were produced after passage of the projectile. Thus, the temporary cavity, not the sonic wave, was responsible for the indirect fractures.
Positivity for Convective Semi-discretizations
Fekete, Imre; Ketcheson, David I.; Loczi, Lajos
2017-01-01
We propose a technique for investigating stability properties like positivity and forward invariance of an interval for method-of-lines discretizations, and apply the technique to study positivity preservation for a class of TVD semi-discretizations
Directory of Open Access Journals (Sweden)
L.Y. Yang
2014-07-01
Full Text Available During the drill-and-blast progress in rock tunnel excavation of great deep mine, rock fracture is evaluated by both blasting load and pre-exiting earth stress (pre-compression. Many pre-existing flaws in the rock mass, like micro-crack, also seriously affect the rock fracture pattern. Under blasting load with pre-compression, micro-cracks initiate, propagate and grow to be wing cracks. With an autonomous design of static-dynamic loading system, dynamic and static loads were applied on some PMMA plate specimen with pre-existing crack, and the behaviour of the wing crack was tested by caustics corroding with a high-speed photography. Four programs with different static loading modes that generate different pre-compression fields were executed, and the length, velocity of the blasting wing crack and dynamic stress intensity factor (SIF at the wing crack tip were analyzed and discussed. It is found that the behaviour of blasting-induced wing crack is affected obviously by blasting and pre-compression. And pre-compression, which is vertical to the direction of the wing crack propagation, hinders the crack propagation. Furthermore, the boundary constraint condition plays an important role on the behaviour of blasting induced crack during the experiment.
Quantum chaos on discrete graphs
International Nuclear Information System (INIS)
Smilansky, Uzy
2007-01-01
Adapting a method developed for the study of quantum chaos on quantum (metric) graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76), spectral ζ functions and trace formulae for discrete Laplacians on graphs are derived. This is achieved by expressing the spectral secular equation in terms of the periodic orbits of the graph and obtaining functions which belong to the class of ζ functions proposed originally by Ihara (1966 J. Mat. Soc. Japan 18 219) and expanded by subsequent authors (Stark and Terras 1996 Adv. Math. 121 124, Kotani and Sunada 2000 J. Math. Sci. Univ. Tokyo 7 7). Finally, a model of 'classical dynamics' on the discrete graph is proposed. It is analogous to the corresponding classical dynamics derived for quantum graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76). (fast track communication)
Dark energy from discrete spacetime.
Directory of Open Access Journals (Sweden)
Aaron D Trout
Full Text Available Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.
Applied geometry and discrete mathematics
Sturm; Gritzmann, Peter; Sturmfels, Bernd
1991-01-01
This volume, published jointly with the Association for Computing Machinery, comprises a collection of research articles celebrating the occasion of Victor Klee's sixty-fifth birthday in September 1990. During his long career, Klee has made contributions to a wide variety of areas, such as discrete and computational geometry, convexity, combinatorics, graph theory, functional analysis, mathematical programming and optimization, and theoretical computer science. In addition, Klee made important contributions to mathematics education, mathematical methods in economics and the decision sciences, applications of discrete mathematics in the biological and social sciences, and the transfer of knowledge from applied mathematics to industry. In honor of Klee's achievements, this volume presents more than forty papers on topics related to Klee's research. While the majority of the papers are research articles, a number of survey articles are also included. Mirroring the breadth of Klee's mathematical contributions, th...
Emissivity of discretized diffusion problems
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Davidson, Gregory; Carrington, David B.
2006-01-01
The numerical modeling of radiative transfer by the diffusion approximation can produce artificially damped radiation propagation if spatial cells are too optically thick. In this paper, we investigate this nonphysical behavior at external problem boundaries by examining the emissivity of the discretized diffusion approximation. We demonstrate that the standard cell-centered discretization produces an emissivity that is too low for optically thick cells, a situation that leads to the lack of radiation propagation. We then present a modified boundary condition that yields an accurate emissivity regardless of cell size. This modified boundary condition can be used with a deterministic calculation or as part of a hybrid transport-diffusion method for increasing the efficiency of Monte Carlo simulations. We also discuss the range of applicability, as a function of cell size and material properties, when this modified boundary condition is employed in a hybrid technique. With a set of numerical calculations, we demonstrate the accuracy and usefulness of this modified boundary condition
Discrete symmetries in the MSSM
Energy Technology Data Exchange (ETDEWEB)
Schieren, Roland
2010-12-02
The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z{sup R}{sub 4} symmetry is discovered which solves the {mu}-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z{sup R}{sub 4} is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z{sup R}{sub 4} symmetry and other desirable features. (orig.)
Domain Discretization and Circle Packings
DEFF Research Database (Denmark)
Dias, Kealey
A circle packing is a configuration of circles which are tangent with one another in a prescribed pattern determined by a combinatorial triangulation, where the configuration fills a planar domain or a two-dimensional surface. The vertices in the triangulation correspond to centers of circles...... to domain discretization problems such as triangulation and unstructured mesh generation techniques. We wish to ask ourselves the question: given a cloud of points in the plane (we restrict ourselves to planar domains), is it possible to construct a circle packing preserving the positions of the vertices...... and constrained meshes having predefined vertices as constraints. A standard method of two-dimensional mesh generation involves conformal mapping of the surface or domain to standardized shapes, such as a disk. Since circle packing is a new technique for constructing discrete conformal mappings, it is possible...
Discrete Bose-Einstein spectra
International Nuclear Information System (INIS)
Vlad, Valentin I.; Ionescu-Pallas, Nicholas
2001-03-01
The Bose-Einstein energy spectrum of a quantum gas, confined in a rigid cubic box, is shown to become discrete and strongly dependent on the box geometry (size L), temperature, T and atomic mass number, A at , in the region of small γ=A at TV 1/3 . This behavior is the consequence of the random state degeneracy in the box. Furthermore, we demonstrate that the total energy does not obey the conventional law any longer, but a new law, which depends on γ and on the quantum gas fugacity. This energy law imposes a faster decrease to zero than it is classically expected, for γ→0. The lighter the gas atoms, the higher the temperatures or the box size, for the same effects in the discrete Bose-Einstein regime. (author)
Discrete symmetries in the MSSM
International Nuclear Information System (INIS)
Schieren, Roland
2010-01-01
The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z R 4 symmetry is discovered which solves the μ-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z R 4 is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z R 4 symmetry and other desirable features. (orig.)
Dark energy from discrete spacetime.
Trout, Aaron D
2013-01-01
Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.
Discrete mathematics using a computer
Hall, Cordelia
2000-01-01
Several areas of mathematics find application throughout computer science, and all students of computer science need a practical working understanding of them. These core subjects are centred on logic, sets, recursion, induction, relations and functions. The material is often called discrete mathematics, to distinguish it from the traditional topics of continuous mathematics such as integration and differential equations. The central theme of this book is the connection between computing and discrete mathematics. This connection is useful in both directions: • Mathematics is used in many branches of computer science, in applica tions including program specification, datastructures,design and analysis of algorithms, database systems, hardware design, reasoning about the correctness of implementations, and much more; • Computers can help to make the mathematics easier to learn and use, by making mathematical terms executable, making abstract concepts more concrete, and through the use of software tools su...
Duality for discrete integrable systems
International Nuclear Information System (INIS)
Quispel, G R W; Capel, H W; Roberts, J A G
2005-01-01
A new class of discrete dynamical systems is introduced via a duality relation for discrete dynamical systems with a number of explicitly known integrals. The dual equation can be defined via the difference of an arbitrary linear combination of integrals and its upshifted version. We give an example of an integrable mapping with two parameters and four integrals leading to a (four-dimensional) dual mapping with four parameters and two integrals. We also consider a more general class of higher-dimensional mappings arising via a travelling-wave reduction from the (integrable) MKdV partial-difference equation. By differencing the trace of the monodromy matrix we obtain a class of novel dual mappings which is shown to be integrable as level-set-dependent versions of the original ones
Fourno, A.; Grenier, C.; Benabderrahmane, H.
2003-04-01
Modeling flow and transport in natural fractured media is a difficult issue due among others to the complexity of the system, the particularities of the geometrical features, the strong parameter value contrasts between the fracture zones (flow zones) and the matrix zones (no flow zones). This lead to the development of dedicated tools like for instance discrete fracture network models (DFN). We follow here another line applicable for classical continuous modeling codes. The fracture network is not meshed here but presence of fractures is taken into account by means of continuous heterogeneous fields (permeability, porosity, head, velocity, concentration ...). This line, followed by different authors, is referred as smeared fracture approach and presents the following advantages: the approach is very versatile because no dedicated spatial discretization effort is required (we use a basic regular mesh, simulations can be done on a rough mesh saving computer time). This makes this kind of approach very promising for taking heterogeneity of properties as well as uncertainties into account within a Monte Carlo framework for instance. Furthermore, the geometry of the matrix blocks where transfers proceed by diffusion is fully taken into account contrary to classical simplified 1D approach for instance. Nevertheless continuous heterogeneous field representation of a fractured medium requires a homogenization process at the scale of the mesh considered. Literature proves that this step of homogenization for transport is still a challenging task. Consequently, the level precision of the results has to be estimated. We precedently proposed a new approach dedicated to Mixed and Hybrid Finite Element approach. This numerical scheme is very interesting for such highly heterogeneous media and in particular guaranties exact conservation of mass flow for each mesh leading to good transport results. We developed a smeared fractures approach to model flow and transport limited to
Remote Sensing Applications for Antrim Shale Fracture Characterization, Michigan Basin
Kuuskraa, Vello
1997-01-01
Advanced Research International (ARI) sent seven staff members to the 1997 International Coalbed Methane Symposium, held in Tuscaloosa, Alabama from May 12-17. ARI gave a short course on risk reduction strategies, including remote fracture detection, for coalbed methane exploration and development that was attended by about 25 coalbed methane industry professionals; and presented a paper entitled 'Optimizing coalbed methane cavity completion operations with the application of a new discrete element model.' We met with many potential clients and discussed our fracture detection services. China has vast coalbed methane resources, but is still highly dependent on coal-and wood-burning. This workshop, sponsored by the United Nations, was intended to help China develop its less-polluting energy reserves. ARI is successfully finding new applications for its fracture detection services. Coalbed methane exploration became an important market in this quarter, with the inception of a joint industry/government collaboration between ARI, Texaco and DOE to use remote fracture detection to identify areas with good potential for coalbed methane production in the Ferron Coal Trend of central Utah. Geothermal energy exploration is another emerging market for ARI, where fracture detection is applied to identify pathways for groundwater recharge, movement, and the locations of potential geothermal reservoirs. Ari continued work on two industry/government collaborations to demonstrate fracture detection to potential clients. Also completed the technical content layout for multimedia CD-ROM that describes our remote fracture detection services.
Analysis of compressive fracture in rock using statistical techniques
Energy Technology Data Exchange (ETDEWEB)
Blair, S.C.
1994-12-01
Fracture of rock in compression is analyzed using a field-theory model, and the processes of crack coalescence and fracture formation and the effect of grain-scale heterogeneities on macroscopic behavior of rock are studied. The model is based on observations of fracture in laboratory compression tests, and incorporates assumptions developed using fracture mechanics analysis of rock fracture. The model represents grains as discrete sites, and uses superposition of continuum and crack-interaction stresses to create cracks at these sites. The sites are also used to introduce local heterogeneity. Clusters of cracked sites can be analyzed using percolation theory. Stress-strain curves for simulated uniaxial tests were analyzed by studying the location of cracked sites, and partitioning of strain energy for selected intervals. Results show that the model implicitly predicts both development of shear-type fracture surfaces and a strength-vs-size relation that are similar to those observed for real rocks. Results of a parameter-sensitivity analysis indicate that heterogeneity in the local stresses, attributed to the shape and loading of individual grains, has a first-order effect on strength, and that increasing local stress heterogeneity lowers compressive strength following an inverse power law. Peak strength decreased with increasing lattice size and decreasing mean site strength, and was independent of site-strength distribution. A model for rock fracture based on a nearest-neighbor algorithm for stress redistribution is also presented and used to simulate laboratory compression tests, with promising results.
Directory of Open Access Journals (Sweden)
Karina Zitta
2018-01-01
Full Text Available Perinatal asphyxia represents one of the major causes of neonatal morbidity and mortality. Hypothermia is currently the only established treatment for hypoxic-ischemic encephalopathy (HIE, but additional pharmacological strategies are being explored to further reduce the damage after perinatal asphyxia. The aim of this study was to evaluate whether 2-iminobiotin (2-IB superimposed on hypothermia has the potential to attenuate hypoxia-induced injury of neuronal cells. In vitro hypoxia was induced for 7 h in neuronal IMR-32 cell cultures. Afterwards, all cultures were subjected to 25 h of hypothermia (33.5°C, and incubated with vehicle or 2-IB (10, 30, 50, 100, and 300 ng/ml. Cell morphology was evaluated by brightfield microscopy. Cell damage was analyzed by LDH assays. Production of reactive oxygen species (ROS was measured using fluorometric assays. Western blotting for PARP, Caspase-3, and the phosphorylated forms of akt and erk1/2 was conducted. To evaluate early apoptotic events and signaling, cell protein was isolated 4 h post-hypoxia and human apoptosis proteome profiler arrays were performed. Twenty-five hour after the hypoxic insult, clear morphological signs of cell damage were visible and significant LDH release as well as ROS production were observed even under hypothermic conditions. Post-hypoxic application of 2-IB (10 and 30 ng/ml reduced the hypoxia-induced LDH release but not ROS production. Phosphorylation of erk1/2 was significantly increased after hypoxia, while phosphorylation of akt, protein expression of Caspase-3 and cleavage of PARP were only slightly increased. Addition of 2-IB did not affect any of the investigated proteins. Apoptosis proteome profiler arrays performed with cellular protein obtained 4 h after hypoxia revealed that post-hypoxic application of 2-IB resulted in a ≥ 25% down regulation of 10/35 apoptosis-related proteins: Bad, Bax, Bcl-2, cleaved Caspase-3, TRAILR1, TRAILR2, PON2, p21, p27, and phospho
Observability of discretized partial differential equations
Cohn, Stephen E.; Dee, Dick P.
1988-01-01
It is shown that complete observability of the discrete model used to assimilate data from a linear partial differential equation (PDE) system is necessary and sufficient for asymptotic stability of the data assimilation process. The observability theory for discrete systems is reviewed and applied to obtain simple observability tests for discretized constant-coefficient PDEs. Examples are used to show how numerical dispersion can result in discrete dynamics with multiple eigenvalues, thereby detracting from observability.
Gorb, Yuliya
2010-11-01
We model and analyze the response of nonlinear, residually stressed elastic bodies subjected to small amplitude vibrations superimposed upon large deformations. The problem derives from modeling the use of intravascular ultrasound (IVUS) imaging to interrogate atherosclerotic plaques in vivo in large arteries. The goal of this investigation is twofold: (i) introduce a modeling framework for residual stress that unlike traditional Fung type classical opening angle models may be used for a diseased artery, and (ii) investigate the sensitivity of the spectra of small amplitude high frequency time harmonic vibrations superimposed on a large deformation to the details of the residual stress stored in arteries through a numerical simulation using physiologic parameter values under both low and high blood pressure loadings. The modeling framework also points the way towards an inverse problem using IVUS techniques to estimate residual stress in healthy and diseased arteries. © 2010 Elsevier Ltd. All rights reserved.
Conductivity Evolution of Fracture Proppant in Partial Monolayers and Multilayers
Fan, M.; Han, Y.; McClure, J. E.; Chen, C.
2017-12-01
Proppant is a granular material, typically sand, coated sand, or man-made ceramic materials, which is widely used in hydraulic fracturing to keep the induced fractures open. Optimization of proppant placement in a hydraulic fracture, as well as its role on the fracture's conductivity, is vital for effective and economical production of petroleum hydrocarbons. In this research, a numerical modeling approach, combining Discrete Element Method (DEM) with lattice Boltzmann (LB) method, was adopted to advance the understanding of fracture conductivity as function of proppant concentration under various effective stresses. DEM was used to simulate effective stress increase and the resultant proppant particle compaction and rearrangement during the process of reservoir depletion due to hydrocarbon extraction. DEM-simulated pore structure was extracted and imported into the LB simulator as boundary conditions to calculate the time-dependent permeability of the proppant pack. We first validated the DEM-LB coupling workflow; the simulated proppant pack permeabilities as functions of effective stress were in good agreement with laboratory measurements. Next, several proppant packs were generated with various proppant concentrations, ranging from partial-monolayer to multilayer structures. Proppant concentration is defined as proppant mass per unit fracture face area. Fracture conductivity as function of proppant concentration was measured in LB simulations. It was found that a partial-monolayer proppant pack with large-diameter particles was optimal in maintaining sufficient conductivity while lowering production costs. Three proppant packs with the same average diameter but different diameter distributions were generated. Specifically, we used the coefficient of variation (COV) of diameter, defined as the ratio of standard deviation of diameter to mean diameter, to characterize the heterogeneity in particle size. We obtained proppant pack porosity, permeability, and fracture
Modeling flow and transport in fracture networks using graphs
Karra, S.; O'Malley, D.; Hyman, J. D.; Viswanathan, H. S.; Srinivasan, G.
2018-03-01
Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizations of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. The good accuracy and the low computational cost, with O (104) times lower times than
DEFF Research Database (Denmark)
Heinz Ingvordsen, Cathrine; Lyngkjær, Michael F.; Peltonen-Sainio, Pirjo
2018-01-01
Heatwaves pose a threat to crop production and are predicted to increase in frequency, length and intensity as a consequence of global warming. Future heatwaves will occur in addition to the ongoing increase of mean temperature and CO2. To test effects of heatwaves superimposed to future climate ...... exposure, leading to a strong decline in the harvest index. Our results strongly emphasize the need to produce heatwave resilient cultivars....
Effective lagrangian description on discrete gauge symmetries
International Nuclear Information System (INIS)
Banks, T.
1989-01-01
We exhibit a simple low-energy lagrangian which describes a system with a discrete remnant of a spontaneously broken continuous gauge symmetry. The lagrangian gives a simple description of the effects ascribed to such systems by Krauss and Wilczek: black holes carry discrete hair and interact with cosmic strings, and wormholes cannot lead to violation of discrete gauge symmetries. (orig.)
Discrete port-Hamiltonian systems : mixed interconnections
Talasila, Viswanath; Clemente-Gallardo, J.; Schaft, A.J. van der
2005-01-01
Either from a control theoretic viewpoint or from an analysis viewpoint it is necessary to convert smooth systems to discrete systems, which can then be implemented on computers for numerical simulations. Discrete models can be obtained either by discretizing a smooth model, or by directly modeling
Discrete fractional solutions of a Legendre equation
Yılmazer, Resat
2018-01-01
One of the most popular research interests of science and engineering is the fractional calculus theory in recent times. Discrete fractional calculus has also an important position in fractional calculus. In this work, we acquire new discrete fractional solutions of the homogeneous and non homogeneous Legendre differential equation by using discrete fractional nabla operator.
McCall, N.; Gulick, S. P. S.; Morgan, J. V.; Hall, B. J.; Jones, L.; Expedition 364 Science Party, I. I.
2017-12-01
During Expedition 364, IODP/ICDP drilled the peak ring of the Chicxulub impact crater at Site M0077, recovering core from 505.7 to 1334.7 mbsf. The core has been imaged via X-ray Computer Tomography (CT) as a noninvasive method to create a 3-dimensional model of the core, providing information on the density and internal structure at a 0.3 mm resolution. Results from the expedition show that from 748 mbsf and deeper the peak ring is largely composed of uplifted and fractured granitic basement rocks originally sourced from approximately 8-10 km depth. Impact crater modeling suggests the peak ring was formed through dynamic collapse of a rebounding central peak within 10 minutes of impact, requiring the target rocks to temporarily behave as a viscous fluid. The newly recovered core provides a rare opportunity to investigate the cratering process, specifically how the granite was weakened, as well as the extent of the hydrothermal system created after the impact. Based on the CT data, we identify four classes of fractures based on their CT facies deforming the granitoids: pervasive fine fractures, discrete fine fractures, discrete filled fractures, and discrete open fractures. Pervasive fine fractures were most commonly found proximal to dikes and impact melt rock. Discrete filled fractures often displayed a cataclastic texture. We present density trends for the different facies and compare these to petrophysical properties (density, NGR, P-wave seismic velocity). Fractured areas have a lower density than the surrounding granite, as do most filled fractures. This reduction suggests that fluid migrating through the peak ring in the wake of the impact either deposited lower density minerals within the fractures and/or altered the original fracture fill. The extent and duration of fluid flow recorded in these fractures will assist in the characterization of the post-impact hydrothermal system. Future work includes combining information from CT images with thin sections
Directory of Open Access Journals (Sweden)
VANCEA, F.
2014-11-01
Full Text Available The paper presents two methods for detecting anomalies in data series derived from network traffic. Intrusion detection systems based on network traffic analysis are able to respond to incidents never seen before by detecting anomalies in data series extracted from the traffic. Some anomalies manifest themselves as pulses of various sizes and shapes, superimposed on series corresponding to normal traffic. In order to detect those impulses we propose two methods based on discrete wavelet transformation. Their effectiveness expressed in relative thresholds on pulse amplitude for no false negatives and no false positives is then evaluated against pulse duration and Hurst characteristic of original series. Different base functions are also evaluated for efficiency in the context of the proposed methods.
International Nuclear Information System (INIS)
Nishiyama, Yoshihiro; Yamamoto, Yuka; Yokoe, Koiku; Miyabe, Kazunori; Iwasaki, Takanobu; Toyama, Yoshihiro; Satoh, Katashi; Ohkawa, Motoomi
2004-01-01
Cartilage invasion in laryngohypopharyngeal cancer has a significant impact on the choice of treatment modality and outcome of the disease. We examined invasion of cartilage in laryngohypopharyngeal cancer by simultaneous bone and tumor dual-isotope SPECT using 99m Tc-hydroxymethylene diphosphonate and 201 Tl-chloride. Early and delayed simultaneous bone and tumor dual-isotope SPECT were performed on 19 patients with laryngohypopharyngeal cancer. Dual-isotope SPECT images were superimposed to project tumor location from tumor SPECT onto the osseous structures shown by bone SPECT. The presence or absence of cartilage invasion was evaluated histopathologically or by radiological studies such as CT and/or MRI. Histopathological or radiological examination of the cartilage revealed invasion in 5 patients and no invasion in 14 patients. The results of both early and delayed dual-isotope SPECT were exactly the same. Using dual-isotope SPECT, the sensitivity, specificity, and accuracy in detecting cartilage invasion by laryngohypopharyngeal cancer were: 80% (4/5), 92.9% (13/14), and 89.5% (17/19), respectively. Results of the present study suggest that superimposed early bone and tumor dual-isotope SPECT images may be sufficient for the diagnostic evaluation of cartilage invasion by laryngohypopharyngeal cancer. Superimposed dual-isotope SPECT imaging is a useful technique in the evaluation of cartilage invasion in laryngohypopharyngeal cancer. (author)
International Nuclear Information System (INIS)
Sudicky, E.A.; Frind, E.O.
1984-01-01
An analytical solution is presented for the problem of radionuclide chain decay during transport through a discrete fracture situated in a porous rock matrix. The solution takes into account advection along the fracture, molecular diffusion from the fracture to the porous matrix, adsorption on the fracture face, adsorption in the rock matrix, and radioactive decay. The solution for the daughter product is in the form of a double integral which is evaluated by Gauss-Legendre quadrature. Results show that the daughter product tends to advance ahead of the parent nuclide even when the half-life of the parent is larger. This is attributed to the effect of chain decay in the matrix, which tends to reduce the diffusive loss of the daughter along the fracture. The examples also demonstrate that neglecting the parent nuclide and modeling its daughter as a single species can result in significant overestimation of arrival times at some point along the fracture. Although the analytical solution is restricted to a two-member chain for practical reasons, it represents a more realistic description of nuclide transport along a fracture than available single-species models. The solution may be of use for application to other contaminants undergoing different types of first-order transformation reactions
A multi-scale experimental and simulation approach for fractured subsurface systems
Viswanathan, H. S.; Carey, J. W.; Frash, L.; Karra, S.; Hyman, J.; Kang, Q.; Rougier, E.; Srinivasan, G.
2017-12-01
Fractured systems play an important role in numerous subsurface applications including hydraulic fracturing, carbon sequestration, geothermal energy and underground nuclear test detection. Fractures that range in scale from microns to meters and their structure control the behavior of these systems which provide over 85% of our energy and 50% of US drinking water. Determining the key mechanisms in subsurface fractured systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. In this study, we developed and use microfluidic and triaxial core flood experiments required to reveal the fundamental dynamics of fracture-fluid interactions. In addition we have developed high fidelity fracture propagation and discrete fracture network flow models to simulate these fractured systems. We also have developed reduced order models of these fracture simulators in order to conduct uncertainty quantification for these systems. We demonstrate an integrated experimental/modeling approach that allows for a comprehensive characterization of fractured systems and develop models that can be used to optimize the reservoir operating conditions over a range of subsurface conditions.
A Two-Scale Reduced Model for Darcy Flow in Fractured Porous Media
Chen, Huangxin
2016-06-01
In this paper, we develop a two-scale reduced model for simulating the Darcy flow in two-dimensional porous media with conductive fractures. We apply the approach motivated by the embedded fracture model (EFM) to simulate the flow on the coarse scale, and the effect of fractures on each coarse scale grid cell intersecting with fractures is represented by the discrete fracture model (DFM) on the fine scale. In the DFM used on the fine scale, the matrix-fracture system are resolved on unstructured grid which represents the fractures accurately, while in the EFM used on the coarse scale, the flux interaction between fractures and matrix are dealt with as a source term, and the matrix-fracture system can be resolved on structured grid. The Raviart-Thomas mixed finite element methods are used for the solution of the coupled flows in the matrix and the fractures on both fine and coarse scales. Numerical results are presented to demonstrate the efficiency of the proposed model for simulation of flow in fractured porous media.
Directory of Open Access Journals (Sweden)
Koray Aydogdu
2014-12-01
Full Text Available Rib fractures are usually seen after a trauma, while atraumatic spontaneous rib fractures are quite rare. A first rib fracture identified in our 17 years old female patient who had not a history of trauma except lifting a heavy weight was examined in details in terms of the potential complications and followed-up for a long time. We presented our experience on this case with atraumatic first rib fracture that has different views for the etiology in light of the literature.
Fracture mechanics safety approaches
International Nuclear Information System (INIS)
Roos, E.; Schuler, X.; Eisele, U.
2004-01-01
Component integrity assessments require the knowledge of reliable fracture toughness parameters characterising the initiation of the failure process in the whole relevant temperature range. From a large number of fracture mechanics tests a statistically based procedure was derived allowing to quantify the initiation of fracture toughness as a function of temperature as a closed function as well as the temperature dependence of the cleavage instability parameters. Alternatively to the direct experimental determination one also can use a correlation between fracture toughness and notch impact energy. (orig.)
Scaphoid fractures in children
Directory of Open Access Journals (Sweden)
Gajdobranski Đorđe
2014-01-01
Full Text Available Introduction. Scaphoid fractures are rare in childhood. Diagnosis is very difficult to establish because carpal bones are not fully ossified. In suspected cases comparative or delayed radiography is used, as well as computerized tomography, magnetic resonance imaging, ultrasound and bone scintigraphy. Majority of scaphoid fractures are treated conservatively with good results. In case of delayed fracture healing various types of treatment are available. Objective. To determine the mechanism of injury, clinical healing process, types and outcome of treatment of scaphoid fractures in children. Methods. We retrospectively analyzed patients with traumatic closed fracture of the scaphoid bone over a ten-year period (2002-2011. The outcome of the treatment of “acute” scaphoid fracture was evaluated using the Mayo Wrist Score. Results. There were in total 34 patients, of mean age 13.8 years, with traumatic closed fracture of the scaphoid bone, whose bone growth was not finished yet. Most common injury mechanism was fall on outstretched arm - 76% of patients. During the examined period 31 children with “acute” fracture underwent conservative treatment, with average immobilization period of 51 days. Six patients were lost to follow-up. In the remaining 25 patients, after completed rehabilitation, functional results determined by the Mayo Wrist Score were excellent. Conclusion. Conservative therapy of “acute” scaphoid fractures is an acceptable treatment option for pediatric patients with excellent functional results.
Pathological fractures in children
De Mattos, C. B. R.; Binitie, O.; Dormans, J. P.
2012-01-01
Pathological fractures in children can occur as a result of a variety of conditions, ranging from metabolic diseases and infection to tumours. Fractures through benign and malignant bone tumours should be recognised and managed appropriately by the treating orthopaedic surgeon. The most common benign bone tumours that cause pathological fractures in children are unicameral bone cysts, aneurysmal bone cysts, non-ossifying fibromas and fibrous dysplasia. Although pathological fractures through a primary bone malignancy are rare, these should be recognised quickly in order to achieve better outcomes. A thorough history, physical examination and review of plain radiographs are crucial to determine the cause and guide treatment. In most benign cases the fracture will heal and the lesion can be addressed at the time of the fracture, or after the fracture is healed. A step-wise and multidisciplinary approach is necessary in caring for paediatric patients with malignancies. Pathological fractures do not have to be treated by amputation; these fractures can heal and limb salvage can be performed when indicated. PMID:23610658
Continuous versus discrete structures II -- Discrete Hamiltonian systems and Helmholtz conditions
Cresson, Jacky; Pierret, Frédéric
2015-01-01
We define discrete Hamiltonian systems in the framework of discrete embeddings. An explicit comparison with previous attempts is given. We then solve the discrete Helmholtz's inverse problem for the discrete calculus of variation in the Hamiltonian setting. Several applications are discussed.
Asymptotic behavior of discrete holomorphic maps z^c, log(z) and discrete Painleve transcedents
Agafonov, S. I.
2005-01-01
It is shown that discrete analogs of z^c and log(z) have the same asymptotic behavior as their smooth counterparts. These discrete maps are described in terms of special solutions of discrete Painleve-II equations, asymptotics of these solutions providing the behaviour of discrete z^c and log(z) at infinity.
International Nuclear Information System (INIS)
Zhang Yufeng; Fan Engui; Zhang Yongqing
2006-01-01
With the help of two semi-direct sum Lie algebras, an efficient way to construct discrete integrable couplings is proposed. As its applications, the discrete integrable couplings of the Toda-type lattice equations are obtained. The approach can be devoted to establishing other discrete integrable couplings of the discrete lattice integrable hierarchies of evolution equations
International Nuclear Information System (INIS)
La Pointe, P.R.; Wallmann, P.; Follin, S.
1995-09-01
Numerical continuum codes may be used for assessing the role of regional groundwater flow in far-field safety analyses of a nuclear waste repository at depth. The focus of this project is to develop and evaluate one method based on Discrete Fracture Network (DFN) models to estimate block-scale permeability values for continuum codes. Data from the Aespoe HRL and surrounding area are used. 57 refs, 76 figs, 15 tabs
Fracture of the styloid process associated with the mandible fracture
Directory of Open Access Journals (Sweden)
K N Dubey
2013-01-01
Full Text Available Fracture of the styloid process (SP of temporal bone is an uncommon injuries. Fracture of the SP can be associated with the facial injuries including mandible fracture. However, injury to the SP may be concealed and missed diagnosis may lead to the improper or various unnecessary treatments. A rare case of SP fracture associated with the ipsilateral mandibular fracture and also the diagnostic and management considerations of the SP fracture are discussed.
Cuspidal discrete series for projective hyperbolic spaces
DEFF Research Database (Denmark)
Andersen, Nils Byrial; Flensted-Jensen, Mogens
2013-01-01
Abstract. We have in [1] proposed a definition of cusp forms on semisimple symmetric spaces G/H, involving the notion of a Radon transform and a related Abel transform. For the real non-Riemannian hyperbolic spaces, we showed that there exists an infinite number of cuspidal discrete series......, and at most finitely many non-cuspidal discrete series, including in particular the spherical discrete series. For the projective spaces, the spherical discrete series are the only non-cuspidal discrete series. Below, we extend these results to the other hyperbolic spaces, and we also study the question...
Space-Time Discrete KPZ Equation
Cannizzaro, G.; Matetski, K.
2018-03-01
We study a general family of space-time discretizations of the KPZ equation and show that they converge to its solution. The approach we follow makes use of basic elements of the theory of regularity structures (Hairer in Invent Math 198(2):269-504, 2014) as well as its discrete counterpart (Hairer and Matetski in Discretizations of rough stochastic PDEs, 2015. arXiv:1511.06937). Since the discretization is in both space and time and we allow non-standard discretization for the product, the methods mentioned above have to be suitably modified in order to accommodate the structure of the models under study.
Anisotropy of strength and deformability of fractured rocks
Directory of Open Access Journals (Sweden)
Majid Noorian Bidgoli
2014-04-01
Full Text Available Anisotropy of the strength and deformation behaviors of fractured rock masses is a crucial issue for design and stability assessments of rock engineering structures, due mainly to the non-uniform and non-regular geometries of the fracture systems. However, no adequate efforts have been made to study this issue due to the current practical impossibility of laboratory tests with samples of large volumes containing many fractures, and the difficulty for controlling reliable initial and boundary conditions for large-scale in situ tests. Therefore, a reliable numerical predicting approach for evaluating anisotropy of fractured rock masses is needed. The objective of this study is to systematically investigate anisotropy of strength and deformability of fractured rocks, which has not been conducted in the past, using a numerical modeling method. A series of realistic two-dimensional (2D discrete fracture network (DFN models were established based on site investigation data, which were then loaded in different directions, using the code UDEC of discrete element method (DEM, with changing confining pressures. Numerical results show that strength envelopes and elastic deformability parameters of tested numerical models are significantly anisotropic, and vary with changing axial loading and confining pressures. The results indicate that for design and safety assessments of rock engineering projects, the directional variations of strength and deformability of the fractured rock mass concerned must be treated properly with respect to the directions of in situ stresses. Traditional practice for simply positioning axial orientation of tunnels in association with principal stress directions only may not be adequate for safety requirements. Outstanding issues of the present study and suggestions for future study are also presented.
Hydraulic fracturing - an attempt of DEM simulation
Kosmala, Alicja; Foltyn, Natalia; Klejment, Piotr; Dębski, Wojciech
2017-04-01
Hydraulic fracturing is a technique widely used in oil, gas and unconventional reservoirs exploitation in order to enable the oil/gas to flow more easily and enhance the production. It relays on pumping into a rock a special fluid under a high pressure which creates a set of microcracks which enhance porosity of the reservoir rock. In this research, attempt of simulation of such hydrofracturing process using the Discrete Element Method approach is presented. The basic assumption of this approach is that the rock can be represented as an assembly of discrete particles cemented into a rigid sample (Potyondy 2004). An existence of voids among particles simulates then a pore system which can be filled out by fracturing fluid, numerically represented by much smaller particles. Following this microscopic point of view and its numerical representation by DEM method we present primary results of numerical analysis of hydrofracturing phenomena, using the ESyS-Particle Software. In particular, we consider what is happening in distinct vicinity of the border between rock sample and fracking particles, how cracks are creating and evolving by breaking bonds between particles, how acoustic/seismic energy is releasing and so on. D.O. Potyondy, P.A. Cundall. A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41 (2004), pp. 1329-1364.
The Process of Hydraulic Fracturing
Hydraulic fracturing, know as fracking or hydrofracking, produces fractures in a rock formation by pumping fluids (water, proppant, and chemical additives) at high pressure down a wellbore. These fractures stimulate the flow of natural gas or oil.
Modeling of strongly heat-driven flow in partially saturated fractured porous media
International Nuclear Information System (INIS)
Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.
1985-01-01
The authors have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for their flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. They model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, they develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account the fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables
Modeling of strongly heat-driven flow in partially saturated fractured porous media
International Nuclear Information System (INIS)
Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.
1984-10-01
We have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for our flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. We model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, we develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account for fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables
Integrable discretizations of the short pulse equation
International Nuclear Information System (INIS)
Feng Baofeng; Maruno, Ken-ichi; Ohta, Yasuhiro
2010-01-01
In this paper, we propose integrable semi-discrete and full-discrete analogues of the short pulse (SP) equation. The key construction is the bilinear form and determinant structure of solutions of the SP equation. We also give the determinant formulas of N-soliton solutions of the semi-discrete and full-discrete analogues of the SP equations, from which the multi-loop and multi-breather solutions can be generated. In the continuous limit, the full-discrete SP equation converges to the semi-discrete SP equation, and then to the continuous SP equation. Based on the semi-discrete SP equation, an integrable numerical scheme, i.e. a self-adaptive moving mesh scheme, is proposed and used for the numerical computation of the short pulse equation.
Pathomechanics of Post-Traumatic OA Development in the Military Following Articular Fracture
2017-10-01
ankle, the soft tissue support in the knee may aid in preventing post-fracture deterioration, despite similar energies involved in the injuries ...patient outcomes, and/or surgeon rankings of injury severity in the knee , ankle, and in the calcaneus. The different distributions of fracture...stress analysis through a previously validated discrete element analysis (DEA) methodology [3]. Contact stresses were computed at heel - strike , mid
Topological Characterization of Fractured Coal
Jing, Yu; Armstrong, Ryan T.; Ramandi, Hamed L.; Mostaghimi, Peyman
2017-12-01
Coal transport properties are highly dependent on the underlying fractured network, known as cleats, which are characterized by geometrical and topological properties. X-ray microcomputed tomography (micro-CT) has been widely applied to obtain 3-D digital representations of the cleat network. However, segmentation of 3-D data is often problematic due to image noise, which will result in inaccurate estimation of coal properties (e.g., porosity and specific surface area). To circumvent this issue, a discrete fracture network (DFN) model is proposed. We develop a characterization framework to determine if the developed DFN models can preserve the topological properties of the coal cleat network found in micro-CT data. We compute the Euler characteristic, fractal dimension, and percolation quantities to analyze the topology locally and globally and compare the results between micro-CT data (before denoising), filtered micro-CT data (after denoising), and the DFN model. We find that micro-CT data with noise have extensive connectivity while filtered micro-CT data and DFN models have similar topology both globally and locally. It is concluded that the topology of the DFN models are closer to that of the realistic cleat network that do not have segmentation-induced pores. In addition, micro-CT imaging always struggles with the trade-off between sample size and resolution, while the presented DFN models are not restricted by imaging resolution and thus can be constructed with extended domain size. Overall, the presented DFN model is a reliable alternative with realistic cleat topology, extended domain size and favorable data format for direct numerical simulations.
[Trochanteric femoral fractures].
Douša, P; Čech, O; Weissinger, M; Džupa, V
2013-01-01
At the present time proximal femoral fractures account for 30% of all fractures referred to hospitals for treatment. Our population is ageing, the proportion of patients with post-menopausal or senile osteoporosis is increasing and therefore the number of proximal femoral fractures requiring urgent treatment is growing too. In the age category of 50 years and older, the incidence of these fractures has increased exponentially. Our department serves as a trauma centre for half of Prague and part of the Central Bohemia Region with a population of 1 150 000. Prague in particular has a high number of elderly citizens. Our experience is based on extensive clinical data obtained from the Register of Proximal Femoral Fractures established in 1997. During 14 years, 4280 patients, 3112 women and 1168 men, were admitted to our department for treatment of proximal femoral fractures. All patients were followed up until healing or development of complications. In the group under study, 82% were patients older than 70 years; 72% of those requiring surgery were in their seventies and eighties. Men were significantly younger than women (pfractures were 2.3-times more frequent in women than in men. In the category under 60 years, men significantly outnumbered women (pfractures were, on the average, eight years older than the patients with intertrochanteric fractures, which is a significant difference (pTrochanteric fractures accounted for 54.7% and femoral neck fractures for 45.3% of all fractures. The inter-annual increase was 5.9%, with more trochanteric than femoral neck fractures. There was a non-significant decrease in intertrochanteric (AO 31-A3) fractures. On the other hand, the number of pertrochanteric (AO 31-A1+2) fractures increased significantly (pfractures were treated with a proximal femoral nail; a short nail was used in 1260 and a long nail in 134 of them. A dynamic hip screw (DHS) was employed to treat 947 fractures. Distinguishing between pertrochanteric (21-A1
Kinematic and geometric characterization of the fracturation in the Berrocal (Toledo, Spain)
International Nuclear Information System (INIS)
Campos Egea, R.; Gumiel Martinez, P.; Pardillo Porras, J.
1995-01-01
The current research carried out it the El Berrocal Test Site belong to the ''Caracterizacion y validacion de los procesos de migracion de radionucleidos bajo condiciones reales en un medio granitico fracturado Project'', which is integrated in the ENRESA and EE R+D Programs aimed to establish the structural, lithological, geochemical, hydrochemical and hydrogeological aspects of the granite-Uranium mineralization system, to approach modelling of the U-Migration. The geometry and kinematics of fracturing which affect the El Berroal granite are shown in this paper. The kinematics of Late-Hercynian fractures is consistent with the development of an extension dilation zone off-set between the Meridional of Central System and Navamorcuente major faults, in a continued right-lateral shearing, accompanying E-W shortening in prolonged transpression. An statistical analysis of 1264 joints have been carried out. Joint spacing and aperture were also measured in profiles around the El Berrocal Test Site showing that joints may be grouped in three groups with orientations following Fisher distributions. Joint spacing shows fractal behaviour with a significant superimposed ramdon element (negative-exponential distribution) which is at present being evaluated. Finally, fracture trace mapping and detected fracture zones in boreholes from TLV data have been geometrically correlated and utilized to asses fracture connectivity. Connected networks of fractures have been obtained, which is a support fort further hydraulic tests carried out in the Porject. (Author) 53 refs
Ivanova, Violeta M.; Sousa, Rita; Murrihy, Brian; Einstein, Herbert H.
2014-06-01
This paper presents results from research conducted at MIT during 2010-2012 on modeling of natural rock fracture systems with the GEOFRAC three-dimensional stochastic model. Following a background summary of discrete fracture network models and a brief introduction of GEOFRAC, the paper provides a thorough description of the newly developed mathematical and computer algorithms for fracture intensity, aperture, and intersection representation, which have been implemented in MATLAB. The new methods optimize, in particular, the representation of fracture intensity in terms of cumulative fracture area per unit volume, P32, via the Poisson-Voronoi Tessellation of planes into polygonal fracture shapes. In addition, fracture apertures now can be represented probabilistically or deterministically whereas the newly implemented intersection algorithms allow for computing discrete pathways of interconnected fractures. In conclusion, results from a statistical parametric study, which was conducted with the enhanced GEOFRAC model and the new MATLAB-based Monte Carlo simulation program FRACSIM, demonstrate how fracture intensity, size, and orientations influence fracture connectivity.
... an orthopedic surgeon if: Your metacarpal bones are broken and shifted out of place Your fingers do not line up correctly Your fracture nearly went through the skin Your fracture went through the skin Your pain is severe or becoming worse Self-care at Home You may have pain and swelling for 1 ...
Kojima, Kodi Edson; Ferreira, Ramon Venzon
2011-01-01
The long-bone fractures occur most frequently in the tibial shaft. Adequate treatment of such fractures avoids consolidation failure, skewed consolidation and reoperation. To classify these fractures, the AO/OTA classification method is still used, but it is worthwhile getting to know the Ellis classification method, which also includes assessment of soft-tissue injuries. There is often an association with compartmental syndrome, and early diagnosis can be achieved through evaluating clinical parameters and constant clinical monitoring. Once the diagnosis has been made, fasciotomy should be performed. It is always difficult to assess consolidation, but the RUST method may help in this. Radiography is assessed in two projections, and points are scored for the presence of the fracture line and a visible bone callus. Today, the dogma of six hours for cleaning the exposed fracture is under discussion. It is considered that an early start to intravenous antibiotic therapy and the lesion severity are very important. The question of early or late closure of the lesion in an exposed fracture has gone through several phases: sometimes early closure has been indicated and sometimes late closure. Currently, whenever possible, early closure of the lesion is recommended, since this diminishes the risk of infection. Milling of the canal when the intramedullary nail is introduced is still a controversial subject. Despite strong personal positions in favor of milling, studies have shown that there may be some advantage in relation to closed fractures, but not in exposed fractures.
Levine, David G; Aitken, Maia R
2017-08-01
Physeal fractures are common musculoskeletal injuries in foals and should be included as a differential diagnosis for the lame or nonweightbearing foal. Careful evaluation of the patient, including precise radiographic assessment, is paramount in determining the options for treatment. Prognosis mostly depends on the patient's age, weight, and fracture location and configuration. Copyright © 2017 Elsevier Inc. All rights reserved.
Discrete geometric structures for architecture
Pottmann, Helmut
2010-06-13
The emergence of freeform structures in contemporary architecture raises numerous challenging research problems, most of which are related to the actual fabrication and are a rich source of research topics in geometry and geometric computing. The talk will provide an overview of recent progress in this field, with a particular focus on discrete geometric structures. Most of these result from practical requirements on segmenting a freeform shape into planar panels and on the physical realization of supporting beams and nodes. A study of quadrilateral meshes with planar faces reveals beautiful relations to discrete differential geometry. In particular, we discuss meshes which discretize the network of principal curvature lines. Conical meshes are among these meshes; they possess conical offset meshes at a constant face/face distance, which in turn leads to a supporting beam layout with so-called torsion free nodes. This work can be generalized to a variety of multilayer structures and laid the ground for an adapted curvature theory for these meshes. There are also efforts on segmenting surfaces into planar hexagonal panels. Though these are less constrained than planar quadrilateral panels, this problem is still waiting for an elegant solution. Inspired by freeform designs in architecture which involve circles and spheres, we present a new kind of triangle mesh whose faces\\' in-circles form a packing, i.e., the in-circles of two triangles with a common edge have the same contact point on that edge. These "circle packing (CP) meshes" exhibit an aesthetic balance of shape and size of their faces. They are closely tied to sphere packings on surfaces and to various remarkable structures and patterns which are of interest in art, architecture, and design. CP meshes constitute a new link between architectural freeform design and computational conformal geometry. Recently, certain timber structures motivated us to study discrete patterns of geodesics on surfaces. This
Radiative transfer on discrete spaces
Preisendorfer, Rudolph W; Stark, M; Ulam, S
1965-01-01
Pure and Applied Mathematics, Volume 74: Radiative Transfer on Discrete Spaces presents the geometrical structure of natural light fields. This book describes in detail with mathematical precision the radiometric interactions of light-scattering media in terms of a few well established principles.Organized into four parts encompassing 15 chapters, this volume begins with an overview of the derivations of the practical formulas and the arrangement of formulas leading to numerical solution procedures of radiative transfer problems in plane-parallel media. This text then constructs radiative tran
Continuous time random walk analysis of solute transport in fractured porous media
Energy Technology Data Exchange (ETDEWEB)
Cortis, Andrea; Cortis, Andrea; Birkholzer, Jens
2008-06-01
The objective of this work is to discuss solute transport phenomena in fractured porous media, where the macroscopic transport of contaminants in the highly permeable interconnected fractures can be strongly affected by solute exchange with the porous rock matrix. We are interested in a wide range of rock types, with matrix hydraulic conductivities varying from almost impermeable (e.g., granites) to somewhat permeable (e.g., porous sandstones). In the first case, molecular diffusion is the only transport process causing the transfer of contaminants between the fractures and the matrix blocks. In the second case, additional solute transfer occurs as a result of a combination of advective and dispersive transport mechanisms, with considerable impact on the macroscopic transport behavior. We start our study by conducting numerical tracer experiments employing a discrete (microscopic) representation of fractures and matrix. Using the discrete simulations as a surrogate for the 'correct' transport behavior, we then evaluate the accuracy of macroscopic (continuum) approaches in comparison with the discrete results. However, instead of using dual-continuum models, which are quite often used to account for this type of heterogeneity, we develop a macroscopic model based on the Continuous Time Random Walk (CTRW) framework, which characterizes the interaction between the fractured and porous rock domains by using a probability distribution function of residence times. A parametric study of how CTRW parameters evolve is presented, describing transport as a function of the hydraulic conductivity ratio between fractured and porous domains.
Simulation of two-phase flow in horizontal fracture networks with numerical manifold method
Ma, G. W.; Wang, H. D.; Fan, L. F.; Wang, B.
2017-10-01
The paper presents simulation of two-phase flow in discrete fracture networks with numerical manifold method (NMM). Each phase of fluids is considered to be confined within the assumed discrete interfaces in the present method. The homogeneous model is modified to approach the mixed fluids. A new mathematical cover formation for fracture intersection is proposed to satisfy the mass conservation. NMM simulations of two-phase flow in a single fracture, intersection, and fracture network are illustrated graphically and validated by the analytical method or the finite element method. Results show that the motion status of discrete interface significantly depends on the ratio of mobility of two fluids rather than the value of the mobility. The variation of fluid velocity in each fracture segment and the driven fluid content are also influenced by the ratio of mobility. The advantages of NMM in the simulation of two-phase flow in a fracture network are demonstrated in the present study, which can be further developed for practical engineering applications.
Treatment of midfacial fractures
International Nuclear Information System (INIS)
Schubert, J.
2007-01-01
Fractures of the midface constitute half of all traumas involving facial bones. Computed tomography is very useful in primary diagnosis. Isolated fractures of the nasal bone and lateral midfacial structures may be diagnosed sufficiently by conventional X-rays. An exact description of the fracture lines along the midfacial buttresses is essential for treatment planning. For good aesthetics and function these have to be reconstructed accurately, which can be checked with X-rays. The treatment of midfacial fractures has been revolutionized over the last two decades. A stable three-dimensional reconstruction of the facial shape is now possible and the duration of treatment has shortened remarkably. The frequently occurring isolated fractures in the lateral part of the midface may be treated easily and effectively by semisurgical methods such as the Gillies procedure or hook-repositioning. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Halliday, K.E., E-mail: kath.halliday@nuh.nhs.uk [Department of Radiology, Nottingham University Hospitals, Queen' s Medical Centre, Nottingham (United Kingdom); Broderick, N J; Somers, J M [Department of Radiology, Nottingham University Hospitals, Queen' s Medical Centre, Nottingham (United Kingdom); Hawkes, R [Department of Radiology, Paul O' Gorman Building, Bristol (United Kingdom)
2011-11-15
Aim: To document the timing of the appearance of the radiological features of fracture healing in a group of infants in which the date of injury was known and to assess the degree of interobserver agreement. Materials and methods: Three paediatric radiologists independently assessed 161 images of 37 long bone fractures in 31 patients aged 0-44 months. The following features were assessed: soft-tissue swelling, subperiosteal new bone formation (SPNBF), definition of fracture line, presence or absence of callus, whether callus was well or ill defined, and the presence of endosteal callus. Results: Agreement between observers was only moderate for all discriminators except SPNBF. SPNBF was invariably seen after 11 days but was uncommon before this time even in the very young. In one case SPNBF was seen at 4 days. Conclusion: With the exception of SPNBF, the criteria relied on to date fractures are either not reproducible or are poor discriminators of fracture age.
International Nuclear Information System (INIS)
Halliday, K.E.; Broderick, N.J.; Somers, J.M.; Hawkes, R.
2011-01-01
Aim: To document the timing of the appearance of the radiological features of fracture healing in a group of infants in which the date of injury was known and to assess the degree of interobserver agreement. Materials and methods: Three paediatric radiologists independently assessed 161 images of 37 long bone fractures in 31 patients aged 0-44 months. The following features were assessed: soft-tissue swelling, subperiosteal new bone formation (SPNBF), definition of fracture line, presence or absence of callus, whether callus was well or ill defined, and the presence of endosteal callus. Results: Agreement between observers was only moderate for all discriminators except SPNBF. SPNBF was invariably seen after 11 days but was uncommon before this time even in the very young. In one case SPNBF was seen at 4 days. Conclusion: With the exception of SPNBF, the criteria relied on to date fractures are either not reproducible or are poor discriminators of fracture age.
DEFF Research Database (Denmark)
Elsøe, Rasmus
This PhD thesis reported an incidence of tibial plateau fractures of 10.3/100,000/year in a complete Danish regional population. The results reported that patients treated for a lateral tibial plateau fracture with bone tamp reduction and percutaneous screw fixation achieved a satisfactory level...... with only the subgroup Sport significantly below the age matched reference population. The thesis reports a level of health related quality of life (Eq5d) and disability (KOOS) significantly below established reference populations for patients with bicondylar tibial plateau fracture treated with a ring...... fixator, both during treatment and at 19 months following injury. In general, the thesis demonstrates that the treatment of tibial plateau fractures are challenging and that some disabilities following these fractures must be expected. Moreover, the need for further research in the area, both with regard...
Fracturing formations in wells
Energy Technology Data Exchange (ETDEWEB)
Daroza, R A
1964-05-15
This well stimulation method comprises introducing through the well bore a low-penetrating, dilatant fluid, and subjecting the fluid to sufficient pressure to produce fractures in the formation. The fluid is permitted to remain in contact with the formation so as to become diluted by the formation fluids, and thereby lose its properties of dilatancy. Also, a penetrating fluid, containing a propping agent suspended therein, in introduced into contact with the fractures at a pressure substantially reduced with respect to that pressure which would have been required, prior to the fracturing operation performed using the low-penetrating dilatant fluid. The propping agent is deposited within the fractures, and thereafter, fluid production is resumed from the fractured formation. (2 claims)
A residual-based a posteriori error estimator for single-phase Darcy flow in fractured porous media
Chen, Huangxin
2016-12-09
In this paper we develop an a posteriori error estimator for a mixed finite element method for single-phase Darcy flow in a two-dimensional fractured porous media. The discrete fracture model is applied to model the fractures by one-dimensional fractures in a two-dimensional domain. We consider Raviart–Thomas mixed finite element method for the approximation of the coupled Darcy flows in the fractures and the surrounding porous media. We derive a robust residual-based a posteriori error estimator for the problem with non-intersecting fractures. The reliability and efficiency of the a posteriori error estimator are established for the error measured in an energy norm. Numerical results verifying the robustness of the proposed a posteriori error estimator are given. Moreover, our numerical results indicate that the a posteriori error estimator also works well for the problem with intersecting fractures.
Non-Newtonian fluid flow in 2D fracture networks
Zou, L.; Håkansson, U.; Cvetkovic, V.
2017-12-01
Modeling of non-Newtonian fluid (e.g., drilling fluids and cement grouts) flow in fractured rocks is of interest in many geophysical and industrial practices, such as drilling operations, enhanced oil recovery and rock grouting. In fractured rock masses, the flow paths are dominated by fractures, which are often represented as discrete fracture networks (DFN). In the literature, many studies have been devoted to Newtonian fluid (e.g., groundwater) flow in fractured rock using the DFN concept, but few works are dedicated to non-Newtonian fluids.In this study, a generalized flow equation for common non-Newtonian fluids (such as Bingham, power-law and Herschel-Bulkley) in a single fracture is obtained from the analytical solutions for non-Newtonian fluid discharge between smooth parallel plates. Using Monte Carlo sampling based on site characterization data for the distribution of geometrical features (e.g., density, length, aperture and orientations) in crystalline fractured rock, a two dimensional (2D) DFN model is constructed for generic flow simulations. Due to complex properties of non-Newtonian fluids, the relationship between fluid discharge and the pressure gradient is nonlinear. A Galerkin finite element method solver is developed to iteratively solve the obtained nonlinear governing equations for the 2D DFN model. Using DFN realizations, simulation results for different geometrical distributions of the fracture network and different non-Newtonian fluid properties are presented to illustrate the spatial discharge distributions. The impact of geometrical structures and the fluid properties on the non-Newtonian fluid flow in 2D DFN is examined statistically. The results generally show that modeling non-Newtonian fluid flow in fractured rock as a DFN is feasible, and that the discharge distribution may be significantly affected by the geometrical structures as well as by the fluid constitutive properties.
3-D discrete analytical ridgelet transform.
Helbert, David; Carré, Philippe; Andres, Eric
2006-12-01
In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines: 3-D discrete radial lines going through the origin defined from their orthogonal projections and 3-D planes covered with 2-D discrete line segments. These discrete analytical lines have a parameter called arithmetical thickness, allowing us to define a 3-D DART adapted to a specific application. Indeed, the 3-D DART representation is not orthogonal, It is associated with a flexible redundancy factor. The 3-D DART has a very simple forward/inverse algorithm that provides an exact reconstruction without any iterative method. In order to illustrate the potentiality of this new discrete transform, we apply the 3-D DART and its extension to the Local-DART (with smooth windowing) to the denoising of 3-D image and color video. These experimental results show that the simple thresholding of the 3-D DART coefficients is efficient.
A Generic analytical solution for modelling pumping tests in wells intersecting fractures
Dewandel, Benoît; Lanini, Sandra; Lachassagne, Patrick; Maréchal, Jean-Christophe
2018-04-01
The behaviour of transient flow due to pumping in fractured rocks has been studied for at least the past 80 years. Analytical solutions were proposed for solving the issue of a well intersecting and pumping from one vertical, horizontal or inclined fracture in homogeneous aquifers, but their domain of application-even if covering various fracture geometries-was restricted to isotropic or anisotropic aquifers, whose potential boundaries had to be parallel or orthogonal to the fracture direction. The issue thus remains unsolved for many field cases. For example, a well intersecting and pumping a fracture in a multilayer or a dual-porosity aquifer, where intersected fractures are not necessarily parallel or orthogonal to aquifer boundaries, where several fractures with various orientations intersect the well, or the effect of pumping not only in fractures, but also in the aquifer through the screened interval of the well. Using a mathematical demonstration, we show that integrating the well-known Theis analytical solution (Theis, 1935) along the fracture axis is identical to the equally well-known analytical solution of Gringarten et al. (1974) for a uniform-flux fracture fully penetrating a homogeneous aquifer. This result implies that any existing line- or point-source solution can be used for implementing one or more discrete fractures that are intersected by the well. Several theoretical examples are presented and discussed: a single vertical fracture in a dual-porosity aquifer or in a multi-layer system (with a partially intersecting fracture); one and two inclined fractures in a leaky-aquifer system with pumping either only from the fracture(s), or also from the aquifer between fracture(s) in the screened interval of the well. For the cases with several pumping sources, analytical solutions of flowrate contribution from each individual source (fractures and well) are presented, and the drawdown behaviour according to the length of the pumped screened interval of
Periodic Hydraulic Testing for Discerning Fracture Network Connections
Becker, M.; Le Borgne, T.; Bour, O.; Guihéneuf, N.; Cole, M.
2015-12-01
Discrete fracture network (DFN) models often predict highly variable hydraulic connections between injection and pumping wells used for enhanced oil recovery, geothermal energy extraction, and groundwater remediation. Such connections can be difficult to verify in fractured rock systems because standard pumping or pulse interference tests interrogate too large a volume to pinpoint specific connections. Three field examples are presented in which periodic hydraulic tests were used to obtain information about hydraulic connectivity in fractured bedrock. The first site, a sandstone in New York State, involves only a single fracture at a scale of about 10 m. The second site, a granite in Brittany, France, involves a fracture network at about the same scale. The third site, a granite/schist in the U.S. State of New Hampshire, involves a complex network at scale of 30-60 m. In each case periodic testing provided an enhanced view of hydraulic connectivity over previous constant rate tests. Periodic testing is particularly adept at measuring hydraulic diffusivity, which is a more effective parameter than permeability for identify the complexity of flow pathways between measurement locations. Periodic tests were also conducted at multiple frequencies which provides a range in the radius of hydraulic penetration away from the oscillating well. By varying the radius of penetration, we attempt to interrogate the structure of the fracture network. Periodic tests, therefore, may be uniquely suited for verifying and/or calibrating DFN models.
Impact of ductility on hydraulic fracturing in shales
MacMinn, Chris; Auton, Lucy
2016-04-01
Hydraulic fracturing is a method for extracting natural gas and oil from low-permeability rocks such as shale via the high-pressure injection of fluid into the bulk of the rock. The goal is to initiate and propagate fractures that will provide hydraulic access deeper into the reservoir, enabling gas or oil to be collected from a larger region of the rock. Fracture is the tensile failure of a brittle material upon reaching a threshold tensile stress, but some shales have a high clay content and may yield plastically before fracturing. Plastic deformation is the shear failure of a ductile material, during which stress relaxes through irreversible rearrangements of the particles of the material. Here, we investigate the impact of the ductility of shales on hydraulic fracturing. We first consider a simple, axisymmetric model for radially outward fluid injection from a wellbore into a ductile porous rock. We use this model to show that plastic deformation greatly reduces the maximum tensile stress, and that this maximum stress does not always occur at the wellbore. We then complement these results with laboratory experiments in an analogue system, and with numerical simulations based on the discrete element method (DEM), both of which suggest that ductile failure can indeed dramatically change the resulting deformation pattern. These results imply that hydraulic fracturing may fail in ductile rocks, or that the required injection rate for fracking may be much larger than the rate predicted from models that assume purely elastic mechanical behavior.
Ping, Jing
2017-05-19
Optimal management of subsurface processes requires the characterization of the uncertainty in reservoir description and reservoir performance prediction. For fractured reservoirs, the location and orientation of fractures are crucial for predicting production characteristics. With the help of accurate and comprehensive knowledge of fracture distributions, early water/CO 2 breakthrough can be prevented and sweep efficiency can be improved. However, since the rock property fields are highly non-Gaussian in this case, it is a challenge to estimate fracture distributions by conventional history matching approaches. In this work, a method that combines vector-based level-set parameterization technique and ensemble Kalman filter (EnKF) for estimating fracture distributions is presented. Performing the necessary forward modeling is particularly challenging. In addition to the large number of forward models needed, each model is used for sampling of randomly located fractures. Conventional mesh generation for such systems would be time consuming if possible at all. For these reasons, we rely on a novel polyhedral mesh method using the mimetic finite difference (MFD) method. A discrete fracture model is adopted that maintains the full geometry of the fracture network. By using a cut-cell paradigm, a computational mesh for the matrix can be generated quickly and reliably. In this research, we apply this workflow on 2D two-phase fractured reservoirs. The combination of MFD approach, level-set parameterization, and EnKF provides an effective solution to address the challenges in the history matching problem of highly non-Gaussian fractured reservoirs.
Characterizing hydraulic fractures in shale gas reservoirs using transient pressure tests
Directory of Open Access Journals (Sweden)
Cong Wang
2015-06-01
This work presents an unconventional gas reservoir simulator and its application to quantify hydraulic fractures in shale gas reservoirs using transient pressure data. The numerical model incorporates most known physical processes for gas production from unconventional reservoirs, including two-phase flow of liquid and gas, Klinkenberg effect, non-Darcy flow, and nonlinear adsorption. In addition, the model is able to handle various types and scales of fractures or heterogeneity using continuum, discrete or hybrid modeling approaches under different well production conditions of varying rate or pressure. Our modeling studies indicate that the most sensitive parameter of hydraulic fractures to early transient gas flow through extremely low permeability rock is actually the fracture-matrix contacting area, generated by fracturing stimulation. Based on this observation, it is possible to use transient pressure testing data to estimate the area of fractures generated from fracturing operations. We will conduct a series of modeling studies and present a methodology using typical transient pressure responses, simulated by the numerical model, to estimate fracture areas created or to quantity hydraulic fractures with traditional well testing technology. The type curves of pressure transients from this study can be used to quantify hydraulic fractures in field application.
Computed tomograms of blowout fracture
International Nuclear Information System (INIS)
Ito, Haruhide; Hayashi, Minoru; Shoin, Katsuo; Hwang, Wen-Zern; Yamamoto, Shinjiro; Yonemura, Taizo.
1985-01-01
We studied 18 cases of orbital fractures, excluding optic canal fracture. There were 11 cases of pure blowout fracture and 3 of the impure type. The other 4 cases were orbital fractures without blowout fracture. The cardinal syndromes were diplopia, enophthalmos, and sensory disturbances of the trigeminal nerve in the pure type of blowout fracture. Many cases of the impure type of blowout fracture or of orbital fracture showed black eyes or a swelling of the eyelids which masked enophthalmos. Axial and coronal CT scans demonstrated: 1) the orbital fracture, 2) the degree of enophthalmos, 3) intraorbital soft tissue, such as incarcerated or prolapsed ocular muscles, 4) intraorbital hemorrhage, 5) the anatomical relation of the orbital fracture to the lacrimal canal, the trochlea, and the trigeminal nerve, and 6) the lesions of the paranasal sinus and the intracranial cavity. CT scans play an important role in determining what surgical procedures might best be employed. Pure blowout fractures were classified by CT scans into these four types: 1) incarcerating linear fracture, 2) trapdoor fracture, 3) punched-out fracture, and 4) broad fracture. Cases with severe head injury should be examined to see whether or not blowout fracture is present. If the patients are to hope to return to society, a blowout fracture should be treated as soon as possible. (author)
Computed tomograms of blowout fracture
Energy Technology Data Exchange (ETDEWEB)
Ito, Haruhide; Hayashi, Minoru; Shoin, Katsuo; Hwang, Wen-Zern; Yamamoto, Shinjiro; Yonemura, Taizo
1985-02-01
We studied 18 cases of orbital fractures, excluding optic canal fracture. There were 11 cases of pure blowout fracture and 3 of the impure type. The other 4 cases were orbital fractures without blowout fracture. The cardinal syndromes were diplopia, enophthalmos, and sensory disturbances of the trigeminal nerve in the pure type of blowout fracture. Many cases of the impure type of blowout fracture or of orbital fracture showed black eyes or a swelling of the eyelids which masked enophthalmos. Axial and coronal CT scans demonstrated: 1) the orbital fracture, 2) the degree of enophthalmos, 3) intraorbital soft tissue, such as incarcerated or prolapsed ocular muscles, 4) intraorbital hemorrhage, 5) the anatomical relation of the orbital fracture to the lacrimal canal, the trochlea, and the trigeminal nerve, and 6) the lesions of the paranasal sinus and the intracranial cavity. CT scans play an important role in determining what surgical procedures might best be employed. Pure blowout fractures were classified by CT scans into these four types: 1) incarcerating linear fracture, 2) trapdoor fracture, 3) punched-out fracture, and 4) broad fracture. Cases with severe head injury should be examined to see whether or not blowout fracture is present. If the patients are to hope to return to society, a blowout fracture should be treated as soon as possible. (author).
Energy Technology Data Exchange (ETDEWEB)
La Pointe, Paul R.; Hermanson, Jan
2002-09-09
The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.
Coupled models in porous media: reactive transport and fractures
International Nuclear Information System (INIS)
Amir, L.
2008-12-01
This thesis deals with numerical simulation of coupled models for flow and transport in porous media. We present a new method for coupling chemical reactions and transport by using a Newton-Krylov method, and we also present a model of flow in fractured media, based on a domain decomposition method that takes into account the case of intersecting fractures. This study is composed of three parts: the first part contains an analysis, and implementation, of various numerical methods for discretizing advection-diffusion problems, in particular by using operator splitting methods. The second part is concerned with a fully coupled method for modeling transport and chemistry problems. The coupled transport-chemistry model is described, after discretization in time, by a system of nonlinear equations. The size of the system, namely the number of grid points times the number a chemical species, precludes a direct solution of the linear system. To alleviate this difficulty, we solve the system by a Newton-Krylov method, so as to avoid forming and factoring the Jacobian matrix. In the last part, we present a model of flow in 3D for intersecting fractures, by using a domain decomposition method. The fractures are treated as interfaces between sub-domains. We show existence and uniqueness of the solution, and we validate the model by numerical tests. (author)
Modeling interfacial fracture in Sierra.
Energy Technology Data Exchange (ETDEWEB)
Brown, Arthur A.; Ohashi, Yuki; Lu, Wei-Yang; Nelson, Stacy A. C.; Foulk, James W.,; Reedy, Earl David,; Austin, Kevin N.; Margolis, Stephen B.
2013-09-01
This report summarizes computational efforts to model interfacial fracture using cohesive zone models in the SIERRA/SolidMechanics (SIERRA/SM) finite element code. Cohesive surface elements were used to model crack initiation and propagation along predefined paths. Mesh convergence was observed with SIERRA/SM for numerous geometries. As the funding for this project came from the Advanced Simulation and Computing Verification and Validation (ASC V&V) focus area, considerable effort was spent performing verification and validation. Code verification was performed to compare code predictions to analytical solutions for simple three-element simulations as well as a higher-fidelity simulation of a double-cantilever beam. Parameter identification was conducted with Dakota using experimental results on asymmetric double-cantilever beam (ADCB) and end-notched-flexure (ENF) experiments conducted under Campaign-6 funding. Discretization convergence studies were also performed with respect to mesh size and time step and an optimization study was completed for mode II delamination using the ENF geometry. Throughout this verification process, numerous SIERRA/SM bugs were found and reported, all of which have been fixed, leading to over a 10-fold increase in convergence rates. Finally, mixed-mode flexure experiments were performed for validation. One of the unexplained issues encountered was material property variability for ostensibly the same composite material. Since the variability is not fully understood, it is difficult to accurately assess uncertainty when performing predictions.
A fractured rock geophysical toolbox method selection tool
Day-Lewis, F. D.; Johnson, C.D.; Slater, L.D.; Robinson, J.L.; Williams, J.H.; Boyden, C.L.; Werkema, D.D.; Lane, J.W.
2016-01-01
Geophysical technologies have the potential to improve site characterization and monitoring in fractured rock, but the appropriate and effective application of geophysics at a particular site strongly depends on project goals (e.g., identifying discrete fractures) and site characteristics (e.g., lithology). No method works at every site or for every goal. New approaches are needed to identify a set of geophysical methods appropriate to specific project goals and site conditions while considering budget constraints. To this end, we present the Excel-based Fractured-Rock Geophysical Toolbox Method Selection Tool (FRGT-MST). We envision the FRGT-MST (1) equipping remediation professionals with a tool to understand what is likely to be realistic and cost-effective when contracting geophysical services, and (2) reducing applications of geophysics with unrealistic objectives or where methods are likely to fail.