WorldWideScience

Sample records for superhorizon curvature perturbations

  1. Can superhorizon cosmological perturbations explain the acceleration of the universe?

    International Nuclear Information System (INIS)

    Hirata, Christopher M.; Seljak, Uros

    2005-01-01

    We investigate the recent suggestions by Barausse et al. and Kolb et al. that the acceleration of the universe could be explained by large superhorizon fluctuations generated by inflation. We show that no acceleration can be produced by this mechanism. We begin by showing how the application of Raychaudhuri equation to inhomogeneous cosmologies results in several 'no go' theorems for accelerated expansion. Next we derive an exact solution for a specific case of initial perturbations, for which application of the Kolb et al. expressions leads to an acceleration, while the exact solution reveals that no acceleration is present. We show that the discrepancy can be traced to higher-order terms that were dropped in the Kolb et al. analysis. We proceed with the analysis of initial value formulation of general relativity to argue that causality severely limits what observable effects can be derived from superhorizon perturbations. By constructing a Riemann normal coordinate system on initial slice we show that no infrared divergence terms arise in this coordinate system. Thus any divergences found previously can be eliminated by a local rescaling of coordinates and are unobservable. We perform an explicit analysis of the variance of the deceleration parameter for the case of single-field inflation using usual coordinates and show that the infrared-divergent terms found by Barausse et al. and Kolb et al. cancel against several additional terms not considered in their analysis. Finally, we argue that introducing isocurvature perturbations does not alter our conclusion that the accelerating expansion of the universe cannot be explained by superhorizon modes

  2. On the divergences of inflationary superhorizon perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Enqvist, K; Nurmi, S [Physics Department, University of Helsinki, PO Box 64, Helsinki, FIN-00014 (Finland); Podolsky, D; Rigopoulos, G I, E-mail: kari.enqvist@helsinki.fi, E-mail: sami.nurmi@helsinki.fi, E-mail: dmitry.podolsky@helsinki.fi, E-mail: gerasimos.rigopoulos@helsinki.fi [Helsinki Institute of Physics, University of Helsinki, PO Box 64, Helsinki, FIN-00014 (Finland)

    2008-04-15

    We discuss the infrared divergences that appear to plague cosmological perturbation theory. We show that, within the stochastic framework, they are regulated by eternal inflation so that the theory predicts finite fluctuations. Using the {Delta}N formalism to one loop, we demonstrate that the infrared modes can be absorbed into additive constants and the coefficients of the diagrammatic expansion for the connected parts of two-and three-point functions of the curvature perturbation. As a result, the use of any infrared cutoff below the scale of eternal inflation is permitted, provided that the background fields are appropriately redefined. The natural choice for the infrared cutoff would, of course, be the present horizon; other choices manifest themselves in the running of the correlators. We also demonstrate that it is possible to define observables that are renormalization-group-invariant. As an example, we derive a non-perturbative, infrared finite and renormalization point-independent relation between the two-point correlators of the curvature perturbation for the case of the free single field.

  3. Superhorizon electromagnetic field background from Higgs loops in inflation

    Science.gov (United States)

    Kaya, Ali

    2018-03-01

    If Higgs is a spectator scalar, i.e. if it is not directly coupled to the inflaton, superhorizon Higgs modes must have been exited during inflation. Since Higgs is unstable its decay into photons is expected to seed superhorizon photon modes. We use in-in perturbation theory to show that this naive physical expectation is indeed fulfilled via loop effects. Specifically, we calculate the first order Higgs loop correction to the magnetic field power spectrum evaluated at some late time after inflation. It turns out that this loop correction becomes much larger than the tree-level power spectrum at the superhorizon scales. This suggests a mechanism to generate cosmologically interesting superhorizon vector modes by scalar-vector interactions.

  4. Secondary isocurvature perturbations from acoustic reheating

    Science.gov (United States)

    Ota, Atsuhisa; Yamaguchi, Masahide

    2018-06-01

    The superhorizon (iso)curvature perturbations are conserved if the following conditions are satisfied: (i) (each) non adiabatic pressure perturbation is zero, (ii) the gradient terms are ignored, that is, at the leading order of the gradient expansion (iii) (each) total energy momentum tensor is conserved. We consider the case with the violation of the last two requirements and discuss the generation of secondary isocurvature perturbations during the late time universe. Second order gradient terms are not necessarily ignored even if we are interested in the long wavelength modes because of the convolutions which may pick products of short wavelength perturbations up. We then introduce second order conserved quantities on superhorizon scales under the conditions (i) and (iii) even in the presence of the gradient terms by employing the full second order cosmological perturbation theory. We also discuss the violation of the condition (iii), that is, the energy momentum tensor is conserved for the total system but not for each component fluid. As an example, we explicitly evaluate second order heat conduction between baryons and photons due to the weak Compton scattering, which dominates during the period just before recombination. We show that such secondary effects can be recast into the isocurvature perturbations on superhorizon scales if the local type primordial non Gaussianity exists a priori.

  5. Disformal transformation of cosmological perturbations

    Directory of Open Access Journals (Sweden)

    Masato Minamitsuji

    2014-10-01

    Full Text Available We investigate the gauge-invariant cosmological perturbations in the gravity and matter frames in the general scalar–tensor theory where two frames are related by the disformal transformation. The gravity and matter frames are the extensions of the Einstein and Jordan frames in the scalar–tensor theory where two frames are related by the conformal transformation, respectively. First, it is shown that the curvature perturbation in the comoving gauge to the scalar field is disformally invariant as well as conformally invariant, which gives the predictions from the cosmological model where the scalar field is responsible both for inflation and cosmological perturbations. Second, in case that the disformally coupled matter sector also contributes to curvature perturbations, we derive the evolution equations of the curvature perturbation in the uniform matter energy density gauge from the energy (nonconservation in the matter sector, which are independent of the choice of the gravity sector. While in the matter frame the curvature perturbation in the uniform matter energy density gauge is conserved on superhorizon scales for the vanishing nonadiabatic pressure, in the gravity frame it is not conserved even if the nonadiabatic pressure vanishes. The formula relating two frames gives the amplitude of the curvature perturbation in the matter frame, once it is evaluated in the gravity frame.

  6. Disformal transformation of cosmological perturbations

    International Nuclear Information System (INIS)

    Minamitsuji, Masato

    2014-01-01

    We investigate the gauge-invariant cosmological perturbations in the gravity and matter frames in the general scalar–tensor theory where two frames are related by the disformal transformation. The gravity and matter frames are the extensions of the Einstein and Jordan frames in the scalar–tensor theory where two frames are related by the conformal transformation, respectively. First, it is shown that the curvature perturbation in the comoving gauge to the scalar field is disformally invariant as well as conformally invariant, which gives the predictions from the cosmological model where the scalar field is responsible both for inflation and cosmological perturbations. Second, in case that the disformally coupled matter sector also contributes to curvature perturbations, we derive the evolution equations of the curvature perturbation in the uniform matter energy density gauge from the energy (non)conservation in the matter sector, which are independent of the choice of the gravity sector. While in the matter frame the curvature perturbation in the uniform matter energy density gauge is conserved on superhorizon scales for the vanishing nonadiabatic pressure, in the gravity frame it is not conserved even if the nonadiabatic pressure vanishes. The formula relating two frames gives the amplitude of the curvature perturbation in the matter frame, once it is evaluated in the gravity frame

  7. Adiabaticity and gravity theory independent conservation laws for cosmological perturbations

    Science.gov (United States)

    Romano, Antonio Enea; Mooij, Sander; Sasaki, Misao

    2016-04-01

    We carefully study the implications of adiabaticity for the behavior of cosmological perturbations. There are essentially three similar but different definitions of non-adiabaticity: one is appropriate for a thermodynamic fluid δPnad, another is for a general matter field δPc,nad, and the last one is valid only on superhorizon scales. The first two definitions coincide if cs2 = cw2 where cs is the propagation speed of the perturbation, while cw2 = P ˙ / ρ ˙ . Assuming the adiabaticity in the general sense, δPc,nad = 0, we derive a relation between the lapse function in the comoving slicing Ac and δPnad valid for arbitrary matter field in any theory of gravity, by using only momentum conservation. The relation implies that as long as cs ≠cw, the uniform density, comoving and the proper-time slicings coincide approximately for any gravity theory and for any matter field if δPnad = 0 approximately. In the case of general relativity this gives the equivalence between the comoving curvature perturbation Rc and the uniform density curvature perturbation ζ on superhorizon scales, and their conservation. This is realized on superhorizon scales in standard slow-roll inflation. We then consider an example in which cw =cs, where δPnad = δPc,nad = 0 exactly, but the equivalence between Rc and ζ no longer holds. Namely we consider the so-called ultra slow-roll inflation. In this case both Rc and ζ are not conserved. In particular, as for ζ, we find that it is crucial to take into account the next-to-leading order term in ζ's spatial gradient expansion to show its non-conservation, even on superhorizon scales. This is an example of the fact that adiabaticity (in the thermodynamic sense) is not always enough to ensure the conservation of Rc or ζ.

  8. Evolution of the curvature perturbations during warm inflation

    International Nuclear Information System (INIS)

    Matsuda, Tomohiro

    2009-01-01

    This paper considers warm inflation as an interesting application of multi-field inflation. Delta-N formalism is used for the calculation of the evolution of the curvature perturbations during warm inflation. Although the perturbations considered in this paper are decaying after the horizon exit, the corrections to the curvature perturbations sourced by these perturbations can remain and dominate the curvature perturbations at large scales. In addition to the typical evolution of the curvature perturbations, inhomogeneous diffusion rate is considered for warm inflation, which may lead to significant non-Gaussianity of the spectrum

  9. Quantum corrections to the inflaton potential and the power spectra from superhorizon modes and trace anomalies

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Vega, H.J. de; Sanchez, N.G.

    2005-01-01

    We obtain the effective inflaton potential during slow-roll inflation by including the one-loop quantum corrections to the energy momentum tensor from scalar curvature and tensor perturbations as well as from light scalars and Dirac fermions coupled to the inflaton. During slow-roll inflation there is an unambiguous separation between super- and subhorizon contributions to the energy momentum tensor. The superhorizon part is determined by the curvature perturbations and scalar field fluctuations: both feature infrared enhancements as the inverse of a combination of slow-roll parameters which measure the departure from scale invariance in each case. Fermions and gravitons do not exhibit infrared divergences. The subhorizon part is completely specified by the trace anomaly of the fields with different spins and is solely determined by the space-time geometry. The one-loop corrections to the amplitude of curvature and tensor perturbations are obtained to leading order in slow roll and in the (H/M Pl ) 2 expansion. A complete assessment of the backreaction problem up to one loop including bosons and fermions is provided. The result validates the effective field theory description of inflation and confirms the robustness of the inflationary paradigm to quantum fluctuations. Quantum corrections to the power spectra are expressed in terms of the CMB observables: n s , r and dn s /dlnk. Trace anomalies (especially the graviton part) dominate these quantum corrections in a definite direction: they enhance the scalar curvature fluctuations and reduce the tensor fluctuations

  10. Preheating curvaton perturbations

    International Nuclear Information System (INIS)

    Bastero-Gil, M.; Di Clemente, V.; King, S.F.

    2005-01-01

    We discuss the potentially important role played by preheating in certain variants of the curvaton mechanism in which isocurvature perturbations of a D-flat (and F-flat) direction become converted to curvature perturbations during reheating. We discover that parametric resonance of the isocurvature components amplifies the superhorizon fluctuations by a significant amount. As an example of these effects we develop a particle physics motivated model which involves hybrid inflation with the waterfall field N being responsible for generating the μ term, the right-handed neutrino mass scale, and the Peccei-Quinn symmetry breaking scale. The role of the curvaton field can be played either by usual Higgs field, or the lightest right-handed sneutrino. Our new results show that it is possible to achieve the correct curvature perturbations for initial values of the curvaton fields of order the weak scale. In this model we show that the prediction for the spectral index of the final curvature perturbation only depends on the mass of the curvaton during inflation, where consistency with current observational data requires the ratio of this mass to the Hubble constant to be 0.3

  11. Curvature perturbation and waterfall dynamics in hybrid inflation

    International Nuclear Information System (INIS)

    Abolhasani, Ali Akbar; Firouzjahi, Hassan; Sasaki, Misao

    2011-01-01

    We investigate the parameter spaces of hybrid inflation model with special attention paid to the dynamics of waterfall field and curvature perturbations induced from its quantum fluctuations. Depending on the inflaton field value at the time of phase transition and the sharpness of the phase transition inflation can have multiple extended stages. We find that for models with mild phase transition the induced curvature perturbation from the waterfall field is too large to satisfy the COBE normalization. We investigate the model parameter space where the curvature perturbations from the waterfall quantum fluctuations vary between the results of standard hybrid inflation and the results obtained here

  12. Curvature perturbation and waterfall dynamics in hybrid inflation

    Energy Technology Data Exchange (ETDEWEB)

    Abolhasani, Ali Akbar [Department of Physics, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Firouzjahi, Hassan [School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Sasaki, Misao, E-mail: abolhasani@mail.ipm.ir, E-mail: firouz@mail.ipm.ir, E-mail: misao@yukawa.kyoto-u.ac.jp [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2011-10-01

    We investigate the parameter spaces of hybrid inflation model with special attention paid to the dynamics of waterfall field and curvature perturbations induced from its quantum fluctuations. Depending on the inflaton field value at the time of phase transition and the sharpness of the phase transition inflation can have multiple extended stages. We find that for models with mild phase transition the induced curvature perturbation from the waterfall field is too large to satisfy the COBE normalization. We investigate the model parameter space where the curvature perturbations from the waterfall quantum fluctuations vary between the results of standard hybrid inflation and the results obtained here.

  13. Evolution of curvature perturbation in generalized gravity theories

    International Nuclear Information System (INIS)

    Matsuda, Tomohiro

    2009-01-01

    Using the cosmological perturbation theory in terms of the δN formalism, we find the simple formulation of the evolution of the curvature perturbation in generalized gravity theories. Compared with the standard gravity theory, a crucial difference appears in the end-boundary of the inflationary stage, which is due to the non-ideal form of the energy-momentum tensor that depends explicitly on the curvature scalar. Recent study shows that ultraviolet-complete quantum theory of gravity (Horava-Lifshitz gravity) can be approximated by using a generalized gravity action. Our paper may give an important step in understanding the evolution of the curvature perturbation during inflation, where the energy-momentum tensor may not be given by the ideal form due to the corrections from the fundamental theory.

  14. Waterfall field in hybrid inflation and curvature perturbation

    International Nuclear Information System (INIS)

    Gong, Jinn-Ouk; Sasaki, Misao

    2011-01-01

    We study carefully the contribution of the waterfall field to the curvature perturbation at the end of hybrid inflation. In particular we clarify the parameter dependence analytically under reasonable assumptions on the model parameters. After calculating the mode function of the waterfall field, we use the δN formalism and confirm the previously obtained result that the power spectrum is very blue with the index 4 and is absolutely negligible on large scales. However, we also find that the resulting curvature perturbation is highly non-Gaussian and hence we calculate the bispectrum. We find that the bispectrum is at leading order independent of momentum and exhibits its peak at the equilateral limit, though it is unobservably small on large scales. We also present the one-point probability distribution function of the curvature perturbation

  15. Waterfall field in hybrid inflation and curvature perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jinn-Ouk [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, 2333 CA Leiden (Netherlands); Sasaki, Misao, E-mail: jgong@lorentz.leidenuniv.nl, E-mail: misao@yukawa.kyoto-u.ac.jp [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2011-03-01

    We study carefully the contribution of the waterfall field to the curvature perturbation at the end of hybrid inflation. In particular we clarify the parameter dependence analytically under reasonable assumptions on the model parameters. After calculating the mode function of the waterfall field, we use the δN formalism and confirm the previously obtained result that the power spectrum is very blue with the index 4 and is absolutely negligible on large scales. However, we also find that the resulting curvature perturbation is highly non-Gaussian and hence we calculate the bispectrum. We find that the bispectrum is at leading order independent of momentum and exhibits its peak at the equilateral limit, though it is unobservably small on large scales. We also present the one-point probability distribution function of the curvature perturbation.

  16. No large scale curvature perturbations during the waterfall phase transition of hybrid inflation

    International Nuclear Information System (INIS)

    Abolhasani, Ali Akbar; Firouzjahi, Hassan

    2011-01-01

    In this paper the possibility of generating large scale curvature perturbations induced from the entropic perturbations during the waterfall phase transition of the standard hybrid inflation model is studied. We show that whether or not appreciable amounts of large scale curvature perturbations are produced during the waterfall phase transition depends crucially on the competition between the classical and the quantum mechanical backreactions to terminate inflation. If one considers only the classical evolution of the system, we show that the highly blue-tilted entropy perturbations induce highly blue-tilted large scale curvature perturbations during the waterfall phase transition which dominate over the original adiabatic curvature perturbations. However, we show that the quantum backreactions of the waterfall field inhomogeneities produced during the phase transition dominate completely over the classical backreactions. The cumulative quantum backreactions of very small scale tachyonic modes terminate inflation very efficiently and shut off the curvature perturbation evolution during the waterfall phase transition. This indicates that the standard hybrid inflation model is safe under large scale curvature perturbations during the waterfall phase transition.

  17. No Large Scale Curvature Perturbations during Waterfall of Hybrid Inflation

    OpenAIRE

    Abolhasani, Ali Akbar; Firouzjahi, Hassan

    2010-01-01

    In this paper the possibility of generating large scale curvature perturbations induced from the entropic perturbations during the waterfall phase transition of standard hybrid inflation model is studied. We show that whether or not appreciable amounts of large scale curvature perturbations are produced during the waterfall phase transition depend crucially on the competition between the classical and the quantum mechanical back-reactions to terminate inflation. If one considers only the clas...

  18. Superhorizon curvaton amplitude in inflation and pre-big bang cosmology

    DEFF Research Database (Denmark)

    Sloth, Martin Snoager

    2002-01-01

    We follow the evolution of the curvaton on superhorizon scales and check that the spectral tilt of the curvaton perturbations is unchanged as the curvaton becomes non-relativistic. Both inflation and pre-big bang cosmology can be treated since the curvaton mechanism within the two scenarios works...... the same way. We also discuss the amplitude of the density perturbations, which leads to some interesting constrains on the pre-big bang scenario. It is shown that within a SL(3,R) non-linear sigma model one of the three axions has the right coupling to the dilaton and moduli to yield a flat spectrum...

  19. Curvature perturbation spectra from waterfall transition, black hole constraints and non-Gaussianity

    Energy Technology Data Exchange (ETDEWEB)

    Bugaev, Edgar; Klimai, Peter, E-mail: bugaev@pcbai10.inr.ruhep.ru, E-mail: pklimai@gmail.com [Institute for Nuclear Research, Russian Academy of Sciences, 60th October Anniversary Prospect 7a, 117312 Moscow (Russian Federation)

    2011-11-01

    We carried out numerical calculations of a contribution of the waterfall field to the primordial curvature perturbation (on uniform density hypersurfaces) ζ, which is produced during waterfall transition in hybrid inflation scenario. The calculation is performed for a broad interval of values of the model parameters. We show that there is a strong growth of amplitudes of the curvature perturbation spectrum in the limit when the bare mass-squared of the waterfall field becomes comparable with the square of Hubble parameter. We show that in this limit the primordial black hole constraints on the curvature perturbations must be taken into account. It is shown that, in the same limit, peak values of the curvature perturbation spectra are far beyond horizon, and the spectra are strongly non-Gaussian.

  20. Curvature perturbation spectra from waterfall transition, black hole constraints and non-Gaussianity

    International Nuclear Information System (INIS)

    Bugaev, Edgar; Klimai, Peter

    2011-01-01

    We carried out numerical calculations of a contribution of the waterfall field to the primordial curvature perturbation (on uniform density hypersurfaces) ζ, which is produced during waterfall transition in hybrid inflation scenario. The calculation is performed for a broad interval of values of the model parameters. We show that there is a strong growth of amplitudes of the curvature perturbation spectrum in the limit when the bare mass-squared of the waterfall field becomes comparable with the square of Hubble parameter. We show that in this limit the primordial black hole constraints on the curvature perturbations must be taken into account. It is shown that, in the same limit, peak values of the curvature perturbation spectra are far beyond horizon, and the spectra are strongly non-Gaussian

  1. Generating ekpyrotic curvature perturbations before the big bang

    International Nuclear Information System (INIS)

    Lehners, Jean-Luc; Turok, Neil; McFadden, Paul; Steinhardt, Paul J.

    2007-01-01

    We analyze a general mechanism for producing a nearly scale-invariant spectrum of cosmological curvature perturbations during a contracting phase preceding a big bang, which can be entirely described using 4D effective field theory. The mechanism, based on first producing entropic perturbations and then converting them to curvature perturbations, can be naturally incorporated in cyclic and ekpyrotic models in which the big bang is modeled as a brane collision, as well as other types of cosmological models with a pre-big bang phase. We show that the correct perturbation amplitude can be obtained and that the spectral tilt n s tends to range from slightly blue to red, with 0.97 s <1.02 for the simplest models, a range compatible with current observations but shifted by a few percent towards the blue compared to the prediction of the simplest, large-field inflationary models

  2. Lecture notes on mean curvature flow, barriers and singular perturbations

    CERN Document Server

    Bellettini, Giovanni

    2013-01-01

    The aim of the book is to study some aspects of geometric evolutions, such as mean curvature flow and anisotropic mean curvature flow of hypersurfaces. We analyze the origin of such flows and their geometric and variational nature. Some of the most important aspects of mean curvature flow are described, such as the comparison principle and its use in the definition of suitable weak solutions. The anisotropic evolutions, which can be considered as a generalization of mean curvature flow, are studied from the view point of Finsler geometry. Concerning singular perturbations, we discuss the convergence of the Allen–Cahn (or Ginsburg–Landau) type equations to (possibly anisotropic) mean curvature flow before the onset of singularities in the limit problem. We study such kinds of asymptotic problems also in the static case, showing convergence to prescribed curvature-type problems.

  3. Converting entropy to curvature perturbations after a cosmic bounce

    Energy Technology Data Exchange (ETDEWEB)

    Fertig, Angelika; Lehners, Jean-Luc; Mallwitz, Enno; Wilson-Ewing, Edward [Max Planck Institute for Gravitational Physics, Albert Einstein Institute,14476 Potsdam-Golm (Germany)

    2016-10-04

    We study two-field bouncing cosmologies in which primordial perturbations are created in either an ekpyrotic or a matter-dominated contraction phase. We use a non-singular ghost condensate bounce model to follow the perturbations through the bounce into the expanding phase of the universe. In contrast to the adiabatic perturbations, which on large scales are conserved across the bounce, entropy perturbations can grow significantly during the bounce phase. If they are converted into adiabatic/curvature perturbations after the bounce, they typically form the dominant contribution to the observed temperature fluctuations in the microwave background, which can have several beneficial implications. For ekpyrotic models, this mechanism loosens the constraints on the amplitude of the ekpyrotic potential while naturally suppressing the intrinsic amount of non-Gaussianity. For matter bounce models, the mechanism amplifies the scalar perturbations compared to the associated primordial gravitational waves.

  4. On the non-Gaussian correlation of the primordial curvature perturbation with vector fields

    DEFF Research Database (Denmark)

    Kumar Jain, Rajeev; Sloth, Martin Snoager

    2013-01-01

    We compute the three-point cross-correlation function of the primordial curvature perturbation generated during inflation with two powers of a vector field in a model where conformal invariance is broken by a direct coupling of the vector field with the inflaton. If the vector field is identified...... with the electromagnetic field, this correlation would be a non-Gaussian signature of primordial magnetic fields generated during inflation. We find that the signal is maximized for the flattened configuration where the wave number of the curvature perturbation is twice that of the vector field and in this limit...

  5. The influence of super-horizon scales on cosmological observables generated during inflation

    Science.gov (United States)

    Matarrese, Sabino; Musso, Marcello A.; Riotto, Antonio

    2004-05-01

    Using the techniques of out-of-equilibrium field theory, we study the influence on properties of cosmological perturbations generated during inflation on observable scales coming from fluctuations corresponding today to scales much bigger than the present Hubble radius. We write the effective action for the coarse grained inflaton perturbations, integrating out the sub-horizon modes, which manifest themselves as a coloured noise and lead to memory effects. Using the simple model of a scalar field with cubic self-interactions evolving in a fixed de Sitter background, we evaluate the two- and three-point correlation function on observable scales. Our basic procedure shows that perturbations do preserve some memory of the super-horizon scale dynamics, in the form of scale dependent imprints in the statistical moments. In particular, we find a blue tilt of the power spectrum on large scales, in agreement with the recent results of the WMAP collaboration which show a suppression of the lower multipoles in the cosmic microwave background anisotropies, and a substantial enhancement of the intrinsic non-Gaussianity on large scales.

  6. Amplification of curvature perturbations in cyclic cosmology

    International Nuclear Information System (INIS)

    Zhang Jun; Liu Zhiguo; Piao Yunsong

    2010-01-01

    We analytically and numerically show that through the cycles with nonsingular bounce, the amplitude of curvature perturbation on a large scale will be amplified and the power spectrum will redden. In some sense, this amplification will eventually destroy the homogeneity of the background, which will lead to the ultimate end of cycles of the global universe. We argue that for the model with increasing cycles, it might be possible that a fissiparous multiverse will emerge after one or several cycles, in which the cycles will continue only at corresponding local regions.

  7. Second-order perturbations of cosmological fluids: Relativistic effects of pressure, multicomponent, curvature, and rotation

    International Nuclear Information System (INIS)

    Hwang, Jai-chan; Noh, Hyerim

    2007-01-01

    We present general relativistic correction terms appearing in Newton's gravity to the second-order perturbations of cosmological fluids. In our previous work we have shown that to the second-order perturbations, the density and velocity perturbation equations of general relativistic zero-pressure, irrotational, single-component fluid in a spatially flat background coincide exactly with the ones known in Newton's theory without using the gravitational potential. We also have shown the effect of gravitational waves to the second order, and pure general relativistic correction terms appearing in the third-order perturbations. Here, we present results of second-order perturbations relaxing all the assumptions made in our previous works. We derive the general relativistic correction terms arising due to (i) pressure, (ii) multicomponent, (iii) background spatial curvature, and (iv) rotation. In the case of multicomponent zero-pressure, irrotational fluids under the flat background, we effectively do not have relativistic correction terms, thus the relativistic equations expressed in terms of density and velocity perturbations again coincide with the Newtonian ones. In the other three cases we generally have pure general relativistic correction terms. In the case of pressure, the relativistic corrections appear even in the level of background and linear perturbation equations. In the presence of background spatial curvature, or rotation, pure relativistic correction terms directly appear in the Newtonian equations of motion of density and velocity perturbations to the second order; to the linear order, without using the gravitational potential (or metric perturbations), we have relativistic/Newtonian correspondences for density and velocity perturbations of a single-component fluid including the rotation even in the presence of background spatial curvature. In the small-scale limit (far inside the horizon), to the second-order, relativistic equations of density and

  8. On post-inflation validity of perturbation theory in Horndeski scalar-tensor models

    Energy Technology Data Exchange (ETDEWEB)

    Germani, Cristiano [Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí Franquès 1, E08028 Barcelona (Spain); Kudryashova, Nina [Arnold Sommerfeld Center, Ludwig-Maximilians-University, Theresienstr. 37, 80333 Muenchen (Germany); Watanabe, Yuki, E-mail: germani@icc.ub.edu, E-mail: nina.kudryashova@campus.lmu.de, E-mail: yuki.watanabe@nat.gunma-ct.ac.jp [Department of Physics, National Institute of Technology, Gunma College, Gunma 371-8530 (Japan)

    2016-08-01

    By using the newtonian gauge, we re-confirm that, as in the minimal case, the re-scaled Mukhanov-Sasaki variable is conserved leading to a constraint equation for the Newtonian potential. However, conversely to the minimal case, in Horndeski theories, the super-horizon Newtonian potential can potentially grow to very large values after inflation exit. If that happens, inflationary predictability is lost during the oscillating period. When this does not happen, the perturbations generated during inflation can be standardly related to the CMB, if the theory chosen is minimal at low energies. As a concrete example, we analytically and numerically discuss the new Higgs inflationary case. There, the Inflaton is the Higgs boson that is non-minimally kinetically coupled to gravity. During the high-energy part of the post-inflationary oscillations, the system is anisotropic and the Newtonian potential is largely amplified. Thanks to the smallness of today's amplitude of curvature perturbations, however, the system stays in the linear regime, so that inflationary predictions are not lost. At low energies, when the system relaxes to the minimal case, the anisotropies disappear and the Newtonian potential converges to a constant value. We show that the constant value to which the Newtonian potential converges is related to the frozen part of curvature perturbations during inflation, precisely like in the minimal case.

  9. Non-Gaussianities and curvature perturbations from hybrid inflation

    Science.gov (United States)

    Clesse, Sébastien; Garbrecht, Björn; Zhu, Yi

    2014-03-01

    For the original hybrid inflation as well as the supersymmetric F-term and D-term hybrid models, we calculate the level of non-Gaussianities and the power spectrum of curvature perturbations generated during the waterfall, taking into account the contribution of entropic modes. We focus on the regime of mild waterfall, in which inflation continues for more than about 60 e-folds N during the waterfall. We find that the associated fNL parameter goes typically from fNL≃-1/Nexit in the regime with N ≫60, where Nexit is the number of e-folds between the time of Hubble exit of a pivot scale and the end of inflation, down to fNL˜-0.3 when N ≳60, i.e., much smaller in magnitude than the current bound from Planck. Considering only the adiabatic perturbations, the power spectrum is red, with a spectral index ns=1-4/Nexit in the case N ≫60, whereas in the case N≳60, it increases up to unity. Including the contribution of entropic modes does not change observable predictions in the first case, and the spectral index is too low for this regime to be viable. In the second case, entropic modes are a relevant source for the power spectrum of curvature perturbations, of which the amplitude increases by several orders of magnitude. When spectral index values are consistent with observational constraints, the primordial spectrum amplitude is much larger than the observed value and can even lead to black hole formation. We conclude that, due to the important contribution of entropic modes, the parameter space leading to a mild waterfall phase is excluded by cosmic microwave background observations for all the considered models.

  10. Compensation for large tensor modes with iso-curvature perturbations in CMB anisotropies

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Masahiro; Yokoyama, Shuichiro, E-mail: kawasaki@icrr.u-tokyo.ac.jp, E-mail: shu@icrr.u-tokyo.ac.jp [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582 (Japan)

    2014-05-01

    Recently, BICEP2 has reported the large tensor-to-scalar ratio r = 0.2{sup +0.07}{sub −0.05} from the observation of the cosmic microwave background (CMB) B-mode at degree-scales. Since tensor modes induce not only CMB B-mode but also the temperature fluctuations on large scales, to realize the consistent temperature fluctuations with the Planck result we should consider suppression of scalar perturbations on corresponding large scales. To realize such a suppression, we consider anti-correlated iso-curvature perturbations which could be realized in the simple curvaton model.

  11. Reconstruction of the primordial power spectrum of curvature perturbations using multiple data sets

    DEFF Research Database (Denmark)

    Hunt, Paul; Sarkar, Subir

    2014-01-01

    Detailed knowledge of the primordial power spectrum of curvature perturbations is essential both in order to elucidate the physical mechanism (`inflation') which generated it, and for estimating the cosmological parameters from observations of the cosmic microwave background and large-scale struc......Detailed knowledge of the primordial power spectrum of curvature perturbations is essential both in order to elucidate the physical mechanism (`inflation') which generated it, and for estimating the cosmological parameters from observations of the cosmic microwave background and large...... content of the universe. Moreover the deconvolution problem is ill-conditioned so a regularisation scheme must be employed to control error propagation. We demonstrate that `Tikhonov regularisation' can robustly reconstruct the primordial spectrum from multiple cosmological data sets, a significant...... advantage being that both its uncertainty and resolution are then quantified. Using Monte Carlo simulations we investigate several regularisation parameter selection methods and find that generalised cross-validation and Mallow's Cp method give optimal results. We apply our inversion procedure to data from...

  12. Perturbative analysis of multiple-field cosmological inflation

    International Nuclear Information System (INIS)

    Lahiri, Joydev; Bhattacharya, Gautam

    2006-01-01

    We develop a general formalism for analyzing linear perturbations in multiple-field cosmological inflation based on the gauge-ready approach. Our inflationary model consists of an arbitrary number of scalar fields with non-minimal kinetic terms. We solve the equations for scalar- and tensor-type perturbations during inflation to the first order in slow roll, and then obtain the super-horizon solutions for adiabatic and isocurvature perturbations after inflation. Analytic expressions for power-spectra and spectral indices arising from multiple-field inflation are presented

  13. Constraints on variations in inflaton decay rate from modulated preheating

    Energy Technology Data Exchange (ETDEWEB)

    Mazumdar, Arindam [Theory Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-64 (India); Modak, Kamakshya Prasad, E-mail: arindam.mazumdar@saha.ac.in, E-mail: kamakshya.modak@saha.ac.in [Astroparticle Physics and Cosmology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-64 (India)

    2016-06-01

    Modulated (p)reheating is thought to be an alternative mechanism for producing super-horizon curvature perturbations in CMB. But large non-gaussianity and iso-curvature perturbations produced by this mechanism rule out its acceptability as the sole process responsible for generating CMB perturbations. We explore the situation where CMB perturbations are mostly generated by usual quantum fluctuations of inflaton during inflation, but a modulated coupling constant between inflaton and a secondary scalar affects the preheating process and produces some extra curvature perturbations. If the modulating scalar field is considered to be a dark matter candidate, coupling constant between the fields has to be unnaturally fine tuned in order to keep the local-form non-gaussianity and the amplitude of iso-curvature perturbations within observational limit; otherwise parameters of the models have to be tightly constrained. Those constraints imply that the curvature perturbations generated by modulated preheating should be less than 15% of the total observed CMB perturbations. On the other hand if the modulating scalar field is not a dark matter candidate, parameters of the models could not be constrained, but the constraints on the maximum amount of the curvature perturbations coming from modulated preheating remain valid.

  14. Constraints on variations in inflaton decay rate from modulated preheating

    International Nuclear Information System (INIS)

    Mazumdar, Arindam; Modak, Kamakshya Prasad

    2016-01-01

    Modulated (p)reheating is thought to be an alternative mechanism for producing super-horizon curvature perturbations in CMB. But large non-gaussianity and iso-curvature perturbations produced by this mechanism rule out its acceptability as the sole process responsible for generating CMB perturbations. We explore the situation where CMB perturbations are mostly generated by usual quantum fluctuations of inflaton during inflation, but a modulated coupling constant between inflaton and a secondary scalar affects the preheating process and produces some extra curvature perturbations. If the modulating scalar field is considered to be a dark matter candidate, coupling constant between the fields has to be unnaturally fine tuned in order to keep the local-form non-gaussianity and the amplitude of iso-curvature perturbations within observational limit; otherwise parameters of the models have to be tightly constrained. Those constraints imply that the curvature perturbations generated by modulated preheating should be less than 15% of the total observed CMB perturbations. On the other hand if the modulating scalar field is not a dark matter candidate, parameters of the models could not be constrained, but the constraints on the maximum amount of the curvature perturbations coming from modulated preheating remain valid.

  15. Constraints on backreaction in dust universes

    International Nuclear Information System (INIS)

    Raesaenen, Syksy

    2006-01-01

    We study backreaction in dust universes using exact equations which do not rely on perturbation theory, concentrating on theoretical and observational constraints. In particular, we discuss the recent suggestion (Kolb et al 2005 Preprint hep-th/0503117) that superhorizon perturbations could explain present-day accelerated expansion as a useful example which can be ruled out. We note that a backreaction explanation of late-time acceleration will have to involve spatial curvature and subhorizon perturbations

  16. Contribution of the hybrid inflation waterfall to the primordial curvature perturbation

    International Nuclear Information System (INIS)

    Lyth, David H.

    2011-01-01

    A contribution ζ χ to the curvature perturbation will be generated during the waterfall that ends hybrid inflation, that may be significant on small scales. In particular, it may lead to excessive black hole formation. We here consider standard hybrid inflation, where the tachyonic mass of the waterfall field is much bigger than the Hubble parameter. We calculate ζ χ in the simplest case, and see why earlier calculations of ζ χ are incorrect

  17. Cosmological perturbations in theories with non-minimal coupling between curvature and matter

    International Nuclear Information System (INIS)

    Bertolami, Orfeu; Frazão, Pedro; Páramos, Jorge

    2013-01-01

    In this work, we examine how the presence of a non-minimal coupling between spacetime curvature and matter affects the evolution of cosmological perturbations on a homogeneous and isotropic Universe, and hence the formation of large-scale structure. This framework places constraints on the terms which arise due to the coupling with matter and, in particular, on the modified growth of matter density perturbations. We derive approximate analytical solutions for the evolution of matter overdensities during the matter dominated era and discuss the compatibility of the obtained results with the hypothesis that the late time acceleration of the Universe is driven by a non-minimal coupling

  18. On the generation of a non-gaussian curvature perturbation during preheating

    Energy Technology Data Exchange (ETDEWEB)

    Kohri, Kazunori; Lyth, David H. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom); Valenzuela-Toledo, Cesar A., E-mail: k.kohri@lancaster.ac.uk, E-mail: d.lyth@lancaster.ac.uk, E-mail: cavalto@ciencias.uis.edu.co [Escuela de Física, Universidad Industrial de Santander, Ciudad Universitaria, Bucaramanga (Colombia)

    2010-02-01

    The perturbation of a light field might affect preheating and hence generate a contribution to the spectrum and non-gaussianity of the curvature perturbation ζ. The field might appear directly in the preheating model (curvaton-type preheating) or indirectly through its effect on a mass or coupling (modulated preheating). We give general expressions for ζ based on the δN formula, and apply them to the cases of quadratic and quartic chaotic inflation. For the quadratic case, curvaton-type preheating is ineffective in contributing to ζ, but modulated preheating can be effective. For quartic inflation, curvaton-type preheating may be effective but the usual δN formalism has to be modified. We see under what circumstances the recent numerical simulation of Bond et al. [0903.3407] may be enough to provide a rough estimate for this case.

  19. On the generation of a non-gaussian curvature perturbation during preheating

    International Nuclear Information System (INIS)

    Kohri, Kazunori; Lyth, David H.; Valenzuela-Toledo, Cesar A.

    2010-01-01

    The perturbation of a light field might affect preheating and hence generate a contribution to the spectrum and non-gaussianity of the curvature perturbation ζ. The field might appear directly in the preheating model (curvaton-type preheating) or indirectly through its effect on a mass or coupling (modulated preheating). We give general expressions for ζ based on the δN formula, and apply them to the cases of quadratic and quartic chaotic inflation. For the quadratic case, curvaton-type preheating is ineffective in contributing to ζ, but modulated preheating can be effective. For quartic inflation, curvaton-type preheating may be effective but the usual δN formalism has to be modified. We see under what circumstances the recent numerical simulation of Bond et al. [0903.3407] may be enough to provide a rough estimate for this case

  20. Delta-N formalism for the evolution of the curvature perturbations in generalized multi-field inflation

    International Nuclear Information System (INIS)

    Matsuda, Tomohiro

    2009-01-01

    The δN formalism is considered to calculate the evolution of the curvature perturbation in generalized multi-field inflation models. The result is consistent with the usual calculation of the standard kinetic term. For the calculation of the generalized kinetic term, we improved the definition of the adiabatic field. Our calculation improves the usual calculation of R . based on the field equations and the perturbations, giving a very simple and intuitive argument for the evolution equations in terms of the perturbations of the inflaton velocity. Significance of non-equilibrium corrections are also discussed, which is caused by the small-scale (decaying) inhomogeneities. This formalism based on the modulated inflation scenario (i.e., calculation based on the perturbations related to the inflaton velocity) provides a powerful tool for investigating the signature of moduli that may appear in string theory.

  1. Supergravity inspired vector curvaton

    International Nuclear Information System (INIS)

    Dimopoulos, Konstantinos

    2007-01-01

    It is investigated whether a massive Abelian vector field, whose gauge kinetic function is growing during inflation, can be responsible for the generation of the curvature perturbation in the Universe. Particle production is studied and it is shown that the vector field can obtain a scale-invariant superhorizon spectrum of perturbations with a reasonable choice of kinetic function. After inflation the vector field begins coherent oscillations, during which it corresponds to pressureless isotropic matter. When the vector field dominates the Universe, its perturbations give rise to the observed curvature perturbation following the curvaton scenario. It is found that this is possible if, after the end of inflation, the mass of the vector field increases at a phase transition at temperature of order 1 TeV or lower. Inhomogeneous reheating, whereby the vector field modulates the decay rate of the inflaton, is also studied

  2. Quantum field theory with a momentum space of constant curvature (perturbation theory)

    International Nuclear Information System (INIS)

    Mir-Kasimov, R.M.

    1978-01-01

    In the framework of the field-theoretical approach in which the off-the-mass shell extension proceeds in the p-space of constant curvature, the perburbation theory is developed. The configurational representation of the de Sitter space is introduced with the help of the Fourier transformation of the group of motions. On the basis of a natural generalization of the Bogolyubov causality condition to the case of the new configurational representation a perturbation theory is constructed with the local in xi space Lagrangian density fucntion. The obtained S matrix obeys the reguirement of translation invariance. The S matrix elements are given by convergent expressions

  3. On the initial regime of pre-big bang cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Gasperini, M., E-mail: gasperini@ba.infn.it [Dipartimento di Fisica, Università di Bari, Via G. Amendola 173, 70126 Bari (Italy)

    2017-09-01

    The production of a background of super-horizon curvature perturbations with the appropriate (red) spectrum needed to trigger the cosmic anisotropies observed on large scales is associated, in the context of pre-big bang inflation, with a phase of growing string coupling. The extension towards the past of such a phase is not limited in time by the dynamical backreaction of the quantum perturbations of the cosmological geometry and of its sources. A viable, slightly red spectrum of scalar perturbations can thus be the output of an asymptotic, perturbative regime which is well compatible with an initial string-vacuum state satisfying the postulate of 'Asymptotic Past Triviality'.

  4. Consistently violating the non-Gaussian consistency relation

    International Nuclear Information System (INIS)

    Mooij, Sander; Palma, Gonzalo A.

    2015-01-01

    Non-attractor models of inflation are characterized by the super-horizon evolution of curvature perturbations, introducing a violation of the non-Gaussian consistency relation between the bispectrum's squeezed limit and the power spectrum's spectral index. In this work we show that the bispectrum's squeezed limit of non-attractor models continues to respect a relation dictated by the evolution of the background. We show how to derive this relation using only symmetry arguments, without ever needing to solve the equations of motion for the perturbations

  5. Space-dependent step features: Transient breakdown of slow-roll, homogeneity, and isotropy during inflation

    International Nuclear Information System (INIS)

    Lerner, Rose N.; McDonald, John

    2009-01-01

    A step feature in the inflaton potential can model a transient breakdown of slow-roll inflation. Here we generalize the step feature to include space-dependence, allowing it also to model a breakdown of homogeneity and isotropy. The space-dependent inflaton potential generates a classical curvature perturbation mode characterized by the wave number of the step inhomogeneity. For inhomogeneities small compared with the horizon at the step, space-dependence has a small effect on the curvature perturbation. Therefore, the smoothly oscillating quantum power spectrum predicted by the homogeneous step is robust with respect to subhorizon space-dependence. For inhomogeneities equal to or greater than the horizon at the step, the space-dependent classical mode can dominate, producing a curvature perturbation in which modes of wave number determined by the step inhomogeneity are superimposed on the oscillating power spectrum. Generation of a space-dependent step feature may therefore provide a mechanism to introduce primordial anisotropy into the curvature perturbation. Space-dependence also modifies the quantum fluctuations, in particular, via resonancelike features coming from mode coupling to amplified superhorizon modes. However, these effects are small relative to the classical modes.

  6. Constraints on amplitudes of curvature perturbations from primordial black holes

    International Nuclear Information System (INIS)

    Bugaev, Edgar; Klimai, Peter

    2009-01-01

    We calculate the primordial black hole (PBH) mass spectrum produced from a collapse of the primordial density fluctuations in the early Universe using, as an input, several theoretical models giving the curvature perturbation power spectra P R (k) with large (∼10 -2 -10 -1 ) values at some scale of comoving wave numbers k. In the calculation we take into account the explicit dependence of gravitational (Bardeen) potential on time. Using the PBH mass spectra, we further calculate the neutrino and photon energy spectra in extragalactic space from evaporation of light PBHs, and the energy density fraction contained in PBHs today (for heavier PBHs). We obtain the constraints on the model parameters using available experimental data (including data on neutrino and photon cosmic backgrounds). We briefly discuss the possibility that the observed 511 keV line from the Galactic center is produced by annihilation of positrons evaporated by PBHs.

  7. The hybrid inflation waterfall and the primordial curvature perturbation

    International Nuclear Information System (INIS)

    Lyth, David H.

    2012-01-01

    Without demanding a specific form for the inflaton potential, we obtain an estimate of the contribution to the curvature perturbation generated during the linear era of the hybrid inflation waterfall. The spectrum of this contribution peaks at some wavenumber k = k * , and goes like k 3 for k * , making it typically negligible on cosmological scales. The scale k * can be outside the horizon at the end of inflation, in which case ζ = −(g 2 −(g 2 )) with g gaussian. Taking this into account, the cosmological bound on the abundance of black holes is likely to be satisfied if the curvaton mass m much bigger than the Hubble parameter H, but is likely to be violated if m∼< H. Coming to the contribution to ζ from the rest of the waterfall, we are led to consider the use of the 'end-of-inflation' formula, giving the contribution to ζ generated during a sufficiently sharp transition from nearly-exponential inflation to non-inflation, and we state for the first time the criterion for the transition to be sufficiently sharp. Our formulas are applied to supersymmetric GUT inflation and to supernatural/running-mass inflation

  8. Higher order statistics of curvature perturbations in IFF model and its Planck constraints

    International Nuclear Information System (INIS)

    Fujita, Tomohiro; Yokoyama, Shuichiro

    2013-01-01

    We compute the power spectrum P ζ and non-linear parameters f NL and τ NL of the curvature perturbation induced during inflation by the electromagnetic fields in the kinetic coupling model (IFF model). By using the observational result of P ζ ,f NL and τ NL reported by the Planck collaboration, we study the constraint on the model comprehensively. Interestingly, if the single slow-rolling inflaton is responsible for the observed P ζ , the constraint from τ NL is most stringent. We also find a general relationship between f NL and τ NL generated in this model. Even if f NL ∼ O(1), a detectable τ NL can be produced

  9. Decoherence, discord, and the quantum master equation for cosmological perturbations

    Science.gov (United States)

    Hollowood, Timothy J.; McDonald, Jamie I.

    2017-05-01

    We examine environmental decoherence of cosmological perturbations in order to study the quantum-to-classical transition and the impact of noise on entanglement during inflation. Given an explicit interaction between the system and environment, we derive a quantum master equation for the reduced density matrix of perturbations, drawing parallels with quantum Brownian motion, where we see the emergence of fluctuation and dissipation terms. Although the master equation is not in Lindblad form, we see how typical solutions exhibit positivity on super-horizon scales, leading to a physically meaningful density matrix. This allows us to write down a Langevin equation with stochastic noise for the classical trajectories which emerge from the quantum system on super-horizon scales. In particular, we find that environmental decoherence increases in strength as modes exit the horizon, with the growth driven essentially by white noise coming from local contributions to environmental correlations. Finally, we use our master equation to quantify the strength of quantum correlations as captured by discord. We show that environmental interactions have a tendency to decrease the size of the discord and that these effects are determined by the relative strength of the expansion rate and interaction rate of the environment. We interpret this in terms of the competing effects of particle creation versus environmental fluctuations, which tend to increase and decrease the discord respectively.

  10. The hybrid inflation waterfall and the primordial curvature perturbation

    Science.gov (United States)

    Lyth, David H.

    2012-05-01

    Without demanding a specific form for the inflaton potential, we obtain an estimate of the contribution to the curvature perturbation generated during the linear era of the hybrid inflation waterfall. The spectrum of this contribution peaks at some wavenumber k = k*, and goes like k3 for k Lt k*, making it typically negligible on cosmological scales. The scale k* can be outside the horizon at the end of inflation, in which case ζ = -(g2-langg2rang) with g gaussian. Taking this into account, the cosmological bound on the abundance of black holes is likely to be satisfied if the curvaton mass m much bigger than the Hubble parameter H, but is likely to be violated if mlsimH. Coming to the contribution to ζ from the rest of the waterfall, we are led to consider the use of the `end-of-inflation' formula, giving the contribution to ζ generated during a sufficiently sharp transition from nearly-exponential inflation to non-inflation, and we state for the first time the criterion for the transition to be sufficiently sharp. Our formulas are applied to supersymmetric GUT inflation and to supernatural/running-mass inflation. A preliminary version of this paper appeared as arXiv:1107.1681.

  11. The hybrid inflation waterfall and the primordial curvature perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Lyth, David H., E-mail: d.lyth@lancaster.ac.uk [Consortium for Fundamental Physics, Cosmology and Astroparticle Group, Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2012-05-01

    Without demanding a specific form for the inflaton potential, we obtain an estimate of the contribution to the curvature perturbation generated during the linear era of the hybrid inflation waterfall. The spectrum of this contribution peaks at some wavenumber k = k{sub *}, and goes like k{sup 3} for k << k{sub *}, making it typically negligible on cosmological scales. The scale k{sub *} can be outside the horizon at the end of inflation, in which case ζ = −(g{sup 2}−(g{sup 2})) with g gaussian. Taking this into account, the cosmological bound on the abundance of black holes is likely to be satisfied if the curvaton mass m much bigger than the Hubble parameter H, but is likely to be violated if m∼

  12. Non-adiabatic perturbations in Ricci dark energy model

    International Nuclear Information System (INIS)

    Karwan, Khamphee; Thitapura, Thiti

    2012-01-01

    We show that the non-adiabatic perturbations between Ricci dark energy and matter can grow both on superhorizon and subhorizon scales, and these non-adiabatic perturbations on subhorizon scales can lead to instability in this dark energy model. The rapidly growing non-adiabatic modes on subhorizon scales always occur when the equation of state parameter of dark energy starts to drop towards -1 near the end of matter era, except that the parameter α of Ricci dark energy equals to 1/2. In the case where α = 1/2, the rapidly growing non-adiabatic modes disappear when the perturbations in dark energy and matter are adiabatic initially. However, an adiabaticity between dark energy and matter perturbations at early time implies a non-adiabaticity between matter and radiation, this can influence the ordinary Sachs-Wolfe (OSW) effect. Since the amount of Ricci dark energy is not small during matter domination, the integrated Sachs-Wolfe (ISW) effect is greatly modified by density perturbations of dark energy, leading to a wrong shape of CMB power spectrum. The instability in Ricci dark energy is difficult to be alleviated if the effects of coupling between baryon and photon on dark energy perturbations are included

  13. de Sitter limit of inflation and nonlinear perturbation theory

    DEFF Research Database (Denmark)

    R. Jarnhus, Philip; Sloth, Martin Snoager

    2007-01-01

    We study the fourth order action of the comoving curvature perturbation in an inflationary universe in order to understand more systematically the de Sitter limit in nonlinear cosmological perturbation theory. We derive the action of the curvature perturbation to fourth order in the comoving gaug...

  14. Large-scale perturbations from the waterfall field in hybrid inflation

    International Nuclear Information System (INIS)

    Fonseca, José; Wands, David; Sasaki, Misao

    2010-01-01

    We estimate large-scale curvature perturbations from isocurvature fluctuations in the waterfall field during hybrid inflation, in addition to the usual inflaton field perturbations. The tachyonic instability at the end of inflation leads to an explosive growth of super-Hubble scale perturbations, but they retain the steep blue spectrum characteristic of vacuum fluctuations in a massive field during inflation. The power spectrum thus peaks around the Hubble-horizon scale at the end of inflation. We extend the usual δN formalism to include the essential role of these small fluctuations when estimating the large-scale curvature perturbation. The resulting curvature perturbation due to fluctuations in the waterfall field is second-order and the spectrum is expected to be of order 10 −54 on cosmological scales

  15. Imprint of spatial curvature on inflation power spectrum

    International Nuclear Information System (INIS)

    Masso, Eduard; Zsembinszki, Gabriel; Mohanty, Subhendra; Nautiyal, Akhilesh

    2008-01-01

    If the Universe had a large curvature before inflation there is a deviation from the scale invariant perturbations of the inflaton at the beginning of inflation. This may have some effect on the cosmic microwave background anisotropy at large angular scales. We calculate the density perturbations for both open and closed universe cases using the Bunch-Davies vacuum condition on the initial state. We use our power spectrum to calculate the temperature anisotropy spectrum and compare the results with the Wilkinson microwave anisotropy map five year data. We find that our power spectrum gives a lower quadrupole anisotropy when Ω-1>0, but matches the temperature anisotropy calculated from the standard Ratra-Peebles power spectrum at large l. The determination of spatial curvature from temperature anisotropy data is not much affected by the different power spectra which arise from the choice of different boundary conditions for the inflaton perturbation.

  16. Inflation in a shear-or curvature-dominated universe

    International Nuclear Information System (INIS)

    Steigman, G.; Turner, M.S.

    1983-01-01

    We show that new inflation occurs even if the universe is shear-or (negative) curvature-dominated when the phase transition begins. In such situations the size of a causally coherent region, after inflation, is only slightly smaller (by powers, but not by exponential factors) than the usual result. The creation and evolution of density perturbations is unaffected. This result is marked contrast to 'old' inflation, where shear- or curvature-domination could quench inflation. (orig.)

  17. 'Finite' non-Gaussianities and tensor-scalar ratio in large volume Swiss-cheese compactifications

    International Nuclear Information System (INIS)

    Misra, Aalok; Shukla, Pramod

    2009-01-01

    Developing on the ideas of (Section 4 of) [A. Misra, P. Shukla, Moduli stabilization, large-volume dS minimum without anti-D3-branes, (non-)supersymmetric black hole attractors and two-parameter Swiss cheese Calabi-Yau's, Nucl. Phys. B 799 (2008) 165-198, (arXiv: 0707.0105)] and [A. Misra, P. Shukla, Large volume axionic Swiss-cheese inflation, Nucl. Phys. B 800 (2008) 384-400, (arXiv: 0712.1260 [hep-th])] and using the formalisms of [S. Yokoyama, T. Suyama, T. Tanaka, Primordial non-Gaussianity in multi-scalar slow-roll inflation, (arXiv: 0705.3178 [astro-ph]); S. Yokoyama, T. Suyama, T. Tanaka, Primordial non-Gaussianity in multi-scalar inflation, Phys. Rev. D 77 (2008) 083511, (arXiv: 0711.2920 [astro-ph])], after inclusion of perturbative and non-perturbative α' corrections to the Kaehler potential and (D1- and D3-)instanton generated superpotential, we show the possibility of getting finite values for the non-linear parameter f NL while looking for non-Gaussianities in type IIB compactifications on orientifolds of the Swiss cheese Calabi-Yau WCP 4 [1,1,1,6,9] in the L(arge) V(olume) S(cenarios) limit. We show the same in two contexts. First is multi-field slow-roll inflation with D3-instanton contribution coming from a large number of multiple wrappings of a single (Euclidean) D3-brane around the 'small' divisor yielding f NL ∼O(1). The second is when the slow-roll conditions are violated and for the number of the aforementioned D3-instanton wrappings being of O(1) but more than one, yielding f NL ∼O(1). Based on general arguments not specific to our (string-theory) set-up, we argue that requiring curvature perturbations not to grow at horizon crossing and at super-horizon scales, automatically picks out hybrid inflationary scenarios which in our set up can yield f NL ∼O(1) and tensor-scalar ratio of O(10 -2 ). For all our calculations, the world-sheet instanton contributions to the Kaehler potential coming from the non-perturbative α ' corrections

  18. Probing the perturbative NLO parton evolution in the small-x region

    International Nuclear Information System (INIS)

    Glueck, M.; Pisano, C.; Reya, E.

    2005-01-01

    A dedicated test of the perturbative QCD NLO parton evolution in the very small-x region is performed. We find a good agreement with recent precision HERA data for F 2 p (x,Q 2 ), as well as with the present determination of the curvature of F 2 p . Characteristically, perturbative QCD evolutions result in a positive curvature which increases as xdecreases. Future precision measurements in the very small x-region, x -4 , could provide a sensitive test of the range of validity of perturbative QCD. (orig.)

  19. Second-order gauge-invariant perturbations during inflation

    International Nuclear Information System (INIS)

    Finelli, F.; Marozzi, G.; Vacca, G. P.; Venturi, G.

    2006-01-01

    The evolution of gauge invariant second-order scalar perturbations in a general single field inflationary scenario are presented. Different second-order gauge-invariant expressions for the curvature are considered. We evaluate perturbatively one of these second order curvature fluctuations and a second-order gauge-invariant scalar field fluctuation during the slow-roll stage of a massive chaotic inflationary scenario, taking into account the deviation from a pure de Sitter evolution and considering only the contribution of super-Hubble perturbations in mode-mode coupling. The spectra resulting from their contribution to the second order quantum correlation function are nearly scale-invariant, with additional logarithmic corrections with respect to the first order spectrum. For all scales of interest the amplitude of these spectra depends on the total number of e-folds. We find, on comparing first and second order perturbation results, an upper limit to the total number of e-folds beyond which the two orders are comparable

  20. Curvature perturbations from dimensional decoupling

    CERN Document Server

    Giovannini, Massimo

    2005-01-01

    The scalar modes of the geometry induced by dimensional decoupling are investigated. In the context of the low energy string effective action, solutions can be found where the spatial part of the background geometry is the direct product of two maximally symmetric Euclidean manifolds whose related scale factors evolve at a dual rate so that the expanding dimensions first accelerate and then decelerate while the internal dimensions always contract. After introducing the perturbative treatment of the inhomogeneities, a class of five-dimensional geometries is discussed in detail. Quasi-normal modes of the system are derived and the numerical solution for the evolution of the metric inhomogeneities shows that the fluctuations of the internal dimensions provide a term that can be interpreted, in analogy with the well-known four-dimensional situation, as a non-adiabatic pressure density variation. Implications of this result are discussed with particular attention to string cosmological scenarios.

  1. New ekpyrotic cosmology

    International Nuclear Information System (INIS)

    Buchbinder, Evgeny I.; Khoury, Justin; Ovrut, Burt A.

    2007-01-01

    In this paper, we present a new scenario of the early universe that contains a pre-big bang ekpyrotic phase. By combining this with a ghost condensate, the theory explicitly violates the null energy condition without developing any ghostlike instabilities. Thus the contracting universe goes through a nonsingular bounce and evolves smoothly into the expanding post-big bang phase. The curvature perturbation acquires a scale-invariant spectrum well before the bounce in this scenario. It is sourced by the scale-invariant entropy perturbation engendered by two ekpyrotic scalar fields, a mechanism recently proposed by Lehners et al. Since the background geometry is nonsingular at all times, the curvature perturbation remains nearly constant on superhorizon scales. It emerges from the bounce unscathed and imprints a scale-invariant spectrum of density fluctuations in the matter-radiation fluid at the onset of the hot big bang phase. The ekpyrotic potential can be chosen so that the spectrum has a red tilt, in accordance with the recent data from WMAP. As in the original ekpyrotic scenario, the model predicts a negligible gravity wave signal on all observable scales. As such ''new ekpyrotic cosmology'' provides a consistent and distinguishable alternative to inflation to account for the origin of the seeds of large-scale structure

  2. Large-scale magnetic fields, curvature fluctuations, and the thermal history of the Universe

    International Nuclear Information System (INIS)

    Giovannini, Massimo

    2007-01-01

    It is shown that gravitating magnetic fields affect the evolution of curvature perturbations in a way that is reminiscent of a pristine nonadiabatic pressure fluctuation. The gauge-invariant evolution of curvature perturbations is used to constrain the magnetic power spectrum. Depending on the essential features of the thermodynamic history of the Universe, the explicit derivation of the bound is modified. The theoretical uncertainty in the constraints on the magnetic energy spectrum is assessed by comparing the results obtained in the case of the conventional thermal history with the estimates stemming from less conventional (but phenomenologically allowed) post-inflationary evolutions

  3. Theory of cosmological perturbations with cuscuton

    Energy Technology Data Exchange (ETDEWEB)

    Boruah, Supranta S.; Kim, Hyung J.; Geshnizjani, Ghazal, E-mail: ssarmabo@uwaterloo.ca, E-mail: h268kim@uwaterloo.ca, E-mail: ggeshniz@uwaterloo.ca [Department of Applied Mathematics, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1 (Canada)

    2017-07-01

    This paper presents the first derivation of the quadratic action for curvature perturbations, ζ, within the framework of cuscuton gravity. We study the scalar cosmological perturbations sourced by a canonical single scalar field in the presence of cuscuton field. We identify ζ as comoving curvature with respect to the source field and we show that it retains its conservation characteristic on super horizon scales. The result provides an explicit proof that cuscuton modification of gravity around Friedmann-Lemaitre-Robertson-Walker (FLRW) metric is ghost free. We also investigate the potential development of other instabilities in cuscuton models. We find that in a large class of these models, there is no generic instability problem. However, depending on the details of slow-roll parameters, specific models may display gradient instabilities.

  4. Non-adiabatic perturbations in multi-component perfect fluids

    Energy Technology Data Exchange (ETDEWEB)

    Koshelev, N.A., E-mail: koshna71@inbox.ru [Ulyanovsk State University, Leo Tolstoy str 42, 432970 (Russian Federation)

    2011-04-01

    The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.

  5. Non-adiabatic perturbations in multi-component perfect fluids

    International Nuclear Information System (INIS)

    Koshelev, N.A.

    2011-01-01

    The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models

  6. Curvature fluctuations as progenitors of large scale holes

    International Nuclear Information System (INIS)

    Vittorio, N.; Santangelo, P.; Occhionero, F.

    1984-01-01

    The authors extend previous work to study the formation and evolution of deep holes, under the assumption that they arise from curvature or energy perturbations in the Hubble flow. Their algorithm, which makes use of the spherically symmetric and pressureless Tolman-Bondi solution, can embed a perturbation in any cosmological background. After recalling previous results on the central depth of the hole and its radial dimension, they give here specific examples of density and peculiar velocity profiles, which may have a bearing on whether galaxy formation is a dissipative or dissipationless process. (orig.)

  7. Curvature profiles as initial conditions for primordial black hole formation

    International Nuclear Information System (INIS)

    Polnarev, Alexander G; Musco, Ilia

    2007-01-01

    This work is part of an ongoing research programme to study possible primordial black hole (PBH) formation during the radiation-dominated era of the early universe. Working within spherical symmetry, we specify an initial configuration in terms of a curvature profile, which represents initial conditions for the large amplitude metric perturbations, away from the homogeneous Friedmann-Robertson-Walker model, which are required for PBH formation. Using an asymptotic quasi-homogeneous solution, we relate the curvature profile with the density and velocity fields, which at an early enough time, when the length scale of the configuration is much larger than the cosmological horizon, can be treated as small perturbations of the background values. We present general analytic solutions for the density and velocity profiles. These solutions enable us to consider in a self-consistent way the formation of PBHs in a wide variety of cosmological situations with the cosmological fluid being treated as an arbitrary mixture of different components with different equations of state. We obtain the analytical solutions for the density and velocity profiles as functions of the initial time. We then use two different parametrizations for the curvature profile and follow numerically the evolution of initial configurations

  8. Uniqueness of the gauge invariant action for cosmological perturbations

    International Nuclear Information System (INIS)

    Prokopec, Tomislav; Weenink, Jan

    2012-01-01

    In second order perturbation theory different definitions are known of gauge invariant perturbations in single field inflationary models. Consequently the corresponding gauge invariant cubic actions do not have the same form. Here we show that the cubic action for one choice of gauge invariant variables is unique in the following sense: the action for any other, non-linearly related variable can be brought to the same bulk action, plus additional boundary terms. These boundary terms correspond to the choice of hypersurface and generate extra, disconnected contributions to the bispectrum. We also discuss uniqueness of the action with respect to conformal frames. When expressed in terms of the gauge invariant curvature perturbation on uniform field hypersurfaces the action for cosmological perturbations has a unique form, independent of the original Einstein or Jordan frame. Crucial is that the gauge invariant comoving curvature perturbation is frame independent, which makes it extremely helpful in showing the quantum equivalence of the two frames, and therefore in calculating quantum effects in nonminimally coupled theories such as Higgs inflation

  9. Distinguishing modified gravity from dark energy

    International Nuclear Information System (INIS)

    Bertschinger, Edmund; Zukin, Phillip

    2008-01-01

    The acceleration of the Universe can be explained either through dark energy or through the modification of gravity on large scales. In this paper we investigate modified gravity models and compare their observable predictions with dark energy models. Modifications of general relativity are expected to be scale independent on superhorizon scales and scale dependent on subhorizon scales. For scale-independent modifications, utilizing the conservation of the curvature scalar and a parametrized post-Newtonian formulation of cosmological perturbations, we derive results for large-scale structure growth, weak gravitational lensing, and cosmic microwave background anisotropy. For scale-dependent modifications, inspired by recent f(R) theories we introduce a parametrization for the gravitational coupling G and the post-Newtonian parameter γ. These parametrizations provide a convenient formalism for testing general relativity. However, we find that if dark energy is generalized to include both entropy and shear stress perturbations, and the dynamics of dark energy is unknown a priori, then modified gravity cannot in general be distinguished from dark energy using cosmological linear perturbations.

  10. Calculating the mass fraction of primordial black holes

    International Nuclear Information System (INIS)

    Young, Sam; Byrnes, Christian T.; Sasaki, Misao

    2014-01-01

    We reinspect the calculation for the mass fraction of primordial black holes (PBHs) which are formed from primordial perturbations, finding that performing the calculation using the comoving curvature perturbation R c in the standard way vastly overestimates the number of PBHs, by many orders of magnitude. This is because PBHs form shortly after horizon entry, meaning modes significantly larger than the PBH are unobservable and should not affect whether a PBH forms or not—this important effect is not taken into account by smoothing the distribution in the standard fashion. We discuss alternative methods and argue that the density contrast, Δ, should be used instead as super-horizon modes are damped by a factor k 2 . We make a comparison between using a Press-Schechter approach and peaks theory, finding that the two are in close agreement in the region of interest. We also investigate the effect of varying the spectral index, and the running of the spectral index, on the abundance of primordial black holes

  11. Cosmological signatures of anisotropic spatial curvature

    International Nuclear Information System (INIS)

    Pereira, Thiago S.; Marugán, Guillermo A. Mena; Carneiro, Saulo

    2015-01-01

    If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature

  12. Cosmological signatures of anisotropic spatial curvature

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Thiago S. [Departamento de Física, Universidade Estadual de Londrina, 86057-970, Londrina – PR (Brazil); Marugán, Guillermo A. Mena [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006, Madrid (Spain); Carneiro, Saulo, E-mail: tspereira@uel.br, E-mail: mena@iem.cfmac.csic.es, E-mail: saulo.carneiro@pq.cnpq.br [Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador – BA (Brazil)

    2015-07-01

    If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature.

  13. Effects of thermal inflation on small scale density perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sungwook E. [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Seoul 130-722 (Korea, Republic of); Lee, Hyung-Joo; Lee, Young Jae; Stewart, Ewan D. [Department of Physics, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-338 (Korea, Republic of); Zoe, Heeseung, E-mail: swhong@kias.re.kr, E-mail: ohsk111@kaist.ac.kr, E-mail: noasac@kaist.ac.kr, E-mail: jcap@profstewart.org, E-mail: heezoe@dgist.ac.kr [School of Basic Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno jungang-daero, Daegu 711-873 (Korea, Republic of)

    2015-06-01

    In cosmological scenarios with thermal inflation, extra eras of moduli matter domination, thermal inflation and flaton matter domination exist between primordial inflation and the radiation domination of Big Bang nucleosynthesis. During these eras, cosmological perturbations on small scales can enter and re-exit the horizon, modifying the power spectrum on those scales. The largest modified scale, k{sub b}, touches the horizon size when the expansion changes from deflation to inflation at the transition from moduli domination to thermal inflation. We analytically calculate the evolution of perturbations from moduli domination through thermal inflation and evaluate the curvature perturbation on the constant radiation density hypersurface at the end of thermal inflation to determine the late time curvature perturbation. Our resulting transfer function suppresses the power spectrum by a factor 0∼ 5 at k >> k{sub b}, with k{sub b} corresponding to anywhere from megaparsec to subparsec scales depending on the parameters of thermal inflation. Thus, thermal inflation might be constrained or detected by small scale observations such as CMB distortions or 21cm hydrogen line observations.

  14. Inflationary scenario from higher curvature warped spacetime

    International Nuclear Information System (INIS)

    Banerjee, Narayan; Paul, Tanmoy

    2017-01-01

    We consider a five dimensional warped spacetime, in presence of the higher curvature term like F(R) = R + αR 2 in the bulk, in the context of the two-brane model. Our universe is identified with the TeV scale brane and emerges as a four dimensional effective theory. From the perspective of this effective theory, we examine the possibility of ''inflationary scenario'' by considering the on-brane metric ansatz as an FRW one. Our results reveal that the higher curvature term in the five dimensional bulk spacetime generates a potential term for the radion field. Due to the presence of radion potential, the very early universe undergoes a stage of accelerated expansion and, moreover, the accelerating period of the universe terminates in a finite time. We also find the spectral index of curvature perturbation (n s ) and the tensor to scalar ratio (r) in the present context, which match with the observational results based on the observations of Planck (Astron. Astrophys. 594, A20, 2016). (orig.)

  15. Inflationary scenario from higher curvature warped spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Narayan [Indian Institute of Science Education and Research Kolkata, Department of Physical Sciences, Nadia, West Bengal (India); Paul, Tanmoy [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)

    2017-10-15

    We consider a five dimensional warped spacetime, in presence of the higher curvature term like F(R) = R + αR{sup 2} in the bulk, in the context of the two-brane model. Our universe is identified with the TeV scale brane and emerges as a four dimensional effective theory. From the perspective of this effective theory, we examine the possibility of ''inflationary scenario'' by considering the on-brane metric ansatz as an FRW one. Our results reveal that the higher curvature term in the five dimensional bulk spacetime generates a potential term for the radion field. Due to the presence of radion potential, the very early universe undergoes a stage of accelerated expansion and, moreover, the accelerating period of the universe terminates in a finite time. We also find the spectral index of curvature perturbation (n{sub s}) and the tensor to scalar ratio (r) in the present context, which match with the observational results based on the observations of Planck (Astron. Astrophys. 594, A20, 2016). (orig.)

  16. Non-Gaussianity from isocurvature perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Masahiro; Nakayama, Kazunori; Sekiguchi, Toyokazu; Suyama, Teruaki [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582 (Japan); Takahashi, Fuminobu, E-mail: kawasaki@icrr.u-tokyo.ac.jp, E-mail: nakayama@icrr.u-tokyo.ac.jp, E-mail: sekiguti@icrr.u-tokyo.ac.jp, E-mail: suyama@icrr.u-tokyo.ac.jp, E-mail: fuminobu.takahashi@ipmu.jp [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8568 (Japan)

    2008-11-15

    We develop a formalism for studying non-Gaussianity in both curvature and isocurvature perturbations. It is shown that non-Gaussianity in the isocurvature perturbation between dark matter and photons leaves distinct signatures in the cosmic microwave background temperature fluctuations, which may be confirmed in future experiments, or possibly even in the currently available observational data. As an explicit example, we consider the quantum chromodynamics axion and show that it can actually induce sizable non-Gaussianity for the inflationary scale, H{sub inf} = O(10{sup 9}-10{sup 11}) GeV.

  17. Pre-inflation physics and scalar perturbations

    International Nuclear Information System (INIS)

    Hirai, Shiro

    2005-01-01

    The effect of pre-inflation physics on the power spectrum of scalar perturbations is investigated. Considering various pre-inflation models with radiation-dominated or matter-dominated periods before inflation, the power spectra of curvature perturbations for large scales are calculated, and the spectral index and running spectral index are derived. It is shown that pre-inflation models in which the length of inflation is near 60 e-folds may reproduce some key properties implied by the Wilkinson microwave anisotropy probe data

  18. The role of curvature in silica mesoporous crystals

    KAUST Repository

    Miyasaka, Keiichi

    2012-02-08

    Silica mesoporous crystals (SMCs) offer a unique opportunity to study micellar mesophases. Replication of non-equilibrium mesophases into porous silica structures allows the characterization of surfactant phases under a variety of chemical and physical perturbations, through methods not typically accessible to liquid crystal chemists. A poignant example is the use of electron microscopy and crystallography, as discussed herein, for the purpose of determining the fundamental role of amphiphile curvature, namely mean curvature and Gaussian curvature, which have been extensively studied in various fields such as polymer, liquid crystal, biological membrane, etc. The present work aims to highlight some current studies devoted to the interface curvature on SMCs, in which electron microscopy and electron crystallography (EC) are used to understand the geometry of silica wall surface in bicontinuous and cage-type mesostructures through the investigation of electrostatic potential maps. Additionally, we show that by altering the synthesis conditions during the preparation of SMCs, it is possible to isolate particles during micellar mesophase transformations in the cubic bicontinuous system, allowing us to view and study epitaxial relations under the specific synthesis conditions. By studying the relationship between mesoporous structure, interface curvature and micellar mesophases using electron microscopy and EC, we hope to bring new insights into the formation mechanism of these unique materials but also contribute a new way of understanding periodic liquid crystal systems. © 2012 The Royal Society.

  19. The role of curvature in silica mesoporous crystals

    KAUST Repository

    Miyasaka, Keiichi; Bennett, Alfonso Garcia; Han, Lu; Han, Yu; Xiao, Changhong; Fujita, Nobuhisa; Castle, Toen; Sakamoto, Yasuhiro; Che, Shunai; Terasaki, Osamu

    2012-01-01

    Silica mesoporous crystals (SMCs) offer a unique opportunity to study micellar mesophases. Replication of non-equilibrium mesophases into porous silica structures allows the characterization of surfactant phases under a variety of chemical and physical perturbations, through methods not typically accessible to liquid crystal chemists. A poignant example is the use of electron microscopy and crystallography, as discussed herein, for the purpose of determining the fundamental role of amphiphile curvature, namely mean curvature and Gaussian curvature, which have been extensively studied in various fields such as polymer, liquid crystal, biological membrane, etc. The present work aims to highlight some current studies devoted to the interface curvature on SMCs, in which electron microscopy and electron crystallography (EC) are used to understand the geometry of silica wall surface in bicontinuous and cage-type mesostructures through the investigation of electrostatic potential maps. Additionally, we show that by altering the synthesis conditions during the preparation of SMCs, it is possible to isolate particles during micellar mesophase transformations in the cubic bicontinuous system, allowing us to view and study epitaxial relations under the specific synthesis conditions. By studying the relationship between mesoporous structure, interface curvature and micellar mesophases using electron microscopy and EC, we hope to bring new insights into the formation mechanism of these unique materials but also contribute a new way of understanding periodic liquid crystal systems. © 2012 The Royal Society.

  20. Isocurvature perturbations in the Ekpyrotic Universe

    International Nuclear Information System (INIS)

    Notari, A.; Riotto, A.

    2002-01-01

    The Ekpyrotic scenario assumes that our visible Universe is a boundary brane in a five-dimensional bulk and that the hot Big Bang occurs when a nearly supersymmetric five-brane travelling along the fifth dimension collides with our visible brane. We show that the generation of isocurvature perturbations is a generic prediction of the Ekpyrotic Universe. This is due to the interactions in the kinetic terms between the brane modulus parameterizing the position of the five-brane in the bulk and the dilaton and volume moduli. We show how to separate explicitly the adiabatic and isocurvature modes by performing a rotation in field space. Our results indicate that adiabatic and isocurvature perturbations might be cross-correlated and that curvature perturbations might be entirely seeded by isocurvature perturbations

  1. Tensor perturbations during inflation in a spatially closed Universe

    Energy Technology Data Exchange (ETDEWEB)

    Bonga, Béatrice; Gupt, Brajesh; Yokomizo, Nelson, E-mail: bpb165@psu.edu, E-mail: bgupt@gravity.psu.edu, E-mail: yokomizo@gravity.psu.edu [Institute for Gravitation and the Cosmos and Physics Department, The Pennsylvania State University, 104 Lavey Lab, University Park, PA 16802 (United States)

    2017-05-01

    In a recent paper [1], we studied the evolution of the background geometry and scalar perturbations in an inflationary, spatially closed Friedmann-Lemaȋtre-Robertson-Walker (FLRW) model having constant positive spatial curvature and spatial topology S{sup 3}. Due to the spatial curvature, the early phase of slow-roll inflation is modified, leading to suppression of power in the scalar power spectrum at large angular scales. In this paper, we extend the analysis to include tensor perturbations. We find that, similarly to the scalar perturbations, the tensor power spectrum also shows suppression for long wavelength modes. The correction to the tensor spectrum is limited to the very long wavelength modes, therefore the resulting observable CMB B-mode polarization spectrum remains practically the same as in the standard scenario with flat spatial sections. However, since both the tensor and scalar power spectra are modified, there are scale dependent corrections to the tensor-to-scalar ratio that leads to violation of the standard slow-roll consistency relation.

  2. Scalar perturbations in p-nflation: the 3-form case

    Energy Technology Data Exchange (ETDEWEB)

    Germani, Cristiano [LUTH, Observatoire de Paris, CNRS UMR 8102, Université Paris Diderot, 5 Place Jules Janssen, 92195 Meudon Cedex (France); Kehagias, Alex, E-mail: cristiano.germani@obspm.fr, E-mail: kehagias@central.ntua.gr [Department of Physics, National Technical University of Athens, Hroon Polytechniou 9, 15780 Zogrtafou, Athens (Greece)

    2009-11-01

    We calculate the primordial spectrum of scalar perturbations of the 3-form inflation and we find that the curvature perturbations decay at late times. As as result, although a non-minimally coupled massive 3-form field may drive inflation at early times, it should be assisted by other fields in order to reproduce the observed temperature fluctuations of the CMB sky.

  3. Inflationary perturbations in anisotropic, shear-free universes

    International Nuclear Information System (INIS)

    Pereira, Thiago S.; Carneiro, Saulo; Marugan, Guillermo A. Mena

    2012-01-01

    In this work, the linear and gauge-invariant theory of cosmological perturbations in a class of anisotropic and shear-free spacetimes is developed. After constructing an explicit set of complete eigenfunctions in terms of which perturbations can be expanded, we identify the effective degrees of freedom during a generic slow-roll inflationary phase. These correspond to the anisotropic equivalent of the standard Mukhanov-Sasaki variables. The associated equations of motion present a remarkable resemblance to those found in perturbed Friedmann-Robertson-Walker spacetimes with curvature, apart from the spectrum of the Laplacian, which exhibits the characteristic frequencies of the underlying geometry. In particular, it is found that the perturbations cannot develop arbitrarily large super-Hubble modes

  4. Observational constraints on the primordial curvature power spectrum

    Science.gov (United States)

    Emami, Razieh; Smoot, George F.

    2018-01-01

    CMB temperature fluctuation observations provide a precise measurement of the primordial power spectrum on large scales, corresponding to wavenumbers 10‑3 Mpc‑1 lesssim k lesssim 0.1 Mpc‑1, [1-7, 11]. Luminous red galaxies and galaxy clusters probe the matter power spectrum on overlapping scales (0.02 Mpc‑1 lesssim k lesssim 0.7 Mpc‑1 [10, 12-20]), while the Lyman-alpha forest reaches slightly smaller scales (0.3 Mpc‑1 lesssim k lesssim 3 Mpc‑1 [22]). These observations indicate that the primordial power spectrum is nearly scale-invariant with an amplitude close to 2 × 10‑9, [5, 23-28]. These observations strongly support Inflation and motivate us to obtain observations and constraints reaching to smaller scales on the primordial curvature power spectrum and by implication on Inflation. We are able to obtain limits to much higher values of k lesssim 105 Mpc‑1 and with less sensitivity even higher k lesssim 1019‑ 1023 Mpc‑1 using limits from CMB spectral distortions and other limits on ultracompact minihalo objects (UCMHs) and Primordial Black Holes (PBHs). PBHs are one of the known candidates for the Dark Matter (DM). Due to their very early formation, they could give us valuable information about the primordial curvature perturbations. These are complementary to other cosmological bounds on the amplitude of the primordial fluctuations. In this paper, we revisit and collect all the published constraints on both PBHs and UCMHs. We show that unless one uses the CMB spectral distortion, PBHs give us a very relaxed bounds on the primordial curvature perturbations. UCMHs, on the other hand, are very informative over a reasonable k range (3 lesssim k lesssim 106 Mpc‑1) and lead to significant upper-bounds on the curvature spectrum. We review the conditions under which the tighter constraints on the UCMHs could imply extremely strong bounds on the fraction of DM that could be PBHs in reasonable models. Failure to satisfy these conditions would

  5. Dynamics of entropy perturbations in assisted dark energy with mixed kinetic terms

    International Nuclear Information System (INIS)

    Karwan, Khamphee

    2011-01-01

    We study dynamics of entropy perturbations in the two-field assisted dark energy model. Based on the scenario of assisted dark energy, in which one scalar field is subdominant compared with the other in the early epoch, we show that the entropy perturbations in this two-field system tend to be constant on large scales in the early epoch and hence survive until the present era for a generic evolution of both fields during the radiation and matter eras. This behaviour of the entropy perturbations is preserved even when the fields are coupled via kinetic interaction. Since, for assisted dark energy, the subdominant field in the early epoch becomes dominant at late time, the entropy perturbations can significantly influence the dynamics of density perturbations in the universe. Assuming correlations between the entropy and curvature perturbations, the entropy perturbations can enhance the integrated Sachs-Wolfe (ISW) effect if the signs of the contributions from entropy perturbations and curvature perturbations are opposite after the matter era, otherwise the ISW contribution is suppressed. For canonical scalar field the effect of entropy perturbations on ISW effect is small because the initial value of the entropy perturbations estimated during inflation cannot be sufficiently large. However, in the case of k-essence, the initial value of the entropy perturbations can be large enough to affect the ISW effect to leave a significant imprint on the CMB power spectrum

  6. Formation of primordial black holes from non-Gaussian perturbations produced in a waterfall transition

    Science.gov (United States)

    Bugaev, Edgar; Klimai, Peter

    2012-05-01

    We consider the process of primordial black hole (PBH) formation originated from primordial curvature perturbations produced during waterfall transition (with tachyonic instability), at the end of hybrid inflation. It is known that in such inflation models, rather large values of curvature perturbation amplitudes can be reached, which can potentially cause a significant PBH production in the early Universe. The probability distributions of density perturbation amplitudes in this case can be strongly non-Gaussian, which requires a special treatment. We calculated PBH abundances and PBH mass spectra for the model and analyzed their dependence on model parameters. We obtained the constraints on the parameters of the inflationary potential, using the available limits on βPBH.

  7. Primordial non-Gaussianity and power asymmetry with quantum gravitational effects in loop quantum cosmology

    Science.gov (United States)

    Zhu, Tao; Wang, Anzhong; Kirsten, Klaus; Cleaver, Gerald; Sheng, Qin

    2018-02-01

    Loop quantum cosmology provides a resolution of the classical big bang singularity in the deep Planck era. The evolution, prior to the usual slow-roll inflation, naturally generates excited states at the onset of the slow-roll inflation. It is expected that these quantum gravitational effects could leave its fingerprints on the primordial perturbation spectrum and non-Gaussianity, and lead to some observational evidences in the cosmic microwave background. While the impact of the quantum effects on the primordial perturbation spectrum has been already studied and constrained by current data, in this paper we continue to study such effects but now on the non-Gaussianity of the primordial curvature perturbations. We present detailed and analytical calculations of the non-Gaussianity and show explicitly that the corrections due to the quantum effects are at the same magnitude of the slow-roll parameters in the observable scales and thus are well within current observational constraints. Despite this, we show that the non-Gaussianity in the squeezed limit can be enhanced at superhorizon scales and it is these effects that can yield a large statistical anisotropy on the power spectrum through the Erickcek-Kamionkowski-Carroll mechanism.

  8. Analytic theory of curvature effects for wave problems with general boundary conditions

    DEFF Research Database (Denmark)

    Willatzen, Morten; Gravesen, Jens; Voon, L. C. Lew Yan

    2010-01-01

    A formalism based on a combination of differential geometry and perturbation theory is used to obtain analytic expressions for confined eigenmode changes due to general curvature effects. In cases of circular-shaped and helix-shaped structures, where alternative analytic solutions can be found......, the perturbative solution is shown to yield the same result. The present technique allows the generalization of earlier results to arbitrary boundary conditions. The power of the method is illustrated using examples based on Maxwell’s and Schrödinger’s equations for applications in photonics and nanoelectronics....

  9. Calculating the mass fraction of primordial black holes

    Energy Technology Data Exchange (ETDEWEB)

    Young, Sam; Byrnes, Christian T. [Department of Physics and Astronomy, University of Sussex, North-South Road, Brighton (United Kingdom); Sasaki, Misao, E-mail: sy81@sussex.ac.uk, E-mail: ctb22@sussex.ac.uk, E-mail: misao@yukawa.kyoto-u.ac.jp [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2014-07-01

    We reinspect the calculation for the mass fraction of primordial black holes (PBHs) which are formed from primordial perturbations, finding that performing the calculation using the comoving curvature perturbation R{sub c} in the standard way vastly overestimates the number of PBHs, by many orders of magnitude. This is because PBHs form shortly after horizon entry, meaning modes significantly larger than the PBH are unobservable and should not affect whether a PBH forms or not—this important effect is not taken into account by smoothing the distribution in the standard fashion. We discuss alternative methods and argue that the density contrast, Δ, should be used instead as super-horizon modes are damped by a factor k{sup 2}. We make a comparison between using a Press-Schechter approach and peaks theory, finding that the two are in close agreement in the region of interest. We also investigate the effect of varying the spectral index, and the running of the spectral index, on the abundance of primordial black holes.

  10. Cumulative effects in inflation with ultra-light entropy modes

    Energy Technology Data Exchange (ETDEWEB)

    Achúcarro, Ana; Atal, Vicente [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, 2333 CA Leiden (Netherlands); Germani, Cristiano [Institut de Ciéncies del Cosmos, Universitat de Barcelona, Martí i Franqués 1, 08028 Barcelona (Spain); Palma, Gonzalo A., E-mail: achucar@lorentz.leidenuniv.nl, E-mail: vicente.atal@icc.ub.edu, E-mail: germani@icc.ub.edu, E-mail: gpalmaquilod@ing.uchile.cl [Grupo de Cosmología y Astrofísica Teórica, Departamento de Física, FCFM, Universidad de Chile, Blanco Encalada 2008, Santiago (Chile)

    2017-02-01

    In multi-field inflation one or more non-adiabatic modes may become light, potentially inducing large levels of isocurvature perturbations in the cosmic microwave background. If in addition these light modes are coupled to the adiabatic mode, they influence its evolution on super horizon scales. Here we consider the case in which a non-adiabatic mode becomes approximately massless (''ultralight') while still coupled to the adiabatic mode, a typical situation that arises with pseudo-Nambu-Goldstone bosons or moduli. This ultralight mode freezes on super-horizon scales and acts as a constant source for the curvature perturbation, making it grow linearly in time and effectively suppressing the isocurvature component. We identify a Stückelberg-like emergent shift symmetry that underlies this behavior. As inflation lasts for many e -folds, the integrated effect of this source enhances the power spectrum of the adiabatic mode, while keeping the non-adiabatic spectrum approximately untouched. In this case, towards the end of inflation all the fluctuations, adiabatic and non-adiabatic, are dominated by a single degree of freedom.

  11. Nonlinear optimal perturbations in a curved pipe

    Science.gov (United States)

    Rinaldi, Enrico; Canton, Jacopo; Marin, Oana; Schanen, Michel; Schlatter, Philipp

    2017-11-01

    We investigate the effect of curvature on transition to turbulence in pipes by comparing optimal perturbations of finite amplitude that maximise their energy growth in a toroidal geometry to the ones calculated in the absence of curvature. Our interest is motivated by the fact that even small curvatures, of the order of d =Rpipe /Rtorus art numerical algorithms, capable of tackling the optimisation problem on large computational domains, coupled to a high-order spectral-element code, which is used to perform direct numerical simulations (DNS) of the full Navier-Stokes and their adjoint equations. Results are compared to the corresponding states in straight pipes and differences in their structure and evolution are discussed. Furthermore, the newly calculated initial conditions are used to identify coherent flow structures that are compared to the ones observed in recent DNS of weakly turbulent and relaminarising flows in the same toroidal geometry.

  12. Horizon-preserving dualities and perturbations in non-canonical scalar field cosmologies

    International Nuclear Information System (INIS)

    Geshnizjani, Ghazal; Kinney, William H.; Dizgah, Azadeh Moradinezhad

    2012-01-01

    We generalize the cosmological duality between inflation and cyclic contraction under the interchange a↔H to the case of non-canonical scalar field theories with varying speed of sound. The single duality in the canonical case generalizes to a family of three dualities constructed to leave the cosmological acoustic horizon invariant. We find three classes of models: (I) DBI inflation, (II) the non-canonical generalization of cyclic contraction, and (III) a new cosmological solution with rapidly decreasing speed of sound and relatively slowly growing scale factor, which we dub stalled cosmology. We construct dual analogs to the inflationary slow roll approximation, and solve for the curvature perturbation in all three cases. Both cyclic contraction and stalled cosmology predict a strongly blue spectrum for the curvature perturbations inconsistent with observations

  13. Non-Gaussian and nonscale-invariant perturbations from tachyonic preheating in hybrid inflation

    Science.gov (United States)

    Barnaby, Neil; Cline, James M.

    2006-05-01

    We show that in hybrid inflation it is possible to generate large second-order perturbations in the cosmic microwave background due to the instability of the tachyonic field during preheating. We carefully calculate this effect from the tachyon contribution to the gauge-invariant curvature perturbation, clarifying some confusion in the literature concerning nonlocal terms in the tachyon curvature perturbation; we show explicitly that such terms are absent. We quantitatively compute the non-Gaussianity generated by the tachyon field during the preheating phase and translate the experimental constraints on the nonlinearity parameter fNL into constraints on the parameters of the model. We also show that nonscale-invariant second-order perturbations from the tachyon field with spectral index n=4 can become larger than the inflaton-generated first-order perturbations, leading to stronger constraints than those coming from non-Gaussianity. The width of the excluded region in terms of the logarithm of the dimensionless coupling g, grows linearly with the log of the ratio of the Planck mass to the tachyon VEV, log⁡(Mp/v); hence very large regions are ruled out if the inflationary scale v is small. We apply these results to string-theoretic brane-antibrane inflation, and find a stringent upper bound on the string coupling, gs<10-4.5.

  14. Viscous modes, isocurvature perturbations and CMB initial conditions

    CERN Document Server

    Giovannini, Massimo

    2015-01-01

    When the predecoupling plasma is thermodinamically reversible its fluctuations are classified in terms of the adiabatic and entropic modes. A different category of physical solutions, so far unexplored, arises when the inhomogeneities of the viscosity coefficients induce computable curvature perturbations. The viscous modes are explicitly illustrated and compared with the conventional isocurvature solutions.

  15. NMR Determination of Protein Partitioning into Membrane Domains with Different Curvatures and Application to the Influenza M2 Peptide

    Science.gov (United States)

    Wang, Tuo; Cady, Sarah D.; Hong, Mei

    2012-01-01

    The M2 protein of the influenza A virus acts both as a drug-sensitive proton channel and mediates virus budding through membrane scission. The segment responsible for causing membrane curvature is an amphipathic helix in the cytoplasmic domain of the protein. Here, we use 31P and 13C solid-state NMR to examine M2-induced membrane curvature. M2(22–46), which includes only the transmembrane (TM) helix, and M2(21–61), which contains an additional amphipathic helix, are studied. 31P chemical shift lineshapes indicate that M2(21–61) causes a high-curvature isotropic phase to both cholesterol-rich virus-mimetic membranes and 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayers, whereas M2(22–46) has minimal effect. The lamellar and isotropic domains have distinct 31P isotropic chemical shifts, indicating perturbation of the lipid headgroup conformation by the amphipathic helix. 31P- and 13C-detected 1H T2 relaxation and two-dimensional peptide-lipid correlation spectra show that M2(21–61) preferentially binds to the high-curvature domain. 31P linewidths indicate that the isotropic vesicles induced by M2(21–61) are 10–35 nm in diameter, and the virus-mimetic vesicles are smaller than the 1,2-dimyristoyl-sn-glycero-3-phosphocholine vesicles. A strong correlation is found between high membrane curvature and weak drug-binding ability of the TM helix. Thus, the M2 amphipathic helix causes membrane curvature, which in turn perturbs the TM helix conformation, abolishing drug binding. These NMR experiments are applicable to other curvature-inducing membrane proteins such as fusion proteins and antimicrobial peptides. PMID:22385849

  16. Gauge invariant perturbation theory prediction of the sensitivity required for experimental measurement of quadrupole and higher moments of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Wilson, K.E.

    1985-01-01

    The temperature variation of the cosmic microwave background radiation is computed in a spherical harmonic expansion for a 4 million term sum of perturbations. Each term has a different direction and a randomly chosen phase. The spherical harmonics are evaluated for values of the index l from 1 through 9. The computation was done by starting with the model for gauge invariant cosmological perturbations composed by James M. Bardeen (1980). This model does linear perturbation theory against a background Friedmann-Robertson-Walker general relativistic cosmological model. The Bardeen model was recomputed for a cosmological-time metric then solved for zero curvature and zero cosmological constant in the background for radiation and dust equations of state. Instantaneous decoupling was assumed. The model was solved for zero curvature, cosmological constant, and pressure in perturbation order. These solutions were used to compute the redshift equation, and then the temperature variation equation. The integral over the null geodesic (photon) path can be evaluated analytically under the zero curvature cosmological constant, and pressure assumption. Analytic equations are obtained for the temperature variation caused by an isothermal or adiabatic perturbation of a single mode (amplitude, wavelength, phase, and direction)

  17. Berry Curvature and Nonlocal Transport Characteristics of Antidot Graphene

    Directory of Open Access Journals (Sweden)

    Jie Pan

    2017-09-01

    Full Text Available Antidot graphene denotes a monolayer of graphene structured by a periodic array of holes. Its energy dispersion is known to display a gap at the Dirac point. However, since the degeneracy between the A and B sites is preserved, antidot graphene cannot be described by the 2D massive Dirac equation, which is suitable for systems with an inherent A/B asymmetry. From inversion and time-reversal-symmetry considerations, antidot graphene should therefore have zero Berry curvature. In this work, we derive the effective Hamiltonian of antidot graphene from its tight-binding wave functions. The resulting Hamiltonian is a 4×4 matrix with a nonzero intervalley scattering term, which is responsible for the gap at the Dirac point. Furthermore, nonzero Berry curvature is obtained from the effective Hamiltonian, owing to the double degeneracy of the eigenfunctions. The topological manifestation is shown to be robust against randomness perturbations. Since the Berry curvature is expected to induce a transverse conductance, we have experimentally verified this feature through nonlocal transport measurements, by fabricating three antidot graphene samples with a triangular array of holes, a fixed periodicity of 150 nm, and hole diameters of 100, 80, and 60 nm. All three samples display topological nonlocal conductance, with excellent agreement with the theory predictions.

  18. Fully nonlinear and exact perturbations of the Friedmann world model: non-flat background

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyerim, E-mail: hr@kasi.ac.kr [Korea Astronomy and Space Science Institute, Daejeon, 305-348 (Korea, Republic of)

    2014-07-01

    We extend the fully non-linear and exact cosmological perturbation equations in a Friedmann background universe to include the background curvature. The perturbation equations are presented in a gauge ready form, so any temporal gauge condition can be adopted freely depending on the problem to be solved. We consider the scalar, and vector perturbations without anisotropic stress. As an application, we analyze the equations in the special case of irrotational zero-pressure fluid in the comoving gauge condition. We also present the fully nonlinear formulation for a minimally coupled scalar field.

  19. SECOND-ORDER SOLUTIONS OF COSMOLOGICAL PERTURBATION IN THE MATTER-DOMINATED ERA

    International Nuclear Information System (INIS)

    Hwang, Jai-chan; Noh, Hyerim; Gong, Jinn-Ouk

    2012-01-01

    We present the growing mode solutions of cosmological perturbations to the second order in the matter-dominated era. We also present several gauge-invariant combinations of perturbation variables to the second order in the most general fluid context. Based on these solutions, we study the Newtonian correspondence of relativistic perturbations to the second order. In addition to the previously known exact relativistic/Newtonian correspondence of density and velocity perturbations to the second order in the comoving gauge, here we show that in the sub-horizon limit we have the correspondences for density, velocity, and potential perturbations in the zero-shear gauge and in the uniform-expansion gauge to the second order. Density perturbation in the uniform-curvature gauge also shows the correspondence to the second order in the sub-horizon scale. We also identify the relativistic gravitational potential that shows exact correspondence to the Newtonian one to the second order.

  20. Perturbative thermodynamic geometry of nonextensive ideal classical, Bose, and Fermi gases.

    Science.gov (United States)

    Mohammadzadeh, Hosein; Adli, Fereshteh; Nouri, Sahereh

    2016-12-01

    We investigate perturbative thermodynamic geometry of nonextensive ideal classical, Bose, and Fermi gases. We show that the intrinsic statistical interaction of nonextensive Bose (Fermi) gas is attractive (repulsive) similar to the extensive case but the value of thermodynamic curvature is changed by a nonextensive parameter. In contrary to the extensive ideal classical gas, the nonextensive one may be divided to two different regimes. According to the deviation parameter of the system to the nonextensive case, one can find a special value of fugacity, z^{*}, where the sign of thermodynamic curvature is changed. Therefore, we argue that the nonextensive parameter induces an attractive (repulsive) statistical interaction for zz^{*}) for an ideal classical gas. Also, according to the singular point of thermodynamic curvature, we consider the condensation of nonextensive Boson gas.

  1. Large scale power suppression in a multifield landscape

    International Nuclear Information System (INIS)

    Blanco-Pillado, Jose J.; Frazer, Jonathan; Sousa, Kepa; Dias, Mafalda

    2015-01-01

    Power suppression of the cosmic microwave background on the largest observable scales could provide valuable clues about the particle physics underlying inflation. Here we consider the prospect of power suppression in the context of the multifield landscape. Based on the assumption that our observable universe emerges from a tunnelling event and that the relevant features originate purely from inflationary dynamics, we find that the power spectrum not only contains information on single-field dynamics, but also places strong constraints on all scalar fields present in the theory. We find that the simplest single-field models giving rise to power suppression do not generalise to multifield models in a straightforward way, as the resulting superhorizon evolution of the curvature perturbation tends to erase any power suppression present at horizon crossing. On the other hand, multifield effects do present a means of generating power suppression which to our knowledge has so far not been considered. We propose a mechanism to illustrate this, which we dub flume inflation

  2. Aspects of Nonlocality in Quantum Field Theory, Quantum Gravity and Cosmology

    CERN Document Server

    Barvinsky, A O

    2015-01-01

    This paper contains a collection of essays on nonlocal phenomena in quantum field theory, gravity and cosmology. Mechanisms of nonlocal contributions to the quantum effective action are discussed within the covariant perturbation expansion in field strengths and spacetime curvatures and the nonperturbative method based on the late time asymptotics of the heat kernel. Euclidean version of the Schwinger-Keldysh technique for quantum expectation values is presented as a special rule of obtaining the nonlocal effective equations of motion for the mean quantum field from the Euclidean effective action. This rule is applied to a new model of ghost free nonlocal cosmology which can generate the de Sitter stage of cosmological evolution at an arbitrary value of $\\varLambda$ -- a model of dark energy with its scale played by the dynamical variable that can be fixed by a kind of a scaling symmetry breaking mechanism. This model is shown to interpolate between the superhorizon phase of gravity theory mediated by a scala...

  3. Large scale power suppression in a multifield landscape

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Pillado, Jose J.; Frazer, Jonathan; Sousa, Kepa [Department of Theoretical Physics, Bizkaiako Campusa/Campus de Bizkaia, Posta Kodea 48940, Leioa, Bizkaia (Spain); Dias, Mafalda, E-mail: josejuan.blanco@ehu.es, E-mail: m.dias@sussex.ac.uk, E-mail: j.frazer@ucl.ac.uk, E-mail: kepa.sousa@ehu.es [Astronomy Centre, Department of Physics and Astronomy, School of Maths and Physical Sciences, University of Sussex, Pevensey II Building, Falmer, Brighton, BN1 9QH (United Kingdom)

    2015-08-01

    Power suppression of the cosmic microwave background on the largest observable scales could provide valuable clues about the particle physics underlying inflation. Here we consider the prospect of power suppression in the context of the multifield landscape. Based on the assumption that our observable universe emerges from a tunnelling event and that the relevant features originate purely from inflationary dynamics, we find that the power spectrum not only contains information on single-field dynamics, but also places strong constraints on all scalar fields present in the theory. We find that the simplest single-field models giving rise to power suppression do not generalise to multifield models in a straightforward way, as the resulting superhorizon evolution of the curvature perturbation tends to erase any power suppression present at horizon crossing. On the other hand, multifield effects do present a means of generating power suppression which to our knowledge has so far not been considered. We propose a mechanism to illustrate this, which we dub flume inflation.

  4. Curvature effects in the nonlinear growth of the cylindrical tearing mode

    International Nuclear Information System (INIS)

    Somon, J. P.

    1984-01-01

    The full set of the usual resistive massless equations is used to investigate the nonlinear growth of the helical perturbation to a cylindrical equilibrium with tokamak ordering. There is a curvature dependant critical magnetic island width xsub(T)sup(*) α set containing D/Δ' above which the Rutherford solution is recovered for the tearing mode as well as for the linear slow interchange modes with Δ' > 0. Non linearity stabilizes at this critical width the linearly unstable slow interchange modes with Δ' > 0

  5. CMB probes on the correlated axion isocurvature perturbation

    International Nuclear Information System (INIS)

    Kadota, Kenji; Gong, Jinn-Ouk; Ichiki, Kiyotomo; Matsubara, Takahiko

    2015-01-01

    We explore the possible cosmological consequence of the gravitational coupling between the inflaton and axion-like fields. In view of the forthcoming cosmic microwave background (CMB) polarization and lensing data, we study the sensitivity of the CMB data on the cross-correlation between the curvature and axion isocurvature perturbations. Through a concrete example, we illustrate the explicit dependence of the scale dependent cross-correlation power spectrum on the axion parameters

  6. Perturbations of the flow induced by a microcapsule in a capillary tube

    Energy Technology Data Exchange (ETDEWEB)

    Gubspun, J; Deschamps, J; Georgelin, M; Leonetti, M [Aix-Marseille Université, CNRS, Centrale Marseille, IRPHE, UMR7342, F-13384, Marseille (France); Loubens, C de [Universite Grenoble Alpes, LRP, F-38000 Grenoble (France); Trozzo, R [Aix-Marseille Université, CNRS, Centrale Marseille, M2P2, UMR7340, F-13451, Marseille (France); Edwards-Levy, F, E-mail: leonetti@irphe.univ-mrs.fr [Institut de Chimie Moléculaire de Reims, UMR7312, CNRS-Université de Reims Champagne Ardenne, F-51100 Reims (France)

    2017-06-15

    Soft microcapsules moving in a cylindrical capillary deform from quasi-spherical shapes to elongated shapes with an inversion of curvature at the rear. We investigated the perturbation of the flow by particle tracking velocimetry around deformed microcapsules in confined flow. These experiments are completed by numerical simulations. Microcapsules are made of a thin membrane of polymerized human albumin and their shear elastic moduli are previously characterized in a cross flow chamber. Firstly, the velocity of the microcapsule can be calculated by theoretical predictions for rigid spheres, even for large deformations as ‘parachute-like’ shapes, if a relevant definition of the ratio of confinement is chosen. Secondly, at the rear and the front of the microcapsule, the existence of multiple recirculation regions is governed by the local curvature of the membrane. The amplitudes of these perturbations increase with the microcapsule deformation, whereas their axial extents are comparable to the radius of the capillary whatever the confinement and the capillary number. We conclude that whereas the motion of microcapsules in confined flow has quantitative similitudes with rigid spheres in terms of velocity and axial extent of the perturbation, their presence induces variations in the flow field that are related to the local deformation of the membrane as in droplets. (paper)

  7. The curvature coordinate system

    DEFF Research Database (Denmark)

    Almegaard, Henrik

    2007-01-01

    The paper describes a concept for a curvature coordinate system on regular curved surfaces from which faceted surfaces with plane quadrangular facets can be designed. The lines of curvature are used as parametric lines for the curvature coordinate system on the surface. A new conjugate set of lin...

  8. Quadratic curvature terms and deformed Schwarzschild–de Sitter black hole analogues in the laboratory

    Directory of Open Access Journals (Sweden)

    R. da Rocha

    2017-12-01

    Full Text Available Sound waves on a fluid stream, in a de Laval nozzle, are shown to correspond to quasinormal modes emitted by black holes that are physical solutions in a quadratic curvature gravity with cosmological constant. Sound waves patterns in transsonic regimes at a laboratory are employed here to provide experimental data regarding generalized theories of gravity, comprised by the exact de Sitter-like solution and a perturbative solution around the Schwarzschild–de Sitter standard solution as well. Using the classical tests of General Relativity to bound free parameters in these solutions, acoustic perturbations on fluid flows in nozzles are then regarded, to study quasinormal modes of these black holes solutions, providing deviations of the de Laval nozzle cross-sectional area, when compared to the Schwarzschild solution. The fluid sonic point in the nozzle, for sound waves in the fluid, is shown to implement the acoustic event horizon corresponding to quasinormal modes. Keywords: Black holes, Fluid branes, Fluid dynamics, Quadratic curvature gravity, de Laval nozzle

  9. Non-gaussianity from the trispectrum and vector field perturbations

    International Nuclear Information System (INIS)

    Valenzuela-Toledo, Cesar A.; Rodriguez, Yeinzon

    2010-01-01

    We use the δN formalism to study the trispectrum T ζ of the primordial curvature perturbation ζ when the latter is generated by vector field perturbations, considering the tree-level and one-loop contributions. The order of magnitude of the level of non-gaussianity in the trispectrum, τ NL , is calculated in this scenario and related to the order of magnitude of the level of non-gaussianity in the bispectrum, f NL , and the level of statistical anisotropy in the power spectrum, g ζ . Such consistency relations will put under test this scenario against future observations. Comparison with the expected observational bound on τ NL from WMAP, for generic inflationary models, is done.

  10. Curvature effect on tearing modes in presence of neoclassical friction

    Energy Technology Data Exchange (ETDEWEB)

    Maget, Patrick; Mellet, Nicolas; Meshcheriakov, Dmytro; Garbet, Xavier [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France); Lütjens, Hinrich [Centre de Physique Théorique, Ecole Polytechnique, CNRS (France)

    2013-11-15

    Neoclassical physics (here associated to the poloidal variation of the magnetic field strength along field lines in a tokamak) is well known for driving self-generated plasma current and nonlinear magnetic islands associated to it in high performance, ITER relevant plasma discharges. It is demonstrated that the neoclassical friction between a magnetic perturbation and plasma flow already impacts magnetic islands in the linear regime, by inducing a weakening of curvature stabilization for tearing modes. This conclusion holds in particular for regimes where convection is influencing the pressure dynamics, as shown using a simple analytical model and confirmed in full Magneto-Hydro-Dynamics simulations.

  11. Third-order perturbations of a zero-pressure cosmological medium: Pure general relativistic nonlinear effects

    International Nuclear Information System (INIS)

    Hwang, Jai-chan; Noh, Hyerim

    2005-01-01

    We consider a general relativistic zero-pressure irrotational cosmological medium perturbed to the third order. We assume a flat Friedmann background but include the cosmological constant. We ignore the rotational perturbation which decays in expanding phase. In our previous studies we discovered that, to the second-order perturbation, except for the gravitational wave contributions, the relativistic equations coincide exactly with the previously known Newtonian ones. Since the Newtonian second-order equations are fully nonlinear, any nonvanishing third- and higher-order terms in the relativistic analyses are supposed to be pure relativistic corrections. In this work, we derive such correction terms appearing in the third order. Continuing our success in the second-order perturbations, we take the comoving gauge. We discover that the third-order correction terms are of φ v order higher than the second-order terms where φ v is a gauge-invariant combination related to the three-space curvature perturbation in the comoving gauge; compared with the Newtonian potential, we have δΦ∼(3/5)φ v to the linear order. Therefore, the pure general relativistic effects are of φ v order higher than the Newtonian ones. The corrections terms are independent of the horizon scale and depend only on the linear-order gravitational potential (curvature) perturbation strength. From the temperature anisotropy of cosmic microwave background, we have (δT/T)∼(1/3)δΦ∼(1/5)φ v ∼10 -5 . Therefore, our present result reinforces our previous important practical implication that near the current era one can use the large-scale Newtonian numerical simulation more reliably even as the simulation scale approaches near (and goes beyond) the horizon

  12. On Gauss-Bonnet Curvatures

    Directory of Open Access Journals (Sweden)

    Mohammed Larbi Labbi

    2007-12-01

    Full Text Available The $(2k$-th Gauss-Bonnet curvature is a generalization to higher dimensions of the $(2k$-dimensional Gauss-Bonnet integrand, it coincides with the usual scalar curvature for $k = 1$. The Gauss-Bonnet curvatures are used in theoretical physics to describe gravity in higher dimensional space times where they are known as the Lagrangian of Lovelock gravity, Gauss-Bonnet Gravity and Lanczos gravity. In this paper we present various aspects of these curvature invariants and review their variational properties. In particular, we discuss natural generalizations of the Yamabe problem, Einstein metrics and minimal submanifolds.

  13. Implementing quantum Ricci curvature

    Science.gov (United States)

    Klitgaard, N.; Loll, R.

    2018-05-01

    Quantum Ricci curvature has been introduced recently as a new, geometric observable characterizing the curvature properties of metric spaces, without the need for a smooth structure. Besides coordinate invariance, its key features are scalability, computability, and robustness. We demonstrate that these properties continue to hold in the context of nonperturbative quantum gravity, by evaluating the quantum Ricci curvature numerically in two-dimensional Euclidean quantum gravity, defined in terms of dynamical triangulations. Despite the well-known, highly nonclassical properties of the underlying quantum geometry, its Ricci curvature can be matched well to that of a five-dimensional round sphere.

  14. Lectures on mean curvature flows

    CERN Document Server

    Zhu, Xi-Ping

    2002-01-01

    "Mean curvature flow" is a term that is used to describe the evolution of a hypersurface whose normal velocity is given by the mean curvature. In the simplest case of a convex closed curve on the plane, the properties of the mean curvature flow are described by Gage-Hamilton's theorem. This theorem states that under the mean curvature flow, the curve collapses to a point, and if the flow is diluted so that the enclosed area equals \\pi, the curve tends to the unit circle. In this book, the author gives a comprehensive account of fundamental results on singularities and the asymptotic behavior of mean curvature flows in higher dimensions. Among other topics, he considers in detail Huisken's theorem (a generalization of Gage-Hamilton's theorem to higher dimension), evolution of non-convex curves and hypersurfaces, and the classification of singularities of the mean curvature flow. Because of the importance of the mean curvature flow and its numerous applications in differential geometry and partial differential ...

  15. EDITORIAL: Non-linear and non-Gaussian cosmological perturbations Non-linear and non-Gaussian cosmological perturbations

    Science.gov (United States)

    Sasaki, Misao; Wands, David

    2010-06-01

    In recent years there has been a resurgence of interest in the study of non-linear perturbations of cosmological models. This has been the result of both theoretical developments and observational advances. New theoretical challenges arise at second and higher order due to mode coupling and the need to develop new gauge-invariant variables beyond first order. In particular, non-linear interactions lead to deviations from a Gaussian distribution of primordial perturbations even if initial vacuum fluctuations are exactly Gaussian. These non-Gaussianities provide an important probe of models for the origin of structure in the very early universe. We now have a detailed picture of the primordial distribution of matter from surveys of the cosmic microwave background, notably NASA's WMAP satellite. The situation will continue to improve with future data from the ESA Planck satellite launched in 2009. To fully exploit these data cosmologists need to extend non-linear cosmological perturbation theory beyond the linear theory that has previously been sufficient on cosmological scales. Another recent development has been the realization that large-scale structure, revealed in high-redshift galaxy surveys, could also be sensitive to non-linearities in the primordial curvature perturbation. This focus section brings together a collection of invited papers which explore several topical issues in this subject. We hope it will be of interest to theoretical physicists and astrophysicists alike interested in understanding and interpreting recent developments in cosmological perturbation theory and models of the early universe. Of course it is only an incomplete snapshot of a rapidly developing field and we hope the reader will be inspired to read further work on the subject and, perhaps, fill in some of the missing pieces. This focus section is dedicated to the memory of Lev Kofman (1957-2009), an enthusiastic pioneer of inflationary cosmology and non-Gaussian perturbations.

  16. Non-Gaussianity at tree and one-loop levels from vector field perturbations

    International Nuclear Information System (INIS)

    Valenzuela-Toledo, Cesar A.; Rodriguez, Yeinzon; Lyth, David H.

    2009-01-01

    We study the spectrum P ζ and bispectrum B ζ of the primordial curvature perturbation ζ when the latter is generated by scalar and vector field perturbations. The tree-level and one-loop contributions from vector field perturbations are worked out considering the possibility that the one-loop contributions may be dominant over the tree-level terms [both (either) in P ζ and (or) in B ζ ] and vice versa. The level of non-Gaussianity in the bispectrum, f NL , is calculated and related to the level of statistical anisotropy in the power spectrum, g ζ . For very small amounts of statistical anisotropy in the power spectrum, the level of non-Gaussianity may be very high, in some cases exceeding the current observational limit.

  17. Cosmological perturbations in the 5D big bang

    International Nuclear Information System (INIS)

    Garriga, Jaume; Tanaka, Takahiro

    2002-01-01

    Bucher has recently proposed an interesting brane-world cosmological scenario where the 'big bang' hypersurface is the locus of collision of two vacuum bubbles which nucleate in a five-dimensional flat space. This gives rise to an open universe, where the curvature can be very small provided that d/R 0 is sufficiently large. Here, d is the distance between bubbles and R 0 is their size at the time of nucleation. Quantum fluctuations develop on the bubbles as they expand towards each other, and these in turn imprint cosmological perturbations on the initial hypersurface. We present a simple formalism for calculating the spectrum of such perturbations and their subsequent evolution. We conclude that, unfortunately, the spectrum is very tilted, with a spectral index n s =3. The amplitude of fluctuations at the horizon crossing is given by 2 >∼(R 0 /d) 2 S E -1 k 2 , where S E >>1 is the Euclidean action of the instanton describing the nucleation of a bubble and k is the wave number in units of the curvature scale. The spectrum peaks on the smallest possible relevant scale, whose wave number is given by k∼d/R 0 . We comment on the possible extension of our formalism to more general situations where a big bang is ignited through the collision of 4D extended objects

  18. Black holes in higher dimensional gravity theory with corrections quadratic in curvature

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Shapiro, Ilya L.

    2009-01-01

    Static spherically symmetric black holes are discussed in the framework of higher dimensional gravity with quadratic in curvature terms. Such terms naturally arise as a result of quantum corrections induced by quantum fields propagating in the gravitational background. We focus our attention on the correction of the form C 2 =C αβγδ C αβγδ . The Gauss-Bonnet equation in four-dimensional spacetime enables one to reduce this term in the action to the terms quadratic in the Ricci tensor and scalar curvature. As a result the Schwarzschild solution which is Ricci flat will be also a solution of the theory with the Weyl scalar C 2 correction. An important new feature of the spaces with dimension D>4 is that in the presence of the Weyl curvature-squared term a necessary solution differs from the corresponding 'classical' vacuum Tangherlini metric. This difference is related to the presence of secondary or induced hair. We explore how the Tangherlini solution is modified by 'quantum corrections', assuming that the gravitational radius r 0 is much larger than the scale of the quantum corrections. We also demonstrated that finding a general solution beyond the perturbation method can be reduced to solving a single third order ordinary differential equation (master equation).

  19. Use of δN formalism-difficulties in generating large local-type non-Gaussianity during inflation

    International Nuclear Information System (INIS)

    Tanaka, Takahiro; Suyama, Teruaki; Yokoyama, Shuichiro

    2010-01-01

    We discuss the generation of non-Gaussianity in density perturbation through the super-horizon evolution during inflation by using the so-called δN formalism. We first provide a general formula for the nonlinearity parameter generated during inflation. We find that it is proportional to the slow-roll parameters, multiplied by the model-dependent factors that may enhance non-Gaussianity to the observable ranges. Then we discuss three typical examples to illustrate how difficult it is to generate sizable non-Gaussianity through the super-horizon evolution during inflation. The first example is the double inflation model, which shows that temporal violation of slow-roll conditions is not enough for the generation of non-Gaussianity. The second example is the ordinary hybrid inflation model, which illustrates the importance of taking into account perturbations on small scales. Finally, we discuss the Kadota-Stewart model. This model gives an example in which we have to choose rather unnatural initial conditions even if large non-Gaussianity can be generated.

  20. Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dengliang

    2013-03-01

    In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.

  1. Some Inequalities for the -Curvature Image

    Directory of Open Access Journals (Sweden)

    Daijun Wei

    2009-01-01

    Full Text Available Lutwak introduced the notion of -curvature image and proved an inequality for the volumes of convex body and its -curvature image. In this paper, we first give an monotonic property of -curvature image. Further, we establish two inequalities for the -curvature image and its polar, respectively. Finally, an inequality for the volumes of -projection body and -curvature image is obtained.

  2. Maximal hypersurfaces and foliations of constant mean curvature in general relativity

    International Nuclear Information System (INIS)

    Marsden, J.E.; Tipler, F.J.; Texas Univ., Austin

    1980-01-01

    We prove theorems on existence, uniqueness and smoothness of maximal and constant mean curvature compact spacelike hypersurfaces in globally hyperbolic spacetimes. The uniqueness theorem for maximal hypersurfaces of Brill and Flaherty, which assumed matter everywhere, is extended to specetimes that are vacuum and non-flat or that satisfy a generic-type condition. In this connection we show that under general hypotheses, a spatially closed universe with a maximal hypersurface must be Wheeler universe; i.e. be closed in time as well. The existence of Lipschitz achronal maximal volume hypersurfaces under the hypothesis that candidate hypersurfaces are bounded away from the singularity is proved. This hypothesis is shown to be valid in two cases of interest: when the singularities are of strong curvature type, and when the singularity is a single ideal point. Some properties of these maximal volume hypersurfaces and difficulties with Avez' original arguments are discussed. The difficulties involve the possibility that the maximal volume hypersurface can be null on certain portions; we present an incomplete argument which suggests that these hypersurfaces are always smooth, but prove that an a priori bound on the second fundamental form does imply smoothness. An extension of the perturbation theorem of Choquet-Bruhat, Fischer and Marsden is given and conditions under which local foliantions by constant mean curvature hypersurfaces can be extended to global ones is obtained. (orig.)

  3. Sensitive zone parameters and curvature radius evaluation for polymer optical fiber curvature sensors

    Science.gov (United States)

    Leal-Junior, Arnaldo G.; Frizera, Anselmo; José Pontes, Maria

    2018-03-01

    Polymer optical fibers (POFs) are suitable for applications such as curvature sensors, strain, temperature, liquid level, among others. However, for enhancing sensitivity, many polymer optical fiber curvature sensors based on intensity variation require a lateral section. Lateral section length, depth, and surface roughness have great influence on the sensor sensitivity, hysteresis, and linearity. Moreover, the sensor curvature radius increase the stress on the fiber, which leads on variation of the sensor behavior. This paper presents the analysis relating the curvature radius and lateral section length, depth and surface roughness with the sensor sensitivity, hysteresis and linearity for a POF curvature sensor. Results show a strong correlation between the decision parameters behavior and the performance for sensor applications based on intensity variation. Furthermore, there is a trade-off among the sensitive zone length, depth, surface roughness, and curvature radius with the sensor desired performance parameters, which are minimum hysteresis, maximum sensitivity, and maximum linearity. The optimization of these parameters is applied to obtain a sensor with sensitivity of 20.9 mV/°, linearity of 0.9992 and hysteresis below 1%, which represent a better performance of the sensor when compared with the sensor without the optimization.

  4. Brane cosmology with curvature corrections

    International Nuclear Information System (INIS)

    Kofinas, Georgios; Maartens, Roy; Papantonopoulos, Eleftherios

    2003-01-01

    We study the cosmology of the Randall-Sundrum brane-world where the Einstein-Hilbert action is modified by curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvature term. The combined effect of these curvature corrections to the action removes the infinite-density big bang singularity, although the curvature can still diverge for some parameter values. A radiation brane undergoes accelerated expansion near the minimal scale factor, for a range of parameters. This acceleration is driven by the geometric effects, without an inflation field or negative pressures. At late times, conventional cosmology is recovered. (author)

  5. Non-gaussianity from the trispectrum and vector field perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela-Toledo, Cesar A., E-mail: cavalto@ciencias.uis.edu.c [Escuela de Fisica, Universidad Industrial de Santander, Ciudad Universitaria, Bucaramanga (Colombia); Rodriguez, Yeinzon, E-mail: yeinzon.rodriguez@uan.edu.c [Escuela de Fisica, Universidad Industrial de Santander, Ciudad Universitaria, Bucaramanga (Colombia); Centro de Investigaciones, Universidad Antonio Narino, Cra 3 Este 47A-15, Bogota D.C. (Colombia)

    2010-03-01

    We use the deltaN formalism to study the trispectrum T{sub z}eta of the primordial curvature perturbation zeta when the latter is generated by vector field perturbations, considering the tree-level and one-loop contributions. The order of magnitude of the level of non-gaussianity in the trispectrum, tau{sub NL}, is calculated in this scenario and related to the order of magnitude of the level of non-gaussianity in the bispectrum, f{sub NL}, and the level of statistical anisotropy in the power spectrum, g{sub z}eta. Such consistency relations will put under test this scenario against future observations. Comparison with the expected observational bound on tau{sub NL} from WMAP, for generic inflationary models, is done.

  6. Cosmic curvature tested directly from observations

    Science.gov (United States)

    Denissenya, Mikhail; Linder, Eric V.; Shafieloo, Arman

    2018-03-01

    Cosmic spatial curvature is a fundamental geometric quantity of the Universe. We investigate a model independent, geometric approach to measure spatial curvature directly from observations, without any derivatives of data. This employs strong lensing time delays and supernova distance measurements to measure the curvature itself, rather than just testing consistency with flatness. We define two curvature estimators, with differing error propagation characteristics, that can crosscheck each other, and also show how they can be used to map the curvature in redshift slices, to test constancy of curvature as required by the Robertson-Walker metric. Simulating realizations of redshift distributions and distance measurements of lenses and sources, we estimate uncertainties on the curvature enabled by next generation measurements. The results indicate that the model independent methods, using only geometry without assuming forms for the energy density constituents, can determine the curvature at the ~6×10‑3 level.

  7. Regularized strings with extrinsic curvature

    International Nuclear Information System (INIS)

    Ambjoern, J.; Durhuus, B.

    1987-07-01

    We analyze models of discretized string theories, where the path integral over world sheet variables is regularized by summing over triangulated surfaces. The inclusion of curvature in the action is a necessity for the scaling of the string tension. We discuss the physical properties of models with extrinsic curvature terms in the action and show that the string tension vanishes at the critical point where the bare extrinsic curvature coupling tends to infinity. Similar results are derived for models with intrinsic curvature. (orig.)

  8. Role of curvatures in determining the characteristics of a string vibrating against a doubly curved obstacle

    Science.gov (United States)

    Singh, Harkirat; Wahi, Pankaj

    2017-08-01

    The motion of a string in the presence of a doubly curved obstacle is investigated. A mathematical model has been developed for a general shape of the obstacle. However, detailed analysis has been performed for a shape relevant to the Indian stringed musical instruments like Tanpura and Sitar. In particular, we explore the effect of obstacle's curvature in the plane perpendicular to the string axis on its motion. This geometrical feature of the obstacle introduces a coupling between motions in mutually perpendicular directions over and above the coupling due to the stretching nonlinearity. We find that only one planar motion is possible for our system. Small amplitude planar motions are stable to perturbations in the perpendicular direction resulting in non-whirling motions while large amplitude oscillations lead to whirling motions. The critical amplitude of oscillations, across which there is a transition in the qualitative behavior of the non-planar trajectories, is determined using Floquet theory. Our analysis reveals that a small obstacle curvature in a direction perpendicular to the string axis leads to a considerable reduction in the critical amplitudes required for initiation of whirling motions. Hence, this obstacle curvature has a destabilizing effect on the planar motions in contrast to the curvature along the string axis which stabilizes planar motions.

  9. Low CMB quadrupole from dark energy isocurvature perturbations

    International Nuclear Information System (INIS)

    Gordon, Christopher; Hu, Wayne

    2004-01-01

    We explicate the origin of the temperature quadrupole in the adiabatic dark energy model and explore the mechanism by which scale invariant isocurvature dark energy perturbations can lead to its sharp suppression. The model requires anticorrelated curvature and isocurvature fluctuations and is favored by the Wilkinson Microwave Anisotropy Probe data at about the 95% confidence level in a flat scale invariant model. In an inflationary context, the anticorrelation may be established if the curvature fluctuations originate from a variable decay rate of the inflaton; such models however tend to overpredict gravitational waves. This isocurvature model can in the future be distinguished from alternatives involving a reduction in large scale power or modifications to the sound speed of the dark energy through the polarization and its cross correlation with the temperature. The isocurvature model retains the same polarization fluctuations as its adiabatic counterpart but reduces the correlated temperature fluctuations. We present a pedagogical discussion of dark energy fluctuations in a quintessence and k-essence context in the Appendix

  10. Consistency relation for the Lorentz invariant single-field inflation

    International Nuclear Information System (INIS)

    Huang, Qing-Guo

    2010-01-01

    In this paper we compute the sizes of equilateral and orthogonal shape bispectrum for the general Lorentz invariant single-field inflation. The stability of field theory implies a non-negative square of sound speed which leads to a consistency relation between the sizes of orthogonal and equilateral shape bispectrum, namely f NL orth. ≤ −0.054f NL equil. . In particular, for the single-field Dirac-Born-Infeld (DBI) inflation, the consistency relation becomes f NL orth. = 0.070f NL equil. ≤ 0. These consistency relations are also valid in the mixed scenario where the quantum fluctuations of some other light scalar fields contribute to a part of total curvature perturbation on the super-horizon scale and may generate a local form bispectrum. A distinguishing prediction of the mixed scenario is τ NL loc. > ((6/5)f NL loc. ) 2 . Comparing these consistency relations to WMAP 7yr data, there is still a big room for the Lorentz invariant inflation, but DBI inflation has been disfavored at more than 68% CL

  11. Inflation in non-minimal matter-curvature coupling theories

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, C.; Bertolami, O. [Departamento de Física e Astronomia and Centro de Física do Porto, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto (Portugal); Rosa, J.G., E-mail: claudio.gomes@fc.up.pt, E-mail: joao.rosa@ua.pt, E-mail: orfeu.bertolami@fc.up.pt [Departamento de Física da Universidade de Aveiro and CIDMA, Campus de Santiago, 3810-183 Aveiro (Portugal)

    2017-06-01

    We study inflationary scenarios driven by a scalar field in the presence of a non-minimal coupling between matter and curvature. We show that the Friedmann equation can be significantly modified when the energy density during inflation exceeds a critical value determined by the non-minimal coupling, which in turn may considerably modify the spectrum of primordial perturbations and the inflationary dynamics. In particular, we show that these models are characterised by a consistency relation between the tensor-to-scalar ratio and the tensor spectral index that can differ significantly from the predictions of general relativity. We also give examples of observational predictions for some of the most commonly considered potentials and use the results of the Planck collaboration to set limits on the scale of the non-minimal coupling.

  12. Curvature Entropy for Curved Profile Generation

    Directory of Open Access Journals (Sweden)

    Koichiro Sato

    2012-03-01

    Full Text Available In a curved surface design, the overall shape features that emerge from combinations of shape elements are important. However, controlling the features of the overall shape in curved profiles is difficult using conventional microscopic shape information such as dimension. Herein two types of macroscopic shape information, curvature entropy and quadrature curvature entropy, quantitatively represent the features of the overall shape. The curvature entropy is calculated by the curvature distribution, and represents the complexity of a shape (one of the overall shape features. The quadrature curvature entropy is an improvement of the curvature entropy by introducing a Markov process to evaluate the continuity of a curvature and to approximate human cognition of the shape. Additionally, a shape generation method using a genetic algorithm as a calculator and the entropy as a shape generation index is presented. Finally, the applicability of the proposed method is demonstrated using the side view of an automobile as a design example.

  13. Introducing quantum Ricci curvature

    Science.gov (United States)

    Klitgaard, N.; Loll, R.

    2018-02-01

    Motivated by the search for geometric observables in nonperturbative quantum gravity, we define a notion of coarse-grained Ricci curvature. It is based on a particular way of extracting the local Ricci curvature of a smooth Riemannian manifold by comparing the distance between pairs of spheres with that of their centers. The quantum Ricci curvature is designed for use on non-smooth and discrete metric spaces, and to satisfy the key criteria of scalability and computability. We test the prescription on a variety of regular and random piecewise flat spaces, mostly in two dimensions. This enables us to quantify its behavior for short lattices distances and compare its large-scale behavior with that of constantly curved model spaces. On the triangulated spaces considered, the quantum Ricci curvature has good averaging properties and reproduces classical characteristics on scales large compared to the discretization scale.

  14. Curvature Entropy for Curved Profile Generation

    OpenAIRE

    Ujiie, Yoshiki; Kato, Takeo; Sato, Koichiro; Matsuoka, Yoshiyuki

    2012-01-01

    In a curved surface design, the overall shape features that emerge from combinations of shape elements are important. However, controlling the features of the overall shape in curved profiles is difficult using conventional microscopic shape information such as dimension. Herein two types of macroscopic shape information, curvature entropy and quadrature curvature entropy, quantitatively represent the features of the overall shape. The curvature entropy is calculated by the curvature distribu...

  15. Curvature-Induced Instabilities of Shells

    Science.gov (United States)

    Pezzulla, Matteo; Stoop, Norbert; Steranka, Mark P.; Bade, Abdikhalaq J.; Holmes, Douglas P.

    2018-01-01

    Induced by proteins within the cell membrane or by differential growth, heating, or swelling, spontaneous curvatures can drastically affect the morphology of thin bodies and induce mechanical instabilities. Yet, the interaction of spontaneous curvature and geometric frustration in curved shells remains poorly understood. Via a combination of precision experiments on elastomeric spherical shells, simulations, and theory, we show how a spontaneous curvature induces a rotational symmetry-breaking buckling as well as a snapping instability reminiscent of the Venus fly trap closure mechanism. The instabilities, and their dependence on geometry, are rationalized by reducing the spontaneous curvature to an effective mechanical load. This formulation reveals a combined pressurelike term in the bulk and a torquelike term in the boundary, allowing scaling predictions for the instabilities that are in excellent agreement with experiments and simulations. Moreover, the effective pressure analogy suggests a curvature-induced subcritical buckling in closed shells. We determine the critical buckling curvature via a linear stability analysis that accounts for the combination of residual membrane and bending stresses. The prominent role of geometry in our findings suggests the applicability of the results over a wide range of scales.

  16. A hemispherical power asymmetry from inflation

    International Nuclear Information System (INIS)

    Erickcek, Adrienne L.; Kamionkowski, Marc; Carroll, Sean M.

    2008-01-01

    Measurements of cosmic microwave background temperature fluctuations by the Wilkinson Microwave Anisotropy Probe indicate that the fluctuation amplitude in one half of the sky differs from the amplitude in the other half. We show that such an asymmetry cannot be generated during single-field slow-roll inflation without violating constraints to the homogeneity of the Universe. In contrast, a multifield inflationary theory, the curvaton model, can produce this power asymmetry without violating the homogeneity constraint. The mechanism requires the introduction of a large-amplitude superhorizon perturbation to the curvaton field, possibly a preinflationary remnant or a superhorizon curvaton-web structure. The model makes several predictions, including non-Gaussianity and modifications to the inflationary consistency relation, that will be tested with forthcoming cosmic microwave background experiments.

  17. Some Inequalities for the Lp-Curvature Image

    Directory of Open Access Journals (Sweden)

    Xiang Yu

    2009-01-01

    Full Text Available Lutwak introduced the notion of Lp-curvature image and proved an inequality for the volumes of convex body and its Lp-curvature image. In this paper, we first give an monotonic property of Lp-curvature image. Further, we establish two inequalities for the Lp-curvature image and its polar, respectively. Finally, an inequality for the volumes of Lp-projection body and Lp-curvature image is obtained.

  18. Curvature bound from gravitational catalysis

    Science.gov (United States)

    Gies, Holger; Martini, Riccardo

    2018-04-01

    We determine bounds on the curvature of local patches of spacetime from the requirement of intact long-range chiral symmetry. The bounds arise from a scale-dependent analysis of gravitational catalysis and its influence on the effective potential for the chiral order parameter, as induced by fermionic fluctuations on a curved spacetime with local hyperbolic properties. The bound is expressed in terms of the local curvature scalar measured in units of a gauge-invariant coarse-graining scale. We argue that any effective field theory of quantum gravity obeying this curvature bound is safe from chiral symmetry breaking through gravitational catalysis and thus compatible with the simultaneous existence of chiral fermions in the low-energy spectrum. With increasing number of dimensions, the curvature bound in terms of the hyperbolic scale parameter becomes stronger. Applying the curvature bound to the asymptotic safety scenario for quantum gravity in four spacetime dimensions translates into bounds on the matter content of particle physics models.

  19. Inflationary perturbations in no-scale theories

    Energy Technology Data Exchange (ETDEWEB)

    Salvio, Alberto [CERN, Theoretical Physics Department, Geneva (Switzerland)

    2017-04-15

    We study the inflationary perturbations in general (classically) scale-invariant theories. Such scenario is motivated by the hierarchy problem and provides natural inflationary potentials and dark matter candidates. We analyse in detail all sectors (the scalar, vector and tensor perturbations) giving general formulae for the potentially observable power spectra, as well as for the curvature spectral index n{sub s} and the tensor-to-scalar ratio r. We show that the conserved Hamiltonian for all perturbations does not feature negative energies even in the presence of the Weyl-squared term if the appropriate quantisation is performed and argue that this term does not lead to phenomenological problems at least in some relevant setups. The general formulae are then applied to a concrete no-scale model, which includes the Higgs and a scalar, ''the planckion'', whose vacuum expectation value generates the Planck mass. Inflation can be triggered by a combination of the planckion and the Starobinsky scalar and we show that no tension with observations is present even in the case of pure planckion inflation, if the coefficient of the Weyl-squared term is large enough. In general, even quadratic inflation is allowed in this case. Moreover, the Weyl-squared term leads to an isocurvature mode, which currently satisfies the observational bounds, but it may be detectable with future experiments. (orig.)

  20. A remark about the mean curvature

    International Nuclear Information System (INIS)

    Zhang Weitao.

    1992-11-01

    In this paper, we give an integral identity about the mean curvature in Sobolev space H 0 1 (Ω) intersection H 2 (Ω). Suppose the mean curvature on Γ=δΩ is positive, we prove some inequalities of the positive mean curvature and propose some open problems. (author). 4 refs

  1. Dynamics of linear perturbations in f(R) gravity

    International Nuclear Information System (INIS)

    Bean, Rachel; Bernat, David; Pogosian, Levon; Silvestri, Alessandra; Trodden, Mark

    2007-01-01

    We consider predictions for structure formation from modifications to general relativity in which the Einstein-Hilbert action is replaced by a general function of the Ricci scalar. We work without fixing a gauge, as well as in explicit popular coordinate choices, appropriate for the modification of existing cosmological code. We present the framework in a comprehensive and practical form that can be directly compared to standard perturbation analyses. By considering the full evolution equations, we resolve perceived instabilities previously suggested, and instead find a suppression of perturbations. This result presents significant challenges for agreement with current cosmological structure formation observations. The findings apply to a broad range of forms of f(R) for which the modification becomes important at low curvatures, disfavoring them in comparison with the ΛCDM scenario. As such, these results provide a powerful method to rule out a wide class of modified gravity models aimed at providing an alternative explanation to the dark energy problem

  2. Conservation laws and geometry of perturbed coset models

    CERN Document Server

    Bakas, Ioannis

    1994-01-01

    We present a Lagrangian description of the $SU(2)/U(1)$ coset model perturbed by its first thermal operator. This is the simplest perturbation that changes sign under Krammers--Wannier duality. The resulting theory, which is a 2--component generalization of the sine--Gordon model, is then taken in Minkowski space. For negative values of the coupling constant $g$, it is classically equivalent to the $O(4)$ non--linear $\\s$--model reduced in a certain frame. For $g > 0$, it describes the relativistic motion of vortices in a constant external field. Viewing the classical equations of motion as a zero curvature condition, we obtain recursive relations for the infinitely many conservation laws by the abelianization method of gauge connections. The higher spin currents are constructed entirely using an off--critical generalization of the $W_{\\infty}$ generators. We give a geometric interpretation to the corresponding charges in terms of embeddings. Applications to the chirally invariant $U(2)$ Gross--Neveu model ar...

  3. The propagation of varied timescale perturbations in landscapes

    Science.gov (United States)

    Bingham, N.; Johnson, K. N.; Bookhagen, B.; Chadwick, O.

    2016-12-01

    The classic assumption of steady-state landscapes greatly simplifies models of earth-surface processes. Theoretically, steady-state denotes time independence, but in real landscapes steady-state requires a timescale over which to assume (or document) no change. In the past, poor spatiotemporal resolution of eroding landscapes necessitated that shorter timescale perturbations be ignored in favor of regional formulations of rock uplift = erosion, 105, 6 years. Now, novel techniques and technologies provide an opportunity to define local landscape response to various timescales of perturbations; thus, allowing us to consider multiple steady-states on adjacent watersheds or even along a single watershed. This study seeks to identify the physical propagation of varied timescale perturbations in landscapes in order to provide an updated geomorphic context for interpreting critical zone processes. At our study site - Santa Cruz Island (SCI), CA - perturbations include sea level and climate fluctuations over 105 years coupled with pulses of overgrazing and extreme storm events during the last 200 years. Comprehensive knickpoint location maps and dated marine and fill terraces tighten the spatiotemporal constraints on erosion for SCI. In addition, the island hosts a wide range of lithologies, allowing us to compare lithologic effects on landscape response to perturbations. Our study uses lidar point clouds and high resolution (0.25 and 1 m) digital elevation model analysis to segment landscapes by the degree of their response to perturbations. Landscape response is measured by increases in topographic roughness. We ascertain roughness by analyzing the changes in different terrain attributes on multiple spatial scales: catchment, sub-catchments and individual hillslopes. Terrain attributes utilized include slope, curvature, local relief, flowpath length and contributing catchment area. Statistical analysis of these properties indicates narrower ranges in values for regions

  4. Expressions for optical scalars and deflection angle at second order in terms of curvature scalars

    Science.gov (United States)

    Crisnejo, Gabriel; Gallo, Emanuel

    2018-04-01

    We present formal expressions for the optical scalars in terms of the curvature scalars in the weak gravitational lensing regime at second order in perturbations of a flat background without mentioning the extension of the lens or their shape. Also, by considering the thin lens approximation for static and axially symmetric configurations we obtain an expression for the second-order deflection angle which generalizes our previous result presented by Gallo and Moreschi [Phys. Rev. D 83, 083007 (2011)., 10.1103/PhysRevD.83.083007]. As applications of these formulas we compute the optical scalars for some known family of metrics, and we recover expressions for the deflection angle. In contrast to other works in the subject, our formalism allows a straightforward identification of how the different components of the curvature tensor contribute to the optical scalars and deflection angle. We also discuss in what sense the Schwarzschild solution can be thought as a true thin lens at second order.

  5. Discrete Curvature Theories and Applications

    KAUST Repository

    Sun, Xiang

    2016-08-25

    Discrete Di erential Geometry (DDG) concerns discrete counterparts of notions and methods in di erential geometry. This thesis deals with a core subject in DDG, discrete curvature theories on various types of polyhedral surfaces that are practically important for free-form architecture, sunlight-redirecting shading systems, and face recognition. Modeled as polyhedral surfaces, the shapes of free-form structures may have to satisfy di erent geometric or physical constraints. We study a combination of geometry and physics { the discrete surfaces that can stand on their own, as well as having proper shapes for the manufacture. These proper shapes, known as circular and conical meshes, are closely related to discrete principal curvatures. We study curvature theories that make such surfaces possible. Shading systems of freeform building skins are new types of energy-saving structures that can re-direct the sunlight. From these systems, discrete line congruences across polyhedral surfaces can be abstracted. We develop a new curvature theory for polyhedral surfaces equipped with normal congruences { a particular type of congruences de ned by linear interpolation of vertex normals. The main results are a discussion of various de nitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula. In addition to architecture, we consider the role of discrete curvatures in face recognition. We use geometric measure theory to introduce the notion of asymptotic cones associated with a singular subspace of a Riemannian manifold, which is an extension of the classical notion of asymptotic directions. We get a simple expression of these cones for polyhedral surfaces, as well as convergence and approximation theorems. We use the asymptotic cones as facial descriptors and demonstrate the

  6. Curvature force and dark energy

    International Nuclear Information System (INIS)

    Balakin, Alexander B; Pavon, Diego; Schwarz, Dominik J; Zimdahl, Winfried

    2003-01-01

    A curvature self-interaction of the cosmic gas is shown to mimic a cosmological constant or other forms of dark energy, such as a rolling tachyon condensate or a Chaplygin gas. Any given Hubble rate and deceleration parameter can be traced back to the action of an effective curvature force on the gas particles. This force self-consistently reacts back on the cosmological dynamics. The links between an imperfect fluid description, a kinetic description with effective antifriction forces and curvature forces, which represent a non-minimal coupling of gravity to matter, are established

  7. Environmental influences on DNA curvature

    DEFF Research Database (Denmark)

    Ussery, David; Higgins, C.F.; Bolshoy, A.

    1999-01-01

    DNA curvature plays an important role in many biological processes. To study environmentalinfluences on DNA curvature we compared the anomalous migration on polyacrylamide gels ofligation ladders of 11 specifically-designed oligonucleotides. At low temperatures (25 degreesC and below) most......, whilst spermine enhanced theanomalous migration of a different set of sequences. Sequences with a GGC motif exhibitedgreater curvature than predicted by the presently-used angles for the nearest-neighbour wedgemodel and are especially sensitive to Mg2+. The data have implications for models...... for DNAcurvature and for environmentally-sensitive DNA conformations in the regulation of geneexpression....

  8. Singular perturbation theory for interacting fermions in two dimensions

    International Nuclear Information System (INIS)

    Chubukov, A.V.; Maslov, D.L.; Gangadharaiah, S.; Glazman, L.I.

    2004-11-01

    We consider a system of interacting fermions in two dimensions beyond the second-order perturbation theory in the interaction. It is shown that the mass-shell singularities in the self-energy, arising already at the second order of the perturbation theory, manifest a nonperturbative effect: an interaction with the zero-sound mode. Resuming the perturbation theory for a weak, short-range interaction and accounting for a finite curvature of the fermion spectrum, we eliminate the singularities and obtain the results for the quasi-particle self-energy and the spectral function to all orders in the interaction with the zero-sound mode. A threshold for emission of zero-sound waves leads a non-monotonic variation of the self-energy with energy (or momentum) near the mass shell. Consequently, the spectral function has a kink-like feature. We also study in detail a non-analytic temperature dependence of the specific heat, C(T) ∝T 2 . It turns out that although the interaction with the collective mode results in an enhancement of the fermion self-energy, this interaction does not affect the non-analytic term in C(T) due to a subtle cancellation between the contributions from the real and imaginary parts of the self-energy. For a short-range and weak interaction, this implies that the second-order perturbation theory suffices to determine the non-analytic part of C(T). We also obtain a general form of the non-analytic term in C(T), valid for the case of a generic Fermi liquid, i.e., beyond the perturbation theory. (author)

  9. Manifolds of positive scalar curvature

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, S [Department of Mathematics, University of Notre Dame, Notre Dame (United States)

    2002-08-15

    This lecture gives an survey on the problem of finding a positive scalar curvature metric on a closed manifold. The Gromov-Lawson-Rosenberg conjecture and its relation to the Baum-Connes conjecture are discussed and the problem of finding a positive Ricci curvature metric on a closed manifold is explained.

  10. Integration of length and curvature in haptic perception.

    Science.gov (United States)

    Panday, Virjanand; Tiest, Wouter M Bergmann; Kappers, Astrid M L

    2014-01-24

    We investigated if and how length and curvature information are integrated when an object is explored in one hand. Subjects were asked to explore four types of objects between thumb and index finger. Objects differed in either length, curvature, both length and curvature correlated as in a circle, or anti-correlated. We found that when both length and curvature are present, performance is significantly better than when only one of the two cues is available. Therefore, we conclude that there is integration of length and curvature. Moreover, if the two cues are correlated in a circular cross-section instead of in an anti-correlated way, performance is better than predicted by a combination of two independent cues. We conclude that integration of curvature and length is highly efficient when the cues in the object are combined as in a circle, which is the most common combination of curvature and length in daily life.

  11. Right thoracic curvature in the normal spine

    Directory of Open Access Journals (Sweden)

    Masuda Keigo

    2011-01-01

    Full Text Available Abstract Background Trunk asymmetry and vertebral rotation, at times observed in the normal spine, resemble the characteristics of adolescent idiopathic scoliosis (AIS. Right thoracic curvature has also been reported in the normal spine. If it is determined that the features of right thoracic side curvature in the normal spine are the same as those observed in AIS, these findings might provide a basis for elucidating the etiology of this condition. For this reason, we investigated right thoracic curvature in the normal spine. Methods For normal spinal measurements, 1,200 patients who underwent a posteroanterior chest radiographs were evaluated. These consisted of 400 children (ages 4-9, 400 adolescents (ages 10-19 and 400 adults (ages 20-29, with each group comprised of both genders. The exclusion criteria were obvious chest and spinal diseases. As side curvature is minimal in normal spines and the range at which curvature is measured is difficult to ascertain, first the typical curvature range in scoliosis patients was determined and then the Cobb angle in normal spines was measured using the same range as the scoliosis curve, from T5 to T12. Right thoracic curvature was given a positive value. The curve pattern was organized in each collective three groups: neutral (from -1 degree to 1 degree, right (> +1 degree, and left ( Results In child group, Cobb angle in left was 120, in neutral was 125 and in right was 155. In adolescent group, Cobb angle in left was 70, in neutral was 114 and in right was 216. In adult group, Cobb angle in left was 46, in neutral was 102 and in right was 252. The curvature pattern shifts to the right side in the adolescent group (p Conclusions Based on standing chest radiographic measurements, a right thoracic curvature was observed in normal spines after adolescence.

  12. Curvature and torsion in growing actin networks

    International Nuclear Information System (INIS)

    Shaevitz, Joshua W; Fletcher, Daniel A

    2008-01-01

    Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque

  13. The homeodomain derived peptide Penetratin induces curvature of fluid membrane domains.

    Directory of Open Access Journals (Sweden)

    Antonin Lamazière

    Full Text Available BACKGROUND: Protein membrane transduction domains that are able to cross the plasma membrane are present in several transcription factors, such as the homeodomain proteins and the viral proteins such as Tat of HIV-1. Their discovery resulted in both new concepts on the cell communication during development, and the conception of cell penetrating peptide vectors for internalisation of active molecules into cells. A promising cell penetrating peptide is Penetratin, which crosses the cell membranes by a receptor and metabolic energy-independent mechanism. Recent works have claimed that Penetratin and similar peptides are internalized by endocytosis, but other endocytosis-independent mechanisms have been proposed. Endosomes or plasma membranes crossing mechanisms are not well understood. Previously, we have shown that basic peptides induce membrane invaginations suggesting a new mechanism for uptake, "physical endocytosis". METHODOLOGY/PRINCIPAL FINDINGS: Herein, we investigate the role of membrane lipid phases on Penetratin induced membrane deformations (liquid ordered such as in "raft" microdomains versus disordered fluid "non-raft" domains in membrane models. Experimental data show that zwitterionic lipid headgroups take part in the interaction with Penetratin suggesting that the external leaflet lipids of cells plasma membrane are competent for peptide interaction in the absence of net negative charges. NMR and X-ray diffraction data show that the membrane perturbations (tubulation and vesiculation are associated with an increase in membrane negative curvature. These effects on curvature were observed in the liquid disordered but not in the liquid ordered (raft-like membrane domains. CONCLUSIONS/SIGNIFICANCE: The better understanding of the internalisation mechanisms of protein transduction domains will help both the understanding of the mechanisms of cell communication and the development of potential therapeutic molecular vectors. Here we

  14. A perturbative RS I cosmological phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Bunk, Don [Skidmore College, Department of Physics, Saratoga Springs, NY (United States); Hubisz, Jay [Syracuse University, Department of Physics, Syracuse, NY (United States); Jain, Bithika [Korea Institute for Advanced Study, School of Physics, Seoul (Korea, Republic of)

    2018-01-15

    We identify a class of Randall-Sundrum type models with a successful first order cosmological phase transition during which a 5D dual of approximate conformal symmetry is spontaneously broken. Our focus is on soft-wall models that naturally realize a light radion/dilaton and suppressed dynamical contribution to the cosmological constant. We discuss phenomenology of the phase transition after developing a theoretical and numerical analysis of these models both at zero and finite temperature. We demonstrate a model with a TeV-Planck hierarchy and with a successful cosmological phase transition where the UV value of the curvature corresponds, via AdS/CFT, to an N of 20, where 5D gravity is expected to be firmly in the perturbative regime. (orig.)

  15. arXiv Quantum coherence of cosmological perturbations

    CERN Document Server

    Giovannini, Massimo

    2017-10-26

    In this paper, the degrees of quantum coherence of cosmological perturbations of different spins are computed in the large-scale limit and compared with the standard results holding for a single mode of the electromagnetic field in an optical cavity. The degree of second-order coherence of curvature inhomogeneities (and, more generally, of the scalar modes of the geometry) reproduces faithfully the optical limit. For the vector and tensor fluctuations, the numerical values of the normalized degrees of second-order coherence in the zero time-delay limit are always larger than unity (which is the Poisson benchmark value) but differ from the corresponding expressions obtainable in the framework of the single-mode approximation. General lessons are drawn on the quantum coherence of large-scale cosmological fluctuations.

  16. Numerically evaluating the bispectrum in curved field-space— with PyTransport 2.0

    Science.gov (United States)

    Ronayne, John W.; Mulryne, David J.

    2018-01-01

    We extend the transport framework for numerically evaluating the power spectrum and bispectrum in multi-field inflation to the case of a curved field-space metric. This method naturally accounts for all sub- and super-horizon tree level effects, including those induced by the curvature of the field-space. We present an open source implementation of our equations in an extension of the publicly available PyTransport code. Finally we illustrate how our technique is applied to examples of inflationary models with a non-trivial field-space metric.

  17. Discrete gravity as a topological field theorywith light-like curvature defects

    Energy Technology Data Exchange (ETDEWEB)

    Wieland, Wolfgang [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada)

    2017-05-29

    I present a model of discrete gravity as a topological field theory with defects. The theory has no local degrees of freedom and the gravitational field is trivial everywhere except at a number of intersecting null surfaces. At these null surfaces, the gravitational field can be singular, representing a curvature defect propagating at the speed of light. The underlying action is local and it is studied in both its Lagrangian and Hamiltonian formulation. The canonically conjugate variables on the null surfaces are a spinor and a spinor-valued two-surface density, which are coupled to a topological field theory for the Lorentz connection in the bulk. I discuss the relevance of the model for non-perturbative approaches to quantum gravity, such as loop quantum gravity, where similar variables have recently appeared as well.

  18. Collineations of the curvature tensor in general relativity

    Indian Academy of Sciences (India)

    Curvature collineations for the curvature tensor, constructed from a fundamental Bianchi Type-V metric, are studied. We are concerned with a symmetry property of space-time which is called curvature collineation, and we briefly discuss the physical and kinematical properties of the models.

  19. Initial conditions for cosmological perturbations

    Science.gov (United States)

    Ashtekar, Abhay; Gupt, Brajesh

    2017-02-01

    Penrose proposed that the big bang singularity should be constrained by requiring that the Weyl curvature vanishes there. The idea behind this past hypothesis is attractive because it constrains the initial conditions for the universe in geometric terms and is not confined to a specific early universe paradigm. However, the precise statement of Penrose’s hypothesis is tied to classical space-times and furthermore restricts only the gravitational degrees of freedom. These are encapsulated only in the tensor modes of the commonly used cosmological perturbation theory. Drawing inspiration from the underlying idea, we propose a quantum generalization of Penrose’s hypothesis using the Planck regime in place of the big bang, and simultaneously incorporating tensor as well as scalar modes. Initial conditions selected by this generalization constrain the universe to be as homogeneous and isotropic in the Planck regime as permitted by the Heisenberg uncertainty relations.

  20. Initial conditions for cosmological perturbations

    International Nuclear Information System (INIS)

    Ashtekar, Abhay; Gupt, Brajesh

    2017-01-01

    Penrose proposed that the big bang singularity should be constrained by requiring that the Weyl curvature vanishes there. The idea behind this past hypothesis is attractive because it constrains the initial conditions for the universe in geometric terms and is not confined to a specific early universe paradigm. However, the precise statement of Penrose’s hypothesis is tied to classical space-times and furthermore restricts only the gravitational degrees of freedom. These are encapsulated only in the tensor modes of the commonly used cosmological perturbation theory. Drawing inspiration from the underlying idea, we propose a quantum generalization of Penrose’s hypothesis using the Planck regime in place of the big bang, and simultaneously incorporating tensor as well as scalar modes. Initial conditions selected by this generalization constrain the universe to be as homogeneous and isotropic in the Planck regime as permitted by the Heisenberg uncertainty relations . (paper)

  1. Haptic perception of object curvature in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Jürgen Konczak

    2008-07-01

    Full Text Available The haptic perception of the curvature of an object is essential for adequate object manipulation and critical for our guidance of actions. This study investigated how the ability to perceive the curvature of an object is altered by Parkinson's disease (PD.Eight healthy subjects and 11 patients with mild to moderate PD had to judge, without vision, the curvature of a virtual "box" created by a robotic manipulandum. Their hands were either moved passively along a defined curved path or they actively explored the curved curvature of a virtual wall. The curvature was either concave or convex (bulging to the left or right and was judged in two locations of the hand workspace--a left workspace location, where the curved hand path was associated with curved shoulder and elbow joint paths, and a right workspace location in which these joint paths were nearly linear. After exploring the curvature of the virtual object, subjects had to judge whether the curvature was concave or convex. Based on these data, thresholds for curvature sensitivity were established. The main findings of the study are: First, 9 out 11 PD patients (82% showed elevated thresholds for detecting convex curvatures in at least one test condition. The respective median threshold for the PD group was increased by 343% when compared to the control group. Second, when distal hand paths became less associated with proximal joint paths (right workspace, haptic acuity was reduced substantially in both groups. Third, sensitivity to hand trajectory curvature was not improved during active exploration in either group.Our data demonstrate that PD is associated with a decreased acuity of the haptic sense, which may occur already at an early stage of the disease.

  2. Longitudinal surface curvature effect in magnetohydrodynamics

    International Nuclear Information System (INIS)

    Bodas, N.G.

    1975-01-01

    The two-dimensional motion of an incompressible and electrically conducting fluid past an electrically insulated body surface (having curvature) is studied for a given O(1) basic flow and magnetic field, when (i) the applied magnetic field is aligned with the velocity in the basic flow, and (ii) the applied magnetic field is within the body surface. 01 and 0(Re sup(1/2)) mean the first and second order approximations respectively in an exansion scheme in powers of Resup(-1/2), Re being the Reynolds number). The technique of matched asymptotic expansions is used to solve the problem. The governing partial differential equations to 0(Resup(-1/2)) boundary layer approximation are found to give similarity solutions for a family of surface curvature and pressure gradient distributions in case (i), and for uniform basic flow with analytic surface curvature distributions in case (ii). The equations are solved numerically. In case (i) it is seen that the effect of the magnetic field on the skin-friction- correction due to the curvature is very small. Also the magnetic field at the wall is reduced by the curvature on the convex side. In case (ii) the magnetic field significantly increases the skin-friction-correction due to the curvature. The effect of the magnetic field on the O(1) and O(Resup(-1/2)) skin friction coefficients increases with the increase of the electrical conductivity of the fluid. Also, at higher values of the magnetic pressure, moderate changes in the electrical conductivity do not influence the correction to the skin-friction significantly. (Auth.)

  3. Straight-line string with curvature

    International Nuclear Information System (INIS)

    Solov'ev, L.D.

    1995-01-01

    Classical and quantum solutions for the relativistic straight-line string with arbitrary dependence on the world surface curvature are obtained. They differ from the case of the usual Nambu-Goto interaction by the behaviour of the Regge trajectory which in general can be non-linear. A regularization of the action is considered and a comparison with relativistic point with curvature is made. 5 refs

  4. Curvature of random walks and random polygons in confinement

    International Nuclear Information System (INIS)

    Diao, Y; Ernst, C; Montemayor, A; Ziegler, U

    2013-01-01

    The purpose of this paper is to study the curvature of equilateral random walks and polygons that are confined in a sphere. Curvature is one of several basic geometric properties that can be used to describe random walks and polygons. We show that confinement affects curvature quite strongly, and in the limit case where the confinement diameter equals the edge length the unconfined expected curvature value doubles from π/2 to π. To study curvature a simple model of an equilateral random walk in spherical confinement in dimensions 2 and 3 is introduced. For this simple model we derive explicit integral expressions for the expected value of the total curvature in both dimensions. These expressions are functions that depend only on the radius R of the confinement sphere. We then show that the values obtained by numeric integration of these expressions agrees with numerical average curvature estimates obtained from simulations of random walks. Finally, we compare the confinement effect on curvature of random walks with random polygons. (paper)

  5. The curvature calculation mechanism based on simple cell model.

    Science.gov (United States)

    Yu, Haiyang; Fan, Xingyu; Song, Aiqi

    2017-07-20

    A conclusion has not yet been reached on how exactly the human visual system detects curvature. This paper demonstrates how orientation-selective simple cells can be used to construct curvature-detecting neural units. Through fixed arrangements, multiple plurality cells were constructed to simulate curvature cells with a proportional output to their curvature. In addition, this paper offers a solution to the problem of narrow detection range under fixed resolution by selecting an output value under multiple resolution. Curvature cells can be treated as concrete models of an end-stopped mechanism, and they can be used to further understand "curvature-selective" characteristics and to explain basic psychophysical findings and perceptual phenomena in current studies.

  6. Integration of length and curvature in haptic perception

    NARCIS (Netherlands)

    Panday, V.; Bergmann Tiest, W.M.; Kappers, A.M.L.

    2014-01-01

    We investigated if and how length and curvature information are integrated when an object is explored in one hand. Subjects were asked to explore four types of objects between thumb and index finger. Objects differed in either length, curvature, both length and curvature correlated as in a circle,

  7. Weyl tensors for asymmetric complex curvatures

    International Nuclear Information System (INIS)

    Oliveira, C.G.

    Considering a second rank Hermitian field tensor and a general Hermitian connection the associated complex curvature tensor is constructed. The Weyl tensor that corresponds to this complex curvature is determined. The formalism is applied to the Weyl unitary field theory and to the Moffat gravitational theory. (Author) [pt

  8. Surface meshing with curvature convergence

    KAUST Repository

    Li, Huibin; Zeng, Wei; Morvan, Jean-Marie; Chen, Liming; Gu, Xianfengdavid

    2014-01-01

    Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations. The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to the Riemannian metric and independent of the embedding. In practice, our meshing algorithm is much easier to implement and much more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm. © 2014 IEEE.

  9. Surface meshing with curvature convergence

    KAUST Repository

    Li, Huibin

    2014-06-01

    Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations. The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to the Riemannian metric and independent of the embedding. In practice, our meshing algorithm is much easier to implement and much more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm. © 2014 IEEE.

  10. Curvature constraints from the causal entropic principle

    International Nuclear Information System (INIS)

    Bozek, Brandon; Albrecht, Andreas; Phillips, Daniel

    2009-01-01

    Current cosmological observations indicate a preference for a cosmological constant that is drastically smaller than what can be explained by conventional particle physics. The causal entropic principle (Bousso et al.) provides an alternative approach to anthropic attempts to predict our observed value of the cosmological constant by calculating the entropy created within a causal diamond. We have extended this work to use the causal entropic principle to predict the preferred curvature within the 'multiverse'. We have found that values larger than ρ k =40ρ m are disfavored by more than 99.99% peak value at ρ Λ =7.9x10 -123 and ρ k =4.3ρ m for open universes. For universes that allow only positive curvature or both positive and negative curvature, we find a correlation between curvature and dark energy that leads to an extended region of preferred values. Our universe is found to be disfavored to an extent depending on the priors on curvature. We also provide a comparison to previous anthropic constraints on open universes and discuss future directions for this work.

  11. 3D face recognition with asymptotic cones based principal curvatures

    KAUST Repository

    Tang, Yinhang

    2015-05-01

    The classical curvatures of smooth surfaces (Gaussian, mean and principal curvatures) have been widely used in 3D face recognition (FR). However, facial surfaces resulting from 3D sensors are discrete meshes. In this paper, we present a general framework and define three principal curvatures on discrete surfaces for the purpose of 3D FR. These principal curvatures are derived from the construction of asymptotic cones associated to any Borel subset of the discrete surface. They describe the local geometry of the underlying mesh. First two of them correspond to the classical principal curvatures in the smooth case. We isolate the third principal curvature that carries out meaningful geometric shape information. The three principal curvatures in different Borel subsets scales give multi-scale local facial surface descriptors. We combine the proposed principal curvatures with the LNP-based facial descriptor and SRC for recognition. The identification and verification experiments demonstrate the practicability and accuracy of the third principal curvature and the fusion of multi-scale Borel subset descriptors on 3D face from FRGC v2.0.

  12. 3D face recognition with asymptotic cones based principal curvatures

    KAUST Repository

    Tang, Yinhang; Sun, Xiang; Huang, Di; Morvan, Jean-Marie; Wang, Yunhong; Chen, Liming

    2015-01-01

    The classical curvatures of smooth surfaces (Gaussian, mean and principal curvatures) have been widely used in 3D face recognition (FR). However, facial surfaces resulting from 3D sensors are discrete meshes. In this paper, we present a general framework and define three principal curvatures on discrete surfaces for the purpose of 3D FR. These principal curvatures are derived from the construction of asymptotic cones associated to any Borel subset of the discrete surface. They describe the local geometry of the underlying mesh. First two of them correspond to the classical principal curvatures in the smooth case. We isolate the third principal curvature that carries out meaningful geometric shape information. The three principal curvatures in different Borel subsets scales give multi-scale local facial surface descriptors. We combine the proposed principal curvatures with the LNP-based facial descriptor and SRC for recognition. The identification and verification experiments demonstrate the practicability and accuracy of the third principal curvature and the fusion of multi-scale Borel subset descriptors on 3D face from FRGC v2.0.

  13. Robust estimation of adaptive tensors of curvature by tensor voting.

    Science.gov (United States)

    Tong, Wai-Shun; Tang, Chi-Keung

    2005-03-01

    Although curvature estimation from a given mesh or regularly sampled point set is a well-studied problem, it is still challenging when the input consists of a cloud of unstructured points corrupted by misalignment error and outlier noise. Such input is ubiquitous in computer vision. In this paper, we propose a three-pass tensor voting algorithm to robustly estimate curvature tensors, from which accurate principal curvatures and directions can be calculated. Our quantitative estimation is an improvement over the previous two-pass algorithm, where only qualitative curvature estimation (sign of Gaussian curvature) is performed. To overcome misalignment errors, our improved method automatically corrects input point locations at subvoxel precision, which also rejects outliers that are uncorrectable. To adapt to different scales locally, we define the RadiusHit of a curvature tensor to quantify estimation accuracy and applicability. Our curvature estimation algorithm has been proven with detailed quantitative experiments, performing better in a variety of standard error metrics (percentage error in curvature magnitudes, absolute angle difference in curvature direction) in the presence of a large amount of misalignment noise.

  14. Higher-order curvature terms and extended inflation

    International Nuclear Information System (INIS)

    Wang Yun

    1990-01-01

    We consider higher-order curvature terms in context of the Brans-Dicke theory of gravity, and investigate the effects of these terms on extended inflationary theories. We find that the higher-order curvature terms tend to speed up inflation, although the original extended-inflation solutions are stable when these terms are small. Analytical solutions are found for two extreme cases: when the higher-order curvature terms are small, and when they dominate. A conformal transformation is employed in solving the latter case, and some of the subtleties in this technique are discussed. We note that percolation is less likely to occur when the higher-order curvature terms are present. An upper bound on α is expected if we are to avoid excessive and inadequate percolation of true-vacuum bubbles

  15. Constraining inverse curvature gravity with supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Olga; Santiago, Jose; /Fermilab; Weller, Jochen; /University Coll., London /Fermilab

    2005-10-01

    We show that the current accelerated expansion of the Universe can be explained without resorting to dark energy. Models of generalized modified gravity, with inverse powers of the curvature can have late time accelerating attractors without conflicting with solar system experiments. We have solved the Friedman equations for the full dynamical range of the evolution of the Universe. This allows us to perform a detailed analysis of Supernovae data in the context of such models that results in an excellent fit. Hence, inverse curvature gravity models represent an example of phenomenologically viable models in which the current acceleration of the Universe is driven by curvature instead of dark energy. If we further include constraints on the current expansion rate of the Universe from the Hubble Space Telescope and on the age of the Universe from globular clusters, we obtain that the matter content of the Universe is 0.07 {le} {omega}{sub m} {le} 0.21 (95% Confidence). Hence the inverse curvature gravity models considered can not explain the dynamics of the Universe just with a baryonic matter component.

  16. Novel tilt-curvature coupling in lipid membranes

    Science.gov (United States)

    Terzi, M. Mert; Deserno, Markus

    2017-08-01

    On mesoscopic scales, lipid membranes are well described by continuum theories whose main ingredients are the curvature of a membrane's reference surface and the tilt of its lipid constituents. In particular, Hamm and Kozlov [Eur. Phys. J. E 3, 323 (2000)] have shown how to systematically derive such a tilt-curvature Hamiltonian based on the elementary assumption of a thin fluid elastic sheet experiencing internal lateral pre-stress. Performing a dimensional reduction, they not only derive the basic form of the effective surface Hamiltonian but also express its emergent elastic couplings as trans-membrane moments of lower-level material parameters. In the present paper, we argue, though, that their derivation unfortunately missed a coupling term between curvature and tilt. This term arises because, as one moves along the membrane, the curvature-induced change of transverse distances contributes to the area strain—an effect that was believed to be small but nevertheless ends up contributing at the same (quadratic) order as all other terms in their Hamiltonian. We illustrate the consequences of this amendment by deriving the monolayer and bilayer Euler-Lagrange equations for the tilt, as well as the power spectra of shape, tilt, and director fluctuations. A particularly curious aspect of our new term is that its associated coupling constant is the second moment of the lipid monolayer's lateral stress profile—which within this framework is equal to the monolayer Gaussian curvature modulus, κ¯ m. On the one hand, this implies that many theoretical predictions now contain a parameter that is poorly known (because the Gauss-Bonnet theorem limits access to the integrated Gaussian curvature); on the other hand, the appearance of κ¯ m outside of its Gaussian curvature provenance opens opportunities for measuring it by more conventional means, for instance by monitoring a membrane's undulation spectrum at short scales.

  17. Perturbative evaluation of the zero-point function for self-interacting scalar field on a manifold with boundary

    International Nuclear Information System (INIS)

    Tsoupros, George

    2002-01-01

    The character of quantum corrections to the gravitational action of a conformally invariant field theory for a self-interacting scalar field on a manifold with boundary is considered at third loop-order in the perturbative expansion of the zero-point function. Diagramatic evaluations and higher loop-order renormalization can be best accomplished on a Riemannian manifold of positive constant curvature accommodating a boundary of constant extrinsic curvature. The associated spherical formulation for diagramatic evaluations reveals a non-trivial effect which the topology of the manifold has on the vacuum processes and which ultimately dissociates the dynamical behaviour of the quantized field from its behaviour in the absence of a boundary. The first surface divergence is evaluated and the necessity for simultaneous renormalization of volume and surface divergences is shown

  18. The curvature function in general relativity

    International Nuclear Information System (INIS)

    Hall, G S; MacNay, Lucy

    2006-01-01

    A function, here called the curvature function, is defined and which is constructed explicitly from the type (0, 4) curvature tensor. Although such a function may be defined for any manifold admitting a metric, attention is here concentrated on this function on a spacetime. Some properties of this function are explored and compared with a previous discussion of it given by Petrov

  19. Curvature of Indoor Sensor Network: Clustering Coefficient

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available We investigate the geometric properties of the communication graph in realistic low-power wireless networks. In particular, we explore the concept of the curvature of a wireless network via the clustering coefficient. Clustering coefficient analysis is a computationally simplified, semilocal approach, which nevertheless captures such a large-scale feature as congestion in the underlying network. The clustering coefficient concept is applied to three cases of indoor sensor networks, under varying thresholds on the link packet reception rate (PRR. A transition from positive curvature (“meshed” network to negative curvature (“core concentric” network is observed by increasing the threshold. Even though this paper deals with network curvature per se, we nevertheless expand on the underlying congestion motivation, propose several new concepts (network inertia and centroid, and finally we argue that greedy routing on a virtual positively curved network achieves load balancing on the physical network.

  20. Inverse curvature flows in asymptotically Robertson Walker spaces

    Science.gov (United States)

    Kröner, Heiko

    2018-04-01

    In this paper we consider inverse curvature flows in a Lorentzian manifold N which is the topological product of the real numbers with a closed Riemannian manifold and equipped with a Lorentzian metric having a future singularity so that N is asymptotically Robertson Walker. The flow speeds are future directed and given by 1 / F where F is a homogeneous degree one curvature function of class (K*) of the principal curvatures, i.e. the n-th root of the Gauss curvature. We prove longtime existence of these flows and that the flow hypersurfaces converge to smooth functions when they are rescaled with a proper factor which results from the asymptotics of the metric.

  1. Curvature driven instabilities in toroidal plasmas

    International Nuclear Information System (INIS)

    Andersson, P.

    1986-11-01

    The electromagnetic ballooning mode, the curvature driven trapped electron mode and the toroidally induced ion temperature gradient mode have been studies. Eigenvalue equations have been derived and solved both numerically and analytically. For electromagnetic ballooning modes the effects of convective damping, finite Larmor radius, higher order curvature terms, and temperature gradients have been investigated. A fully toroidal fluid ion model has been developed. It is shown that a necessary and sufficient condition for an instability below the MHD limit is the presence of an ion temperature gradient. Analytical dispersion relations giving results in good agreement with numerical solutions are also presented. The curvature driven trapped electron modes are found to be unstable for virtually all parameters with growth rates of the order of the diamagnetic drift frequency. Studies have been made, using both a gyrokinetic ion description and the fully toroidal ion model. Both analytical and numerical results are presented and are found to be in good agreement. The toroidally induced ion temperature gradients modes are found to have a behavior similar to that of the curvature driven trapped electron modes and can in the electrostatic limit be described by a simple quadratic dispersion equation. (author)

  2. Statistical mechanics of paths with curvature dependent action

    International Nuclear Information System (INIS)

    Ambjoern, J.; Durhuus, B.; Jonsson, T.

    1987-01-01

    We analyze the scaling limit of discretized random paths with curvature dependent action. For finite values of the curvature coupling constant the theory belongs to the universality class of simple random walk. It is possible to define a non-trivial scaling limit if the curvature coupling tends to infinity. We compute exactly the two point function in this limit and discuss the relevance of our results for random surfaces and string theories. (orig.)

  3. GDP growth and the yield curvature

    DEFF Research Database (Denmark)

    Møller, Stig Vinther

    2014-01-01

    This paper examines the forecastability of GDP growth using information from the term structure of yields. In contrast to previous studies, the paper shows that the curvature of the yield curve contributes with much more forecasting power than the slope of yield curve. The yield curvature also...... predicts bond returns, implying a common element to time-variation in expected bond returns and expected GDP growth....

  4. High-power millimeter-wave mode converters in overmoded circular waveguides using periodic wall perturbations

    International Nuclear Information System (INIS)

    Thumm, M.

    1984-07-01

    This work reports on measurements and calculations (coupled mode equations) on the conversion of circular elecric TEsub(0n) gyrotron mode compositions (TE 01 to TE 04 ) at 28 and 70 GHz to the linearly polarized TE 11 mode by means of a mode converter system using periodic waveguide wall perturbations. Mode transducers with axisymmetric radius perturbations transform the TEsub(0n) gyrotron mode mixture to the more convenient TE 01 mode for long-distance transmission through overmoded waveguides. Proper matching of the phase differences between the TEsub(0n) modes and of lengths and perturbation amplitudes of the several converter sections is required. A mode converter with constant diameter and periodically perturbed curvature transfers the unpolarized TE 01 mode into the TE 11 mode which produces an almost linearly polarized millimeter-wave beam needed for efficient electron cyclotron heating (ECRH) of plasmas in thermonuclear fusion devices. The experimentally determined TEsub(0n)-to-TE 01 conversion efficiency is (98+-1)% at 28 and 70 GHz (99% predicted) while the TE 01 -to-TE 11 converter has a (96+-2)% conversion efficiency at 28 GHz (95% predicted) and (94+-2)% at 70 GHz (93% predicted); ohmic losses are included. (orig./AH)

  5. Singular perturbations of manifolds, with applications to the problem of motion in general relativity

    International Nuclear Information System (INIS)

    Kates, R.E.

    1979-01-01

    This thesis shows that a small body with possibly strong internal gravity moves through an empty region of a curved, and not necessarily asymptotically flat, external spacetime on an approximate geodesic. By approximate geodesic, the following is meant: Suppose the ratio epsilon = m/L 1 - where m is the body's mass and L is a curvature reference length of the external field - is a small parameter. Then the body's worldline deviates from a geodesic only by distances of at most THETA(epsilon) L over times of order L. The worldline is calculated directly from the Einstein field equation using a singular perturbation technique that has been generalized from the method of matched asymptotic expansions. The need for singular perturbation techniques has long been appreciated in fluid mechanics, where they are now standard procedure in problems in which the straightforward expansion in powers of a small parameter fails to give a correct qualitative picture. In part I of this thesis, singular perturbations on manifolds are formulated in a coordinate-free way suitable for treating problems in general relativity and other field theories. Most importantly for this thesis, the coordinate-free formulation of singular perturbations given in part I is essential for treatment of the problem of motion in part II

  6. Covariant perturbations of Schwarzschild black holes

    International Nuclear Information System (INIS)

    Clarkson, Chris A; Barrett, Richard K

    2003-01-01

    We present a new covariant and gauge-invariant perturbation formalism for dealing with spacetimes having spherical symmetry (or some preferred spatial direction) in the background, and apply it to the case of gravitational wave propagation in a Schwarzschild black-hole spacetime. The 1 + 3 covariant approach is extended to a '1 + 1 + 2 covariant sheet' formalism by introducing a radial unit vector in addition to the timelike congruence, and decomposing all covariant quantities with respect to this. The background Schwarzschild solution is discussed and a covariant characterization is given. We give the full first-order system of linearized 1 + 1 + 2 covariant equations, and we show how, by introducing (time and spherical) harmonic functions, these may be reduced to a system of first-order ordinary differential equations and algebraic constraints for the 1 + 1 + 2 variables which may be solved straightforwardly. We show how both odd- and even-parity perturbations may be unified by the discovery of a covariant, frame- and gauge-invariant, transverse-traceless tensor describing gravitational waves, which satisfies a covariant wave equation equivalent to the Regge-Wheeler equation for both even- and odd-parity perturbations. We show how the Zerilli equation may be derived from this tensor, and derive a similar transverse-traceless tensor equation equivalent to this equation. The so-called special quasinormal modes with purely imaginary frequency emerge naturally. The significance of the degrees of freedom in the choice of the two frame vectors is discussed, and we demonstrate that, for a certain frame choice, the underlying dynamics is governed purely by the Regge-Wheeler tensor. The two transverse-traceless Weyl tensors which carry the curvature of gravitational waves are discussed, and we give the closed system of four first-order ordinary differential equations describing their propagation. Finally, we consider the extension of this work to the study of

  7. Face recognition based on depth maps and surface curvature

    Science.gov (United States)

    Gordon, Gaile G.

    1991-09-01

    This paper explores the representation of the human face by features based on the curvature of the face surface. Curature captures many features necessary to accurately describe the face, such as the shape of the forehead, jawline, and cheeks, which are not easily detected from standard intensity images. Moreover, the value of curvature at a point on the surface is also viewpoint invariant. Until recently range data of high enough resolution and accuracy to perform useful curvature calculations on the scale of the human face had been unavailable. Although several researchers have worked on the problem of interpreting range data from curved (although usually highly geometrically structured) surfaces, the main approaches have centered on segmentation by signs of mean and Gaussian curvature which have not proved sufficient in themselves for the case of the human face. This paper details the calculation of principal curvature for a particular data set, the calculation of general surface descriptors based on curvature, and the calculation of face specific descriptors based both on curvature features and a priori knowledge about the structure of the face. These face specific descriptors can be incorporated into many different recognition strategies. A system that implements one such strategy, depth template comparison, giving recognition rates between 80% and 90% is described.

  8. INVESTIGATION OF CURVES SET BY CUBIC DISTRIBUTION OF CURVATURE

    Directory of Open Access Journals (Sweden)

    S. A. Ustenko

    2014-03-01

    Full Text Available Purpose. Further development of the geometric modeling of curvelinear contours of different objects based on the specified cubic curvature distribution and setpoints of curvature in the boundary points. Methodology. We investigate the flat section of the curvilinear contour generating under condition that cubic curvature distribution is set. Curve begins and ends at the given points, where angles of tangent slope and curvature are also determined. It was obtained the curvature equation of this curve, depending on the section length and coefficient c of cubic curvature distribution. The analysis of obtained equation was carried out. As well as, it was investigated the conditions, in which the inflection points of the curve are appearing. One should find such an interval of parameter change (depending on the input data and the section length, in order to place the inflection point of the curvature graph outside the curve section borders. It was determined the dependence of tangent slope of angle to the curve at its arbitrary point, as well as it was given the recommendations to solve a system of integral equations that allow finding the length of the curve section and the coefficient c of curvature cubic distribution. Findings. As the result of curves research, it is found that the criterion for their selection one can consider the absence of inflection points of the curvature on the observed section. Influence analysis of the parameter c on the graph of tangent slope angle to the curve showed that regardless of its value, it is provided the same rate of angle increase of tangent slope to the curve. Originality. It is improved the approach to geometric modeling of curves based on cubic curvature distribution with its given values at the boundary points by eliminating the inflection points from the observed section of curvilinear contours. Practical value. Curves obtained using the proposed method can be used for geometric modeling of curvilinear

  9. Generalized Curvature-Matter Couplings in Modified Gravity

    Directory of Open Access Journals (Sweden)

    Tiberiu Harko

    2014-07-01

    Full Text Available In this work, we review a plethora of modified theories of gravity with generalized curvature-matter couplings. The explicit nonminimal couplings, for instance, between an arbitrary function of the scalar curvature R and the Lagrangian density of matter, induces a non-vanishing covariant derivative of the energy-momentum tensor, implying non-geodesic motion and, consequently, leads to the appearance of an extra force. Applied to the cosmological context, these curvature-matter couplings lead to interesting phenomenology, where one can obtain a unified description of the cosmological epochs. We also consider the possibility that the behavior of the galactic flat rotation curves can be explained in the framework of the curvature-matter coupling models, where the extra terms in the gravitational field equations modify the equations of motion of test particles and induce a supplementary gravitational interaction. In addition to this, these models are extremely useful for describing dark energy-dark matter interactions and for explaining the late-time cosmic acceleration.

  10. A curvature theory for discrete surfaces based on mesh parallelity

    KAUST Repository

    Bobenko, Alexander Ivanovich

    2009-12-18

    We consider a general theory of curvatures of discrete surfaces equipped with edgewise parallel Gauss images, and where mean and Gaussian curvatures of faces are derived from the faces\\' areas and mixed areas. Remarkably these notions are capable of unifying notable previously defined classes of surfaces, such as discrete isothermic minimal surfaces and surfaces of constant mean curvature. We discuss various types of natural Gauss images, the existence of principal curvatures, constant curvature surfaces, Christoffel duality, Koenigs nets, contact element nets, s-isothermic nets, and interesting special cases such as discrete Delaunay surfaces derived from elliptic billiards. © 2009 Springer-Verlag.

  11. Translating solitons to symplectic and Lagrangian mean curvature flows

    International Nuclear Information System (INIS)

    Han Xiaoli; Li Jiayu

    2007-05-01

    In this paper, we construct finite blow-up examples for symplectic mean curvature flows and we study symplectic translating solitons. We prove that there is no translating solitons with vertical bar α vertical bar ≤ α 0 to the symplectic mean curvature flow or to the almost calibrated Lagrangian mean curvature flow for some α 0 . (author)

  12. Curvature reduces bending strains in the quokka femur

    Directory of Open Access Journals (Sweden)

    Kyle McCabe

    2017-03-01

    Full Text Available This study explores how curvature in the quokka femur may help to reduce bending strain during locomotion. The quokka is a small wallaby, but the curvature of the femur and the muscles active during stance phase are similar to most quadrupedal mammals. Our hypothesis is that the action of hip extensor and ankle plantarflexor muscles during stance phase place cranial bending strains that act to reduce the caudal curvature of the femur. Knee extensors and biarticular muscles that span the femur longitudinally create caudal bending strains in the caudally curved (concave caudal side bone. These opposing strains can balance each other and result in less strain on the bone. We test this idea by comparing the performance of a normally curved finite element model of the quokka femur to a digitally straightened version of the same bone. The normally curved model is indeed less strained than the straightened version. To further examine the relationship between curvature and the strains in the femoral models, we also tested an extra-curved and a reverse-curved version with the same loads. There appears to be a linear relationship between the curvature and the strains experienced by the models. These results demonstrate that longitudinal curvature in bones may be a manipulable mechanism whereby bone can induce a strain gradient to oppose strains induced by habitual loading.

  13. Sequence periodicity in nucleosomal DNA and intrinsic curvature.

    Science.gov (United States)

    Nair, T Murlidharan

    2010-05-17

    Most eukaryotic DNA contained in the nucleus is packaged by wrapping DNA around histone octamers. Histones are ubiquitous and bind most regions of chromosomal DNA. In order to achieve smooth wrapping of the DNA around the histone octamer, the DNA duplex should be able to deform and should possess intrinsic curvature. The deformability of DNA is a result of the non-parallelness of base pair stacks. The stacking interaction between base pairs is sequence dependent. The higher the stacking energy the more rigid the DNA helix, thus it is natural to expect that sequences that are involved in wrapping around the histone octamer should be unstacked and possess intrinsic curvature. Intrinsic curvature has been shown to be dictated by the periodic recurrence of certain dinucleotides. Several genome-wide studies directed towards mapping of nucleosome positions have revealed periodicity associated with certain stretches of sequences. In the current study, these sequences have been analyzed with a view to understand their sequence-dependent structures. Higher order DNA structures and the distribution of molecular bend loci associated with 146 base nucleosome core DNA sequence from C. elegans and chicken have been analyzed using the theoretical model for DNA curvature. The curvature dispersion calculated by cyclically permuting the sequences revealed that the molecular bend loci were delocalized throughout the nucleosome core region and had varying degrees of intrinsic curvature. The higher order structures associated with nucleosomes of C.elegans and chicken calculated from the sequences revealed heterogeneity with respect to the deviation of the DNA axis. The results points to the possibility of context dependent curvature of varying degrees to be associated with nucleosomal DNA.

  14. Dynamic curvature sensing employing ionic-polymer–metal composite sensors

    International Nuclear Information System (INIS)

    Bahramzadeh, Yousef; Shahinpoor, Mohsen

    2011-01-01

    A dynamic curvature sensor is presented based on ionic-polymer–metal composite (IPMC) for curvature monitoring of deployable/inflatable dynamic space structures. Monitoring the curvature variation is of high importance in various engineering structures including shape monitoring of deployable/inflatable space structures in which the structural boundaries undergo a dynamic deployment process. The high sensitivity of IPMCs to the applied deformations as well as its flexibility make IPMCs a promising candidate for sensing of dynamic curvature changes. Herein, we explore the dynamic response of an IPMC sensor strip with respect to controlled curvature deformations subjected to different forms of input functions. Using a specially designed experimental setup, the voltage recovery effect, phase delay, and rate dependency of the output voltage signal of an IPMC curvature sensor are analyzed. Experimental results show that the IPMC sensor maintains the linearity, sensitivity, and repeatability required for curvature sensing. Besides, in order to describe the dynamic phenomena such as the rate dependency of the IPMC sensor, a chemo-electro-mechanical model based on the Poisson–Nernst–Planck (PNP) equation for the kinetics of ion diffusion is presented. By solving the governing partial differential equations the frequency response of the IPMC sensor is derived. The physical model is able to describe the dynamic properties of the IPMC sensor and the dependency of the signal on rate of excitations

  15. Ghost instabilities of cosmological models with vector fields nonminimally coupled to the curvature

    International Nuclear Information System (INIS)

    Himmetoglu, Burak; Peloso, Marco; Contaldi, Carlo R.

    2009-01-01

    We prove that many cosmological models characterized by vectors nonminimally coupled to the curvature (such as the Turner-Widrow mechanism for the production of magnetic fields during inflation, and models of vector inflation or vector curvaton) contain ghosts. The ghosts are associated with the longitudinal vector polarization present in these models and are found from studying the sign of the eigenvalues of the kinetic matrix for the physical perturbations. Ghosts introduce two main problems: (1) they make the theories ill defined at the quantum level in the high energy/subhorizon regime (and create serious problems for finding a well-behaved UV completion), and (2) they create an instability already at the linearized level. This happens because the eigenvalue corresponding to the ghost crosses zero during the cosmological evolution. At this point the linearized equations for the perturbations become singular (we show that this happens for all the models mentioned above). We explicitly solve the equations in the simplest cases of a vector without a vacuum expectation value in a Friedmann-Robertson-Walker geometry, and of a vector with a vacuum expectation value plus a cosmological constant, and we show that indeed the solutions of the linearized equations diverge when these equations become singular.

  16. Continuous-Curvature Path Generation Using Fermat's Spiral

    Directory of Open Access Journals (Sweden)

    Anastasios M. Lekkas

    2013-10-01

    Full Text Available This paper proposes a novel methodology, based on Fermat's spiral (FS, for constructing curvature-continuous parametric paths in a plane. FS has a zero curvature at its origin, a property that allows it to be connected with a straight line smoothly, that is, without the curvature discontinuity which occurs at the transition point between a line and a circular arc when constructing Dubins paths. Furthermore, contrary to the computationally expensive clothoids, FS is described by very simple parametric equations that are trivial to compute. On the downside, computing the length of an FS arc involves a Gaussian hypergeometric function. However, this function is absolutely convergent and it is also shown that it poses no restrictions to the domain within which the length can be calculated. In addition, we present an alternative parametrization of FS which eliminates the parametric speed singularity at the origin, hence making the spiral suitable for path-tracking applications. A detailed description of how to construct curvature-continuous paths with FS is given.

  17. Influence of Coanda surface curvature on performance of bladeless fan

    Science.gov (United States)

    Li, Guoqi; Hu, Yongjun; Jin, Yingzi; Setoguchi, Toshiaki; Kim, Heuy Dong

    2014-10-01

    The unique Coanda surface has a great influence on the performance of bladeless fan. However, there is few studies to explain the relationship between the performance and Coanda surface curvature at present. In order to gain a qualitative understanding of effect of the curvature on the performance of bladeless fan, numerical studies are performed in this paper. Firstly, three-dimensional numerical simulation is done by Fluent software. For the purpose to obtain detailed information of the flow field around the Coanda surface, two-dimensional numerical simulation is also conducted. Five types of Coanda surfaces with different curvature are designed, and the flow behaviour and the performance of them are analyzed and compared with those of the prototype. The analysis indicates that the curvature of Coanda surface is strongly related to blowing performance, It is found that there is an optimal curvature of Coanda surfaces among the studied models. Simulation result shows that there is a special low pressure region. With increasing curvature in Y direction, several low pressure regions gradually enlarged, then begin to merge slowly, and finally form a large area of low pressure. From the analyses of streamlines and velocity angle, it is found that the magnitude of the curvature affects the flow direction and reasonable curvature can induce fluid flow close to the wall. Thus, it leads to that the curvature of the streamlines is consistent with that of Coanda surface. Meanwhile, it also causes the fluid movement towards the most suitable direction. This study will provide useful information to performance improvements of bladeless fans.

  18. Distributed mean curvature on a discrete manifold for Regge calculus

    International Nuclear Information System (INIS)

    Conboye, Rory; Miller, Warner A; Ray, Shannon

    2015-01-01

    The integrated mean curvature of a simplicial manifold is well understood in both Regge Calculus and Discrete Differential Geometry. However, a well motivated pointwise definition of curvature requires a careful choice of the volume over which to uniformly distribute the local integrated curvature. We show that hybrid cells formed using both the simplicial lattice and its circumcentric dual emerge as a remarkably natural structure for the distribution of this local integrated curvature. These hybrid cells form a complete tessellation of the simplicial manifold, contain a geometric orthonormal basis, and are also shown to give a pointwise mean curvature with a natural interpretation as the fractional rate of change of the normal vector. (paper)

  19. Distributed mean curvature on a discrete manifold for Regge calculus

    Science.gov (United States)

    Conboye, Rory; Miller, Warner A.; Ray, Shannon

    2015-09-01

    The integrated mean curvature of a simplicial manifold is well understood in both Regge Calculus and Discrete Differential Geometry. However, a well motivated pointwise definition of curvature requires a careful choice of the volume over which to uniformly distribute the local integrated curvature. We show that hybrid cells formed using both the simplicial lattice and its circumcentric dual emerge as a remarkably natural structure for the distribution of this local integrated curvature. These hybrid cells form a complete tessellation of the simplicial manifold, contain a geometric orthonormal basis, and are also shown to give a pointwise mean curvature with a natural interpretation as the fractional rate of change of the normal vector.

  20. Substrate curvature gradient drives rapid droplet motion.

    Science.gov (United States)

    Lv, Cunjing; Chen, Chao; Chuang, Yin-Chuan; Tseng, Fan-Gang; Yin, Yajun; Grey, Francois; Zheng, Quanshui

    2014-07-11

    Making small liquid droplets move spontaneously on solid surfaces is a key challenge in lab-on-chip and heat exchanger technologies. Here, we report that a substrate curvature gradient can accelerate micro- and nanodroplets to high speeds on both hydrophilic and hydrophobic substrates. Experiments for microscale water droplets on tapered surfaces show a maximum speed of 0.42  m/s, 2 orders of magnitude higher than with a wettability gradient. We show that the total free energy and driving force exerted on a droplet are determined by the substrate curvature and substrate curvature gradient, respectively. Using molecular dynamics simulations, we predict nanoscale droplets moving spontaneously at over 100  m/s on tapered surfaces.

  1. Effect of nano-scale curvature on the intrinsic blood coagulation system

    Science.gov (United States)

    Kushida, Takashi; Saha, Krishnendu; Subramani, Chandramouleeswaran; Nandwana, Vikas; Rotello, Vincent M.

    2014-11-01

    The intrinsic coagulation activity of silica nanoparticles strongly depends on their surface curvature. Nanoparticles with higher surface curvature do not denature blood coagulation factor XII on its surface, providing a coagulation `silent' surface, while nanoparticles with lower surface curvature show denaturation and concomitant coagulation.The intrinsic coagulation activity of silica nanoparticles strongly depends on their surface curvature. Nanoparticles with higher surface curvature do not denature blood coagulation factor XII on its surface, providing a coagulation `silent' surface, while nanoparticles with lower surface curvature show denaturation and concomitant coagulation. Electronic supplementary information (ESI) available: Physical properties and scanning electron micrographs (SEM) of silica NPs, intrinsic coagulation activity after 3 h. See DOI: 10.1039/c4nr04128c

  2. Effect of Plate Curvature on Blast Response of Structural Steel Plates

    Science.gov (United States)

    Veeredhi, Lakshmi Shireen Banu; Ramana Rao, N. V.; Veeredhi, Vasudeva Rao

    2018-04-01

    In the present work an attempt is made, through simulation studies, to determine the effect of plate curvature on the blast response of a door structure made of ASTM A515 grade 50 steel plates. A door structure with dimensions of 5.142 m × 2.56 m × 10 mm having six different radii of curvatures is analyzed which is subjected to blast load. The radii of curvature investigated are infinity (flat plate), 16.63, 10.81, 8.26, 6.61 and 5.56 m. In the present study, a stand-off distance of 11 m is considered for all the cases. Results showed that the door structure with smallest radius of curvature experienced least plastic deformation and yielding when compared to a door with larger radius of curvature with same projected area. From the present Investigation, it is observed that, as the radius of curvature of the plate increases, the deformation mode gradually shifts from indentation mode to flexural mode. The plates with infinity and 16.63 m radius of curvature have undergone flexural mode of deformation and plates with 6.61 and 5.56 m radius of curvature undergo indentation mode of deformation. Whereas, mixed mode of deformation that consists of both flexural and indentation mode of deformations are seen in the plates with radius of curvature 10.81 and 8.26 m. As the radius of curvature of the plate decreases the ability of the plate to mitigate the effect the blast loads increased. It is observed that the plate with smaller radius of curvature deflects most of the blast energy and results in least indentation mode of deformation. The most significant observation made in the present investigation is that the strain energy absorbed by the steel plate gets reduced to 1/3 rd when the radius of curvature is approximately equal to the stand-off distance which could be the critical radius of curvature.

  3. On Riemannian manifolds (Mn, g) of quasi-constant curvature

    International Nuclear Information System (INIS)

    Rahman, M.S.

    1995-07-01

    A Riemannian manifold (M n , g) of quasi-constant curvature is defined. It is shown that an (M n , g) in association with other class of manifolds gives rise, under certain conditions, to a manifold of quasi-constant curvature. Some observations on how a manifold of quasi-constant curvature accounts for a pseudo Ricci-symmetric manifold and quasi-umbilical hypersurface are made. (author). 10 refs

  4. Cholera toxin B subunit induces local curvature on lipid bilayers

    DEFF Research Database (Denmark)

    Pezeshkian, Weria; Nåbo, Lina J.; Ipsen, John H.

    2017-01-01

    B induces a local membrane curvature that is essential for its clathrin-independent uptake. Using all-atom molecular dynamics, we show that CTxB induces local curvature, with the radius of curvature around 36 nm. The main feature of the CTxB molecular structure that causes membrane bending is the protruding...... alpha helices in the middle of the protein. Our study points to a generic protein design principle for generating local membrane curvature through specific binding to their lipid anchors....

  5. General background conditions for K-bounce and adiabaticity

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Antonio Enea [University of Crete, Department of Physics, Heraklion (Greece); Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Universidad de Antioquia, Instituto de Fisica, A.A.1226, Medellin (Colombia)

    2017-03-15

    We study the background conditions for a bounce uniquely driven by a single scalar field model with a generalized kinetic term K(X), without any additional matter field. At the background level we impose the existence of two turning points where the derivative of the Hubble parameter H changes sign and of a bounce point where the Hubble parameter vanishes. We find the conditions for K(X) and the potential which ensure the above requirements. We then give the examples of two models constructed according to these conditions. One is based on a quadratic K(X), and the other on a K(X) which is avoiding divergences of the second time derivative of the scalar field, which may otherwise occur. An appropriate choice of the initial conditions can lead to a sequence of consecutive bounces, or oscillations of H. In the region where these models have a constant potential they are adiabatic on any scale and because of this they may not conserve curvature perturbations on super-horizon scales. While at the perturbation level one class of models is free from ghosts and singularities of the classical equations of motion, in general gradient instabilities are present around the bounce time, because the sign of the squared speed of sound is opposite to the sign of the time derivative of H. We discuss how this kind of instabilities could be avoided by modifying the Lagrangian by introducing Galilean terms in order to prevent a negative squared speed of sound around the bounce. (orig.)

  6. General background conditions for K-bounce and adiabaticity

    International Nuclear Information System (INIS)

    Romano, Antonio Enea

    2017-01-01

    We study the background conditions for a bounce uniquely driven by a single scalar field model with a generalized kinetic term K(X), without any additional matter field. At the background level we impose the existence of two turning points where the derivative of the Hubble parameter H changes sign and of a bounce point where the Hubble parameter vanishes. We find the conditions for K(X) and the potential which ensure the above requirements. We then give the examples of two models constructed according to these conditions. One is based on a quadratic K(X), and the other on a K(X) which is avoiding divergences of the second time derivative of the scalar field, which may otherwise occur. An appropriate choice of the initial conditions can lead to a sequence of consecutive bounces, or oscillations of H. In the region where these models have a constant potential they are adiabatic on any scale and because of this they may not conserve curvature perturbations on super-horizon scales. While at the perturbation level one class of models is free from ghosts and singularities of the classical equations of motion, in general gradient instabilities are present around the bounce time, because the sign of the squared speed of sound is opposite to the sign of the time derivative of H. We discuss how this kind of instabilities could be avoided by modifying the Lagrangian by introducing Galilean terms in order to prevent a negative squared speed of sound around the bounce. (orig.)

  7. Curvature collineations for the field of gravitational waves

    International Nuclear Information System (INIS)

    Singh, K.P.; Singh, Gulab

    1981-01-01

    It has been shown that the space-times formed from a plane-fronted gravity wave and from a plane sandwich wave with constant polarisation admit proper curvature collineation in general. The curvature collineation vectors have been determined explicitly. (author)

  8. Remarks on the boundary curve of a constant mean curvature topological disc

    DEFF Research Database (Denmark)

    Brander, David; Lopéz, Rafael

    2017-01-01

    We discuss some consequences of the existence of the holomorphic quadratic Hopf differential on a conformally immersed constant mean curvature topological disc with analytic boundary. In particular, we derive a formula for the mean curvature as a weighted average of the normal curvature of the bo......We discuss some consequences of the existence of the holomorphic quadratic Hopf differential on a conformally immersed constant mean curvature topological disc with analytic boundary. In particular, we derive a formula for the mean curvature as a weighted average of the normal curvature...

  9. Cosmic curvature from de Sitter equilibrium cosmology.

    Science.gov (United States)

    Albrecht, Andreas

    2011-10-07

    I show that the de Sitter equilibrium cosmology generically predicts observable levels of curvature in the Universe today. The predicted value of the curvature, Ω(k), depends only on the ratio of the density of nonrelativistic matter to cosmological constant density ρ(m)(0)/ρ(Λ) and the value of the curvature from the initial bubble that starts the inflation, Ω(k)(B). The result is independent of the scale of inflation, the shape of the potential during inflation, and many other details of the cosmology. Future cosmological measurements of ρ(m)(0)/ρ(Λ) and Ω(k) will open up a window on the very beginning of our Universe and offer an opportunity to support or falsify the de Sitter equilibrium cosmology.

  10. Radion stabilization in higher curvature warped spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Das, Ashmita [Indian Institute of Technology, Department of Physics, Guwahati, Assam (India); Mukherjee, Hiya; Paul, Tanmoy; SenGupta, Soumitra [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)

    2018-02-15

    We consider a five dimensional AdS spacetime in presence of higher curvature term like F(R) = R + αR{sup 2} in the bulk. In this model, we examine the possibility of modulus stabilization from the scalar degrees of freedom of higher curvature gravity free of ghosts. Our result reveals that the model stabilizes itself and the mechanism of modulus stabilization can be argued from a geometric point of view. We determine the region of the parametric space for which the modulus (or radion) can to be stabilized. We also show how the mass and coupling parameters of radion field are modified due to higher curvature term leading to modifications of its phenomenological implications on the visible 3-brane. (orig.)

  11. Robust modal curvature features for identifying multiple damage in beams

    Science.gov (United States)

    Ostachowicz, Wiesław; Xu, Wei; Bai, Runbo; Radzieński, Maciej; Cao, Maosen

    2014-03-01

    Curvature mode shape is an effective feature for damage detection in beams. However, it is susceptible to measurement noise, easily impairing its advantage of sensitivity to damage. To deal with this deficiency, this study formulates an improved curvature mode shape for multiple damage detection in beams based on integrating a wavelet transform (WT) and a Teager energy operator (TEO). The improved curvature mode shape, termed the WT - TEO curvature mode shape, has inherent capabilities of immunity to noise and sensitivity to damage. The proposed method is experimentally validated by identifying multiple cracks in cantilever steel beams with the mode shapes acquired using a scanning laser vibrometer. The results demonstrate that the improved curvature mode shape can identify multiple damage accurately and reliably, and it is fairly robust to measurement noise.

  12. The speed-curvature power law of movements: a reappraisal.

    Science.gov (United States)

    Zago, Myrka; Matic, Adam; Flash, Tamar; Gomez-Marin, Alex; Lacquaniti, Francesco

    2018-01-01

    Several types of curvilinear movements obey approximately the so called 2/3 power law, according to which the angular speed varies proportionally to the 2/3 power of the curvature. The origin of the law is debated but it is generally thought to depend on physiological mechanisms. However, a recent paper (Marken and Shaffer, Exp Brain Res 88:685-690, 2017) claims that this power law is simply a statistical artifact, being a mathematical consequence of the way speed and curvature are calculated. Here we reject this hypothesis by showing that the speed-curvature power law of biological movements is non-trivial. First, we confirm that the power exponent varies with the shape of human drawing movements and with environmental factors. Second, we report experimental data from Drosophila larvae demonstrating that the power law does not depend on how curvature is calculated. Third, we prove that the law can be violated by means of several mathematical and physical examples. Finally, we discuss biological constraints that may underlie speed-curvature power laws discovered in empirical studies.

  13. Extrinsic and intrinsic curvatures in thermodynamic geometry

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini Mansoori, Seyed Ali, E-mail: shossein@bu.edu [Department of Physics, Boston University, 590 Commonwealth Ave., Boston, MA 02215 (United States); Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Sharifian, Elham, E-mail: e.sharifian@ph.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2016-08-10

    We investigate the intrinsic and extrinsic curvatures of a certain hypersurface in thermodynamic geometry of a physical system and show that they contain useful thermodynamic information. For an anti-Reissner–Nordström-(A)de Sitter black hole (Phantom), the extrinsic curvature of a constant Q hypersurface has the same sign as the heat capacity around the phase transition points. The intrinsic curvature of the hypersurface can also be divergent at the critical points but has no information about the sign of the heat capacity. Our study explains the consistent relationship holding between the thermodynamic geometry of the KN-AdS black holes and those of the RN (J-zero hypersurface) and Kerr black holes (Q-zero hypersurface) ones [1]. This approach can easily be generalized to an arbitrary thermodynamic system.

  14. Extrinsic and intrinsic curvatures in thermodynamic geometry

    International Nuclear Information System (INIS)

    Hosseini Mansoori, Seyed Ali; Mirza, Behrouz; Sharifian, Elham

    2016-01-01

    We investigate the intrinsic and extrinsic curvatures of a certain hypersurface in thermodynamic geometry of a physical system and show that they contain useful thermodynamic information. For an anti-Reissner–Nordström-(A)de Sitter black hole (Phantom), the extrinsic curvature of a constant Q hypersurface has the same sign as the heat capacity around the phase transition points. The intrinsic curvature of the hypersurface can also be divergent at the critical points but has no information about the sign of the heat capacity. Our study explains the consistent relationship holding between the thermodynamic geometry of the KN-AdS black holes and those of the RN (J-zero hypersurface) and Kerr black holes (Q-zero hypersurface) ones [1]. This approach can easily be generalized to an arbitrary thermodynamic system.

  15. Positive spatial curvature does not falsify the landscape

    Science.gov (United States)

    Horn, B.

    2017-12-01

    We present a simple cosmological model where the quantum tunneling of a scalar field rearranges the energetics of the matter sector, sending a stable static ancestor vacuum with positive spatial curvature into an inating solution with positive curvature. This serves as a proof of principle that an observation of positive spatial curvature does not falsify the hypothesis that our current observer patch originated from false vacuum tunneling in a string or field theoretic landscape. This poster submission is a summary of the work, and was presented at the 3rd annual ICPPA held in Moscow from October 2 to 5, 2017, by Prof. Rostislav Konoplich on behalf of the author.

  16. Influence of implant rod curvature on sagittal correction of scoliosis deformity.

    Science.gov (United States)

    Salmingo, Remel Alingalan; Tadano, Shigeru; Abe, Yuichiro; Ito, Manabu

    2014-08-01

    Deformation of in vivo-implanted rods could alter the scoliosis sagittal correction. To our knowledge, no previous authors have investigated the influence of implanted-rod deformation on the sagittal deformity correction during scoliosis surgery. To analyze the changes of the implant rod's angle of curvature during surgery and establish its influence on sagittal correction of scoliosis deformity. A retrospective analysis of the preoperative and postoperative implant rod geometry and angle of curvature was conducted. Twenty adolescent idiopathic scoliosis patients underwent surgery. Average age at the time of operation was 14 years. The preoperative and postoperative implant rod angle of curvature expressed in degrees was obtained for each patient. Two implant rods were attached to the concave and convex side of the spinal deformity. The preoperative implant rod geometry was measured before surgical implantation. The postoperative implant rod geometry after surgery was measured by computed tomography. The implant rod angle of curvature at the sagittal plane was obtained from the implant rod geometry. The angle of curvature between the implant rod extreme ends was measured before implantation and after surgery. The sagittal curvature between the corresponding spinal levels of healthy adolescents obtained by previous studies was compared with the implant rod angle of curvature to evaluate the sagittal curve correction. The difference between the postoperative implant rod angle of curvature and normal spine sagittal curvature of the corresponding instrumented level was used to evaluate over or under correction of the sagittal deformity. The implant rods at the concave side of deformity of all patients were significantly deformed after surgery. The average degree of rod deformation Δθ at the concave and convex sides was 15.8° and 1.6°, respectively. The average preoperative and postoperative implant rod angle of curvature at the concave side was 33.6° and 17.8

  17. Bacterial cell curvature through mechanical control of cell growth

    DEFF Research Database (Denmark)

    Cabeen, M.; Charbon, Godefroid; Vollmer, W.

    2009-01-01

    The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure...... that collapses into a helix when detached from the cell membrane, suggesting that it is normally maintained in a stretched configuration. Crescentin causes an elongation rate gradient around the circumference of the sidewall, creating a longitudinal cell length differential and hence curvature. Such curvature...... can be produced by physical force alone when cells are grown in circular microchambers. Production of crescentin in Escherichia coli is sufficient to generate cell curvature. Our data argue for a model in which physical strain borne by the crescentin structure anisotropically alters the kinetics...

  18. Discrimination of curvature from motion during smooth pursuit eye movements and fixation.

    Science.gov (United States)

    Ross, Nicholas M; Goettker, Alexander; Schütz, Alexander C; Braun, Doris I; Gegenfurtner, Karl R

    2017-09-01

    Smooth pursuit and motion perception have mainly been investigated with stimuli moving along linear trajectories. Here we studied the quality of pursuit movements to curved motion trajectories in human observers and examined whether the pursuit responses would be sensitive enough to discriminate various degrees of curvature. In a two-interval forced-choice task subjects pursued a Gaussian blob moving along a curved trajectory and then indicated in which interval the curve was flatter. We also measured discrimination thresholds for the same curvatures during fixation. Motion curvature had some specific effects on smooth pursuit properties: trajectories with larger amounts of curvature elicited lower open-loop acceleration, lower pursuit gain, and larger catch-up saccades compared with less curved trajectories. Initially, target motion curvatures were underestimated; however, ∼300 ms after pursuit onset pursuit responses closely matched the actual curved trajectory. We calculated perceptual thresholds for curvature discrimination, which were on the order of 1.5 degrees of visual angle (°) for a 7.9° curvature standard. Oculometric sensitivity to curvature discrimination based on the whole pursuit trajectory was quite similar to perceptual performance. Oculometric thresholds based on smaller time windows were higher. Thus smooth pursuit can quite accurately follow moving targets with curved trajectories, but temporal integration over longer periods is necessary to reach perceptual thresholds for curvature discrimination. NEW & NOTEWORTHY Even though motion trajectories in the real world are frequently curved, most studies of smooth pursuit and motion perception have investigated linear motion. We show that pursuit initially underestimates the curvature of target motion and is able to reproduce the target curvature ∼300 ms after pursuit onset. Temporal integration of target motion over longer periods is necessary for pursuit to reach the level of precision found

  19. Does the planck mass run on the cosmological-horizon scale?

    Science.gov (United States)

    Robbers, Georg; Afshordi, Niayesh; Doran, Michael

    2008-03-21

    Einstein's theory of general relativity contains a universal value of the Planck mass. However, one may envisage that in alternative theories of gravity the effective value of the Planck mass (or Newton's constant), which quantifies the coupling of matter to metric perturbations, can run on the cosmological-horizon scale. In this Letter, we study the consequences of a glitch in the Planck mass from subhorizon to superhorizon scales. We show that current cosmological observations severely constrain this glitch to less than 1.2%.

  20. Single Lipid Molecule Dynamics on Supported Lipid Bilayers with Membrane Curvature

    Directory of Open Access Journals (Sweden)

    Philip P. Cheney

    2017-03-01

    Full Text Available The plasma membrane is a highly compartmentalized, dynamic material and this organization is essential for a wide variety of cellular processes. Nanoscale domains allow proteins to organize for cell signaling, endo- and exocytosis, and other essential processes. Even in the absence of proteins, lipids have the ability to organize into domains as a result of a variety of chemical and physical interactions. One feature of membranes that affects lipid domain formation is membrane curvature. To directly test the role of curvature in lipid sorting, we measured the accumulation of two similar lipids, 1,2-Dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DHPE and hexadecanoic acid (HDA, using a supported lipid bilayer that was assembled over a nanopatterned surface to obtain regions of membrane curvature. Both lipids studied contain 16 carbon, saturated tails and a head group tag for fluorescence microscopy measurements. The accumulation of lipids at curvatures ranging from 28 nm to 55 nm radii was measured and fluorescein labeled DHPE accumulated more than fluorescein labeled HDA at regions of membrane curvature. We then tested whether single biotinylated DHPE molecules sense curvature using single particle tracking methods. Similar to groups of fluorescein labeled DHPE accumulating at curvature, the dynamics of single molecules of biotinylated DHPE was also affected by membrane curvature and highly confined motion was observed.

  1. New curvature-torsion relations through decomposition of the Bianchi identities

    International Nuclear Information System (INIS)

    Davies, J.B.

    1988-01-01

    The Bianchi Identities relating asymmetric curvature to torsion are obtained as a new set of equations governing second-order curvature tensors. The usual contribution of symmetric curvature to the gravitational field is found to be a subset of these identities though with an added contribution due to torsion gradients. The antisymmetric curvature two-tensor is shown to be related to the divergence of the torsion. Using a model of particle-antiparticle pair production, identification of certain torsion components with electroweak fields is proposed. These components obey equations, similar to Maxwell's that are subsets of these linear Bianchi identities. These results are shown to be consistent with gauge and other previous analyses

  2. Effects on Buildings of Surface Curvature Caused by Underground Coal Mining

    Directory of Open Access Journals (Sweden)

    Haifeng Hu

    2016-08-01

    Full Text Available Ground curvature caused by underground mining is one of the most obvious deformation quantities in buildings. To study the influence of surface curvature on buildings and predict the movement and deformation of buildings caused by ground curvature, a prediction model of the influence function on mining subsidence was used to establish the relationship between surface curvature and wall deformation. The prediction model of wall deformation was then established and the surface curvature was obtained from mining subsidence prediction software. Five prediction lines were set up in the wall from bottom to top and the predicted deformation of each line was used to calculate the crack positions in the wall. Thus, the crack prediction model was obtained. The model was verified by a case study from a coalmine in Shanxi, China. The results show that when the ground curvature is positive, the crack in the wall is shaped like a “V”; when the ground curvature is negative, the crack is shaped like a “∧”. The conclusion provides the basis for a damage evaluation method for buildings in coalmine areas.

  3. Advanced Curvature Deformable Mirrors

    Science.gov (United States)

    2010-09-01

    ORGANIZATION NAME(S) AND ADDRESS(ES) University of Hawaii ,Institute for Astronomy,640 North A‘ohoku Place, #209 , Hilo ,HI,96720-2700 8. PERFORMING...Advanced Curvature Deformable Mirrors Christ Ftaclas1,2, Aglae Kellerer2 and Mark Chun2 Institute for Astronomy, University of Hawaii

  4. Effect of nano-scale curvature on the intrinsic blood coagulation system

    Science.gov (United States)

    Kushida, Takashi; Saha, Krishnendu; Subramani, Chandramouleeswaran; Nandwana, Vikas; Rotello, Vincent M.

    2014-01-01

    The intrinsic coagulation activity of silica nanoparticles strongly depends on their surface curvature. Nanoparticles with higher surface curvature do not denature blood coagulation factor XII on its surface, providing a coagulation ‘silent’ surface, while nanoparticles with lower surface curvature shows denaturation and concomitant coagulation. PMID:25341004

  5. A geometric construction of the Riemann scalar curvature in Regge calculus

    International Nuclear Information System (INIS)

    McDonald, Jonathan R; Miller, Warner A

    2008-01-01

    The Riemann scalar curvature plays a central role in Einstein's geometric theory of gravity. We describe a new geometric construction of this scalar curvature invariant at an event (vertex) in a discrete spacetime geometry. This allows one to constructively measure the scalar curvature using only clocks and photons. Given recent interest in discrete pre-geometric models of quantum gravity, we believe is it ever so important to reconstruct the curvature scalar with respect to a finite number of communicating observers. This derivation makes use of a new fundamental lattice cell built from elements inherited from both the original simplicial (Delaunay) spacetime and its circumcentric dual (Voronoi) lattice. The orthogonality properties between these two lattices yield an expression for the vertex-based scalar curvature which is strikingly similar to the corresponding hinge-based expression in Regge calculus (deficit angle per unit Voronoi dual area). In particular, we show that the scalar curvature is simply a vertex-based weighted average of deficits per weighted average of dual areas

  6. A geometric construction of the Riemann scalar curvature in Regge calculus

    Science.gov (United States)

    McDonald, Jonathan R.; Miller, Warner A.

    2008-10-01

    The Riemann scalar curvature plays a central role in Einstein's geometric theory of gravity. We describe a new geometric construction of this scalar curvature invariant at an event (vertex) in a discrete spacetime geometry. This allows one to constructively measure the scalar curvature using only clocks and photons. Given recent interest in discrete pre-geometric models of quantum gravity, we believe is it ever so important to reconstruct the curvature scalar with respect to a finite number of communicating observers. This derivation makes use of a new fundamental lattice cell built from elements inherited from both the original simplicial (Delaunay) spacetime and its circumcentric dual (Voronoi) lattice. The orthogonality properties between these two lattices yield an expression for the vertex-based scalar curvature which is strikingly similar to the corresponding hinge-based expression in Regge calculus (deficit angle per unit Voronoi dual area). In particular, we show that the scalar curvature is simply a vertex-based weighted average of deficits per weighted average of dual areas.

  7. Model-independent Constraints on Cosmic Curvature and Opacity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guo-Jian; Li, Zheng-Xiang; Xia, Jun-Qing; Zhu, Zong-Hong [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Wei, Jun-Jie, E-mail: gjwang@mail.bnu.edu.cn, E-mail: zxli918@bnu.edu.cn, E-mail: xiajq@bnu.edu.cn, E-mail: zhuzh@bnu.edu.cn, E-mail: jjwei@pmo.ac.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2017-09-20

    In this paper, we propose to estimate the spatial curvature of the universe and the cosmic opacity in a model-independent way with expansion rate measurements, H ( z ), and type Ia supernova (SNe Ia). On the one hand, using a nonparametric smoothing method Gaussian process, we reconstruct a function H ( z ) from opacity-free expansion rate measurements. Then, we integrate the H ( z ) to obtain distance modulus μ {sub H}, which is dependent on the cosmic curvature. On the other hand, distances of SNe Ia can be determined by their photometric observations and thus are opacity-dependent. In our analysis, by confronting distance moduli μ {sub H} with those obtained from SNe Ia, we achieve estimations for both the spatial curvature and the cosmic opacity without any assumptions for the cosmological model. Here, it should be noted that light curve fitting parameters, accounting for the distance estimation of SNe Ia, are determined in a global fit together with the cosmic opacity and spatial curvature to get rid of the dependence of these parameters on cosmology. In addition, we also investigate whether the inclusion of different priors for the present expansion rate ( H {sub 0}: global estimation, 67.74 ± 0.46 km s{sup −1} Mpc{sup −1}, and local measurement, 73.24 ± 1.74 km s{sup −1} Mpc{sup −1}) exert influence on the reconstructed H ( z ) and the following estimations of the spatial curvature and cosmic opacity. Results show that, in general, a spatially flat and transparent universe is preferred by the observations. Moreover, it is suggested that priors for H {sub 0} matter a lot. Finally, we find that there is a strong degeneracy between the curvature and the opacity.

  8. Long-term Results of Ventral Penile Curvature Repair in Childhood.

    Science.gov (United States)

    Golomb, Dor; Sivan, Bezalel; Livne, Pinhas M; Nevo, Amihay; Ben-Meir, David

    2018-02-01

    To assess the postpubertal outcome of ventral penile curvature repaired in infancy in terms of recurrence and aesthetics. Postpubertal patients treated for hypospadias and ventral penile curvature in infancy at a tertiary medical center were invited to undergo assessment of the quality of the repair. Findings were compared between patients with a straight penis after skin release and patients who required dorsal plication. The cohort included 27 patients of mean age 16.5 years who were reported with straight penis after surgery. Postpubertal curvature was found in 6 of 14 patients (43%) successfully treated by skin release and 10 of 13 patients (77%) who underwent dorsal plication (P = .087). Significant curvature (≥30 degrees) was found in 1 of 14 patients in the skin-release group and 4 of 13 in the dorsal plication group (P = .16). Rates of redo urethroplasty were 2 of 14 (14%) and 5 of 10 (50%), respectively. Patient satisfaction with the appearance of the penis did not differ significantly. Ventral penile curvature repaired in infancy often recurs after puberty. The need for dorsal plication has a trend-level association with recurrence of penile curvature in puberty. It might also be related to the degree of postpubertal penile curvature and the need for redo urethroplasty. Procedure type does not affect patient satisfaction with the postpubertal appearance of the penis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. On the scalar curvature of self-dual manifolds

    International Nuclear Information System (INIS)

    Kim, J.

    1992-08-01

    We generalize LeBrun's explicit ''hyperbolic ansatz'' construction of self-dual metrics on connected sums of conformally flat manifolds and CP 2 's through a systematic use of the theory of hyperbolic geometry and Kleinian groups. (This construction produces, for example, all self-dual manifolds with semi-free S 1 -action and with either nonnegative scalar curvature or positive-definite intersection form.) We then point out a simple criterion for determining the sign of the scalar curvature of these conformal metrics. Exploiting this, we then show that the sign of the scalar curvature can change on connected components of the moduli space of self-dual metrics, thereby answering a question raised by King and Kotschick. (author). Refs

  10. On a curvature-statistics theorem

    International Nuclear Information System (INIS)

    Calixto, M; Aldaya, V

    2008-01-01

    The spin-statistics theorem in quantum field theory relates the spin of a particle to the statistics obeyed by that particle. Here we investigate an interesting correspondence or connection between curvature (κ = ±1) and quantum statistics (Fermi-Dirac and Bose-Einstein, respectively). The interrelation between both concepts is established through vacuum coherent configurations of zero modes in quantum field theory on the compact O(3) and noncompact O(2; 1) (spatial) isometry subgroups of de Sitter and Anti de Sitter spaces, respectively. The high frequency limit, is retrieved as a (zero curvature) group contraction to the Newton-Hooke (harmonic oscillator) group. We also make some comments on the physical significance of the vacuum energy density and the cosmological constant problem.

  11. On a curvature-statistics theorem

    Energy Technology Data Exchange (ETDEWEB)

    Calixto, M [Departamento de Matematica Aplicada y Estadistica, Universidad Politecnica de Cartagena, Paseo Alfonso XIII 56, 30203 Cartagena (Spain); Aldaya, V [Instituto de Astrofisica de Andalucia, Apartado Postal 3004, 18080 Granada (Spain)], E-mail: Manuel.Calixto@upct.es

    2008-08-15

    The spin-statistics theorem in quantum field theory relates the spin of a particle to the statistics obeyed by that particle. Here we investigate an interesting correspondence or connection between curvature ({kappa} = {+-}1) and quantum statistics (Fermi-Dirac and Bose-Einstein, respectively). The interrelation between both concepts is established through vacuum coherent configurations of zero modes in quantum field theory on the compact O(3) and noncompact O(2; 1) (spatial) isometry subgroups of de Sitter and Anti de Sitter spaces, respectively. The high frequency limit, is retrieved as a (zero curvature) group contraction to the Newton-Hooke (harmonic oscillator) group. We also make some comments on the physical significance of the vacuum energy density and the cosmological constant problem.

  12. Intensity-Curvature Measurement Approaches for the Diagnosis of Magnetic Resonance Imaging Brain Tumors

    Directory of Open Access Journals (Sweden)

    Carlo Ciulla

    2015-11-01

    Full Text Available This research presents signal-image post-processing techniques called Intensity-Curvature Measurement Approaches with application to the diagnosis of human brain tumors detected through Magnetic Resonance Imaging (MRI. Post-processing of the MRI of the human brain encompasses the following model functions: (i bivariate cubic polynomial, (ii bivariate cubic Lagrange polynomial, (iii monovariate sinc, and (iv bivariate linear. The following Intensity-Curvature Measurement Approaches were used: (i classic-curvature, (ii signal resilient to interpolation, (iii intensity-curvature measure and (iv intensity-curvature functional. The results revealed that the classic-curvature, the signal resilient to interpolation and the intensity-curvature functional are able to add additional information useful to the diagnosis carried out with MRI. The contribution to the MRI diagnosis of our study are: (i the enhanced gray level scale of the tumor mass and the well-behaved representation of the tumor provided through the signal resilient to interpolation, and (ii the visually perceptible third dimension perpendicular to the image plane provided through the classic-curvature and the intensity-curvature functional.

  13. Statistical mechanics of surfaces with curvature dependent action

    International Nuclear Information System (INIS)

    Jonsson, T.

    1987-01-01

    We review recent results about discretized random surfaces whose action (energy) depends on the extrinsic curvature. The surface tension scales to zero at an appropriate critical point if the coupling constant of the curvature term is taken to infinity. At this critical point one expects to be able to construct a continuum theory of smooth surfaces. (orig.)

  14. A 1 + 5-dimensional gravitational-wave solution. Curvature singularity and spacetime singularity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Zhu [Tianjin University, Department of Physics, Tianjin (China); Li, Wen-Du [Tianjin University, Department of Physics, Tianjin (China); Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Dai, Wu-Sheng [Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Nankai University and Tianjin University, LiuHui Center for Applied Mathematics, Tianjin (China)

    2017-12-15

    We solve a 1 + 5-dimensional cylindrical gravitational-wave solution of the Einstein equation, in which there are two curvature singularities. Then we show that one of the curvature singularities can be removed by an extension of the spacetime. The result exemplifies that the curvature singularity is not always a spacetime singularity; in other words, the curvature singularity cannot serve as a criterion for spacetime singularities. (orig.)

  15. Numerical and Theoretical Investigations Concerning the Continuous-Surface-Curvature Effect in Compressor Blades

    Directory of Open Access Journals (Sweden)

    Yin Song

    2014-12-01

    Full Text Available Though the importance of curvature continuity on compressor blade performances has been realized, there are two major questions that need to be solved, i.e., the respective effects of curvature continuity at the leading-edge blend point and the main surface, and the contradiction between the traditional theory and experimental observations in the effect of those novel leading-edge shapes with smaller curvature discontinuity and sharper nose. In this paper, an optimization method to design continuous-curvature blade profiles which deviate little from datum blades is proposed, and numerical and theoretical analysis is carried out to investigate the continuous-curvature effect on blade performances. The results show that the curvature continuity at the leading-edge blend point helps to eliminate the separation bubble, thus improving the blade performance. The main-surface curvature continuity is also beneficial, although its effects are much smaller than those of the blend-point curvature continuity. Furthermore, it is observed that there exist two factors controlling the leading-edge spike, i.e., the curvature discontinuity at the blend point which dominates at small incidences, and the nose curvature which dominates at large incidences. To the authors’ knowledge, such mechanisms have not been reported before, and they can help to solve the sharp-leading-edge paradox.

  16. Higher Curvature Gravity from Entanglement in Conformal Field Theories

    Science.gov (United States)

    Haehl, Felix M.; Hijano, Eliot; Parrikar, Onkar; Rabideau, Charles

    2018-05-01

    By generalizing different recent works to the context of higher curvature gravity, we provide a unifying framework for three related results: (i) If an asymptotically anti-de Sitter (AdS) spacetime computes the entanglement entropies of ball-shaped regions in a conformal field theory using a generalized Ryu-Takayanagi formula up to second order in state deformations around the vacuum, then the spacetime satisfies the correct gravitational equations of motion up to second order around the AdS background. (ii) The holographic dual of entanglement entropy in higher curvature theories of gravity is given by the Wald entropy plus a particular correction term involving extrinsic curvatures. (iii) Conformal field theory relative entropy is dual to gravitational canonical energy (also in higher curvature theories of gravity). Especially for the second point, our novel derivation of this previously known statement does not involve the Euclidean replica trick.

  17. Amphipathic motifs in BAR domains are essential for membrane curvature sensing

    DEFF Research Database (Denmark)

    Bhatia, Vikram K; Madsen, Kenneth L; Bolinger, Pierre-Yves

    2009-01-01

    BAR (Bin/Amphiphysin/Rvs) domains and amphipathic alpha-helices (AHs) are believed to be sensors of membrane curvature thus facilitating the assembly of protein complexes on curved membranes. Here, we used quantitative fluorescence microscopy to compare the binding of both motifs on single...... nanosized liposomes of different diameters and therefore membrane curvature. Characterization of members of the three BAR domain families showed surprisingly that the crescent-shaped BAR dimer with its positively charged concave face is not able to sense membrane curvature. Mutagenesis on BAR domains showed...... that membrane curvature sensing critically depends on the N-terminal AH and furthermore that BAR domains sense membrane curvature through hydrophobic insertion in lipid packing defects and not through electrostatics. Consequently, amphipathic motifs, such as AHs, that are often associated with BAR domains...

  18. On the curvature of transmitted intensity plots in broad beam studies

    International Nuclear Information System (INIS)

    El-Kateb, A.H.

    2000-01-01

    Transmission of a broad beam of gamma rays of 81- and 356-keV energies from 133 Ba is studied singly and dually. This study is the first to deal with the curvatures of the intensity plots. The targets are dextrose solutions of percentage concentrations up to 0.125 and soil containing water with concentrations up to 0.319. The logarithmic intensity plots are expressed in terms of a polynomial in the concentration. The curvatures of the plots are measured and calculated on the basis of the theoretical mass attenuation coefficients. The results are discussed in conjunction with buildup factors and the probability of photoelectric and Compton interactions. The curvatures show maxima when incoherent interaction prevails. This is evidently proved in case of the single 356-keV and of the dual 81- and 356-keV applied energies. Comparison is performed between the measured and calculated curvatures. The concept of curvature is applied and discussed for published results of narrow beam geometry. Correspondingly, this is the first search to introduce curvature instead of buildup as a measure for transmitted collided photons

  19. Vibration Analysis of Circular Arch Element Using Curvature

    Directory of Open Access Journals (Sweden)

    H. Saffari

    2008-01-01

    Full Text Available In this paper, a finite element technique was used to determine the natural frequencies, and the mode shapes of a circular arch element was based on the curvature, which can fully represent the bending energy and by the equilibrium equations, the shear and axial strain energy were incorporated into the formulation. The treatment of general boundary conditions dose need a consideration when the element is incorporated by the curvature-based formula. This can be obtained by the introduction of a transformation matrix between nodal curvatures and nodal displacements. The equation of the motion for the element was obtained by the Lagrangian equation. Four examples are presented in order to verify the element formulation and its analytical capability.

  20. A major QTL controls susceptibility to spinal curvature in the curveback guppy

    Directory of Open Access Journals (Sweden)

    Dreyer Christine

    2011-01-01

    Full Text Available Abstract Background Understanding the genetic basis of heritable spinal curvature would benefit medicine and aquaculture. Heritable spinal curvature among otherwise healthy children (i.e. Idiopathic Scoliosis and Scheuermann kyphosis accounts for more than 80% of all spinal curvatures and imposes a substantial healthcare cost through bracing, hospitalizations, surgery, and chronic back pain. In aquaculture, the prevalence of heritable spinal curvature can reach as high as 80% of a stock, and thus imposes a substantial cost through production losses. The genetic basis of heritable spinal curvature is unknown and so the objective of this work is to identify quantitative trait loci (QTL affecting heritable spinal curvature in the curveback guppy. Prior work with curveback has demonstrated phenotypic parallels to human idiopathic-type scoliosis, suggesting shared biological pathways for the deformity. Results A major effect QTL that acts in a recessive manner and accounts for curve susceptibility was detected in an initial mapping cross on LG 14. In a second cross, we confirmed this susceptibility locus and fine mapped it to a 5 cM region that explains 82.6% of the total phenotypic variance. Conclusions We identify a major QTL that controls susceptibility to curvature. This locus contains over 100 genes, including MTNR1B, a candidate gene for human idiopathic scoliosis. The identification of genes associated with heritable spinal curvature in the curveback guppy has the potential to elucidate the biological basis of spinal curvature among humans and economically important teleosts.

  1. Geometry-specific scaling of detonation parameters from front curvature

    International Nuclear Information System (INIS)

    Jackson, Scott I.; Short, Mark

    2011-01-01

    It has previously been asserted that classical detonation curvature theory predicts that the critical diameter and the diameter-effect curve of a cylindrical high-explosive charge should scale with twice the thickness of an analogous two-dimensional explosive slab. The varied agreement of experimental results with this expectation have led some to question the ability of curvature-based concepts to predict detonation propagation in non-ideal explosives. This study addresses such claims by showing that the expected scaling relationship (hereafter referred to d = 2w) is not consistent with curvature-based Detonation Shock Dynamics (DSD) theory.

  2. Public and private space curvature in Robertson-Walker universes.

    Science.gov (United States)

    Rindler, W.

    1981-05-01

    The question is asked: what space curvature would a fundamental observer in an ideal Robertson-Walker universe obtain by direct local spatial measurements, i.e., without reference to the motion pattern of the other galaxies? The answer is that he obtains the curvatureK of his “private” space generated by all the geodesics orthogonal to his world line at the moment in question, and that ˜K is related to the usual curvatureK=k/R 2 of the “public” space of galaxies byK=K+H 2/c2, whereH is Hubble's parameter.

  3. Studying biomolecule localization by engineering bacterial cell wall curvature.

    Directory of Open Access Journals (Sweden)

    Lars D Renner

    Full Text Available In this article we describe two techniques for exploring the relationship between bacterial cell shape and the intracellular organization of proteins. First, we created microchannels in a layer of agarose to reshape live bacterial cells and predictably control their mean cell wall curvature, and quantified the influence of curvature on the localization and distribution of proteins in vivo. Second, we used agarose microchambers to reshape bacteria whose cell wall had been chemically and enzymatically removed. By combining microstructures with different geometries and fluorescence microscopy, we determined the relationship between bacterial shape and the localization for two different membrane-associated proteins: i the cell-shape related protein MreB of Escherichia coli, which is positioned along the long axis of the rod-shaped cell; and ii the negative curvature-sensing cell division protein DivIVA of Bacillus subtilis, which is positioned primarily at cell division sites. Our studies of intracellular organization in live cells of E. coli and B. subtilis demonstrate that MreB is largely excluded from areas of high negative curvature, whereas DivIVA localizes preferentially to regions of high negative curvature. These studies highlight a unique approach for studying the relationship between cell shape and intracellular organization in intact, live bacteria.

  4. Codimension two branes and distributional curvature

    International Nuclear Information System (INIS)

    Traschen, Jennie

    2009-01-01

    In general relativity, there is a well-developed formalism for working with the approximation that a gravitational source is concentrated on a shell, or codimension one surface. In contrast, there are obstacles to concentrating sources on surfaces that have a higher codimension, for example, a string in a spacetime with a dimension greater than or equal to four. Here it is shown that, by giving up some of the generality of the codimension one case, curvature can be concentrated on submanifolds that have codimension two. A class of metrics is identified such that (1) the scalar curvature and Ricci densities exist as distributions with support on a codimension two submanifold, and (2) using the Einstein equation, the distributional curvature corresponds to a concentrated stress-energy with equation of state p = -ρ, where p is the isotropic pressure tangent to the submanifold, and ρ is the energy density. This is the appropriate stress-energy to describe a self-gravitating brane that is governed by an area action, or a braneworld deSitter cosmology. The possibility of having a different equation of state arise from a wider class of metrics is discussed.

  5. Directable weathering of concave rock using curvature estimation.

    Science.gov (United States)

    Jones, Michael D; Farley, McKay; Butler, Joseph; Beardall, Matthew

    2010-01-01

    We address the problem of directable weathering of exposed concave rock for use in computer-generated animation or games. Previous weathering models that admit concave surfaces are computationally inefficient and difficult to control. In nature, the spheroidal and cavernous weathering rates depend on the surface curvature. Spheroidal weathering is fastest in areas with large positive mean curvature and cavernous weathering is fastest in areas with large negative mean curvature. We simulate both processes using an approximation of mean curvature on a voxel grid. Both weathering rates are also influenced by rock durability. The user controls rock durability by editing a durability graph before and during weathering simulation. Simulations of rockfall and colluvium deposition further improve realism. The profile of the final weathered rock matches the shape of the durability graph up to the effects of weathering and colluvium deposition. We demonstrate the top-down directability and visual plausibility of the resulting model through a series of screenshots and rendered images. The results include the weathering of a cube into a sphere and of a sheltered inside corner into a cavern as predicted by the underlying geomorphological models.

  6. CURVATURE-DRIVEN MOLECULAR FLOW ON MEMBRANE SURFACE.

    Science.gov (United States)

    Mikucki, Michael; Zhou, Y C

    2017-01-01

    This work presents a mathematical model for the localization of multiple species of diffusion molecules on membrane surfaces. Morphological change of bilayer membrane in vivo is generally modulated by proteins. Most of these modulations are associated with the localization of related proteins in the crowded lipid environments. We start with the energetic description of the distributions of molecules on curved membrane surface, and define the spontaneous curvature of bilayer membrane as a function of the molecule concentrations on membrane surfaces. A drift-diffusion equation governs the gradient flow of the surface molecule concentrations. We recast the energetic formulation and the related governing equations by using an Eulerian phase field description to define membrane morphology. Computational simulations with the proposed mathematical model and related numerical techniques predict (i) the molecular localization on static membrane surfaces at locations with preferred mean curvatures, and (ii) the generation of preferred mean curvature which in turn drives the molecular localization.

  7. Scalar curvature in conformal geometry of Connes-Landi noncommutative manifolds

    Science.gov (United States)

    Liu, Yang

    2017-11-01

    We first propose a conformal geometry for Connes-Landi noncommutative manifolds and study the associated scalar curvature. The new scalar curvature contains its Riemannian counterpart as the commutative limit. Similar to the results on noncommutative two tori, the quantum part of the curvature consists of actions of the modular derivation through two local curvature functions. Explicit expressions for those functions are obtained for all even dimensions (greater than two). In dimension four, the one variable function shows striking similarity to the analytic functions of the characteristic classes appeared in the Atiyah-Singer local index formula, namely, it is roughly a product of the j-function (which defines the A ˆ -class of a manifold) and an exponential function (which defines the Chern character of a bundle). By performing two different computations for the variation of the Einstein-Hilbert action, we obtain deep internal relations between two local curvature functions. Straightforward verification for those relations gives a strong conceptual confirmation for the whole computational machinery we have developed so far, especially the Mathematica code hidden behind the paper.

  8. Quantitative analysis and prediction of curvature in leucine-rich repeat proteins.

    Science.gov (United States)

    Hindle, K Lauren; Bella, Jordi; Lovell, Simon C

    2009-11-01

    Leucine-rich repeat (LRR) proteins form a large and diverse family. They have a wide range of functions most of which involve the formation of protein-protein interactions. All known LRR structures form curved solenoids, although there is large variation in their curvature. It is this curvature that determines the shape and dimensions of the inner space available for ligand binding. Unfortunately, large-scale parameters such as the overall curvature of a protein domain are extremely difficult to predict. Here, we present a quantitative analysis of determinants of curvature of this family. Individual repeats typically range in length between 20 and 30 residues and have a variety of secondary structures on their convex side. The observed curvature of the LRR domains correlates poorly with the lengths of their individual repeats. We have, therefore, developed a scoring function based on the secondary structure of the convex side of the protein that allows prediction of the overall curvature with a high degree of accuracy. We also demonstrate the effectiveness of this method in selecting a suitable template for comparative modeling. We have developed an automated, quantitative protocol that can be used to predict accurately the curvature of leucine-rich repeat proteins of unknown structure from sequence alone. This protocol is available as an online resource at http://www.bioinf.manchester.ac.uk/curlrr/.

  9. Spinal curvature and characteristics of postural change in pregnant women.

    Science.gov (United States)

    Okanishi, Natsuko; Kito, Nobuhiro; Akiyama, Mitoshi; Yamamoto, Masako

    2012-07-01

    Pregnant women often report complaints due to physiological and postural changes. Postural changes during pregnancy may cause low back pain and pelvic girdle pain. This study aimed to compare the characteristics of postural changes in pregnant compared with non-pregnant women. Prospective case-control study. Pregnancy care center. Fifteen women at 17-34 weeks pregnancy comprised the study group, while 10 non-pregnant female volunteers comprised the control group. Standing posture was evaluated in the sagittal plane with static digital pictures. Two angles were measured by image analysis software: (1) between the trunk and pelvis; and (2) between the trunk and lower extremity. Spinal curvature was measured with Spinal Mouse® to calculate the means of sacral inclination, thoracic and lumbar curvature and inclination. The principal components were calculated until eigenvalues surpassed 1. Three distinct factors with eigenvalues of 1.00-2.49 were identified, consistent with lumbosacral spinal curvature and inclination, thoracic spine curvature, and inclination of the body. These factors accounted for 77.2% of the total variance in posture variables. Eleven pregnant women showed postural characteristics of lumbar kyphosis and sacral posterior inclination. Body inclination showed a variety of patterns compared with those in healthy women. Spinal curvature demonstrated a tendency for lumbar kyphosis in pregnant women. Pregnancy may cause changes in spinal curvature and posture, which may in turn lead to relevant symptoms. Our data provide a basis for investigating the effects of spinal curvature and postural changes on symptoms during pregnancy. © 2012 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2012 Nordic Federation of Societies of Obstetrics and Gynecology.

  10. Differential geometric structures of stream functions: incompressible two-dimensional flow and curvatures

    International Nuclear Information System (INIS)

    Yamasaki, K; Iwayama, T; Yajima, T

    2011-01-01

    The Okubo-Weiss field, frequently used for partitioning incompressible two-dimensional (2D) fluids into coherent and incoherent regions, corresponds to the Gaussian curvature of the stream function. Therefore, we consider the differential geometric structures of stream functions and calculate the Gaussian curvatures of some basic flows. We find the following. (I) The vorticity corresponds to the mean curvature of the stream function. Thus, the stream-function surface for an irrotational flow and that for a parallel shear flow correspond to the minimal surface and a developable surface, respectively. (II) The relationship between the coherency and the magnitude of the vorticity is interpreted by the curvatures. (III) Using the Gaussian curvature, stability of single and double point vortex streets is analyzed. The results of this analysis are compared with the well-known linear stability analysis. (IV) Conformal mapping in fluid mechanics is the physical expression of the geometric fact that the sign of the Gaussian curvature does not change in conformal mapping. These findings suggest that the curvatures of stream functions are useful for understanding the geometric structure of an incompressible 2D flow.

  11. Slow-roll corrections in multi-field inflation: a separate universes approach

    Science.gov (United States)

    Karčiauskas, Mindaugas; Kohri, Kazunori; Mori, Taro; White, Jonathan

    2018-05-01

    In view of cosmological parameters being measured to ever higher precision, theoretical predictions must also be computed to an equally high level of precision. In this work we investigate the impact on such predictions of relaxing some of the simplifying assumptions often used in these computations. In particular, we investigate the importance of slow-roll corrections in the computation of multi-field inflation observables, such as the amplitude of the scalar spectrum Pζ, its spectral tilt ns, the tensor-to-scalar ratio r and the non-Gaussianity parameter fNL. To this end we use the separate universes approach and δ N formalism, which allows us to consider slow-roll corrections to the non-Gaussianity of the primordial curvature perturbation as well as corrections to its two-point statistics. In the context of the δ N expansion, we divide slow-roll corrections into two categories: those associated with calculating the correlation functions of the field perturbations on the initial flat hypersurface and those associated with determining the derivatives of the e-folding number with respect to the field values on the initial flat hypersurface. Using the results of Nakamura & Stewart '96, corrections of the first kind can be written in a compact form. Corrections of the second kind arise from using different levels of slow-roll approximation in solving for the super-horizon evolution, which in turn corresponds to using different levels of slow-roll approximation in the background equations of motion. We consider four different levels of approximation and apply the results to a few example models. The various approximations are also compared to exact numerical solutions.

  12. Modern approaches to discrete curvature

    CERN Document Server

    Romon, Pascal

    2017-01-01

     This book provides a valuable glimpse into discrete curvature, a rich new field of research which blends discrete mathematics, differential geometry, probability and computer graphics. It includes a vast collection of ideas and tools which will offer something new to all interested readers. Discrete geometry has arisen as much as a theoretical development as in response to unforeseen challenges coming from applications. Discrete and continuous geometries have turned out to be intimately connected. Discrete curvature is the key concept connecting them through many bridges in numerous fields: metric spaces, Riemannian and Euclidean geometries, geometric measure theory, topology, partial differential equations, calculus of variations, gradient flows, asymptotic analysis, probability, harmonic analysis, graph theory, etc. In spite of its crucial importance both in theoretical mathematics and in applications, up to now, almost no books have provided a coherent outlook on this emerging field.

  13. The Riemann-Lovelock curvature tensor

    International Nuclear Information System (INIS)

    Kastor, David

    2012-01-01

    In order to study the properties of Lovelock gravity theories in low dimensions, we define the kth-order Riemann-Lovelock tensor as a certain quantity having a total 4k-indices, which is kth order in the Riemann curvature tensor and shares its basic algebraic and differential properties. We show that the kth-order Riemann-Lovelock tensor is determined by its traces in dimensions 2k ≤ D < 4k. In D = 2k + 1 this identity implies that all solutions of pure kth-order Lovelock gravity are 'Riemann-Lovelock' flat. It is verified that the static, spherically symmetric solutions of these theories, which are missing solid angle spacetimes, indeed satisfy this flatness property. This generalizes results from Einstein gravity in D = 3, which corresponds to the k = 1 case. We speculate about some possible further consequences of Riemann-Lovelock curvature. (paper)

  14. Curvature-driven acceleration: a utopia or a reality?

    International Nuclear Information System (INIS)

    Das, Sudipta; Banerjee, Narayan; Dadhich, Naresh

    2006-01-01

    The present work shows that a combination of nonlinear contributions from the Ricci curvature in Einstein field equations can drive a late time acceleration of expansion of the universe. The transit from the decelerated to the accelerated phase of expansion takes place smoothly without having to resort to a study of asymptotic behaviour. This result emphasizes the need for thorough and critical examination of models with nonlinear contribution from the curvature

  15. Curvature-driven acceleration: a utopia or a reality?

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sudipta [Relativity and Cosmology Research Centre, Department of Physics, Jadavpur University, Calcutta-700 032 (India); Banerjee, Narayan [Relativity and Cosmology Research Centre, Department of Physics, Jadavpur University, Calcutta-700 032 (India); Dadhich, Naresh [Inter University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007 (India)

    2006-06-21

    The present work shows that a combination of nonlinear contributions from the Ricci curvature in Einstein field equations can drive a late time acceleration of expansion of the universe. The transit from the decelerated to the accelerated phase of expansion takes place smoothly without having to resort to a study of asymptotic behaviour. This result emphasizes the need for thorough and critical examination of models with nonlinear contribution from the curvature.

  16. Connections and curvatures on complex Riemannian manifolds

    International Nuclear Information System (INIS)

    Ganchev, G.; Ivanov, S.

    1991-05-01

    Characteristic connection and characteristic holomorphic sectional curvatures are introduced on a complex Riemannian manifold (not necessarily with holomorphic metric). For the class of complex Riemannian manifolds with holomorphic characteristic connection a classification of the manifolds with (pointwise) constant holomorphic characteristic curvature is given. It is shown that the conformal geometry of complex analytic Riemannian manifolds can be naturally developed on the class of locally conformal holomorphic Riemannian manifolds. Complex Riemannian manifolds locally conformal to the complex Euclidean space are characterized with zero conformal fundamental tensor and zero conformal characteristic tensor. (author). 12 refs

  17. Berry Curvature in Magnon-Phonon Hybrid Systems.

    Science.gov (United States)

    Takahashi, Ryuji; Nagaosa, Naoto

    2016-11-18

    We study theoretically the Berry curvature of the magnon induced by the hybridization with the acoustic phonons via the spin-orbit and dipolar interactions. We first discuss the magnon-phonon hybridization via the dipolar interaction, and show that the dispersions have gapless points in momentum space, some of which form a loop. Next, when both spin-orbit and dipolar interactions are considered, we show anisotropic texture of the Berry curvature and its divergence with and without gap closing. Realistic evaluation of the consequent anomalous velocity is given for yttrium iron garnet.

  18. A curvature theory for discrete surfaces based on mesh parallelity

    KAUST Repository

    Bobenko, Alexander Ivanovich; Pottmann, Helmut; Wallner, Johannes

    2009-01-01

    We consider a general theory of curvatures of discrete surfaces equipped with edgewise parallel Gauss images, and where mean and Gaussian curvatures of faces are derived from the faces' areas and mixed areas. Remarkably these notions are capable

  19. First contact: understanding the relationship between hominoid incisor curvature and diet.

    Science.gov (United States)

    Deane, Andrew

    2009-03-01

    Accurately interpreting fossil primate dietary behaviour is necessary to fully understand a species' ecology and connection to its environment. Traditional methods developed to infer diet from hominoid teeth successfully group taxa into broad dietary categories (i.e., folivore, frugivore) but often fail to represent the range of dietary variability characteristic of living apes. This oversimplification is not only a consequence of poor resolution, but may also reflect the use of similar fallback resources by closely related taxa with dissimilar diets. This study demonstrates that additional dietary specificity can be achieved using a morphometric approach to hominoid incisor curvature. High-resolution polynomial curve fitting (HR-PCF) was used to quantify the incisor curvatures of closely related hominoid taxa that have dissimilar diets but similar morphological adaptations to specific keystone resources (e.g., Gorilla gorilla beringei vs. G. g. gorilla). Given the key role of incisors in food processing, it is reasonable to assume that these teeth will be at least partially influenced by the unique selective pressures imposed by the mechanical loading specific to individual diets. Results from this study identify a strong correlation between hominoid dietary proportions and incisor linear dimensions and curvature, indicating that more pronounced incisor curvature is positively correlated with higher levels of frugivory. Hard-object frugivores have the greatest mesiodistal and cervico-incisal curvature and dedicated folivores have the least curved incisors. Mixed folivore/frugivores are morphological intermediates between dedicated folivores and hard- and soft-object frugivores. Mesiodistal curvature varied only in the degree of curvature; however, cervico-incisal curvature was shown to differ qualitatively between more frugivorous and more folivorous taxa. In addition to identifying a greater range of dietary variability among hominoids, this study also

  20. Curvature-Continuous 3D Path-Planning Using QPMI Method

    Directory of Open Access Journals (Sweden)

    Seong-Ryong Chang

    2015-06-01

    Full Text Available It is impossible to achieve vertex movement and rapid velocity control in aerial robots and aerial vehicles because of momentum from the air. A continuous-curvature path ensures such robots and vehicles can fly with stable and continuous movements. General continuous path-planning methods use spline interpolation, for example B-spline and Bézier curves. However, these methods cannot be directly applied to continuous path planning in a 3D space. These methods use a subset of the waypoints to decide curvature and some waypoints are not included in the planned path. This paper proposes a method for constructing a curvature-continuous path in 3D space that includes every waypoint. The movements in each axis, x, y and z, are separated by the parameter u. Waypoint groups are formed, each with its own continuous path derived using quadratic polynomial interpolation. The membership function then combines each continuous path into one continuous path. The continuity of the path is verified and the curvature-continuous path is produced using the proposed method.

  1. Construction of nonsingular pre-big-bang and ekpyrotic cosmologies and the resulting density perturbations

    International Nuclear Information System (INIS)

    Tsujikawa, Shinji; Brandenberger, Robert; Finelli, Fabio

    2002-01-01

    We consider the construction of nonsingular pre-big-bang and ekpyrotic type cosmological models realized by the addition to the action of specific higher-order terms stemming from quantum corrections. We study models involving general relativity coupled to a single scalar field with a potential motivated by the ekpyrotic scenario. We find that the inclusion of the string loop and quantum correction terms in the string frame makes it possible to obtain solutions of the variational equations which are nonsingular and bouncing in the Einstein frame, even when a negative exponential potential is present, as is the case in the ekpyrotic scenario. This allows us to discuss the evolution of cosmological perturbations without the need to invoke matching conditions between two Einstein universes, one representing the contracting branch, the second the expanding branch. We analyze the spectra of perturbations produced during the bouncing phase and find that the spectrum of curvature fluctuations in the model proposed originally to implement the ekpyrotic scenario has a large blue tilt (n R =3). Except for instabilities introduced on small scales, the result agrees with what is obtained by imposing continuity of the induced metric and of the extrinsic curvature across a constant scalar field (up to k 2 corrections equal to the constant energy density) matching surface between the contracting and the expanding Einstein universes. We also discuss nonsingular cosmological solutions obtained when a Gauss-Bonnet term with a coefficient suitably dependent on the scalar matter field is added to the action in the Einstein frame with a potential for the scalar field present. In this scenario, nonsingular solutions are found which start in an asymptotically flat state, undergo a period of superexponential inflation, and end with a graceful exit. The spectrum of fluctuations is also calculated in this case

  2. The dark side of curvature

    International Nuclear Information System (INIS)

    Barenboim, Gabriela; Martínez, Enrique Fernández; Mena, Olga; Verde, Licia

    2010-01-01

    Geometrical tests such as the combination of the Hubble parameter H(z) and the angular diameter distance d A (z) can, in principle, break the degeneracy between the dark energy equation of state parameter w(z), and the spatial curvature Ω k in a direct, model-independent way. In practice, constraints on these quantities achievable from realistic experiments, such as those to be provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination with CMB data, can resolve the cosmic confusion between the dark energy equation of state parameter and curvature only statistically and within a parameterized model for w(z). Combining measurements of both H(z) and d A (z) up to sufficiently high redshifts z ∼ 2 and employing a parameterization of the redshift evolution of the dark energy equation of state are the keys to resolve the w(z)−Ω k degeneracy

  3. Computational methods for investigation of surface curvature effects on airfoil boundary layer behavior

    Directory of Open Access Journals (Sweden)

    Xiang Shen

    2017-03-01

    Full Text Available This article presents computational algorithms for the design, analysis, and optimization of airfoil aerodynamic performance. The prescribed surface curvature distribution blade design (CIRCLE method is applied to a symmetrical airfoil NACA0012 and a non-symmetrical airfoil E387 to remove their surface curvature and slope-of-curvature discontinuities. Computational fluid dynamics analysis is used to investigate the effects of curvature distribution on aerodynamic performance of the original and modified airfoils. An inviscid–viscid interaction scheme is introduced to predict the positions of laminar separation bubbles. The results are compared with experimental data obtained from tests on the original airfoil geometry. The computed aerodynamic advantages of the modified airfoils are analyzed in different operating conditions. The leading edge singularity of NACA0012 is removed and it is shown that the surface curvature discontinuity affects aerodynamic performance near the stalling angle of attack. The discontinuous slope-of-curvature distribution of E387 results in a larger laminar separation bubble at lower angles of attack and lower Reynolds numbers. It also affects the inherent performance of the airfoil at higher Reynolds numbers. It is shown that at relatively high angles of attack, a continuous slope-of-curvature distribution reduces the skin friction by suppressing both laminar and turbulent separation, and by delaying laminar-turbulent transition. It is concluded that the surface curvature distribution has significant effects on the boundary layer behavior and consequently an improved curvature distribution will lead to higher aerodynamic efficiency.

  4. Phase-space curvature in spin-orbit-coupled ultracold atomic systems

    Science.gov (United States)

    Armaitis, J.; Ruseckas, J.; Anisimovas, E.

    2017-04-01

    We consider a system with spin-orbit coupling and derive equations of motion which include the effects of Berry curvatures. We apply these equations to investigate the dynamics of particles with equal Rashba-Dresselhaus spin-orbit coupling in one dimension. In our derivation, the adiabatic transformation is performed first and leads to quantum Heisenberg equations of motion for momentum and position operators. These equations explicitly contain position-space, momentum-space, and phase-space Berry curvature terms. Subsequently, we perform the semiclassical approximation and obtain the semiclassical equations of motion. Taking the low-Berry-curvature limit results in equations that can be directly compared to previous results for the motion of wave packets. Finally, we show that in the semiclassical regime, the effective mass of the equal Rashba-Dresselhaus spin-orbit-coupled system can be viewed as a direct effect of the phase-space Berry curvature.

  5. On the constant-roll inflation

    Science.gov (United States)

    Yi, Zhu; Gong, Yungui

    2018-03-01

    The primordial power spectra of scalar and tensor perturbations during slow-roll inflation are usually calculated with the method of Bessel function approximation. For constant-roll or ultra slow-roll inflation, the method of Bessel function approximation may be invalid. We compare the numerical results with the analytical results derived from the Bessel function approximation, and we find that they differ significantly on super-horizon scales if the constant slow-roll parameter ηH is not small. More accurate method is needed for calculating the primordial power spectrum for constant-roll inflation.

  6. Supersingular quantum perturbations

    International Nuclear Information System (INIS)

    Detwiler, L.C.; Klauder, J.R.

    1975-01-01

    A perturbation potential is called supersingular whenever generally every matrix element of the perturbation in the unperturbed eigenstates is infinite. It follows that supersingular perturbations do not have conventional perturbation expansions, say for energy eigenvalues. By invoking variational arguments, we determine the asymptotic behavior of the energy eigenvalues for asymptotically small values of the coupling constant of the supersingular perturbation

  7. Forelimb bone curvature in terrestrial and arboreal mammals

    Directory of Open Access Journals (Sweden)

    Keith Henderson

    2017-04-01

    Full Text Available It has recently been proposed that the caudal curvature (concave caudal side observed in the radioulna of terrestrial quadrupeds is an adaptation to the habitual action of the triceps muscle which causes cranial bending strains (compression on cranial side. The caudal curvature is proposed to be adaptive because longitudinal loading induces caudal bending strains (increased compression on the caudal side, and these opposing bending strains counteract each other leaving the radioulna less strained. If this is true for terrestrial quadrupeds, where triceps is required for habitual elbow extension, then we might expect that in arboreal species, where brachialis is habitually required to maintain elbow flexion, the radioulna should instead be cranially curved. This study measures sagittal curvature of the ulna in a range of terrestrial and arboreal primates and marsupials, and finds that their ulnae are curved in opposite directions in these two locomotor categories. This study also examines sagittal curvature in the humerus in the same species, and finds differences that can be attributed to similar adaptations: the bone is curved to counter the habitual muscle action required by the animal’s lifestyle, the difference being mainly in the distal part of the humerus, where arboreal animals tend have a cranial concavity, thought to be in response the carpal and digital muscles that pull cranially on the distal humerus.

  8. Curvature-induced microswarming and clustering of self-propelled particles

    Science.gov (United States)

    Bruss, Isaac; Glotzer, Sharon

    Non-equilibrium active matter systems exhibit many unique phenomena, such as motility-induced phase separation and swarming. However, little is known about how these behaviors depend on the geometry of the environment. To answer this question, we use Brownian dynamics simulations to study the effects of Gaussian curvature on self-propelled particles by confining them to the surface of a sphere. We find that a modest amount of curvature promotes phase separation by altering the shape of a cluster's boundary. Alternatively, particles on surfaces of high curvature experience reduced phase separation and instead form microswarms, where particles share a common orbit. We show that this novel flocking behavior is distinct from other previously studied examples, in that it is not explicitly incorporated into our model through Vicsek-like alignment rules nor torques. Rather, we find that microswarms emerge solely due to the geometric link between orientation and velocity, a property exclusive to surfaces with non-zero Gaussian curvature. These findings reveal the important role of local environment on the global emergent behavior of non-equilibrium systems. Center for Bio-Inspired Engineering (DOE Award # DE-SC0000989).

  9. Curvature effects in two-dimensional optical devices inspired by transformation optics

    KAUST Repository

    Yuan, Shuhao

    2016-11-14

    Light transport in curved quasi two-dimensional waveguides is considered theoretically. Within transformation optics and tensor theory, a concise description of curvature effects on transverse electric and magnetic waves is derived. We show that the curvature can induce light focusing and photonic crystal properties, which are confirmed by finite element simulations. Our results indicate that the curvature is an effective parameter for designing quasi two-dimensional optical devices in the fields of micro and nano photonics. © 2016 Author(s).

  10. Quantifying the Relationship Between Curvature and Electric Potential in Lipid Bilayers

    DEFF Research Database (Denmark)

    Bruhn, Dennis Skjøth; Lomholt, Michael Andersen; Khandelia, Himanshu

    2016-01-01

    Cellular membranes mediate vital cellular processes by being subject to curvature and transmembrane electrical potentials. Here we build upon the existing theory for flexoelectricity in liquid crystals to quantify the coupling between lipid bilayer curvature and membrane potentials. Using molecular...... dynamics simulations, we show that head group dipole moments, the lateral pressure profile across the bilayer and spontaneous curvature all systematically change with increasing membrane potentials. In particu- lar, there is a linear dependence between the bending moment (the product of bending rigidity...

  11. Gravitational perturbations of the hydrogen atom

    International Nuclear Information System (INIS)

    Parker, L.

    1983-01-01

    The strength of a gravitational field is characterized by the Riemann curvature tensor. It is of interest to know how the curvature of space-time at the position of an atom affects its spectrum. The author gives a brief summary of work on the effects of curvature on the hydrogen atom. The results refer to an arbitrary metric and can be evaluated for particular space-times of interest. The possibility of using the effect of gravitational waves on the electromagnetic spectrum of hydrogen as a means of detecting gravitational waves is also investigated. (Auth.)

  12. Distal root curvatures in mandibular molars: analysis using digital panoramic X-rays.

    Science.gov (United States)

    Fuentes, R; Farfán, C; Astete, N; Navarro, P; Arias, A

    2018-01-01

    The aim of this study was to describe the degree of curvature in distal roots in the first and second permanent mandibular molars in a Chilean patient sample. A cross-sectional descriptive study was conducted in which digital panoramic X-rays were analysed. Examinations of patients under 18 years, with signs of distortion or alteration in the contrast or the presence of pathologies that affected visualisation of the roots and pulp-chamber floor of the teeth to be analysed were excluded. Using the AutoCad software, an angle was drawn to represent the curve of the root in its different thirds, drawing lines inside the root canal from the pulp-chamber floor to the dental apex. Using the classic definition of dilaceration (root curvature > 90°), its prevalence was established. 412 teeth and roots were analysed, finding a dilaceration prevalence of 0.73% (n = 3). 84.72% of the roots presented some type of curvature. The middle third had the highest percentage of curvatures and the greatest average of angular curvature, whereas the cervical third was the straightest. No significant differences were found between the degree of curvature and the gender of the subjects, except for the apical third of tooth 3.6. The analysis of curvature by root third offers to the clinician a better perspective of the directional change of the roots and does not limit it to just the presence of curves in the apical third. The report of the angular degree of the curvatures, in addition to the prevalence of dilacerations, informs to the clinicians about the likelihood of finding difficulties when treating root canals. (Folia Morphol 2018; 77, 1: 131-137).

  13. The spinning particle with extrinsic curvature

    International Nuclear Information System (INIS)

    Dhar, A.

    1988-01-01

    We construct and analyse an action for the spinning particle which contains an extrinsic curvature term. A possible generalization of this construction to the case of the spinning string is also discussed. (orig.)

  14. Curvature effects on the electronic and transport properties of semiconductor films

    Science.gov (United States)

    Batista, F. F.; Chaves, Andrey; da Costa, D. R.; Farias, G. A.

    2018-05-01

    Within the effective mass approximation, we study the curvature effects on the electronic and transport properties of semiconductor films. We investigate how the geometry-induced potential resulting exclusively from periodic ripples in the film induces electronic confinement and a superlattice band structure. For fixed curvature parameters, such a confinement can be easily tuned by an external electric field, hence features of the superlattice band structure such as its energy gaps and band curvature can be controlled by an external parameter. We also show that, for some values of curvature and electric field, it is possible to obtain massless Dirac bands for a smooth curved structure. Moreover, we use a wave packet propagation method to demonstrate that the ripples are responsible for a significant inter-sub-band transition, specially for moderate values of the ripple height.

  15. On the asymptotically Poincaré-Einstein 4-manifolds with harmonic curvature

    Science.gov (United States)

    Hu, Xue

    2018-06-01

    In this paper, we discuss the mass aspect tensor and the rigidity of an asymptotically Poincaré-Einstein (APE) 4-manifold with harmonic curvature. We prove that the trace-free part of the mass aspect tensor of an APE 4-manifold with harmonic curvature and normalized Einstein conformal infinity is zero. As to the rigidity, we first show that a complete noncompact Riemannian 4-manifold with harmonic curvature and positive Yamabe constant as well as a L2-pinching condition is Einstein. As an application, we then obtain that an APE 4-manifold with harmonic curvature and positive Yamabe constant is isometric to the hyperbolic space provided that the L2-norm of the traceless Ricci tensor or the Weyl tensor is small enough and the conformal infinity is a standard round 3-sphere.

  16. Measurement of curvature and twist of a deformed object using digital holography

    International Nuclear Information System (INIS)

    Chen Wen; Quan Chenggen; Cho Jui Tay

    2008-01-01

    Measurement of curvature and twist is an important aspect in the study of object deformation. In recent years, several methods have been proposed to determine curvature and twist of a deformed object using digital shearography. Here we propose a novel method to determine the curvature and twist of a deformed object using digital holography and a complex phasor. A sine/cosine transformation method and two-dimensional short time Fourier transform are proposed subsequently to process the wrapped phase maps. It is shown that high-quality phase maps corresponding to curvature and twist can be obtained. An experiment is conducted to demonstrate the validity of the proposed method

  17. Numerical studies of transverse curvature effects on transonic flow stability

    Science.gov (United States)

    Macaraeg, M. G.; Daudpota, Q. I.

    1992-01-01

    A numerical study of transverse curvature effects on compressible flow temporal stability for transonic to low supersonic Mach numbers is presented for axisymmetric modes. The mean flows studied include a similar boundary-layer profile and a nonsimilar axisymmetric boundary-layer solution. The effect of neglecting curvature in the mean flow produces only small quantitative changes in the disturbance growth rate. For transonic Mach numbers (1-1.4) and aerodynamically relevant Reynolds numbers (5000-10,000 based on displacement thickness), the maximum growth rate is found to increase with curvature - the maximum occurring at a nondimensional radius (based on displacement thickness) between 30 and 100.

  18. Influence of firing time and framework thickness on veneered Y-TZP discs curvature.

    Science.gov (United States)

    Jakubowicz-Kohen, Boris D; Sadoun, Michaël J; Douillard, Thierry; Mainjot, Amélie K

    2014-02-01

    The objective of the present work was to study the curvature of very thinly, veneered Y-TZP discs of different framework thicknesses submitted to different firing times. Fifteen 20-mm-wide Y-TZP discs were produced in three different thicknesses: 0.75, 1, 1.5mm. One disc from each group was left unveneered while the others were layered with a 0.1mm veneering ceramic layer. All discs underwent five firing cycles for a total cumulative firing time of 30 min, 1, 2, 5 and 10h at 900°C. The curvature profile was measured using a profilometer after the veneering process and after each firing cycle respectively. A fitted curve was then used to estimate the, curvature radius. The coefficient of thermal expansion (CTE) measurements were taken on veneering, ceramic and Y-TZP beam samples that underwent the same firing schedule. Those data were used to calculate the curvature generated by CTE variations over firing time. All bilayered samples exhibited a curvature that increased over firing time inversely to framework thickness. However non-veneered samples did not exhibit any curvature modification. The results of the present study reveal that even a very thin veneer layer (0.1mm) can induce a significant curvature of Y-TZP discs. The dilatometric results showed that Tg and CTE, variations are not sufficient to explain this curvature. A chemical-induced zirconia volume, augmentation located at the framework sub-surface near the interface could explain the sample, curvature and its increase with firing time. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Shape discrimination by total curvature, with a view to cancer diagnostics

    DEFF Research Database (Denmark)

    Gardner, R.J.; Hobolth, Asger; Jensen, Eva Bjørn Vedel

    2005-01-01

    This paper investigates the use of total curvature for shape discrimination of objects via profiles of their planar sections (not assumed to be star shaped). Methods of estimating total curvature from observation of a finite number of points on the boundary of the object are investigated, includi...... a simple discrete approximation method and various interpolation methods. Total curvature is capable of revealing shape differences on a local scale, as demonstrated by the analysis of two data sets of malignant and normal or benign tumour cell nuclear profiles....

  20. Discrete Curvatures and Discrete Minimal Surfaces

    KAUST Repository

    Sun, Xiang

    2012-01-01

    This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads

  1. Awareness Becomes Necessary Between Adaptive Pattern Coding of Open and Closed Curvatures

    Science.gov (United States)

    Sweeny, Timothy D.; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    Visual pattern processing becomes increasingly complex along the ventral pathway, from the low-level coding of local orientation in the primary visual cortex to the high-level coding of face identity in temporal visual areas. Previous research using pattern aftereffects as a psychophysical tool to measure activation of adaptive feature coding has suggested that awareness is relatively unimportant for the coding of orientation, but awareness is crucial for the coding of face identity. We investigated where along the ventral visual pathway awareness becomes crucial for pattern coding. Monoptic masking, which interferes with neural spiking activity in low-level processing while preserving awareness of the adaptor, eliminated open-curvature aftereffects but preserved closed-curvature aftereffects. In contrast, dichoptic masking, which spares spiking activity in low-level processing while wiping out awareness, preserved open-curvature aftereffects but eliminated closed-curvature aftereffects. This double dissociation suggests that adaptive coding of open and closed curvatures straddles the divide between weakly and strongly awareness-dependent pattern coding. PMID:21690314

  2. Non-perturbative versus perturbative renormalization of lattice operators

    International Nuclear Information System (INIS)

    Goeckeler, M.; Technische Hochschule Aachen; Horsley, R.; Ilgenfritz, E.M.; Oelrich, H.; Forschungszentrum Juelich GmbH; Schierholz, G.; Forschungszentrum Juelich GmbH; Perlt, H.; Schiller, A.; Rakow, P.

    1995-09-01

    Our objective is to compute the moments of the deep-inelastic structure functions of the nucleon on the lattice. A major source of uncertainty is the renormalization of the lattice operators that enter the calculation. In this talk we compare the renormalization constants of the most relevant twist-two bilinear quark operators which we have computed non-perturbatively and perturbatively to one loop order. Furthermore, we discuss the use of tadpole improved perturbation theory. (orig.)

  3. Modeling curvature-dependent subcellular localization of a small sporulation protein in Bacillus subtilis

    Science.gov (United States)

    Wasnik, Vaibhav; Wingreen, Ned; Mukhopadhyay, Ranjan

    2012-02-01

    Recent experiments suggest that in the bacterium, B. subtilis, the cue for the localization of small sporulation protein, SpoVM, that plays a central role in spore coat formation, is curvature of the bacterial plasma membrane. This curvature-dependent localization is puzzling given the orders of magnitude difference in lengthscale of an individual protein and radius of curvature of the membrane. Here we develop a minimal model to study the relationship between curvature-dependent membrane absorption of SpoVM and clustering of membrane-associated SpoVM and compare our results with experiments.

  4. Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors

    OpenAIRE

    Huang, Jingsong; Bobby,; Sumpter, Bobby G.; Meunier, Vincent; Yushin, Gleb; Portet, Cristelle; Gogotsi, Yury

    2010-01-01

    Capacitive energy storage mechanisms in nanoporous carbon supercapacitors hinge on endohedral interactions in carbon materials with macro-, meso-, and micropores that have negative surface curvature. In this article, we show that because of the positive curvature found in zero-dimensional carbon onions or one-dimensional carbon nanotube arrays, exohedral interactions cause the normalized capacitance to increase with decreasing particle size or tube diameter, in sharp contrast to the behavior ...

  5. A non-differential elastomer curvature sensor for softer-than-skin electronics

    International Nuclear Information System (INIS)

    Majidi, C; Kramer, R; Wood, R J

    2011-01-01

    We extend soft lithography microfabrication and design methods to introduce curvature sensors that are elastically soft (modulus 0.1–1 MPa) and stretchable (100–1000% strain). In contrast to existing curvature sensors that measure differential strain, sensors in this new class measure curvature directly and allow for arbitrary gauge factor and film thickness. Moreover, each sensor is composed entirely of a soft elastomer (PDMS (polydimethylsiloxane) or Ecoflex ® ) and conductive liquid (eutectic gallium indium, eGaIn) and thus remains functional even when stretched to several times its natural length. The electrical resistance in the embedded eGaIn microchannel is measured as a function of the bending curvature for a variety of sensor designs. In all cases, the experimental measurements are in reasonable agreement with closed-form algebraic approximations derived from elastic plate theory and Ohm's law

  6. A non-differential elastomer curvature sensor for softer-than-skin electronics

    Science.gov (United States)

    Majidi, C.; Kramer, R.; Wood, R. J.

    2011-10-01

    We extend soft lithography microfabrication and design methods to introduce curvature sensors that are elastically soft (modulus 0.1-1 MPa) and stretchable (100-1000% strain). In contrast to existing curvature sensors that measure differential strain, sensors in this new class measure curvature directly and allow for arbitrary gauge factor and film thickness. Moreover, each sensor is composed entirely of a soft elastomer (PDMS (polydimethylsiloxane) or Ecoflex®) and conductive liquid (eutectic gallium indium, eGaIn) and thus remains functional even when stretched to several times its natural length. The electrical resistance in the embedded eGaIn microchannel is measured as a function of the bending curvature for a variety of sensor designs. In all cases, the experimental measurements are in reasonable agreement with closed-form algebraic approximations derived from elastic plate theory and Ohm's law.

  7. Embedded positive constant r-mean curvature hypersurfaces in Mm × R

    Directory of Open Access Journals (Sweden)

    Cheng Xu

    2005-01-01

    Full Text Available Let M be an m-dimensional Riemannian manifold with sectional curvature bounded from below. We consider hypersurfaces in the (m + 1-dimensional product manifold M x R with positive constant r-mean curvature. We obtain height estimates of certain compact vertical graphs in M x R with boundary in M x {0}. We apply this to obtain topological obstructions for the existence of some hypersurfaces. We also discuss the rotational symmetry of some embedded complete surfaces in S² x R of positive constant 2-mean curvature.

  8. Generalized wave operators, weighted Killing fields, and perturbations of higher dimensional spacetimes

    Science.gov (United States)

    Araneda, Bernardo

    2018-04-01

    We present weighted covariant derivatives and wave operators for perturbations of certain algebraically special Einstein spacetimes in arbitrary dimensions, under which the Teukolsky and related equations become weighted wave equations. We show that the higher dimensional generalization of the principal null directions are weighted conformal Killing vectors with respect to the modified covariant derivative. We also introduce a modified Laplace–de Rham-like operator acting on tensor-valued differential forms, and show that the wave-like equations are, at the linear level, appropriate projections off shell of this operator acting on the curvature tensor; the projection tensors being made out of weighted conformal Killing–Yano tensors. We give off shell operator identities that map the Einstein and Maxwell equations into weighted scalar equations, and using adjoint operators we construct solutions of the original field equations in a compact form from solutions of the wave-like equations. We study the extreme and zero boost weight cases; extreme boost corresponding to perturbations of Kundt spacetimes (which includes near horizon geometries of extreme black holes), and zero boost to static black holes in arbitrary dimensions. In 4D our results apply to Einstein spacetimes of Petrov type D and make use of weighted Killing spinors.

  9. Some curvature properties of quarter symmetric metric connections

    International Nuclear Information System (INIS)

    Rastogi, S.C.

    1986-08-01

    A linear connection Γ ji h with torsion tensor T j h P i -T i h P j , where T j h is an arbitrary (1,1) tensor field and P i is a 1-form, has been called a quarter-symmetric connection by Golab. Some properties of such connections have been studied by Rastogi, Mishra and Pandey, and Yano and Imai. In this paper based on the curvature tensor of quarter-symmetric metric connection we define a tensor analogous to conformal curvature tensor and study some properties of such a tensor. (author)

  10. Intracellular magnetophoresis of amyloplasts and induction of root curvature

    Science.gov (United States)

    Kuznetsov, O. A.; Hasenstein, K. H.

    1996-01-01

    High-gradient magnetic fields (HGMFs) were used to induce intracellular magnetophoresis of amyloplasts. The HGMFs were generated by placing a small ferromagnetic wedge into a uniform magnetic field or at the gap edge between two permanent magnets. In the vicinity of the tip of the wedge the dynamic factor of the magnetic field, delta(H2/2), was about 10(9) Oe2.cm-1, which subjected the amyloplasts to a force comparable to that of gravity. When roots of 2-d-old seedlings of flax (Linum usitatissimum L.) were positioned vertically and exposed to an HGMF, curvature away from the wedge was transient and lasted approximately 1 h. Average curvature obtained after placing magnets, wedge and seedlings on a 1-rpm clinostat for 2 h was 33 +/- 5 degrees. Roots of horizontally placed control seedlings without rotation curved about 47 +/- 4 degrees. The time course of curvature and changes in growth rate were similar for gravicurvature and for root curvature induced by HGMFs. Microscopy showed displacement of amyloplasts in vitro and in vivo. Studies with Arabidopsis thaliana (L.) Heynh. showed that the wild type responded to HGMFs but the starchless mutant TC7 did not. The data indicate that a magnetic force can be used to study the gravisensing and response system of roots.

  11. The Spatial Structure of Planform Migration - Curvature Relation of Meandering Rivers

    Science.gov (United States)

    Guneralp, I.; Rhoads, B. L.

    2005-12-01

    Planform dynamics of meandering rivers have been of fundamental interest to fluvial geomorphologists and engineers because of the intriguing complexity of these dynamics, the role of planform change in floodplain development and landscape evolution, and the economic and social consequences of bank erosion and channel migration. Improved understanding of the complex spatial structure of planform change and capacity to predict these changes are important for effective stream management, engineering and restoration. The planform characteristics of a meandering river channel are integral to its planform dynamics. Active meandering rivers continually change their positions and shapes as a consequence of hydraulic forces exerted on the channel banks and bed, but as the banks and bed change through sediment transport, so do the hydraulic forces. Thus far, this complex feedback between form and process is incompletely understood, despite the fact that the characteristics and the dynamics of meandering rivers have been studied extensively. Current theoretical models aimed at predicting planform dynamics relate rates of meander migration to local and upstream planform curvature where weighting of the influence of curvature on migration rate decays exponentially over distance. This theoretical relation, however, has not been rigorously evaluated empirically. Furthermore, although models based on exponential-weighting of curvature effects yield fairly realistic predictions of meander migration, such models are incapable of reproducing complex forms of bend development, such as double heading or compound looping. This study presents the development of a new methodology based on parametric cubic spline interpolation for the characterization of channel planform and the planform curvature of meandering rivers. The use of continuous mathematical functions overcomes the reliance on bend-averaged values or piece-wise discrete approximations of planform curvature - a major limitation

  12. Local divergence and curvature divergence in first order optics

    Science.gov (United States)

    Mafusire, Cosmas; Krüger, Tjaart P. J.

    2018-06-01

    The far-field divergence of a light beam propagating through a first order optical system is presented as a square root of the sum of the squares of the local divergence and the curvature divergence. The local divergence is defined as the ratio of the beam parameter product to the beam width whilst the curvature divergence is a ratio of the space-angular moment also to the beam width. It is established that the beam’s focusing parameter can be defined as a ratio of the local divergence to the curvature divergence. The relationships between the two divergences and other second moment-based beam parameters are presented. Their various mathematical properties are presented such as their evolution through first order systems. The efficacy of the model in the analysis of high power continuous wave laser-based welding systems is briefly discussed.

  13. Curvature-Controlled Topological Defects

    Directory of Open Access Journals (Sweden)

    Luka Mesarec

    2017-05-01

    Full Text Available Effectively, two-dimensional (2D closed films exhibiting in-plane orientational ordering (ordered shells might be instrumental for the realization of scaled crystals. In them, ordered shells are expected to play the role of atoms. Furthermore, topological defects (TDs within them would determine their valence. Namely, bonding among shells within an isotropic liquid matrix could be established via appropriate nano-binders (i.e., linkers which tend to be attached to the cores of TDs exploiting the defect core replacement mechanism. Consequently, by varying configurations of TDs one could nucleate growth of scaled crystals displaying different symmetries. For this purpose, it is of interest to develop a simple and robust mechanism via which one could control the position and number of TDs in such atoms. In this paper, we use a minimal mesoscopic model, where variational parameters are the 2D curvature tensor and the 2D orientational tensor order parameter. We demonstrate numerically the efficiency of the effective topological defect cancellation mechanism to predict positional assembling of TDs in ordered films characterized by spatially nonhomogeneous Gaussian curvature. Furthermore, we show how one could efficiently switch among qualitatively different structures by using a relative volume v of ordered shells, which represents a relatively simple naturally accessible control parameter.

  14. On $L_p$ Affine Surface Area and Curvature Measures

    OpenAIRE

    Zhao, Yiming

    2015-01-01

    The relationship between $L_p$ affine surface area and curvature measures is investigated. As a result, a new representation of the existing notion of $L_p$ affine surface area depending only on curvature measures is derived. Direct proofs of the equivalence between this new representation and those previously known are provided. The proofs show that the new representation is, in a sense, "polar" to that of Lutwak's and "dual" to that of Sch\\"utt & Werner's.

  15. On harmonic curvatures of a Frenet curve in Lorentzian space

    International Nuclear Information System (INIS)

    Kuelahci, Mihriban; Bektas, Mehmet; Erguet, Mahmut

    2009-01-01

    In this paper, we consider curves of AW(k)-type, 1 ≤ k ≤ 3, in Lorentzian space. We give curvature conditions of these kind of curves. Furthermore, we study harmonic curvatures of curves of AW(k)-type. We investigate that under what conditions AW(k)-type curves are helix. Some related theorems and corollaries are also proved.

  16. Non-linear realizations and higher curvature supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Farakos, F. [Dipartimento di Fisica e Astronomia ' ' Galileo Galilei' ' , Universita di Padova (Italy); INFN, Sezione di Padova (Italy); Ferrara, S. [Department of Theoretical Physics, Geneva (Switzerland); INFN - Laboratori Nazionali di Frascati, Frascati (Italy); Department of Physics and Astronomy, Mani L. Bhaumik Institute for Theoretical Physics, U.C.L.A., Los Angeles, CA (United States); Kehagias, A. [Physics Division, National Technical University of Athens (Greece); Luest, D. [Arnold Sommerfeld Center for Theoretical Physics, Muenchen (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2017-12-15

    We focus on non-linear realizations of local supersymmetry as obtained by using constrained superfields in supergravity. New constraints, beyond those of rigid supersymmetry, are obtained whenever curvature multiplets are affected as well as higher derivative interactions are introduced. In particular, a new constraint, which removes a very massive gravitino is introduced, and in the rigid limit it merely reduces to an explicit supersymmetry breaking. Higher curvature supergravities free of ghosts and instabilities are also obtained in this way. Finally, we consider direct coupling of the goldstino multiplet to the super Gauss-Bonnet multiplet and discuss the emergence of a new scalar degree of freedom. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Cosmic microwave background power asymmetry from non-Gaussian modulation.

    Science.gov (United States)

    Schmidt, Fabian; Hui, Lam

    2013-01-04

    Non-Gaussianity in the inflationary perturbations can couple observable scales to modes of much longer wavelength (even superhorizon), leaving as a signature a large-angle modulation of the observed cosmic microwave background power spectrum. This provides an alternative origin for a power asymmetry that is otherwise often ascribed to a breaking of statistical isotropy. The non-Gaussian modulation effect can be significant even for typical ~10(-5) perturbations while respecting current constraints on non-Gaussianity if the squeezed limit of the bispectrum is sufficiently infrared divergent. Just such a strongly infrared-divergent bispectrum has been claimed for inflation models with a non-Bunch-Davies initial state, for instance. Upper limits on the observed cosmic microwave background power asymmetry place stringent constraints on the duration of inflation in such models.

  18. Measurements of the Curvature of Protrusions/Retrusions on Migrating Recrystallization Boundaries

    DEFF Research Database (Denmark)

    Zhang, Yubin; Godfrey, A.; Juul Jensen, Dorte

    2009-01-01

    Two methods to quantify protrusions/retrusions and to estimate local boundary curvature from sample plane sections are proposed. The methods are used to evaluate the driving force due to curvature of the protrusions/retrusions for partially recrystallized pure nickel cold rolled to 96% reduction...

  19. A high resolution electron microscopy investigation of curvature in carbon nanotubes

    Science.gov (United States)

    Weldon, D. N.; Blau, W. J.; Zandbergen, H. W.

    1995-07-01

    Evidence for heptagon inclusion in multi-walled carbon nanotubes was sought in arc-produced carbon deposits. Transmission electron microscopy revealed many curved nanotubes although their relative abundance was low. Close examination of the micrographs in the regions of expected heptagon inclusion shows that the curvature is accomplished by folding or fracture of the lattice planes. This observed phenomenon contradicts the theoretical modelling studies which predict stable structures with negative curvature accomplished by heptagon/pentagon pairs. A possible explanation for curvature in single-walled tubes is presented based on a molecular mechanics geometry optimisation study of spa inclusion in a graphite sheet.

  20. Curvature contributions to the static electrical properties of push-pull molecules

    International Nuclear Information System (INIS)

    Squitieri, Emilio

    2005-01-01

    Calculations of the curvature contribution to the diagonals components of the static dipole moment (μ), polarizability (α), first (β) and second (γ) hyperpolarizability of push-pull molecules are presented. This contribution was obtained from the analytical evaluation of electrical properties method using the harmonic zero-point energy. The valence-bond charge-transfer model was employed to obtain the field-dependent force constant and their derivates with respect to electric field. Our results show a relationship between the curvature and electronic contributions. We have also found that the curvature contribution is important in a numerical estimation of β and γ

  1. Bounds on isocurvature perturbations from cosmic microwave background and large scale structure data.

    Science.gov (United States)

    Crotty, Patrick; García-Bellido, Juan; Lesgourgues, Julien; Riazuelo, Alain

    2003-10-24

    We obtain very stringent bounds on the possible cold dark matter, baryon, and neutrino isocurvature contributions to the primordial fluctuations in the Universe, using recent cosmic microwave background and large scale structure data. Neglecting the possible effects of spatial curvature, tensor perturbations, and reionization, we perform a Bayesian likelihood analysis with nine free parameters, and find that the amplitude of the isocurvature component cannot be larger than about 31% for the cold dark matter mode, 91% for the baryon mode, 76% for the neutrino density mode, and 60% for the neutrino velocity mode, at 2sigma, for uncorrelated models. For correlated adiabatic and isocurvature components, the fraction could be slightly larger. However, the cross-correlation coefficient is strongly constrained, and maximally correlated/anticorrelated models are disfavored. This puts strong bounds on the curvaton model.

  2. Frame-Covariant Formulation of Inflation in Scalar-Curvature Theories

    CERN Document Server

    Burns, Daniel; Pilaftsis, Apostolos

    2016-01-01

    We develop a frame-covariant formulation of inflation in the slow-roll approximation by generalizing the inflationary attractor solution for scalar-curvature theories. Our formulation gives rise to new generalized forms for the potential slow-roll parameters, which enable us to examine the effect of conformal transformations and inflaton reparameterizations in scalar-curvature theories. We find that cosmological observables, such as the power spectrum, the spectral indices and their runnings, can be expressed in a concise manner in terms of the generalized potential slow-roll parameters which depend on the scalar-curvature coupling function, the inflaton wavefunction, and the inflaton potential. We show how the cosmological observables of inflation are frame-invariant in this generalized potential slow-roll formalism, as long as the end-of-inflation condition is appropriately extended to become frame-invariant as well. We then apply our formalism to specific scenarios, such as the induced gravity inflation, H...

  3. The scalar curvature problem on the four dimensional half sphere

    CERN Document Server

    Ben-Ayed, M; El-Mehdi, K

    2003-01-01

    In this paper, we consider the problem of prescribing the scalar curvature under minimal boundary conditions on the standard four dimensional half sphere. We provide an Euler-Hopf type criterion for a given function to be a scalar curvature for some metric conformal to the standard one. Our proof involves the study of critical points at infinity of the associated variational problem.

  4. Probing interaction and spatial curvature in the holographic dark energy model

    International Nuclear Information System (INIS)

    Li, Miao; Li, Xiao-Dong; Wang, Shuang; Wang, Yi; Zhang, Xin

    2009-01-01

    In this paper we place observational constraints on the interaction and spatial curvature in the holographic dark energy model. We consider three kinds of phenomenological interactions between holographic dark energy and matter, i.e., the interaction term Q is proportional to the energy densities of dark energy (ρ Λ ), matter (ρ m ), and matter plus dark energy (ρ m +ρ Λ ). For probing the interaction and spatial curvature in the holographic dark energy model, we use the latest observational data including the type Ia supernovae (SNIa) Constitution data, the shift parameter of the cosmic microwave background (CMB) given by the five-year Wilkinson Microwave Anisotropy Probe (WMAP5) observations, and the baryon acoustic oscillation (BAO) measurement from the Sloan Digital Sky Survey (SDSS). Our results show that the interaction and spatial curvature in the holographic dark energy model are both rather small. Besides, it is interesting to find that there exists significant degeneracy between the phenomenological interaction and the spatial curvature in the holographic dark energy model

  5. Prescribed curvature tensor in locally conformally flat manifolds

    Science.gov (United States)

    Pina, Romildo; Pieterzack, Mauricio

    2018-01-01

    A global existence theorem for the prescribed curvature tensor problem in locally conformally flat manifolds is proved for a special class of tensors R. Necessary and sufficient conditions for the existence of a metric g ¯ , conformal to Euclidean g, are determined such that R ¯ = R, where R ¯ is the Riemannian curvature tensor of the metric g ¯ . The solution to this problem is given explicitly for special cases of the tensor R, including the case where the metric g ¯ is complete on Rn. Similar problems are considered for locally conformally flat manifolds.

  6. Principal Curvature Measures Estimation and Application to 3D Face Recognition

    KAUST Repository

    Tang, Yinhang

    2017-04-06

    This paper presents an effective 3D face keypoint detection, description and matching framework based on three principle curvature measures. These measures give a unified definition of principle curvatures for both smooth and discrete surfaces. They can be reasonably computed based on the normal cycle theory and the geometric measure theory. The strong theoretical basis of these measures provides us a solid discrete estimation method on real 3D face scans represented as triangle meshes. Based on these estimated measures, the proposed method can automatically detect a set of sparse and discriminating 3D facial feature points. The local facial shape around each 3D feature point is comprehensively described by histograms of these principal curvature measures. To guarantee the pose invariance of these descriptors, three principle curvature vectors of these principle curvature measures are employed to assign the canonical directions. Similarity comparison between faces is accomplished by matching all these curvature-based local shape descriptors using the sparse representation-based reconstruction method. The proposed method was evaluated on three public databases, i.e. FRGC v2.0, Bosphorus, and Gavab. Experimental results demonstrated that the three principle curvature measures contain strong complementarity for 3D facial shape description, and their fusion can largely improve the recognition performance. Our approach achieves rank-one recognition rates of 99.6, 95.7, and 97.9% on the neutral subset, expression subset, and the whole FRGC v2.0 databases, respectively. This indicates that our method is robust to moderate facial expression variations. Moreover, it also achieves very competitive performance on the pose subset (over 98.6% except Yaw 90°) and the occlusion subset (98.4%) of the Bosphorus database. Even in the case of extreme pose variations like profiles, it also significantly outperforms the state-of-the-art approaches with a recognition rate of 57.1%. The

  7. Discrete Curvatures and Discrete Minimal Surfaces

    KAUST Repository

    Sun, Xiang

    2012-06-01

    This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads to great interest in studying discrete surfaces. With the rich smooth surface theory in hand, one would hope that this elegant theory can still be applied to the discrete counter part. Such a generalization, however, is not always successful. While discrete surfaces have the advantage of being finite dimensional, thus easier to treat, their geometric properties such as curvatures are not well defined in the classical sense. Furthermore, the powerful calculus tool can hardly be applied. The methods in this thesis, including angular defect formula, cotangent formula, parallel meshes, relative geometry etc. are approaches based on offset meshes or generalized offset meshes. As an important application, we discuss discrete minimal surfaces and discrete Koenigs meshes.

  8. Measuring the composition-curvature coupling in binary lipid membranes by computer simulations

    International Nuclear Information System (INIS)

    Barragán Vidal, I. A.; Müller, M.; Rosetti, C. M.; Pastorino, C.

    2014-01-01

    The coupling between local composition fluctuations in binary lipid membranes and curvature affects the lateral membrane structure. We propose an efficient method to compute the composition-curvature coupling in molecular simulations and apply it to two coarse-grained membrane models—a minimal, implicit-solvent model and the MARTINI model. Both the weak-curvature behavior that is typical for thermal fluctuations of planar bilayer membranes as well as the strong-curvature regime corresponding to narrow cylindrical membrane tubes are studied by molecular dynamics simulation. The simulation results are analyzed by using a phenomenological model of the thermodynamics of curved, mixed bilayer membranes that accounts for the change of the monolayer area upon bending. Additionally the role of thermodynamic characteristics such as the incompatibility between the two lipid species and asymmetry of composition are investigated

  9. Measuring the composition-curvature coupling in binary lipid membranes by computer simulations

    Energy Technology Data Exchange (ETDEWEB)

    Barragán Vidal, I. A., E-mail: vidal@theorie.physik.uni-goettingen.de; Müller, M., E-mail: mmueller@theorie.physik.uni-goettingen.de [Institut für Theoretische Physik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Rosetti, C. M., E-mail: carla@dqb.fcq.unc.edu.ar [Centro de Investigaciones en Química Biológica de Córdoba, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba (Argentina); Pastorino, C., E-mail: pastor@cnea.gov.ar [Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, CNEA/CONICET, Av. Gral. Paz 1499, 1650 Pcia. de Buenos Aires (Argentina)

    2014-11-21

    The coupling between local composition fluctuations in binary lipid membranes and curvature affects the lateral membrane structure. We propose an efficient method to compute the composition-curvature coupling in molecular simulations and apply it to two coarse-grained membrane models—a minimal, implicit-solvent model and the MARTINI model. Both the weak-curvature behavior that is typical for thermal fluctuations of planar bilayer membranes as well as the strong-curvature regime corresponding to narrow cylindrical membrane tubes are studied by molecular dynamics simulation. The simulation results are analyzed by using a phenomenological model of the thermodynamics of curved, mixed bilayer membranes that accounts for the change of the monolayer area upon bending. Additionally the role of thermodynamic characteristics such as the incompatibility between the two lipid species and asymmetry of composition are investigated.

  10. Plan curvature and landslide probability in regions dominated by earth flows and earth slides

    Science.gov (United States)

    Ohlmacher, G.C.

    2007-01-01

    Damaging landslides in the Appalachian Plateau and scattered regions within the Midcontinent of North America highlight the need for landslide-hazard mapping and a better understanding of the geomorphic development of landslide terrains. The Plateau and Midcontinent have the necessary ingredients for landslides including sufficient relief, steep slope gradients, Pennsylvanian and Permian cyclothems that weather into fine-grained soils containing considerable clay, and adequate precipitation. One commonly used parameter in landslide-hazard analysis that is in need of further investigation is plan curvature. Plan curvature is the curvature of the hillside in a horizontal plane or the curvature of the contours on a topographic map. Hillsides can be subdivided into regions of concave outward plan curvature called hollows, convex outward plan curvature called noses, and straight contours called planar regions. Statistical analysis of plan-curvature and landslide datasets indicate that hillsides with planar plan curvature have the highest probability for landslides in regions dominated by earth flows and earth slides in clayey soils (CH and CL). The probability of landslides decreases as the hillsides become more concave or convex. Hollows have a slightly higher probability for landslides than noses. In hollows landslide material converges into the narrow region at the base of the slope. The convergence combined with the cohesive nature of fine-grained soils creates a buttressing effect that slows soil movement and increases the stability of the hillside within the hollow. Statistical approaches that attempt to determine landslide hazard need to account for the complex relationship between plan curvature, type of landslide, and landslide susceptibility. ?? 2007 Elsevier B.V. All rights reserved.

  11. The Influence of Shoreline Curvature on Rates of Shoreline Change on Sandy Coasts

    Science.gov (United States)

    Murray, A. B.; Lauzon, R.; Cheng, S.; Liu, J.; Lazarus, E.

    2017-12-01

    The sandy, low-lying barrier islands which characterize much of the US East and Gulf coasts are popular spots to live and vacation, and are often heavily developed. However, sandy shorelines and barriers are also naturally mobile landforms, which are vulnerable to sea level rise and storms and can experience high rates of shoreline change. Many previous studies have attempted to understand and quantify the factors that contribute to those rates of shoreline change, such as grain size, underlying geology, sea level rise, and anthropogenic modification. Shoreline curvature has not been considered in such analyses, but previous research has demonstrated that subtle coastline curvature (and therefore alongshore variation in relative offshore wave angle) can result in gradients in net alongshore transport that cause significant shoreline erosion or accretion. Here we present the results of a spatially extensive analysis of the correlation between shoreline curvature and shoreline change rates for the sandy shorelines of the US East and Gulf coasts. We find that, for wave-dominated sandy coasts where nourishment and shoreline stabilization do not dominate the shoreline change signal (such as parts of Texas, North Carolina, and Florida), there is a significant negative correlation between shoreline curvature and shoreline change rates over 1 - 5 km and decadal to centurial space and time scales. This correlation indicates that a portion of the coastal erosion (and accretion) observed in these areas can be explained by the smoothing of subtle coastline curvature by gradients in alongshore transport, and suggests that shoreline curvature should be included in future attempts to understand historical and future rates of shoreline change. Shoreline stabilization, especially through beach nourishment, complicates the relationship between curvature and shoreline change. Beach construction during nourishment creates a seaward convex curvature in the part of the shoreline moves

  12. Soliton surfaces via a zero-curvature representation of differential equations

    International Nuclear Information System (INIS)

    Grundland, A M; Post, S

    2012-01-01

    The main aim of this paper is to introduce a new version of the Fokas–Gel’fand formula for immersion of soliton surfaces in Lie algebras. The paper contains a detailed exposition of the technique for obtaining exact forms of 2D surfaces associated with any solution of a given nonlinear ordinary differential equation which can be written in the zero-curvature form. That is, for any generalized symmetry of the zero-curvature condition of the associated integrable model, it is possible to construct soliton surfaces whose Gauss–Mainardi–Codazzi equations are equivalent to infinitesimal deformations of the zero-curvature representation of the considered model. Conversely, it is shown (proposition 1) that for a given immersion function of a 2D soliton surface in a Lie algebra, it is possible to derive the associated generalized vector field in the evolutionary form which characterizes all symmetries of the zero-curvature condition. The theoretical considerations are illustrated via surfaces associated with the Painlevé equations P1, P2 and P3, including transcendental functions, the special cases of the rational and Airy solutions of P2 and the classical solutions of P3. (paper)

  13. Harmonic curvatures and generalized helices in En

    International Nuclear Information System (INIS)

    Camci, Cetin; Ilarslan, Kazim; Kula, Levent; Hacisalihoglu, H. Hilmi

    2009-01-01

    In n-dimensional Euclidean space E n , harmonic curvatures of a non-degenerate curve defined by Ozdamar and Hacisalihoglu [Ozdamar E, Hacisalihoglu HH. A characterization of Inclined curves in Euclidean n-space. Comm Fac Sci Univ Ankara, Ser A1 1975;24:15-23]. In this paper, we give some characterizations for a non-degenerate curve α to be a generalized helix by using its harmonic curvatures. Also we define the generalized Darboux vector D of a non-degenerate curve α in n-dimensional Euclidean space E n and we show that the generalized Darboux vector D lies in the kernel of Frenet matrix M(s) if and only if the curve α is a generalized helix in the sense of Hayden.

  14. Mean cortical curvature reflects cytoarchitecture restructuring in mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Jace B. King

    2016-01-01

    Full Text Available In the United States alone, the number of persons living with the enduring consequences of traumatic brain injuries is estimated to be between 3.2 and 5 million. This number does not include individuals serving in the United States military or seeking care at Veterans Affairs hospitals. The importance of understanding the neurobiological consequences of mild traumatic brain injury (mTBI has increased with the return of veterans from conflicts overseas, many of who have suffered this type of brain injury. However, identifying the neuroanatomical regions most affected by mTBI continues to prove challenging. The aim of this study was to assess the use of mean cortical curvature as a potential indicator of progressive tissue loss in a cross-sectional sample of 54 veterans with mTBI compared to 31 controls evaluated with MRI. It was hypothesized that mean cortical curvature would be increased in veterans with mTBI, relative to controls, due in part to cortical restructuring related to tissue volume loss. Mean cortical curvature was assessed in 60 bilateral regions (31 sulcal, 29 gyral. Of the 120 regions investigated, nearly 50% demonstrated significantly increased mean cortical curvature in mTBI relative to controls with 25% remaining significant following multiple comparison correction (all, pFDR < .05. These differences were most prominent in deep gray matter regions of the cortex. Additionally, significant relationships were found between mean cortical curvature and gray and white matter volumes (all, p < .05. These findings suggest potentially unique patterns of atrophy by region and indicate that changes in brain microstructure due to mTBI are sensitive to measures of mean curvature.

  15. Curvature Derivative Surface used to characterize the complexity of the seafloor around St. John, USVI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Curvature was calculated from the bathymetry surface for each raster cell using the ArcGIS 3D Analyst "Curvature" Tool. Curvature describes the rate of change of...

  16. Atomic fine structure in a space of constant curvature

    International Nuclear Information System (INIS)

    Bessis, N.; Bessis, G.; Shamseddine, R.

    1982-01-01

    As a contribution to a tentative formulation of atomic physics in a curved space, the determination of atomic fine structure energies in a space of constant curvature is investigated. Starting from the Dirac equation in a curved space-time, the analogue of the Pauli equation in a general coordinate system is derived. The theoretical curvature induced shifts and splittings of the fine structure energy levels are put in evidence and examined for the particular case of the hydrogenic n=2 levels. (author)

  17. Effects of ethylene on the kinetics of curvature and auxin redistribution in gravistimulated roots of Zea mays

    Science.gov (United States)

    Lee, J. S.; Evans, M. L.

    1990-01-01

    We tested the involvement of ethylene in maize (Zea mays L.) root gravitropism by measuring the kinetics of curvature and lateral auxin movement in roots treated with ethylene, inhibitors of ethylene synthesis, or inhibitors of ethylene action. In the presence of ethylene the latent period of gravitropic curvature appeared to be increased somewhat. However, ethylene-treated roots continued to curve after control roots had reached their final angle of curvature. Consequently, maximum curvature in the presence of ethylene was much greater in ethylene-treated roots than in controls. Inhibitors of ethylene biosynthesis or action had effects on the kinetics of curvature opposite to that of ethylene, i.e. the latent period appeared to be shortened somewhat while total curvature was reduced relative to that of controls. Label from applied 3H-indole-3-acetic acid was preferentially transported toward the lower side of stimulated roots. In parallel with effects on curvature, ethylene treatment delayed the development of gravity-induced asymmetric auxin movement across the root but extended its duration once initiated. The auxin transport inhibitor, 1-N-naphthylphthalamic acid reduced both gravitropic curvature and the effect of ethylene on curvature. Since neither ethylene nor inhibitors of ethylene biosynthesis or action prevented curvature, we conclude that ethylene does not mediate the primary differential growth response causing curvature. Because ethylene affects curvature and auxin transport in parallel, we suggest that ethylene modifies curvature by affecting gravity-induced lateral transport of auxin, perhaps by interfering with adaptation of the auxin transport system to the gravistimulus.

  18. Existence of conformal metrics on spheres with prescribed Paneitz curvature

    International Nuclear Information System (INIS)

    Ben Ayed, Mohamed; El Mehdi, Khalil

    2003-07-01

    In this paper we study the problem of prescribing a fourth order conformal invariant (the Paneitz curvature) on the n-spheres, with n ≥ 5. Using tools from the theory of critical points at infinity, we provide some topological conditions on the level sets of a given function defined on the sphere, under which we prove the existence of conformal metric with prescribed Paneitz curvature. (author)

  19. Existence of conformal metrics on spheres with prescribed Paneitz curvature

    CERN Document Server

    Ben-Ayed, M

    2003-01-01

    In this paper we study the problem of prescribing a fourth order conformal invariant (the Paneitz curvature) on the n-spheres, with n >= 5. Using tools from the theory of critical points at infinity, we provide some topological conditions on the level sets of a given function defined on the sphere, under which we prove the existence of conformal metric with prescribed Paneitz curvature.

  20. Curvature tensor copies in affine geometry

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1981-01-01

    The sets of space-time and spin-connections which give rise to the same curvature tensor are constructed. The corresponding geometries are compared. Results are illustrated by an explicit calculation and comment on the copies in Einstein-Cartan and Weyl-Cartan geometries. (Author) [pt

  1. Resolving curvature singularities in holomorphic gravity

    NARCIS (Netherlands)

    Mantz, C.L.M.; Prokopec, T.

    2011-01-01

    We formulate a holomorphic theory of gravity and study how the holomorphy symmetry alters the two most important singular solutions of general relativity: black holes and cosmology. We show that typical observers (freely) falling into a holomorphic black hole do not encounter a curvature

  2. Biharmonic Submanifolds with Parallel Mean Curvature Vector in Pseudo-Euclidean Spaces

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yu, E-mail: yufudufe@gmail.com [Dongbei University of Finance and Economics, School of Mathematics and Quantitative Economics (China)

    2013-12-15

    In this paper, we investigate biharmonic submanifolds in pseudo-Euclidean spaces with arbitrary index and dimension. We give a complete classification of biharmonic spacelike submanifolds with parallel mean curvature vector in pseudo-Euclidean spaces. We also determine all biharmonic Lorentzian surfaces with parallel mean curvature vector field in pseudo-Euclidean spaces.

  3. Biharmonic Submanifolds with Parallel Mean Curvature Vector in Pseudo-Euclidean Spaces

    International Nuclear Information System (INIS)

    Fu, Yu

    2013-01-01

    In this paper, we investigate biharmonic submanifolds in pseudo-Euclidean spaces with arbitrary index and dimension. We give a complete classification of biharmonic spacelike submanifolds with parallel mean curvature vector in pseudo-Euclidean spaces. We also determine all biharmonic Lorentzian surfaces with parallel mean curvature vector field in pseudo-Euclidean spaces

  4. Axial gravitational waves in FLRW cosmology and memory effects

    Science.gov (United States)

    Kulczycki, Wojciech; Malec, Edward

    2017-09-01

    We show initial data for gravitational axial waves that are twice differentiable but that are not C2. They generate wave pulses that interact with matter in the radiation cosmological era. This forces the radiation matter to rotate. This rotation is permanent—it persists after the passage of the gravitational pulse. The observed inhomogeneities of the cosmic microwave background radiation put a bound onto discontinuities of superhorizon metric perturbations. We explicitly show that a class of smooth initial metrics that are at least C2 gives rise to gravitational wave pulses that do not interact with the background during the radiation epoch.

  5. A prescribing geodesic curvature problem

    International Nuclear Information System (INIS)

    Chang, K.C.; Liu, J.Q.

    1993-09-01

    Let D be the unit disk and k be a function on S 1 = δD. Find a flat metric which is pointwise conformal to the standard metric and has k as the geodesic curvature of S 1 . A sufficient condition for the existence of such a metric is that the harmonic extension of k in D has saddle points. (author). 11 refs

  6. Linearized curvatures for auxiliary fields in the de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, M A

    1988-09-19

    New consistent linearized curvatures in the de Sitter space are constructed. The sequence of actions, describing bosonic and fermionic gauge auxiliary fields, is found based on these curvatures. The proposed actions are parametrized by two integer parameters, n greater than or equal to 0 and m greater than or equal to 0. The simplest case n=m=0 corresponds in the flat limit to the auxiliary fields of 'new minimal' supergravity. The hamiltonian formulation is developed for the auxiliary fields suggested; hamiltonians and first- and second-class constraints are constructed. Using these results, it is shown that the systems of fields proposed possess no dynamical degrees of freedom in de Sitter and flat spaces. In addition the hamiltonian formalism is analysed for some free dynamical systems based on linearized higher-spin curvatures introduced previously.

  7. Higher curvature corrections to primordial fluctuations in slow-roll inflation

    International Nuclear Information System (INIS)

    Satoh, Masaki; Soda, Jiro

    2008-01-01

    We study higher curvature corrections to the scalar spectral index, the tensor spectral index, the tensor-to-scalar ratio, and the polarization of gravitational waves. We find that there are cases where the higher curvature corrections cannot be negligible in the dynamics of the scalar field, although they are always negligible energetically. Indeed, it turns out that the tensor-to-scalar ratio could be enhanced and the tensor spectral index could be blue due to the Gauss–Bonnet term. We estimate the degree of circular polarization of gravitational waves generated during the slow-roll inflation. We argue that the circular polarization could be observable with the help of both the Gauss–Bonnet and the parity violating terms. We also present several examples to reveal observational implications of higher curvature corrections for chaotic inflationary models

  8. The geometric curvature of the lumbar spine during restricted and unrestricted squats.

    Science.gov (United States)

    Hebling Campos, Mário; Furtado Alaman, Laizi I; Seffrin-Neto, Aldo A; Vieira, Carlos A; Costa de Paula, Marcelo; Barbosa de Lira, Claudio A

    2017-06-01

    The main purpose of this study was to analyze the behavior of the geometric curvature of the lumbar spine during restricted and unrestricted squats, using a novel investigative method. The rationale for our hypothesis is that the lumbar curvature has different patterns at different spine levels depending on the squat technique used. Spine motion was collected via stereo-photogrammetric analysis in nineteen participants (11 males, 8 females). The reconstructed spine points at the upright neutral position and at the deepest position of the squat exercise were projected onto the sagittal plane of the trunk, a polynomial was fitted to the data, and were quantified the two-dimensional geometric curvature at lower, central and higher lumbar levels, besides the inclination of trunk and lumbosacral region, the overall geometric curvature and overall angle of the lumbar spine. The mean values for each variable were analysed with paired t-test (Psquat techniques and these effects are also reduced in unrestricted squats. The data collected in the study are evidence that during barbell squats the lumbar curvature has different patterns at different spinal levels depending on the exercise technique. The lower lumbar spine appears to be less overloaded during unrestricted squats.

  9. Generalization of the swelling method to measure the intrinsic curvature of lipids

    Science.gov (United States)

    Barragán Vidal, I. A.; Müller, M.

    2017-12-01

    Via computer simulation of a coarse-grained model of two-component lipid bilayers, we compare two methods of measuring the intrinsic curvatures of the constituting monolayers. The first one is a generalization of the swelling method that, in addition to the assumption that the spontaneous curvature linearly depends on the composition of the lipid mixture, incorporates contributions from its elastic energy. The second method measures the effective curvature-composition coupling between the apposing leaflets of bilayer structures (planar bilayers or cylindrical tethers) to extract the spontaneous curvature. Our findings demonstrate that both methods yield consistent results. However, we highlight that the two-leaflet structure inherent to the latter method has the advantage of allowing measurements for mixed lipid systems up to their critical point of demixing as well as in the regime of high concentration (of either species).

  10. Global and local curvature in density functional theory.

    Science.gov (United States)

    Zhao, Qing; Ioannidis, Efthymios I; Kulik, Heather J

    2016-08-07

    Piecewise linearity of the energy with respect to fractional electron removal or addition is a requirement of an electronic structure method that necessitates the presence of a derivative discontinuity at integer electron occupation. Semi-local exchange-correlation (xc) approximations within density functional theory (DFT) fail to reproduce this behavior, giving rise to deviations from linearity with a convex global curvature that is evidence of many-electron, self-interaction error and electron delocalization. Popular functional tuning strategies focus on reproducing piecewise linearity, especially to improve predictions of optical properties. In a divergent approach, Hubbard U-augmented DFT (i.e., DFT+U) treats self-interaction errors by reducing the local curvature of the energy with respect to electron removal or addition from one localized subshell to the surrounding system. Although it has been suggested that DFT+U should simultaneously alleviate global and local curvature in the atomic limit, no detailed study on real systems has been carried out to probe the validity of this statement. In this work, we show when DFT+U should minimize deviations from linearity and demonstrate that a "+U" correction will never worsen the deviation from linearity of the underlying xc approximation. However, we explain varying degrees of efficiency of the approach over 27 octahedral transition metal complexes with respect to transition metal (Sc-Cu) and ligand strength (CO, NH3, and H2O) and investigate select pathological cases where the delocalization error is invisible to DFT+U within an atomic projection framework. Finally, we demonstrate that the global and local curvatures represent different quantities that show opposing behavior with increasing ligand field strength, and we identify where these two may still coincide.

  11. Comparative effectiveness of metal ions in inducing curvature of primary roots of Zea mays

    Science.gov (United States)

    Hasenstein, K. H.; Evans, M. L.; Stinemetz, C. L.; Moore, R.; Fondren, W. M.; Koon, E. C.; Higby, M. A.; Smucker, A. J.

    1988-01-01

    We used five cultivars of Zea mays (Bear Hybrid WF9 * 38MS, B73 * Missouri 17, Yellow Dent, Merit, and Great Lakes Hybrid 422) to reinvestigate the specificity of metal ions for inducing root curvature. Of 17 cations tested, 6 (Al3+, Ba2+, Ca2+, Cd2+, Cu2+, Zn2+) induced curvature. Roots curved away from Al3+, Ba2+, and Cd2+. Roots curved away from low (0.1 millimolar) concentrations of Cu2+ but toward higher (1-5 millimolar) concentrations. Roots initially curved away from Zn2+ but the direction of the subsequent curvature was unpredictable. In most cases, roots of all cultivars curved towards calcium. However, in some tests there was no response to calcium or even (especially in the cultivars Merit and B73 * Missouri 17) substantial curvature away from calcium. The results indicate that the induction of root curvature is not specific for calcium. The results are discussed relative to the possible role of calmodulin as a mediator of ion-induced root curvature.

  12. Protein shape and crowding drive domain formation and curvature in biological membranes

    NARCIS (Netherlands)

    Frese, R.N.; Pamies, Josep C.; Olsen, John D.; Bahatyrova, S.; van der Weij-de Wit, Chantal D.; Aartsma, Thijs J.; Otto, Cornelis; Hunter, C. Neil; Frenkel, Daan; van Grondelle, Rienk

    2007-01-01

    Folding, curvature, and domain formation are characteristics of many biological membranes. Yet the mechanisms that drive both curvature and the formation of specialized domains enriched in particular protein complexes are unknown. For this reason, studies in membranes whose shape and organization

  13. Correlations between gravitropic curvature and auxin movement across gravistimulated roots of Zea mays

    Science.gov (United States)

    Young, L. M.; Evans, M. L.; Hertel, R.

    1990-01-01

    We compared the kinetics of auxin redistribution across the caps of primary roots of 2-day-old maize (Zea mays, cv Merit) seedlings with the time course of gravitropic curvature. [3H] indoleacetic acid was applied to one side of the cap in an agar donor and radioactivity moving across the cap was collected in an agar receiver applied to the opposite side. Upon gravistimulation the roots first curved upward slightly, then returned to the horizontal and began curving downward, reaching a final angle of about 67 degrees. Movement of label across the caps of gravistimulated roots was asymmetric with preferential downward movement (ratio downward/upward = ca. 1.6, radioactivity collected during the 90 min following beginning of gravistimulation). There was a close correlation between the development of asymmetric auxin movement across the root cap and the rate of curvature, with both values increasing to a maximum and then declining as the roots approached the final angle of curvature. In roots preadapted to gravity (alternate brief stimulation on opposite flanks over a period of 1 hour) the initial phase of upward curvature was eliminated and downward bending began earlier than for controls. The correlation between asymmetric auxin movement and the kinetics of curvature also held in comparisons between control and preadapted roots. Both downward auxin transport asymmetry and downward curvature occurred earlier in preadapted roots than in controls. These findings are consistent with suggestions that the root cap is not only the site of perception but also the location of the initial redistribution of effectors that ultimately leads to curvature.

  14. Gauge and non-gauge curvature tensor copies

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1982-10-01

    A procedure for constructing curvature tensor copies is discussed using the anholonomic geometrical framework. The corresponding geometries are compared and the notion of gauge copy is elucidated. An explicit calculation is also made. (author)

  15. Curvature effect on nuclear 'pasta': Is it helpful for gyroid appearance?

    International Nuclear Information System (INIS)

    Nakazato, Ken'ichiro; Iida, Kei; Oyamatsu, Kazuhiro

    2011-01-01

    In supernova cores and neutron star crusts, nuclei are thought to deform to rodlike and slablike shapes, which are often called nuclear pasta. We study the equilibrium properties of the nuclear pasta by using a liquid-drop model with curvature corrections. It is confirmed that the curvature effect acts to lower the transition densities between different shapes. We also examine the gyroid structure, which was recently suggested as a different type of nuclear pasta by analogy with the polymer systems. The gyroid structure investigated in this paper is approximately formulated as an extension of the periodic minimal surface whose mean curvature vanishes. In contrast to our expectations, we find, from the present approximate formulation, that the curvature corrections act to slightly disfavor the appearance of the gyroid structure. By comparing the energy corrections in the gyroid phase and the hypothetical phases composed of d-dimensional spheres, where d is a general dimensionality, we show that the gyroid is unlikely to belong to a family of the generalized dimensional spheres.

  16. FY 2016 Status Report: CIRFT Testing Data Analyses and Updated Curvature Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    This report provides a detailed description of FY15 test result corrections/analysis based on the FY16 Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) test program methodology update used to evaluate the vibration integrity of spent nuclear fuel (SNF) under normal transportation conditions. The CIRFT consists of a U-frame testing setup and a real-time curvature measurement method. The three-component U-frame setup of the CIRFT has two rigid arms and linkages to a universal testing machine. The curvature of rod bending is obtained through a three-point deflection measurement method. Three linear variable differential transformers (LVDTs) are used and clamped to the side connecting plates of the U-frame to capture the deformation of the rod. The contact-based measurement, or three-LVDT-based curvature measurement system, on SNF rods has been proven to be quite reliable in CIRFT testing. However, how the LVDT head contacts the SNF rod may have a significant effect on the curvature measurement, depending on the magnitude and direction of rod curvature. It has been demonstrated that the contact/curvature issues can be corrected by using a correction on the sensor spacing. The sensor spacing defines the separation of the three LVDT probes and is a critical quantity in calculating the rod curvature once the deflections are obtained. The sensor spacing correction can be determined by using chisel-type probes. The method has been critically examined this year and has been shown to be difficult to implement in a hot cell environment, and thus cannot be implemented effectively. A correction based on the proposed equivalent gauge-length has the required flexibility and accuracy and can be appropriately used as a correction factor. The correction method based on the equivalent gauge length has been successfully demonstrated in CIRFT data analysis for the dynamic tests conducted on Limerick (LMK) (17 tests), North Anna (NA) (6 tests), and Catawba mixed oxide (MOX

  17. On Mass, Spacetime Curvature, and Gravity

    Science.gov (United States)

    Janis, Allen I.

    2018-01-01

    The frequently used analogy of a massive ball distorting an elastic sheet, which is used to illustrate why mass causes spacetime curvature and gravitational attraction, is criticized in this article. A different analogy that draws on the students' previous knowledge of spacetime diagrams in special relativity is suggested.

  18. Black hole production in particle collisions and higher curvature gravity

    International Nuclear Information System (INIS)

    Rychkov, Vyacheslav S.

    2004-01-01

    The problem of black hole production in trans-Planckian particle collisions is revisited, in the context of large extra dimensions scenarios of TeV-scale gravity. The validity of the standard description of this process (two colliding Aichelburg-Sexl shock waves in classical Einstein gravity) is questioned. It is observed that the classical spacetime has large curvature along the transverse collision plane, as signaled by the curvature invariant (R μνλσ ) 2 . Thus quantum gravity effects, and in particular higher curvature corrections to the Einstein gravity, cannot be ignored. To give a specific example of what may happen, the collision is reanalyzed in the Einstein-Lanczos-Lovelock gravity theory, which modifies the Einstein-Hilbert Lagrangian by adding a particular 'Gauss-Bonnet' combination of curvature squared terms. The analysis uses a series of approximations, which reduce the field equations to a tractable second order nonlinear PDE of the Monge-Ampere type. It is found that the resulting spacetime is significantly different from the pure Einstein case in the future of the transverse collision plane. These considerations cast serious doubts on the geometric cross section estimate, which is based on the classical Einstein gravity description of the black hole production process

  19. Curvature correction of retinal OCTs using graph-based geometry detection

    Science.gov (United States)

    Kafieh, Raheleh; Rabbani, Hossein; Abramoff, Michael D.; Sonka, Milan

    2013-05-01

    In this paper, we present a new algorithm as an enhancement and preprocessing step for acquired optical coherence tomography (OCT) images of the retina. The proposed method is composed of two steps, first of which is a denoising algorithm with wavelet diffusion based on a circular symmetric Laplacian model, and the second part can be described in terms of graph-based geometry detection and curvature correction according to the hyper-reflective complex layer in the retina. The proposed denoising algorithm showed an improvement of contrast-to-noise ratio from 0.89 to 1.49 and an increase of signal-to-noise ratio (OCT image SNR) from 18.27 to 30.43 dB. By applying the proposed method for estimation of the interpolated curve using a full automatic method, the mean ± SD unsigned border positioning error was calculated for normal and abnormal cases. The error values of 2.19 ± 1.25 and 8.53 ± 3.76 µm were detected for 200 randomly selected slices without pathological curvature and 50 randomly selected slices with pathological curvature, respectively. The important aspect of this algorithm is its ability in detection of curvature in strongly pathological images that surpasses previously introduced methods; the method is also fast, compared to the relatively low speed of similar methods.

  20. Vertex Normals and Face Curvatures of Triangle Meshes

    KAUST Repository

    Sun, Xiang

    2016-08-12

    This study contributes to the discrete differential geometry of triangle meshes, in combination with discrete line congruences associated with such meshes. In particular we discuss when a congruence defined by linear interpolation of vertex normals deserves to be called a ʼnormal’ congruence. Our main results are a discussion of various definitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula.

  1. Experimental and numerical investigation of laser forming of cylindrical surfaces with arbitrary radius of curvature

    Directory of Open Access Journals (Sweden)

    Mehdi Safari

    2016-09-01

    Full Text Available In this work, laser forming of cylindrical surfaces with arbitrary radius of curvature is investigated experimentally and numerically. For laser forming of cylindrical surfaces with arbitrary radius of curvature, a new and comprehensive method is proposed in this paper. This method contains simple linear irradiating lines and using an analytical method, required process parameters for laser forming of a cylindrical surface with a specific radius of curvature is proposed. In this method, laser output power, laser scanning speed and laser beam diameter are selected based on laser machine and process limitations. As in the laser forming of a cylindrical surface, parallel irradiating lines are needed; therefore key parameter for production of a cylindrical surface with a specific radius of curvature is the number of irradiating lines. Hence, in the proposed analytical method, the required number of irradiating lines for production of a cylindrical surface with a specific radius of curvature is suggested. Performance of the proposed method for production of cylindrical surface with a specific radius of curvature is verified with experimental tests. The results show that using proposed analytical method, cylindrical surfaces with any radius of curvature can be produced successfully.

  2. The Role of Membrane Curvature in Nanoscale Topography-Induced Intracellular Signaling.

    Science.gov (United States)

    Lou, Hsin-Ya; Zhao, Wenting; Zeng, Yongpeng; Cui, Bianxiao

    2018-05-15

    Over the past decade, there has been growing interest in developing biosensors and devices with nanoscale and vertical topography. Vertical nanostructures induce spontaneous cell engulfment, which enhances the cell-probe coupling efficiency and the sensitivity of biosensors. Although local membranes in contact with the nanostructures are found to be fully fluidic for lipid and membrane protein diffusions, cells appear to actively sense and respond to the surface topography presented by vertical nanostructures. For future development of biodevices, it is important to understand how cells interact with these nanostructures and how their presence modulates cellular function and activities. How cells recognize nanoscale surface topography has been an area of active research for two decades before the recent biosensor works. Extensive studies show that surface topographies in the range of tens to hundreds of nanometers can significantly affect cell functions, behaviors, and ultimately the cell fate. For example, titanium implants having rough surfaces are better for osteoblast attachment and host-implant integration than those with smooth surfaces. At the cellular level, nanoscale surface topography has been shown by a large number of studies to modulate cell attachment, activity, and differentiation. However, a mechanistic understanding of how cells interact and respond to nanoscale topographic features is still lacking. In this Account, we focus on some recent studies that support a new mechanism that local membrane curvature induced by nanoscale topography directly acts as a biochemical signal to induce intracellular signaling, which we refer to as the curvature hypothesis. The curvature hypothesis proposes that some intracellular proteins can recognize membrane curvatures of a certain range at the cell-to-material interface. These proteins then recruit and activate downstream components to modulate cell signaling and behavior. We discuss current technologies

  3. Quantitative three-dimensional analysis of root canal curvature in maxillary first molars using micro-computed tomography.

    Science.gov (United States)

    Lee, Jong-Ki; Ha, Byung-Hyun; Choi, Jeong-Ho; Heo, Seok-Mo; Perinpanayagam, Hiran

    2006-10-01

    In endodontic therapy, access and instrumentation are strongly affected by root canal curvature. However, the few studies that have actually measured curvature are mostly from two-dimensional radiographs. The purpose of this study was to measure the three-dimensional (3D) canal curvature in maxillary first molars using micro-computed tomography (microCT) and mathematical modeling. Extracted maxillary first molars (46) were scanned by microCT (502 image slices/tooth, 1024 X 1024 pixels, voxel size of 19.5 x 19.5 x 39.0 microm) and their canals reconstructed by 3D modeling software. The intersection of major and minor axes in the canal space of each image slice were connected to create an imaginary central axis for each canal. The radius of curvature of the tangential circle was measured and inverted as a measure of curvature using custom-made mathematical modeling software. Root canal curvature was greatest in the apical third and least in the middle third for all canals. The greatest curvatures were in the mesiobuccal (MB) canal (0.76 +/- 0.48 mm(-1)) with abrupt curves, and the least curvatures were in the palatal (P) canal (0.38 +/- 0.34 mm(-1)) with a gradual curve. This study has measured the 3D curvature of root canals in maxillary first molars and reinforced the value of microCT with mathematical modeling.

  4. Higher Curvature Supergravity, Supersymmetry Breaking and Inflation

    CERN Document Server

    Ferrara, Sergio

    2017-01-01

    In these lectures, after a short introduction to cosmology, we discuss the supergravity embedding of higher curvature models of inflation. The supergravity description of such models is presented for the two different formulations of minimal supergravity.

  5. Regional surface geometry of the rat stomach based on three-dimensional curvature analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liao Donghua [Center of Excellence in Visceral Biomechanics and Pain, Aalborg Hospital, DK-9100 Aalborg (Denmark); Zhao Jingbo [Center of Excellence in Visceral Biomechanics and Pain, Aalborg Hospital, DK-9100 Aalborg (Denmark); Gregersen, Hans [Center of Excellence in Visceral Biomechanics and Pain, Aalborg Hospital, DK-9100 Aalborg (Denmark)

    2005-01-21

    A better understanding of gastric accommodation and gastric perception requires knowledge of regional gastric geometry and local gastric tension throughout the stomach. An analytic method based on medical imaging data was developed in this study to describe the three-dimensional (3D) rat stomach geometry and tension distribution. The surface principal radii of curvatures were simulated and the surface tension was calculated in the glandular and non-glandular region of the stomach at pressures from 0 Pa to 800 Pa. The radii of curvature and tension distribution in the stomach were non-homogeneous. The radii of curvature in the glandular stomach were larger than those in the non-glandular region at pressures less than 100 Pa (P < 0.001). When the pressure increased to more than 200 Pa, the radii of curvature in the non-glandular stomach was larger than in the glandular stomach (P < 0.05). The curvature and tension distribution mapping using medical imaging technology and 3D models can be used to characterize and distinguish the physical behaviour in separate regions of the stomach.

  6. Regional surface geometry of the rat stomach based on three-dimensional curvature analysis

    International Nuclear Information System (INIS)

    Liao Donghua; Zhao Jingbo; Gregersen, Hans

    2005-01-01

    A better understanding of gastric accommodation and gastric perception requires knowledge of regional gastric geometry and local gastric tension throughout the stomach. An analytic method based on medical imaging data was developed in this study to describe the three-dimensional (3D) rat stomach geometry and tension distribution. The surface principal radii of curvatures were simulated and the surface tension was calculated in the glandular and non-glandular region of the stomach at pressures from 0 Pa to 800 Pa. The radii of curvature and tension distribution in the stomach were non-homogeneous. The radii of curvature in the glandular stomach were larger than those in the non-glandular region at pressures less than 100 Pa (P < 0.001). When the pressure increased to more than 200 Pa, the radii of curvature in the non-glandular stomach was larger than in the glandular stomach (P < 0.05). The curvature and tension distribution mapping using medical imaging technology and 3D models can be used to characterize and distinguish the physical behaviour in separate regions of the stomach

  7. Moment-Curvature Behaviors of Concrete Beams Singly Reinforced by Steel-FRP Composite Bars

    Directory of Open Access Journals (Sweden)

    Zeyang Sun

    2017-01-01

    Full Text Available A steel-fiber-reinforced polymer (FRP composite bar (SFCB is a kind of rebar with inner steel bar wrapped by FRP, which can achieve a better anticorrosion performance than that of ordinary steel bar. The high ultimate strength of FRP can also provide a significant increase in load bearing capacity. Based on the adequate simulation of the load-displacement behaviors of concrete beams reinforced by SFCBs, a parametric analysis of the moment-curvature behaviors of concrete beams that are singly reinforced by SFCB was conducted. The critical reinforcement ratio for differentiating the beam’s failure mode was presented, and the concept of the maximum possible peak curvature (MPPC was proposed. After the ultimate curvature reached MPPC, it decreased with an increase in the postyield stiffness ratio (rsf, and the theoretical calculation method about the curvatures before and after the MPPC was derived. The influence of the reinforcement ratio, effective depth, and FRP ultimate strain on the ultimate point was studied by the dimensionless moment and curvature. By calculating the envelope area under the moment-curvature curve, the energy ductility index can obtain a balance between the bearing capacity and the deformation ability. This paper can provide a reference for the design of concrete beams that are reinforced by SFCB or hybrid steel bar/FRP bar.

  8. Incorporating contact angles in the surface tension force with the ACES interface curvature scheme

    Science.gov (United States)

    Owkes, Mark

    2017-11-01

    In simulations of gas-liquid flows interacting with solid boundaries, the contact line dynamics effect the interface motion and flow field through the surface tension force. The surface tension force is directly proportional to the interface curvature and the problem of accurately imposing a contact angle must be incorporated into the interface curvature calculation. Many commonly used algorithms to compute interface curvatures (e.g., height function method) require extrapolating the interface, with defined contact angle, into the solid to allow for the calculation of a curvature near a wall. Extrapolating can be an ill-posed problem, especially in three-dimensions or when multiple contact lines are near each other. We have developed an accurate methodology to compute interface curvatures that allows for contact angles to be easily incorporated while avoiding extrapolation and the associated challenges. The method, known as Adjustable Curvature Evaluation Scale (ACES), leverages a least squares fit of a polynomial to points computed on the volume-of-fluid (VOF) representation of the gas-liquid interface. The method is tested by simulating canonical test cases and then applied to simulate the injection and motion of water droplets in a channel (relevant to PEM fuel cells).

  9. Effects of curvature and rotation on turbulence in the NASA low-speed centrifugal compressor impeller

    Science.gov (United States)

    Moore, Joan G.; Moore, John

    1992-01-01

    The flow in the NASA Low-Speed Impeller is affected by both curvature and rotation. The flow curves due to the following: (1) geometric curvature, e.g. the curvature of the hub and shroud profiles in the meridional plane and the curvature of the backswept impeller blades; and (2) secondary flow vortices, e.g. the tip leakage vortex. Changes in the turbulence and effective turbulent viscosity in the impeller are investigated. The effects of these changes on three-dimensional flow development are discussed. Two predictions of the flow in the impeller, one with, and one without modification to the turbulent viscosity due to rotation and curvature, are compared. Some experimental and theoretical background for the modified mixing length model of turbulent viscosity will also be presented.

  10. Profile Curvature Derivative Surface used to characterize the complexity of the seafloor around St. John, USVI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Profile curvature was calculated from the bathymetry surface for each raster cell using the ArcGIS 3D Analyst "Curvature" Tool. Profile curvature describes the rate...

  11. ON THE CURVATURE OF DUST LANES IN GALACTIC BARS

    International Nuclear Information System (INIS)

    Comeron, Sebastien; MartInez-Valpuesta, Inma; Knapen, Johan H.; Beckman, John E.

    2009-01-01

    We test the theoretical prediction that the straightest dust lanes in bars are found in strongly barred galaxies, or more specifically, that the degree of curvature of the dust lanes is inversely proportional to the strength of the bar. The test uses archival images of barred galaxies for which a reliable nonaxisymmetric torque parameter (Q b ) and the radius at which Q b has been measured (r(Q b )) have been published in the literature. Our results confirm the theoretical prediction but show a large spread that cannot be accounted for by measurement errors. We simulate 238 galaxies with different bar and bulge parameters in order to investigate the origin of the spread in the dust lane curvature versus Q b relation. From these simulations, we conclude that the spread is greatly reduced when describing the bar strength as a linear combination of the bar parameters Q b and the quotient of the major and minor axes of the bar, a/b. Thus, we conclude that the dust lane curvature is predominantly determined by the parameters of the bar.

  12. Generic Properties of Curvature Sensing through Vision and Touch

    Directory of Open Access Journals (Sweden)

    Birgitta Dresp-Langley

    2013-01-01

    Full Text Available Generic properties of curvature representations formed on the basis of vision and touch were examined as a function of mathematical properties of curved objects. Virtual representations of the curves were shown on a computer screen for visual scaling by sighted observers (experiment 1. Their physical counterparts were placed in the two hands of blindfolded and congenitally blind observers for tactile scaling. The psychophysical data show that curvature representations in congenitally blind individuals, who never had any visual experience, and in sighted observers, who rely on vision most of the time, are statistically linked to the same mathematical properties of the curves. The perceived magnitude of object curvature, sensed through either vision or touch, is related by a mathematical power law, with similar exponents for the two sensory modalities, to the aspect ratio of the curves, a scale invariant geometric property. This finding supports biologically motivated models of sensory integration suggesting a universal power law for the adaptive brain control and balance of motor responses to environmental stimuli from any sensory modality.

  13. Constant scalar curvature hypersurfaces in (3 + 1) -dimensional GHMC Minkowski spacetimes

    Science.gov (United States)

    Smith, Graham

    2018-06-01

    We prove that every (3 + 1) -dimensional flat GHMC Minkowski spacetime which is not a translation spacetime or a Misner spacetime carries a unique foliation by spacelike hypersurfaces of constant scalar curvature. In other words, we prove that every such spacetime carries a unique time function with isochrones of constant scalar curvature. Furthermore, this time function is a smooth submersion.

  14. Gaussian curvature on hyperelliptic Riemann surfaces

    Indian Academy of Sciences (India)

    Indian Acad. Sci. (Math. Sci.) Vol. 124, No. 2, May 2014, pp. 155–167. c Indian Academy of Sciences. Gaussian curvature on hyperelliptic Riemann surfaces. ABEL CASTORENA. Centro de Ciencias Matemáticas (Universidad Nacional Autónoma de México,. Campus Morelia) Apdo. Postal 61-3 Xangari, C.P. 58089 Morelia,.

  15. The Riemann-Lovelock Curvature Tensor

    OpenAIRE

    Kastor, David

    2012-01-01

    In order to study the properties of Lovelock gravity theories in low dimensions, we define the kth-order Riemann-Lovelock tensor as a certain quantity having a total 4k-indices, which is kth-order in the Riemann curvature tensor and shares its basic algebraic and differential properties. We show that the kth-order Riemann-Lovelock tensor is determined by its traces in dimensions 2k \\le D

  16. Factors affecting root curvature of mandibular first molar

    International Nuclear Information System (INIS)

    Choi, Hang Moon; Yi, Won Jin; Heo, Min Suk; Kim, Jung Hwa; Choi, Soon Chul; Park, Tae Won

    2006-01-01

    To find the cause of root curvature by use of panoramic and lateral cephalometric radiograph. Twenty six 1st graders whose mandibular 1st molars just emerged into the mouth were selected. Panoramic and lateral cephalometric radiograph were taken at grade 1 and 6, longitudinally. In cephalometric radio graph, mandibular plane angle, ramus-occlusal place angle, gonial angle, and gonion-gnathion distance(Go-Gn distance) were measured. In panoramic radiograph, elongated root length and root angle were measured by means of digital subtraction radiography. Occlusal plane-tooth axis angle was measured, too. Pearson correlations were used to evaluate the relationships between root curvature and elongated length and longitudinal variations of all variables. Multiple regression equation using related variables was computed. The pearson correlation coefficient between curved angle and longitudinal variations of occlusal plane-tooth axis angle and ramus-occlusal plane angle was 0.350 and 0.401, respectively (p 1 +0.745X 2 (Y: root angle, X 1 : variation of occlusal plane-tooth axis angle, X 2 : variation of ramus-occlusal plane angle). It was suspected that the reasons of root curvature were change of tooth axis caused by contact with 2nd deciduous tooth and amount of mesial and superior movement related to change of occlusal plane

  17. An optomechatronic curvature measurement array based on fiber Bragg gratings

    International Nuclear Information System (INIS)

    Chang, Hsing-Cheng; Lin, Shyan-Lung; Hung, San-Shan; Chang, I-Nan; Chen, Ya-Hui; Lin, Jung-Chih; Liu, Wen-Fung

    2014-01-01

    This study investigated an optomechatronic array-integrated signal processing module and a human–machine interface based on fiber Bragg grating sensing elements embedded in an elastic support matrix that involves using a self-located electromagnetic mechanism for curvature sensing and solid contour reconstruction. Using bilinear interpolation and average calculation methods, the smooth and accurate surface contours of convex and concave lenses are reconstructed in real-time. The elastic supporting optical sensing array is self-balanced to reduce operational errors. Compared with our previous single-head sensor, the sensitivity of the proposed array is improved by more than 15%. In the curvature range from −20.15 to +27.09 m −1 , the sensitivities are 3.53 pm m for the convex measurement and 2.15 pm m for the concave measurement with an error rate below 8.89%. The curvature resolutions are 0.283 and 0.465 m −1 for convex and concave lenses, respectively. This array could be applied in the curvature measurement of solar collectors to monitor energy conversion efficiency or could be used to monitor the wafer-level thin-film fabrication process. (paper)

  18. Fermion localization in higher curvature and scalar-tensor theories of gravity

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Joydip [Scottish Church College, Department of Physics, Kolkata (India); Paul, Tanmoy; SenGupta, Soumitra [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)

    2017-12-15

    It is well known that, in a braneworld model, the localization of fermions on a lower dimensional submanifold (say a TeV 3-brane) is governed by the gravity in the bulk, which also determines the corresponding phenomenology on the brane. Here we consider a five dimensional warped spacetime where the bulk geometry is governed by higher curvature like F(R) gravity. In such a scenario, we explore the role of higher curvature terms on the localization of bulk fermions which in turn determines the effective radion-fermion coupling on the brane. Our result reveals that, for appropriate choices of the higher curvature parameter, the profiles of the massless chiral modes of the fermions may get localized near the TeV brane, while those for massive Kaluza-Klein (KK) fermions localize towards the Planck brane. We also explore these features in the dual scalar-tensor model by appropriate transformations. The localization property turns out to be identical in the two models. This rules out the possibility of any signature of massive KK fermions in TeV scale collider experiments due to higher curvature gravity effects. (orig.)

  19. Perturbed effects at radiation physics

    International Nuclear Information System (INIS)

    Külahcı, Fatih; Şen, Zekâi

    2013-01-01

    Perturbation methodology is applied in order to assess the linear attenuation coefficient, mass attenuation coefficient and cross-section behavior with random components in the basic variables such as the radiation amounts frequently used in the radiation physics and chemistry. Additionally, layer attenuation coefficient (LAC) and perturbed LAC (PLAC) are proposed for different contact materials. Perturbation methodology provides opportunity to obtain results with random deviations from the average behavior of each variable that enters the whole mathematical expression. The basic photon intensity variation expression as the inverse exponential power law (as Beer–Lambert's law) is adopted for perturbation method exposition. Perturbed results are presented not only in terms of the mean but additionally the standard deviation and the correlation coefficients. Such perturbation expressions provide one to assess small random variability in basic variables. - Highlights: • Perturbation methodology is applied to Radiation Physics. • Layer attenuation coefficient (LAC) and perturbed LAC are proposed for contact materials. • Perturbed linear attenuation coefficient is proposed. • Perturbed mass attenuation coefficient (PMAC) is proposed. • Perturbed cross-section is proposed

  20. Curvature correction of retinal OCTs using graph-based geometry detection

    International Nuclear Information System (INIS)

    Kafieh, Raheleh; Rabbani, Hossein; Abramoff, Michael D; Sonka, Milan

    2013-01-01

    In this paper, we present a new algorithm as an enhancement and preprocessing step for acquired optical coherence tomography (OCT) images of the retina. The proposed method is composed of two steps, first of which is a denoising algorithm with wavelet diffusion based on a circular symmetric Laplacian model, and the second part can be described in terms of graph-based geometry detection and curvature correction according to the hyper-reflective complex layer in the retina. The proposed denoising algorithm showed an improvement of contrast-to-noise ratio from 0.89 to 1.49 and an increase of signal-to-noise ratio (OCT image SNR) from 18.27 to 30.43 dB. By applying the proposed method for estimation of the interpolated curve using a full automatic method, the mean ± SD unsigned border positioning error was calculated for normal and abnormal cases. The error values of 2.19 ± 1.25 and 8.53 ± 3.76 µm were detected for 200 randomly selected slices without pathological curvature and 50 randomly selected slices with pathological curvature, respectively. The important aspect of this algorithm is its ability in detection of curvature in strongly pathological images that surpasses previously introduced methods; the method is also fast, compared to the relatively low speed of similar methods. (paper)

  1. Physical and Geometric Interpretations of the Riemann Tensor, Ricci Tensor, and Scalar Curvature

    OpenAIRE

    Loveridge, Lee C.

    2004-01-01

    Various interpretations of the Riemann Curvature Tensor, Ricci Tensor, and Scalar Curvature are described. Also, the physical meanings of the Einstein Tensor and Einstein's Equations are discussed. Finally a derivation of Newtonian Gravity from Einstein's Equations is given.

  2. Non-Euclidean geometry and curvature two-dimensional spaces, volume 3

    CERN Document Server

    Cannon, James W

    2017-01-01

    This is the final volume of a three volume collection devoted to the geometry, topology, and curvature of 2-dimensional spaces. The collection provides a guided tour through a wide range of topics by one of the twentieth century's masters of geometric topology. The books are accessible to college and graduate students and provide perspective and insight to mathematicians at all levels who are interested in geometry and topology. Einstein showed how to interpret gravity as the dynamic response to the curvature of space-time. Bill Thurston showed us that non-Euclidean geometries and curvature are essential to the understanding of low-dimensional spaces. This third and final volume aims to give the reader a firm intuitive understanding of these concepts in dimension 2. The volume first demonstrates a number of the most important properties of non-Euclidean geometry by means of simple infinite graphs that approximate that geometry. This is followed by a long chapter taken from lectures the author gave at MSRI, wh...

  3. Perturbative anyon gas

    International Nuclear Information System (INIS)

    Dasnieres de Veigy, A.; Ouvry, S.; Paris-6 Univ., 75

    1992-06-01

    The problem of the statistical mechanics of an anyon gas is addressed. A perturbative analysis in the anyonic coupling constant α is reviewed, and the thermodynamical potential is computed at first and second order. An adequate second quantized formalism (field theory at finite temperature) is proposed. At first order in perturbation theory, the results are strikingly simple: only the second virial coefficient close to bosonic statistics is corrected. At second order, however, the complexity of the anyon model appears. One can compute exactly the perturbative correction to each cluster coefficient. However, and contrary to first order, a closed expression for the equation of state seems out of reach. As an illustration, the perturbative expressions of a 3 , a 4 , a 5 and a 6 are given at second order. Finally, using the same formalism, the equation of state of an anyon gas in a constant magnetic field is analyzed at first order in perturbation theory. (K.A.) 16 refs.; 3 figs.; 7 tabs

  4. Weyl curvature tensor in static spherical sources

    International Nuclear Information System (INIS)

    Ponce de Leon, J.

    1988-01-01

    The role of the Weyl curvature tensor in static sources of the Schwarzschild field is studied. It is shown that in general the contribution from the Weyl curvature tensor (the ''purely gravitational field energy'') to the mass-energy inside the body may be positive, negative, or zero. It is proved that a positive (negative) contribution from the Weyl tensor tends to increase (decrease) the effective gravitational mass, the red-shift (from a point in the sphere to infinity), as well as the gravitational force which acts on a constituent matter element of a body. It is also proved that the contribution from the Weyl tensor always is negative in sources with surface gravitational potential larger than (4/9. It is pointed out that large negative contributions from the Weyl tensor could give rise to the phenomenon of gravitational repulsion. A simple example which illustrates the results is discussed

  5. Perturbation theory

    International Nuclear Information System (INIS)

    Bartlett, R.; Kirtman, B.; Davidson, E.R.

    1978-01-01

    After noting some advantages of using perturbation theory some of the various types are related on a chart and described, including many-body nonlinear summations, quartic force-field fit for geometry, fourth-order correlation approximations, and a survey of some recent work. Alternative initial approximations in perturbation theory are also discussed. 25 references

  6. Anatomical study of the radius and center of curvature of the distal femoral condyle

    KAUST Repository

    Kosel, Jü rgen; Giouroudi, Ioanna; Scheffer, Cornie; Dillon, Edwin Mark; Erasmus, Pieter J.

    2010-01-01

    In this anatomical study, the anteroposterior curvature of the surface of 16 cadaveric distal femurs was examined in terms of radii and center point. Those two parameters attract high interest due to their significance for total knee arthroplasty. Basically, two different conclusions have been drawn in foregoing studies: (1) The curvature shows a constant radius and (2) the curvature shows a variable radius. The investigations were based on a new method combining three-dimensional laser-scanning and planar geometrical analyses. This method is aimed at providing high accuracy and high local resolution. The high-precision laser scanning enables the exact reproduction of the distal femurs - including their cartilage tissue - as a three-dimensional computer model. The surface curvature was investigated on intersection planes that were oriented perpendicularly to the surgical epicondylar line. Three planes were placed at the central part of each condyle. The intersection of either plane with the femur model was approximated with the help of a b-spline, yielding three b-splines on each condyle. The radii and center points of the circles, approximating the local curvature of the b-splines, were then evaluated. The results from all three b-splines were averaged in order to increase the reliability of the method. The results show the variation in the surface curvatures of the investigated samples of condyles. These variations are expressed in the pattern of the center points and the radii of the curvatures. The standard deviations of the radii for a 90 deg arc on the posterior condyle range from 0.6 mm up to 5.1 mm, with an average of 2.4 mm laterally and 2.2 mm medially. No correlation was found between the curvature of the lateral and medial condyles. Within the range of the investigated 16 samples, the conclusion can be drawn that the condyle surface curvature is not constant and different for all specimens when viewed along the surgical epicondylar axis. For the portion

  7. Curvature tensors and unified field equations on SEX/sub n/

    International Nuclear Information System (INIS)

    Chung, K.T.; Lee, I.L.

    1988-01-01

    We study the curvature tensors and field equations in the n-dimensional SE manifold SEX/sub n/. We obtain several basic properties of the vectors S/subλ/ and U/sub λ/ and then of the SE curvature tensor and its contractions, such as a generalized Ricci identity, a generalized Bianchi identity, and two variations of the Bianchi identity satisfied by the SE Einstein tensor. Finally, a system of field equations is discussed in SEX/sub n/ an done of its particular solutions is constructed and displayed

  8. Cosmic censorship, persistent curvature and asymptotic causal pathology

    International Nuclear Information System (INIS)

    Newman, R.P.A.C.

    1984-01-01

    The paper examines cosmic censorship in general relativity theory. Conformally flat space-times; persistent curvature; weakly asymptotically simple and empty asymptotes; censorship conditions; and the censorship theorem; are all discussed. (U.K.)

  9. The effects of curvature on the flow field in rapidly rotating gas centrifuges

    International Nuclear Information System (INIS)

    Wood, H.G.; Jordan, J.A.

    1984-01-01

    The effects of curvature on the fluid dynamics of rapidly rotating gas centrifuges are studied. A governing system of a linear partial differential equation and boundary conditions is derived based on a linearization of the equations for viscous compressible flow. This system reduces to the Onsager pancake model if the effects of curvature are neglected. Approximations to the solutions of the governing equations with and without curvature terms are obtained via a finite-element method. Two examples are considered: first where the flow is driven by a thermal gradient at the wall of the centrifuge, and then for the flow being driven by the introduction and removal of mass through the ends of the centrifuge. Comparisons of the results obtained show that, especially for the second example, the inclusion of the terms due to curvature in the model can have an appreciable effect on the solution. (author)

  10. Controllable soliton propagation based on phase-front curvature in asymmetrical nonlocal media

    Science.gov (United States)

    Zhang, Huafeng; Lü, Hua; Luo, Jianghua; Sun, Lihui

    2016-08-01

    The influence of phase-front curvature on the dynamical behavior of the fundamental mode soliton during its transmission in asymmetrical nonlocal media is studied in detail and the phase-front curvature can be imposed on the fundamental mode soliton by reshaping or phase imprinting technologies. By changing the phase-front curvature or its imposed position, controllable soliton propagation in asymmetrical nonlocal media can be achieved. Project supported by the National Natural Science Foundation of China (Grants Nos. 11547007 and 11304024), the Innovation Personnel Training Plan for Excellent Youth of Guangdong University Project (Grant No. 2013LYM_0023), and the Yangtze Fund for Youth Teams of Science and Technology Innovation (Grant No. 2015cqt03).

  11. Finger vein extraction using gradient normalization and principal curvature

    Science.gov (United States)

    Choi, Joon Hwan; Song, Wonseok; Kim, Taejeong; Lee, Seung-Rae; Kim, Hee Chan

    2009-02-01

    Finger vein authentication is a personal identification technology using finger vein images acquired by infrared imaging. It is one of the newest technologies in biometrics. Its main advantage over other biometrics is the low risk of forgery or theft, due to the fact that finger veins are not normally visible to others. Extracting finger vein patterns from infrared images is the most difficult part in finger vein authentication. Uneven illumination, varying tissues and bones, and changes in the physical conditions and the blood flow make the thickness and brightness of the same vein different in each acquisition. Accordingly, extracting finger veins at their accurate positions regardless of their thickness and brightness is necessary for accurate personal identification. For this purpose, we propose a new finger vein extraction method which is composed of gradient normalization, principal curvature calculation, and binarization. As local brightness variation has little effect on the curvature and as gradient normalization makes the curvature fairly uniform at vein pixels, our method effectively extracts finger vein patterns regardless of the vein thickness or brightness. In our experiment, the proposed method showed notable improvement as compared with the existing methods.

  12. Curvature-driven instabilities in the Elmo Bumpy Torus (EBT)

    International Nuclear Information System (INIS)

    Abe, H.; Spong, D.A.; Antonsen, T.M. Jr.; Tsang, K.T.; Nguyen, K.T.

    1982-01-01

    Curvature-driven instabilities are analyzed for an EBT configuration which consists of plasma interacting with a hot electron ring whose drift frequencies are larger than the growth rates predicted from conventional magnetohydrodynamic (MHD) theory. Stability criteria are obtained for five possible modes: the conventional hot electron interchange, a high-frequency hot electron interchange (at frequencies greater than the ion-cyclotron frequency), a compressional instability, a background plasma interchange, and an interacting pressure-driven interchange. A wide parameter regime for stable operation is found, which, however, severely deteriorates for a band of intermediate mode numbers. Finite Larmor radius effects can eliminate this deterioration; moreover, all short-wavelength curvature-driven modes are stabilized if the hot electron Larmor radius rho/sub h/ satisfies (kappa/sub perpendicular/rho/sub h/) 2 > 2Δ/[Rβ/sub h/(1 + P'/sub parallel//P'/sub perpendicular/)], where kappa/sub perpendicular/ is the transverse wavenumber, Δ is the ring half-width, R is the mid-plane radius of curvature, β/sub h/ is the hot electron beta value, and P' is the pressure gradient. Resonant wave-particle instabilities predicted by a new low frequency variational principle show that a variety of remnant instabilities may still persist

  13. The zero curvature formulation of the KP and the sKP equations

    International Nuclear Information System (INIS)

    Barcelos Neto, J.; Das, A.; Panda, S.; Roy, S.

    1992-01-01

    The Kadomtsev-Petviashvili equation is derived from the zero curvature condition associated with the gauge group SL(2,R) in 2+1 dimensions. A fermionic extension of the KP equation is also obtained using the zero curvature condition of the super group OS p (2/1), which reduces upon appropriate restriction to the Kupershmidt equation. (author). 17 refs

  14. Comprehensive Use of Curvature for Robust and Accurate Online Surface Reconstruction.

    Science.gov (United States)

    Lefloch, Damien; Kluge, Markus; Sarbolandi, Hamed; Weyrich, Tim; Kolb, Andreas

    2017-12-01

    Interactive real-time scene acquisition from hand-held depth cameras has recently developed much momentum, enabling applications in ad-hoc object acquisition, augmented reality and other fields. A key challenge to online reconstruction remains error accumulation in the reconstructed camera trajectory, due to drift-inducing instabilities in the range scan alignments of the underlying iterative-closest-point (ICP) algorithm. Various strategies have been proposed to mitigate that drift, including SIFT-based pre-alignment, color-based weighting of ICP pairs, stronger weighting of edge features, and so on. In our work, we focus on surface curvature as a feature that is detectable on range scans alone and hence does not depend on accurate multi-sensor alignment. In contrast to previous work that took curvature into consideration, however, we treat curvature as an independent quantity that we consistently incorporate into every stage of the real-time reconstruction pipeline, including densely curvature-weighted ICP, range image fusion, local surface reconstruction, and rendering. Using multiple benchmark sequences, and in direct comparison to other state-of-the-art online acquisition systems, we show that our approach significantly reduces drift, both when analyzing individual pipeline stages in isolation, as well as seen across the online reconstruction pipeline as a whole.

  15. 3D Facial Similarity Measure Based on Geodesic Network and Curvatures

    Directory of Open Access Journals (Sweden)

    Junli Zhao

    2014-01-01

    Full Text Available Automated 3D facial similarity measure is a challenging and valuable research topic in anthropology and computer graphics. It is widely used in various fields, such as criminal investigation, kinship confirmation, and face recognition. This paper proposes a 3D facial similarity measure method based on a combination of geodesic and curvature features. Firstly, a geodesic network is generated for each face with geodesics and iso-geodesics determined and these network points are adopted as the correspondence across face models. Then, four metrics associated with curvatures, that is, the mean curvature, Gaussian curvature, shape index, and curvedness, are computed for each network point by using a weighted average of its neighborhood points. Finally, correlation coefficients according to these metrics are computed, respectively, as the similarity measures between two 3D face models. Experiments of different persons’ 3D facial models and different 3D facial models of the same person are implemented and compared with a subjective face similarity study. The results show that the geodesic network plays an important role in 3D facial similarity measure. The similarity measure defined by shape index is consistent with human’s subjective evaluation basically, and it can measure the 3D face similarity more objectively than the other indices.

  16. Accuracy evaluation of automatic quantification of the articular cartilage surface curvature from MRI

    DEFF Research Database (Denmark)

    Folkesson, Jenny; Dam, Erik B; Olsen, Ole F

    2007-01-01

    for intersubject comparisons. Digital phantoms were created to establish the accuracy of the curvature estimation methods. RESULTS: A comparison of the two curvature estimation methods to ground truth yielded absolute pairwise differences of 1.1%, and 4.8%, respectively. The interscan reproducibility for the two...

  17. Developments in perturbation theory

    International Nuclear Information System (INIS)

    Greenspan, E.

    1976-01-01

    Included are sections dealing with perturbation expressions for reactivity, methods for the calculation of perturbed fluxes, integral transport theory formulations for reactivity, generalized perturbation theory, sensitivity and optimization studies, multigroup calculations of bilinear functionals, and solution of inhomogeneous Boltzmann equations with singular operators

  18. Experimental study of curvature effects on jet impingement heat transfer on concave surfaces

    Directory of Open Access Journals (Sweden)

    Ying Zhou

    2017-04-01

    Full Text Available Experimental study of the local and average heat transfer characteristics of a single round jet impinging on the concave surfaces was conducted in this work to gain in-depth knowledge of the curvature effects. The experiments were conducted by employing a piccolo tube with one single jet hole over a wide range of parameters: jet Reynolds number from 27000 to 130000, relative nozzle to surface distance from 3.3 to 30, and relative surface curvature from 0.005 to 0.030. Experimental results indicate that the surface curvature has opposite effects on heat transfer characteristics. On one hand, an increase of relative nozzle to surface distance (increasing jet diameter in fact enhances the average heat transfer around the surface for the same curved surface. On the other hand, the average Nusselt number decreases as relative nozzle to surface distance increases for a fixed jet diameter. Finally, experimental data-based correlations of the average Nusselt number over the curved surface were obtained with consideration of surface curvature effect. This work contributes to a better understanding of the curvature effects on heat transfer of a round jet impingement on concave surfaces, which is of high importance to the design of the aircraft anti-icing system.

  19. PerturbationAnalyzer: a tool for investigating the effects of concentration perturbation on protein interaction networks.

    Science.gov (United States)

    Li, Fei; Li, Peng; Xu, Wenjian; Peng, Yuxing; Bo, Xiaochen; Wang, Shengqi

    2010-01-15

    The propagation of perturbations in protein concentration through a protein interaction network (PIN) can shed light on network dynamics and function. In order to facilitate this type of study, PerturbationAnalyzer, which is an open source plugin for Cytoscape, has been developed. PerturbationAnalyzer can be used in manual mode for simulating user-defined perturbations, as well as in batch mode for evaluating network robustness and identifying significant proteins that cause large propagation effects in the PINs when their concentrations are perturbed. Results from PerturbationAnalyzer can be represented in an intuitive and customizable way and can also be exported for further exploration. PerturbationAnalyzer has great potential in mining the design principles of protein networks, and may be a useful tool for identifying drug targets. PerturbationAnalyzer can be accessed from the Cytoscape web site http://www.cytoscape.org/plugins/index.php or http://biotech.bmi.ac.cn/PerturbationAnalyzer. Supplementary data are available at Bioinformatics online.

  20. Norm of the Riemannian Curvature Tensor

    Indian Academy of Sciences (India)

    We consider the Riemannian functional R p ( g ) = ∫ M | R ( g ) | p d v g defined on the space of Riemannian metrics with unit volume on a closed smooth manifold where R ( g ) and d v g denote the corresponding Riemannian curvature tensor and volume form and p ∈ ( 0 , ∞ ) . First we prove that the Riemannian metrics ...

  1. Zero curvature conditions and conformal covariance

    International Nuclear Information System (INIS)

    Akemann, G.; Grimm, R.

    1992-05-01

    Two-dimensional zero curvature conditions were investigated in detail, with special emphasis on conformal properties, and the appearance of covariant higher order differential operators constructed in terms of a projective connection was elucidated. The analysis is based on the Kostant decomposition of simple Lie algebras in terms of representations with respect to their 'principal' SL(2) subalgebra. (author) 27 refs

  2. Random paths with curvature dependent action

    International Nuclear Information System (INIS)

    Ambjoern, J.; Durhuus, B.

    1986-11-01

    We study discretized random paths with a curvature dependent action. The scaling limits of the corresponding statistical mechanical models can be constructed explicitly and are either usual Brownian motion or a theory where the correlations of tangents are nonzero and described by diffusion on the unit sphere. In the latter case the two point function has an anomalous dimension η = 1. (orig.)

  3. Parametric Amplification of Gravitational Fluctuations during Reheating

    International Nuclear Information System (INIS)

    Finelli, F.; Brandenberger, R.; Finelli, F.

    1999-01-01

    Cosmological perturbations can undergo amplification by parametric resonance during preheating even on scales larger than the Hubble radius, without violating causality. A unified description of gravitational and matter fluctuations is crucial to determine the strength of the instability. To extract specific signatures of the oscillating inflaton field during reheating, it is essential to focus on a variable describing metric fluctuations which is constant in the standard analyses of inflation. For a massive inflaton without self-coupling, we find no additional growth of superhorizon modes during reheating beyond the usual predictions. For a massless self-coupled inflaton, there is a sub-Hubble scale resonance. copyright 1999 The American Physical Society

  4. Curvature properties of four-dimensional Walker metrics

    International Nuclear Information System (INIS)

    Chaichi, M; Garcia-Rio, E; Matsushita, Y

    2005-01-01

    A Walker n-manifold is a semi-Riemannian manifold, which admits a field of parallel null r-planes, r ≤ n/2. In the present paper we study curvature properties of a Walker 4-manifold (M, g) which admits a field of parallel null 2-planes. The metric g is necessarily of neutral signature (+ + - -). Such a Walker 4-manifold is the lowest dimensional example not of Lorentz type. There are three functions of coordinates which define a Walker metric. Some recent work shows that a Walker 4-manifold of restricted type whose metric is characterized by two functions exhibits a large variety of symplectic structures, Hermitian structures, Kaehler structures, etc. For such a restricted Walker 4-manifold, we shall study mainly curvature properties, e.g., conditions for a Walker metric to be Einstein, Osserman, or locally conformally flat, etc. One of our main results is the exact solutions to the Einstein equations for a restricted Walker 4-manifold

  5. Curvature and Strength of Ni-YSZ Solid Oxide Half-Cells After Redox Treatments

    DEFF Research Database (Denmark)

    Faes, Antonin; Frandsen, Henrik Lund; Pihlatie, Mikko

    2010-01-01

    One of the main drawbacks of anode-supported solid oxide fuel cell technology is the limited capability to withstand reduction and oxidation (“RedOx”) of the Ni phase. This study compares the effect of RedOx cycles on curvature and strength of half-cells, composed of a nickel-yttria-stabilized-zi......One of the main drawbacks of anode-supported solid oxide fuel cell technology is the limited capability to withstand reduction and oxidation (“RedOx”) of the Ni phase. This study compares the effect of RedOx cycles on curvature and strength of half-cells, composed of a nickel...... it is calculated analytically from the force. In this calculation the thermal stresses are estimated from the curvature of the half-cell. For each treatment, more than 30 samples are tested. About 20 ball-on-ring samples are laser cut from one original 12×12 cm2 half-cell. Curvature and porosity are measured...

  6. Critical constraint on inflationary magnetogenesis

    International Nuclear Information System (INIS)

    Fujita, Tomohiro; Yokoyama, Shuichiro

    2014-01-01

    Recently, there are several reports that the cosmic magnetic fields on Mpc scale in void region is larger than ∼ 10 −15 G with an uncertainty of a few orders from the current blazar observations. On the other hand, in inflationary magnetogenesis models, additional primordial curvature perturbations are inevitably produced from iso-curvature perturbations due to generated electromagnetic fields. We explore such induced curvature perturbations in a model independent way and obtained a severe upper bound for the energy scale of inflation from the observed cosmic magnetic fields and the observed amplitude of the curvature perturbation , as ρ inf 1/4 < 300MeV × (B obs /10 −15 G) −1 where B obs is the strength of the magnetic field at present. Therefore, without a dedicated low energy inflation model or an additional amplification of magnetic fields after inflation, inflationary magnetogenesis on Mpc scale is generally incompatible with CMB observations

  7. Difference scheme for a singularly perturbed parabolic convection-diffusion equation in the presence of perturbations

    Science.gov (United States)

    Shishkin, G. I.

    2015-11-01

    An initial-boundary value problem is considered for a singularly perturbed parabolic convection-diffusion equation with a perturbation parameter ɛ (ɛ ∈ (0, 1]) multiplying the highest order derivative. The stability of a standard difference scheme based on monotone approximations of the problem on a uniform mesh is analyzed, and the behavior of discrete solutions in the presence of perturbations is examined. The scheme does not converge ɛ-uniformly in the maximum norm as the number of its grid nodes is increased. When the solution of the difference scheme converges, which occurs if N -1 ≪ ɛ and N -1 0 ≪ 1, where N and N 0 are the numbers of grid intervals in x and t, respectively, the scheme is not ɛ-uniformly well conditioned or stable to data perturbations in the grid problem and to computer perturbations. For the standard difference scheme in the presence of data perturbations in the grid problem and/or computer perturbations, conditions on the "parameters" of the difference scheme and of the computer (namely, on ɛ, N, N 0, admissible data perturbations in the grid problem, and admissible computer perturbations) are obtained that ensure the convergence of the perturbed solutions. Additionally, the conditions are obtained under which the perturbed numerical solution has the same order of convergence as the solution of the unperturbed standard difference scheme.

  8. Non-Perturbative Asymptotic Improvement of Perturbation Theory and Mellin-Barnes Representation

    Directory of Open Access Journals (Sweden)

    Samuel Friot

    2010-10-01

    Full Text Available Using a method mixing Mellin-Barnes representation and Borel resummation we show how to obtain hyperasymptotic expansions from the (divergent formal power series which follow from the perturbative evaluation of arbitrary ''N-point'' functions for the simple case of zero-dimensional φ4 field theory. This hyperasymptotic improvement appears from an iterative procedure, based on inverse factorial expansions, and gives birth to interwoven non-perturbative partial sums whose coefficients are related to the perturbative ones by an interesting resurgence phenomenon. It is a non-perturbative improvement in the sense that, for some optimal truncations of the partial sums, the remainder at a given hyperasymptotic level is exponentially suppressed compared to the remainder at the preceding hyperasymptotic level. The Mellin-Barnes representation allows our results to be automatically valid for a wide range of the phase of the complex coupling constant, including Stokes lines. A numerical analysis is performed to emphasize the improved accuracy that this method allows to reach compared to the usual perturbative approach, and the importance of hyperasymptotic optimal truncation schemes.

  9. Model-independent curvature determination with 21cm intensity mapping experiments

    Science.gov (United States)

    Witzemann, Amadeus; Bull, Philip; Clarkson, Chris; Santos, Mario G.; Spinelli, Marta; Weltman, Amanda

    2018-04-01

    Measurements of the spatial curvature of the Universe have improved significantly in recent years, but still tend to require strong assumptions to be made about the equation of state of dark energy (DE) in order to reach sub-percent precision. When these assumptions are relaxed, strong degeneracies arise that make it hard to disentangle DE and curvature, degrading the constraints. We show that forthcoming 21cm intensity mapping experiments such as HIRAX are ideally designed to carry out model-independent curvature measurements, as they can measure the clustering signal at high redshift with sufficient precision to break many of the degeneracies. We consider two different model-independent methods, based on `avoiding' the DE-dominated regime and non-parametric modelling of the DE equation of state respectively. Our forecasts show that HIRAX will be able to improve upon current model-independent constraints by around an order of magnitude, reaching percent-level accuracy even when an arbitrary DE equation of state is assumed. In the same model-independent analysis, the sample variance limit for a similar survey is another order of magnitude better.

  10. The effect of spontaneous curvature on a two-phase vesicle

    International Nuclear Information System (INIS)

    Cox, Geoffrey; Lowengrub, John

    2015-01-01

    Vesicles are membrane-bound structures commonly known for their roles in cellular transport and the shape of a vesicle is determined by its surrounding membrane (lipid bilayer). When the membrane is composed of different lipids, it is natural for the lipids of similar molecular structure to migrate towards one another (via spinodal decomposition), creating a multi-phase vesicle. In this article, we consider a two-phase vesicle model which is driven by nature's propensity to maintain a minimal state of elastic energy. The model assumes a continuum limit, thereby treating the membrane as a closed three-dimensional surface. The main purpose of this study is to reveal the complexity of the Helfrich two-phase vesicle model with non-zero spontaneous curvature and provide further evidence to support the relevance of spontaneous curvature as a modelling parameter. In this paper, we illustrate the complexity of the Helfrich two-phase model by providing multiple examples of undocumented solutions and energy hysteresis. We also investigate the influence of spontaneous curvature on morphological effects and membrane phenomena such as budding and fusion. (paper)

  11. Dark Energy, scalar-curvature couplings and a critical acceleration scale

    CERN Document Server

    Navarro, Ignacio

    2008-01-01

    We study the effects of coupling a cosmologically rolling scalar field to higher order curvature terms. We show that when the strong coupling scale of the theory is on the 10^{-3}-10^{-1}eV range, the model passes all experimental bounds on the existence of fifth forces even if the field has a mass of the order of the Hubble scale in vacuum and non-suppressed couplings to SM fields. The reason is that the coupling to certain curvature invariant acts as an effective mass that grows in regions of large curvature. This prevents the field from rolling down its potential near sources and makes its effects on fifth-force search experiments performed in the laboratory to be observable only at the sub-mm scale. We obtain the static spherically symmetric solutions of the theory and show that a long-range force appears but it is turned on only below a fixed Newtonian acceleration scale of the order of the Hubble constant. We comment on the possibility of using this feature of the model to alleviate the CDM small scale ...

  12. On the improvement of two-dimensional curvature computation and its application to turbulent premixed flame correlations

    International Nuclear Information System (INIS)

    Chrystie, R S M; Burns, I S; Hult, J; Kaminski, C F

    2008-01-01

    Measurement of curvature of the flamefront of premixed turbulent flames is important for the validation of numerical models for combustion. In this work, curvature is measured from contours that outline the flamefront, which are generated from laser-induced fluorescence images. The contours are inherently digitized, resulting in pixelation effects that lead to difficulties in computing curvature of the flamefront accurately. A common approach is to fit functions locally to short sections along the flame contour, and this approach is also followed in this work; the method helps smoothen the pixelation before curvature is measured. However, the length and degree of the polynomial, and hence the amount of smoothing, must be correctly set in order to maximize the precision and accuracy of the curvature measurements. Other researchers have applied polynomials of different orders and over different segment lengths to circles of known curvature as a test to determine the appropriate choice of polynomial; it is shown here that this method results in a sub-optimal choice of polynomial function. Here, we determine more suitable polynomial functions through use of a circle whose radius is sinusoidally modulated. We show that this leads to a more consistent and reliable choice for the local polynomial functions fitted to experimental data. A polynomial function thus determined is then applied to flame contour data to measure curvature of experimentally acquired flame contours. The results show that there is an enhancement in local flame speed at sections of the flamefront with a non-zero curvature, and this agrees with numerical models

  13. Curvature and the visual perception of shape: theory on information along object boundaries and the minima rule revisited.

    Science.gov (United States)

    Lim, Ik Soo; Leek, E Charles

    2012-07-01

    Previous empirical studies have shown that information along visual contours is known to be concentrated in regions of high magnitude of curvature, and, for closed contours, segments of negative curvature (i.e., concave segments) carry greater perceptual relevance than corresponding regions of positive curvature (i.e., convex segments). Lately, Feldman and Singh (2005, Psychological Review, 112, 243-252) proposed a mathematical derivation to yield information content as a function of curvature along a contour. Here, we highlight several fundamental errors in their derivation and in its associated implementation, which are problematic in both mathematical and psychological senses. Instead, we propose an alternative mathematical formulation for information measure of contour curvature that addresses these issues. Additionally, unlike in previous work, we extend this approach to 3-dimensional (3D) shape by providing a formal measure of information content for surface curvature and outline a modified version of the minima rule relating to part segmentation using curvature in 3D shape. Copyright 2012 APA, all rights reserved.

  14. Fractional charge and inter-Landau-level states at points of singular curvature.

    Science.gov (United States)

    Biswas, Rudro R; Son, Dam Thanh

    2016-08-02

    The quest for universal properties of topological phases is fundamentally important because these signatures are robust to variations in system-specific details. Aspects of the response of quantum Hall states to smooth spatial curvature are well-studied, but challenging to observe experimentally. Here we go beyond this prevailing paradigm and obtain general results for the response of quantum Hall states to points of singular curvature in real space; such points may be readily experimentally actualized. We find, using continuum analytical methods, that the point of curvature binds an excess fractional charge and sequences of quantum states split away, energetically, from the degenerate bulk Landau levels. Importantly, these inter-Landau-level states are bound to the topological singularity and have energies that are universal functions of bulk parameters and the curvature. Our exact diagonalization of lattice tight-binding models on closed manifolds demonstrates that these results continue to hold even when lattice effects are significant. An important technological implication of these results is that these inter-Landau-level states, being both energetically and spatially isolated quantum states, are promising candidates for constructing qubits for quantum computation.

  15. Curvature effects on carbon nanomaterials: Exohedral versus endhohedral supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J; Sumpter, B. G.; Meunier, V.; Yushin, G.; Portet, C.; Gogotsi, Y.

    2011-01-31

    Capacitive energy storage mechanisms in nanoporous carbon supercapacitors hinge on endohedral interactions in carbon materials with macro-, meso-, and micropores that have negative surface curvature. In this article, we show that because of the positive curvature found in zero-dimensional carbon onions or one-dimensional carbon nanotube arrays, exohedral interactions cause the normalized capacitance to increase with decreasing particle size or tube diameter, in sharp contrast to the behavior of nanoporous carbon materials. This finding is in good agreement with the trend of recent experimental data. Our analysis suggests that electrical energy storage can be improved by exploiting the highly curved surfaces of carbon nanotube arrays with diameters on the order of 1 nm.

  16. Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jingsong [ORNL; Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL; Gogotsi, Yury G. [Drexel University; Yushin, Gleb [Georgia Institute of Technology; Portet, Cristelle [Drexel University

    2010-01-01

    Capacitive energy storage mechanisms in nanoporous carbon supercapacitors hinge on endohedral interactions in carbon materials with macro-, meso-, and micropores that have negative surface curvature. In this article, we show that because of the positive curvature found in zero-dimensional carbon onions or one-dimensional carbon nanotube arrays, exohedral interactions cause the normalized capacitance to increase with decreasing particle size or tube diameter, in sharp contrast to the behavior of nanoporous carbon materials. This finding is in good agreement with the trend of recent experimental data. Our analysis suggests that electrical energy storage can be improved by exploiting the highly curved surfaces of carbon nanotube arrays with diameters on the order of 1 nm.

  17. Estimation of Curvature Changes for Steel-Concrete Composite Bridge Using Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Donghoon Kang

    2013-01-01

    Full Text Available This study is focused on the verification of the key idea of a newly developed steel-concrete composite bridge. The key idea of the proposed bridge is to reduce the design moment by applying vertical prestressing force to steel girders, so that a moment distribution of a continuous span bridge is formed in a simple span bridge. For the verification of the key technology, curvature changes of the bridge should be monitored sequentially at every construction stage. A pair of multiplexed FBG sensor arrays is proposed in order to measure curvature changes in this study. They are embedded in a full-scale test bridge and measured local strains, which are finally converted to curvatures. From the result of curvature changes, it is successfully ensured that the key idea of the proposed bridge, expected theoretically, is viable.

  18. Dark energy homogeneity in general relativity: Are we applying it correctly?

    Science.gov (United States)

    Duniya, Didam G. A.

    2016-04-01

    Thus far, there does not appear to be an agreed (or adequate) definition of homogeneous dark energy (DE). This paper seeks to define a valid, adequate homogeneity condition for DE. Firstly, it is shown that as long as w_x ≠ -1, DE must have perturbations. It is then argued, independent of w_x, that a correct definition of homogeneous DE is one whose density perturbation vanishes in comoving gauge: and hence, in the DE rest frame. Using phenomenological DE, the consequence of this approach is then investigated in the observed galaxy power spectrum—with the power spectrum being normalized on small scales, at the present epoch z=0. It is found that for high magnification bias, relativistic corrections in the galaxy power spectrum are able to distinguish the concordance model from both a homogeneous DE and a clustering DE—on super-horizon scales.

  19. ORNL Interim Progress Report on Static CIRFT Testing Curvature Data Update

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Wang, Hong [ORNL

    2016-10-10

    Since the CIRFT tests reported in NUREG-7198 were generated, a number of factors that influence the recorded curvature measurement data were identified. In 2016, a data reanalysis task was undertaken to implement the lessons learned. This letter report provides the revised results of previous CIRFT tests, after implementing the following data reanalysis procedures: (A) experimental data smoothing and LVDT reset, (B) LVDT probe contact and sensor spacing correction for curvature data, and (C) LVDT probe dynamic vibration adjustment procedure development.

  20. Influence of implant rod curvature on sagittal correction of scoliosis deformity

    DEFF Research Database (Denmark)

    Salmingo, Remel A.; Tadano, Shigeru; Abe, Yuichiro

    2014-01-01

    of the implant rod’s angle of curvature during surgery and establish its influence on sagittal correction of scoliosis deformity. STUDY DESIGN: A retrospective analysis of the preoperative and postoperative implant rod geometry and angle of curvature was conducted. PATIENT SAMPLE: Twenty adolescent idiopathic......BACKGROUND CONTEXT: Deformation of in vivo–implanted rods could alter the scoliosis sagittal correction. To our knowledge, no previous authors have investigated the influence of implanted-rod deformation on the sagittal deformity correction during scoliosis surgery. PURPOSE: To analyze the changes...... scoliosis patients underwent surgery. Average age at the time of operation was 14 years. OUTCOME MEASURES: The preoperative and postoperative implant rod angle of curvature expressed in degrees was obtained for each patient. METHODS: Two implant rods were attached to the concave and convex side...

  1. Stationary axially symmetric perturbations of a rotating black hole. [Space-time perturbation, Newman-Penrose formalism

    Energy Technology Data Exchange (ETDEWEB)

    Demianski, M [California Inst. of Tech., Pasadena (USA)

    1976-07-01

    A stationary axially symmetric perturbation of a rotating black hole due to a distribution of test matter is investigated. The Newman-Penrose spin coefficient formalism is used to derive a general set of equations describing the perturbed space-time. In a linear approximation it is shown that the mass and angular momentum of a rotating black hole is not affected by the perturbation. The metric perturbations near the horizon are given. It is concluded that given a perturbing test fluid distribution, one can always find a corresponding metric perturbation such that the mass and angular momentum of the black hole are not changed. It was also noticed that when a tends to M, those perturbed spin coefficients and components of the Weyl tensor which determine the intrinsic properties of the incoming null cone near the horizon grow indefinitely.

  2. Simultaneous reflectometry and interferometry for measuring thin-film thickness and curvature

    Science.gov (United States)

    Arends, A. A.; Germain, T. M.; Owens, J. F.; Putnam, S. A.

    2018-05-01

    A coupled reflectometer-interferometer apparatus is described for thin-film thickness and curvature characterization in the three-phase contact line region of evaporating fluids. Validation reflectometry studies are provided for Au, Ge, and Si substrates and thin-film coatings of SiO2 and hydrogel/Ti/SiO2. For interferometry, liquid/air and solid/air interferences are studied, where the solid/air samples consisted of glass/air/glass wedges, cylindrical lenses, and molded polydimethylsiloxane lenses. The liquid/air studies are based on steady-state evaporation experiments of water and isooctane on Si and SiO2/Ti/SiO2 wafers. The liquid thin-films facilitate characterization of both (i) the nano-scale thickness of the absorbed fluid layer and (ii) the macro-scale liquid meniscus thickness, curvature, and curvature gradient profiles. For our validation studies with commercial lenses, the apparatus is shown to measure thickness profiles within 4.1%-10.8% error.

  3. Numerical Investigation on Fluid Flow in a 90-Degree Curved Pipe with Large Curvature Ratio

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2015-01-01

    Full Text Available In order to understand the mechanism of fluid flows in curved pipes, a large number of theoretical and experimental researches have been performed. As a critical parameter of curved pipe, the curvature ratio δ has received much attention, but most of the values of δ are very small (δ<0.1 or relatively small (δ≤0.5. As a preliminary study and simulation this research studied the fluid flow in a 90-degree curved pipe of large curvature ratio. The Detached Eddy Simulation (DES turbulence model was employed to investigate the fluid flows at the Reynolds number range from 5000 to 20000. After validation of the numerical strategy, the pressure and velocity distribution, pressure drop, fluid flow, and secondary flow along the curved pipe were illustrated. The results show that the fluid flow in a curved pipe with large curvature ratio seems to be unlike that in a curved pipe with small curvature ratio. Large curvature ratio makes the internal flow more complicated; thus, the flow patterns, the separation region, and the oscillatory flow are different.

  4. Curvature controlled wetting in two dimensions

    DEFF Research Database (Denmark)

    Gil, Tamir; Mikheev, Lev V.

    1995-01-01

    . As the radius of the substrate r0→∞, the leading effect of the curvature is adding the Laplace pressure ΠL∝r0-1 to the pressure balance in the film. At temperatures and pressures under which the wetting is complete in planar geometry, Laplace pressure suppresses divergence of the mean thickness of the wetting...... term reduces the thickness by the amount proportional to r0-1/3...

  5. Role of parallel flow curvature on the mitigation of Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Sarmah, D.; Sen, S.; Cairns, R.A.

    2001-01-01

    The effect of a radially varying parallel equilibrium flow on the stability of the Rayleigh-Taylor (RT) mode is studied analytically in the presence of a sheared magnetic field. It is shown that the parallel flow curvature can completely stabilize the RT mode. The flow curvature also has a robust effect on the radial structure of the mode. Possible implications of these theoretical findings to recent experiments are also discussed

  6. Observational constraints on dark energy and cosmic curvature

    International Nuclear Information System (INIS)

    Wang Yun; Mukherjee, Pia

    2007-01-01

    Current observational bounds on dark energy depend on our assumptions about the curvature of the universe. We present a simple and efficient method for incorporating constraints from cosmic microwave background (CMB) anisotropy data and use it to derive constraints on cosmic curvature and dark energy density as a free function of cosmic time using current CMB, Type Ia supernova (SN Ia), and baryon acoustic oscillation data. We show that there are two CMB shift parameters, R≡√(Ω m H 0 2 )r(z CMB ) (the scaled distance to recombination) and l a ≡πr(z CMB )/r s (z CMB ) (the angular scale of the sound horizon at recombination), with measured values that are nearly uncorrelated with each other. Allowing nonzero cosmic curvature, the three-year WMAP (Wilkinson Microwave Anisotropy Probe) data give R=1.71±0.03, l a =302.5±1.2, and Ω b h 2 =0.02173±0.00082, independent of the dark energy model. The corresponding bounds for a flat universe are R=1.70±0.03, l a =302.2±1.2, and Ω b h 2 =0.022±0.00082. We give the covariance matrix of (R,l a ,Ω b h 2 ) from the three-year WMAP data. We find that (R,l a ,Ω b h 2 ) provide an efficient and intuitive summary of CMB data as far as dark energy constraints are concerned. Assuming the Hubble Space Telescope (HST) prior of H 0 =72±8 (km/s) Mpc -1 , using 182 SNe Ia (from the HST/GOODS program, the first year Supernova Legacy Survey, and nearby SN Ia surveys), (R,l a ,Ω b h 2 ) from WMAP three-year data, and SDSS (Sloan Digital Sky Survey) measurement of the baryon acoustic oscillation scale, we find that dark energy density is consistent with a constant in cosmic time, with marginal deviations from a cosmological constant that may reflect current systematic uncertainties or true evolution in dark energy. A flat universe is allowed by current data: Ω k =-0.006 -0.012-0.025 +0.013+0.025 for assuming that the dark energy equation of state w X (z) is constant, and Ω k =-0.002 -0.018-0.032 +0.018+0.041 for w X (z

  7. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins

    Science.gov (United States)

    Ramakrishnan, N.; Sunil Kumar, P. B.; Radhakrishnan, Ravi

    2014-01-01

    Biological membranes constitute boundaries of cells and cell organelles. These membranes are soft fluid interfaces whose thermodynamic states are dictated by bending moduli, induced curvature fields, and thermal fluctuations. Recently, there has been a flood of experimental evidence highlighting active roles for these structures in many cellular processes ranging from trafficking of cargo to cell motility. It is believed that the local membrane curvature, which is continuously altered due to its interactions with myriad proteins and other macromolecules attached to its surface, holds the key to the emergent functionality in these cellular processes. Mechanisms at the atomic scale are dictated by protein-lipid interaction strength, lipid composition, lipid distribution in the vicinity of the protein, shape and amino acid composition of the protein, and its amino acid contents. The specificity of molecular interactions together with the cooperativity of multiple proteins induce and stabilize complex membrane shapes at the mesoscale. These shapes span a wide spectrum ranging from the spherical plasma membrane to the complex cisternae of the Golgi apparatus. Mapping the relation between the protein-induced deformations at the molecular scale and the resulting mesoscale morphologies is key to bridging cellular experiments across the various length scales. In this review, we focus on the theoretical and computational methods used to understand the phenomenology underlying protein-driven membrane remodeling. Interactions at the molecular scale can be computationally probed by all atom and coarse grained molecular dynamics (MD, CGMD), as well as dissipative particle dynamics (DPD) simulations, which we only describe in passing. We choose to focus on several continuum approaches extending the Canham - Helfrich elastic energy model for membranes to include the effect of curvature-inducing proteins and explore the conformational phase space of such systems. In this

  8. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, N., E-mail: ramn@seas.upenn.edu [Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA-19104 (United States); Department of Bioengineering, University of Pennsylvania, Philadelphia, PA-19104 (United States); Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA-19104 (United States); Sunil Kumar, P.B., E-mail: sunil@physics.iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai, 600036 (India); Radhakrishnan, Ravi, E-mail: rradhak@seas.upenn.edu [Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA-19104 (United States); Department of Bioengineering, University of Pennsylvania, Philadelphia, PA-19104 (United States); Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA-19104 (United States)

    2014-10-01

    Biological membranes constitute boundaries of cells and cell organelles. These membranes are soft fluid interfaces whose thermodynamic states are dictated by bending moduli, induced curvature fields, and thermal fluctuations. Recently, there has been a flood of experimental evidence highlighting active roles for these structures in many cellular processes ranging from trafficking of cargo to cell motility. It is believed that the local membrane curvature, which is continuously altered due to its interactions with myriad proteins and other macromolecules attached to its surface, holds the key to the emergent functionality in these cellular processes. Mechanisms at the atomic scale are dictated by protein–lipid interaction strength, lipid composition, lipid distribution in the vicinity of the protein, shape and amino acid composition of the protein, and its amino acid contents. The specificity of molecular interactions together with the cooperativity of multiple proteins induce and stabilize complex membrane shapes at the mesoscale. These shapes span a wide spectrum ranging from the spherical plasma membrane to the complex cisternae of the Golgi apparatus. Mapping the relation between the protein-induced deformations at the molecular scale and the resulting mesoscale morphologies is key to bridging cellular experiments across various length scales. In this review, we focus on the theoretical and computational methods used to understand the phenomenology underlying protein-driven membrane remodeling. Interactions at the molecular scale can be computationally probed by all atom and coarse grained molecular dynamics (MD, CGMD), as well as dissipative particle dynamics (DPD) simulations, which we only describe in passing. We choose to focus on several continuum approaches extending the Canham–Helfrich elastic energy model for membranes to include the effect of curvature-inducing proteins and explore the conformational phase space of such systems. In this description

  9. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins

    International Nuclear Information System (INIS)

    Ramakrishnan, N.; Sunil Kumar, P.B.; Radhakrishnan, Ravi

    2014-01-01

    Biological membranes constitute boundaries of cells and cell organelles. These membranes are soft fluid interfaces whose thermodynamic states are dictated by bending moduli, induced curvature fields, and thermal fluctuations. Recently, there has been a flood of experimental evidence highlighting active roles for these structures in many cellular processes ranging from trafficking of cargo to cell motility. It is believed that the local membrane curvature, which is continuously altered due to its interactions with myriad proteins and other macromolecules attached to its surface, holds the key to the emergent functionality in these cellular processes. Mechanisms at the atomic scale are dictated by protein–lipid interaction strength, lipid composition, lipid distribution in the vicinity of the protein, shape and amino acid composition of the protein, and its amino acid contents. The specificity of molecular interactions together with the cooperativity of multiple proteins induce and stabilize complex membrane shapes at the mesoscale. These shapes span a wide spectrum ranging from the spherical plasma membrane to the complex cisternae of the Golgi apparatus. Mapping the relation between the protein-induced deformations at the molecular scale and the resulting mesoscale morphologies is key to bridging cellular experiments across various length scales. In this review, we focus on the theoretical and computational methods used to understand the phenomenology underlying protein-driven membrane remodeling. Interactions at the molecular scale can be computationally probed by all atom and coarse grained molecular dynamics (MD, CGMD), as well as dissipative particle dynamics (DPD) simulations, which we only describe in passing. We choose to focus on several continuum approaches extending the Canham–Helfrich elastic energy model for membranes to include the effect of curvature-inducing proteins and explore the conformational phase space of such systems. In this description

  10. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins.

    Science.gov (United States)

    Ramakrishnan, N; Sunil Kumar, P B; Radhakrishnan, Ravi

    2014-10-01

    Biological membranes constitute boundaries of cells and cell organelles. These membranes are soft fluid interfaces whose thermodynamic states are dictated by bending moduli, induced curvature fields, and thermal fluctuations. Recently, there has been a flood of experimental evidence highlighting active roles for these structures in many cellular processes ranging from trafficking of cargo to cell motility. It is believed that the local membrane curvature, which is continuously altered due to its interactions with myriad proteins and other macromolecules attached to its surface, holds the key to the emergent functionality in these cellular processes. Mechanisms at the atomic scale are dictated by protein-lipid interaction strength, lipid composition, lipid distribution in the vicinity of the protein, shape and amino acid composition of the protein, and its amino acid contents. The specificity of molecular interactions together with the cooperativity of multiple proteins induce and stabilize complex membrane shapes at the mesoscale. These shapes span a wide spectrum ranging from the spherical plasma membrane to the complex cisternae of the Golgi apparatus. Mapping the relation between the protein-induced deformations at the molecular scale and the resulting mesoscale morphologies is key to bridging cellular experiments across the various length scales. In this review, we focus on the theoretical and computational methods used to understand the phenomenology underlying protein-driven membrane remodeling. Interactions at the molecular scale can be computationally probed by all atom and coarse grained molecular dynamics (MD, CGMD), as well as dissipative particle dynamics (DPD) simulations, which we only describe in passing. We choose to focus on several continuum approaches extending the Canham - Helfrich elastic energy model for membranes to include the effect of curvature-inducing proteins and explore the conformational phase space of such systems. In this

  11. Nonsmooth differential geometry-an approach tailored for spaces with Ricci curvature bounded from below

    CERN Document Server

    Gigli, Nicola

    2018-01-01

    The author discusses in which sense general metric measure spaces possess a first order differential structure. Building on this, spaces with Ricci curvature bounded from below a second order calculus can be developed, permitting the author to define Hessian, covariant/exterior derivatives and Ricci curvature.

  12. Asymptotic scalings of developing curved pipe flow

    Science.gov (United States)

    Ault, Jesse; Chen, Kevin; Stone, Howard

    2015-11-01

    Asymptotic velocity and pressure scalings are identified for the developing curved pipe flow problem in the limit of small pipe curvature and high Reynolds numbers. The continuity and Navier-Stokes equations in toroidal coordinates are linearized about Dean's analytical curved pipe flow solution (Dean 1927). Applying appropriate scaling arguments to the perturbation pressure and velocity components and taking the limits of small curvature and large Reynolds number yields a set of governing equations and boundary conditions for the perturbations, independent of any Reynolds number and pipe curvature dependence. Direct numerical simulations are used to confirm these scaling arguments. Fully developed straight pipe flow is simulated entering a curved pipe section for a range of Reynolds numbers and pipe-to-curvature radius ratios. The maximum values of the axial and secondary velocity perturbation components along with the maximum value of the pressure perturbation are plotted along the curved pipe section. The results collapse when the scaling arguments are applied. The numerically solved decay of the velocity perturbation is also used to determine the entrance/development lengths for the curved pipe flows, which are shown to scale linearly with the Reynolds number.

  13. Numerical study on the incompressible Euler equations as a Hamiltonian system: Sectional curvature and Jacobi field

    Science.gov (United States)

    Ohkitani, K.

    2010-05-01

    We study some of the key quantities arising in the theory of [Arnold "Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique des fluides parfaits," Annales de l'institut Fourier 16, 319 (1966)] of the incompressible Euler equations both in two and three dimensions. The sectional curvatures for the Taylor-Green vortex and the ABC flow initial conditions are calculated exactly in three dimensions. We trace the time evolution of the Jacobi fields by direct numerical simulations and, in particular, see how the sectional curvatures get more and more negative in time. The spatial structure of the Jacobi fields is compared to the vorticity fields by visualizations. The Jacobi fields are found to grow exponentially in time for the flows with negative sectional curvatures. In two dimensions, a family of initial data proposed by Arnold (1966) is considered. The sectional curvature is observed to change its sign quickly even if it starts from a positive value. The Jacobi field is shown to be correlated with the passive scalar gradient in spatial structure. On the basis of Rouchon's physical-space based expression for the sectional curvature (1984), the origin of negative curvature is investigated. It is found that a "potential" αξ appearing in the definition of covariant time derivative plays an important role, in that a rapid growth in its gradient makes a major contribution to the negative curvature.

  14. Emergent gravity in spaces of constant curvature

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Orlando; Haddad, Matthew [Department of Physics, University of Miami,1320 Campo Sano Ave, Coral Gables, FL 33146 (United States)

    2017-03-07

    In physical theories where the energy (action) is localized near a submanifold of a constant curvature space, there is a universal expression for the energy (or the action). We derive a multipole expansion for the energy that has a finite number of terms, and depends on intrinsic geometric invariants of the submanifold and extrinsic invariants of the embedding of the submanifold. This is the second of a pair of articles in which we try to develop a theory of emergent gravity arising from the embedding of a submanifold into an ambient space equipped with a quantum field theory. Our theoretical method requires a generalization of a formula due to by Hermann Weyl. While the first paper discussed the framework in Euclidean (Minkowski) space, here we discuss how this framework generalizes to spaces of constant sectional curvature. We focus primarily on anti de Sitter space. We then discuss how such a theory can give rise to a cosmological constant and Planck mass that are within reasonable bounds of the experimental values.

  15. Curvature computation in volume-of-fluid method based on point-cloud sampling

    Science.gov (United States)

    Kassar, Bruno B. M.; Carneiro, João N. E.; Nieckele, Angela O.

    2018-01-01

    This work proposes a novel approach to compute interface curvature in multiphase flow simulation based on Volume of Fluid (VOF) method. It is well documented in the literature that curvature and normal vector computation in VOF may lack accuracy mainly due to abrupt changes in the volume fraction field across the interfaces. This may cause deterioration on the interface tension forces estimates, often resulting in inaccurate results for interface tension dominated flows. Many techniques have been presented over the last years in order to enhance accuracy in normal vectors and curvature estimates including height functions, parabolic fitting of the volume fraction, reconstructing distance functions, coupling Level Set method with VOF, convolving the volume fraction field with smoothing kernels among others. We propose a novel technique based on a representation of the interface by a cloud of points. The curvatures and the interface normal vectors are computed geometrically at each point of the cloud and projected onto the Eulerian grid in a Front-Tracking manner. Results are compared to benchmark data and significant reduction on spurious currents as well as improvement in the pressure jump are observed. The method was developed in the open source suite OpenFOAM® extending its standard VOF implementation, the interFoam solver.

  16. A linearization time-domain CMOS smart temperature sensor using a curvature compensation oscillator.

    Science.gov (United States)

    Chen, Chun-Chi; Chen, Hao-Wen

    2013-08-28

    This paper presents an area-efficient time-domain CMOS smart temperature sensor using a curvature compensation oscillator for linearity enhancement with a -40 to 120 °C temperature range operability. The inverter-based smart temperature sensors can substantially reduce the cost and circuit complexity of integrated temperature sensors. However, a large curvature exists on the temperature-to-time transfer curve of the inverter-based delay line and results in poor linearity of the sensor output. For cost reduction and error improvement, a temperature-to-pulse generator composed of a ring oscillator and a time amplifier was used to generate a thermal sensing pulse with a sufficient width proportional to the absolute temperature (PTAT). Then, a simple but effective on-chip curvature compensation oscillator is proposed to simultaneously count and compensate the PTAT pulse with curvature for linearization. With such a simple structure, the proposed sensor possesses an extremely small area of 0.07 mm2 in a TSMC 0.35-mm CMOS 2P4M digital process. By using an oscillator-based scheme design, the proposed sensor achieves a fine resolution of 0.045 °C without significantly increasing the circuit area. With the curvature compensation, the inaccuracy of -1.2 to 0.2 °C is achieved in an operation range of -40 to 120 °C after two-point calibration for 14 packaged chips. The power consumption is measured as 23 mW at a sample rate of 10 samples/s.

  17. Dynamic Double Curvature Mould System

    DEFF Research Database (Denmark)

    Jepsen, Christian Raun; Kristensen, Mathias Kræmmergaard; Kirkegaard, Poul Henning

    2011-01-01

    The present paper describes a concept for a reconfigurable mould surface which is designed to fit the needs of contemporary architecture. The core of the concept presented is a dynamic surface manipulated into a given shape using a digital signal created directly from the CAD drawing of the design....... This happens fast, automatic and without production of waste, and the manipulated surface is fair and robust, eliminating the need for additional, manual treatment. Limitations to the possibilities of the flexible form are limited curvature and limited level of detail, making it especially suited for larger...

  18. Investigating undergraduate students’ ideas about the curvature of the Universe

    Directory of Open Access Journals (Sweden)

    Kim Coble

    2018-06-01

    Full Text Available [This paper is part of the Focused Collection on Astronomy Education Research.] As part of a larger project studying undergraduate students’ understanding of cosmology, we explored students’ ideas about the curvature of the Universe. We investigated preinstruction ideas held by introductory astronomy (ASTRO 101 students at three participating universities and postinstruction ideas at one. Through thematic analysis of responses to questions on three survey forms and preinstruction interviews, we found that prior to instruction a significant fraction of students said the Universe is round. Students’ reasoning for this included that the Universe contains round objects, therefore it must also be round, or an incorrect idea that the big bang theory describes an explosion from a central point. We also found that a majority of students think that astronomers use the term curvature to describe properties, such as dimensions, angles, or size, of the Universe or objects in the Universe, or that astronomers use the term curvature to describe the bending of space due to gravity. Students are skeptical that the curvature of the Universe can be measured, to a greater or lesser degree depending on question framing. Postinstruction responses to a multiple-choice exam question and interviews at one university indicate that students are more likely to correctly respond that the Universe as a whole is not curved postinstruction, though the idea that the Universe is round still persists for some students. While we see no evidence that priming with an elliptical or rectangular map of the cosmic microwave background on a postinstruction exam affects responses, students do cite visualizations such as diagrams among the reasons for their responses in preinstruction surveys.

  19. Model-independent curvature determination with 21 cm intensity mapping experiments

    Science.gov (United States)

    Witzemann, Amadeus; Bull, Philip; Clarkson, Chris; Santos, Mario G.; Spinelli, Marta; Weltman, Amanda

    2018-06-01

    Measurements of the spatial curvature of the Universe have improved significantly in recent years, but still tend to require strong assumptions to be made about the equation of state of dark energy (DE) in order to reach sub-percent precision. When these assumptions are relaxed, strong degeneracies arise that make it hard to disentangle DE and curvature, degrading the constraints. We show that forthcoming 21 cm intensity mapping experiments such as Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) are ideally designed to carry out model-independent curvature measurements, as they can measure the clustering signal at high redshift with sufficient precision to break many of the degeneracies. We consider two different model-independent methods, based on `avoiding' the DE-dominated regime and non-parametric modelling of the DE equation of state, respectively. Our forecasts show that HIRAX will be able to improve upon current model-independent constraints by around an order of magnitude, reaching percent-level accuracy even when an arbitrary DE equation of state is assumed. In the same model-independent analysis, the sample variance limit for a similar survey is another order of magnitude better.

  20. Distributional curvature of time-dependent cosmic strings

    OpenAIRE

    Wilson, J P

    1997-01-01

    Colombeau's theory of generalised functions is used to calculate the contributions, at the rotation axis, to the distributional curvature for a time-dependent radiating cosmic string, and hence the mass per unit length of the string source. This mass per unit length is compared with the mass at null infinity, giving evidence for a global energy conservation law.

  1. An evaluation of canal curvature at the apical one third in type II mesial canals of mandibular molars

    Directory of Open Access Journals (Sweden)

    Hye-Rim Yun

    2012-05-01

    Full Text Available Objectives The purpose of this study was to evaluate the buccolingual curvature at the apical one third in type II mesial canals of mandibular molars using the radius and angle of curvature. Materials and Methods Total 100 mandibular molars were selected. Following an endodontic access in the teeth, their distal roots were removed. #15 H- or K-files (Dentsply Maillefer were inserted into the mesiobuccal and mesiolingual canals of the teeth. Radiographs of the teeth were taken for the proximal view. Among them, type II canals were selected and divided into two subgroups, IIa and IIb. In type IIa, two separate canals merged into one canal before reaching the apex and in type IIb, two separate canals merged into one canal within the apical foramen. The radius and angle of curvature of specimens were examined. Results In type II, mean radius of curvature in mesiolingual and mesiobuccal canals were 2.82 mm and 3.58 mm, respectively. The radius of the curvature of mesiolingual canals were significantly smaller than that of mesiobuccal canals in type II, and especially in type IIa. However, there were no statistically significant differences in radius of curvature between mesiobuccal and mesiolingual canals in type IIb and there were no significant differences in angle of curvature between type IIa and IIb. Conclusion In this study, type II mesial canals of mandibular molars showed severe curvature in the proximal view. Especially, mesiolingual canals of type IIa had more abrupt curvature than mesiobuccal canals at the apical one third.

  2. Convective mass transfer in helical pipes: effect of curvature and torsion

    Energy Technology Data Exchange (ETDEWEB)

    Litster, S.; Djilali, N. [University of Victoria, Department of Mechanical Engineering, Victoria, BC (Canada); Pharoah, J.G. [University of Victoria, Department of Mechanical Engineering, Victoria, BC (Canada); Queen' s University at Kingston, Department of Mechanical Engineering, Kingston, ON (Canada)

    2006-03-01

    A 3D numerical analysis of the flow and mass transfer in helical pipes is presented. The interpretation of the flow patterns and their impact on mass transfer is shown to require a non-orthogonal pseudo-stream function based visualization. The strong coupling between torsion and curvature effects, and the resulting secondary flow regimes are well characterized by a parameter combining both the Dean (Dn) and Germano numbers (Gn). For membrane separation applications, helical modules combining high curvature with low torsion would alleviate concentration polarization and yield appreciable flux improvement. (orig.)

  3. Curvature-induced symmetry breaking in nonlinear Schrodinger models

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Mingaleev, S. F.; Christiansen, Peter Leth

    2000-01-01

    We consider a curved chain of nonlinear oscillators and show that the interplay of curvature and nonlinearity leads to a symmetry breaking when an asymmetric stationary state becomes energetically more favorable than a symmetric stationary state. We show that the energy of localized states...

  4. Papapetrou's naked singularity is a strong curvature singularity

    International Nuclear Information System (INIS)

    Hollier, G.P.

    1986-01-01

    Following Papapetrou [1985, a random walk in General Relativity ed. J. Krishna-Rao (New Delhi: Wiley Eastern)], a spacetime with a naked singularity is analysed. This singularity is shown to be a strong curvature singularity and thus a counterexample to a censorship conjecture. (author)

  5. Perturbative and constructive renormalization

    International Nuclear Information System (INIS)

    Veiga, P.A. Faria da

    2000-01-01

    These notes are a survey of the material treated in a series of lectures delivered at the X Summer School Jorge Andre Swieca. They are concerned with renormalization in Quantum Field Theories. At the level of perturbation series, we review classical results as Feynman graphs, ultraviolet and infrared divergences of Feynman integrals. Weinberg's theorem and Hepp's theorem, the renormalization group and the Callan-Symanzik equation, the large order behavior and the divergence of most perturbation series. Out of the perturbative regime, as an example of a constructive method, we review Borel summability and point out how it is possible to circumvent the perturbation diseases. These lectures are a preparation for the joint course given by professor V. Rivasseau at the same school, where more sophisticated non-perturbative analytical methods based on rigorous renormalization group techniques are presented, aiming at furthering our understanding about the subject and bringing field theoretical models to a satisfactory mathematical level. (author)

  6. On the projective curvature tensor of generalized Sasakian-space ...

    African Journals Online (AJOL)

    space-forms under some conditions regarding projective curvature tensor. All the results obtained in this paper are in the form of necessary and sufficient conditions. Keywords: Generalized Sasakian-space-forms; projectively flat; ...

  7. Endoscopes and robots for tight surgical spaces: use of precurved elastic elements to enhance curvature

    Science.gov (United States)

    Remirez, Andria A.; Webster, Robert J.

    2016-03-01

    Many applications in medicine require flexible surgical manipulators and endoscopes capable of reaching tight curvatures. The maximum curvature these devices can achieve is often restricted either by a strain limit, or by a maximum actuation force that the device's components can tolerate without risking mechanical failure. In this paper we propose the use of precurvature to "bias" the workspace of the device in one direction. Combined with axial shaft rotation, biasing increases the size of the device's workspace, enabling it to reach tighter curvatures than a comparable device without biasing can achieve, while still being able to fully straighten. To illustrate this effect, we describe several example prototype devices which use flexible nitinol strips that can be pushed and pulled to generate bending. We provide a statics model that relates the manipulator curvature to actuation force, and validate it experimentally.

  8. Translating Solitons of Mean Curvature Flow of Noncompact Submanifolds

    International Nuclear Information System (INIS)

    Li Guanghan; Tian Daping; Wu Chuanxi

    2011-01-01

    We prove the existence and asymptotic behavior of rotationally symmetric solitons of mean curvature flow for noncompact submanifolds in Euclidean and Minkowski spaces, which generalizes part of the corresponding results for hypersurfaces of Jian.

  9. Curvature and elasticity of substitution: what is the link?

    Czech Academy of Sciences Publication Activity Database

    Matveenko, Andrei; Matveenko, V.

    2014-01-01

    Roč. 10, č. 2 (2014), s. 7-20 ISSN 1800-5845 Grant - others:UK(CZ) GAUK 308214 Institutional support: PRVOUK-P23 Keywords : curvature * elasticity of substitution * production function Subject RIV: AH - Economics

  10. The Effect of Ignoring Earth Curvature on Near-Regional Traveltime Tomography and Earthquake Hypocentral Determination

    Science.gov (United States)

    Bai, Chao-ying; Li, Xing-wang; Wang, Di; Greenhalgh, Stewart

    2017-12-01

    Earthquake hypocenter determination and traveltime tomography with local earthquake data are normally conducted using a Cartesian coordinate system and assuming a flat Earth model, but for regional and teleseismic data Earth curvature is incorporated and a spherical coordinate system employed. However, when the study region is from the local to near-regional scale (1°-4°), it is unclear what coordinate system to use and what kind of incorrect anomalies or location errors might arise when using the Cartesian coordinate frame. In this paper we investigate in a quantitative sense through two near-regional crustal models and five different inversion methods, the hypocenter errors, reflector perturbation and incorrect velocity anomalies that can arise due to the selection of the wrong coordinate system and inversion method. The simulated inversion results show that the computed traveltime errors are larger than 0.1 s when the epicentral distance exceeds 150 km, and increases linearly with increasing epicentral distance. Such predicted traveltime errors will result in different patterns of incorrect velocity anomalous structures, a perturbed Moho interface for traveltime tomography and source position which deviate for earthquake locations. The maximum magnitude of a velocity image artifact is larger than 1.0% for an epicentral distance of less than 500 km and is up to 0.9% for epicentral distances of less than 300 km. The earthquake source location error is more than 2.0 km for epicentral distances less than 500 km and is up to 1.5 km for epicentral distances less than 300 km. The Moho depth can be in error by up 1.0 km for epicentral distances of less than 500 km but is less than 0.5 km at distances below 300 km. We suggest that spherical coordinate geometry (or time correction) be used whenever there are ray paths at epicentral distances in excess of 150 km.

  11. On M-theory fourfold vacua with higher curvature terms

    International Nuclear Information System (INIS)

    Grimm, Thomas W.; Pugh, Tom G.; Weißenbacher, Matthias

    2015-01-01

    We study solutions to the eleven-dimensional supergravity action, including terms quartic and cubic in the Riemann curvature, that admit an eight-dimensional compact space. The internal background is found to be a conformally Kähler manifold with vanishing first Chern class. The metric solution, however, is non-Ricci-flat even when allowing for a conformal rescaling including the warp factor. This deviation is due to the possible non-harmonicity of the third Chern-form in the leading order Ricci-flat metric. We present a systematic derivation of the background solution by solving the Killing spinor conditions including higher curvature terms. These are translated into first-order differential equations for a globally defined real two-form and complex four-form on the fourfold. We comment on the supersymmetry properties of the described solutions

  12. New Methods in Non-Perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Unsal, Mithat [North Carolina State Univ., Raleigh, NC (United States)

    2017-01-31

    In this work, we investigate the properties of quantum chromodynamics (QCD), by using newly developing mathematics and physics formalisms. Almost all of the mass in the visible universe emerges from a quantum chromodynamics (QCD), which has a completely negligible microscopic mass content. An intimately related issue in QCD is the quark confinement problem. Answers to non-perturbative questions in QCD remained largely elusive despite much effort over the years. It is also believed that the usual perturbation theory is inadequate to address these kinds of problems. Perturbation theory gives a divergent asymptotic series (even when the theory is properly renormalized), and there are non-perturbative phenomena which never appear at any order in perturbation theory. Recently, a fascinating bridge between perturbation theory and non-perturbative effects has been found: a formalism called resurgence theory in mathematics tells us that perturbative data and non-perturbative data are intimately related. Translating this to the language of quantum field theory, it turns out that non-perturbative information is present in a coded form in perturbation theory and it can be decoded. We take advantage of this feature, which is particularly useful to understand some unresolved mysteries of QCD from first principles. In particular, we use: a) Circle compactifications which provide a semi-classical window to study confinement and mass gap problems, and calculable prototypes of the deconfinement phase transition; b) Resurgence theory and transseries which provide a unified framework for perturbative and non-perturbative expansion; c) Analytic continuation of path integrals and Lefschetz thimbles which may be useful to address sign problem in QCD at finite density.

  13. Total curvature and total torsion of knotted random polygons in confinement

    Science.gov (United States)

    Diao, Yuanan; Ernst, Claus; Rawdon, Eric J.; Ziegler, Uta

    2018-04-01

    Knots in nature are typically confined spatially. The confinement affects the possible configurations, which in turn affects the spectrum of possible knot types as well as the geometry of the configurations within each knot type. The goal of this paper is to determine how confinement, length, and knotting affect the total curvature and total torsion of random polygons. Previously published papers have investigated these effects in the unconstrained case. In particular, we analyze how the total curvature and total torsion are affected by (1) varying the length of polygons within a fixed confinement radius and (2) varying the confinement radius of polygons with a fixed length. We also compare the total curvature and total torsion of groups of knots with similar complexity (measured as crossing number). While some of our results fall in line with what has been observed in the studies of the unconfined random polygons, a few surprising results emerge from our study, showing some properties that are unique due to the effect of knotting in confinement.

  14. Substrate Curvature Regulates Cell Migration -A Computational Study

    Science.gov (United States)

    He, Xiuxiu; Jiang, Yi

    Cell migration in host microenvironment is essential to cancer etiology, progression and metastasis. Cellular processes of adhesion, cytoskeletal polymerization, contraction, and matrix remodeling act in concert to regulate cell migration, while local extracellular matrix architecture modulate these processes. In this work we study how stromal microenvironment with native and cell-derived curvature at micron-meter scale regulate cell motility pattern. We developed a 3D model of single cell migration on a curved substrate. Mathematical analysis of cell morphological adaption to the cell-substrate interface shows that cell migration on convex surfaces deforms more than on concave surfaces. Both analytical and simulation results show that curved surfaces regulate the cell motile force for cell's protruding front through force balance with focal adhesion and cell contraction. We also found that cell migration on concave substrates is more persistent. These results offer a novel biomechanical explanation to substrate curvature regulation of cell migration. NIH 1U01CA143069.

  15. Thermodynamic curvature of soft-sphere fluids and solids

    Science.gov (United States)

    Brańka, A. C.; Pieprzyk, S.; Heyes, D. M.

    2018-02-01

    The influence of the strength of repulsion between particles on the thermodynamic curvature scalar R for the fluid and solid states is investigated for particles interacting with the inverse power (r-n) potential, where r is the pair separation and 1 /n is the softness. Exact results are obtained for R in certain limiting cases, and the R behavior determined for the systems in the fluid and solid phases. It is found that in such systems the thermodynamic curvature can be positive for very soft particles, negative for steeply repulsive (or large n ) particles across almost the entire density range, and can change sign between negative and positive at a certain density. The relationship between R and the form of the interaction potential is more complex than previously suggested, and it may be that R is an indicator of the relative importance of energy and entropy contributions to the thermodynamic properties of the system.

  16. Cosmological perturbation theory and quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, Romeo [Dipartimento di Matematica, Università di Trento,Via Sommarive 14, 38123 Povo TN (Italy); Fredenhagen, Klaus [II Institute für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany); Hack, Thomas-Paul [Institute für Theoretische Physik, Universität Leipzig,Brüderstr. 16, 04103 Leipzig (Germany); Pinamonti, Nicola [Dipartimento di Matematica, Università di Genova,Via Dodecaneso 35, 16146 Genova (Italy); INFN, Sezione di Genova,Via Dodecaneso 33, 16146 Genova (Italy); Rejzner, Katarzyna [Department of Mathematics, University of York,Heslington, York YO10 5DD (United Kingdom)

    2016-08-04

    It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well.

  17. Local curvature analysis for classifying breast tumors: Preliminary analysis in dedicated breast CT

    International Nuclear Information System (INIS)

    Lee, Juhun; Nishikawa, Robert M.; Reiser, Ingrid; Boone, John M.; Lindfors, Karen K.

    2015-01-01

    Purpose: The purpose of this study is to measure the effectiveness of local curvature measures as novel image features for classifying breast tumors. Methods: A total of 119 breast lesions from 104 noncontrast dedicated breast computed tomography images of women were used in this study. Volumetric segmentation was done using a seed-based segmentation algorithm and then a triangulated surface was extracted from the resulting segmentation. Total, mean, and Gaussian curvatures were then computed. Normalized curvatures were used as classification features. In addition, traditional image features were also extracted and a forward feature selection scheme was used to select the optimal feature set. Logistic regression was used as a classifier and leave-one-out cross-validation was utilized to evaluate the classification performances of the features. The area under the receiver operating characteristic curve (AUC, area under curve) was used as a figure of merit. Results: Among curvature measures, the normalized total curvature (C_T) showed the best classification performance (AUC of 0.74), while the others showed no classification power individually. Five traditional image features (two shape, two margin, and one texture descriptors) were selected via the feature selection scheme and its resulting classifier achieved an AUC of 0.83. Among those five features, the radial gradient index (RGI), which is a margin descriptor, showed the best classification performance (AUC of 0.73). A classifier combining RGI and C_T yielded an AUC of 0.81, which showed similar performance (i.e., no statistically significant difference) to the classifier with the above five traditional image features. Additional comparisons in AUC values between classifiers using different combinations of traditional image features and C_T were conducted. The results showed that C_T was able to replace the other four image features for the classification task. Conclusions: The normalized curvature measure

  18. On a class of graphs with prescribed mean curvature

    International Nuclear Information System (INIS)

    Duong Minh Duc; Costa Salavessa, I.M. de

    1989-11-01

    We study a class of quasilinear elliptic equations on the unit ball of R n and apply these results to get the existence of graphs with prescribed mean curvature on n-hyperbolic spaces. (author). 18 refs

  19. The Relationship Between Surface Curvature and Abdominal Aortic Aneurysm Wall Stress.

    Science.gov (United States)

    de Galarreta, Sergio Ruiz; Cazón, Aitor; Antón, Raúl; Finol, Ender A

    2017-08-01

    The maximum diameter (MD) criterion is the most important factor when predicting risk of rupture of abdominal aortic aneurysms (AAAs). An elevated wall stress has also been linked to a high risk of aneurysm rupture, yet is an uncommon clinical practice to compute AAA wall stress. The purpose of this study is to assess whether other characteristics of the AAA geometry are statistically correlated with wall stress. Using in-house segmentation and meshing algorithms, 30 patient-specific AAA models were generated for finite element analysis (FEA). These models were subsequently used to estimate wall stress and maximum diameter and to evaluate the spatial distributions of wall thickness, cross-sectional diameter, mean curvature, and Gaussian curvature. Data analysis consisted of statistical correlations of the aforementioned geometry metrics with wall stress for the 30 AAA inner and outer wall surfaces. In addition, a linear regression analysis was performed with all the AAA wall surfaces to quantify the relationship of the geometric indices with wall stress. These analyses indicated that while all the geometry metrics have statistically significant correlations with wall stress, the local mean curvature (LMC) exhibits the highest average Pearson's correlation coefficient for both inner and outer wall surfaces. The linear regression analysis revealed coefficients of determination for the outer and inner wall surfaces of 0.712 and 0.516, respectively, with LMC having the largest effect on the linear regression equation with wall stress. This work underscores the importance of evaluating AAA mean wall curvature as a potential surrogate for wall stress.

  20. Effects of curvature on rarefied gas flows between rotating concentric cylinders

    Science.gov (United States)

    Dongari, Nishanth; White, Craig; Scanlon, Thomas J.; Zhang, Yonghao; Reese, Jason M.

    2013-05-01

    The gas flow between two concentric rotating cylinders is considered in order to investigate non-equilibrium effects associated with the Knudsen layers over curved surfaces. We investigate the nonlinear flow physics in the near-wall regions using a new power-law (PL) wall-scaling approach. This PL model incorporates Knudsen layer effects in near-wall regions by taking into account the boundary limiting effects on the molecular free paths. We also report new direct simulation Monte Carlo results covering a wide range of Knudsen numbers and accommodation coefficients, and for various outer-to-inner cylinder radius ratios. Our simulation data are compared with both the classical slip flow theory and the PL model, and we find that non-equilibrium effects are not only dependent on Knudsen number and accommodation coefficient but are also significantly affected by the surface curvature. The relative merits and limitations of both theoretical models are explored with respect to rarefaction and curvature effects. The PL model is able to capture some of the nonlinear trends associated with Knudsen layers up to the early transition flow regime. The present study also illuminates the limitations of classical slip flow theory even in the early slip flow regime for higher curvature test cases, although the model does exhibit good agreement throughout the slip flow regime for lower curvature cases. Torque and velocity profile comparisons also convey that a good prediction of integral flow properties does not necessarily guarantee the accuracy of the theoretical model used, and it is important to demonstrate that field variables are also predicted satisfactorily.

  1. Perturbations i have Known and Loved

    Science.gov (United States)

    Field, Robert W.

    2011-06-01

    A spectroscopic perturbation is a disruption of a ^1Σ-^1Σ-like regular pattern that can embody level-shifts, extra lines, and intensity anomalies. Once upon a time, when a band was labeled ``perturbed,'' it was considered worthless because it could at best yield molecular constants unsuited for archival tables. Nevertheless, a few brave spectroscopists, notably Albin Lagerqvist and Richard Barrow, collected perturbations because they knew that the pattern of multiple perturbations formed an intricate puzzle that would eventually reveal the presence and electronic symmetry of otherwise unobservable electronic states. There are many kinds of patterns of broken patterns. In my PhD thesis I showed how to determine absolute vibrational assignments for the perturber from patterns among the observed values of perturbation matrix elements. When a ^3Π state is perturbed, its six (Ω, parity) components capture a pattern of level shifts and intensity anomalies that reveals more about the nature of the perturber than a simple perturbation of the single component of a ^1Σ state. In perturbation-facilitated OODR, a perturbed singlet level acts as a spectroscopic doorway through which the entire triplet manifold may be systematically explored. For polyatomic molecule vibrations, a vibrational polyad (a group of mutually perturbing vibrational levels, among which the perturbation matrix elements are expected to follow harmonic oscillator scaling rules) can contain more components than a ^3Π state and intrapolyad patterns can be exquisitely sensitive not merely to the nature of an interloper within the polyad but also to the eigenvector character of the vibronic state from which the polyad is viewed. Variation of scaled polyad interaction parameters from one polyad to the next, a pattern of patterns, can signal proximity to an isomerization barrier. Everything in Rydberg-land seems to scale as N⋆-3, yet a trespassing valence state causes all scaling and propensity rules go

  2. Asymmetric vibrations of shells of revolution having meridionally varying curvature and thickness

    International Nuclear Information System (INIS)

    Suzuki, Katsuyoshi; Kosawada, Tadashi; Miura, Kazuyuki.

    1988-01-01

    An exact method using power series expansions is presented for solving asymmetric free vibration problems for shells of revolution having meridionally varying curvature and thickness. The gaverning equations of motion and the boundary conditions are derived from the stationary conditions of the Lagrangian of the shells of revolution. The method is demonstrated for shells of revolution having elliptical, cycloidal, parabolical, catenary and hyperbolical meridional curvature. The natural frequencies are numerically calculated for these shells having second degree thickness variation. (author)

  3. Influence of Global and Local Membrane Curvature on Mechanosensitive Ion Channels: A Finite Element Approach

    Directory of Open Access Journals (Sweden)

    Omid Bavi

    2016-02-01

    Full Text Available Mechanosensitive (MS channels are ubiquitous molecular force sensors that respond to a number of different mechanical stimuli including tensile, compressive and shear stress. MS channels are also proposed to be molecular curvature sensors gating in response to bending in their local environment. One of the main mechanisms to functionally study these channels is the patch clamp technique. However, the patch of membrane surveyed using this methodology is far from physiological. Here we use continuum mechanics to probe the question of how curvature, in a standard patch clamp experiment, at different length scales (global and local affects a model MS channel. Firstly, to increase the accuracy of the Laplace’s equation in tension estimation in a patch membrane and to be able to more precisely describe the transient phenomena happening during patch clamping, we propose a modified Laplace’s equation. Most importantly, we unambiguously show that the global curvature of a patch, which is visible under the microscope during patch clamp experiments, is of negligible energetic consequence for activation of an MS channel in a model membrane. However, the local curvature (RL < 50 and the direction of bending are able to cause considerable changes in the stress distribution through the thickness of the membrane. Not only does local bending, in the order of physiologically relevant curvatures, cause a substantial change in the pressure profile but it also significantly modifies the stress distribution in response to force application. Understanding these stress variations in regions of high local bending is essential for a complete understanding of the effects of curvature on MS channels.

  4. Using geometric algebra to represent curvature in shell theory with applications to Starling resistors.

    Science.gov (United States)

    Gregory, A L; Agarwal, A; Lasenby, J

    2017-11-01

    We present a novel application of rotors in geometric algebra to represent the change of curvature tensor that is used in shell theory as part of the constitutive law. We introduce a new decomposition of the change of curvature tensor, which has explicit terms for changes of curvature due to initial curvature combined with strain, and changes in rotation over the surface. We use this decomposition to perform a scaling analysis of the relative importance of bending and stretching in flexible tubes undergoing self-excited oscillations. These oscillations have relevance to the lung, in which it is believed that they are responsible for wheezing. The new analysis is necessitated by the fact that the working fluid is air, compared to water in most previous work. We use stereographic imaging to empirically measure the relative importance of bending and stretching energy in observed self-excited oscillations. This enables us to validate our scaling analysis. We show that bending energy is dominated by stretching energy, and the scaling analysis makes clear that this will remain true for tubes in the airways of the lung.

  5. Curvature vector smart sensing with a long-period fibre grating probed by artificial intelligence

    International Nuclear Information System (INIS)

    Costa, R Z V; Possetti, G R C; De Arruda, L V R; Muller, M; Fabris, J L

    2010-01-01

    This work shows a curvature vector sensing device based on a single long-period grating written in a commercial photosensitive optical fibre. The sensing approach uses an artificial neural network based on multilayer perceptrons for data analysis. Curvatures from 0.00 to 3.13 m −1 and angular orientations from 0 to 180° were measured with the device, with combined standard uncertainties of 0.05 m −1 and 1.5°, respectively. The root mean square errors for curvature and angular orientation were 0.0008 m −1 and 0.3° in the training stage and 0.002 m −1 and 0.9° in the test stage, respectively

  6. Correlation Functions of the Energy Momentum Tensor on Spaces of Constant Curvature

    CERN Document Server

    Osborn, H

    2000-01-01

    An analysis of one and two point functions of the energy momentum tensor on homogeneous spaces of constant curvature is undertaken. The possibility of proving a c-theorem in this framework is discussed, in particular in relation to the coefficients c,a, which appear in the energy momentum tensor trace on general curved backgrounds in four dimensions. Ward identities relating the correlation functions are derived and explicit expressions are obtained for free scalar, spinor field theories in general dimensions and also free vector fields in dimension four. A natural geometric formalism which is independent of any choice of coordinates is used and the role of conformal symmetries on such constant curvature spaces is analysed. The results are shown to be constrained by the operator product expansion. For negative curvature the spectral representation, involving unitary positive energy representations of $O(d-1,2)$, for two point functions of vector currents is derived in detail and extended to the energy momentu...

  7. On the geometry of null cones to infinity under curvature flux bounds

    International Nuclear Information System (INIS)

    Alexakis, Spyros; Shao, Arick

    2014-01-01

    The main objective of this paper is to control the geometry of a future outgoing truncated null cone extending smoothly toward infinity in an Einstein-vacuum spacetime. In particular, we wish to do this under minimal regularity assumptions, namely, at the (weighted) L 2 -curvature level. We show that if the curvature flux and the data on an initial sphere of the cone are sufficiently close to the corresponding values in a standard Minkowski or Schwarzschild null cone, then we can obtain quantitative bounds on the geometry of the entire infinite cone. The same bounds also imply the existence of limits at infinity, along the null cone, of naturally scaled geometric quantities. In Alexakis and Shao (2013 Bounds on the Bondi energy by a flux of curvature arXiv:1308.4170), we will apply these results in order to control various physical quantities—e.g., the Bondi energy and (linear and angular) momenta—associated with such infinite null cones in vacuum spacetimes. (paper)

  8. Adjuvant Maneuvers for Residual Curvature Correction During Penile Prosthesis Implantation in Men with Peyronie's Disease.

    Science.gov (United States)

    Berookhim, Boback M; Karpman, Edward; Carrion, Rafael

    2015-11-01

    The surgical treatment of comorbid erectile dysfunction and Peyronie's disease has long included the implantation of an inflatable penile prosthesis as well as a number of adjuvant maneuvers to address residual curvature after prosthesis placement. To review the various surgical options for addressing curvature after prosthesis placement, with specific attention paid to an original article by Wilson et al. reporting on modeling over a penile prosthesis for the management of Peyronie's disease. A literature review was performed analyzing articles reporting the management of penile curvature in patients undergoing implantation of an inflatable penile prosthesis. Reported improvement in Peyronie's deformity as well as the complication rate associated with the various surgical techniques described. Modeling is a well-established treatment modality among patients with Peyronie's disease undergoing penile prosthesis implantation. A variety of other adjuvant maneuvers to address residual curvature when modeling alone is insufficient has been presented in the literature. Over 20 years of experience with modeling over a penile prosthesis have proven the efficacy and safety of this treatment option, providing the surgeon a simple initial step for the management of residual curvature after penile implantation which allows for the use of additional adjuvant maneuvers in those with significant deformities. © 2015 International Society for Sexual Medicine.

  9. Constant scalar curvature hypersurfaces in extended Schwarzschild space-time

    International Nuclear Information System (INIS)

    Pareja, M. J.; Frauendiener, J.

    2006-01-01

    We present a class of spherically symmetric hypersurfaces in the Kruskal extension of the Schwarzschild space-time. The hypersurfaces have constant negative scalar curvature, so they are hyperboloidal in the regions of space-time which are asymptotically flat

  10. Influence of piezoceramic to fused silica plate thickness on the radii of curvature of piezoelectric bimorph mirror

    International Nuclear Information System (INIS)

    Libu, M.; Susanth, S.; Vasanthakumari, K. G.; Dileep Kumar, C. J.; Raghu, N.

    2012-01-01

    Piezoelectric based bimorph mirrors (PBM) find extensive use in focusing of x-ray beams. Many optical instruments require use of PBM whose radii of curvature can be tuned precisely. The 100 mm and 300 mm PBMs were fabricated with varying piezoelectric to fused silica plate thicknesses. The radii of curvature of free standing mirrors were measured as a function of voltage and it was found to decrease with increasing voltage. For a given piezoelectric plate thickness, as the fused silica thickness increases, the radii of curvature was found to increase owing to increase in stiffness of the mirror. On the other hand, for a given fused silica plate thickness, when the piezoelectric plate thickness is increased, the radii of curvature are decreased for a given electric field, due to increase in generated force. This study brings out the influence of piezoceramic to fused silica plate thickness on the radii of curvature of PBM.

  11. Glauber theory and the quantum coherence of curvature inhomogeneities

    CERN Document Server

    Giovannini, Massimo

    2017-01-12

    The curvature inhomogeneities are systematically scrutinized in the framework of the Glauber approach. The amplified quantum fluctuations of the scalar and tensor modes of the geometry are shown to be first-order coherent while the interference of the corresponding intensities is larger than in the case of Bose-Einstein correlations. After showing that the degree of second-order coherence does not suffice to characterize unambiguously the curvature inhomogeneities, we argue that direct analyses of the degrees of third and fourth-order coherence are necessary to discriminate between different correlated states and to infer more reliably the statistical properties of the large-scale fluctuations. We speculate that the moments of the multiplicity distributions of the relic phonons might be observationally accessible thanks to new generations of instruments able to count the single photons of the Cosmic Microwave Background in the THz region.

  12. Optimal random perturbations for stochastic approximation using a simultaneous perturbation gradient approximation

    DEFF Research Database (Denmark)

    Sadegh, Payman; Spall, J. C.

    1998-01-01

    simultaneous perturbation approximation to the gradient based on loss function measurements. SPSA is based on picking a simultaneous perturbation (random) vector in a Monte Carlo fashion as part of generating the approximation to the gradient. This paper derives the optimal distribution for the Monte Carlo...

  13. Curvature-Induced Bunch Self-Interaction for an Energy-Chirped Bunch in Magnetic Bends

    International Nuclear Information System (INIS)

    Rui Li

    2008-01-01

    Within the realm of classical electrodynamics, the curvature-induced bunch collective interaction in magnetic bends can be studied using effective forces in the canonical formulation of the coherent synchrotron radiation (CSR) effect. As an application of this canonical formulation, in this paper, for an electron distribution moving ultrarelativistically in a bending system, the dynamics of the particles in the distribution is derived from the Hamiltonian of the particles in terms of the bunch internal coordinates. The consequent Vlasov equation manifests explicitly how the phase-space distribution is perturbed by the effective CSR forces. In particular, we study the impact of an initial linear energy chirp of the bunch on the behavior of the effective longitudinal CSR force, which arises due to the modification of the retardation relation as a result of the energy-chirping-induced longitudinal-horizontal correlation of the bunch distribution (bunch tilt) in dispersive regions. Our study demonstrates clearly the time delay (or retardation) of the behavior of the effective longitudinal CSR force on a bunch in responding to the change of the bunch length in a magnetic bend. Our result also shows that the effective longitudinal CSR force for a bunch under full compression can have sensitive dependence on the transverse position of the test particle in the bunch for certain parameter regimes

  14. Flow Curvature Effects for VAWT: a Review of Virtual Airfoil Transformations and Implementation in XFOIL

    DEFF Research Database (Denmark)

    van der Horst, Sander; van de Wiel, Jelmer E.; Ferreira, Carlos Simao

    2016-01-01

    Blades on a Vertical Axis Wind Turbine (VAWT) experience curved streamlines, caused by the rotation of the turbine. This phenomenon is known as flow curvature and has effects on the aerodynamic loading of the blades. Several authors have proposed methods to account for flow curvature, resulting...

  15. The Paneitz curvature problem on lower dimensional spheres

    CERN Document Server

    Ben-Ayed, M

    2003-01-01

    In this paper we prescribe a fourth order conformal invariant (the Paneitz curvature) on the n-spheres, with n is an element of left brace 5, 6 right brace. Using dynamical and topological methods involving the study of critical points at infinity of the associated variational problem, we prove some existence results.

  16. Test of the FLRW Metric and Curvature with Strong Lens Time Delays

    International Nuclear Information System (INIS)

    Liao, Kai; Li, Zhengxiang; Wang, Guo-Jian; Fan, Xi-Long

    2017-01-01

    We present a new model-independent strategy for testing the Friedmann–Lemaître–Robertson–Walker (FLRW) metric and constraining cosmic curvature, based on future time-delay measurements of strongly lensed quasar-elliptical galaxy systems from the Large Synoptic Survey Telescope and supernova observations from the Dark Energy Survey. The test only relies on geometric optics. It is independent of the energy contents of the universe and the validity of the Einstein equation on cosmological scales. The study comprises two levels: testing the FLRW metric through the distance sum rule (DSR) and determining/constraining cosmic curvature. We propose an effective and efficient (redshift) evolution model for performing the former test, which allows us to concretely specify the violation criterion for the FLRW DSR. If the FLRW metric is consistent with the observations, then on the second level the cosmic curvature parameter will be constrained to ∼0.057 or ∼0.041 (1 σ ), depending on the availability of high-redshift supernovae, which is much more stringent than current model-independent techniques. We also show that the bias in the time-delay method might be well controlled, leading to robust results. The proposed method is a new independent tool for both testing the fundamental assumptions of homogeneity and isotropy in cosmology and for determining cosmic curvature. It is complementary to cosmic microwave background plus baryon acoustic oscillation analyses, which normally assume a cosmological model with dark energy domination in the late-time universe.

  17. Test of the FLRW Metric and Curvature with Strong Lens Time Delays

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Kai [School of Science, Wuhan University of Technology, Wuhan 430070 (China); Li, Zhengxiang; Wang, Guo-Jian [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Fan, Xi-Long, E-mail: liaokai@whut.edu.cn, E-mail: xilong.fan@glasgow.ac.uk [Department of Physics and Mechanical and Electrical Engineering, Hubei University of Education, Wuhan 430205 (China)

    2017-04-20

    We present a new model-independent strategy for testing the Friedmann–Lemaître–Robertson–Walker (FLRW) metric and constraining cosmic curvature, based on future time-delay measurements of strongly lensed quasar-elliptical galaxy systems from the Large Synoptic Survey Telescope and supernova observations from the Dark Energy Survey. The test only relies on geometric optics. It is independent of the energy contents of the universe and the validity of the Einstein equation on cosmological scales. The study comprises two levels: testing the FLRW metric through the distance sum rule (DSR) and determining/constraining cosmic curvature. We propose an effective and efficient (redshift) evolution model for performing the former test, which allows us to concretely specify the violation criterion for the FLRW DSR. If the FLRW metric is consistent with the observations, then on the second level the cosmic curvature parameter will be constrained to ∼0.057 or ∼0.041 (1 σ ), depending on the availability of high-redshift supernovae, which is much more stringent than current model-independent techniques. We also show that the bias in the time-delay method might be well controlled, leading to robust results. The proposed method is a new independent tool for both testing the fundamental assumptions of homogeneity and isotropy in cosmology and for determining cosmic curvature. It is complementary to cosmic microwave background plus baryon acoustic oscillation analyses, which normally assume a cosmological model with dark energy domination in the late-time universe.

  18. Constraining cosmic curvature by using age of galaxies and gravitational lenses

    International Nuclear Information System (INIS)

    Rana, Akshay; Mahajan, Shobhit; Mukherjee, Amitabha; Jain, Deepak

    2017-01-01

    We use two model-independent methods to constrain the curvature of the universe. In the first method, we study the evolution of the curvature parameter (Ω k 0 ) with redshift by using the observations of the Hubble parameter and transverse comoving distances obtained from the age of galaxies. Secondly, we also use an indirect method based on the mean image separation statistics of gravitationally lensed quasars. The basis of this methodology is that the average image separation of lensed images will show a positive, negative or zero correlation with the source redshift in a closed, open or flat universe respectively. In order to smoothen the datasets used in both the methods, we use a non-parametric method namely, Gaussian Process (GP). Finally from first method we obtain Ω k 0 = 0.025±0.57 for a presumed flat universe while the cosmic curvature remains constant throughout the redshift region 0 < z < 1.37 which indicates that the universe may be homogeneous. Moreover, the combined result from both the methods suggests that the universe is marginally closed. However, a flat universe can be incorporated at 3σ level.

  19. Multi-Objective Optimization of Experiments Using Curvature and Fisher Information Matrix

    Directory of Open Access Journals (Sweden)

    Erica Manesso

    2017-11-01

    Full Text Available The bottleneck in creating dynamic models of biological networks and processes often lies in estimating unknown kinetic model parameters from experimental data. In this regard, experimental conditions have a strong influence on parameter identifiability and should therefore be optimized to give the maximum information for parameter estimation. Existing model-based design of experiment (MBDOE methods commonly rely on the Fisher information matrix (FIM for defining a metric of data informativeness. When the model behavior is highly nonlinear, FIM-based criteria may lead to suboptimal designs, as the FIM only accounts for the linear variation in the model outputs with respect to the parameters. In this work, we developed a multi-objective optimization (MOO MBDOE, for which the model nonlinearity was taken into consideration through the use of curvature. The proposed MOO MBDOE involved maximizing data informativeness using a FIM-based metric and at the same time minimizing the model curvature. We demonstrated the advantages of the MOO MBDOE over existing FIM-based and other curvature-based MBDOEs in an application to the kinetic modeling of fed-batch fermentation of baker’s yeast.

  20. Stretchable Dual-Capacitor Multi-Sensor for Touch-Curvature-Pressure-Strain Sensing.

    Science.gov (United States)

    Jin, Hanbyul; Jung, Sungchul; Kim, Junhyung; Heo, Sanghyun; Lim, Jaeik; Park, Wonsang; Chu, Hye Yong; Bien, Franklin; Park, Kibog

    2017-09-07

    We introduce a new type of multi-functional capacitive sensor that can sense several different external stimuli. It is fabricated only with polydimethylsiloxane (PDMS) films and silver nanowire electrodes by using selective oxygen plasma treatment method without photolithography and etching processes. Differently from the conventional single-capacitor multi-functional sensors, our new multi-functional sensor is composed of two vertically-stacked capacitors (dual-capacitor). The unique dual-capacitor structure can detect the type and strength of external stimuli including curvature, pressure, strain, and touch with clear distinction, and it can also detect the surface-normal directionality of curvature, pressure, and touch. Meanwhile, the conventional single-capacitor sensor has ambiguity in distinguishing curvature and pressure and it can detect only the strength of external stimulus. The type, directionality, and strength of external stimulus can be determined based on the relative capacitance changes of the two stacked capacitors. Additionally, the logical flow reflected on a tree structure with its branches reaching the direction and strength of the corresponding external stimulus unambiguously is devised. This logical flow can be readily implemented in the sensor driving circuit if the dual-capacitor sensor is commercialized actually in the future.

  1. Constraining cosmic curvature by using age of galaxies and gravitational lenses

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Akshay; Mahajan, Shobhit; Mukherjee, Amitabha [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Jain, Deepak, E-mail: arana@physics.du.ac.in, E-mail: djain@ddu.du.ac.in, E-mail: shobhit.mahajan@gmail.com, E-mail: amimukh@gmail.com [Deen Dayal Upadhyaya College, University of Delhi, Sector-3, Dwarka, Delhi 110078 (India)

    2017-03-01

    We use two model-independent methods to constrain the curvature of the universe. In the first method, we study the evolution of the curvature parameter (Ω {sub k} {sup 0}) with redshift by using the observations of the Hubble parameter and transverse comoving distances obtained from the age of galaxies. Secondly, we also use an indirect method based on the mean image separation statistics of gravitationally lensed quasars. The basis of this methodology is that the average image separation of lensed images will show a positive, negative or zero correlation with the source redshift in a closed, open or flat universe respectively. In order to smoothen the datasets used in both the methods, we use a non-parametric method namely, Gaussian Process (GP). Finally from first method we obtain Ω {sub k} {sup 0} = 0.025±0.57 for a presumed flat universe while the cosmic curvature remains constant throughout the redshift region 0 < z < 1.37 which indicates that the universe may be homogeneous. Moreover, the combined result from both the methods suggests that the universe is marginally closed. However, a flat universe can be incorporated at 3σ level.

  2. A generalized non-Gaussian consistency relation for single field inflation

    Science.gov (United States)

    Bravo, Rafael; Mooij, Sander; Palma, Gonzalo A.; Pradenas, Bastián

    2018-05-01

    We show that a perturbed inflationary spacetime, driven by a canonical single scalar field, is invariant under a special class of coordinate transformations together with a field reparametrization of the curvature perturbation in co-moving gauge. This transformation may be used to derive the squeezed limit of the 3-point correlation function of the co-moving curvature perturbations valid in the case that these do not freeze after horizon crossing. This leads to a generalized version of Maldacena's non-Gaussian consistency relation in the sense that the bispectrum squeezed limit is completely determined by spacetime diffeomorphisms. Just as in the case of the standard consistency relation, this result may be understood as the consequence of how long-wavelength modes modulate those of shorter wavelengths. This relation allows one to derive the well known violation to the consistency relation encountered in ultra slow-roll, where curvature perturbations grow exponentially after horizon crossing.

  3. Numerical calculation and analysis of single-curvature polyhedron hydro-bulging process for manufacturing spherical vessels

    International Nuclear Information System (INIS)

    Dong Jianling; Zhang Fengke; Yin Dejian

    2005-01-01

    Single-curvature polyhedron hydro-bulging technology is a new technology for manufacturing spherical vessels and it has a good application foreground. This technology has been used in practice. But the designing and manufacturing of polyhedron is based on experiences, and the final quality of spherical vessels cannot be forecast quantitatively. In the paper, the FEM code, MARC, is used to simulate the hydrobulging process of a single-curvature polyhedron, including loading and offloading. And the distributions of stress and strain are acquired as well as other important data. Comparing with the experimental results, it shows that single-curvature polyhedron hydro-bulging process can be simulated well by the FEM code. (authors)

  4. Curved nanocarbon materials: probing the curvature and topology effects using phonon spectra

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Avadh Baheri [Los Alamos National Laboratory; Gupta, Sanju [UNIV OF MISSOURI

    2008-01-01

    In spite of detailed structural characterization of nanoscale carbons, they still possess some features that are not entirely understood particularly in terms of topological characteristics. By means of resonance Raman spectroscopy, we elucidated the notion of global topology and curvature by determining the prominent Raman bands variation for various carbon nanostructures including tubular (single-, double- and multiwalled nanotubes, peapod), spherical (hypo- and hyperfullerenes, onion-like carbon) and complex (nanocones, nanohorns, nanodisks and nanorings) geometries. This knowledge points to an unprecedented emergent paradigm of global topology/curvature {yields} property {yields} functionality relationship.

  5. Asymmetric vibrations of thick shells of revolution having meridionally varying curvature

    International Nuclear Information System (INIS)

    Suzuki, Katsuyoshi; Kosawada, Tadashi; Yachita, Takumi.

    1988-01-01

    An exact method using power series expansions is presented for solving asymmetric free vibration problems for thick shells of revolution having meridionally varying curvature. Based on the improved thick shell theory, the Lagrangian of the shells of revolution are obtained, and the equations of motion and the boundary conditions are derived from the stationary condition of the Lagrangian. The method is demonstrated for thick shells of revolution having elliptical, cycloidal, parabolical, catenary and hyperbolical meridional curvature. The results by the present method are compared with those by the thin shell theory and the effects of the rotatory inertia and the shear deformation upon the natural frequencies are clarified. (author)

  6. Perturbed black holes in Einstein-dilaton-Gauss-Bonnet gravity: stability, ringdown, and gravitational-wave emission

    CERN Document Server

    Blázquez-Salcedo, Jose Luis

    2016-01-01

    Gravitational waves emitted by distorted black holes---such as those arising from the coalescence of two neutron stars or black holes---carry not only information about the corresponding spacetime but also about the underlying theory of gravity. Although general relativity remains the simplest, most elegant and viable theory of gravitation, there are generic and robust arguments indicating that it is not the ultimate description of the gravitational universe. Here we focus on a particularly appealing extension of general relativity, which corrects Einstein's theory through the addition of terms which are second order in curvature: the topological Gauss-Bonnet invariant coupled to a dilaton. We study gravitational-wave emission from black holes in this theory, and (i) find strong evidence that black holes are linearly (mode) stable against both axial and polar perturbations; (ii) discuss how the quasinormal modes of black holes can be excited during collisions involving black holes, and finally (iii) show that...

  7. An Improved Method to Measure the Cosmic Curvature

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jun-Jie; Wu, Xue-Feng, E-mail: jjwei@pmo.ac.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2017-04-01

    In this paper, we propose an improved model-independent method to constrain the cosmic curvature by combining the most recent Hubble parameter H ( z ) and supernovae Ia (SNe Ia) data. Based on the H ( z ) data, we first use the model-independent smoothing technique, Gaussian processes, to construct a distance modulus μ {sub H} ( z ), which is susceptible to the cosmic curvature parameter Ω{sub k}. In contrary to previous studies, the light-curve-fitting parameters, which account for the distance estimation of SN (μ {sub SN}( z )), are set free to investigate whether Ω {sub k} has a dependence on them. By comparing μ {sub H} ( z ) to μ {sub SN}(z), we put limits on Ω {sub k}. Our results confirm that Ω {sub k} is independent of the SN light-curve parameters. Moreover, we show that the measured Ω {sub k} is in good agreement with zero cosmic curvature, implying that there is no significant deviation from a flat universe at the current observational data level. We also test the influence of different H(z) samples and different Hubble constant H {sub 0} values, finding that different H(z) samples do not have a significant impact on the constraints. However, different H {sub 0} priors can affect the constraints of Ω {sub k} to some degree. The prior of H {sub 0} = 73.24 ± 1.74 km s{sup −1} Mpc{sup −1} gives a value of Ω {sub k}, a little bit above the 1 σ confidence level away from 0, but H{sub 0} = 69.6 ± 0.7 km s{sup −1} Mpc{sup −1} gives it below 1 σ .

  8. Supported lipid bilayers with controlled curvature via colloidal lithography

    DEFF Research Database (Denmark)

    Sundh, Maria; Manandhar, Michal; Svedhem, Sofia

    2011-01-01

    Supported lipid bilayers (SLBs) at surfaces provide a route to quantitatively study molecular interactions with and at lipid membranes via different surface-based analytical techniques. Here, a method to fabricate SLBs with controlled curvatures, in the nanometer regime over large areas, is prese...

  9. Limited capacity for contour curvature in iconic memory.

    Science.gov (United States)

    Sakai, Koji

    2006-06-01

    We measured the difference threshold for contour curvature in iconic memory by using the cued discrimination method. The study stimulus consisting of 2 to 6 curved contours was briefly presented in the fovea, followed by two lines as cues. Subjects discriminated the curvature of two cued curves. The cue delays were 0 msec. and 300 msec. in Exps. 1 and 2, respectively, and 50 msec. before the study offset in Exp. 3. Analysis of data from Exps. 1 and 2 showed that the Weber fraction rose monotonically with the increase in set size. Clear set-size effects indicate that iconic memory has a limited capacity. Moreover, clear set-size effect in Exp. 3 indicates that perception itself has a limited capacity. Larger set-size effects in Exp. 1 than in Exp. 3 suggest that iconic memory after perceptual process has limited capacity. These properties of iconic memory at threshold level are contradictory to the traditional view that iconic memory has a high capacity both at suprathreshold and categorical levels.

  10. Strain transfer through film-substrate interface and surface curvature evolution during a tensile test

    Science.gov (United States)

    He, Wei; Han, Meidong; Goudeau, Philippe; Bourhis, Eric Le; Renault, Pierre-Olivier; Wang, Shibin; Li, Lin-an

    2018-03-01

    Uniaxial tensile tests on polyimide-supported thin metal films are performed to respectively study the macroscopic strain transfer through an interface and the surface curvature evolution. With a dual digital image correlation (DIC) system, the strains of the film and the substrate can be simultaneously measured in situ during the tensile test. For the true strains below 2% (far beyond the films' elastic limit), a complete longitudinal strain transfer is present irrespective of the film thickness, residual stresses and microstructure. By means of an optical surface profiler, the three-dimensional (3D) topography of film surface can be obtained during straining. As expected, the profile of the specimen center remains almost flat in the tensile direction. Nevertheless, a relatively significant curvature evolution (of the same order with the initial curvature induced by residual stresses) is observed along the transverse direction as a result of a Poisson's ratio mismatch between the film and the substrate. Furthermore, finite element method (FEM) has been performed to simulate the curvature evolution considering the geometric nonlinearity and the perfect strain transfer at the interface, which agrees well with the experimental results.

  11. Quantifying the quality of hand movement in stroke patients through three-dimensional curvature

    Directory of Open Access Journals (Sweden)

    Osu Rieko

    2011-10-01

    Full Text Available Abstract Background To more accurately evaluate rehabilitation outcomes in stroke patients, movement irregularities should be quantified. Previous work in stroke patients has revealed a reduction in the trajectory smoothness and segmentation of continuous movements. Clinically, the Stroke Impairment Assessment Set (SIAS evaluates the clumsiness of arm movements using an ordinal scale based on the examiner's observations. In this study, we focused on three-dimensional curvature of hand trajectory to quantify movement, and aimed to establish a novel measurement that is independent of movement duration. We compared the proposed measurement with the SIAS score and the jerk measure representing temporal smoothness. Methods Sixteen stroke patients with SIAS upper limb proximal motor function (Knee-Mouth test scores ranging from 2 (incomplete performance to 4 (mild clumsiness were recruited. Nine healthy participant with a SIAS score of 5 (normal also participated. Participants were asked to grasp a plastic glass and repetitively move it from the lap to the mouth and back at a conformable speed for 30 s, during which the hand movement was measured using OPTOTRAK. The position data was numerically differentiated and the three-dimensional curvature was computed. To compare against a previously proposed measure, the mean squared jerk normalized by its minimum value was computed. Age-matched healthy participants were instructed to move the glass at three different movement speeds. Results There was an inverse relationship between the curvature of the movement trajectory and the patient's SIAS score. The median of the -log of curvature (MedianLC correlated well with the SIAS score, upper extremity subsection of Fugl-Meyer Assessment, and the jerk measure in the paretic arm. When the healthy participants moved slowly, the increase in the jerk measure was comparable to the paretic movements with a SIAS score of 2 to 4, while the MedianLC was distinguishable

  12. Isometric surfaces with a common mean curvature and the problem of Bonnet pairs

    International Nuclear Information System (INIS)

    Sabitov, Idzhad Kh

    2012-01-01

    Simple methods are used to give new proofs, and sometimes to make them more precise, of basic theorems on isometric surfaces with a common mean curvature, which are usually called Bonnet pairs. The considerations are conducted under the assumption of minimally admissible smoothness of the objects in question, and certain necessary or sufficient criteria are given for the non-existence of Bonnet pairs with a common non-constant mean curvature among compact surfaces. Bibliography: 26 titles.

  13. Preputial reconstruction and tubularized incised plate urethroplasty in proximal hypospadias with ventral penile curvature.

    Science.gov (United States)

    Bhat, Amilal; Gandhi, Ajay; Saxena, Gajendra; Choudhary, Gautam Ram

    2010-10-01

    Objective of this study was to assess the feasibility and results of preputial reconstruction and tubularized incised plate urethroplasty (TIP) in patients of proximal hypospadias with ventral penile curvature. Twenty-seven patients of proximal hypospadias who underwent preputioplasty with TIP were evaluated retrospectively. Ventral curvature was corrected by mobilization of the urethral plate with the corpus spongiosum and the proximal urethra; dorsal plication was added according to the severity of curvature. Feasibility of preputial reconstruction was assessed by applying 3 stay sutures-the first to fix the skin at the corona, the second at the junction of the inner and outer preputial skin for pulling up the skin over the glans, and the third stay on penile skin at the level of the corona for retracting the skin. Preputial reconstruction consisted of a standard 3 layered re-approximation of the margins of the dorsal hood. Age of the patients varied from 10 months to 21 years with an average of 6 years and 4 months. Ventral curvature (mild 10, moderate 13, and severe 4 cases) was corrected by the mobilization of the urethral plate and spongiosum in 14 patients, 11 cases had mobilization of the proximal urethra in addition and 2 patients required single stitch dorsal plication with the above-mentioned steps. Two patients developed urethral fistula and 1 had preputial dehiscence. Preputioplasty with TIP is feasible in proximal hypospadias with curvature without increasing the complication rate. Postoperative phimosis can be prevented by on-table testing of the adequacy of preputial skin by 3 stay sutures.

  14. Four-Spacecraft Magnetic Curvature and Vorticity Analyses on Kelvin-Helmholtz Waves in MHD Simulations

    Science.gov (United States)

    Kieokaew, Rungployphan; Foullon, Claire; Lavraud, Benoit

    2018-01-01

    Four-spacecraft missions are probing the Earth's magnetospheric environment with high potential for revealing spatial and temporal scales of a variety of in situ phenomena. The techniques allowed by these four spacecraft include the calculation of vorticity and the magnetic curvature analysis (MCA), both of which have been used in the study of various plasma structures. Motivated by curved magnetic field and vortical structures induced by Kelvin- Helmholtz (KH) waves, we investigate the robustness of the MCA and vorticity techniques when increasing (regular) tetrahedron sizes, to interpret real data. Here for the first time, we test both techniques on a 2.5-D MHD simulation of KH waves at the magnetopause. We investigate, in particular, the curvature and flow vorticity across KH vortices and produce time series for static spacecraft in the boundary layers. The combined results of magnetic curvature and vorticity further help us to understand the development of KH waves. In particular, first, in the trailing edge, the magnetic curvature across the magnetopause points in opposite directions, in the wave propagation direction on the magnetosheath side and against it on the magnetospheric side. Second, the existence of a "turnover layer" in the magnetospheric side, defined by negative vorticity for the duskside magnetopause, which persists in the saturation phase, is reminiscent of roll-up history. We found significant variations in the MCA measures depending on the size of the tetrahedron. This study lends support for cross-scale observations to better understand the nature of curvature and its role in plasma phenomena.

  15. Preputial reconstruction and tubularized incised plate urethroplasty in proximal hypospadias with ventral penile curvature

    OpenAIRE

    Bhat, Amilal; Gandhi, Ajay; Saxena, Gajendra; Choudhary, Gautam Ram

    2010-01-01

    Aims : Objective of this study was to assess the feasibility and results of preputial reconstruction and tubularized incised plate urethroplasty (TIP) in patients of proximal hypospadias with ventral penile curvature. Materials and Methods : Twenty-seven patients of proximal hypospadias who underwent preputioplasty with TIP were evaluated retrospectively. Ventral curvature was corrected by mobilization of the urethral plate with the corpus spongiosum and the proximal urethra; dorsal plica...

  16. Polarized curvature radiation in pulsar magnetosphere

    Science.gov (United States)

    Wang, P. F.; Wang, C.; Han, J. L.

    2014-07-01

    The propagation of polarized emission in pulsar magnetosphere is investigated in this paper. The polarized waves are generated through curvature radiation from the relativistic particles streaming along curved magnetic field lines and corotating with the pulsar magnetosphere. Within the 1/γ emission cone, the waves can be divided into two natural wave-mode components, the ordinary (O) mode and the extraordinary (X) mode, with comparable intensities. Both components propagate separately in magnetosphere, and are aligned within the cone by adiabatic walking. The refraction of O mode makes the two components separated and incoherent. The detectable emission at a given height and a given rotation phase consists of incoherent X-mode and O-mode components coming from discrete emission regions. For four particle-density models in the form of uniformity, cone, core and patches, we calculate the intensities for each mode numerically within the entire pulsar beam. If the corotation of relativistic particles with magnetosphere is not considered, the intensity distributions for the X-mode and O-mode components are quite similar within the pulsar beam, which causes serious depolarization. However, if the corotation of relativistic particles is considered, the intensity distributions of the two modes are very different, and the net polarization of outcoming emission should be significant. Our numerical results are compared with observations, and can naturally explain the orthogonal polarization modes of some pulsars. Strong linear polarizations of some parts of pulsar profile can be reproduced by curvature radiation and subsequent propagation effect.

  17. Singular perturbation of simple eigenvalues

    International Nuclear Information System (INIS)

    Greenlee, W.M.

    1976-01-01

    Two operator theoretic theorems which generalize those of asymptotic regular perturbation theory and which apply to singular perturbation problems are proved. Application of these theorems to concrete problems is involved, but the perturbation expansions for eigenvalues and eigenvectors are developed in terms of solutions of linear operator equations. The method of correctors, as well as traditional boundary layer techniques, can be used to apply these theorems. The current formulation should be applicable to highly singular ''hard core'' potential perturbations of the radial equation of quantum mechanics. The theorems are applied to a comparatively simple model problem whose analysis is basic to that of the quantum mechanical problem

  18. Base case and perturbation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Edmunds, T

    1998-10-01

    This report describes fourteen energy factors that could affect electricity markets in the future (demand, process, source mix, etc.). These fourteen factors are believed to have the most influence on the State's energy environment. A base case, or most probable, characterization is given for each of these fourteen factors over a twenty year time horizon. The base case characterization is derived from quantitative and qualitative information provided by State of California government agencies, where possible. Federal government databases are nsed where needed to supplement the California data. It is envisioned that a initial selection of issue areas will be based upon an evaluation of them under base case conditions. For most of the fourteen factors, the report identities possible perturbations from base case values or assumptions that may be used to construct additional scenarios. Only those perturbations that are plausible and would have a significant effect on energy markets are included in the table. The fourteen factors and potential perturbations of the factors are listed in Table 1.1. These perturbations can be combined to generate internally consist.ent. combinations of perturbations relative to the base case. For example, a low natural gas price perturbation should be combined with a high natural gas demand perturbation. The factor perturbations are based upon alternative quantitative forecasts provided by other institutions (the Department of Energy - Energy Information Administration in some cases), changes in assumptions that drive the quantitative forecasts, or changes in assumptions about the structure of the California energy markets. The perturbations are intended to be used for a qualitative reexamination of issue areas after an initial evaluation under the base case. The perturbation information would be used as a "tiebreaker;" to make decisions regarding those issue areas that were marginally accepted or rejected under the base case. Hf a

  19. Scalar cosmological perturbations

    International Nuclear Information System (INIS)

    Uggla, Claes; Wainwright, John

    2012-01-01

    Scalar perturbations of Friedmann-Lemaitre cosmologies can be analyzed in a variety of ways using Einstein's field equations, the Ricci and Bianchi identities, or the conservation equations for the stress-energy tensor, and possibly introducing a timelike reference congruence. The common ground is the use of gauge invariants derived from the metric tensor, the stress-energy tensor, or from vectors associated with a reference congruence, as basic variables. Although there is a complication in that there is no unique choice of gauge invariants, we will show that this can be used to advantage. With this in mind our first goal is to present an efficient way of constructing dimensionless gauge invariants associated with the tensors that are involved, and of determining their inter-relationships. Our second goal is to give a unified treatment of the various ways of writing the governing equations in dimensionless form using gauge-invariant variables, showing how simplicity can be achieved by a suitable choice of variables and normalization factors. Our third goal is to elucidate the connection between the metric-based approach and the so-called 1 + 3 gauge-invariant approach to cosmological perturbations. We restrict our considerations to linear perturbations, but our intent is to set the stage for the extension to second-order perturbations. (paper)

  20. Divergent Perturbation Series

    International Nuclear Information System (INIS)

    Suslov, I.M.

    2005-01-01

    Various perturbation series are factorially divergent. The behavior of their high-order terms can be determined by Lipatov's method, which involves the use of instanton configurations of appropriate functional integrals. When the Lipatov asymptotic form is known and several lowest order terms of the perturbation series are found by direct calculation of diagrams, one can gain insight into the behavior of the remaining terms of the series, which can be resummed to solve various strong-coupling problems in a certain approximation. This approach is demonstrated by determining the Gell-Mann-Low functions in φ 4 theory, QED, and QCD with arbitrary coupling constants. An overview of the mathematical theory of divergent series is presented, and interpretation of perturbation series is discussed. Explicit derivations of the Lipatov asymptotic form are presented for some basic problems in theoretical physics. A solution is proposed to the problem of renormalon contributions, which hampered progress in this field in the late 1970s. Practical perturbation-series summation schemes are described both for a coupling constant of order unity and in the strong-coupling limit. An interpretation of the Borel integral is given for 'non-Borel-summable' series. Higher order corrections to the Lipatov asymptotic form are discussed

  1. A generic double-curvature piezoelectric shell energy harvester: Linear/nonlinear theory and applications

    Science.gov (United States)

    Zhang, X. F.; Hu, S. D.; Tzou, H. S.

    2014-12-01

    Converting vibration energy to useful electric energy has attracted much attention in recent years. Based on the electromechanical coupling of piezoelectricity, distributed piezoelectric zero-curvature type (e.g., beams and plates) energy harvesters have been proposed and evaluated. The objective of this study is to develop a generic linear and nonlinear piezoelectric shell energy harvesting theory based on a double-curvature shell. The generic piezoelectric shell energy harvester consists of an elastic double-curvature shell and piezoelectric patches laminated on its surface(s). With a current model in the closed-circuit condition, output voltages and energies across a resistive load are evaluated when the shell is subjected to harmonic excitations. Steady-state voltage and power outputs across the resistive load are calculated at resonance for each shell mode. The piezoelectric shell energy harvesting mechanism can be simplified to shell (e.g., cylindrical, conical, spherical, paraboloidal, etc.) and non-shell (beam, plate, ring, arch, etc.) distributed harvesters using two Lamé parameters and two curvature radii of the selected harvester geometry. To demonstrate the utility and simplification procedures, the generic linear/nonlinear shell energy harvester mechanism is simplified to three specific structures, i.e., a cantilever beam case, a circular ring case and a conical shell case. Results show the versatility of the generic linear/nonlinear shell energy harvesting mechanism and the validity of the simplification procedures.

  2. Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature

    Directory of Open Access Journals (Sweden)

    Orlando Ragnisco

    2007-02-01

    Full Text Available An infinite family of quasi-maximally superintegrable Hamiltonians with a common set of (2N-3 integrals of the motion is introduced. The integrability properties of all these Hamiltonians are shown to be a consequence of a hidden non-standard quantum sl(2,R Poisson coalgebra symmetry. As a concrete application, one of this Hamiltonians is shown to generate the geodesic motion on certain manifolds with a non-constant curvature that turns out to be a function of the deformation parameter z. Moreover, another Hamiltonian in this family is shown to generate geodesic motions on Riemannian and relativistic spaces all of whose sectional curvatures are constant and equal to the deformation parameter z. This approach can be generalized to arbitrary dimension by making use of coalgebra symmetry.

  3. Probability distribution for the Gaussian curvature of the zero level surface of a random function

    Science.gov (United States)

    Hannay, J. H.

    2018-04-01

    A rather natural construction for a smooth random surface in space is the level surface of value zero, or ‘nodal’ surface f(x,y,z)  =  0, of a (real) random function f; the interface between positive and negative regions of the function. A physically significant local attribute at a point of a curved surface is its Gaussian curvature (the product of its principal curvatures) because, when integrated over the surface it gives the Euler characteristic. Here the probability distribution for the Gaussian curvature at a random point on the nodal surface f  =  0 is calculated for a statistically homogeneous (‘stationary’) and isotropic zero mean Gaussian random function f. Capitalizing on the isotropy, a ‘fixer’ device for axes supplies the probability distribution directly as a multiple integral. Its evaluation yields an explicit algebraic function with a simple average. Indeed, this average Gaussian curvature has long been known. For a non-zero level surface instead of the nodal one, the probability distribution is not fully tractable, but is supplied as an integral expression.

  4. Curvature, zero modes and quantum statistics

    Energy Technology Data Exchange (ETDEWEB)

    Calixto, M [Departamento de Matematica Aplicada y EstadIstica, Universidad Politecnica de Cartagena, Paseo Alfonso XIII 56, 30203 Cartagena (Spain); Aldaya, V [Instituto de AstrofIsica de AndalucIa, Apartado Postal 3004, 18080 Granada (Spain)

    2006-08-18

    We explore an intriguing connection between the Fermi-Dirac and Bose-Einstein statistics and the thermal baths obtained from a vacuum radiation of coherent states of zero modes in a second quantized (many-particle) theory on the compact O(3) and noncompact O(2, 1) isometry subgroups of the de Sitter and anti-de Sitter spaces, respectively. The high frequency limit is retrieved as a (zero-curvature) group contraction to the Newton-Hooke (harmonic oscillator) group. We also make some comments on the vacuum energy density and the cosmological constant problem. (letter to the editor)

  5. Holonomy Attractor Connecting Spaces of Different Curvature Responsible for ``Anomalies''

    Science.gov (United States)

    Binder, Bernd

    2009-03-01

    In this lecture paper we derive Magic Angle Precession (MAP) from first geometric principles. MAP can arise in situations, where precession is multiply related to spin, linearly by time or distance (dynamic phase, rolling, Gauss law) and transcendentally by the holonomy loop path (geometric phase). With linear spin-precession coupling, gyroscopes can be spun up and down to very high frequencies via low frequency holonomy control induced by external accelerations, which provides for extreme coupling strengths or "anomalies" that can be tested by the powerball or gyrotwister device. Geometrically, a gyroscopic manifold with spherical metric is tangentially aligned to a precession wave channel with conic or hyperbolic metric (like the relativistic Thomas precession). Transporting triangular spin/precession vector relations across the tangential boundary of contact with SO(3) Lorentz symmetry, we get extreme vector currents near the attractor fixed points in precession phase space, where spin currents remain intact while crossing the contact boundaries between regions of different curvature signature (-1, 0, +1). The problem can be geometrically solved by considering a curvature invariant triangular condition, which holds on surfaces with different curvature that are in contact and locally parallel. In this case two out of three angles are identical, whereas the third angle is different due to holonomy. If we require that the side length ratio corresponding to these angles are invariant we get a geodesic chaotic attractor, which is a cosine map cos(x)˜Mx in parameter space providing for fixed points, limit cycle bifurcations, and singularities. The situation could be quite natural and common in the context of vector currents in curved spacetime and gauge theories. MAP could even be part of the electromagnetic interaction, where the electric charge is the geometric U(1) precession spin current and gauge potential with magnetic effects given by extra rotations under the

  6. Physical interpretation and geometrical representation of constant curvature surfaces in Euclidean and pseudo-Euclidean spaces

    International Nuclear Information System (INIS)

    Catoni, Francesco; Cannata, Roberto; Zampetti, Paolo

    2005-08-01

    The Riemann and Lorentz constant curvature surfaces are investigated from an Euclidean point of view. The four surfaces (constant positive and constant negative curvatures with definite and non-definite fine elements) are represented as surfaces in a Riemannian or in a particular semi-Riemannian flat space and it is shown that the complex and the hyperbolic numbers allow to obtain the same equations for the corresponding Riemann and Lorentz surfaces, respectively. Moreover it is shown that the geodesics on the Lorentz surfaces states, from a physical point of view, a link between curvature and fields. This result is obtained just as a consequence of the space-time geometrical symmetry, without invoking the famous Einstein general relativity postulate [it

  7. Large-order perturbation theory

    International Nuclear Information System (INIS)

    Wu, T.T.

    1982-01-01

    The original motivation for studying the asymptotic behavior of the coefficients of perturbation series came from quantum field theory. An overview is given of some of the attempts to understand quantum field theory beyond finite-order perturbation series. At least is the case of the Thirring model and probably in general, the full content of a relativistic quantum field theory cannot be recovered from its perturbation series. This difficulty, however, does not occur in quantum mechanics, and the anharmonic oscillator is used to illustrate the methods used in large-order perturbation theory. Two completely different methods are discussed, the first one using the WKB approximation, and a second one involving the statistical analysis of Feynman diagrams. The first one is well developed and gives detailed information about the desired asymptotic behavior, while the second one is still in its infancy and gives instead information about the distribution of vertices of the Feynman diagrams

  8. Cosmological backreaction within the Szekeres model and emergence of spatial curvature

    Energy Technology Data Exchange (ETDEWEB)

    Bolejko, Krzysztof, E-mail: krzysztof.bolejko@sydney.edu.au [Sydney Institute for Astronomy, School of Physics A28, The University of Sydney, Sydney, NSW, 2006 (Australia)

    2017-06-01

    This paper discusses the phenomenon of backreaction within the Szekeres model. Cosmological backreaction describes how the mean global evolution of the Universe deviates from the Friedmannian evolution. The analysis is based on models of a single cosmological environment and the global ensemble of the Szekeres models (of the Swiss-Cheese-type and Styrofoam-type). The obtained results show that non-linear growth of cosmic structures is associated with the growth of the spatial curvature Ω{sub R} (in the FLRW limit Ω{sub R} → Ω {sub k} ). If averaged over global scales the result depends on the assumed global model of the Universe. Within the Swiss-Cheese model, which does have a fixed background, the volume average follows the evolution of the background, and the global spatial curvature averages out to zero (the background model is the ΛCDM model, which is spatially flat). In the Styrofoam-type model, which does not have a fixed background, the mean evolution deviates from the spatially flat ΛCDM model, and the mean spatial curvature evolves from Ω{sub R} =0 at the CMB to Ω{sub R} ∼ 0.1 at 0 z =. If the Styrofoam-type model correctly captures evolutionary features of the real Universe then one should expect that in our Universe, the spatial curvature should build up (local growth of cosmic structures) and its mean global average should deviate from zero (backreaction). As a result, this paper predicts that the low-redshift Universe should not be spatially flat (i.e. Ω {sub k} ≠ 0, even if in the early Universe Ω {sub k} = 0) and therefore when analysing low- z cosmological data one should keep Ω {sub k} as a free parameter and independent from the CMB constraints.

  9. Perturbation theory in light-cone gauge

    International Nuclear Information System (INIS)

    Vianello, Eliana

    2000-01-01

    Perturbation calculations are presented for the light-cone gauge Schwinger model. Eigenstates can be calculated perturbatively but the perturbation theory is nonstandard. We hope to extend the work to QCD 2 to resolve some outstanding issues in those theories

  10. On dark energy isocurvature perturbation

    International Nuclear Information System (INIS)

    Liu, Jie; Zhang, Xinmin; Li, Mingzhe

    2011-01-01

    Determining the equation of state of dark energy with astronomical observations is crucially important to understand the nature of dark energy. In performing a likelihood analysis of the data, especially of the cosmic microwave background and large scale structure data the dark energy perturbations have to be taken into account both for theoretical consistency and for numerical accuracy. Usually, one assumes in the global fitting analysis that the dark energy perturbations are adiabatic. In this paper, we study the dark energy isocurvature perturbation analytically and discuss its implications for the cosmic microwave background radiation and large scale structure. Furthermore, with the current astronomical observational data and by employing Markov Chain Monte Carlo method, we perform a global analysis of cosmological parameters assuming general initial conditions for the dark energy perturbations. The results show that the dark energy isocurvature perturbations are very weakly constrained and that purely adiabatic initial conditions are consistent with the data

  11. Eigenvalue estimates for submanifolds with bounded f-mean curvature

    Indian Academy of Sciences (India)

    GUANGYUE HUANG

    1College of Mathematics and Information Science, Henan Normal University,. Xinxiang 453007 ... submanifolds in a hyperbolic space with the norm of their mean curvature vector bounded above by a constant. ..... [2] Batista M, Cavalcante M P and Pyo J, Some isoperimetric inequalities and eigenvalue estimates in ...

  12. Space-Variant Post-Filtering for Wavefront Curvature Correction in Polar-Formatted Spotlight-Mode SAR Imagery

    Energy Technology Data Exchange (ETDEWEB)

    DOREN,NEALL E.

    1999-10-01

    Wavefront curvature defocus effects occur in spotlight-mode SAR imagery when reconstructed via the well-known polar-formatting algorithm (PFA) under certain imaging scenarios. These include imaging at close range, using a very low radar center frequency, utilizing high resolution, and/or imaging very large scenes. Wavefront curvature effects arise from the unrealistic assumption of strictly planar wavefronts illuminating the imaged scene. This dissertation presents a method for the correction of wavefront curvature defocus effects under these scenarios, concentrating on the generalized: squint-mode imaging scenario and its computational aspects. This correction is accomplished through an efficient one-dimensional, image domain filter applied as a post-processing step to PF.4. This post-filter, referred to as SVPF, is precalculated from a theoretical derivation of the wavefront curvature effect and varies as a function of scene location. Prior to SVPF, severe restrictions were placed on the imaged scene size in order to avoid defocus effects under these scenarios when using PFA. The SVPF algorithm eliminates the need for scene size restrictions when wavefront curvature effects are present, correcting for wavefront curvature in broadside as well as squinted collection modes while imposing little additional computational penalty for squinted images. This dissertation covers the theoretical development, implementation and analysis of the generalized, squint-mode SVPF algorithm (of which broadside-mode is a special case) and provides examples of its capabilities and limitations as well as offering guidelines for maximizing its computational efficiency. Tradeoffs between the PFA/SVPF combination and other spotlight-mode SAR image formation techniques are discussed with regard to computational burden, image quality, and imaging geometry constraints. It is demonstrated that other methods fail to exhibit a clear computational advantage over polar-formatting in conjunction

  13. Quantitative analysis of spinal curvature in 3D: application to CT images of normal spine

    Energy Technology Data Exchange (ETDEWEB)

    Vrtovec, Tomaz; Likar, Bostjan; Pernus, Franjo [University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, SI-1000 Ljubljana (Slovenia)

    2008-04-07

    The purpose of this study is to present a framework for quantitative analysis of spinal curvature in 3D. In order to study the properties of such complex 3D structures, we propose two descriptors that capture the characteristics of spinal curvature in 3D. The descriptors are the geometric curvature (GC) and curvature angle (CA), which are independent of the orientation and size of spine anatomy. We demonstrate the two descriptors that characterize the spinal curvature in 3D on 30 computed tomography (CT) images of normal spine and on a scoliotic spine. The descriptors are determined from 3D vertebral body lines, which are obtained by two different methods. The first method is based on the least-squares technique that approximates the manually identified vertebra centroids, while the second method searches for vertebra centroids in an automated optimization scheme, based on computer-assisted image analysis. Polynomial functions of the fourth and fifth degree were used for the description of normal and scoliotic spinal curvature in 3D, respectively. The mean distance to vertebra centroids was 1.1 mm ({+-}0.6 mm) for the first and 2.1 mm ({+-}1.4 mm) for the second method. The distributions of GC and CA values were obtained along the 30 images of normal spine at each vertebral level and show that maximal thoracic kyphosis (TK), thoracolumbar junction (TJ) and maximal lumbar lordosis (LL) on average occur at T3/T4, T12/L1 and L4/L5, respectively. The main advantage of GC and CA is that the measurements are independent of the orientation and size of the spine, thus allowing objective intra- and inter-subject comparisons. The positions of maximal TK, TJ and maximal LL can be easily identified by observing the GC and CA distributions at different vertebral levels. The obtained courses of the GC and CA for the scoliotic spine were compared to the distributions of GC and CA for the normal spines. The significant difference in values indicates that the descriptors of GC and

  14. Quantitative analysis of spinal curvature in 3D: application to CT images of normal spine

    International Nuclear Information System (INIS)

    Vrtovec, Tomaz; Likar, Bostjan; Pernus, Franjo

    2008-01-01

    The purpose of this study is to present a framework for quantitative analysis of spinal curvature in 3D. In order to study the properties of such complex 3D structures, we propose two descriptors that capture the characteristics of spinal curvature in 3D. The descriptors are the geometric curvature (GC) and curvature angle (CA), which are independent of the orientation and size of spine anatomy. We demonstrate the two descriptors that characterize the spinal curvature in 3D on 30 computed tomography (CT) images of normal spine and on a scoliotic spine. The descriptors are determined from 3D vertebral body lines, which are obtained by two different methods. The first method is based on the least-squares technique that approximates the manually identified vertebra centroids, while the second method searches for vertebra centroids in an automated optimization scheme, based on computer-assisted image analysis. Polynomial functions of the fourth and fifth degree were used for the description of normal and scoliotic spinal curvature in 3D, respectively. The mean distance to vertebra centroids was 1.1 mm (±0.6 mm) for the first and 2.1 mm (±1.4 mm) for the second method. The distributions of GC and CA values were obtained along the 30 images of normal spine at each vertebral level and show that maximal thoracic kyphosis (TK), thoracolumbar junction (TJ) and maximal lumbar lordosis (LL) on average occur at T3/T4, T12/L1 and L4/L5, respectively. The main advantage of GC and CA is that the measurements are independent of the orientation and size of the spine, thus allowing objective intra- and inter-subject comparisons. The positions of maximal TK, TJ and maximal LL can be easily identified by observing the GC and CA distributions at different vertebral levels. The obtained courses of the GC and CA for the scoliotic spine were compared to the distributions of GC and CA for the normal spines. The significant difference in values indicates that the descriptors of GC and CA

  15. Geometric Thermodynamics: Black Holes and the Meaning of the Scalar Curvature

    Directory of Open Access Journals (Sweden)

    Miguel Ángel García-Ariza

    2014-12-01

    Full Text Available In this paper we show that the vanishing of the scalar curvature of Ruppeiner-like metrics does not characterize the ideal gas. Furthermore, we claim through an example that flatness is not a sufficient condition to establish the absence of interactions in the underlying microscopic model of a thermodynamic system, which poses a limitation on the usefulness of Ruppeiner’s metric and conjecture. Finally, we address the problem of the choice of coordinates in black hole thermodynamics. We propose an alternative energy representation for Kerr-Newman black holes that mimics fully Weinhold’s approach. The corresponding Ruppeiner’s metrics become degenerate only at absolute zero and have non-vanishing scalar curvatures.

  16. Tubular bending and pull-out forces in high-curvature well bores

    International Nuclear Information System (INIS)

    Dareing, D.W.; Ahlers, C.A.

    1991-01-01

    This paper is concerned with drag forces developed on tubulars in high-curvature well bores typically found in drainhole and horizontal drilling. The dog-leg severity of these types of boreholes are considerably higher than those typically found in conventional directional drilling. The objective of the study was to determine the significance of bending stiffness on drag forces in the pull-out mode. The method of analysis treats the tubular as a multi-spanned curved beam under tension and solves for radial displacements, slope, shear and bending moment over each span. Calculations show that bending stiffness is a minor factor provided there are no locally severe dog legs superimposed in the high-curvature well bore

  17. Nonlinear quantum gravity on the constant mean curvature foliation

    International Nuclear Information System (INIS)

    Wang, Charles H-T

    2005-01-01

    A new approach to quantum gravity is presented based on a nonlinear quantization scheme for canonical field theories with an implicitly defined Hamiltonian. The constant mean curvature foliation is employed to eliminate the momentum constraints in canonical general relativity. It is, however, argued that the Hamiltonian constraint may be advantageously retained in the reduced classical system to be quantized. This permits the Hamiltonian constraint equation to be consistently turned into an expectation value equation on quantization that describes the scale factor on each spatial hypersurface characterized by a constant mean exterior curvature. This expectation value equation augments the dynamical quantum evolution of the unconstrained conformal three-geometry with a transverse traceless momentum tensor density. The resulting quantum theory is inherently nonlinear. Nonetheless, it is unitary and free from a nonlocal and implicit description of the Hamiltonian operator. Finally, by imposing additional homogeneity symmetries, a broad class of Bianchi cosmological models are analysed as nonlinear quantum minisuperspaces in the context of the proposed theory

  18. A high resolution electron microscopy investigation of curvature in multilayer graphite sheets

    International Nuclear Information System (INIS)

    Wang Zhenxia; Hu Jun; Wang Wenmin; Yu Guoqing

    1998-01-01

    Here the authors report a carbon sample generated by ultrasonic wave high oriented pyrolytic graphite (HOPG) in ethanol, water or ethanol-water mixed solution. High resolution transmission electron microscopy (HRTEM) revealed many multilayer graphite sheets with a total curved angle that is multiples of θ 0 (= 30 degree C). Close examination of the micrographs showed that the curvature is accomplished by bending the lattice planes. A possible explanation for the curvature in multilayer graphite sheets is discussed based on the conformation of graphite symmetry axes and the formation of sp 3 -like line defects in the sp 2 graphitic network

  19. Perturbation Theory of Embedded Eigenvalues

    DEFF Research Database (Denmark)

    Engelmann, Matthias

    project gives a general and systematic approach to analytic perturbation theory of embedded eigenvalues. The spectral deformation technique originally developed in the theory of dilation analytic potentials in the context of Schrödinger operators is systematized by the use of Mourre theory. The group...... of dilations is thereby replaced by the unitary group generated y the conjugate operator. This then allows to treat the perturbation problem with the usual Kato theory.......We study problems connected to perturbation theory of embedded eigenvalues in two different setups. The first part deals with second order perturbation theory of mass shells in massive translation invariant Nelson type models. To this end an expansion of the eigenvalues w.r.t. fiber parameter up...

  20. SLED phenomenology: curvature vs. volume

    International Nuclear Information System (INIS)

    Niedermann, Florian; Schneider, Robert

    2016-01-01

    We assess the question whether the SLED (Supersymmetric Large Extra Dimensions) model admits phenomenologically viable solutions with 4D maximal symmetry. We take into account a finite brane width and a scale invariance (SI) breaking dilaton-brane coupling, both of which should be included in a realistic setup. Provided that the brane tension and the microscopic size of the brane take generic values set by the fundamental bulk Planck scale, we find that either the 4D curvature or the size of the extra dimensions is unacceptably large. Since this result is independent of the dilaton-brane couplings, it provides the biggest challenge to the SLED program. In addition, to quantify its potential with respect to the cosmological constant problem, we infer the amount of tuning on model parameters required to obtain a sufficiently small 4D curvature. A first answer was recently given in http://dx.doi.org/10.1007/JHEP02(2016)025, showing that 4D flat solutions are only ensured in the SI case by imposing a tuning relation, even if a brane-localized flux is included. In this companion paper, we find that the tuning can in fact be avoided for certain SI breaking brane-dilaton couplings, but only at the price of worsening the phenomenological problem. Our results are obtained by solving the full coupled Einstein-dilaton system in a completely consistent way. The brane width is implemented using a well-known ring regularization. In passing, we note that for the couplings considered here the results of http://dx.doi.org/10.1007/JHEP02(2016)025 (which only treated infinitely thin branes) are all consistently recovered in the thin brane limit, and how this can be reconciled with the concerns about their correctness, recently brought up in http://dx.doi.org/10.1007/JHEP01(2016)017.