WorldWideScience

Sample records for superhydrophobic surfaces based

  1. Superhydrophobic surfaces

    Science.gov (United States)

    Wang, Evelyn N; McCarthy, Matthew; Enright, Ryan; Culver, James N; Gerasopoulos, Konstantinos; Ghodssi, Reza

    2015-03-24

    Surfaces having a hierarchical structure--having features of both microscale and nanoscale dimensions--can exhibit superhydrophobic properties and advantageous condensation and heat transfer properties. The hierarchical surfaces can be fabricated using biological nanostructures, such as viruses as a self-assembled nanoscale template.

  2. Superhydrophobic alumina surface based on stearic acid modification

    Energy Technology Data Exchange (ETDEWEB)

    Feng Libang, E-mail: lepond@hotmail.com [School of Mechatronic Engineering, Lanzhou Jiaotong University, Lanzhou 730070 (China); Zhang Hongxia; Mao Pengzhi; Wang Yanping; Ge Yang [School of Mechatronic Engineering, Lanzhou Jiaotong University, Lanzhou 730070 (China)

    2011-02-15

    A novel superhydrophobic alumina surface is fabricated by grafting stearic acid layer onto the porous and roughened aluminum film. The chemical and phase structure, morphology, and the chemical state of the atoms at the superhydrophobic surface were investigated by techniques as FTIR, XRD, FE-SEM, and XPS, respectively. Results show that a super water-repellent surface with a contact angle of 154.2{sup o} is generated. The superhydrophobic alumina surface takes on an uneven flowerlike structure with many nanometer-scale hollows distribute in the nipple-shaped protrusions, and which is composed of boehmite crystal and {gamma}-Al{sub 2}O{sub 3}. Furthermore, the roughened and porous alumina surface is coated with a layer of hydrophobic alkyl chains which come from stearic acid molecules. Therefore, both the roughened structure and the hydrophobic layer endue the alumina surface with the superhydrophobic behavior.

  3. Flow condensation on copper-based nanotextured superhydrophobic surfaces.

    Science.gov (United States)

    Torresin, Daniele; Tiwari, Manish K; Del Col, Davide; Poulikakos, Dimos

    2013-01-15

    Superhydrophobic surfaces have shown excellent ability to promote dropwise condensation with high droplet mobility, leading to enhanced surface thermal transport. To date, however, it is unclear how superhydrophobic surfaces would perform under the stringent flow condensation conditions of saturated vapor at high temperature, which can affect superhydrophobicity. Here, we investigate this issue employing "all-copper" superhydrophobic surfaces with controlled nanostructuring for minimal thermal resistance. Flow condensation tests performed with saturated vapor at a high temperature (110 °C) showed the condensing drops penetrate the surface texture (i.e., attain the Wenzel state with lower droplet mobility). At the same time, the vapor shear helped ameliorate the mobility and enhanced the thermal transport. At the high end of the examined vapor velocity range, a heat flux of ~600 kW m(-2) was measured at 10 K subcooling and 18 m s(-1) vapor velocity. This clearly highlights the excellent potential of a nanostructured superhydrophobic surface in flow condensation applications. The surfaces sustained dropwise condensation and vapor shear for five days, following which mechanical degradation caused a transition to filmwise condensation. Overall, our results underscore the need to investigate superhydrophobic surfaces under stringent and realistic flow condensation conditions before drawing conclusions regarding their performance in practically relevant condensation applications.

  4. Multifunctional polymer nano-composite based superhydrophobic surface

    Science.gov (United States)

    Maitra, Tanmoy; Asthana, Ashish; Buchel, Robert; Tiwari, Manish K.; Poulikakos, Dimos

    2014-11-01

    Superhydrophobic surfaces become desirable in plethora of applications in engineering fields, automobile industry, construction industries to name a few. Typical fabrication of superhydrophobic surface consists of two steps: first is to create rough morphology on the substrate of interest, followed by coating of low energy molecules. However, typical exception of the above fabrication technique would be direct coating of functional polymer nanocomposites on substrate where superhydrophobicity is needed. Also in this case, the use of different nanoparticles in the polymer matrix can be exploited to impart multi-functional properties to the superhydrophobic coatings. Herein, different carbon nanoparticles like graphene nanoplatelets (GNP), carbon nanotubes (CNT) and carbon black (CB) are used in fluropolymer matrix to prepare superhydrophobic coatings. The multi-functional properties of coatings are enhanced by combining two different carbon fillers in the matrix. The aforementioned superhydrophobic coatings have shown high electrical conductivity and excellent droplet meniscus impalement resistance. Simultaneous superhydrophobic and oleophillic character of the above coating is used to separate mineral oil and water through filtration of their mixture. Swiss National Science Foundation (SNF) Grant 200021_135479.

  5. Silica Based Superhydrophobic Nanocoatings for Natural Rubber Surfaces

    Directory of Open Access Journals (Sweden)

    Veromee Kalpana Wimalasiri

    2017-01-01

    Full Text Available Silica based nonfluorinated superhydrophobic coatings for natural rubber surfaces have been developed. The coating was synthesized using nanosilica dispersion and a polychloroprene type binder as a compatibilizer. This nanocoating of silica was applied on to the surface of finished natural rubber gloves, by spray coating or dipped coating methods. The nanocoating demonstrates a water contact angle of more than 150° and sliding angle of 7°. The morphological features of the coating have been studied using scanning electron microscopy and atomic force microscopy while Fourier transform infrared spectroscopy was used to understand the nature of surface functional groups. Both imaging techniques provided evidence for the presence of nanosized particles in the coating. Coated gloves demonstrated comparable mechanical properties and significantly better alcohol resistivity when compared to those of the uncoated gloves.

  6. Bioinspired Multifunctional Superhydrophobic Surfaces with Carbon-Nanotube-Based Conducting Pastes by Facile and Scalable Printing.

    Science.gov (United States)

    Han, Joong Tark; Kim, Byung Kuk; Woo, Jong Seok; Jang, Jeong In; Cho, Joon Young; Jeong, Hee Jin; Jeong, Seung Yol; Seo, Seon Hee; Lee, Geon-Woong

    2017-03-01

    Directly printed superhydrophobic surfaces containing conducting nanomaterials can be used for a wide range of applications in terms of nonwetting, anisotropic wetting, and electrical conductivity. Here, we demonstrated that direct-printable and flexible superhydrophobic surfaces were fabricated on flexible substrates via with an ultrafacile and scalable screen printing with carbon nanotube (CNT)-based conducting pastes. A polydimethylsiloxane (PDMS)-polyethylene glycol (PEG) copolymer was used as an additive for conducting pastes to realize the printability of the conducting paste as well as the hydrophobicity of the printed surface. The screen-printed conducting surfaces showed a high water contact angle (WCA) (>150°) and low contact angle hysteresis (WCA superhydrophobic surfaces also showed sticky superhydrophobic characteristics and were used to transport water droplets. Moreover, fabricated films on metal meshes were used for an oil/water separation filter, and liquid evaporation behavior was investigated on the superhydrophobic and conductive thin-film heaters by applying direct current voltage to the film.

  7. Superhydrophobicity from microstructured surface

    Institute of Scientific and Technical Information of China (English)

    ZHENG Lijun; WU Xuedong; LOU Zeng; WU Dan

    2004-01-01

    Superhydrophobicity is referred to the wettability of a solid surface which has a water apparent contact angle greater than 150°. It has attracted great interest in both fundamental researches and practical applications. This paper discusses two models: Wenzel model and Cassie model, to describe the superhydrophobic states of surface. The effectsof surface morphology and microstructure on superhydrophobicity are discussed, and the internal relationship between Wenzel and Cassie states is presented. These two su perhydrophobic states can coexist and they present different properties on contact angle hysteresis. It is reported that the irreversible transition can be realized from Cassie state to Wenzel state under some certain conditions. This paper also gives a review of recent progresses in the strategies of fabricating superhydrophobic surfaces by designing microstructured or microtextured surfaces. Finally, the fundamental research and applications of superhydrophobic surfaces are prospected.

  8. A Thermochromic Superhydrophobic Surface

    Science.gov (United States)

    Cataldi, Pietro; Bayer, Ilker S.; Cingolani, Roberto; Marras, Sergio; Chellali, Ryad; Athanassiou, Athanassia

    2016-01-01

    Highly enhanced solid-state thermochromism is observed in regioregular poly(3-hexylthiophene), P3HT, when deposited on a superhydrophobic polymer-SiO2 nanocomposite coating. The conformal P3HT coating on the nanocomposite surface does not alter or reduce superhydrophicity while maintaining its reversible enhanced thermochromism. The polymeric matrix of the superhydrophobic surface is comprised of a blend of poly(vinylidene fluoride-co-hexafluoropropylene) copolymer and an acrylic adhesive. Based on detailed X-ray diffraction measurements, this long-lasting, repeatable and hysteresis-free thermochromic effect is attributed to the enhancement of the Bragg peak associated with the d-spacing of interchain directional packing (100) which remains unaltered during several heating-cooling cycles. We propose that the superhydrophobic surface confines π–π interchain stacking in P3HT with uniform d-spacing into its nanostructured texture resulting in better packing and reduction in face-on orientation. The rapid response of the system to sudden temperature changes is also demonstrated by water droplet impact and bounce back on heated surfaces. This effect can be exploited for embedded thin film temperature sensors for metal coatings. PMID:27301422

  9. A Thermochromic Superhydrophobic Surface

    Science.gov (United States)

    Cataldi, Pietro; Bayer, Ilker S.; Cingolani, Roberto; Marras, Sergio; Chellali, Ryad; Athanassiou, Athanassia

    2016-06-01

    Highly enhanced solid-state thermochromism is observed in regioregular poly(3-hexylthiophene), P3HT, when deposited on a superhydrophobic polymer-SiO2 nanocomposite coating. The conformal P3HT coating on the nanocomposite surface does not alter or reduce superhydrophicity while maintaining its reversible enhanced thermochromism. The polymeric matrix of the superhydrophobic surface is comprised of a blend of poly(vinylidene fluoride-co-hexafluoropropylene) copolymer and an acrylic adhesive. Based on detailed X-ray diffraction measurements, this long-lasting, repeatable and hysteresis-free thermochromic effect is attributed to the enhancement of the Bragg peak associated with the d-spacing of interchain directional packing (100) which remains unaltered during several heating-cooling cycles. We propose that the superhydrophobic surface confines π–π interchain stacking in P3HT with uniform d-spacing into its nanostructured texture resulting in better packing and reduction in face-on orientation. The rapid response of the system to sudden temperature changes is also demonstrated by water droplet impact and bounce back on heated surfaces. This effect can be exploited for embedded thin film temperature sensors for metal coatings.

  10. Facile fabrication of iron-based superhydrophobic surfaces via electric corrosion without bath

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qinghe [College of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Liu, Hongtao, E-mail: liuht100@126.com [College of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Chen, Tianchi [College of Mechanical & Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Wei, Yan; Wei, Zhu [College of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China)

    2016-04-30

    Graphical abstract: - Highlights: • This paper investigates the fabrication techniques towards superhydrophobic surface on carbon steel substrate via electric corrosion without a bath. • It has a vital significance to the industrialization of the fabrication of superhydrophobic surface on hard metal due to the advantages such as low cost, high efficiency, can be prepared in a large area, easy to construct in the field. • The preparation approach is so facile and time-saving that it delivers an opportunity to construct a superhydrophobic surface on carbon steel substrate and provides the feasibility for industrial application of superhydrophobic surface. • The as-prepared surface has many excellent properties, like low adhesive property, anti-corrosion ability, mechanical durability and anti-icing performance. - Abstract: Superhydrophobic surface is of wide application in the field of catalysis, lubrication, waterproof, biomedical materials, etc. The superhydrophobic surface based on hard metal is worth further study due to its advantages of high strength and wear resistance. This paper investigates the fabrication techniques towards superhydrophobic surface on carbon steel substrate via electric corrosion and studies the properties of as-prepared superhydrophobic surface. The hydrophobic properties were characterized by a water sliding angle (SA) and a water contact angle (CA) measured by the Surface tension instrument. A Scanning electron microscope was used to analyze the structure of the corrosion surface. The surface compositions were characterized by an Energy Dispersive Spectrum. The Electrochemical workstation was used to measure its anti-corrosion property. The anti-icing performance was characterized by a steam-freezing test in Environmental testing chamber. The SiC sandpaper and 500 g weight were used to test the friction property. The research result shows that the superhydrophobic surface can be successfully fabricated by electrocorrosion on

  11. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An, E-mail: lian2010@lut.cn

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al{sub 2}O{sub 3} and Fe{sub 3}O{sub 4}, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  12. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    Science.gov (United States)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al2O3 and Fe3O4, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  13. Nanoparticle-Based Surface Modifications for Microtribology Control and Superhydrophobicity

    Science.gov (United States)

    Hurst, Kendall Matthew

    2010-11-01

    The emergence of miniaturization techniques for consumer electronics has brought forth the relatively new and exciting field of microelectromechanical systems (MEMS). However, due to the inherent forces that exist between surfaces at the micro- and nanoscale, scientists and semiconductor manufacturers are still struggling to improve the lifetime and reliability of complex microdevices. Due to the extremely large surface area-to-volume ratio of typical MEMS and microstructured surfaces, dominant interfacial forces exist which can be detrimental to their operational lifetime. In particular, van der Waals, capillary, and electrostatic forces contribute to the permanent adhesion, or stiction , of microfabricated surfaces. This strong adhesion force also contributes to the friction and wear of these silicon-based systems. The scope of this work was to examine the effect of utilizing nanoparticles as the basis for roughening surfaces for the purpose of creating films with anti-adhesive and/or superhydrophobic properties. All of the studies presented in this work are focused around a gas-expanded liquid (GXL) process that promotes the deposition of colloidal gold nanoparticles (AuNPs) into conformal thin films. The GXL particle deposition process is finalized by a critical point drying step which is advantageous to the microelectromechanical systems and semiconductor (IC) industries. In fact, preliminary results illustrated that the GXL particle deposition process can easily be integrated into current MEMS microfabrication processes. Thin films of AuNPs deposited onto the surfaces of silicon-based MEMS and tribology test devices were shown to have a dramatic effect on the adhesion of microstructures. In the various investigations, the apparent work of adhesion between surfaces was reduced by 2-4 orders of magnitude. This effect is greatly attributed to the roughening of the typically smooth silicon oxide surfaces which, in turn, dramatically decreases the "real are of

  14. Self-cleaning superhydrophobic surface based on titanium dioxide nanowires combined with polydimethylsiloxane

    Science.gov (United States)

    Zhang, Xia; Guo, Yonggang; Zhang, Zhijun; Zhang, Pingyu

    2013-11-01

    The present work describes a simple dipping process for the preparation of superhydrophobic coatings based on titanium dioxide nanowires combined with polydimethylsiloxane. The coating surface morphology, composition and wettability were investigated by scanning electron microscope, X-ray photoelectron spectroscope and contact angle measurements, respectively. Interestingly, the superhydrophobic coatings turn into a hydrophilic one after UV irradiation. It is found that the superhydrophobic surface shows almost complete wet self-cleaning of dirt particles with water droplets. Furthermore, the coating surface shows the anti-fouling performance for organic solvents, which can self-remove the organic solvents layer and recovers its superhydrophobic behavior. The advantage of the present approach is that the damaged coating can be easily repaired.

  15. Durable superhydrophobic paper enabled by surface sizing of starch-based composite films

    Science.gov (United States)

    Chen, Gang; Zhu, Penghui; Kuang, Yudi; Liu, Yu; Lin, Donghan; Peng, Congxing; Wen, Zhicheng; Fang, Zhiqiang

    2017-07-01

    Superhydrophobic paper with remarkable durability is of considerable interest for its practical applications. In this study, a scalable, inexpensive, and universal surface sizing technique was implemented to prepare superhydrophobic paper with enhanced durability. A thin layer of starch-based composite, acting as a bio-binder, was first coated onto the paper surface by a sophisticated manufacturing technique called surface sizing, immediately followed by a spray coating of hexamethyl disilazane treated silica nanoparticles (HMDS-SiNPs) dispersed in ethanol on the surface of the wet starch-coated sheet, and the dual layers dried at the same time. Consequently, durable superhydrophobic paper with bi-layer structure was obtained after air drying. The as-prepared superhydrophobic paper not only exhibited a self-cleaning behavior, but also presented an enhanced durability against scratching, bending/deformation, as well as moisture. The universal surface sizing of starch-based composites may pave the way for the up-scaled and cost-effective production of durable superhydrophobic paper.

  16. Superhydrophobic surface based on a coral-like hierarchical structure of ZnO.

    Directory of Open Access Journals (Sweden)

    Jun Wu

    Full Text Available BACKGROUND: Fabrication of superhydrophobic surfaces has attracted much interest in the past decade. The fabrication methods that have been studied are chemical vapour deposition, the sol-gel method, etching technique, electrochemical deposition, the layer-by-layer deposition, and so on. Simple and inexpensive methods for manufacturing environmentally stable superhydrophobic surfaces have also been proposed lately. However, work referring to the influence of special structures on the wettability, such as hierarchical ZnO nanostructures, is rare. METHODOLOGY: This study presents a simple and reproducible method to fabricate a superhydrophobic surface with micro-scale roughness based on zinc oxide (ZnO hierarchical structure, which is grown by the hydrothermal method with an alkaline aqueous solution. Coral-like structures of ZnO were fabricated on a glass substrate with a micro-scale roughness, while the antennas of the coral formed the nano-scale roughness. The fresh ZnO films exhibited excellent superhydrophilicity (the apparent contact angle for water droplet was about 0°, while the ability to be wet could be changed to superhydrophobicity after spin-coating Teflon (the apparent contact angle greater than 168°. The procedure reported here can be applied to substrates consisting of other materials and having various shapes. RESULTS: The new process is convenient and environmentally friendly compared to conventional methods. Furthermore, the hierarchical structure generates the extraordinary solid/gas/liquid three-phase contact interface, which is the essential characteristic for a superhydrophobic surface.

  17. Metallic superhydrophobic surfaces via thermal sensitization

    Science.gov (United States)

    Vahabi, Hamed; Wang, Wei; Popat, Ketul C.; Kwon, Gibum; Holland, Troy B.; Kota, Arun K.

    2017-06-01

    Superhydrophobic surfaces (i.e., surfaces extremely repellent to water) allow water droplets to bead up and easily roll off from the surface. While a few methods have been developed to fabricate metallic superhydrophobic surfaces, these methods typically involve expensive equipment, environmental hazards, or multi-step processes. In this work, we developed a universal, scalable, solvent-free, one-step methodology based on thermal sensitization to create appropriate surface texture and fabricate metallic superhydrophobic surfaces. To demonstrate the feasibility of our methodology and elucidate the underlying mechanism, we fabricated superhydrophobic surfaces using ferritic (430) and austenitic (316) stainless steels (representative alloys) with roll off angles as low as 4° and 7°, respectively. We envision that our approach will enable the fabrication of superhydrophobic metal alloys for a wide range of civilian and military applications.

  18. Superhydrophobic Porous Silicon Surfaces

    Directory of Open Access Journals (Sweden)

    Paolo NENZI

    2011-12-01

    Full Text Available In this paper, we present an inexpensive technique to produce superhydrophobic surfaces from porous silicon. Superhydrophobic surfaces are a key technology for their ability to reduce friction losses in microchannels and their self cleaning properties. The morphology of a p-type silicon wafer is modified by a electrochemical wet etch to produce pores with controlled size and distribution and coated with a silane hydrophobic layer. Surface morphology is characterized by means of scanning electron microscope images. Large contact angles are observed on such surfaces and the results are compared with classical wetting models (Cassie and Wenzel suggesting a mixed Wenzel-Cassie behavior. The presented technique represents a cost-effective means for friction reduction in microfluidic applications, such as lab-on-a-chip.

  19. Wettability of natural superhydrophobic surfaces.

    Science.gov (United States)

    Webb, Hayden K; Crawford, Russell J; Ivanova, Elena P

    2014-08-01

    Since the description of the 'Lotus Effect' by Barthlott and Neinhuis in 1997, the existence of superhydrophobic surfaces in the natural world has become common knowledge. Superhydrophobicity is associated with a number of possible evolutionary benefits that may be bestowed upon an organism, ranging from the ease of dewetting of their surfaces and therefore prevention of encumbrance by water droplets, self-cleaning and removal of particulates and potential pathogens, and even to antimicrobial activity. The superhydrophobic properties of natural surfaces have been attributed to the presence of hierarchical microscale (>1 μm) and nanoscale (typically below 200 nm) structures on the surface, and as a result, the generation of topographical hierarchy is usually considered of high importance in the fabrication of synthetic superhydrophobic surfaces. When one surveys the breadth of data available on naturally existing superhydrophobic surfaces, however, it can be observed that topographical hierarchy is not present on all naturally superhydrophobic surfaces; in fact, the only universal feature of these surfaces is the presence of a sophisticated nanoscale structure. Additionally, several natural surfaces, e.g. those present on rose petals and gecko feet, display high water contact angles and high adhesion of droplets, due to the pinning effect. These surfaces are not truly superhydrophobic, and lack significant degrees of nanoscale roughness. Here, we discuss the phenomena of superhydrophobicity and pseudo-superhydrophobicity in nature, and present an argument that while hierarchical surface roughness may aid in the stability of the superhydrophobic effect, it is nanoscale surface architecture alone that is the true determinant of superhydrophobicity. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Morphologies and Superhydrophobicity of Hybrid Film Surfaces Based on Silica and Fluoropolymer

    Institute of Scientific and Technical Information of China (English)

    Ailan QU; Xiufang WEN; Pihui PI; Jiang CHENG; Zhuoru YANG

    2008-01-01

    Fluoropolymer and different kinds of silica particles were used for controlling surface chemistry and morphology,respectively. A superhydrophobic surface originated from strawberry-like or quincunx-shaped composite silica particles was obtained. The dual size particles are obtained by utilizing the graft of different modified silica particles with epoxy functional group and amine functional group. This makes the surface of film form a composite interface to have irregular binary structure which plays an essential role in trapping air between the substrate surface and the liquid droplets to be necessary for high contact angle and low contact anglehysteresis. The maximum contact angle for water on the hybrid film is about 174±2° and the contact angle hysteresis is less than 2°. The surface morphologies, roughness and the wettability on the surface of films containing different structural silica particles were compared. It was shown that the hierarchical irregularly structure with a low roughness factor and high air-trapped ratio is indispensable for superhydrophobic surface.Although this structural surfaces based on composite silica particles play a vital role in governing the surface wettability, it is necessary to combine with a low surface energy to make the surface superhydrophobic.

  1. Adhesion behaviors on superhydrophobic surfaces.

    Science.gov (United States)

    Zhu, Huan; Guo, Zhiguang; Liu, Weimin

    2014-04-18

    The adhesion behaviors of superhydrophobic surfaces have become an emerging topic to researchers in various fields as a vital step in the interactions between materials and organisms/materials. Controlling the chemical compositions and topological structures via various methods or technologies is essential to fabricate and modulate different adhesion properties, such as low-adhesion, high-adhesion and anisotropic adhesion on superhydrophobic surfaces. We summarize the recent developments in both natural superhydrophobic surfaces and artificial superhydrophobic surfaces with various adhesions and also pay attention to superhydrophobic surfaces switching between low- and high-adhesion. The methods to regulate or translate the adhesion of superhydrophobic surfaces can be considered from two perspectives. One is to control the chemical composition and change the surface geometric structure on the surfaces, respectively or simultaneously. The other is to provide external stimulations to induce transitions, which is the most common method for obtaining switchable adhesions. Additionally, adhesion behaviors on solid-solid interfaces, such as the behaviors of cells, bacteria, biomolecules and icing on superhydrophobic surfaces are also noticeable and controversial. This review is aimed at giving a brief and crucial overview of adhesion behaviors on superhydrophobic surfaces.

  2. Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing.

    Science.gov (United States)

    Manca, Michele; Cannavale, Alessandro; De Marco, Luisa; Aricò, Antonino S; Cingolani, Roberto; Gigli, Giuseppe

    2009-06-02

    We present a robust and cost-effective coating method to fabricate long-term durable superhydrophobic andsimultaneouslyantireflective surfaces by a double-layer coating comprising trimethylsiloxane (TMS) surface-functionalized silica nanoparticles partially embedded into an organosilica binder matrix produced through a sol-gel process. A dense and homogeneous organosilica gel layer was first coated onto a glass substrate, and then, a trimethylsilanized nanospheres-based superhydrophobic layer was deposited onto it. After thermal curing, the two layers turned into a monolithic film, and the hydrophobic nanoparticles were permanently fixed to the glass substrate. Such treated surfaces showed a tremendous water repellency (contact angle = 168 degrees ) and stable self-cleaning effect during 2000 h of outdoor exposure. Besides this, nanotextured topology generated by the self-assembled nanoparticles-based top layer produced a fair antireflection effect consisting of more than a 3% increase in optical transmittance.

  3. Transparent, Superhydrophobic Surface with Varied Surface Tension Responsiveness in Wettability Based on Tunable Porous Silica Structure for Gauging Liquid Surface Tension.

    Science.gov (United States)

    Wang, Yan; Zhu, Yingjie; Zhang, Chunyang; Li, Jun; Guan, Zisheng

    2017-02-01

    Any solid surface can spontaneously exhibit variational wettability toward liquids with varied surface tension (γ). However, this correspondence has seldom been proposed or used on an artificial superhydrophobic surface, which should be more remarkable and peculiar. Herein, we fabricated robust, transparent superhydrophobic surfaces utilizing acid- and base-catalyzed silica (AC- and BC-silica) particles combined with candle soot template for structural construction and the CVD process for chemical modification. Three types of porous silica structures were devised, which presented distinctive surface tension responsiveness in wettability. Interestingly, all types of surfaces (i.e., AC-, AC/BC-, and BC-silica) show high repellence to high surface tension liquid (γ > 35 mN/m), and small differences are observed. With decreasing γ of the ethanol-water mixtures (γ superhydrophobic surfaces.

  4. Fabrication of tunable superhydrophobic surfaces

    Science.gov (United States)

    Shiu, Jau-Ye; Kuo, Chun-Wen; Chen, Peilin

    2004-02-01

    Inspired by the water-repellent behavior of the micro- and nano-structured plant surfaces, superhydrophobic materials, with a water contact larger than 150 degree, have received a lot of research attentions recently. It has been suggested that contamination, oxidation and current conduction can be inhibited on such superhydrophobic surfaces, and the flow resistance in the microfluidic channels can also be reduced using super water-repellent materials. In order to prepare superhydrophobic materials, we have developed two simple approaches for fabricating tunable superhydrophobic surfaces using nanosphere lithography and plasma etching. In the first case, the polystyrene nanospheres were employed to create well-ordered rough surfaces covered by gold and alkylthiols. Using oxygen plasma treatment, the topmost surface area can be modified systematically, as the result the water contact angle on such surfaces can be tuned from 132 to 170 degree. The water contact angles measured on these surfaces can be modeled by the Cassie"s formulation without any adjustable parameter. In the second approach, thin films of Teflon were spin-coated on the substrate surfaces and treated by oxygen plasma. Superhydrophobic surfaces with water contact angle up to 170 degree were obtained by this approach. If the ITO glasses were used as the substrates, the hydrophobicity of the surface can be tuned by applying DC voltage. Water contact angle can be adjusted from 158 degree to 38 degree.

  5. Polydimethylsiloxane-Based Superhydrophobic Surfaces on Steel Substrate: Fabrication, Reversibly Extreme Wettability and Oil-Water Separation.

    Science.gov (United States)

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Liang, Tao; Feng, Yuchun; Zeng, Xingrong

    2017-01-25

    Functional surfaces for reversibly switchable wettability and oil-water separation have attracted much interest with pushing forward an immense influence on fundamental research and industrial application in recent years. This article proposed a facile method to fabricate superhydrophobic surfaces on steel substrates via electroless replacement deposition of copper sulfate (CuSO4) and UV curing of vinyl-terminated polydimethylsiloxane (PDMS). PDMS-based superhydrophobic surfaces exhibited water contact angle (WCA) close to 160° and water sliding angle (WSA) lower than 5°, preserving outstanding chemical stability that maintained superhydrophobicity immersing in different aqueous solutions with pH values from 1 to 13 for 12 h. Interestingly, the superhydrophobic surface could dramatically switch to the superhydrophilic state under UV irradiation and then gradually recover to the highly hydrophobic state with WCA at 140° after dark storage. The underlying mechanism was also investigated by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Additionally, the PDMS-based steel mesh possessed high separation efficiency and excellent reusability in oil-water separation. Our studies provide a simple, fast, and economical fabrication method for wettability-transformable superhydrophobic surfaces and have the potential applications in microfluidics, the biomedical field, and oil spill cleanup.

  6. Thermocapillary Flow on Superhydrophobic Surfaces

    CERN Document Server

    Baier, Tobias; Hardt, Steffen

    2010-01-01

    A liquid in Cassie-Baxter state above a structured superhydrophobic surface is ideally suited for surface driven transport due to its large free surface fraction in close contact to a solid. We investigate thermal Marangoni flow over a superhydrophobic array of fins oriented parallel or perpendicular to an applied temperature gradient. In the Stokes limit we derive an analytical expression for the bulk flow velocity above the surface and compare it with numerical solutions of the Navier-Stokes equation. Even for moderate temperature gradients comparatively large flow velocities are induced, suggesting to utilize this principle for microfluidic pumping.

  7. Superhydrophobic nanocomposite surface topography and ice adhesion.

    Science.gov (United States)

    Davis, Alexander; Yeong, Yong Han; Steele, Adam; Bayer, Ilker S; Loth, Eric

    2014-06-25

    A method to reduce the surface roughness of a spray-casted polyurethane/silica/fluoroacrylic superhydrophobic nanocomposite coating was demonstrated. By changing the main slurry carrier fluid, fluoropolymer medium, surface pretreatment, and spray parameters, we achieved arithmetic surface roughness values of 8.7, 2.7, and 1.6 μm on three test surfaces. The three surfaces displayed superhydrophobic performance with modest variations in skewness and kurtosis. The arithmetic roughness level of 1.6 μm is the smoothest superhydrophobic surface yet produced with these spray-based techniques. These three nanocomposite surfaces, along with a polished aluminum surface, were impacted with a supercooled water spray in icing conditions, and after ice accretion occurred, each was subjected to a pressurized tensile test to measure ice-adhesion. All three superhydrophobic surfaces showed lower ice adhesion than that of the polished aluminum surface. Interestingly, the intermediate roughness surface yielded the best performance, which suggests that high kurtosis and shorter autocorrelation lengths improve performance. The most ice-phobic nanocomposite showed a 60% reduction in ice-adhesion strength when compared to polished aluminum.

  8. Vapor stabilizing surfaces for superhydrophobicity

    Science.gov (United States)

    Patankar, Neelesh

    2010-11-01

    The success of rough substrates designed for superhydrophobicity relies crucially on the presence of air pockets in the roughness grooves. This air is supplied by the surrounding environment. However, if the rough substrates are used in enclosed configurations, such as in fluidic networks, the air pockets may not be sustained in the roughness grooves. In this work a design approach based on sustaining a vapor phase of the liquid in the roughness grooves, instead of relying on the presence of air, is explored. The resulting surfaces, referred to as vapor stabilizing substrates, are deemed to be robust against wetting transition even if no air is present. Applications of this approach include low drag surfaces, nucleate boiling, and dropwise condensation heat transfer, among others.

  9. Facile preparation of superhydrophobic surface with high adhesive forces based carbon/silica composite films

    Indian Academy of Sciences (India)

    Ruanbing Hu; Guohua Jiang; Xiaohong Wang; Xiaoguang Xi; Rijing Wang

    2013-11-01

    Glass substrates modified by carbon/silica composites are fabricated through a two-step process for the preparation of a superhydrophobic surface (water contact angle ≥ 150°). Carbon nanoparticles were first prepared through a deposition process on glass using a hydrothermal synthesis route, then the glass was modified by SiO2 using the hydrolysis reaction of tetraethylorthosilicate at room temperature. It is not only a facile method to create a superhydrophobic surface, but also helps to form a multi-functional surface with high adhesive forces.

  10. Fluorine Based Superhydrophobic Coatings

    Directory of Open Access Journals (Sweden)

    Jean-Denis Brassard

    2012-05-01

    Full Text Available Superhydrophobic coatings, inspired by nature, are an emerging technology. These water repellent coatings can be used as solutions for corrosion, biofouling and even water and air drag reduction applications. In this work, synthesis of monodispersive silica nanoparticles of ~120 nm diameter has been realized via Stöber process and further functionalized using fluoroalkylsilane (FAS-17 molecules to incorporate the fluorinated groups with the silica nanoparticles in an ethanolic solution. The synthesized fluorinated silica nanoparticles have been spin coated on flat aluminum alloy, silicon and glass substrates. Functionalization of silica nanoparticles with fluorinated groups has been confirmed by Fourier Transform Infrared spectroscopy (FTIR by showing the presence of C-F and Si-O-Si bonds. The water contact angles and surface roughness increase with the number of spin-coated thin films layers. The critical size of ~119 nm renders aluminum surface superhydrophobic with three layers of coating using as-prepared nanoparticle suspended solution. On the other hand, seven layers are required for a 50 vol.% diluted solution to achieve superhydrophobicity. In both the cases, water contact angles were more than 150°, contact angle hysteresis was less than 2° having a critical roughness value of ~0.700 µm. The fluorinated silica nanoparticle coated surfaces are also transparent and can be used as paint additives to obtain transparent coatings.

  11. Ultra lightweight PMMA-based composite plates with robust super-hydrophobic surfaces.

    Science.gov (United States)

    Pareo, Paola; De Gregorio, Gian Luca; Manca, Michele; Pianesi, Maria Savina; De Marco, Luisa; Cavallaro, Francesco; Mari, Margherita; Pappadà, Silvio; Ciccarella, Giuseppe; Gigli, Giuseppe

    2011-11-15

    Extremely lightweight plates made of an engineered PMMA-based composite material loaded with hollow glass micro-sized spheres, nano-sized silica particles and aluminum hydroxide prismatic micro-flakes were realized by cast molding. Their interesting bulk mechanical properties were combined to properly tailored surface topography compatible with the achievement of a superhydrophobic behavior after the deposition of a specifically designed hydrophobic coating. With this aim, we synthesized two different species of fluoromethacrylic polymers functionalized with methoxysilane anchoring groups to be covalently grafted onto the surface protruding inorganic fillers. By modulating the feed composition of the reacting monomers, it was possible to combine the hydrophobic character of the polymer with an high adhesion strength to the substrate and hence to maximize both the water contact angle (up to 157°) and the durability of the easy-to-clean effect (up to 2000 h long outdoor exposure).

  12. Superhydrophobic aluminium-based surfaces: Wetting and wear properties of different CVD-generated coating types

    Science.gov (United States)

    Thieme, M.; Streller, F.; Simon, F.; Frenzel, R.; White, A. J.

    2013-10-01

    In view of generating superhydrophobic aluminium-based surfaces, this work presents further results for the combination of anodic oxidation as the primary pretreatment method and chemical vapour deposition (CVD) variants for chemical modification producing coatings of 250-1000 nm thickness. In detail, CVD involved the utilisation of i - hexafluoropropylene oxide as precursor within the hot filament CVD process for the deposition of poly(tetrafluoroethylene) coatings at alternative conditions (PTFE-AC) and ii - 1,3,5-trivinyltrimethylcyclotrisiloxane for the deposition of polysiloxane coatings (PSi) by initiated CVD. The substrate material was Al Mg1 subjected to usual or intensified sulphuric acid anodisation pretreatments (SAAu, SAAi, respectively) affording various degrees of surface micro-roughness (SAAu weathering and/or mild wear testing. Superhydrophobicity (SH) was observed with the system SAAi + PTFE-AC similarly to former findings with the standard hot filament CVD PTFE coating variant (SAAi + PTFE-SC). The results indicated that the specific coating morphology made an important contribution to the water-repellency, because even some of the SAAu-based samples tended to reveal SH. Subjecting samples to weathering treatment resulted in a general worsening of the wetting behaviour, primarily limited to the receding contact angles. These tendencies were correlated with the chemical composition of the sample surfaces as analysed by X-ray photoelectron spectroscopy. The wear tests showed, as evaluated by scanning electron microscopy and contact angle measurement, that the PTFE coatings were relatively sensitive to friction. This was connected with a dramatic deterioration of the water-repelling properties. PSi-coated surfaces generally showed rather poor water-repellency, but this coating type was surprisingly resistant towards the applied friction test. From these findings it may be concluded that the combination of hydrophobic fluorine containing structure

  13. Fabrication of a superhydrophobic surface on copper foil based on ammonium bicarbonate and paraffin wax coating

    Science.gov (United States)

    Zeng, Ou; Wang, Xian; Yuan, Zhiqing; Wang, Menglei; Huang, Juan

    2015-09-01

    A simple and low cost approach was developed to fabricate a superhydrophobic surface on copper foil. The oxidation and etching of the copper foil surface were promoted in NH4HCO3 solution using a water and ethanol admixture as a component solvent. After 28 h in this solution, a hydrophilic rough surface structure was obtained on the copper foil surface. With modification using a paraffin wax coating, the hydrophilic rough copper surface changed to become hydrophobic or superhydrophobic. The surface morphology and wettability were characterized by scanning electron microscopy (SEM) and contact angle measurements, respectively. When the optimum concentration of paraffin wax was about 2 g L-1, its water contact angle could reach about 152 ± 1.5° and its sliding angle was around 7°. The formation mechanism of the rough copper surface was also explored in detail. Both the experimental process and the material are environmentally friendly.

  14. Surface Property and Stability of Transparent Superhydrophobic Coating Based on SiO2-Polyelectrolyte Multilayer

    Directory of Open Access Journals (Sweden)

    Sunisa JINDASUWAN

    2016-05-01

    Full Text Available Artificial superhydrophobic films were deposited onto a glass slide by performing layer-by-layer deposition of 3.5 bilayers of poly(allylamine hydrochloride/ poly(acrylic acid polyelectrolyte, followed by a layer of SiO2 nanoparticles of various amounts to enhance the surface roughness and a fluorosilane to reduce the surface free energy. Higher SiO2 content incorporated into the films resulted in rougher surface and higher water contact angle. The total surface free energy determined by using the Owens-Wendt equation dramatically decreased from 31.46 mJ·m-2 for the film having the relatively flat surface to only 1.16 mJ·m-2 for the film having the highest surface roughness of 60.2 ± 1.1 nm. All the films were optically transparent and had excellent adhesion based on the peel test. Indoor and accelerated weathering tests revealed good weathering stability.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.12952

  15. Surface Property and Stability of Transparent Superhydrophobic Coating Based on SiO2-Polyelectrolyte Multilayer

    Directory of Open Access Journals (Sweden)

    Sunisa JINDASUWAN

    2016-05-01

    Full Text Available Artificial superhydrophobic films were deposited onto a glass slide by performing layer-by-layer deposition of 3.5 bilayers of poly(allylamine hydrochloride/ poly(acrylic acid polyelectrolyte, followed by a layer of SiO2 nanoparticles of various amounts to enhance the surface roughness and a fluorosilane to reduce the surface free energy. Higher SiO2 content incorporated into the films resulted in rougher surface and higher water contact angle. The total surface free energy determined by using the Owens-Wendt equation dramatically decreased from 31.46 mJ·m-2 for the film having the relatively flat surface to only 1.16 mJ·m-2 for the film having the highest surface roughness of 60.2 ± 1.1 nm. All the films were optically transparent and had excellent adhesion based on the peel test. Indoor and accelerated weathering tests revealed good weathering stability.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.12952

  16. Fabrication of superhydrophobic and highly oleophobic silicon-based surfaces via electroless etching method

    Science.gov (United States)

    Nguyen, Thi Phuong Nhung; Dufour, Renaud; Thomy, Vincent; Senez, Vincent; Boukherroub, Rabah; Coffinier, Yannick

    2014-03-01

    This study reports on a simple method for the preparation of superhydrophobic and highly oleophobic nanostructured silicon surfaces. The technique relies on metal-assisted electroless etching of silicon in sodium tetrafluoroborate (NaBF4) aqueous solution. Then, silver particles were deposited on the obtained surfaces, changing their overall physical morphology. Finally, the surfaces were coated by either C4F8, a fluoropolymer deposited by plasma, or by SiOx overlayers chemically modified with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (PFTS) through silanization reaction. All these surfaces exhibit a superhydrophobic character (large apparent contact angle and low hysteresis with respect to water). In addition, they present high oleophobic properties, i.e. a high repellency to low surface energy liquids with various contact angle hysteresis, both depending on the morphology and type of coating.

  17. Superhydrophobic surfaces produced using natural silica-based structures with potential for biomedical applications

    OpenAIRE

    Oliveira, Nuno M.; Reis, R. L.; Mano, J. F.

    2013-01-01

    Publicado em "Journal of Tissue Engineering and Regenerative Medicine", vol. 17, supp. 1 (2013) Superhydrophobic surfaces (SHS) are characterized for exhibit extreme water repellency. Where water droplets roll easily and have a contact angle higher than 150º. The inspiration to produce artificial SHS comes from nature, the Lotus leaf. Hierarchical surface topographies at micro/nanoscale are critical for this effect. On biomedical and tissue engineering fields several applications for SHS h...

  18. Superhydrophobic aluminium-based surfaces: Wetting and wear properties of different CVD-generated coating types

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, M., E-mail: michael.thieme@tu-dresden.de [Technische Universität Dresden, Institute of Materials Science, 01062 Dresden (Germany); Streller, F., E-mail: streller@seas.upenn.edu [Technische Universität Dresden, Institute of Materials Science, 01062 Dresden (Germany); Simon, F., E-mail: frsimon@ipfdd.de [Leibniz-Institut für Polymerforschung Dresden, Postfach 120 411, 01005 Dresden (Germany); Frenzel, R., E-mail: frenzelr@ipfdd.de [Leibniz-Institut für Polymerforschung Dresden, Postfach 120 411, 01005 Dresden (Germany); White, A.J. [GVD Corporation, 45 Spinelli Place, Cambridge, MA 02138 (United States)

    2013-10-15

    In view of generating superhydrophobic aluminium-based surfaces, this work presents further results for the combination of anodic oxidation as the primary pretreatment method and chemical vapour deposition (CVD) variants for chemical modification producing coatings of 250–1000 nm thickness. In detail, CVD involved the utilisation of i – hexafluoropropylene oxide as precursor within the hot filament CVD process for the deposition of poly(tetrafluoroethylene) coatings at alternative conditions (PTFE-AC) and ii – 1,3,5-trivinyltrimethylcyclotrisiloxane for the deposition of polysiloxane coatings (PSi) by initiated CVD. The substrate material was Al Mg1 subjected to usual or intensified sulphuric acid anodisation pretreatments (SAAu, SAAi, respectively) affording various degrees of surface micro-roughness (SAAu < SAAi) to the oxidic layers. Performance characteristics were evaluated in the original as-coated states and after standardised artificial weathering and/or mild wear testing. Superhydrophobicity (SH) was observed with the system SAAi + PTFE-AC similarly to former findings with the standard hot filament CVD PTFE coating variant (SAAi + PTFE-SC). The results indicated that the specific coating morphology made an important contribution to the water-repellency, because even some of the SAAu-based samples tended to reveal SH. Subjecting samples to weathering treatment resulted in a general worsening of the wetting behaviour, primarily limited to the receding contact angles. These tendencies were correlated with the chemical composition of the sample surfaces as analysed by X-ray photoelectron spectroscopy. The wear tests showed, as evaluated by scanning electron microscopy and contact angle measurement, that the PTFE coatings were relatively sensitive to friction. This was connected with a dramatic deterioration of the water-repelling properties. PSi-coated surfaces generally showed rather poor water-repellency, but this coating type was surprisingly

  19. Leidenfrost Vapor Layer Stabilization on Superhydrophobic Surfaces

    Science.gov (United States)

    Vakarelski, Ivan; Patankar, Neelesh; Marston, Jeremy; Chan, Derek; Thoroddsen, Sigurdur

    2012-11-01

    We have performed experiments to investigate the influence of the wettability of a superheated metallic sphere on the stability of a thin vapor layer during the cooling of a sphere immersed in water. For high enough sphere temperatures, a continuous vapor layer (Leidenfrost regime) is observed on the surface of non-superhydrophobic spheres, but below a critical sphere temperature the layer becomes unstable and explosively switches to nuclear boiling regime. In contrast, when the sphere surface is textured and superhydrophobic, the vapor layer is stable and gradually relaxes to the sphere surface until the complete cooling of the sphere, thus avoiding the nuclear boiling transition altogether. This finding could help in the development of heat exchange devices and of vapor layer based drag reducing technologies.

  20. Electrochemical fabrication of superhydrophobic Zn surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jing [Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Zhang, Fangdong [Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Shanxi Institute of Mechanical and Electrical Engineering, Changzhi 046000 (China); Song, Jinlong, E-mail: songjinlong@mail.dlut.edu.cn [Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Wang, Long; Qu, Qingsong [Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Lu, Yao; Parkin, Ivan [Materials Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H OAJ (United Kingdom)

    2014-10-01

    Highlights: • A simple electrochemical processing in the mixed electrolyte composed of NaCl and NaNO{sub 3} was developed to fabricate superhydrophobic Zn surfaces. • A layer of micro-nano hierarchical structures was obtained on the processed Zn surfaces. • Reaction mechanism of Zn in mixed electrolyte was analyzed. - Abstract: A superhydrophobic surface with a water contact angle of 165.3° and a tilting angle of 2° was fabricated on a zinc substrate by electrochemical processing using a mixed electrolyte composed of NaCl and NaNO{sub 3}, followed by overcoating with a fluorinated polymer. The fabrication process is based on the electrochemical processing of Zn under an applied electric field. Scanning electron microscope (SEM) and X-ray diffractometer system (XRD) were used to characterize surface morphology and crystal structures. Micrometer-scale pits, protrusions and numerous nanometer-scale dendrite structures were found on the surface. XRD results indicated that the new products formed on the treated surface. The anodic dissolution mechanism of Zn in the electrolyte was analyzed. The effects of processing time, processing current, electrolyte type and electrolyte concentration on surface micromorphology and superhydrophobicity of the samples were also investigated. The results show that the electrochemical processing does not require exacting processing parameters. This method is highly efficient and environmental friendly. The ideal processing conditions to create the optimum superhydrophobic surface are a processing time of 20 min, a current density of 0.2 A/cm{sup 2}, and a mixed electrolyte of 0.1 mol/L NaNO{sub 3} and 0.05 mol/L NaCl.

  1. Wettability Switching Techniques on Superhydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    Verplanck Nicolas

    2007-01-01

    Full Text Available Abstract The wetting properties of superhydrophobic surfaces have generated worldwide research interest. A water drop on these surfaces forms a nearly perfect spherical pearl. Superhydrophobic materials hold considerable promise for potential applications ranging from self cleaning surfaces, completely water impermeable textiles to low cost energy displacement of liquids in lab-on-chip devices. However, the dynamic modification of the liquid droplets behavior and in particular of their wetting properties on these surfaces is still a challenging issue. In this review, after a brief overview on superhydrophobic states definition, the techniques leading to the modification of wettability behavior on superhydrophobic surfaces under specific conditions: optical, magnetic, mechanical, chemical, thermal are discussed. Finally, a focus on electrowetting is made from historical phenomenon pointed out some decades ago on classical planar hydrophobic surfaces to recent breakthrough obtained on superhydrophobic surfaces.

  2. Dynamic Defrosting on Nanostructured Superhydrophobic Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Boreyko, Jonathan B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Srijanto, Bernadeta R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science & Engineering; Nguyen, Trung Dac [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). National Center for Computational Sciences; Vega, Carlos [Univ. Complutense Madrid (Spain). Dept. de Quimica Fisica; Fuentes-Cabrera, Miguel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division; Collier, C. Patrick [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS)

    2013-07-03

    Water suspended on chilled superhydrophobic surfaces exhibits delayed freezing; however, the interdrop growth of frost through subcooled condensate forming on the surface seems unavoidable in humid environments. It is therefore of great practical importance to determine whether facile defrosting is possible on superhydrophobic surfaces. Here in this paper, we report that nanostructured superhydrophobic surfaces promote the growth of frost in a suspended Cassie state, enabling its dynamic removal upon partial melting at low tilt angles (<15°). The dynamic removal of the melting frost occurred in two stages: spontaneous dewetting followed by gravitational mobilization. This dynamic defrosting phenomenon is driven by the low contact angle hysteresis of the defrosted meltwater relative to frost on microstructured superhydrophobic surfaces, which forms in the impaled Wenzel state. Dynamic defrosting on nanostructured superhydrophobic surfaces minimizes the time, heat, and gravitational energy required to remove frost from the surface, and is of interest for a variety of systems in cold and humid environments.

  3. An easy route to make superhydrophobic surface

    Science.gov (United States)

    Panda, Kalpataru; Kumar, N.; Polaki, S. R.; Panigrahi, B. K.

    2012-06-01

    Superhydrophobic films with excellent flexibility have been fabricated on silicon surface, generated by means of a chemical galvanic cell route, within a short span of 10 sec. The results show a water contact angle of 155° (superhydrophobic) for the chemically modified silicon surface while it is 63° (hydrophilic) in pure silicon substrate. The surface roughness increases with well ordered protrusions after the chemical treatment. Surface roughness and low surface energy are ascribed for the superhydrophobic behavior of these chemically modified silicon surfaces.

  4. Dynamic contact angle measurements on superhydrophobic surfaces

    Science.gov (United States)

    Kim, Jeong-Hyun; Kavehpour, H. Pirouz; Rothstein, Jonathan P.

    2015-03-01

    In this paper, the dynamic advancing and receding contact angles of a series of aqueous solutions were measured on a number of hydrophobic and superhydrophobic surfaces using a modified Wilhelmy plate technique. Superhydrophobic surfaces are hydrophobic surfaces with micron or nanometer sized surface roughness. These surfaces have very large static advancing contact angles and little static contact angle hysteresis. In this study, the dynamic advancing and dynamic receding contact angles on superhydrophobic surfaces were measured as a function of plate velocity and capillary number. The dynamic contact angles measured on a smooth hydrophobic Teflon surface were found to obey the scaling with capillary number predicted by the Cox-Voinov-Tanner law, θD3 ∝ Ca. The response of the dynamic contact angle on the superhydrophobic surfaces, however, did not follow the same scaling law. The advancing contact angle was found to remain constant at θA = 160∘, independent of capillary number. The dynamic receding contact angle measurements on superhydrophobic surfaces were found to decrease with increasing capillary number; however, the presence of slip on the superhydrophobic surface was found to result in a shift in the onset of dynamic contact angle variation to larger capillary numbers. In addition, a much weaker dependence of the dynamic contact angle on capillary number was observed for some of the superhydrophobic surfaces tested.

  5. Pancake bouncing on superhydrophobic surfaces

    Science.gov (United States)

    Liu, Yahua; Moevius, Lisa; Xu, Xinpeng; Qian, Tiezheng; Yeomans, Julia M.; Wang, Zuankai

    2014-07-01

    Engineering surfaces that promote rapid drop detachment is of importance to a wide range of applications including anti-icing, dropwise condensation and self-cleaning. Here we show how superhydrophobic surfaces patterned with lattices of submillimetre-scale posts decorated with nanotextures can generate a counter-intuitive bouncing regime: drops spread on impact and then leave the surface in a flattened, pancake shape without retracting. This allows a fourfold reduction in contact time compared with conventional complete rebound . We demonstrate that the pancake bouncing results from the rectification of capillary energy stored in the penetrated liquid into upward motion adequate to lift the drop. Moreover, the timescales for lateral drop spreading over the surface and for vertical motion must be comparable. In particular, by designing surfaces with tapered micro/nanotextures that behave as harmonic springs, the timescales become independent of the impact velocity, allowing the occurrence of pancake bouncing and rapid drop detachment over a wide range of impact velocities.

  6. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces.

    Science.gov (United States)

    Xu, Wei; Leeladhar, Rajesh; Kang, Yong Tae; Choi, Chang-Hwan

    2013-05-21

    Evaporation modes and kinetics of sessile droplets of water on micropillared superhydrophobic surfaces are experimentally investigated. The results show that a constant contact radius (CCR) mode and a constant contact angle (CCA) mode are two dominating evaporation modes during droplet evaporation on the superhydrophobic surfaces. With the decrease in the solid fraction of the superhydrophobic surfaces, the duration of a CCR mode is reduced and that of a CCA mode is increased. Compared to Rowan's kinetic model, which is based on the vapor diffusion across the droplet boundary, the change in a contact angle in a CCR (pinned) mode shows a remarkable deviation, decreasing at a slower rate on the superhydrophobic surfaces with less-solid fractions. In a CCA (receding) mode, the change in a contact radius agrees well with the theoretical expectation, and the receding speed is slower on the superhydrophobic surfaces with lower solid fractions. The discrepancy between experimental results and Rowan's model is attributed to the initial large contact angle of a droplet on superhydrophobic surfaces. The droplet geometry with a large contact angle results in a narrow wedge region of air along the contact boundary, where the liquid-vapor diffusion is significantly restricted. Such an effect becomes minor as the evaporation proceeds with the decrease in a contact angle. In both the CCR and CCA modes, the evaporative mass transfer shows the linear relationship between mass(2/3) and evaporation time. However, the evaporation rate is slower on the superhydrophobic surfaces, which is more significant on the surfaces with lower solid fractions. As a result, the superhydrophobic surfaces slow down the drying process of a sessile droplet on them.

  7. Shear shedding of drops and the use of superhydrophobic surfaces in microgravity: PFC and ground based results

    Science.gov (United States)

    Milne, Andrew; Amirfazli, Alidad

    In free fall, the absence of gravity poses many challenges for fluid handling systems. One such example of this is condensers. On earth, the condensed liquid is removed from the tilted condenser plate by gravity forced shedding. In microgravity, proposed solutions include the use of surfaces with gradients in wettability [1], the use of electrowetting [2], and shearing airflow [3]. In this talk, shear shedding results for a variety of surface (hydrophilic to superhydrophobic (extremely water repelling)) will be presented. Surface science and aerodynamics are used to reveal fundamental parameters controlling incipient motion for drops exposed to shearing airflow. It is found that wetting parameters such as contact angle and surface tension are very influential in determining the minimum required air velocity for drop shedding. Based on experimental results for drops of water and hexadecane (0.5-100 l) on PMMA, Teflon, and a superhydrophobic aluminum surface, an exponential function is proposed that relates the critical air velocity for shedding to the ratio of drop base length to projected area. The results for the water systems can be collapsed to a self similar curve by normalization, which also explains results from other researchers. Since shedding from superhydrophobic surfaces (SHS) is seen to be easier compared to other surfaces, the behaviour of SHS is also probed in this talk. SHS have space-based applications to shedding, self cleaning, anti-icing (spacecraft launch/re-entry), anti-fouling, fluid actuation, and decreased fluid friction. The mechanism for SHS is understood to be the existence of an air layer between large portions of the drop and solid. The first concrete visual evidence of this was gained performing a parabolic flight experiment with the ESA. Results of this experi-ment will be discussed, showing the extreme water repelling potential of SHS in microgravity, and demonstrating how the wetting behaviours seen (partial penetration, transition

  8. Fabrication of semi-transparent super-hydrophobic surface based on silica hierarchical structures

    KAUST Repository

    Chen, Ping-Hei

    2011-01-01

    This study successfully develops a versatile method of producing superhydrophobic surfaces with micro/nano-silica hierarchical structures on glass surfaces. Optically transparent super hydrophobic silica thin films were prepared by spin-coating silica particles suspended in a precursor solution of silane, ethanol, and H2O with molar ratio of 1:4:4. The resulting super hydrophobic films were characterized by scanning electron microscopy (SEM), optical transmission, and contact angle measurements. The glass substrates in this study were modified with different particles: micro-silica particles, nano-silica particles, and hierarchical structures. This study includes SEM micrographs of the modified glass surfaces with hierarchical structures at different magnifications. © 2011 The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg.

  9. Inkjet printing for direct micropatterning of a superhydrophobic surface: Toward biomimetic fog harvesting surfaces

    KAUST Repository

    Zhang, Lianbin

    2015-01-01

    The preparation of biomimetic superhydrophobic surfaces with hydrophilic micro-sized patterns is highly desirable, but a one-step, mask-free method to produce such surfaces has not previously been reported. We have developed a direct method to produce superhydrophilic micropatterns on superhydrophobic surfaces based on inkjet printing technology. This work was inspired by the efficient fog-harvesting behavior of Stenocara beetles in the Namib Desert. A mussel-inspired ink consisting of an optimized solution of dopamine was applied directly by inkjet printing to superhydrophobic surfaces. Stable Wenzel\\'s microdroplets of the dopamine solution with well-defined micropatterns were obtained on these surfaces. Superhydrophilic micropatterns with well-controlled dimensions were then readily achieved on the superhydrophobic surfaces by the formation of polydopamine via in situ polymerization. The micropatterned superhydrophobic surfaces prepared by this inkjet printing method showed enhanced water collection efficiency compared with uniform superhydrophilic and superhydrophobic surfaces. This method can be used for the facile large-scale patterning of superhydrophobic surfaces with high precision and superior pattern stability and is therefore a key step toward patterning superhydrophobic surfaces for practical applications. This journal is

  10. Wetting of soap bubbles on hydrophilic, hydrophobic and superhydrophobic surfaces

    CERN Document Server

    Arscott, Steve

    2013-01-01

    Wetting of sessile bubbles on solid and liquid surfaces has been studied. A model is presented for the contact angle of a sessile bubble based on a modified Young equation - the experimental results agree with the model. A hydrophilic surface results in a bubble contact angle of 90 deg whereas on a superhydrophobic surface one observes 134 deg. For hydrophilic surfaces, the bubble angle diminishes with bubble radius - whereas on a superhydrophobic surface, the bubble angle increases. The size of the Plateau borders governs the bubble contact angle - depending on the wetting of the surface.

  11. Superhydrophobic bionic surfaces with hierarchical microsphere/SWCNT composite arrays.

    Science.gov (United States)

    Li, Yue; Huang, Xing Jiu; Heo, Sung Hwan; Li, Cun Cheng; Choi, Yang Kyu; Cai, Wei Ping; Cho, Sung Oh

    2007-02-13

    Superhydrophobic bionic surfaces with hierarchical micro/nano structures were synthesized by decorating single-walled or multiwalled carbon nanotubes (CNTs) on monolayer polystyrene colloidal crystals using a wet chemical self-assembly technique and subsequent surface treatment with a low surface-energy material of fluoroalkylsilane. The bionic surfaces are based on the regularly ordered colloidal crystals, and thus the surfaces have a uniform superhydrophobic property on the whole surface. Moreover, the wettability of the bionic surface can be well controlled by changing the distribution density of CNTs or the size of polystyrene microspheres. The morphologies of the synthesized bionic surfaces bear much resemblance to natural lotus leaves, and the wettability exhibited remarkable superhydrophobicity with a water contact angle of about 165 degrees and a sliding angle of 5 degrees.

  12. Testing the performance of superhydrophobic aluminum surfaces.

    Science.gov (United States)

    Ruiz-Cabello, F Javier Montes; Ibáñez-Ibáñez, Pablo F; Gómez-Lopera, J Francisco; Martínez-Aroza, José; Cabrerizo-Vílchez, Miguel; Rodríguez-Valverde, Miguel A

    2017-12-15

    The analysis of wetting properties of superhydrophobic surfaces may be a difficult task due to the restless behavior of drops on this type of surfaces and the limitations of goniometry for high contact angles. A method to validate the performance of superhydrophobic surfaces, rather than standard goniometry, is required. In this work, we used bouncing drop dynamics as a useful tool to predict the water repellency of different superhydrophobic surfaces. From bouncing drop experiments conducted over a wide range of superhydrophobic surfaces, we found that those surfaces with a proper roughness degree and homogeneous chemical composition showed higher water-repellency. We also conducted a drop condensation study at saturating conditions aimed to determine whether there is direct correlation between water repellency and condensation delay. We found that the drop condensation process is strongly related to the surface topography, as well as the intrinsic wettability. The condensation is promoted on rough surfaces but it is delayed on intrinsically hydrophobic surfaces. However, the differences found in condensation delay between the superhydrophobic surfaces explored in this study cannot be justified by their chemical homogeneity nor their efficiency as water repellent surfaces, separately. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Preparation and characterization of superhydrophobic surfaces based on hexamethyldisilazane-modified nanoporous alumina

    Directory of Open Access Journals (Sweden)

    Sanli Deniz

    2011-01-01

    Full Text Available Abstract Superhydrophobic nanoporous anodic aluminum oxide (alumina surfaces were prepared using treatment with vapor-phase hexamethyldisilazane (HMDS. Nanoporous alumina substrates were first made using a two-step anodization process. Subsequently, a repeated modification procedure was employed for efficient incorporation of the terminal methyl groups of HMDS to the alumina surface. Morphology of the surfaces was characterized by scanning electron microscopy, showing hexagonally ordered circular nanopores with approximately 250 nm in diameter and 300 nm of interpore distances. Fourier transform infrared spectroscopy-attenuated total reflectance analysis showed the presence of chemically bound methyl groups on the HMDS-modified nanoporous alumina surfaces. Wetting properties of these surfaces were characterized by measurements of the water contact angle which was found to reach 153.2 ± 2°. The contact angle values on HMDS-modified nanoporous alumina surfaces were found to be significantly larger than the average water contact angle of 82.9 ± 3° on smooth thin film alumina surfaces that underwent the same HMDS modification steps. The difference between the two cases was explained by the Cassie-Baxter theory of rough surface wetting.

  14. Dynamic Defrosting on Scalable Superhydrophobic Surfaces.

    Science.gov (United States)

    Murphy, Kevin R; McClintic, William T; Lester, Kevin C; Collier, C Patrick; Boreyko, Jonathan B

    2017-07-19

    Recent studies have shown that frost can grow in a suspended Cassie state on nanostructured superhydrophobic surfaces. During defrosting, the melting sheet of Cassie frost spontaneously dewets into quasi-spherical slush droplets that are highly mobile. Promoting Cassie frost would therefore seem advantageous from a defrosting standpoint; however, nobody has systematically compared the efficiency of defrosting Cassie ice versus defrosting conventional surfaces. Here, we characterize the defrosting of an aluminum plate, one-half of which exhibits a superhydrophobic nanostructure while the other half is smooth and hydrophobic. For thick frost sheets (>1 mm), the superhydrophobic surface was able to dynamically shed the meltwater, even at very low tilt angles. In contrast, the hydrophobic surface was unable to shed any appreciable meltwater even at a 90° tilt angle. For thin frost layers (≲1 mm), not even the superhydrophobic surface could mobilize the meltwater. We attribute this to the large apparent contact angle of the meltwater, which for small amounts of frost serves to minimize coalescence events and prevent droplets from approaching the capillary length. Finally, we demonstrate a new mode of dynamic defrosting using an upside-down surface orientation, where the melting frost was able to uniformly detach from the superhydrophobic side and subsequently pull the frost from the hydrophobic side in a chain reaction. Treating surfaces to enable Cassie frost is therefore very desirable for enabling rapid and low-energy thermal defrosting, but only for frost sheets that are sufficiently thick.

  15. Dynamics of Ferrofluidic Drops Impacting Superhydrophobic Surfaces

    CERN Document Server

    Bolleddula, D A; Alliseda, A; Bhosale, P; Berg, J C

    2010-01-01

    This is a fluid dynamics video illustrating the impact of ferrofluidic droplets on surfaces of variable wettability. Surfaces studied include mica, teflon, and superhydrophobic. A magnet is placed beneath each surface, which modifies the behavior of the ferrofluid by applying additional downward force apart from gravity resulting in reduced droplet size and increased droplet velocity. For the superhydrophobic droplet a jetting phenomena is shown which only occurs in a limited range of impact speeds, higher than observed before, followed by amplified oscillation due to magnetic field as the drop stabilizes on the surface.

  16. Superhydrophobic surfaces: from fluid mechanics to optics

    NARCIS (Netherlands)

    Rathgen, H.

    2008-01-01

    In this thesis optical diraction was used to study the static and dynamic properties of microscopic liquid-gas interfaces that span between adjacent ridges of a superhydrophobic surface. An observed interference phenomenon at grazing incident angle led to the development of optical gratings with a l

  17. Superhydrophobic surfaces: from fluid mechanics to optics

    NARCIS (Netherlands)

    Rathgen, H.

    2008-01-01

    In this thesis optical diraction was used to study the static and dynamic properties of microscopic liquid-gas interfaces that span between adjacent ridges of a superhydrophobic surface. An observed interference phenomenon at grazing incident angle led to the development of optical gratings with a

  18. Injection molded superhydrophobic surfaces based on microlithography and black silicon processing

    DEFF Research Database (Denmark)

    Søgaard, Emil; Andersen, Nis Korsgaard; Taboryski, Rafael;

    2012-01-01

    in detail with an engineering perspective on choice of materials and manufacturability by injection molding. Microscope slides with superhydrophobic properties were succesfully fabricated. Preliminary results indicate a contact angle increase from 95° for the unstructured polymer to a maximum 150...

  19. Preparation of superhydrophobic surfaces on cotton textiles

    Directory of Open Access Journals (Sweden)

    Chao-Hua Xue et al

    2008-01-01

    Full Text Available Superhydrophobic surfaces were fabricated by the complex coating of silica nanoparticles with functional groups onto cotton textiles to generate a dual-size surface roughness, followed by hydrophobization with stearic acid, 1H, 1H, 2H, 2H-perfluorodecyltrichlorosilane or their combination. The wettability and morphology of the as-fabricated surfaces were investigated by contact angle measurement and scanning electron microscopy. Characterizations by transmission electron microscopy, Fourier transformation infrared spectroscopy, and thermal gravimetric analysis were also conducted.

  20. How Water Advances on Superhydrophobic Surfaces

    Science.gov (United States)

    Schellenberger, Frank; Encinas, Noemí; Vollmer, Doris; Butt, Hans-Jürgen

    2016-03-01

    Superliquid repellency can be achieved by nano- and microstructuring surfaces in such a way that protrusions entrap air underneath the liquid. It is still not known how the three-phase contact line advances on such structured surfaces. In contrast to a smooth surface, where the contact line can advance continuously, on a superliquid-repellent surface, the contact line has to overcome an air gap between protrusions. Here, we apply laser scanning confocal microscopy to get the first microscopic videos of water drops advancing on a superhydrophobic array of micropillars. In contrast to common belief, the liquid surface gradually bends down until it touches the top face of the next micropillars. The apparent advancing contact angle is 180°. On the receding side, pinning to the top faces of the micropillars determines the apparent receding contact angle. Based on these observations, we propose that the apparent receding contact angle should be used for characterizing superliquid-repellent surfaces rather than the apparent advancing contact angle and hysteresis.

  1. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces.

    Science.gov (United States)

    Yan, Y Y; Gao, N; Barthlott, W

    2011-12-12

    A typical superhydrophobic (ultrahydrophobic) surface can repel water droplets from wetting itself, and the contact angle of a water droplet resting on a superhydrophobic surface is greater than 150°, which means extremely low wettability is achievable on superhydrophobic surfaces. Many superhydrophobic surfaces (both manmade and natural) normally exhibit micro- or nanosized roughness as well as hierarchical structure, which somehow can influence the surface's water repellence. As the research into superhydrophobic surfaces goes deeper and wider, it is becoming more important to both academic fields and industrial applications. In this work, the most recent progress in preparing manmade superhydrophobic surfaces through a variety of methodologies, particularly within the past several years, and the fundamental theories of wetting phenomena related to superhydrophobic surfaces are reviewed. We also discuss the perspective of natural superhydrophobic surfaces utilized as mimicking models. The discussion focuses on how the superhydrophobic property is promoted on solid surfaces and emphasizes the effect of surface roughness and structure in particular. This review aims to enable researchers to perceive the inner principles of wetting phenomena and employ suitable methods for creation and modification of superhydrophobic surfaces. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Mechanically robust superhydrophobicity on hierarchically structured Si surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xiu Yonghao; Hess, Dennis W [School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332-0100 (United States); Liu Yan; Wong, C P, E-mail: dennis.hess@chbe.gatech.edu, E-mail: cp.wong@mse.gatech.edu [School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA 30332-0245 (United States)

    2010-04-16

    Improvement of the robustness of superhydrophobic surfaces is critical in order to achieve commercial applications of these surfaces in such diverse areas as self-cleaning, water repellency and corrosion resistance. In this study, the mechanical robustness of superhydrophobic surfaces was evaluated on hierarchically structured silicon surfaces. The effect of two-scale hierarchical structures on robustness was investigated using an abrasion test and the results compared to those of superhydrophobic surfaces fabricated from polymeric materials and from silicon that contains only nanostructures. Unlike the polymeric and nanostructure-only surfaces, the hierarchical structures retained superhydrophobic behavior after mechanical abrasion.

  3. Optimum conditions for fabricating superhydrophobic surface on copper plates via controlled surface oxidation and dehydration processes

    Science.gov (United States)

    Zhang, Yan; Li, Wen; Ma, Fumin; Yu, Zhanlong; Ruan, Min; Ding, Yigang; Deng, Xiangyi

    2013-09-01

    The superhydrophobic surfaces on copper substrate were fabricated by direct oxidation and dehydration processes, and the reaction and modification conditions were optimized. Firstly, the oxidation conditions including the concentrations of K2S2O8 and NaOH, the oxidation time were studied. It is found that the superhydrophobicity would be better if the copper plates were oxidized in 0.06 M K2S2O8 and 3.0 M NaOH solution at 65 °C for 35 min. Then, the modification conditions including modifier concentration and modification time were investigated. The results showed that 5 wt% lauric acid and 1 h modification time were suitable modification conditions for preparing copper-based superhydrophobic surfaces. The surface fabricated under optimized conditions displayed excellent superhydrophobicity of high water contact angle of 161.1° and a low contact angle hysteresis of 2.5°. The surface microstructure and composition of the superhydrophobic surfaces were also characterized by SEM and FT-IR. It is found that the highly concentrated micro/nanostructured sheets and the low surface energy materials on the surface should be responsible for the high superhydrophobicity.

  4. Dynamic air layer on textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev

    2013-09-03

    We provide an experimental demonstration that a novel macroscopic, dynamic continuous air layer or plastron can be sustained indefinitely on textured superhydrophobic surfaces in air-supersaturated water by a natural gas influx mechanism. This type of plastron is an intermediate state between Leidenfrost vapor layers on superheated surfaces and the equilibrium Cassie-Baxter wetting state on textured superhydrophobic surfaces. We show that such a plastron can be sustained on the surface of a centimeter-sized superhydrophobic sphere immersed in heated water and variations of its dynamic behavior with air saturation of the water can be regulated by rapid changes of the water temperature. The simple experimental setup allows for quantification of the air flux into the plastron and identification of the air transport model of the plastron growth. Both the observed growth dynamics of such plastrons and millimeter-sized air bubbles seeded on the hydrophilic surface under identical air-supersaturated solution conditions are consistent with the predictions of a well-mixed gas transport model. © 2013 American Chemical Society.

  5. Dynamic air layer on textured superhydrophobic surfaces.

    Science.gov (United States)

    Vakarelski, Ivan U; Chan, Derek Y C; Marston, Jeremy O; Thoroddsen, Sigurdur T

    2013-09-03

    We provide an experimental demonstration that a novel macroscopic, dynamic continuous air layer or plastron can be sustained indefinitely on textured superhydrophobic surfaces in air-supersaturated water by a natural gas influx mechanism. This type of plastron is an intermediate state between Leidenfrost vapor layers on superheated surfaces and the equilibrium Cassie-Baxter wetting state on textured superhydrophobic surfaces. We show that such a plastron can be sustained on the surface of a centimeter-sized superhydrophobic sphere immersed in heated water and variations of its dynamic behavior with air saturation of the water can be regulated by rapid changes of the water temperature. The simple experimental setup allows for quantification of the air flux into the plastron and identification of the air transport model of the plastron growth. Both the observed growth dynamics of such plastrons and millimeter-sized air bubbles seeded on the hydrophilic surface under identical air-supersaturated solution conditions are consistent with the predictions of a well-mixed gas transport model.

  6. Superhydrophobic surfaces: from natural to biomimetic to functional.

    Science.gov (United States)

    Guo, Zhiguang; Liu, Weimin; Su, Bao-Lian

    2011-01-15

    Nature is the creation of aesthetic functional systems, in which many natural materials have vagarious structures. Inspired from nature, such as lotus leaf, butterfly' wings, showing excellent superhydrophobicity, scientists have recently fabricated a lot of biomimetic superhydrophobic surfaces by virtue of various smart and easy routes. Whilst, many examples, such as lotus effect, clearly tell us that biomimicry is dissimilar to a simple copying or duplicating of biological structures. In this feature article, we review the recent studies in both natural superhydrophobic surfaces and biomimetic superhydrophobic surfaces, and highlight some of the recent advances in the last four years, including the various smart routes to construct rough surfaces, and a lot of chemical modifications which lead to superhydrophobicity. We also review their functions and applications to date. Finally, the promising routes from biomimetic superhydrophobic surfaces in the next are proposed.

  7. Structure Irregularity Impedes Drop Roll-Off at Superhydrophobic Surfaces

    DEFF Research Database (Denmark)

    Larsen, Simon Tylsgaard; Andersen, Nis Korsgaard; Søgaard, Emil

    2014-01-01

    We study water drop roll-off at superhydrophobic surfaces with different surface patterns. Superhydrophobic microcavity surfaces were fabricated in silicon and coated with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS). For the more irregular surface patterns, the observed increase in roll...

  8. Experimental research on friction-reduction with super-hydrophobic surfaces

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jia-peng; DU Xiang-dang; SHI Xiu-hua

    2007-01-01

    Many recent studies have confirmed the existence of liquid slip over particular types of solid surfaces, and these so-called super-hydrophobic surfaces have been shown to generate effective liquid slip because of the air trapped between the surface structures. In this paper, based on boundary layer theory, the microscopic structure of the super-hydrophobic surface is analyzed. The liquid slip effect on friction-reduction over super-hydrophobic surfaces under various flow conditions is investigated by experiments with a flume and water tunnel. The experimental results show that the greatest amount of drag-reduction that can be achieved is 8.76% at a low Re.

  9. Capillary origami and superhydrophobic membrane surfaces

    Science.gov (United States)

    Geraldi, N. R.; Ouali, F. F.; Morris, R. H.; McHale, G.; Newton, M. I.

    2013-05-01

    Capillary origami uses surface tension to fold and shape solid films and membranes into three-dimensional structures. It uses the fact that solid surfaces, no matter how hydrophobic, will tend to adhere to and wrap around the surface of a liquid. In this work, we report that a superhydrophobic coating can be created, which can completely suppress wrapping as a contacting water droplet evaporates. We also show that using a wetting azeotropic solution of allyl alcohol, which penetrates the surface features, can enhance liquid adhesion and create more powerful Capillary Origami. These findings create the possibility of selectively shaping membrane substrates.

  10. Highly stable superhydrophobic surfaces under flow conditions

    Science.gov (United States)

    Lee, Moonchan; Yim, Changyong; Jeon, Sangmin

    2015-01-01

    We synthesized hydrophobic anodic aluminum oxide nanostructures with pore diameters of 35, 50, 65, and 80 nm directly on quartz crystal microresonators, and the stability of the resulting superhydrophobicity was investigated under flow conditions by measuring changes in the resonance frequency and dissipation factor. When the quartz substrates were immersed in water, their hydrophobic surfaces did not wet due to the presence of an air interlayer. The air interlayer was gradually replaced by water over time, which caused decreases in the resonance frequency (i.e., increases in mass) and increases in the dissipation factor (i.e., increases in viscous damping). Although the water contact angles of the nanostructures increased with increasing pore size, the stability of their superhydrophobicity increased with decreasing pore size under both static conditions (without flow) and dynamic conditions (with flow); this increase can be attributed to an increase in the solid surface area that interacts with the air layer above the nanopores as the pore size decreases. Further, the effects of increasing the flow rate on the stability of the superhydrophobicity were quantitatively determined.

  11. Water droplet evaporation from sticky superhydrophobic surfaces

    Science.gov (United States)

    Lee, Moonchan; Kim, Wuseok; Lee, Sanghee; Baek, Seunghyeon; Yong, Kijung; Jeon, Sangmin

    2017-07-01

    The evaporation dynamics of water from sticky superhydrophobic surfaces was investigated using a quartz crystal microresonator and an optical microscope. Anodic aluminum oxide (AAO) layers with different pore sizes were directly fabricated onto quartz crystal substrates and hydrophobized via chemical modification. The resulting AAO layers exhibited hydrophobic or superhydrophobic characteristics with strong adhesion to water due to the presence of sealed air pockets inside the nanopores. After placing a water droplet on the AAO membranes, variations in the resonance frequency and Q-factor were measured throughout the evaporation process, which were related to changes in mass and viscous damping, respectively. It was found that droplet evaporation from a sticky superhydrophobic surface followed a constant contact radius (CCR) mode in the early stage of evaporation and a combination of CCR and constant contact angle modes without a Cassie-Wenzel transition in the final stage. Furthermore, AAO membranes with larger pore sizes exhibited longer evaporation times, which were attributed to evaporative cooling at the droplet interface.

  12. Effect of Superhydrophobic Surface of Titanium on Staphylococcus aureus Adhesion

    Directory of Open Access Journals (Sweden)

    Peifu Tang

    2011-01-01

    Full Text Available Despite the systemic antibiotics prophylaxis, orthopedic implants still remain highly susceptible to bacterial adhesion and resulting in device-associated infection. Surface modification is an effective way to decrease bacterial adhesion. In this study, we prepared surfaces with different wettability on titanium surface based on TiO2 nanotube to examine the effect of bacterial adhesion. Firstly, titanium plates were calcined to form hydrophilic TiO2 nanotube films of anatase phase. Subsequently, the nanotube films and inoxidized titaniums were treated with 1H, 1H, 2H, 2H-perfluorooctyl-triethoxysilane (PTES, forming superhydrophobic and hydrophobic surfaces. Observed by SEM and contact angle measurements, the different surfaces have different characteristics. Staphylococcus aureus (SA adhesion on different surfaces was evaluated. Our experiment results show that the superhydrophobic surface has contact angles of water greater than 150∘ and also shows high resistance to bacterial contamination. It is indicated that superhydrophobic surface may be a factor to reduce device-associated infection and could be used in clinical practice.

  13. Hierarchically nanotextured surfaces maintaining superhydrophobicity under severely adverse conditions

    Science.gov (United States)

    Maitra, Tanmoy; Antonini, Carlo; Auf der Mauer, Matthias; Stamatopoulos, Christos; Tiwari, Manish K.; Poulikakos, Dimos

    2014-07-01

    Superhydrophobic surfaces are highly desirable for a broad range of technologies and products affecting everyday life. Despite significant progress in recent years in understanding the principles of hydrophobicity, mostly inspired by surface designs found in nature, many man-made surfaces employ readily processable materials, ideal to demonstrate principles, but with little chance of survivability outside a very limited range of well-controlled environments. Here we focus on the rational development of robust, hierarchically nanostructured, environmentally friendly, metal-based (aluminum) superhydrophobic surfaces, which maintain their performance under severely adverse conditions. Based on their functionality, we superpose selected hydrophobic layers (i.e. self-assembled monolayers, thin films, or nanofibrous coatings) on hierarchically textured aluminum surfaces, collectively imparting high level robustness of superhydrophobicity under adverse conditions. These surfaces simultaneously exhibit chemical stability, mechanical durability and droplet impalement resistance. They impressively maintained their superhydrophobicity after exposure to severely adverse chemical environments like strong alkaline (pH ~ 9-10), acidic (pH ~ 2-3), and ionic solutions (3.5 weight% of sodium chloride), and could simultaneously resist water droplet impalement up to an impact velocity of 3.2 m s-1 as well as withstand standard mechanical durability tests.Superhydrophobic surfaces are highly desirable for a broad range of technologies and products affecting everyday life. Despite significant progress in recent years in understanding the principles of hydrophobicity, mostly inspired by surface designs found in nature, many man-made surfaces employ readily processable materials, ideal to demonstrate principles, but with little chance of survivability outside a very limited range of well-controlled environments. Here we focus on the rational development of robust, hierarchically

  14. Plastron properties of a superhydrophobic surface

    Science.gov (United States)

    Shirtcliffe, Neil J.; McHale, Glen; Newton, Michael I.; Perry, Carole C.; Pyatt, F. Brian

    2006-09-01

    Most insects and spiders drown when submerged during flooding or tidal inundation, but some are able to survive and others can remain submerged indefinitely without harm. Many achieve this by natural adaptations to their surface morphology to trap films of air, creating plastrons which fix the water-vapor interface and provide an incompressible oxygen-carbon dioxide exchange surface. Here the authors demonstrate how the surface of an extremely water-repellent foam mimics this mechanism of underwater respiration and allows direct extraction of oxygen from aerated water. The biomimetic principle demonstrated can be applied to a wide variety of man-made superhydrophobic materials.

  15. Self-propelled droplet behavior during condensation on superhydrophobic surfaces

    Science.gov (United States)

    Chu, Fuqiang; Wu, Xiaomin; Zhu, Bei; Zhang, Xuan

    2016-05-01

    Self-propelled droplet motion has applications in various engineering fields such as self-cleaning surfaces, heat transfer enhancement, and anti-icing methods. A superhydrophobic surface was fabricated using two simultaneous chemical reactions with droplet condensation experiments performed on the horizontal superhydrophobic surface to characterize the droplet behavior. The droplet behavior is classified into three types based on their motion features and leftover marks as immobile droplet coalescence, self-propelled droplet jumping, and self-propelled droplet sweeping. This study focuses on the droplet sweeping that occurs due to the ultra-small rolling angle of the superhydrophobic surface, where the resulting droplet sweeps along the surface, merging with all the droplets it meets and leaving a long, narrow, clear track with a large droplet at the end of the track. An easy method is developed to predict the droplet sweeping direction based on the relative positions of the droplets just before coalescence. The droplet sweeping always absorbs dozens of droplets and is not limited by the surface structures; thus, this sweeping has many useful applications. In addition, the relationships between the droplet behavior and the number of participating droplets are also analyzed statistically.

  16. Self-Powered Wireless Smart Sensor Node Enabled by an Ultrastable, Highly Efficient, and Superhydrophobic-Surface-Based Triboelectric Nanogenerator.

    Science.gov (United States)

    Zhao, Kun; Wang, Zhong Lin; Yang, Ya

    2016-09-27

    Wireless sensor networks will be responsible for a majority of the fast growth in intelligent systems in the next decade. However, most of the wireless smart sensor nodes require an external power source such as a Li-ion battery, where the labor cost and environmental waste issues of replacing batteries have largely limited the practical applications. Instead of using a Li-ion battery, we report an ultrastable, highly efficient, and superhydrophobic-surface-based triboelectric nanogenerator (TENG) to scavenge wind energy for sustainably powering a wireless smart temperature sensor node. There is no decrease in the output voltage and current of the TENG after continuous working for about 14 h at a wind speed of 12 m/s. Through a power management circuit, the TENG can deliver a constant output voltage of 3.3 V and a pulsed output current of about 100 mA to achieve highly efficient energy storage in a capacitor. A wireless smart temperature sensor node can be sustainably powered by the TENG for sending the real-time temperature data to an iPhone under a working distance of 26 m, demonstrating the feasibility of the self-powered wireless smart sensor networks.

  17. A simple approach to fabricate stable superhydrophobic glass surfaces

    Science.gov (United States)

    Ji, Haiyan; Chen, Gang; Yang, Jin; Hu, Jie; Song, Haojie; Zhao, Yutao

    2013-02-01

    We present a facile method to fabricate superhydrophobic glass surface via one-step hydrothermal method and chemical modification. The etched glass surface shows the hierarchical textured morphology as well as the multiple scales of roughness and large numbers of nanorods and pores. The formation mechanism of the hierarchically structured surface is discussed in detail. After surface modification with vinyltriethoxysilane, the glass surface exhibits stable superhydrophobicity with a high contact angle of 155° and a low sliding angle of 5°. A water droplet of 10 μL can bounce away from the surface when it vertically hit the superhydrophobic glass surface. Moreover, the contact angle of the superhydrophobic glass surface under different pH values and storage time are measured to study the stability of the superhydrophobic property.

  18. Layers of Porous Superhydrophobic Surfaces for Robust Water Repellency

    Science.gov (United States)

    Ahmadi, Farzad; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team

    2015-11-01

    In nature, birds exhibit multiple layers of superhydrophobic feathers that repel water. Inspired by bird feathers, we utilize porous superhydrophobic surfaces and compare the wetting and dewetting characteristics of a single surface to stacks of multiple surfaces. The superhydrophobic surfaces were submerged in water in a closed chamber. Pressurized gas was regulated to measure the critical pressure for the water to fully penetrate through the surfaces. In addition to using duck feathers, two-tier porous superhydrophobic surfaces were fabricated to serve as synthetic mimics with a controlled surface structure. The energy barrier for the wetting transition was modeled as a function of the number of layers and their orientations with respect to each other. Moreover, after partial impalement into a subset of the superhydrophobic layers, it was observed that a full dewetting transition was possible, which suggests that natural organisms can exploit their multiple layers to prevent irreversible wetting.

  19. Superhydrophobic Behavior on Nano-structured Surfaces

    Science.gov (United States)

    Schaeffer, Daniel

    2008-05-01

    Superhydrophobic behavior is observed in natural occurrences and has been thoroughly studied over the past few years. Water repellant properties on uniform arrays of vertically aligned nano-cones were investigated to determine the highest achievable contact angle (a measure of water drop repellency), which is measured from the reference plane on which the water drop sits to the tangent line of the point at which the drop makes contact with the reference plane. At low aspect ratios (height vs. width of the nano-cones), surface tension pulls the water into the nano-cone array, resulting in a wetted surface. Higher aspect ratios reverse the effect of the surface tension, resulting in a larger contact angle that causes water drops to roll off the surface. Fiber drawing, bundling, and redrawing are used to produce the structured array glass composite surface. Triple-drawn fibers are fused together, annealed, and sliced into thin wafers. The surface of the composite glass is etched to form nano-cones through a differential etching process and then coated with a fluorinated self-assembled monolayer (SAM). Cone aspect ratios can be varied through changes in the chemistry and concentration of the etching acid solution. Superhydrophobic behavior occurs at contact angles >150 and it is predicted and measured that optimal behavior is achieved when the aspect ratio is 4:1, which displays contact angles >=175 .

  20. Anti-icing performance of superhydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Farhadi, S.; Farzaneh, M. [CIGELE/INGIVRE, Department of Applied Sciences, Universite du Quebec a Chicoutimi, 555 University blvd., Saguenay, PQ, G7H 2B1 (Canada); Kulinich, S.A., E-mail: skulinic@uqac.ca [CIGELE/INGIVRE, Department of Applied Sciences, Universite du Quebec a Chicoutimi, 555 University blvd., Saguenay, PQ, G7H 2B1 (Canada)

    2011-05-01

    This article studies the anti-ice performance of several micro/nano-rough hydrophobic coatings with different surface chemistry and topography. The coatings were prepared by spin-coating or dip coating and used organosilane, fluoropolymer or silicone rubber as a top layer. Artificially created glaze ice, similar to the naturally accreted one, was deposited on the nanostructured surfaces by spraying supercooled water microdroplets (average size {approx}80 {mu}m) in a wind tunnel at subzero temperature (-10 deg. C). The ice adhesion strength was evaluated by spinning the samples in a centrifuge at constantly increasing speed until ice delamination occurred. The results show that the anti-icing properties of the tested materials deteriorate, as their surface asperities seem to be gradually broken during icing/de-icing cycles. Therefore, the durability of anti-icing properties appears to be an important point for further research. It is also shown that the anti-icing efficiency of the tested superhydrophobic surfaces is significantly lower in a humid atmosphere, as water condensation both on top and between surface asperities takes place, leading to high values of ice adhesion strength. This implies that superhydrophobic surfaces may not always be ice-phobic in the presence of humidity, which can limit their wide use as anti-icing materials.

  1. Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications.

    Science.gov (United States)

    Wen, Gang; Guo, ZhiGuang; Liu, Weimin

    2017-03-09

    Numerous research studies have contributed to the development of mature superhydrophobic systems. The fabrication and applications of polymeric superhydrophobic surfaces have been discussed and these have attracted tremendous attention over the past few years due to their excellent properties. In general, roughness and chemical composition, the two most crucial factors with respect to surface wetting, provide the basic criteria for yielding polymeric superhydrophobic materials. Furthermore, with their unique properties and flexible configurations, polymers have been one of the most efficient materials for fabricating superhydrophobic materials. This review aims to summarize the most recent progress in polymeric superhydrophobic surfaces. Significantly, the fundamental theories for designing these materials will be presented, and the original methods will be introduced, followed by a summary of multifunctional superhydrophobic polymers and their applications. The principles of these methods can be divided into two categories: the first involves adding nanoparticles to a low surface energy polymer, and the other involves combining a low surface energy material with a textured surface, followed by chemical modification. Notably, surface-initiated radical polymerization is a versatile method for a variety of vinyl monomers, resulting in controlled molecular weights and low polydispersities. The surfaces produced by these methods not only possess superhydrophobicity but also have many applications, such as self-cleaning, self-healing, anti-icing, anti-bioadhesion, oil-water separation, and even superamphiphobic surfaces. Interestingly, the combination of responsive materials and roughness enhances the responsiveness, which allows the achievement of intelligent transformation between superhydrophobicity and superhydrophilicity. Nevertheless, surfaces with poor physical and chemical properties are generally unable to withstand the severe conditions of the outside world

  2. Microdroplet growth mechanism during water condensation on superhydrophobic surfaces.

    Science.gov (United States)

    Rykaczewski, Konrad

    2012-05-22

    By promoting dropwise condensation of water, nanostructured superhydrophobic coatings have the potential to dramatically increase the heat transfer rate during this phase change process. As a consequence, these coatings may be a facile method of enhancing the efficiency of power generation and water desalination systems. However, the microdroplet growth mechanism on surfaces which evince superhydrophobic characteristics during condensation is not well understood. In this work, the sub-10 μm dynamics of droplet formation on nanostructured superhydrophobic surfaces are studied experimentally and theoretically. A quantitative model for droplet growth in the constant base (CB) area mode is developed. The model is validated using optimized environmental scanning electron microscopy (ESEM) imaging of microdroplet growth on a superhydrophobic surface consisting of immobilized alumina nanoparticles modified with a hydrophobic promoter. The optimized ESEM imaging procedure increases the image acquisition rate by a factor of 10-50 as compared to previous research. With the improved imaging temporal resolution, it is demonstrated that nucleating nanodroplets coalesce to create a wetted flat spot with a diameter of a few micrometers from which the microdroplet emerges in purely CB mode. After the droplet reaches a contact angle of 130-150°, its base diameter increases in a discrete steplike fashion. The droplet height does not change appreciably during this steplike base diameter increase, leading to a small decrease of the contact angle. Subsequently, the drop grows in CB mode until it again reaches the maximum contact angle and increases its base diameter in a steplike fashion. This microscopic stick-and-slip motion can occur up to four times prior to the droplet coalescence with neighboring drops. Lastly, the constant contact angle (CCA) and the CB growth models are used to show that modeling formation of a droplet with a 150° contact angle in the CCA mode rather than in

  3. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces

    NARCIS (Netherlands)

    Li, X.; Reinhoudt, David; Crego Calama, Mercedes

    2007-01-01

    Superhydrophobic surfaces have drawn a lot of interest both in academia and in industry because of the self-cleaning properties. This critical review focuses on the recent progress (within the last three years) in the preparation, theoretical modeling, and applications of superhydrophobic surfaces.

  4. Large-area fabrication of superhydrophobic surfaces for practical applications: an overview

    Science.gov (United States)

    Xue, Chao-Hua; Jia, Shun-Tian; Zhang, Jing; Ma, Jian-Zhong

    2010-01-01

    This review summarizes the key topics in the field of large-area fabrication of superhydrophobic surfaces, concentrating on substrates that have been used in commercial applications. Practical approaches to superhydrophobic surface construction and hydrophobization are discussed. Applications of superhydrophobic surfaces are described and future trends in superhydrophobic surfaces are predicted. PMID:27877336

  5. Large-area fabrication of superhydrophobic surfaces for practical applications: an overview

    Directory of Open Access Journals (Sweden)

    Chao-Hua Xue, Shun-Tian Jia, Jing Zhang and Jian-Zhong Ma

    2010-01-01

    Full Text Available This review summarizes the key topics in the field of large-area fabrication of superhydrophobic surfaces, concentrating on substrates that have been used in commercial applications. Practical approaches to superhydrophobic surface construction and hydrophobization are discussed. Applications of superhydrophobic surfaces are described and future trends in superhydrophobic surfaces are predicted.

  6. Large-area fabrication of superhydrophobic surfaces for practical applications: an overview

    OpenAIRE

    Xue, Chao-Hua; Jia, Shun-Tian; Zhang, Jing; Ma, Jian-Zhong

    2010-01-01

    This review summarizes the key topics in the field of large-area fabrication of superhydrophobic surfaces, concentrating on substrates that have been used in commercial applications. Practical approaches to superhydrophobic surface construction and hydrophobization are discussed. Applications of superhydrophobic surfaces are described and future trends in superhydrophobic surfaces are predicted.

  7. Superhydrophobic Surface Coatings for Microfluidics and MEMs.

    Energy Technology Data Exchange (ETDEWEB)

    Branson, Eric D.; Singh, Seema [Sandia National Laboratories, Livermore, CA; Houston, Jack E.; van Swol, Frank B.; Brinker, C. Jeffrey

    2006-11-01

    Low solid interfacial energy and fractally rough surface topography confer to Lotus plants superhydrophobic (SH) properties like high contact angles, rolling and bouncing of liquid droplets, and self-cleaning of particle contaminants. This project exploits the porous fractal structure of a novel, synthetic SH surface for aerosol collection, its self-cleaning properties for particle concentration, and its slippery nature 3 to enhance the performance of fluidic and MEMS devices. We propose to understand fundamentally the conditions needed to cause liquid droplets to roll rather than flow/slide on a surface and how this %22rolling transition%22 influences the boundary condition describing fluid flow in a pipe or micro-channel. Rolling of droplets is important for aerosol collection strategies because it allows trapped particles to be concentrated and transported in liquid droplets with no need for a pre-defined/micromachined fluidic architecture. The fluid/solid boundary condition is important because it governs flow resistance and rheology and establishes the fluid velocity profile. Although many research groups are exploring SH surfaces, our team is the first to unambiguously determine their effects on fluid flow and rheology. SH surfaces could impact all future SNL designs of collectors, fluidic devices, MEMS, and NEMS. Interfaced with inertial focusing aerosol collectors, SH surfaces would allow size-specific particle populations to be collected, concentrated, and transported to a fluidic interface without loss. In microfluidic systems, we expect to reduce the energy/power required to pump fluids and actuate MEMS. Plug-like (rather than parabolic) velocity profiles can greatly improve resolution of chip-based separations and enable unprecedented control of concentration profiles and residence times in fluidic-based micro-reactors. Patterned SH/hydrophilic channels could induce mixing in microchannels and enable development of microflow control elements

  8. How to repel hot water from a superhydrophobic surface?

    KAUST Repository

    Yu, Zhejun

    2014-01-01

    Superhydrophobic surfaces, with water contact angles greater than 150° and slide angles less than 10°, have attracted a great deal of attention due to their self-cleaning ability and excellent water-repellency. It is commonly accepted that a superhydrophobic surface loses its superhydrophobicity in contact with water hotter than 50 °C. Such a phenomenon was recently demonstrated by Liu et al. [J. Mater. Chem., 2009, 19, 5602], using both natural lotus leaf and artificial leaf-like surfaces. However, our work has shown that superhydrophobic surfaces maintained their superhydrophobicity, even in water at 80 °C, provided that the leaf temperature is greater than that of the water droplet. In this paper, we report on the wettability of water droplets on superhydrophobic thin films, as a function of both their temperatures. The results have shown that both the water contact and slide angles on the surfaces will remain unchanged when the temperature of the water droplet is greater than that of the surface. The water contact angle, or the slide angle, will decrease or increase, however, with droplet temperatures increasingly greater than that of the surfaces. We propose that, in such cases, the loss of superhydrophobicity of the surfaces is caused by evaporation of the hot water molecules and their condensation on the cooler surface. © 2014 the Partner Organisations.

  9. Sessile droplet evaporation on superheated superhydrophobic surfaces

    CERN Document Server

    Hays, Robb C; Maynes, Daniel; Webb, Brent W

    2013-01-01

    This fluid dynamics video depicts the evaporation of sessile water droplets placed on heated superhydrophobic (SH) surfaces of varying cavity fraction, F_c, and surface temperature, T_s, above the saturation temperature, T_sat. Images were captured at 10,000 FPS and are played back at 30 FPS in this video. Teflon-coated silicon surfaces of F_c = 0, 0.5, 0.8, and 0.95 were used for these experiments. T_s ranging from 110{\\deg}C to 210{\\deg}C were studied. The video clips show how the boiling behavior of sessile droplets is altered with changes in surface microstructure. Quantitative results from heat transfer rate experiments conducted by the authors are briefly discussed near the end of the video.

  10. Fabrication of Superhydrophobic Surfaces with Controllable Electrical Conductivity and Water Adhesion.

    Science.gov (United States)

    Ye, Lijun; Guan, Jipeng; Li, Zhixiang; Zhao, Jingxin; Ye, Cuicui; You, Jichun; Li, Yongjin

    2017-02-14

    A facile and versatile strategy for fabricating superhydrophobic surfaces with controllable electrical conductivity and water adhesion is reported. "Vine-on-fence"-structured and cerebral cortex-like superhydrophobic surfaces are constructed by filtering a suspension of multiwalled carbon nanotubes (MWCNTs), using polyoxymethylene nonwovens as the filter paper. The nonwovens with micro- and nanoporous two-tier structures act as the skeleton, introducing a microscale structure. The MWCNTs act as nanoscale structures, creating hierarchical surface roughness. The surface topography and the electrical conductivity of the superhydrophobic surfaces are controlled by varying the MWCNT loading. The vine-on-fence-structured surfaces exhibit "sticky" superhydrophobicity with high water adhesion. The cerebral cortex-like surfaces exhibit self-cleaning properties with low water adhesion. The as-prepared superhydrophobic surfaces are chemically resistant to acidic and alkaline environments of pH 2-12. They therefore have potential in applications such as droplet-based microreactors and thin-film microextraction. These findings aid our understanding of the role that surface topography plays in the design and fabrication of superhydrophobic surfaces with different water-adhesion properties.

  11. Wettability and Contact Time on a Biomimetic Superhydrophobic Surface

    Directory of Open Access Journals (Sweden)

    Yunhong Liang

    2017-03-01

    Full Text Available Inspired by the array microstructure of natural superhydrophobic surfaces (lotus leaf and cicada wing, an array microstructure was successfully constructed by high speed wire electrical discharge machining (HS-WEDM on the surfaces of a 7075 aluminum alloy without any chemical treatment. The artificial surfaces had a high apparent contact angle of 153° ± 1° with a contact angle hysteresis less than 5° and showed a good superhydrophobic property. Wettability, contact time, and the corresponding superhydrophobic mechanism of artificial superhydrophobic surface were investigated. The results indicated that the micro-scale array microstructure was an important factor for the superhydrophobic surface, while different array microstructures exhibited different effects on the wettability and contact time of the artificial superhydrophobic surface. The length (L, interval (S, and height (H of the array microstructure are the main influential factors on the wettability and contact time. The order of importance of these factors is H > S > L for increasing the apparent contact angle and reducing the contact time. The method, using HS-WEDM to fabricate superhydrophobic surface, is simple, low-cost, and environmentally friendly and can easily control the wettability and contact time on the artificial surfaces by changing the array microstructure.

  12. Topology optimization of robust superhydrophobic surfaces

    DEFF Research Database (Denmark)

    Cavalli, Andrea; Bøggild, Peter; Okkels, Fridolin

    2013-01-01

    the space between the posts, we search for an optimal post cross-section that minimizes the vertical displacement of the liquid–air interface at the base of the drop when a pressure difference is applied. Topology optimisation proves effective in this framework, showing that posts with a branching cross......-section are optimal, which is consistent with several biologic strategies to achieve superhydrophobicity. Through a filtering technique, we can also control the characteristic length scale of the optimal design, thus obtaining geometries feasible via standard lithography....

  13. Fabrication and condensation characteristics of metallic superhydrophobic surface with hierarchical micro-nano structures

    Science.gov (United States)

    Chu, Fuqiang; Wu, Xiaomin

    2016-05-01

    Metallic superhydrophobic surfaces have various applications in aerospace, refrigeration and other engineering fields due to their excellent water repellent characteristics. This study considers a simple but widely applicable fabrication method using a two simultaneous chemical reactions method to prepare the acid-salt mixed solutions to process the metal surfaces with surface deposition and surface etching to construct hierarchical micro-nano structures on the surface and then modify the surface with low surface-energy materials. Al-based and Cu-based superhydrophobic surfaces were fabricated using this method. The Al-based superhydrophobic surface had a water contact angle of 164° with hierarchical micro-nano structures similar to the lotus leaves. The Cu-based surface had a water contact angle of 157° with moss-like hierarchical micro-nano structures. Droplet condensation experiments were also performed on these two superhydrophobic surfaces to investigate their condensation characteristics. The results show that the Al-based superhydrophobic surface has lower droplet density, higher droplet jumping probability, slower droplet growth rate and lower surface coverage due to the more structured hierarchical structures.

  14. Superhydrophobic surfaces in turbulent channel flow

    Science.gov (United States)

    Li, Yixuan; Alame, Karim; Mahesh, Krishnan

    2016-11-01

    The drag reduction effect of superhydrophobic surfaces in turbulent channel flow is studied using direct numerical simulation. The volume of fluid (VOF) methodology is used to resolve the dynamics of the interface. Laminar flow simulations show good agreement with experiment, and illustrate the relative importance of geometry and interface boundary condition. An analytical solution for the multi-phase problem is obtained that shows good agreement with simulation. Turbulent simulations over a longitudinally grooved surface show drag reduction even in the fully wetted regime. The statistics show that geometry alone can cause an apparent slip to the external flow. Instantaneous plots indicate that the grooves prevent the penetration of near wall vorticity, yielding overall drag reduction. Results for spectra, wall pressure fluctuations and correlations will be presented. Unsteady effects on the air-vapor interface will be discussed. Results for random roughness surfaces will be presented. Supported by Office of Naval Research.

  15. Dropwise condensation on superhydrophobic surfaces with two-tier roughness

    Science.gov (United States)

    Chen, Chuan-Hua; Cai, Qingjun; Tsai, Chialun; Chen, Chung-Lung; Xiong, Guangyong; Yu, Ying; Ren, Zhifeng

    2007-04-01

    Dropwise condensation can enhance heat transfer by an order of magnitude compared to film condensation. Superhydrophobicity appears ideal to promote continued dropwise condensation which requires rapid removal of condensate drops; however, such promotion has not been reported on engineered surfaces. This letter reports continuous dropwise condensation on a superhydrophobic surface with short carbon nanotubes deposited on micromachined posts, a two-tier texture mimicking lotus leaves. On such micro-/nanostructured surfaces, the condensate drops prefer the Cassie state which is thermodynamically more stable than the Wenzel state. With a hexadecanethiol coating, superhydrophobicity is retained during and after condensation and rapid drop removal is enabled.

  16. Robust hybrid elastomer/metal-oxide superhydrophobic surfaces.

    Science.gov (United States)

    Hoshian, S; Jokinen, V; Franssila, S

    2016-08-21

    We introduce a new type of hybrid material: a nanostructured elastomer covered by a hard photoactive metal-oxide thin film resembling the exoskeleton of insects. It has extreme water repellency and fast self-recovery after damage. A new fabrication method for replicating high aspect ratio, hierarchical re-entrant aluminum structures into polydimethylsiloxane (PDMS) is presented. The method is based on a protective titania layer deposited by atomic layer deposition (ALD) on the aluminum template. The ALD titania transfers to the elastomeric scaffold via sacrificial release etching. The sacrificial release method allows for high aspect ratio, even 100 μm deep and successful release of overhanging structures, unlike conventional peeling. The ALD titania conformally covers the 3D multihierarchical structures of the template and protects the polymer during the release etch. Afterwards it prevents the high aspect ratio nanostructures from elasticity based collapse. The resulting nanostructured hybrid PDMS/titania replicas display robust superhydrophobicity without any further fluoro-coating or modification. Their mechanical and thermal robustness results from a thick nanostructured elastomeric layer which is conformally covered by ceramic titania instead of a monolayer hydrophobic coating. We have demonstrated the durability of these replicas against mechanical abrasion, knife scratches, rubbing, bending, peel tape test, high temperature annealing, UV exposure, water jet impingement and long term underwater storage. Though the material loses its superhydrophobicity in oxygen plasma exposure, a fast recovery from superhydrophilic to superhydrophobic can be achieved after 20 min UV irradiation. UV-assisted recovery is correlated with the high photoactivity of ALD titania film. This novel hybrid material will be applicable to the large area superhydrophobic surfaces in practical outdoor applications.

  17. Delayed Frost Growth on Jumping-Drop Superhydrophobic Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Boreyko, Jonathan B [ORNL; Collier, Pat [ORNL

    2013-01-01

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an inter-drop frost wave. The growth of this inter-drop frost front is shown to be up to three times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of inter-drop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an inter-drop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser was found to be superior to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by minimizing the success of interdrop ice bridge formation.

  18. Delayed frost growth on jumping-drop superhydrophobic surfaces.

    Science.gov (United States)

    Boreyko, Jonathan B; Collier, C Patrick

    2013-02-26

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an interdrop frost wave. The growth of this interdrop frost front is shown to be up to 3 times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of interdrop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an interdrop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser minimized frost formation relative to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by limiting the success of interdrop ice bridge formation.

  19. Interaction between Air Bubbles and Superhydrophobic Surfaces in Aqueous Solutions.

    Science.gov (United States)

    Shi, Chen; Cui, Xin; Zhang, Xurui; Tchoukov, Plamen; Liu, Qingxia; Encinas, Noemi; Paven, Maxime; Geyer, Florian; Vollmer, Doris; Xu, Zhenghe; Butt, Hans-Jürgen; Zeng, Hongbo

    2015-07-07

    Superhydrophobic surfaces are usually characterized by a high apparent contact angle of water drops in air. Here we analyze the inverse situation: Rather than focusing on water repellency in air, we measure the attractive interaction of air bubbles and superhydrophobic surfaces in water. Forces were measured between microbubbles with radii R of 40-90 μm attached to an atomic force microscope cantilever and submerged superhydrophobic surfaces. In addition, forces between macroscopic bubbles (R = 1.2 mm) at the end of capillaries and superhydrophobic surfaces were measured. As superhydrophobic surfaces we applied soot-templated surfaces, nanofilament surfaces, micropillar arrays with flat top faces, and decorated micropillars. Depending on the specific structure of the superhydrophobic surfaces and the presence and amount of entrapped air, different interactions were observed. Soot-templated surfaces in the Cassie state showed superaerophilic behavior: Once the electrostatic double-layer force and a hydrodynamic repulsion were overcome, bubbles jumped onto the surface and fully merged with the entrapped air. On nanofilaments and micropillar arrays we observed in addition the formation of sessile bubbles with finite contact angles below 90° or the attachment of bubbles, which retained their spherical shape.

  20. Fabrication of surface micro- and nanostructures for superhydrophobic surfaces in electric and electronic applications

    Science.gov (United States)

    Xiu, Yonghao

    In our study, the superhydrophobic surface based on biomimetic lotus leave is explored to maintain the desired properties for self-cleaning. Parameters in controlling bead-up and roll-off characteristics of water droplets were investigated on different model surfaces. The governing equations were proposed. Heuristic study is performed. First, the fundamental understanding of the effect of roughness on superhydrophobicity is performed. The effect of hierarchical roughness, i.e., two scale roughness effect on roughness is investigated using systems of (1) monodisperse colloidal silica sphere (submicron) arrays and Au nanoparticle on top and (2) Si micrometer pyramids and Si nanostructures on top from KOH etching and metal assisted etching of Si. The relation between the contact area fraction and water droplet contact angles are derived based on Wenzel and Cassie-Baxter equation for the systems and the two scale effect is explained regarding the synergistic combination of two scales. Previously the microscopic three-phase-contact line is thought to be the key factor in determining contact angles and hystereses. In our study, Laplace pressure was brought up and related to the three-phase-contact line and taken as a key figure of merit in determining superhydrophobicity. In addition, we are one of the first to study the effect of tapered structures (wall inclination). Combining with a second scale roughness on the tapered structures, stable Cassie state for both water and low surface energy oil may be achieved. This is of great significance for designing both superhydrophobicity and superoleophobicity. Regarding the origin of contact angle hysteresis, study of superhydrophobicity on micrometer Si pillars was performed. The relation between the interface work of function and contact angle hysteresis was proposed and derived mathematically based on the Young-Dupre equation. The three-phase-contact line was further related to a secondary scale roughness induced. Based on

  1. Robust biomimetic-structural superhydrophobic surface on aluminum alloy.

    Science.gov (United States)

    Li, Lingjie; Huang, Tao; Lei, Jinglei; He, Jianxin; Qu, Linfeng; Huang, Peiling; Zhou, Wei; Li, Nianbing; Pan, Fusheng

    2015-01-28

    The following facile approach has been developed to prepare a biomimetic-structural superhydrophobic surface with high stabilities and strong resistances on 2024 Al alloy that are robust to harsh environments. First, a simple hydrothermal treatment in a La(NO3)3 aqueous solution was used to fabricate ginkgo-leaf like nanostructures, resulting in a superhydrophilic surface on 2024 Al. Then a low-surface-energy compound, dodecafluoroheptyl-propyl-trimethoxylsilane (Actyflon-G502), was used to modify the superhydrophilic 2024 Al, changing the surface character from superhydrophilicity to superhydrophobicity. The water contact angle (WCA) of such a superhydrophobic surface reaches up to 160°, demonstrating excellent superhydrophobicity. Moreover, the as-prepared superhydrophobic surface shows high stabilities in air-storage, chemical and thermal environments, and has strong resistances to UV irradiation, corrosion, and abrasion. The WCAs of such a surface almost remain unchanged (160°) after storage in air for 80 days, exposure in 250 °C atmosphere for 24 h, and being exposed under UV irradiation for 24 h, are more than 144° whether in acidic or alkali medium, and are more than 150° after 48 h corrosion and after abrasion under 0.98 kPa for 1000 mm length. The remarkable durability of the as-prepared superhydrophobic surface can be attributed to its stable structure and composition, which are due to the existence of lanthanum (hydr)oxides in surface layer. The robustness of the as-prepared superhydrophobic surface to harsh environments will open their much wider applications. The fabricating approach for such robust superhydrophobic surface can be easily extended to other metals and alloys.

  2. Facile and cost-effective fabrication of patternable superhydrophobic surfaces via salt dissolution assisted etching

    Science.gov (United States)

    Choi, Dongwhi; Yoo, Jaewon; Park, Sang Min; Kim, Dong Sung

    2017-01-01

    Superhydrophobic surfaces with extremely low wettability have attracted attention globally along with their remarkable characteristics such as anti-icing, anti-sticking, and self-cleaning. In this study, a facile and cost-effective approach of fabricating patternable superhydrophobic surfaces, which can be applied on various substrates (including large area and 3D curvilinear substrates), is proposed with a salt-dissolution-assisted etching process. This novel proposal is environmentally benign (entirely water-based and fluorine-free process). The only required ingredients to realize superhydrophobic surfaces are commercially available salt particles, polydimethylsiloxane (PDMS), and water. No expensive equipment or complex process control is needed. The fabricated superhydrophobic surface shows high static contact angle (∼151°) and a low sliding angle (∼6°), which correspond to the standards of superhydrophobicity. This surface also shows corrosive liquids (acid/alkali)-resistant characteristics. Moreover, the self-cleaning ability of the fabricated surfaces is explored. As a proof-of-concept application of the present approach, the spatially controllable superhydrophobic patterns on flat/curvilinear substrates are directly drawn with a minimum feature size of 500 μm without the use of expensive tooling, dies, or lithographic masks.

  3. Research on marking lines of silicone elastomer PDMS for super-hydrophobic surface fabrication based on picosecond laser

    Science.gov (United States)

    Gang, Xiao; Dong, Shiyun; Yan, Shixing; Song, Chaoqun; Wang, Bin

    2016-10-01

    The picosecond laser has ultrashort pulse and superstrong peak power, which make it being focused on and applied in the micro-nanoscale fabrication field. Silicone elastomer PDMS is a typical antifouling material which can desorb defacement, using picosecond laser etching the surface through the way of galvanometer scanning in order to obtain a surface with micro-nano texture. The article studied the relationship between process parameters such as the power density, the scanning rate and the appearance of etched groove respectively, especially the width and depth of the groove. The results show that : for single marking, with the raise of the laser power density I, the depth of the groove increases, the inclination angle of the side wall is reduced. In another time, with the increase of the scanning rate v ,the depth of the groove decreases gradually and the surface morphology cannot be seen clearly. For multiple marking, the depth of the groove shown a falling slope from big to small with the increase of marking number. Finally,we got a path to optimize the process parameters to obtain a surface with micro-nano structures. After testing the surface contact angle, we found that the surface contact angle increased from 113° to 152°,which reached the level of superhydrophobic surface.

  4. Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Wu Bo [Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Zhou Ming, E-mail: zm_laser@126.com [Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Li Jian; Ye Xia; Li Gang; Cai Lan [Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013 (China)

    2009-10-15

    Fabrication of superhydrophobic surfaces induced by femtosecond laser is a research hotspot of superhydrophobic surface studies nowadays. We present a simple and easily-controlled method for fabricating stainless steel-based superhydrophobic surfaces. The method consists of microstructuring stainless steel surfaces by irradiating samples with femtosecond laser pulses and silanizing the surfaces. By low laser fluence, we fabricated typical laser-induced periodic surface structures (LIPSS) on the submicron level. The apparent contact angle (CA) on the surface is 150.3 deg. With laser fluence increasing, we fabricated periodic ripples and periodic cone-shaped spikes on the micron scale, both covered with LIPSS. The stainless steel-based surfaces with micro- and submicron double-scale structure have higher apparent CAs. On the surface of double-scale structure, the maximal apparent CA is 166.3 deg. and at the same time, the sliding angle (SA) is 4.2 deg.

  5. Manufacturing of Superhydrophobic Surfaces with Nanoscale and Microscale Features

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-06-01

    This factsheet describes a research project that will develop a technology that will enable nanoscale and microscale superhydrophobic (SHP) features to be imaged onto surfaces for the high-volume manufacturing of water-repellent components and coatings.

  6. Effect of superhydrophobic surface morphology on evaporative deposition patterns

    Science.gov (United States)

    Dicuangco, Mercy; Dash, Susmita; Weibel, Justin A.; Garimella, Suresh V.

    2014-05-01

    Prediction and active control of the spatial distribution of particulate deposits obtained from sessile droplet evaporation are vital in printing, nanostructure assembly, biotechnology, and other applications that require localized deposits. This Letter presents surface wettability-based localization of evaporation-driven particulate deposition and the effect of superhydrophobic surface morphology on the distribution of deposits. Sessile water droplets containing suspended latex particles are evaporated on non-wetting textured surfaces with varying microstructure geometry at ambient conditions. The droplets are visualized throughout the evaporation process to track the temporal evolution of contact radius and apparent contact angle. The resulting particle deposits on the substrates are quantitatively characterized. The experimental results show that superhydrophobic surfaces suppress contact-line deposition during droplet evaporation, thereby providing an effective means of localizing the deposition of suspended particles. A correlation between deposit size and surface morphology, explained in terms of the interface pressure balance at the transition between wetting states, reveals an optimum surface morphology for minimizing the deposit coverage area.

  7. Probing droplets on superhydrophobic surfaces by synchrotron radiation scattering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Accardo, Angelo [Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163 (Italy); Di Fabrizio, Enzo [KAUST (King Abdullah University of Science and Technology), Jeddah (Saudi Arabia); BIONEM Lab at University Magna Graecia, Campus Salvatore Venuta, Viale Europa 88100, Germaneto-Catanzaro (Italy); Limongi, Tania [KAUST (King Abdullah University of Science and Technology), Jeddah (Saudi Arabia); Marinaro, Giovanni [Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163 (Italy); European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex (France); Riekel, Christian, E-mail: riekel@esrf.fr [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex (France)

    2014-06-10

    A comprehensive review about the use of micro- and nanostructured superhydrophobic surfaces as a tool for in situ X-ray scattering investigations of soft matter and biological materials. Droplets on artificially structured superhydrophobic surfaces represent quasi contact-free sample environments which can be probed by X-ray microbeams and nanobeams in the absence of obstructing walls. This review will discuss basic surface wettability concepts and introduce the technology of structuring surfaces. Quasi contact-free droplets are compared with contact-free droplets; processes related to deposition and evaporation on solid surfaces are discussed. Droplet coalescence based on the electrowetting effect allows the probing of short-time mixing and reaction processes. The review will show for several materials of biological interest that structural processes related to conformational changes, nucleation and assembly during droplet evaporation can be spatially and temporally resolved by raster-scan diffraction techniques. Orientational ordering of anisotropic materials deposited during solidification at pinning sites facilitates the interpretation of structural data.

  8. Fabrication of robust and thermally stable superhydrophobic nanocomposite coatings based on thermoplastic polyurethane and silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seyfi, Javad [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Jafari, Seyed Hassan, E-mail: shjafari@ut.ac.ir [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Khonakdar, Hossein Ali [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden (Germany); Sadeghi, Gity Mir Mohamad [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Zohuri, Gholamhossein [Polymer Group, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Hejazi, Iman [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Simon, Frank [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden (Germany)

    2015-08-30

    Highlights: • Superhydrophobic coatings were prepared from an intrinsically hydrophilic polymer. • The superhydrophobicity remained intact at elevated temperatures. • Polyurethane plays a key role in improving the mechanical robustness of the coatings. • A complete surface coverage of nanosilica is necessary for superhydrophobicity. - Abstract: In this paper, superhydrophobic nanocomposite coatings based on thermoplastic polyurethane (TPU) and modified nanosilica were fabricated using a simple solution-based method. The main challenge was to impart superhydrophobicity to an intrinsically hydrophilic polymer substrate. The prepared nanocomposite coatings were characterized by means of scanning electron microscopy, confocal microscopy and X-ray photoelectron spectroscopy. Based on the obtained results, it was proved that in order to achieve superhydrophobicity, no TPU macromolecule should be present on the coating's top layer, thus a complete coverage of coating's top layer by nanosilica particles was necessary for achieving ultra water repellent coatings. Mechanical and thermal resistance of the coatings, which are the main challenges in commercializing superhydrophobic surfaces, were also studied by drop impact and thermal annealing tests, respectively. It was proved that using TPU as a sublayer results in improving mechanical resistance of the coatings as compared with the pure silica nanocoating. Moreover, the samples showed an excellent resistance against elevated temperatures (150 °C) and remained superhydrophobic; however, further increment of the annealing temperatures to 200 °C caused the TPU macromolecules to migrate onto the top layer of the coatings significantly reducing the water repellency, which was visually proved by SEM.

  9. Thermodynamic analysis on an anisotropically superhydrophobic surface with a hierarchical structure

    Science.gov (United States)

    Zhao, Jieliang; Su, Zhengliang; Yan, Shaoze

    2015-12-01

    Superhydrophobic surfaces, which refer to the surfaces with contact angle higher than 150° and hysteresis less than 10°, have been reported in various studies. However, studies on the superhydrophobicity of anisotropic, hierarchical surfaces are limited and the corresponding thermodynamic mechanisms could not be explained thoroughly. Here we propose a simplified surface model of anisotropic patterned surface with dual scale roughness. Based on the thermodynamic method, we calculate the equilibrium contact angle (ECA) and the contact angle hysteresis (CAH) on the given surface. We show here that the hierarchical structure has much better anisotropic wetting properties than the single-scale one, and the results shed light on the potential application in controllable micro-/nano-fluidic systems. Our studies can be potentially applied for the fabrication of anisotropically superhydrophobic surfaces.

  10. Boiling Heat Transfer on Superhydrophilic, Superhydrophobic, and Superbiphilic Surfaces

    CERN Document Server

    Betz, Amy Rachel; Kim, Chang-Jin 'CJ'; Attinger, Daniel

    2012-01-01

    With recent advances in micro- and nanofabrication, superhydrophilic and superhydrophobic surfaces have been developed. The statics and dynamics of fluids on these surfaces have been well characterized. However, few investigations have been made into the potential of these surfaces to control and enhance other transport phenomena. In this article, we characterize pool boiling on surfaces with wettabilities varied from superhydrophobic to superhydrophilic, and provide nucleation measurements. The most interesting result of our measurements is that the largest heat transfer coefficients are reached not on surfaces with spatially uniform wettability, but on biphilic surfaces, which juxtapose hydrophilic and hydrophobic regions. We develop an analytical model that describes how biphilic surfaces effectively manage the vapor and liquid transport, delaying critical heat flux and maximizing the heat transfer coefficient. Finally, we manufacture and test the first superbiphilic surfaces (juxtaposing superhydrophobic ...

  11. Simple and cost-effective fabrication of highly flexible, transparent superhydrophobic films with hierarchical surface design.

    Science.gov (United States)

    Kim, Tae-Hyun; Ha, Sung-Hun; Jang, Nam-Su; Kim, Jeonghyo; Kim, Ji Hoon; Park, Jong-Kweon; Lee, Deug-Woo; Lee, Jaebeom; Kim, Soo-Hyung; Kim, Jong-Man

    2015-03-11

    Optical transparency and mechanical flexibility are both of great importance for significantly expanding the applicability of superhydrophobic surfaces. Such features make it possible for functional surfaces to be applied to various glass-based products with different curvatures. In this work, we report on the simple and potentially cost-effective fabrication of highly flexible and transparent superhydrophobic films based on hierarchical surface design. The hierarchical surface morphology was easily fabricated by the simple transfer of a porous alumina membrane to the top surface of UV-imprinted polymeric micropillar arrays and subsequent chemical treatments. Through optimization of the hierarchical surface design, the resultant superhydrophobic films showed superior surface wetting properties (with a static contact angle of >170° and contact angle hysteresis of 82% at 550 nm wavelength). The superhydrophobic films were also experimentally found to be robust without significant degradation in the superhydrophobicity, even under repetitive bending and pressing for up to 2000 cycles. Finally, the practical usability of the proposed superhydorphobic films was clearly demonstrated by examining the antiwetting performance in real time while pouring water on the film and submerging the film in water.

  12. Biomimetic superhydrophobic polyolefin surfaces fabricated with a facile scraping, bonding and peeling method

    Directory of Open Access Journals (Sweden)

    Feng Huanhuan

    2016-01-01

    Full Text Available Inspired by the superhydrophobicity of juicy peach surface, on which microscale hairs are standing vertically to the surface plane, an extremely simple, inexpensive physical method is developed for fabrication of superhydrophobic polyolefin surfaces over large areas. This method includes three steps: abrasive paper scraping, adhesive tape bonding and 90° peeling. Scraping increases the roughness and enhence water contact angles (CAs on polyolefin surfaces. It increases more when the scraped surface are bonded with adhesive types and then then 90° peeled. The CA variation depends on the types of polyolefin and abrasive paper. Superhydrophobic lowdensity polyethylene (LDPE, high-density polyethylene (HDPE and polypropylene (PP surfaces (CA>150° are obtained and they all exhibit very low adhesive force and high resistance to strong acids and bases.

  13. Collapse of superhydrophobicity on nanopillared surfaces

    Science.gov (United States)

    Amabili, Matteo; Giacomello, Alberto; Meloni, Simone; Casciola, Carlo Massimo

    2017-03-01

    The mechanism of the collapse of the superhydrophobic state is elucidated for submerged nanoscale textures forming a three-dimensional interconnected vapor domain. This key issue for the design of nanotextures poses significant simulation challenges as it is characterized by diverse time and length scales. State-of-the-art atomistic rare events simulations are applied for overcoming the long time scales connected with the large free energy barriers. In such interconnected surface cavities wetting starts with the formation of a liquid finger between two pillars. This break of symmetry induces a more gentle bend in the rest of the liquid-vapor interface, which triggers the wetting of the neighboring pillars. This collective mechanism, involving the wetting of several pillars at the same time, could not be captured by previous atomistic simulations using surface models comprising a small number of pillars (often just one). Atomistic results are interpreted in terms of a sharp-interface continuum model which suggests that line tension, condensation, and other nanoscale phenomena play a minor role in the simulated conditions.

  14. Dynamic effects induced transition of droplets on biomimetic superhydrophobic surfaces.

    Science.gov (United States)

    Jung, Yong Chae; Bhushan, Bharat

    2009-08-18

    Superhydrophobic surfaces have considerable technological potential for various applications because of their extreme water-repellent properties. Dynamic effects, such as the bouncing and vibration of a droplet, can destroy the composite solid-air-liquid interface. The impact pressure of a bouncing droplet and the inertia force of a vibrating droplet affect the transition from a solid-air-liquid interface to a solid-liquid interface. Therefore, it is necessary to study the dynamic effect of droplets under various system parameters (impact velocity and frequency and amplitude of vibration). A new model for the prediction of the wetting and dewetting process during droplet vibration based on the relationship between the adhesion force and the inertia force of a droplet is proposed. To investigate whether micro-, nano-, and hierarchical structures can resist the destabilizing factors responsible for the transition, a study of bouncing and vibration of a water droplet is systematically conducted on various surfaces. The physics of wetting phenomena for water droplet studies is of fundamental importance in the geometrical design of superhydrophobic surfaces.

  15. An atomistic-continuum hybrid simulation of fluid flows over superhydrophobic surfaces

    OpenAIRE

    Li, Qiang; He, Guo-Wei

    2009-01-01

    Recent experiments have found that slip length could be as large as on the order of 1 μm for fluid flows over superhydrophobic surfaces. Superhydrophobic surfaces can be achieved by patterning roughness on hydrophobic surfaces. In the present paper, an atomistic-continuum hybrid approach is developed to simulate the Couette flows over superhydrophobic surfaces, in which a molecular dynamics simulation is used in a small region near the superhydrophobic surface where the continuum assumption i...

  16. Spontaneous Jumping of Coalescing Drops on a Superhydrophobic Surface

    Science.gov (United States)

    Boreyko, Jonathan; Chen, Chuan-Hua

    2009-11-01

    When micrometric drops coalesce in-plane on a superhydrophobic surface, a surprising out-of-plane jumping motion was observed. Such jumping motion triggered by drop coalescence was reproduced on a Leidenfrost surface. High-speed imaging revealed that this jumping motion results from the elastic interaction of the bridged drops with the superhydrophobic/Leidenfrost surface. Experiments on both the superhydrophobic and Leidenfrost surfaces compare favorably to a simple scaling model relating the kinetic energy of the merged drop to the surface energy released upon coalescence. The spontaneous jumping motion on water repellent surfaces enables the autonomous removal of water condensate independently of gravity; this process is highly desirable for sustained dropwise condensation.

  17. Spontaneous Jumping of Coalescing Drops on a Superhydrophobic Surface

    CERN Document Server

    Boreyko, Jonathan

    2009-01-01

    When micrometric drops coalesce in-plane on a superhydrophobic surface, a surprising out-of-plane jumping motion was observed. Such jumping motion triggered by drop coalescence was reproduced on a Leidenfrost surface. High-speed imaging revealed that this jumping motion results from the elastic interaction of the bridged drops with the superhydrophobic/Leidenfrost surface. Experiments on both the superhydrophobic and Leidenfrost surfaces compare favorably to a simple scaling model relating the kinetic energy of the merged drop to the surface energy released upon coalescence. The spontaneous jumping motion on water repellent surfaces enables the autonomous removal of water condensate independently of gravity; this process is highly desirable for sustained dropwise condensation.

  18. Probing droplets on superhydrophobic surfaces by synchrotron radiation scattering techniques

    KAUST Repository

    Accardo, Angelo

    2014-06-10

    Droplets on artificially structured superhydrophobic surfaces represent quasi contact-free sample environments which can be probed by X-ray microbeams and nanobeams in the absence of obstructing walls. This review will discuss basic surface wettability concepts and introduce the technology of structuring surfaces. Quasi contact-free droplets are compared with contact-free droplets; processes related to deposition and evaporation on solid surfaces are discussed. Droplet coalescence based on the electrowetting effect allows the probing of short-time mixing and reaction processes. The review will show for several materials of biological interest that structural processes related to conformational changes, nucleation and assembly during droplet evaporation can be spatially and temporally resolved by raster-scan diffraction techniques. Orientational ordering of anisotropic materials deposited during solidification at pinning sites facilitates the interpretation of structural data. 2014 International Union of Crystallography.

  19. Fabricating an enhanced stable superhydrophobic surface on copper plates by introducing a sintering process

    Science.gov (United States)

    Hu, Jinyi; Yuan, Wei; Yan, Zhiguo; Zhou, Bo; Tang, Yong; Li, Zongtao

    2015-11-01

    The superhydrophobic surface has the potential for use in functional applications. This study reports a novel method for coupling a sintering process with a traditional technique based on the solution-immersion method to prepare a stable superhydrophobic surface. The use of a sintering process aids in the enhancement of the adhesive strength and acid resistance of the surface structure. The advantage of using this method lies in its flexibility in regulating the processing parameters and functional behaviours. The influences of different processing parameters were experimentally investigated. The surface treated with a sintering process remains superhydrophobic with a contact angle of >150° after immersion in an acid solution for 120 h. The sintered surface maintains good integrity after experiencing ultrasonic vibration for 5 min. The results indicate that the sintering temperature must be optimized to increase the adhesive strength and maintain sufficient hydrophobicity. The modification time is an important factor related to the level of hydrophobicity.

  20. Development of superhydrophobic surface on glass substrate by multi-step atmospheric pressure plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Han, Duksun [Department of Applied Plasma Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do 561-756 (Korea, Republic of); Moon, Se Youn, E-mail: symoon@jbnu.ac.kr [Department of Applied Plasma Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do 561-756 (Korea, Republic of); Department of Quantum system Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do 561-756 (Korea, Republic of)

    2015-07-31

    Superhydrophobic surface was prepared on a glass by helium based CH{sub 4} and C{sub 4}F{sub 8} atmospheric pressure plasmas, and its water wettability was investigated by a water droplet contact angle method. The water droplet spread over on the untreated glasses that showed the initial hydrophilic property of the glass surface. Then, the static contact angles became about 85° and 98° after a single step CH{sub 4} plasma treatment and a single step C{sub 4}F{sub 8} plasma treatment, respectively. The contact angle was remarkably increased to 152°, indicating a superhydrophobic property, after a sequential multi-step CH{sub 4} and C{sub 4}F{sub 8} plasma treatment. From the X-ray photoelectron spectroscopy and the field emission scanning electron microscope measurements, it was found that the physical morphologies and the chemical compositions were depending on the substrate materials, which were important factors for the superhydrophobicity. - Highlights: • Development of rapid and simple method for superhydrophobic surface • Effects of atmospheric pressure plasma for superhydrophobic surface preparation • Observation of chemical and physical surface modification by atmospheric pressure plasma • Effects of substrate properties for plasma–surface interaction.

  1. Shrink-induced superhydrophobic and antibacterial surfaces in consumer plastics.

    Science.gov (United States)

    Freschauf, Lauren R; McLane, Jolie; Sharma, Himanshu; Khine, Michelle

    2012-01-01

    Structurally modified superhydrophobic surfaces have become particularly desirable as stable antibacterial surfaces. Because their self-cleaning and water resistant properties prohibit bacteria growth, structurally modified superhydrophobic surfaces obviate bacterial resistance common with chemical agents, and therefore a robust and stable means to prevent bacteria growth is possible. In this study, we present a rapid fabrication method for creating such superhydrophobic surfaces in consumer hard plastic materials with resulting antibacterial effects. To replace complex fabrication materials and techniques, the initial mold is made with commodity shrink-wrap film and is compatible with large plastic roll-to-roll manufacturing and scale-up techniques. This method involves a purely structural modification free of chemical additives leading to its inherent consistency over time and successive recasting from the same molds. Finally, antibacterial properties are demonstrated in polystyrene (PS), polycarbonate (PC), and polyethylene (PE) by demonstrating the prevention of gram-negative Escherichia coli (E. coli) bacteria growth on our structured plastic surfaces.

  2. Condensation heat transfer on two-tier superhydrophobic surfaces

    Science.gov (United States)

    Cheng, Jiangtao; Vandadi, Aref; Chen, Chung-Lung

    2012-09-01

    We investigated water vapor condensation on a two-tier superhydrophobic surface in an environmental scanning electron microscope (ESEM) and in a customer-designed vapor chamber. We have observed continuous dropwise condensation (DWC) on the textured surface in ESEM. However, a film layer of condensate was formed on the multiscale texture in the vapor chamber. Due to the filmwise condensation, the condensation heat transfer coefficient of the superhydrophobic surface is lower than that of a flat hydrophobic surface especially under high heat flux situations. Our studies indicate that adaptive and prompt condensate droplet purging is the dominant factor for sustaining long-term DWC.

  3. Fabrication of superhydrophobic and lyophobic slippery surface on steel substrate

    Science.gov (United States)

    Wang, Nan; Xiong, Dangsheng; Pan, Sai; Deng, Yaling; Shi, Yan

    2016-11-01

    Superhydrophobic/oleophilic coating was prepared on steel via wet chemical etching, and followed by surface modification. Surface grafting was manifested to be realized mainly on the oxidized area. Slippery liquid infused porous surface(s) (SLIPS) was prepared by infusing perfluorinated lubricant into the prepared superhydrophobic coating, to repel water, coffee, kerosene, and even hexane, suggesting a transition from superoleophilicity to lyophobicity. Furthermore, the lyohobicity was accessible only when the substrate is fluorinated. Moreover, the kinematic viscosity was demonstrated to be negatively correlated to the traveling speed of the liquids on the SLIPS.

  4. Shear driven droplet shedding and coalescence on a superhydrophobic surface

    Science.gov (United States)

    Moghtadernejad, S.; Tembely, M.; Jadidi, M.; Esmail, N.; Dolatabadi, A.

    2015-03-01

    The interest on shedding and coalescence of sessile droplets arises from the importance of these phenomena in various scientific problems and industrial applications such as ice formation on wind turbine blades, power lines, nacelles, and aircraft wings. It is shown recently that one of the ways to reduce the probability of ice accretion on industrial components is using superhydrophobic coatings due to their low adhesion to water droplets. In this study, a combined experimental and numerical approach is used to investigate droplet shedding and coalescence phenomena under the influence of air shear flow on a superhydrophobic surface. Droplets with a size of 2 mm are subjected to various air speeds ranging from 5 to 90 m/s. A numerical simulation based on the Volume of Fluid method coupled with the Large Eddy Simulation turbulent model is carried out in conjunction with the validating experiments to shed more light on the coalescence of droplets and detachment phenomena through a detailed analysis of the aerodynamics forces and velocity vectors on the droplet and the streamlines around it. The results indicate a contrast in the mechanism of two-droplet coalescence and subsequent detachment with those related to the case of a single droplet shedding. At lower speeds, the two droplets coalesce by attracting each other with successive rebounds of the merged droplet on the substrate, while at higher speeds, the detachment occurs almost instantly after coalescence, with a detachment time decreasing exponentially with the air speed. It is shown that coalescence phenomenon assists droplet detachment from the superhydrophobic substrate at lower air speeds.

  5. Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications

    Science.gov (United States)

    Mail, M.; Neinhuis, C.

    2016-01-01

    A comprehensive survey of the construction principles and occurrences of superhydrophobic surfaces in plants, animals and other organisms is provided and is based on our own scanning electron microscopic examinations of almost 20 000 different species and the existing literature. Properties such as self-cleaning (lotus effect), fluid drag reduction (Salvinia effect) and the introduction of new functions (air layers as sensory systems) are described and biomimetic applications are discussed: self-cleaning is established, drag reduction becomes increasingly important, and novel air-retaining grid technology is introduced. Surprisingly, no evidence for lasting superhydrophobicity in non-biological surfaces exists (except technical materials). Phylogenetic trees indicate that superhydrophobicity evolved as a consequence of the conquest of land about 450 million years ago and may be a key innovation in the evolution of terrestrial life. The approximate 10 million extant species exhibit a stunning diversity of materials and structures, many of which are formed by self-assembly, and are solely based on a limited number of molecules. A short historical survey shows that bionics (today often called biomimetics) dates back more than 100 years. Statistical data illustrate that the interest in biomimetic surfaces is much younger still. Superhydrophobicity caught the attention of scientists only after the extreme superhydrophobicity of lotus leaves was published in 1997. Regrettably, parabionic products play an increasing role in marketing. This article is part of the themed issue ‘Bioinspired hierarchically structured surfaces for green science’. PMID:27354736

  6. Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications.

    Science.gov (United States)

    Barthlott, W; Mail, M; Neinhuis, C

    2016-08-06

    A comprehensive survey of the construction principles and occurrences of superhydrophobic surfaces in plants, animals and other organisms is provided and is based on our own scanning electron microscopic examinations of almost 20 000 different species and the existing literature. Properties such as self-cleaning (lotus effect), fluid drag reduction (Salvinia effect) and the introduction of new functions (air layers as sensory systems) are described and biomimetic applications are discussed: self-cleaning is established, drag reduction becomes increasingly important, and novel air-retaining grid technology is introduced. Surprisingly, no evidence for lasting superhydrophobicity in non-biological surfaces exists (except technical materials). Phylogenetic trees indicate that superhydrophobicity evolved as a consequence of the conquest of land about 450 million years ago and may be a key innovation in the evolution of terrestrial life. The approximate 10 million extant species exhibit a stunning diversity of materials and structures, many of which are formed by self-assembly, and are solely based on a limited number of molecules. A short historical survey shows that bionics (today often called biomimetics) dates back more than 100 years. Statistical data illustrate that the interest in biomimetic surfaces is much younger still. Superhydrophobicity caught the attention of scientists only after the extreme superhydrophobicity of lotus leaves was published in 1997. Regrettably, parabionic products play an increasing role in marketing.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  7. Facile stamp patterning method for superhydrophilic/superhydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Sungnam, E-mail: blueden@postech.ac.kr; Hwang, Woonbong, E-mail: whwang@postech.ac.kr [Department of Mechanical Engineering, POSTECH, Pohang 680-749 (Korea, Republic of)

    2015-11-16

    Patterning techniques are essential to many research fields such as chemistry, biology, medicine, and micro-electromechanical systems. In this letter, we report a simple, fast, and low-cost superhydrophobic patterning method using a superhydrophilic template. The technique is based on the contact stamping of the surface during hydrophobic dip coating. Surface characteristics were measured using scanning electron microscopy and energy-dispersive X-ray spectroscopic analysis. The results showed that the hydrophilic template, which was contacted with the stamp, was not affected by the hydrophobic solution. The resolution study was conducted using a stripe shaped stamp. The patterned line was linearly proportional to the width of the stamp line with a constant narrowing effect. A surface with regions of four different types of wetting was fabricated to demonstrate the patterning performance.

  8. Superhydrophobic durable coating based on UV-photoreactive silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nahum, T.; Dodiuk, H.; Dotan, A.; Kenig, S. [Department of Plastics Engineering, Shenkar College of Engineering and Design, 12 Anna Frank Street, Ramat Gan 52526 (Israel); Lellouche, J. P. [Department of Chemistry, Nanomaterials Research Center, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramar-Gan, 52900 (Israel)

    2015-05-22

    Superhydrophobic surfaces with contact angle (CA) >150 and sliding angle (SA) <10 have been aroused curiosity over the years due to their various applications. Superhydrophobicity can be obtained tailoring the chemistry and the roughness of the surface, mimicking the Lotus flower. Most superhydrophobic surfaces based on secondary bonding lose their roughness in harsh conditions and are unsuitable for practical applications. Photoreactive SiO{sub 2} nanoparticles (NPs) based on benzophenone (BP) can be a very effective tool for formation of reactive species that function as a molecular bridge by covalent bonding between the NP and any polymer matrix with C-C and C-H bonds. The present work focused on thermoset radiation curing urethane acrylate. Upon UV irradiation reactive excited nπ* triplet benzophenone species are formed and react through hydrogen abstraction to form ketyl radicals which interact with a radicals from the UV irradiated polymer matrix to yield covalent bonding. Roughness was achieved by dipping the substrate in SiO{sub 2}@BPs NPs dispersion followed by irradiation. Fluoroalkylsilane was used to obtain hydrophobic top layer. AFM nano manipulation was used to verify the immobilization of NPs. Evaluation of durability was made using air flow at 300 km/hr. Preliminary results indicate the formation of super hydrophobic surfaces (CA>150 and SA<10) with improved stability.

  9. Superhydrophobic bio-fibre surfaces via tailored grafting architecture.

    Science.gov (United States)

    Nyström, Daniel; Lindqvist, Josefina; Ostmark, Emma; Hult, Anders; Malmström, Eva

    2006-09-14

    Superhydrophobic bio-fibre surfaces with a micro-nano-binary surface structure have been achieved via the surface-confined grafting of glycidyl methacrylate, using a branched "graft-on-graft" architecture, followed by post-functionalisation to obtain fluorinated brushes.

  10. Stability of plasma treated superhydrophobic surfaces under different ambient conditions.

    Science.gov (United States)

    Chen, Faze; Liu, Jiyu; Cui, Yao; Huang, Shuai; Song, Jinlong; Sun, Jing; Xu, Wenji; Liu, Xin

    2016-05-15

    Plasma hydrophilizing of superhydrophobic substrates has become an important area of research, for example, superhydrophobic-(super)hydrophilic patterned surfaces have significant practical applications such as lab-on-chip systems, cell adhesion, and control of liquid transport. However, the stability of plasma-induced hydrophilicity is always considered as a key issue since the wettability tends to revert back to the untreated state (i.e. aging behavior). This paper focuses on the stability of plasma treated superhydrophobic surface under different ambient conditions (e.g. temperature and relative humidity). Water contact angle measurement and X-ray photoelectron spectroscopy are used to monitor the aging process. Results show that low temperature and low relative humidity are favorable to retard the aging process and that pre-storage at low temperature (-10°C) disables the treated surface to recover superhydrophobicity. When the aging is performed in water, a long-lasting hydropholicity is obtained. As the stability of plasma-induced hydrophilcity over a desired period of time is a very important issue, this work will contribute to the optimization of storage conditions of plasma treated superhydrophobic surfaces.

  11. High contact angle hysteresis of superhydrophobic surfaces: Hydrophobic defects

    Science.gov (United States)

    Chang, Feng-Ming; Hong, Siang-Jie; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2009-08-01

    A typical superhydrophobic surface is essentially nonadhesive and exhibits very low water contact angle (CA) hysteresis, so-called Lotus effect. However, leaves of some plants such as scallion and garlic with an advancing angle exceeding 150° show very serious CA hysteresis. Although surface roughness and epicuticular wax can explain the very high advancing CA, our analysis indicates that the unusual hydrophobic defect, diallyl disulfide, is the key element responsible for contact line pinning on allium leaves. After smearing diallyl disulfide on an extended polytetrafluoroethylene (PTFE) film, which is originally absent of CA hysteresis, the surface remains superhydrophobic but becomes highly adhesive.

  12. Particle deposition on superhydrophobic surfaces by sessile droplet evaporation

    Science.gov (United States)

    Dicuangco, Mercy Grace

    Prediction and active control of the spatial distribution of particulate deposits obtained from sessile droplet evaporation is essential in ink-jet printing, nanostructure assembly, biotechnology, and other applications that require localized deposits. In recent years, sessile droplet evaporation on bio-inspired superhydrophobic surfaces has become an attractive method for depositing materials on a site-specific, localized region, but is less explored compared to evaporative deposition on hydrophilic surfaces. It is therefore of interest to understand particle deposition during droplet evaporation on superhydrophobic surfaces to enable accurate prediction and tunable control of localized deposits on such surfaces. The purpose of the present work is to explore the morphology of particles deposited on superhydrophobic surfaces by the evaporation of sessile water droplets containing suspended latex spheres. Droplet evaporation experiments are performed on non-wetting, textured surfaces with varying geometric parameters. The temporal evolution of the droplet contact radius and contact angle throughout the evaporation process are tracked by visualizing the transient droplet shape and wetting behavior. The droplets are observed to exhibit a combination of the following modes of evaporation: the constant contact radius mode, the constant contact angle mode, and the mixed mode in which the contact angle and the contact radius change simultaneously. After complete dry-out, the remaining particulate deposits are qualitatively and quantitatively characterized to describe their spatial distribution. In the first part of the study, the test surfaces are maintained at different temperatures. Experiments are conducted at ambient conditions and at elevated substrate temperatures of approximately 40°C, 50°C, and 60°C. The results show that droplet evaporation on superhydrophobic surfaces, driven by either mass diffusion at ambient conditions or by substrate heating, suppresses

  13. Superhydrophobic functionalized graphene aerogels.

    Science.gov (United States)

    Lin, Yirong; Ehlert, Gregory J; Bukowsky, Colton; Sodano, Henry A

    2011-07-01

    Carbon-based nanomaterials such as carbon nanotubes and graphene are excellent candidates for superhydrophobic surfaces because of their intrinsically high surface area and nonpolar carbon structure. This paper demonstrates that graphene aerogels with a silane surface modification can provide superhydrophobicity. Graphene aerogels of various concentrations were synthesized and the receding contact angle of a water droplet was measured. It is shown that graphene aerogels are hydrophobic and become superhydrophobic following the application of a fluorinated surfactant. The aerogels produced for this experiment outperform previous carbon nanomaterials in creating superhydrophobic surfaces and offer a more scalable synthetic procedure for production.

  14. One-step electrodeposition process to fabricate cathodic superhydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhi, E-mail: c2002z@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710129 (China); Li Feng [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710129 (China); Hao Limei [Department of Applied Physics, Xi' an University of Science and Technology, Xi' an 710054 (China); Chen Anqi; Kong Youchao [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710129 (China)

    2011-12-01

    In this work, a rapid one-step process is developed to fabricate superhydrophobic cathodic surface by electrodepositing copper plate in an electrolyte solution containing manganese chloride (MnCl{sub 2}{center_dot}4H{sub 2}O), myristic acid (CH{sub 3}(CH{sub 2}){sub 12}COOH) and ethanol. The superhydrophobic surfaces were characterized by means of scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The shortest electrolysis time for fabricating a superhydrophobic surface is about 1 min, the measured maximum contact angle is 163 Degree-Sign and rolling angle is less than 3 Degree-Sign . Furthermore, this method can be easily extended to other conductive materials. The approach is time-saving and cheap, and it is supposed to have a promising future in industrial fields.

  15. One-step electrodeposition process to fabricate cathodic superhydrophobic surface

    Science.gov (United States)

    Chen, Zhi; Li, Feng; Hao, Limei; Chen, Anqi; Kong, Youchao

    2011-12-01

    In this work, a rapid one-step process is developed to fabricate superhydrophobic cathodic surface by electrodepositing copper plate in an electrolyte solution containing manganese chloride (MnCl2·4H2O), myristic acid (CH3(CH2)12COOH) and ethanol. The superhydrophobic surfaces were characterized by means of scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The shortest electrolysis time for fabricating a superhydrophobic surface is about 1 min, the measured maximum contact angle is 163° and rolling angle is less than 3°. Furthermore, this method can be easily extended to other conductive materials. The approach is time-saving and cheap, and it is supposed to have a promising future in industrial fields.

  16. Microstructured surfaces engineered using biological templates: a facile approach for the fabrication of superhydrophobic surfaces

    Directory of Open Access Journals (Sweden)

    DUSAN LOSIC

    2008-10-01

    Full Text Available The fabrication of microstructured surfaces using biological templates was investigated with the aim of exploring of a facile and low cost approach for the fabrication of structured surfaces with superhydrophobic properties. Two soft lithographic techniques, i.e., replica moulding and nano-imprinting, were used to replicate the surfaces of a biological substrate. Leaves of the Agave plant (Agave attenuate, a cost-free biological template, were used as a model of a biosurface with superhydrophobic properties. The replication process was performed using two polymers: an elastomeric polymer, poly(dimethylsiloxane (PDMS, and a polyurethane (PU based, UV-curable polymer (NOA 60. In the first replication step, negative polymer replicas of the surface of leaves were fabricated, which were used as masters to fabricate positive polymer replicas by moulding and soft imprinting. The pattern with micro and nanostructures of the surface of the leaf possesses superhydrophobic properties, which was successfully replicated into both polymers. Finally, the positive replicas were coated with a thin gold film and modified with self-assembled monolayers (SAMs to verify the importance of the surface chemistry on the hydrophobic properties of the fabricated structures. Wetting (contact angle and structural (light microscopy and scanning electron microscopy characterisation was performed to confirm the hydrophobic properties of the fabricated surfaces (> 150°, as well as the precision and reproducibility of the replication process.

  17. Cutting a drop of water pinned by wire loops using a superhydrophobic surface and knife.

    Science.gov (United States)

    Yanashima, Ryan; García, Antonio A; Aldridge, James; Weiss, Noah; Hayes, Mark A; Andrews, James H

    2012-01-01

    A water drop on a superhydrophobic surface that is pinned by wire loops can be reproducibly cut without formation of satellite droplets. Drops placed on low-density polyethylene surfaces and Teflon-coated glass slides were cut with superhydrophobic knives of low-density polyethylene and treated copper or zinc sheets, respectively. Distortion of drop shape by the superhydrophobic knife enables a clean break. The driving force for droplet formation arises from the lower surface free energy for two separate drops, and it is modeled as a 2-D system. An estimate of the free energy change serves to guide when droplets will form based on the variation of drop volume, loop spacing and knife depth. Combining the cutting process with an electrofocusing driving force could enable a reproducible biomolecular separation without troubling satellite drop formation.

  18. Cutting a Drop of Water Pinned by Wire Loops Using a Superhydrophobic Surface and Knife

    Science.gov (United States)

    Yanashima, Ryan; García, Antonio A.; Aldridge, James; Weiss, Noah; Hayes, Mark A.; Andrews, James H.

    2012-01-01

    A water drop on a superhydrophobic surface that is pinned by wire loops can be reproducibly cut without formation of satellite droplets. Drops placed on low-density polyethylene surfaces and Teflon-coated glass slides were cut with superhydrophobic knives of low-density polyethylene and treated copper or zinc sheets, respectively. Distortion of drop shape by the superhydrophobic knife enables a clean break. The driving force for droplet formation arises from the lower surface free energy for two separate drops, and it is modeled as a 2-D system. An estimate of the free energy change serves to guide when droplets will form based on the variation of drop volume, loop spacing and knife depth. Combining the cutting process with an electrofocusing driving force could enable a reproducible biomolecular separation without troubling satellite drop formation. PMID:23029297

  19. Cutting a drop of water pinned by wire loops using a superhydrophobic surface and knife.

    Directory of Open Access Journals (Sweden)

    Ryan Yanashima

    Full Text Available A water drop on a superhydrophobic surface that is pinned by wire loops can be reproducibly cut without formation of satellite droplets. Drops placed on low-density polyethylene surfaces and Teflon-coated glass slides were cut with superhydrophobic knives of low-density polyethylene and treated copper or zinc sheets, respectively. Distortion of drop shape by the superhydrophobic knife enables a clean break. The driving force for droplet formation arises from the lower surface free energy for two separate drops, and it is modeled as a 2-D system. An estimate of the free energy change serves to guide when droplets will form based on the variation of drop volume, loop spacing and knife depth. Combining the cutting process with an electrofocusing driving force could enable a reproducible biomolecular separation without troubling satellite drop formation.

  20. A new model for thermodynamic analysis on wetting behavior of superhydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Hongyun [Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education and Faculty of Materials, Optoelectronics and Physics, Xiangtan University, Xiangtan 411105 (China); Li Wen, E-mail: liwen@xtu.edu.cn [Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education and Faculty of Materials, Optoelectronics and Physics, Xiangtan University, Xiangtan 411105 (China); Fang Guoping [Department of mechanical Engineering, University of Alberta, Edmonton, AB, T6G 2G8 (Canada)

    2012-01-15

    Superhydrophobic surfaces have shown inspiring applications in microfluidics, and self-cleaning coatings owing to water-repellent and low-friction properties. However, thermodynamic mechanism responsible for contact angle hysteresis (CAH) and free energy barrier (FEB) have not been understood completely yet. In this work, we propose an intuitional 3-dimension (3D) droplet model along with a reasonable thermodynamic approach to gain a thorough insight into the physical nature of CAH. Based on this model, the relationships between radius of three-phase contact line, change in surface free energy (CFE), average or local FEB and contact angle (CA) are established. Moreover, a thorough theoretical consideration is given to explain the experimental phenomena related to the superhydrophobic behavior. The present study can therefore provide some guidances for the practical fabrications of the superhydrophobic surfaces.

  1. Influence of Liquid Viscosity on Droplet Impingement on Superhydrophobic Surfaces

    CERN Document Server

    Pearson, John T; Webb, Brent W

    2010-01-01

    This fluid dynamics video describes droplet impingement experiments performed on superhydrophobic surfaces. When droplets of pure water are impinged upon superhydrophobic surfaces, a region of thin coherent jets are observed for Weber numbers between 5 and 15. Also, peripheral splashing is observed for Weber numbers above about 200. When the viscosity of the droplet is increased by mixing glycerol with the water, the thin jets are not observed and peripheral splashing is delayed somewhat. In the Weber number range where pure water droplets are observed to splash peripherally, the water/glycerol droplets are observed to have two-pronged jets.

  2. Comparison of Three Methods for Generating Superhydrophobic, Superoleophobic Nylon Nonwoven Surfaces (Postprint)

    Science.gov (United States)

    2011-04-01

    AFRL-RX-TY-TP-2010-0076 COMPARISON OF THREE METHODS FOR GENERATING SUPERHYDROPHOBIC, SUPEROLEOPHOBIC NYLON NONWOVEN SURFACES Rahul Saraf...Generating Superhydrophobic, Superoleophobic Nylon Nonwoven Surfaces (POSTPRINT) FA8650-07-1-5916 0602102F GOVT L0 QL102006 ^Saraf, Rahul,; ^Lee, Hoon...three different techniques to achieve superhydrophobicity and superoleophobicity using hydroentangled nylon nonwoven fabric: pulsed plasma polymerization

  3. Superhydrophobic coatings for aluminium surfaces synthesized by chemical etching process

    Directory of Open Access Journals (Sweden)

    Priya Varshney

    2016-10-01

    Full Text Available In this paper, the superhydrophobic coatings on aluminium surfaces were prepared by two-step (chemical etching followed by coating and one-step (chemical etching and coating in a single step processes using potassium hydroxide and lauric acid. Besides, surface immersion time in solutions was varied in both processes. Wettability and surface morphologies of treated aluminium surfaces were characterized using contact angle measurement technique and scanning electron microscopy, respectively. Microstructures are formed on the treated aluminium surfaces which lead to increase in contact angle of the surface (>150°. Also on increasing immersion time, contact angle further increases due to increase in size and depth of microstructures. Additionally, these superhydrophobic coatings show excellent self-cleaning and corrosion-resistant behavior. Water jet impact, floatation on water surface, and low temperature condensation tests assert the excellent water-repellent nature of coatings. Further, coatings are to be found mechanically, thermally, and ultraviolet stable. Along with, these coatings are found to be excellent regeneration ability as verified experimentally. Although aforesaid both processes generate durable and regenerable superhydrophobic aluminium surfaces with excellent self-cleaning, corrosion-resistant, and water-repellent characteristics, but one-step process is proved more efficient and less time consuming than two-step process and promises to produce superhydrophobic coatings for industrial applications.

  4. Drop Impact upon Micro- and Nanostructured Superhydrophobic Surfaces

    NARCIS (Netherlands)

    Tsai, Peichun Amy; Pacheco Benito, Sergio; Pirat, C.; Lefferts, Leonardus; Lohse, Detlef

    2009-01-01

    We experimentally investigate drop impact dynamics onto different superhydrophobic surfaces, consisting of regular polymeric micropatterns and rough carbon nanofibers, with similar static contact angles. The main control parameters are the Weber number We and the roughness of the surface. At small

  5. Effect of wettability and surface roughness on ice-adhesion strength of hydrophilic, hydrophobic and superhydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bharathidasan, T. [Surface Engineering Division, CSIR- National Aerospace Laboratories, Bangalore 560017 (India); Kumar, S. Vijay; Bobji, M.S. [Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560003 (India); Chakradhar, R.P.S. [Surface Engineering Division, CSIR- National Aerospace Laboratories, Bangalore 560017 (India); Basu, Bharathibai J., E-mail: bharathijbasu@gmail.com [Surface Engineering Division, CSIR- National Aerospace Laboratories, Bangalore 560017 (India)

    2014-09-30

    Highlights: • Anti-icing property is related to wettability and surface roughness. • Silicone based hydrophobic coating showed excellent ice-adhesion strength. • Superhydrophobic surfaces displayed poor anti-icing property. - Abstract: The anti-icing properties of hydrophilic, hydrophobic and superhydrophobic surfaces/coatings were evaluated using a custom-built apparatus based on zero-degree cone test method. The ice-adhesion reduction factor (ARF) of these coatings has been evaluated using bare aluminium alloy as a reference. The wettability of the surfaces was evaluated by measuring water contact angle (WCA) and sliding angle. It was found that the ice-adhesion strength (τ) on silicone based hydrophobic surfaces was ∼ 43 times lower than compared to bare polished aluminium alloy indicating excellent anti-icing property of these coatings. Superhydrophobic coatings displayed poor anti-icing property in spite of their high water repellence. Field Emission Scanning Electron Microscope reveal that Silicone based hydrophobic coatings exhibited smooth surface whereas the superhydrophobic coatings had a rough surface consisting of microscale bumps and protrusions superimposed with nanospheres. Both surface roughness and surface energy play a major role on the ice-adhesion strength of the coatings. The 3D surface roughness profiles of the coatings also indicated the same trend of roughness. An attempt is made to correlate the observed ice-adhesion strength of different surfaces with their wettability and surface roughness.

  6. Droplet impact on superhydrophobic surfaces fully decorated with cylindrical macrotextures.

    Science.gov (United States)

    Abolghasemibizaki, Mehran; Mohammadi, Reza

    2017-09-08

    Impacting on a superhydrophobic surface, water droplet spreads to a pancake shape and then retracts and bounces off. Although the collision time is mostly in the order of couple of 10ms for millimetric droplets, researchers have shown recently that decorating the superhydrophobic surface with a single macrotexture or intersecting ridge reduces this contact time if the droplet hits the texture or the intersection exactly in the center. Hence, covering the surface with ridges should address this hitting point restriction. Using an extruder-type 3D printer, we fabricated a superhydrophobic surface fully decorated with cylindrical ridges. The dynamic of water droplet impact on this surface at different impact velocities has been studied for varied droplet volumes and ridge sizes. Our data show that regardless of the location of the contact point, when the kinetic energy of the drop is sufficient to completely wet the ridges, the contact time reduces ∼13% as the consequence of ∼20% faster retraction. For higher impact velocity, the contact becomes shorter since the flattened drop splashes from the periphery. Moreover, the simplified, time-efficient and inexpensive method of fabricating the surfaces presented in this paper can be implemented in fabricating many versatile superhydrophobic surfaces with complex geometries. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Dynamics of Defrosting on Hydrophobic and Superhydrophobic Surfaces

    Science.gov (United States)

    Murphy, Kevin; McClintic, William; Lester, Kevin; Collier, Patrick; Boreyko, Jonathan

    2016-11-01

    It has recently been demonstrated that frost can grow in a suspended Cassie state on nanostructured superhydrophobic surfaces, which has implications for enhanced defrosting rates. However, to date there have been no direct comparisons of the defrosting kinetics of Cassie frost versus frost on conventional surfaces. Here, we fabricate a hybrid aluminum plate where half of the top face exhibits a superhydrophobic nanostructure while the other half is smooth and hydrophobic. By growing frost to varying thicknesses and melting at several tilt angles, we reveal the advantages and disadvantages of each surface with regards to the extent and speed of the shedding of melt water. For sufficiently thick frost layers, the Cassie state of frost on the superhydrophobic surface uniquely enabled the rapid and effective shedding of melt water even at low tilt angles. On the other hand, the hydrophobic surface was more effective at removing very thin frost sheets, as the reduced contact angle of water on the surface facilitated the coalescence of droplets to grow the melt water beyond the capillary length for gravitational removal. Therefore, the utilization of superhydrophobic versus hydrophobic surfaces for defrosting applications depends upon the context of the system conditions.

  8. Thermodynamic analysis on an anisotropically superhydrophobic surface with a hierarchical structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jieliang [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China); Su, Zhengliang [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China); Department of Automotive Engineering, Tsinghua University, Beijing 100084 (China); Yan, Shaoze, E-mail: yansz@mail.tsinghua.edu.cn [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China)

    2015-12-01

    Graphical abstract: - Highlights: • We model the superhydrophobic surface with anisotropic and hierarchical structure. • Anisotropic wetting only shows in noncomposite state (not in composite state). • Transition from noncomposite to composite state on dual-scale structure is hard. • Droplets tend to roll in the particular direction. • Droplets tend to stably remain in one preferred thermodynamic state. - Abstract: Superhydrophobic surfaces, which refer to the surfaces with contact angle higher than 150° and hysteresis less than 10°, have been reported in various studies. However, studies on the superhydrophobicity of anisotropic, hierarchical surfaces are limited and the corresponding thermodynamic mechanisms could not be explained thoroughly. Here we propose a simplified surface model of anisotropic patterned surface with dual scale roughness. Based on the thermodynamic method, we calculate the equilibrium contact angle (ECA) and the contact angle hysteresis (CAH) on the given surface. We show here that the hierarchical structure has much better anisotropic wetting properties than the single-scale one, and the results shed light on the potential application in controllable micro-/nano-fluidic systems. Our studies can be potentially applied for the fabrication of anisotropically superhydrophobic surfaces.

  9. Drag reduction in turbulent flows over superhydrophobic surfaces

    Science.gov (United States)

    Daniello, Robert J.; Waterhouse, Nicholas E.; Rothstein, Jonathan P.

    2009-08-01

    In this paper, we demonstrate that periodic, micropatterned superhydrophobic surfaces, previously noted for their ability to provide laminar flow drag reduction, are capable of reducing drag in the turbulent flow regime. Superhydrophobic surfaces contain micro- or nanoscale hydrophobic features which can support a shear-free air-water interface between peaks in the surface topology. Particle image velocimetry and pressure drop measurements were used to observe significant slip velocities, shear stress, and pressure drop reductions corresponding to drag reductions approaching 50%. At a given Reynolds number, drag reduction is found to increase with increasing feature size and spacing, as in laminar flows. No observable drag reduction was noted in the laminar regime, consistent with previous experimental results for the channel geometry considered. The onset of drag reduction occurs at a critical Reynolds number where the viscous sublayer thickness approaches the scale of the superhydrophobic microfeatures and performance is seen to increase with further reduction in viscous sublayer height. These results indicate superhydrophobic surfaces may provide a significant drag reducing mechanism for marine vessels.

  10. Experimental studies of liquid marbles and superhydrophobic surfaces

    OpenAIRE

    Elliott, SJ

    2009-01-01

    The interaction of water droplets with hydrophobic or rough, superhydrophobic solid surfaces has been studied. Such surfaces may be found in the natural world and their potential applications range from waterproof and self-cleaning surfaces to droplet microfluidics. A measure of hydrophobicity is obtained from the angle between the liquid and solid surface measured from the solid through the liquid, known as the contact angle. Variations in this angle can indicate not only a level of ‘wetting...

  11. Contact-angle hysteresis on super-hydrophobic surfaces.

    Science.gov (United States)

    McHale, G; Shirtcliffe, N J; Newton, M I

    2004-11-09

    The relationship between perturbations to contact angles on a rough or textured surface and the super-hydrophobic enhancement of the equilibrium contact angle is discussed theoretically. Two models are considered. In the first (Wenzel) case, the super-hydrophobic surface has a very high contact angle and the droplet completely contacts the surface upon which it rests. In the second (Cassie-Baxter) case, the super-hydrophobic surface has a very high contact angle, but the droplet bridges across surface protrusions. The theoretical treatment emphasizes the concept of contact-angle amplification or attenuation and distinguishes between the increases in contact angles due to roughening or texturing surfaces and perturbations to the resulting contact angles. The theory is applied to predicting contact-angle hysteresis on rough surfaces from the hysteresis observable on smooth surfaces and is therefore relevant to predicting roll-off angles for droplets on tilted surfaces. The theory quantitatively predicts a "sticky" surface for Wenzel-type surfaces and a "slippy" surface for Cassie-Baxter-type surfaces.

  12. Influence of structured sidewalls on the wetting states and superhydrophobic stability of surfaces with dual-scale roughness

    Science.gov (United States)

    Wu, Huaping; Zhu, Kai; Wu, Bingbing; Lou, Jia; Zhang, Zheng; Chai, Guozhong

    2016-09-01

    The superhydrophobicity of biological surfaces with dual-scale roughness has recently received considerable attention because of the unique wettability of such surfaces. Based on this, artificial micro/nano hierarchical structures with structured sidewalls and smooth sidewalls were designed and the influences of sidewall configurations (i.e., structured and smooth) on the wetting state of micro/nano hierarchical structures were systematically investigated based on thermodynamics and the principle of minimum free energy. Wetting transition and superhydrophobic stability were then analyzed for a droplet on dual-scale rough surfaces with structured and smooth sidewalls. Theoretical analysis results show that dual-scale rough surfaces with structured sidewalls have a larger "stable superhydrophobic region" than those with smooth sidewalls. The dual-scale rough surfaces with smooth sidewalls can enlarge the apparent contact angle (ACA) without improvement in the superhydrophobic stability. By contrast, dual-scale rough surfaces with structured sidewalls present an advantage over those with smooth sidewalls in terms of enlarging ACA and enhancing superhydrophobic stability. The proposed thermodynamic model is valid when compared with previous experimental data and numerical analysis results, which is helpful for designing and understanding the wetting states and superhydrophobic stability of surfaces with dual-scale roughness.

  13. Influence of structured sidewalls on the wetting states and superhydrophobic stability of surfaces with dual-scale roughness

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huaping, E-mail: wuhuaping@gmail.com [Key Laboratory of E& M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014 (China); State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Zhu, Kai; Wu, Bingbing [Key Laboratory of E& M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014 (China); Lou, Jia [Piezoelectric Device Laboratory, Department of Mechanics and Engineering Science, Ningbo University, Ningbo, Zhejiang 315211 (China); Zhang, Zheng [Key Laboratory of E& M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014 (China); Chai, Guozhong, E-mail: chaigz@zjut.edu.cn [Key Laboratory of E& M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014 (China)

    2016-09-30

    Highlights: • Apparent contact angle equation of all wetting states on dual-scale rough surfaces is derived. • Structured sidewalls can improve superhydrophobicity than smooth sidewalls. • Structured sidewalls can enlarge ACA than smooth sidewalls. • Structured sidewalls present an advantage over smooth sidewalls in terms of enhancing superhydrophobic stability. - Abstract: The superhydrophobicity of biological surfaces with dual-scale roughness has recently received considerable attention because of the unique wettability of such surfaces. Based on this, artificial micro/nano hierarchical structures with structured sidewalls and smooth sidewalls were designed and the influences of sidewall configurations (i.e., structured and smooth) on the wetting state of micro/nano hierarchical structures were systematically investigated based on thermodynamics and the principle of minimum free energy. Wetting transition and superhydrophobic stability were then analyzed for a droplet on dual-scale rough surfaces with structured and smooth sidewalls. Theoretical analysis results show that dual-scale rough surfaces with structured sidewalls have a larger “stable superhydrophobic region” than those with smooth sidewalls. The dual-scale rough surfaces with smooth sidewalls can enlarge the apparent contact angle (ACA) without improvement in the superhydrophobic stability. By contrast, dual-scale rough surfaces with structured sidewalls present an advantage over those with smooth sidewalls in terms of enlarging ACA and enhancing superhydrophobic stability. The proposed thermodynamic model is valid when compared with previous experimental data and numerical analysis results, which is helpful for designing and understanding the wetting states and superhydrophobic stability of surfaces with dual-scale roughness.

  14. Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications

    Science.gov (United States)

    Ta, Duong V.; Dunn, Andrew; Wasley, Thomas J.; Kay, Robert W.; Stringer, Jonathan; Smith, Patrick J.; Connaughton, Colm; Shephard, Jonathan D.

    2015-12-01

    This work demonstrates superhydrophobic behavior on nanosecond laser patterned copper and brass surfaces. Compared with ultrafast laser systems previously used for such texturing, infrared nanosecond fiber lasers offer a lower cost and more robust system combined with potentially much higher processing rates. The wettability of the textured surfaces develops from hydrophilicity to superhydrophobicity over time when exposed to ambient conditions. The change in the wetting property is attributed to the partial deoxidation of oxides on the surface induced during laser texturing. Textures exhibiting steady state contact angles of up to ∼152° with contact angle hysteresis of around 3-4° have been achieved. Interestingly, the superhydrobobic surfaces have the self-cleaning ability and have potential for chemical sensing applications. The principle of these novel chemical sensors is based on the change in contact angle with the concentration of methanol in a solution. To demonstrate the principle of operation of such a sensor, it is found that the contact angle of methanol solution on the superhydrophobic surfaces exponentially decays with increasing concentration. A significant reduction, of 128°, in contact angle on superhydrophobic brass is observed, which is one order of magnitude greater than that for the untreated surface (12°), when percent composition of methanol reaches to 28%.

  15. Evolutions of hairpin vortexes over a superhydrophobic surface in turbulent boundary layer flow

    Science.gov (United States)

    Zhang, Jingxian; Tian, Haiping; Yao, Zhaohui; Hao, Pengfei; Jiang, Nan

    2016-09-01

    Turbulent flows over a superhydrophobic surface and a smooth surface have been measured and studied by particle image velocimetry technology at Reθ = 990. The Reynolds shear stress distributions over the two surfaces are significantly different. Specifically, for the superhydrophobic surface, the Reynolds shear stress is suppressed in the near-wall region (y/δ curve. Evolutions of hairpin vortexes are analyzed to interpret differences in the Reynolds shear stress, based on some comparisons in the low-speed streaks and Q2/Q4 (ejection/sweep) events. The results show that, in the near wall region, the turbulent coherent structures (low-speed streaks and hairpin vortex) over the superhydrophobic surface are more stable and flat, due to the suppression in the strength and the lifting effect of the hairpin vortex. In the outer region, the superhydrophobic surface lifts the hairpin vortex away from the wall with a value of 0.14δ in our experiment, which makes the Q4 events occur further from the wall and contribute less to skin friction.

  16. Current trend in fabrication of complex morphologically tunable superhydrophobic nano scale surfaces

    Science.gov (United States)

    Abdulhussein, Ali T.; Kannarpady, Ganesh K.; Wright, Andrew B.; Ghosh, Anindya; Biris, Alexandru S.

    2016-10-01

    Superhydrophobic surfaces are found in nature and possess several fascinating properties, including the ability to self-clean. A typical superhydrophobic surface has micro/nanostructure roughness and low surface energy, which combine to give it its unusual anti-wetting properties. Because of their unique capabilities, these surfaces have interested scientists in research and industry fields for years. In recent decades, researchers have developed a number of synthetic methods for producing novel superhydrophobic surfaces that mimic natural surfaces. These synthetic surfaces have been widely applied on different types of substrates for potential widespread, practical applications. This review article focuses on these advances in fabricating manmade superhydrophobic surfaces.

  17. Scale effect on dropwise condensation on superhydrophobic surfaces.

    Science.gov (United States)

    Lo, Ching-Wen; Wang, Chi-Chuan; Lu, Ming-Chang

    2014-08-27

    Micro/nano (two-tier) structures are often employed to achieve superhydrophobicity. In condensation, utilizing such a surface is not necessarily advantageous because the macroscopically observed Cassie droplets are usually in fact partial Wenzel in condensation. The increase in contact angle through introducing microstructures on such two-tier roughened surfaces may result in an increase in droplet departure diameter and consequently deteriorate the performance. In the meantime, nanostructure roughened surfaces could potentially yield efficient shedding of liquid droplets, whereas microstructures roughened surfaces often lead to highly pinned Wenzel droplets. To attain efficient shedding of liquid droplets in condensation on a superhydrophobic surface, a Bond number (a dimensionless number for appraising dropwise condensation) and a solid-liquid fraction smaller than 0.1 and 0.3, respectively, are suggested.

  18. Simple nanofabrication of a superhydrophobic and transparent biomimetic surface

    Institute of Scientific and Technical Information of China (English)

    LIM Hyuneui; JUNG Dae-Hwan; NOH Jung-Hyun; CHOI Gyeong-Rin; KIM Wan-Doo

    2009-01-01

    This paper describes a simple fabrication method for creating superhydrophobic and transparent glass surfaces that mimic natural surfaces such as lotus leaves, moth eyes or cicada wings. Nanostructured glass surfaces were created by a combination of colloidal lithography and plasma etching. A colloidal mask was formed simply by the spin coating of the polystyrene beads and with modification of the interparticle distance between the beads. The etching of the glasses was conducted by CF_4 plasma. Tower-shaped nanostructures at an aspect ratio of 1:4 were treated using fluoroalkylsilane self-assembled monolayers (SAMs) to obtain the hydrophobic surfaces. The treated glass surfaces showed superhydrophobicity with a water contact angle of around 150° and a hexadecane contact angle of around 110°. Furthermore, the nanostructured glass was transparent to visible light.

  19. Microcavity-array superhydrophobic surfaces: Limits of the model

    Science.gov (United States)

    Salvadori, M. C.; Oliveira, M. R. S.; Spirin, R.; Teixeira, F. S.; Cattani, M.; Brown, I. G.

    2013-11-01

    Superhydrophobic surfaces formed of microcavities can be designed with specific desired advancing and receding contact angles using a new model described by us in prior work. Here, we discuss the limits of validity of the model, and explore the application of the model to surfaces fabricated with small cavities of radius 250 nm and with large cavities of radius 40 μm. The Wenzel model is discussed and used to calculate the advancing and receding contact angles for samples for which our model cannot be applied. We also consider the case of immersion of a sample containing microcavities in pressurized water. A consideration that then arises is that the air inside the cavities can be dissolved in the water, leading to complete water invasion into the cavities and compromising the superhydrophobic character of the surface. Here, we show that this effect does not destroy the surface hydrophobia when the surface is subsequently removed from the water.

  20. Mechanically Robust Superhydrophobic Surfaces for Turbulent Drag Reduction

    Science.gov (United States)

    Golovin, Kevin; Boban, Mathew; Xia, Charlotte; Tuteja, Anish

    2014-11-01

    Superhydrophobic surfaces (SHS) resist wetting by keeping a thin air layer within their texture. Such surfaces have been shown to reduce skin friction during laminar and transitional flows. However, turbulent boundary layer flows exhibit high shear stresses that damage the fragile microstructure of most SHS, and it is yet unclear to what extent these surfaces can reduce drag. Moreover, the increasing pressure fluctuations and decreasing wall unit length experienced during turbulent flow makes designing mechanically robust SHS with the correct roughness scales a challenge. In this work we evaluate many different SHS in terms of their hydrophobicity, mechanical durability and roughness. Whereas even commercially available SHS lose their superhydrophobic properties after slight mechanical abrasion, our novel coatings survive up to 200x longer. Moreover, we evaluate how the roughness of such surfaces changes with mechanical abrasion, and we design SHS with the correct roughness to display optimal drag reduction in turbulent boundary layer flows. Funding from ONR.

  1. Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces.

    Science.gov (United States)

    Kusumaatmaja, H; Yeomans, J M

    2007-05-22

    We investigate contact angle hysteresis on chemically patterned and superhydrophobic surfaces, as the drop volume is quasistatically increased and decreased. We consider both two (cylindrical drops) and three (spherical drops) dimensions using analytical and numerical approaches to minimize the free energy of the drop. In two dimensions, we find, in agreement with other authors, a slip, jump, stick motion of the contact line. In three dimensions, this behavior persists, but the position and magnitude of the contact line jumps are sensitive to the details of the surface patterning. In two dimensions, we identify analytically the advancing and receding contact angles on the different surfaces, and we use numerical insights to argue that these provide bounds for the three-dimensional cases. We present explicit simulations to show that a simple average over the disorder is not sufficient to predict the details of the contact angle hysteresis and to support an explanation for the low contact angle hysteresis of suspended drops on superhydrophobic surfaces.

  2. Bouncing dynamics of impact droplets on the convex superhydrophobic surfaces

    Science.gov (United States)

    Shen, Yizhou; Liu, Senyun; Zhu, Chunling; Tao, Jie; Chen, Zhong; Tao, Haijun; Pan, Lei; Wang, Guanyu; Wang, Tao

    2017-05-01

    Bouncing dynamics of impact droplets on solid surfaces intensively appeal to researchers due to the importance in many industrial fields. Here, we found that droplets impacting onto dome convex superhydrophobic surfaces could rapidly bounce off with a 28.5% reduction in the contact time, compared with that on flat superhydrophobic surfaces. This is mainly determined by the retracting process of impact droplets. Under the action of dome convexity, the impact droplet gradually evolves into an annulus shape with a special hydrodynamic distribution. As a consequence, both the inner and external rims of the annulus shape droplet possess a higher retracting velocity under the actions of the inertia force and the surface energy change, respectively. Also, the numerical simulation provides a quantitative evidence to further verify the interpretation on the regimes behind the rapidly detached phenomenon of impact droplets.

  3. Dynamic Melting of Freezing Droplets on Ultraslippery Superhydrophobic Surfaces.

    Science.gov (United States)

    Chu, Fuqiang; Wu, Xiaomin; Wang, Lingli

    2017-03-08

    Condensed droplet freezing and freezing droplet melting phenomena on the prepared ultraslippery superhydrophobic surface were observed and discussed in this study. Although the freezing delay performance of the surface is common, the melting of the freezing droplets on the surface is quite interesting. Three self-propelled movements of the melting droplets (ice- water mixture) were found including the droplet rotating, the droplet jumping, and the droplet sliding. The melting droplet rotating, which means that the melting droplet rotates spontaneously on the superhydrophobic surface like a spinning top, is first reported in this study and may have some potential applications in various engineering fields. The melting droplet jumping and sliding are similar to those occurring during condensation but have larger size scale and motion scale, as the melting droplets have extra-large specific surface area with much more surface energy available. These self-propelled movements make all the melting droplets on the superhydrophobic surface dynamic, easily removed, which may be promising for the anti-icing/frosting applications.

  4. Full-field dynamic characterization of superhydrophobic condensation on biotemplated nanostructured surfaces.

    Science.gov (United States)

    Ölçeroğlu, Emre; Hsieh, Chia-Yun; Rahman, Md Mahamudur; Lau, Kenneth K S; McCarthy, Matthew

    2014-07-01

    While superhydrophobic nanostructured surfaces have been shown to promote condensation heat transfer, the successful implementation of these coatings relies on the development of scalable manufacturing strategies as well as continued research into the fundamental physical mechanisms of enhancement. This work demonstrates the fabrication and characterization of superhydrophobic coatings using a simple scalable nanofabrication technique based on self-assembly of the Tobacco mosaic virus (TMV) combined with initiated chemical vapor deposition. TMV biotemplating is compatible with a wide range of surface materials and applicable over large areas and complex geometries without the use of any power or heat. The virus-structured coatings fabricated here are macroscopically superhydrophobic (contact angle >170°) and have been characterized using environmental electron scanning microscopy showing sustained and robust coalescence-induced ejection of condensate droplets. Additionally, full-field dynamic characterization of these surfaces during condensation in the presence of noncondensable gases is reported. This technique uses optical microscopy combined with image processing algorithms to track the wetting and growth dynamics of 100s to 1000s of microscale condensate droplets simultaneously. Using this approach, over 3 million independent measurements of droplet size have been used to characterize global heat transfer performance as a function of nucleation site density, coalescence length, and the apparent wetted surface area during dynamic loading. Additionally, the history and behavior of individual nucleation sites, including coalescence events, has been characterized. This work elucidates the nature of superhydrophobic condensation and its enhancement, including the role of nucleation site density during transient operation.

  5. Super-hydrophobic characteristics of butterfly wing surface

    Institute of Scientific and Technical Information of China (English)

    CONG Qian; CHEN Guang-hua; FANG Yan; REN Lu-quan

    2004-01-01

    Many biological surface are hydrophobic because of their complicated composition and surface microstructure. Eleven species (four families) of butterflies were selected to study their micro-, nano-structure and super-hydrophobic characteristic by means of Confocal Light Microscopy, Scanning Electron Microscopy and Contact Angle Measurement. The contact angles of water droplets on the butterfly wing surface were consistently measured to be about 150° and 100° with and without the squamas, respectively. The dust on the surface can be easily cleaned by moving spherical droplets when the inclining angle is larger than 3°. It can be concluded that the butterfly wing surface possess a super-hydrophobic, water-repellent,self-cleaning, or "Lotus-effect" characteristic. The contact angle measurement of water droplets on the wing surface with and without the squamas showed that the water-repellent characteristic is a consequence of the microstructure of the squamas.Each water droplet (diameter 2 mm) can cover about 700 squamas with a size of 40 μm×80 μm of each squama. The regular riblets with a width of 1000 nm to 1500 nm are clearly observed on each single squama. Such nanostructure should play a very important role in their super-hydrophobic and self-cleaning characteristic.

  6. Drop impact and wettability: From hydrophilic to superhydrophobic surfaces

    Science.gov (United States)

    Antonini, Carlo; Amirfazli, Alidad; Marengo, Marco

    2012-10-01

    Experiments to understand the effect of surface wettability on impact characteristics of water drops onto solid dry surfaces were conducted. Various surfaces were used to cover a wide range of contact angles (advancing contact angle from 48° to 166°, and contact angle hysteresis from 5° to 56°). Several different impact conditions were analyzed (12 impact velocities on 9 different surfaces, among which 2 were superhydrophobic). Results from impact tests with millimetric drops show that two different regimes can be identified: a moderate Weber number regime (30 200), in which wettability effect is secondary, because capillary forces are overcome by inertial effects. In particular, results show the role of advancing contact angle and contact angle hysteresis as fundamental wetting parameters to allow understanding of different phases of drop spreading and beginning of recoiling. It is also shown that drop spreading on hydrophilic and superhydrophobic surfaces occurs with different time scales. Finally, if the surface is superhydrophobic, eventual impalement, i.e., transition from Cassie to Wenzel wetting state, which might occur in the vicinity of the drop impact area, does not influence drop maximum spreading.

  7. Bioinspired superhydrophobic, self-cleaning and low drag surfaces

    Science.gov (United States)

    Bhushan, Bharat

    2013-09-01

    Nature has evolved objects with desired functionality using commonly found materials. Nature capitalizes on hierarchical structures to achieve functionality. The understanding of the functions provided by objects and processes found in nature can guide us to produce nanomaterials, nanodevices, and processes with desirable functionality. This article provides an overview of four topics: (1) Lotus Effect used to develop superhydrophobic and self-cleaning/antifouling surfaces with low adhesion, (2) Shark Skin Effect to develop surfaces with low fluid drag and anti-fouling characteristics, and (3-4) Rice Leaf and Butterfly Wing Effect to develop superhydrophobic and self-cleaning surfaces with low drag. Rice Leaf and Butterfly Wings combine the Shark Skin and Lotus Effects.

  8. Droplet detachment by air flow for microstructured superhydrophobic surfaces.

    Science.gov (United States)

    Hao, Pengfei; Lv, Cunjing; Yao, Zhaohui

    2013-04-30

    Quantitative correlation between critical air velocity and roughness of microstructured surface has still not been established systematically until the present; the dynamics of water droplet detachment by air flow from micropillar-like superhydrophobic surfaces is investigated by combining experiments and simulation comparisons. Experimental evidence demonstrates that the onset of water droplet detachment from horizontal micropillar-like superhydrophobic surfaces under air flow always starts with detachment of the rear contact lines of the droplets from the pillar tops, which exhibits a similar dynamic mechanism for water droplet motion under a gravity field. On the basis of theoretical analysis and numerical simulation, an explicit analytical model is proposed for investigating the detaching mechanism, in which the critical air velocity can be fully determined by several intrinsic parameters: water-solid interface area fraction, droplet volume, and Young's contact angle. This model gives predictions of the critical detachment velocity of air flow that agree well with the experimental measurements.

  9. Super-Hydrophobic Surface Prepared by Lanthanide Oxide Ceramic Deposition Through PS-PVD Process

    Science.gov (United States)

    Li, Jie; Li, Cheng-Xin; Chen, Qing-Yu; Gao, Jiu-Tao; Wang, Jun; Yang, Guan-Jun; Li, Chang-Jiu

    2017-02-01

    Super-hydrophobic surface has received widespread attention in recent years. Both the surface morphology and chemical composition have significant impact on hydrophobic performance. A novel super-hydrophobic surface based on plasma spray-vapor deposition was introduced in the present paper. Samaria-doped ceria, which has been proved as an intrinsic hydrophobic material, was used as feedstock material. Additionally, in order to investigate the influence of surface free energy on the hydrophobicity, chemical modification by low surface free energy materials including stearic acid and 1,1,2,2-tetrahydroperfluorodecyltrimethoxysilane (FAS) was used on coating surface. Scanning electron microscopy and Fourier transform infrared spectroscopy were employed to characterize the coating surface. The results show that the obtained surface has a hierarchical structure composed by island-like structures agglomerated with angular-like sub-micrometer-sized particles. Moreover, with the surface free energy decreases, the hydrophobic property of the surface improves gradually. The water contact angle of the as-sprayed coating surface increases from 110° to 148° after modification by stearic acid and up to 154° by FAS. Furthermore, the resultant surface with super-hydrophobicity exhibits an excellent stability.

  10. Studies of drag on the nanocomposite superhydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Brassard, Jean-Denis [Anti-icing Materials International Laboratory (AMIL), Université du Québec à Chicoutimi, 555 Boulevard de l‘Université, Chicoutimi, Québec, Canada G7H 2B1 (Canada); Centre Universitaire de Recherche sur l’Aluminium (CURAL), Université du Québec à Chicoutimi, 555 Boulevard de l‘Université, Chicoutimi, Québec, Canada G7H 2B1 (Canada); Sarkar, D.K., E-mail: dsarkar@uqac.ca [Centre Universitaire de Recherche sur l’Aluminium (CURAL), Université du Québec à Chicoutimi, 555 Boulevard de l‘Université, Chicoutimi, Québec, Canada G7H 2B1 (Canada); Perron, Jean [Anti-icing Materials International Laboratory (AMIL), Université du Québec à Chicoutimi, 555 Boulevard de l‘Université, Chicoutimi, Québec, Canada G7H 2B1 (Canada)

    2015-01-01

    Graphical abstract: - Highlights: • The nanocomposite thin films of stearic acid (SA)-functionalized ZnO nanoparticles incorporated in epoxy polymer matrix have been achieved. • SA-functionalization of ZnO nanoparticles in the thin films was confirmed by XRD and FTIR. • The measured rms roughness of the thin film is found to be 12 ± 1 μm with the adhesion of 5B on glass. • The wetting property shows that the surface of the film is superhydrophobic with the CA of 156 ± 4° and CAH of 4 ± 2°. • The drag reduction on the surface of superhydrophobic glass sphere is 16% lower than as-received glass sphere. - Abstract: The nanocomposite thin films of stearic acid (SA)-functionalized ZnO nanoparticles incorporated in epoxy polymer matrix have been achieved. The X-ray diffraction (XRD) studies show the formation of zinc stearate on ZnO nanoparticles as the confirmation of SA-functionalization of ZnO nanoparticles in the thin films. Morphological analyses reveal the presence of micro-holes with the presence of irregular nanoparticles. The measured root mean square (rms) roughness of the thin film is found to be 12 ± 1 μm with the adhesion of 5B on both glass and aluminum substrates. The wetting property shows that the surface of the film is superhydrophobic with the contact angle of water of 156 ± 4° having contact angle hysteresis (CAH) of 4 ± 2°. The average terminal velocity in the water of the as-received glass spheres and superhydrophobic spheres were found to be 0.66 ± 0.01 m/s and 0.72 ± 0.01 m/s respectively. Consequently, the calculated average coefficients of the surface drag of the as-received glass sphere and superhydrophobic glass sphere were 2.30 ± 0.01 and 1.93 ± 0.03, respectively. Hence, the drag reduction on the surface of superhydrophobic glass sphere is found to be approximately 16% lower than as-received glass sphere.

  11. Shrink-induced superhydrophobic and antibacterial surfaces in consumer plastics.

    Directory of Open Access Journals (Sweden)

    Lauren R Freschauf

    Full Text Available Structurally modified superhydrophobic surfaces have become particularly desirable as stable antibacterial surfaces. Because their self-cleaning and water resistant properties prohibit bacteria growth, structurally modified superhydrophobic surfaces obviate bacterial resistance common with chemical agents, and therefore a robust and stable means to prevent bacteria growth is possible. In this study, we present a rapid fabrication method for creating such superhydrophobic surfaces in consumer hard plastic materials with resulting antibacterial effects. To replace complex fabrication materials and techniques, the initial mold is made with commodity shrink-wrap film and is compatible with large plastic roll-to-roll manufacturing and scale-up techniques. This method involves a purely structural modification free of chemical additives leading to its inherent consistency over time and successive recasting from the same molds. Finally, antibacterial properties are demonstrated in polystyrene (PS, polycarbonate (PC, and polyethylene (PE by demonstrating the prevention of gram-negative Escherichia coli (E. coli bacteria growth on our structured plastic surfaces.

  12. Shrink-Induced Superhydrophobic and Antibacterial Surfaces in Consumer Plastics

    Science.gov (United States)

    Freschauf, Lauren R.; McLane, Jolie; Sharma, Himanshu; Khine, Michelle

    2012-01-01

    Structurally modified superhydrophobic surfaces have become particularly desirable as stable antibacterial surfaces. Because their self-cleaning and water resistant properties prohibit bacteria growth, structurally modified superhydrophobic surfaces obviate bacterial resistance common with chemical agents, and therefore a robust and stable means to prevent bacteria growth is possible. In this study, we present a rapid fabrication method for creating such superhydrophobic surfaces in consumer hard plastic materials with resulting antibacterial effects. To replace complex fabrication materials and techniques, the initial mold is made with commodity shrink-wrap film and is compatible with large plastic roll-to-roll manufacturing and scale-up techniques. This method involves a purely structural modification free of chemical additives leading to its inherent consistency over time and successive recasting from the same molds. Finally, antibacterial properties are demonstrated in polystyrene (PS), polycarbonate (PC), and polyethylene (PE) by demonstrating the prevention of gram-negative Escherichia coli (E. coli) bacteria growth on our structured plastic surfaces. PMID:22916100

  13. PARTICLE DEPOSITION ON SUPERHYDROPHOBIC SURFACES BY SESSILE DROPLET EVAPORATION

    OpenAIRE

    Dicuangco, Mercy G.

    2014-01-01

    Prediction and active control of the spatial distribution of particulate deposits obtained from sessile droplet evaporation is essential in ink-jet printing, nanostructure assembly, biotechnology, and other applications that require localized deposits. In recent years, sessile droplet evaporation on bio-inspired superhydrophobic surfaces has become an attractive method for depositing materials on a site-specific, localized region, but is less explored compared to evaporative deposition on hyd...

  14. Bubble dynamics and heat transfer for pool boiling on hydrophilic, superhydrophobic and biphilic surfaces

    Science.gov (United States)

    Teodori, E.; Palma, T.; Valente, T.; Moita, A. S.; Moreira, A. L. N.

    2016-09-01

    This paper proposes a detailed analysis of bubble dynamics to describe pool boiling heat transfer in extreme wetting scenarios (superhydrophobic vs hydrophilic). A mechanistic approach, based on extensive post-processing allows quantifying the relative advantage of the superhydrophobic surfaces to endorse the onset of boiling at very low superheats (1-2K) vs their worse heat transfer performance associated to the swift formation of an insulating vapour film. Based on this analysis, a simple biphilic surface is created. The results suggest that for high heat fluxes, bubble dynamics is dominated by the emission of very small bubbles, which seems to affect the interaction mechanisms, precluding the emission of the large bubbles from the surface, thus compromising the good performance of the biphilic surfaces.

  15. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.

    Science.gov (United States)

    Miljkovic, Nenad; Preston, Daniel J; Enright, Ryan; Wang, Evelyn N

    2013-12-23

    When condensed droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump due to the conversion of excess surface energy into kinetic energy. This phenomenon has been shown to enhance condensation heat transfer by up to 30% compared to state-of-the-art dropwise condensing surfaces. However, after the droplets jump away from the surface, the existence of the vapor flow toward the condensing surface increases the drag on the jumping droplets, which can lead to complete droplet reversal and return to the surface. This effect limits the possible heat transfer enhancement because larger droplets form upon droplet return to the surface, which impedes heat transfer until they can be either removed by jumping again or finally shedding via gravity. By characterizing individual droplet trajectories during condensation on superhydrophobic nanostructured copper oxide (CuO) surfaces, we show that this vapor flow entrainment dominates droplet motion for droplets smaller than R ≈ 30 μm at moderate heat fluxes (q″ > 2 W/cm(2)). Subsequently, we demonstrate electric-field-enhanced condensation, whereby an externally applied electric field prevents jumping droplet return. This concept leverages our recent insight that these droplets gain a net positive charge due to charge separation of the electric double layer at the hydrophobic coating. As a result, with scalable superhydrophobic CuO surfaces, we experimentally demonstrated a 50% higher overall condensation heat transfer coefficient compared to that on a jumping-droplet surface with no applied field for low supersaturations (condensation heat transfer enhancement but also offers avenues for improving the performance of self-cleaning and anti-icing surfaces as well as thermal diodes.

  16. Superhydrophobic, Biomimetic Surfaces with High and Low Adhesion, Optical Transmittance, and Nanoscale Mechanical Wear Resistance

    Science.gov (United States)

    Ebert, Daniel R.

    Superhydrophobic surfaces (defined as surfaces having water contact angle greater than 150°) show great promise for use in a rapidly growing number of engineering applications, ranging from biomedical devices to fluid drag reduction in pipelines. In nature, the surfaces of many organisms, such as certain plant leaves, are known to exhibit superhydrophobicity. In some cases, droplet adhesion is very low (droplet rolls away easily), while in other cases adhesion is high (droplet remains adhered when surface is inverted). The recent advent and development of microscopes with resolution down to a few nanometers (such as atomic force microscopes and scanning electron microscopes) has allowed for in-depth understanding of the micro- and nanoscale mechanisms employed by these plant leaves and other natural surfaces to achieve their particular wetting properties. Biomimetics (or "mimicking nature") is therefore a very promising approach for the development of engineering surfaces with desired wetting characteristics. However, research in creating biomimetic surfaces is still in its early stages, and many of the surfaces created thus far are not mechanically robust, which is required for many potential real-world applications. In addition, for applications such as self-cleaning windows and solar panels, optical transparency is required. In this thesis, a set of original studies are presented in which superhydrophobic surfaces were designed based on biomimetics and fabricated using a wide of variety of techniques. The surfaces were characterized with regard to wetting characteristics such as water contact angle and contact angle hysteresis, micro- and nanoscale mechanical durability, and in some cases optical transmittance. Theoretical wetting models served as guides both in the design and in the understanding of experimental results, especially in regard to different wetting regime and regime transition. This work provides important conclusions and valuable insight for

  17. Hot embossing of PTFE: Towards superhydrophobic surfaces

    Science.gov (United States)

    Jucius, D.; Grigaliūnas, V.; Mikolajūnas, M.; Guobienė, A.; Kopustinskas, V.; Gudonytė, A.; Narmontas, P.

    2011-01-01

    Three types of reusable stamps with features in the form of 2D arrays of pits having lateral dimensions in the range of 2-80 μm and heights of 1.5-15 μm were successfully employed for the hot embossing of PTFE at temperatures up to 50 °C above the glass transition temperature of PTFE amorphous phase. Due to the softening of PTFE at the temperatures used in this study, we were able to decrease imprint pressure significantly when comparing with the imprint conditions reported by other authors. Impact of the imprint temperature, pressure and time on the fidelity of pattern transfer as well as on water repellency was tested. The best results of embossing were achieved by applying pressure of 10 kg/cm 2 for 2 min at 170 °C. In this case, flattening of a natural PTFE roughness and pretty accurate deep replicas of the stamp patterns were observable on the whole imprinted area. Improvement in water repellency was largest for the samples imprinted by Ni stamp patterned with a 2D array of 2 μm square pits spaced by the same dimension and having a depth of 1.5 μm. Cassie-Baxter wetting regime was observed for the deepest imprints with water contact angles up to the superhydrophobic limit.

  18. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces.

    Science.gov (United States)

    Vakarelski, Ivan U; Patankar, Neelesh A; Marston, Jeremy O; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2012-09-13

    In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling--by heat transfer--the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating.

  19. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev

    2012-09-12

    In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling-by heat transfer-the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating. © 2012 Macmillan Publishers Limited. All rights reserved.

  20. Modeling of Droplet Evaporation on Superhydrophobic Surfaces.

    Science.gov (United States)

    Fernandes, Heitor C M; Vainstein, Mendeli H; Brito, Carolina

    2015-07-14

    When a drop of water is placed on a rough surface, there are two possible extreme regimes of wetting: the one called Cassie-Baxter (CB) with air pockets trapped underneath the droplet and the one called the Wenzel (W) state characterized by the homogeneous wetting of the surface. A way to investigate the transition between these two states is by means of evaporation experiments, in which the droplet starts in a CB state and, as its volume decreases, penetrates the surface's grooves, reaching a W state. Here we present a theoretical model based on the global interfacial energies for CB and W states that allows us to predict the thermodynamic wetting state of the droplet for a given volume and surface texture. We first analyze the influence of the surface geometric parameters on the droplet's final wetting state with constant volume and show that it depends strongly on the surface texture. We then vary the volume of the droplet, keeping the geometric surface parameters fixed to mimic evaporation and show that the drop experiences a transition from the CB to the W state when its volume reduces, as observed in experiments. To investigate the dependency of the wetting state on the initial state of the droplet, we implement a cellular Potts model in three dimensions. Simulations show very good agreement with theory when the initial state is W, but it disagrees when the droplet is initialized in a CB state, in accordance with previous observations which show that the CB state is metastable in many cases. Both simulations and the theoretical model can be modified to study other types of surfaces.

  1. Biomimetic superhydrophobic polyolefin surfaces fabricated with a facile scraping, bonding and peeling method

    NARCIS (Netherlands)

    Feng, Huanhuan; Zheng, Tingting; Wang, Huiliang

    2016-01-01

    Inspired by the superhydrophobicity of juicy peach surface, on which microscale hairs are standing vertically to the surface plane, an extremely simple, inexpensive physical method is developed for fabrication of superhydrophobic polyolefin surfaces over large areas. This method includes three st

  2. Biomimetic superhydrophobic polyolefin surfaces fabricated with a facile scraping, bonding and peeling method

    NARCIS (Netherlands)

    Feng, Huanhuan; Zheng, Tingting; Wang, Huiliang

    2016-01-01

    Inspired by the superhydrophobicity of juicy peach surface, on which microscale hairs are standing vertically to the surface plane, an extremely simple, inexpensive physical method is developed for fabrication of superhydrophobic polyolefin surfaces over large areas. This method includes three st

  3. Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces

    Science.gov (United States)

    Boreyko, Jonathan B.; Chen, Chuan-Hua

    2009-10-01

    In conventional dropwise condensation on a hydrophobic surface, the condensate drops must be removed by external forces for continuous operation. This Letter reports continuous dropwise condensation spontaneously occurring on a superhydrophobic surface without any external forces. The spontaneous drop removal results from the surface energy released upon drop coalescence, which leads to a surprising out-of-plane jumping motion of the coalesced drops at a speed as high as 1m/s. The jumping follows an inertial-capillary scaling and gives rise to a micrometric average diameter at steady state.

  4. Evaporation of Droplets on Superhydrophobic Surfaces: Surface Roughness and Small Droplet Size Effects

    Science.gov (United States)

    Chen, Xuemei; Ma, Ruiyuan; Li, Jintao; Hao, Chonglei; Guo, Wei; Luk, B. L.; Li, Shuai Cheng; Yao, Shuhuai; Wang, Zuankai

    2012-09-01

    Evaporation of a sessile droplet is a complex, nonequilibrium phenomenon. Although evaporating droplets upon superhydrophobic surfaces have been known to exhibit distinctive evaporation modes such as a constant contact line (CCL), a constant contact angle (CCA), or both, our fundamental understanding of the effects of surface roughness on the wetting transition remains elusive. We show that the onset time for the CCL-CCA transition and the critical base size at the Cassie-Wenzel transition exhibit remarkable dependence on the surface roughness. Through global interfacial energy analysis we reveal that, when the size of the evaporating droplet becomes comparable to the surface roughness, the line tension at the triple line becomes important in the prediction of the critical base size. Last, we show that both the CCL evaporation mode and the Cassie-Wenzel transition can be effectively inhibited by engineering a surface with hierarchical roughness.

  5. Evaporation of particle-laden droplets on a superhydrophobic surface

    Science.gov (United States)

    Bigdeli, Masoud; Tsai, Peichun Amy

    2016-11-01

    We experimentally investigated the evaporation dynamics of water droplets suspended with minute particles of varying concentrations on a superhydrophobic surface. The contact angle, diameter, and height of the droplets decreased during the evaporation process. For pure water, the droplet went through a wetting transition from a partial wetting (Cassie-Baxter), with a large contact angle (>140°), to completely wetting (Wenzel) state, with a small contact angle. Unlike pure water, the nanofluid droplets maintain high contact angles (>100°) during evaporation. We found that the contact line was pinned, and an increase (10 %) in the weight fraction of nanoparticles led to a remarkable 40 % decrease in the total drying time. The nanofluid droplets left donut-shaped drying patterns. In these final drying structures, a shrinkage of the droplet height and base diameter was observed for nanofluids with lower concentrations. The results show that droplet evaporation rate and deposit pattern depend on the concentration of nanoparticles, implying the crucial influences of water evaporation and particle migration dynamics and time-scales.

  6. Ice repellency behaviour of superhydrophobic surfaces: Effects of atmospheric icing conditions and surface roughness

    Energy Technology Data Exchange (ETDEWEB)

    Momen, G., E-mail: gmomen@uqac.ca; Jafari, R.; Farzaneh, M.

    2015-09-15

    Highlights: • A novel view on ice repellency of superhydrophobic surfaces in terms of contact angle hysteresis, roughness and icing condition has been discussed. • This study is the first to deal with the effect of icing parameters on the ice repellency behaviour of superhydrophobic surfaces. • Two fabricated superhydrophobic surfaces with similar wettability behaviour showed different icephobic behaviour. • Superhydrophobic surfaces are not always icephobic and ice repellency is governed by icing condition parameters like liquid water content and water droplet size. • Lower liquid water content and smaller water droplet size promote ice-repellency behaviour of superhydrophobic surfaces. - Abstract: This paper presents a novel view on ice repellency of superhydrophobic surfaces in terms of contact angle hysteresis, surface roughness and icing condition. Ice repellency performance of two superhydrophobic silicone rubber nanocomposite surfaces prepared via spin coating and spray coating methods were investigated. High contact angle (>150°), low contact angle hysteresis (<6°) and roll-off property were found for both spin and spray coated samples. The results showed a significant reduction of ice adhesion strength on the spin-coated sample while ice adhesion strength on the spray-coated sample was found to be unexpectedly similar to that of the uncoated sample. Indeed, this research study showed that the icephobic properties of a surface are not directly correlated to its superhydrphobicity and that further investigations, like taking icing condition effect into account, are required. It was found that icephobic behaviour of the spray coated sample improved at lower levels of liquid water content (LWC) and under icing conditions characterized by smaller water droplet size.

  7. Surfaces with combined microscale and nanoscale structures: a route to mechanically stable superhydrophobic surfaces?

    Science.gov (United States)

    Groten, Jonas; Rühe, Jürgen

    2013-03-19

    Materials with superhydrophobic properties are usually generated by covering the surfaces with hydrophobic nanoscale rough features. A major problem, however, for any practical application of such strongly water-repellent surfaces is the mechanical fragility of the nanostructures. Even moderate forces caused by touching or rubbing the surfaces are frequently strong enough to destroy the nanostructures and lead to the loss of the superhydrophobic properties. In this article, we study the mechanical stability of superhydrophobic surfaces with three different topographies: nano- and microscale features and surfaces carrying a combination of both. The surfaces are generated by silicon etching and subsequent coating with a monolayer of a fluoropolymer (PFA). We perform controlled wear tests on the different surfaces and discuss the impact of wear on the wetting properties of the different surfaces.

  8. A novel and expeditious method to fabricate superhydrophobic metal carboxylate surface

    Science.gov (United States)

    Li, Feng; Geng, Xingguo; Chen, Zhi; Zhao, Lei

    2012-01-01

    This article has presented a novel method to fabricate superhydrophobic metal carboxylate surface on substrates like copper, ferrum, etc. This method markedly shortened the fabrication time to less than one second. The superhydrophobic effect is even better that the contact angle (CA) is 170±1° and the sliding angle (SA) fatty acid and metal salt plays a key role in this method. This method has tremendous potentials in industrial production of superhydrophobic materials.

  9. Robust and thermal-healing superhydrophobic surfaces by spin-coating of polydimethylsiloxane.

    Science.gov (United States)

    Long, Mengying; Peng, Shan; Deng, Wanshun; Yang, Xiaojun; Miao, Kai; Wen, Ni; Miao, Xinrui; Deng, Wenli

    2017-12-15

    Superhydrophobic surfaces easily lose their excellent water-repellency after damages, which limit their broad applications in practice. Thus, the fabrication of superhydrophobic surfaces with excellent durability and thermal healing should be taken into consideration. In this work, robust superhydrophobic surfaces with thermal healing were successfully fabricated by spin-coating method. To achieve superhydrophobicity, cost-less and fluoride-free polydimethylsiloxane (PDMS) was spin-coated on rough aluminum substrates. After being spin-coated for one cycle, the superhydrophobic PDMS coated hierarchical aluminum (PDMS-H-Al) surfaces showed excellent tolerance to various chemical and mechanical damages in lab, and outdoor damages for 90days. When the PDMS-H-Al surfaces underwent severe damages such as oil contamination (peanut oil with high boiling point) or sandpaper abrasion (500g of force for 60cm), their superhydrophobicity would lose. Interestingly, through a heating process, cyclic oligomers generating from the partially decomposed PDMS acted as low-surface-energy substance on the damaged rough surfaces, leading to the recovery of superhydrophobicity. The relationship between the spin-coating cycles and surface wettability was also investigated. This paper provides a facile, fluoride-free and efficient method to fabricate superhydrophobic surfaces with thermal healing. Copyright © 2017. Published by Elsevier Inc.

  10. Pendant bubble method for an accurate characterization of superhydrophobic surfaces.

    Science.gov (United States)

    Ling, William Yeong Liang; Ng, Tuck Wah; Neild, Adrian

    2011-12-06

    The commonly used sessile drop method for measuring contact angles and surface tension suffers from errors on superhydrophobic surfaces. This occurs from unavoidable experimental error in determining the vertical location of the liquid-solid-vapor interface due to a camera's finite pixel resolution, thereby necessitating the development and application of subpixel algorithms. We demonstrate here the advantage of a pendant bubble in decreasing the resulting error prior to the application of additional algorithms. For sessile drops to attain an equivalent accuracy, the pixel count would have to be increased by 2 orders of magnitude.

  11. Hierarchically structured superhydrophobic coatings fabricated by successive Langmuir-Blodgett deposition of micro-/nano-sized particles and surface silanization.

    Science.gov (United States)

    Tsai, Ping-Szu; Yang, Yu-Min; Lee, Yuh-Lang

    2007-11-21

    The present study demonstrates the creation of a stable, superhydrophobic surface by coupling of successive Langmuir-Blodgett (LB) depositions of micro- and nano-sized (1.5 µm/50 nm, 1.0 µm/50 nm, and 0.5 µm/50 nm) silica particles on a glass substrate with the formation of a self-assembled monolayer of dodecyltrichlorosilane on the surface of the particulate film. Particulate films, in which one layer of 50 nm particles was deposited over one to five sublayers of larger micro-sized particles, with hierarchical surface roughness and superhydrophobicity, were successfully fabricated. Furthermore, the present 'two-scale' (micro- and nano-sized particles) approach is superior to the previous 'one-scale' (micro-sized particles) approach in that both higher advancing contact angle and lower contact angle hysteresis can be realized. Experimental results revealed that the superhydrophobicity exhibited by as-fabricated particulate films with different sublayer particle diameters increases in the order of 0.5 µm>1.0 µm>1.5 µm. However, no clear trend between sublayer number and surface superhydrophobicity could be discerned. An explanation of superhydrophobicity based on the surface roughness introduced by two-scale particles is also proposed.

  12. Hierarchically structured superhydrophobic coatings fabricated by successive Langmuir-Blodgett deposition of micro-/nano-sized particles and surface silanization

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, P-S; Yang, Y-M; Lee, Y-L [Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2007-11-21

    The present study demonstrates the creation of a stable, superhydrophobic surface by coupling of successive Langmuir-Blodgett (LB) depositions of micro- and nano-sized (1.5 {mu}m/50 nm, 1.0 {mu}m/50 nm, and 0.5 {mu}m/50 nm) silica particles on a glass substrate with the formation of a self-assembled monolayer of dodecyltrichlorosilane on the surface of the particulate film. Particulate films, in which one layer of 50 nm particles was deposited over one to five sublayers of larger micro-sized particles, with hierarchical surface roughness and superhydrophobicity, were successfully fabricated. Furthermore, the present 'two-scale' (micro- and nano-sized particles) approach is superior to the previous 'one-scale' (micro-sized particles) approach in that both higher advancing contact angle and lower contact angle hysteresis can be realized. Experimental results revealed that the superhydrophobicity exhibited by as-fabricated particulate films with different sublayer particle diameters increases in the order of 0.5 {mu}m>1.0 {mu}m>1.5 {mu}m. However, no clear trend between sublayer number and surface superhydrophobicity could be discerned. An explanation of superhydrophobicity based on the surface roughness introduced by two-scale particles is also proposed.

  13. Nano-engineering of superhydrophobic aluminum surfaces for anti-corrosion

    Science.gov (United States)

    Jeong, Chanyoung

    Metal corrosion is a serious problem, both economically and operationally, for engineering systems such as aircraft, automobiles, pipelines, and naval vessels. In such engineering systems, aluminum is one of the primary materials of construction due to its light weight compared to steel and good general corrosion resistance. However, because of aluminum's relatively lower resistance to corrosion in salt water environments, protective measures such as thick coatings, paints, or cathodic protection must be used for satisfactory service life. Unfortunately, such anti-corrosion methods can create other concerns, such as environmental contamination, protection durability, and negative impact on hydrodynamic efficiency. Recently, a novel approach to preventing metal corrosion has emerged, using superhydrophobic surfaces. Superhydrophobic surfaces create a composite interface to liquid by retaining air within the surface structures, thus minimizing the direct contact of the liquid environment to the metal surface. The result is a highly non-wetting and anti-adherent surface that can offer other benefits such as biofouling resistance and hydrodynamic low friction. Prior research with superhydrophobic surfaces for corrosion applications was based on irregular surface roughening and/or chemical coatings, which resulted in random surface features, mostly on the micrometer scale. Such microscale surface roughness with poor controllability of structural dimensions and shapes has been a critical limitation to deeper understanding of the anti-corrosive effectiveness and optimized application of this approach. The research reported here provides a novel approach to producing controlled superhydrophobic nanostructures on aluminum that allows a systematic investigation of the superhydrophobic surface parameters on the corrosion resistance and hence can provide a route to optimization of the surface. Electrochemical anodization is used to controllably modulate the oxide layer

  14. Dynamic behavior of water droplets and flashover characteristics on a superhydrophobic silicone rubber surface

    Science.gov (United States)

    Li, Yufeng; Jin, Haiyun; Nie, Shichao; Zhang, Peng; Gao, Naikui

    2017-05-01

    In this paper, a superhydrophobic surface is used to increase the flashover voltage when water droplets are present on a silicone rubber surface. The dynamic behavior of a water droplet and the associated flashover characteristics are studied on common and superhydrophobic silicone rubber surfaces under a high DC voltage. On common silicone rubber, the droplet elongates and the flashover voltage decreases with increasing droplet volume and conductivity. In contrast, the droplet slides off the superhydrophobic surface, leading to an increased flashover voltage. This droplet sliding is due to the low adhesion of the superhydrophobic surface and a sufficiently high electrostatic force provided by the DC voltage. Experimental results show that a superhydrophobic surface is effective at inhibiting flashover.

  15. Superhydrophobic Polyimide via Ultraviolet Photooxidation: The Evolution of Surface Morphology and Hydrophobicity under Different Ultraviolet Intensities

    Directory of Open Access Journals (Sweden)

    Hongyu Gu

    2015-01-01

    Full Text Available Ultraviolet (UV photooxidation has recently been developed to fabricate superhydrophobic polyimide (PI films in combination with fluoroalkylsilane modification. However, it remains unclear whether the surface morphology and hydrophobicity are sensitive to technical parameters such as UV intensity and radiation environment. Herein, we focus on the effects of UV intensity on PI surface structure and wettability to gain comprehensive understanding and more effective control of this technology. Scanning electron microscopy (SEM and atomic force microscopy (AFM results showed that UV intensity governed the evolutionary pattern of surface morphology: lower UV intensity (5 mW/cm2 facilitated in-plane expansion of dendritic protrusions while stronger UV (10 and 15 mW/cm2 encouraged localized growth of protrusions in a piling-up manner. Surface roughness and hydrophobicity maximized at the intensity of 10 mW/cm2, as a consequence of the slowed horizontal expansion and preferred vertical growth of the protrusions when UV intensity increased. Based on these results, the mechanism that surface micro/nanostructures developed in distinct ways when exposed to different UV intensities was proposed. Though superhydrophobicity (water contact angle larger than 150° can be achieved at UV intensity not less than 10 mW/cm2, higher intensity decreased the effectiveness. Therefore, the UV photooxidation under 10 mW/cm2 for 72 h is recommended to fabricate superhydrophobic PI films.

  16. Facile Fabrication and Characterization of a PDMS-Derived Candle Soot Coated Stable Biocompatible Superhydrophobic and Superhemophobic Surface.

    Science.gov (United States)

    Iqbal, R; Majhy, B; Sen, A K

    2017-09-13

    We report a simple, inexpensive, rapid, and one-step method for the fabrication of a stable and biocompatible superhydrophobic and superhemophobic surface. The proposed surface comprises candle soot particles embedded in a mixture of PDMS+n-hexane serving as the base material. The mechanism responsible for the superhydrophobic behavior of the surface is explained, and the surface is characterized based on its morphology and elemental composition, wetting properties, mechanical and chemical stability, and biocompatibility. The effect of %n-hexane in PDMS, the thickness of the PDMS+n-hexane layer (in terms of spin coating speed) and sooting time on the wetting property of the surface is studied. The proposed surface exhibits nanoscale surface asperities (average roughness of 187 nm), chemical compositions of soot particles, very high water and blood repellency along with excellent mechanical and chemical stability and excellent biocompatibility against blood sample and biological cells. The water contact angle and roll-off angle is measured as 160° ± 1° and 2°, respectively, and the blood contact angle is found to be 154° ± 1°, which indicates that the surface is superhydrophobic and superhemophobic. The proposed superhydrophobic and superhemophobic surface offers significantly improved (>40%) cell viability as compared to glass and PDMS surfaces.

  17. Geometric Interpretation of Surface Tension Equilibrium in Superhydrophobic Systems

    Directory of Open Access Journals (Sweden)

    Michael Nosonovsky

    2015-07-01

    Full Text Available Surface tension and surface energy are closely related, although not identical concepts. Surface tension is a generalized force; unlike a conventional mechanical force, it is not applied to any particular body or point. Using this notion, we suggest a simple geometric interpretation of the Young, Wenzel, Cassie, Antonoff and Girifalco–Good equations for the equilibrium during wetting. This approach extends the traditional concept of Neumann’s triangle. Substances are presented as points, while tensions are vectors connecting the points, and the equations and inequalities of wetting equilibrium obtain simple geometric meaning with the surface roughness effect interpreted as stretching of corresponding vectors; surface heterogeneity is their linear combination, and contact angle hysteresis is rotation. We discuss energy dissipation mechanisms during wetting due to contact angle hysteresis, the superhydrophobicity and the possible entropic nature of the surface tension.

  18. Designing Self-Healing Superhydrophobic Surfaces with Exceptional Mechanical Durability.

    Science.gov (United States)

    Golovin, Kevin; Boban, Mathew; Mabry, Joseph M; Tuteja, Anish

    2017-03-29

    The past decade saw a drastic increase in the understanding and applications of superhydrophobic surfaces (SHSs). Water beads up and effortlessly rolls off a SHS due to its combination of low surface energy and texture. Whether being used for drag reduction, stain repellency, self-cleaning, fog harvesting, or heat transfer applications (to name a few), the durability of a SHS is critically important. Although a handful of purportedly durable SHSs have been reported, there are still no criteria available for systematically designing a durable SHS. In the first part of this work, we discuss two new design parameters that can be used to develop mechanically durable SHSs via the spray coating of different binders and fillers. These parameters aid in the rational selection of material components and allow one to predict the capillary resistance to wetting of any SHS from a simple topographical analysis. We show that not all combinations of sprayable components generate SHSs, and mechanically durable components do not necessarily generate mechanically durable SHSs. Moreover, even the most durable SHSs can eventually become damaged. In the second part, utilizing our new parameters, we design and fabricate physically and chemically self-healing SHSs. The most promising surface is fabricated from a fluorinated polyurethane elastomer (FPU) and the extremely hydrophobic small molecule 1H,1H,2H,2H-heptadecafluorodecyl polyhedral oligomeric silsesquioxane (F-POSS). A sprayed FPU/F-POSS surface can recover its superhydrophobicity even after being abraded, scratched, burned, plasma-cleaned, flattened, sonicated, and chemically attacked.

  19. Droplet evaporation dynamics on a superhydrophobic surface with negligible hysteresis.

    Science.gov (United States)

    Dash, Susmita; Garimella, Suresh V

    2013-08-27

    We report on experiments of droplet evaporation on a structured superhydrophobic surface that displays very high contact angle (CA ∼ 160 deg), and negligible contact angle hysteresis (contact-angle mode, with contact radius shrinking for almost the entire duration of evaporation. Experiments conducted on Teflon-coated smooth surface (CA ∼ 120 deg) as a baseline also support an evaporation process that is dominated by a constant-contact-angle mode. The experimental results are compared with an isothermal diffusion model for droplet evaporation from the literature. Good agreement is observed for the Teflon-coated smooth surface between the analytical expression and experimental results in terms of the total time for evaporation, transient volume, contact angle, and contact radius. However, for the structured superhydrophobic surface, the experiments indicate that the time taken for complete evaporation of the droplet is greater than the predicted time, across all droplet volumes. This disparity is attributed primarily to the evaporative cooling at the droplet interface due to the high aspect ratio of the droplet and also the lower effective thermal conductivity of the substrate due to the presence of air gaps. This hypothesis is verified by numerically evaluating the temperature distribution along the droplet interface. We propose a generalized relation for predicting the instantaneous volume of droplets with initial CA > 90 deg, irrespective of the mode of evaporation.

  20. Superhydrophobic Surfaces Developed by Mimicking Hierarchical Surface Morphology of Lotus Leaf

    Directory of Open Access Journals (Sweden)

    Sanjay S. Latthe

    2014-04-01

    Full Text Available The lotus plant is recognized as a ‘King plant’ among all the natural water repellent plants due to its excellent non-wettability. The superhydrophobic surfaces exhibiting the famous ‘Lotus Effect’, along with extremely high water contact angle (>150° and low sliding angle (<10°, have been broadly investigated and extensively applied on variety of substrates for potential self-cleaning and anti-corrosive applications. Since 1997, especially after the exploration of the surface micro/nanostructure and chemical composition of the lotus leaves by the two German botanists Barthlott and Neinhuis, many kinds of superhydrophobic surfaces mimicking the lotus leaf-like structure have been widely reported in the literature. This review article briefly describes the different wetting properties of the natural superhydrophobic lotus leaves and also provides a comprehensive state-of-the-art discussion on the extensive research carried out in the field of artificial superhydrophobic surfaces which are developed by mimicking the lotus leaf-like dual scale micro/nanostructure. This review article could be beneficial for both novice researchers in this area as well as the scientists who are currently working on non-wettable, superhydrophobic surfaces.

  1. Superhydrophobic surfaces using selected zinc oxide microrod growth on ink-jetted patterns.

    Science.gov (United States)

    Myint, Myo Tay Zar; Kitsomboonloha, Rungrot; Baruah, Sunandan; Dutta, Joydeep

    2011-02-15

    The synthesis and properties of superhydrophobic surfaces based on binary surface topography made of zinc oxide (ZnO) microrod-decorated micropatterns are reported. ZnO is intrinsically hydrophilic but can be utilized to create hydrophobic surfaces by creating artificial roughness via microstructuring. Micron scale patterns consisting of nanocrystalline ZnO seed particles were applied to glass substrates with a modified ink-jet printer. Microrods were then grown on the patterns by a hydrothermal process without any further chemical modification. Water contact angle (WCA)(1) up to 153° was achieved. Different micro array patterned surfaces with varying response of static contact angle or sessile droplet analysis are reported.

  2. Plastron properties of a superhydrophobic surface

    OpenAIRE

    2006-01-01

    Most insects and spiders drown when submerged during flooding or tidal inundation, but some are able to survive and others can remain submerged indefinitely without harm. Many achieve this by natural adaptations to their surface morphology to trap films of air, creating plastrons which fix the water-vapor interface and provide an incompressible oxygen-carbon dioxide exchange surface. Here the authors demonstrate how the surface of an extremely water-repellent foam mimics this mechanism of und...

  3. Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant

    Science.gov (United States)

    Song, Meirong; Ju, Jie; Luo, Siqi; Han, Yuchun; Dong, Zhichao; Wang, Yilin; Gu, Zhen; Zhang, Lingjuan; Hao, Ruiran; Jiang, Lei

    2017-01-01

    Deposition of liquid droplets on solid surfaces is of great importance to many fundamental scientific principles and technological applications, such as spraying, coating, and printing. For example, during the process of pesticide spraying, more than 50% of agrochemicals are lost because of the undesired bouncing and splashing behaviors on hydrophobic or superhydrophobic leaves. We show that this kind of splashing on superhydrophobic surfaces can be greatly inhibited by adding a small amount of a vesicular surfactant, Aerosol OT. Rather than reducing splashing by increasing the viscosity via polymer additives, the vesicular surfactant confines the motion of liquid with the help of wettability transition and thus inhibits the splash. Significantly, the vesicular surfactant exhibits a distinguished ability to alter the surface wettability during the first inertial spreading stage of ~2 ms because of its dense aggregates at the air/water interface. A comprehensive model proposed by this idea could help in understanding the complex interfacial interactions at the solid/liquid/air interface. PMID:28275735

  4. Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity

    Science.gov (United States)

    Wang, Guoyong; Liu, Shuai; Wei, Sufeng; Liu, Yan; Lian, Jianshe; Jiang, Qing

    2016-02-01

    Practical application of superhydrophobic surfaces is limited by the fragility of nanoscale asperities. Combining chemical etching and anodization, microscale pits and nanoscale pores, instead of the micro and nano protrusions on traditional superhydrophobic surfaces mimicking Lutos leaves, were fabricated on commercially pure aluminum surfaces. After modified by FDTS, the surfaces were superhydrophobic and self-cleaning. The ultrahigh hardness and electrochemical stability of Al2O3 coating endowed the surface excellent mechanical durability and good corrosion resistance. Because the method is scalable, it may find practical application on body panels of automobiles and aircrafts and so on.

  5. A facile strategy for the fabrication of a bioinspired hydrophilic-superhydrophobic patterned surface for highly efficient fog-harvesting

    KAUST Repository

    Wang, Yuchao

    2015-08-10

    Fog water collection represents a meaningful effort in the places where regular water sources, including surface water and ground water, are scarce. Inspired by the amazing fog water collection capability of Stenocara beetles in the Namib Desert and based on the recent work in biomimetic water collection, this work reported a facile, easy-to-operate, and low-cost method for the fabrication of hydrophilic-superhydrophobic patterned hybrid surface toward highly efficient fog water collection. The essence of the method is incorporating a (super)hydrophobically modified metal-based gauze onto the surface of a hydrophilic polystyrene (PS) flat sheet by a simple lab oven-based thermal pressing procedure. The produced hybrid patterned surfaces consisted of PS patches sitting within the holes of the metal gauzes. The method allows for an easy control over the pattern dimension (e.g., patch size) by varying gauze mesh size and thermal pressing temperature, which is then translated to an easy optimization of the ultimate fog water collection efficiency. Given the low-cost and wide availability of both PS and metal gauze, this method has a great potential for scaling-up. The results showed that the hydrophilic-superhydrophobic patterned hybrid surfaces with a similar pattern size to Stenocara beetles’s back pattern produced significantly higher fog collection efficiency than the uniformly (super)hydrophilic or (super)hydrophobic surfaces. This work contributes to general effort in fabricating wettability patterned surfaces and to atmospheric water collection for direct portal use.

  6. Nearly Perfect Durable Superhydrophobic Surfaces Fabricated by a Simple One-Step Plasma Treatment.

    Science.gov (United States)

    Ryu, Jeongeun; Kim, Kiwoong; Park, JooYoung; Hwang, Bae Geun; Ko, YoungChul; Kim, HyunJoo; Han, JeongSu; Seo, EungRyeol; Park, YongJong; Lee, Sang Joon

    2017-05-16

    Fabrication of superhydrophobic surfaces is an area of great interest because it can be applicable to various engineering fields. A simple, safe and inexpensive fabrication process is required to fabricate applicable superhydrophobic surfaces. In this study, we developed a facile fabrication method of nearly perfect superhydrophobic surfaces through plasma treatment with argon and oxygen gases. A polytetrafluoroethylene (PTFE) sheet was selected as a substrate material. We optimized the fabrication parameters to produce superhydrophobic surfaces of superior performance using the Taguchi method. The contact angle of the pristine PTFE surface is approximately 111.0° ± 2.4°, with a sliding angle of 12.3° ± 6.4°. After the plasma treatment, nano-sized spherical tips, which looked like crown-structures, were created. This PTFE sheet exhibits the maximum contact angle of 178.9°, with a sliding angle less than 1°. As a result, this superhydrophobic surface requires a small external force to detach water droplets dripped on the surface. The contact angle of the fabricated superhydrophobic surface is almost retained, even after performing an air-aging test for 80 days and a droplet impacting test for 6 h. This fabrication method can provide superb superhydrophobic surface using simple one-step plasma etching.

  7. Experimental and numerical investigations of the impingement of an oblique liquid jet onto a superhydrophobic surface: energy transformation

    Energy Technology Data Exchange (ETDEWEB)

    Kibar, Ali, E-mail: alikibar@kocaeli.edu.tr [Department of Mechanical and Material Technologies, Kocaeli University, 41285, Arslanbey Campus, Kocaeli (Turkey)

    2016-02-15

    This study presents the theory of impinging an oblique liquid jet onto a vertical superhydrophobic surface based on both experimental and numerical results. A Brassica oleracea leaf with a 160° apparent contact angle was used for the superhydrophobic surface. Distilled water was sent onto the vertical superhydrophobic surface in the range of 1750–3050 Reynolds number, with an inclination angle of 20°−40°, using a circular glass tube with a 1.75 mm inner diameter. The impinging liquid jet spread onto the surface governed by the inertia of the liquid and then reflected off the superhydrophobic surface due to the surface energy of the spreading liquid. Two different energy approaches, which have time-scale and per-unit length, were performed to determine transformation of the energy. The kinetic energy of the impinging liquid jet was transformed into the surface energy with an increasing interfacial surface area between the liquid and air during spreading. Afterwards, this surface energy of the spreading liquid was transformed into the reflection kinetic energy. (paper)

  8. Fabrication of superhydrophobic and antibacterial surface on cotton fabric by doped silica -based sols with nanoparticles of copper

    Science.gov (United States)

    Berendjchi, Amirhosein; Khajavi, Ramin; Yazdanshenas, Mohammad Esmaeil

    2011-11-01

    The study discussed the synthesis of silica sol using the sol-gel method, doped with two different amounts of Cu nanoparticles. Cotton fabric samples were impregnated by the prepared sols and then dried and cured. To block hydroxyl groups, some samples were also treated with hexadecyltrimethoxysilane. The average particle size of colloidal silica nanoparticles were measured by the particle size analyzer. The morphology, roughness, and hydrophobic properties of the surface fabricated on cotton samples were analyzed and compared via the scanning electron microscopy, the transmission electron microscopy, the scanning probe microscopy, with static water contact angle (SWC), and water shedding angle measurements. Furthermore, the antibacterial efficiency of samples was quantitatively evaluated using AATCC 100 method. The addition of 0.5% (wt/wt) Cu into silica sol caused the silica nanoparticles to agglomerate in more grape-like clusters on cotton fabrics. Such fabricated surface revealed the highest value of SWC (155° for a 10-μl droplet) due to air trapping capability of its inclined structure. However, the presence of higher amounts of Cu nanoparticles (2% wt/wt) in silica sol resulted in the most slippery smooth surface on cotton fabrics. All fabricated surfaces containing Cu nanoparticles showed the perfect antibacterial activity against both of gram-negative and gram-positive bacteria.

  9. Fabrication of superhydrophobic and antibacterial surface on cotton fabric by doped silica-based sols with nanoparticles of copper.

    Science.gov (United States)

    Berendjchi, Amirhosein; Khajavi, Ramin; Yazdanshenas, Mohammad Esmaeil

    2011-11-15

    The study discussed the synthesis of silica sol using the sol-gel method, doped with two different amounts of Cu nanoparticles. Cotton fabric samples were impregnated by the prepared sols and then dried and cured. To block hydroxyl groups, some samples were also treated with hexadecyltrimethoxysilane. The average particle size of colloidal silica nanoparticles were measured by the particle size analyzer. The morphology, roughness, and hydrophobic properties of the surface fabricated on cotton samples were analyzed and compared via the scanning electron microscopy, the transmission electron microscopy, the scanning probe microscopy, with static water contact angle (SWC), and water shedding angle measurements. Furthermore, the antibacterial efficiency of samples was quantitatively evaluated using AATCC 100 method. The addition of 0.5% (wt/wt) Cu into silica sol caused the silica nanoparticles to agglomerate in more grape-like clusters on cotton fabrics. Such fabricated surface revealed the highest value of SWC (155° for a 10-μl droplet) due to air trapping capability of its inclined structure. However, the presence of higher amounts of Cu nanoparticles (2% wt/wt) in silica sol resulted in the most slippery smooth surface on cotton fabrics. All fabricated surfaces containing Cu nanoparticles showed the perfect antibacterial activity against both of gram-negative and gram-positive bacteria.

  10. Design of a robust superhydrophobic surface: thermodynamic and kinetic analysis

    CERN Document Server

    Sarkar, Anjishnu

    2014-01-01

    The design of a robust superhydrophobic surface is a widely pursued topic.While many investigations are limited to applications with high impact velocities (for raindrops of the order of a few m/s), the essence of robustness is yet to be analyzed for applications involving quasi-static liquid transfer.To achieve robustness with high impact velocities, the surface parameters (geometrical details, chemistry) have to be selected from a narrow range of permissible values, which often entail additional manufacturing costs.From the dual perspectives of thermodynamics and mechanics, we analyze the significance of robustness for quasi-static drop impact, and present the range of permissible surface characteristics.For surfaces with a Youngs contact angle greater than 90{\\deg} and square micropillar geometry, we show that robustness can be enforced when an intermediate wetting state (sagged state) impedes transition to a wetted state (Wenzel state).From the standpoint of mechanics, we use available scientific data to ...

  11. Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions.

    Science.gov (United States)

    Nosonovsky, Michael; Bhushan, Bharat

    2008-02-19

    Nonadhesive and water-repellent surfaces are required for many tribological applications. We study mechanisms of wetting of patterned superhydrophobic Si surfaces, including the transition between various wetting regimes during microdroplet evaporation in environmental scanning electron microscopy (ESEM) and for contact angle and contact angle hysteresis measurements. Wetting involves interactions at different scale levels: macroscale (water droplet size), microscale (surface texture size), and nanoscale (molecular size). We propose a generalized formulation of the Wenzel and Cassie equations that is consistent with the broad range of experimental data. We show that the contact angle hysteresis involves two different mechanisms and how the transition from the metastable partially wetted (Cassie) state to the homogeneously wetted (Wenzel) state depends upon droplet size and surface pattern parameters.

  12. Influence of hydrophobic and superhydrophobic surfaces on reducing aerodynamic insect residues

    Science.gov (United States)

    Krishnan, K. Ghokulla; Milionis, Athanasios; Loth, Eric; Farrell, Thomas E.; Crouch, Jeffrey D.; Berry, Douglas H.

    2017-01-01

    Insect fouling during takeoff, climb and landing can result in increased drag and fuel consumption for aircrafts with laminar-flow surfaces. This study investigates the effectiveness of various hydrophobic and superhydrophobic surfaces in reducing residue of insects on an aerodynamic surface at relatively high impact speeds (about 45 m/s). An experimental setup consisting of a wind tunnel and a method to inject live flightless fruit flies was used to test the effectiveness of various surfaces against insect fouling. Insect fouling was analyzed based on residue area and height from multiple impacts. In general most of the residue area was due to the hemolymph spreading while most of the residue height was due to adhesion of exoskeleton parts. Hydrophobic and especially superhydrophobic surfaces performed better than a hydrophilic aluminum surface in terms of minimizing the residue area of various insect components (exoskeleton, hemolymph, and red fluid). Surfaces with reduced wettability and short lateral length scales tended to have the smallest residue area. Residue height was not as strongly influenced by surface wettability since even a single exoskeleton adhered to the surface upon impact was enough to produce a residue height of the order of one mm. In general, the results indicate that hemolymph spread needs to be avoided (e.g. by having reduced wettability and short lateral correlation lengths) in order to minimize the residue area, while exoskeleton adherence needs to be avoided (e.g. by having oleophobic properties and micro/nano roughness) in order to minimize the residue height. In particular, two of the superhydrophobic coatings produced substantial reduction in residue height and area, relative to the baseline surface of aluminum. However, the surfaces also showed poor mechanical durability on the high-speed insect impact location. This suggests that although low wettability materials show great insect anti-fouling behavior, their durability needs to

  13. A facile electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yi [State Key Lab of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Rd. 8, Xindu District, Chengdu City, Sichuan Province 610500 (China); School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu City, Sichuan Province 610500 (China); He, Yi, E-mail: chemheyi@swpu.edu.cn [State Key Lab of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Rd. 8, Xindu District, Chengdu City, Sichuan Province 610500 (China); School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu City, Sichuan Province 610500 (China); Luo, Pingya, E-mail: luopy@swpu.edu.cn [State Key Lab of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Rd. 8, Xindu District, Chengdu City, Sichuan Province 610500 (China); Chen, Xi; Liu, Bo [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu City, Sichuan Province 610500 (China)

    2016-04-15

    Graphical abstract: - Highlights: • A facile fabrication of superhydrophobic film was obtained on carbon steel. • Composition of superhydrophobic film is iron palmitate. • The film exhibits excellent chemical stability and good self-cleaning effect. • Corrosion of C45 steel is significantly inhibited with superhydrophobic surface. - Abstract: Superhydrophobic Fe film with hierarchical micro/nano papillae structures is prepared on C45 steel surface by one-step electrochemical method. The superhydrophobic surface was measured with a water contact angle of 160.5 ± 0.5° and a sliding angle of 2 ± 0.5°. The morphology of the fabricated surface film was characterized by field emission scanning electron microscopy (FE-SEM), and the surface structure seems like accumulated hierarchical micro-nano scaled particles. Furthermore, according to the results of Fourier transform infrared spectra (FT-IR) and X-ray photoelectron spectroscopy (XPS), the chemical composition of surface film was iron complex with organic acid. Besides, the electrochemical measurements showed that the superhydrophobic surface improved the corrosion resistance of carbon steel in 3.5 wt.% NaCl solution significantly. The superhydrophobic layer can perform as a barrier and provide a stable air–liquid interface which inhibit penetration of corrosive medium. In addition, the as-prepared steel exhibited an excellent self-cleaning ability that was not favor to the accumulation of contaminants.

  14. Drops bouncing off macro-textured superhydrophobic surfaces

    CERN Document Server

    Moqaddam, Ali Mazloomi; Karlin, Ilya

    2016-01-01

    Recent experiments with droplets impacting a macro-textured superhydrophobic surfaces revealed new regimes of bouncing with a remarkable reduction of the contact time. We present here a comprehensive numerical study that reveals the physics behind these new bouncing regimes and quantify the role played by various external and internal forces that effect the dynamics of a drop impacting a complex surface. For the first time, three-dimensional simulations involving macro-textured surfaces are performed. Aside from demonstrating that simulations reproduce experiments in a quantitative manner, the study is focused on analyzing the flow situations beyond current experiments. We show that the experimentally observed reduction of contact time extends to higher Weber numbers, and analyze the role played by the texture density. Moreover, we report a non-linear behavior of the contact time with the increase of the Weber number for application relevant imperfectly coated textures, and also study the impact on tilted sur...

  15. Robust Superhydrophobic Graphene-Based Composite Coatings with Self-Cleaning and Corrosion Barrier Properties.

    Science.gov (United States)

    Nine, Md J; Cole, Martin A; Johnson, Lucas; Tran, Diana N H; Losic, Dusan

    2015-12-30

    Superhydrophobic surfaces for self-cleaning applications often suffer from mechanical instability and do not function well after abrasion/scratching. To address this problem, we present a method to prepare graphene-based superhydrophobic composite coatings with robust mechanical strength, self-cleaning, and barrier properties. A suspension has been formulated that contains a mixture of reduced graphene oxide (rGO) and diatomaceous earth (DE) modified with polydimethylsiloxane (PDMS) that can be applied on any surface using common coating methods such as spraying, brush painting, and dip coating. Inclusion of TiO2 nanoparticles to the formulation shows further increase in water contact angle (WCA) from 159 ± 2° to 170 ± 2° due to the structural improvement with hierarchical surface roughness. Mechanical stability and durability of the coatings has been achieved by using a commercial adhesive to bond the superhydrophobic "paint" to various substrates. Excellent retention of superhydrophobicity was observed even after sandpaper abrasion and crosscut scratching. A potentiodynamic polarization study revealed excellent corrosion resistance (96.78%) properties, and an acid was used to provide further insight into coating barrier properties. The ease of application and remarkable properties of this graphene-based composite coating show considerable potential for broad application as a self-cleaning and protective layer.

  16. Bouncing of a droplet on a superhydrophobic surface in AC electrowetting

    OpenAIRE

    Lee,Seung Jun; Lee, Sanghyun; Kang, Kwan Hyoung

    2009-01-01

    We introduce a droplet-jumping phenomenon on a superhydrophobic surface driven by the resonant AC electrowetting. The resonant electrical actuation enables a droplet to accumulate sufficient surface energy for jumping, and superhydrophobic surface minimizes adhesion and hysteresis effects. They provide the effective energy conversion from the surface energy to the kinetic energy and improve the stability and the reproducibility of the droplet jumping. The controlled droplet jumping made by th...

  17. Boundary slip study on hydrophilic, hydrophobic, and superhydrophobic surfaces with dynamic atomic force microscopy.

    Science.gov (United States)

    Bhushan, Bharat; Wang, Yuliang; Maali, Abdelhamid

    2009-07-21

    Slip length has been measured using the dynamic atomic force microscopy (AFM) method. Unlike the contact AFM method, the sample surface approaches an oscillating sphere with a very low velocity in the dynamic AFM method. During this process, the amplitude and phase shift data are recorded to calculate the hydrodynamic damping coefficient, which is then used to obtain slip length. In this study, a glass sphere with a large radius was glued to the end of an AFM cantilever to measure the slip length on rough surfaces. Experimental results for hydrophilic, hydrophobic, and superhydrophobic surfaces show that the hydrodynamic damping coefficient decreases from the hydrophilic surface to the hydrophobic surface and from the hydrophobic one to the superhydrophobic one. The slip lengths obtained on the hydrophobic and superhydrophobic surfaces are 43 and 236 nm, respectively, which indicates increasing boundary slip from the hydrophobic surface to the superhydrophobic one.

  18. Preparation of Stable Superhydrophobic Coatings on Wood Substrate Surfaces via Mussel-Inspired Polydopamine and Electroless Deposition Methods

    Directory of Open Access Journals (Sweden)

    Kaili Wang

    2017-06-01

    Full Text Available Mussel-inspired polydopamine (PDA chemistry and electroless deposition approaches were used to prepare stable superhydrophobic coatings on wood surfaces. The as-formed PDA coating on a wood surface exhibited a hierarchical micro/nano roughness structure, and functioned as an “adhesive layer” between the substrate and a metallic film by the metal chelating ability of the catechol moieties on PDA, allowing for the formation of a well-developed micro/nanostructure hierarchical roughness. Additionally, the coating acted as a stable bridge between the substrate and hydrophobic groups. The morphology and chemical components of the prepared superhydrophobic wood surfaces were characterized by scanning electron microscopy (SEM, Fourier transform infrared (FT-IR spectroscopy, and X-ray photoelectron spectroscopy (XPS. The PDA and octadecylamine (OA modified surface showed excellent superhydrophobicity with a water contact angle (CA of about 153° and a rolling angle (RA of about 9°. The CA further increased to about 157° and RA reduced to about 5° with the Cu metallization. The superhydrophobic material exhibited outstanding stability in harsh conditions including ultraviolet aging, ultrasonic washing, strong acid-base and organic solvent immersion, and high-temperature water boiling. The results suggested that the PDA/OA layers were good enough to confer robust, degradation-resistant superhydrophobicity on wood substrates. The Cu metallization was likely unnecessary to provide significant improvements in superhydrophobic property. However, due to the amazing adhesive capacity of PDA, the electroless deposition technique may allow for a wide range of potential applications in biomimetic materials.

  19. Stable superhydrophobic surface: fabrication of interstitial cottonlike structure of copper nanocrystals by magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Guoxing Li, Bo Wang, Yi Liu, Tian Tan, Xuemei Song, Er Li and Hui Yan

    2008-01-01

    Full Text Available A stable superhydrophobic copper surface was obtained by radio-frequency magnetic sputtering on Si (100 and quartz substrates. The water contact angle and sliding angle of the superhydrophobic copper surface were 160.5° and 3±1.9°, respectively. Scanning electron microscopy (SEM photos show that the superhydrophobic surface structure comprises many uniform nanocrystals with a diameter of about 100 nm. A brief explanation of the formation of this special microstructure and the mechanism of its wettability were proposed.

  20. Durability of the tunable adhesive superhydrophobic PTFE surfaces for harsh environment applications

    Science.gov (United States)

    Fang, Yao; Yong, Jiale; Chen, Feng; Huo, Jinglan; Yang, Qing; Bian, Hao; Du, Guangqing; Hou, Xun

    2016-09-01

    Tunable adhesive superhydrophobic materials have attracted increasing research interest due to their applications in microdroplet manipulation, biological detection and microfluidic system. However, most of the artificial materials easily lose superhydrophobicity in harsh environments. The durability of superhydrophobic materials is very important to extend their lifetime in practical applications. In this paper, bioinspired durable superhydrophobicity with tunable adhesion on polytetrafluoroethylene surfaces is realized via a one-step femtosecond laser irradiation. On the laser-induced superhydrophobic surfaces, the sliding angle can be tuned from 1° to 90° (water droplet is pinned on the surface at any titled angles). The tunable water adhesion results from different contact states which change from the lotus state to the transition state and then to the composite state with increasing average distance of irradiation points. Water droplet quick localization and no-loss droplet transportation were achieved through designing surface adhesion. In addition, the resultant surfaces are so stable that they can maintain superhydrophobicity even after storing in harsh environments, without dramatical superhydrophobicity decay for a long time.

  1. Computational study of bouncing and non-bouncing droplets impacting on superhydrophobic surfaces

    Science.gov (United States)

    Bange, Prathamesh G.; Bhardwaj, Rajneesh

    2016-06-01

    We numerically investigate bouncing and non-bouncing of droplets during isothermal impact on superhydrophobic surfaces. An in-house, experimentally validated, finite element method-based computational model is employed to simulate the droplet impact dynamics and transient fluid flow within the droplet. The liquid-gas interface is tracked accurately in Lagrangian framework with dynamic wetting boundary condition at three-phase contact line. The interplay of kinetic, surface and gravitational energies is investigated via systematic variation of impact velocity and equilibrium contact angle. The numerical simulations demonstrate that the droplet bounces off the surface if the total droplet energy at the instance of maximum recoiling exceeds the initial surface and gravitational energy, otherwise not. The non-bouncing droplet is characterized by the oscillations on the free surface due to competition between the kinetic and surface energy. The droplet dimensions and shapes obtained at different times by the simulations are compared with the respective measurements available in the literature. Comparisons show good agreement of numerical data with measurements, and the computational model is able to reconstruct the bouncing and non-bouncing of the droplet as seen in the measurements. The simulated internal flow helps to understand the impact dynamics as well as the interplay of the associated energies during the bouncing and non-bouncing. A regime map is proposed to predict the bouncing and non-bouncing on a superhydrophobic surface with an equilibrium contact angle of 155°, using data of 86 simulations and the measurements available in the literature. We discuss the validity of the computational model for the wetting transition from Cassie to Wenzel state on micro- and nanostructured superhydrophobic surfaces. We demonstrate that the numerical simulation can serve as an important tool to quantify the internal flow, if the simulated droplet shapes match the respective

  2. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    Science.gov (United States)

    Liu, Wenyong; Luo, Yuting; Sun, Linyu; Wu, Ruomei; Jiang, Haiyun; Liu, Yuejun

    2013-01-01

    We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162° and the sliding angle of 2° was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed by optical microscope (OM) and scanning electron microscope (SEM). Combined with the material of PP with the low surface free energy, the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  3. Fabrication of superhydrophobic and oleophobic Al surfaces by chemical etching and surface fluorination

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hak-Jong; Shin, Ju-Hyeon; Choo, Soyoung; Ryu, Sang-Woo; Kim, Yang-Doo; Lee, Heon, E-mail: heonlee@korea.ac.kr

    2015-06-30

    Hierarchical Al surfaces were fabricated using three different kinds of alkaline-based chemical etching processes. The surface morphology changes to a needle-like microstructure or to nanoscale flakes on a microscale porous structure depending on the chemical solution used. These surfaces were characterized by field-emission scanning electron microscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy, and contact angle measurements. After the hydrophobic treatment, the etched Al surface shows non-wetting properties, exhibiting a static contact angle over 150° and a dynamic contact angle less than 5° for deionized water. Oleophobic properties for diiodomethane and N,N-dimethylformamide are exhibited by all etched Al surfaces. - Highlights: • This research fabricated and analyzed the etched Al surface via a simple wet etching process. • The morphology of Al surface is changed according to the presence of Zn ions. • The wettability of Al surface is controlled by roughness and surface treatment. • Superhydrophobicity and superoleophobicity are achieved on the wet etched Al mesh.

  4. Super-hydrophobic surfaces from a simple coating method: a bionic nanoengineering approach

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yuyang; Chen Xianqiong; Xin, J H [Nanotechnology Center, ITC, Hong Kong Polytechnic University, Hong Kong (China)

    2006-07-14

    Inspired by the self-cleaning behaviour of lotus leaves in nature, we developed a simple coating method that can facilitate the bionic creation of super-hydrophobic surfaces on various substrates, thus providing a feasible way of fabricating super-hydrophobic surfaces for civil and industrial applications. Micro-nanoscale binary structured composite particles of silica/fluoropolymer were prepared using an emulsion-mediated sol-gel process, and then these composite particles were applied to various substrates to mimic the surface microstructures of lotus leaves. Super-hydrophobic surfaces with a water contact angle larger than 150 deg. are obtained, and these super-hydrophobic surfaces are expected to have potential applications for rusting-resistant, anti-fog and self-cleaning treatments.

  5. 一种基于SiO2气凝胶制备超疏水表面的工艺探讨%Process Study on Superhydrophobic Surface Based on SiO2 Aerogel

    Institute of Scientific and Technical Information of China (English)

    徐方平; 徐壁; 蔡再生

    2012-01-01

    Superhydrophobic glass was prepared by coating and drying with different dispersion medium based on commercialized silica aerogel. It is found that a superhydrophobic surface with a contact angle of 153. 2° and a contact angle hysteresis of 1. 7° can be achieved under the following conditions: acetone as the solvent, SiO2 aerogel concentration of 30 g/L, spining coating twice, drying temperature of 20 ℃.%以商品化SiO2气凝胶为原料,选择不同的分散介质进行分散,然后在玻璃表面进行涂覆并干燥,制得超疏水表面.研究结果表明:当选择丙酮作为分散介质,SiO2气凝胶质量浓度为30g/L,以旋涂的方式涂覆2次,并于20℃进行干燥时,所制备的表面超疏水效果最好,其接触角为153.2°,滞后角为1.7°.

  6. Superhydrophobic copper surfaces fabricated by fatty acid soaps in aqueous solution for excellent corrosion resistance

    Science.gov (United States)

    Xu, Wenlong; Hu, Yuanyuan; Bao, Wenda; Xie, Xiaoyu; Liu, Yiran; Song, Aixin; Hao, Jingcheng

    2017-03-01

    A simple and safe one-step immersion method was developed to obtain the stable superhydrophobic copper surfaces with excellent corrosion resistance ability using fatty acids in water-medium instead of ethanol. An organic alkali, N,N-dimethylcyclohexylamine (DMCHA), was chosen to solve the poor solubility of fatty acids in water and the high Krafft point of carboxylate salts with inorganic counterions. The superhydrophobic property can be realized in a much quicker process (7.5 min) in aqueous solution than in ethanol (more than 2 d), which is universally feasible for the fabrication of superhydrophobic metal surfaces in industry scale, thereby greatly increasing the safety in industrial manufacture.

  7. Flow past superhydrophobic surfaces with cosine variation in local slip length

    CERN Document Server

    Asmolov, Evgeny S; Harting, Jens; Vinogradova, Olga I

    2012-01-01

    Anisotropic super-hydrophobic surfaces have the potential to greatly reduce drag and enhance mixing phenomena in microfluidic devices. Recent work has focused mostly on cases of super-hydrophobic stripes. Here, we analyze a relevant situation of cosine variation of the local slip length. We derive approximate formulae for maximal (longitudinal) and minimal (transverse) directional effective slip lengths that are in good agreement with the exact numerical solution and lattice-Bolzmann simulations for any surface slip fraction. The cosine texture can provide a very large effective (forward) slip, but it was found to be less efficient in generating a transverse flow as compared to super-hydrophobic stripes.

  8. Nanotextured Shrink Wrap Superhydrophobic Surfaces by Argon Plasma Etching

    Directory of Open Access Journals (Sweden)

    Jolie M. Nokes

    2016-03-01

    Full Text Available We present a rapid, simple, and scalable approach to achieve superhydrophobic (SH substrates directly in commodity shrink wrap film utilizing Argon (Ar plasma. Ar plasma treatment creates a stiff skin layer on the surface of the shrink film. When the film shrinks, the mismatch in stiffness between the stiff skin layer and bulk shrink film causes the formation of multiscale hierarchical wrinkles with nano-textured features. Scanning electron microscopy (SEM images confirm the presence of these biomimetic structures. Contact angle (CA and contact angle hysteresis (CAH measurements, respectively, defined as values greater than 150° and less than 10°, verified the SH nature of the substrates. Furthermore, we demonstrate the ability to reliably pattern hydrophilic regions onto the SH substrates, allowing precise capture and detection of proteins in urine. Finally, we achieved self-driven microfluidics via patterning contrasting superhydrophilic microchannels on the SH Ar substrates to induce flow for biosensing.

  9. Nanotextured Shrink Wrap Superhydrophobic Surfaces by Argon Plasma Etching.

    Science.gov (United States)

    Nokes, Jolie M; Sharma, Himanshu; Tu, Roger; Kim, Monica Y; Chu, Michael; Siddiqui, Ali; Khine, Michelle

    2016-03-14

    We present a rapid, simple, and scalable approach to achieve superhydrophobic (SH) substrates directly in commodity shrink wrap film utilizing Argon (Ar) plasma. Ar plasma treatment creates a stiff skin layer on the surface of the shrink film. When the film shrinks, the mismatch in stiffness between the stiff skin layer and bulk shrink film causes the formation of multiscale hierarchical wrinkles with nano-textured features. Scanning electron microscopy (SEM) images confirm the presence of these biomimetic structures. Contact angle (CA) and contact angle hysteresis (CAH) measurements, respectively, defined as values greater than 150° and less than 10°, verified the SH nature of the substrates. Furthermore, we demonstrate the ability to reliably pattern hydrophilic regions onto the SH substrates, allowing precise capture and detection of proteins in urine. Finally, we achieved self-driven microfluidics via patterning contrasting superhydrophilic microchannels on the SH Ar substrates to induce flow for biosensing.

  10. Harvesting electrostatic energy using super-hydrophobic surfaces

    Science.gov (United States)

    Pociecha, Dominik; Zylka, Pawel

    2016-11-01

    Almost all environments are now being extensively populated by miniaturized, nano-powered electronic sensor devices communicated together through wireless sensor networks building Internet of Things (IoT). Various energy harvesting techniques are being more and more frequently proposed for battery-less powering of such remote, unattended, implantable or wearable sensors or other low-power electronic gadgets. Energy harvesting relays on extracting energy from the ambient sources readily accessible at the sensor location and converting it into electrical power. The paper exploits possibility of generating electric energy safely accessible for nano-power electronics using tribo-electric and electrostatic induction phenomena displayed at super-hydrophobic surfaces impinged by water droplets. Mechanism of such interaction is discussed and illustrated by experimental results.

  11. Evaporating behaviors of water droplet on superhydrophobic surface

    Science.gov (United States)

    Hao, PengFei; Lv, CunJing; He, Feng

    2012-12-01

    We investigated the dynamic evaporating behaviors of water droplet on superhydrophobic surfaces with micropillars. Our experimental data showed that receding contact angles of the water droplet increased with the decreasing of the scale of the micropillars during evaporation, even though the solid area fractions of the microstructured substrates remained constant. We also experimentally found that the critical contact diameters of the transition between the Cassie-Baxter and Wenzel states are affected not only by the geometrical parameters of the microstructures, but also by the initial volume of the water droplet. The measured critical pressure is consistent with the theoretical model, which validated the pressure-induced impalement mechanism for the wetting state transition.

  12. Superhydrophobic films on glass surface derived from trimethylsilanized silica gel nanoparticles.

    Science.gov (United States)

    Goswami, Debmita; Medda, Samar Kumar; De, Goutam

    2011-09-01

    The paper deals with the fabrication of sol-gel-derived superhydrophobic films on glass based on the macroscopic silica network with surface modification. The fabricated transparent films were composed of a hybrid -Si(CH(3))(3)-functionalized SiO(2) nanospheres exhibiting the desired micro/nanostructure, water repellency, and antireflection (AR) property. The wavelength selective AR property can be tuned by controlling the physical thickness of the films. Small-angle X-ray scattering (SAXS) studies revealed the existence of SiO(2) nanoparticles of average size ∼9.4 nm in the sols. TEM studies showed presence of interconnected SiO(2) NPs of ∼10 nm in size. The films were formed with uniformly packed SiO(2) aggregates as observed by FESEM of film surface. FTIR of the films confirmed presence of glasslike Si-O-Si bonding and methyl functionalization. The hydrophobicity of the surface was depended on the thickness of the deposited films. A critical film thickness (>115 nm) was necessary to obtain the air push effect for superhydrophobicity. Trimethylsilyl functionalization of SiO(2) and the surface roughness (rms ≈30 nm as observed by AFM) of the films were also contributed toward the high water contact angle (WCA). The coated glass surface showed WCA value of the droplet as high as 168 ± 3° with 6 μL of water. These superhydrophobic films were found to be stable up to about 230-240 °C as confirmed by TG/DTA studies, and WCA measurements of the films with respect to the heat-treatment temperatures. These high water repellant films can be deposited on relatively large glass surfaces to remove water droplets immediately without any mechanical assistance.

  13. Influence of the type of solvent on the development of superhydrophobicity from silane-based solution containing nanoparticles

    Science.gov (United States)

    Pantoja, M.; Abenojar, J.; Martinez, M. A.

    2017-03-01

    Superhydrophobic surfaces are very appealing for numerous industrial applications due to their self-cleaning capacity. Although there are different methods to manufacture superhydrophobic surfaces, some of them do not keep the aesthetic appearance of the neat surface. Sol-gel processes are a valid alternative when transparent coatings are desired. The main goal of this research is to study the viability of this method by making superhydrophobic coatings from silane-based solution containing SiO2 nanoparticles. The effect of using different solvents is investigated, as well as the role played by the different components of the solution (silane, nanoparticles and solvent). Solutions of methyltrimethoxisilane (MTS) and tetraethoxysilane (TEOS) and 1% of SiO2 (%wt) were prepared with different solvents (ethanol, ethanol/water and white spirit). The hydrophobicity of the developed coatings is studied using contact angle measurements, while the aesthetic appearance is evaluated with gloss and color measurements. Also, infrared spectroscopy, dynamic light scattering (DSL), and surface tension measurements are used to study the silane solutions. The results show that the capacity of solvents to promote the dispersion of the nanoparticles is crucial to ensuring superhydrophobicity, since these agglomerates provide the micro- and nano- surface roughness required to get a hierarchical structure. However, the combined use of silanes and nanoparticles is key to make a superhydrophobic surface because physical (the surface roughness provided by nanoparticles) and chemical characteristics (hydrophobicity provided by silanes) are coupled.

  14. Fabrication of superhydrophobic nanostructured surface on aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, R.; Farzaneh, M. [Universite du Quebec a Chicoutimi, Chicoutimi, QC (Canada)

    2011-01-15

    A superhydrophobic surface was prepared by consecutive immersion in boiling water and sputtering of polytetrafluoroethylene (PTFE or Teflon registered) on the surface of an aluminum alloy substrate. Immersion in boiling water was used to create a micro-nanostructure on the alloy substrate. Then, the rough surface was coated with RF-sputtered Teflon film. The immersion time in boiling water plays an important role in surface morphology and water repellency of the deposited Teflon coating. Scanning electron microscopy images showed a ''flower-like'' structure in first few minutes of immersion. And as the immersion time lengthened, a ''cornflake'' structure appeared. FTIR analyses of Teflon-like coating deposited on water treated aluminum alloy surfaces showed fluorinated groups, which effectively reduce surface energy. The Teflon-like coating deposited on a rough surface achieved with five-minute immersion in boiling water provided a high static contact angle ({proportional_to}164 ) and low contact angle hysteresis ({proportional_to}4 ). (orig.)

  15. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.

    Science.gov (United States)

    Mondal, Bikash; Mac Giolla Eain, Marc; Xu, QianFeng; Egan, Vanessa M; Punch, Jeff; Lyons, Alan M

    2015-10-28

    Condensation of water vapor is an essential process in power generation, water collection, and thermal management. Dropwise condensation, where condensed droplets are removed from the surface before coalescing into a film, has been shown to increase the heat transfer efficiency and water collection ability of many surfaces. Numerous efforts have been made to create surfaces which can promote dropwise condensation, including superhydrophobic surfaces on which water droplets are highly mobile. However, the challenge with using such surfaces in condensing environments is that hydrophobic coatings can degrade and/or water droplets on superhydrophobic surfaces transition from the mobile Cassie to the wetted Wenzel state over time and condensation shifts to a less-effective filmwise mechanism. To meet the need for a heat-transfer surface that can maintain stable dropwise condensation, we designed and fabricated a hybrid superhydrophobic-hydrophilic surface. An array of hydrophilic needles, thermally connected to a heat sink, was forced through a robust superhydrophobic polymer film. Condensation occurs preferentially on the needle surface due to differences in wettability and temperature. As the droplet grows, the liquid drop on the needle remains in the Cassie state and does not wet the underlying superhydrophobic surface. The water collection rate on this surface was studied using different surface tilt angles, needle array pitch values, and needle heights. Water condensation rates on the hybrid surface were shown to be 4 times greater than for a planar copper surface and twice as large for silanized silicon or superhydrophobic surfaces without hydrophilic features. A convection-conduction heat transfer model was developed; predicted water condensation rates were in good agreement with experimental observations. This type of hybrid superhydrophobic-hydrophilic surface with a larger array of needles is low-cost, robust, and scalable and so could be used for heat

  16. One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy.

    Science.gov (United States)

    Liu, Qin; Chen, Dexin; Kang, Zhixin

    2015-01-28

    A simple, one-step method has been developed to construct a superhydrophobic surface by electrodepositing Mg-Mn-Ce magnesium plate in an ethanol solution containing cerium nitrate hexahydrate and myristic acid. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were employed to characterize the surfaces. The shortest electrodeposition time to obtain a superhydrophobic surface was about 1 min, and the as-prepared superhydrophobic surfaces had a maximum contact angle of 159.8° and a sliding angle of less than 2°. Potentiodynamic polarization and electrochemical impedance spectroscopy measurements demonstrated that the superhydrophobic surface greatly improved the corrosion properties of magnesium alloy in 3.5 wt % aqueous solutions of NaCl, Na2SO4, NaClO3, and NaNO3. Besides, the chemical stability and mechanical durability of the as-prepared superhydrophobic surface were also examined. The presented method is rapid, low-cost, and environmentally friendly and thus should be of significant value for the industrial fabrication of anticorrosive superhydrophobic surfaces and should have a promising future in expanding the applications of magnesium alloys.

  17. Analytical modeling and thermodynamic analysis of robust superhydrophobic surfaces with inverse-trapezoidal microstructures.

    Science.gov (United States)

    Im, Maesoon; Im, Hwon; Lee, Joo-Hyung; Yoon, Jun-Bo; Choi, Yang-Kyu

    2010-11-16

    A polydimethylsiloxane (PDMS) elastomer surface with perfectly ordered microstructures having an inverse-trapezoidal cross-sectional profile (simply PDMS trapezoids) showed superhydrophobic and transparent characteristics under visible light as reported in our previous work. The addition of a fluoropolymer (Teflon) coating enhances both features and provides oleophobicity. This paper focuses on the analytical modeling of the fabricated PDMS trapezoids structure and thermodynamic analysis based on the Gibbs free energy analysis. Additionally, the wetting characteristics of the fabricated PDMS trapezoids surface before and after the application of the Teflon coating are analytically explained. The Gibbs free energy analysis reveals that, due to the Teflon coating, the Cassie-Baxter state becomes energetically more favorable than the Wenzel state and the contact angle difference between the Cassie-Baxter state and the Wenzel state decreases. These two findings support the robustness of the superhydrophobicity of the fabricated Teflon-coated PDMS trapezoids. This is then verified via the impinging test of a water droplet at a high speed. The dependencies of the design parameters in the PDMS trapezoids on the hydrophobicity are also comprehensively studied through a thermodynamic analysis. Geometrical dependency on the hydrophobicity shows that overhang microstructures do not have a significant influence on the hydrophobicity. In contrast, the intrinsic contact angle of the structural material is most important in determining the apparent contact angle. On the other hand, the experimental results showed that the side angles of the overhangs are critical not for the hydrophobic but for the oleophobic property with liquids of a low surface tension. Understanding of design parameters in the PDMS trapezoids surface gives more information for implementation of superhydrophobic surfaces.

  18. Trace Material Capture by Controlled Liquid Droplets on a Superhydrophobic/Hydrophilic Surface.

    Science.gov (United States)

    Fukada, Kenta; Kawamura, Naoya; Shiratori, Seimei

    2017-09-15

    A liquid droplet in contact with a superhydrophobic surface can be used to collect dissolved trace materials after evaporating the solvent. This process effect enhances detection limits, but a liquid droplet easily rolls off a superhydrophobic surface. Keeping it at a specific collecting spot area is challenging. Here the means for controlling and capturing a liquid droplet on a superhydrophobic surface is demonstrated. To induce a liquid droplet to a collecting spot, its rolling direction was controlled by two superhydrophobic fabric guides. The liquid droplet was then captured by hydrophilic polymer and hydrophilic nanoparticles at the measuring spot. After removing the solvent, the trace compounds were evaluated with a colorimetric analysis visible to the naked eye.

  19. Factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces.

    Science.gov (United States)

    Feng, Jie; Qin, Zhaoqian; Yao, Shuhuai

    2012-04-10

    The coalescence-induced condensate drop motion on some superhydrophobic surfaces (SHSs) has attracted increasing attention because of its potential applications in sustained dropwise condensation, water collection, anti-icing, and anticorrosion. However, an investigation of the mechanism of such self-propelled motion including the factors for designing such SHSs is still limited. In this article, we fabricated a series of superhydrophobic copper surfaces with nanoribbon structures using wet chemical oxidation followed by fluorization treatment. We then systematically studied the influence of surface roughness and the chemical properties of as-prepared surfaces on the spontaneous motion of condensate drops. We quantified the "frequency" of the condensate drop motion based on microscopic sequential images and showed that the trend of this frequency varied with the nanoribbon structure and extent of fluorination. More obvious spontaneous condensate drop motion was observed on surfaces with a higher extent of fluorization and nanostructures possessing sufficiently narrow spacing and higher perpendicularity. We attribute this enhanced drop mobility to the stable Cassie state of condensate drops in the dynamic dropwise condensation process that is determined by the nanoscale morphology and local surface energy.

  20. Insights into the superhydrophobicity of metallic surfaces prepared by electrodeposition involving spontaneous adsorption of airborne hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peng; Cao, Ling; Zhao, Wei; Xia, Yue; Huang, Wei; Li, Zelin, E-mail: lizelin@hunnu.edu.cn

    2015-01-01

    Graphical abstract: - Highlights: • Several superhydrophobic metallic surfaces were fabricated by fast electrodeposition. • Both micro/nanostructures and adsorption of airborne hydrocarbons make contributions. • XPS analyses confirm presence of airborne hydrocarbons on these metallic surfaces. • The adsorption of airborne hydrocarbons on the clean metal Au surface was very quick. • UV-O{sub 3} treatment oxidized the hydrocarbons to hydrophilic oxygen-containing organics. - Abstract: Electrochemical fabrication of micro/nanostructured metallic surfaces with superhydrophobicity has recently aroused great attention. However, the origin still remains unclear why smooth hydrophilic metal surfaces become superhydrophobic by making micro/nanostructures without additional surface modifications. In this work, several superhydrophobic micro/nanostructured metal surfaces were prepared by a facile one-step electrodeposition process, including non-noble and noble metals such as copper, nickel, cadmium, zinc, gold, and palladium with (e.g. Cu) or without (e.g. Au) surface oxide films. We demonstrated by SEM and XPS that both hierarchical micro/nanostructures and spontaneous adsorption of airborne hydrocarbons endowed these surfaces with excellent superhydrophobicity. We revealed by XPS that the adsorption of airborne hydrocarbons at the Ar{sup +}-etched clean Au surface was rather quick, such that organic contamination can hardly be prevented in practical operation of surface wetting investigation. We also confirmed by XPS that ultraviolet-O{sub 3} treatment of the superhydrophobic metal surfaces did not remove the adsorbed hydrocarbons completely, but mainly oxidized them into hydrophilic oxygen-containing organic substances. We hope our findings here shed new light on deeper understanding of superhydrophobicity for micro/nanostructured metal surfaces with and without surface oxide films.

  1. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wenyong, E-mail: lwy@iccas.ac.cn [Key Laboratory of Advanced Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007 (China); College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Luo Yuting; Sun Linyu [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Wu Ruomei, E-mail: cailiaodian2004@126.com [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Jiang Haiyun [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Liu Yuejun [Key Laboratory of Advanced Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007 (China); College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China)

    2013-01-01

    Graphical abstract: The hydrophobic surface on aluminum alloy fabricated by anodizing and polymeric coating. Highlights: Black-Right-Pointing-Pointer Anodizing and polymeric coating were used to prepare a superhydrophobic surface on aluminum alloy. Black-Right-Pointing-Pointer Superhydrophobic surfaces with a high water contact angle of 162 Degree-Sign and a low rolling angle of 2 Degree-Sign were obtained. Black-Right-Pointing-Pointer The method is facile, and the materials are inexpensive, and is expected to be used widely. - Abstract: We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162 Degree-Sign and the sliding angle of 2 Degree-Sign was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed

  2. Drops bouncing off macro-textured superhydrophobic surfaces

    Science.gov (United States)

    Mazloomi Moqaddam, Ali; Chikatamarla, Shyam S.; Karlin, Iliya V.

    2017-08-01

    Recent experiments with droplets impacting a macro-textured superhydrophobic surfaces revealed new regimes of bouncing with a remarkable reduction of the contact time. We present here a comprehensive numerical study that reveals the physics behind these new bouncing regimes and quantify the role played by various external and internal forces that effect the dynamics of a drop impacting a complex surface. For the first time, three-dimensional simulations involving macro-textured surfaces are performed. Aside from demonstrating that simulations reproduce experiments in a quantitative manner, the study is focused on analyzing the flow situations beyond current experiments. We show that the experimentally observed reduction of contact time extends to higher Weber numbers, and analyze the role played by the texture density. Moreover, we report a non-linear behavior of the contact time with the increase of the Weber number for application relevant imperfectly coated textures, and also study the impact on tilted surfaces in a wide range of Weber numbers. Finally, we present novel energy analysis techniques that elaborate and quantify the interplay between the kinetic and surface energy, and the role played by the dissipation for various Weber numbers.

  3. The surface tension effect on viscous liquid spreading along a superhydrophobic surface

    Science.gov (United States)

    Aksenov, A. V.; Sudarikova, A. D.; Chicherin, I. S.

    2017-01-01

    Within the Stokes film approximation, unsteady plane-parallel spreading of a thin layer of a heavy viscous fluid along a horizontal superhydrophobic surface is studied. The forced spreading regimes induced by the mass supply are considered. Plane-parallel flow along the principal direction of the slip tensor of the superhydrophobic surface is studied in case that the corresponding slip tensor component is a power function of the spatial coordinate. An evolution equation for the film thickness is derived taking into account surface tension that is dependent on the spatial coordinate. The group classification problem is solved. Self-similar and invariant solutions are constructed for power and exponent time dependences on mass supply respectively at a special form of the surface tension coefficient. Surface tension is shown to have a significant influence on the character of the liquid spreading.

  4. Super-hydrophobic and oleophobic transparent surfaces using micro-nano-structuring techniques

    OpenAIRE

    Von Rudno, Markus

    2015-01-01

    Treball fet en col·laboració amb Universitat Autònoma de Barcelona (UAB), Universitat de Barcelona (UB) i Institut de Ciències Fotòniques (ICFO) In this thesis we describe the successful design and fabrication of three distinct high-order hierarchical structures based on silica to invoke super-hydrophobicity and oleophobicity on optically transparent surfaces, which may find application in display screens, solar cell panels and smart windows. These include directly synthesized and highly ...

  5. Preparation of multi-functional superhydrophobic lanthanum surface on carbon steel via facile electrochemical method

    Science.gov (United States)

    Chen, Xi; He, Yi; Fan, Yi; Yang, Qiangbin; Li, Han

    2016-12-01

    We have constructed a superhydrophobic surface with lanthanum palmitate on carbon steel via a facile one-step electrodeposition. The morphology and chemical composition of the superhydrophobic surface were characterized by field-emission scanning electron microscopy with attached energy dispersive X-ray spectrum, Fourier transform infrared spectra and X-ray photoelectron spectroscopy, respectively. The as-prepared surface with hierarchical structure has a largest contact angle of 160° ± 0.5° and a lowest sliding angle of 2° ± 0.5°. We found that both high electrodeposition potential and high concentrations lanthanum nitrate can accelerate the formation of superhydrophobic film. The electrochemical measurements demonstrated that the superhydrophobic surface exhibited excellent anti-corrosion performance in 3.5 wt% NaCl solution. Moreover, we also investigated the chemical stability, self-cleaning and oil/water separation of the superhydrophobic film. We believe that the facile fabrication method provides a promising strategy to fabricate multi-functional superhydrophobic surface with lanthanide series rare-earth elements on kinds of substrates.

  6. Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces.

    Science.gov (United States)

    Jung, Y C; Bhushan, B

    2008-01-01

    Superhydrophobic surfaces have considerable technological potential for various applications due to their extreme water repellent properties. The superhydrophobic surfaces may be generated by the use of hydrophobic coating, roughness and air pockets between solid and liquid. The geometric effects and dynamic effects, such as surface waves, can destroy the composite solid-air-liquid interface. The relationship between the water droplet size and geometric parameters governs the creation of composite interface and affects transition from solid-liquid interface to composite interface. Therefore, it is necessary to study the effect of droplets of various sizes. We have studied the effect of droplet size on contact angle by evaporation using droplets with radii ranging from about 300 to 700 microm. Experimental and theoretical studies of the wetting properties of silicon surfaces patterned with pillars of two different diameters and heights with varying pitch values are presented. We propose a criterion where the transition from Cassie and Baxter regime to Wenzel regime occurs when the droop of the droplet sinking between two asperities is larger than the depth of the cavity. The trends are explained based on the experimental data and the proposed transition criteria. An environmental scanning electron microscopy (ESEM) is used to form smaller droplets of about 20 microm radius and measure the contact angle on the patterned surfaces. The investigation has shown that ESEM provides a new approach to wetting studies on the microscale.

  7. Evolution and environmental degradation of superhydrophobic aspen and black locust leaf surfaces

    Science.gov (United States)

    Tranquada, George Christopher

    The current study is focused on the characterization of four natural leaf species (quaking, bigtooth and columnar european aspen as well as black locust) possessing a unique dual-scale cuticle structure composed of micro- and nano-scale asperities, which are able to effectively resist wetting (superhydrophobic), characteristic of The Lotus Effect. Scanning Electron Microscopy (SEM) was used to track the growth and evolution of their distinctive nano-scale epicuticular wax (ECW) morphologies over one full growing season. In addition, the stability of their superhydrophobic property was tested in various environments. It was determined that the long-term stability of these surfaces is tentatively linked to various environmental stress factors. Specifically, a combination of high temperature and humidity caused the degradation of nanoscale asperities and loss of the superhydrophobic property. The dual-scale surface structure was found to provide a suitable template for the design of future superhydrophobic engineering materials.

  8. Liquid Droplet Impact Dynamics on Micro-Patterned Superhydrophobic Surfaces

    CERN Document Server

    Clavijo, Cristian; Crockett, Julie

    2013-01-01

    The video exhibits experimental qualitative and quantitative results of water/glycerol (50%/50% by mass) droplet impact on two types of micro-patterned superhydrophobic surfaces. The two types of surfaces used were 80% cavity fraction ribs and posts with a periodic spacing of 40 {\\mu}m and 32 {\\mu}m, respectively. All surfaces were manufactured through photolithography. The impact Weber number is used as the dynamic parameter to compare splash and rebound behaviors between the two types of surfaces. While droplets exhibit similar dynamics at low Weber numbers, rebound jet speed (normalized by droplet impact speed) is notably higher on posts than ribs for all Weber numbers tested here (5 265. On posts, satellite droplets also follow a specific path but in a different orientation. Satellite droplets form in locations aligned with the post lattice structure. This behavior is observed for 600 < We < 750. Jet rebound exhibits an interesting phenomenon on ribs under certain conditions. Due to the uneven shear...

  9. Computational Study of Bouncing and Non-bouncing Droplets Impacting on Superhydrophobic Surfaces

    CERN Document Server

    Bange, Prathamesh G

    2016-01-01

    We numerically investigate bouncing and non-bouncing of droplets during isothermal impact on superhydrophobic surfaces. An in-house, experimentally-validated, finite-element method based computational model is employed to simulate the droplet impact dynamics and transient fluid flow within the droplet. The liquid-gas interface is tracked accurately in Lagrangian framework with dynamic wetting boundary condition at three-phase contact line. The interplay of kinetic, surface and gravitational energies is investigated via systematic variation of impact velocity and equilibrium contact angle. The numerical simulations demonstrate that the droplet bounces off the surface if the total droplet energy at the instance of maximum recoiling exceeds the initial surface and gravitational energy, otherwise not. The non-bouncing droplet is characterized by the oscillations on the free surface due to competition between the kinetic and surface energy. The droplet dimensions and shapes obtained at different times by the simul...

  10. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal.

    Science.gov (United States)

    Long, Jiangyou; Fan, Peixun; Gong, Dingwei; Jiang, Dafa; Zhang, Hongjun; Li, Lin; Zhong, Minlin

    2015-05-13

    Superhydrophobic surfaces with tunable water adhesion have attracted much interest in fundamental research and practical applications. In this paper, we used a simple method to fabricate superhydrophobic surfaces with tunable water adhesion. Periodic microstructures with different topographies were fabricated on copper surface via femtosecond (fs) laser irradiation. The topography of these microstructures can be controlled by simply changing the scanning speed of the laser beam. After surface chemical modification, these as-prepared surfaces showed superhydrophobicity combined with different adhesion to water. Surfaces with deep microstructures showed self-cleaning properties with extremely low water adhesion, and the water adhesion increased when the surface microstructures became flat. The changes in surface water adhesion are attributed to the transition from Cassie state to Wenzel state. We also demonstrated that these superhydrophobic surfaces with different adhesion can be used for transferring small water droplets without any loss. We demonstrate that our approach provides a novel but simple way to tune the surface adhesion of superhydrophobic metallic surfaces for good potential applications in related areas.

  11. Dropwise condensation on superhydrophobic nanostructured surfaces: literature review and experimental analysis

    Science.gov (United States)

    Bisetto, A.; Torresin, D.; Tiwari, M. K.; Del, D., Col; Poulikakos, D.

    2014-04-01

    It is well established that the dropwise condensation (DWC) mode can lead up to significant enhancement in heat transfer coefficients as compared to the filmwise mode (FWC). Typically, hydrophobic surfaces are expected to promote DWC, while hydrophilic ones induce FWC. To this end, superhydrophobic surfaces, where a combination of low surface energy and surface texturing is used to enhance the hydrophobicity, have recently been proposed as a promising approach to promote dropwise condensation. An attractive feature of using superhydrophobic surfaces is to facilitate easy roll-off of the droplets as they form during condensation, thus leading to a significant improvement in the heat transfer associated with the condensation process. High droplet mobility can be obtained acting on the surface chemistry, decreasing the surface energy, and on the surface structure, obtaining a micro- or nano- superficial roughness. The first part of this paper will present a literature review of the most relevant works about DWC on superhydrophobic nanotextured substrates, with particular attention on the fabrication processes. In the second part, experimental data about DWC on superhydrophobic nanotextured samples will be analyzed. Particular attention will be paid to the effect of vapour velocity on the heat transfer. Results clearly highlight the excellent potential of nanostructured surfaces for application in flow condensation applications. However, they highlight the need to perform flow condensation experiments at realistic high temperature and saturation conditions in order to evaluate the efficacy of superhydrophobic surfaces for practically relevant pure vapor condensation applications.

  12. Turbulent boundary layer over a divergent convergent superhydrophobic surface

    Science.gov (United States)

    Jalalabadi, Razieh; Hwang, Jinyul; Nadeem, Muhammad; Yoon, Min; Sung, Hyung Jin

    2017-08-01

    A direct numerical simulation of a spatially developing turbulent boundary layer over a divergent and convergent superhydrophobic surface (SHS) was performed over the range 800 < Reθ < 1200. The surface patterns were aligned along the streamwise direction. The SHS was modeled as a pattern of free-slip and no-slip surfaces. The gas fraction of the divergent and convergent SHS was the same as that for the straight SHS for a given slip area. The divergent and convergent SHS gave 21% more drag reduction than the straight SHS. Although the maximum value of the streamwise slip velocity was larger over the divergent and convergent SHS, the average slip velocity (Uslip/U∞) was larger over the straight SHS. The greater drag reduction was attributed to the manipulation of the secondary flow in the y-z plane and the changes in the turbulence structure. The streamwise vortices generated by the secondary flow over the divergent and convergent SHS were diminished which reduced drag relative to the flow over the straight SHS. The ejection and sweep motions were weak, and the vortical structure was attenuated near the wall over the divergent and convergent SHS. The skin friction contributions were explored using the velocity-vorticity correlation. The vortex stretching contribution dominated the skin friction budget. The reduced skin friction over the divergent and convergent SHS resulted mainly from reduced vortex stretching.

  13. The effect of composition and thermodynamics on the surface morphology of durable superhydrophobic polymer coatings.

    Science.gov (United States)

    Nahum, Tehila; Dodiuk, Hanna; Kenig, Samuel; Panwar, Artee; Barry, Carol; Mead, Joey

    2017-01-01

    Durable superhydrophobic coatings were synthesized using a system of silica nanoparticles (NPs) to provide nanoscale roughness, fluorosilane to give hydrophobic chemistry, and three different polymer binders: urethane acrylate, ethyl 2-cyanoacrylate, and epoxy. Coatings composed of different binders incorporating NPs in various concentrations exhibited different superhydrophobic attributes when applied on polycarbonate (PC) and glass substrates and as a function of coating composition. It was found that the substrate surface characteristics and wettability affected the superhydrophobic characteristics of the coatings. Interfacial tension and spreading coefficient parameters (thermodynamics) of the coating components were used to predict the localization of the NPs for the different binders' concentrations. The thermodynamic analysis of the NPs localization was in good agreement with the experimental observations. On the basis of the thermodynamic analysis and the experimental scanning electron microscopy, X-ray photoelectron spectroscopy, profilometry, and atomic force microscopy results, it was concluded that localization of the NPs on the surface was critical to provide the necessary roughness and resulting superhydrophobicity. The durability evaluated by tape testing of the epoxy formulations was the best on both glass and PC. Several coating compositions retained their superhydrophobicity after the tape test. In summary, it was concluded that thermodynamic analysis is a powerful tool to predict the roughness of the coating due to the location of NPs on the surface, and hence can be used in the design of superhydrophobic coatings.

  14. The effect of composition and thermodynamics on the surface morphology of durable superhydrophobic polymer coatings

    Science.gov (United States)

    Nahum, Tehila; Dodiuk, Hanna; Kenig, Samuel; Panwar, Artee; Barry, Carol; Mead, Joey

    2017-01-01

    Durable superhydrophobic coatings were synthesized using a system of silica nanoparticles (NPs) to provide nanoscale roughness, fluorosilane to give hydrophobic chemistry, and three different polymer binders: urethane acrylate, ethyl 2-cyanoacrylate, and epoxy. Coatings composed of different binders incorporating NPs in various concentrations exhibited different superhydrophobic attributes when applied on polycarbonate (PC) and glass substrates and as a function of coating composition. It was found that the substrate surface characteristics and wettability affected the superhydrophobic characteristics of the coatings. Interfacial tension and spreading coefficient parameters (thermodynamics) of the coating components were used to predict the localization of the NPs for the different binders’ concentrations. The thermodynamic analysis of the NPs localization was in good agreement with the experimental observations. On the basis of the thermodynamic analysis and the experimental scanning electron microscopy, X-ray photoelectron spectroscopy, profilometry, and atomic force microscopy results, it was concluded that localization of the NPs on the surface was critical to provide the necessary roughness and resulting superhydrophobicity. The durability evaluated by tape testing of the epoxy formulations was the best on both glass and PC. Several coating compositions retained their superhydrophobicity after the tape test. In summary, it was concluded that thermodynamic analysis is a powerful tool to predict the roughness of the coating due to the location of NPs on the surface, and hence can be used in the design of superhydrophobic coatings. PMID:28243071

  15. Conformal ZnO nanocomposite coatings on micro-patterned surfaces for superhydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Adam, E-mail: asteele4@illinois.ed [Aerospace Engineering Department, University of Illinois at Urbana-Champaign, 306 Talbot Laboratory, 104 S Wright Street Urbana, IL, 61801 (United States); Bayer, Ilker; Moran, Stephen [Aerospace Engineering Department, University of Illinois at Urbana-Champaign, 306 Talbot Laboratory, 104 S Wright Street Urbana, IL, 61801 (United States); Cannon, Andrew; King, William P. [Mechanical Science and Engineering Department, niversity of Illinois at Urbana-Champaign, 4409 Mechanical Engineering Laboratory, 1206 West Green Street, MC-244 Urbana, IL 61801 (United States); Loth, Eric [Aerospace Engineering Department, University of Illinois at Urbana-Champaign, 306 Talbot Laboratory, 104 S Wright Street Urbana, IL, 61801 (United States)

    2010-07-30

    A conformal coating process is presented to transform surfaces with inherent micro-morphology into superhydrophobic surfaces with hierarchical surface structure using wet chemical spray casting. Nanocomposite coatings composed of zinc oxide nanoparticles and organosilane quaternary nitrogen compound are dispersed in solution for application. The coating is applied to a micro-patterned polydimethylsiloxane substrate with a regular array of cylindrical microposts as well as a surface with random micro-structure for the purpose of demonstrating improved non-wettability and a superhydrophobic state for water droplets. Coating surface morphology is investigated with an environmental scanning electron microscope and surface wettability performance is characterized by static and dynamic contact angle measurements.

  16. Influence of n-hexanol and n-octanol on wetting properties and air entrapment at superhydrophobic surfaces.

    Science.gov (United States)

    Krasowska, Marta; Ferrari, Michele; Liggieri, Libero; Malysa, Kazimierz

    2011-05-28

    Superhydrophobic surfaces have recently attracted a lot of attention due to their self-cleaning properties. The superhydrophobic surfaces used in our studies were prepared using a mixed inorganic-organic coating. In order to check how short chain surface active agents affect the surface energy of such surfaces, their wettability (sessile drop technique) and the kinetics of the three phase contact formation were studied. It was found that with increasing concentrations of n-hexanol and n-octanol the surface energy of these surfaces was only slightly changed, i.e. a small decrease in contact angle values with increasing solution concentration was detected. Even for the most concentrated n-hexanol and n-octanol solutions, the contact angles were in the range 145-155° and the drop rolled off, indicating that the studied surfaces stayed superhydrophobic. Air bubbles, upon collision with such superhydrophobic surfaces, spread over the superhydrophobic surface within milliseconds in the studied solutions.

  17. Facile and scalable preparation of highly wear-resistance superhydrophobic surface on wood substrates using silica nanoparticles modified by VTES

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shanshan; Liu, Ming [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China); Wu, Yiqiang, E-mail: wuyq0506@126.com [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China); Hunan Provincial Collaborative Innovation Center for High-efficiency Utilization of Wood and Bamboo Resources, Central South University of Forestry and Technology, Changsha 410004 (China); Luo, Sha [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China); Qing, Yan, E-mail: qingyan0429@163.com [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China); Hunan Provincial Collaborative Innovation Center for High-efficiency Utilization of Wood and Bamboo Resources, Central South University of Forestry and Technology, Changsha 410004 (China); Chen, Haibo [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China)

    2016-11-15

    Graphical abstract: Highly wear-resistance superhydrophobic surface on wood substrates was fabricated using silica nanoparticles modified by VTES. Display Omitted - Highlights: • Superhydrophobic surface on wood substrates was efficiently fabricated using nanoparticles modified by VTES. • The superhydrophobic surface exhibited a CA of 154° and a SAclose to 0°. • The superhydrophobic surface showed a durable and robust wear-resistance performance. - Abstract: In this study, an efficient, facile method has been developed for fabricating superhydrophobic surfaces on wood substrates using silica nanoparticles modified by VTES. The as-prepared superhydrophobic wood surface had a water contact angle of 154° and water slide angle close to 0°. Simultaneously, this superhydrophobic wood showed highly durable and robust wear resistance when having undergone a long period of sandpaper abrasion or being scratched by a knife. Even under extreme conditions of boiling water, the superhydrophobicity of the as-prepared wood composite was preserved. Characterizations by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy showed that a typical and tough hierarchical micro/nanostructure was created on the wood substrate and vinyltriethoxysilane contributed to preventing the agglomeration of silica nanoparticles and serving as low-surface-free-energy substances. This superhydrophobic wood was easy to fabricate, mechanically resistant and exhibited long-term stability. Therefore, it is considered to be of significant importance in the industrial production of functional wood, especially for outdoor applications.

  18. A review on the mechanical and thermodynamic robustness of superhydrophobic surfaces.

    Science.gov (United States)

    Scarratt, Liam R J; Steiner, Ullrich; Neto, Chiara

    2017-08-01

    Advancements in the fabrication and study of superhydrophobic surfaces have been significant over the past 10years, and some 20years after the discovery of the lotus effect, the study of special wettability surfaces can be considered mainstream. While the fabrication of superhydrophobic surfaces is well advanced and the physical properties of superhydrophobic surfaces well-understood, the robustness of these surfaces, both in terms of mechanical and thermodynamic properties, are only recently getting attention in the literature. In this review we cover publications that appeared over the past ten years on the thermodynamic and mechanical robustness of superhydrophobic surfaces, by which we mean the long term stability under conditions of wear, shear and pressure. The review is divided into two parts, the first dedicated to thermodynamic robustness and the second dedicated to mechanical robustness of these complex surfaces. Our work is intended as an introductory review for researchers interested in addressing longevity and stability of superhydrophobic surfaces, and provides an outlook on outstanding aspects of investigation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Tailoring the morphology of raspberry-like carbon black/polystyrene composite microspheres for fabricating superhydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Yubin [Polymer Alloy Lab., School of Material Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Li, Qiuying, E-mail: liqy@ecust.edu.cn [Polymer Alloy Lab., School of Material Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Shanghai Key Laboratory Polymeric Materials (China); Key Laboratory of Ultrafine Materials of Ministry of Education (China); Xue, Pengfei; Huang, Jianfeng; Wang, Jibin; Guo, Weihong; Wu, Chifei [Polymer Alloy Lab., School of Material Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China)

    2011-05-15

    In our previous report, raspberry-like carbon black/polystyrene (CB/PS) composite microsphere was prepared through heterocoagulation process. Based on the previous study, in the present work, the morphology of raspberry-like CB/PS particle is tailored through adjusting the polarity and the concentration ratio of CB/PS colloidal suspension with the purpose to prepare particulate film for the fabrication of superhydrophobic surface. Scanning electron microscope (SEM) confirms the morphology of raspberry-like particle and the coverage of CB. Rough surfaces fabricated by raspberry-like particles with proper morphology are observed by SEM and clear evidence of superhydrophobic surface is shown. The structure of raspberry-like particle is analyzed by atom force microscope. The proposed relationship between the hydrophobicity and the structure of CB aggregates on the surface of PS microsphere is discussed in details.

  20. Superhydrophobic and adhesive properties of surfaces: testing the quality by an elaborated scanning electron microscopy method.

    Science.gov (United States)

    Ensikat, Hans J; Mayser, Matthias; Barthlott, Wilhelm

    2012-10-09

    In contrast to advancements in the fabrication of new superhydrophobic materials, the characterization of their water repellency and quality is often coarse and unsatisfactory. In view of the problems and inaccuracies, particularly in the measurement of very high contact angles, we developed alternative methods for the characterization of superhydrophobic surfaces. It was found that adhering water remnants after immersion are a useful criterion in determining the repellency quality. In this study, we introduce microscopy methods to detect traces of water-resembling test liquids on superhydrophobic surfaces by scanning electron microscopy (SEM) or fluorescence light microscopy (FLM). Diverse plant surfaces and some artificial superhydrophobic samples were examined. Instead of pure water, we used aqueous solutions containing a detectable stain and glycerol in order to prevent immediate evaporation of the microdroplets. For the SEM examinations, aqueous solutions of lead acetate were used, which could be detected in a frozen state at -90 °C with high sensitivity using a backscattered electron detector. For fluorescence microscopy, aqueous solutions of auramine were used. On different species of superhydrophobic plants, varying patterns of remaining microdroplets were found on their leaves. On some species, drop remnants occurred only on surface defects such as damaged epicuticular waxes. On others, microdroplets regularly decorated the locations of increased adhesion, particularly on hierarchically structured surfaces. Furthermore, it is demonstrated that the method is suitable for testing the limits of repellency under harsh conditions, such as drop impact or long-enduring contact. The supplementation of the visualization method by the measurement of the pull-off force between a water drop and the sample allowed us to determine the adhesive properties of superhydrophobic surfaces quantitatively. The results were in good agreement with former studies of the water

  1. Directed Growth of Virus Nanofilaments on a Superhydrophobic Surface

    KAUST Repository

    Marinaro, Giovanni

    2015-06-17

    The evaporation of single droplets of colloidal tobacco mosaic virus (TMV) nanoparticles on a superhydrophobic surface with a hexagonal pillar-pattern results in the formation of coffee-ring type residues. We imaged surface features by optical, scanning electron, and atomic force microscopies. Bulk features were probed by raster-scan X-ray nanodiffraction. At ∼100 pg/μL nanoparticle concentration, the rim of the residue connects to neighboring pillars via fibrous extensions containing flow-aligned crystalline domains. At ∼1 pg/μL nanoparticle concentration, nanofilaments of ¥80 nm diameter and ∼20 μm length are formed, extending normal to the residue-rim across a range of pillars. X-ray scattering is dominated by the nanofilament form-factor but some evidence for crystallinity has been obtained. The observation of sheets composed of stacks of self-assembled nanoparticles deposited on pillars suggests that the nanofilaments are drawn from a structured droplet interface. © 2015 American Chemical Society.

  2. Superhydrophobic contoured surfaces created on metal and polymer using a femtosecond laser

    Science.gov (United States)

    Sarbada, Shashank; Shin, Yung C.

    2017-05-01

    A process to fabricate superhydrophobic surfaces on metals and polymers is presented. Using high speed femtosecond laser pulses, surface structures have been created on metal surfaces and transferred onto Polydimethylsiloxane (PDMS) to achieve superhydrophobic surfaces. Various surface micro and nano structures are presented and their wetting properties are discussed. Water contact angles of over 150° with a roll off angle of less than 5° were achieved on the textured copper and PDMS surfaces. A fast and inexpensive method to create microfluidic devices with textured superhydrophobic inner channel walls is also presented. These channels allow a controllable fluid flow rate through microfluidic devices. A 186% increase in fluid flow rate though PDMS microchannels was achieved through the fabrication of hydrophobic structures on the inner channel walls.

  3. Investigations on reducing microbiologically-influenced corrosion of aluminum by using super-hydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu Tao, E-mail: liutao@shmtu.edu.c [Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201306 (China); Dong Lihua; Liu Tong; Yin Yansheng [Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201306 (China)

    2010-07-15

    Electrochemical impedance spectroscopy, potentiodynamic polarization and scanning electron microscopy were carried out to determine the effect of super-hydrophobic surfaces on the marine bacterium Vibrio natriegens (V. natriegens) adhesion. Four different samples were prepared in order to investigate the anti-biocorrosion mechanism of super-hydrophobic surfaces. Potentiodynamic polarization suggested that the V. natriegens attached on the surface mainly enhanced the reaction kinetics of the anodic reaction and accelerated the dissolution of aluminum. EIS results were interpreted with different equivalent circuits to model the physicoelectric characteristics of the electrode/biofilm/solution interface. The results showed that neither anodization nor chemical modification could decrease the bacterial adhesion and corrosion rate individually. V. natriegens showed only weak attachment to the super-hydrophobic surface, and the biocorrosion mechanism was closely associated with surface energy and surface topography.

  4. Superhydrophobic stability of nanotube array surfaces under impact and static forces.

    Science.gov (United States)

    Zhu, Lin; Shi, Pan; Xue, Jian; Wang, Yuanyi; Chen, Qingmin; Ding, Jianfu; Wang, Qingjun

    2014-06-11

    The surfaces of nanotube arrays were coated with poly(methyl methacrylate) (PMMA) using an imprinting method with an anodized alumina membrane as the template. The prepared nanotube array surfaces then either remained untreated or were coated with NH2(CH2)3Si(OCH3)3(PDNS) or CF3(CF2)7CH2CH2Si(OC2H5)3 (PFO). Thus, nanotube arrays with three different surfaces, PDNS, PMMA (without coating), and PFO, were obtained. All three surfaces (PDNS, PMMA, and PFO) exhibited superhydrophobic properties with contact angles (CA) of 155, 166, and 168°, respectively, and their intrinsic water contact angles were 30, 79, and 118°, respectively. The superhydrophobic stabilities of these three surfaces were examined under dynamic impact and static pressures in terms of the transition from the Cassie-Baxter mode to the Wenzel mode. This transition was determined by the maximum pressure (p(max)), which is dependent on the intrinsic contact angle and the nanotube density of the surface. A p(max) greater than 10 kPa, which is sufficiently large to maintain stable superhydrophobicity under extreme weather conditions, such as in heavy rain, was expected from the PFO surface. Interestingly, the PDNS surface, with an intrinsic CA of only 30°, also displayed superhydrophobicity, with a CA of 155°. This property was partially maintained under the dynamic impact and static pressure tests. However, under an extremely high pressure (0.5 MPa), all three surfaces transitioned from the Cassie-Baxter mode to the Wenzel mode. Furthermore, the lost superhydrophobicity could not be recovered by simply relieving the pressure. This result indicates that the best way to maintain superhydrophobicity is to increase the p(max) of the surface to a value higher than the applied external pressure by using low surface energy materials and having high-density binary nano-/microstructures on the surface.

  5. Facile approach in fabricating superhydrophobic coatings from silica-based nanocomposite

    Science.gov (United States)

    Guo, Yonggang; Wang, Qihua

    2010-10-01

    This study develops a one-step technique to synthesize various super water-repellent coatings with addition of modified silica nanoparticles. Surface topography observation showed that stacking of spherical silica nanoparticles formed primary surface roughness. The wettability of the products was investigated. It was found that the as-prepared surface possesses superhydrophobic properties not only for pure water but also for corrosive water under both acidic and basic conditions. The silica-based nanocomposite coatings can be fabricated on glass substrates and other functional engineering material surfaces, such as copper, iron, aluminum alloy, to form self-cleaning coatings.

  6. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.

    Science.gov (United States)

    Miljkovic, Nenad; Enright, Ryan; Wang, Evelyn N

    2012-02-28

    Condensation on superhydrophobic nanostructured surfaces offers new opportunities for enhanced energy conversion, efficient water harvesting, and high performance thermal management. These surfaces are designed to be Cassie stable and favor the formation of suspended droplets on top of the nanostructures as compared to partially wetting droplets which locally wet the base of the nanostructures. These suspended droplets promise minimal contact line pinning and promote passive droplet shedding at sizes smaller than the characteristic capillary length. However, the gas films underneath such droplets may significantly hinder the overall heat and mass transfer performance. We investigated droplet growth dynamics on superhydrophobic nanostructured surfaces to elucidate the importance of droplet morphology on heat and mass transfer. By taking advantage of well-controlled functionalized silicon nanopillars, we observed the growth and shedding behavior of suspended and partially wetting droplets on the same surface during condensation. Environmental scanning electron microscopy was used to demonstrate that initial droplet growth rates of partially wetting droplets were 6× larger than that of suspended droplets. We subsequently developed a droplet growth model to explain the experimental results and showed that partially wetting droplets had 4-6× higher heat transfer rates than that of suspended droplets. On the basis of these findings, the overall performance enhancement created by surface nanostructuring was examined in comparison to a flat hydrophobic surface. We showed these nanostructured surfaces had 56% heat flux enhancement for partially wetting droplet morphologies and 71% heat flux degradation for suspended morphologies in comparison to flat hydrophobic surfaces. This study provides insights into the previously unidentified role of droplet wetting morphology on growth rate, as well as the need to design Cassie stable nanostructured surfaces with tailored droplet

  7. A thermodynamic approach for determining the contact angle hysteresis for superhydrophobic surfaces.

    Science.gov (United States)

    Li, W; Amirfazli, A

    2005-12-01

    Contact angle hysteresis (CAH) is critical to superhydrophobicity of a surface. This study proposes a free energy thermodynamic analysis (of a 2-D model surface) that significantly simplifies calculations of free energy barrier associated with CAH phenomena. A microtextured surface with pillar structure, typical of one used in experimental studies, is used as an example. We demonstrate that the predicted CAH and equilibrium contact angles are consistent with experimental observations and predictions of Wenzel's and Cassie's equations, respectively. We also establish a criterion for transition between noncomposite and composite wetting states. The results and methodology presented can potentially be used for designing superhydrophobic surfaces.

  8. Robust superhydrophobic silicon without a low surface-energy hydrophobic coating.

    Science.gov (United States)

    Hoshian, Sasha; Jokinen, Ville; Somerkivi, Villeseveri; Lokanathan, Arcot R; Franssila, Sami

    2015-01-14

    Superhydrophobic surfaces without low surface-energy (hydrophobic) modification such as silanization or (fluoro)polymer coatings are crucial for water-repellent applications that need to survive under harsh UV or IR exposures and mechanical abrasion. In this work, robust low-hysteresis superhydrophobic surfaces are demonstrated using a novel hierarchical silicon structure without a low surface-energy coating. The proposed geometry produces superhydrophobicity out of silicon that is naturally hydrophilic. The structure is composed of collapsed silicon nanowires on top and bottom of T-shaped micropillars. Collapsed silicon nanowires cause superhydrophobicity due to nanoscale air pockets trapped below them. T-shaped micropillars significantly decrease the water contact angle hysteresis because microscale air pockets are trapped between them and can not easily escape. Robustness is studied under mechanical polishing, high-energy photoexposure, high temperature, high-pressure water shower, and different acidic and solvent environments. Mechanical abrasion damages the nanowires on top of micropillars, but those at the bottom survive. Small increase of hysteresis is seen, but the surface is still superhydrophobic after abrasion.

  9. Facile spray-coating process for the fabrication of tunable adhesive superhydrophobic surfaces with heterogeneous chemical compositions used for selective transportation of microdroplets with different volumes.

    Science.gov (United States)

    Li, Jian; Jing, Zhijiao; Zha, Fei; Yang, Yaoxia; Wang, Qingtao; Lei, Ziqiang

    2014-06-11

    In this paper, tunable adhesive superhydrophobic ZnO surfaces have been fabricated successfully by spraying ZnO nanoparticle (NP) suspensions onto desired substrates. We regulate the spray-coating process by changing the mass percentage of hydrophobic ZnO NPs (which were achieved by modifying hydrophilic ZnO NPs with stearic acid) in the hydrophobic/hydrophilic ZnO NP mixtures to control heterogeneous chemical composition of the ZnO surfaces. Thus, the water adhesion on the same superhydrophobic ZnO surface could be effectively tuned by controlling the surface chemical composition without altering the surface morphology. Compared with the conventional tunable adhesive superhydrophobic surfaces, on which there were only three different water sliding angle values: lower than 10°, 90° (the water droplet is firmly pinned on the surface at any tilted angles), and the value between the two ones, the water adhesion on the superhydrophobic ZnO surfaces has been tuned effectively, on which the sliding angle is controlled from 2 ± 1° to 9 ± 1°, 21 ± 2°, 39 ± 3°, and 90°. Accordingly, the adhesive force can be adjusted from extremely low (∼2.5 μN) to very high (∼111.6 μN). On the basis of the different adhesive forces of the tunable adhesive superhydrophobic surfaces, the selective transportation of microdroplets with different volumes was achieved, which has never been reported before. In addition, we demonstrated a proof of selective transportation of microdroplets with different volumes for application in the droplet-based microreactors via our tunable adhesive superhydrophobic surfaces for the quantitative detection of AgNO3 and NaOH. The results reported herein realize the selective transportation of microdroplets with different volumes and we believe that this method would potentially be used in many important applications, such as selective water droplet transportation, biomolecular quantitative detection and droplet-based biodetection.

  10. Superhydrophobic Surface Enhanced Raman Scattering Sensing using Janus Particle Arrays Realized by Site-Specific Electrochemical Growth

    OpenAIRE

    Yang, Shikuan; Hricko, Patrick John; Huang, Po-Hsun; Li, Sixing; Zhao, Yanhui; Xie, Yuliang; Guo, Feng; Wang, Lin; Huang, Tony Jun

    2013-01-01

    Site-specific electrochemical deposition is used to prepare polystyrene (PS)-Ag Janus particle arrays with superhydrophobic properties. The analyte molecules can be significantly enriched using the superhydrophobic property of the PS-Ag Janus particle array before SERS detections, enabling an extremely sensitive detection of molecules in a highly diluted solution (e.g., femtomolar level). This superhydrophobic surface enhanced Raman scattering sensing concept described here is of critical sig...

  11. Effect of Electro-Osmotic Flow on Energy Conversion on Superhydrophobic Surfaces

    CERN Document Server

    Seshadri, Gowrishankar

    2013-01-01

    It has been suggested that superhydrophobic surfaces, due to the presence of a no-shear zone, can greatly enhance transport of surface charges, leading to a considerable increase in the streaming potential. This could find potential use in micro-energy harvesting devices. In this paper, we show using analytical and numerical methods, that when a streaming potential is generated in such superhydrophobic geometries, the reverse electro-osmotic flow and hence current generated by this, is significant. A decrease in streaming potential compared to what was earlier predicted is expected. We also show that, due to the electro-osmotic streaming-current, a saturation in both the power extracted and efficiency of energy conversion is achieved in such systems for large values of the free surface charge densities. Nevertheless, under realistic conditions, such microstructured devices with superhydrophobic surfaces have the potential to even reach energy conversion efficiencies only achieved in nanostructured devices so ...

  12. Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, R., E-mail: rjafari@uqac.ca [NSERC / Hydro-Quebec / UQAC Industrial Chair on Atmospheric Icing of Power Network Equipment (CIGELE) and Canada Research Chair on Engineering of Power Network Atmospheric Icing (INGIVRE), Universite du Quebec a Chicoutimi, Chicoutimi, QC (Canada); Menini, R.; Farzaneh, M. [NSERC / Hydro-Quebec / UQAC Industrial Chair on Atmospheric Icing of Power Network Equipment (CIGELE) and Canada Research Chair on Engineering of Power Network Atmospheric Icing (INGIVRE), Universite du Quebec a Chicoutimi, Chicoutimi, QC (Canada)

    2010-12-15

    A superhydrophobic and icephobic surface were investigated on aluminum alloy substrate. Anodizing was used first to create a micro-nanostructured aluminum oxide underlayer on the alloy substrate. In a second step, the rough surface was coated with RF-sputtered polytetrafluoroethylene (PTFE or Teflon). Scanning electron microscopy images showed a 'bird's nest'-like structure on the anodized surface. The RF-sputtered PTFE coating exhibited a high static contact angle of {approx}165 deg. with a very low contact angle hysteresis of {approx}3 deg. X-ray photoelectron spectroscopy (XPS) results showed high quantities of CF{sub 3} and CF{sub 2} groups, which are responsible for the hydrophobic behavior of the coatings. The performance of this superhydrophobic film was studied under atmospheric icing conditions. These results showed that on superhydrophobic surfaces ice-adhesion strength was 3.5 times lower than on the polished aluminum substrate.

  13. Heat Transfer through a Condensate Droplet on Hydrophobic and Nanostructured Superhydrophobic Surfaces.

    Science.gov (United States)

    Chavan, Shreyas; Cha, Hyeongyun; Orejon, Daniel; Nawaz, Kashif; Singla, Nitish; Yeung, Yip Fun; Park, Deokgeun; Kang, Dong Hoon; Chang, Yujin; Takata, Yasuyuki; Miljkovic, Nenad

    2016-08-09

    Understanding the fundamental mechanisms governing vapor condensation on nonwetting surfaces is crucial to a wide range of energy and water applications. In this paper, we reconcile classical droplet growth modeling barriers by utilizing two-dimensional axisymmetric numerical simulations to study individual droplet heat transfer on nonwetting surfaces (90° distribution theory is incorporated to show that previous modeling approaches underpredict the overall heat transfer by as much as 300% for dropwise and jumping-droplet condensation. To verify our simulation results, we study condensed water droplet growth using optical and environmental scanning electron microscopy on biphilic samples consisting of hydrophobic and nanostructured superhydrophobic regions, showing excellent agreement with the simulations for both constant base area and constant contact angle growth regimes. Our results demonstrate the importance of resolving local heat transfer effects for the fundamental understanding and high fidelity modeling of phase change heat transfer on nonwetting surfaces.

  14. Effects of drop size and measuring condition on static contact angle measurement on a superhydrophobic surface with goniometric technique

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kwangseok; Kim, Minyoung; Kim, Do Hyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Ahn, Jeong Keun [Chungnam National University, Daejeon (Korea, Republic of)

    2015-12-15

    It is not a simple task to measure a contact angle of a water drop on a superhydrophobic surface with sessile drop method, because a roll-off angle is very low. Usually contact angle of a water drop on a superhydrophobic surface is measured by fixing a drop with intentional defects on the surface or a needle. We examined the effects of drop size and measuring condition such as the use of a needle or defects on the static contact angle measurement on superhydrophobic surface. Results showed that the contact angles on a superhydrophobic surface remain almost constant within intrinsic measurement errors unless there is a wetting transition during the measurement. We expect that this study will provide a deeper understanding on the nature of the contact angle and convenient measurement of the contact angle on the superhydrophobic surface.

  15. The effect of composition and thermodynamics on the surface morphology of durable superhydrophobic polymer coatings

    Directory of Open Access Journals (Sweden)

    Nahum T

    2017-02-01

    Full Text Available Tehila Nahum,1 Hanna Dodiuk,2 Samuel Kenig,2 Artee Panwar,1 Carol Barry,1 Joey Mead,1 1Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA, USA; 2Department of Polymers and Plastics Engineering, Shenkar College of Engineering Design and Art, Ramat Gan, Israel Abstract: Durable superhydrophobic coatings were synthesized using a system of silica nanoparticles (NPs to provide nanoscale roughness, fluorosilane to give hydrophobic chemistry, and three different polymer binders: urethane acrylate, ethyl 2-cyanoacrylate, and epoxy. Coatings composed of different binders incorporating NPs in various concentrations exhibited different superhydrophobic attributes when applied on polycarbonate (PC and glass substrates and as a function of coating composition. It was found that the substrate surface characteristics and wettability affected the superhydrophobic characteristics of the coatings. Interfacial tension and spreading coefficient parameters (thermodynamics of the coating components were used to predict the localization of the NPs for the different binders’ concentrations. The thermodynamic analysis of the NPs localization was in good agreement with the experimental observations. On the basis of the thermodynamic analysis and the experimental scanning electron microscopy, X-ray photoelectron spectroscopy, profilometry, and atomic force microscopy results, it was concluded that localization of the NPs on the surface was critical to provide the necessary roughness and resulting superhydrophobicity. The durability evaluated by tape testing of the epoxy formulations was the best on both glass and PC. Several coating compositions retained their superhydrophobicity after the tape test. In summary, it was concluded that thermodynamic analysis is a powerful tool to predict the roughness of the coating due to the location of NPs on the surface, and hence can be used in the design of superhydrophobic coatings. Keywords

  16. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method.

    Science.gov (United States)

    Su, Fenghua; Yao, Kai

    2014-06-11

    A novel method for controllable fabrication of a superhydrophobic surface with a water contact angle of 162 ± 1° and a sliding angle of 3 ± 0.5° on copper substrate is reported in this Research Article. The facile and low-cost fabrication process is composed from the electrodeposition in traditional Watts bath and the heat-treatment in the presence of (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane (AC-FAS). The superhydrophobicity of the fabricated surface results from its pine-cone-like hierarchical micro-nanostructure and the assembly of low-surface-energy fluorinated components on it. The superhydrophobic surface exhibits high microhardness and excellent mechanical abrasion resistance because it maintains superhydrophobicity after mechanical abrasion against 800 grit SiC sandpaper for 1.0 m at the applied pressure of 4.80 kPa. Moreover, the superhydrophobic surface has good chemical stability in both acidic and alkaline environments. The potentiodynamic polarization and electrochemical impedance spectroscopy test shows that the as-prepared superhydrophobic surface has excellent corrosion resistance that can provide effective protection for the bare Cu substrate. In addition, the as-prepared superhydrophobic surface has self-cleaning ability. It is believed that the facile and low-cost method offer an effective strategy and promising industrial applications for fabricating superhydrophobic surfaces on various metallic materials.

  17. Vapor-Liquid Sol-Gel Approach to Fabricating Highly Durable and Robust Superhydrophobic Polydimethylsiloxane@Silica Surface on Polyester Textile for Oil-Water Separation.

    Science.gov (United States)

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Wang, Jing; Liao, Xiaofeng; Zeng, Xingrong

    2017-08-23

    Large-scale fabrication of superhydrophobic surfaces with excellent durability by simple techniques has been of considerable interest for its urgent practical application in oil-water separation in recent years. Herein, we proposed a facile vapor-liquid sol-gel approach to fabricating highly durable and robust superhydrophobic polydimethylsiloxane@silica surfaces on the cross-structure polyester textiles. Scanning electron microscopy and Fourier transform infrared spectroscopy demonstrated that the silica generated from the hydrolysis-condensation of tetraethyl orthosilicate (TEOS) gradually aggregated at microscale driven by the extreme nonpolar dihydroxyl-terminated polydimethylsiloxane (PDMS(OH)). This led to construction of hierarchical roughness and micronano structures of the superhydrophobic textile surface. The as-fabricated superhydrophobic textile possessed outstanding durability in deionized water, various solvents, strong acid/base solutions, and boiling/ice water. Remarkably, the polyester textile still retained great water repellency and even after ultrasonic treatment for 18 h, 96 laundering cycles, and 600 abrasion cycles, exhibiting excellent mechanical robustness. Importantly, the superhydrophobic polyester textile was further applied for oil-water separation as absorption materials and/or filter pipes, presenting high separation efficiency and great reusability. Our method to construct superhydrophobic textiles is simple but highly efficient; no special equipment, chemicals, or atmosphere is required. Additionally, no fluorinated slianes and organic solvents are involved, which is very beneficial for environment safety and protection. Our findings conceivably stand out as a new tool to fabricate organic-inorganic superhydrophobic surfaces with strong durability and robustness for practical applications in oil spill accidents and industrial sewage emission.

  18. Modification of Turbulent Boundary Layer Flows by Superhydrophobic Surfaces

    Science.gov (United States)

    Gose, James W.; Golovin, Kevin; Barros, Julio; Schultz, Michael P.; Tuteja, Anish; Perlin, Marc; Ceccio, Steven L.

    2016-11-01

    Measurements of near zero pressure gradient turbulent boundary layer (TBL) flow over several superhydrophobic surfaces (SHSs) are presented and compared to those for a hydraulically smooth baseline. The surfaces were developed at the University of Michigan as part of an ongoing research thrust to investigate the feasibility of SHSs for skin-friction drag reduction in turbulent flow. The SHSs were previously evaluated in fully-developed turbulent channel flow and have been shown to provide meaningful drag reduction. The TBL experiments were conducted at the USNA in a water tunnel with a test section 2.0 m (L) x 0.2 m (W) x 0.2 m (H). The free-stream speed was set to 1.26 m/s which corresponded to a friction Reynolds number of 1,500. The TBL was tripped at the test section inlet with a 0.8 mm diameter wire. The upper and side walls provided optical access, while the lower wall was either the smooth baseline or a spray coated SHS. The velocity measurements were obtained with a TSI FSA3500 two-component Laser-Doppler Velocimeter (LDV) and custom-designed beam displacer operated in coincidence mode. The LDV probe volume diameter was 45 μm (approx. one wall-unit). The measurements were recorded 1.5 m downstream of the trip. When the measured quantities were normalized using the inner variables, the results indicated a significant reduction in the near wall viscous and total stresses with little effect on the flow outside the inner layer.

  19. Construction of Renewable Superhydrophobic Surfaces via Thermally Induced Phase Separation and Mechanical Peeling

    Institute of Scientific and Technical Information of China (English)

    Qi Zhu; Yuan Yu; Qing-Yun Wu; Lin Gu

    2017-01-01

    We report a simple preparation method of a renewable superhydrophobic surface by thermally induced phase separation (TIPS) and mechanical peeling.Porous polyvinylidene fluoride (PVDF) membranes with hierarchical structures were prepared by a TIPS process under different cooling conditions,which were confirmed by scanning electron microscopy and mercury intrusion porosimetry.After peeling off the top layer,rough structures with hundreds of nanometers to several microns were obtained.A digital microscopy determines that the surface roughness of peeled PVDF membranes is much higher than that of the original PVDF membrane,which is important to obtain the superhydrophobicity.Water contact angle and sliding angle measurements demonstrate that the peeled membrane surfaces display superhydrophobicity with a high contact angle (152°) and a low sliding angle (7.2°).Moreover,the superhydrophobicity can be easily recovered for many times by a simple mechanical peeling,identical to the original superhydrophobicity.This simple preparation method is low cost,and suitable for large-scale industrialization,which may offer more opportunities for practical applications.

  20. Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles.

    Science.gov (United States)

    Xu, Lebo; Karunakaran, Raghuraman G; Guo, Jia; Yang, Shu

    2012-02-01

    We study the nonwettability and transparency from the assembly of fluorosilane modified silica nanoparticles (F-SiO(2) NPs) via one-step spin-coating and dip-coating without any surface postpassivation steps. When spin-coating the hydrophobic NPs (100 nm in diameter) at a concentration ≥ 0.8 wt % in a fluorinated solvent, the surface exhibited superhydrophobicity with an advancing water contact angle greater than 150° and a water droplet (5 μL) roll-off angle less than 5°. In comparison, superhydrophobicity was not achieved by dip-coating the same hydrophobic NPs. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) images revealed that NPs formed a nearly close-packed assembly in the superhydrophobic films, which effectively minimized the exposure of the underlying substrate while offering sufficiently trapped air pockets. In the dip-coated films, however, the surface coverage was rather random and incomplete. Therefore, the underlying substrate was exposed and water was able to impregnate between the NPs, leading to smaller water contact angle and larger water contact angle hysteresis. The spin-coated superhydrophobic film was also highly transparent with greater than 95% transmittance in the visible region. Further, we demonstrated that the one-step coating strategy could be extended to different polymeric substrates, including poly(methyl methacrylate) and polyester fabrics, to achieve superhydrophobicity.

  1. Superhydrophobic surface fabricated on iron substrate by black chromium electrodeposition and its corrosion resistance property

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China); Feng, Haitao [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China); Lin, Feng [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Yabin [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China); Wang, Liping [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Dong, Yaping [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China); Li, Wu, E-mail: liwu2016@126.com [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China)

    2016-08-15

    Highlights: • Superhydrophobic surface was fabricated by black chromium electrodeposition and stearic acid modification. • The reaction process is simple, and of low cost, and no special instrument or environment is needed. • The obtained superhydrophobic surface presents good water repellency, and performs well at corrosion resistance. - Abstract: The fabrication of superhydrophobic surface on iron substrate is carried out through 20 min black chromium electrodeposition, followed by immersing in 0.05 M ethanolic stearic acid solution for 12 h. The resultant superhydrophobic complex film is characterized by scanning electron microscope (SEM), disperse Spectrometer (EDS), atomic force microscope (AFM), water contact angle (CA), sliding angle (SA) and X-ray photoelectron spectroscope (XPS), and its corrosion resistance property is measured with cyclic voltammetry (CV), linear polarization and electrochemical impedance spectroscopy (EIS). The results show that the fabricated superhydrophobic film has excellent water repellency (CA, 158.8°; SA, 2.1°) and significantly high corrosion resistance (1.31 × 10{sup 6} Ω cm{sup −2}) and excellent corrosion protection efficiency (99.94%).

  2. Optimal conditions for the preparation of superhydrophobic surfaces on al substrates using a simple etching approach

    Science.gov (United States)

    Ruan, Min; Li, Wen; Wang, Baoshan; Luo, Qiang; Ma, Fumin; Yu, Zhanlong

    2012-07-01

    Many methods have been proposed to develop the fabrication techniques for superhydrophobic surfaces. However, such techniques are still at their infant stage and suffer many shortcomings. In this paper, the superhydrophobic surfaces on an Al substrate were prepared by a simple etching method. Effects of etching time, modifiers, and modification concentration and time were investigated, and optimal conditions for the best superhydrophobicity were studied. It was demonstrated that for etching the aluminum plate in Beck's dislocation, if the etching time was 15 s, modifier was Lauric acid-ethanol solution, and modification concentration and time was 5% and 1.5 h, respectively, the surface exhibited a water contact angle as high as 167.5° and a contact angle hysteresis as low as 2.3°.

  3. Biomimetic superhydrophobic surfaces by combining mussel-inspired adhesion with lotus-inspired coating

    Science.gov (United States)

    Xue, Chao-Hua; Ji, Xue-Qing; Zhang, Jing; Ma, Jian-Zhong; Jia, Shun-Tian

    2015-08-01

    Superhydrophobic surfaces on PET textiles were fabricated by combined bioinspiration from the strong adhesion of marine mussels and the two-scale structure of lotus leaves under mild conditions. Dopamine can spontaneously polymerize in alkaline aqueous solution to form a thin adhesive layer of polydopamine (PDA) wrapping on the micro-scale fibers. The as-formed thin PDA layer worked as a reactive template to generate PDA nanoparticles decorated on the fiber surfaces, imparting the textiles with excellent UV-shielding properties as well as a hierarchical structure similar to the morphology of the lotus leaf. After further modification with perfluorodecyl trichlorosilane, the textiles turned superhydrophobic with a water contact angle higher than 150°. Due to the strong adhesion of PDA to a wide range of materials, the present strategy may be extendable to fabrication of superhydrophobic surfaces on a variety of other substrates.

  4. Biomimetic superhydrophobic surfaces by combining mussel-inspired adhesion with lotus-inspired coating.

    Science.gov (United States)

    Xue, Chao-Hua; Ji, Xue-Qing; Zhang, Jing; Ma, Jian-Zhong; Jia, Shun-Tian

    2015-08-21

    Superhydrophobic surfaces on PET textiles were fabricated by combined bioinspiration from the strong adhesion of marine mussels and the two-scale structure of lotus leaves under mild conditions. Dopamine can spontaneously polymerize in alkaline aqueous solution to form a thin adhesive layer of polydopamine (PDA) wrapping on the micro-scale fibers. The as-formed thin PDA layer worked as a reactive template to generate PDA nanoparticles decorated on the fiber surfaces, imparting the textiles with excellent UV-shielding properties as well as a hierarchical structure similar to the morphology of the lotus leaf. After further modification with perfluorodecyl trichlorosilane, the textiles turned superhydrophobic with a water contact angle higher than 150°. Due to the strong adhesion of PDA to a wide range of materials, the present strategy may be extendable to fabrication of superhydrophobic surfaces on a variety of other substrates.

  5. Tuning cell adhesion on polymeric and nanocomposite surfaces: Role of topography versus superhydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Zangi, Sepideh [Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, P.O. Box 36155-163, Shahrood (Iran, Islamic Republic of); Hejazi, Iman [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Seyfi, Javad, E-mail: Jseyfi@gmail.com [Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, P.O. Box 36155-163, Shahrood (Iran, Islamic Republic of); Hejazi, Ehsan [Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Khonakdar, Hossein Ali [Department of Polymer Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, P.O. Box 19585-466, Tehran (Iran, Islamic Republic of); Davachi, Seyed Mohammad [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of)

    2016-06-01

    Development of surface modification procedures which allow tuning the cell adhesion on the surface of biomaterials and devices is of great importance. In this study, the effects of different topographies and wettabilities on cell adhesion behavior of polymeric surfaces are investigated. To this end, an improved phase separation method was proposed to impart various wettabilities (hydrophobic and superhydrophobic) on polypropylene surfaces. Surface morphologies and compositions were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cell culture was conducted to evaluate the adhesion of 4T1 mouse mammary tumor cells. It was found that processing conditions such as drying temperature is highly influential in cell adhesion behavior due to the formation of an utterly different surface topography. It was concluded that surface topography plays a more significant role in cell adhesion behavior rather than superhydrophobicity since the nano-scale topography highly inhibited the cell adhesion as compared to the micro-scale topography. Such cell repellent behavior could be very useful in many biomedical devices such as those in drug delivery and blood contacting applications as well as biosensors. - Highlights: • A novel method is presented for fabrication of superhydrophobic surfaces. • The presence of nanoparticles in non-solvent bath notably promoted phase separation. • Topography had a more notable impact on cell adhesion than superhydrophobicity. • Nano-scale topographical features highly impeded cell adhesion on polymer surfaces.

  6. Facile fabrication of large-scale stable superhydrophobic surfaces with carbon sphere films by burning rapeseed oil

    Science.gov (United States)

    Qu, Mengnan; He, Jinmei; Cao, Biyun

    2010-10-01

    Stable anti-corrosive superhydrophobic surfaces were successfully prepared with the carbon nanosphere films by means of depositing the soot of burning rapeseed oil. The method is extremely cheap, facile, time-saving and avoided any of the special equipments, special reagents and complex process control. The method is suitable for the large-scale preparation of superhydrophobic surface and the substrate can be easily changed. The as-prepared surfaces showed stable superhydrophobicity and anti-corrosive property even in many corrosive solutions, such as acidic or basic solutions over a wide pH range. The as-prepared superhydrophobic surface was carefully characterized by the field emission scanning electron microscopy and transmission electron microscope to confirm the synergistic binary geometric structures at micro- and nanometer scale. This result will open a new avenue in the superhydrophobic paint research with these easily obtained carbon nanospheres in the near future.

  7. Simulation of Effective Slip and Drag in Pressure-Driven Flow on Superhydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    Yuanding Huang

    2016-01-01

    Full Text Available The flow on superhydrophobic surfaces was investigated using finite element modeling (FEM. Surfaces with different textures like grooves, square pillars, and cylinders immersed in liquid forming Cassie state were modeled. Nonslip boundary condition was assumed at solid-liquid interface while slip boundary condition was supposed at gas-liquid interface. It was found that the flow rate can be affected by the shape of the texture, the fraction of the gas-liquid area, the height of the channel, and the driving pressure gradient. By extracting the effective boundary slip from the flow rate based on a model, it was found that the shape of the textures and the fraction of the gas-liquid area affect the effective slip significantly while the height of the channel and the driving pressure gradient have no obvious effect on effective slip.

  8. PREPARATION AND CHARACTERIZATION OF SUPERHYDROPHOBIC FEP-TEFLON SURFACES

    NARCIS (Netherlands)

    BUSSCHER, HJ; STOKROOS, [No Value; VANDERMEI, HC; ROUXHET, PG; SCHAKENRAAD, JM

    1992-01-01

    Superhydrophobic FEP-Teflon was prepared by argon ion etching followed by oxygen glow discharge treatment of commercially available FEP-Teflon sheet material. This combined treatment yielded an increase in water contact angle from 109-degrees to > 140-degrees. Ion etching alone caused a small increa

  9. PREPARATION AND CHARACTERIZATION OF SUPERHYDROPHOBIC FEP-TEFLON SURFACES

    NARCIS (Netherlands)

    BUSSCHER, HJ; STOKROOS, [No Value; VANDERMEI, HC; ROUXHET, PG; SCHAKENRAAD, JM

    1992-01-01

    Superhydrophobic FEP-Teflon was prepared by argon ion etching followed by oxygen glow discharge treatment of commercially available FEP-Teflon sheet material. This combined treatment yielded an increase in water contact angle from 109-degrees to > 140-degrees. Ion etching alone caused a small increa

  10. A Novel General Chemistry Laboratory: Creation of Biomimetic Superhydrophobic Surfaces through Replica Molding

    Science.gov (United States)

    Verbanic, Samuel; Brady, Owen; Sanda, Ahmed; Gustafson, Carolina; Donhauser, Zachary J.

    2014-01-01

    Biomimetic replicas of superhydrophobic lotus and taro leaf surfaces can be made using polydimethylsiloxane. These replicas faithfully reproduce the microstructures of the leaves' surface and can be analyzed using contact angle goniometry, self-cleaning experiments, and optical microscopy. These simple and adaptable experiments were used to…

  11. Mussel-inspired superhydrophobic surfaces with enhanced corrosion resistance and dual-action antibacterial properties.

    Science.gov (United States)

    Qian, Hongchang; Li, Minglu; Li, Zhong; Lou, Yuntian; Huang, Luyao; Zhang, Dawei; Xu, Dake; Du, Cuiwei; Lu, Lin; Gao, Jin

    2017-11-01

    In this study, a multilayer antibacterial film was assembled onto 316L stainless steel via mussel-inspired depositions of polydopamine (PDA) and silver (Ag) nanoparticles followed by post-modification with 1H, 1H, 2H, 2H-perfluorodecanethiol. The resulting surface exhibited excellent superhydrophobicity with hierarchical micro/nanostructures that were constructed by both PDA and Ag nanoparticles. The crystal structure and chemical composition of these surfaces were investigated using X-ray photoelectron spectroscopy (XPS) analysis. Potentiodynamic polarization measurements revealed that the corrosion resistance of the as-prepared surfaces were sequentially increased after each step of the fabrication process. Compared with the surface covered with only Ag nanoparticles, the superhydrophobic surfaces exhibited substantially enhanced antibacterial activity against the Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, resulting from the synergistic antibacterial actions of the superhydrophobic surface and Ag nanoparticles. The superhydrophobic surface exhibited lower cytotoxicity, compared to the surface covered with Ag nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Optically transparent superhydrophobic surfaces with enhanced mechanical abrasion resistance enabled by mesh structure.

    Science.gov (United States)

    Yokoi, Naoyuki; Manabe, Kengo; Tenjimbayashi, Mizuki; Shiratori, Seimei

    2015-03-04

    Inspired by naturally occurring superhydrophobic surfaces such as "lotus leaves", a number of approaches have been attempted to create specific surfaces having nano/microscale rough structures and a low surface free energy. Most importantly, much attention has been paid in recent years to the improvement of the durability of highly transparent superhydrophobic surfaces. In this report, superhydrophobic surfaces are fabricated using three steps. First, chemical and morphological changes are generated in the polyester mesh by alkaline treatment of NaOH. Second, alkaline treatment causes hydrophobic molecules of 1H,1H,2H,2H-perfluorodecyltrichlorosilane to react with the hydroxyl groups on the fiber surfaces forming covalent bonds by using the chemical vapor deposition method. Third, hydrophobicity is enhanced by treating the mesh with SiO2 nanoparticles modified with 1H,1H,2H,2H-perfluorooctyltriethoxysilane using a spray method. The transmittance of the fabricated superhydrophobic mesh is approximately 80% in the spectral range of 400-1000 nm. The water contact angle and the water sliding angle remain greater than 150° and lower than 25°, respectively, and the transmittance remains approximately 79% after 100 cycles of abrasion under approximately 10 kPa of pressure. The mesh surface exhibits a good resistance to acidic and basic solutions over a wide range of pH values (pH 2-14), and the surface can also be used as an oil/water separation material because of its mesh structure.

  13. Self-Organization of Microscale Condensate for Delayed Flooding of Nanostructured Superhydrophobic Surfaces.

    Science.gov (United States)

    Ölçeroğlu, Emre; McCarthy, Matthew

    2016-03-02

    Superhydrophobic surfaces enhance condensation by inhibiting the formation of an insulating liquid layer. While this produces efficient heat transfer at low supersaturations, superhydrophobicity has been shown to break down at increased supersaturations. As heat transfer increases, the random distribution and high density of nucleation sites produces pinned droplets, which lead to uncontrollable flooding. In this work, engineered variations in wettability are used to promote the self-organization of microscale droplets, which is shown to effectively delay flooding. Virus-templated superhydrophobic surfaces are patterned with an array of superhydrophilic islands designed to minimize surface adhesion while promoting spatial order. By use of optical and electron microscopy, the surfaces are optimized and characterized during condensation. Mixed wettability imparts spatial order not only through preferential nucleation but more importantly through the self-organization of coalescing droplets at high supersaturations. The self-organization of microscale droplets (diameters of 1 mm) on the surface. As heat transfer increases, the surfaces transition from jumping-mode to shedding-mode removal with no flooding. This demonstrates the ability to engineer surfaces to resist flooding and can act as the basis for developing robust superhydrophobic surfaces for condensation applications.

  14. A Novel General Chemistry Laboratory: Creation of Biomimetic Superhydrophobic Surfaces through Replica Molding

    Science.gov (United States)

    Verbanic, Samuel; Brady, Owen; Sanda, Ahmed; Gustafson, Carolina; Donhauser, Zachary J.

    2014-01-01

    Biomimetic replicas of superhydrophobic lotus and taro leaf surfaces can be made using polydimethylsiloxane. These replicas faithfully reproduce the microstructures of the leaves' surface and can be analyzed using contact angle goniometry, self-cleaning experiments, and optical microscopy. These simple and adaptable experiments were used to…

  15. Electrostatic powder spraying process for the fabrication of stable superhydrophobic surfaces

    Science.gov (United States)

    Gu, Guotuan; Tian, Yuping; Li, Zhantie; Lu, Dongfang

    2011-03-01

    Nano-sized Al2O3 particles were modified by heptadecafluorodecyl trimethoxysilane and 2,3-epoxy propoxy propyl trimethoxysilicane to make it both hydrophobic and reactive. The reactive nano-particles were mixed with polyester resin containing curing agents and electrostatic sprayed on stainless steel substrates to obtain stable superhydrophobic coatings after curing. The water contact angle (WCA) on the hybrid coating is influenced by the content of Al2O3 particles in the coating. As the Al2O3 concentration in the coating was increased from 0% to 8%, WCA increased from 68° to 165°. Surface topography of the coatings was examined using scanning electron microscopy (SEM). Nano-particles covered on the coating surface formed continuous film with greatly enhanced roughness, which was found to be responsible for the superhydrophobicity. The method is simple and cost effective and can be used for preparing self-cleaning superhydrophobic coating on large areas.

  16. Effects of surface topography and vibrations on wetting: Superhydrophobicity, icephobicity and corrosion resistance

    Science.gov (United States)

    Ramachandran, Rahul

    lowered using a hydrophobic emulsion. The hydrophobic concrete samples were able to repel incoming water droplets as well as resist droplet pinning. Corrosion resistance is achieved in cast iron samples by rendering them superhydrophobic. The corrosion resistance of superhydrophobic surfaces with micro/nanotopography may be explained by the low effective contact area with the electrolyte. The experimental results matched the theoretical predictions based on surface roughness and wettability. The icephobicity of engineered cementitious composite samples is achieved by hydrophobization, by using coatings containing dielectric material (such as polyvinyl alcohol fibers), and by controlling the surface topography. Two aspects of the icephobicity of concrete, namely, the repulsion of incoming water droplets before freezing and the ice adhesion strength, are investigated experimentally. It is found that icephobic performance of concrete depends on these parameters --- the hydrophobic emulsion concentration, the polyvinyl alcohol fiber content, the water to cement ratio, and the sand to cement ratio. The potential for biomimetic icephobicity of thermogenic skunk cabbage plant is investigated, and it is found that the surface topography of its leaves can affect the heat transfer from the plant to the surrounding snow. The hierarchical microstructure of the leaf surface coupled with its high adhesion to water suggests the presence of an impregnated wetting state, which can minimize the heat loss. Thus functional materials and surfaces, such as hydrophobic and icephobic engineered cementitious composites and corrosion resistant metallic surfaces, can be produced by controlling the surface micro/nanotopography.

  17. Formation and Mechanism of Superhydrophobic/Hydrophobic Surfaces Made from Amphiphiles through Droplet-Mediated Evaporation-Induced Self-Assembly.

    Science.gov (United States)

    Dong, Fangyuan; Zhang, Mi; Tang, Wai-Wa; Wang, Yi

    2015-04-23

    Superhydrophobic/hydrophobic surfaces have attracted wide attention because of their broad applications in various regions, including coating, textile, packaging, electronic devices, and bioengineering. Many studies have been focused on the fabrication of superhydrophobic/hydrophobic surfaces using natural materials. In this paper, superhydrophobic/hydrophobic surfaces were formed by an amphiphilic natural protein, zein, using electrospinning. Water contact angle (WCA) and scanning electron microscopy (SEM) were used to characterize the hydrophobicity and surface morphology of the electrospun structures. The highest WCA of the zein electrospun surfaces could reach 155.5 ± 1.4°. To further understand the mechanism of superhydrophobic surface formation from amphiphiles using electrospinning, a synthetic amphiphilic polymer was selected, and also, a method similar to electrospinning, spray drying, was tried. The electrospun amphiphilic polymer surface showed a high hydrophobicity with a WCA of 141.4 ± 0.7°. WCA of the spray-dried zein surface could reach 125.3 ± 2.1°. The secondary structures of the zein in the electrospun film and cast-dried film were studied using ATR-FTIR, showing that α-helix to β-sheet transformation happened during the solvent evaporation in the cast drying process but not in the electrospinning process. A formation mechanism was proposed on the basis of the orientation of the amphiphiles during the solvent evaporation of different fabrication methods. The droplet-based or jet-based evaporation during electrospinning and spray drying led to the formation of the superhydrophobic/hydrophobic surface by the accumulation of the hydrophobic groups of the amphiphiles on the surface, while the surface-based evaporation during cast drying led to the formation of the hydrophilic surface by the accumulation of the hydrophilic groups of the amphiphiles on the surface.

  18. The icephobicity comparison of polysiloxane modified hydrophobic and superhydrophobic surfaces under condensing environments

    Science.gov (United States)

    Wang, Yuanyi; Liu, Jun; Li, Mingzhen; Wang, Qingjun; Chen, Qingmin

    2016-11-01

    Four polydimethylsiloxane (PDMS) coatings with different surface free energies have been prepared and applied to smooth and roughened aluminum plates to form hydrophobic and superhydrophobic surfaces. Their surface wettability in terms of water contact angle (CA), sliding angle (SA) and water droplet impact dynamics was studied under an ambient (50% relative humidity, RH at 25 °C) and three different condensing environments (low, highly and extremely condensing, i.e. 30%, 60% and 90% RH at -10 °C). In addition, the surface ice adhesion was investigated under the extremely condensing condition. Different PDMS coatings on either smooth or roughened surfaces displayed a very similar impact to static and dynamic wettability under the ambient environment. However, the water impact behavior and ice adhesion under the extremely condensing condition between the hydrophobic and superhydrophobic surfaces are significantly different. One of the superhydrophobic surfaces (R2180) demonstrated an excellent water repelling capability to retard ice accumulation, and reduced ice adhesion strength even under the extremely condensing condition, and thus will be a good candidate for ice-phobic applications. This excellent ice-phobic property is attributed to the low surface free energy of the coating, which effectively prevents the water condensation inside the cavities of the hierarchical superhydrophobic structures and thus maintains "air cushion" on the solid/water interface, indicated by a very low solid-liquid contact area increase after surface is exposed to this condensing weather condition. This result demonstrates that the "air cushion" in a superhydrophobic surface could be maintained even under an extremely condensing condition by carefully selection of coating composition with a very low surface free energy.

  19. Capillary origami: superhydrophobic ribbon surfaces and liquid marbles

    Directory of Open Access Journals (Sweden)

    Glen McHale

    2011-03-01

    known to apply to superhydrophobic surfaces. The results are given for both droplets being wrapped by thin ribbons and for solid grains encapsulating droplets to form liquid marbles.

  20. Capillary origami: superhydrophobic ribbon surfaces and liquid marbles

    Science.gov (United States)

    Newton, Michael I; Shirtcliffe, Neil J; Geraldi, Nicasio R

    2011-01-01

    apply to superhydrophobic surfaces. The results are given for both droplets being wrapped by thin ribbons and for solid grains encapsulating droplets to form liquid marbles. PMID:21977426

  1. Effect of Vapor Flow on Jumping Droplets during Condensation on Superhydrophobic Surfaces

    Science.gov (United States)

    Preston, Daniel J.; Miljkovic, Nenad; Enright, Ryan; Limia, Alexander; Wang, Evelyn N.

    2013-11-01

    Upon coalescence of droplets on a superhydrophobic surface, the net reduction in droplet surface area results in a release of surface energy that can cause the coalesced droplet to ``jump'' away from the surface. Jumping condensing surfaces have been shown to enhance condensation heat transfer by up to 30% compared to state-of-the-art dropwise condensing surfaces. While the heat transfer enhancement of jumping condensation is well documented, droplet behavior after departure from the surface has not been considered. Vapor flows to the condensing surface due to mass conservation. This flow can increase drag on departing droplets, resulting in complete droplet reversal and return to the surface. Upon return, these larger droplets impede heat transfer until they jump again or finally shed due to gravity. By characterizing individual droplet trajectories during condensation on hydrophobic nanostructured copper oxide surfaces for a variety of heat fluxes (q'' = 0.1 - 2 W/cm2), we showed that vapor flow entrainment dominates droplet motion for droplets smaller than R ~ 30 um at high heat fluxes (q'' >2 W/cm2). Furthermore, we developed an analytical model of droplet motion based on first principles and the Reynolds drag equation which agreed well with the experimental data. We considered condensation on both flat and tubular geometries with our model, and we suggest avenues to further enhance heat transfer which minimize droplet return due to entrainment.

  2. Fabrication and anti-icing property of coral-like superhydrophobic aluminum surface

    Science.gov (United States)

    Zuo, Zhiping; Liao, Ruijin; Guo, Chao; Yuan, Yuan; Zhao, Xuetong; Zhuang, Aoyun; Zhang, YiYi

    2015-03-01

    Aluminum is one of the most widely used metals in transmission lines. Accumulation of ice on aluminum may cause serious consequences such as tower collapse and power failure. Here we develop a method to fabricate a coral-like superhydrophobic surface to improve its anti-icing performance via chemical etching and hot-water treatment. The as-prepared surface exhibited superhydrophobicity with a contact angle (CA) of 164.8 ± 1.1° and the sliding angle smaller than 1°. The static and dynamic anti-icing behaviors of the superhydrophobic surface in different conditions were systematically investigated using a self-made device and artificial climate laboratory. Results show that the coral-like superhydrophobic structure displayed excellent anti-icing property. The water droplet remained unfrozen on the as-prepared surface at -6 °C for over 110 min. 71% of the surface was free of ice when exposed in "glaze ice" for 30 min. This investigation proposed a new way to design an anti-icing surface which may have potential future applications in transmission lines against ice accumulation.

  3. A facile electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on carbon steel

    Science.gov (United States)

    Fan, Yi; He, Yi; Luo, Pingya; Chen, Xi; Liu, Bo

    2016-04-01

    Superhydrophobic Fe film with hierarchical micro/nano papillae structures is prepared on C45 steel surface by one-step electrochemical method. The superhydrophobic surface was measured with a water contact angle of 160.5 ± 0.5° and a sliding angle of 2 ± 0.5°. The morphology of the fabricated surface film was characterized by field emission scanning electron microscopy (FE-SEM), and the surface structure seems like accumulated hierarchical micro-nano scaled particles. Furthermore, according to the results of Fourier transform infrared spectra (FT-IR) and X-ray photoelectron spectroscopy (XPS), the chemical composition of surface film was iron complex with organic acid. Besides, the electrochemical measurements showed that the superhydrophobic surface improved the corrosion resistance of carbon steel in 3.5 wt.% NaCl solution significantly. The superhydrophobic layer can perform as a barrier and provide a stable air-liquid interface which inhibit penetration of corrosive medium. In addition, the as-prepared steel exhibited an excellent self-cleaning ability that was not favor to the accumulation of contaminants.

  4. Droplet evaporation of pure water and protein solution on nanostructured superhydrophobic surfaces of varying heights.

    Science.gov (United States)

    Choi, Chang-Hwan; Kim, Chang-Jin C J

    2009-07-07

    Evaporation of liquids on substrates is important for many applications including lab-on-a-chip, especially when they are in droplets. Unlike on planar substrates, droplet evaporation on micropatterned substrates has been studied only recently and none so far on nanopatterns. Driven by the applicability of nanostructured surfaces to biomaterials and tissue engineering, we report on the evaporative process of sessile droplets of pure water and a protein solution on superhydrophobic surfaces of sharp-tip post structures in a submicrometer pitch (230 nm) and varying heights (100-500 nm). We find that the nanotopographical three-dimensionalities such as structural height and sidewall profile affect the surface superhydrophobicity in such a way that only tall and slender nanostructures provide the surface with great superhydrophobicity (a contact angle more than 170 degrees). The evaporation process was different between the pure water and the protein solution; unlike pure water, a significant contact-line spreading and pinning effect was observed in a droplet of a protein solution with an intermediate transition from a dewetting (Cassie) to a wetting (Wenzel) state. Enabled by well-defined nanostructures, our results highlight that the surface superhydrophobicity and the droplet evaporation are significantly affected by the three-dimensional nanometric topography and the surface fouling such as protein adsorption.

  5. Water-based, nonfluorinated dispersions for environmentally benign, large-area, superhydrophobic coatings.

    Science.gov (United States)

    Schutzius, Thomas M; Bayer, Ilker S; Qin, Jian; Waldroup, Don; Megaridis, Constantine M

    2013-12-26

    Low-cost, large-area, superhydrophobic coating treatments are of high value to technological applications requiring efficient liquid repellency. While many applications are envisioned, only few are realizable in practice due to either the high cost or low durability of such treatments. Recently, spray deposition of polymer-particle dispersions has been demonstrated as an excellent means for producing low-cost, large-area, durable, superhydrophobic composite coatings/films; however, such dispersions generally contain harsh or volatile solvents, which are required for solution processing of polymers as well as for dispersing hydrophobic nanoparticles, thus inhibiting scalability due to the increased cost in chemical handling and environmental safety concerns. Moreover, such coatings usually contain fluoropolymers due to their inherent low surface energy, a requirement for superhydrophobicity, but concerns over their biopersistence has provided an impetus for eliminating these chemicals. For spray coating, the former problem can be overcome by replacing organic solvents with water, but this situation seems paradoxical: Producing a highly water-repellent coating from an aqueous dispersion. We report a water-based, nonfluorinated dispersion for the formation of superhydrophobic composite coatings applied by spray on a variety of substrates. We stabilize hydrophobic components (i.e., polymer, nanoparticles) in water, by utilizing chemicals containing acid functional groups (i.e., acrylic acid) that can become ionized in aqueous environments under proper pH control (pH > 7). The functional polymer utilized in this study is a copolymer of ethylene and acrylic acid, while the particle filler is exfoliated graphite nanoplatelet (xGnP), which contains functional groups at its periphery. Once spray deposited and dried, the components become insoluble in water, thus promoting liquid repellency. Such coatings can find a wide range of applications due to their benign processing

  6. Universal wetting transition of an evaporating water droplet on superhydrophobic surfaces

    Science.gov (United States)

    Tsai, Peichun Amy; Bussonnière, Adrien; Bigdeli, Masoud; Chueh, Di-Yen; Liu, Qingxia; Chen, Peilin

    2016-11-01

    An evaporating water droplet on a superhydrophobic surface undergoes a wetting transition from a heterogeneous wetting (Cassie-Baxter) to homogeneous wetting (Wenzel) state. The critical transition is manifested by a sudden decrease of contact angle, when "Fakir" water drop permeates the minute hydrophobic cavities. This breakdown of superhydrophobicity would hinder various applications of self-cleaning, low-frictional, and potentially ice-phobic properties of superhydrophobic materials. In this work, we experimentally investigate such wetting transition using hydrophobic nanostructures. With a theoretical model, we find a universal criterion of the critical contact angle at the transition point. The prediction of critical contact angle, which solely depends on the geometrical parameters of the hydrophobic pillars, agree well with various data for both micro- and nano-structures.

  7. Visualization of droplet departure on a superhydrophobic surface and implications to heat transfer enhancement during dropwise condensation

    Science.gov (United States)

    Dietz, C.; Rykaczewski, K.; Fedorov, A. G.; Joshi, Y.

    2010-07-01

    Droplet departure frequency is investigated using environmental scanning electron microscopy with implications to enhancing the rate of dropwise condensation on superhydrophobic surfaces. Superhydrophobic surfaces, formed by cupric hydroxide nanostructures, allow the condensate to depart from a surface with a tilt angle of 30° from the horizontal. The resulting decrease in drop departure size shifts the drop size distribution to smaller radii, which may enhance the heat transfer rate during dropwise condensation. The heat transfer enhancement is estimated by modifying the Rose and Le Fevre drop distribution function to account for a smaller maximum droplet size on a superhydrophobic surface.

  8. Role of water vapor desublimation in the adhesion of an iced droplet to a superhydrophobic surface.

    Science.gov (United States)

    Boinovich, Ludmila; Emelyanenko, Alexandre M

    2014-10-28

    The study of the adhesion of solid and liquid aqueous phases to superhydrophobic surfaces has become an attractive topic for researchers in various fields as a vital step in the design of icephobic coatings. The analysis of the available results shows that the experimentally measured values of adhesion strength for superhydrophobic substrates, which in some cases are quite small, are still essentially higher than might be expected from the portion of the actual wetted area. In this study we have considered the peculiarities of the three-phase contact zone between sessile supercooled water or ice droplets and a superhydrophobic coating at negative temperatures (below 0 °C) and during the water-ice phase transition. Two types of superhydrophobic coatings with very different textures were used to analyze the evolution of shape parameters of a sessile water droplet during droplet cooling and freezing. It was shown that the evolution of the contact angle and droplet contact diameter of a water droplet deposited on a superhydrophobic surface does not undergo essential changes when the droplet is cooled simultaneously with the substrate and the surrounding environment, and the humidity is maintained close to 100% during the cooling process. However, the phase transition from supercooled water to ice droplets leads to the growth of a metastable iced meniscus and a frost halo in the vicinity of the three-phase contact zone. The meniscus effectively increases the area of adhesive contact between the droplet and the substrate. This phenomenon is intrinsically related to the release of the heat of crystallization and is responsible for the enhancement of adhesion to a superhydrophobic substrate upon droplet transition from supercooled water to ice. At the same time, it was shown that the metastable state of the above meniscus leads to its spontaneous sublimation during exposure at negative temperatures.

  9. Self-Restoration of Superhydrophobicity on Shape Memory Polymer Arrays with Both Crushed Microstructure and Damaged Surface Chemistry.

    Science.gov (United States)

    Lv, Tong; Cheng, Zhongjun; Zhang, Enshuang; Kang, Hongjun; Liu, Yuyan; Jiang, Lei

    2017-01-01

    Recently, self-healing superhydrophobic surfaces have become a new research focus due to their recoverable wetting performances and wide applications. However, until now, on almost all reported surfaces, only one factor (surface chemistry or microstructure) can be restored. In this paper, a new superhydrophobic surface with self-healing ability in both crushed microstructure and damaged surface chemistry is prepared by creating lotus-leaves-like microstructure on the epoxy shape memory polymer (SMP). Through a simple heating process, the crushed surface microstructure, the damaged surface chemistry, and the surface superhydrophobicity that are destroyed under the external pressure and/or O2 plasma action can be recovered, demonstrating that the obtained superhydrophobic surface has a good self-healing ability in both of the two factors that govern the surface wettability. The special self-healing ability is ascribed to the good shape memory effect of the polymer and the reorganization effect of surface molecules. This paper reports the first use of SMP material to demonstrate the self-healing ability of surface superhydrophobicity, which opens up some new perspectives in designing self-healing superhydrophobic surfaces. Given the properties of this surface, it could be used in many applications, such as self-cleaning coatings, microfluidic devices, and biodetection.

  10. Superhydrophobic Surface With Shape Memory Micro/Nanostructure and Its Application in Rewritable Chip for Droplet Storage.

    Science.gov (United States)

    Lv, Tong; Cheng, Zhongjun; Zhang, Dongjie; Zhang, Enshuang; Zhao, Qianlong; Liu, Yuyan; Jiang, Lei

    2016-09-21

    Recently, superhydrophobic surfaces with tunable wettability have aroused much attention. Noticeably, almost all present smart performances rely on the variation of surface chemistry on static micro/nanostructure, to obtain a surface with dynamically tunable micro/nanostructure, especially that can memorize and keep different micro/nanostructures and related wettabilities, is still a challenge. Herein, by creating micro/nanostructured arrays on shape memory polymer, a superhydrophobic surface that has shape memory ability in changing and recovering its hierarchical structures and related wettabilities was reported. Meanwhile, the surface was successfully used in the rewritable functional chip for droplet storage by designing microstructure-dependent patterns, which breaks through current research that structure patterns cannot be reprogrammed. This article advances a superhydrophobic surface with shape memory hierarchical structure and the application in rewritable functional chip, which could start some fresh ideas for the development of smart superhydrophobic surface.

  11. Superhydrophobic chitosan-based coatings for textile processing

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, N.A., E-mail: NAI-72@yandex.ru [Ivanovo State Textile Academy, F. Engels Avenue 21, 153000 Ivanovo (Russian Federation); Philipchenko, A.B. [Kazan State Medical University, Butlerova 49, 420012 Kazan, Tatarstan (Russian Federation)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Chitosan nanoparticles can be used for design of the superhydrophobic anti-bacterial textile. Black-Right-Pointing-Pointer Spraying the nanoparticle dispersion allows one to get multiscale textured coating. Black-Right-Pointing-Pointer Relative number of fluoroanions per elementary unit of chitosan plays the crucial role in the structure of aggregates and coating wettability. - Abstract: A simple method to design the superhydrophobic anti-bacterial textile for biomedical applications was developed. For the coating formulation the spraying of nanoparticles dispersion over the textile sample was applied, allowing the way to get multiscale textured layer on a top of cotton fabric. The anti-bacterial functionality of coating is supported by using chitosan-based nanoparticles. In our approach the fabrication of nanoparticles was based on electrostatic interaction between amine group of chitosan and negatively charged fluoroanion. It was demonstrated that the relative number of fluoroanions per elementary unit of chitosan plays the crucial role in the structure of aggregates in the coating and its wettability as well as in durability of coatings in contact with aqueous media.

  12. Preparation of a multifunctional material with superhydrophobicity, superparamagnetism, mechanical stability and acids-bases resistance by electrospinning

    Science.gov (United States)

    Wang, Shuai; Liu, Qingwen; Zhang, Yang; Wang, Shaodan; Li, Yaoxian; Yang, Qingbiao; Song, Yan

    2013-08-01

    A multifunctional material with superhydrophobicity, superparamagnetism, mechanical stability and acids-bases resistance was developed from the bead-on-string PVDF and Fe3O4@SiO2@POTS nanoparticles by electrospinning in this work. The Fe3O4@SiO2@POTS nanoparticles which have excellent superparamagnetism were successfully prepared and subsequently introduced into PVDF precursor solution. Through electrospinning, Fe3O4@SiO2@POTS nanoparticles irregularly distributed in the membrane to not only make a dual-scale roughness which is beneficial to obtain a superhydrophobic surface but also stimulate the material turns to superparamagnetic for wider use in different fields. More importantly, the film shows stable superhydrophobicity even for many corrosive solutions, such as acidic or basic solutions over a wide pH range and remarkable mechanical stability. The composition and surface structure of the film are the two critical factors that induce such unusual properties. The weight ratio of Fe3O4@SiO2@POTS/PVDF can strongly influence the superhydrophobicity and mechanical properties of the composite films.

  13. Superhydrophobic Copper Surfaces with Anticorrosion Properties Fabricated by Solventless CVD Methods.

    Science.gov (United States)

    Vilaró, Ignasi; Yagüe, Jose L; Borrós, Salvador

    2017-01-11

    Due to continuous miniaturization and increasing number of electrical components in electronics, copper interconnections have become critical for the design of 3D integrated circuits. However, corrosion attack on the copper metal can affect the electronic performance of the material. Superhydrophobic coatings are a commonly used strategy to prevent this undesired effect. In this work, a solventless two-steps process was developed to fabricate superhydrophobic copper surfaces using chemical vapor deposition (CVD) methods. The superhydrophobic state was achieved through the design of a hierarchical structure, combining micro-/nanoscale domains. In the first step, O2- and Ar-plasma etchings were performed on the copper substrate to generate microroughness. Afterward, a conformal copolymer, 1H,1H,2H,2H-perfluorodecyl acrylate-ethylene glycol diacrylate [p(PFDA-co-EGDA)], was deposited on top of the metal via initiated CVD (iCVD) to lower the surface energy of the surface. The copolymer topography exhibited a very characteristic and unique nanoworm-like structure. The combination of the nanofeatures of the polymer with the microroughness of the copper led to achievement of the superhydrophobic state. AFM, SEM, and XPS were used to characterize the evolution in topography and chemical composition during the CVD processes. The modified copper showed water contact angles as high as 163° and hysteresis as low as 1°. The coating withstood exposure to aggressive media for extended periods of time. Tafel analysis was used to compare the corrosion rates between bare and modified copper. Results indicated that iCVD-coated copper corrodes 3 orders of magnitude slower than untreated copper. The surface modification process yielded repeatable and robust superhydrophobic coatings with remarkable anticorrosion properties.

  14. Superhydrophobic, Hybrid, Electrospun Cellulose Acetate Nanofibrous Mats for Oil/Water Separation by Tailored Surface Modification.

    Science.gov (United States)

    Arslan, Osman; Aytac, Zeynep; Uyar, Tamer

    2016-08-03

    Electrospun cellulose acetate nanofibers (CA-NF) have been modified with perfluoro alkoxysilanes (FS/CA-NF) for tailoring their chemical and physical features aiming oil-water separation purposes. Strikingly, hybrid FS/CA-NF showed that perfluoro groups are rigidly positioned on the outer surface of the nanofibers providing superhydrophobic characteristic with a water contact angle of ∼155°. Detailed analysis showed that hydrolysis/condensation reactions led to the modification of the acetylated β(1 → 4) linked d-glucose chains of CA transforming it into a superhydrophobic nanofibrous mat. Analytical data have revealed that CA-NF surfaces can be selectively controlled for fabricating the durable, robust and water resistant hybrid electrospun nanofibrous mat. The -OH groups available on the CA structure allowed the basic sol-gel reactions started by the reactive FS hybrid precursor system which can be monitored by spectroscopic analysis. Since alkoxysilane groups on the perfluoro silane compound are capable of reacting for condensation together with the CA, superhydrophobic nanofibrous mat is obtained via electrospinning. This structural modification led to the facile fabrication of the novel oil/water nanofibrous separator which functions effectively demonstrated by hexane/oil and water separation experiments. Perfluoro groups consequently modified the hydrophilic CA nanofibers into superhydrophobic character and therefore FS/CA-NF could be quite practical for future applications like water/oil separators, as well as self-cleaning or water resistant nanofibrous structures.

  15. Superhydrophilic-Superhydrophobic Patterned Surfaces as High-Density Cell Microarrays: Optimization of Reverse Transfection.

    Science.gov (United States)

    Ueda, Erica; Feng, Wenqian; Levkin, Pavel A

    2016-10-01

    High-density microarrays can screen thousands of genetic and chemical probes at once in a miniaturized and parallelized manner, and thus are a cost-effective alternative to microwell plates. Here, high-density cell microarrays are fabricated by creating superhydrophilic-superhydrophobic micropatterns in thin, nanoporous polymer substrates such that the superhydrophobic barriers confine both aqueous solutions and adherent cells within each superhydrophilic microspot. The superhydrophobic barriers confine and prevent the mixing of larger droplet volumes, and also control the spreading of droplets independent of the volume, minimizing the variability that arises due to different liquid and surface properties. Using a novel liposomal transfection reagent, ScreenFect A, the method of reverse cell transfection is optimized on the patterned substrates and several factors that affect transfection efficiency and cytotoxicity are identified. Higher levels of transfection are achieved on HOOC- versus NH2 -functionalized superhydrophilic spots, as well as when gelatin and fibronectin are added to the transfection mixture, while minimizing the amount of transfection reagent improves cell viability. Almost no diffusion of the printed transfection mixtures to the neighboring microspots is detected. Thus, superhydrophilic-superhydrophobic patterned surfaces can be used as cell microarrays and for optimizing reverse cell transfection conditions before performing further cell screenings. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Superhydrophobic wind turbine blade surfaces obtained by a simple deposition of silica nanoparticles embedded in epoxy

    Science.gov (United States)

    Karmouch, Rachid; Ross, Guy G.

    2010-11-01

    Samples of wind turbine blade surface have been covered with a superhydrophobic coating made of silica nanoparticles embedded in commercial epoxy paint. The superhydrophobic surfaces have a water contact angle around 152°, a hysteresis less than 2° and a water drop sliding angle around 0.5°. These surfaces are water repellent so that water drops cannot remain motionless on the surface. Examination of coated and uncoated surfaces with scanning electron microscopy and atomic force microscopy, together with measurements of water contact angles, indicates that the air trapped in the cavity enhances the water repellency similarly to the lotus leaf effect. Moreover, this new coating is stable under UVC irradiation and water pouring. The production of this nanoscale coating film being simple and low cost, it can be considered as a suitable candidate for water protection of different outdoor structures.

  17. Superhydrophobic wind turbine blade surfaces obtained by a simple deposition of silica nanoparticles embedded in epoxy

    Energy Technology Data Exchange (ETDEWEB)

    Karmouch, Rachid, E-mail: karmouch@emt.inrs.ca [INRS-Centre Energie Materiaux Telecommunications, 1650 Boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada); Ross, Guy G. [INRS-Centre Energie Materiaux Telecommunications, 1650 Boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada)

    2010-11-15

    Samples of wind turbine blade surface have been covered with a superhydrophobic coating made of silica nanoparticles embedded in commercial epoxy paint. The superhydrophobic surfaces have a water contact angle around 152{sup o}, a hysteresis less than 2{sup o} and a water drop sliding angle around 0.5{sup o}. These surfaces are water repellent so that water drops cannot remain motionless on the surface. Examination of coated and uncoated surfaces with scanning electron microscopy and atomic force microscopy, together with measurements of water contact angles, indicates that the air trapped in the cavity enhances the water repellency similarly to the lotus leaf effect. Moreover, this new coating is stable under UVC irradiation and water pouring. The production of this nanoscale coating film being simple and low cost, it can be considered as a suitable candidate for water protection of different outdoor structures.

  18. Microscopic Receding Contact Line Dynamics on Pillar and Irregular Superhydrophobic Surfaces

    Science.gov (United States)

    Yeong, Yong Han; Milionis, Athanasios; Loth, Eric; Bayer, Ilker S.

    2015-01-01

    Receding angles have been shown to have great significance when designing a superhydrophobic surface for applications involving self-cleaning. Although apparent receding angles under dynamic conditions have been well studied, the microscopic receding contact line dynamics are not well understood. Therefore, experiments were performed to measure these dynamics on textured square pillar and irregular superhydrophobic surfaces at micron length scales and at micro-second temporal scales. Results revealed a consistent “slide-snap” motion of the microscopic receding line as compared to the “stick-slip” dynamics reported in previous studies. Interface angles between 40–60° were measured for the pre-snap receding lines on all pillar surfaces. Similar “slide-snap” dynamics were also observed on an irregular nanocomposite surface. However, the sharper features of the surface asperities resulted in a higher pre-snap receding line interface angle (~90°). PMID:25670630

  19. Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films

    Energy Technology Data Exchange (ETDEWEB)

    Aytug, Tolga; Simpson, John T.; Lupini, Andrew R.; Trejo, Rosa M.; Jellison, Gerald E.; Ivanov, Ilia N.; Pennycook, Stephen J.; Hillesheim, Daniel A.; Winter, Kyle O.; Christen, David K.; Hunter, Scott R.; Allen Haynes, J.

    2013-07-15

    Inspired by highly non-wetting natural biological surfaces (e.g., lotus leaves and water strider legs), artificial superhydrophobic surfaces that exhibit water droplet contact angles exceeding 150o have previously been constructed by utilizing various synthesis strategies.[ , , ] Such bio-inspired, water-repellent surfaces offer significant potential for numerous uses ranging from marine applications (e.g., anti-biofouling, anti-corrosion), anti-condensation (e.g., anti-icing, anti-fogging), membranes for selective separation (e.g., oil-water, gas-liquid), microfluidic systems, surfaces requiring reduced maintenance and cleaning, to applications involving glasses and optical materials.[ ] In addition to superhydrophobic attributes, for integration into device systems that have extended operational limits and overall improved performance, surfaces that also possess multifunctional characteristics are desired, where the functionality should match to the application-specific requirements.

  20. Surface studies on superhydrophobic and oleophobic polydimethylsiloxane-silica nanocomposite coating system

    Science.gov (United States)

    Basu, Bharathibai J.; Dinesh Kumar, V.; Anandan, C.

    2012-11-01

    Superhydrophobic and oleophobic polydimethylsiloxane (PDMS)-silica nanocomposite double layer coating was fabricated by applying a thin layer of low surface energy fluoroalkyl silane (FAS) as topcoat. The coatings exhibited WCA of 158-160° and stable oleophobic property with oil CA of 79°. The surface morphology was characterized by field emission scanning electron microscopy (FESEM) and surface chemical composition was determined by energy dispersive X-ray spectrometery (EDX) and X-ray photoelectron spectroscopy (XPS). FESEM images of the coatings showed micro-nano binary structure. The improved oleophobicity was attributed to the combined effect of low surface energy of FAS and roughness created by the random distribution of silica aggregates. This is a facile, cost-effective method to obtain superhydrophobic and oleophobic surfaces on larger area of various substrates.

  1. Active gas replenishment and sensing of the wetting state in a submerged superhydrophobic surface.

    Science.gov (United States)

    Lloyd, Ben P; Bartlett, Philip N; Wood, Robert J K

    2017-02-15

    Previously superhydrophobic surfaces have demonstrated effective drag reduction by trapping a lubricious gas layer on the surface with micron-sized hydrophobic features. However, prolonged reduction of drag is hindered by the dissolution of the gas into the surrounding water. This paper demonstrates a novel combination of superhydrophobic surface design and electrochemical control methods which allow quick determination of the wetted area and a gas replenishment mechanism to maintain the desirable gas filled state. Electrochemical impedance spectroscopy is used to measure the capacitance of the surface which is shown to be proportional to the solid/liquid interface area. To maintain a full gas coverage for prolonged periods the surface is held at an electrical potential which leads to hydrogen evolution. In the desired gas filled state the water does not touch the metallic area of the surface, however after gas has dissolved the water touches the metal which closes the electrochemical circuit causing hydrogen to be produced replenishing the gas in the surface and returning to the gas filled state; in this way the system is self-actuating. This type of surface and electrochemical control shows promise for applications where the gas filled state of superhydrophobic surfaces must be maintained when submerged for long periods of time.

  2. Designing superhydrophobic disordered arrays of fibers with hierarchical roughness and low-surface-energy

    Science.gov (United States)

    Rawal, Amit; Sharma, Sumit; Kumar, Vijay; Saraswat, Harshvardhan

    2016-12-01

    Hierarchical roughness and low surface energy are the main criteria for designing superhydrophobic surfaces with extreme water repellency. Herein, we present a step-wise approach to devise three-dimensional (3D) superhydrophobic disordered arrays of fibers in the form of nonwoven mats exhibiting hierarchical surface roughness and low surface energy. Key design parameters in the form of roughness factors at multiple length scales for 3D nonwoven mats have been quantified. The contact angles have been predicted for each of the wetting regimes that exists for nonwoven mats with predefined level of hierarchical surface roughness and surface energy. Experimental realization of superhydrophobic mats was attained by decorating the highly hydrophilic nonwoven viscose fibers with ZnO rods that effectively modulated the surface roughness at multiple length scales and subsequently, the surface energy was lowered using fluorocarbon treatment. Synergistic effects of hierarchical roughness and surface energy have systematically increased the static water contact angle of nonwoven mat (up to 164°) and simultaneously, lowered the roll-off angle (≈11°).

  3. Fabrication of the micro/nano-structure superhydrophobic surface on aluminum alloy by sulfuric acid anodizing and polypropylene coating.

    Science.gov (United States)

    Wu, Ruomei; Liang, Shuquan; Liu, Jun; Pan, Anqiang; Yu, Y; Tang, Yan

    2013-03-01

    The preparation of the superhydrophobic surface on aluminum alloy by anodizing and polypropylene (PP) coating was reported. Both the different anodizing process and different PP coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. By PP coating after anodizing, a good superhydrophobic surface was facilely fabricated. The optimum conditions for anodizing were determined by orthogonal experiments. After the aluminium-alloy was grinded with 600# sandpaper, pretreated by 73 g/L hydrochloric acid solution at 1 min, when the concentration of sulfuric acid was 180 g/L, the concentration of oxalic acid was 5 g/L, the concentration of potassium dichromate was 10 g/L, the concentration of chloride sodium was 50 g/L and 63 g/L of glycerol, anodization time was 20 min, and anodization current was 1.2 A/dm2, anodization temperature was 30-35 degrees C, the best micro-nanostructure aluminum alloy films was obtained. On the other hand, the PP with different concentrations was used to the PP with different concentrations was used to coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was achieved by coating PP, and the duration of the superhydrophobic surface was improved by modifying the coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was surface with high concentration PP. The morphologies of micro/nano-structure superhydrophobic surface were further confirmed by scanning electron microscope (SEM). The material of PP with the low surface free energy combined with the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  4. Transparent, superhydrophobic, and wear-resistant surfaces using deep reactive ion etching on PDMS substrates.

    Science.gov (United States)

    Ebert, Daniel; Bhushan, Bharat

    2016-11-01

    Surfaces that simultaneously exhibit superhydrophobicity, low contact angle hysteresis, and high transmission of visible light are of interest for many applications, such as optical devices, solar panels, and self-cleaning windows. Superhydrophobicity could also find use in medical devices where antifouling characteristics are desirable. These applications also typically require mechanical wear resistance. The fabrication of such surfaces is challenging due to the competing goals of superhydrophobicity and transmittance in terms of the required degree of surface roughness. In this study, deep reactive ion etching (DRIE) was used to create rough surfaces on PDMS substrates using a O2/CF4 plasma. Surfaces then underwent an additional treatment with either octafluorocyclobutane (C4F8) plasma or vapor deposition of perfluorooctyltrichlorosilane (PFOTCS) following surface activation with O2 plasma. The effects of surface roughness and the additional surface modifications were examined with respect to the contact angle, contact angle hysteresis, and optical transmittance. To examine wear resistance, a sliding wear experiment was performed using an atomic force microscope (AFM).

  5. Fabrication of super-hydrophobic surfaces on aluminum alloy substrates by RF-sputtered polytetrafluoroethylene coatings

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2014-03-01

    Full Text Available In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic.

  6. Highly Stretchable Superhydrophobic Composite Coating Based on Self-Adaptive Deformation of Hierarchical Structures.

    Science.gov (United States)

    Hu, Xin; Tang, Changyu; He, Zhoukun; Shao, Hong; Xu, Keqin; Mei, Jun; Lau, Woon-Ming

    2017-05-01

    With the rapid development of stretchable electronics, functional textiles, and flexible sensors, water-proof protection materials are required to be built on various highly flexible substrates. However, maintaining the antiwetting of superhydrophobic surface under stretching is still a big challenge since the hierarchical structures at hybridized micro-nanoscales are easily damaged following large deformation of the substrates. This study reports a highly stretchable and mechanically stable superhydrophobic surface prepared by a facile spray coating of carbon black/polybutadiene elastomeric composite on a rubber substrate followed by thermal curing. The resulting composite coating can maintain its superhydrophobic property (water contact angle ≈170° and sliding angle superhydrophobic property. Furthermore, the experimental observation and modeling analysis reveal that the stable superhydrophobic properties of the composite coating are attributed to the unique self-adaptive deformation ability of 3D hierarchical roughness of the composite coating, which delays the Cassie-Wenzel transition of surface wetting. In addition, it is first observed that the damaged coating can automatically recover its superhydrophobicity via a simple stretching treatment without incorporating additional hydrophobic materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Laser textured superhydrophobic surfaces and their applications for homogeneous spot deposition

    Science.gov (United States)

    Ta, Van Duong; Dunn, Andrew; Wasley, Thomas J.; Li, Ji; Kay, Robert W.; Stringer, Jonathan; Smith, Patrick J.; Esenturk, Emre; Connaughton, Colm; Shephard, Jonathan D.

    2016-03-01

    This work reports the laser surface modification of 304S15 stainless steel to develop superhydrophobic properties and the subsequent application for homogeneous spot deposition. Superhydrophobic surfaces, with steady contact angle of ∼154° and contact angle hysteresis of ∼4°, are fabricated by direct laser texturing. In comparison with common pico-/femto-second lasers employed for this patterning, the nanosecond fiber laser used in this work is more cost-effective, compact and allows higher processing rates. The effect of laser power and scan line separation on surface wettability of textured surfaces are investigated and optimized fabrication parameters are given. Fluid flows and transportations of polystyrene (PS) nanoparticles suspension droplets on the processed surfaces and unprocessed wetting substrates are investigated. After evaporation is complete, the coffee-stain effect is observed on the untextured substrates but not on the superhydrophobic surfaces. Uniform deposition of PS particles on the laser textured surfaces is achieved and the deposited material is confined to smaller area.

  8. One-step fabrication of near superhydrophobic aluminum surface by nanosecond laser ablation

    Science.gov (United States)

    Jagdheesh, R.; García-Ballesteros, J. J.; Ocaña, J. L.

    2016-06-01

    Inspired by the micro and nano structures of biological surface such as lotus leaf, rice leaves, etc. a functional near superhydrophobic surface of pure aluminum has been fabricated using one-step nanosecond laser processing. Thin aluminum sheets are micro-patterned with ultraviolet laser pulses to create near superhydrophobic surface in one-step direct laser writing technique. The impact of number of pulses/microhole with respect to the geometry and static contact angle measurements has been investigated. The microstructure shows the formation of blind microholes along with the micro-wall by laser processing, which improves the composite interface between the three phases such as water, air and solid, thus enhance the wetting property of the surface. The geometrical changes are supported by the chemical changes induced on the surface for improving the degree of hydrophobicity. Laser processed microholes exhibited near superhydrophobic surface with SCA measurement of 148 ± 3°. The static contact angle values are very consistent for repeated measurement at same area and across the laser patterned surface.

  9. From superhydrophobicity and water repellency to superhydrophilicity: smart polymer-functionalized surfaces.

    Science.gov (United States)

    Stratakis, Emmanuel; Mateescu, Anca; Barberoglou, Marios; Vamvakaki, Maria; Fotakis, Costas; Anastasiadis, Spiros H

    2010-06-21

    pH-responsive surfaces, reversibly switching between superhydrophilicity and superhydrophobicity/water repellency, are developed by "grafting from" a pH-sensitive polymer onto a hierarchically micro/nano-structured substrate. We quantify the water repellency by investigating the restitution coefficient of water droplets bouncing off the surfaces. The water repellent state requires appropriate hydrophobicity of the functionalizing polymer as well as very low values of contact angle hysteresis.

  10. Probing of ultrahigh optical Q-factors of individual liquid microdroplets on superhydrophobic surfaces using tapered optical fiber waveguides

    OpenAIRE

    Jonas, Alexandr; Karadağ, Yasin ; Kiraz, Alper; Mestre, Michael

    2012-01-01

    We report measurements of ultrahigh quality factors (Q-factors) of the optical whispering-gallery modes excited via a tapered optical-fiber waveguide in single glycerol-water microdroplets standing on a superhydrophobic surface in air. Owing to the high contact angle of the glycerol-water mixture on the superhydrophobic surface (>155 degrees), microdroplets with the geometry of a truncated sphere minimally distorted by gravity and contact line pinning effects could be generated. Q-factors up ...

  11. Effects of heat flux on dropwise condensation on a superhydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kyung Won; Park, Hyun Sun; Moriyama, Kiyofumi [POSTECH, Pohang (Korea, Republic of); Kim, Dong Hyun [KAERI, Daejeon (Korea, Republic of); Jo, Hang Jin [University of Wisconsin-Madison, Wisconsin (United States); Kim, Moo Hwan [KINS, Daejeon (Korea, Republic of)

    2016-05-15

    The condensation heat transfer efficiencies of superhydrophobic surfaces that have ∼160.deg. contact angle under atmospheric conditions were investigated experimentally. The departing diameter and the contact angle hysteresis of droplets were measured by capturing front and tilted side views of condensation phenomena with a high speed camera and an endoscope, respectively. Condensation behaviors on the surface were observed at the micro-scale using an Environmental scanning electron microscope (ESEM). Apparently-spherical droplets formed at very low heat flux q' ∼20 kW/m{sup 2} but hemispherical droplets formed at high q' ∼ 440 kW/m{sup 2} . At high q', heat transfer coefficients were lower on the superhydrophobic surface than on a hydrophobic surface although the superhydrophobic surface is water repellent so droplets roll off. The results of contact angle hysteresis and ESEM image revealed that the reduced heat transfer of the surface can be attributed to the large size of departing droplets caused by adhesive condensed droplets at nucleation sites. The results suggest that the effect of q' or degree of sub-cooling of a condensation wall determine the droplet shape, which is closely related to removal rates of condensates and finally to the heat transfer coefficient.

  12. Unified model for contact angle hysteresis on heterogeneous and superhydrophobic surfaces.

    Science.gov (United States)

    Raj, Rishi; Enright, Ryan; Zhu, Yangying; Adera, Solomon; Wang, Evelyn N

    2012-11-13

    Understanding the complexities associated with contact line dynamics on chemically heterogeneous and superhydrophobic surfaces is important for a wide variety of engineering problems. Despite significant efforts to capture the behavior of a droplet on these surfaces over the past few decades, modeling of the complex dynamics at the three-phase contact line is needed. In this work, we demonstrate that contact line distortion on heterogeneous and superhydrophobic surfaces is the key aspect that needs to be accounted for in the dynamic droplet models. Contact line distortions were visualized and modeled using a thermodynamic approach to develop a unified model for contact angle hysteresis on chemically heterogeneous and superhydrophobic surfaces. On a surface comprised of discrete wetting defects on an interconnected less wetting area, the advancing contact angle was determined to be independent of the defects, while the relative fraction of the distorted contact line with respect to the baseline surface was shown to govern the receding contact angle. This behavior reversed when the relative wettability of the discrete defects and interconnected area was inverted. The developed model showed good agreement with the experimental advancing and receding contact angles, both at low and high solid fractions. The thermodynamic model was further extended to demonstrate its capability to capture droplet shape evolution during liquid addition and removal in our experiments and those in literature. This study offers new insight extending the fundamental understanding of solid-liquid interactions required for design of advanced functional coatings for microfluidics, biological, manufacturing, and heat transfer applications.

  13. Femtosecond pulsed laser textured titanium surfaces with stable superhydrophilicity and superhydrophobicity

    Science.gov (United States)

    Li, Bao-jia; Li, Huang; Huang, Li-jing; Ren, Nai-fei; Kong, Xia

    2016-12-01

    A facile and highly-efficient laser scanning process coupled with a simple silanization modification was used to prepare textured titanium (Ti) surfaces with stable superhydrophilicity and superhydrophobicity. Femtosecond pulsed laser scanning along two mutually perpendicular directions led to the formation of binary structures featuring micrometer-scale spikes covered with nanometer-scale ripples. The period of the spikes significantly increased and the period of the ripples irregularly changed in the narrow range of 550-600 nm with the increase of laser fluence. The obtained laser-textured Ti surfaces were hydrophilic or even superhydrophilic, and the superhydrophilic laser-textured Ti surface using a laser fluence of 1.5 J/cm2 was observed to retain its wetting property after 30 days of storage in ambient atmosphere. After silanization, all the laser-textured Ti surfaces exhibited high hydrophobicity or superhydrophobicity, and the superhydrophobic laser-textured Ti surfaces using laser fluences of 1.5 and 1.8 J/cm2 remained stable when stored in air for over 30 days. The results imply the potential applications of these surfaces in a variety of fields.

  14. A novel simple approach to preparation of superhydrophobic surfaces of aluminum alloys

    Science.gov (United States)

    Xie, Degang; Li, Wen

    2011-11-01

    A novel two-step methodology is successfully developed to fabricate superhydrophobic surfaces of aluminum alloys. The essential procedure is that samples are first immersed and etched in a boiling aqueous solution of NaOH for 5 min without preprocessing, and then they are modified for 30 min in an ethanol solution of lauric acid, cheaper and more efficient than the fluorinated silane frequently adopted by other researchers. If the concentration of NaOH solution is larger than 5 g/L, the contact angle of the prepared surfaces will be larger than 150° with a negligible hysteresis. Such a fast, low-cost, and reliable method for superhydrophobic surfaces implies significant promising industrial applications.

  15. Fabrication of self-healing super-hydrophobic surfaces on aluminium alloy substrates

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2015-04-01

    Full Text Available We present a method to fabricate a super-hydrophobic surface with a self-healing ability on an aluminium alloy substrate. The coatings are obtained by combining a two-step process (first, the substrate is immersed in a solution of HCl, HF and H2O, and then in boiling water and succeeding surface fluorination with a solution of poly(vinylidene-fluoride-co-hexafluoropropylene and a fluoroalkyl silane. The morphological features and chemical composition were studied by scanning electron micrometry and energy-dispersive X-ray spectroscopy. The prepared super-hydrophobic aluminium surfaces showed hierarchical structures forming pores, petals and particles with a contact angle of 161° and a sliding angle of 3°.

  16. Controlling the Adhesion of Superhydrophobic Surfaces Using Electrolyte Jet Machining Techniques

    Science.gov (United States)

    Yang, Xiaolong; Liu, Xin; Lu, Yao; Zhou, Shining; Gao, Mingqian; Song, Jinlong; Xu, Wenji

    2016-04-01

    Patterns with controllable adhesion on superhydrophobic areas have various biomedical and chemical applications. Electrolyte jet machining technique (EJM), an electrochemical machining method, was firstly exploited in constructing dimples with various profiles on the superhydrophobic Al alloy surface using different processing parameters. Sliding angles of water droplets on those dimples firstly increased and then stabilized at a certain value with the increase of the processing time or the applied voltages of the EJM, indicating that surfaces with different adhesion force could be obtained by regulating the processing parameters. The contact angle hysteresis and the adhesion force that restricts the droplet from sliding off were investigated through experiments. The results show that the adhesion force could be well described using the classical Furmidge equation. On account of this controllable adhesion force, water droplets could either be firmly pinned to the surface, forming various patterns or slide off at designed tilting angles at specified positions on a superhydrophobic surface. Such dimples on superhydrophopbic surfaces can be applied in water harvesting, biochemical analysis and lab-on-chip devices.

  17. One-step process for superhydrophobic metallic surfaces by wire electrical discharge machining.

    Science.gov (United States)

    Bae, Won Gyu; Song, Ki Young; Rahmawan, Yudi; Chu, Chong Nam; Kim, Dookon; Chung, Do Kwan; Suh, Kahp Y

    2012-07-25

    We present a direct one-step method to fabricate dual-scale superhydrophobic metallic surfaces using wire electrical discharge machining (WEDM). A dual-scale structure was spontaneously formed by the nature of exfoliation characteristic of Al 7075 alloy surface during WEDM process. A primary microscale sinusoidal pattern was formed via a programmed WEDM process, with the wavelength in the range of 200 to 500 μm. Notably, a secondary roughness in the form of microcraters (average roughness, Ra: 4.16 to 0.41 μm) was generated during the exfoliation process without additional chemical treatment. The low surface energy of Al 7075 alloy (γ = 30.65 mJ/m(2)) together with the presence of dual-scale structures appears to contribute to the observed superhydrophobicity with a static contact angle of 156° and a hysteresis less than 3°. To explain the wetting characteristics on dual-scale structures, we used a simple theoretical model. It was found that Cassie state is likely to present on the secondary roughness in all fabricated surfaces. On the other hand, either Wenzel or Cassie state can present on the primary roughness depending on the characteristic length of sinusoidal pattern. In an optimal condition of the serial cutting steps with applied powers of ∼30 and ∼8 kW, respectively, a stable, superhydrophobic metallic surface was created with a sinusoidal pattern of 500 μm wavelength.

  18. Controlling the Adhesion of Superhydrophobic Surfaces Using Electrolyte Jet Machining Techniques.

    Science.gov (United States)

    Yang, Xiaolong; Liu, Xin; Lu, Yao; Zhou, Shining; Gao, Mingqian; Song, Jinlong; Xu, Wenji

    2016-04-05

    Patterns with controllable adhesion on superhydrophobic areas have various biomedical and chemical applications. Electrolyte jet machining technique (EJM), an electrochemical machining method, was firstly exploited in constructing dimples with various profiles on the superhydrophobic Al alloy surface using different processing parameters. Sliding angles of water droplets on those dimples firstly increased and then stabilized at a certain value with the increase of the processing time or the applied voltages of the EJM, indicating that surfaces with different adhesion force could be obtained by regulating the processing parameters. The contact angle hysteresis and the adhesion force that restricts the droplet from sliding off were investigated through experiments. The results show that the adhesion force could be well described using the classical Furmidge equation. On account of this controllable adhesion force, water droplets could either be firmly pinned to the surface, forming various patterns or slide off at designed tilting angles at specified positions on a superhydrophobic surface. Such dimples on superhydrophopbic surfaces can be applied in water harvesting, biochemical analysis and lab-on-chip devices.

  19. Rapid deposition of transparent super-hydrophobic layers on various surfaces using microwave plasma.

    Science.gov (United States)

    Irzh, Alexander; Ghindes, Lee; Gedanken, Aharon

    2011-12-01

    We report herein on a very fast and simple process for the fabrication of transparent superhydrophobic surfaces by using microwave (MW) plasma. It was found that the reaction of various organic liquids in MW argon plasma yields hydrophobic polymeric layers on a large assortment of surfaces, including glass, polymeric surfaces, ceramics, metals, and even paper. In most cases, these polymers are deposited as a rough layer composed of 10-15 nm nanoparticles (NPs). This roughness, together with the chemical hydrophobic nature of the coated materials, is responsible for the superhydrophobic nature of the surface. The typical reaction time of the coating procedure was 1-10 s. The stability of these superhydrophobic surfaces was examined outdoors, and was found to last 2-5 days under direct exposure to the environment and to last 2 months when the sample was protected by a quartz cover. A detailed characterization study of the chemical composition of the layers followed using XPS, solid-state NMR, and IR measurements. Modifications were introduced in the products leading to a substantial improvement in the stability of the products outdoors.

  20. Surface studies on superhydrophobic and oleophobic polydimethylsiloxane-silica nanocomposite coating system

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Bharathibai J., E-mail: bharathi@nal.res.in [Surface Engineering Division, CSIR-National Aerospace Laboratories, Bangalore 560017 (India); Dinesh Kumar, V.; Anandan, C. [Surface Engineering Division, CSIR-National Aerospace Laboratories, Bangalore 560017 (India)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Superhydrophobic coatings were rendered oleophobic by applying a topcoat of FAS. Black-Right-Pointing-Pointer The coatings exhibited stable oleophobic property with oil CA of 79 Degree-Sign . Black-Right-Pointing-Pointer Fluoroalkyl groups have more affinity towards silica nanoparticles than for PDMS. Black-Right-Pointing-Pointer Very small amount of fluorine was required to render oil repellency to the coating. - Abstract: Superhydrophobic and oleophobic polydimethylsiloxane (PDMS)-silica nanocomposite double layer coating was fabricated by applying a thin layer of low surface energy fluoroalkyl silane (FAS) as topcoat. The coatings exhibited WCA of 158-160 Degree-Sign and stable oleophobic property with oil CA of 79 Degree-Sign . The surface morphology was characterized by field emission scanning electron microscopy (FESEM) and surface chemical composition was determined by energy dispersive X-ray spectrometery (EDX) and X-ray photoelectron spectroscopy (XPS). FESEM images of the coatings showed micro-nano binary structure. The improved oleophobicity was attributed to the combined effect of low surface energy of FAS and roughness created by the random distribution of silica aggregates. This is a facile, cost-effective method to obtain superhydrophobic and oleophobic surfaces on larger area of various substrates.

  1. Raman spectroscopy for detection of stretched DNAs on superhydrophobic surfaces

    KAUST Repository

    Marini, Monica

    2014-05-01

    A novel approach for the study of low concentrated DNAs (60 pM) using microRaman spectroscopy is reported. A superhydrophobic substrate with array of microPillars is fabricated over which the sample was drop casted. The substrate concentrates the molecules in a very small area with higher molecular density, enabling to carry out the microRaman measurements. Two different DNAs (single strand and double strand) were used to investigate through Raman technique. A spectral Raman difference was found to distinguish the ssDNA and dsDNAs. The approach can be of interest for a wide variety of applications ranging from biological materials interactions characterization to the biomedical field. © 2014 Elsevier B.V. All rights reserved.

  2. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the absence of Microstructures.

    Science.gov (United States)

    Zhang, Peng; Maeda, Yota; Lv, Fengyong; Takata, Yasuyuki; Orejon, Daniel

    2017-09-19

    Superhydrophobic surfaces are receiving increasing attention due to the enhanced condensation heat transfer, self-cleaning and anti-icing properties by easing droplet self-removal. Despite the extensive research carried out in this topic, the presence or absence of microstructures on droplet adhesion during condensation has not been addressed yet. In this work we, therefore, address the condensation behavior on engineered superhydrophobic copper oxide surfaces with different structural finishes. More specifically, we investigate the coalescence-induced droplet-jumping performance on superhydrophobic surfaces with structures varying from the micro- to the nano-scale. The different structural roughness is possible due to the specific etching parameters adopted during the fabrication process. A custom-built optical microscopy setup inside a temperature and relative humidity controlled environmental chamber was used for the experimental observations. By varying the structural roughness, from the micro- to the nano-scale, important differences on the number of droplets involved in the jumps, on the frequency of the jumps and on the size distribution of the jumping droplets were found. In the absence of microstructures, we report an enhancement of the droplet-jumping performance of small droplets with sizes in the same order of magnitude as the microstructures. Microstructures induce the droplet angular deviation from the main surface normal increasing the droplet adhesion. As a consequence, upon coalescence, there is a decrease in the net momentum in the out-of-plane direction and the jump does not ensue. We demonstrate that the absence of micro-structures has therefore a positive impact on the coalescence-induced droplet-jumping and on the heat transfer performance. Microstructures are then rule out for the optimum design of superhydrophobic surfaces with enhanced droplet mobility of micrometer droplets.

  3. Fabrication of Water Jet Resistant and Thermally Stable Superhydrophobic Surfaces by Spray Coating of Candle Soot Dispersion.

    Science.gov (United States)

    Qahtan, Talal F; Gondal, Mohammed A; Alade, Ibrahim O; Dastageer, Mohammed A

    2017-08-08

    A facile synthesis method for highly stable carbon nanoparticle (CNP) dispersion in acetone by incomplete combustion of paraffin candle flame is presented. The synthesized CNP dispersion is the mixture of graphitic and amorphous carbon nanoparticles of the size range of 20-50 nm and manifested the mesoporosity with an average pore size of 7 nm and a BET surface area of 366 m(2)g(-1). As an application of this material, the carbon nanoparticle dispersion was spray coated (spray-based coating) on a glass surface to fabricate superhydrophobic (water contact angle > 150° and sliding angle water jet resistance and thermal stability up to 400 °C compared to the surfaces fabricated from direct candle flame soot deposition (candle-based coating). This study proved that water jet resistant and thermally stable superhydrophobic surfaces can be easily fabricated by simple spray coating of CNP dispersion gathered from incomplete combustion of paraffin candle flame and this technique can be used for different applications with the potential for the large scale fabrication.

  4. Biomimetic hairy surfaces as superhydrophobic highly transmissive films for optical applications (Conference Presentation)

    Science.gov (United States)

    Vuellers, Felix; Gomard, Guillaume; Preinfalk, Jan B.; Klampaftis, Efthymios; Worgull, Matthias; Richards, Bryce S.; Hölscher, Hendrik; Kavalenka, Maryna N.

    2017-02-01

    Combining high optical transmission, water-repellency and self-cleaning is of great interest for optoelectronic devices operating in outdoor conditions, such as photovoltaics where shading can significantly reduce the power output. The surface of water plant Pistia stratiotes combines these functionalities through a dense layer of transparent microhairs. It renders the surface superhydrophobic without affecting absorption of sunlight necessary for photosynthesis. Inspired by this surface, we fabricated a superhydrophobic flexible thin nanofur film made from optical grade polycarbonate using a scalable combination of hot embossing and hot pulling techniques. During fabrication, heated sandblasted steel plates locally elongate softened polymer, thus covering its surface in microcavities surrounded by high aspect ratio micro- and nanohairs. The superhydrophobic nanofur exhibits contact angles of (166+/-6°), low sliding angles (film stands above 85% over the visible range, with 97% of the transmitted light scattered forward. Reflection drops below 4% when coated on a polymeric substrate, which can enhance light extraction in organic light emitting diodes (OLEDs). We report an increase of more than 10% in luminous efficacy for a nanofur coated OLED compared to a bare device. Finally, the nanofur film can be used for enhancing the incoupling of light to solar cells, while additionally providing self-cleaning properties. Optical coupling of the nanofur to a multi-crystalline silicon solar cell results in a 5.8% gain in photocurrent compared to a bare device under normal incidence.

  5. Preparation of self-cleaning surfaces with a dual functionality of superhydrophobicity and photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eun Ji; Yoon, Hye Soo; Kim, Dae Han [Department of Chemistry, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Kim, Yong Ho, E-mail: yhkim94@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Young Dok, E-mail: ydkim91@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Biorefinery Research Group, Korean Research Institute of Chemical Technology, Daejeon, 306-600 (Korea, Republic of)

    2014-11-15

    Graphical abstract: - Highlights: • Hydrophobic thin film of polydimethylsiloxane was deposited on SiO{sub 2}. • PDMS-coated SiO{sub 2} and TiO{sub 2} photocatalysts were mixed with various ratios. • Both stable superhydrophobicity and photocatalytic activity appeared on a surface. - Abstract: Thin film of polydimethylsiloxane (PDMS) was deposited on SiO{sub 2} nanoparticles by chemical vapor deposition, and SiO{sub 2} became completely hydrophobic after PDMS coating. Mixtures of TiO{sub 2} and PDMS-coated SiO{sub 2} nanoparticles with various relative ratios were prepared, and distributed on glass surfaces, and water contact angles and photocatalytic activities of these surfaces were studied. Samples consisting of TiO{sub 2} and PDMS-coated SiO{sub 2} with a ratio of 7:3 showed a highly stable superhydrophobicity under UV irradiation with a water contact angle of 165° and UV-driven photocatalytic activity for decomposition of methylene blue and phenol in aqueous solution. Our process can be exploited for fabricating self-cleaning surfaces with dual functionality of superhydrophobicity and photocatalytic activity at the same time.

  6. Designing robust alumina nanowires-on-nanopores structures: superhydrophobic surfaces with slippery or sticky water adhesion.

    Science.gov (United States)

    Peng, Shan; Tian, Dong; Miao, Xinrui; Yang, Xiaojun; Deng, Wenli

    2013-11-01

    Hierarchical alumina surfaces with different morphologies were fabricated by a simple one-step anodization method. These alumina films were fabricated by a new raw material: silica gel plate (aluminum foil with a low purity of 97.17%). The modulation of anodizing time enabled the formation of nanowires-on-nanopores hybrid nanostructures having controllable nanowires topographies through a self-assembly process. The resultant structures were demonstrated to be able to achieve superhydrophobicity without any hydrophobic coating layer. More interestingly, it is found that the as-prepared superhydrophobic alumina surfaces exhibited high contrast water adhesion. Hierarchical alumina film with nanowire bunches-on-nanopores (WBOP) morphology presents extremely slippery property which can obtain a sliding angle (SA) as low as 1°, nanowire pyramids-on-nanopores (WPOP) structure shows strongly sticky water adhesion with the adhesive ability to support 15 μL inverted water droplet at most. The obtained superhydrophobic alumina surfaces show remarkable mechanical durability even treated by crimping or pressing without impact on the water-repellent performance. Moreover, the created surfaces also show excellent resistivity to ice water, boiling water, high temperature, organic solvent and oil contamination, which could expand their usefulness and efficacy in harsh conditions.

  7. A noise-resistant ADSA-PH algorithm for superhydrophobic surface's static contact angle evaluation

    Science.gov (United States)

    Xu, Z. N.

    2017-03-01

    The blur around the contact points significantly decreases the evaluated static contact angle for superhydrophobic surface which is clearly presented in the paper. To improve the accuracy in the evaluated static contact angle for superhydrophobic surface, an accurate static contact angle algorithm, namely ADSA-PH (axisymmetric drop shape analysis-profile and height), is proposed. It discards the extracted drop edge points close to the contact points and makes use of the residual points and the drop height to determine the static contact angle. The contact angle errors caused by the blur close to the contact points are significantly reduced. The classical ADSA-P algorithm, the modified selected-plane method and the proposed algorithm are used to evaluate static contact angle. The results validate the proposed algorithm. The accuracy in the evaluated contact angle increases with increasing image resolution. To reduce the error caused by a limitation of image resolution, the minimum allowable image resolutions are presented.

  8. Wenzel to Cassie transition during droplet impingement on a superhydrophobic surface

    Science.gov (United States)

    Clavijo, Cristian E.; Crockett, Julie; Maynes, Daniel

    2016-11-01

    Superhydrophobic surfaces offer many industrial advantages such as drag reduction and self-cleaning behavior as long as the liquid remains suspended above the composite solid/gas interface (Cassie state). These advantages are hindered when liquid penetrates the gas cavities (Wenzel state), and this is commonly referred to as impalement. Current efforts to drive impaled liquid out of, or dewet, the cavities—such as boiling or mechanical vibrations—are locally disruptive to the flow. In this work, we reveal that passive dewetting is possible during droplet impingement on micropillar substrates under the right thermodynamical conditions. Exploration included substrates with pillar-to-pillar spacing of 8 and 16 μ m , pillar diameters of 3 and 6 μ m , and pillar heights of 4 to 8 μ m and 8 to 18 μ m , respectively. The substrate temperature range considered was 23 mechanism are formulated based on evaporation and surface energy. First-order models are consequently constructed, revealing that dewetting does not occur due to evaporation, but is caused by surface energy gradients at the interface. Dissipation in the flow is taken into account due to hydrodynamic and nonhydrodynamic mechanisms; the latter is found to dominate resistance.

  9. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.

    Science.gov (United States)

    Sasmal, Anup Kumar; Mondal, Chanchal; Sinha, Arun Kumar; Gauri, Samiran Sona; Pal, Jaya; Aditya, Teresa; Ganguly, Mainak; Dey, Satyahari; Pal, Tarasankar

    2014-12-24

    Superhydrophobic surfaces prevent percolation of water droplets and thus render roll-off, self-cleaning, corrosion protection, etc., which find day-to-day and industrial applications. In this work, we developed a facile, cost-effective, and free-standing method for direct fabrication of copper nanoparticles to engender superhydrophobicity for various flat and irregular surfaces such as glass, transparency sheet (plastic), cotton wool, textile, and silicon substrates. The fabrication of as-prepared superhydrophobic surfaces was accomplished using a simple chemical reduction of copper acetate by hydrazine hydrate at room temperature. The surface morphological studies demonstrate that the as-prepared surfaces are rough and display superhydrophobic character on wetting due to generation of air pockets (The Cassie-Baxter state). Because of the low adhesion of water droplets on the as-prepared surfaces, the surfaces exhibited not only high water contact angle (164 ± 2°, 5 μL droplets) but also superb roll-off and self-cleaning properties. Superhydrophobic copper nanoparticle coated glass surface uniquely withstands water (10 min), mild alkali (5 min in saturated aqueous NaHCO3 of pH ≈ 9), acids (10 s in dilute HNO3, H2SO4 of pH ≈ 5) and thiol (10 s in neat 1-octanethiol) at room temperature (25-35 °C). Again as-prepared surface (cotton wool) was also found to be very effective for water-kerosene separation due to its superhydrophobic and oleophilic character. Additionally, the superhydrophobic copper nanoparticle (deposited on glass surface) was found to exhibit antibacterial activity against both Gram-negative and Gram-positive bacteria.

  10. Micro/nano engineering on stainless steel substrates to produce superhydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Beckford, Samuel; Zou Min, E-mail: mzou@uark.edu

    2011-12-30

    Creating micro-/nano-scale topography on material surfaces to change their wetting properties has been a subject of much interest in recent years. Wenzel in 1936 and Cassie and Baxter in 1944 proposed that by microscopically increasing the surface roughness of a substrate, it is possible to increase its hydrophobicity. This paper reports the fabrication of micro-textured surfaces and nano-textured surfaces, and the combination of both on stainless steel substrates by sandblasting, thermal evaporation of aluminum, and aluminum-induced crystallization (AIC) of amorphous silicon (a-Si). Meanwhile, fluorinated carbon films were used to change the chemical composition of the surfaces to render the surfaces more hydrophobic. These surface modifications were investigated to create superhydrophobic surfaces on stainless steel substrates. The topography resulting from these surface modifications was analyzed by scanning electron microscopy and surface profilometry. The wetting properties of these surfaces were characterized by water contact angle measurement. The results of this study show that superhydrophobic surfaces can be produced by either micro-scale surface texturing or nano-scale surface texturing, or the combination of both, after fluorinated carbon film deposition.

  11. Rapid transfer of hierarchical microstructures onto biomimetic polymer surfaces with gradually tunable water adhesion from slippery to sticky superhydrophobicity

    Science.gov (United States)

    Chen, An-Fu; Huang, Han-Xiong

    2016-02-01

    Biomimetic superhydrophobic surfaces are generally limited to extremely high or quite low water droplet adhesion. The present work proposes flexible template replication methods for bio-inspired polypropylene (PP) surfaces with microtopographies and gradually tunable water droplet adhesion in one step using microinjection compression molding (μ-ICM). A dual-level microstructure appears on PP surfaces prepared using a flexible template. The microstructures obtained under low and high mold temperatures exhibit low-aspect-ratio (AR) micropillars with semi-spherical top and high-AR ones with conical top, resulting in the surfaces with high-adhesive hydrophobicity and low-adhesive superhydrophobicity, respectively. Further, silica nanoparticles (SNPs) coated on templates are transferred to viscous state-dominated melt during its filling in μ-ICM, and firmly adhered to the skin of the replicas, forming hierarchical microstructures on PP surfaces. The hydrophilic and hydrophobic SNPs on high-AR micropillared surfaces help achieve extremely high (petal effect) and extremely low (lotus effect) adhesion on superhydrophobic surfaces, respectively. The hybrid SNPs on low-AR micropillars change the Wenzel state-dominated surface to Cassie-Baxter state-dominated surface and preserves medium adhesion with superhydrophobicity. The proposed methods for fast and mass replication of superhydrophobic surfaces with the dual-level or hierarchical microtopography can be excellent candidates for the development of microfluidics, sensors, and labs on chip.

  12. A self-cleaning polybenzoxazine/TiO2 surface with superhydrophobicity and superoleophilicity for oil/water separation

    Science.gov (United States)

    Zhang, Wenfei; Lu, Xin; Xin, Zhong; Zhou, Changlu

    2015-11-01

    Two important properties--the low surface free energy of polybenzoxazine (PBZ) and the photocatalysis-induced self-cleaning property of titanium dioxide (TiO2) nanoparticles--are combined to develop a promising approach for oil/water separation. They are integrated into a multifunctional superhydrophobic and superoleophilic material, PBZ/TiO2 modified polyester non-woven fabrics (PBZT), through a simple dip coating and subsequent thermal curing method. The resulting PBZT reveals excellent mechanical durability and strong resistance to ultraviolet (UV) irradiation as well as acid and alkali. This durable superhydrophobic and superoleophilic fabric is efficient for separating oil/water mixtures by gravity with high separation efficiency, and it can also purify wastewater that contains soluble dyes, which makes it more effective and promising in treating water pollution. Importantly, PBZT demonstrates an integrated self-cleaning performance on the removal of both oil and particle contamination. It is expected that this simple process can be readily adopted for the design of multifunctional PBZ/TiO2 based materials for oil/water separation.Two important properties--the low surface free energy of polybenzoxazine (PBZ) and the photocatalysis-induced self-cleaning property of titanium dioxide (TiO2) nanoparticles--are combined to develop a promising approach for oil/water separation. They are integrated into a multifunctional superhydrophobic and superoleophilic material, PBZ/TiO2 modified polyester non-woven fabrics (PBZT), through a simple dip coating and subsequent thermal curing method. The resulting PBZT reveals excellent mechanical durability and strong resistance to ultraviolet (UV) irradiation as well as acid and alkali. This durable superhydrophobic and superoleophilic fabric is efficient for separating oil/water mixtures by gravity with high separation efficiency, and it can also purify wastewater that contains soluble dyes, which makes it more effective and

  13. Synthesis of ceria based superhydrophobic coating on Ni20Cr substrate via cathodic electrodeposition.

    Science.gov (United States)

    Pedraza, F; Mahadik, S A; Bouchaud, B

    2015-12-21

    In this work, superhydrophobic cerium oxide coating surface (111) with dual scale texture on Ni20Cr substrate is obtained by combination of electropolishing the substrate and subsequent cathodic electrodeposition and long-term UVH surface relaxation. To form hierarchical structures of CeO2 is controllable by varying the substrate roughness, and electropolishing period. The results indicated that at the optimal condition, the surface of the cerium oxide coating showed a superhydrophobicity with a great water contact angle (151.0 ± 1.4°) with Gecko state. An interface model for electropolishing of substrate surface in cerium nitrate medium is proposed. We expect that this facile process can be readily and widely adopted for the design of superhydrophobic coating on engineering materials.

  14. Superhydrophobic diatomaceous earth

    Science.gov (United States)

    Simpson, John T [Clinton, TN; D& #x27; Urso, Brian R [Clinton, TN

    2012-07-10

    A superhydrophobic powder is prepared by coating diatomaceous earth (DE) with a hydrophobic coating on the particle surface such that the coating conforms to the topography of the DE particles. The hydrophobic coating can be a self assembly monolayer of a perfluorinated silane coupling agent. The DE is preferably natural-grade DE where organic impurities have been removed. The superhydrophobic powder can be applied as a suspension in a binder solution to a substrate to produce a superhydrophobic surface on the substrate.

  15. Fabrication of a Superhydrophobic Surface with Flower-Like Microstructures with a One-Step Immersion Process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Younga; Go, Seungcheol; Ahn, Yonghyun [Dankook Univ., Yongin (Korea, Republic of)

    2013-11-15

    It has been demonstrated that flower-like microstructures can be fabricated on a Mg plate using a solution of propylphosphonic acid and HFTHTMS in ethanol. In the presence of propylphosphonic acid, the HFTHTMS is polymerized and then deposited on the surface of the Mg plates during the immersion period. Many flower-like structures were formed on the surface after at least 6 h of immersion, at which point the modified plate became superhydro-phobic. The nano-/micro scale flower-like structure is composed of fluorinated polysiloxane, which acts as a low-surface-energy material. SEM images reveal that the flower-like structure is composed of many thin flakes. It is confirmed that these structures on the surface contain air and result in an ideal structure for obtaining the superhydrophobic surface. This proposed coating method is simple and can be applied to a large sample to fabricate a superhydrophobic surface without expensive instruments. Superhydrophobicity of solid materials has attracted significant attention because it provides strong water repellency and self-cleaning properties. The chemical composition and nano-/microscale structures of the surface are key factors determining the surface properties. Recently, superhydro-phobic surfaces showing high water contact angles (CA) > 150 .deg. and low sliding angles (SA) < 10 .deg. have been the focus of much research because they have many applications in both academic fields and industrial processes.

  16. Research on the behavior of liquid fluids atop superhydrophobic gas-bubbled surfaces

    CERN Document Server

    Lehmann, Gerrit C; Horsch, Martin; Huang, Yow-Lin; Miroshnichenko, Svetlana; Pflock, Rüdiger; Sonnenrein, Gerrit; Vrabec, Jadran

    2010-01-01

    Superhydrophobic surfaces play an important role in the development of new product coatings such as cars, but also in mechanical engineering, especially design of turbines and compressors. Thus a vital part of the design of these surfaces is the computational simulation of such with a special interest on variation of shape and size of minor pits grooved into plane surfaces. In the present work, the dependence of the contact angle on the fluid-wall dispersive energy is determined by molecular simulation and static as well as dynamic properties of unpolar fluids in contact with extremely rough surfaces are obtained.

  17. Simple approach to superhydrophobic nanostructured Al for practical antifrosting application based on enhanced self-propelled jumping droplets.

    Science.gov (United States)

    Kim, Aeree; Lee, Chan; Kim, Hyungmo; Kim, Joonwon

    2015-04-08

    Frost formation can cause operational difficulty and efficiency loss for many facilities such as aircraft, wind turbines, and outdoor heat exchangers. Self-propelled jumping by condensate droplets on superhydrophobic surfaces delays frost formation, so many attempts have been made to exploit this phenomenon. However, practical application of this phenomenon is currently unfeasible because many processes to fabricate the superhydrophobic surfaces are inefficient and because self-propelled jumping is difficult to be achieved in a humid and low-temperature environment because superhydrophobicity is degraded in these conditions. Here, we achieved significantly effective anti-icing superhydrophobic aluminum. Its extremely low adhesive properties allow self-propelled jumping under highly supersaturated conditions of high humidity or low surface temperature. As a result, this surface helps retard frost formation at that condition. The aluminum was made superhydrophobic by a simple and cost-effective process that is adaptable to any shape. Therefore, it has promise for use in practical and industrial applications.

  18. Durable and scalable icephobic surfaces: similarities and distinctions from superhydrophobic surfaces.

    Science.gov (United States)

    Sojoudi, H; Wang, M; Boscher, N D; McKinley, G H; Gleason, K K

    2016-02-21

    Formation, adhesion, and accumulation of ice, snow, frost, glaze, rime, or their mixtures can cause severe problems for solar panels, wind turbines, aircrafts, heat pumps, power lines, telecommunication equipment, and submarines. These problems can decrease efficiency in power generation, increase energy consumption, result in mechanical and/or electrical failure, and generate safety hazards. To address these issues, the fundamentals of interfaces between liquids and surfaces at low temperatures have been extensively studied. This has lead to development of so called "icephobic" surfaces, which possess a number of overlapping, yet distinctive, characteristics from superhydrophobic surfaces. Less attention has been given to distinguishing differences between formation and adhesion of ice, snow, glaze, rime, and frost or to developing a clear definition for icephobic, or more correctly pagophobic, surfaces. In this review, we strive to clarify these differences and distinctions, while providing a comprehensive definition of icephobicity. We classify different canonical families of icephobic (pagophobic) surfaces providing a review of those with potential for scalable and robust development.

  19. Highly transparent, stable, and superhydrophobic coatings based on gradient structure design and fast regeneration from physical damage

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zao; Liu, Xiaojiang; Wang, Yan; Li, Jun; Guan, Zisheng, E-mail: zsguan@njtech.edu.cn

    2015-12-30

    Graphical abstract: - Highlights: • Highly transparent, stable, and superhydrophobic PET film was fabricated by dip-coating way. • The gradient structure is beneficial to both hydrophobicity and transparency. • The superhydrophobic PET film after physical damage can quickly regain by one-step spary. • The fabrication method is available for various substrates and large-scale production. - Abstract: Optical transparency, mechanical flexibility, and fast regeneration are important factors to expand the application of superhydrophobic surfaces. Herein, we fabricated highly transparent, stable, and superhydrophobic coatings through a novel gradient structure design by versatile dip-coating of silica colloid particles (SCPs) and diethoxydimethysiliane cross-linked silica nanoparticles (DDS-SNPs) on polyethylene terephthalate (PET) film and glass, followed by the modification of octadecyltrichlorosiliane (OTCS). When the DDS concentration reached 5 wt%, the modified SCPs/DDS-SNPs coating exhibited a water contact angle (WCA) of 153° and a sliding angle (SA) <5°. Besides, the average transmittance of this superhydrophobic coating on PET film and glass was increased by 2.7% and 1% in the visible wavelength, respectively. This superhydrophobic coating also showed good robustness and stability against water dropping impact, ultrasonic damage, and acid solution. Moreover, the superhydrophobic PET film after physical damage can quickly regain the superhydrophobicity by one-step spray regenerative solution of dodecyltrichlorosilane (DTCS) modified silica nanoparticles at room temperature. The demonstrated method for the preparation and regeneration of superhydrophobic coating is available for different substrates and large-scale production at room temperature.

  20. The evaluation of hierarchical structured superhydrophobic coatings for the alleviation of insect residue to aircraft laminar flow surfaces

    Science.gov (United States)

    Kok, Mariana; Young, Trevor M.

    2014-09-01

    Surface contamination caused by insects on laminar flow wing surfaces causes a disruption of the flow, resulting in an increase in drag and fuel consumption. Consequently, the use of superhydrophobic coatings to mitigate insect residue adhesion was investigated. A range of hierarchical superhydrophobic coatings with different surface chemistry and topography was examined. Candidate coatings were characterized in terms of their morphology and hydrophobic properties by scanning electron microscopy (SEM) and static and dynamic contact angle measurements, respectively. Arithmetic mean surface roughness (Ra) values were measured using profilometry. Only superhydrophobic coatings with a specific topography showed complete mitigation against insect residue adhesion. A surface which exhibited a specific microstructure (Ra = 5.26 μm) combined with a low sliding angle (SA = 7.6°) showed the best anti-contamination properties. The dynamics of an insect impact event and its influence on the wetting and adhesion mechanisms of insect residue to a surface were discussed.

  1. The evaluation of hierarchical structured superhydrophobic coatings for the alleviation of insect residue to aircraft laminar flow surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kok, Mariana [Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick (Ireland); Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Young, Trevor M., E-mail: Trevor.Young@ul.ie [Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick (Ireland); Materials and Surface Science Institute, University of Limerick, Limerick (Ireland)

    2014-09-30

    Surface contamination caused by insects on laminar flow wing surfaces causes a disruption of the flow, resulting in an increase in drag and fuel consumption. Consequently, the use of superhydrophobic coatings to mitigate insect residue adhesion was investigated. A range of hierarchical superhydrophobic coatings with different surface chemistry and topography was examined. Candidate coatings were characterized in terms of their morphology and hydrophobic properties by scanning electron microscopy (SEM) and static and dynamic contact angle measurements, respectively. Arithmetic mean surface roughness (R{sub a}) values were measured using profilometry. Only superhydrophobic coatings with a specific topography showed complete mitigation against insect residue adhesion. A surface which exhibited a specific microstructure (R{sub a} = 5.26 μm) combined with a low sliding angle (SA = 7.6°) showed the best anti-contamination properties. The dynamics of an insect impact event and its influence on the wetting and adhesion mechanisms of insect residue to a surface were discussed.

  2. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces.

    Science.gov (United States)

    Li, GuanQiu; Alhosani, Mohamed H; Yuan, ShaoJun; Liu, HaoRan; Ghaferi, Amal Al; Zhang, TieJun

    2014-12-01

    Utilization of nanotechnologies in condensation has been recognized as one opportunity to improve the efficiency of large-scale thermal power and desalination systems. High-performance and stable dropwise condensation in widely-used copper heat exchangers is appealing for energy and water industries. In this work, a scalable and low-cost nanofabrication approach was developed to fabricate superhydrophobic copper oxide (CuO) nanoneedle surfaces to promote dropwise condensation and even jumping-droplet condensation. By conducting systematic surface characterization and in situ environmental scanning electron microscope (ESEM) condensation experiments, we were able to probe the microscopic formation physics of droplets on irregular nanostructured surfaces. At the early stages of condensation process, the interfacial surface tensions at the edge of CuO nanoneedles were found to influence both the local energy barriers for microdroplet growth and the advancing contact angles when droplets undergo depinning. Local surface roughness also has a significant impact on the volume of the condensate within the nanostructures and overall heat transfer from the vapor to substrate. Both our theoretical analysis and in situ ESEM experiments have revealed that the liquid condensate within the nanostructures determines the amount of the work of adhesion and kinetic energy associated with droplet coalescence and jumping. Local and global droplet growth models were also proposed to predict how the microdroplet morphology within nanostructures affects the heat transfer performance of early-stage condensation. Our quantitative analysis of microdroplet formation and growth within irregular nanostructures provides the insight to guide the anodization-based nanofabrication for enhancing dropwise and jumping-droplet condensation performance.

  3. Durable superhydrophobic surfaces made by intensely connecting a bipolar top layer to the substrate with a middle connecting layer.

    Science.gov (United States)

    Zhi, Jinghui; Zhang, Li-Zhi

    2017-08-30

    This study reported a simple fabrication method for a durable superhydrophobic surface. The superhydrophobic top layer of the durable superhydrophobic surface was connected intensely to the substrate through a middle connecting layer. Glycidoxypropyltrimethoxysilane (KH-560) after hydrolysis was used to obtain a hydrophilic middle connecting layer. It could be adhered to the hydrophilic substrate by covalent bonds. Ring-open reaction with octadecylamine let the KH-560 middle layer form a net-like structure. The net-like sturcture would then encompass and station the silica particles that were used to form the coarse micro structures, intensely to increase the durability. The top hydrophobic layer with nano-structures was formed on the KH-560 middle layer. It was obtained by a bipolar nano-silica solution modified by hexamethyldisilazane (HMDS). This layer was connected to the middle layer intensely by the polar Si hydroxy groups, while the non-polar methyl groups on the surface, accompanied by the micro and nano structures, made the surface rather hydrophobic. The covalently interfacial interactions between the substrate and the middle layer, and between the middle layer and the top layer, strengthened the durability of the superhydrophobic surface. The abrasion test results showed that the superhydrophobic surface could bear 180 abrasion cycles on 1200 CW sandpaper under 2 kPa applied pressure.

  4. Fabrication of Crack-Free Photonic Crystal Films on Superhydrophobic Nanopin Surface.

    Science.gov (United States)

    Xia, Tian; Luo, Wenhao; Hu, Fan; Qiu, Wu; Zhang, Zhisen; Lin, Youhui; Liu, Xiang Yang

    2017-07-05

    On the basis of their superior optical performance, photonic crystals (PCs) have been investigated as excellent candidates for widespread applications including sensors, displays, separation processes, and catalysis. However, fabrication of structurally controllable large-area PC assemblies with no defects is still a tough task. Herein, we develop an effective strategy for preparing centimeter-scale crack-free photonic crystal films by the combined effects of soft assembly and superhydrophobic nanopin surfaces. Owing to its large contact angle and low-adhesive force on the superhydrophobic substrate, the colloidal suspension exhibits a continuous retraction of the three-phase (gas-liquid-solid) contact line (TCL) in the process of solvent (water molecules) evaporation. The constantly receding TCL can bring the colloidal spheres closer to each other, which could timely close the gaps due to the loss of water molecules. As a result, close-packed and well-ordered assembly structures can be easily obtained. We expect that this work may pave the way to utilize novel superhydrophobic materials for designing and developing high-quality PCs and to apply PCs in different fields.

  5. From Initial Nucleation to Cassie-Baxter State of Condensed Droplets on Nanotextured Superhydrophobic Surfaces

    Science.gov (United States)

    Lv, Cunjing; Zhang, Xiwen; Niu, Fenglei; He, Feng; Hao, Pengfei

    2017-02-01

    Understanding how droplet condensation happens plays an essential role for our fundamental insights of wetting behaviors in nature and numerous applications. Since there is a lack of study of the initial formation and growing processes of condensed droplets down to nano-/submicroscale, relevant underlying mechanisms remain to be explored. We report an in situ observation of vapor condensation on nano-/microtextured superhydrophobic surfaces using optical microscopy. An interesting picture of the vapor condensation, from the initial appearance of individual small droplets (≤1 μm) to a Cassie-Baxter wetting state (>30 μm), are exhibited. It is found that individual droplets preferentially nucleate at the top and the edge of single micropillars with very high apparent contact angles on the nanotextures. Scenarios of two distinguished growing modes are reported statistically and the underlying mechanisms are discussed in the view of thermodynamics. We particularly reveal that the formation of the Cassie-Baxter wetting state is a result of a continuous coalescence of individual small droplets, in which the nanotexture-enhanced superhydrophobicity plays a crucial role. We envision that these fundamental findings can deepen our understanding of the nucleation and development of condensed droplets in nanoscale, so as to optimize design strategies of superhydrophobic materials for a broad range of water-harvesting and heat-transfer systems.

  6. Bioinspired polydopamine particles-assisted construction of superhydrophobic surfaces for oil/water separation.

    Science.gov (United States)

    Shang, Bin; Wang, Yanbing; Peng, Bo; Deng, Ziwei

    2016-11-15

    Frequent oil spillages and industrial discharge of oils/organic solvents have induced severe environmental pollution and ecological damage, and a great cost in energy and finance has been consumed to solve the problems raised. Therefore, it is urgent to develop a surface hydrophobic modification that can be applied to materials with desired properties of high separation efficiency, excellent selectivity and stable performance in extreme conditions during the oil/water separation. Herein, with combined bioinspirations from mussel adhesive protein (polydopamine) and superhydrophobic lotus leaf (hierarchical structures), we develop a general way to superhydrophobically modify various commercial materials, aiming for the selective removal of oils/organic solvents from water. In this procedure, immersing commercial materials (e.g. melamine sponge, stainless steel mesh, nylon netting and cotton cloth) into water/ethanol/ammonia mixtures at a low concentration of dopamine (DA, 2mg/mL) allows a polydopamine (PDA) coating with a tunable roughness appearing on the substrate in one step. This is because DA can self-polymerize and form PDA particles with a catalyst of ammonia, attaching to any surfaces due to abundant catechol and amine groups in PDA, and ultimately, resulting in hierarchical structures. The subsequent decoration with 1H, 1H, 2H, 2H-perfluorodecanethiol features the surface superhydrophobic and superoleophilic. This approach is straightforward and economic, and carried out under a mild, environmental-benign circumstance, with nonspecific substrate demands. In addition, the as-prepared superhydrophobic materials exhibit excellent separation performances including high absorption/separation capacity, excellent selectivity, and extraordinary recyclability for collecting various oils/organic solvents from water. These superhydrophobic materials have also verified to be highly chemical resistant, environment stable and mechanically durable. Therefore, this

  7. Path-programmable water droplet manipulations on an adhesion controlled superhydrophobic surface

    Science.gov (United States)

    Seo, Jungmok; Lee, Seoung-Ki; Lee, Jaehong; Seung Lee, Jung; Kwon, Hyukho; Cho, Seung-Woo; Ahn, Jong-Hyun; Lee, Taeyoon

    2015-01-01

    Here, we developed a novel and facile method to control the local water adhesion force of a thin and stretchable superhydrophobic polydimethylsiloxane (PDMS) substrate with micro-pillar arrays that allows the individual manipulation of droplet motions including moving, merging and mixing. When a vacuum pressure was applied below the PDMS substrate, a local dimple structure was formed and the water adhesion force of structure was significantly changed owing to the dynamically varied pillar density. With the help of the lowered water adhesion force and the slope angle of the formed dimple structure, the motion of individual water droplets could be precisely controlled, which facilitated the creation of a droplet-based microfluidic platform capable of a programmable manipulation of droplets. We showed that the platform could be used in newer and emerging microfluidic operations such as surface-enhanced Raman spectroscopy with extremely high sensing capability (10−15 M) and in vitro small interfering RNA transfection with enhanced transfection efficiency of ~80%. PMID:26202206

  8. Droplets, Evaporation and a Superhydrophobic Surface: Simple Tools for Guiding Colloidal Particles into Complex Materials

    Directory of Open Access Journals (Sweden)

    Marcel Sperling

    2017-05-01

    Full Text Available The formation of complexly structured and shaped supraparticles can be achieved by evaporation-induced self-assembly (EISA starting from colloidal dispersions deposited on a solid surface; often a superhydrophobic one. This versatile and interesting approach allows for generating rather complex particles with corresponding functionality in a simple and scalable fashion. The versatility is based on the aspect that basically one can employ an endless number of combinations of components in the colloidal starting solution. In addition, the structure and properties of the prepared supraparticles may be modified by appropriately controlling the evaporation process, e.g., by external parameters. In this review, we focus on controlling the shape and internal structure of such supraparticles, as well as imparted functionalities, which for instance could be catalytic, optical or electronic properties. The catalytic properties can also result in self-propelling (supra-particles. Quite a number of experimental investigations have been performed in this field, which are compared in this review and systematically explained.

  9. Ellipsoidal Colloids with a Controlled Surface Roughness via Bioinspired Surface Engineering: Building Blocks for Liquid Marbles and Superhydrophobic Surfaces.

    Science.gov (United States)

    Zhang, Pengjiao; Yang, Lu; Li, Qiang; Wu, Songhai; Jia, Shaoyi; Li, Zhanyong; Zhang, Zhenkun; Shi, Linqi

    2017-03-01

    Understanding the important role of the surface roughness of nano/colloidal particles and harnessing them for practical applications need novel strategies to control the particles' surface topology. Although there are many examples of spherical particles with a specific surface roughness, nonspherical ones with similar surface features are rare. The current work reports a one-step, straightforward, and bioinspired surface engineering strategy to prepare ellipsoidal particles with a controlled surface roughness. By manipulating the unique chemistry inherent to the oxidation-induced self-polymerization of dopamine into polydopamine (PDA), PDA coating of polymeric ellipsoids leads to a library of hybrid ellipsoidal particles (PS@PDA) with a surface that decorates with nanoscale PDA protrusions of various densities and sizes. Together with the advantages originated from the anisotropy of ellipsoids and rich chemistry of PDA, such a surface feature endows these particles with some unique properties. Evaporative drying of fluorinated PS@PDA particles produces a homogeneous coating with superhydrophobicity that arises from the two-scale hierarchal structure of microscale interparticle packing and nanoscale roughness of the constituent ellipsoids. Instead of water repelling that occurs for most of the lotus leaf-like superhydrophobic surfaces, such coating exhibits strong water adhesion that is observed with certain species of rose pedals. In addition, the as-prepared hybrid ellipsoids are very efficient in preparing liquid marble-isolated droplets covered with solid particles. Such liquid marbles can be placed onto many surfaces and might be useful for the controllable transport and manipulation of small volumes of liquids.

  10. Optically transparent and environmentally durable superhydrophobic coating based on functionalized SiO₂ nanoparticles.

    Science.gov (United States)

    Schaeffer, Daniel A; Polizos, Georgios; Smith, D Barton; Lee, Dominic F; Hunter, Scott R; Datskos, Panos G

    2015-02-01

    Optical surfaces such as mirrors and windows that are exposed to outdoor environmental conditions are susceptible to dust buildup and water condensation. The application of transparent superhydrophobic coatings on optical surfaces can improve outdoor performance via a 'self-cleaning' effect similar to the Lotus effect. The contact angle (CA) of water droplets on a typical hydrophobic flat surface varies from 100° to 120°. Adding roughness or microtexture to a hydrophobic surface leads to an enhancement of hydrophobicity and the CA can be increased to a value in the range of 160°-175°. This result is remarkable because such behavior cannot be explained using surface chemistry alone. When surface features are on the order of 100 nm or smaller, they exhibit superhydrophobic behavior and maintain their optical transparency. In this work we discuss our results on transparent superhydrophobic coatings that can be applied across large surface areas. We have used functionalized silica nanoparticles to coat various optical elements and have measured the CA and optical transmission between 190 and 1100 nm on these elements. The functionalized silica nanoparticles were dissolved in a solution of the solvents, while the binder used was a polyurethane clearcoat. This solution was spin-coated onto a variety of test glass substrates, and following a curing period of about 30 min, these coatings exhibited superhydrophobic behavior with a static CA ≥ 160°.

  11. Optically transparent and environmentally durable superhydrophobic coating based on functionalized SiO2 nanoparticles

    Science.gov (United States)

    Schaeffer, Daniel A.; Polizos, Georgios; Barton Smith, D.; Lee, Dominic F.; Hunter, Scott R.; Datskos, Panos G.

    2015-02-01

    Optical surfaces such as mirrors and windows that are exposed to outdoor environmental conditions are susceptible to dust buildup and water condensation. The application of transparent superhydrophobic coatings on optical surfaces can improve outdoor performance via a ‘self-cleaning’ effect similar to the Lotus effect. The contact angle (CA) of water droplets on a typical hydrophobic flat surface varies from 100° to 120°. Adding roughness or microtexture to a hydrophobic surface leads to an enhancement of hydrophobicity and the CA can be increased to a value in the range of 160°-175°. This result is remarkable because such behavior cannot be explained using surface chemistry alone. When surface features are on the order of 100 nm or smaller, they exhibit superhydrophobic behavior and maintain their optical transparency. In this work we discuss our results on transparent superhydrophobic coatings that can be applied across large surface areas. We have used functionalized silica nanoparticles to coat various optical elements and have measured the CA and optical transmission between 190 and 1100 nm on these elements. The functionalized silica nanoparticles were dissolved in a solution of the solvents, while the binder used was a polyurethane clearcoat. This solution was spin-coated onto a variety of test glass substrates, and following a curing period of about 30 min, these coatings exhibited superhydrophobic behavior with a static CA ≥ 160°.

  12. A facile dip-coating approach based on three silica sols to fabrication of broadband antireflective superhydrophobic coatings.

    Science.gov (United States)

    Gao, Liangjuan; He, Junhui

    2013-06-15

    This paper reports a new design to fabricate broadband antireflective superhydrophobic coatings by versatile dip-coating of three silica-based sols: silica sol (below 10nm) prepared under acidic conditions (sol A), silica nanoparticle (ca. 25 nm) suspension prepared by the Stöber method (sol B) and mesoporous silica nanoparticle (MSN) suspension, followed by chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltriethoxysilane. The maximum transmittance of coatings reached as high as 95.3% at the wavelength of 630 nm, whereas the water contact angle was 153° with sliding angle ≤5° by applying of the A2/B/MSN2 coating. The superhydrophobic A/B/MSN2 coating (water contact angle: 153°, sliding angle: ≤5°) showed excellent antireflection in the wavelength range of 400-2000 nm, especially in the wavelength range of 742-1573 nm where the transmittance of glass substrate is significantly lower. Transmission electron microscopy was used to characterize the morphology of synthesized nanoparticles. Scanning electron microscopy and atomic force microscopy were used to observe the morphology and estimate the surface roughness of coatings. Optical properties were characterized by a UV-visible-near infrared spectrophotometer. Surface wettability was studied by a contact angle/interface system. The broadband antireflection of superhydrophobic A/B/MSN2 coating was discussed in detail. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Electron beam heating effects during environmental scanning electron microscopy imaging of water condensation on superhydrophobic surfaces

    Science.gov (United States)

    Rykaczewski, K.; Scott, J. H. J.; Fedorov, A. G.

    2011-02-01

    Superhydrophobic surfaces (SHSs) show promise as promoters of dropwise condensation. Droplets with diameters below ˜10 μm account for the majority of the heat transferred during dropwise condensation but their growth dynamics on SHS have not been systematically studied. Due to the complex topography of the surface environmental scanning electron microscopy is the preferred method for observing the growth dynamics of droplets in this size regime. By studying electron beam heating effects on condensed water droplets we establish a magnification limit below which the heating effects are negligible and use this insight to study the mechanism of individual drop growth.

  14. A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces

    Science.gov (United States)

    Fukagata, Koji; Kasagi, Nobuhide; Koumoutsakos, Petros

    2006-05-01

    We present a theoretical prediction for the drag reduction rate achieved by superhydrophobic surfaces in a turbulent channel flow. The predicted drag reduction rate is in good agreement with results obtained from direct numerical simulations at Reτ≃180 and 400. The present theory suggests that large drag reduction is possible also at Reynolds numbers of practical interest (Reτ˜105-106) by employing a hydrophobic surface, which induces a slip length on the order of ten wall units or more.

  15. Fabrication of a super-hydrophobic nanofibrous zinc oxide film surface by electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Ding Bin [Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan); Fiber and Polymer Science, University of California, Davis, CA 95616 (United States)], E-mail: bding@ucdavis.edu; Ogawa, Tasuku [Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan); Kim, Jinho [Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan); SNT Ltd, Kawasaki 212-0054 (Japan); Fujimoto, Kouji [Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan); Shiratori, Seimei [Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan); SNT Ltd, Kawasaki 212-0054 (Japan)], E-mail: shiratori@appi.keio.ac.jp

    2008-03-03

    We report a new approach for fabricating a super-hydrophobic nanofibrous zinc oxide (ZnO) film surface. The pure poly(vinyl alcohol) (PVA) and composite PVA/ZnO nanofibrous films can be obtained by electrospinning the PVA and PVA/zinc acetate solutions, respectively. After the calcination of composite fibrous films, the inorganic fibrous ZnO films with a reduced fiber diameter were fabricated. The wettability of three kinds of fibrous film surfaces were modified with a simple coating of fluoroalkylsilane (FAS) in hexane. The resultant samples were characterized by field emission scanning electron microscopy (FE-SEM), water contact angle (WCA), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). It was found that the pure PVA fibrous films maintained the super-hydrophilic surface property even after the FAS modification. Additionally, the WCA of composite fibrous films was increased from 105 to 132 deg. with the coating of FAS. Furthermore, the surface property of inorganic ZnO fibrous films was converted from super-hydrophilic (WCA of 0 deg.) to super-hydrophobic (WCA of 165{sup o}) after the surface modification with FAS. Observed from XPS data, the hydrophobicity of FAS coated various film surfaces were found to be strongly affected by the ratio of fluoro:oxygen on the film surfaces.

  16. Superhydrophobic coatings fabricated with polytetrafluoroethylene and SiO{sub 2} nanoparticles by spraying process on carbon steel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haibin [Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Chen, Eryu, E-mail: fishfly80@163.com [Hangzhou NCO Academy of CAPF, Hangzhou, Zhejiang 310023 (China); Jia, Xianbu [Hangzhou NCO Academy of CAPF, Hangzhou, Zhejiang 310023 (China); Liang, Lijun [Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Wang, Qi, E-mail: qiwang@zju.edu.cn [Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou, Zhejiang 310027 (China)

    2015-09-15

    Graphical abstract: - Highlights: • The SiO{sub 2} and PTFE NP-filled coatings exhibit excellent superhydrophobicity. • PTFE-filled coatings show denser structures and better liquid resistance than SiO{sub 2}. • Air pocket of Wentzel model explains the difference in the superhydrophobicity. - Abstract: Superhydrophobicity is extensively investigated because of the numerous methods developed for water-repellant interface fabrication. Many suitable functional materials for the production of superhydrophobic surfaces on various substrates are still being explored. In this study, inorganic SiO{sub 2} and organic polytetrafluoroethylene (PTFE) nanoparticles (NPs) are used for a comparative study on the performance of superhydrophobic coating on carbon steel surfaces. The NPs are added to PTFE coating emulsions by physical blending to form coating mixtures. Raw SiO{sub 2} NPs are then hydrophobized using KH-570 and validated by Fourier transform-infrared spectroscopy (FT-IR) and Dynamic Laser Scattering (DLS) grain size analyses. The microstructures of the surfaces are characterized by contact angle (CA) measurements and field emission-scanning electron microscope (FE-SEM) images. The prepared surfaces are subjected to adhesion, hardness, water resistance, and acid/alkali erosion tests. Hydrophobized SiO{sub 2}-filled coating surfaces are found to have better uniformity than raw SiO{sub 2} regardless of their similar maximum static contact angles (SCAs) about 150°. A SCA of 163.1° is obtained on the PTFE NP-filled coating surfaces that have a considerably denser structure than SiO{sub 2}. Thermogravimetric (TG) and differential scanning calorimetry (DSC) analyses reveal that all fabricated surfaces have good thermal stability and tolerate temperatures up to 550 °C. The PTFE NP-filled coating surfaces also exhibit excellent water and acid resistance. A possible mechanism concerning the amount of trapped air is proposed in relation to practical superhydrophobic

  17. Zirconia based superhydrophobic coatings on cotton fabrics exhibiting excellent durability for versatile use

    Science.gov (United States)

    Das, Indranee; de, Goutam

    2015-12-01

    A fluorinated silyl functionalized zirconia was synthesized by the sol-gel method to fabricate an extremely durable superhydrophobic coating on cotton fabrics by simple immersion technique. The fabric surfaces firmly attached with the coating material through covalent bonding, possessed superhydrophobicity with high water contact angle ≈163 ± 1°, low hysteresis ≈3.5° and superoleophilicity. The coated fabrics were effective to separate oil/water mixture with a considerably high separation efficiency of 98.8 wt% through ordinary filtering. Presence of highly stable (chemically and mechanically) superhydrophobic zirconia bonded with cellulose makes such excellent water repelling ability of the fabrics durable under harsh environment conditions like high temperature, strong acidic or alkaline solutions, different organic solvents and mechanical forces including extensive washings. Moreover, these coated fabrics retained self-cleanable superhydrophobic property as well as high water separation efficiency even after several cycles, launderings and abrasions. Therefore, such robust superhydrophobic ZrO2 coated fabrics have strong potential for various industrial productions and uses.

  18. Zirconia based superhydrophobic coatings on cotton fabrics exhibiting excellent durability for versatile use

    Science.gov (United States)

    Das, Indranee; De, Goutam

    2015-01-01

    A fluorinated silyl functionalized zirconia was synthesized by the sol-gel method to fabricate an extremely durable superhydrophobic coating on cotton fabrics by simple immersion technique. The fabric surfaces firmly attached with the coating material through covalent bonding, possessed superhydrophobicity with high water contact angle ≈163 ± 1°, low hysteresis ≈3.5° and superoleophilicity. The coated fabrics were effective to separate oil/water mixture with a considerably high separation efficiency of 98.8 wt% through ordinary filtering. Presence of highly stable (chemically and mechanically) superhydrophobic zirconia bonded with cellulose makes such excellent water repelling ability of the fabrics durable under harsh environment conditions like high temperature, strong acidic or alkaline solutions, different organic solvents and mechanical forces including extensive washings. Moreover, these coated fabrics retained self-cleanable superhydrophobic property as well as high water separation efficiency even after several cycles, launderings and abrasions. Therefore, such robust superhydrophobic ZrO2 coated fabrics have strong potential for various industrial productions and uses. PMID:26678754

  19. Developing superhydrophobic and oleophobic nanostructure by a facile chemical transformation of zirconium hydroxide surface

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Arundhati; Malik, Satya Narayan; Bahadur, D., E-mail: dhirenb@iitb.ac.in

    2016-02-15

    Graphical abstract: - Highlights: • Hydrophilic Zr(OH){sub 4}·nH{sub 2}O → hydro/superhydro/oleo-phobic nanostructured material. • Fluoroalkyl functionalization changes surface energy and asperities of Zr(OH){sub 4}·nH{sub 2}O. • Only 3.6 wt% fluoroalkyl-content is enough to get a good amphiphobic nanostructure. • 18.7 wt% fluoroalkyl-content leads to superhydrophobic and oleophobic behavior. • Optimal distance between surface-protrusions supports the amphiphobic behavior. - Abstract: Stable hydro/oleo-phobic and superhydrophobic nanopowders, useful for self-cleaning applications, are synthesized at room temperature by modifying Zr(OH){sub 4}·nH{sub 2}O with a very low surface-energy molecule—1H,1H,2H,2H-perfluorododecyltrichlorosilane whose long chain {−(CH_2)_2(CF_2)_9CF_3 moiety (PFD)} serves as surface-protrusion. The PFD-content is varied over 3.6–18.7 wt% in optimizing a hydrophilic to hydro/oleo-phobic or even to superhydrophobic transformation. Two halos in the X-ray diffraction pattern of amorphous Zr(OH){sub 4}·nH{sub 2}O are accompanied by a peak at 2θ = 18.0° which grows in intensity progressively as the PFD-content increases from 5.2 to 18.7 wt%. The peak corresponds to −CF{sub 2}−CF{sub 2}− crystalline order (10–20 nm) at the PFD-functionalized surface. The microstructure shows Zr(OH){sub 4}·nH{sub 2}O as a cloud-like phase, bonded to plate-like sheaths (PFD moiety). The C−F stretching bands at 1150 and 1210 cm{sup −1} grow in intensity relative to that of O−H stretching at 3460 cm{sup −1} in proportion to the PFD-content. An 18.7 wt% PFD-functionalized sample exhibits a high contact angle CA = 153° for water (contact angle hysteresis = 4° and roll-off angle <4°), together with CA = 132° for glycerol, CA = 130° for diethylene glycol, and CA = 113° for n-hexadecane, supporting good superhydrophobicity and oleophobicity. Surface-energy reduction due to PFD moiety together with an optimal spacing between the

  20. A study on the fabrication of superhydrophobic iron surfaces by chemical etching and galvanic replacement methods and their anti-icing properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kunquan, E-mail: likunquan1987@gmail.com; Zeng, Xingrong, E-mail: psxrzeng@gmail.com; Li, Hongqiang, E-mail: hqli1979@gmail.com; Lai, Xuejun, E-mail: msxjlai@scut.edu.cn

    2015-08-15

    Graphical abstract: - Highlights: • Superhydrophobic iron surfaces were prepared by etching and replacement method. • The fabrication process was simple, time-saving and inexpensive. • Galvanic replacement method was more favorable to create roughness on iron surface. • The superhydrophobic iron surface showed excellent anti-icing properties. - Abstract: Hierarchical structures on iron surfaces were constructed by means of chemical etching by hydrochloric acid (HCl) solution or the galvanic replacement by silver nitrate (AgNO{sub 3}) solution. The superhydrophobic iron surfaces were successfully prepared by subsequent hydrophobic modification with stearic acid. The superhydrophobic iron surfaces were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and water contact angle (WCA). The effects of reactive concentration and time on the microstructure and the wetting behavior were investigated. In addition, the anti-icing properties of the superhydrophobic iron surfaces were also studied. The FTIR study showed that the stearic acid was chemically bonded onto the iron surface. With the HCl concentration increase from 4 mol/L to 8 mol/L, the iron surface became rougher with a WCA ranging from 127° to 152°. The AgNO{sub 3} concentration had little effect on the wetting behavior, but a high AgNO{sub 3} concentration caused Ag particle aggregates to transform from flower-like formations into dendritic crystals, owing to the preferential growth direction of the Ag particles. Compared with the etching method, the galvanic replacement method on the iron surface more favorably created roughness required for achieving superhydrophobicity. The superhydrophobic iron surface showed excellent anti-icing properties in comparison with the untreated iron. The icing time of water droplets on the superhydrophobic surface was delayed to 500 s, which was longer than that of 295 s for

  1. Experimental and numerical investigation of liquid jet impingement on superhydrophobic and hydrophobic convex surfaces

    Science.gov (United States)

    Kibar, Ali

    2017-02-01

    Experiments and numerical simulations were carried out to examine the vertical impingement a round liquid jet on the edges of horizontal convex surfaces that were either superhydrophobic or hydrophobic. The experiments examine the effects on the flow behaviour of curvature, wettability, inertia of the jet, and the impingement rate. Three copper pipes with outer diameters of 15, 22, and 35 mm were investigated. The pipes were wrapped with a piece of a Brassica oleracea leaf or a smooth Teflon sheet, which have apparent contact angles of 160° and 113°. The Reynolds number ranged from 1000 to 4500, and the impingement rates of the liquid jets were varied. Numerical results show good agreement with the experimental results for explaining flow and provide detailed information about the impingement on the surfaces. The liquid jet reflected off the superhydrophobic surfaces for all conditions. However, the jet reflected or deflected off the hydrophobic surface, depending on the inertia of the jet, the curvature of the surface, and the impingement rate. The results suggest that pressure is not the main reason for the bending of the jet around the curved hydrophobic surface.

  2. Role of trapped air in the formation of cell-and-protein micropatterns on superhydrophobic/superhydrophilic microtemplated surfaces.

    Science.gov (United States)

    Huang, Qiaoling; Lin, Longxiang; Yang, Yun; Hu, Ren; Vogler, Erwin A; Lin, Changjian

    2012-11-01

    Air trapped within the interstices of TiO(2) nanotube surfaces bearing superhydrophobic/superhydrophilic microtemplated domains controls formation of protein micropatterns but not cell micropatterns. Protein binding from either bovine-serum albumin (BSA) or fetal-bovine serum (FBS) solutions to superhydrophobic domains is blocked in the presence of trapped air, leading to clear protein binding contrast between superhydrophilic and superhydrophobic domains. Protein binds to superhydrophobic domains when air is displaced by sonication, leading to more protein binding to superhydrophobic domains than to superhydrophilic, with concomitantly blurred protein binding contrast. The overall contrast obtained in formation of cell (hFOB1.19, MG63, and HeLa) micropatterns depends on the cell type and protein composition of the fluid phase. All cell types preferentially attach to superhydrophilic domains from each fluid phase tested (FBS, BSA, and basal media containing no protein). All cell types do not attach to superhydrophobic domains from FBS solutions, with-or-without trapped air, creating a visually-obvious cell attachment pattern. However, cells attached to superhydrophobic domains from basal media suspensions, with-or-without trapped air, creating a blurred cell attachment pattern. Cell attachment from BSA-containing solutions gave mixed results depending on cell type. Thus, trapped air does not necessarily block cell attachment as has been suggested in the literature. Rather, cell attachment is controlled by interfacial tensions between cells, surfaces, and fluid phases in a manner that can be understood in terms of the Dupré work-of-adhesion formulation. Cell attachment patterns developed within the initial attachment phase persist for up to two days of continuous culture but overgrow thereafter, with-or-without trapped air, showing that trapped air does not block cell overgrowth over time of continuous culture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Superhydrophobic conducting polymers based on hydrocarbon poly(3,4-ethylenedioxyselenophene).

    Science.gov (United States)

    Dunand, Oceane; Darmanin, Thierry; Guittard, Frederic

    2013-09-16

    We report the first studied example of wettability of conducting polymers based on poly(3,4-ethylenedioxyselenophene). Hydrocarbon 3,4-ethylenedioxyselenophene (C2H5 to C12H25) derivatives are synthesized and electropolymerized in propylene carbonate using lithium tetrafluoroborate (LiBF4) and lithium bistrifluoromethanesulfonimidate (LiTf2N) as electrolyte. Highly structured films are obtained from a C8H17 chain independent of the electrolyte used. Superhydrophobic properties with high adhesion are specifically reached if using a C12H25 chain and LiBF4. The surface morphology is porous and highly structured as the films consist of assemblies of nanofibrils. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Motion of Liquid Droplets on a Superhydrophobic Oleophobic Surface (Postprint)

    Science.gov (United States)

    2010-08-01

    Contact angle measurements The contact angles of water and dodecane on the prepared surfaces were measured from sessile drops using a lab- designed...low surface energy and properly designed surface morphology. The relationships among surface tensions, contact angles , contact angle hystereses, roll...oleophobic surface was prepared. Good agreement between the predicted and measured contact angles and roll-off angles were obtained. The effect

  5. Effect of superhydrophobic surfaces on the flow over a hydrofoil at low Reynolds number

    Science.gov (United States)

    Kim, Hyunseok; Kim, Nayoung; Park, Hyungmin

    2014-11-01

    In the present study, we experimentally investigate the effect of superhydrophobic surface on the flow over a hydrofoil at low Rec hydrofoil. As a hydrofoil, we consider the cross-sections typically used for airfoils like NACA0012, NACA0024, and NACA4412, which stand for thin, thick and cambered hydrofoils, respectively. Spray-coating of hydrophobic nanoparticles are applied onto the hydrofoil surface and subsequent velocity fields are measured in a water tunnel using two-dimensional particle image velocimetry at different angles of attack, α =0° -20° . At small α's (for example, less than 10°), it is found that the surface slip tends to affect the flow separation slightly and also modify the size of recirculation region in the wake. Since a massive separation occurs at the leading edge at larger α's, however, the effect of superhydrophobic surface becomes diminished. In the talk, the dependence of the hydrodynamic role of surface slip on the hydrofoil shape and Rec will be presented. Supported by the NRF Programs (NRF-2012M2A8A4055647, NRF-2013R1A1A1008373) of Korean government.

  6. A self-cleaning polybenzoxazine/TiO2 surface with superhydrophobicity and superoleophilicity for oil/water separation.

    Science.gov (United States)

    Zhang, Wenfei; Lu, Xin; Xin, Zhong; Zhou, Changlu

    2015-12-14

    Two important properties-the low surface free energy of polybenzoxazine (PBZ) and the photocatalysis-induced self-cleaning property of titanium dioxide (TiO2) nanoparticles-are combined to develop a promising approach for oil/water separation. They are integrated into a multifunctional superhydrophobic and superoleophilic material, PBZ/TiO2 modified polyester non-woven fabrics (PBZT), through a simple dip coating and subsequent thermal curing method. The resulting PBZT reveals excellent mechanical durability and strong resistance to ultraviolet (UV) irradiation as well as acid and alkali. This durable superhydrophobic and superoleophilic fabric is efficient for separating oil/water mixtures by gravity with high separation efficiency, and it can also purify wastewater that contains soluble dyes, which makes it more effective and promising in treating water pollution. Importantly, PBZT demonstrates an integrated self-cleaning performance on the removal of both oil and particle contamination. It is expected that this simple process can be readily adopted for the design of multifunctional PBZ/TiO2 based materials for oil/water separation.

  7. Methyltrimethoxysilane (MTMS)-based silica-iron oxide superhydrophobic nanocomposites.

    Science.gov (United States)

    Nadargi, Digambar; Gurav, Jyoti; Marioni, Miguel A; Romer, Sara; Matam, Santhosh; Koebel, Matthias M

    2015-12-01

    We report a facile synthesis of superhydrophobic silica-iron oxide nanocomposites via a co-precursor sol-gel process. The choice of the silica precursor (Methyltrimethoxysilane, MTMS) in combination with iron nitrate altered the pore structure dramatically. The influence of iron oxide doping on the structural properties of pristine MTMS aerogel is discussed.

  8. Nanoengineered Superhydrophobic Surfaces of Aluminum with Extremely Low Bacterial Adhesivity

    NARCIS (Netherlands)

    Hizal, Ferdi; Rungraeng, Natthakan; Lee, Junghoon; Jun, Soojin; Busscher, Henk J.; van der Mei, Henny C.; Choi, Chang-Hwan

    2017-01-01

    Bacterial adhesion and biofilm formation on surfaces are troublesome in many industrial processes. Here, nanoporous and nanopillared aluminum surfaces were engineered by anodizing and postetching processes and made hydrophilic (using the inherent oxide layer) or hydrophobic (applying a Teflon

  9. Synthesis and texturization processes of (super)-hydrophobic fluorinated surfaces by atmospheric plasma

    CERN Document Server

    Hubert, Julie; Dufour, Thierry; Vandencasteele, Nicolas; Reniers, François; Viville, Pascal; Lazzaroni, Roberto; Raes, M; Terryn, Herman

    2016-01-01

    The synthesis and texturization processes of fluorinated surfaces by means of atmospheric plasma are investigated and presented through an integrated study of both the plasma phase and the resulting material surface. Three methods enhancing the surface hydrophobicity up to the production of super-hydrophobic surfaces are evaluated: (i) the modification of a polytetrafluoroethylene (PTFE) surface, (ii) the plasma deposition of fluorinated coatings and (iii) the incorporation of nanoparticles into those fluorinated films. In all the approaches, the nature of the plasma gas appears to be a crucial parameter for the desired property. Although a higher etching of the PTFE surface can be obtained with a pure helium plasma, the texturization can only be created if O2 is added to the plasma, which simultaneously decreases the total etching. The deposition of CxFy films by a dielectric barrier discharge leads to hydrophobic coatings with water contact angles (WCAs) of 115{\\textdegree}, but only the filamentary argon d...

  10. Self-Propelled Sweeping Removal of Dropwise Condensate on Two-Tier Superhydrophobic Surfaces

    Science.gov (United States)

    Boreyko, Jonathan; Qu, Xiaopeng; Liu, Fangjie; Agapov, Rebecca; Lavrik, Nickolay; Retterer, Scott; Feng, James; Collier, Patrick; Chen, Chuan-Hua; Nature-Inspired Fluids; Interfaces Team; Microscale Physicochemical Hydrodynamics Laboratory Team; CenterNanophase Materials Sciences Team; Department of Mathematics Team

    2015-11-01

    Dropwise condensation can be enhanced by nanostructured superhydrophobic surfaces, on which the condensate drops spontaneously jump upon coalescence. However, the self-propelled jumping in prior reports is mostly perpendicular to the substrate. Here, we propose a substrate design with regularly spaced micropillars. Coalescence on the sidewalls of the micropillars leads to self-propelled jumping in a direction nearly orthogonal to the pillars and therefore parallel to the substrate. This in-plane motion in turn produces sweeping removal of multiple neighboring drops. The spontaneous sweeping mechanism may greatly enhance dropwise condensation in a self-sustained manner.

  11. What Happened when a Superhydrophobic Surface was Immersed in Water? A Study by Optical Transmission Microscopy

    DEFF Research Database (Denmark)

    Søgaard, Emil; Andersen, Nis Korsgaard; Smistrup, Kristian

    2014-01-01

    , the wetting transitions had a stochastic nature, which may result from the diffusion of dissolved gas molecules in the water between neighboring cavities. Further, we compared the contact angle properties of two polymeric materials (COC and PP) with moderate hydrophobicity. We attributed the different water...... repellent properties of the two materials to a difference in the wetting of their nanostructures. The experimental observations indicate that both the diffusion of gas molecules in water, and the geometry of nanostructures influence the sustainability of superhydrophobicity of surfaces under water...

  12. Wettability influences cell behavior on superhydrophobic surfaces with different topographies

    NARCIS (Netherlands)

    Lourenco, B.N.; Marchioli, G.; Song, W; Reis, R L; van Blitterswijk, Clemens; Karperien, Hermanus Bernardus Johannes; van Apeldoorn, Aart A.; Mano, J.F.

    2012-01-01

    Surface wettability and topography are recognized as critical factors influencing cell behavior on biomaterials. So far only few works have reported cell responses on surfaces exhibiting extreme wettability in combination with surface topography. The goal of this work is to study whether cell behavi

  13. Wettability influences cell behavior on superhydrophobic surfaces with different topographies

    NARCIS (Netherlands)

    Lourenco, B.N.; Marchioli, G.; Song, W; Reis, R.L.; Blitterswijk, van C.A.; Karperien, H.B.J.; Apeldoorn, van A.A.; Mano, J.F.

    2012-01-01

    Surface wettability and topography are recognized as critical factors influencing cell behavior on biomaterials. So far only few works have reported cell responses on surfaces exhibiting extreme wettability in combination with surface topography. The goal of this work is to study whether cell behavi

  14. Anti-Icing Superhydrophobic Surfaces: Controlling Entropic Molecular Interactions to Design Novel Icephobic Concrete

    Directory of Open Access Journals (Sweden)

    Rahul Ramachandran

    2016-04-01

    Full Text Available Tribology involves the study of friction, wear, lubrication, and adhesion, including biomimetic superhydrophobic and icephobic surfaces. The three aspects of icephobicity are the low ice adhesion, repulsion of incoming water droplets prior to freezing, and delayed frost formation. Although superhydrophobic surfaces are not always icephobic, the theoretical mechanisms behind icephobicity are similar to the entropically driven hydrophobic interactions. The growth of ice crystals in saturated vapor is partially governed by entropically driven diffusion of water molecules to definite locations similarly to hydrophobic interactions. The ice crystal formation can be compared to protein folding controlled by hydrophobic forces. Surface topography and surface energy can affect both the icephobicity and hydrophobicity. By controlling these properties, micro/nanostructured icephobic concrete was developed. The concrete showed ice adhesion strength one order of magnitude lower than regular concrete and could repel incoming water droplets at −5 °C. The icephobic performance of the concrete can be optimized by controlling the sand and polyvinyl alcohol fiber content.

  15. Improved adhesion of superhydrophobic layer on metal surfaces via one step spraying method

    Directory of Open Access Journals (Sweden)

    Wael I. El Dessouky

    2017-03-01

    Full Text Available Superhydrophobic metal substrates have been fabricated by a simple spraying method. The processes of decreasing surface free energy and increasing surface roughness have been accomplished in one step via the addition of functionalized silica (silica nano particles with octyltriethoxysilane to adhesive polymer. The method is simple, cost-effective and can be applied on the large industrial scale. Scanning electron microscopy (SEM was used for surface morphology analysis, showing the roughness produced by surface treatment. The wettability of the micro-nano silica film varied from hydrophilicity (water contact angle 88° to superhydrophobicity (water contact angle 156.9°, while sliding contact angles dramatically decreased (<5° by adding Functionalized silica and/or adhesive polymer. Roughness increased with silica increment which improves the wettability. The coatings were electrochemically characterized by electrochemical impedance spectroscopy (EIS and Tafel polarization curves; it was found that both systems had good performance against corrosion in 3.5% sodium chloride solution. Furthermore, the stability of the coated layer on copper substrate was investigated.

  16. Morphology of drop impact on a superhydrophobic surface with macro-structures

    Science.gov (United States)

    Regulagadda, Kartik; Bakshi, Shamit; Das, Sarit Kumar

    2017-08-01

    Drop-surface interaction is predominant in nature as well as in many industrial applications. Superhydrophobic surfaces show potential for various applications as they show complete drop rebound. In a recent work, it has been reported that the drop lift-off time on a superhydrophobic substrate could be further reduced by introducing a macro-ridge. The macro-ridge introduces asymmetry on the morphology of drop spreading and retraction on the surface. This changes the hydrodynamics of drop retraction and reduces the lift-off time. Keeping practical applications in view, we decorate the surface with multiple ridges. The morphology of the hydrodynamic asymmetry is completely different for the drops impacting onto the tip of the ridges from those impacting onto the middle of the valley between the ridges. We show that the morphology forms the key to the lift-off time. We also show that the outward flow from the ridge triggers a Laplace pressure driven de-wetting on the tip of the ridge, thus aiding the lift-off time. At the end of this work, we propose a ridge to ridge separation that effectively reduces the lift-off times for impacts both at the tip of the ridge and offset from it.

  17. Superhydrophobic surface-enhanced Raman scattering platform fabricated by assembly of Ag nanocubes for trace molecular sensing.

    Science.gov (United States)

    Lee, Hiang Kwee; Lee, Yih Hong; Zhang, Qi; Phang, In Yee; Tan, Joel Ming Rui; Cui, Yan; Ling, Xing Yi

    2013-11-13

    An analytical platform suitable for trace detection using a small volume of analyte is pertinent to the field of toxin detection and criminology. Plasmonic nanostructures provide surface-enhanced Raman scattering (SERS) that can potentially achieve trace toxins and/or molecules detection. However, the detection of highly diluted, small volume samples remains a challenge. Here, we fabricate a superhydrophobic SERS platform by assembling Ag nanocubes that support strong surface plasmon and chemical functionalization for trace detection with sample volume of just 1 μL. Our strategy integrates the intense electromagnetic field confinement generated by Ag nanocubes with a superhydrophobic surface capable of analyte concentration to lower the molecular detection limit. Single crystalline Ag nanocubes are assembled using the Langmuir-Blodgett technique to create surface roughness. To create a stable superhydrophobic SERS platform, an additional 25 nm Ag coating is evaporated over the Ag nanocubes to "weld" the Ag nanocubes onto the substrate followed by chemical functionalization with perfluorodecanethiol. The resulting substrate has an advancing contact angle of 169° ± 5°. Our superhydrophobic platform confines analyte molecules within a small area and prevents the random spreading of molecules. An analyte concentrating factor of 14-fold is attained, as compared to a hydrophilic surface. Consequently, the detection limit of our superhydrophobic SERS substrate reaches 10(-16) M (100 aM) for rhodamine 6G using 1 μL analyte solutions. An analytical SERS enhancement factor of 10(11) is achieved. Our protocol is a general method that provides a simple, cost-effective approach to develop a stable and uniform superhydrophobic SERS platform for trace molecular sensing.

  18. Fabrication of hierarchical structures for stable superhydrophobicity on metallic planar and cylindrical inner surfaces

    Science.gov (United States)

    Hao, Xiuqing; Wang, Li; Lv, Danhui; Wang, Quandai; Li, Liang; He, Ning; Lu, Bingheng

    2015-01-01

    Recently, the construction of stable superhydrophobicity on metallic wetting surfaces has gained increasing attention due to its potential wide applications. In this paper, we propose an economic fabricating method, which not only is suitable for metallic planar surfaces, but also could be applied onto cylindrical inner surfaces. It mainly involves two steps: etching micro-concaves by a movable mask electrochemical micromachining (EMM) technique and fabricating nanopillars of ZnO by a hydrothermal method. Then the influences of surface morphology on the static and dynamic behaviors of water droplets are investigated. The energy loss during impact on the surfaces is quantified in terms of the restitution coefficient for droplets bouncing off the surfaces. For hierarchical structures with excellent superhydrophobicity (contact angle ≈180° and sliding angle ≤1°), the droplet bounces off the surface several times, superior to the droplet's response on single nanopillars (contact angle ≈165.8° and sliding angle ≈6.29°) where droplet bounces off only for limited a number of times, and even far better than the dynamics of a liquid droplet impinging on microstructures (contact angle ≈132.1° and sliding angle >90°) where droplet does not rebound and remains pinned. The highest elasticity is obtained on the hierarchical surface, where the restitution coefficient can be as large as 0.94. The fabricating method is then applied onto the cylindrical inner surface and the wetting behavior is confirmed to be consistent with the planar surface. This method, which can be generalized to any kind of solid electroconductive metal or other surfaces with different shapes, could find wide practical applications in self-cleaning surfaces, chemical industry, microfluidic devices, mechanical engineering and aviation.

  19. Droplet compression and relaxation by a superhydrophobic surface: contact angle hysteresis.

    Science.gov (United States)

    Hong, Siang-Jie; Chou, Tung-He; Chan, Seong Heng; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2012-04-03

    In this article, the contact angle hysteresis (CAH) of acrylic glass is experimentally and theoretically studied through the compression-relaxation process of droplets by using a superhydrophobic surface with negligible CAH effect. In contrast to the existing technique in which the volume of the droplet changes during the measurement of CAH, this procedure is carried out at a constant volume of the droplet. By observing the base diameter (BD) and the contact angle (CA) of the droplet during the compression-relaxation process, the wetting behavior of the droplet can be divided into two regimes, the contact line withdrawal and the contact line pinning regimes, depending on the gap thickness (H) at the end of the compression process. During the compression process, both regimes possess similar droplet behavior; the contact line will move outward and the BD will expand while the CA remains at the advancing angle. During the relaxation process, the two regimes are significantly different. In the contact line withdrawal regime, the contact line will withdraw with the CA remaining at the receding angle. In the contact line pinning regime, however, the contact line will be pinned at the final position and the CA will decline to a certain value higher than the receding angle. Furthermore, the advancing pinning behavior can also be realized through a successive compression-relaxation process. On the basis of the liquid-induced defects model, Surface Evolver simulations are performed to reproduce the behavior of the droplet during the compression-relaxation process; both contact line withdrawal and pinning regimes can also be identified. The results of the experiment and simulation agree with each other very well.

  20. Geometrical effect, optimal design and controlled fabrication of bio-inspired micro/nanotextures for superhydrophobic surfaces

    Science.gov (United States)

    Ma, F. M.; Li, W.; Liu, A. H.; Yu, Z. L.; Ruan, M.; Feng, W.; Chen, H. X.; Chen, Y.

    2017-09-01

    Superhydrophobic surfaces with high water contact angles and low contact angle hysteresis or sliding angles have received tremendous attention for both academic research and industrial applications in recent years. In general, such surfaces possess rough microtextures, particularly, show micro/nano hierarchical structures like lotus leaves. Now it has been recognized that to achieve the artificial superhydrophobic surfaces, the simple and effective strategy is to mimic such hierarchical structures. However, fabrications of such structures for these artificial surfaces involve generally expensive and complex processes. On the other hand, the relationships between structural parameters of various surface topography and wetting properties have not been fully understood yet. In order to provide guidance for the simple fabrication and particularly, to promote practical applications of superhydrophobic surfaces, the geometrical designs of optimal microtextures or patterns have been proposed. In this work, the recent developments on geometrical effect, optimal design and controlled fabrication of various superhydrophobic structures, such as unitary, anisotropic, dual-scale hierarchical, and some other surface geometries, are reviewed. The effects of surface topography and structural parameters on wetting states (composite and noncomposite) and wetting properties (contact angle, contact angle hysteresis and sliding angle) as well as adhesive forces are discussed in detail. Finally, the research prospects in this field are briefly addressed.

  1. A novel method to prepare superhydrophobic, UV resistance and anti-corrosion steel surface

    KAUST Repository

    Isimjan, Tayirjan T.

    2012-11-01

    Both TiO 2 and SiO 2 coated steel surfaces containing micro- and nanoscale binary structures with different surface roughness were successfully fabricated by means of a facile layer by layer deposition process followed by heat treatment. The resulting surfaces were modified by the low free energy chemical PTES (1H,1H,2H,2H-Perfluorodecyltriethoxysilane). The experimental results of wettability exhibit that such modified surfaces have a strong repulsive force to water droplets, their static contact angles exceed 165°, receding angle>160°, advanced angles>170° and slide angle<1°. The resulting surfaces not only exhibit superhydrophobic properties but also show strong UV resistance (after coating SiO 2 on top of TiO 2) and strong stability to various solvents including 0.01% HCl solution. © 2012 Elsevier B.V.

  2. Connector ability to design superhydrophobic and oleophobic surfaces from conducting polymers.

    Science.gov (United States)

    Zenerino, Arnaud; Darmanin, Thierry; Taffin de Givenchy, Elisabeth; Amigoni, Sonia; Guittard, Frédéric

    2010-08-17

    In the aim of creating superoleophobic surfaces using monomers with short perfluorinated chains, to avoid drawbacks associated with PFOA, original semifluorinated (C(4)F(9), C(6)F(13)) 3,4-ethylenedioxypyrrole derivatives were synthesized. These monomers were obtained using the faster synthetic method than previously described with some analogues, characterized and electrochemically polymerized on gold plates. The obtained surfaces exhibited superhydrophobic (contact angle with water of 157 degrees and 158 degrees, respectively) and oleophobic properties (contact angle with hexadecane: 88 degrees and 108 degrees, respectively). The comparison between these new monomers and already published analogue EDOP6 confirms the importance of the bipolaronic form of conductive polymer for obtaining surface nanoporosity and as a consequence improving surface oleophobicity. Thus, little change in the molecule design of the connector and the spacer of the monomer can have a significant influence on the surface oleophobicity.

  3. Superhydrophobic nanostructured Kapton® surfaces fabricated through Ar + O2 plasma treatment: Effects of different environments on wetting behaviour

    Science.gov (United States)

    Barshilia, Harish C.; Ananth, A.; Gupta, Nitant; Anandan, C.

    2013-03-01

    Kapton® [poly (4,4'-oxy diphenylene pyromellitimide)] polyimides have widespread usage in semiconductor devices, solar arrays, protective coatings and space applications, due to their excellent chemical and physical properties. In addition to their inherent properties, imparting superhydrophobicity on these surfaces will be an added advantage. Present work describes the usage of Ar + O2 plasma treatment for the preparation of superhydrophobic Kapton® surfaces. Immediately after the plasma treatment, the surfaces showed superhydrophilicity as a result of high energy dangling bonds and polar group concentration. But the samples kept in low vacuum for 48 h exhibited superhydrophobicity with high water contact angles (>150°). It is found that the post plasma treatment process, called ageing, especially in low vacuum plays an important role in delivering superhydrophobic property to Kapton®. Field emission scanning electron microscopy and atomic force microscopy were used to probe the physical changes in the surface of the Kapton®. The surfaces showed formation of nano-feathers and nano-tussock microstructures with variation in surface roughness against plasma treatment time. A thorough chemical investigation was performed using Fourier transform infrared spectroscopy and micro-Raman spectroscopy, which revealed changes in the surface of the Ar + O2 plasma treated Kapton®. Surface chemical species of Kapton® were confirmed again by X-ray photoelectron spectroscopy spectra for untreated surfaces whereas Ar + O2 plasma treated samples showed the de-bonding and re-organization of structural elements. Creation of surface roughness plays a dominant role in the contribution of superhydrophobicity to Kapton® apart from the surface modifications due to Ar + O2 plasma treatment and ageing in low vacuum.

  4. 3D aspects of droplet coalescence during dropwise condensation on superhydrophobic surfaces

    Science.gov (United States)

    Rykaczewski, Konrad; Scott, John Henry J.; Rajauria, Sukumar; Chinn, Jeff; Chinn, Amy M.; Jones, Wanda

    2011-11-01

    Only a few selected natural and artificial surfaces with water contact angles above 150 degrees retain their superhydrophobic characteristics during water condensation. On these robust superhydrophobic surfaces, individual droplets emerge out of a few micrometer wetted area between the nanostructures and initially grow mainly by increasing their contact angle. After reaching a nearly spherical shape with a diameter between 4 um and 6 um, the droplets grow in a near constant contact angle mode while remaining in an immobile Wenzel state. Microdroplets can depart the surface by coalescing with another large drop and forming a new drop in the mobile Cassie-Baxter state. Here we report that high contact angle primary drops can project over growing nano-to-microscale satellite droplets. We show that the large primary drops can sweep up the small satellite droplets without wetting their nucleation site, promoting rapid condensation of multiple satellite droplets from the same nucleation site. We discuss the effect of this coalescence mechanism on the drop size distribution and heat transfer during the dropwise condensation process.

  5. Spreading behavior of a distilled water droplet on a superhydrophobic surface

    Directory of Open Access Journals (Sweden)

    Feoktistov Dmitry V.

    2015-01-01

    Full Text Available The investigation of dynamic contact angle between distilled water droplet and superhydrophobic surface was conducted experimentally. To obtain the values of contact angle during spreading, shadow method was implemented. We used Schlieren method to control the droplet symmetry. The droplet was formed on the surface by syringe pump using nontraditional bottom-up methodology. The drop growth rate was varied by the syringe pump from 0.005 ml/s to 0.32 ml/s. DCA versus drop volume was obtained for different values of the drop growth rate. Some features of spreading on superhydrophobic surface were pointed out. Interestingly, that the dynamic contact angle increases during all stages previously selected for copper substrates (1 – droplet formation; 2 – spreading; 3 – formation of the equilibrium contact angle. However, at the droplet growth rate 0.005ml/s we found decrease in the contact angle. The droplet was found to take a shape close to a spherical cap in the range of the drop growth rate 0.005 ml/s – 0.16 ml/s. At higher rates (0.32 ml/s and higher liquid splashing was observed.

  6. Nanotexturing of polystyrene surface in fluorocarbon plasmas: from sticky to slippery superhydrophobicity.

    Science.gov (United States)

    Mundo, Rosa Di; Palumbo, Fabio; d'Agostino, Riccardo

    2008-05-06

    In this work plasma etching processes have been studied to roughen and fluorinate polystyrene surface as an easy method to achieve a superhydrophobic slippery character. Radiofrequency discharges have been fed with CF(4)/O(2) mixtures and the effect of the O(2):CF(4) ratio, the input power, and the treatment duration have been investigated in terms of wettability, with focus on sliding performances. For this purpose, surface morphological variations, evaluated by means of scanning electron microscopy and atomic force microscopy, together with the chemical assessment by X-ray photoelectron spectroscopy, have been correlated with water contact angle hysteresis and volume resolved sliding angle measurements. Results indicate that by increasing the height and decreasing the density of the structures formed by etching, within a tailored range, a transition from sticky to slippery superhydrophobicity occurs. A short treatment time (5 min) is sufficient to obtain such an effect, provided that a high power input is utilized. Optimized surfaces show a unaltered transparency to visible light according to the low roughness produced.

  7. Micro to nano: Surface size scale and superhydrophobicity

    Directory of Open Access Journals (Sweden)

    Christian Dorrer

    2011-06-01

    Full Text Available This work looks at the fundamental question of how the surface mobility of drops in the composite state is related to the size scale of the roughness features of the surface. To this end, relevant literature is first reviewed and the important terms are clarified. We then describe and discuss contact and roll-off angle measurements on a set of hydrophobicized silicon post surfaces for which all parameters except for the surface size scale were held constant. It was found that a critical transition from “sticky superhydrophobic” (composite state with large contact angle hysteresis to “truly superhydrophobic” (composite state with low hysteresis takes place as the size of the surface features reaches 1 μm.

  8. On the Modeling of Droplet Evaporation on Superhydrophobic Surfaces

    OpenAIRE

    Fernandes, Heitor C. M.; Vainstein, Mendeli H.; Brito, Carolina

    2015-01-01

    When a drop of water is placed on a rough surface, there are two possible extreme regimes of wetting: the one called Cassie-Baxter (CB) with air pockets trapped underneath the droplet and the one characterized by the homogeneous wetting of the surface, called the Wenzel (W) state. A way to investigate the transition between these two states is by means of evaporation experiments, in which the droplet starts in a CB state and, as its volume decreases, penetrates the surface's grooves, reaching...

  9. Floatable, Self-Cleaning, and Carbon-Black-Based Superhydrophobic Gauze for the Solar Evaporation Enhancement at the Air-Water Interface.

    Science.gov (United States)

    Liu, Yiming; Chen, Jingwei; Guo, Dawei; Cao, Moyuan; Jiang, Lei

    2015-06-24

    Efficient solar evaporation plays an indispensable role in nature as well as the industry process. However, the traditional evaporation process depends on the total temperature increase of bulk water. Recently, localized heating at the air-water interface has been demonstrated as a potential strategy for the improvement of solar evaporation. Here, we show that the carbon-black-based superhydrophobic gauze was able to float on the surface of water and selectively heat the surface water under irradiation, resulting in an enhanced evaporation rate. The fabrication process of the superhydrophobic black gauze was low-cost, scalable, and easy-to-prepare. Control experiments were conducted under different light intensities, and the results proved that the floating black gauze achieved an evaporation rate 2-3 times higher than that of the traditional process. A higher temperature of the surface water was observed in the floating gauze group, revealing a main reason for the evaporation enhancement. Furthermore, the self-cleaning ability of the superhydrophobic black gauze enabled a convenient recycling and reusing process toward practical application. The present material may open a new avenue for application of the superhydrophobic substrate and meet extensive requirements in the fields related to solar evaporation.

  10. Enhanced Thermal Transport of Surfaces with Superhydrophobic Coatings

    Science.gov (United States)

    2015-07-01

    Deposition 4 3. Results/ Analysis 5 4. Conclusion 7 5. References 8 Distribution List 9 iv List of Figures Fig. 1 Contact angle...by measuring the contact angle (σ) formed between a droplet of liquid and the surface (Fig. 1). Qualitatively , surfaces with a water contact angle...several seconds and dried with filtered nitrogen. The samples were then immersed in 0.01-M aqueous solution of silver nitrate for 20 s. The deposition

  11. Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures

    Science.gov (United States)

    Long, Jiangyou; Fan, Peixun; Zhong, Minlin; Zhang, Hongjun; Xie, Yongde; Lin, Chen

    2014-08-01

    In this study, functional copper surfaces combined with vivid structural colors and superhydrophobicity were fabricated by picosecond laser. Laser-induced periodic surface structures (LIPSS), i.e. ripples, were fabricated by picosecond laser nanostructuring to induce rainbow-like structural colors which are uniquely caused by the grating - type structure. The effects of laser processing parameters on the formation of ripples were investigated. We also discussed the formation mechanism of ripples. With different combinations of the laser processing parameters, ripples with various morphologies were fabricated. After the modification with triethoxyoctylsilane, different types of ripples exhibited different levels of wettability. The fine ripples with minimal redeposited nanoparticles exhibited high adhesive force to water. The increased amount of nanoscale structures decreased the adhesive force to water and increased the contact angle simultaneously. In particular, a specific type of ripples exhibited superhydrophobicity with a large contact angle of 153.9 ± 3.2° and a low sliding angle of 11 ± 3°.

  12. Conversion of an electrospun nanofibrous cellulose acetate mat from a super-hydrophilic to super-hydrophobic surface

    Science.gov (United States)

    Ding, Bin; Li, Chunrong; Hotta, Yoshio; Kim, Jinho; Kuwaki, Oriha; Shiratori, Seimei

    2006-09-01

    We report a new approach to convert an electrospun nanofibrous cellulose acetate mat surface from super-hydrophilic to super-hydrophobic. Super-hydrophilic cellulose acetate nanofibrous mats can be obtained by electrospinning hydrophilic cellulose acetate. The surface properties of the fibrous mats were modified from super-hydrophilic to super-hydrophobic with a simple sol-gel coating of decyltrimethoxysilane (DTMS) and tetraethyl orthosilicate (TEOS). The resultant samples were characterized by field emission scanning electron microscopy (FE-SEM), x-ray photoelectron spectroscopy (XPS), water contact angle, Brunauer-Emmett-Teller (BET) surface area, atomic force microscopy (AFM), and UV-visible measurements. The results of FE-SEM and XPS showed that the sol-gel (I) films were formed on the rough fibrous mats only after immersion in sol-gel. After the sol-gel (I) coating, the cellulose acetate fibrous mats formed in both 8 and 10 wt% cellulose acetate solutions showed the super-hydrophobic surface property. Additionally, the average sol-gel film thickness coated on 10 wt% cellulose acetate fibrous mats was calculated to be 80 nm. The super-hydrophobicity of fibrous mats was attributed to the combined effects of the high surface roughness of the electrospun nanofibrous mats and the hydrophobic DTMS sol-gel coating. Additionally, hydrophobic sol-gel nanofilms were found to be transparent according to UV-visible measurements.

  13. Singlet Oxygen Generation on Porous Superhydrophobic Surfaces: Effect of Gas Flow and Sensitizer Wetting on Trapping Efficiency

    Science.gov (United States)

    2015-01-01

    We describe physical-organic studies of singlet oxygen generation and transport into an aqueous solution supported on superhydrophobic surfaces on which silicon–phthalocyanine (Pc) particles are immobilized. Singlet oxygen (1O2) was trapped by a water-soluble anthracene compound and monitored in situ using a UV–vis spectrometer. When oxygen flows through the porous superhydrophobic surface, singlet oxygen generated in the plastron (i.e., the gas layer beneath the liquid) is transported into the solution within gas bubbles, thereby increasing the liquid–gas surface area over which singlet oxygen can be trapped. Higher photooxidation rates were achieved in flowing oxygen, as compared to when the gas in the plastron was static. Superhydrophobic surfaces were also synthesized so that the Pc particles were located in contact with, or isolated from, the aqueous solution to evaluate the relative effectiveness of singlet oxygen generated in solution and the gas phase, respectively; singlet oxygen generated on particles wetted by the solution was trapped more efficiently than singlet oxygen generated in the plastron, even in the presence of flowing oxygen gas. A mechanism is proposed that explains how Pc particle wetting, plastron gas composition and flow rate as well as gas saturation of the aqueous solution affect singlet oxygen trapping efficiency. These stable superhydrophobic surfaces, which can physically isolate the photosensitizer particles from the solution may be of practical importance for delivering singlet oxygen for water purification and medical devices. PMID:24885074

  14. Superhydrophobic surfaces of the water bug Notonecta glauca: a model for friction reduction and air retention

    Directory of Open Access Journals (Sweden)

    Petra Ditsche-Kuru

    2011-03-01

    Full Text Available Superhydrophobic surfaces of plants and animals are of great interest for biomimetic applications. Whereas the self-cleaning properties of superhydrophobic surfaces have been extensively investigated, their ability to retain an air film while submerged under water has not, in the past, received much attention. Nevertheless, air retaining surfaces are of great economic and ecological interest because an air film can reduce friction of solid bodies sliding through the water. This opens perspectives for biomimetic applications such as low friction fluid transport or friction reduction on ship hulls. For such applications the durability of the air film is most important. While the air film on most superhydrophobic surfaces usually lasts no longer than a few days, a few semi-aquatic plants and insects are able to hold an air film over a longer time period. Currently, we found high air film persistence under hydrostatic conditions for the elytra of the backswimmer Notonecta glauca which we therefore have chosen for further investigations. In this study, we compare the micro- and nanostructure of selected body parts (sternites, upper side of elytra, underside of elytra in reference to their air retaining properties. Our investigations demonstrate outstanding air film persistence of the upper side of the elytra of Notonecta glauca under hydrostatic and hydrodynamic conditions. This hierarchically structured surface was able to hold a complete air film under hydrostatic conditions for longer than 130 days while on other body parts with simple structures the air film showed gaps (underside of elytra or even vanished completely after a few days (sternites. Moreover, the upper side of the elytra was able to keep an air film up to flow velocities of 5 m/s. Obviously the complex surface structure with tiny dense microtrichia and two types of larger specially shaped setae is relevant for this outstanding ability. Besides high air film persistence, the

  15. Self-assembled biomimetic superhydrophobic hierarchical arrays.

    Science.gov (United States)

    Yang, Hongta; Dou, Xuan; Fang, Yin; Jiang, Peng

    2013-09-01

    Here, we report a simple and inexpensive bottom-up technology for fabricating superhydrophobic coatings with hierarchical micro-/nano-structures, which are inspired by the binary periodic structure found on the superhydrophobic compound eyes of some insects (e.g., mosquitoes and moths). Binary colloidal arrays consisting of exemplary large (4 and 30 μm) and small (300 nm) silica spheres are first assembled by a scalable Langmuir-Blodgett (LB) technology in a layer-by-layer manner. After surface modification with fluorosilanes, the self-assembled hierarchical particle arrays become superhydrophobic with an apparent water contact angle (CA) larger than 150°. The throughput of the resulting superhydrophobic coatings with hierarchical structures can be significantly improved by templating the binary periodic structures of the LB-assembled colloidal arrays into UV-curable fluoropolymers by a soft lithography approach. Superhydrophobic perfluoroether acrylate hierarchical arrays with large CAs and small CA hysteresis can be faithfully replicated onto various substrates. Both experiments and theoretical calculations based on the Cassie's dewetting model demonstrate the importance of the hierarchical structure in achieving the final superhydrophobic surface states. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Mussel-inspired one-step copolymerization to engineer hierarchically structured surface with superhydrophobic properties for removing oil from water.

    Science.gov (United States)

    Huang, Shouying

    2014-10-08

    In the present study, a superhydrophobic polyurethane (PU) sponge with hierarchically structured surface, which exhibits excellent performance in absorbing oils/organic solvents, was fabricated for the first time through mussel-inspired one-step copolymerization approach. Specifically, dopamine (a small molecular bioadhesive) and n-dodecylthiol were copolymerized in an alkaline aqueous solution to generate polydopamine (PDA) nanoaggregates with n-dodecylthiol motifs on the surface of the PU sponge skeletons. Then, the superhydrophobic sponge that comprised a hierarchical structured surface similar to the chemical/topological structures of lotus leaf was fabricated. The topological structures, surface wettability, and mechanical property of the sponge were characterized by scanning electron microscopy, contact angle experiments, and compression test. Just as a result of the highly porous structure, superhydrophobic property and strong mechanical stability, this sponge exhibited desirable absorption capability of oils/organic solvents (weight gains ranging from 2494% to 8670%), suggesting a promising sorbents for the removal of oily pollutants from water. Furthermore, thanks to the nonutilization of the complicated processes or sophisticated equipment, the fabrication of the superhydrophobic sponge seemed to be quite easy to scale up. All these merits make the sponge a competitive candidate when compared to the conventional absorbents, for example, nonwoven polypropylene fabric.

  17. Plasma Micro-Nanotextured, Scratch, Water and Hexadecane Resistant, Superhydrophobic, and Superamphiphobic Polymeric Surfaces with Perfluorinated Monolayers

    NARCIS (Netherlands)

    Ellinas, K.; Pujari, S.P.; Dragatogiannis, D.A.; Charitidis, C.A.; Tserepi, A.; Zuilhof, H.; Gogolides, E.

    2014-01-01

    Superhydrophobic and superamphiphobic toward superoleophobic polymeric surfaces of polymethyl methacrylate (PMMA), polyether ether ketone (PEEK), and polydimethyl siloxane (PDMS) are fabricated in a two-step process: (1) plasma texturing (i.e., ion-enhanced plasma etching with simultaneous roughenin

  18. Silver mirror reaction as an approach to construct a durable, robust superhydrophobic surface of bamboo timber with high conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Chunde; Li, Jingpeng [School of Engineering, Zhejiang Agricultural and Forestry University, Lin’an 311300 (China); Key Laboratory of Wood Science and Technology, Zhejiang Province (China); Han, Shenjie; Wang, Jin; Yao, Qiufang [School of Engineering, Zhejiang Agricultural and Forestry University, Lin’an 311300 (China); Sun, Qingfeng, E-mail: zafuqfsun@163.com [School of Engineering, Zhejiang Agricultural and Forestry University, Lin’an 311300 (China); Key Laboratory of Wood Science and Technology, Zhejiang Province (China)

    2015-06-25

    Highlights: • Ag NPs were deposited onto the surface of bamboo timber by silver mirror reaction. • The Ag NPs made the intrinsic insulating bamboo timber have a high conductivity. • The modified surfaces displayed superhydrophobicity even for corrosive solutions. - Abstract: Silver nanoparticles (Ag NPs) were successfully in situ deposited onto the surface of the bamboo timber through a simple silver mirror reaction. Scanning electron microscopy (SEM) images showed that the surface of the bamboo timber was densely covered with the uniform Ag NPs, which made the intrinsic insulating bamboo timber conductive. With further modification by fluoroalkylsilane (FAS), the Ag NPs-covered bamboo timber showed superhydrophobicity with the water contact angle (WCA) of 155°. Simultaneously, the modified bamboo timber displayed a durable and robust superhydrophobic property even under corrosive solutions including acidic, alkali and NaCl solutions with different molar concentrations. Especially in harsh conditions of boiling water or intense water stirring, the modified bamboo timber remained superhydrophobicity and high conductivity.

  19. Highly transparent, stable, and superhydrophobic coatings based on gradient structure design and fast regeneration from physical damage

    Science.gov (United States)

    Chen, Zao; Liu, Xiaojiang; Wang, Yan; Li, Jun; Guan, Zisheng

    2015-12-01

    Optical transparency, mechanical flexibility, and fast regeneration are important factors to expand the application of superhydrophobic surfaces. Herein, we fabricated highly transparent, stable, and superhydrophobic coatings through a novel gradient structure design by versatile dip-coating of silica colloid particles (SCPs) and diethoxydimethysiliane cross-linked silica nanoparticles (DDS-SNPs) on polyethylene terephthalate (PET) film and glass, followed by the modification of octadecyltrichlorosiliane (OTCS). When the DDS concentration reached 5 wt%, the modified SCPs/DDS-SNPs coating exhibited a water contact angle (WCA) of 153° and a sliding angle (SA) <5°. Besides, the average transmittance of this superhydrophobic coating on PET film and glass was increased by 2.7% and 1% in the visible wavelength, respectively. This superhydrophobic coating also showed good robustness and stability against water dropping impact, ultrasonic damage, and acid solution. Moreover, the superhydrophobic PET film after physical damage can quickly regain the superhydrophobicity by one-step spray regenerative solution of dodecyltrichlorosilane (DTCS) modified silica nanoparticles at room temperature. The demonstrated method for the preparation and regeneration of superhydrophobic coating is available for different substrates and large-scale production at room temperature.

  20. Developing superhydrophobic and oleophobic nanostructure by a facile chemical transformation of zirconium hydroxide surface

    Science.gov (United States)

    Sengupta, Arundhati; Malik, Satya Narayan; Bahadur, D.

    2016-02-01

    Stable hydro/oleo-phobic and superhydrophobic nanopowders, useful for self-cleaning applications, are synthesized at room temperature by modifying Zr(OH)4·nH2O with a very low surface-energy molecule-1H,1H,2H,2H-perfluorododecyltrichlorosilane whose long chain {sbnd (CH2)2(CF2)9CF3 moiety (PFD)} serves as surface-protrusion. The PFD-content is varied over 3.6-18.7 wt% in optimizing a hydrophilic to hydro/oleo-phobic or even to superhydrophobic transformation. Two halos in the X-ray diffraction pattern of amorphous Zr(OH)4·nH2O are accompanied by a peak at 2θ = 18.0° which grows in intensity progressively as the PFD-content increases from 5.2 to 18.7 wt%. The peak corresponds to sbnd CF2sbnd CF2sbnd crystalline order (10-20 nm) at the PFD-functionalized surface. The microstructure shows Zr(OH)4·nH2O as a cloud-like phase, bonded to plate-like sheaths (PFD moiety). The Csbnd F stretching bands at 1150 and 1210 cm-1 grow in intensity relative to that of Osbnd H stretching at 3460 cm-1 in proportion to the PFD-content. An 18.7 wt% PFD-functionalized sample exhibits a high contact angle CA = 153° for water (contact angle hysteresis = 4° and roll-off angle oleophobicity. Surface-energy reduction due to PFD moiety together with an optimal spacing between the surface-protrusions explains the water/organic liquid repellency.

  1. Superhydrophobicity of Bionic Alumina Surfaces Fabricated by Hard Anodizing

    Institute of Scientific and Technical Information of China (English)

    Jing Li; Feng Du; Xianli Liu; Zhonghao Jiang; Luquan Ren

    2011-01-01

    Bionic alumina samples were fabricated on convex dome type aluminum alloy substrate using hard anodizing technique.The convex domes on the bionic sample were fabricated by compression molding under a compressive stress of 92.5 MPa.The water contact angles of the as-anodized bionic samples were measured using a contact angle meter (JC2000A) with the 3 μL water drop at room temperature.The measurement of the wetting property showed that the water contact angle of the unmodified as-anodized bionic alumina samples increases from 90° to 137° with the anodizing time.The increase in water contract angle with anodizing time arises from the gradual formation of hierarchical structure or composite structure.The structure is composed of the micro-scaled alumina columns and pores.The height of columns and the depth of pores depend on the anodizing time.The water contact angle increases significantly from 96° to 152° when the samples were modified with self-assembled monolayer of octadecanethiol (ODT),showing a change in the wettability from hydrophobicity to super-hydrophobicity.This improvement in the wetting property is attributed to the decrease in the surface energy caused by the chemical modification.

  2. Feature-resolved computational and analytical study of laminar drag reduction by superhydrophobic surfaces

    Science.gov (United States)

    Li, Yixuan; Alame, Karim; Mahesh, Krishnan

    2017-05-01

    Direct numerical simulations are used to study the drag reduction by superhydrophobic surfaces in laminar channel flow. Resolved multiphase simulations using the volume of fluid methodology are performed to study the effects of groove geometry, interface shear rate, and meniscus penetration independently. An analytical solution for the flow in a laminar channel with a grooved surface with a gas pocket within is obtained. The solution accounts for both the groove geometry and the trapped fluid properties, and shows good agreement with simulation results. The solution is used to propose a scaling law that collapses data across fully wetted to fully gas-filled regimes. The trapped gas is simulated as both flat and meniscal interfaces. The drag reduction initially increases with interface deflection into the groove and then decreases for large deflections as the interface velocity approaches zero due to the proximity to the bottom of the groove.

  3. Drag-reducing performance of obliquely aligned superhydrophobic surface in turbulent channel flow

    Science.gov (United States)

    Watanabe, Sho; Mamori, Hiroya; Fukagata, Koji

    2017-04-01

    Friction drag reduction effect by superhydrophobic surfaces in a turbulent channel flow is investigated by means of direct numerical simulation. The simulations are performed under a constant pressure gradient at the friction Reynolds number of 180. A special focus is laid upon the influence of the angle of microridge structure to flow direction, while the gas area fraction on the surface is kept at 50% and the groove width is kept constant at 33.75 wall units. Larger drag reduction effect is observed for a smaller angle: the bulk-mean velocity is increased about 15% when the microridge is parallel to the flow. The drag reduction effect is found to deteriorate rapidly with the microridge angle due to a decrease in the slip velocity. The Reynolds stress budgets show that the modification in each physical effect is qualitatively similar but more pronounced when the microridge is aligned with the stream.

  4. Constructing a superhydrophobic surface on polydimethylsiloxane via spin coating and vapor-liquid sol-gel process.

    Science.gov (United States)

    Peng, Yu-Ting; Lo, Kuo-Feng; Juang, Yi-Je

    2010-04-06

    In this study, a superhydrophobic surface on polydimethylsiloxane (PDMS) substrate was constructed via the proposed vapor-liquid sol-gel process in conjunction with spin coating of dodecyltrichlorosilane (DTS). Unlike the conventional sol-gel process where the reaction takes place in the liquid phase, layers of silica (SiO(2)) particles were formed through the reaction between the reactant spin-coated on the PDMS surface and vapor of the acid solution. This led to the SiO(2) particles inlaid on the PDMS surface. Followed by subsequent spin coating of DTS solution, the wrinkle-like structure was formed, and the static contact angle of the water droplet on the surface could reach 162 degrees with 2 degrees sliding angle and less than 5 degrees contact angle hysteresis. The effect of layers of SiO(2) particles, concentrations of DTS solution and surface topography on superhydrophobicity of the surface is discussed.

  5. Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent

    Science.gov (United States)

    Yu, Minghua; Gu, Guotuan; Meng, Wei-Dong; Qing, Feng-Ling

    2007-01-01

    A superhydrophobic complex coating for cotton fabrics based on silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent (PFSC) was reported in this article. The complex thin film was prepared through a sol-gel process using cotton fabrics as a substrate. Silica nanoparticles in the coating made the textile surface much rougher, and perfluorooctylated quaternary ammonium silane coupling agent on the top layer of the surface lowered the surface free energy. Textiles coated with this coating showed excellent water repellent property, and water contact angle (CA) increased from 133° on cotton fabrics treated with pure PFSC without silica sol pretreatment up to 145°. The oil repellency was also improved and the contact angle of CH 2I 2 droplet on the fabric surface reached to 131°. In contrast, the contact angle of CH 2I 2 on the fabric surface treated with pure PFSC was only 125°.

  6. Facile synthesis of stable superhydrophobic nanocomposite based on multi-walled carbon nanotubes

    Science.gov (United States)

    Mokarian, Zahra; Rasuli, Reza; Abedini, Yousefali

    2016-04-01

    A facile approach to fabricate a stable superhydrophobic composite comprising multi-walled carbon nanotubes and silicone rubber has been reported. Contact angle of de-ionized water droplets on the prepared surface was measured with the value of near 159°; while water droplets easily rolled off and bounced on it. Surface free energy of the superhydrophobic coating was examined by three methods about 26 mJ/m2. The prepared film shows good stability under high stress conditions such as ultraviolet exposure, heating, pencil hardness test, attacking with different pH value and ionic-strength solutions. In addition, remarkable stability of the coating was observed after soaking in condensed hydrochloric acid, 5 wt.% NaCl aqueous solution, boiling water and tape test.

  7. Superhydrophobic and superoleophobic surface by electrodeposition on magnesium alloy substrate: Wettability and corrosion inhibition.

    Science.gov (United States)

    Liu, Yan; Li, Shuyi; Wang, Yaming; Wang, Huiyuan; Gao, Ke; Han, Zhiwu; Ren, Luquan

    2016-09-15

    Superamphiphobic (both superhydrophobic and superoleophobic) surfaces have attracted great interests in the fundamental research and practical application. This research successfully fabricated the superamphiphobic surfaces by combining the nickel plating process and modification with perfluorocaprylic acid. The cooperation of hierarchical micro-nano structures and perfluorocaprylic acid with low surface energy plays an important role in the formation of superamphiphobic surfaces. The contact angles of water/oil have reached up to 160.2±1°/152.4±1°, respectively. Contrast with bare substrate, the electrochemical measurements of superamphiphobic surfaces, not only the EIS measurement, but also potentiodynamic polarization curves, all revealed that, the surface corrosion inhibition was improved significantly. Moreover, superamphiphobic surfaces exhibited superior stability in the solutions with a large pH range, also could maintain excellent performance after storing for a long time in the air. This method is easy, feasible and effective, and could be used to fabricate large-area mutli-functional surface. Such a technique will develop a new approach to fabricate superamphiphobic surfaces on different engineering materials.

  8. Facile synthesis of three-dimensional ZnO nanostructure: realization of a multifunctional stable superhydrophobic surface.

    Directory of Open Access Journals (Sweden)

    Jun Wu

    Full Text Available BACKGROUND: After comprehensive study of various superhydrophobic phenomena in nature, it is no longer a puzzle for researchers to realize such fetching surfaces. However, the different types of artificial surfaces may get wetted and lose its water repellence if there exist defects or the liquid is under pressure. With respect to the industry applications, in which the resistance of wetting transition is critical important, new nanostructure satisfied a certain geometric criterion should be designed to hold a stable gas film at the base area to avoid the wet transition. METHODOLOGY: A thermal deposition method was utilized to produce a thin ZnO seeds membrane on the aluminum foil. And then a chemical self-assemble technology was developed in present work to fabricate three-dimensional (3D hierarchical dune-like ZnO architecture based on the prepared seeds membrane. RESULTS: Hierarchical ZnO with micro scale dune-like structure and core-sharing nanosheets was generated. The characterization results showed that there exist plenty of gaps and interfaces among the micro-dune and nanosheets, and thus the surface area was enlarged by such a unique morphology. Benefited from this unique 3D ZnO hierarchical nanostructure, the obtained surface exhibited stable water repellency after modification with Teflon, and furthermore, based on solid theory analysis, such 3D ZnO nanostructure would exhibit excellent sensing performance.

  9. Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces

    Directory of Open Access Journals (Sweden)

    Matthias J. Mayser

    2014-06-01

    Full Text Available Some plants and animals feature superhydrophobic surfaces capable of retaining a layer of air when submerged under water. Long-term air retaining surfaces (Salvinia-effect are of high interest for biomimetic applications like drag reduction in ship coatings of up to 30%. Here we present a novel method for measuring air volumes and air loss under water. We recorded the buoyancy force of the air layer on leaf surfaces of four different Salvinia species and on one biomimetic surface using a highly sensitive custom made strain gauge force transducer setup. The volume of air held by a surface was quantified by comparing the buoyancy force of the specimen with and then without an air layer. Air volumes retained by the Salvinia-surfaces ranged between 0.15 and 1 L/m2 depending on differences in surface architecture. We verified the precision of the method by comparing the measured air volumes with theoretical volume calculations and could find a good agreement between both values. In this context we present techniques to calculate air volumes on surfaces with complex microstructures. The introduced method also allows to measure decrease or increase of air layers with high accuracy in real-time to understand dynamic processes.

  10. Drag reductions and the air-water interface stability of superhydrophobic surfaces in rectangular channel flow

    Science.gov (United States)

    Zhang, Jingxian; Yao, Zhaohui; Hao, Pengfei

    2016-11-01

    Flow in a rectangular channel with superhydrophobic (SH) top and bottom walls was investigated experimentally. Different SH surfaces, including hierarchical structured surfaces and surfaces with different micropost sizes (width and spacing) but the same solid fraction, were fabricated and measured. Pressure loss and flow rate in the channel with SH top and bottom walls were measured, with Reynolds number changing from 700 to 4700, and the corresponding friction factor for the SH surface was calculated. The statuses of the air plastron on different SH surfaces were observed during the experiment. In our experiment, compared with the experiment for the smooth surface, drag reductions were observed for all SH surfaces, with the largest drag reduction of 42.2%. It was found that the hierarchy of the microstructure can increase the drag reduction by decreasing the solid fraction and enhancing the stability of the air-water interface. With a fixed solid fraction, the drag reduction decreases as the post size (width and spacing) increases, due to the increasing curvature and instability effects of the air-water interface. A correlation parameter between the contact angle hysteresis, the air-water interface stability, and the drag reduction of the SH surfaces was found.

  11. Computer simulations of phase field drops on super-hydrophobic surfaces

    Science.gov (United States)

    Fedeli, Livio

    2017-09-01

    We present a novel quasi-Newton continuation procedure that efficiently solves the system of nonlinear equations arising from the discretization of a phase field model for wetting phenomena. We perform a comparative numerical analysis that shows the improved speed of convergence gained with respect to other numerical schemes. Moreover, we discuss the conditions that, on a theoretical level, guarantee the convergence of this method. At each iterative step, a suitable continuation procedure develops and passes to the nonlinear solver an accurate initial guess. Discretization performs through cell-centered finite differences. The resulting system of equations is solved on a composite grid that uses dynamic mesh refinement and multi-grid techniques. The final code achieves three-dimensional, realistic computer experiments comparable to those produced in laboratory settings. This code offers not only new insights into the phenomenology of super-hydrophobicity, but also serves as a reliable predictive tool for the study of hydrophobic surfaces.

  12. Raman study of lysozyme amyloid fibrils suspended on super-hydrophobic surfaces by shear flow

    KAUST Repository

    Moretti, Manola

    2017-05-19

    The shear flow generated at the rim of a drop evaporating on a micro-fabricated super-hydrophobic surface has been used to suspend and orient single/few lysozyme amyloid fibrils between two pillars for substrate-free characterization. Micro Raman spectroscopy performed on extended fibers evidenced a shift of the Amide I band main peak to the value attributed to β-sheet secondary structure, characteristic of the amyloid fibers. In addition, given the orientation sensitivity of the anisotropic molecule, the Raman signal of the main secondary structure was nicely enhanced for a fiber alignment parallel to the polarization direction of the laser. The substrate-free sample generated by this suspending technique is suitable for other structural analysis methods, where fiber crystals are investigated. It could be further employed for generation of arrays and patterns in a controllable fashion, where bio-compatible material is needed.

  13. Temperature-Induced Coalescence of Colliding Binary Droplets on Superhydrophobic Surface

    Science.gov (United States)

    Yi, Nan; Huang, Bin; Dong, Lining; Quan, Xiaojun; Hong, Fangjun; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao

    2014-03-01

    This report investigates the impact of droplet temperature on the head-on collision of binary droplets on a superhydrophobic surface. Understanding droplet collision is critical to many fundamental processes and industrial applications. There are many factors, including collision speed, collision angle, and droplet composition, that influence the outcome of the collision between binary droplets. This work provides the first experimental study of the influence of droplet temperature on the collision of binary droplets. As the droplet temperature increases, the possibility increases for the two droplets to coalesce after collision. The findings in this study can be extended to collision of droplets under other conditions where control of the droplet temperature is feasible. Such findings will also be beneficial to applications that involve droplet collision, such as in ink-jet printing, steam turbines, engine ignition, and spraying cooling.

  14. ELECTROSPRAYING/ELECTROSPINNING OF POLY(y-STEARYL-L-GLUTAMATE):FORMATION OF SURFACES WITH SUPERHYDROPHOBICITY

    Institute of Scientific and Technical Information of China (English)

    Lin-jun Shao; Jian Wu; Zhi-kang Xu

    2009-01-01

    Electrospraying/electrospinning of poly(y-stearyl-L-glutamate) (PSLG) was investigated on a series solutions with different concentrations in chloroform.Field emission scanning electron microscopy (FESEM) and attenuated total reflectance Fourier transform infrared spectroscopy (FT-IR/ATR) were used to characterize the morphology and structure of the electrosprayed/electrospun polypeptide mats.It was found that electrospraying of PSLG with concentrations lower than 16 wt% afforded beads,while microfibers could be electrospun at the concentration of 22 wt%.The hydrophobieity of the electrosprayed/electrospun PSLG mats was investigated with static water contact angle (WCA) and tilt angle measurements.It was demonstrated that the superhydrophobic surfaces of PSLG with WCAs and tilt angles in the ranges of 150°-170°and16.5°-4.2°,respectively,were obtained through electrospraying/electrospinning process.

  15. Temperature-Induced Coalescence of Colliding Binary Droplets on Superhydrophobic Surface

    Science.gov (United States)

    Yi, Nan; Huang, Bin; Dong, Lining; Quan, Xiaojun; Hong, Fangjun; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao

    2014-01-01

    This report investigates the impact of droplet temperature on the head-on collision of binary droplets on a superhydrophobic surface. Understanding droplet collision is critical to many fundamental processes and industrial applications. There are many factors, including collision speed, collision angle, and droplet composition, that influence the outcome of the collision between binary droplets. This work provides the first experimental study of the influence of droplet temperature on the collision of binary droplets. As the droplet temperature increases, the possibility increases for the two droplets to coalesce after collision. The findings in this study can be extended to collision of droplets under other conditions where control of the droplet temperature is feasible. Such findings will also be beneficial to applications that involve droplet collision, such as in ink-jet printing, steam turbines, engine ignition, and spraying cooling. PMID:24603362

  16. Controlling DNA Bundle Size and Spatial Arrangement in Self-assembled Arrays on Superhydrophobic Surface

    Institute of Scientific and Technical Information of China (English)

    Gabriele Ciasca; Luca Businaro; Marco De Spirito; Massimiliano Papi; Valentina Palmieri; Michela Chiarpotto; Simone Di Claudio; Adele De Ninno; Ennio Giovine; Gaetano Campi; Annamaria Gerardino

    2015-01-01

    The use of superhydrophobic surfaces (SHSs) is now emerging as an attractive platform for the realization of one-dimensional (1D) nanostructures with potential applications in many nanotechnological and biotechnological fields. To this purpose, a strict control of the nanostructures size and their spatial arrangement is highly required. However, these parameters may be strongly dependent on the complex evaporation dynamics of the sessile droplet on the SHS. In this work, we investigated the effect of the evaporation dynamics on the size and the spatial arrangement of self-assembled 1D DNA bundles. Our results reveal that different arrangements and bundle size distributions may occur depending on droplet evaporation stage. These results contribute to elucidate the formation mechanism of 1D nanostructures on SHSs.

  17. Fast wettability transition from hydrophilic to superhydrophobic laser-textured stainless steel surfaces under low-temperature annealing

    Science.gov (United States)

    Ngo, Chi-Vinh; Chun, Doo-Man

    2017-07-01

    Recently, the fabrication of superhydrophobic metallic surfaces by means of pulsed laser texturing has been developed. After laser texturing, samples are typically chemically coated or aged in ambient air for a relatively long time of several weeks to achieve superhydrophobicity. To accelerate the wettability transition from hydrophilicity to superhydrophobicity without the use of additional chemical treatment, a simple annealing post process has been developed. In the present work, grid patterns were first fabricated on stainless steel by a nanosecond pulsed laser, then an additional low-temperature annealing post process at 100 °C was applied. The effect of 100-500 μm step size of the textured grid upon the wettability transition time was also investigated. The proposed post process reduced the transition time from a couple of months to within several hours. All samples showed superhydrophobicity with contact angles greater than 160° and sliding angles smaller than 10° except samples with 500 μm step size, and could be applied in several potential applications such as self-cleaning and control of water adhesion.

  18. Preparing superhydrophobic copper surfaces with rose petal or lotus leaf property using a simple etching approach

    Science.gov (United States)

    Talesh Bahrami, H. R.; Ahmadi, B.; Saffari, H.

    2017-05-01

    A facile chemical etching process is developed to fabricate superhydrophobic copper surfaces. In the first step, cleaned copper surfaces immersed in ferric chloride (FeCl3) solutions with specific concentrations for different times. Etched surfaces exhibit the maximum contact angle of 140°. They have large sliding angle and water droplets stuck to the surface even if they were turned upside down which is well-known as rose petal effect. After stearic acid modification of etched surfaces, their contact angle slightly increased to above 150° and sliding angle decreased to smaller than 10° in some cases, which is same as lotus plant leaves property against water. Inspecting SEM images of etched surfaces reveals that many micro-nano structures forming blossom like buildings with curved petals of nanoscale thicknesses are formed. The micro-nano structures sizes and shapes affecting surface hydrophobicity are regulated by controlling reaction times and etchant solution concentrations. X-ray diffraction (XRD) analysis is done on a sample before and after of the etching process where patterns indicate that the same compositions present on the sample.

  19. Superhydrophobic cotton fabrics prepared by sol–gel coating of TiO2 and surface hydrophobization

    Directory of Open Access Journals (Sweden)

    Chao-Hua Xue et al

    2008-01-01

    Full Text Available By coating fibers with titania sol to generate a dual-size surface roughness, followed by hydrophobization with stearic acid, 1H,1H,2H,2H-perfluorodecyltrichlorosilane or their combination, hydrophilic cotton fabrics were made superhydrophobic. The surface wettability and topology of cotton fabrics were studied by contact angle measurement and scanning electron microscopy. The UV-shielding property of the treated fabrics was also characterized by UV-vis spectrophotometry.

  20. Anti-icing property of bio-inspired micro-structure superhydrophobic surfaces and heat transfer model

    Science.gov (United States)

    Liu, Yan; Li, Xinlin; Jin, Jingfu; Liu, Jiaan; Yan, Yuying; Han, Zhiwu; Ren, Luquan

    2017-04-01

    Ice accumulation is a thorny problem which may inflict serious damage even disasters in many areas, such as aircraft, power line maintenance, offshore oil platform and locators of ships. Recent researches have shed light on some promising bio-inspired anti-icing strategies to solve this problem. Inspired by typical plant surfaces with super-hydrophobic character such as lotus leaves and rose petals, structured superhydrophobic surface are prepared to discuss the anti-icing property. 7075 Al alloy, an extensively used materials in aircrafts and marine vessels, is employed as the substrates. As-prepared surfaces are acquired by laser processing after being modified by stearic acid for 1 h at room temperature. The surface morphology, chemical composition and wettability are characterized by means of SEM, XPS, Fourier transform infrared (FTIR) spectroscopy and contact angle measurements. The morphologies of structured as-prepared samples include round hump, square protuberance and mountain-range-like structure, and that the as-prepared structured surfaces shows an excellent superhydrophobic property with a WCA as high as 166 ± 2°. Furthermore, the anti-icing property of as-prepared surfaces was tested by a self-established apparatus, and the crystallization process of a cooling water on the sample was recorded. More importantly, we introduced a model to analyze heat transfer process between the droplet and the structured surfaces. This study offers an insight into understanding the heat transfer process of the superhydrophobic surface, so as to further research about its unique property against ice accumulation.

  1. Preparation of Stable Superhydrophobic Coatings on Wood Substrate Surfaces via Mussel-Inspired Polydopamine and Electroless Deposition Methods

    OpenAIRE

    Kaili Wang; Youming Dong; Wei Zhang; Shifeng Zhang; Jianzhang Li,

    2017-01-01

    Mussel-inspired polydopamine (PDA) chemistry and electroless deposition approaches were used to prepare stable superhydrophobic coatings on wood surfaces. The as-formed PDA coating on a wood surface exhibited a hierarchical micro/nano roughness structure, and functioned as an “adhesive layer” between the substrate and a metallic film by the metal chelating ability of the catechol moieties on PDA, allowing for the formation of a well-developed micro/nanostructure hierarchical roughness. Additi...

  2. Facile fabrication of robust superhydrophobic multilayered film based on bioinspired poly(dopamine)-modified carbon nanotubes.

    Science.gov (United States)

    Wang, Jin-lei; Ren, Ke-feng; Chang, Hao; Zhang, Shi-miao; Jin, Lie-jiang; Ji, Jian

    2014-02-21

    Thin organic films containing carbon nanotubes (CNTs) have received increasing attention in many fields. In this study, a robust thin superhydrophobic film has been created by using layer-by-layer assembly of the carbon nanotubes wrapped by poly(dopamine) (CNT@PDA) and poly(ethyleneimine) (PEI). UV-vis spectroscopy, ellipsometry, and quartz crystal microbalance with dissipation (QCM-D) measurements confirmed that the sequential deposition of PEI and CNT@PDA resulted in a linear growth of the (PEI-CNT@PDA) film. This thin film contained as much as 77 wt% CNTs. Moreover, a very stable and flexible free-standing (PEI-CNT@PDA) film could be obtained by employing cellulose acetate (CA) as a sacrificial layer. The film could even withstand ultrasonication in saturated SDS aqueous solution for 30 min. SEM observations indicated that the ultrathin film consisted of nanoscale interpenetrating networks of entangled CNTs and exhibited a very rough surface morphology. The (PEI-CNT@PDA) film turned superhydrophobic after being coated with a low-surface-energy compound. The superhydrophobic films showed excellent resistance against the adhesion of both platelets and Escherichia coli (E. coli). The (PEI-CNT@PDA) films and the proposed methodology may find applications in the area of medical devices to reduce device-associated thrombosis and infection.

  3. Tensiometric Characterization of Superhydrophobic Surfaces As Compared to the Sessile and Bouncing Drop Methods.

    Science.gov (United States)

    Hisler, Valentin; Jendoubi, Hiba; Hairaye, Camille; Vonna, Laurent; Le Houérou, Vincent; Mermet, Frédéric; Nardin, Michel; Haidara, Hamidou

    2016-08-09

    We have considered in this work the Wilhelmy plate tensiometer to characterize the wetting properties of two model surface textures: (i) a series of three superhydrophobic micropillared surfaces and (ii) a series of two highly water-repellent surfaces microtextured with a femtosecond laser. The wetting forces obtained on these surfaces with the Wilhelmy plate technique were compared to the contact angles of water droplets measured with the sessile drop technique and to the bouncing behavior of water droplets recorded at a high frame rate. We showed that it is possible with this technique to directly measure triple-line anchoring forces that are not accessible with the commonly used sessile drop technique. In addition, we have demonstrated on the basis of the bouncing drop experiments wetting transitions induced by the specific test conditions associated with the Wilhelmy plate tensiometer for the two series of textured surfaces. Finally, the tensiometer technique is proposed as an alternative test for characterizing the wetting properties of highly liquid-repellent surface, especially under immersion conditions.

  4. Superhydrophobic and White Light-Activated Bactericidal Surface through a Simple Coating.

    Science.gov (United States)

    Hwang, Gi Byoung; Patir, Adnan; Allan, Elaine; Nair, Sean P; Parkin, Ivan P

    2017-08-30

    Bacterial adhesion and proliferation on surfaces are a challenge in medical and industrial fields. Here, a simple one-step technique is reported to fabricate self-cleaning and bactericidal surfaces. White, blue, and violet paints were produced using titanium dioxide nanoparticles, 1H,1H,2H,2H-perfluorooctyltriethoxysilane, crystal violet, toluidine Blue O, and ethanol solution. All of the painted surfaces showed superhydrophobicity in air, and even after hexadecane oil contamination, they retained water repellency and self-cleaning properties. In an assay of bacterial adhesion, significant reductions (>99.8%) in the number of adherent bacteria were observed for all the painted surfaces. In bactericidal tests, the painted surfaces not only demonstrated bactericidal activity against Staphylococcus aureus and Escherichia coli in the dark but also induced very potent photosensitization (>4.4 log reduction in the number of viable bacteria on the violet painted surface) under white light illumination. The technique that we developed here is general and can be used on a wide range of substrates such as paper, glass, polymers, and others.

  5. Rolling, sliding, and sticking of viscoplastic xanthan gum solution drops on a superhydrophobic surface

    Science.gov (United States)

    Kim, Minyoung; Lee, Eungjun; Kim, Do Hyun; Kwak, Rhokyun

    2016-11-01

    Dynamics of Newtonian fluid on a non-wettable substrate have been reported, but those of non-Newtonian fluid, especially of viscoplastic fluid showing a yield stress, are not fully characterized yet. Here, we investigate three distinct behaviors of a viscoplastic drop (xanthan gum solution) -rolling, sliding, and sticking- on an inclined superhydrophobic surface with various inclined angles (1-24 degree) and xanthan gum concentrations (0.25-1.5%). At a low concentration of xanthan gum (low yield stress) and/or a high inclined angle (high gravitational stress), the drop rolls down the surface as the gravitational stress exceeds the yield stress. As the concentration increases, and thus the yield stress exceeds the gravitational stress, the drop stays on the surface like a solid (sticking). However, if we adjust the gravitational stress to induce an adhesive failure between the xanthan gum drop and the surface (but still lower than the yield stress), the drop slides down the surface without rolling. To the best of our knowledge, this is the first direct characterization of the behavior of the viscoplastic drops on an inclined surface considering gravitational stress, yield stress, and adhesive failure.

  6. On jet impingement and thin film breakup on a horizontal superhydrophobic surface

    Science.gov (United States)

    Prince, Joseph F.; Maynes, Daniel; Crockett, Julie

    2015-11-01

    When a vertical laminar jet impinges on a horizontal surface, it will spread out in a thin film. If the surface is hydrophobic and a downstream depth is not maintained, the film will radially expand until it breaks up into filaments or droplets. We present the first analysis and model that describes the location of this transition for both isotropic and anisotropic structured superhydrophobic (SH) surfaces. All surfaces explored are hydrophobic or SH, where the SH surfaces exhibit an apparent slip at the plane of the surface due to a shear free condition above the air filled cavities between the structures. The influence of apparent slip on the entire flow field is significant and yields behavior that deviates notably from classical behavior for a smooth hydrophilic surface where a hydraulic jump would form. Instead, break up into droplets occurs where the jet's outward radial momentum is balanced by the inward surface tension force of the advancing film. For hydrophobic surfaces, or SH surfaces with random micropatterning, the apparent slip on the surface is uniform in all directions and droplet breakup occurs in a circular pattern. When alternating rib/cavity microstructures are used to create the SH surface, the apparent slip varies as a function of the azimuthal coordinate, and thus, the breakup location is elliptically shaped. The thin film dynamics are modeled by a radial momentum analysis for a given jet Weber number and specified slip length and the location of breakup for multiple surfaces over a range of jet Weber numbers and realistic slip length values is quantified. The results of the analysis show that the breakup radius increases with increasing Weber number and slip length. The eccentricity of the breakup ellipse for the rib/cavity SH structures increases with increasing Weber number and slip length as well. A generalized model that allows prediction of the transition (break-up) location as a function of all influencing parameters is presented

  7. Superhydrophobic and highly luminescent polyfluorene/silica hybrid coatings deposited onto glass and cellulose-based substrates.

    Science.gov (United States)

    de Francisco, Raquel; Hoyos, Mario; García, Nuria; Tiemblo, Pilar

    2015-03-31

    Neat poly(9,9-dioctyl-9H-fluorene) (PFO) and composites of PFO and a modified organonanosilica P(7) at weight ratios 90/10, 70/30, and 50/50 have been employed to prepare fluorescent and superhydrophobic coatings by spraying onto three different substrates: glass, Whatman paper, and a filtration membrane of mixed cellulose esters. The water repellency of the coatings and their photophysical properties are therein studied. It is found that, irrespective of the substrate and the composite composition, all coatings remain fluorescent. In some of the coatings prepared, confined morphologies are created, which fluoresce with a wavelength distribution resembling that of an ordered planar β-phase. Among the coatings prepared in this work, those with a ratio PFO/P(7) of 50/50 are the ones with the strongest chain confinement and the highest surface roughness, being highly emissive at the β-phase wavelengths and also superhydrophobic. Depending on the substrate these materials are also tough and flexible (cellulose based substrates) or display a remarkable light transmittance (glass). A final merit of these multifunctional materials is the simplicity of the preparation procedure, adequate for large surfaces and industrial applications.

  8. Identification of the mechanism that confers superhydrophobicity on 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, Ana M.; Llorca-Isern, Nuria; Rius-Ayra, Oriol

    2016-01-15

    This study develops a rapid method to confer superhydrophobicity on 316L stainless steel surfaces with an amphiphilic reagent such as dodecanoic acid. The highest contact angle (approaching 173°) was obtained after forming hierarchical structures with a non-aqueous electrolyte by an electrolytic process. Our goal was to induce superhydrophobicity directly on 316L stainless steel substrates and to establish which molecules cause the effect. The superhydrophobic behaviour is analysed by contact angle measurements, scanning electron microscopy (SEM), IR spectroscopy and atomic force microscopy (AFM). The growth mechanism is analysed using FE-SEM, TOF-SIMS and XPS in order to determine the molecules involved in the reaction and the growth. The TOF-SIMS analysis revealed that the Ni{sup 2+} ions react with lauric acid to create an ester on the stainless steel surface. - Highlights: • This study develops a rapid and facile approach to impart superhydrophobicity properties to 316L stainless steel surfaces with an amphiphilic reagent such as dodecanoic acid. Surface character changes from superhydrophilicity to superhydrophobicity. • This process changes the surface character from superhydrophilicity to superhydrophobicity. • The process based on electrolysis of a nickel salt in lauric acid provides superhydrophobic behaviour in 316L stainless steel. • The growth mechanism is proposed as a mode island (Volmert- Weber mode). • TOF-SIMS and XPS provided the identification of the molecules involved in the surface modification reaction on AISI 316L inducing superhydrophobicity.

  9. Turbulent flows over superhydrophobic surfaces with shear-dependent slip length

    Science.gov (United States)

    Khosh Aghdam, Sohrab; Seddighi, Mehdi; Ricco, Pierre

    2015-11-01

    Motivated by recent experimental evidence, shear-dependent slip length superhydrophobic surfaces are studied. Lyapunov stability analysis is applied in a 3D turbulent channel flow and extended to the shear-dependent slip-length case. The feedback law extracted is recognized for the first time to coincide with the constant-slip-length model widely used in simulations of hydrophobic surfaces. The condition for the slip parameters is found to be consistent with the experimental data and with values from DNS. The theoretical approach by Fukagata (PoF 18.5: 051703) is employed to model the drag-reduction effect engendered by the shear-dependent slip-length surfaces. The estimated drag-reduction values are in very good agreement with our DNS data. For slip parameters and flow conditions which are potentially realizable in the lab, the maximum computed drag reduction reaches 50%. The power spent by the turbulent flow on the walls is computed, thereby recognizing the hydrophobic surfaces as a passive-absorbing drag-reduction method, as opposed to geometrically-modifying techniques that do not consume energy, e.g. riblets, hence named passive-neutral. The flow is investigated by visualizations, statistical analysis of vorticity and strain rates, and quadrants of the Reynolds stresses. Part of this work was funded by Airbus Group. Simulations were performed on the ARCHER Supercomputer (UKTC Grant).

  10. Development of superhydrophobic fabrics by surface fluorination and formation of CNT-induced roughness

    Directory of Open Access Journals (Sweden)

    Myoung Hee Shim

    2015-03-01

    Full Text Available Superhydrophobictextile material having self-cleaning function was developed by employing carbon nanotubes (CNTs and water-repellent agents.Hydrophobic fabrics were prepared on 100% polyester woven fabrics withvarious yarn diameters and yarn types. The wetting behavior of fabrics withdifferent treatments was compared for: siloxanerepellent, fluorocarbon repellent, and CNT added fluorocarbon repellent. Drawn textured yarn (DTY fabrics exhibited higher contactangle (CA than filament yarn fabrics due to the larger surface roughness contributed by the textured yarn. Fabrics treated with fluorocarbon presentedlarger CA and lower shedding angle than those treated with siloxane,because of the lower surface energy of fluorocarbon repellent. Specimens madeof 50 denier DTY and treated with CNT-Teflon AF® showed the mostsuperhydrophobic characteristics in the study, producing the static contactangle>150° and the shedding angle<15°. CNT on fabric surface contributedto the nano-scale surface roughness to hold the air traps like papillae oflotus leaf, giving superhydrophobic characteristics.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5762

  11. Development of superhydrophobic fabrics by surface fluorination and formation of CNT-induced roughness

    Directory of Open Access Journals (Sweden)

    Myoung Hee Shim

    2015-03-01

    Full Text Available Superhydrophobictextile material having self-cleaning function was developed by employing carbon nanotubes (CNTs and water-repellent agents.Hydrophobic fabrics were prepared on 100% polyester woven fabrics withvarious yarn diameters and yarn types. The wetting behavior of fabrics withdifferent treatments was compared for: siloxanerepellent, fluorocarbon repellent, and CNT added fluorocarbon repellent. Drawn textured yarn (DTY fabrics exhibited higher contactangle (CA than filament yarn fabrics due to the larger surface roughness contributed by the textured yarn. Fabrics treated with fluorocarbon presentedlarger CA and lower shedding angle than those treated with siloxane,because of the lower surface energy of fluorocarbon repellent. Specimens madeof 50 denier DTY and treated with CNT-Teflon AF® showed the mostsuperhydrophobic characteristics in the study, producing the static contactangle>150° and the shedding angle<15°. CNT on fabric surface contributedto the nano-scale surface roughness to hold the air traps like papillae oflotus leaf, giving superhydrophobic characteristics.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5762

  12. Drop evaporation on superhydrophobic PTFE surfaces driven by contact line dynamics.

    Science.gov (United States)

    Ramos, S M M; Dias, J F; Canut, B

    2015-02-15

    In the present study, we experimentally study the evaporation modes and kinetics of sessile drops of water on highly hydrophobic surfaces (contact angle ∼160°), heated to temperatures ranging between 40° and 70 °C. These surfaces were initially constructed by means of controlled tailoring of polytetrafluoroethylene (PTFE) substrates. The evaporation of droplets was observed to occur in three distinct phases, which were the same for the different substrate temperatures. The drops started to evaporate in the constant contact radius (CCR) mode, then switched to a more complex mode characterized by a set of stick-slip events accompanied by a decrease in contact angle, and finally shifted to a mixed mode in which the contact radius and contact angle decreased simultaneously until the drops had completely evaporated. It is shown that in the case of superhydrophobic surfaces, the energy barriers (per unit length) associated with the stick-slip motion of a drop ranges in the nJ m(-1) scale. Furthermore, analysis of the evaporation rates, determined from experimental data show that, even in the CCR mode, a linear relationship between V(2/3) and the evaporation time is verified. The values of the evaporation rate constants are found to be higher in the pinned contact line regime (the CCR mode) than in the moving contact line regime. This behavior is attributed to the drop's higher surface to volume ratio in the CCR mode.

  13. Superhydrophobic and oleophobic surface from fluoropolymer-SiO2 hybrid nanocomposites.

    Science.gov (United States)

    Wang, Li; Liang, Junyan; He, Ling

    2014-12-01

    The fluoropolymer-SiO2 hybrid nanocomposite consisting of core-corona fluoropolymer-grafted SiO2 nanoparticle (NP) and poly(dodecafluoroheptyl methacrylate) (PDFHM) was obtained by radical solution polymerization of the vinyl trimethoxy silane (VTMS)-treated SiO2 NP with DFHM in this work. In H2O/tetrahydrofuran (THF) solution, PDFHM self-assembles into dendritic micelle and the increase in H2O volume is favorable for fluoropolymer-grafted SiO2 NPs to create dense fluoropolymer corona layer. It also shows that the addition of H2O to the THF suspension of fluoropolymer-SiO2 nanocomposite could cause a transfer for surface morphology of cast film from smooth film-covered aggregation to bare-exposed flaky aggregation and microsphere aggregation, which results in an increase in surface RMS roughness of cast film and induces a superhydrophobicity. Oleophobicity of cast film can be improved by thermal annealing, because strong surface self-segregation of PDFHM chains during thermal annealing process arouses a marked increase in surface fluorine content.

  14. DNS of turbulent flows over superhydrophobic surfaces: effect of texture randomness

    Science.gov (United States)

    Seo, Jongmin; Mani, Ali

    2016-11-01

    Superhydrophobic surfaces (SHS) are non-wetting surfaces consisting of hydrophobic material and nano/micro-scale structures. When in contact with overlaying liquid flows, such structures can entrap gas and therefore suppress the direct contact between water and solid, reducing skin friction. SHS patterns can utilize a wide range of geometries including posts, ridges, and etched holes, either in a pre-specified arrangement or randomly distributed. In this work we investigate how the randomness of such patterns affect the drag reduction and interfacial robustness when these surfaces are under turbulent flows. We perform direct numerical simulations of turbulent flows over randomly patterned slip surface on a wide range of texture parameters. We present slip lengths of randomly distributed SHS for texture widths w+ = 4 - 26, and solid fractions from 11% to 25%. For fixed gas fraction and texture size, the slip lengths of randomly distributed textures are less than those of aligned textures. We show that the geometric randomness of texture distribution weakens the interfacial robustness of the gas pocket. Support from Office of Naval Research (ONR) under Grant #3002451214 is gratefully acknowledged.

  15. A large-scale superhydrophobic surface-enhanced Raman scattering (SERS) platform fabricated via capillary force lithography and assembly of Ag nanocubes for ultratrace molecular sensing.

    Science.gov (United States)

    Tan, Joel Ming Rui; Ruan, Justina Jiexin; Lee, Hiang Kwee; Phang, In Yee; Ling, Xing Yi

    2014-12-28

    An analytical platform with an ultratrace detection limit in the atto-molar (aM) concentration range is vital for forensic, industrial and environmental sectors that handle scarce/highly toxic samples. Superhydrophobic surface-enhanced Raman scattering (SERS) platforms serve as ideal platforms to enhance detection sensitivity by reducing the random spreading of aqueous solution. However, the fabrication of superhydrophobic SERS platforms is generally limited due to the use of sophisticated and expensive protocols and/or suffers structural and signal inconsistency. Herein, we demonstrate a high-throughput fabrication of a stable and uniform superhydrophobic SERS platform for ultratrace molecular sensing. Large-area box-like micropatterns of the polymeric surface are first fabricated using capillary force lithography (CFL). Subsequently, plasmonic properties are incorporated into the patterned surfaces by decorating with Ag nanocubes using the Langmuir-Schaefer technique. To create a stable superhydrophobic SERS platform, an additional 25 nm Ag film is coated over the Ag nanocube-decorated patterned template followed by chemical functionalization with perfluorodecanethiol. Our resulting superhydrophobic SERS platform demonstrates excellent water-repellency with a static contact angle of 165° ± 9° and a consequent analyte concentration factor of 59-fold, as compared to its hydrophilic counterpart. By combining the analyte concentration effect of superhydrophobic surfaces with the intense electromagnetic "hot spots" of Ag nanocubes, our superhydrophobic SERS platform achieves an ultra-low detection limit of 10(-17) M (10 aM) for rhodamine 6G using just 4 μL of analyte solutions, corresponding to an analytical SERS enhancement factor of 10(13). Our fabrication protocol demonstrates a simple, cost- and time-effective approach for the large-scale fabrication of a superhydrophobic SERS platform for ultratrace molecular detection.

  16. Dewetting Transitions of Dropwise Condensation on Nanotexture-Enhanced Superhydrophobic Surfaces.

    Science.gov (United States)

    Lv, Cunjing; Hao, Pengfei; Zhang, Xiwen; He, Feng

    2015-12-22

    Although realizing dewetting transitions of droplets spontaneously on solid textured surfaces is quite challenging, it has become a key research topic in many practical applications that require highly efficient removal of liquid. Despite intensive efforts over the past few decades, due to impalement of vapor pockets inducing strong pinning of the contact lines, how to realize the self-removal of small droplets trapped in the textures remains an urgent problem. We report an in situ spontaneous dewetting transition of condensed droplets occurring on pillared surfaces with two-tier roughness, from the valleys to the tops of the pillars, owing to the nanotexture-enhanced superhydrophobicity, as well as the topology of the micropillars. Three wetting transition modes are observed. It is found that a further decreased Laplace pressure on the top side of the individual droplets accounts for such a surprising transition and self-removal of condensed water. An explicit model is constructed, which quite effectively predicts the Laplace pressure of droplets trapped by the textures. Our model also reveals that the critical size of the droplet for transition scales as the spacing of the micropillars. These findings are expected to be crucial to a fundamental understanding, as well as a remarkable strategy to guide the fabrication, of optimum super-water-repellant surfaces.

  17. Ultrafast Laser Pulses for Structuring Materials at Micro/Nano Scale: From Waveguides to Superhydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    Daniel S. Correa

    2017-01-01

    Full Text Available The current demand for fabricating optical and photonic devices displaying high performance, using low-cost and time-saving methods, prompts femtosecond (fs-laser processing as a promising methodology. High and low repetition femtosecond lasers enable surface and/or bulk modification of distinct materials, which can be used for applications ranging from optical waveguides to superhydrophobic surfaces. Herein, some fundamental aspects of fs-laser processing of materials, as well as the basics of their most common experimental apparatuses, are introduced. A survey of results on polymer fs-laser processing, resulting in 3D waveguides, electroluminescent structures and active hybrid-microstructures for luminescence or biological microenvironments is presented. Similarly, results of fs-laser processing on glasses, gold and silicon to produce waveguides containing metallic nanoparticles, analytical chemical sensors and surface with modified features, respectively, are also described. The complexity of fs-laser micromachining involves precise control of material properties, pushing ultrafast laser processing as an advanced technique for micro/nano devices.

  18. Inkjet patterned superhydrophobic paper for open-air surface microfluidic devices.

    Science.gov (United States)

    Elsharkawy, Mohamed; Schutzius, Thomas M; Megaridis, Constantine M

    2014-03-21

    We present a facile approach for the fabrication of low-cost surface biomicrofluidic devices on superhydrophobic paper created by drop-casting a fluoroacrylic copolymer onto microtextured paper. Wettability patterning is performed with a common household printer, which produces regions of varying wettability by simply controlling the intensity of ink deposited over prespecified domains. The procedure produces surfaces that are capable of selective droplet sliding and adhesion, when inclined. Using this methodology, we demonstrate the ability to tune the sliding angles of 10 μL water droplets in the range from 13° to 40° by printing lines of constant ink intensity and varied width from 0.1 mm to 2 mm. We also formulate a simple model to predict the onset of droplet sliding on printed lines of known width and wettability. Experiments demonstrate open-air surface microfluidic devices that are capable of pumpless transport, mixing and rapid droplet sampling (~0.6 μL at 50 Hz). Lastly, post treatment of printed areas with pH indicator solutions exemplifies the utility of these substrates in point-of-care diagnostics, which are needed at geographical locations where access to sophisticated testing equipment is limited or non-existent.

  19. Water Drop Evaporation on Mushroom-like Superhydrophobic Surfaces: Temperature Effects.

    Science.gov (United States)

    do Nascimento, Rodney Marcelo; Cottin-Bizonne, Cécile; Pirat, Christophe; Ramos, Stella M M

    2016-03-01

    We report on experiments of drop evaporation on heated superhydrophobic surfaces decorated with micrometer-sized mushroom-like pillars. We analyze the influence of two parameters on the evaporation dynamics: the solid-liquid fraction and the substrate temperature, ranging between 30 and 80 °C. In the different configurations investigated, the drop evaporation appears to be controlled by the contact line dynamics (pinned or moving). The experimental results show that (i) in the pinned regime, the depinning angles increase with decreasing contact fraction and the substrate heating promotes the contact line depinning and (ii) in the moving regime, the droplet motion is described by periodic stick-slip events and contact-angle oscillations. These features are highly smoothed at the highest temperatures, with two possible mechanisms suggested to explain such a behavior, a reduction in the elasticity of the triple line and a decrease in the depinning energy barriers. For all surfaces, the observed remarkable stability of the "fakir" state to the temperature is attributed to the re-entrant micropillar curvature that prevents surface imbibition.

  20. A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces.

    Science.gov (United States)

    Birbarah, Patrick; Li, Zhaoer; Pauls, Alexander; Miljkovic, Nenad

    2015-07-21

    Superhydrophobic micro/nanostructured surfaces for dropwise condensation have recently received significant attention due to their potential to enhance heat transfer performance by shedding positively charged water droplets via coalescence-induced droplet jumping at length scales below the capillary length and allowing the use of external electric fields to enhance droplet removal and heat transfer, in what has been termed electric-field-enhanced (EFE) jumping-droplet condensation. However, achieving optimal EFE conditions for enhanced heat transfer requires capturing the details of transport processes that is currently lacking. While a comprehensive model has been developed for condensation on micro/nanostructured surfaces, it cannot be applied for EFE condensation due to the dynamic droplet-vapor-electric field interactions. In this work, we developed a comprehensive physical model for EFE condensation on superhydrophobic surfaces by incorporating individual droplet motion, electrode geometry, jumping frequency, field strength, and condensate vapor-flow dynamics. As a first step toward our model, we simulated jumping droplet motion with no external electric field and validated our theoretical droplet trajectories to experimentally obtained trajectories, showing excellent temporal and spatial agreement. We then incorporated the external electric field into our model and considered the effects of jumping droplet size, electrode size and geometry, condensation heat flux, and droplet jumping direction. Our model suggests that smaller jumping droplet sizes and condensation heat fluxes require less work input to be removed by the external fields. Furthermore, the results suggest that EFE electrodes can be optimized such that the work input is minimized depending on the condensation heat flux. To analyze overall efficiency, we defined an incremental coefficient of performance and showed that it is very high (∼10(6)) for EFE condensation. We finally proposed mechanisms

  1. Improved performance of Mg-Y alloy thin film switchable mirrors after coating with a superhydrophobic surface

    Science.gov (United States)

    La, Mao; Zhou, Huaijuan; Li, Ning; Xin, Yunchuan; Sha, Ren; Bao, Shanhu; Jin, Ping

    2017-05-01

    The magnesium based switchable mirrors can reversibly change their optical properties between the transparent and the reflective state as a result of hydrogenation and dehydrogenation. These films can potentially be applied as new energy-saving windows, by controlling the transmittance of solar radiation through the regulation of their reflective state. In this study, magnesium-yttrium (Mg-Y) alloy thin films were prepared using a DC magnetron sputtering method. However, the luminous transmittance in the transparent state and the switching durability of switchable mirrors are too poor to satisfy practical demands. In order to improve the films switching durability, luminous transmittance and the surface functionalization, polytetrafluoroethylene (PTFE) was coated with thermal vacuum deposition for use as the top layer of Mg-Y/Pd switchable mirrors. The PTFE layer had a porous network structure and exhibited a superhydrophobic surface with a water contact angle of approximately 152°. By characterization, PTFE thin films shows the excellent protection role against the oxidization of Mg, the switching durability of the films were improved 3 times, and also shows the antireflection role the luminous transmission of films was enhanced by 7% through the top covered with PTFE.

  2. Superhydrophobic and superoleophillic surface of porous beaded electrospun polystrene and polysytrene-zeolite fiber for crude oil-water separation

    Science.gov (United States)

    Alayande, S. Oluwagbemiga; Dare, E. Olugbenga; Msagati, Titus A. M.; Akinlabi, A. Kehinde; Aiyedun, P. O.

    2016-04-01

    This research presents a cheap route procedure for the preparation of a potential adsorbent with superhydrophobic/superoleophillic properties for selective removal of crude oil from water. In this study, expanded polystyrene (EPS) was electrospun to produce beaded fibers in which zeolite was introduced to the polymer matrix in order to impart rough surface to non-beaded fiber. Films of the EPS and EPS/Zeolite solutions were also made for comparative study. The electrospun fibers EPS, EPS/Zeolite and resultant films were characterized using SEM, BET, FTIR and optical contact angle. The fibers exhibited superhydrophobic and superoleophillic wetting properties with water (>1500) and crude oil (00). The selective removal of crude oil presents new opportunity for the re-use of EPS as adsorbent in petroleum/petrochemical industry.

  3. Anti-icing properties of superhydrophobic ZnO/PDMS composite coating

    Science.gov (United States)

    Yang, Chao; Wang, Fajun; Li, Wen; Ou, Junfei; Li, Changquan; Amirfazli, Alidad

    2016-01-01

    We present the excellent anti-icing performance for a superhydrophobic coating surface based on ZnO/polydimethylsiloxane (ZnO/PDMS) composite. The superhydrophobic ZnO/PDMS coating surface was prepared by a facile solution mixing, drop coating, room-temperature curing and surface abrading procedure. The superhydrophobic ZnO/PDMS composite coating possesses a water contact angle of 159.5° and a water sliding angle of 8.3° at room temperature (5 °C). The anti-icing properties of the superhydrophobic coating were investigated by continuously dropping cold-water droplets (about 0 °C) onto the pre-cooled surface using a home-made apparatus. The sample was placed at different tilting angle (0° and 10°) and pre-cooled to various temperatures (-5, -10 and -15 °C) prior to measure. The pure Al surface was also studied for comparison. It was found that icing accretion on the surface could be reduced apparently because the water droplets merged together and slid away from the superhydrophobic surface at all of the measuring temperatures when the surface is horizontally placed. In addition, water droplet slid away completely from the superhydrophobic surface at -5 and -10 °C when the surface is tilted at 10°, which demonstrates its excellent anti-icing properties at these temperatures. When the temperature decreased to -15 °C, though ice accretion on the tilted superhydrophobic coating surface could not be avoided absolutely, the amount of ice formed on the surface is very small, which indicated that the coating surface with superhydrophobicity could significantly reduce ice accumulation on the surface at very low temperature (-15 °C). Importantly, the sample is also stable against repeated icing/deicing cycles. More meaningfully, once the superhydrophobic surface is damaged, it can be repaired easily and rapidly.

  4. Multifunctional Nano-engineered Polymer Surfaces with Enhanced Mechanical Resistance and Superhydrophobicity

    Science.gov (United States)

    Hernández, Jaime J.; Monclús, Miguel A.; Navarro-Baena, Iván; Viela, Felipe; Molina-Aldareguia, Jon M.; Rodríguez, Isabel

    2017-01-01

    This paper presents a multifunctional polymer surface that provides superhydrophobicity and self–cleaning functions together with an enhancement in mechanical and electrical performance. These functionalities are produced by nanoimprinting high aspect ratio pillar arrays on polymeric matrix incorporating functional reinforcing elements. Two distinct matrix-filler systems are investigated specifically, Carbon Nanotube reinforced Polystyrene (CNT-PS) and Reduced Graphene Oxide reinforced Polyvinylidene Difluoride (RGO-PVDF). Mechanical characterization of the topographies by quantitative nanoindentation and nanoscratch tests are performed to evidence a considerable increase in stiffness, Young’s modulus and critical failure load with respect to the pristine polymers. The improvement on the mechanical properties is rationalized in terms of effective dispersion and penetration of the fillers into the imprinted structures as determined by confocal Raman and SEM studies. In addition, an increase in the degree of crystallization for the PVDF-RGO imprinted nanocomposite possibly accounts for the larger enhancement observed. Improvement of the mechanical ruggedness of functional textured surfaces with appropriate fillers will enable the implementation of multifunctional nanotextured materials in real applications. PMID:28262672

  5. The five Ws (and one H) of super-hydrophobic surfaces in medicine

    KAUST Repository

    Gentile, F.

    2014-05-05

    Super-hydrophobic surfaces (SHSs) are bio-inspired, artificial microfabricated interfaces, in which a pattern of cylindrical micropillars is modified to incorporate details at the nanoscale. For those systems, the integration of different scales translates into superior properties, including the ability of manipulating biological solutions. The five Ws, five Ws and one H or the six Ws (6W), are questions, whose answers are considered basic in information-gathering. They constitute a formula for getting the complete story on a subject. According to the principle of the six Ws, a report can only be considered complete if it answers these questions starting with an interrogative word: who, why, what, where, when, how. Each question should have a factual answer. In what follows, SHSs and some of the most promising applications thereof are reviewed following the scheme of the 6W. We will show how these surfaces can be integrated into bio-photonic devices for the identification and detection of a single molecule. We will describe how SHSs and nanoporous silicon matrices can be combined to yield devices with the capability of harvesting small molecules, where the cut-off size can be adequately controlled. We will describe how this concept is utilized for obtaining a direct TEM image of a DNA molecule. 2014 by the authors; licensee MDPI, Basel, Switzerland.

  6. The Five Ws (and one H of Super-Hydrophobic Surfaces in Medicine

    Directory of Open Access Journals (Sweden)

    Francesco Gentile

    2014-05-01

    Full Text Available Super-hydrophobic surfaces (SHSs are bio-inspired, artificial microfabricated interfaces, in which a pattern of cylindrical micropillars is modified to incorporate details at the nanoscale. For those systems, the integration of different scales translates into superior properties, including the ability of manipulating biological solutions. The five Ws, five Ws and one H or the six Ws (6W, are questions, whose answers are considered basic in information-gathering. They constitute a formula for getting the complete story on a subject. According to the principle of the six Ws, a report can only be considered complete if it answers these questions starting with an interrogative word: who, why, what, where, when, how. Each question should have a factual answer. In what follows, SHSs and some of the most promising applications thereof are reviewed following the scheme of the 6W. We will show how these surfaces can be integrated into bio-photonic devices for the identification and detection of a single molecule. We will describe how SHSs and nanoporous silicon matrices can be combined to yield devices with the capability of harvesting small molecules, where the cut-off size can be adequately controlled. We will describe how this concept is utilized for obtaining a direct TEM image of a DNA molecule.

  7. GO@CuSilicate nano-needle arrays hierarchical structure: a new route to prepare high optical transparent, excellent self-cleaning and anticorrosion superhydrophobic surface

    Science.gov (United States)

    Fan, Ping; Chen, Jingyi; Yang, Jintao; Chen, Feng; Zhong, Mingqiang

    2017-02-01

    Transparent superhydrophobic coatings, which are highly desired for the protection of material surfaces, have been limited to particular kinds of materials, e.g. silicon dioxide. In this work, a hybrid compound of graphene oxide and copper silicate with hierarchical structure was developed and was used to fabricate coatings. Due to the high transparency of graphene oxide and the nanoscopic roughness created by nanoneedles of CuSilicate, with very low compound loading (0.052 mg/cm2), the as-prepared coating was found not only showing superhydrophobic properties with a water contact angle (CA) of ˜152° and a near zero sliding angle (SA) of 0.5 but also showing high optical transparent (light transmittance is as high as 94.5 % at 500 nm). Furthermore, this surface also showed efficient anticorrosion properties and excellent self-cleaning ability. This study not only fabricated a new surface with transparency and surperhydrophobicity based on graphene materials, but also hopefully offers a method for the fabrication of multifunctional coatings.

  8. Synthesis and Characterization of a Novel Polyacetal & Design and Preparation of Superhydrophobic Photocatalytic Surfaces

    Science.gov (United States)

    Zhao, Yuanyuan

    controlled and thus the rate of photocatalytic reactions can be increased. In addition, the fraction of TiO2 particles that become fully embedded in the polymer surface, and so inaccessible to photocatalysis reactions, can be reduced through lamination process control, thereby reducing costs. In Chapter 4 and Chapter 5, a general approach is presented to incorporating particles into a superhydrophobic surface that catalyze the formation of reactive oxygen species. Superhydrophobic photocatalytic surfaces are prepared using hydrophilic TiO2 nanoparticles and hydrophobic Silicon-Phthalocyanine photosensitizer particles. A stable Cassie state was maintained, even on surfaces fabricated with hydrophilic TiO2 particles, due to significant hierarchical roughness. A triple phase photogenerator is designed and fabricated. By printing the surface on a porous support, oxygen could be flowed through the plastron resulting in significantly higher photooxidation rates relative to a static ambient. Photooxidation of Rhodamine B and BSA were studied on TiO2-containing surfaces and singlet oxygen was trapped on s