On SUSY Restoration in Single-Superfield Inflationary Models of Supergravity
Ketov, Sergei V
2016-01-01
We study the conditions of restoring supersymmetry (SUSY) after inflation in the supergravity-based cosmological models with a single chiral superfield and a quartic stabilization term in the K\\"ahler potential. Some new, explicit, and viable inflationary models satisfying those conditions are found. The inflaton's scalar superpartner is dynamically stabilized during and after inflation. We also demonstrate a possibility of having small and adjustable SUSY breaking with a tiny cosmological constant.
On SUSY restoration in single-superfield inflationary models of supergravity
Energy Technology Data Exchange (ETDEWEB)
Ketov, Sergei V. [Tokyo Metropolitan University, Department of Physics, Hachioji-shi, Tokyo (Japan); The University of Tokyo, Kavli Institute for the Physics and Mathematics of the Universe (IPMU), Chiba (Japan); Tomsk Polytechnic University, Institute of Physics and Technology, Tomsk (Russian Federation); Terada, Takahiro [Asia Pacific Center for Theoretical Physics, Pohang (Korea, Republic of)
2016-08-15
We study the conditions of restoring supersymmetry (SUSY) after inflation in the supergravity-based cosmological models with a single chiral superfield and a quartic stabilization term in the Kaehler potential. Some new, explicit, and viable inflationary models satisfying those conditions are found. The inflaton's scalar superpartner is dynamically stabilized during and after inflation. We also demonstrate a possibility of having small and adjustable SUSY breaking with a tiny cosmological constant. (orig.)
On SUSY restoration in single-superfield inflationary models of supergravity
Ketov, Sergei V.; Terada, Takahiro
2016-08-01
We study the conditions of restoring supersymmetry (SUSY) after inflation in the supergravity-based cosmological models with a single chiral superfield and a quartic stabilization term in the Kähler potential. Some new, explicit, and viable inflationary models satisfying those conditions are found. The inflaton's scalar superpartner is dynamically stabilized during and after inflation. We also demonstrate a possibility of having small and adjustable SUSY breaking with a tiny cosmological constant.
N=2 supergravity models with stable de Sitter vacua
Fré, P; Van Proeyen, A; Fre', Pietro; Trigiante, Mario; Proeyen, Antoine Van
2003-01-01
In the present talk I shall review the construction of N=2 supergravity models exhibiting stable de Sitter vacua. These solutions represent the first instance of stable backgrounds with positive cosmological constant in the framework of extended supergravities (N >=2). After briefly reviewing the role of de Sitter space--times in inflationary cosmology, I shall describe the main ingredients which were necessary for the construction of gauged N=2 supergravity models admitting stable solutions of this kind.
Freedman, Daniel Z
2012-01-01
Supergravity, together with string theory, is one of the most significant developments in theoretical physics. Written by two of the most respected workers in the field, this is the first-ever authoritative and systematic account of supergravity. The book starts by reviewing aspects of relativistic field theory in Minkowski spacetime. After introducing the relevant ingredients of differential geometry and gravity, some basic supergravity theories (D=4 and D=11) and the main gauge theory tools are explained. In the second half of the book, complex geometry and N=1 and N=2 supergravity theories are covered. Classical solutions and a chapter on AdS/CFT complete the book. Numerous exercises and examples make it ideal for Ph.D. students, and with applications to model building, cosmology and solutions of supergravity theories, it is also invaluable to researchers.
Constrained superfields in supergravity
Energy Technology Data Exchange (ETDEWEB)
Dall’Agata, Gianguido; Farakos, Fotis [Dipartimento di Fisica ed Astronomia “Galileo Galilei”, Università di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy)
2016-02-16
We analyze constrained superfields in supergravity. We investigate the consistency and solve all known constraints, presenting a new class that may have interesting applications in the construction of inflationary models. We provide the superspace Lagrangians for minimal supergravity models based on them and write the corresponding theories in component form using a simplifying gauge for the goldstino couplings.
Warm anisotropic inflationary universe model
Energy Technology Data Exchange (ETDEWEB)
Sharif, M.; Saleem, Rabia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)
2014-02-15
This paper is devoted to the study of warm inflation using vector fields in the background of a locally rotationally symmetric Bianchi type I model of the universe. We formulate the field equations, and slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) in the slow-roll approximation. We evaluate all these parameters in terms of the directional Hubble parameter during the intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of the scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., the tensor-scalar ratio in terms of the inflaton. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and the Planck observational data. (orig.)
Warm Anisotropic Inflationary Universe Model
Sharif, M
2014-01-01
This paper is devoted to study the warm inflation using vector fields in the background of locally rotationally symmetric Bianchi type I universe model. We formulate the field equations, slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) under slow-roll approximation. We evaluate all these parameters in terms of directional Hubble parameter during intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., tensor-scalar ratio in terms of inflation. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and Planck observational data.
A model of inflationary magnetogenesis
Guo, Zong-Kuan
2015-01-01
We consider the possibility of inflationary magnetogenesis due to dynamical couplings of the electromagnetic fields to gravity. We find that large primordial magnetic fields can be generated during inflation without the strong coupling problem, backreaction problem or curvature perturbation problem, which seed large-scale magnetic fields with observationally interesting strengths.
Cosmological Attractor Models and Higher Curvature Supergravity
Cecotti, Sergio
2014-01-01
We study cosmological $\\alpha$-attractors in superconformal/supergravity models, where $\\alpha$ is related to the geometry of the moduli space. For $\\alpha=1$ attractors \\cite{Kallosh:2013hoa} we present a generalization of the previously known manifestly superconformal higher curvature supergravity model \\cite{Cecotti:1987sa}. The relevant standard 2-derivative supergravity with a minimum of two chiral multiplets is shown to be dual to a 4-derivative higher curvature supergravity, where in general one of the chiral superfields is traded for a curvature superfield. There is a degenerate case when both matter superfields become non-dynamical and there is only a chiral curvature superfield, pure higher derivative supergravity. Generic $\\alpha$-models \\cite{Kallosh:2013yoa} interpolate between the attractor point at $\\alpha=0$ and generic chaotic inflation models at large $\\alpha$, in the limit when the inflaton moduli space becomes flat. They have higher derivative duals with the same number of matter fields as...
Comment on "a simple inflationary quintessential model"
Fernandez-Jambrina, L
2016-01-01
In [1] a new cosmological model is proposed with no big bang singularity in the past. This model starts with an inflationary era, follows with a stiff matter dominated period and evolves to accelerated expansion in an asymptotically de Sitter regime. We argue that the initial singularity is in fact no big bang but a directional singularity which cannot be reached by comoving observers but by observers with nonzero linear momentum. Hence, the time lapse from the initial singularity can be as long as desired depending on the linear momentum of the observer. This conclusion applies to similar inflationary models. This sort of cosmological singularities have been postulated also in other scenarios.
An exponential correction to Starobinsky's inflationary model
Fabris, Júlio C; Piattella, Oliver F
2016-01-01
We analyse $f(R)$ theories of gravity from a dynamical system perspective, showing how the $R^2$ correction in Starobinsky's model plays a crucial role from the viewpoint of the inflationary paradigm. Then, we propose a modification of Starobinsky's model by adding an exponential term in the $f(R)$ Lagrangian. We show how this modification could allow to test the robustness of the model by means of the predictions on the scalar spectral index $n_s$.
Distinguishing between inflationary models from CMB
Tsujikawa, Shinji
2014-01-01
The inflationary cosmology is reviewed paying particular attention to its observational signatures associated with large-scale density perturbations generated from quantum fluctuations. In the most general scalar-tensor theories with second-order equations of motion, we derive the scalar spectral index $n_s$, the tensor-to-scalar ratio $r$, and the nonlinear estimator $f_{NL}$ of primordial non-Gaussianities to confront models with the observations of Cosmic Microwave Background (CMB) temperature anisotropies. Our analysis includes the models such as potential-driven slow-roll inflation, k-inflation, Starobinsky inflation, and Higgs inflation with non-minimal/derivative/Galileon couplings. We discriminate between a host of inflationary models by using the Planck data combined with other measurements to find models most favored observationally in the current literature. We also study anisotropic inflation based on a scalar coupling with a vector (or, two-form) field and we discuss its observational signatures ...
New exact solutions in standard inflationary models
Chervon, S V; Shchigolev, V K
1997-01-01
The exact solutions in the standard inflationary model based on the self-interacting scalar field minimally coupled to gravity are considered. The shape's freedom of the self-interacting potential $V(\\phi)$ is postulated to obtain a new set of the exact solutions in the framework of Friedmann-Robertson-Walker Universes. The general solution was found in the case of power law inflation. We obtained new solutions and compared them with obtained ones earlir for the exponential type inflation.
On the Predictiveness of Single-Field Inflationary Models
Burgess, C.P.; Trott, Michael
2014-01-01
We re-examine the predictiveness of single-field inflationary models and discuss how an unknown UV completion can complicate determining inflationary model parameters from observations, even from precision measurements. Besides the usual naturalness issues associated with having a shallow inflationary potential, we describe another issue for inflation, namely, unknown UV physics modifies the running of Standard Model (SM) parameters and thereby introduces uncertainty into the potential inflationary predictions. We illustrate this point using the minimal Higgs Inflationary scenario, which is arguably the most predictive single-field model on the market, because its predictions for $A_s$, $r$ and $n_s$ are made using only one new free parameter beyond those measured in particle physics experiments, and run up to the inflationary regime. We find that this issue can already have observable effects. At the same time, this UV-parameter dependence in the Renormalization Group allows Higgs Inflation to occur (in prin...
Classical and Quantum Theory of Perturbations in Inflationary Universe Models
Brandenberger, R H; Mukhanov, V
1993-01-01
A brief introduction to the gauge invariant classical and quantum theory of cosmological perturbations is given. The formalism is applied to inflationary Universe models and yields a consistent and unified description of the generation and evolution of fluctuations. A general formula for the amplitude of cosmological perturbations in inflationary cosmology is derived.
Inflationary gravitational waves in collapse scheme models
Energy Technology Data Exchange (ETDEWEB)
Mariani, Mauro, E-mail: mariani@carina.fcaglp.unlp.edu.ar [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, 1900 La Plata (Argentina); Bengochea, Gabriel R., E-mail: gabriel@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); León, Gabriel, E-mail: gleon@df.uba.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria – Pab. I, 1428 Buenos Aires (Argentina)
2016-01-10
The inflationary paradigm is an important cornerstone of the concordance cosmological model. However, standard inflation cannot fully address the transition from an early homogeneous and isotropic stage, to another one lacking such symmetries corresponding to our present universe. In previous works, a self-induced collapse of the wave function has been suggested as the missing ingredient of inflation. Most of the analysis regarding the collapse hypothesis has been solely focused on the characteristics of the spectrum associated to scalar perturbations, and within a semiclassical gravity framework. In this Letter, working in terms of a joint metric-matter quantization for inflation, we calculate, for the first time, the tensor power spectrum and the tensor-to-scalar ratio corresponding to the amplitude of primordial gravitational waves resulting from considering a generic self-induced collapse.
Inflationary models driven by adiabatic matter creation
Abramo, L R W
1996-01-01
The flat inflationary dust universe with matter creation proposed by Prigogine and coworkers is generalized and its dynamical properties are reexamined. It is shown that the starting point of these models depends critically on a dimensionless parameter \\Sigma, closely related to the matter creation rate \\psi. For \\Sigma bigger or smaller than unity flat universes can emerge, respectively, either like a Big-Bang FRW singularity or as a Minkowski space-time at t=-\\infty. The case \\Sigma=1 corresponds to a de Sitter-type solution, a fixed point in the phase diagram of the system, supported by the matter creation process. The curvature effects have also been investigated. The inflating de Sitter is a universal attractor for all expanding solutions regardless of the initial conditions as well as of the curvature parameter.
Inflationary gravitational waves in collapse scheme models
Directory of Open Access Journals (Sweden)
Mauro Mariani
2016-01-01
Full Text Available The inflationary paradigm is an important cornerstone of the concordance cosmological model. However, standard inflation cannot fully address the transition from an early homogeneous and isotropic stage, to another one lacking such symmetries corresponding to our present universe. In previous works, a self-induced collapse of the wave function has been suggested as the missing ingredient of inflation. Most of the analysis regarding the collapse hypothesis has been solely focused on the characteristics of the spectrum associated to scalar perturbations, and within a semiclassical gravity framework. In this Letter, working in terms of a joint metric-matter quantization for inflation, we calculate, for the first time, the tensor power spectrum and the tensor-to-scalar ratio corresponding to the amplitude of primordial gravitational waves resulting from considering a generic self-induced collapse.
Inflationary Predictions and Moduli Masses
Das, Kumar; Maharana, Anshuman
2015-01-01
A generic feature of inflationary models in supergravity/string constructions is vacuum misalignment for the moduli fields. The associated production of moduli particles leads to an epoch in the post-inflationary history in which the energy density is dominated by cold moduli particles. This modification of the post-inflationary history implies that the preferred range for the number of e-foldings between horizon exit of the modes relevant for CMB observations and the end of inflation $(N_k)$ depends on moduli masses. This in turn implies that the precision CMB observables $n_s$ and $r$ are sensitive to moduli masses. We analyse this sensitivity for some representative models of inflation and find the effect to be highly relevant for confronting inflationary models with observations.
Observational signatures of anisotropic inflationary models
Ohashi, Junko; Tsujikawa, Shinji
2013-01-01
We study observational signatures of two classes of anisotropic inflationary models in which an inflaton field couples to (i) a vector kinetic term F_{mu nu}F^{mu nu} and (ii) a two-form kinetic term H_{mu nu lambda}H^{mu nu lambda}. We compute the corrections from the anisotropic sources to the power spectrum of gravitational waves as well as the two-point cross correlation between scalar and tensor perturbations. The signs of the anisotropic parameter g_* are different depending on the vector and the two-form models, but the statistical anisotropies generally lead to a suppressed tensor-to-scalar ratio r and a smaller scalar spectral index n_s in both models. In the light of the recent Planck bounds of n_s and r, we place observational constraints on several different inflaton potentials such as those in chaotic and natural inflation in the presence of anisotropic interactions. In the two-form model we also find that there is no cross correlation between scalar and tensor perturbations, while in the vector ...
Simple predictions from multifield inflationary models.
Easther, Richard; Frazer, Jonathan; Peiris, Hiranya V; Price, Layne C
2014-04-25
We explore whether multifield inflationary models make unambiguous predictions for fundamental cosmological observables. Focusing on N-quadratic inflation, we numerically evaluate the full perturbation equations for models with 2, 3, and O(100) fields, using several distinct methods for specifying the initial values of the background fields. All scenarios are highly predictive, with the probability distribution functions of the cosmological observables becoming more sharply peaked as N increases. For N=100 fields, 95% of our Monte Carlo samples fall in the ranges ns∈(0.9455,0.9534), α∈(-9.741,-7.047)×10-4, r∈(0.1445,0.1449), and riso∈(0.02137,3.510)×10-3 for the spectral index, running, tensor-to-scalar ratio, and isocurvature-to-adiabatic ratio, respectively. The expected amplitude of isocurvature perturbations grows with N, raising the possibility that many-field models may be sensitive to postinflationary physics and suggesting new avenues for testing these scenarios.
Intermediate-generalized Chaplygin gas inflationary universe model
Energy Technology Data Exchange (ETDEWEB)
Herrera, Ramon; Olivares, Marco; Videla, Nelson [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Casilla, Valparaiso (Chile)
2013-01-15
An intermediate inflationary universe model in the context of a generalized Chaplygin gas is considered. For the matter we consider two different energy densities; a standard scalar field and a tachyon field, respectively. In general, we discuss the conditions of an inflationary epoch for these models. We also, use recent astronomical observations from Wilkinson Microwave Anisotropy Probe seven year data for constraining the parameters appearing in our models. (orig.)
An Inflationary Model in String Theory
Iizuka, N; Iizuka, Norihiro; Trivedi, Sandip P.
2004-01-01
We construct a model of inflation in string theory after carefully taking into account moduli stabilization. The setting is a warped compactification of Type IIB string theory in the presence of D3 and anti-D3-branes. The inflaton is the position of a D3-brane in the internal space. By suitably adjusting fluxes and the location of symmetrically placed anti-D3-branes, we show that at a point of enhanced symmetry, the inflaton potential V can have a broad maximum, satisfying the condition V''/V << 1 in Planck units. On starting close to the top of this potential the slow-roll conditions can be met. Observational constraints impose significant restrictions. As a first pass we show that these can be satisfied and determine the important scales in the compactification to within an order of magnitude. One robust feature is that the scale of inflation is low, H = O(10^{10}) GeV. Removing the observational constraints makes it much easier to construct a slow-roll inflationary model. Generalizations and conseque...
Consistency of the tachyon warm inflationary universe models
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xiao-Min; Zhu, Jian-Yang, E-mail: zhangxm@mail.bnu.edu.cn, E-mail: zhujy@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China)
2014-02-01
This study concerns the consistency of the tachyon warm inflationary models. A linear stability analysis is performed to find the slow-roll conditions, characterized by the potential slow-roll (PSR) parameters, for the existence of a tachyon warm inflationary attractor in the system. The PSR parameters in the tachyon warm inflationary models are redefined. Two cases, an exponential potential and an inverse power-law potential, are studied, when the dissipative coefficient Γ = Γ{sub 0} and Γ = Γ(φ), respectively. A crucial condition is obtained for a tachyon warm inflationary model characterized by the Hubble slow-roll (HSR) parameter ε{sub H}, and the condition is extendable to some other inflationary models as well. A proper number of e-folds is obtained in both cases of the tachyon warm inflation, in contrast to existing works. It is also found that a constant dissipative coefficient (Γ = Γ{sub 0}) is usually not a suitable assumption for a warm inflationary model.
Getting inflationary models using the deformation method
Rodrigues, Jamilton
2014-01-01
We show as the dynamics for the inflaton, under slow-roll regime, can be treated in a other dynamics, following the deformation procedure. In a direct way we present a relationship between two slow-roll inflationary potentials, and we apply this framework to show how to construct an eternal inflation from chaotic inflation, or even, a natural inflation from hilltop inflation, easily.
Simple brane-world inflationary models — An update
Okada, Nobuchika; Okada, Satomi
2016-05-01
In the light of the Planck 2015 results, we update simple inflationary models based on the quadratic, quartic, Higgs and Coleman-Weinberg potentials in the context of the Randall-Sundrum brane-world cosmology. Brane-world cosmological effect alters the inflationary predictions of the spectral index (ns) and the tensor-to-scalar ratio (r) from those obtained in the standard cosmology. In particular, the tensor-to-scalar ratio is enhanced in the presence of the 5th dimension. In order to maintain the consistency with the Planck 2015 results for the inflationary predictions in the standard cosmology, we find a lower bound on the five-dimensional Planck mass (M5). On the other hand, the inflationary predictions laying outside of the Planck allowed region can be pushed into the allowed region by the brane-world cosmological effect with a suitable choice of M5.
Simple brane-world inflationary models: an update
Okada, Nobuchika
2015-01-01
In the light of the Planck 2015 results, we update simple inflationary models based on the quadratic, quartic, Higgs and Coleman-Weinberg potentials in the context of the Randall-Sundrum brane-world cosmology. Brane-world cosmological effect alters the inflationary predictions of the spectral index ($n_s$) and the tensor-to-scalar ratio ($r$) from those obtained in the standard cosmology. In particular, the tensor-to-scalar ratio is enhanced in the presence of the 5th dimension. In order to maintain the consistency with the Planck 2015 results for the inflationary predictions in the standard cosmology, we find a lower bound on the five-dimensional Planck mass. On the other hand, the inflationary predictions laying outside of the Planck allowed region can be pushed into the allowed region by the brane-world cosmological effect.
On Gaussian random supergravity
Energy Technology Data Exchange (ETDEWEB)
Bachlechner, Thomas C. [Department of Physics, Cornell University,Physical Sciences Building 428, Ithaca, NY 14853 (United States)
2014-04-08
We study the distribution of metastable vacua and the likelihood of slow roll inflation in high dimensional random landscapes. We consider two examples of landscapes: a Gaussian random potential and an effective supergravity potential defined via a Gaussian random superpotential and a trivial Kähler potential. To examine these landscapes we introduce a random matrix model that describes the correlations between various derivatives and we propose an efficient algorithm that allows for a numerical study of high dimensional random fields. Using these novel tools, we find that the vast majority of metastable critical points in N dimensional random supergravities are either approximately supersymmetric with |F|≪M{sub susy} or supersymmetric. Such approximately supersymmetric points are dynamical attractors in the landscape and the probability that a randomly chosen critical point is metastable scales as log (P)∝−N. We argue that random supergravities lead to potentially interesting inflationary dynamics.
On Gaussian random supergravity
Bachlechner, Thomas C.
2014-04-01
We study the distribution of metastable vacua and the likelihood of slow roll inflation in high dimensional random landscapes. We consider two examples of landscapes: a Gaussian random potential and an effective supergravity potential defined via a Gaussian random superpotential and a trivial Kähler potential. To examine these landscapes we introduce a random matrix model that describes the correlations between various derivatives and we propose an efficient algorithm that allows for a numerical study of high dimensional random fields. Using these novel tools, we find that the vast majority of metastable critical points in N dimensional random supergravities are either approximately supersymmetric with | F| ≪ M susy or supersymmetric. Such approximately supersymmetric points are dynamical attractors in the landscape and the probability that a randomly chosen critical point is metastable scales as log( P ) ∝ - N. We argue that random supergravities lead to potentially interesting inflationary dynamics.
On Gaussian Random Supergravity
Bachlechner, Thomas C
2014-01-01
We study the distribution of metastable vacua and the likelihood of slow roll inflation in high dimensional random landscapes. We consider two examples of landscapes: a Gaussian random potential and an effective supergravity potential defined via a Gaussian random superpotential and a trivial Kahler potential. To examine these landscapes we introduce a random matrix model that describes the correlations between various derivatives and we propose an efficient algorithm that allows for a numerical study of high dimensional random fields. Using these novel tools, we find that the vast majority of metastable critical points in N dimensional random supergravities are either approximately supersymmetric with |F|<< M_{susy} or supersymmetric. Such approximately supersymmetric points are dynamical attractors in the landscape and the probability that a randomly chosen critical point is metastable scales as log(P)\\propto -N. We argue that random supergravities lead to potentially interesting inflationary dynamics...
SUSY breaking after inflation in supergravity with inflaton in a massive vector multiplet
Aldabergenov, Yermek
2016-01-01
We propose a limited class of models, describing interacting chiral multiplets with a non-minimal coupling to a vector multiplet, in curved superspace of $N=1$ supergravity. Those models are suitable for the inflationary model building in supergravity with inflaton assigned to a massive vector multiplet and spontaneous SUSY breaking in Minkowski vacuum after inflation, for any values of the inflationary parameters $n_s$ and $r$, and any scale of SUSY breaking.
Classification of inflationary models and constraints on fundamental physics
Pieroni, Mauro
2016-01-01
This work is focused on the study of early time cosmology and in particular on the study of inflation. After an introduction on the standard Big Bang theory, we discuss the physics of CMB and we explain how its observations can be used to set constraints on cosmological models. We introduce inflation and we carry out its simplest realization by presenting the observables and the experimental constraints that can be set on inflationary models. The possibility of observing primordial gravitational waves (GWs) produced during inflation is discussed. We present the reasons to define a classification of inflationary models and introduce the \\beta-function formalism for inflation by explaining why in this framework we can naturally define a set of universality classes for inflationary models. Theoretical motivations to support the formulation of inflation in terms of this formalism are presented. Some generalized models of inflation are introduced and the extension of the \\beta-function formalism for inflation to t...
Inflationary Weak Anisotropic Model with General Dissipation Coefficient
Sharif, M
2015-01-01
This paper explores the dynamics of warm intermediate and logamediate inflationary models during weak dissipative regime with a general form of dissipative coefficient. We analyze these models within the framework of locally rotationally symmetric Bianchi type I universe. In both cases, we evaluate solution of inflaton, effective scalar potential, dissipative coefficient, slow-roll parameters, scalar and tensor power spectra, scalar spectral index and tensor to scalar ratio under slow-roll approximation. We constrain the model parameters using recent data and conclude that anisotropic inflationary universe model with generalized dissipation coefficient remains compatible with WMAP9, Planck and BICEP2 data.
Standard Model Fermions and N=8 supergravity
Meissner, Krzysztof A
2014-01-01
In a scheme originally proposed by M. Gell-Mann, and subsequently shown to be realized at the SU(3)xU(1) stationary point of maximal gauged SO(8) supergravity by N. Warner and one of the present authors, the 48 spin 1/2 fermions of the theory remaining after the removal of eight Goldstinos can be identified with the 48 quarks and leptons (including right-chiral neutrinos) of the Standard Model, provided one identifies the residual SU(3) with the diagonal subgroup of the color group SU(3)_c and a family symmetry SU(3)_f. However, there remained a systematic mismatch in the electric charges by a spurion charge of $\\pm$1/6. We here identify the `missing' U(1) that rectifies this mismatch, and that takes a surprisingly simple, though unexpected form.
Standard model fermions and N=8 supergravity
Energy Technology Data Exchange (ETDEWEB)
Nicolai, Hermann [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, Potsdam-Golm (Germany)
2016-07-01
In a scheme originally proposed by Gell-Mann, and subsequently shown to be realized at the SU(3) x U(1) stationary point of maximal gauged SO(8) supergravity, the 48 spin-1/2 fermions of the theory remaining after the removal of eight Goldstinos can be identified with the 48 quarks and leptons (including right-chiral neutrinos) of the Standard model, provided one identifies the residual SU(3) with the diagonal subgroup of the color group SU(3){sub c} and a family symmetry SU(3){sub f}. However, there remained a systematic mismatch in the electric charges by a spurion charge of ± 1/6. We here identify the ''missing'' U(1) that rectifies this mismatch, and that takes a surprisingly simple, though unexpected form, and show how it is related to the conjectured R symmetry K(E10) of M Theory.
Sneutrino driven GUT Inflation in Supergravity
Gonzalo, Tomas E; Moursy, Ahmad
2016-01-01
In this paper, we embed the model of flipped GUT sneutrino inflation -in a flipped SU(5) or SO(10) set up- developed by Ellis et al. in a supergravity framework. The GUT symmetry is broken by a waterfall which could happen at early or late stage of the inflationary period. The full field dynamics is thus studied in detail and these two main inflationary configurations are exposed, whose cosmological predictions are both in agreement with recent astrophysical measurements. The model has an interesting feature where the inflaton has natural decay channels to the MSSM particles allowed by the GUT gauge symmetry. Hence it can account for the reheating after the inflationary epoch.
Designing and testing inflationary models with Bayesian networks
Price, Layne C; Frazer, Jonathan; Easther, Richard
2015-01-01
Even simple inflationary scenarios have many free parameters. Beyond the variables appearing in the inflationary action, these include dynamical initial conditions, the number of fields, and couplings to other sectors. These quantities are often ignored but cosmological observables can depend on the unknown parameters. We use Bayesian networks to account for a large set of inflationary parameters, deriving generative models for the primordial spectra that are conditioned on a hierarchical set of prior probabilities describing the initial conditions, reheating physics, and other free parameters. We use $N_f$--quadratic inflation as an illustrative example, finding that the number of $e$-folds $N_*$ between horizon exit for the pivot scale and the end of inflation is typically the most important parameter, even when the number of fields, their masses and initial conditions are unknown, along with possible conditional dependencies between these parameters.
Designing and testing inflationary models with Bayesian networks
Energy Technology Data Exchange (ETDEWEB)
Price, Layne C. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Physics; Auckland Univ. (New Zealand). Dept. of Physics; Peiris, Hiranya V. [Univ. College London (United Kingdom). Dept. of Physics and Astronomy; Frazer, Jonathan [DESY Hamburg (Germany). Theory Group; Univ. of the Basque Country, Bilbao (Spain). Dept. of Theoretical Physics; Basque Foundation for Science, Bilbao (Spain). IKERBASQUE; Easther, Richard [Auckland Univ. (New Zealand). Dept. of Physics
2015-11-15
Even simple inflationary scenarios have many free parameters. Beyond the variables appearing in the inflationary action, these include dynamical initial conditions, the number of fields, and couplings to other sectors. These quantities are often ignored but cosmological observables can depend on the unknown parameters. We use Bayesian networks to account for a large set of inflationary parameters, deriving generative models for the primordial spectra that are conditioned on a hierarchical set of prior probabilities describing the initial conditions, reheating physics, and other free parameters. We use N{sub f}-quadratic inflation as an illustrative example, finding that the number of e-folds N{sub *} between horizon exit for the pivot scale and the end of inflation is typically the most important parameter, even when the number of fields, their masses and initial conditions are unknown, along with possible conditional dependencies between these parameters.
Cosmological attractors from alpha-scale supergravity
Roest, Diederik; Scalisi, Marco
2015-01-01
The Planck value of the spectral index can be interpreted as n(s) = 1 - 2/N in terms of the number of e-foldings N. An appealing explanation for this phenomenological observation is provided by alpha-attractors: the inflationary predictions of these supergravity models are fully determined by the cu
M(atrix) model interaction with 11D supergravity
Bandos, Igor A
2010-01-01
We present the equations of motion for multiple M0-brane (mM0) system in an arbitrary curved supergravity superspace which generalizes the M(atrix) model equations for the case of arbitrary supergravity background. Although these were obtained in the frame of superembedding approach to mM0, we do not make a review of this approach in this contribution but concentrate discussion on the structure of the equations.
The electroweak phase transition in minimal supergravity models
Nanopoulos, Dimitri V
1994-01-01
We have explored the electroweak phase transition in minimal supergravity models by extending previous analysis of the one-loop Higgs potential to include finite temperature effects. Minimal supergravity is characterized by two higgs doublets at the electroweak scale, gauge coupling unification, and universal soft-SUSY breaking at the unification scale. We have searched for the allowed parameter space that avoids washout of baryon number via unsuppressed anomalous Electroweak sphaleron processes after the phase transition. This requirement imposes strong constraints on the Higgs sector. With respect to weak scale baryogenesis, we find that the generic MSSM is {\\it not} phenomenologically acceptable, and show that the additional experimental and consistency constraints of minimal supergravity restricts the mass of the lightest CP-even Higgs even further to $m_h\\lsim 32\\GeV$ (at one loop), also in conflict with experiment. Thus, if supergravity is to allow for baryogenesis via any other mechanism above the weak...
A minimal four-family supergravity model
Gunion, J F; Pois, H; McKay, Douglas W
1996-01-01
We investigate the phenomenology of minimal four-family MSSM supergravity theories containing an additional generation of heavy fermions along with their superpartners. We demand: gauge coupling constant unification at high energy scales; perturbative values for all Yukawa couplings for energy scales \\leq \\mgut; radiative electroweak symmetry breaking via renormalization group evolution; and a neutral LSP. The perturbative constraints imply a light fourth-family quark and lepton spectrum, and \\tanb\\lsim 3. The lightest CP-even Higgs mass is increased. Fourth-family Yukawa coupling contributions to the evolution of scalar masses lead to unexpected mass hierarchies; \\eg\\ the \\staupone is generally the lightest slepton and the lightest squark is the \\wt\\bpr_1. A significant lower bound is placed on the gluino mass by the requirement that the \\staupone not be the LSP. Sleptons of the first two families are much more massive compared to the LSP and other neutralinos and charginos than in the three-family models, a...
Modified Chaplygin gas inspired inflationary model in braneworld scenario
Jawad, Abdul; Rani, Shamaila; Mohsaneen, Sidra
2016-05-01
We investigate the modified Chaplygin gas inspired inflationary regime in the brane-world framework in the presence of standard and tachyon scalar fields. We consider the intermediate inflationary scenario and construct the slow-roll parameters, e-folding numbers, spectral index, scalar and tensor power spectra, tensor to scalar ratio for both scalar field models. We develop the ns - N and r - N planes and concluded that ns˜eq96^{+0.5}_{-0.5} and r≤0.0016 for N˜eq60^{+5}_{-5} in both cases of scalar field models as well as for all values of m. These constraints are consistent with observational data such as WMAP7, WMAP9 and Planck data.
On the viability of quintessential inflationary models from observational data
de Haro, Jaume
2016-01-01
Assuming that primordial density fluctuationas are nearly Gaussian, from a frequentist viewpoint, the two-dimensional marginalized joint coincidence contour in the plane $(n_s,r)$ (being $n_s$ the spectral index and $r$ the ratio of tensor to scalar perturbations), without the presence of running is usually used to test the viability of the inflationary models. The models that provide, between $50$ and $60$ e-folds, a curve in that plane, which lies outside the $95.5 \\%$ C.L are ruled out. I will basically argue that the this low number of e-folds is unjustified, and that models leading to a theoretical value of the running different from zero must be checked with observational data allowing the running. When both prescriptions are taken into account, dealing in the context of quintessential inflation, i.e. when the potential is a combination of an inflationary with a quintessential one that leads to a deflationary regime, inflationary models such as the quartic or the Higgs potential are allowed.
de Sitter symmetries and inflationary scalar-vector models
Directory of Open Access Journals (Sweden)
Juan P. Beltrán Almeida
2016-12-01
Full Text Available In this paper, we study the correspondence between a field theory in de Sitter space in D-dimensions and a dual conformal field theory in a euclidean space in (D − 1-dimensions. In particular, we investigate the form in which this correspondence is established for a system of interacting scalar and a vector fields propagating in de Sitter space. We analyze some necessary (but not sufficient conditions for which conformal symmetry is preserved in the dual theory in (D − 1-dimensions, making possible the establishment of the correspondence. The discussion that we address in this paper is framed on the context of inflationary cosmology. Thusly, the results obtained here pose some relevant possibilities of application to the calculation of the fields’s correlation functions and of the primordial curvature perturbation ζ, in inflationary models including coupled scalar and vector fields.
Simple inflationary quintessential model. II. Power law potentials
de Haro, Jaume; Amorós, Jaume; Pan, Supriya
2016-09-01
The present work is a sequel of our previous work [Phys. Rev. D 93, 084018 (2016)] which depicted a simple version of an inflationary quintessential model whose inflationary stage was described by a Higgs-type potential and the quintessential phase was responsible due to an exponential potential. Additionally, the model predicted a nonsingular universe in past which was geodesically past incomplete. Further, it was also found that the model is in agreement with the Planck 2013 data when running is allowed. But, this model provides a theoretical value of the running which is far smaller than the central value of the best fit in ns , r , αs≡d ns/d l n k parameter space where ns, r , αs respectively denote the spectral index, tensor-to-scalar ratio and the running of the spectral index associated with any inflationary model, and consequently to analyze the viability of the model one has to focus in the two-dimensional marginalized confidence level in the allowed domain of the plane (ns,r ) without taking into account the running. Unfortunately, such analysis shows that this model does not pass this test. However, in this sequel we propose a family of models runs by a single parameter α ∈[0 ,1 ] which proposes another "inflationary quintessential model" where the inflation and the quintessence regimes are respectively described by a power law potential and a cosmological constant. The model is also nonsingular although geodesically past incomplete as in the cited model. Moreover, the present one is found to be more simple compared to the previous model and it is in excellent agreement with the observational data. In fact, we note that, unlike the previous model, a large number of the models of this family with α ∈[0 ,1/2 ) match with both Planck 2013 and Planck 2015 data without allowing the running. Thus, the properties in the current family of models compared to its past companion justify its need for a better cosmological model with the successive
New constraints on supergravity models from b --> s$\\gamma$
López, J L; Wang, X; Zichichi, Antonino
1995-01-01
We perform a detailed study of the constraints from b\\to s\\gamma on a large class of supergravity models, including generic four-parameter supergravity models, the minimal SU(5) supergravity model, and SU(5)\\times U(1) supergravity. For each point in the parameter spaces of these models we obtain a range of B(b\\to s\\gamma) values which should conservatively account for the unknown next-to-leading-order QCD corrections. We then classify these points into three categories: ``excluded" points have ranges of B(b\\to s\\gamma) which do not overlap with the experimentally allowed range, ``preferred" points have B(b\\to s\\gamma) ranges which overlap with the Standard Model prediction, and ``Ok" points are neither ``excluded" nor ``preferred" but may become ``excluded" should new CLEO data be consistent with the Standard Model prediction. In {\\em all} cases we observe a strong tendency for the ``preferred" points towards one sign of the Higgs mixing parameter \\mu. For the opposite sign of \\mu there is an upper bound on ...
Chaotic Inflationary Models in f(R) Gravity
Sharif, M
2016-01-01
In this paper, we discuss inflationary scenario via scalar field and fluid cosmology for anisotropic homogeneous universe model in $f(R)$ gravity. We consider an equation of state which corresponds to quasi-de Sitter expansion and investigate the effect of anisotropy parameter for different values of deviation parameter. We evaluate potential models like linear, quadratic and quartic which correspond to chaotic inflation. We construct the observational parameters for power-law model of this gravity and discuss the graphical behavior of spectral index and tensor-scalar ratio which indicates consistency of these parameters with Planck 2015 data.
Irreversible Processes in Inflationary Cosmological Models
Kremer, G M
2002-01-01
By using the thermodynamic theory of irreversible processes and Einstein general relativity, a cosmological model is proposed where the early universe is considered as a mixture of a scalar field with a matter field. The scalar field refers to the inflaton while the matter field to the classical particles. The irreversibility is related to a particle production process at the expense of the gravitational energy and of the inflaton energy. The particle production process is represented by a non-equilibrium pressure in the energy-momentum tensor. The non-equilibrium pressure is proportional to the Hubble parameter and its proportionality factor is identified with the coefficient of bulk viscosity. The dynamic equations of the inflaton and the Einstein field equations determine the time evolution of the cosmic scale factor, the Hubble parameter, the acceleration and of the energy densities of the inflaton and matter. Among other results it is shown that in some regimes the acceleration is positive which simulate...
Emergence of inflationary perturbations in the CSL model
Energy Technology Data Exchange (ETDEWEB)
Leon, Gabriel [Universidad de Buenos Aires, Ciudad Universitaria-PabI, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Bengochea, Gabriel R. [Instituto de Astronomia y Fisica del Espacio (IAFE), UBA-CONICET, Buenos Aires (Argentina)
2016-01-15
The inflationary paradigm is the most successful model that explains the observed spectrum of primordial perturbations. However, the precise emergence of such inhomogeneities and the quantum-to-classical transition of the perturbations has not yet reached a consensus among the community. The continuous spontaneous localization model (CSL), in the cosmological context, might be used to provide a solution to the mentioned issues by considering a dynamical reduction of the wave function. The CSL model has been applied to the inflationary universe before and different conclusions have been obtained. In this letter, we use a different approach to implement the CSL model during inflation. In particular, in addition to accounting for the quantum-to-classical transition, we use the CSL model to generate the primordial perturbations, that is, the dynamical evolution provided by the CSL model is responsible for the transition from a homogeneous and isotropic initial state to a final one lacking such symmetries. Our approach leads to results that can be clearly distinguished from preceding works. Specifically, the scalar and tensor power spectra are not time-dependent, and one retains the amplification mechanism of the CSL model. Moreover, our framework depends only on one parameter (the CSL parameter) and its value is consistent with cosmological and laboratory observations. (orig.)
Low reheating temperatures in monomial and binomial inflationary models
Energy Technology Data Exchange (ETDEWEB)
Rehagen, Thomas; Gelmini, Graciela B. [Department of Physics and Astronomy, UCLA,475 Portola Plaza, Los Angeles, CA 90095 (United States)
2015-06-23
We investigate the allowed range of reheating temperature values in light of the Planck 2015 results and the recent joint analysis of Cosmic Microwave Background (CMB) data from the BICEP2/Keck Array and Planck experiments, using monomial and binomial inflationary potentials. While the well studied ϕ{sup 2} inflationary potential is no longer favored by current CMB data, as well as ϕ{sup p} with p>2, a ϕ{sup 1} potential and canonical reheating (w{sub re}=0) provide a good fit to the CMB measurements. In this last case, we find that the Planck 2015 68% confidence limit upper bound on the spectral index, n{sub s}, implies an upper bound on the reheating temperature of T{sub re}≲6×10{sup 10} GeV, and excludes instantaneous reheating. The low reheating temperatures allowed by this model open the possibility that dark matter could be produced during the reheating period instead of when the Universe is radiation dominated, which could lead to very different predictions for the relic density and momentum distribution of WIMPs, sterile neutrinos, and axions. We also study binomial inflationary potentials and show the effects of a small departure from a ϕ{sup 1} potential. We find that as a subdominant ϕ{sup 2} term in the potential increases, first instantaneous reheating becomes allowed, and then the lowest possible reheating temperature of T{sub re}=4 MeV is excluded by the Planck 2015 68% confidence limit.
A no-scale inflationary model to fit them all
Energy Technology Data Exchange (ETDEWEB)
Ellis, John [Theoretical Particle Physics and Cosmology Group, Department of Physics, King' s College London, WC2R 2LS London (United Kingdom); García, Marcos A.G.; Olive, Keith A. [William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Nanopoulos, Dimitri V., E-mail: john.ellis@cern.ch, E-mail: garciagarcia@physics.umn.edu, E-mail: dimitri@physics.tamu.edu, E-mail: olive@physics.umn.edu [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, 77843 Texas (United States)
2014-08-01
The magnitude of B-mode polarization in the cosmic microwave background as measured by BICEP2 favours models of chaotic inflation with a quadratic m{sup 2} φ{sup 2}/2 potential, whereas data from the Planck satellite favour a small value of the tensor-to-scalar perturbation ratio r that is highly consistent with the Starobinsky R +R{sup 2} model. Reality may lie somewhere between these two scenarios. In this paper we propose a minimal two-field no-scale supergravity model that interpolates between quadratic and Starobinsky-like inflation as limiting cases, while retaining the successful prediction n{sub s} ≅ 0.96.
Trigiante, Mario
2016-01-01
We give a general review of extended supergravities and their gauging using the duality-covariant embedding tensor formalism. Although the focus is on four-dimensional theories, an overview of the gauging procedure and the related tensor hierarchy in the higher-dimensional models is given. The relation of gauged supergravities to flux compactifications is discussed and examples are worked out in detail.
Trigiante, Mario
2017-03-01
We give a general review of extended supergravities and their gauging using the duality-covariant embedding tensor formalism. Although the focus is on four-dimensional theories, an overview of the gauging procedure and the related tensor hierarchy in the higher-dimensional models is given. The relation of gauged supergravities to flux compactifications is discussed and examples are worked out in detail.
SUSY flavor structure of generic 5D supergravity models
Abe, Hiroyuki; Sakamura, Yutaka; Yamada, Yusuke
2011-01-01
We perform a comprehensive and systematic analysis of the SUSY flavor structure of generic 5D supergravity models on $S^1/Z_2$ with multiple $Z_2$-odd vector multiplets that generate multiple moduli. The SUSY flavor problem can be avoided due to contact terms in the 4D effective K\\"ahler potential peculiar to the multi-moduli case. A detailed phenomenological analysis is provided based on an illustrative model.
CMB and reheating constraints to \\alpha-attractor inflationary models
Eshaghi, Mehdi; Riazi, Nematollah; Kiasatpour, Ahmad
2016-01-01
After Planck 2013, a broad class of inflationary models called \\alpha-attractors was developed which has universal observational predictions. For small values of the parameter \\alpha, the models have good consistency with the recent CMB data. In this work, we first calculate analytically (and verify numerically) the predictions of these models for spectral index, n_s and tensor-to-scalar ratio, r and then using BICEP2/Keck 2015 data we impose constraints on \\alpha-attractors. Then, we study the reheating in \\alpha-attractors. The reheating temperature, T_{re} and the number of e-folds during reheating, N_{re} are calculated as functions of n_s. Using these results, we determine the range of free parameter \\alpha for two clasees of \\alpha-attractors which satisfy the constraints of recent CMB data.
Chaotic inflation from nonlinear sigma models in supergravity
Directory of Open Access Journals (Sweden)
Simeon Hellerman
2015-03-01
Full Text Available We present a common solution to the puzzles of the light Higgs or quark masses and the need for a shift symmetry and large field values in high scale chaotic inflation. One way to protect, for example, the Higgs from a large supersymmetric mass term is if it is the Nambu–Goldstone boson (NGB of a nonlinear sigma model. However, it is well known that nonlinear sigma models (NLSMs with nontrivial Kähler transformations are problematic to couple to supergravity. An additional field is necessary to make the Kähler potential of the NLSM invariant in supergravity. This field must have a shift symmetry — making it a candidate for the inflaton (or axion. We give an explicit example of such a model for the coset space SU(3/SU(2×U(1, with the Higgs as the NGB, including breaking the inflaton's shift symmetry and producing a chaotic inflation potential. This construction can also be applied to other models, such as one based on E7/SO(10×U(1×U(1 which incorporates the first two generations of (light quarks as the Nambu–Goldstone multiplets, and has an axion in addition to the inflaton. Along the way we clarify and connect previous work on understanding NLSMs in supergravity and the origin of the extra field (which is the inflaton here, including a connection to Witten–Bagger quantization. This framework has wide applications to model building; a light particle from a NLSM requires, in supergravity, exactly the structure for chaotic inflaton or an axion.
Chaotic inflation from nonlinear sigma models in supergravity
Hellerman, Simeon; Kehayias, John; Yanagida, Tsutomu T.
2015-03-01
We present a common solution to the puzzles of the light Higgs or quark masses and the need for a shift symmetry and large field values in high scale chaotic inflation. One way to protect, for example, the Higgs from a large supersymmetric mass term is if it is the Nambu-Goldstone boson (NGB) of a nonlinear sigma model. However, it is well known that nonlinear sigma models (NLSMs) with nontrivial Kähler transformations are problematic to couple to supergravity. An additional field is necessary to make the Kähler potential of the NLSM invariant in supergravity. This field must have a shift symmetry - making it a candidate for the inflaton (or axion). We give an explicit example of such a model for the coset space SU (3) / SU (2) × U (1), with the Higgs as the NGB, including breaking the inflaton's shift symmetry and producing a chaotic inflation potential. This construction can also be applied to other models, such as one based on E7 / SO (10) × U (1) × U (1) which incorporates the first two generations of (light) quarks as the Nambu-Goldstone multiplets, and has an axion in addition to the inflaton. Along the way we clarify and connect previous work on understanding NLSMs in supergravity and the origin of the extra field (which is the inflaton here), including a connection to Witten-Bagger quantization. This framework has wide applications to model building; a light particle from a NLSM requires, in supergravity, exactly the structure for chaotic inflaton or an axion.
Inflationary scenarios in Starobinsky model with higher order corrections
Energy Technology Data Exchange (ETDEWEB)
Artymowski, Michał [Institute of Physics, Jagiellonian University,Łojasiewicza 11, 30-348 Kraków (Poland); Lalak, Zygmunt [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland); Lewicki, Marek [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland); Michigan Center for Theoretical Physics, University of Michigan,450 Church Street, Ann Arbor MI 48109 (United States)
2015-06-17
We consider the Starobinsky inflation with a set of higher order corrections parametrised by two real coefficients λ{sub 1} ,λ{sub 2}. In the Einstein frame we have found a potential with the Starobinsky plateau, steep slope and possibly with an additional minimum, local maximum or a saddle point. We have identified three types of inflationary behaviour that may be generated in this model: i) inflation on the plateau, ii) at the local maximum (topological inflation), iii) at the saddle point. We have found limits on parameters λ{sub i} and initial conditions at the Planck scale which enable successful inflation and disable eternal inflation at the plateau. We have checked that the local minimum away from the GR vacuum is stable and that the field cannot leave it neither via quantum tunnelling nor via thermal corrections.
Non-gaussianity and Statistical Anisotropy in Cosmological Inflationary Models
Valenzuela-Toledo, Cesar A
2010-01-01
We study the statistical descriptors for some cosmological inflationary models that allow us to get large levels of non-gaussianity and violations of statistical isotropy. Basically, we study two different class of models: a model that include only scalar field perturbations, specifically a subclass of small-field slow-roll models of inflation with canonical kinetic terms, and models that admit both vector and scalar field perturbations. We study the former to show that it is possible to attain very high, including observable, values for the levels of non-gaussianity f_{NL} and \\tao_{NL} in the bispectrum B_\\zeta and trispectrum T_\\zeta of the primordial curvature perturbation \\zeta respectively. Such a result is obtained by taking care of loop corrections in the spectrum P_\\zeta, the bispectrum B_\\zeta and the trispectrum T_\\zeta . Sizeable values for f_{NL} and \\tao_{NL} arise even if \\zeta is generated during inflation. For the latter we study the spectrum P_\\zeta, bispectrum B_\\zeta and trispectrum $T_\\ze...
Aspects of radiative electroweak breaking in supergravity models
Kelley, S; Nanopoulos, Dimitri V; Pois, H; Yuan, K
1993-01-01
We discuss several aspects of state-of-the-art calculations of radiative electroweak symmetry breaking in supergravity models. These models have a five-dimensional parameter space in contrast with the 21-dimensional one of the MSSM. We examine the Higgs one-loop effective potential $V_1=V_0+\\Delta V$, in particular how its renormalization-scale ($Q$) independence is affected by the approximations used to calculate $\\Delta V$ and by the presence of a Higgs-field-independent term which makes $V_1(0)\
On Gravitino properties in a Conformal Supergravity Model
Mavromatos, Nick E
2013-01-01
In the context of a conformal Supergravity (SUGRA) model in the Einstein frame, in which the (next to) minimal supersymmetric standard model can embedded naturally to produce chaotic inflation scenarios, we study properties of gravitino in the cases where it is stable or unstable. In the latter case, we demonstrate that for large dilaton scale factors there is an enhanced magnitude of the gravitino width, when it decays to neutralino dark matter, as compared with the standard SUGRA case. In this context, we discuss the associated consequences as far as Big Bang Nucleosynthesis constraints and avoidance of gravitino overproduction are concerned.
Dynamics of warm Chaplygin gas inflationary models with quartic potential
Energy Technology Data Exchange (ETDEWEB)
Jawad, Abdul; Rani, Shamaila [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Butt, Sadaf [Lahore Leads University, Department of Mathematics, Lahore (Pakistan); Kinnaird College for Women, Department of Mathematics, Lahore (Pakistan)
2016-05-15
Warm inflationary universe models in the context of the generalized Chaplygin gas, the modified Chaplygin gas, and the generalized cosmic Chaplygin gas are being studied. The dissipative coefficient of the form Γ ∝ T, and the weak and the strong dissipative regimes are being considered. We use the quartic potential, (λ{sub *}φ{sup 4})/(4), which is ruled out by current data in cold inflation but in our models by analysis it is seen to be in agreement with the WMAP9 and the latest Planck data. In these scenarios, the power spectrum, the spectral index, and the tensor-to-scalar ratio are being examined in the slow-roll approximation. We show the dependence of the tensor-scalar ratio r on the spectral index n{sub s} and observe that the range of the tensor-scalar ratio is r < 0.05 in the generalized Chaplygin gas, r < 0.15 in the modified Chaplygin gas, and r < 0.12 in the generalized cosmic Chaplygin gas models. Our results are in agreement with recent observational data like WMAP9 and the latest Planck data. (orig.)
Constructing warm inflationary model in finite temperature BIon
Setare, M R
2014-01-01
We study warm inflationary universe model on the BIon in thermal background. The BIon is a configuration in flat space of a D-brane and a parallel anti-D-brane connected by a wormhole with F-string charge. When the branes and antibranes are well separated and the brane's spike is far from the antibrane's spike, wormhole isn't formed however when two branes are close to each other, they can be connected by a wormhole. In this condition, there exists many channels for flowing energy from extra dimensions into our universe and inflation may naturally occur in a warm region. We present a model that allows all cosmological parameters like the scale factor $a$, the Hubble parameter $H$ and universe energy density depend on the shape function and temperature of wormhole in transverse dimension between two branes. In our model, the expansion of 4D universe is controlled by the thermal wormhole between branes and ends up in Big-Rip singularity. We show that at this singularity, universe would be destroyed and one blac...
Cosmological constraints on non-standard inflationary quantum collapse models
Landau, Susana J; Sudarsky, Daniel
2011-01-01
We briefly review an important shortcoming --unearthed in previous works-- of the standard version of the inflationary model for the emergence of the seeds of cosmic structure. We consider here some consequences emerging from a proposal inspired on ideas of Penrose and Di\\'osi about a quantum-gravity induced reduction of the wave function, which has been put forward to address the shortcomings, arguing that its effect on the inflaton field is what can lead to the emergence of the seeds of cosmic structure. The proposal leads to a deviation of the primordial spectrum from the scale-invariant Harrison-Zel'dovich one, and consequently, to a different CMB power spectrum. We perform statistical analyses to test two quantum collapse schemes with recent data from the CMB, including the 7-yr release of WMAP and the matter power spectrum measured using LRGs by the Sloan Digital Sky Survey. Results from the statistical analyses indicate that several collapse models are compatible with CMB and LRG data, and establish co...
Chaotic Inflation from Nonlinear Sigma Models in Supergravity
Hellerman, Simeon; Yanagida, Tsutomu T
2014-01-01
We present a common solution to the puzzles of the light Higgs or quark masses and the need for a shift symmetry and large field values in high scale chaotic inflation. One way to protect, for example, the Higgs from a large supersymmetric mass term is if it is the Nambu-Goldstone boson (NGB) of a nonlinear sigma model. However, it is well known that nonlinear sigma models (NLSMs) with nontrivial K\\"ahler transformations are problematic to couple to supergravity. An additional field is necessary to make the K\\"ahler potential of the NLSM invariant in supergravity. This field must have a shift symmetry --- making it a candidate for the inflaton (or axion). We give an explicit example of such a model for the coset space $SU(3)/SU(2) \\times U(1)$, with the Higgs as the NGB, including breaking the inflaton's shift symmetry and producing a chaotic inflation potential. This construction can also be applied to other models, such as one based on $E_7/SO(10) \\times U(1) \\times U(1)$ which incorporates the first two ge...
Moduli inflation in five-dimensional supergravity models
Abe, Hiroyuki
2014-01-01
We propose a simple but effective mechanism to realize an inflationary early universe consistent with the observed WMAP, Planck and/or BICEP2 data, which would be incorporated in various supersymmetric models of elementary particles constructed in the (effective) five-dimensional spacetime. In our scenario, the inflaton field is identified with one of the moduli appearing when the fifth direction is compactified, and a successful cosmological inflation without the so-called eta problem can be achieved by a very simple moduli stabilization potential. We also discuss the related particle cosmology during and (just) after the inflation, such as the (no) cosmological moduli problem.
Moduli inflation in five-dimensional supergravity models
Energy Technology Data Exchange (ETDEWEB)
Abe, Hiroyuki; Otsuka, Hajime, E-mail: abe@waseda.jp, E-mail: hajime.13.gologo@akane.waseda.jp [Department of Physics, Waseda University, Tokyo 169-8555 (Japan)
2014-11-01
We propose a simple but effective mechanism to realize an inflationary early universe consistent with the observed WMAP, Planck and/or BICEP2 data, which would be incorporated in various supersymmetric models of elementary particles constructed in the (effective) five-dimensional spacetime. In our scenario, the inflaton field is identified with one of the moduli appearing when the fifth direction is compactified, and a successful cosmological inflation without the so-called η problem can be achieved by a very simple moduli stabilization potential. We also discuss the related particle cosmology during and (just) after the inflation, such as the (no) cosmological moduli problem.
R-n extension of the Starobinsky model in old minimal supergravity
Özkan, Mehmet; Pang, Yi
2014-01-01
We provide a succinct way to construct the supersymmetric completion of R-n (n >= 3) in components using the superconformal formulation of old minimal supergravity. As a consequence, we obtain the polynomial f(R) supergravity extending the supersymmetric Starobinsky model to any higher power of R. T
BOOK REVIEW: Supergravity Supergravity
Gregory, Ruth
2013-02-01
Supergravity is an essential ingredient in so many areas of ultra high energy physics, yet it is rarely taught systematically, even at the graduate level. Students most often have to learn along with applying, and must use the now classic older texts. For such core material, it is surprising that there are so few good texts on the subject. It is not necessarily that supergravity is so much more conceptually complex, rather that it is technical and therefore easy for a text to become dry, dense and rather indigestible. This book, written by two experts in the field, is therefore a breath of fresh air. It not only represents a comprehensive modern overview of the subject, but achieves this with clarity, accessibility, and even humour! To paraphrase the authors, if you are not impressed by this book, you should put it down and watch television instead. It starts by reviewing, or overviewing, aspects of field theory, basic supersymmetry and gravity that will be needed for the rest of the book. This first third or so of the book is very condensed, and will not be easy to follow for those who have not encountered the material before. However, the authors acknowledge this and give plenty of suggestions for more pedagogical texts in the relevant areas, thus it does not feel overly brief. The middle section deals with the construction of supergravity, starting with basic N = 1 supergravity in 4 and 11 dimensions and gradually extending the discussion to include matter multiplets. This part of the book systematically builds up understanding and construction of models, before moving on to superconformal methods. The purpose is not to cover all supergravity theories, but to focus on a few examples in detail, and to give sufficient expertise and information for the reader to be able to deal with any other models they might need. The final part of the book deals with applications, and includes two chapters on applications in adS/CFT, which will be of most interest to new
Simple inflationary models in Gauss-Bonnet brane-world cosmology
Okada, Nobuchika; Okada, Satomi
2016-06-01
In light of the recent Planck 2015 results for the measurement of the cosmic microwave background (CMB) anisotropy, we study simple inflationary models in the context of the Gauss-Bonnet (GB) brane-world cosmology. The brane-world cosmological effect modifies the power spectra of scalar and tensor perturbations generated by inflation and causes a dramatic change for the inflationary predictions of the spectral index (n s) and the tensor-to-scalar ratio (r) from those obtained in the standard cosmology. In particular, the predicted r values in the inflationary models favored by the Planck 2015 results are suppressed due to the GB brane-world cosmological effect, which is in sharp contrast with inflationary scenario in the Randall-Sundrum brane-world cosmology, where the r values are enhanced. Hence, these two brane-world cosmological scenarios are distinguishable. With the dramatic change of the inflationary predictions, the inflationary scenario in the GB brane-world cosmology can be tested by more precise measurements of n s and future observations of the CMB B-mode polarization.
Particle physics models of inflation in supergravity and grand unification
Energy Technology Data Exchange (ETDEWEB)
Kostka, Philipp Manuel
2010-12-03
In the first part of this thesis, we study classes of hybrid and chaotic inflation models in four-dimensional N=1 supergravity. Therein, the {eta}-problem can be resolved relying on fundamental symmetries in the Kaehler potential. Concretely, we investigate explicit realizations of superpotentials, in which the flatness of the inflaton potential is protected at tree level by a shift symmetry or a Heisenberg symmetry in the Kaehler potential. In the latter case, the associated modulus field can be stabilized during inflation by supergravity effects. In the context of hybrid inflation, a novel class of models, to which we refer as ''tribrid inflation,'' turns out to be particularly compatible with such symmetry solutions to the {eta}-problem. Radiative corrections due to operators in the superpotential, which break the respective symmetry, generate the required small slope of the inflaton potential. Additional effective operators in the Kaehler potential can reduce the predicted spectral index so that it agrees with latest observational data. Within a model of chaotic inflation in supergravity with a quadratic potential, we apply the Heisenberg symmetry to allow for viable inflation with super-Planckian field values, while the associated modulus is stabilized. We show that radiative corrections are negligible in this context. In the second part, the tribrid inflation models are extended to realize gauge non-singlet inflation. This is applied to the matter sector of supersymmetric Grand Unified Theories based on the Pati-Salam gauge group. For the specific scenario in which the right-handed sneutrino is the inflaton, we study the scalar potential in a D-flat valley. We show that despite potentially dangerous two-loop corrections, the required flatness of the potential can be maintained. The reason for this is the strong suppression of gauge interactions of the inflaton field due to its symmetry breaking vacuum expectation value. In addition, the
Simple brane-world inflationary models in light of BICEP2
Okada, Nobuchika
2014-01-01
Motivated by the recent CMB $B$-mode observation announced by the BICEP2 collaboration, we study simple inflationary models in the Randall-Sundrum brane-world cosmology. Brane-world cosmological effects alter the inflationary predictions of the spectral index ($n_s$) and the tensor-to-scalar ratio ($r$) from those obtained in the standard cosmology. In particular, the tensor-to-scalar ratio is enhanced in the presence of the 5th dimension, and simple inflationary models which predict small $r$ values in the standard cosmology can yield $r$ values being compatible with the BICEP2 result, $r=0.2^{+0.07}_{-0.05}$. Confirmation of the BICEP2 result and more precise measurements of $n_s$ and $r$ in the near future allow us to constrain the 5-dimensional Planck mass ($M_5$) of the brane-world scenario. We also discuss the post inflationary scenario, namely, reheating of the universe through inflaton decay to the Standard Model particles. When we require the renormalizability of the inflationary models, the inflaton...
Warm intermediate inflationary Universe model in the presence of a generalized Chaplygin gas
Energy Technology Data Exchange (ETDEWEB)
Herrera, Ramon [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Videla, Nelson [Universidad de Chile, Departamento de Fisica, FCFM, Santiago (Chile); Olivares, Marco [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile)
2016-01-15
A warm intermediate inflationary model in the context of generalized Chaplygin gas is investigated. We study this model in the weak and strong dissipative regimes, considering a generalized form of the dissipative coefficient Γ = Γ(T,φ), and we describe the inflationary dynamics in the slow-roll approximation. We find constraints on the parameters in our model considering the Planck 2015 data, together with the condition for warm inflation T > H, and the conditions for the weak and strong dissipative regimes. (orig.)
Simple inflationary models in Gauss-Bonnet brane-world cosmology
Okada, Nobuchika
2014-01-01
In light of the recent measurements of the CMB anisotropy by the WMAP and Planck satellite experiments and the observation of CMB $B$-mode polarization announced by the BICEP2 collaboration, we study simple inflationary models in the context of the Gauss-Bonnet brane-world cosmology. The brane-world cosmological effect modifies the power spectra of scalar and tensor perturbations generated by inflation and causes a dramatic change for the inflationary predictions of the spectral index ($n_s$) and the tensor-to-scalar ratio ($r$) from those obtained in the standard cosmology. In particular, the power spectrum of tensor perturbation is suppressed due to the Gauss-Bonnet brane-world cosmological effect, which is in sharp contrast with inflationary scenario in the Randall-Sundrum brane-world cosmology where the power spectrum is enhanced. Hence, these two brane-world cosmological scenarios are distinguishable. With the dramatic change of the inflationary predictions, the inflationary scenario in the Gauss-Bonnet ...
Testing non-standard inflationary models with the cosmic microwave background
Landau, Susana J.
2015-03-01
The emergence of the seeds of cosmic structure from an isotropic and homogeneuous universe has not been clearly explained by the standard version of inflationary models. We review a proposal that attempts to deal with this problem by introducing "the self induced collapse hypothesis". As a consequence of this modification of standard inflationary scenarios, the predicted primordial power spectrum and the CMB spectrum are modified. We show the results of statistical analyses comparing the predictions of these models with recent CMB observations and the matter power spectrum from galaxy surveys.
Higher derivative D-term inflation in new-minimal supergravity
Directory of Open Access Journals (Sweden)
Iannis Dalianis
2014-09-01
Full Text Available We revisit the D-term inflation and amend it with ghost-free higher derivative couplings of chiral superfields to super-curvature. These couplings realize a more generic inflationary phase in supergravity. After pointing out that a consistent embedding of these specific higher derivatives is known to exist only in the new-minimal supergravity, we show how a potential for the scalar component may arise due to a Fayet–Iliopoulos D-term. We then turn to inflationary cosmology and explicitly discuss different types of potentials, which capture properties of the common scenarios. These models thanks to the derivative coupling: i naturally evade the supergravity η-problem, ii drive inflation for a wider range of parameter values, and iii predict lower values for the tensor-to-scalar ratio.
Impacts of supersymmetric higher derivative terms on inflation models in supergravity
Energy Technology Data Exchange (ETDEWEB)
Aoki, Shuntaro; Yamada, Yusuke [Department of Physics, Waseda University,Tokyo 169-8555 (Japan)
2015-07-14
We show the effects of supersymmetric higher derivative terms on inflation models in supergravity. The results show that such terms generically modify the effective kinetic coefficient of the inflaton during inflation if the cut off scale of the higher derivative operators is sufficiently small. In such a case, the η-problem in supergravity does not occur, and we find that the effective potential of the inflaton generically becomes a power type potential with a power smaller than two.
The price of WMAP inflation in supergravity
Ellis, J.; Lalak, Z.; Pokorski, S.; Turzynski, K.
2006-10-01
The three-year data from WMAP are in stunning agreement with the simplest possible quadratic potential for chaotic inflation, as well as with new or symmetry-breaking inflation. We investigate the possibilities for incorporating these potentials within supergravity, particularly of the no-scale type that is motivated by string theory. Models with inflation driven by the matter sector may be constructed in no-scale supergravity, if the moduli are assumed to be stabilized by some higher-scale dynamics and at the expense of some fine-tuning. We discuss specific scenarios for stabilizing the moduli via either D- or F-terms in the effective potential and survey possible inflationary models in the presence of D-term stabilization.
The Price of WMAP Inflation in Supergravity
Ellis, Jonathan Richard; Pokorski, Stefan; Turzynski, K
2006-01-01
The three-year data from WMAP are in stunning agreement with the simplest possible quadratic potential for chaotic inflation, as well as with new or symmetry-breaking inflation. We investigate the possibilities for incorporating these potentials within supergravity, particularly of the no-scale type that is motivated by string theory. Models with inflation driven by the matter sector may be constructed in no-scale supergravity, if the moduli are assumed to be stabilised by some higher-scale dynamics and at the expense of some fine-tuning. We discuss specific scenarios for stabilising the moduli via either D- or F-terms in the effective potential, and survey possible inflationary models in the presence of D-term stabilisation.
Production of scalar and tensor perturbations in inflationary models
Turner, Michael S.
1993-10-01
Scalar (density) and tensor (gravity-wave) perturbations provide the basis for the fundamental observable consequences of inflation, including CBR anisotropy and the formation of structure in the Universe. These perturbations are nearly scale invariant (Harrison-Zel'dovich spectrum), though a slight deviation from scale invariance (``tilt'') can have significant consequences for both CBR anisotropy and structure formation. In particular, a slightly tilted spectrum of scalar perturbations may improve the agreement of the cold dark matter scenario with the observational data. The amplitude and spectrum of the scalar and tensor perturbations depend upon the shape of the inflationary potential in the small interval where the scalar field responsible for inflation was between about 46 and 54 e-folds before the end of inflation. By expanding the inflationary potential in a Taylor series over this interval we show that the amplitudes of the perturbations and the power-law slopes of their spectra can be expressed in terms of the value of the potential 50 e-folds before the end of inflation, V50, its steepness x50≡mPlV'50/V50, and the rate of change of its steepness, x'50 (a prime denotes a derivative with respect to the scalar field). In addition, the power-law index of the cosmic-scale factor at this time is q50≡[dlnR/dlnt]50~=16π/x250. (Formally, our results for the perturbation amplitudes and spectral indices are accurate to lowest order in the deviation from scale invariance.) In general, the deviation from scale invariance is such to enhance fluctuations on large scales, and is only significant for steep potentials, large x50, or potentials with rapidly changing steepness, large x'50. In the latter case, only the spectrum of scalar perturbations is significantly tilted. Steep potentials are characterized by a large tensor-mode contribution to the quadrupole CBR temperature anisotropy, a similar tilt in both scalar and tensor perturbations, and a slower expansion
Effects of viscous pressure on warm inflationary generalized cosmic Chaplygin gas model
Energy Technology Data Exchange (ETDEWEB)
Sharif, M.; Saleem, Rabia, E-mail: msharif.math@pu.edu.pk, E-mail: rabiasaleem1988@yahoo.com [Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590 (Pakistan)
2014-12-01
This paper is devoted to study the effects of bulk viscous pressure on an inflationary generalized cosmic Chaplygin gas model using FRW background. The matter contents of the universe are assumed to be inflaton and imperfect fluid. We evaluate inflaton fields, potentials and entropy density for variable as well as constant dissipation and bulk viscous coefficients in weak as well as high dissipative regimes during intermediate era. In order to discuss inflationary perturbations, we evaluate entropy density, scalar (tensor) power spectra, their corresponding spectral indices, tensor-scalar ratio and running of spectral index in terms of inflaton which are constrained using recent Planck, WMAP7 and Bicep2 probes.
Higher Curvature Supergravity, Supersymmetry Breaking and Inflation
Ferrara, Sergio
2014-01-01
In these lectures, after a short introduction to cosmology, we discuss the supergravity embedding of higher curvature models of inflation. The supergravity description of such models is presented for the two different formulations of minimal supergravity.
Single field inflationary models with non-compact Kaluza-Klein theory
Ledesma, D S; Ledesma, Diego S.; Bellini, Mauricio
2004-01-01
We discuss a semiclassical treatment to inflationary models from Kaluza-Klein theory without the cylinder condition. We conclude that the evolution of the early universe could be described by a geodesic trayectory of a cosmological 5D metric here proposed, so that the effective 4D FRW background metric should be a hypersurface on a constant fifth dimension.
Single field inflationary models with non-compact Kaluza-Klein theory
Energy Technology Data Exchange (ETDEWEB)
Ledesma, Diego S.; Bellini, Mauricio
2004-02-12
We discuss a semiclassical treatment to inflationary models from Kaluza-Klein theory without the cylinder condition. We conclude that the evolution of the early universe could be described by a geodesic trajectory of a cosmological 5D metric here proposed, so that the effective 4D FRW background metric should be a hypersurface on a constant fifth dimension.
Coupling the inflationary sector to matter
Energy Technology Data Exchange (ETDEWEB)
Kallosh, Renata; Linde, Andrei [SITP and Department of Physics, Stanford University,382 Via Pueblo, Stanford, CA 94305 (United States); Wrase, Timm [Institute for Theoretical Physics, TU Wien,Wiedner Hauptstraße 8-10, A-1040 Vienna (Austria)
2016-04-05
We describe the coupling of matter fields to an inflationary sector of supergravity, the inflaton Φ and a stabilizer S, in models where the Kähler potential has a flat inflaton direction. Such models include, in particular, advanced versions of the hyperbolic α-attractor models with a flat inflaton direction Kähler potential, providing a good fit to the observational data. If the superpotential is at least quadratic in the matter fields U{sup i}, with restricted couplings to the inflaton sector, we prove that under certain conditions: i) The presence of the matter fields does not affect a successful inflationary evolution. ii) There are no tachyons in the matter sector during and after inflation. iii) The matter masses squared are higher than 3H{sup 2} during inflation. The simplest class of theories satisfying all required conditions is provided by models with a flat direction Kähler potential, and with the inflaton Φ and a stabilizer S belonging to a hidden sector, so that matter fields have no direct coupling to the inflationary sector in the Kähler potential and in the superpotential.
Coupling the inflationary sector to matter
Kallosh, Renata; Linde, Andrei; Wrase, Timm
2016-04-01
We describe the coupling of matter fields to an inflationary sector of supergravity, the inflaton Φ and a stabilizer S, in models where the Kähler potential has a flat inflaton direction. Such models include, in particular, advanced versions of the hyperbolic α-attractor models with a flat inflaton direction Kähler potential, providing a good fit to the observational data. If the superpotential is at least quadratic in the matter fields U i , with restricted couplings to the inflaton sector, we prove that under certain conditions: i) The presence of the matter fields does not affect a successful inflationary evolution. ii) There are no tachyons in the matter sector during and after inflation. iii) The matter masses squared are higher than 3 H 2 during inflation. The simplest class of theories satisfying all required conditions is provided by models with a flat direction Kähler potential, and with the inflaton Φ and a stabilizer S belonging to a hidden sector, so that matter fields have no direct coupling to the inflationary sector in the Kähler potential and in the superpotential.
Yokoyama, Jun'ichi; Suto, Yasushi
1991-01-01
A phenomenological model to produce isocurvature baryon-number fluctuations is proposed in the framework of inflationary cosmology. The resulting spectrum of density fluctuation is very different from the conventional Harrison-Zel'dovich shape. The model, with the parameters satisfying several requirements from particle physics and cosmology, provides an appropriate initial condition for the minimal baryon isocurvature scenario of galaxy formation discussed by Peebles.
Searching for Features of a String Inspired Inflationary Model with Cosmological Observations
Cai, Yi-Fu; Hu, Bin; Quintin, Jerome
2015-01-01
The latest Planck results show a power deficit in the temperature anisotropies near $\\ell \\approx 20$ in the cosmic microwave background (CMB). This observation can hardly be explained within the standard inflationary $\\Lambda$-cold-dark-matter ($\\Lambda$CDM) scenario. In this Letter we consider a string theory inspired inflationary model (axion monodromy inflation) with a step-like modulation in the potential which gives rise to observable signatures in the primordial perturbations. One interesting phenomenon is that the primordial scalar modes experience a sudden suppression at a critical scale when the modulation occurs. By fitting to the CMB data, we find that the model can nicely explain the $\\ell \\approx 20$ power deficit anomaly as well as predict specific patterns in the temperature-polarization correlation and polarization autocorrelation spectra. Though the significance of the result is not sufficient to claim a detection, our analysis reveals that fundamental physics at extremely high energy scales...
SUSY signals at HERA in the no-scale flipped SU(5) supergravity model
López, J; Wang, X; Zichichi, A; 10.1103/PhysRevD.48.4029
2009-01-01
Sparticle production and detection at HERA are studied within the recently proposed no-scale flipped $SU(5)$ supergravity model. Among the various reaction channels that could lead to sparticle production at HERA, only the following are within its limit of sensitivity in this model: $e^-p\\to \\tilde e^-_{L,R}\\chi^0_i+X, \\tilde \
Constraints on tachyon inflationary models with an AdS/CFT correspondence
Bouabdallaoui, Zahra; Bouhmadi-Lopez, Mariam; Ouali, Taoufik
2016-01-01
In order to study the effect of the anti de Sitter/ conformal field theory correspondence (AdS/CFT) on the primordial inflationary era, we consider a universe filled with a tachyon field in a slow-roll regime. In this context, the background and perturbative parameters characterising the inflationary era are related to the standard one by correction terms. We show a clear agreement between the theoretical prediction and the observational data for the above mentioned model. The main results of our work are illustrated for an exponential potential. We show that, for a suitable conformal anomaly coefficient, AdS/CFT correspondence might leave its imprints on the spectrum of the gravitational waves amplitude with a tensor to scalar ratio, $r$, of the perturbations compatible with Planck data.
Constraints on tachyon inflationary models with an AdS/CFT correspondence
Bouabdallaoui, Zahra; Errahmani, Ahmed; Bouhmadi-López, Mariam; Ouali, Taoufik
2016-12-01
To study the effect of the anti-de Sitter/conformal field theory correspondence (AdS/CFT) on the primordial inflationary era, we consider a universe filled with a tachyon field in a slow-roll regime. In this context, the background and perturbative parameters characterizing the inflationary era are related to the standard one by correction terms. We show a clear agreement between the theoretical prediction and the observational data for the above-mentioned model. The main results of our work are illustrated for an exponential potential. We show that, for a suitable conformal anomaly coefficient, AdS/CFT correspondence might leave its imprints on the spectrum of the gravitational waves amplitude with a tensor to scalar ratio, r , of the perturbations compatible with Planck data.
Leptogenesis and Neutrino Masses in an Inflationary SUSY Pati-Salam Model
Pallis, C
2012-01-01
We implement the mechanism of non-thermal leptogenesis in the framework of an inflationary model based on a supersymmetric (SUSY) Pati-Salam Grand Unified Theory (GUT). In particular, we show that inflation is driven by a quartic potential associated with the Higgs fields involved in the spontaneous GUT symmetry breaking, in the presence of a non-minimal coupling of the inflaton field to gravity. The inflationary model relies on renormalizable superpotential terms and does not lead to overproduction of magnetic monopoles. It is largely independent of one-loop radiative corrections, and it can be consistent with current observational data on the inflationary observables, with the GUT symmetry breaking scale assuming its SUSY value. Non-thermal leptogenesis is realized by the out-of-equilibrium decay of the two lightest right-handed (RH) neutrinos, which are produced by the inflaton decay. Confronting our scenario with the current observational data on light neutrinos, the GUT prediction for the heaviest Dirac ...
Tachyon warm-intermediate inflationary universe model in high dissipative regime
Energy Technology Data Exchange (ETDEWEB)
Setare, M.R.; Kamali, V., E-mail: rezakord@ipm.ir, E-mail: vkamali1362@gmail.com [Department of Science, Payame Noor University, Bijar (Iran, Islamic Republic of)
2012-08-01
We consider tachyonic warm-inflationary models in the context of intermediate inflation. We derive the characteristics of this model in slow-roll approximation and develop our model in two cases, 1- For a constant dissipative parameter Γ. 2- Γ as a function of tachyon field φ. We also describe scalar and tensor perturbations for this scenario. The parameters appearing in our model are constrained by recent observational data. We find that the level of non-Gaussianity for this model is comparable with non-tachyonic model.
Minimal constrained supergravity
Directory of Open Access Journals (Sweden)
N. Cribiori
2017-01-01
Full Text Available We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.
Constraining Inflationary Dark Matter in the Luminogenesis Model
Hung, Pham Q
2014-01-01
Using renormalization-group flow and cosmological constraints on inflation models, we exploit a unique connection between cosmological inflation and the dynamical mass of dark-matter particles in the luminogenesis model, a unification model with the gauge group $SU(3)_C \\times SU(6) \\times U(1)_Y$, which breaks to the Standard Model with an extra gauge group for dark matter when the inflaton rolls into the true vacuum. In this model, Inflaton decay gives rise to dark matter, which in turn decays to luminous matter in the right proportion that agrees with cosmological data. Some attractive features of this model include self-interacting dark matter, which may resolve the problems of dwarf-galaxy structures and dark-matter cusps at the centers of galaxies.
Constraining inflationary dark matter in the luminogenesis model
Energy Technology Data Exchange (ETDEWEB)
Hung, Pham Q.; Ludwick, Kevin J. [Department of Physics, University of Virginia,Charlottesville, VA, 22904-4714 (United States); Center for Theoretical and Computational Physics, Hue University College of Education,34 Le Loi Street, Hue (Viet Nam)
2015-09-09
Using renormalization-group flow and cosmological constraints on inflation models, we exploit a unique connection between cosmological inflation and the dynamical mass of dark matter particles in the luminogenesis model, a unification model with the gauge group SU(3){sub C}×SU(6)×U(1){sub Y}, which breaks to the Standard Model with an extra gauge group for dark matter when the inflaton rolls into the true vacuum. In this model, inflaton decay gives rise to dark matter, which in turn decays to luminous matter in the right proportion that agrees with cosmological data. Some attractive features of this model include self-interacting dark matter, which may resolve the problems of dwarf galaxy structures and dark matter cusps at the centers of galaxies.
Primordial black hole production during preheating in a chaotic inflationary model
Torres-Lomas, E
2013-01-01
In this paper we review the production of primordial black holes (PBHs) during preheating after a chaotic inflationary model. All relevant equations of motion are solved numerically in a modified version of HLattice, and we then calculate the mass variance to determine structure formation during preheating. It is found that production of PBHs can be a generic result of the model, even though the results seem to be sensitive to the values of the smoothing scale. We consider a constraint for overproduction of PBHs that could uncover some stress between inflation-preheating models and observations.
Coupling the Inflationary Sector to Matter
Kallosh, Renata; Wrase, Timm
2016-01-01
We describe the coupling of matter fields to an inflationary sector of supergravity, the inflaton $\\Phi$ and a stabilizer $S$, in models where the Kahler potential has a flat inflaton direction. Such models include, in particular, advanced versions of the hyperbolic $\\alpha$-attractor models with a flat inflaton direction Kahler potential, providing a good fit to the observational data. If the superpotential is at least quadratic in the matter fields $U^{i}$, with restricted couplings to the inflaton sector, we prove that under certain conditions: i) The presence of the matter fields does not affect a successful inflationary evolution. ii) There are no tachyons in the matter sector during and after inflation. iii) The matter masses squared are higher than $3H^2$ during inflation. The simplest class of theories satisfying all required conditions is provided by models with a flat direction Kahler potential, and with the inflaton $\\Phi$ and a stabilizer $S$ belonging to a hidden sector, so that matter fields hav...
Constructing warm inflationary model in brane–antibrane system
Energy Technology Data Exchange (ETDEWEB)
Setare, M.R., E-mail: rezakord@ipm.ir [Department of Science, Campus of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Sepehri, A., E-mail: alireza.sepehri@uk.ac.ir [Faculty of Physics, Shahid Bahonar University, P.O. Box 76175, Kerman (Iran, Islamic Republic of); Kamali, V., E-mail: Vkamali@basu.ac.ir [Department of Physics, Faculty of Science, Bu-Ali Sina University, Hamedan, 65178 (Iran, Islamic Republic of)
2014-07-30
Recently, various observational data predicted a possibility that inflation may naturally occur in a warm region. In this scenario, radiation is produced during the inflation epoch and reheating is avoided. The main question arises as to what is the origin of warm inflation in 4D universe? We answer this question in brane–antibrane system. We propose a model that allows all cosmological parameters like the scale factor a, the Hubble parameter H and phantom energy density depend on the equation of state parameter in transverse dimension between two branes. Thus, an enhancement in these parameters can be a signature of some evolutions in extra dimension. In our model, the expansion of 4D universe is controlled by the separation distance between branes and evolves from non-phantom phase to phantom one. Consequently, phantom-dominated era of the universe accelerates and ends up in big-rip singularity. Also, we show that as the tachyon potential increases, the effect of interaction between branes on the 4D universe expansion becomes systematically more effective, because at higher energies there exist more channels for flowing energy from extra dimension to other four dimensions. Finally, we test our model against WMAP and Planck data and obtain the ripping time. According to experimental data, N≃50 case leads to n{sub s}≃0.96, where N and n{sub s} are the number e-folds and the spectral index respectively. This standard case may be found in 0.01
Constraining quantum collapse inflationary models with CMB data
Benetti, Micol; Landau, Susana J.; Alcaniz, Jailson S.
2016-12-01
The hypothesis of the self-induced collapse of the inflaton wave function was proposed as responsible for the emergence of inhomogeneity and anisotropy at all scales. This proposal was studied within an almost de Sitter space-time approximation for the background, which led to a perfect scale-invariant power spectrum, and also for a quasi-de Sitter background, which allows to distinguish departures from the standard approach due to the inclusion of the collapse hypothesis. In this work we perform a Bayesian model comparison for two different choices of the self-induced collapse in a full quasi-de Sitter expansion scenario. In particular, we analyze the possibility of detecting the imprint of these collapse schemes at low multipoles of the anisotropy temperature power spectrum of the Cosmic Microwave Background (CMB) using the most recent data provided by the Planck Collaboration. Our results show that one of the two collapse schemes analyzed provides the same Bayesian evidence of the minimal standard cosmological model ΛCDM, while the other scenario is weakly disfavoured with respect to the standard cosmology.
Constraining quantum collapse inflationary models with CMB data
Benetti, Micol; Alcaniz, Jailson S
2016-01-01
The hypothesis of the self-induced collapse of the inflaton wave function was proposed as responsible for the emergence of inhomogeneity and anisotropy at all scales. This proposal was studied within an almost de Sitter space-time approximation for the background, which led to a perfect scale-invariant power spectrum, and also for a quasi-de Sitter background, which allows to distinguish departures from the standard approach due to the inclusion of the collapse hypothesis. In this work we perform a Bayesian model comparison for two different choices of the self-induced collapse in a full quasi-de Sitter expansion scenario. In particular, we analyze the possibility of detecting the imprint of these collapse schemes at low multipoles of the anisotropy temperature power spectrum of the Cosmic Microwave Background (CMB) using the most recent data provided by the Planck Collaboration. Our results show that one of the two collapse schemes analyzed provides the same Bayesian evidence of the minimal standard cosmolog...
No-scale supergravity realization of the Starobinsky model of inflation.
Ellis, John; Nanopoulos, Dimitri V; Olive, Keith A
2013-09-13
We present a model for cosmological inflation based on a no-scale supergravity sector with an SU(2,1)/SU(2)×U(1) Kähler potential, a single modulus T, and an inflaton superfield Φ described by a Wess-Zumino model with superpotential parameters (μ, λ). When T is fixed, this model yields a scalar spectral index n(s) and a tensor-to-scalar ratio r that are compatible with the Planck measurements for values of λ≃μ/3M(P). For the specific choice λ=μ/3M(P), the model is a no-scale supergravity realization of the R+R2 Starobinsky model.
The Simplest, String-Derivable, Supergravity Model and its Experimental Predictions
López, J; Zichichi, A
1994-01-01
We present the simplest, string-derivable, supergravity model and discuss its experimental consequences. This model is a new string-inspired flipped $SU(5)$ which unifies at the string scale $M_U=10^{18}\\GeV$ due to the introduction of an additional pair of \\r{10},\\rb{10} flipped $SU(5)$ representations which contain new intermediate scale `gap' particles. We study various model-building issues which should be addressed in string-derived incarnations of this model. We focus our study on the no-scale supergravity mechanism and explore thoroughly the three-dimensional parameter space of the model ($m_{\\tilde g},m_t,\\tan\\beta$), thus obtaining several simple relationships among the particle masses, such as: $m_{\\tilde q}\\approx m_{\\tilde g}$, $m_{\\tilde e_L}\\approx m_{\\tilde\
Reconstruction of the Scalar Field Potential in Inflationary Models with a Gauss-Bonnet term
Koh, Seoktae; Tumurtushaa, Gansukh
2016-01-01
We study inflationary models with a Gauss-Bonnet term to reconstruct the scalar field potentials and the Gauss-Bonnet coupling functions from the observable quantities. Using the observationally favored relations for both $n_s$ and $r$, we derive the expressions for both the scalar field potentials and the coupling functions. The implication of the blue-tilted spectrum, $n_t>0$, of the primordial tensor fluctuations is discussed for the reconstructed configurations of the scalar field potential and the Gauss-Bonnet coupling.
Sparticle and Higgs Production and Detection at LEPII in two Supergravity Models
López, J L; Pois, H; Wang, X; Zichichi, Antonino
1993-01-01
We study the most promising signals for supersymmetry at LEPII in the context of two well motivated supergravity models: (i) the minimal $SU(5)$ supergravity model including the stringent constraints from proton stability and a not too young Universe, and (ii) a recently proposed string-inspired no-scale flipped $SU(5)$ supergravity model. Our computations span the neutralino, chargino, slepton, and Higgs sectors together with their interconnections in this class of models. We find that the number of `mixed' (1-lepton + 2-jets + $\\slash{p}$) events occuring in the decay of pair-produced charginos ($\\chi^\\pm_1$) is quite significant (per ${\\cal L}=100pb^{-1}$) for both models and that these predictions do not overlap. That is, if $m_{\\chi^\\pm_1}<100$ GeV then LEPII should be able to exclude at least one of the two models. In the no-scale flipped $SU(5)$ model we find that the number of acoplanar di-electron events from selectron pair production should allow for exploration of selectron masses up to the kine...
Inflationary cosmology and the standard model Higgs with a small Hubble-induced mass
Directory of Open Access Journals (Sweden)
Kohei Kamada
2015-03-01
Full Text Available We study the dynamics of the standard model Higgs field in the inflationary cosmology. Since metastability of our vacuum is indicated by the current experimental data of the Higgs boson and top quark, inflation models with a large Hubble parameter may have a problem: In such models, the Higgs field rolls down towards the unwanted true vacuum due to the large fluctuation in the inflationary background. However, this problem can be relaxed by supposing an additional mass term for the Higgs field generated during and after inflation. We point out that it does not have to be larger than the Hubble parameter if the number of e-folds during inflation is not too large. We demonstrate that a high reheating temperature is favored in such a relatively small mass case and it can be checked by future gravitational wave observations. Such an induced mass can be generated by, e.g., a direct coupling to the inflaton field or nonminimal coupling to gravity.
Searching for features of a string-inspired inflationary model with cosmological observations
Cai, Yi-Fu; Ferreira, Elisa G. M.; Hu, Bin; Quintin, Jerome
2015-12-01
The latest Planck results show a power deficit in the temperature anisotropies near ℓ≈20 in the cosmic microwave background (CMB). This observation can hardly be explained within the standard inflationary Λ -cold-dark-matter (Λ CDM ) scenario. In this paper we consider a string theory inspired inflationary model (axion monodromy inflation) with a step-like modulation in the potential which gives rise to observable signatures in the primordial perturbations. One interesting phenomenon is that the primordial scalar modes experience a sudden suppression at a critical scale when the modulation occurs. By fitting to the CMB data, we find that the model can nicely explain the ℓ≈20 power deficit anomaly as well as predict specific patterns in the temperature-polarization correlation and polarization autocorrelation spectra. Though the significance of the result is not sufficient to claim a detection, our analysis reveals that fundamental physics at extremely high energy scales, namely, some effects inspired by string theory, may be observationally testable in forthcoming cosmological experiments.
Developments in inflationary cosmology
Indian Academy of Sciences (India)
Arjun Berera
2009-01-01
This talk presents some recent work that has been done in inflationary cosmology. First a brief review is given of the inflation scenario and its basic models. After that, one of the main problems in developing inflationary models has been the requirement of a very flat inflation potential. In solving this problem, supersymmetry has played a major role, and the reasons will be discussed and a specific example of the SUSY hybrid model will be examined. Some problems introduced by SUSY such as the and gravitino problems will then be discussed. Then in a different direction, the quintessential inflation model will be examined as a proposal where a single scalar field plays the role of both the inflaton at early time and the dark energy field later. The final topic covered is developments in understanding dissipation and particle production processes during the inflationary phase.
Cosmological perturbations in warm-tachyon inflationary universe model with viscous pressure
Directory of Open Access Journals (Sweden)
M.R. Setare
2014-09-01
Full Text Available We study the warm-tachyon inflationary universe model with viscous pressure in high-dissipation regime. General conditions which are required for this model to be realizable are derived in the slow-roll approximation. We present analytic expressions for density perturbation and amplitude of tensor perturbation in longitudinal gauge. Expressions of tensor-to-scalar ratio, scalar spectral index and its running are obtained. We develop our model by using exponential potential, the characteristics of this model are calculated for two specific cases in great details: 1. Dissipative parameter Γ and bulk viscous parameter ζ are constant parameters. 2. Dissipative parameter is a function of tachyon field ϕ and bulk viscous parameter is a function of matter-radiation mixture energy density ρ. The parameters of the model are restricted by recent observational data from the nine-year Wilkinson microwave anisotropy probe (WMAP9, Planck and BICEP2 data.
Cosmological perturbations in warm-tachyon inflationary universe model with viscous pressure
Energy Technology Data Exchange (ETDEWEB)
Setare, M.R., E-mail: rezakord@ipm.ir [Department of Science, Campus of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Kamali, V., E-mail: vkamali1362@gmail.com [Department of Physics, Faculty of Science, Bu-Ali Sina University, Hamedan, 65178 (Iran, Islamic Republic of)
2014-09-07
We study the warm-tachyon inflationary universe model with viscous pressure in high-dissipation regime. General conditions which are required for this model to be realizable are derived in the slow-roll approximation. We present analytic expressions for density perturbation and amplitude of tensor perturbation in longitudinal gauge. Expressions of tensor-to-scalar ratio, scalar spectral index and its running are obtained. We develop our model by using exponential potential, the characteristics of this model are calculated for two specific cases in great details: 1. Dissipative parameter Γ and bulk viscous parameter ζ are constant parameters. 2. Dissipative parameter is a function of tachyon field ϕ and bulk viscous parameter is a function of matter-radiation mixture energy density ρ. The parameters of the model are restricted by recent observational data from the nine-year Wilkinson microwave anisotropy probe (WMAP9), Planck and BICEP2 data.
Supersymmetry, supergravity, and unification
Nath, Pran
2017-01-01
This unique book gives a modern account of particle physics and gravity based on supersymmetry and supergravity, two of the most significant developments in theoretical physics since general relativity. The book begins with a brief overview of the history of unification and then goes into a detailed exposition of both fundamental and phenomenological topics. The topics in fundamental physics include Einstein gravity, Yang-Mills theory, anomalies, the standard model, supersymmetry and supergravity, and the construction of supergravity couplings with matter and gauge fields, as well as computational techniques for SO(10) couplings. The topics of phenomenological interest include implications of supergravity models at colliders, CP violation, and proton stability, as well as topics in cosmology such as inflation, leptogenesis, baryogenesis, and dark matter. The book is intended for graduate students and researchers seeking to master the techniques for building grand unified models.
Kappa-symmetry of superstring sigma model and generalized 10d supergravity equations
Wulff, L
2016-01-01
We determine the constraints imposed on the 10d target superspace geometry by the requirement of classical kappa-symmetry of the Green-Schwarz superstring. In the type I case we find that the background must satisfy a generalization of type I supergravity equations. These equations depend on an arbitrary vector X_a and imply the one-loop scale invariance of the GS sigma model. In the special case when X_a is the gradient of a scalar \\phi (dilaton) one recovers the standard type I equations equivalent to the 2d Weyl invariance conditions of the superstring sigma model. In the type II case we find a generalized version of the 10d supergravity equations the bosonic part of which was introduced in arXiv:1511.05795. These equations depend on two vectors \\X_a and K_a subject to 1st order differential relations (with the equations in the NS-NS sector depending only on the combination X_a = \\X_a + K_a). In the special case of K_a=0 one finds that \\X_a=\\d_a \\phi and thus obtains the standard type II supergravity equat...
Ferrara, Sergio; Porrati, Massimo
2015-01-01
We formulate $R^2$ pure supergravity as a scale invariant theory built only in terms of superfields describing the geometry of curved superspace. The standard supergravity duals are obtained in both "old" and "new" minimal formulations of auxiliary fields. These theories have massless fields in de Sitter space as they do in their non supersymmetric counterpart. Remarkably, the dual theory of $R^2$ supergravity in the new minimal formulation is an extension of the Freedman model, describing a massless gauge field and a massless chiral multiplet in de Sitter space, with inverse radius proportional to the Fayet-Iliopoulos term. This model can be interpreted as the "de-Higgsed" phase of the dual companion theory of $R+R^2$ supergravity.
Kappa-symmetry of superstring sigma model and generalized 10d supergravity equations
Energy Technology Data Exchange (ETDEWEB)
Tseytlin, A.A.; Wulff, L. [Blackett Laboratory, Imperial College,London SW7 2AZ (United Kingdom)
2016-06-29
We determine the constraints imposed on the 10d target superspace geometry by the requirement of classical kappa-symmetry of the Green-Schwarz superstring. In the type I case we find that the background must satisfy a generalization of type I supergravity equations. These equations depend on an arbitrary vector X{sub a} and imply the one-loop scale invariance of the GS sigma model. In the special case when X{sub a} is the gradient of a scalar ϕ (dilaton) one recovers the standard type I equations equivalent to the 2d Weyl invariance conditions of the superstring sigma model. In the type II case we find a generalized version of the 10d supergravity equations the bosonic part of which was introduced in http://arxiv.org/abs/1511.05795. These equations depend on two vectors X{sub a} and K{sub a} subject to 1st order differential relations (with the equations in the NS-NS sector depending only on the combination X{sub a}=X{sub a}+K{sub a}). In the special case of K{sub a}=0 one finds that X{sub a}=∂{sub a}ϕ and thus obtains the standard type II supergravity equations. New generalized solutions are found if K{sub a} is chosen to be a Killing vector (and thus they exist only if the metric admits an isometry). Non-trivial solutions of the generalized equations describe K-isometric backgrounds that can be mapped by T-duality to type II supergravity solutions with dilaton containing a linear isometry-breaking term. Examples of such backgrounds appeared recently in the context of integrable η-deformations of AdS{sub n}×S{sup n} sigma models. The classical kappa-symmetry thus does not, in general, imply the 2d Weyl invariance conditions for the GS sigma model (equivalent to type II supergravity equations) but only weaker scale invariance type conditions.
On Second Order Gauge Invariant Perturbations in Multi-Field Inflationary Models
Rigopoulos, G I
2002-01-01
In a recent letter [1] Acquaviva et. al presented results from a second order calculation for a single field inflationary model. In this paper we elaborate on their approach. We present equations for the second order superhorizon perturbations of a generic multi field model. We utilise a change of coordinates in field space - first presented in [2] and given a more geometrical flavour here - to separate isocurvature and adiabatic perturbations and construct gauge invariant variables related to them to second order. Explicit relations are given for two scalar fields on a flat field manifold although the results can be generalised to curved field manifolds and an arbitrary number of fields. This is an outline of a possible procedure to study nonlinear and nongaussian effects during multifield inflation. For a more detailed discussion we refer to a future publication [12].
Classical cosmologies from ten-dimensional supergravity
Energy Technology Data Exchange (ETDEWEB)
Gleiser, M.; Stein-Schabes, J.A.
1986-09-15
We study possible cosmological solutions to N = 1, D = 10 supergravity with the Yang-Mills field strength set to zero and show that the model accepts both power-law solutions and exponential solutions in the large-time limit. The stability of these solutions is investigated. It is found that a shrinking internal space is compatible with several field configurations. Using a stable power-law solution we analyze the conditions to obtain enough inflation in the physical space from the shrinking internal dimensions. We also show that for a flat topology a de Sitter phase is possible for late times. We used the consistency with the density perturbations to fix the inflationary parameter.
An Exact Solution with Exit in the New Inflationary Universe Model
Institute of Scientific and Technical Information of China (English)
王文福
2001-01-01
Taking the cosmological expansion rate directly as a function of the infiaton field ψ instead of as a function of time, we present a new exact solution to Einstein's equations that describe the evolution of the inflationary universe model. This includes a solution which has nearly exponential inflation for ψo ≤ψ≤ ψf, and then develops smoothly towards radiation-like evolution for ψ ≥ ψf. The inflation is driven by the evolution of a scalar field with an inflation potential, V (ψ) = Vo - m2ψ2/2 + λψ4/4. The spectral index of the scalar density, ns, is computed and ns lies well inside the limits set by the cosmic background explorer satellite.
How thermal inflation can save minimal hybrid inflation in supergravity
Energy Technology Data Exchange (ETDEWEB)
Dimopoulos, Konstantinos; Owen, Charlotte [Consortium for Fundamental Physics, Physics Department,Lancaster University, Lancaster LA1 4YB (United Kingdom)
2016-10-12
Minimal hybrid inflation in supergravity has been ruled out by the 2015 Planck observations because the spectral index of the produced curvature perturbation falls outside observational bounds. To resurrect the model, a number of modifications have been put forward but many of them spoil the accidental cancellation that resolves the η-problem and require complicated Kähler constructions to counterbalance the lost cancellation. In contrast, in this paper the model is rendered viable by supplementing the scenario with a brief period of thermal inflation, which follows the reheating of primordial inflation. The scalar field responsible for thermal inflation requires a large non-zero vacuum expectation value (VEV) and a flat potential. We investigate the VEV of such a flaton field and its subsequent effect on the inflationary observables. We find that, for large VEV, minimal hybrid inflation in supergravity produces a spectral index within the 1-σ Planck bound and a tensor-to-scalar ratio which may be observable in the near future. The mechanism is applicable to other inflationary models.
Two-field analysis of no-scale supergravity inflation
Energy Technology Data Exchange (ETDEWEB)
Ellis, John [Theoretical Particle Physics and Cosmology Group, Department of Physics, King' s College London, WC2R 2LS London (United Kingdom); García, Marcos A.G.; Olive, Keith A. [William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Nanopoulos, Dimitri V., E-mail: john.ellis@cern.ch, E-mail: garciagarcia@physics.umn.edu, E-mail: dimitri@physics.tamu.edu, E-mail: olive@physics.umn.edu [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, 77843 Texas (United States)
2015-01-01
Since the building-blocks of supersymmetric models include chiral superfields containing pairs of effective scalar fields, a two-field approach is particularly appropriate for models of inflation based on supergravity. In this paper, we generalize the two-field analysis of the inflationary power spectrum to supergravity models with arbitrary Kähler potential. We show how two-field effects in the context of no-scale supergravity can alter the model predictions for the scalar spectral index n{sub s} and the tensor-to-scalar ratio r, yielding results that interpolate between the Planck-friendly Starobinsky model and BICEP2-friendly predictions. In particular, we show that two-field effects in a chaotic no-scale inflation model with a quadratic potential are capable of reducing r to very small values || 0.1. We also calculate the non-Gaussianity measure f{sub NL}, finding that is well below the current experimental sensitivity.
Nath, Pran
A review of recent developments in the applications of N=1 Supergravity to the construction of unified models of elementary particle interactions is given. Couplings of N=1 Supergravity with matter consisting of an arbitrary set of l handed multiplets and a gauge multiplet are discussed. General formulation of spontaneous symmetry breaking and the criteria for breaking of internal symmetry and of local supersymmetry are described. Construction of specific Supergrvity GUT models, the gauge heirarchy in GUT models and a deduction of the low energy effective potential are discussed. The phenomena of SU(2)XU(1) electro-weak gauge invariance breakdown by Supergravity in tree models and by radiative corrections using renormalization group methods are described. Model independent formulations of low energy physics which encompass tree and the renormalization group methods of breaking SU(2)XU(1), but also allow more general scenarios are discussed. The particle content of Supergravity unified theories at low energy is given which includes predictions, for a class of supergravity models, of light gauge fermins, i.e. of a charged Dirac fermion, the Wino, with a mass below the W boson mass and a neutral fermion, the Zino, below the mass of the Z boson mass. "Direct" gaugino masses arising from loops for the photino and the gluino, (which are massless at the tree level) are exhibited. Decays of the W and Z into photino. Vino, and Zino modes and their branching ratios into various channels are given. Experimental signals for the supersymmetrie decays are discussed and some prominent signatures such as decays into one and two jets with unbalanced energy and momentum are pointed out. The current status of the ρ-parameter, including supergravity GUT effects is given. Other experimental consequences of supergravity unified theories are also discussed.
Supergravity background of lambda-deformed model for AdS2 x S2 supercoset
Borsato, R; Wulff, L
2016-01-01
Starting with the F/G supercoset model corresponding to the AdS_n x S^n superstring one can define the lambda-model of arXiv:1409.1538 either as a deformation of the F/F gauged WZW model or as an integrable one-parameter generalization of the non-abelian T-dual of the AdS_n x S^n superstring sigma model with respect to the whole supergroup F. Here we consider the case of n=2 and find the explicit form of the 4d target space background for the lambda-model for the PSU(1,1|2)/[SO(1,1) x SO(2)] supercoset. We show that this background represents a solution of type IIB 10d supergravity compactified on a 6-torus with only metric, dilaton Phi and the RR 5-form (represented by a 2-form F in 4d) being non-trivial. This implies that the lambda-model is Weyl invariant at the quantum level and thus defines a consistent superstring sigma model. The supergravity solution we find is different from the one in arXiv:1410.1886 which should correspond to a version of the lambda-model where only the bosonic subgroup of F is gau...
Charged Higgs mass bound from the b --> s$\\gamma$ process in the minimal supergravity model
Goto, T; Goto, Toru; Okada, Yasuhiro
1994-01-01
We study the constraint on the mass of the charged Higgs boson in the minimal supergravity model based on the recent measurement of the inclusive b\\rightarrow s\\gamma decay. It is shown that the lower bound for the charged Higgs mass crucially depends on the sign of the higgsino mass parameter (\\mu). For \\mu0 due to cancellations between charged Higgs and supersymmetric particle contributions. For 3\\lsim\\tan\\beta\\lsim5, a charged Higgs lighter than 180 GeV is excluded by this process irrespective of the sign of \\mu.
Directory of Open Access Journals (Sweden)
Anna Ijjas
2014-09-01
Full Text Available Classic inflation, the theory described in textbooks, is based on the idea that, beginning from typical initial conditions and assuming a simple inflaton potential with a minimum of fine-tuning, inflation can create exponentially large volumes of space that are generically homogeneous, isotropic and flat, with nearly scale-invariant spectra of density and gravitational wave fluctuations that are adiabatic, Gaussian and have generic predictable properties. In a recent paper, we showed that, in addition to having certain conceptual problems known for decades, classic inflation is for the first time also disfavored by data, specifically the most recent data from WMAP, ACT and Planck2013. Guth, Kaiser and Nomura and Linde have each recently published critiques of our paper, but, as made clear here, we all agree about one thing: the problematic state of classic inflation. Instead, they describe an alternative inflationary paradigm that revises the assumptions and goals of inflation, and perhaps of science generally.
Ijjas, Anna; Steinhardt, Paul J.; Loeb, Abraham
2014-09-01
Classic inflation, the theory described in textbooks, is based on the idea that, beginning from typical initial conditions and assuming a simple inflaton potential with a minimum of fine-tuning, inflation can create exponentially large volumes of space that are generically homogeneous, isotropic and flat, with nearly scale-invariant spectra of density and gravitational wave fluctuations that are adiabatic, Gaussian and have generic predictable properties. In a recent paper, we showed that, in addition to having certain conceptual problems known for decades, classic inflation is for the first time also disfavored by data, specifically the most recent data from WMAP, ACT and Planck2013. Guth, Kaiser and Nomura and Linde have each recently published critiques of our paper, but, as made clear here, we all agree about one thing: the problematic state of classic inflation. Instead, they describe an alternative inflationary paradigm that revises the assumptions and goals of inflation, and perhaps of science generally. Assuming simple inflaton potentials with a single phase of inflation is “not at all realistic”, whereas highly complex potentials with many parameters, tunings, and fields are “very plausible according to recent ideas in high-energy physics” [GKN10-11]. The complex potentials inevitably lead to multiple stages of inflation and a multiverse in which anything can happen [GKN7]. The validity of the postmodern inflationary paradigm cannot be judged on whether it works for typical initial conditions since we do not know what those conditions are [GKN13]. Even if the initial conditions are determined some day they will not affect the validity of inflation; rather, the (yet unknown) measure will then be adjusted such that the observed properties of the universe are likely to emerge from those (yet unknown) initial conditions [GKN14]. The volume measure is rejected in favor of complex measures that are to be (re-)adjusted (a posteriori) to ensure that the
Directory of Open Access Journals (Sweden)
Jaggi Chandra K.
2016-01-01
Full Text Available This study develops an inventory model to determine ordering policy for deteriorating items with constant demand rate under inflationary condition over a fixed planning horizon. Shortages are allowed and are partially backlogged. In today’s wobbling economy, especially for long term investment, the effects of inflation cannot be disregarded as uncertainty about future inflation may influence the ordering policy. Therefore, in this paper a fuzzy model is developed that fuzzify the inflation rate, discount rate, deterioration rate, and backlogging parameter by using triangular fuzzy numbers to represent the uncertainty. For Defuzzification, the well known signed distance method is employed to find the total profit over the planning horizon. The objective of the study is to derive the optimal number of cycles and their optimal length so to maximize the net present value of the total profit over a fixed planning horizon. The necessary and sufficient conditions for an optimal solution are characterized. An algorithm is proposed to find the optimal solution. Finally, the proposed model has been validated with numerical example. Sensitivity analysis has been performed to study the impact of various parameters on the optimal solution, and some important managerial implications are presented.
Higher curvature supergravity and cosmology
Energy Technology Data Exchange (ETDEWEB)
Ferrara, Sergio [Th-Ph Department, CERN, Geneva (Switzerland); U.C.L.A., Los Angeles, CA (United States); INFN - LNF, Frascati (Italy); Sagnotti, Augusto [Scuola Normale Superiore, Pisa (Italy); INFN, Pisa (Italy)
2016-04-15
In this contribution we describe dual higher-derivative formulations of some cosmological models based on supergravity. Work in this direction started with the R + R{sup 2} Starobinsky model, whose supersymmetric extension was derived in the late 80's and was recently revived in view of new CMB data. Models dual to higher-derivative theories are subject to more restrictions than their bosonic counterparts or standard supergravity. The three sections are devoted to a brief description of R + R{sup 2} supergravity, to a scale invariant R{sup 2} supergravity and to theories with a nilpotent curvature, whose duals describe non-linear realizations (in the form of a Volkov-Akulov constrained superfield) coupled to supergravity. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Observing the Inflationary Reheating
Martin, Jerome; Vennin, Vincent
2014-01-01
Reheating is the the epoch which connects inflation to the subsequent hot Big-Bang phase. Conceptually very important, this era is however observationally poorly known. We show that the current Planck satellite measurements of the Cosmic Microwave Background (CMB) anisotropies constrain the kinematic properties of the reheating era for most of the inflationary models. This result is obtained by deriving the marginalized posterior distributions of the reheating parameter for about 200 models taken in Encyclopaedia Inflationaris. Weighted by the statistical evidence of each model to explain the data, we show that the Planck 2013 measurements induce an average reduction of the posterior-to-prior volume by 40%. Making some additional assumptions on reheating, such as specifying a mean equation of state parameter, or focusing the analysis on peculiar scenarios, can enhance or reduce this constraint. Our study also indicates that the Bayesian evidence of a model can substantially be affected by the reheating proper...
Inflationary signatures of single-field models beyond slow-roll
Energy Technology Data Exchange (ETDEWEB)
Ribeiro, Raquel H., E-mail: R.Ribeiro@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2012-05-01
If the expansion of the early Universe was not close to de Sitter, the statistical imprints of the primordial density perturbation on the cosmic microwave background can be quite different from those derived in slow-roll inflation. In this paper we study the inflationary signatures of all single-field models which are free of ghost-like instabilities. We allow for a rapid change of the Hubble parameter and the speed of sound of scalar fluctuations, in a way that is compatible with a nearly scale-invariant spectrum of perturbations, as supported by current cosmological observations. Our results rely on the scale-invariant approximation, which is different from the standard slow-roll approximation. We obtain the propagator of scalar fluctuations and compute the bispectrum, keeping next-order corrections proportional to the deviation of the spectral index from unity. These theories offer an explicit example where the shape and scale-dependences of the bispectrum are highly non-trivial whenever slow-roll is not a good approximation.
Determination of Non-Universal Supergravity Models at the Large Hadron Collider
Dutta, Bhaskar; Krislock, Abram; Kolev, Nikolay; Oh, Youngdo
2010-01-01
We examine a well motivated non-universal supergravity model where the Higgs boson masses are not unified with the other scalars at the grand unified scale at the LHC. The dark matter content can easily be satisfied in this model by having a larger Higgsino component in the lightest neutralino. Typical final states in such a scenario at the LHC involve W bosons. We develop a bi-event subtraction technique to remove a huge combinatorial background to identify W -> jj decays. This is also a key technique to reconstruct supersymmetric particle masses in order to determine the model parameters. With the model parameters, we find that the dark matter content of the universe can be determined in agreement with existing experimental results.
Exploring the Yukawa unified minimal supergravity model at the Tevatron, LEP II, and the LHC
Gunion, J F
1994-01-01
We explore the prospects for detection of sparticles and Higgs bosons at the Tevatron, LEP-200 and the LHC in the allowed parameter space of a "Yukawa unified" ($\\lambda_b(M_U)=\\lambda_{\\ tau}(M_U)$) minimal supergravity (YUMS) model, where the only non-zero unification scale soft-SUSY-breaking terms are a universal gaugino mass and a Higgs mixing term. In a bottom-up approach, just two weak scale parameters, $\\tanb$ and $\\mha$ (along with the sign of the Higgs mixing parameter $\\mu$) completely parameterize the model. Many interesting "special" situations regarding sparticle and Higgs discovery arise, such as the importance of the invisible $\\hl\\rta\\cnone\\cnone,\\snu\\ snubar$ decay modes.
Reheating in tachyonic inflationary models: Effects on the large scale curvature perturbations
Energy Technology Data Exchange (ETDEWEB)
Jain, Rajeev Kumar, E-mail: rajeev.jain@unige.ch [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India); Chingangbam, Pravabati, E-mail: prava@iiap.res.in [Korea Institute for Advanced Study, 207-43 Cheongnyangni 2-dong, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Sriramkumar, L., E-mail: sriram@physics.iitm.ac.in [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India)
2011-11-11
We investigate the problem of perturbative reheating and its effects on the evolution of the curvature perturbations in tachyonic inflationary models. We derive the equations governing the evolution of the scalar perturbations for a system consisting of a tachyon and a perfect fluid. Assuming the perfect fluid to be radiation, we solve the coupled equations for the system numerically and study the evolution of the perturbations from the sub-Hubble to the super-Hubble scales. In particular, we analyze the effects of the transition from tachyon driven inflation to the radiation dominated epoch on the evolution of the large scale curvature and non-adiabatic pressure perturbations. We consider two different potentials to describe the tachyon and study the effects of two possible types of decay of the tachyon into radiation. We plot the spectrum of curvature perturbations at the end of inflation as well as at the early stages of the radiation dominated epoch. We find that reheating does not affect the amplitude of the curvature perturbations in any of these cases. These results corroborate similar conclusions that have been arrived at earlier based on the study of the evolution of the perturbations in the super-Hubble limit. We illustrate that, before the transition to the radiation dominated epoch, the relative non-adiabatic pressure perturbation between the tachyon and radiation decays in a fashion very similar to that of the intrinsic entropy perturbation associated with the tachyon. Moreover, we show that, after the transition, the relative non-adiabatic pressure perturbation dies down extremely rapidly during the early stages of the radiation dominated epoch. It is these behavior which ensure that the amplitude of the curvature perturbations remain unaffected during reheating. We also discuss the corresponding results for the popular chaotic inflation model in the case of the canonical scalar field.
Particle physics and cosmology with high-scale SUSY breaking in five-dimensional supergravity models
Otsuka, Hajime
2015-01-01
We discuss a high-scale SUSY breaking scenario with the wino dark matter in the five-dimensional supergravity model on $S^1/Z_2$. The extra U(1) symmetries broken by the orbifold projection control the flavor structure of soft SUSY-breaking parameters as well as the Yukawa couplings, and a scalar component of the one of moduli multiplets, which arise from extra-dimensional components of the U(1) vector multiplets, induces the slow-roll inflation. Because of the supersymmetric moduli stabilization as well as the moduli inflation, it is found that the correct dark matter relic abundance is non-thermally generated by the gravitino decaying into the wino.
Starobinsky-like inflation and running vacuum in the context of Supergravity
Basilakos, Spyros; Solà, Joan
2016-01-01
We describe the primeval inflationary phase of the early Universe within a quantum field theoretical (QFT) framework that can be viewed as the effective action of vacuum decay in the early times. Interestingly enough, the model accounts for the "graceful exit" of the inflationary phase into the standard radiation regime. The underlying QFT framework considered here is Supergravity (SUGRA), more specifically an existing formulation in which the Starobinsky-type inflation (de-Sitter background) emerges from the quantum corrections to the effective action after integrating out the gravitino fields in their (dynamically induced) massive phase. We also demonstrate that the structure of the effective action in this model is consistent with the generic idea of renormalization group (RG) running of the cosmological parameters, specifically it follows from the corresponding RG equation for the vacuum energy density as a function of the Hubble rate, $\\rho_{\\Lambda}(H)$. Overall our combined approach amounts to a concre...
Pre-Inflationary Relics in the CMB?
Gruppuso, A; Mandolesi, N; Natoli, P; Sagnotti, A
2015-01-01
String Theory and Supergravity allow, in principle, to follow the transition of the inflaton from pre-inflationary fast roll to slow roll. This introduces an infrared depression in the primordial power spectrum that might have left an imprint in the CMB anisotropy, if it occurred at accessible wavelengths. We model the effect extending $\\Lambda$CDM with a scale $\\Delta$ related to the infrared depression and explore the constraints allowed by {\\sc Planck} data, employing also more conservative, wider Galactic masks in the low resolution CMB likelihood. In an extended mask with $f_{sky}=39\\%$, we thus find $\\Delta = (0.351 \\pm 0.114) \\times 10^{-3} \\, \\mbox{Mpc}^{-1}$, at $99.4\\%$ confidence level, to be compared with a nearby value at $88.5\\%$ with the standard $f_{sky}=94\\%$ mask. With about 64 $e$--folds of inflation, these values for $\\Delta$ would translate into primordial energy scales ${\\cal O}(10^{14})$ GeV.
Renormalization-group improved inflationary scenarios
Pozdeeva, E O
2016-01-01
The possibility to construct an inflationary scenario for renormalization-group improved potentials corresponding to the Higgs sector of quantum field models is investigated. Taking into account quantum corrections to the renormalization-group potential which sums all leading logs of perturbation theory is essential for a successful realization of the inflationary scenario, with very reasonable parameters values. The scalar electrodynamics inflationary scenario thus obtained are seen to be in good agreement with the most recent observational data.
Renormalization-group improved inflationary scenarios
Pozdeeva, E. O.; Vernov, S. Yu.
2017-03-01
The possibility to construct an inflationary scenario for renormalization-group improved potentials corresponding to the Higgs sector of quantum field models is investigated. Taking into account quantum corrections to the renormalization-group potential which sums all leading logs of perturbation theory is essential for a successful realization of the inflationary scenario, with very reasonable parameters values. The scalar electrodynamics inflationary scenario thus obtained are seen to be in good agreement with the most recent observational data.
Braneworld Inflation in Supergravity with a Shift Symmetric K$\\"{a}$hler Potential
Indian Academy of Sciences (India)
Z. Mounzi; M. Ferricha-Alami; A. Safsafi; M. Bennai
2016-06-01
We propose a new solution to the $\\eta$-problem in supergravity using a shift symmetric K\\"{a}hler potential in the context of the Randall–Sundrum type II model. We focus on a F-term supergravity inflation with a minimal K\\"{a}hler potential taking into account the radiative corrections. The slow-roll conditions are ensured by the shift symmetry where a very small value of $\\eta$ $(\\eta \\ll 1)$ is obtained. In this context, we derive all known spectrum inflationary parameters which are widely consistent with Planck 2015 data for a particular choice of brane tension and coupling constant values. A suitable observational central value of $n_{s}=0.96$ is also obtained in the case of minimal K$\\"{a}$hler potential.
Shift Symmetry and Higgs Inflation in Supergravity with Observable Gravitational Waves
Lazarides, G
2015-01-01
We demonstrate how to realize within supergravity a novel chaotic-type inflationary scenario driven by the radial parts of a conjugate pair of Higgs superfields causing the spontaneous breaking of a grand unified gauge symmetry at a scale assuming the value of the supersymmetric grand unification scale. The superpotential is uniquely determined at the renormalizable level by the gauge symmetry and a continuous R symmetry. We select two types of Kahler potentials, which respect these symmetries as well as an approximate shift symmetry. In particular, they include in a logarithm a dominant shift-symmetric term proportional to a parameter c- together with a small term violating this symmetry and characterized by a parameter c+. In both cases, imposing a lower bound on c-, inflation can be attained with subplanckian values of the original inflaton, while the corresponding effective theory respects perturbative unitarity for r+-=c+/c-<1. These inflationary models do not lead to overproduction of cosmic defects,...
Cold and warm quintessential/tachyonic inflationary models in light of the Planck 2015 results
Rezazadeh, K; Hashemi, S; Karimi, P
2015-01-01
Within the framework of cold and warm quintessential/tachyonic inflationary scenarios, we consider different inflationary potentials and check their viability in light of the Planck 2015 results. In the cold quintessential inflation, the exponential and inverse power-law potentials that give rise to the power-law and intermediate inflations, respectively, are not favored according to the Planck 2015 results. But, the power-law potential can be in agreement with the Planck 2015 data at 95\\% CL. Also, the predictions of the Higgs-like and Coleman-Weinberg potentials and $\\mathcal{R}^2$ inflation can lie inside the 68\\% CL region of Planck 2015 data. In the warm quintessential inflationary scenario, the power-law potential with a constant dissipative parameter $\\Gamma$, the inverse power-law and exponential potentials with constant/varying $\\Gamma$ do not lead to acceptable results. But the power-law potential with varying $\\Gamma$, the Higgs-like and Coleman-Weinberg potentials and $\\mathcal{R}^2$ inflation wit...
DEFF Research Database (Denmark)
Mahmoudinezhad, Mahvash; Mirzazadeh, Abolfazl; Ghoreishi, Maryam
2016-01-01
In this article, an integrated production–distribution model is presented for a manufacturer and retailer supply chain under inflationary conditions, permissible delay in payments, deterioration, imperfect production process and inspection errors. We assume that the first-stage inspection...... is conducted without inspection errors, and the screening process and demand proceed simultaneously. The main objective is to determine the optimal inspection time and the optimal number of cycle such that the present value of the total cost is minimized. Finally, a numerical example and sensitivity analyses...
$\\varepsilon_{b}$ constraints on the minimal SU(5) and SU(5) x U(1) supergravity models
Kim, J E; Jihn E Kim; Gye T Park
1994-01-01
We have performed a systematic analysis to compute the one-loop electroweak corrections to the Z->b b-bar vertex in terms of \\epsilon_b and R_b in the context of the minimal SU(5) and no-scale SU(5)\\times U(1) supergravity models. With the measured top mass, m_t=174\\pm 10^{+13}_{-12} \\GeV recently announced by CDF, we use the latest LEP data on \\epsilon_b and R_b (\\equiv{\\Gamma(Z->b b-bar)/{\\Gamma(Z->hadrons)}}) in order to constrain further the two models. We find that the present LEP data on \\epsilon_b and R_b constrain the two models rather severely. Especially, the low-\\tan\\beta region is constrained more severely. \\tan\\beta\\lsim 2.5 (4.0) is excluded by \\epsilon_b at 90\\% C.~L. for m_t\\gsim 170 (180) \\GeV in the minimal SU(5) (no-scale SU(5)\\times U(1)) supergravity. Even more stringent constraint comes from R_b. It excludes \\tan\\beta\\lsim 4.0 at 90\\% C.~L. for m_t\\gsim 160 (170) \\GeV in the minimal SU(5) (no-scale SU(5)\\times U(1)) supergravity. We also find that the sign on \\mu in the two models can be...
Charmless B→PP decays and new physics effects in the minimal supergravity model
Xiao, Zhenjun; Zou, Wenjuan
2004-11-01
By employing the QCD factorization approach, we calculate the new physics contributions to the branching radios of the two-body charmless B→PP decays in the framework of the minimal supergravity (mSUGRA) model. Within the considered parameter space, we find that (a)the supersymmetric (SUSY) corrections to the Wilson coefficients Ck (k=3-6) are very small and can be neglected safely, but the leading order SUSY contributions to C7γ(MW) and C8g(MW) can be rather large and even change the sign of the corresponding coefficients in the standard model; (b)the possible SUSY contributions to those penguin-dominated decays in mSUGRA model can be as large as 30%-50%; (c)for the well measured B→Kπ decays, the significant SUSY contributions play an important role in improving the consistency of the theoretical predictions with the data; (d)for B→Kη' decays, the theoretical predictions of the corresponding branching ratios become consistent with the data within 1 standard deviation after the inclusion of the large SUSY contributions in the mSUGRA model.
Precision Electroweak Tests of the Minimal and Flipped SU(5) Supergravity Models
López, J; Park, G; Pois, H; Yuan, K
1993-01-01
We explore the one-loop electroweak radiative corrections in the minimal $SU(5)$ and the no-scale flipped $SU(5)$ supergravity models via explicit calculation of vacuum polarization contributions to the $\\epsilon_{1,2,3}$ parameters. Experimentally, $\\epsilon_{1,2,3}$ are obtained from a global fit to the LEP observables, and $M_W/M_Z$ measurements. We include $q^2$-dependent effects which have been neglected in most previous ``model-independent" analyses of this type. These effects induce a large systematic negative shift on $\\epsilon_{1,2,3}$ for light chargino masses ($m_{\\chi^\\pm_1}\\lsim70\\GeV$). In agreement with previous general arguments, we find that for increasingly large sparticle masses, the heavy sector of both models rapidly decouples, \\ie, the values for $\\epsilon_{1,2,3}$ quickly asymptote to the Standard Model values with a {\\it light} Higgs ($m_{H_{SM}}\\sim100\\GeV$). Specifically, at present the $90\\%$ CL upper limit on the top-quark mass is $m_t\\lsim175\\GeV$ in the no-scale flipped $SU(5)$ s...
Inflationary universe in fluid description
Bamba, Kazuharu
2016-01-01
We investigate a fluid description of inflationary cosmology. It is shown that the three observables of the inflationary universe: the spectral index of the curvature perturbations, the tensor-to-scalar ratio of the density perturbations, and the running of the spectral index, can be compatible with the Planck analysis. In addition, we reconstruct the equation of state (EoS) for a fluid from the spectral index of the curvature perturbations consistent with the Planck results. We explicitly demonstrate that the universe can gracefully exit from inflation in the reconstructed fluid models. Furthermore, we explore the singular inflation for a fluid model.
The charmless $B \\to PP $ decays and the new physics effects in the minimal supergravity model
Xiao, Z; Xiao, Zhenjun; Zou, Wenjuan
2004-01-01
By employing the QCD factorization approach, we calculate the new physics contributions to the branching radios of the two-body charmless $ B \\to PP$ decays in the framework of the minimal supergravity (mSUGRA) model. Within the considered parameter space, we find that (a) the supersymmetric (SUSY) corrections to the Wilson coefficients $C_k$ ($k=3-6$) are very small and can be neglected safely, but the leading order SUSY contributions to $C_{7\\gamma}(M_W)$ and $C_{8g}(M_W)$ can be rather large and even change the sign of the corresponding coefficients in the standard model; (b) the possible SUSY contributions to those penguin-dominated decays in mSUGRA model can be as large as $30-50%$; (c) for the well measured $B \\to K \\pi$ decays, the significant SUSY contributions play an important rule to improve the consistency of the theoretical predictions with the data; (d) for $B \\to K \\eta'$ decays, the theoretical predictions of the corresponding branching ratios become consistent with the data within one standar...
Constraints on modular inflation in supergravity and string theory
Energy Technology Data Exchange (ETDEWEB)
Covi, L.; Palma, G.A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gomez-Reino, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Gross, C. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Louis, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[Hamburg Univ. (Germany). Zentrum fuer Mathematische Physik; Scrucca, C.A. [Ecole Polytechnique Federale de Lausanne (EPFL) (Switzerland). Inst. de Theorie des Phenomenes Physiques
2008-06-15
We perform a general algebraic analysis on the possibility of realising slow-roll inflation in the moduli sector of string models. This problem turns out to be very closely related to the characterisation of models admitting metastable vacua with non-negative cosmological constant. In fact, we show that the condition for the existence of viable inflationary trajectories is a deformation of the condition for the existence of metastable de Sitter vacua. This condition depends on the ratio between the scale of inflation and the gravitino mass and becomes stronger as this parameter grows. After performing a general study within arbitrary supergravity models, we analyse the implications of our results in several examples. More concretely, in the case of heterotic and orientifold string compactifications on a Calabi-Yau in the large volume limit we show that there may exist fully viable models, allowing both for inflation and stabilisation. Additionally, we show that subleading corrections breaking the no-scale property shared by these models always allow for slow-roll inflation but with an inflationary scale suppressed with respect to the gravitino scale. A scale of inflation larger than the gravitino scale can also be achieved under more restrictive circumstances and only for certain types of compactifications. (orig.)
Model independent signatures of new physics in the inflationary power spectrum.
Jackson, Mark G; Schalm, Koenraad
2012-03-16
We compute the universal generic corrections to the inflationary power spectrum due to unknown high-energy physics. We arrive at this result via a careful integrating out of massive fields in the "in-in" formalism yielding a consistent and predictive low-energy effective description in time-dependent backgrounds. We find that the power spectrum is universally modified at order H/M, where H is the scale of inflation. This is qualitatively different from the universal corrections in time-independent backgrounds, and it suggests that such effects may be present in upcoming cosmological observations.
Cosmology on Compact and Stable Supergravity Background
Hailu, Girma
2012-01-01
We propose a cosmological model of D3-brane universe on compact and stable supergravity background of wrapped D7-branes in type IIB string theory previously argued to be dual to pure N=1 SU(N) gauge theory in four dimensions. A model universe of order Planck size near the UV boundary dynamically flows toward the IR with constant total energy density and accelerating expansion followed by smooth transition to decelerating expansion and collides with the wrapped D7-branes at the IR boundary. The model addresses the horizon and flatness problems with most of the expansion produced during the decelerating expansion phase. The inflationary scenario is used to generate sources of inhomogeneities in the cosmic microwave background radiation and seeds for large scale structure formation from quantum fluctuations which exit the Hubble radius early during the accelerating expansion phase and the model addresses the inhomogeneity problem with red tilt in the power spectrum. We propose that the kinetic energy of the mode...
Inverse Symmetric Inflationary Attractors
Odintsov, S D
2016-01-01
We present a class of inflationary potentials which are invariant under a special symmetry, which depends on the parameters of the models. As we show, in certain limiting cases, the inverse symmetric potentials are qualitatively similar to the $\\alpha$-attractors models, since the resulting observational indices are identical. However, there are some quantitative differences which we discuss in some detail. As we show, some inverse symmetric models always yield results compatible with observations, but this strongly depends on the asymptotic form of the potential at large $e$-folding numbers. In fact when the limiting functional form is identical to the one corresponding to the $\\alpha$-attractors models, the compatibility with the observations is guaranteed. Also we find the relation of the inverse symmetric models with the Starobinsky model and we highlight the differences. In addition, an alternative inverse symmetric model is studied and as we show, not all the inverse symmetric models are viable. Moreove...
Charmless B→PV,VV decays and new physics effects in the minimal supergravity model
Zou, Wenjuan; Xiao, Zhenjun
2005-11-01
By employing the QCD factorization approach, we calculate the new physics contributions to the branching radios of the two-body charmless B→PV and B→VV decays in the framework of the minimal supergravity (mSUGRA) model. We choose three typical sets of the mSUGRA input parameters in which the Wilson coefficient C7γ(mb) can be either standard model (SM)-like (the case A and C) or has a flipped sign (the case B). We found numerically that (a) the SUSY contributions are always very small for both case A and C; (b) for those tree-dominated decays, the SUSY contributions in case B are also very small; (c) for those QCD penguin-dominated decay modes, the SUSY contributions in case B can be significant, and can provide an enhancement about 30%˜260% to the branching ratios of B→K*(π,ϕ,ρ) and Kϕ decays, but a reduction about 30%˜80% to B→K(ρ,ω) decays; and (d) the large SUSY contributions in the case B may be masked by the large theoretical errors dominated by the uncertainty from our ignorance of calculating the annihilation contributions in the QCD factorization approach.
The strongest experimental constraints on SU(5)xU(1) supergravity models
López, J; Park, G; Zichichi, A
1994-01-01
We consider a class of well motivated string-inspired flipped $SU(5)$ supergravity models which include four supersymmetry breaking scenarios: no-scale, strict no-scale, dilaton, and special dilaton, such that only three parameters are needed to describe all new phenomena $(m_t,\\tan\\beta,m_{\\tilde g})$. We show that the LEP precise measurements of the electroweak parameters in the form of the $\\epsilon_1$ variable, and the CLEOII allowed range for $\\bsg$ are at present the most important experimental constraints on this class of models. For $m_t\\gsim155\\,(165)\\GeV$, the $\\epsilon_1$ constraint (at 90(95)\\%CL) requires the presence of light charginos ($m_{\\chi^\\pm_1}\\lsim50-100\\GeV$ depending on $m_t$). Since all sparticle masses are proportional to $m_{\\tilde g}$, $m_{\\chi^\\pm_1}\\lsim100\\GeV$ implies: $m_{\\chi^0_1}\\lsim55\\GeV$, $m_{\\chi^0_2}\\lsim100\\GeV$, $m_{\\tilde g}\\lsim360\\GeV$, $m_{\\tilde q}\\lsim350\\,(365)\\GeV$, $m_{\\tilde e_R}\\lsim80\\,(125)\\GeV$, $m_{\\tilde e_L}\\lsim120\\,(155)\\GeV$, and $m_{\\tilde\
Ferrara, S; Sagnotti, A
2016-01-01
Abdus Salam was a true master of 20th Century Theoretical Physics. Not only was he a pioneer of the Standard Model (for which he shared the Nobel Prize with S. Glashow and S.Weinberg), but he also (co)authored many other outstanding contributions to the field of Fundamental Interactions and their unification. In particular, he was a major contributor to the development of supersymmetric theories, where he also coined the word "Supersymmetry" (replacing the earlier "Supergauges" drawn from String Theory). He also introduced the basic concept of "Superspace" and the notion of "Goldstone Fermion"(Goldstino). These concepts proved instrumental for the exploration of the ultraviolet properties and for the study of spontaneously broken phases of super Yang-Mills theories and Supergravity. They continue to play a key role in current developments in Early-Universe Cosmology. In this contribution we review models of inflation based on Supergravity with spontaneously broken local supersymmetry, with emphasis on the rol...
Proton Decay and Cosmology Strongly Constrain the Minimal SU(5) Supergravity Model
Lopez, Jorge L.; Pois, H.
1993-01-01
We present the results of an extensive exploration of the five-dimensional parameter space of the minimal $SU(5)$ supergravity model, including the constraints of a long enough proton lifetime ($\\tau_p>1\\times10^{32}\\y$) and a small enough neutralino cosmological relic density ($\\Omega_\\chi h^2_0\\le1$). We find that the combined effect of these two constraints is quite severe, although still leaving a small region of parameter space with $m_{\\tilde g,\\tilde q}<1\\TeV$. The allowed values of the proton lifetime extend up to $\\tau_p\\approx1\\times10^{33}\\y$ and should be fully explored by the SuperKamiokande experiment. The proton lifetime cut also entails the following mass correlations and bounds: $m_h\\lsim100\\GeV$, $m_\\chi\\approx{1\\over2}m_{\\chi^0_2}\\approx0.15\\gluino$, $m_{\\chi^0_2}\\approx m_{\\chi^+_1}$, and $m_\\chi<85\\,(115)\\GeV$, $m_{\\chi^0_2,\\chi^+_1}<165\\,(225)\\GeV$ for $\\alpha_3=0.113\\,(0.120)$. Finally, the {\\it combined} proton decay and cosmology constraints predict that if $m_h\\gsim75\\,(80)\\...
On Gaussian random supergravity
Bachlechner, Thomas C.
2014-01-01
We study the distribution of metastable vacua and the likelihood of slow roll inflation in high dimensional random landscapes. We consider two examples of landscapes: a Gaussian random potential and an effective supergravity potential defined via a Gaussian random superpotential and a trivial K\\"ahler potential. To examine these landscapes we introduce a random matrix model that describes the correlations between various derivatives and we propose an efficient algorithm that allows for a nume...
Inflaton decay in supergravity
Energy Technology Data Exchange (ETDEWEB)
Endo, M.; Takahashi, F. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Yanagida, T.T. [Tokyo Univ. (Japan). Dept. of Physics]|[Tokyo Univ. (Japan). Research Center for the Early Universe
2007-06-15
We discuss inflaton decay in supergravity, taking account of the gravitational effects. It is shown that, if the inflaton has a nonzero vacuum expectation value, it generically couples to any matter fields that appear in the superpotential at the tree level, and to any gauge sectors through anomalies in the supergravity. Through these processes, the inflaton generically decays into the supersymmetry breaking sector, producing many gravitinos. The inflaton also directly decays into a pair of the gravitinos. We derive constraints on both inflation models and supersymmetry breaking scenarios for avoiding overproduction of the gravitinos. Furthermore, the inflaton naturally decays into the visible sector via the top Yukawa coupling and SU(3){sub C} gauge interactions. (orig.)
Inflaton decay in supergravity
Energy Technology Data Exchange (ETDEWEB)
Endo, M.; Takahashi, F. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Yanagida, T.T. [Tokyo Univ. (Japan). Dept. of Physics]|[Tokyo Univ. (Japan). Research Center for the Early Universe
2007-06-15
We discuss inflaton decay in supergravity, taking account of the gravitational effects. It is shown that, if the inflaton has a nonzero vacuum expectation value, it generically couples to any matter fields that appear in the superpotential at the tree level, and to any gauge sectors through anomalies in the supergravity. Through these processes, the inflaton generically decays into the supersymmetry breaking sector, producing many gravitinos. The inflaton also directly decays into a pair of the gravitinos. We derive constraints on both inflation models and supersymmetry breaking scenarios for avoiding overproduction of the gravitinos. Furthermore, the inflaton naturally decays into the visible sector via the top Yukawa coupling and SU(3){sub C} gauge interactions. (orig.)
Classification of inflationary Einstein-scalar-field-models via catastrophe theory
Kusmartsev, F V; Obukhov, N; Schunck, E; Kusmartsev, V; Mielke, W; Obukhov, N; Schunck, E
1995-01-01
Various scenarios of the initial inflation of the universe are distinguished by the choice of a scalar field {\\em potential} U(\\phi) which simulates a {\\it temporarily} non--vanishing {\\em cosmological term}. Our new method, which involves a reparametrization in terms of the Hubble expansion parameter H, provides a classification of allowed inflationary potentials and of the stability of the critical points. It is broad enough to embody all known {\\it exact} solutions involving one scalar field as special cases. Inflation corresponds to the evolution of critical points of some catastrophe manifold. The coalescence of its nondegenerate critical points with the creation of a degenerate critical point corresponds the reheating phase of the universe. This is illustrated by several examples.
Implementing Hilltop F-term Hybrid Inflation in Supergravity
Armillis, R
2012-01-01
F-term hybrid inflation (FHI) of the hilltop type can generate a scalar spectral index, ns, in agreement with the fitting of the seven-year Wilkinson microwave anisotropy probe data by the standard power-law cosmological model with cold dark matter and a cosmological constant, LambdaCDM. We investigate the realization of this type of FHI by using quasi-canonical Kahler potentials with or without the inclusion of extra hidden-sector fields. In the first case, acceptable results can be obtained by constraining the coefficients of the quadratic and/or quartic supergravity correction to the inflationary potential and therefore a mild tuning of the relevant term of the Kahler potential is unavoidable. Possible reduction of ns without generating maxima and minima of the potential on the inflationary path is also possible in a limited region of the available parameter space. The tuning of the terms of the Kahler potential can be avoided with the adoption of a simple class of string-inspired Kahler potentials for the...
BPS black holes in a non-homogeneous deformation of the stu model of N=2, D=4 gauged supergravity
Energy Technology Data Exchange (ETDEWEB)
Klemm, Dietmar [Dipartimento di Fisica, Università di Milano, and INFN - Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy); Marrani, Alessio [Centro Studi e Ricerche ‘Enrico Fermi’, Via Panisperna 89A, I-00184 Roma (Italy); Dipartimento di Fisica e Astronomia ‘Galileo Galilei’, Università di Padova, and INFN - Sezione di Padova,Via Marzolo 8, I-35131 Padova (Italy); Petri, Nicolò; Santoli, Camilla [Dipartimento di Fisica, Università di Milano, and INFN - Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy)
2015-09-29
We consider a deformation of the well-known stu model of N=2, D=4 supergravity, characterized by a non-homogeneous special Kähler manifold, and by the smallest electric-magnetic duality Lie algebra consistent with its upliftability to five dimensions. We explicitly solve the BPS attractor equations and construct static supersymmetric black holes with radial symmetry, in the context of U(1) dyonic Fayet-Iliopoulos gauging, focussing on axion-free solutions. Due to non-homogeneity of the scalar manifold, the model evades the analysis recently given in the literature. The relevant physical properties of the resulting black hole solution are discussed.
Inflationary paradigm in trouble after Planck2013
Ijjas, Anna; Loeb, Abraham
2013-01-01
The recent Planck satellite combined with earlier results eliminate a wide spectrum of more complex inflationary models and favor models with a single scalar field, as reported in the analysis of the collaboration. More important, though, is that all the simplest inflaton models are disfavored by the data while the surviving models -- namely, those with plateau-like potentials -- are problematic. We discuss how the restriction to plateau-like models leads to three independent problems: it exacerbates both the initial conditions problem and the multiverse-unpredictability problem and it creates a new difficulty which we call the inflationary "unlikeliness problem." Finally, we comment on problems reconciling inflation with a standard model Higgs, as suggested by recent LHC results. In sum, we find that recent experimental data disfavors all the best-motivated inflationary scenarios and introduces new, serious difficulties that cut to the core of the inflationary paradigm. Forthcoming searches for B-modes, non-...
Indian Academy of Sciences (India)
C P Burgess
2004-12-01
The inflationary paradigm provides a robust description of the peculiar initial conditions which are required for the success of the hot Big Bang model of cosmology, as well as of the recent precision measurements of temperature fluctuations within the cosmic microwave background. Furthermore, the success of this description indicates that inflation is likely to be associated with physics at energies considerably higher than the weak scale, for which string theory is arguably our most promising candidate. These observations strongly motivate a detailed search for inflation within string theory, although it has (so far) proven to be a hunt for a fairly elusive quarry. This article summarizes some of the recent efforts along these lines, and draws some speculative conclusions as to what the difficulty in finding inflation might mean.
Fermilab Tevatron and CERN LEP II probes of minimal and string-motivated supergravity models
Baer, Howard W; Kao, C; Pois, H
1995-01-01
We explore the ability of the Tevatron to probe Minimal Supersymmetry with high energy scale boundary conditions motivated by supersymmetry breaking in the context of supergravity/superstring theory. A number of boundary condition possibilities are considered: dilaton-like string boundary conditions applied at the standard GUT unification scale or alternatively at the string scale; and extreme (``no-scale'') minimal supergravity boundary conditions imposed at the GUT scale or string scale. For numerous specific cases within each scenario the sparticle spectra are computed and then fed into ISAJET 7.07 so that explicit signatures can be examined in detail. We find that, for some of the boundary condition choices, large regions of parameter space can be explored via same-sign dilepton and isolated trilepton signals. For other choices, the mass reach of Tevatron collider experiments is much more limited. We also compare mass reach of Tevatron experiments with the corresponding reach at LEP 200.
Fermion loops in the effective potential of N = 1 supergravity, with application to no-scale models
Energy Technology Data Exchange (ETDEWEB)
Burton, J.W.
1990-03-27
Powerful and quite general arguments suggest that N = 1 supergravity, and in particular the superstring-inspired no-scale models, may describe the physics of the four-dimensional vacuum at energy densities below the Planck scale. These models are not renormalizable, since they arise as effective theories after the large masses have been integrated out of the fundamental theory; thus, they have divergences in their loop amplitudes that must be regulated by imposing a cutoff. Before physics at experimental energies can be extracted from these models, the true vacuum state or states must be identified: at tree level, the ground states of the effective theories are highly degenerate. Radiative corrections at the one-loop level have been shown to break the degeneracy sufficiently to identify the states of vanishing vacuum energy. As the concluding step in a program to calculate these corrections within a self-consistent cutoff prescription, all fermionic one-loop divergent corrections to the scalar effective potential are evaluated. (The corresponding bosonic contributions have been found elsewhere.) The total effective scalar Lagrange density for N = 1 supergravity is written down, and comments are made about cancellations between the fermionic and bosonic loops. Finally, the result is specialized to a toy no-scale model with a single generation of matter fields, and prospects for eventual phenomenological constraints on theories of this type are briefly discussed. 48 refs.
Das, Kumar
2014-01-01
Motivated by the recent BICEP II results, we have constructed a large field N-flation model in the Supergravity framework. In this simple set-up, N fields collectively drive inflation where each field traverses sub-Planckian field values. This has been realised with a generalisation of the single field chaotic inflation in Supergravity. Interestingly, despite of the presence of the field interactions, the dynamics can be described in terms of an effective single field. The observable predictions of our model i.e. tensor to scalar ratio r and scalar spectral index n_s are akin to the chaotic inflation.
Toward the inflationary paradigm: Lectures on inflationary cosmology
Energy Technology Data Exchange (ETDEWEB)
Turner, M.S.
1987-02-01
Guth's inflationary Universe scenario has revolutionized our thinking about the very early Universe. The inflationary scenario offers the possibility of explaining a handful of very fundamental cosmological facts - the homogeneity, isotropy, and flatness of the Universe, the origin of density inhomogeneities and the origin of the baryon asymmetry, while at the same time avoiding the monopole problem. It is based upon microphysical events which occurred early (t less than or equal to 10/sup -34/ sec) in the history of the Universe, but well after the planck epoc (t greater than or equal to 10/sup -43/ sec). While Guth's original model was fundamentally flawed, the variant based on the slow-rollover transition proposed by Linde, and Albrecht and Steinhardt (dubbed 'new inflation') appears viable. Although old inflation and the earliest models of new inflation were based upon first order phase transitions associated with spontaneous-symmetry breaking (SSB), it now appears that the inflationary transition is a much more generic phenomenon, being associated with the evolution of a weakly-coupled scalar field which for some reason or other was initially displaced from the minimum of its potential. Models now exist which are based on a wide variety of microphysics: SSB, SUSY/SUGR, compactification of extra dimensions, R/sup 2/ gravity, induced gravity, and some random, weakly-coupled scalar field. While there are several models which successfully implement the inflation, none is particularly compelling and all seem somewhat ad hoc. The common distasteful feature of all the successful models is the necessity of a small dimensionless number in the model - usually in the form of a dimensionless coupling of order 10/sup -15/. All inflationary scenarios rely upon the assumption that vacuum energy was once dynamically very significant, whereas today there exists every evidence that it is not. 133 refs., 17 figs.
Sensitivity of inflationary predictions to pre-inflationary phases
Energy Technology Data Exchange (ETDEWEB)
Bahrami, Sina; Flanagan, Éanna É. [Department of Physics, Cornell University,Ithaca, NY 14853 (United States)
2016-01-15
How sensitive are the predictions of inflation to pre-inflationary conditions when the number of efolds of inflation is not too large? In an attempt to address this question, we consider a simple model where the inflationary era is preceded by an era dominated by a radiation fluid, which is coupled to the inflaton only gravitationally and which extends back to the Planck era. We show that there is a natural generalized Bunch-Davies vacuum state for perturbations to the coupled inflaton-gravity-fluid system at early times. With this choice of initial state the model predicts interesting deviations from the standard power spectrum of single field slow-roll inflation at large scales. However, the deviations are too small to be observable in near future CMB observations.
Akbar, M M
2004-01-01
We find instanton/cosmological solutions with biaxial Bianchi-IX symmetry, involving non-trivial spatial dependence of the $\\bbbc P^{1}$- and $\\bbbc P^{2}$-sigma-models coupled to gravity. Such manifolds arise in N=1, $d=4$ supergravity with supermatter actions and hence the solutions can be embedded in supergravity. There is a natural way in which the standard coordinates of these manifolds can be mapped into the four-dimensional physical space. Due to its special symmetry, we start with $\\bbbc P^{2}$ with its corresponding scalar Ansatz; this further requires the spacetime to be $SU(2) \\times U(1)$-invariant. The problem then reduces to a set of ordinary differential equations whose analytical properties and solutions are discussed. Among the solutions there is a surprising, special-family of exact solutions which owe their existence to the non-trivial topology of $\\bbbc P^{2}$ and are in 1-1 correspondence with matter-free Bianchi-IX metrics. These solutions can also be found by coupling $\\bbbc P^{1}$ to g...
Energy Technology Data Exchange (ETDEWEB)
Cvetic, M.
1985-12-05
We study the N=1 supergravity theory within the left-right symmetric model, based on the gauge symmetry SU(2)sub(L) x SU(2)sub(R) x U(1)sub(B-L), when the parity-odd singlet field is added, in addition to the minimal set of Higgs fields. This model allows for a vacuum solution with the hierarchy ratio eta=(msub(Wsub(R))/msub(Wsub(L)))>>1. Also, the gravitino mass is likely to set the scale of m sub(Wsub(L)) rather than the one of msub(Wsub(R)). These features of the presented model should be contrasted with the results of the left-right symmetric model with the minimal set of Higgs fields, where eta
Supergravity background of λ-deformed model for AdS2×S2 supercoset
Directory of Open Access Journals (Sweden)
R. Borsato
2016-04-01
Full Text Available Starting with the Fˆ/G supercoset model corresponding to the AdSn×Sn superstring one can define the λ-model of arXiv:1409.1538 either as a deformation of the Fˆ/Fˆ gauged WZW model or as an integrable one-parameter generalisation of the non-abelian T-dual of the AdSn×Sn superstring sigma model with respect to the whole supergroup Fˆ. Here we consider the case of n=2 and find the explicit form of the 4d target space background for the λ-model for the PSU(1,1|2/SO(1,1×SO(2 supercoset. We show that this background represents a solution of type IIB 10d supergravity compactified on a 6-torus with only metric, dilaton Φ and the RR 5-form (represented by a 2-form F in 4d being non-trivial. This implies that the λ-model is Weyl invariant at the quantum level and thus defines a consistent superstring sigma model. The supergravity solution we find is different from the one in arXiv:1410.1886 which should correspond to a version of the λ-model where only the bosonic subgroup of Fˆ is gauged. Still, the two solutions have equivalent scaling limit of arXiv:1504.07213 leading to the isometric background for the metric and eΦF which is related to the η-deformed AdS2×S2 sigma model of arXiv:1309.5850. Similar results are expected in the AdS3×S3 and AdS5×S5 cases.
Inflationary Perturbations and Precision Cosmology
Habib, S; Heitmann, K; Jungman, G; Habib, Salman; Heinen, Andreas; Heitmann, Katrin; Jungman, Gerard
2005-01-01
Inflationary cosmology provides a natural mechanism for the generation of primordial perturbations which seed the formation of observed cosmic structure and lead to specific signals of anisotropy in the cosmic microwave background radiation. In order to test the broad inflationary paradigm as well as particular models against precision observations, it is crucial to be able to make accurate predictions for the power spectrum of both scalar and tensor fluctuations. We present detailed calculations of these quantities utilizing direct numerical approaches as well as error-controlled uniform approximations, comparing with the (uncontrolled) traditional slow-roll approach. A simple extension of the leading-order uniform approximation yields results for the power spectra amplitudes, the spectral indices, and the running of spectral indices, with accuracy of the order of 0.1% - approximately the same level at which the transfer functions are known. Several representative examples are used to demonstrate these resul...
Jaggi, Chandra K.; Khanna, Aditi; Verma, Priyanka
2011-07-01
In today's business transactions, there are various reasons, namely, bulk purchase discounts, re-ordering costs, seasonality of products, inflation induced demand, etc., which force the buyer to order more than the warehouse capacity. Such situations call for additional storage space to store the excess units purchased. This additional storage space is typically a rented warehouse. Inflation plays a very interesting and significant role here: It increases the cost of goods. To safeguard from the rising prices, during the inflation regime, the organisation prefers to keep a higher inventory, thereby increasing the aggregate demand. This additional inventory needs additional storage space, which is facilitated by a rented warehouse. Ignoring the effects of the time value of money and inflation might yield misleading results. In this study, a two-warehouse inventory model with linear trend in demand under inflationary conditions having different rates of deterioration has been developed. Shortages at the owned warehouse are also allowed subject to partial backlogging. The solution methodology provided in the model helps to decide on the feasibility of renting a warehouse. Finally, findings have been illustrated with the help of numerical examples. Comprehensive sensitivity analysis has also been provided.
Ferrara, S.; Kehagias, A.; Sagnotti, A.
2016-09-01
Abdus Salam was a true master of 20th Century Theoretical Physics. Not only was he a pioneer of the Standard Model (for which he shared the Nobel Prize with S. Glashow and S. Weinberg), but he also (co)authored many other outstanding contributions to the field of Fundamental Interactions and their unification. In particular, he was a major contributor to the development of supersymmetric theories, where he also coined the word “Supersymmetry” (replacing the earlier “Supergauges” drawn from String Theory). He also introduced the basic concept of “Superspace” and the notion of “Goldstone Fermion” (Goldstino). These concepts proved instrumental for the exploration of the ultraviolet properties and for the study of spontaneously broken phases of super Yang-Mills theories and Supergravity. They continue to play a key role in current developments in Early-Universe Cosmology. In this contribution we review models of inflation based on Supergravity with spontaneously broken local supersymmetry, with emphasis on the role of nilpotent superfields to describe a de Sitter phase of our Universe.
Bergshoeff, Eric A; Kallosh, Renata; Van Proeyen, Antoine
2015-01-01
Using superconformal methods we derive an explicit de Sitter supergravity action invariant under spontaneously broken local ${\\cal N}=1$ supersymmetry. The supergravity multiplet interacts with a nilpotent goldstino multiplet. We present a complete locally supersymmetric action including the graviton and the fermionic fields, gravitino and goldstino, no scalars. In the global limit when supergravity multiplet decouples, our action reproduces the Volkov-Akulov theory. In the unitary gauge where goldstino vanishes we recover pure supergravity with the positive cosmological constant. The classical equations of motion, with all fermions vanishing, have a maximally symmetric solution: de Sitter space.
Einstein Inflationary Probe (EIP)
Hinshaw, Gary
2004-01-01
I will discuss plans to develop a concept for the Einstein Inflation Probe: a mission to detect gravity waves from inflation via the unique signature they impart to the cosmic microwave background (CMB) polarization. A sensitive CMB polarization satellite may be the only way to probe physics at the grand-unified theory (GUT) scale, exceeding by 12 orders of magnitude the energies studied at the Large Hadron Collider. A detection of gravity waves would represent a remarkable confirmation of the inflationary paradigm and set the energy scale at which inflation occurred when the universe was a fraction of a second old. Even a strong upper limit to the gravity wave amplitude would be significant, ruling out many common models of inflation, and pointing to inflation occurring at much lower energy, if at all. Measuring gravity waves via the CMB polarization will be challenging. We will undertake a comprehensive study to identify the critical scientific requirements for the mission and their derived instrumental performance requirements. At the core of the study will be an assessment of what is scientifically and experimentally optimal within the scope and purpose of the Einstein Inflation Probe.
Directory of Open Access Journals (Sweden)
Chandra K. Jaggi
2015-01-01
Full Text Available In today’s competition inherited business world, managing inventory of goods is a major challenge in all the sectors of economy. The demand of an item plays a significant role while managing the stock of goods, as it may depend on several factors viz., inflation, selling price, advertisement, etc. Among these, selling price of an item is a decisive factor for the organization; because in this competitive world of business one is constantly on the lookout for the ways to beat the competition. It is a well-known accepted fact that keeping a reasonable price helps in attracting more customers, which in turn increases the aggregate demand. Thus in order to improve efficiency of business performance organization needs to stock a higher inventory, which needs an additional storage space. Moreover, in today’s unstable global economy there is consequent decline in the real value of money, because the general level of prices of goods and services is rising (i.e., inflation. And since inventories represent a considerable investment for every organization, it is inevitable to consider the effects of inflation and time value of money while determining the optimal inventory policy. With this motivation, this paper is aimed at developing a two-warehouse inventory model for deteriorating items where the demand rate is a decreasing function of the selling price under inflationary conditions. In addition, shortages are allowed and partially backlogged, and the backlogging rate has been considered as an exponentially decreasing function of the waiting time. The model jointly optimizes the initial inventory and the price for the product, so as to maximize the total average profit. Finally, the model is analysed and validated with the help of numerical examples, and a comprehensive sensitivity analysis has been performed which provides some important managerial implications.
On jordanian deformations of AdS5 and supergravity
Hoare, Ben; van Tongeren, Stijn J.
2016-10-01
We consider various homogeneous Yang-Baxter deformations of the {{AdS}}5× {{{S}}}5 superstring that can be obtained from the η-deformed superstring and related models by singular boosts. The jordanian deformations we obtain in this way behave similarly to the η-deformed model with regard to supergravity: T dualizing the classical sigma model it is possible to find corresponding solutions of supergravity, which, however, have dilatons that prevent T dualizing back. Hence the backgrounds of these jordanian deformations are not solutions of supergravity. Still, they do satisfy a set of recently found modified supergravity equations which implies that the corresponding sigma models are scale invariant. The abelian models that we obtain by singular boosts do directly correspond to solutions of supergravity. In addition to our main results we consider contraction limits of our main example, which do correspond to supergravity solutions.
On jordanian deformations of AdS_5 and supergravity
Hoare, Ben
2016-01-01
We consider various homogeneous Yang-Baxter deformations of the AdS_5 x S^5 superstring that can be obtained from the eta-deformed superstring and related models by singular boosts. The jordanian deformations we obtain in this way behave similarly to the eta-deformed model with regard to supergravity: T dualizing the classical sigma model it is possible to find corresponding solutions of supergravity, which, however, have dilatons that prevent T dualizing back. Hence the backgrounds of these jordanian deformations are not solutions of supergravity. Still, they do satisfy a set of recently found modified supergravity equations which should imply that the corresponding sigma models are scale invariant. The abelian models that we obtain by singular boosts do directly correspond to solutions of supergravity. In addition to our main results we consider contraction limits of our main example, which also do not correspond to supergravity solutions.
Pre-inflationary clues from String Theory?
Energy Technology Data Exchange (ETDEWEB)
Kitazawa, N. [Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397 JAPAN (Japan); Sagnotti, A., E-mail: kitazawa@phys.se.tmu.ac.jp, E-mail: sagnotti@sns.it [Scuola Normale Superiore and INFN, Piazza dei Cavalieri, 7, Pisa, 56126 (Italy)
2014-04-01
''Brane supersymmetry breaking'' occurs in String Theory when the only available combinations of D-branes and orientifolds are not mutually BPS and yet do not introduce tree-level tachyon instabilities. It is characterized by the emergence of a steep exponential potential, and thus by the absence of maximally symmetric vacua. The corresponding low-energy supergravity admits intriguing spatially-flat cosmological solutions where a scalar field is forced to climb up toward the steep potential after an initial singularity, and additional milder terms can inject an inflationary phase during the ensuing descent. We show that, in the resulting power spectra of scalar perturbations, an infrared suppression is typically followed by a pre-inflationary peak that reflects the end of the climbing phase and can lie well apart from the approximately scale invariant profile. A first look at WMAP9 raw data shows that, while the χ{sup 2} fits for the low-ℓ CMB angular power spectrum are clearly compatible with an almost scale invariant behavior, they display nonetheless an eye-catching preference for this type of setting within a perturbative string regime.
Pre - Inflationary Clues from String Theory ?
Kitazawa, N
2014-01-01
"Brane supersymmetry breaking" occurs in String Theory when the only available combinations of D-branes and orientifolds are not mutually BPS and yet do not introduce tree-level tachyon instabilities. It is characterized by the emergence of a steep exponential potential, and thus by the absence of maximally symmetric vacua. The corresponding low-energy supergravity admits intriguing spatially-flat cosmological solutions where a scalar field is forced to climb up toward the steep potential after an initial singularity, and additional milder terms can inject an inflationary phase during the ensuing descent. We show that, in the resulting power spectra of scalar perturbations, an infrared suppression is typically followed by a pre-inflationary peak that reflects the end of the climbing phase and can lie well apart from the approximately scale invariant profile. A first look at WMAP9 raw data shows that, while the chi^2 fits for the low-l CMB angular power spectrum are clearly compatible with an almost scale inva...
Institute of Scientific and Technical Information of China (English)
CHEN Shi-Wu; YANG Shu-Zheng; HAO Xi-Zhun; LIU Xiong-Wei
2008-01-01
We present a kind of exact inflationary solution in the chaotic inflation scenario to non-minimal coupled scalar field, taking the Hubble parameter directly as a function of the scalar fieldψ, H(ψ) = αψn. Using the analysis of the WMAP3 data, we give the range of power index n.
Inflationary de Sitter solutions from superstrings
Energy Technology Data Exchange (ETDEWEB)
Kounnas, Costas [Laboratoire de Physique Theorique, Ecole Normale Superieure, 24 rue Lhomond, F-75231 Paris cedex 05 (France)], E-mail: costas.kounnas@lpt.ens.fr; Partouche, Herve [Centre de Physique Theorique, Ecole Polytechnique, F-91128 Palaiseau (France)], E-mail: herve.partouche@cpht.polytechnique.fr
2008-05-21
In the framework of superstring compactifications with N=1 supersymmetry spontaneously broken (by either geometrical fluxes, branes or else), we show the existence of new inflationary solutions. The time-trajectory of the scale factor of the metric a, the supersymmetry breaking scale m{identical_to}m({phi}) and the temperature T are such that am and aT remain constant. These solutions request the presence of special moduli-fields: (i) The universal 'no-scale-modulus'{phi}, which appears in all N=1 effective supergravity theories and defines the supersymmetry breaking scale m({phi}). (ii) The modulus {phi}{sub s}, which appears in a very large class of string compactifications and has a {phi}-dependent kinetic term. During the time evolution, a{sup 4}{rho}{sub s} remains constant as well ({rho}{sub s} being the energy density induced by the motion of {phi}{sub s}). The cosmological term {lambda}(am), the curvature term k(am,aT) and the radiation term c{sub R}=a{sup 4}{rho} are dynamically generated in a controllable way by radiative and temperature corrections; they are effectively constant during the time evolution. Depending on {lambda}, k and c{sub R}, either a first or second order phase transition can occur in the cosmological scenario. In the first case, an instantonic Euclidean solution exists and connects via tunneling the inflationary evolution to another cosmological branch. The latter starts with a big bang and, in the case the transition does not occur, ends with a big crunch. In the second case, the big bang and the inflationary phase are smoothly connected.
Matter-coupled de Sitter supergravity
Kallosh, R. E.
2016-05-01
The de Sitter supergravity describes the interaction of supergravity with general chiral and vector multiplets and also one nilpotent chiral multiplet. The extra universal positive term in the potential, generated by the nilpotent multiplet and corresponding to the anti-D3 brane in string theory, is responsible for the de Sitter vacuum stability in these supergravity models. In the flat-space limit, these supergravity models include the Volkov-Akulov model with a nonlinearly realized supersymmetry. We generalize the rules for constructing the pure de Sitter supergravity action to the case of models containing other matter multiplets. We describe a method for deriving the closed-form general supergravity action with a given potential K, superpotential W, and vectormatrix fAB interacting with a nilpotent chiral multiplet. It has the potential V = eK(|F2|+|DW|2-3|W|2), where F is the auxiliary field of the nilpotent multiplet and is necessarily nonzero. The de Sitter vacuums are present under the simple condition that |F2|-3|W|2 > 0. We present an explicit form of the complete action in the unitary gauge.
Warm-Intermediate Inflationary Universe Model with Viscous Pressure in High Dissipative Regime
Setare, M R
2014-01-01
Warm inflation model with bulk viscous pressure in the context of "intermediate inflation" where the cosmological scale factor expands as $a(t)=a_0\\exp(At^f)$, is studied. The characteristics of this model in slow-roll approximation and in high dissipative regime are presented in two cases: 1- Dissipative parameter $\\Gamma$ as a function of scalar field $\\phi$ and bulk viscous coefficient $\\zeta$ as a function of energy density $\\rho$. 2- $\\Gamma$ and $\\zeta$ are constant parameters. Scalar, tensor perturbations and spectral indices for this scenario are obtained. The cosmological parameters appearing in the present model are constrained by recent observational data (WMAP7).
Observable predictions of generalised inflationary scenarios
Elliston, Joseph
2013-01-01
Inflation is an early period of accelerated cosmic expansion, thought to be sourced by high energy physics. A key task today is to use the influx of increasingly precise observational data to constrain the plethora of inflationary models suggested by fundamental theories of interactions. This requires a robust theoretical framework for quantifying the predictions of such models; helping to develop such a framework is the aim of this thesis. We provide the first complete quantization of subhorizon perturbations for the well-motivated class of multi-field inflationary models with a non-trivial field metric, which we show may yield interesting signatures in the bispectrum of the Cosmic Microwave Background (CMB). The subsequent evolution of perturbations in the superhorizon epoch is then considered, via a covariant extension of the transport formalism. To develop intuition about the relationship between inflationary dynamics and the evolution of cosmic observables, we investigate analytic approximations of super...
Structure of Kaehler potential for D-term inflationary attractor models
Energy Technology Data Exchange (ETDEWEB)
Nakayama, Kazunori [Tokyo Univ. (Japan). Dept. of Physics; Tokyo Univ., Chiba (Japan). Kavli IPMU (WPI), UTIAS; Saikawa, Ken' ichi [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Tokyo Institute of Technology (Japan). Dept. of Physics; Terada, Takahiro [Tokyo Univ. (Japan). Dept. of Physics; Asia Pacific Center for Theoretical Physics (APCTP), Pohang (Korea, Republic of); Yamaguchi, Masahide [Tokyo Institute of Technology (Japan). Dept. of Physics
2016-05-15
Minimal chaotic models of D-term inflation predicts too large primordial tensor perturbations. Although it can be made consistent with observations utilizing higher order terms in the Kaehler potential, expansion is not controlled in the absence of symmetries. We comprehensively study the conditions of Kaehler potential for D-term plateau-type potentials and discuss its symmetry. They include the α-attractor model with a massive vector supermultiplet and its generalization leading to pole inflation of arbitrary order. We extend the models so that it can describe Coulomb phase, gauge anomaly is cancelled, and fields other than inflaton are stabilized during inflation. We also point out a generic issue for large-field D-term inflation that the masses of the non-inflaton fields tend to exceed the Planck scale.
Warm (λ/4)ϕ{sup 4} inflationary universe model in light of Planck 2015 results
Energy Technology Data Exchange (ETDEWEB)
Panotopoulos, Grigorios, E-mail: gpanotop@ing.uchile.cl; Videla, Nelson, E-mail: nelson.videlamenares@gmail.com [Departamento de Física, FCFM, Universidad de Chile, Blanco Encalada 2008, Santiago (Chile)
2015-11-04
In the present work we show that warm chaotic inflation characterized by a simple (λ/4)ϕ{sup 4} self-interaction potential for the inflaton, excluded by current data in standard cold inflation, and by an inflaton decay rate proportional to the temperature, is in agreement with the latest Planck data. The parameters of the model are constrained, and our results show that the model predicts a negligible tensor-to-scalar ratio in the strong dissipative regime, while in the weak dissipative regime the tensor-to-scalar ratio can be large enough to be observed.
Warm (λ)/(4)φ{sup 4} inflationary universe model in light of Planck 2015 results
Energy Technology Data Exchange (ETDEWEB)
Panotopoulos, Grigorios; Videla, Nelson [Universidad de Chile, Departamento de Fisica, FCFM, Santiago (Chile)
2015-11-15
In the present work we show that warm chaotic inflation characterized by a simple (λ)/(4)φ{sup 4} self-interaction potential for the inflaton, excluded by current data in standard cold inflation, and by an inflaton decay rate proportional to the temperature, is in agreement with the latest Planck data. The parameters of the model are constrained, and our results show that the model predicts a negligible tensor-to-scalar ratio in the strong dissipative regime, while in the weak dissipative regime the tensor-to-scalar ratio can be large enough to be observed. (orig.)
A Time Varying Strong Coupling Constant as a Model of Inflationary Universe
Chamoun, N; Vucetich, H
2000-01-01
We consider a scenario where the strong coupling constant was changing in the early universe. We attribute this change to a variation in the colour charge within a Bekenstein-like model. Allowing for a large value for the vacuum gluon condensate $\\sim 10^{22}GeV^4$, we could generate inflation with the required properties to solve the fluctuation and other standard cosmology problems. A possible approach to end the inflation is suggested.
The scalar-scalar-tensor inflationary three-point function in the axion monodromy model
Chowdhury, Debika; Sreenath, V.; Sriramkumar, L.
2016-11-01
The axion monodromy model involves a canonical scalar field that is governed by a linear potential with superimposed modulations. The modulations in the potential are responsible for a resonant behavior which gives rise to persisting oscillations in the scalar and, to a smaller extent, in the tensor power spectra. Interestingly, such spectra have been shown to lead to an improved fit to the cosmological data than the more conventional, nearly scale invariant, primordial power spectra. The scalar bi-spectrum in the model too exhibits continued modulations and the resonance is known to boost the amplitude of the scalar non-Gaussianity parameter to rather large values. An analytical expression for the scalar bi-spectrum had been arrived at earlier which, in fact, has been used to compare the model with the cosmic microwave background anisotropies at the level of three-point functions involving scalars. In this work, with future applications in mind, we arrive at a similar analytical template for the scalar-scalar-tensor cross-correlation. We also analytically establish the consistency relation (in the squeezed limit) for this three-point function. We conclude with a summary of the main results obtained.
Einstein–Rosen inflationary Universe in general relativity
Indian Academy of Sciences (India)
S D Katore; R S Rane; K S Wankhade; N K Sarkate
2010-04-01
Einstein–Rosen inflationary Universe is investigated in the presence of mass-less scalar field with a flat potential. To get an inflationary Universe, we have considered a flat region in which the potential V is constant. Some physical properties of the model are discussed.
Inflationary Imprints on Dark Matter
Nurmi, Sami; Tuominen, Kimmo
2015-01-01
We show that dark matter abundance and the inflationary scale $H$ could be intimately related. Standard Model extensions with Higgs mediated couplings to new physics typically contain extra scalars displaced from vacuum during inflation. If their coupling to Standard Model is weak, they will not thermalize and may easily constitute too much dark matter reminiscent to the moduli problem. As an example we consider Standard Model extended by a $Z_2$ symmetric singlet $s$ coupled to the Standard Model Higgs $\\Phi$ via $\\lambda \\Phi^{\\dag}\\Phi s^2$. Dark matter relic density is generated non-thermally for $\\lambda \\lesssim 10^{-7}$. We show that the dark matter yield crucially depends on the inflationary scale. For $H\\sim 10^{10}$ GeV we find that the singlet self-coupling and mass should lie in the regime $\\lambda_{\\rm s}\\gtrsim 10^{-9}$ and $m_{\\rm s}\\lesssim 50$ GeV to avoid dark matter overproduction.
Starobinsky-Like Inflation and Running Vacuum in the Context of Supergravity
Directory of Open Access Journals (Sweden)
Spyros Basilakos
2016-07-01
Full Text Available We describe the primeval inflationary phase of the early Universe within a quantum field theoretical (QFT framework that can be viewed as the effective action of vacuum decay in the early times. Interestingly enough, the model accounts for the “graceful exit” of the inflationary phase into the standard radiation regime. The underlying QFT framework considered here is supergravity (SUGRA, more specifically an existing formulation in which the Starobinsky-type inflation (de Sitter background emerges from the quantum corrections to the effective action after integrating out the gravitino fields in their (dynamically induced massive phase. We also demonstrate that the structure of the effective action in this model is consistent with the generic idea of re-normalization group (RG running of the cosmological parameters; specifically, it follows from the corresponding RG equation for the vacuum energy density as a function of the Hubble rate, ρ Λ ( H . Overall, our combined approach amounts to a concrete-model realization of inflation triggered by vacuum decay in a fundamental physics context, which, as it turns out, can also be extended for the remaining epochs of the cosmological evolution until the current dark energy era.
The 14 TeV LHC Takes Aim at SUSY: A No-Scale Supergravity Model for LHC Run 2
Li, Tianjun; Nanopoulos, Dimitri V; Walker, Joel W
2015-01-01
The Supergravity model named No-Scale ${\\cal F}$-$SU(5)$, which is based upon the flipped $SU$(5) Grand Unified Theory (GUT) with additional TeV-scale vector-like flippon multiplets, has been partially probed during the LHC Run 1 at 7-8 TeV, though the majority of its model space remains viable and should be accessible by the 13-14 TeV LHC during Run 2. The model framework possesses the rather unique capacity to provide a light CP-even Higgs boson mass in the favored 124-126 GeV window while simultaneously retaining a testably light supersymmetry (SUSY) spectrum. We summarize the outlook for No-Scale ${\\cal F}$-$SU(5)$ at the 13-14 TeV LHC and review a promising methodology for the discrimination of its long-chain cascade decay signature. We further show that proportional dependence of all model scales upon the unified gaugino mass $M_{1/2}$ minimizes electroweak fine-tuning, allowing the $Z$-boson mass $M_Z$ to be expressed as an explicit function of $M_{1/2}$, $M_Z^2 = M_Z^2 (M_{1/2}^2)$, with implicit depe...
Tsamis, N C
2004-01-01
We argue that $\\Lambda$-driven inflation must overshoot into an era of deflation. The deflationary period ends quickly with the creation of a hot dense thermal barrier to the forward propagation of quantum correlations from the period of inflationary particle production. Subsequent evolution is controlled by the balance between the persistence of this barrier and the growth in the 4-volume from which such correlations can be seen. This balance can lead to power law expansion.
Fraisse, A A
2006-01-01
We confront the predicted effects of hybrid inflationary models on the Cosmic Microwave Background (CMB) with three years of Wilkinson Microwave Anisotropy Probe (WMAP) observations. Using model selection, we compare the ability of a simple flat power-law LCDM model to describe the data to hybrid inflationary models involving global or local cosmic strings, or global textures. We find that it is statistically impossible to distinguish between these models: they all give a similar description of the data, the maximum ratio of the various evidences involved being never higher than e^{0.1 \\pm 0.5}. We then derive the maximum contribution that topological defects can make to the CMB, and place an upper bound on the possible value of cosmic strings tension of G\\mu \\leq 2.1 \\times 10^{-7} (68% CL). Finally, we give the corresponding constraints on the strings and D-strings masses, as well as limits on the D- and F-term coupling constants (\\kappa and \\lambda) and mass scales (M and \\sqrt{\\xi}).
N=2 supergravity and supercurrents
Butter, Daniel
2010-01-01
We address the problem of classifying all N=2 supercurrent multiplets in four space-time dimensions. For this purpose we consider the minimal formulation of N=2 Poincare supergravity with a tensor compensator, and derive its linearized action in terms of three N=2 off-shell multiplets: an unconstrained scalar superfield, a vector multiplet, and a tensor multiplet. Such an action was ruled out to exist in the past. Using the action constructed, one can derive other models for linearized N=2 supergravity by applying N=2 superfield duality transformations. The action depends parametrically on a constant non-vanishing real isotriplet g^{ij}=g^{ji} which originates as an expectation value of the tensor compensator. Upon reduction to N=1 superfields, we show that the model describes two dually equivalent formulations for the massless multiplet (1,3/2)+(3/2,2) depending on a choice of g^{ij}. In the case g^{11}=g^{22}=0, the action describes (i) new minimal N=1 supergravity; and (ii) the Fradkin-Vasiliev-de Wit-van ...
The sound speed of primordial fluctuations in supergravity inflation
Hetz, Alexander
2016-01-01
We study the realization of slow-roll inflation in $\\mathcal N = 1$ supergravities with a single chiral field. If there is only one flat direction in field space, it is possible to derive a single-field effective field theory (EFT) parametrized by the sound speed $c_s$ at which curvature perturbations propagate during inflation. The value of $c_s$ is determined by the rate of bend of the inflationary trajectory resulting from the shape of the $F$-term potential. We show that $c_s$ must respect an inequality that involves the curvature tensor of the K\\"ahler manifold defining the class of supergravity, as well as the ratio between the mass of fluctuations ortogonal to the inflationary trajectory and the Hubble expansion rate. Because in order to have a reliable EFT this ratio must be large, we find that the inequality implies that $c_s \\simeq 1$. As a consequence, EFT's of inflation derived from $\\mathcal N = 1$ supergravities cannot differ drastically from canonical single field inflation ($c_s = 1$), and non...
Dark matter and inflation in R + ζR2 supergravity
Addazi, Andrea; Khlopov, Maxim Yu.
2017-03-01
As is well known, the gravitational degrees of freedom contained in R + ζR2 (super)gravity lead to Starobinsky's potential, in a one-field setting for inflationary Cosmology that appears favored by Planck data. In this letter we discuss another interesting aspect of this model, related to gravitino production, with emphasis on the corresponding mass spectrum. Assuming that supersymmetry is broken at a very high scale, Super Heavy Gravitino Dark Matter (SHGDM) and Starobinsky's inflation can be coherently unified in a R + ζR2 supergravity. Gravitinos are assumed to be the Lightest Supersymmetric Particles (LSP) and are non-thermally produced during inflation, in turn originated by a scalar with a Starobinsky's potential. Gravitino mass runs with the inflaton field, so that a continuous spectrum of superheavy gravitinos emerges. The theory is implemented with a U(1)R gauge symmetry. However, in a string UV completion, U(1)R-symmetry can be broken by non-perturbative string instantons, while for consistency of our scenario U(1)R gauge symmetry breaking must be broken in order to generate a soft mass terms for the gravitino and gauginos. R-parity violating operators can be generated at non-perturbative level. Gravitinos can decay into very energetic neutrinos and photons in cosmological time scale, with intriguing implications for high energy cosmic rays experiments.
Inflationary paradigm in trouble after Planck2013
Ijjas, Anna; Steinhardt, Paul J.; Loeb, Abraham
2013-06-01
Recent results from the Planck satellite combined with earlier observations from WMAP, ACT, SPT and other experiments eliminate a wide spectrum of more complex inflationary models and favor models with a single scalar field, as reported by the Planck Collaboration. More important, though, is that all the simplest inflaton models are disfavored statistically relative to those with plateau-like potentials. We discuss how a restriction to plateau-like models has three independent serious drawbacks: it exacerbates both the initial conditions problem and the multiverse-unpredictability problem and it creates a new difficulty that we call the inflationary "unlikeliness problem." Finally, we comment on problems reconciling inflation with a standard model Higgs, as suggested by recent LHC results. In sum, we find that recent experimental data disfavors all the best-motivated inflationary scenarios and introduces new, serious difficulties that cut to the core of the inflationary paradigm. Forthcoming searches for B-modes, non-Gaussianity and new particles should be decisive.
Inflationary paradigm in trouble after Planck2013
Energy Technology Data Exchange (ETDEWEB)
Ijjas, Anna, E-mail: aijjas@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); University Observatory Munich, 81679 Munich (Germany); Steinhardt, Paul J., E-mail: steinh@princeton.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544 (United States); Loeb, Abraham, E-mail: aloeb@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)
2013-06-25
Recent results from the Planck satellite combined with earlier observations from WMAP, ACT, SPT and other experiments eliminate a wide spectrum of more complex inflationary models and favor models with a single scalar field, as reported by the Planck Collaboration. More important, though, is that all the simplest inflaton models are disfavored statistically relative to those with plateau-like potentials. We discuss how a restriction to plateau-like models has three independent serious drawbacks: it exacerbates both the initial conditions problem and the multiverse-unpredictability problem and it creates a new difficulty that we call the inflationary “unlikeliness problem.” Finally, we comment on problems reconciling inflation with a standard model Higgs, as suggested by recent LHC results. In sum, we find that recent experimental data disfavors all the best-motivated inflationary scenarios and introduces new, serious difficulties that cut to the core of the inflationary paradigm. Forthcoming searches for B-modes, non-Gaussianity and new particles should be decisive.
Higher derivative couplings and massive supergravity in three dimensions
Energy Technology Data Exchange (ETDEWEB)
Kuzenko, Sergei M.; Novak, Joseph [School of Physics M013, The University of Western Australia,35 Stirling Highway, Crawley W.A. 6009 (Australia); Tartaglino-Mazzucchelli, Gabriele [School of Physics M013, The University of Western Australia,35 Stirling Highway, Crawley W.A. 6009 (Australia); Instituut voor Theoretische Fysica, KU Leuven,Celestijnenlaan 200D, B-3001 Leuven (Belgium)
2015-09-14
We develop geometric superspace settings to construct arbitrary higher derivative couplings (including R{sup n} terms) in three-dimensional supergravity theories with N≤3 by realising them as conformal supergravity coupled to certain compensators. For all known off-shell supergravity formulations, we construct supersymmetric invariants with up to and including four derivatives. As a warming-up exercise, we first give a new and completely geometric derivation of such invariants in N=1 supergravity. Upon reduction to components, they agree with those given in http://arxiv.org/abs/0907.4658 and http://arxiv.org/abs/1005.3952. We then carry out a similar construction in the case of N=2 supergravity for which there exist two minimal formulations that differ by the choice of compensating multiplet: (i) a chiral scalar multipet; (ii) a vector multiplet. For these formulations all four derivative invariants are constructed in completely general and gauge independent form. For a general supergravity model (in the N=1 and minimal N=2 cases) with curvature-squared and lower order terms, we derive the superfield equations of motion, linearise them about maximally supersymmetric backgrounds and obtain restrictions on the parameters that lead to models for massive supergravity. We use the non-minimal formulation for N=2 supergravity (which corresponds to a complex linear compensator) to construct a novel consistent theory of massive supergravity. In the case of N=3 supergravity, we employ the off-shell formulation with a vector multiplet as compensator to construct for the first time various higher derivative invariants. These invariants may be used to derive models for N=3 massive supergravity. As a bi-product of our analysis, we also present superfield equations for massive higher spin multiplets in (1,0), (1,1) and (2,0) anti-de Sitter superspaces.
Warped Brane Worlds in Six Dimensional Supergravity
Aghababaie, Y; Cline, J M; Firouzjahi, H; Parameswaran, S L; Quevedo, Fernando; Tasinato, G; Zavala, I
2003-01-01
We present warped compactification solutions of six-dimensional supergravity, which are generalizations of the Randall-Sundrum warped brane world to codimension two and to a supersymmetric context. In these solutions the dilaton varies over the extra dimensions, and this makes the electroweak hierarchy only power-law sensitive to the proper radius of the extra dimensions (as opposed to being exponentially sensitive as in the RS model). Warping changes the phenomenology of these models because the Kaluza-Klein gap can be much larger than the internal space's inverse proper radius. We provide examples both for Romans' nonchiral supergravity and Salam-Sezgin chiral supergravity, and in both cases the solutions break all of the supersymmetries of the models. We interpret the solution as describing the fields sourced by a 3-brane and a boundary 4-brane (Romans' supergravity) or by one or two 3-branes (Salam-Sezgin supergravity), and we identify the topological constraints which are required by this interpretation....
Generalized Pole Inflation: Hilltop, Natural, and Chaotic Inflationary Attractors
Terada, Takahiro
2016-01-01
A new paradigm for inflationary model building appeared recently, in which inflationary observables are determined by the structure of a pole in the inflaton kinetic term rather than the shape of the inflaton potential. We comprehensively study this framework with an arbitrary order of the pole taking into account possible additional poles in the kinetic term or in the potential. Depending on the setup, the canonical potential becomes the form of hilltop or plateau models, variants of natural inflation, or monomial or polynomial chaotic inflation. We demonstrate attractor behavior of these models and compute corrections from the additional poles to the inflationary observables.
Polynomial chaotic inflation in supergravity revisited
Directory of Open Access Journals (Sweden)
Kazunori Nakayama
2014-10-01
Full Text Available We revisit a polynomial chaotic inflation model in supergravity which we proposed soon after the Planck first data release. Recently some issues have been raised in Ref. [12], concerning the validity of our polynomial chaotic inflation model. We study the inflaton dynamics in detail, and confirm that the inflaton potential is very well approximated by a polynomial potential for the parameters of our interest in any practical sense, and in particular, the spectral index and the tensor-to-scalar ratio can be estimated by single-field approximation. This justifies our analysis of the polynomial chaotic inflation in supergravity.
Inflationary dilaton-axion magnetogenesis
Cheng, Shu-Lin; Ng, Kin-Wang
2014-01-01
We discuss the generation of primordial magnetic fields during inflation in the dilaton-axion electromagnetism, in which the dilaton and axion dynamics are introduced in terms of two time dependent functions of the cosmic scale factor, $I(a) F^2/4$ and $J(a) F\\tilde{F}/4$, respectively, where $F$ is the electromagnetic field strength and $\\tilde{F}$ is its dual. We study the form of $J(a)$ that can generate a large seed magnetic field in the weak coupling regime, $I(a)<1$. Although the $J(a)$ function is model dependent, the axion-photon coupling indeed opens up a new window for a successful inflationary magnetogenesis.
Hyperscaling violation from supergravity
Perlmutter, Eric
2012-01-01
In recent applications of AdS/CFT to condensed matter physics, a metric that transforms covariantly under dilatation has been argued to signal hyperscaling violation in a dual quantum field theory. We contextualize and introduce large, in some cases infinite, families of supergravity solutions with this property, focusing on scale covariant generalizations of AdS and Schrodinger spacetimes. These embeddings rely on various aspects of dimensional reduction and flux compactification of eleven-dimensional supergravity. Our top-down approach can be viewed as a partial holographic classification of the landscape of strongly coupled, UV complete quantum field theories with hyperscaling violation.
Quantum supergravity, supergravity anomalies and string phenomenology
Gaillard, Mary K
2016-01-01
I discuss the role of quantum effects in the phenomenology of effective supergravity theories from compactification of the weakly coupled heterotic string. An accurate incorporation of these effects requires a regularization procedure that respects local supersymmetry and BRST invariance and that retains information associated with the cut-off scale, which has physical meaning in an effective theory. I briefly outline the Pauli-Villars regularization procedure, describe some applications, and comment on what remains to be done to fully define the effective quantum field theory.
Quantum supergravity, supergravity anomalies and string phenomenology
Gaillard, Mary K.
2016-11-01
I discuss the role of quantum effects in the phenomenology of effective supergravity theories from compactification of the weakly coupled heterotic string. An accurate incorporation of these effects requires a regularization procedure that respects local supersymmetry and BRST invariance and that retains information associated with the cut-off scale, which has physical meaning in an effective theory. I briefly outline the Pauli-Villars regularization procedure, describe some applications, and comment on what remains to be done to fully define the effective quantum field theory.
Quantum supergravity, supergravity anomalies and string phenomenology
Directory of Open Access Journals (Sweden)
Mary K. Gaillard
2016-11-01
Full Text Available I discuss the role of quantum effects in the phenomenology of effective supergravity theories from compactification of the weakly coupled heterotic string. An accurate incorporation of these effects requires a regularization procedure that respects local supersymmetry and BRST invariance and that retains information associated with the cut-off scale, which has physical meaning in an effective theory. I briefly outline the Pauli–Villars regularization procedure, describe some applications, and comment on what remains to be done to fully define the effective quantum field theory.
A dual formulation of supergravity-matter theories
Butter, Daniel
2011-01-01
Generating supersymmetric AdS solutions in non-minimal supergravity in four dimensions is notoriously difficult. Indeed, it is a longstanding lore that such solutions exist only for old minimal supergravity. In this paper, we construct a dual formulation for general N=1 supergravity-matter systems that avoids the problem. In the case of pure supergravity without a cosmological constant, it coincides with the usual non-minimal (n=-1) supergravity, but in the presence of matter (or a cosmological constant) our formulation differs considerably. We also elaborate upon the framework of conformal superspace and the compensator method as applied to our theory. Finally, we show that one can encode the details of the Kahler potential and superpotential entirely within the geometry of superspace so that the general sigma-model action is encoded in a single compact term: the supervolume.
Inflationary de Sitter solutions from superstrings
Kounnas, Costas
2007-01-01
In the framework of superstring compactifications with N=1 supersymmetry spontaneously broken, (by either geometrical fluxes, branes or else), we show the existence of new inflationary solutions. The time-trajectory of the scale factor of the metric a, the supersymmetry breaking scale m=m(Phi) and the temperature T are such that am and aT remain constant. These solutions request the presence of special moduli-fields: i) The universal ``no-scale-modulus'' Phi, which appears in all N=1 effective supergravity theories and defines the supersymmetry breaking scale m(Phi). ii) The modulus Phi_s, which appears in a very large class of string compactifications and has a Phi-dependent kinetic term. During the time evolution, a^4 rho_s remains constant as well, (rho_s being the energy density induced by the motion of Phi_s). The cosmological term Lambda(am), the curvature term k(am, aT) and the radiation term c_R=a^4 rho are dynamically generated in a controllable way by radiative and temperature corrections; they are ...
On conformal supergravity and harmonic superspace
Butter, Daniel
2015-01-01
This paper describes a fully covariant approach to harmonic superspace. It is based on the conformal superspace description of conformal supergravity and involves extending the supermanifold M^{4|8} by the tangent bundle of CP^1. The resulting superspace M^{4|8} x TCP^1 can be identified in a certain gauge with the conventional harmonic superspace M^{4|8} x S^2. This approach not only makes the connection to projective superspace transparent, but simplifies calculations in harmonic superspace significantly by eliminating the need to deal directly with supergravity prepotentials. As an application of the covariant approach, we derive from harmonic superspace the full component action for the sigma model of a hyperkahler cone coupled to conformal supergravity. Further applications are also sketched.
D = 3 Unification of Curious Supergravities
Duff, M J; Marrani, A
2016-01-01
We consider the dimensional reduction to D = 3 of four maximal-rank supergravities which preserve minimal supersymmetry in D = 11, 7, 5 and 4. Such "curious" theories were investigated some time ago, and the four-dimensional one corresponds to an N = 1 supergravity with 7 chiral multiplets spanning the seven-disk manifold. Recently, this latter theory was considered to provide cosmological models for alpha-attractors, which are based on the disk geometry with possible restrictions on the parameter alpha. A unified picture emerges in D = 3, where the Ehlers group of General Relativity merges with the S-, T- and U- dualities of the D = 4 parent theories.
D = 3 Unification of Curious Supergravities
Duff, M.J.; Marrani, A.
2017-01-09
We consider the dimensional reduction to D = 3 of four maximal-rank supergravities which preserve minimal supersymmetry in D = 11, 7, 5 and 4. Such "curious" theories were investigated some time ago, and the four-dimensional one corresponds to an N = 1 supergravity with 7 chiral multiplets spanning the seven-disk manifold. Recently, this latter theory was considered to provide cosmological models for alpha-attractors, which are based on the disk geometry with possible restrictions on the parameter alpha. A unified picture emerges in D = 3, where the Ehlers group of General Relativity merges with the S-, T- and U- dualities of the D = 4 parent theories.
Linearized non-minimal higher curvature supergravity
Directory of Open Access Journals (Sweden)
Fotis Farakos
2015-05-01
Full Text Available In the framework of linearized non-minimal supergravity (20/20, we present the embedding of the R+R2 model and we analyze its field spectrum. As usual, the auxiliary fields of the Einstein theory now become propagating, giving rise to additional degrees of freedom, which organize themselves into on-shell irreducible supermultiplets. By performing the analysis both in component and superspace formulations we identify the new supermultiplets. On top of the two massive chiral superfields reminiscent of the old-minimal supergravity embedding, the spectrum contains also a consistent physical, massive, vector supermultiplet and a tachyonic ghost, massive, vector supermultiplet.
Linearized non-minimal higher curvature supergravity
Farakos, Fotis; Kehagias, Alex; Koutrolikos, Konstantinos
2015-05-01
In the framework of linearized non-minimal supergravity (20/20), we present the embedding of the R +R2 model and we analyze its field spectrum. As usual, the auxiliary fields of the Einstein theory now become propagating, giving rise to additional degrees of freedom, which organize themselves into on-shell irreducible supermultiplets. By performing the analysis both in component and superspace formulations we identify the new supermultiplets. On top of the two massive chiral superfields reminiscent of the old-minimal supergravity embedding, the spectrum contains also a consistent physical, massive, vector supermultiplet and a tachyonic ghost, massive, vector supermultiplet.
Linearized Non-Minimal Higher Curvature Supergravity
Farakos, Fotis; Koutrolikos, Konstantinos
2015-01-01
In the framework of linearized non-minimal supergravity (20/20), we present the embedding of the $R + R^2$ model and we analyze its field spectrum. As usual, the auxiliary fields of the Einstein theory now become propagating, giving rise to additional degrees of freedom, which organize themselves into on-shell irreducible supermultiplets. By performing the analysis both in component and superspace formulations we identify the new supermultiplets. On top of the two massive chiral superfields reminiscent of the old-minimal supergravity embedding, the spectrum contains also a consistent physical, massive, vector supermultiplet and a tachyonic ghost, massive, vector supermultiplet.
D = 3 Unification of Curious Supergravities
Duff, M.J.; Marrani, A.
2017-01-01
We consider the dimensional reduction to D = 3 of four maximal-rank supergravities which preserve minimal supersymmetry in D = 11, 7, 5 and 4. Such "curious" theories were investigated some time ago, and the four-dimensional one corresponds to an N = 1 supergravity with 7 chiral multiplets spanning the seven-disk manifold. Recently, this latter theory was considered to provide cosmological models for alpha-attractors, which are based on the disk geometry with possible restrictions on the parameter alpha. A unified picture emerges in D = 3, where the Ehlers group of General Relativity merges with the S-, T- and U- dualities of the D = 4 parent theories.
Alonso-Alberca, N; Alonso-Alberca, Natxo; Ortin, Tomas
2002-01-01
We review the definition of (maximally supersymmetric) vacuum in supergravity theories, the currently known vacua in arbitrary dimensions and how the associated supersymmetry algebras can be found. (Invited talk at the Spanish Relativity Meeting (``EREs'') 2002, Mao, Menorca, September 21-23 2002.)
Noncommutative Geometry and Supergravity
López, J L; Ryan, M P; Sabido, M
2013-01-01
A spectral action associated with an Einstein-Cartan formulation of supergravity is proposed. To construct this action we make use of the Seeley-DeWitt coefficients in a Riemann-Cartan space. For consistency in its construction the Rarita-Schwinger action is added to the resulting spectral action.
2015-01-01
We are pleased to announce the first PhD seminar in the framework of the CERN-SEENET-MTP PhD Training Program. The topic of the seminar is Supergravity. The seminar will be held at the Faculty of Physics, University of Belgrade, Serbia from June 21 (arrival day) to June 27 (departure day) 2015.
Bergshoeff, E.; Roo, M. de
1993-01-01
We quantize the classical gauge theory of N = 2 wâˆž supergravity and show how the underlying N = 2 super-wâˆž algebra gets deformed into an N = 2 super-Wâˆž algebra. Both algebras contain the N = 2 super-Virasoro algebra as a subalgebra. We discuss how one can extract from these results information
Symmetric Spaces in Supergravity
Ferrara, Sergio
2008-01-01
We exploit the relation among irreducible Riemannian globally symmetric spaces (IRGS) and supergravity theories in 3, 4 and 5 space-time dimensions. IRGS appear as scalar manifolds of the theories, as well as moduli spaces of the various classes of solutions to the classical extremal black hole Attractor Equations. Relations with Jordan algebras of degree three and four are also outlined.
Energy Technology Data Exchange (ETDEWEB)
Gell-Mann, M.
1986-03-01
The current status of the search for a unified quantum field theory of physical interactions is surveyed. The results of recent theoretical investigations are reviewed, considering their relationship to data from particle physics experiments. Supergravity theories with N = 1, N = 2, N = 4, and N = 8 are examined critically. Also included is a brief account of the conference discussion of the paper.
Energy Technology Data Exchange (ETDEWEB)
Grab, Sebastian
2009-08-15
The most widely studied supersymmetric scenario is the minimal supersymmetric standard model (MSSM) with more than a hundred free parameters. However for detailed phenomenological studies, the minimal supergravity (mSUGRA) model, a restricted and well-motivated framework for the MSSM, is more convenient. In this model, lepton- and baryon-number violating interactions are suppressed by a discrete symmetry, R-parity or proton-hexality, to keep the proton stable. However, it is sufficient to forbid only lepton- or baryon-number violation. We thus extend mSUGRA models by adding a proton-hexality violating operator at the grand unification scale. This can change the supersymmetric spectrum leading on the one hand to a sneutrino, smuon or squark as the lightest supersymmetric particle (LSP). On the other hand, a wide parameter region is reopened, where the scalar tau (stau) is the LSP. We investigate in detail the conditions leading to non-neutralino LSP scenarios. We take into account the restrictions from neutrino masses, the muon anomalous magnetic moment, b{yields}s{gamma}, and other precision measurements. We furthermore investigate existing restrictions from direct searches at LEP, the Tevatron, and the CERN p anti p collider. It is vital to know the nature of the LSP, since supersymmetric particles normally cascade decay down to the LSP at collider experiments. We present typical LHC signatures for sneutrino LSP scenarios. Promising signatures are high-p{sub T} muons and jets, like-sign muon events and detached vertices from long lived taus. We also classify the stau LSP decays and describe their dependence on the mSUGRA parameters. We then exploit our results for resonant single slepton production at the LHC. We find novel signatures with like-sign muon and three- and four-muon final states. Finally, we perform a detailed analysis for single slepton production in association with a single top quark. We show that the signal can be distinguished from the background
Inflation after COBE: Lectures on inflationary cosmology
Energy Technology Data Exchange (ETDEWEB)
Turner, M.S. (Chicago Univ., IL (United States). Enrico Fermi Inst. Fermi National Accelerator Lab., Batavia, IL (United States))
1992-01-01
In these lectures I review the standard hot big-bang cosmology, emphasizing its successes, its shortcomings, and its major challenge-a detailed understanding of the formation of structure in the Universe. I then discuss the motivations for and the fundamentals of inflationary cosmology, particularly emphasizing the quantum origin of metric (density and gravity-wave) perturbations. Inflation addresses the shortcomings of the standard cosmology and provides the initial data'' for structure formation. I conclude by addressing the implications of inflation for structure formation, evaluating the various cold dark matter models in the light of the recent detection of temperature anisotropies in the cosmic background radiation by COBE. In the near term, the study of structure formation offers a powerful probe of inflation, as well as specific inflationary models.
On a thermodynamic basis for inflationary cosmology
Ojo, A
2005-01-01
Modifying the standard hot big bang model of cosmology with an inflationary event has been very successful in resolving most of the outstanding cosmological problems. The various inflationary mechanisms proposed depend on the production of an expansion force from exotic phenomena, false vacuum, scalar fields or other exotic particle behaviour within an environment of astronomically high energy, making such proposals relatively inaccessible for verification by experimental tests. Though descriptive of how space has been expanding, the models do not give a complete and consistent mathematical or physical explanation that compels space appearance and propels its expansion. Here we describe another mechanism for achieving exponential inflation based substantially on already tested physics and equations, particularly the thermodynamic equation, dS = dE/T and relate this to the creation event.
Inflationary perturbations in a closed FLRW universe
Yokomizo, Nelson; Bonga, Beatrice; Gupt, Brajesh
2016-03-01
We investigate the evolution of gauge invariant quantum perturbations in the closed FLRW model in the presence of an inflationary potential. We first find out initial conditions for the background geometry which lead to a desired slow-roll phase that is compatible with observation. Providing the initial conditions for the quantum field at the onset of slow-roll we study the influence of the spatial curvature on the scalar and tensor power spectra at the end of inflation. By comparing our results with the recent Planck data we discuss the role of spatial curvature on the estimation of various cosmological parameters. We highlight the main differences from the standard inflationary scenario in a flat FLRW model and potential implications for future observations. Finally, we comment on the quantum gravitational extension of this scenario to the Planck scale. Supported by CNPq-Brazil and NSF.
Inflation after COBE: Lectures on inflationary cosmology
Energy Technology Data Exchange (ETDEWEB)
Turner, M.S. [Chicago Univ., IL (United States). Enrico Fermi Inst.]|[Fermi National Accelerator Lab., Batavia, IL (United States)
1992-12-31
In these lectures I review the standard hot big-bang cosmology, emphasizing its successes, its shortcomings, and its major challenge-a detailed understanding of the formation of structure in the Universe. I then discuss the motivations for and the fundamentals of inflationary cosmology, particularly emphasizing the quantum origin of metric (density and gravity-wave) perturbations. Inflation addresses the shortcomings of the standard cosmology and provides the ``initial data`` for structure formation. I conclude by addressing the implications of inflation for structure formation, evaluating the various cold dark matter models in the light of the recent detection of temperature anisotropies in the cosmic background radiation by COBE. In the near term, the study of structure formation offers a powerful probe of inflation, as well as specific inflationary models.
Cosmological constraints on some supergravity-induced low-energy electroweak models
Energy Technology Data Exchange (ETDEWEB)
Girardi, G.; Salati, P.
1986-02-24
We present constraints on the parameters for models with gravity-induced supersymmetry breaking, obtained from cosmology. This is done by studying the evolution of the density of the lightest supersymmetric particle appearing in the mass spectrum. Our analysis, specifically done for models proposed by Cremmer, Fayet and Girardello, gives severe constraints on the mass of the neutral higgsinos, whereas those on the zino mass are very sensitive to the assumed value of the critical energy density of the Universe. (orig.).
Inflationary Phase with Time Varying Fundamental Constants
Berman, M S; Berman, Marcelo S.; Trevisan, Luis A.
2002-01-01
Following Barrow, and Barrow and collaborators, we find a cosmological JBD model, with varying speed of light and varying fine structure constant, where the deceleration parameter is -1,causing acceleration of the Universe.Indeed, we have an exponential inflationary phase. Plancks time, energy, length,etc.,might have had different numerical values in the past, than those available in the litterature, due to the varying values for speed of light, and gravitational constant.
Expansion of Bubbles in Inflationary Universe
Mohazzab, M.; Jabbari, M. M. Sheikh; Salehi, H.
1995-01-01
We show that particle production during the expansion of bubbles of true vacuum in the sea of false vacuum is possible and calculate the resulting rate. As a result the nucleated bubbles cannot expand due to the transfer of false vacuum energy to the created particles inside the bubbles. Therefore all the inflationary models dealing with the nucleation and expansion of the bubbles (including extended inflation) may not be viable.
Expansion of bubbles in inflationary universe
Mohazzab, M
1995-01-01
We show that particle production during the expansion of bubbles of true vacuum in the sea of false vacuum is possible and calculate the resulting rate. As a result the nucleated bubbles cannot expand due to the transfer of false vacuum energy to the created particles inside the bubbles. Therefore all the inflationary models dealing with the nucleation and expansion of the bubbles (including extended inflation) may not be viable.
Are Inflationary Predictions Sensitive to Very High Energy Physics?
Burgess, C P; Lemieux, F; Holman, R
2003-01-01
It has been proposed that the successful inflationary description of density perturbations on cosmological scales is sensitive to the details of physics at extremely high (trans-Planckian) energies. We test this proposal by examining how inflationary predictions depend on higher-energy scales within a simple model where the higher-energy physics is well understood. We find the best of all possible worlds: inflationary predictions are robust against the vast majority of high-energy effects, but can be sensitive to some effects in certain circumstances, in a way which does not violate ordinary notions of decoupling. This implies both that the comparison of inflationary predictions with CMB data is meaningful, and that it is also worth searching for small deviations from the standard results in the hopes of learning about very high energies.
Supergravity backgrounds and symmetry superalgebras
Ertem, Ümit
2016-01-01
We consider the bosonic sectors of supergravity theories in ten and eleven dimensions which correspond to the low energy limits of string theories and M-theory. The solutions of supergravity field equations are known as supergravity backgrounds and the number of preserved supersymmetries in those backgrounds are determined by Killing spinors. We provide some examples of supergravity backgrounds which preserve different fractions of supersymmetry. An important invariant for the characterization of supergravity backgrounds is their Killing superalgebras which are constructed out of Killing vectors and Killing spinors of the background. After constructing Killing superalgebras of some special supergravity backgrounds, we discuss about the possibilities of the extensions of these superalgebras to include the higher degree hidden symmetries of the background.
Twisted supergravity and its quantization
Costello, Kevin
2016-01-01
Twisted supergravity is supergravity in a background where the bosonic ghost field takes a non-zero value. This is the supergravity counterpart of the familiar concept of twisting supersymmetric field theories. In this paper, we give conjectural descriptions of type IIA and IIB supergravity in $10$ dimensions. Our conjectural descriptions are in terms of the closed-string field theories associated to certain topological string theories, and we conjecture that these topological string theories are twists of the physical string theories. For type IIB, the results of arXiv:1505.6703 show that our candidate twisted supergravity theory admits a unique quantization in perturbation theory. This is despite the fact that the theories, like the original physical theories, are non-renormalizable. Although we do not prove our conjectures, we amass considerable evidence. We find that our candidates for the twisted supergravity theories contain the residual supersymmetry one would expect. We also prove (using heavily a res...
De Sitter vacua in no-scale supergravities and Calabi-Yau string models
Covi, Laura; Gross, Christian; Louis, Jan; Palma, Gonzalo A; Scrucca, Claudio A
2008-01-01
We perform a general analysis on the possibility of obtaining metastable vacua with spontaneously broken N=1 supersymmetry and non-negative cosmological constant in the moduli sector of string models. More specifically, we study the condition under which the scalar partners of the Goldstino are non-tachyonic, which depends only on the Kahler potential. This condition is not only necessary but also sufficient, in the sense that all of the other scalar fields can be given arbitrarily large positive square masses if the superpotential is suitably tuned. We consider both heterotic and orientifold string compactifications in the large-volume limit and show that the no-scale property shared by these models severely restricts the allowed values for the `sGoldstino' masses in the superpotential parameter space. We find that a positive mass term may be achieved only for certain types of compactifications and specific Goldstino directions. Additionally, we show how subleading corrections to the Kahler potential which b...
de Sitter vacua in no-scale supergravities and Calabi-Yau string models
Energy Technology Data Exchange (ETDEWEB)
Covi, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Warsaw Univ. (Poland). Inst. of Theoretical Physics; Gomez-Reino, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Gross, C. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Louis, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[Hamburg Univ. (Germany). Zentrum fuer Mathematische Physik; Palma, G.A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Scrucca, C.A. [Ecole Polytechnique Federale de Lausanne (Switzerland). Inst. de Th. des Phen. Phys.
2008-04-15
We perform a general analysis on the possibility of obtaining metastable vacua with spontaneously broken N = 1 supersymmetry and non-negative cosmological constant in the moduli sector of string models. More specifically, we study the condition under which the scalar partners of the Goldstino are non-tachyonic, which depends only on the Kaehler potential. This condition is not only necessary but also sufficient, in the sense that all of the other scalar fields can be given arbitrarily large positive square masses if the superpotential is suitably tuned. We consider both heterotic and orientifold string compactifications in the large-volume limit and show that the no-scale property shared by these models severely restricts the allowed values for the 'sGoldstino' masses in the superpotential parameter space. We find that a positive mass term may be achieved only for certain types of compactifications and specific Goldstino directions. Additionally, we show how subleading corrections to the Kaehler potential which break the no-scale property may allow to lift these masses. (orig.)
Einstein Gravity-Supergravity Correspondence
Chen, C M; Sharakin, S A; Chen, Chiang-Mei; Gal'tsov, Dmitri V.; Sharakin, Sergei A.
1999-01-01
A correspondence between the three-block truncated 11D supergravity and the 8D pure Einstein gravity with two commuting Killing symmetries is discussed. The Kaluza-Klein two-forms of the 6D theory obtained after dimensional reduction along the Killing orbits generate the four-form field of supergravity via an inverse dualization. Thus any solution to the vacuum Einstein equations in eight dimensions depending on six coordinates have 11D-supergravity counterparts with the non-trivial four-form field. Using this proposed duality we derive a new dyon solution of 11D supergravity describing the M2 and M5-branes intersecting at a point.
Supergravity from Gauge Theory
Berkowitz, Evan
2016-01-01
Gauge/gravity duality is the conjecture that string theories have dual descriptions as gauge theories. Weakly-coupled gravity is dual to strongly-coupled gauge theories, ideal for lattice calculations. I will show precision lattice calculations that confirm large-N continuum D0-brane quantum mechanics correctly reproduces the leading-order supergravity prediction for a black hole's internal energy---the first leading-order test of the duality---and constrains stringy corrections.
Duff, M J
2011-01-01
We consider four supergravities with 16+16, 32+32, 64+64, 128+128 degrees of freedom displaying some curious properties: (1) They exhibit minimal supersymmetry (N=1, 2, 2, 1) but maximal rank (r=7, 6, 4, 0) of the scalar coset in D=4, 5, 7, 11. (2) They couple naturally to supermembranes and admit these membranes as solutions. (3) Although the D=4, 5, 7 supergravities follow from truncating the maximally supersymmetric ones, there nevertheless exist M-theory compactifications with G2, SU(3), SU(2) holonomy having these supergravities as their massless sectors. (4) They reduce to N=1, 2, 4, 8 theories all with maximum rank 7 in D=4 which (5) correspond to 0, 1, 3, 7 lines of the Fano plane and hence admit a division algebra (R,C,H,O) interpretation consistent with the black-hole/qubit correspondence, (6) are generalized self-mirror and hence (7) have vanishing on-shell trace anomaly.
Newton-Cartan supergravity with torsion and Schrodinger supergravity
Bergshoeff, Eric; Rosseel, Jan; Zojer, Thomas
2015-01-01
We derive a torsionfull version of three-dimensional N - 2 Newton-Cartan supergravity using a non-relativistic notion of the superconformal tensor calculus. The "superconformal" theory that we start with is Schrodinger supergravity which we obtain by gauging the Schrodinger superalgebra. We present
Directory of Open Access Journals (Sweden)
Keisuke Harigaya
2015-02-01
Full Text Available We consider an initial condition problem in a nearly quadratic chaotic inflation model in supergravity. We introduce shift symmetry breaking not only in the superpotential but also in the Kahler potential. In this model the inflaton potential is nearly quadratic for inflaton field values around the Planck scale, but deviates from the quadratic one for larger field values. As a result, the prediction on the tensor-to-scalar ratio can be smaller than that of a purely quadratic model. Due to the shift symmetry breaking in the Kahler potential, the inflaton potential becomes steep for large inflaton field values, which may prevent inflation from naturally taking place in a closed universe. We estimate an upper bound on the magnitude of the shift symmetry breaking so that inflation takes place before a closed universe with a Planck length size collapses, which yields a lower bound on the tensor-to-scalar ratio, r≳0.1.
Moduli backreaction on inflationary attractors
Roest, Diederik; Scalisi, Marco; Werkman, Pelle
2016-12-01
We investigate the interplay between moduli dynamics and inflation, focusing on the Kachru-Kallosh-Linde-Trivedi scenario and cosmological α -attractors. General couplings between these sectors can induce a significant backreaction and potentially destroy the inflationary regime; however, we demonstrate that this generically does not happen for α -attractors. Depending on the details of the superpotential, the volume modulus can either be stable during the entire inflationary trajectory or become tachyonic at some point and act as a waterfall field, resulting in a sudden end of inflation. In the latter case there is a universal supersymmetric minimum where the scalars end up, preventing the decompactification scenario. The gravitino mass is independent from the inflationary scale with no fine-tuning of the parameters. The observational predictions conform to the universal value of attractors, fully compatible with the Planck data, with possibly a capped number of e -folds due to the interplay with moduli.
de Wit, B.Q.P.J.; van Zalk, M.
2009-01-01
Supergravity provides the effective field theories for string compactifications. The deformation of the maximal supergravities by non-abelian gauge interactions is only possible for a restricted class of charges. Generically these ‘gaugings’ involve a hierarchy of p-form fields which belong to speci
Ten-dimensional Supergravity Revisited
Bergshoeff, Eric; Roo, Mees de; Kerstan, Sven; Riccioni, Fabio; Diaz Alonso, J.; Mornas, L.
2006-01-01
We show that the exisiting supergravity theories in ten dimensions can be extended with extra gauge fields whose rank is equal to the spacetime dimension. These gauge fields have vanishing field strength but nevertheless play an important role in the coupling of supergravity to spacetime filling bra
Supergravity couplings: a geometric formulation
Binetruy, P.; Girardi, G.; Grimm, R
2000-01-01
This report provides a pedagogical introduction to the description of the general Poincare supergravity/matter/Yang-Mills couplings using methods of Kahler superspace geometry. At a more advanced level this approach is generalized to include tensor field and Chern-Simons couplings in supersymmetry and supergravity, relevant in the context of weakly and strongly coupled string theories.
Supergravity couplings a geometric formulation
Binétruy, Pierre; Grimm, R
2001-01-01
This report provides a pedagogical introduction to the description of the general Poincare supergravity/matter/Yang-Mills couplings using methods of Kahler superspace geometry. At a more advanced level this approach is generalized to include tensor field and Chern-Simons couplings in supersymmetry and supergravity, relevant in the context of weakly and strongly coupled string theories.
Supergravity in Two Spacetime Dimensions
Ertl, M F
2001-01-01
The constraints of the superfield method in two-dimensional supergravity are adapted to allow for nonvanishing bosonic torsion. As the analysis of the Bianchi identities reveals, a new vector superfield is encountered besides the well-known scalar one. The constraints are solved both with superfields using a special decomposition of the supervielbein, and explicitly in terms of component fields in a Wess-Zumino gauge. The graded Poisson Sigma Model (gPSM) is the alternative method used to construct supersymmetric gravity theories. In this context the graded Jacobi identity is solved algebraically for general cases. Some of the Poisson algebras obtained are singular, or several potentials contained in them are restricted. This is discussed for a selection of representative algebras. It is found, that the gPSM is far more flexible and it shows the inherent ambiguity of the supersymmetric extension more clearly than the superfield method. Among the various models spherically reduced Einstein gravity and gravity ...
Inflationary implications of supersymmetry breaking
Borghese, Andrea; Roest, Diederik; Zavala, Ivonne
2013-01-01
We discuss a general bound on the possibility to realise inflation in any minimal supergravity with F-terms. The derivation crucially depends on the sGoldstini, the scalar field directions that are singled out by spontaneous supersymmetry breaking. The resulting bound involves both slow-roll paramet
On BPS preons, generalized holonomies and D=11 supergravities
Bandos, I A; Izquierdo, J M; Picon, M; Varela, O
2003-01-01
We develop the BPS preon conjecture to analyze the supersymmetric solutions of D=11 supergravity. By relating the notions of Killing spinors and BPS preons, we develop a moving G-frame method (G=GL(32,R), SL(32,R) or Sp(32,R)) to analyze their associated generalized holonomies. As a first application we derive here the equations determining the generalized holonomies of k/32 supersymmetric solutions and, in particular, those solving the necessary conditions for the existence of BPS preonic (31/32) solutions of the standard D=11 supergravity. We also show that there exist elementary preonic solutions, i.e. solutions preserving 31 out of 32 supersymmetries in a Chern--Simons type supergravity. We present as well a family of worldvolume actions describing the motion of pointlike and extended BPS preons in the background of a D'Auria-Fre type OSp(1|32)-related supergravity model. We discuss the possible implications for M-theory.
Chiral supergravity and anomalies
Mielke, E W; Macias, Alfredo; Mielke, Eckehard W.
1999-01-01
Similarily as in the Ashtekar approach, the translational Chern-Simons term is, as a generating function, instrumental for a chiral reformulation of simple (N=1) supergravity. After applying the algebraic Cartan relation between spin and torsion, the resulting canonical transformation induces not only decomposition of the gravitational fields into selfdual and antiselfdual modes, but also a splitting of the Rarita-Schwinger fields into their chiral parts in a natural way. In some detail, we also analyze the consequences for axial and chiral anomalies.
Symmetry breaking indication for supergravity inflation in light of the Planck 2015
Energy Technology Data Exchange (ETDEWEB)
Li, Tianjun [State Key Laboratory of Theoretical Physics, and Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Li, Zhijin [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Nanopoulos, Dimitri V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381 (United States); Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679 (Greece)
2015-09-01
Supergravity (SUGRA) theories with exact global U(1) symmetry or shift symmetry in Kähler potential provide natural frameworks for inflation. However, quadratic inflation is disfavoured by the new results on primordial tensor fluctuations from the Planck Collaboration. To be consistent with the new Planck data, we point out that the explicit symmetry breaking is needed, and study these two SUGRA inflation in detail. For SUGRA inflation with global U(1) symmetry, the symmetry breaking term leads to a trigonometric modulation on inflaton potential. Coefficient of the U(1) symmetry breaking term is of order 10{sup −2}, which is sufficient large to improve the inflationary predictions while its higher order corrections are negligible. Such models predict sizeable tensor fluctuations and highly agree with the Planck results. In particular, the model with a linear U(1) symmetry breaking term predicts the tensor-to-scalar ratio around r∼0.01 and running spectral index α{sub s}∼−0.004, which comfortably fit with the Planck observations. For SUGRA inflation with breaking shift symmetry, the inflaton potential is modulated by an exponential factor. The modulated linear and quadratic models are consistent with the Planck observations. In both types of models the tensor-to-scalar ratio can be of order 10{sup −2}, which will be tested by the near future observations.
Newton-Cartan supergravity with torsion and Schroedinger supergravity
Bergshoeff, Eric; Zojer, Thomas
2015-01-01
We derive a torsionfull version of three-dimensional N=2 Newton-Cartan supergravity using a non-relativistic notion of the superconformal tensor calculus. The "superconformal" theory that we start with is Schroedinger supergravity which we obtain by gauging the Schroedinger superalgebra. We present two non-relativistic N=2 matter multiplets that can be used as compensators in the superconformal calculus. They lead to two different off-shell formulations which, in analogy with the relativistic case, we call "old minimal" and "new minimal" Newton-Cartan supergravity. We find similarities but also point out some differences with respect to the relativistic case.
Inflationary spacetimes are incomplete in past directions.
Borde, Arvind; Guth, Alan H; Vilenkin, Alexander
2003-04-18
Many inflating spacetimes are likely to violate the weak energy condition, a key assumption of singularity theorems. Here we offer a simple kinematical argument, requiring no energy condition, that a cosmological model which is inflating--or just expanding sufficiently fast--must be incomplete in null and timelike past directions. Specifically, we obtain a bound on the integral of the Hubble parameter over a past-directed timelike or null geodesic. Thus inflationary models require physics other than inflation to describe the past boundary of the inflating region of spacetime.
Electrodynamic Effects of Inflationary Gravitons
Glavan, D.; Miao, S. P.; Prokopec, T.; Woodard, R. P.
2014-01-01
We calculate the one-loop corrections from inflationary gravitons to the electromagnetic fields of a point charge and a point magnetic dipole on a locally de Sitter space background. Results are obtained both for an observer at rest in co-moving coordinates, whose physical distance from the sources
Slow-roll inflationary senario in the maximally extended background
Asgari, A A
2015-01-01
During the inflationary epoch,geometry of the universe may be described by quasi-de Sitter space. On the other hand,maximally extended de Sitter metric in the comoving coordinates accords with a special FLRW model with positive spatial curvature,so in this article we focus on the positively curved inflationary paradigm.For this purpose,first we derive the power spectra of comoving curvature perturbation and primordial gravitational waves in a positively curved FLRW universe according to the slowly rolling inflationary senario. It can be shown that the curvature spectral index in this model automatically has a small negative running parameter which is compatible with observational measurements.Then,by taking into account the curvature factor,we investigate the relative amplitude of the scalar and tensor perturbations.It would be clarified that the tensor-scalar ratio for this model against the spatially flat one,depends on the waelength of the perturbative models directly.
Slow-roll inflationary scenario in the maximally extended background
Energy Technology Data Exchange (ETDEWEB)
Asgari, Ali A.; Abbassi, Amir H. [Tarbiat Modares University, Department of Physics, School of Sciences, Tehran (Iran, Islamic Republic of)
2015-11-15
During the inflationary epoch, the geometry of the universe may be described by a quasi-de Sitter space. On the other hand, the maximally extended de Sitter metric in the comoving coordinates accords with a special FLRW model with positive spatial curvature; therefore, the focus of the present paper is on the positively curved inflationary paradigm, for which we first of all derive the power spectra of comoving curvature perturbation and primordial gravitational waves in a positively curved FLRW universe according to the slowly rolling inflationary scenario. It can be shown that the curvature spectral index in this model automatically has a small negative running parameter, compatible with observational measurements. Afterwards, by taking into account the curvature factor, it investigates the relative amplitude of the scalar and tensor perturbations, clarifying that the tensor-scalar ratio for this model, against the spatially flat one, directly depends on the wavelength of the perturbative modes. (orig.)
Slow-roll inflationary scenario in the maximally extended background
Energy Technology Data Exchange (ETDEWEB)
Asgari, Ali A.; Abbassi, Amir H., E-mail: ahabbasi@modares.ac.ir [Department of Physics, School of Sciences, Tarbiat Modares University, P.O. Box 14155-4838, Tehran (Iran, Islamic Republic of)
2015-11-21
During the inflationary epoch, the geometry of the universe may be described by a quasi-de Sitter space. On the other hand, the maximally extended de Sitter metric in the comoving coordinates accords with a special FLRW model with positive spatial curvature; therefore, the focus of the present paper is on the positively curved inflationary paradigm, for which we first of all derive the power spectra of comoving curvature perturbation and primordial gravitational waves in a positively curved FLRW universe according to the slowly rolling inflationary scenario. It can be shown that the curvature spectral index in this model automatically has a small negative running parameter, compatible with observational measurements. Afterwards, by taking into account the curvature factor, it investigates the relative amplitude of the scalar and tensor perturbations, clarifying that the tensor–scalar ratio for this model, against the spatially flat one, directly depends on the wavelength of the perturbative modes.
Anisotropic higher derivative gravity and inflationary universe
Kao, W F
2006-01-01
Stability analysis of the Kantowski-Sachs type universe in pure higher derivative gravity theory is studied in details. The non-redundant generalized Friedmann equation of the system is derived by introducing a reduced one dimensional generalized KS type action. This method greatly reduces the labor in deriving field equations of any complicate models. Existence and stability of inflationary solution in the presence of higher derivative terms are also studied in details. Implications to the choice of physical theories are discussed in details in this paper.
Stability of Bianchi attractors in Gauged Supergravity
Inbasekar, Karthik
2013-01-01
In this paper, we analyse the stability of extremal black brane horizons with homogeneous symmetry in the spatial directions in five dimensional gauged supergravity, under the fluctuations of the scalar fields about their attractor values. We examine the scalar fluctuation equations at the linearised level and demand that the fluctuations vanish as one approaches the horizon. Imposing certain restrictions on the Killing vectors used for gauging we find that the necessary conditions for stability are satisfied only by a subclass of the Bianchi metrics whose symmetry group factorises into a two dimensional Lifshitz symmetry and any homogeneous symmetry group given by the Bianchi classification. We apply these results to a simple example of a gauged supergravity model with one vector multiplet to find the stable attractors.
Phantom space–times in fake supergravity
Directory of Open Access Journals (Sweden)
Maryam Bu Taam
2015-12-01
Full Text Available We discuss phantom metrics admitting Killing spinors in fake N=2, D=4 supergravity coupled to vector multiplets. The Abelian U(1 gauge fields in the fake theory have kinetic terms with the wrong sign. We solve the Killing spinor equations for the standard and fake theories in a unified fashion by introducing a parameter which distinguishes between the two theories. The solutions found are fully determined in terms of algebraic conditions, the so-called stabilisation equations, in which the symplectic sections are related to a set of functions. These functions are harmonic in the case of the standard supergravity theory and satisfy the wave-equation in flat (2+1-space–time in the fake theory. Explicit examples are given for the minimal models with quadratic prepotentials.
Enhanced Inflationary Trispectrum from a Non-Vacuum Initial State
Agullo, I.; Navarro-Salas, J.; Parker, L.
2015-01-01
We work out the primordial inflationary trispectrum for curvature perturbations in models with standard kinetic terms, when the initial quantum state is not necessarily the Bunch-Davies vacuum state. The presence of initial perturbations enhances the trispectrum amplitude for squeezed configurations, in parallel to the bispectrum enhancement. For those squeezed configurations the trispectrum acquires the so-called local form, with a scale dependent amplitude that can get values larger than the prediction of the so-called Maldacena consistency relation. The enhancement factor could be as large as 106, and could reach the sensitivity of forthcoming observations, even for single-field inflationary models.
Glavan, D.; Prokopec, T.; van der Woude, D. C.
2015-01-01
We consider the late-time one-loop quantum backreaction from inflationary fluctuations of a non-minimally coupled, massless scalar field. The scalar is assumed to be a spectator field in an inflationary model with a constant principal slow-roll. parameter. We regulate the infrared by matching onto a
Killing Spinors -- Beyond Supergravity
Palomo-Lozano, Alberto
2012-01-01
This is a doctoral thesis on the application of techniques originally developed in the programme of characterisation of supersymmetric solutions to Supergravity theories, to finding alternative backgrounds. We start by discussing the concept of a Killing spinor, and how these are paramount to the process of classifying of these aforementioned supersymmetric solutions. Moreover, these geometric objects also have applications when considered in different scenarios (the 'beyond' in the title). In particular, techniques based on a parallelising rule for a spinorial field can be used for obtaining solutions to Einstein-Maxwell-De Sitter theories, as well as a (partial) classification of Lorentzian Einstein-Weyl manifolds, a problem of geometrical interest. The annexe contain an introduction and summary in Spanish language. The appendices discuss the tensorial and spinorial conventions employed, some relevant geometrical information on the scalar manifolds for the matter contents of interest, as well as for the nul...
Serpa, Nilo
2011-01-01
This essay aims to summarize the main physical features arising from a new supersymmetric theory of gravitation. Based on preliminary discussions about classical field theory, cosmology, algebra and group theory, and taking formal results and theoretical considerations in comparison with several contributions from great authors, present work deals with gravity inside the limits of a meta-field theory, that is, a non-quantized but consistent representation of supergravity, the supersymmetry between gravitons and gravitinos. The introduction of meta-fields furnishes an independent framework for the study of gravity despite of constraints of quantization, treating the supersymmetric partners as deterministic actors of gravitation and not simply probabilistic entities. I explain my belief that gravitational field, by its own nature, is not quantizable in the same foot as the other fields, what does not means that we can not understand gravity by similar formal veins. Also, present work proposes the implementation...
Resurrecting no-scale supergravity phenomenology
Energy Technology Data Exchange (ETDEWEB)
Ellis, John [CERN, TH Division, PH Department, Geneva 23 (Switzerland); Mustafayev, Azar; Olive, Keith A. [University of Minnesota, William I. Fine Theoretical Physics Institute, Minneapolis, MN (United States)
2010-09-15
In the context of phenomenological models in which the soft supersymmetry-breaking parameters of the MSSM become universal at some unification scale, M{sub in}, above the GUT scale, M{sub GUT}, it is possible that all the scalar mass parameters m{sub 0}, the trilinear couplings A{sub 0} and the bilinear Higgs coupling B{sub 0} vanish simultaneously, as in no-scale supergravity. Using these no-scale inputs in a renormalisation-group analysis of the minimal supersymmetric SU(5) GUT model, we pay careful attention to the matching of parameters at the GUT scale. We delineate the region of M{sub in}, m{sub 1/2} and tan {beta} where the resurrection of no-scale supergravity is possible, taking due account of the relevant phenomenological constraints such as electroweak symmetry breaking, m{sub h},b {yields}s {gamma}, the neutralino cold dark matter density {omega}{sub {chi}} h {sup 2} and g{sub {mu}} -2. No-scale supergravity survives in an L-shaped strip of parameter space, with one side having m{sub 1/2}>or similar 200 GeV, the second (orthogonal) side having M{sub in}>or similar 5 x 10 {sup 16} GeV. Depending on the relative signs and magnitudes of the GUT superpotential couplings, these may be connected to form a triangle whose third side is a hypotenuse at larger M{sub in}, m{sub 1/2} and tan {beta}, whose presence and location depend on the GUT superpotential parameters. We compare the prospects for detecting sparticles at the LHC in no-scale supergravity with those in the CMSSM and the NUHM. (orig.)
Resurrecting No-Scale Supergravity Phenomenology
Ellis, John; Olive, Keith A
2010-01-01
In the context of phenomenological models in which the soft supersymmetry-breaking parameters of the MSSM become universal at some unification scale, M_{in}, above the GUT scale, \\mgut, it is possible that all the scalar mass parameters m_0, the trilinear couplings A_0 and the bilinear Higgs coupling B_0 vanish simultaneously, as in no-scale supergravity. Using these no-scale inputs in a renormalization-group analysis of the minimal supersymmetric SU(5) GUT model, we pay careful attention to the matching of parameters at the GUT scale. We delineate the region of M_{in}, m_{1/2} and \\tan \\beta where the resurrection of no-scale supergravity is possible, taking due account of the relevant phenomenological constraints such as electroweak symmetry breaking, m_h, b \\to s \\gamma, the neutralino cold dark matter density \\ohsq and g_\\mu - 2. No-scale supergravity survives in an L-shaped strip of parameter space, with one side having with one side having m_{1/2} \\gappeq 200 {\\rm GeV}, the second (orthogonal) side havi...
The Integral Form of Supergravity
Castellani, L; Grassi, P A
2016-01-01
By using integral forms we derive the superspace action of D=3, N=1 supergravity as an integral on a supermanifold. The construction is based on target space picture changing operators, here playing the role of Poincare' duals to the lower-dimensional spacetime surfaces embedded into the supermanifold. We show how the group geometrical action based on the group manifold approach interpolates between the superspace and the component supergravity actions, thus providing another proof of their equivalence.
The integral form of supergravity
Energy Technology Data Exchange (ETDEWEB)
Castellani, L. [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale,Viale T. Michel, 11, 15121 Alessandria (Italy); INFN - Sezione di Torino,via P. Giuria 1, 10125 Torino (Italy); Catenacci, R. [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale,Viale T. Michel, 11, 15121 Alessandria (Italy); Gruppo Nazionale di Fisica Matematica, INdAM,P.le Aldo Moro 5, 00185 Roma (Italy); Grassi, P.A. [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale,Viale T. Michel, 11, 15121 Alessandria (Italy); INFN - Sezione di Torino,via P. Giuria 1, 10125 Torino (Italy)
2016-10-11
By using integral forms we derive the superspace action of D=3,N=1 supergravity as an integral on a supermanifold. The construction is based on target space picture changing operators, here playing the rôle of Poincaré duals to the lower-dimensional spacetime surfaces embedded into the supermanifold. We show how the group geometrical action based on the group manifold approach interpolates between the superspace and the component supergravity actions, thus providing another proof of their equivalence.
All N=4 Conformal Supergravities
Butter, Daniel; de Wit, Bernard; Sahoo, Bindusar
2016-01-01
All N=4 conformal supergravities in four space-time dimensions are constructed. These are the only N=4 supergravity theories whose actions are invariant under off-shell supersymmetry. They are encoded in terms of a holomorphic function that is homogeneous of zeroth degree in scalar fields that parametrize an SU(1,1)/U(1) coset space. When this function equals a constant the Lagrangian is invariant under continuous SU(1,1) transformations.
Moduli Backreaction on Inflationary Attractors
Roest, Diederik; Werkman, Pelle
2016-01-01
We investigate the interplay between moduli dynamics and inflation, focusing on the KKLT-scenario and cosmological $\\alpha$-attractors. General couplings between these sectors can induce a significant backreaction and potentially destroy the inflationary regime; however, we demonstrate that this generically does not happen for $\\alpha$-attractors. Depending on the details of the superpotential, the volume modulus can either be stable during the entire inflationary trajectory, or become tachyonic at some point and act as a waterfall field, resulting in a sudden end of inflation. In the latter case there is a universal supersymmetric minimum where the scalars end up, preventing the decompactification scenario. The observational predictions conform to the universal value of attractors, fully compatible with the Planck data, with possibly a capped number of e-folds due to the interplay with moduli.
The Quest for B Modes from Inflationary Gravitational Waves
Kamionkowski, Marc; Kovetz, Ely D.
2016-09-01
The search for the curl component (B mode) in the cosmic microwave background (CMB) polarization induced by inflationary gravitational waves is described. The canonical single-field slow-roll model of inflation is presented, and we explain the quantum production of primordial density perturbations and gravitational waves. It is shown how these gravitational waves then give rise to polarization in the CMB. We then describe the geometric decomposition of the CMB polarization pattern into a curl-free component (E mode) and curl component (B mode) and show explicitly that gravitational waves induce B modes. We discuss the B modes induced by gravitational lensing and by Galactic foregrounds and show how both are distinguished from those induced by inflationary gravitational waves. Issues involved in the experimental pursuit of these B modes are described, and we summarize some of the strategies being pursued. We close with a brief discussion of some other avenues toward detecting/characterizing the inflationary gravitational-wave background.
The Quest for B Modes from Inflationary Gravitational Waves
Kamionkowski, Marc
2015-01-01
The search for the curl component (B mode) in the cosmic microwave background (CMB) polarization induced by inflationary gravitational waves is described. The canonical single-field slow-roll model of inflation is presented, and we explain the quantum production of primordial density perturbations and gravitational waves. It is shown how these gravitational waves then give rise to polarization in the CMB. We then describe the geometric decomposition of the CMB polarization pattern into a curl-free component (E mode) and curl component (B mode) and show explicitly that gravitational waves induce B modes. We discuss the B modes induced by gravitational lensing and by Galactic foregrounds and show how both are distinguished from those induced by inflationary gravitational waves. Issues involved in the experimental pursuit of these B modes are described, and we summarize some of the strategies being pursued. We close with a brief discussion of some other avenues toward detecting/characterizing the inflationary gr...
Reconciling Induced-Gravity Inflation in Supergravity With The BICEP2 Results
Pallis, C
2014-01-01
We generalize the embedding of induced-gravity inflation beyond the no-scale Supergravity presented in arXiv:1403.5486 employing two gauge singlet chiral superfields, a superpotential uniquely determined by applying a continuous R and a discrete Zn symmetries, and a logarithmic Kahler potential including all the allowed terms up to fourth order in powers of the various fields. We show that, increasing slightly the prefactor (-3) encountered in the adopted Kahler potential, an efficient enhancement of the resulting tensor-to-scalar ratio can be achieved rendering the predictions of the model consistent with the recent BICEP2 results, even with subplanckian excursions of the original inflaton field. The remaining inflationary observables can become compatible with the data by mildly tuning the coefficient involved in the fourth order term of the Kahler potential which mixes the inflaton with the accompanying non-inflaton field. The inflaton mass is predicted to be close to 10^14 GeV.
Inflationary Magnetogenesis without the Strong Coupling Problem II
DEFF Research Database (Denmark)
J. Z. Ferreira, Ricardo; Kumar Jain, Rajeev; Sloth, Martin Snoager
2014-01-01
Recent observational claims of magnetic fields stronger than $10^{-16}$ G in the extragalactic medium motivate a new look for their origin in the inflationary magnetogenesis models. In this work we shall review the constraints on the simplest gauge invariant model $f^2(\\phi)F_{\\mu \
Bootstrapping from inflationary magnetogenesis to CMB initial conditions
Giovannini, Massimo
2013-01-01
The temperature and polarization anisotropies of the Cosmic Microwave Background are analyzed under the hypothesis that the same inflationary seed accounting for protogalactic magnetism also affects the Einstein-Boltzmann hierarchy whose initial conditions are assigned for typical correlation scales larger than the Hubble radius after matter-radiation equality but before decoupling. Since the primordial gauge spectrum depends on a combination of pivotal parameters of the concordance model, the angular power spectra of the temperature and of the polarization are computed, for the first time, in the presence of a putative large-scale magnetic field of inflationary origin and without supplementary hypotheses.
Observational Constraints on New Exact Inflationary Scalar-field Solutions
Barrow, John D
2016-01-01
An algorithm is used to generate new solutions of the scalar field equations in homogeneous and isotropic universes. Solutions can be found for pure scalar fields with various potentials in the absence and presence of spatial curvature and other perfect fluids. A series of generalisations of the Chaplygin gas and bulk viscous cosmological solutions for inflationary universes are found. We also show how the Hubble slow-roll parameters can be calculated using the solution algorithm and we compare these inflationary solutions with the observational data provided by the Planck 2015 collaboration in order to constraint and rule out some of these models.
Complete WMAP Constraints on Bandlimited Inflationary Features
Dvorkin, Cora
2011-01-01
Using a principal component (PC) basis that accommodates order unity features in the slow roll parameters as fine as 1/10 of a decade across more than 2 decades of the inflationary expansion, we test slow roll and single field inflation with the WMAP7 data. Detection of any non-zero component would represent a violation of ordinary slow roll and indicate a feature in the inflaton potential or sound speed. Although one component shows a deviation at the 98% CL, it cannot be considered statistically significant given the 20 components tested. The maximum likelihood PC parameters only improves 2DeltalnL by 17 for the 20 parameters associated with known glitches in the WMAP power spectrum at multipoles l<60. We make model-independent predictions for the matching glitches in the polarization spectrum that would test their inflationary origin. This complete analysis for bandlimited features in the source function of generalized slow roll can be used to constrain parameters of specific models of the inflaton pote...
Inflationary perturbations in no-scale theories
Energy Technology Data Exchange (ETDEWEB)
Salvio, Alberto [CERN, Theoretical Physics Department, Geneva (Switzerland)
2017-04-15
We study the inflationary perturbations in general (classically) scale-invariant theories. Such scenario is motivated by the hierarchy problem and provides natural inflationary potentials and dark matter candidates. We analyse in detail all sectors (the scalar, vector and tensor perturbations) giving general formulae for the potentially observable power spectra, as well as for the curvature spectral index n{sub s} and the tensor-to-scalar ratio r. We show that the conserved Hamiltonian for all perturbations does not feature negative energies even in the presence of the Weyl-squared term if the appropriate quantisation is performed and argue that this term does not lead to phenomenological problems at least in some relevant setups. The general formulae are then applied to a concrete no-scale model, which includes the Higgs and a scalar, ''the planckion'', whose vacuum expectation value generates the Planck mass. Inflation can be triggered by a combination of the planckion and the Starobinsky scalar and we show that no tension with observations is present even in the case of pure planckion inflation, if the coefficient of the Weyl-squared term is large enough. In general, even quadratic inflation is allowed in this case. Moreover, the Weyl-squared term leads to an isocurvature mode, which currently satisfies the observational bounds, but it may be detectable with future experiments. (orig.)
Inflationary Birefringence and Baryogenesis
Alexander, Stephon H S
2016-01-01
A decade ago, the first leptogenesis model based on inflation was proposed, where the complex phase of the inflaton field carries lepton number. If the inflaton field is an axion, it can couple to gravitational waves and gauge fields via. Chern-Simons invariants. Due to these couplings, birefringent gravitational and gauge primordial perturbations are created during inflation to generate a lepton asymmetry, establishing a possible connection between non-vanishing TB-parity violating polarization cross-correlations and leptogenesis. We also discuss the prospect for a subset of these models can directly source circular (V-mode) polarization in the CMB.
Can CMB data constrain the inflationary field range?
Garcia-Bellido, Juan; Roest, Diederik; Scalisi, Marco; Zavala, Ivonne
2014-01-01
We study to what extent the spectral index ns and the tensor-to-scalar ratio r determine the field excursion Delta phi during inflation. We analyse the possible degeneracy of Delta phi by comparing three broad classes of inflationary models, with different dependence on the number of e-foldings N, t
Low Energy Supergravity Revisited (I)
Moultaka, Gilbert; Tant, Damien
2016-01-01
General forms of the K\\"ahler and superpotenials that lead to consistent low energy broken Supersymmetry originating from $N=1$ Supergravity have been classified and used for model building since more than three decades. We point out the incompleteness of this classification. Focusing in this paper mainly on the case of minimal K\\"ahler potential, we adopt a rigorous approach that retrieves on the one hand the known forms, and demonstrate on the other hand the existence of a whole set of new forms for the superpotential of which we give a complete classification. The latter forms involve a new type of chiral superfields having the unusual property of belonging neither to the hidden sector nor to the conventional observable sector. We argue how new possibilities for model building can arise, comparing the obtained forms with the conventional ones, and discuss the gravity mediation of supersymmetry breaking and the vacuum structure in the presence of the new type of chiral superfields. In the simplest case, we ...
Inflationary Dynamics in Guatemala
Directory of Open Access Journals (Sweden)
Thomas M. FULLERTON
2015-12-01
Full Text Available Abstract. Short-run price dynamics for Guatemala are analyzedusing a linear transfer function methodology. This approach has previously been employed for other national economies such as the United States, Mexico, Colombia, Ecuador, and Nigeria. The data for this study range from 1960 to 2010. Inflation is measured using the consumer price index. Explanatory variables include the monetary base, real output, interest rates, and the exchange rate. Allof the estimated coefficients exhibit the arithmetic signs hypothesized by the theoretical model. Almostall of the parameter estimates satisfy the 5-percent significance criterion and all exhibit economically plausible magnitudes. Estimation results indicate that although monetary policy effects begin to materialize within twelve months of implementation, the bulk of the impacts associated with the money supply do not occur until the second year after any monetary policy action is taken.Keywords. Inflation, Guatemala, Monetary Economics, Applied Econometrics.JEL. C22, E31, O54.
Scale invariant Volkov–Akulov supergravity
Directory of Open Access Journals (Sweden)
S. Ferrara
2015-10-01
Full Text Available A scale invariant goldstino theory coupled to supergravity is obtained as a standard supergravity dual of a rigidly scale-invariant higher-curvature supergravity with a nilpotent chiral scalar curvature. The bosonic part of this theory describes a massless scalaron and a massive axion in a de Sitter Universe.
Scale invariant Volkov–Akulov supergravity
Energy Technology Data Exchange (ETDEWEB)
Ferrara, S., E-mail: sergio.ferrara@cern.ch [Th-Ph Department, CERN, CH-1211 Geneva 23 (Switzerland); INFN – Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati (Italy); Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Porrati, M., E-mail: mp9@nyu.edu [Th-Ph Department, CERN, CH-1211 Geneva 23 (Switzerland); CCPP, Department of Physics, NYU, 4 Washington Pl., New York, NY 10003 (United States); Sagnotti, A., E-mail: sagnotti@sns.it [Th-Ph Department, CERN, CH-1211 Geneva 23 (Switzerland); Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, 56126 Pisa (Italy)
2015-10-07
A scale invariant goldstino theory coupled to supergravity is obtained as a standard supergravity dual of a rigidly scale-invariant higher-curvature supergravity with a nilpotent chiral scalar curvature. The bosonic part of this theory describes a massless scalaron and a massive axion in a de Sitter Universe.
Gauged supergravities from Bianchi's group manifolds
Bergshoeff, E; Gran, U; Linares, R; Nielsen, M; Ortin, T; Roest, D
2004-01-01
We construct maximal D = 8 gauged supergravities by the reduction of D = I I supergravity over three-dimensional group manifolds. Such manifolds are classified into two classes, A and B, and eleven types. This Bianchi classification carries over to the gauged supergravities. The class A theories hav
Inflation and Integrable one-field Cosmologies embedded in Rheonomic Supergravity
Fre, P
2013-01-01
In this paper we show that the new approach to the embedding of the inflationary potentials into supergravity, presented in a quite recent paper [11] of Ferrara, Kallosh, Linde and Porrati can be formulated within the framework of standard matter coupled supergravity, without the use of the new minimal auxiliary set and of conformal compensators. The only condition is the existence of a translational Peccei Quinn isometry of the scalar Kahler manifold. We suggest that this embedding strategy based on a nilpotent gauging amounts to a profound Copernican Revolution. The properties of the inflaton potential are encoded in the geometry of some homogeneous one-dimensional Kahler manifolds that now should be regarded as the primary object, possibly providing a link with microscopic physics. We present a simple and elegant formula for the curvature of the Kahler manifold in terms of the potential. Most relevant consequence of the new strategy is that all the integrable potentials quite recently classified in a paper...
The Wasteland of Random Supergravities
Marsh, David; Wrase, Timm
2011-01-01
We show that in a general \\cal{N} = 1 supergravity with N \\gg 1 scalar fields, an exponentially small fraction of the de Sitter critical points are metastable vacua. Taking the superpotential and Kahler potential to be random functions, we construct a random matrix model for the Hessian matrix, which is well-approximated by the sum of a Wigner matrix and two Wishart matrices. We compute the eigenvalue spectrum analytically from the free convolution of the constituent spectra and find that in typical configurations, a significant fraction of the eigenvalues are negative. Building on the Tracy-Widom law governing fluctuations of extreme eigenvalues, we determine the probability P of a large fluctuation in which all the eigenvalues become positive. Strong eigenvalue repulsion makes this extremely unlikely: we find P \\propto exp(-c N^p), with c, p being constants. For generic critical points we find p \\approx 1.5, while for approximately-supersymmetric critical points, p \\approx 1.3. Our results have significant ...
Supersymmetric vacua in random supergravity
Bachlechner, Thomas C.; Marsh, David; McAllister, Liam; Wrase, Timm
2013-01-01
We determine the spectrum of scalar masses in a supersymmetric vacuum of a general mathcal{N}=1 supergravity theory, with the Kähler potential and superpotential taken to be random functions of N complex scalar fields. We derive a random matrix model for the Hessian matrix and compute the eigenvalue spectrum. Tachyons consistent with the Breitenlohner-Freedman bound are generically present, and although these tachyons cannot destabilize the supersymmetric vacuum, they do influence the likelihood of the existence of an `uplift' to a metastable vacuum with positive cosmological constant. We show that the probability that a supersymmetric AdS vacuum has no tachyons is formally equivalent to the probability of a large fluctuation of the smallest eigenvalue of a certain real Wishart matrix. For normally-distributed matrix entries and any N, this probability is given exactly by P=exp left( {{{{-2{N^2}{{{left| W right|}}^2}}} left/ {{m_{susy}^2}} right.}} right) , with W denoting the superpotential and m susy the supersymmetric mass scale; for more general distributions of the entries, our result is accurate when N ≫ 1. We conclude that for left| W right|gtrsim {{{{m_{susy}}}} left/ {N} right.} , tachyonic instabilities are ubiquitous in configurations obtained by uplifting supersymmetric vacua.
Supersymmetric Vacua in Random Supergravity
Bachlechner, Thomas C; McAllister, Liam; Wrase, Timm
2012-01-01
We determine the spectrum of scalar masses in a supersymmetric vacuum of a general N=1 supergravity theory, with the Kahler potential and superpotential taken to be random functions of N complex scalar fields. We derive a random matrix model for the Hessian matrix and compute the eigenvalue spectrum. Tachyons consistent with the Breitenlohner-Freedman bound are generically present, and although these tachyons cannot destabilize the supersymmetric vacuum, they do influence the likelihood of the existence of an `uplift' to a metastable vacuum with positive cosmological constant. We show that the probability that a supersymmetric AdS vacuum has no tachyons is formally equivalent to the probability of a large fluctuation of the smallest eigenvalue of a certain real Wishart matrix. For normally-distributed matrix entries and any N, this probability is given exactly by P = exp(-2N^2|W|^2/m_{susy}^2), with W denoting the superpotential and m_{susy} the supersymmetric mass scale; for more general distributions of the...
Classical and Quantum Nonlocal Supergravity
Giaccari, Stefano
2016-01-01
We derive the N=1 supersymmetric extension for a class of weakly nonlocal four dimensional gravitational theories.The construction is explicitly done in the superspace and the tree-level perturbative unitarity is explicitly proved both in the superfield formalism and in field components. For the minimal nonlocal supergravity the spectrum is the same as in the local theory and in particular it is ghost-free. The supersymmetric extension of the super-renormalizable Starobinsky theory and of two alternative massive nonlocal supergravities are found as straightforward applications of the formalism. Power-counting arguments ensure super-renormalizability with milder requirement for the asymptotic behavior of form factors than in ordinary nonlocal gravity. The most noteworthy result, common to ordinary supergravity, is the absence of quantum corrections to the cosmological constant in any regularization procedure. We cannot exclude the usual one-loop quadratic divergences. However, local vertices in the superfields...
A scenario for inflationary magnetogenesis without strong coupling problem
Energy Technology Data Exchange (ETDEWEB)
Tasinato, Gianmassimo [Department of Physics, Swansea University,Swansea, SA2 8PP (United Kingdom); Institute of Cosmology and Gravitation, University of Portsmouth,Portsmouth, PO1 3FX (United Kingdom)
2015-03-23
Cosmological magnetic fields pervade the entire universe, from small to large scales. Since they apparently extend into the intergalactic medium, it is tantalizing to believe that they have a primordial origin, possibly being produced during inflation. However, finding consistent scenarios for inflationary magnetogenesis is a challenging theoretical problem. The requirements to avoid an excessive production of electromagnetic energy, and to avoid entering a strong coupling regime characterized by large values for the electromagnetic coupling constant, typically allow one to generate only a tiny amplitude of magnetic field during inflation. We propose a scenario for building gauge-invariant models of inflationary magnetogenesis potentially free from these issues. The idea is to derivatively couple a dynamical scalar, not necessarily the inflaton, to fermionic and electromagnetic fields during the inflationary era. Such couplings give additional freedom to control the time-dependence of the electromagnetic coupling constant during inflation. This fact allows us to find conditions to avoid the strong coupling problems that affect many of the existing models of magnetogenesis. We do not need to rely on a particular inflationary set-up for developing our scenario, that might be applied to different realizations of inflation. On the other hand, specific requirements have to be imposed on the dynamics of the scalar derivatively coupled to fermions and electromagnetism, that we are able to satisfy in an explicit realization of our proposal.
N=2, D=6 supergravity with $E_7$ gauge matter
Zyablyuk, K N
1997-01-01
The lagrangian of N=2, D=6 supergravity coupled to E_7 X SU(2) vector- and hyper-multiplets is derived. For this purpose the coset manifold E_8/E_7 X SU(2), parametrized by the scalars of the hypermultiplet, is constructed. A difference from the case of Sp(n)-matter is pointed out. This model can be considered as an intermediate step in the compactification of D=10 supergravity coupled to E_8 X E_8 matter to four-dimensional model of E_6 unification.
Finite action, holographic conformal anomaly and quantum brane-worlds in d5 gauged supergravity
Nojiri, S; Odintsov, S D; Ogushi, S
2002-01-01
We report our recent results concerning d5 gauged supergravity (dilatonic gravity) considered on AdS background. The finite action on such background as well as d4 holographic conformal anomaly (via AdS/CFT correspondence) are found. In such formalism the bulk potential is kept to be arbitrary, dilaton dependent function. Holographic RG in such theory is briefly discussed. d5 AdS brane-world Universe induced by quantum effects of brane CFT is constructed. Such brane is spherical, hyperbolic or flat one. Hence, the possibility of quantum creation of inflationary brane-world Universe is shown.
Inflationary Magnetogenesis without the Strong Coupling Problem
Ferreira, Ricardo J Z; Sloth, Martin S
2013-01-01
The simplest gauge invariant models of inflationary magnetogenesis are known to suffer from the problems of either large back reaction or strong coupling, which make it difficult to self-consistently achieve cosmic magnetic fields from inflation with a field strength larger than $10^{-32}$ Gauss today on the $\\Mpc$ scale. Such a strength is insufficient to act as seeds for the galactic dynamo effect, which requires a magnetic field larger than $10^{-20}$ Gauss. In this paper we propose a new simple model, which avoids both the strong coupling and the back reaction problems, and can lead to cosmic magnetic fields from inflation as large as about $10^{-16}$ Gauss today on the $\\Mpc$ scale, thus improving the previous result by 16 orders of magnitude. In the scenario presented here, the coupling function which breaks the conformal invariance of electromagnetism is non-monotonic with sharp features avoiding previous back reaction and strong coupling constraints.
Supergravity actions with integral forms
Castellani, L.; Catenacci, R.; Grassi, P. A.
2014-12-01
Integral forms provide a natural and powerful tool for the construction of supergravity actions. They are generalizations of usual differential forms and are needed for a consistent theory of integration on supermanifolds. The group geometrical approach to supergravity and its variational principle are reformulated and clarified in this language. Central in our analysis is the Poincaré dual of a bosonic manifold embedded into a supermanifold. Finally, using integral forms we provide a proof of Gates' so-called "Ectoplasmic Integration Theorem", relating superfield actions to component actions.
Supergravity Actions with Integral Forms
Castellani, L; Grassi, P A
2014-01-01
Integral forms provide a natural and powerful tool for the construction of supergravity actions. They are generalizations of usual differential forms and are needed for a consistent theory of integration on supermanifolds. The group geometrical approach to supergravity and its variational principle are reformulated and clarified in this language. Central in our analysis is the Poincare' dual of a bosonic manifold embedded into a supermanifold. Finally, using integral forms we provide a proof of Gates' so-called "Ectoplasmic Integration Theorem", relating superfield actions to component actions.
Supergravity actions with integral forms
Directory of Open Access Journals (Sweden)
L. Castellani
2014-12-01
Full Text Available Integral forms provide a natural and powerful tool for the construction of supergravity actions. They are generalizations of usual differential forms and are needed for a consistent theory of integration on supermanifolds. The group geometrical approach to supergravity and its variational principle are reformulated and clarified in this language. Central in our analysis is the Poincaré dual of a bosonic manifold embedded into a supermanifold. Finally, using integral forms we provide a proof of Gates' so-called “Ectoplasmic Integration Theorem”, relating superfield actions to component actions.
Supergravity actions with integral forms
Energy Technology Data Exchange (ETDEWEB)
Castellani, L., E-mail: leonardo.castellani@mfn.unipmn.it [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel, 11, 15121 Alessandria (Italy); INFN, Sezione di Torino, via P. Giuria 1, 10125 Torino (Italy); Catenacci, R., E-mail: roberto.catenacci@mfn.unipmn.it [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel, 11, 15121 Alessandria (Italy); Grassi, P.A., E-mail: pietro.grassi@mfn.unipmn.it [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel, 11, 15121 Alessandria (Italy); INFN, Sezione di Torino, via P. Giuria 1, 10125 Torino (Italy)
2014-12-15
Integral forms provide a natural and powerful tool for the construction of supergravity actions. They are generalizations of usual differential forms and are needed for a consistent theory of integration on supermanifolds. The group geometrical approach to supergravity and its variational principle are reformulated and clarified in this language. Central in our analysis is the Poincaré dual of a bosonic manifold embedded into a supermanifold. Finally, using integral forms we provide a proof of Gates' so-called “Ectoplasmic Integration Theorem”, relating superfield actions to component actions.
Electric-magnetic deformations of D=4 gauged supergravities
Inverso, Gianluca
2015-01-01
We discuss duality orbits and symplectic deformations of D=4 gauged supergravity theories, with focus on N$\\ge$2. We provide a general constructive framework for computing symplectic deformations starting from a reference gauging, and apply it to many interesting examples. We prove that no continuous deformations are allowed for Fayet-Iliopoulos gaugings of the N=2 STU model and in particular that any $\\omega$ deformation is classically trivial. We further show that although in the N=6 truncation of SO(8) maximal supergravity the $\\omega$ parameter can be dualized away, in the 'twin' N=2 truncation $\\omega$ is preserved and a second, new deformation appears. We further provide a full classification and appropriate duality orbits of certain N=4 gauged supergravities, including all inequivalent SO(4)$^2$ gaugings and several non-compact forms.
The general de Sitter supergravity component action
Energy Technology Data Exchange (ETDEWEB)
Schillo, Marjorie; Woerd, Ellen van der [Institute for Theoretical Physics, University of Leuven (Belgium); Wrase, Timm [Institute for Theoretical Physics, TU Wien, Vienna (Austria)
2016-04-15
In this paper we review the appearance and utility of a nilpotent chiral multiplet in the context of supergravity, string theory and cosmology. Coupling a nilpotent chiral superfield to supergravity, one obtains what is called pure dS supergravity, a supergravity theory without scalar degrees of freedom that naturally has de Sitter (dS) solutions, and in which supersymmetry is non-linearly realized. We extend previous results that couple this dS supergravity to chiral and vector multiplets and derive the most general supergravity action for a single nilpotent chiral multiplet coupled to supergravity and an arbitrary number of chiral and vector multiplets. Based in part on the plenary talk given by T. W. at ''The String Theory Universe'', 21st European String Workshop, Leuven, September 7-11, 2015. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
String cosmology versus standard and inflationary cosmology
Gasperini, M
2000-01-01
This paper presents a review of the basic, model-independent differences between the pre-big bang scenario, arising naturally in a string cosmology context, and the standard inflationary scenario. We use an unconventional approach in which the introduction of technical details is avoided as much as possible, trying to focus the reader's attention on the main conceptual aspects of both scenarios. The aim of the paper is not to conclude in favour either of one or of the other scenario, but to raise questions that are left to the reader's meditation. Warnings: the paper does not contain equations, and is not intended as a complete review of all aspects of string cosmology.
Dual Description of Supergravity MacDowell-Mansouri Theory
García-Compéan, H; Obregón, O; Ramírez, C
1999-01-01
In the context of field theory two elements seem to be necessary to search for strong-weak coupling duality. First, one needs a gauge theory and second, it should be supersymmetric. For gravitation these two elements are present in MacDowell-Mansouri supergravity. The search for an "effective duality" in this theory presents technical and conceptual problems that we discuss. Nevertheless, by means of a field theoretical approach, which in the abelian case coincides with $S$-duality, we exhibit a dual theory for supergravity, with inverted couplings. This results in a supersymmetric non-linear sigma model of the Freedman-Townsend type.
Projective multiplets and hyperkahler cones in conformal supergravity
Butter, Daniel
2014-01-01
Projective superspace provides a natural framework for the construction of actions coupling hypermultiplets to conformal supergravity. We review how the off-shell actions are formulated in superspace and then discuss how to eliminate the infinite number of auxiliary fields to produce an on-shell N=2 supersymmetric sigma model, with the target space corresponding to a generic 4n-dimensional hyperkahler cone. We show how the component action coupling the hypermultiplets to conformal supergravity may be constructed starting from curved superspace. The superspace origin of the geometric data -- the hyperkahler potential, complex structures, and any gauged isometries -- is also addressed.
Hybrid Inflation in Supergravity without Inflaton Superpotential
Boutaleb-Joutei, H; Marrakchi, A E L
2002-01-01
We propose a new realisation of hybrid inflation in supergravity where the inflaton field does not appear in the superpotential but contributes only through the Kahler potential. The scalar potential derived from an R-invariant superpotential has the same form as that of the Linde's original version. The correct magnitude of the density perturbations amplitude is found without any fine-tuning of the coupling parameter in the superpotential for an acceptable value of the fundamental energy scale of the theory. The eta-problem was also resolved in this model.
Supergravity Inflation Free from Harmful Relics
Greene, P B; Murayama, H; Greene, Patrick B.; Kadota, Kenji; Murayama, Hitoshi
2003-01-01
We present a realistic supergravity inflation model which is free from the overproduction of potentially dangerous relics in cosmology, namely moduli and gravitinos which can lead to the inconsistencies with the predictions of baryon asymmetry and nucleosynthesis. The radiative correction turns out to play a crucial role in our analysis which raises the mass of supersymmetry breaking field to intermediate scale. We pay a particular attention to the non-thermal production of gravitinos using the non-minimal Kahler potential we obtained from loop correction. This non-thermal gravitino production however is diminished because of the relatively small scale of inflaton mass and small amplitudes of hidden sector fields.
The Axion Mass in Modular Invariant Supergravity
Butter, D; Butter, Daniel; Gaillard, Mary K.
2005-01-01
When supersymmetry is broken by condensates with a single condensing gauge group, there is a nonanomalous R-symmetry that prevents the universal axion from acquiring a mass. It has been argued that, in the context of supergravity, higher dimension operators will break this symmetry and may generate an axion mass too large to allow the identification of the universal axion with the QCD axion. We show that such contributions to the axion mass are highly suppressed in a class of models where the effective Lagrangian for gaugino and matter condensation respects modular invariance (T-duality).
Supergravity with broken Lorentz invariance
Directory of Open Access Journals (Sweden)
Marakulin Arthur
2016-01-01
Full Text Available The supersymmetric extension of the Lorentz violating Einstein-aether theory of gravity is considered. The most general Lagrangian of the linearized Einstein-aether supergravity is constructed using the superfield formalism. The constraints imposed by supersymmetry on the parameters of the theory are obtained.
Lightlike singularities in compactified supergravity
Baal, P. van; Bais, F.A.
1983-01-01
We discuss the (causal) structure of a recently found black hole solution of compatified d = 11 supergravity. It is shown that the singularity is in fact lightlike and coincides with the horizon. Consequences are that the Hawking temperature is undetermined and that there is no other universe connec
Lightlike singularities in compactified supergravity
Baal, P. van; Bais, F.A.
1983-01-01
We discuss the (causal) structure of a recently found black hole solution of compatified d = 11 supergravity. It is shown that the singularity is in fact lightlike and coincides with the horizon. Consequences are that the Hawking temperature is undetermined and that there is no other universe connec
Formulation of supergravity without superspace
Ferrara, S
1979-01-01
Supergravity, the particle theory which unifies under a unique gauge principle the quantum-mechanical concept of spin and space-time geometry, is formulated in terms of quantities defined over Minkowski space-time. 'l'he relation between this formulation and the fonnulation which uses superspace, the space-time supplemented by spinning degrees of freedom, is also briefly discussed.
Problems in unification and supergravity
Energy Technology Data Exchange (ETDEWEB)
Farrar, G.; Henyey, F. (eds.)
1984-01-01
Problems in unification of the various gauge groups, quantum gravity, supersymmetry and supergravity, compact dimensions of space-time, and conditions at the beginning of the universe are discussed. Separate entries were prepared for the data base for the 15 papers presented. (WHK)
Dynamical D-terms in supergravity
Directory of Open Access Journals (Sweden)
Valerie Domcke
2015-02-01
Full Text Available Most phenomenological models of supersymmetry breaking rely on nonzero F-terms rather than nonzero D-terms. An important reason why D-terms are often neglected is that it turns out to be very challenging to realize D-terms at energies parametrically smaller than the Planck scale in supergravity. As we demonstrate in this paper, all conventional difficulties may, however, be overcome if the generation of the D-term is based on strong dynamics. To illustrate our idea, we focus on a certain class of vector-like SUSY breaking models that enjoy a minimal particle content and which may be easily embedded into more complete scenarios. We are then able to show that, upon gauging a global flavor symmetry, an appropriate choice of Yukawa couplings readily allows to dynamically generate a D-term at an almost arbitrary energy scale. This includes in particular the natural and consistent realization of D-terms around, above and below the scale of grand unification in supergravity, without the need for fine-tuning of any model parameters. Our construction might therefore bear the potential to open up a new direction for model building in supersymmetry and early universe cosmology.
Can CMB data constrain the inflationary field range?
Garcia-Bellido, Juan; Scalisi, Marco; Zavala, Ivonne
2014-01-01
We study to what extent the spectral index $n_s$ and the tensor-to-scalar ratio $r$ determine the field excursion $\\Delta\\phi$ during inflation. We analyse the possible degeneracy of $\\Delta \\phi$ by comparing three broad classes of inflationary models, with different dependence on the number of e-foldings $N$, to benchmark models of chaotic inflation with monomial potentials. The classes discussed cover a large set of inflationary single field models. We find that the field range is not uniquely determined for any value of $(n_s, r)$; one can have the same predictions as chaotic inflation and a very different $\\Delta \\phi$. Intriguingly, we find that the field range cannot exceed an upper bound that appears in different classes of models. Finally, $\\Delta \\phi$ can even become sub-Planckian, but this requires to go beyond the single-field slow-roll paradigm.
Higher derivative extension of 6D chiral gauged supergravity
Bergshoeff, Eric; Coomans, Frederik; Sezgin, Ergin; Van Proeyen, Antoine
2012-01-01
Six-dimensional (1,0) supersymmetric gauged Einstein-Maxwell supergravity is extended by the inclusion of a supersymmetric Riemann tensor squared invariant. loth the original model as well as the Riemann tensor squared invariant are formulated off-shell and consequently the total action is off-shell
Two-dimensional gauge theoretic supergravities
Cangemi, D.; Leblanc, M.
1994-05-01
We investigate two-dimensional supergravity theories, which can be built from a topological and gauge invariant action defined on an ordinary surface. One is the N = 1 supersymmetric extension of the Jackiw-Teitelboim model presented by Chamseddine in a superspace formalism. We complement the proof of Montano, Aoaki and Sonnenschein that this extension is topological and gauge invariant, based on the graded de Sitter algebra. Not only do the equations of motion correspond to the supergravity ones and do gauge transformations encompass local supersymmetries, but we also identify the ∫-theory with the superfield formalism action written by Chamseddine. Next, we show that the N = 1 supersymmetric extension of string-inspired two-dimensional dilaton gravity put forward by Park and Strominger cannot be written as a ∫-theory. As an alternative, we propose two topological and gauge theories that are based on a graded extension of the extended Poincaré algebra and satisfy a vanishing-curvature condition. Both models are supersymmetric extensions of the string-inspired dilaton gravity.
On supersymmetric geometric flows and R2 inflation from scale invariant supergravity
Rajpoot, Subhash; Vacaru, Sergiu I.
2017-09-01
Models of geometric flows pertaining to R2 scale invariant (super) gravity theories coupled to conformally invariant matter fields are investigated. Related to this work are supersymmetric scalar manifolds that are isomorphic to the Kählerian spaces Mn = SU(1 , 1 + k) / U(1) × SU(1 + k) as generalizations of the non-supersymmetric analogs with SO(1 , 1 + k) / SO(1 + k) manifolds. For curved superspaces with geometric evolution of physical objects, a complete supersymmetric theory has to be elaborated on nonholonomic (super) manifolds and bundles determined by non-integrable superdistributions with additional constraints on (super) field dynamics and geometric evolution equations. We also consider generalizations of Perelman's functionals using such nonholonomic variables which result in the decoupling of geometric flow equations and Ricci soliton equations with supergravity modifications of the R2 gravity theory. As such, it is possible to construct exact non-homogeneous and locally anisotropic cosmological solutions for various types of (super) gravity theories modeled as modified Ricci soliton configurations. Such solutions are defined by employing the general ansatz encompassing coefficients of generic off-diagonal metrics and generalized connections that depend generically on all spacetime coordinates. We consider nonholonomic constraints resulting in diagonal homogeneous configurations encoding contributions from possible nonlinear parametric geometric evolution scenarios, off-diagonal interactions and anisotropic polarization/modification of physical constants. In particular, we analyze small parametric deformations when the underlying scale symmetry is preserved and the nontrivial anisotropic vacuum corresponds to generalized de Sitter spaces. Such configurations may mimic quantum effects whenever transitions to flat space are possible. Our approach allows us to generate solutions with scale violating terms induced by geometric flows, off
Helical Phase Inflation and Monodromy in Supergravity Theory
Directory of Open Access Journals (Sweden)
Tianjun Li
2015-01-01
Full Text Available We study helical phase inflation which realizes “monodromy inflation” in supergravity theory. In the model, inflation is driven by the phase component of a complex field whose potential possesses helicoid structure. We construct phase monodromy based on explicitly breaking global U(1 symmetry in the superpotential. By integrating out heavy fields, the phase monodromy from single complex scalar field is realized and the model fulfills natural inflation. The phase-axion alignment is achieved from explicitly symmetry breaking and gives super-Planckian phase decay constant. The F-term scalar potential provides strong field stabilization for all the scalars except inflaton, which is protected by the approximate global U(1 symmetry. Besides, we show that helical phase inflation can be naturally realized in no-scale supergravity with SU(2,1/SU(2×U(1 symmetry since the supergravity setup needed for phase monodromy is automatically provided in the no-scale Kähler potential. We also demonstrate that helical phase inflation can be reduced to another well-known supergravity inflation model with shift symmetry. Helical phase inflation is free from the UV-sensitivity problem although there is super-Planckian field excursion, and it suggests that inflation can be effectively studied based on supersymmetric field theory while a UV-completed framework is not prerequisite.
The bispectrum of single-field inflationary trajectories with $c_{s} \
Horner, Jonathan S
2015-01-01
The bispectrum of single-field inflationary trajectories in which the speed of sound of the inflationary trajectories $c_s$ is constant but not equal to the speed of light $c=1$ is explored. The trajectories are generated as random realisations of the Hubble Slow-Roll (HSR) hierarchy and the bispectra are calculated using numerical techniques that extends previous work. This method allows for out-of-slow-roll models with non-trivial time dependence and arbitrarily low $c_s$. The ensembles obtained using this method yield distributions for the shape and scale-dependence of the bispectrum and their relations with the standard inflationary parameters such as scalar spectral tilt $n_s$ and tensor-to-scalar ratio $r$. The distributions demonstrate the squeezed-limit consistency relations for arbitrary single-field inflationary models.
New constraints on oscillations in the primordial spectrum of inflationary perturbations
Energy Technology Data Exchange (ETDEWEB)
Hamann, J.; Covi, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Melchiorri, A. [Univ. di Roma La Sapienza (Italy). Dipt. di Fisica and Sezione INFN; Slosar, A. [Oxford Univ. (United Kingdom). Dept. of Astrophysics]|[Ljubljana Univ. (Slovenia). Faculty of Mathematics and Physics
2007-01-15
We revisit the problem of constraining steps in the inflationary potential with cosmological data. We argue that a step in the inflationary potential produces qualitatively similar oscillations in the primordial power spectrum, independently of the details of the inflationary model. We propose a phenomenological description of these oscillations and constrain these features using a selection of cosmological data including the baryonic peak data from the correlation function of luminous red galaxies in the Sloan Digital Sky Survey. Our results show that degeneracies of the oscillation with standard cosmological parameters are virtually non-existent. The inclusion of new data severely tightens the constraints on the parameter space of oscillation parameters with respect to older work. This confirms that extensions to the simplest inflationary models can be successfully constrained using cosmological data. (orig.)
Gauged/Massive Supergravities in Diverse Dimensions
Alonso-Alberca, N; Alonso-Alberca, Natxo; Ortin, Tomas
2003-01-01
We show how massive/gauged maximal supergravities in 11-n dimensions with SO(n-l,l) gauge groups (and other non-semisimple subgroups of Sl(n,R)) can be systematically obtained by dimensional reduction of ``massive 11-dimensional supergravity''. This series of massive/gauged supergravities includes, for instance, Romans' massive N=2A,d=10 supergravity for n=1, N=2,d=9 SO(2) and SO(1,1) gauged supergravities for n=2, and N=8,d=5 SO(6-l,l) gauged supergravity. In all cases, higher p-form fields get masses through the Stuckelberg mechanism which is an alternative to self-duality in odd dimensions.
Supergravity celebrates quarter of a century
Rocek, Martin; Sterman, George F; van Nieuwenhuizen, P
2002-01-01
The first complete theory of supergravity appeared 25 years ago last autumn. To mark the occasion, the State University of New York at Stony Brook held a workshop on the subject in December. The development of supergravity 25 years ago may be thought of as the exercise of identifying a minimal set of interactions between gravitons and gravitinos that respects general co-ordinate invariance and makes supersymmetry a gauge symmetry. The task of formulating the minimal supergravity theory was accomplished by Sergio Ferrara. An important development came when 2000 terms generated by an infinitesimal supersymmetry transformation were cancelled by computer. With this result, supergravity moved from conjecture to consistency. Their approach, called the "Noether method", was based on building the correct transformation laws by retracing the reasoning of Emmy Noether's famous theorem connecting symmetries and conservation laws. Supergravity is also central to AdS/CFT correspondence, which relates supergravity in highe...
Deformations of gauged SO(8) supergravity and supergravity in eleven dimensions
Wit, B. de; Nicolai, H.
2013-01-01
Motivated by the fact that there exists a continuous one-parameter family of gauged SO(8) supergravities, possible eleven-dimensional origins of this phenomenon are explored. Taking the original proof of the consistency of the truncation of 11D supergravity to SO(8) gauged supergravity as a starting
Coupling brane fields to bulk supergravity
Energy Technology Data Exchange (ETDEWEB)
Parameswaran, Susha L. [Uppsala Univ. (Sweden). Theoretical Physics; Schmidt, Jonas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2010-12-15
In this note we present a simple, general prescription for coupling brane localized fields to bulk supergravity. We illustrate the procedure by considering 6D N=2 bulk supergravity on a 2D orbifold, with brane fields localized at the fixed points. The resulting action enjoys the full 6D N=2 symmetries in the bulk, and those of 4D N=1 supergravity at the brane positions. (orig.)
What can quantum cosmology say about the inflationary universe?
Calcagni, Gianluca; Steinwachs, Christian F
2015-01-01
We propose a method to extract predictions from quantum cosmology for inflation that can be confronted with observations. Employing the tunneling boundary condition in quantum geometrodynamics, we derive a probability distribution for the inflaton field. A sharp peak in this distribution can be interpreted as setting the initial conditions for the subsequent phase of inflation. In this way, the peak sets the energy scale at which the inflationary phase has started. This energy scale must be consistent with the energy scale found from the inflationary potential and with the scale found from a potential observation of primordial gravitational waves. Demanding a consistent history of the universe from its quantum origin to its present state, which includes decoherence, we derive a condition that allows one to constrain the parameter space of the underlying model of inflation. We demonstrate our method by applying it to two models: Higgs inflation and natural inflation.
Ads/cft Correspondence From The Supergravity Point Of View
Deger, N S
2001-01-01
In this dissertation we explore various supergravity aspects of the AdS/CFT duality. According to this correspondence, string/M theory on AdSd+1 is dual to a CFTd on its boundary. Taking the supergravity limit of the string/M theory one can do perturbative calculations in the bulk which gives information about strongly coupled CFT's. In Chapter I we review the AdS/CFT correspondence. In Chapter II the complete spectrum of D = 6, N = 4b supergravity with n tensor multiplets compactified on AdS3 × S3 is determined. The spectrum contains more than one tower of supermultiplets. In Chapter III we couple n copies of N = (2, 0) scalar multiplets to a gauged N = (2, 0) supergravity in 2 + 1 dimensions which admits AdS3 as a vacuum. The scalar fields are charged under the R-symmetry group U(1) and parametrize certain Kahler manifolds with compact or non-compact isometries. We also find black string solutions of our model. In Chapter IV the boundary behaviour of this model is examined. It is shown that re...
Minimal N=4 topologically massive supergravity
Kuzenko, Sergei M.; Novak, Joseph; Sachs, Ivo
2017-03-01
Using the superconformal framework, we construct a new off-shell model for N=4 topologically massive supergravity which is minimal in the sense that it makes use of a single compensating vector multiplet and involves no free parameter. As such, it provides a counterexample to the common lore that two compensating multiplets are required within the conformal approach to supergravity with eight supercharges in diverse dimensions. This theory is an off-shell N=4 supersymmetric extension of chiral gravity. All of its solutions correspond to non-conformally flat superspaces. Its maximally supersymmetric solutions include the so-called critical (4,0) anti-de Sitter superspace introduced in [25], and well as warped critical (4,0) anti-de Sitter superspaces. We also propose a dual formulation for the theory in which the vector multiplet is replaced with an off-shell hypermultiplet. Upon elimination of the auxiliary fields belonging to the hypermultiplet and imposing certain gauge conditions, the dual action reduces to the one introduced in [20].
Minimal $\\cal N=4$ topologically massive supergravity
Kuzenko, Sergei M; Sachs, Ivo
2016-01-01
Using the superconformal framework, we construct a new off-shell model for topologically massive $\\cal N=4$ supergravity which is minimal in the sense that it makes use of a single compensating vector multiplet. Our theory provides a counterexample to the common lore that two compensating multiplets are required within the conformal approach to supergravity with eight supercharges in diverse dimensions. All solutions in this theory correspond to non-conformally flat superspaces. Its maximally supersymmetric solutions include the so-called critical (4,0) anti-de Sitter superspace introduced in arXiv:1205.4622. Other maximally supersymmetric solutions describe warped critical (4,0) anti-de Sitter superspaces. We also propose a dual formulation for the theory in which the vector multiplet is replaced with an off-shell hypermultiplet. Upon elimination of the auxiliary fields belonging to the hypermultiplet and imposing certain gauge conditions, the dual action reduces to the one introduced in arXiv:1605.00103.
Supergravity Fluxbranes in Various Dimensions
Chen, C M; Saffin, P M; Chen, Chiang-Mei; Gal'tsov, Dmitri V.; Saffin, Paul M.
2002-01-01
We investigate fluxbrane solutions to the Einstein-antisymmetric form-dilaton theory in arbitrary space-time dimensions for a transverse space of cylindrical topology $S^k\\times R^n$, corresponding to smeared and unsmeared solutions. A master equation for a single metric function is derived. This is a non-linear second-order ordinary differential equation admitting an analytic solution, singular at the origin, which serves as an attractor for globally regular solutions, whose existence is demonstrated numerically. For all fluxbranes of different levels of smearing the metric function diverges at infinity as the same power of the radial coordinate except for the maximally smeared case, where a global solution is known in closed form and can be obtained algebraically using U-duality. The particular cases of F6 and F3 fluxbranes in D=11 supergravity and fluxbranes in IIA, IIB supergravities are discussed.
Linearized supergravity from Matrix theory
Kabat, D; Kabat, Daniel; Taylor, Washington
1998-01-01
We show that the linearized supergravity potential between two objects arising from the exchange of quanta with zero longitudinal momentum is reproduced to all orders in 1/r by terms in the one-loop Matrix theory potential. The essential ingredient in the proof is the identification of the Matrix theory quantities corresponding to moments of the stress tensor and membrane current. We also point out that finite-N Matrix theory violates the Equivalence Principle.
Twisted Chern-Simons supergravity
Energy Technology Data Exchange (ETDEWEB)
Castellani, L. [Dipartimento di Scienze e Innovazione Tecnologica, Univ. del Piemonte Orientale, Alessandria (Italy); INFN Gruppo collegato di Alessandria (Italy)
2014-09-11
We present a noncommutative version of D = 5 Chern-Simons supergravity, where noncommutativity is encoded in a *-product associated to an abelian Drinfeld twist. The theory is invariant under diffeomorphisms, and under the *-gauge supergroup SU(2,2 vertical stroke 4), including Lorentz and N = 4 local supersymmetries. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Dark Matter from Starobinsky Supergravity
Addazi, Andrea; Khlopov, Maxim Yu.
2017-01-01
We review our recent results on dark matter from Starobinsky supergravity. In this context, a natural candidate for Cold Dark Matter is the gravitino. On the other hand, assuming the supersymmetry broken at scales much higher than the electroweak scale, gravitinos are super heavy particles. In this case, they may be non-thermally produced during inflation, in turn originated by the scalaron field with Starobinsky's potential.Assuming gravitinos as Lightest supersymmetric particles (LSSP), the...
Higgs mechanism and cosmological constant in N = 1 supergravity with inflaton in a vector multiplet
Energy Technology Data Exchange (ETDEWEB)
Aldabergenov, Yermek [Tokyo Metropolitan University, Department of Physics, Tokyo (Japan); Ketov, Sergei V. [Tokyo Metropolitan University, Department of Physics, Tokyo (Japan); The University of Tokyo, Kavli Institute for the Physics and Mathematics of the Universe (IPMU), Chiba (Japan); Tomsk Polytechnic University, Institute of Physics and Technology, Tomsk (Russian Federation)
2017-04-15
The N = 1 supergravity models of cosmological inflation with an inflaton belonging to a massive vector multiplet and spontaneous SUSY breaking after inflation are reformulated as the supersymmetric U(1) gauge theories of a massless vector superfield interacting with the Higgs and Polonyi chiral superfields, all coupled to supergravity. The U(1) gauge sector is identified with the U(1) gauge fields of the super-GUT coupled to supergravity, whose gauge group has a U(1) factor. A positive cosmological constant (dark energy) is included. The scalar potential is calculated, and its de Sitter vacuum solution is found to be stable. (orig.)
Particle production and reheating in the inflationary universe
Graham, Chris M
2008-01-01
Thermal field theory is applied to particle production rates in inflationary models, leading to new results for catalysed, or two-stage decay, where massive fields act as decay channels for the production of light fields. A numerical investigation of the Bolztmann equation in an expanding universe shows that the particle distributions produced during small amplitude inflaton oscillations or alongside slowly moving inflaton fields can thermalise.
A magic pyramid of supergravities
Energy Technology Data Exchange (ETDEWEB)
Anastasiou, A.; Borsten, L.; Duff, M.J.; Hughes, L.J.; Nagy, S. [Theoretical Physics, Blackett Laboratory, Imperial College London,London SW7 2AZ (United Kingdom)
2014-04-29
By formulating N=1,2,4,8, D=3, Yang-Mills with a single Lagrangian and single set of transformation rules, but with fields valued respectively in ℝ,ℂ,ℍ,O, it was recently shown that tensoring left and right multiplets yields a Freudenthal-Rosenfeld-Tits magic square of D=3 supergravities. This was subsequently tied in with the more familiar ℝ,ℂ,ℍ,O description of spacetime to give a unified division-algebraic description of extended super Yang-Mills in D=3,4,6,10. Here, these constructions are brought together resulting in a magic pyramid of supergravities. The base of the pyramid in D=3 is the known 4×4 magic square, while the higher levels are comprised of a 3×3 square in D=4, a 2×2 square in D=6 and Type II supergravity at the apex in D=10. The corresponding U-duality groups are given by a new algebraic structure, the magic pyramid formula, which may be regarded as being defined over three division algebras, one for spacetime and each of the left/right Yang-Mills multiplets. We also construct a conformal magic pyramid by tensoring conformal supermultiplets in D=3,4,6. The missing entry in D=10 is suggestive of an exotic theory with G/H duality structure F{sub 4(4)}/Sp(3)×Sp(1)
A magic pyramid of supergravities
Anastasiou, A; Duff, M J; Hughes, L J; Nagy, S
2013-01-01
By formulating N = 1, 2, 4, 8, D = 3, Yang-Mills with a single Lagrangian and single set of transformation rules, but with fields valued respectively in R,C,H,O, it was recently shown that tensoring left and right multiplets yields a Freudenthal-Rosenfeld-Tits magic square of D = 3 supergravities. This was subsequently tied in with the more familiar R,C,H,O description of spacetime to give a unified division-algebraic description of extended super Yang-Mills in D = 3, 4, 6, 10. Here, these constructions are brought together resulting in a magic pyramid of supergravities. The base of the pyramid in D = 3 is the known 4x4 magic square, while the higher levels are comprised of a 3x3 square in D = 4, a 2x2 square in D = 6 and Type II supergravity at the apex in D = 10. The corresponding U-duality groups are given by a new algebraic structure, the magic pyramid formula, which may be regarded as being defined over three division algebras, one for spacetime and each of the left/right Yang-Mills multiplets. We also c...
A magic pyramid of supergravities
Anastasiou, A.; Borsten, L.; Duff, M. J.; Hughes, L. J.; Nagy, S.
2014-04-01
By formulating = 1, 2, 4, 8, D = 3, Yang-Mills with a single Lagrangian and single set of transformation rules, but with fields valued respectively in , it was recently shown that tensoring left and right multiplets yields a Freudenthal-Rosenfeld-Tits magic square of D = 3 supergravities. This was subsequently tied in with the more familiar description of spacetime to give a unified division-algebraic description of extended super Yang-Mills in D = 3, 4, 6, 10. Here, these constructions are brought together resulting in a magic pyramid of supergravities. The base of the pyramid in D = 3 is the known 4 × 4 magic square, while the higher levels are comprised of a 3 × 3 square in D = 4, a 2 × 2 square in D = 6 and Type II supergravity at the apex in D = 10. The corresponding U-duality groups are given by a new algebraic structure, the magic pyramid formula, which may be regarded as being defined over three division algebras, one for spacetime and each of the left/right Yang-Mills multiplets. We also construct a conformal magic pyramid by tensoring conformal supermultiplets in D = 3, 4, 6. The missing entry in D = 10 is suggestive of anexotic theory with G/ H duality structure F 4(4)/Sp(3) × Sp(1).
Linearized supergravity with a dynamical preferred frame
Marakulin, Arthur
2016-01-01
We study supersymmetric extension of the Einstein-aether gravitational model where local Lorentz invariance is broken down to the subgroup of spatial rotations by a vacuum expectation value of a timelike vector field. By restricting to the level of linear perturbations around Lorentz-violating vacuum and using the superfield formalism we construct the most general action invariant under the linearized supergravity transformations. We show that, unlike its non-supersymmetric counterpart, the model contains only a single free dimensionless parameter, besides the usual dimensionful gravitational coupling. This makes the model highly predictive. An analysis of the spectrum of physical excitations reveal superluminal velocity of gravitons. The latter property leads to the extension of the gravitational multiplet by additional fermonic and bosonic states with helicities $\\pm 3/2$ and $\\pm 1$. We outline the observational constraints on the model following from its low-energy phenomenology.
BPS preons, generalized holonomies, and D=11 supergravities
Bandos, Igor A.; de Azcárraga, José A.; Izquierdo, José M.; Picón, Moisés; Varela, Oscar
2004-05-01
We develop the BPS (Bogomol’nyi-Prasad-Sommerfield) preon conjecture to analyze the supersymmetric solutions of D=11 supergravity. By relating the notions of Killing spinors and BPS preons, we develop a moving G-frame method [G=GL(32,R), SL(32,R) or Sp(32,R)] to analyze their associated generalized holonomies. As a first application we derive here the equations determining the generalized holonomies of ν=k/32 supersymmetric solutions and, in particular, those solving the necessary conditions for the existence of BPS preonic (ν=31/32) solutions of the standard D=11 supergravity. We also show that there exist elementary preonic solutions, i.e., solutions preserving 31 out of 32 supersymmetries in a Chern-Simons type supergravity. We present as well a family of worldvolume actions describing the motion of pointlike and extended BPS preons in the background of a D’Auria-Fré type OSp(1|32)-related supergravity model. We discuss the possible implications for M theory.
Inflation in maximal gauged supergravities
Energy Technology Data Exchange (ETDEWEB)
Kodama, Hideo [Theory Center, KEK,Tsukuba 305-0801 (Japan); Department of Particles and Nuclear Physics,The Graduate University for Advanced Studies,Tsukuba 305-0801 (Japan); Nozawa, Masato [Dipartimento di Fisica, Università di Milano, and INFN, Sezione di Milano,Via Celoria 16, 20133 Milano (Italy)
2015-05-18
We discuss the dynamics of multiple scalar fields and the possibility of realistic inflation in the maximal gauged supergravity. In this paper, we address this problem in the framework of recently discovered 1-parameter deformation of SO(4,4) and SO(5,3) dyonic gaugings, for which the base point of the scalar manifold corresponds to an unstable de Sitter critical point. In the gauge-field frame where the embedding tensor takes the value in the sum of the 36 and 36’ representations of SL(8), we present a scheme that allows us to derive an analytic expression for the scalar potential. With the help of this formalism, we derive the full potential and gauge coupling functions in analytic forms for the SO(3)×SO(3)-invariant subsectors of SO(4,4) and SO(5,3) gaugings, and argue that there exist no new critical points in addition to those discovered so far. For the SO(4,4) gauging, we also study the behavior of 6-dimensional scalar fields in this sector near the Dall’Agata-Inverso de Sitter critical point at which the negative eigenvalue of the scalar mass square with the largest modulus goes to zero as the deformation parameter s approaches a critical value s{sub c}. We find that when the deformation parameter s is taken sufficiently close to the critical value, inflation lasts more than 60 e-folds even if the initial point of the inflaton allows an O(0.1) deviation in Planck units from the Dall’Agata-Inverso critical point. It turns out that the spectral index n{sub s} of the curvature perturbation at the time of the 60 e-folding number is always about 0.96 and within the 1σ range n{sub s}=0.9639±0.0047 obtained by Planck, irrespective of the value of the η parameter at the critical saddle point. The tensor-scalar ratio predicted by this model is around 10{sup −3} and is close to the value in the Starobinsky model.
Inflationary Attractors and Perturbation Spectra in Generally Coupled Gravity
Amendola, L; Occhionero, F; Amendola, Luca; Bellisai, Diego; Occhionero, Franco; Observatory, Rome Astronomical
1993-01-01
A generic outcome of theories with scalar-tensor coupling is the existence of inflationary attractors, either power-law or de Sitter. The fluctuations arising during this phase are Gaussian and their spectrum depends on the wavenumber $k$ according to the power-law $k^{1/(1-p)}$, where $p$ is the inflationary power-law exponent. We investigate to which extent these properties depend on the coupling function and on the potential. We find the class of models in which viable attractors exist. Within this class, we find that the cosmic expansion and the scaling of the fluctuation spectrum are independent of the coupling function. Further, the analytical solution of the Fokker-Planck equation shows that the deviations from Gaussianity are negligible.
Inflationary and dark energy regimes in 2+1 dimensions
Christmann, M H; Kremer, G M; Zanetti, C M
2006-01-01
In this work we investigate the behavior of three-dimensional (3D) cosmological models. The simulation of inflationary and dark-energy-dominated eras are among the possible results in these 3D formulations; taking as starting point the results obtained by Cornish and Frankel. Motivated by those results, we investigate, first, the inflationary case where we consider a two-constituent cosmological fluid: the scalar field represents the hypothetical inflaton which is in gravitational interaction with a matter/radiation contribution. For the description of an old universe, it is possible to simulate its evolution starting with a matter dominated universe that faces a decelerated/accelerated transition due to the presence of the additional constituent (simulated by the scalar field or ruled by an exotic equation of state) that plays the role of dark energy. We obtain, through numerical analysis, the evolution in time of the scale factor, the acceleration, the energy densities, and the hydrostatic pressure of the c...
Inflationary perturbation theory is geometrical optics in phase space
Seery, David; Frazer, Jonathan; Ribeiro, Raquel H
2012-01-01
A pressing problem in comparing inflationary models with observation is the accurate calculation of correlation functions. One approach is to evolve them using ordinary differential equations ("transport equations"), analogous to the Schwinger-Dyson hierarchy of in-out quantum field theory. We extend this approach to the complete set of momentum space correlation functions. A formal solution can be obtained using raytracing techniques adapted from geometrical optics. We reformulate inflationary perturbation theory in this language, and show that raytracing reproduces the familiar "delta N" Taylor expansion. Our method produces ordinary differential equations which allow the Taylor coefficients to be computed efficiently. We use raytracing methods to express the gauge transformation between field fluctuations and the curvature perturbation, zeta, in geometrical terms. Using these results we give a compact expression for the nonlinear gauge-transform part of fNL in terms of the principal curvatures of uniform e...
Warped anti-de Sitter in 3d (2,0) Supergravity
Moutsopoulos, George
2016-01-01
We comment on the ubiquity of the so-called warped anti-de Sitter spacetimes in three-dimensional (2,0) supergravity theory. By using isometry-invariant tensors and simple counting, we prove their existence for arbitrary $(2,0)$ supergravity models suitably defined close to a minimal model. We also analyze their offshell supersymmetry and the supersymmetry of two geometric orbifolds.
Naturalness of electroweak physics within minimal supergravity
Cassel, S
2011-01-01
Low energy supersymmetry is motivated by its use as a solution to the hierarchy problem of the electroweak scale. Having motivated this model with naturalness arguments, it is then necessary to check whether the experimentally allowed parameter space permits realisations of the model with low fine tuning. The scope of this thesis is a study of naturalness of the electroweak physics in the minimal supergravity model. The latest experimental constraints are applied, and the fine tuning is quantitatively evaluated for a scan across the parameter space. The fine tuning of the electroweak scale is evaluated at 2-loop order, and the fine tuning of the neutralino dark matter thermal relic energy density is also determined. The natural regions of the parameter space are identified and the associated phenomenology relevant for detection discussed. Naturalness limits are also found for the parameter space and spectrum. The minimum fine tuning found is 1 part in 9 when dark matter constraints are neglected, and 1 part i...
CMB Imprints of a Pre-Inflationary Climbing Phase
Dudas, E; Patil, S P; Sagnotti, A
2012-01-01
We discuss the implications for cosmic microwave background (CMB) observables, of a class of pre-inflationary dynamics suggested by string models where SUSY is broken due to the presence of D-branes and orientifolds preserving incompatible portions of it. In these models the would-be inflaton is forced to emerge from the initial singularity climbing up a mild exponential potential, until it bounces against a steep exponential potential of "brane SUSY breaking" scenarios, and as a result the ensuing descent gives rise to an inflationary epoch that begins when the system is still well off its eventual attractor. If a pre-inflationary climbing phase of this type had occurred within 6-7 e-folds of the horizon exit for the largest observable wavelengths, displacement off the attractor and initial-state effects would conspire to suppress power in the primordial scalar spectrum, enhancing it in the tensor spectrum and typically superposing oscillations on both. We investigate these imprints on CMB observables over a...
Inflationary magnetogenesis without the strong coupling problem
Energy Technology Data Exchange (ETDEWEB)
Ferreira, Ricardo J.Z.; Jain, Rajeev Kumar; Sloth, Martin S., E-mail: ferreira@cp3.dias.sdu.dk, E-mail: jain@cp3.dias.sdu.dk, E-mail: sloth@cp3.dias.sdu.dk [CP3-Origins, Centre for Cosmology and Particle Physics Phenomenology, University of Southern Denmark, Campusvej 55, 5230 Odense M (Denmark)
2013-10-01
The simplest gauge invariant models of inflationary magnetogenesis are known to suffer from the problems of either large backreaction or strong coupling, which make it difficult to self-consistently achieve cosmic magnetic fields from inflation with a field strength larger than 10{sup −32}G today on the Mpc scale. Such a strength is insufficient to act as seed for the galactic dynamo effect, which requires a magnetic field larger than 10{sup −20}G. In this paper we analyze simple extensions of the minimal model, which avoid both the strong coupling and back reaction problems, in order to generate sufficiently large magnetic fields on the Mpc scale today. First we study the possibility that the coupling function which breaks the conformal invariance of electromagnetism is non-monotonic with sharp features. Subsequently, we consider the effect of lowering the energy scale of inflation jointly with a scenario of prolonged reheating where the universe is dominated by a stiff fluid for a short period after inflation. In the latter case, a systematic study shows upper bounds for the magnetic field strength today on the Mpc scale of 10{sup −13}G for low scale inflation and 10{sup −25}G for high scale inflation, thus improving on the previous result by 7-19 orders of magnitude. These results are consistent with the strong coupling and backreaction constraints.
Recent developments in four-dimensional supergravity
Sharpe, Eric
2011-10-01
I will summarize recent work on gauge theories in supergravity, specifically concerning the `Fayet-Iliopoulos' parameter. In rigidly supersymmetric gauge theories, this parameter also appears and can vary continuously. In supergravity old lore held that it should always vanish. I will discuss recent developments showing that in fact it can be nonzero, but is quantized, and will explore various ramifications of that result.
S-brane Solutions in Supergravity Theories
Chen, C M; Gutperle, M; Chen, Chiang-Mei; Gal'tsov, Dmitri V.; Gutperle, Michael
2002-01-01
In this paper time dependent solutions of supergravities with dilaton and arbitrary rank antisymmetric tensor field are found. Although the solutions are nonsupersymmetric the equations of motions can be integrated in a simple form. Such supergravity solutions are related to Euclidean or spacelike branes (S-branes).
Lifshitz black holes in IIA supergravity
Barclay, Luke; Gregory, Ruth; Parameswaran, Susha; Tasinato, Gianmassimo; Zavala, Ivonne
2012-01-01
We compute string theoretic black hole solutions having Lifshitz asymptotics with a general dynamical exponent z > 1. We start by constructing solutions in a flux compactification of six dimensional supergravity, then uplift them to massive type HA supergravity. Alongside the Lifshitz black holes we
Construction of the de Sitter supergravity
Bergshoeff, Eric; Freedman, Dan; Kallosh, Renata; Proeyen, Antoine Van
2016-01-01
Recently, the complete action for an N=1 pure supergravity action in 4 dimensions that allows a positive, negative or zero cosmological constant has been constructed. The action is the generalization of a Volkov-Akulov action for the Goldstino coupled to supergravity. The construction uses a
Lifshitz black holes in IIA supergravity
Barclay, Luke; Gregory, Ruth; Parameswaran, Susha; Tasinato, Gianmassimo; Zavala, Ivonne
2012-01-01
We compute string theoretic black hole solutions having Lifshitz asymptotics with a general dynamical exponent z > 1. We start by constructing solutions in a flux compactification of six dimensional supergravity, then uplift them to massive type HA supergravity. Alongside the Lifshitz black holes we
Experimental limits on antigravity in extended supergravity
1995-01-01
The available tests of the equivalence principle constrain the mass of the Higgs-like boson appearing in extended supergravity theories. We determine the constraints imposed by the present and future high precision experiments on the antigravity fields arising from $N=2,8$ supergravity.
M-theory and gauged supergravities
Roest, D
2005-01-01
We present a pedagogical discussion of the emergence of gauged supergravities from M-theory. First, a review of maximal supergravity and its global symmetries and supersymmetric solutions is given. Next, different procedures of dimensional reduction are explained: reductions over a torus, a group ma
Massive N=2 supergravity in three dimensions
Alkaç, Gökhan; Basanisi, Luca; Bergshoeff, Eric A.; Özkan, Mehmet; Sezgin, Ergin
2015-01-01
There exists two distinct off-shell N = 2 supergravities in three dimensions. They are also referred to as N = (1, 1) and N = (2, 0) supergravities, and they arise from the coupling of the Weyl multiplet to a compensating scalar or vector multiplet, respectively, followed by fixing of conformal symm
M-theory and Gauged Supergravities
Roest, D.
2004-01-01
Abstract: We present a pedagogical discussion of the emergence of gauged supergravities from M-theory. First, a review of maximal supergravity and its global symmetries and supersymmetric solutions is given. Next, different procedures of dimensional reduction are explained: reductions over a torus,
M-theory and Gauged Supergravities
Roest, D.
2004-01-01
Abstract: We present a pedagogical discussion of the emergence of gauged supergravities from M-theory. First, a review of maximal supergravity and its global symmetries and supersymmetric solutions is given. Next, different procedures of dimensional reduction are explained: reductions over a torus,
Consistent 4-form fluxes for maximal supergravity
Godazgar, Hadi; Krueger, Olaf; Nicolai, Hermann
2015-01-01
We derive new ansaetze for the 4-form field strength of D=11 supergravity corresponding to uplifts of four-dimensional maximal gauged supergravity. In particular, the ansaetze directly yield the components of the 4-form field strength in terms of the scalars and vectors of the four-dimensional maximal gauged supergravity---in this way they provide an explicit uplift of all four-dimensional consistent truncations of D=11 supergravity. The new ansaetze provide a substantially simpler method for uplifting d=4 flows compared to the previously available method using the 3-form and 6-form potential ansaetze. The ansatz for the Freund-Rubin term allows us to conjecture a `master formula' for the latter in terms of the scalar potential of d=4 gauged supergravity and its first derivative. We also resolve a long-standing puzzle concerning the antisymmetry of the flux obtained from uplift ansaetze.
Pure Spinor Superstrings on Generic type IIA Supergravity Backgrounds
D'Auria, R; Grassi, P A; Trigiante, M
2008-01-01
We derive the Free Differential Algebra for type IIA supergravity in 10 dimensions in the string frame. We provide all fermionic terms for all curvatures. We derive the Green-Schwarz sigma model for type IIA superstring based on the FDA construction and we check its invariance under kappa-symmetry. Finally, we derive the pure spinor sigma model and we check the BRST invariance. The present derivation has the advantage that the resulting sigma model is constructed in terms of the superfields appearing in the FDA and therefore one can directly relate a supergravity background with the corresponding sigma model. The complete explicit form of the BRST transformations is given and some new pure spinor constraints are obtained. Finally, the explicit form of the action is given.
Galilean creation of the inflationary universe
Energy Technology Data Exchange (ETDEWEB)
Kobayashi, Tsutomu [Department of Physics, Rikkyo University,Toshima, Tokyo 175-8501 (Japan); Yamaguchi, Masahide [Department of Physics, Tokyo Institute of Technology,Tokyo 152-8551 (Japan); Yokoyama, Jun’ichi [Research Center for the Early Universe (RESCEU),Graduate School of Science, The University of Tokyo,Tokyo 113-0033 (Japan); Department of Physics, Graduate School of Science, The University of Tokyo,Tokyo 113-0033 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU),UTIAS, WPI, The University of Tokyo,Kashiwa, Chiba 277-8568 (Japan)
2015-07-13
It has been pointed out that the null energy condition can be violated stably in some non-canonical scalar-field theories. This allows us to consider the Galilean Genesis scenario in which the universe starts expanding from Minkowski spacetime and hence is free from the initial singularity. We use this scenario to study the early-time completion of inflation, pushing forward the recent idea of Pirtskhalava et al. We present a generic form of the Lagrangian governing the background and perturbation dynamics in the Genesis phase, the subsequent inflationary phase, and the graceful exit from inflation, as opposed to employing the effective field theory approach. Our Lagrangian belongs to a more general class of scalar-tensor theories than the Horndeski theory and Gleyzes-Langlois-Piazza-Vernizzi generalization, but still has the same number of the propagating degrees of freedom, and thus can avoid Ostrogradski instabilities. We investigate the generation and evolution of primordial perturbations in this scenario and show that one can indeed construct a stable model of inflation preceded by (generalized) Galilean Genesis.
Electrodynamics of Black Holes in STU Supergravity
Cvetic, M; Pope, C N; Saleem, Z H
2013-01-01
External magnetic fields can probe the composite structure of black holes in string theory. With this motivation we study magnetised four-charge black holes in the STU model, a consistent truncation of maximally supersymmetric supergravity with four types of electromagnetic fields. We employ solution generating techniques to obtain Melvin backgrounds, and black holes in these backgrounds. For an initially electrically charged static black hole immersed in magnetic fields, we calculate the resultant angular momenta and analyse their global structure. Examples are given for which the ergoregion does not extend to infinity. We calculate magnetic moments and gyromagnetic ratios via Larmor's formula. Our results are consistent with earlier special cases. A scaling limit and associated subtracted geometry in a single surviving magnetic field is shown to lift to $AdS_3\\times S^2$. Magnetizing magnetically charged black holes give static solutions with conical singularities representing strings or struts holding the ...
Effective supergravity actions for flop transitions
Energy Technology Data Exchange (ETDEWEB)
Jarv, Laur; Mohaupt, Thomas; Saueressig, Frank E-mail: F.Saueressig@tpi.uni-jena.de
2003-12-01
We construct a family of five-dimensional gauged supergravity actions which describe flop transitions of M-theory compactified on Calabi-Yau three folds. While the vector multiplet sector can be treated exactly, we use the Wolf spaces X(1+N) = U(1+N,2)/(U(1+N) x U(2)) to model the universal hyper multiplet together with N charged hyper multiplets corresponding to winding states of the M2-brane. The metric, the Killing vectors and the moment maps of these spaces are obtained explicitly by using the superconformal quotient construction of quaternion-Kaehler manifolds. The inclusion of the extra hyper multiplets gives rise to a non-trivial scalar potential which is uniquely fixed by M-theory physics. (author)
Causality, initial conditions and inflationary magnetogenesis
Tsagas, Christos G
2016-01-01
The post-inflationary evolution of inflation-produced magnetic fields, conventional or not, can change dramatically when two fundamental issues are accounted for. The first is causality, which demands that local physical processes can never affect superhorizon perturbations. The second is the nature of the transition from inflation to reheating and then to the radiation era, which determine the initial conditions at the start of these epochs. Technically, the latter issue can be addressed by appealing to Israel's junction conditions. Causality implies that inflationary magnetic fields dot not freeze into the matter until they have re-entered the causal horizon. The nature of cosmological transitions and the associated initial conditions, on the other hand, determine the large-scale magnetic evolution after inflation. Put together, the two can slow down the adiabatic decay of superhorizon-sized magnetic fields throughout their post-inflationary life and thus lead to considerably stronger residual strengths. Th...
Low-scale supergravity inflation with R-symmetry
Germán, G; Mondragón, M N
2000-01-01
We study a supergravity model of inflation with R-symmetry and a single scalar field, the inflaton, slowly rolling away from the origin. The scales of inflation can be as low as the supersymmetry breaking scale of 10^10 GeV or even the electroweak scale of 10^3 GeV which could be relevant in the context of theories with submillimiter dimensions. Exact analytical solutions are presented and a comparison with related models is given.
Minimal scalar-less matter-coupled supergravity
Energy Technology Data Exchange (ETDEWEB)
Dall' Agata, Gianguido, E-mail: dallagat@pd.infn.it [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau (France); Ferrara, Sergio [Theory Unit, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); INFN, Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044 Frascati (Italy); Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547 (United States); Zwirner, Fabio [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Theory Unit, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland)
2016-01-10
We build the minimal supergravity model where the nilpotent chiral goldstino superfield is coupled to a chiral matter superfield, realising a different non-linear representation through a mixed nilpotency constraint. The model describes the spontaneous breaking of local supersymmetry in the presence of a generically massive Majorana fermion, but in the absence of elementary scalars. The sign and the size of the cosmological constant, the spectrum and the four-fermion interactions are controlled by suitable parameters.
Minimal scalar-less matter-coupled supergravity
Directory of Open Access Journals (Sweden)
Gianguido Dall'Agata
2016-01-01
Full Text Available We build the minimal supergravity model where the nilpotent chiral goldstino superfield is coupled to a chiral matter superfield, realising a different non-linear representation through a mixed nilpotency constraint. The model describes the spontaneous breaking of local supersymmetry in the presence of a generically massive Majorana fermion, but in the absence of elementary scalars. The sign and the size of the cosmological constant, the spectrum and the four-fermion interactions are controlled by suitable parameters.
Minimal scalar-less matter-coupled supergravity
Dall'Agata, Gianguido; Zwirner, Fabio
2016-01-01
We build the minimal supergravity model where the nilpotent chiral goldstino superfield is coupled to a chiral matter superfield, realising a different non-linear representation through a mixed nilpotency constraint. The model describes the spontaneous breaking of local supersymmetry in the presence of a generically massive Majorana fermion, but in the absence of elementary scalars. The sign and the size of the cosmological constant, the spectrum and the four-fermion interactions are controlled by suitable parameters.
Supergravity, Dark Energy and the Fate of the Universe
Kallosh, Renata E; Prokushkin, S F; Shmakova, M; Kallosh, Renata; Linde, Andrei; Prokushkin, Sergey; Shmakova, Marina
2002-01-01
We propose a description of dark energy and acceleration of the universe in extended supergravities with de Sitter (dS) solutions. Some of them are related to M-theory with non-compact internal spaces. Masses of ultra-light scalars in these models are quantized in units of the Hubble constant: m^2 = n H^2. If dS solution corresponds to a minimum of the effective potential, the universe eventually becomes dS space. If dS solution corresponds to a maximum or a saddle point, which is the case in all known models based on N=8 supergravity, the flat universe eventually stops accelerating and collapses to a singularity. We show that in these models, as well as in the simplest models of dark energy based on N=1 supergravity, the typical time remaining before the global collapse is comparable to the present age of the universe, t = O(10^{10}) years. We discuss the possibility of distinguishing between various models and finding our destiny using cosmological observations.
Supergravity, Dark Energy and the Fate of the Universe
Energy Technology Data Exchange (ETDEWEB)
Shmakova, Marina
2002-09-27
We propose a description of dark energy and acceleration of the universe in extended supergravities with de Sitter (dS) solutions. Some of them are related to M-theory with non-compact internal spaces. Masses of ultra-light scalars in these models are quantized in units of the Hubble constant: m{sup 2} = nH{sup 2}. If dS solution corresponds to a minimum of the effective potential, the universe eventually becomes dS space. If dS solution corresponds to a maximum or a saddle point, which is the case in all known models based on N = 8 supergravity, the flat universe eventually stops accelerating and collapses to a singularity. We show that in these models, as well as in the simplest models of dark energy based on N = 1 supergravity, the typical time remaining before the global collapse is comparable to the present age of the universe, t = O(10{sup 10}) years. We discuss the possibility of distinguishing between various models and finding our destiny using cosmological observations.
Generalizing Minimal Supergravity
Li, Tianjun
2010-01-01
In Grand Unified Theories (GUTs), the Standard Model (SM) gauge couplings need not be unified at the GUT scale due to the high-dimensional operators. Considering gravity mediated supersymmetry breaking, we study for the first time the generic gauge coupling relations at the GUT scale, and the general gaugino mass relations which are valid from the GUT scale to the electroweak scale at one loop. We define the index k for these relations, which can be calculated in GUTs and can be determined at the Large Hadron Collider and the future International Linear Collider. Thus, we give a concrete definition of the GUT scale in these theories, and suggest a new way to test general GUTs at future experiments. We also discuss five special scenarios with interesting possibilities. With our generic formulae, we present all the GUT-scale gauge coupling relations and all the gaugino mass relations in the SU(5) and SO(10) models, and calculate the corresponding indices k. Especially, the index k is 5/3 in the traditional SU(5...
Recent Progress in String Inflationary Cosmology
Energy Technology Data Exchange (ETDEWEB)
Rey, Soo-Jong
2003-05-23
Super-inflation driven by dilaton/moduli kinetic energy is naturally realized in compactified string theory. Discussed are selected topics of recent development in string inflationary cosmology: kinematics of super-inflation, graceful exit triggered by quantum back reaction, and classical and quantum power spectra of density and metric perturbations.
Excitation of Photons by Inflationary Gravitons
Wang, C L
2014-01-01
We use a recent result for the graviton contribution to the one loop vacuum polarization to solve the effective field equations for dynamical photons on de Sitter background. Our results show that the electric field experiences a secular enhancement proportional to the number of inflationary e-foldings. We discuss the minimum this establishes for primordial inflation to seed cosmic magnetic fields.
Nernst branes with Lifshitz asymptotics in N=2 gauged supergravity
Cardoso, G L; Nampuri, S
2015-01-01
We discuss two classes of non-supersymmetric interpolating solutions in N=2, D=4 gauged supergravity, that flow from either a z=2 Lifshitz geometry or a conformal AdS background to the near-horizon geometry of a Nernst brane. We obtain these solutions by constructing a z=2 supersymmetric Lifshitz solution in the STU model from a first-order rewriting of the action, then lifting it up to a five-dimensional background and subsequently modifying this five-dimensional solution by a two-parameter family of deformations. Under reduction, these give four-dimensional non-supersymmetric Nernst brane solutions. This is a step towards resolving the Lifshitz tidal force singularity in the context of N=2 gauged supergravity and suggests an approach to encoding the Nernst brane in terms of the Schroedinger symmetry group of the holographically dual field theory.
Dynamical Volume Element in Scale-Invariant and Supergravity Theories
Guendelman, Eduardo; Pacheva, Svetlana; Vasihoun, Mahary
2013-01-01
The use in the action integral of a volume element of the form $\\Phi d^{D}x$, where $\\Phi$ is a metric-independent measure density, can yield new interesting results in all types of known generally coordinate-invariant theories: (1) 4-D theories of gravity plus matter fields; (2) reparametrization invariant theories of extended objects (strings and branes); (3) supergravity theories. In case (1) we obtain interesting insights concerning the cosmological constant problem, inflation and quintessence without the fifth force problem. In case (2) the above formalism leads to dynamically induced tension and to string models of non-abelian confinement. In case (3), we show that the modified-measure supergravity generates an arbitrary dynamically induced cosmological constant.
Type IIB supergravity on squashed Sasaki-Einstein manifolds
Cassani, Davide; Faedo, Anton F
2010-01-01
We provide a consistent N=4 Kaluza-Klein truncation of type IIB supergravity on general 5-dimensional squashed Sasaki-Einstein manifolds. Our reduction ansatz keeps all and only the supergravity modes dual to the universal gauge sector of the associated conformal theories, via the gauge/gravity correspondence. The reduced 5-dimensional model displays remarkable features: it includes both zero-modes as well as massive iterations of the Kaluza-Klein operators on the internal manifold; it contains tensor fields dual to vectors charged under a non-abelian gauge group; it has a scalar potential with a non-supersymmetric AdS vacuum in addition to the supersymmetric one.
Vacuum Interpretation for Supergravity M-Branes
Chen, C M; Sharakin, S A; Chen, Chiang-Mei; Gal'tsov, Dmitri V.; Sharakin, Sergei A.
2000-01-01
A non-local classical duality between the three-block truncated 11D supergravity and the 8D vacuum gravity with two commuting Killing symmetries is established. The supergravity four-form field is generated via an inverse dualisation of the corresponding Killing two-forms in six dimensions. 11D supersymmetry condition is shown to be equivalent to existence of covariantly constant spinors in eight dimensions. Thus any solution to the vacuum Einstein equations in eight dimensions depending on six coordinates and admitting Killing spinors have supersymmetric 11D-supergravity counterparts. Using this duality we derive some new brane solutions to 11D-supergravity including 1/4 supersymmetric intersecting M-branes with a NUT parameter and a dyon solution joining the M2 and M5-branes intersecting at a point.
The maximal D = 4 supergravities
Energy Technology Data Exchange (ETDEWEB)
Wit, Bernard de [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, Postbus 80.195, NL-3508 TD Utrecht (Netherlands); Samtleben, Henning [Laboratoire de Physique, ENS Lyon, 46 allee d' Italie, F-69364 Lyon CEDEX 07 (France); Trigiante, Mario [Dept. of Physics, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Turin (Italy)
2007-06-15
All maximal supergravities in four space-time dimensions are presented. The ungauged Lagrangians can be encoded in an E{sub 7(7)}-Sp(56; R)/GL(28) matrix associated with the freedom of performing electric/magnetic duality transformations. The gauging is defined in terms of an embedding tensor {theta} which encodes the subgroup of E{sub 7(7)} that is realized as a local invariance. This embedding tensor may imply the presence of magnetic charges which require corresponding dual gauge fields. The latter can be incorporated by using a recently proposed formulation that involves tensor gauge fields in the adjoint representation of E{sub 7(7)}. In this formulation the results take a universal form irrespective of the electric/magnetic duality basis. We present the general class of supersymmetric and gauge invariant Lagrangians and discuss a number of applications.
The maximal D=5 supergravities
de Wit, Bernard; Trigiante, M; Wit, Bernard de; Samtleben, Henning; Trigiante, Mario
2007-01-01
The general Lagrangian for maximal supergravity in five spacetime dimensions is presented with vector potentials in the \\bar{27} and tensor fields in the 27 representation of E_6. This novel tensor-vector system is subject to an intricate set of gauge transformations, describing 3(27-t) massless helicity degrees of freedom for the vector fields and 3t massive spin degrees of freedom for the tensor fields, where the (even) value of t depends on the gauging. The kinetic term of the tensor fields is accompanied by a unique Chern-Simons coupling which involves both vector and tensor fields. The Lagrangians are completely encoded in terms of the embedding tensor which defines the E_6 subgroup that is gauged by the vectors. The embedding tensor is subject to two constraints which ensure the consistency of the combined vector-tensor gauge transformations and the supersymmetry of the full Lagrangian. This new formulation encompasses all possible gaugings.
Gauge theory origins of supergravity causal structure
Kabat, D; Kabat, Daniel; Lifschytz, Gilad
1999-01-01
We discuss the gauge theory mechanisms which are responsible for the causal structure of the dual supergravity. For D-brane probes we show that the light cone structure and Killing horizons of supergravity emerge dynamically. They are associated with the appearance of new light degrees of freedom in the gauge theory, which we explicitly identify. This provides a picture of physics at the horizon of a black hole as seen by a D-brane probe.
Duality, Entropy and ADM Mass in Supergravity
Energy Technology Data Exchange (ETDEWEB)
Cerchiai, Bianca L.; Ferrara, Sergio; Marrani, Alessio; Zumino, Bruno
2009-02-23
We consider the Bekenstein-Hawking entropy-area formula in four dimensional extended ungauged supergravity and its electric-magnetic duality property. Symmetries of both"large" and"small" extremal black holes are considered, as well as the ADM mass formula for N=4 and N=8 supergravity, preserving different fraction of supersymmetry. The interplay between BPS conditions and duality properties is an important aspect of this investigation.
Covariant action for type IIB supergravity
Sen, Ashoke
2016-07-01
Taking clues from the recent construction of the covariant action for type II and heterotic string field theories, we construct a manifestly Lorentz covariant action for type IIB supergravity, and discuss its gauge fixing maintaining manifest Lorentz invariance. The action contains a (non-gravitating) free 4-form field besides the usual fields of type IIB supergravity. This free field, being completely decoupled from the interacting sector, has no physical consequence.
The 3-form multiplet in supergravity
Binétruy, Pierre; Girardi, G; Grimm, R
1996-01-01
We derive the couplings of the 3-form supermultiplet to the general supergravity-matter-Yang-Mills system. Based on the methods of superspace geometry, we identify component fields, establish their supergravity transformations and construct invariant component field actions. Two specific applications are adressed: the appearance of fundamental 3-forms in the context of strong-weak duality and the use of the 3-form supermultiplets to describe effective degrees of freedom relevant to the mechanism of gaugino condensation.
Anomaly Structure of Supergravity and Anomaly Cancellation
Butter, Daniel
2009-01-01
We display the full anomaly structure of supergravity, including new D-term contributions to the conformal anomaly. This expression has the super-Weyl and chiral U(1)_K transformation properties that are required for implementation of the Green-Schwarz mechanism for anomaly cancellation. We outline the procedure for full anomaly cancellation. Our results have implications for effective supergravity theories from the weakly coupled heterotic string theory.
Exact Inflationary Solution in String-Motivated Scalar Field Cosmology
Institute of Scientific and Technical Information of China (English)
王文福
2001-01-01
We present a new exact solution to Einstein's equations that describes the evolution of inflationary universe models. The inflation is driven by the evolution of a scalar field with an approximate two-loop four-dimensional string potential. In this scenario, the inflation began immediately after the epoch governed by quantum gravity and therefore there is no initial singularity. The successful inflation scenario is expected to appear only at two loop order. For a1/｜a2｜ ≥ 90, the spectral index ns of the scalar density fluctuations lies well inside the limits set by the cosmic background explorer satellite and the gravitational wave spectral index is ng≈1.
Inflationary α-attractors and F(R)-gravity
Kuiroukidis, A.
2017-09-01
We consider a generic class of the so-called inflationary α-attractor models and compute the cosmological observables in the Einstein and Jordan frames of the corresponding F(R)-gravity theory. We find that the two sets coincide (to within errors from the use of the slow-roll approximation) for moderate and large values of the number of e-foldings N, which is the novel result of this paper, generalizing previous results on the subject (see e.g. Ref. 24). We briefly comment on the possible generalizations of these results.
Inflationary cosmology with Chaplygin gas in Palatini formalism
Borowiec, Andrzej; Szydlowski, Marek; Wojnar, Aneta
2015-01-01
We present a simple generalisation of the $\\Lambda$CDM model which on the one hand reaches very good agreement with the present day experimental data and provides an internal inflationary mechanism on the other hand. It is based on Palatini modified gravity with quadratic Starobinsky term and generalized Chaplygin gas as a matter source providing, besides a current accelerated expansion, the epoch of endogenous inflation driven by type III freeze singularity. It follows from our statistical analysis that astronomical data favours negative value of the parameter coupling quadratic term into Einstein-Hilbert Lagrangian and as a consequence the bounce instead of initial Big-Bang singularity is preferred.
A viable Starobinsky-like inflationary scenario in the light of Planck and BICEP2 results
Basilakos, S; Solà, J
2014-01-01
The recent CMB data from Planck and BICEP2 observations have opened a new window for inflationary cosmology. In this Essay we compare three Starobinsky-like inflationary scenarios: (i) the original Starobinsky proposal; (ii) a family of dynamically broken SUGRA models; and (iii) a class of "decaying" vacuum $\\Lambda(H)$ cosmologies. We then focus on the $\\Lambda(H)$ variant, which spans the complete cosmic history of the universe from an early inflationary stage, followed by the "graceful exit" into the standard radiation regime, the matter epoch and, finally, the late-time accelerated expansion. Computing the effective potential we find that the "running" $\\Lambda(H)$ models also provide a prediction for the tensor-to-scalar ratio of the CMB spectrum, $r \\simeq 0.16$, which is compatible to within $1\\sigma$ with the value $r=0.20^{+0.07}_{-0.05}$ recently measured by the BICEP2 collaboration.
Steps to Reconcile Inflationary Tensor and Scalar Spectra
Miranda, Vinícius; Adshead, Peter
2014-01-01
The recent BICEP2 B-mode polarization determination of an inflationary tensor-scalar ratio $r=0.2^{+0.07}_{-0.05}$ is in tension with simple scale-free models of inflation due to a lack of a corresponding low multipole excess in the temperature power spectrum which places a limit of $r<0.11$ (95% CL) on such models. Single-field inflationary models that reconcile these two observations, even those where the tilt runs substantially, introduce a scale into the scalar power spectrum. To cancel the tensor excess, and simultaneously explain the excess already present in $\\Lambda$CDM, ideally the model should introduce this scale as a relatively sharp transition in the tensor-scalar ratio around the horizon at recombination. We consider models which generate such a step in this quantity and find that they can improve the joint fit to the temperature and polarization data by up to $2\\Delta \\ln{\\cal L} \\approx -17$ without changing cosmological parameters. Precision E-mode polarization measurements should be able ...
Study of inflationary generalized cosmic Chaplygin gas for standard and tachyon scalar fields
Energy Technology Data Exchange (ETDEWEB)
Sharif, M.; Saleem, Rabia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)
2014-07-15
We consider an inflationary universe model in the context of the generalized cosmic Chaplygin gas by taking the matter field as standard and tachyon scalar fields. We evaluate the corresponding scalar fields and scalar potentials during the intermediate and logamediate inflationary regimes by modifying the first Friedmann equation. In each case, we evaluate the number of e-folds, scalar as well as tensor power spectra, scalar spectral index, and the important observational parameter, the tensor-scalar ratio in terms of inflation. The graphical behavior of this parameter shows that the model remains incompatible with WMAP7 and Planck observational data in each case. (orig.)
Study of Inflationary Generalized Cosmic Chaplygin Gas for Standard and Tachyon Scalar Fields
Sharif, M
2014-01-01
We consider an inflationary universe model in the context of generalized cosmic Chaplygin gas by taking matter field as standard and tachyon scalar fields. We evaluate the corresponding scalar fields and scalar potentials during intermediate and logamediate inflationary regimes by modifying the first Friedmann equation. In each case, we evaluate the number of e-folds, scalar as well as tensor power spectra, scalar spectral index and important observational parameter, i.e., tensor-scalar ratio in terms of inflatons. The graphical behavior of this parameter shows that the model remains incompatible with WMAP7 and Planck observational data in each case.
N=2 Supergravity Counterterms, Off and On Shell
Chemissany, W; Kallosh, R; Shahbazi, C S
2012-01-01
We study N=2 supergravity deformed by a genuine supersymmetric completion of the $\\lambda R^4$ term, using the underlying off shell N=2 superconformal framework. The gauge-fixed superconformal model has unbroken local supersymmetry of N=2 supergravity with higher derivative deformation. Elimination of auxiliary fields leads to the deformation of the supersymmetry rules as well as to the deformation of the action, which becomes a Born-Infeld with higher derivative type action. We find that the gravitino supersymmetry deformation starts from $\\lambda \\, \\pa^4 {\\cal F}^3$ and has higher graviphoton couplings. In the action there are terms $\\lambda^2 \\pa^8 {\\cal F}^{6}$ and higher, in addition to original on shell counterterm deformation. These deformations are absent in the on shell superspace and in the candidate on shell counterterms of N=4,~8 supergravities, truncated down to N=2. We conclude therefore that the undeformed on shell superspace candidate counterterms break the N=2 part of local supersymmetry.
Fayet-Iliopoulos Terms in Supergravity and Cosmology
Binétruy, Pierre; Kallosh, Renata E; Van Proeyen, A; Binétruy, Pierre; Dvali, Gia; Kallosh, Renata; Proeyen, Antoine Van
2004-01-01
We clarify the structure of N=1 supergravity in 1+3 dimensions with constant FI terms. The FI terms induce non-vanishing R-charges for the fermions and the superpotential. Therefore the D-term inflation model in supergravity with constant FI terms has to be revisited. We also investigate the case of the so-called anomalous U(1) when a chiral superfield is shifted under U(1). In such a case, in the context of string theory, the FI terms originate from the derivative of the Kaehler potential and they are inevitably field-dependent. This raises an issue of stabilization of the relevant field in applications to cosmology. The recently suggested equivalence between the D-term strings and D-branes of type II theory shows that brane-anti-brane systems produce FI terms in the effective 4d theory, with the Ramond-Ramond axion shifting under the U(1) symmetry. This connection gives the possibility to interpret many unknown properties of D-\\bar{D} systems in the more familiar language of 4d supergravity D-terms, and vic...
Toldo, C.
2014-01-01
This thesis is devoted to the analysis of asymptotically Anti-de Sitter (AdS) black holes arising as solutions of theories of gauged Supergravity in four spacetime dimensions. After a brief recap of the main features of gauged supergravity, the first part of the thesis deals with the explicit constr
Constraining the Inflationary Equation of State
Ackerman, Lotty; Kundu, Sandipan; Sivanandam, Navin
2010-01-01
We explore possible constraints on the inflationary equation state: p=w\\rho. While w must be close to -1 for those modes that contribute to the observed power spectrum, for those modes currently out of experimental reach, the constraints on w are much weaker, with only w<-1/3 as an a priori requirement. We find, however, that limits on the reheat temperature and the inflationary energy scale constrain w further, though there is still ample parameter space for a vastly different (accelerating) equation of state between the end of quasi-de Sitter inflation and the beginning of the radiation-dominated era. In the event that such an epoch of acceleration could be observed, we review the consequences for the primordial power spectrum.
Statistical anisotropy in the inflationary universe
Shtanov, Yuri
2009-01-01
During cosmological inflation, quasiclassical perturbations are permanently generated on super-Hubble spatial scales, their power spectrum being determined by the fundamental principles of quantum field theory. By the end of inflation, they serve as primeval seeds for structure formation in the universe. At early stages of inflation, such perturbations break homogeneity and isotropy of the inflationary background. In the present paper, we perturbatively take into account this quasiclassical background inhomogeneity of the inflationary universe while considering the evolution of small-scale (sub-Hubble) quantum modes. As a result, the power spectrum of primordial perturbations develops statistical anisotropy, which can subsequently manifest itself in the large-scale structure and cosmic microwave background. The statistically anisotropic contribution to the primordial power spectrum is predicted to have almost scale-invariant form dominated by a quadrupole. Theoretical expectation of the magnitude of this anis...
Post-Inflationary Gravitino Production Revisited
Ellis, John; Nanopoulos, Dimitri V; Olive, Keith A; Peloso, Marco
2016-01-01
We revisit gravitino production following inflation. As a first step, we review the standard calculation of gravitino production in the thermal plasma formed at the end of post-inflationary reheating when the inflaton has completely decayed. Next we consider gravitino production prior to the completion of reheating, assuming that the inflaton decay products thermalize instantaneously while they are still dilute. We then argue that instantaneous thermalization is in general a good approximation, and also show that the contribution of non-thermal gravitino production via the collisions of inflaton decay products prior to thermalization is relatively small. Our final estimate of the gravitino-to-entropy ratio is approximated well by a standard calculation of gravitino production in the post-inflationary thermal plasma assuming total instantaneous decay and thermalization at a time $t \\simeq 1.2/\\Gamma_\\phi$. Finally, in light of our calculations, we consider potential implications of upper limits on the gravitin...
Implications of Planck2015 for inflationary, ekpyrotic and anamorphic bouncing cosmologies
Ijjas, Anna
2015-01-01
The results from Planck2015, when combined with earlier observations from WMAP, ACT, SPT and other experiments, were the first observations to disfavor the "classic" inflationary paradigm. To satisfy the observational constraints, inflationary theorists have been forced to consider plateau-like inflaton potentials that introduce more parameters and more fine-tuning, problematic initial conditions, multiverse-unpredictability issues, and a new 'unlikeliness problem.' Some propose turning instead to a "postmodern" inflationary paradigm in which the cosmological properties in our observable universe are only locally valid and set randomly, with completely different properties (and perhaps even different physical laws) existing in most regions outside our horizon. By contrast, the new results are consistent with the simplest versions of ekpyrotic cyclic models in which the universe is smoothed and flattened during a period of slow contraction followed by a bounce, and another promising bouncing theory, anamorphic...
Inflationary Magnetogenesis in $R^{2}$-Inflation after Planck 2015
AlMuhammad, Anwar Saleh
2015-01-01
We study the primordial magnetic field generated by the simple model $f^2 FF$ in Starobinsky, $R^2$-inflationary, model. The scale invariant PMF is achieved at relatively high power index of the coupling function, $\\left| \\alpha \\right| \\approx 7.44$. This model does not suffer from the backreaction problem as long as, the rate of inflationary expansion, $H$, is in the order of or less than the upper bound reported by Planck ($\\le 3.6 \\times 10^{-5} M_\\rm{Pl}$) in both de Sitter and power law expansion, which show similar results. We calculate the lower limit of the reheating parameter, $R_\\rm{rad} > 6.888$ in $R^2$-inflation. Based on the upper limit obtained from CMB, we find that the upper limits of magnetic field and reheating energy density as, $\\left(\\rho_{B_\\rm{end}} \\right)_\\rm{CMB} < 1.184 \\times 10^{-20} M_\\rm{Pl}^4$ and $\\left(\\rho_\\rm{reh} \\right)_\\rm{CMB} < 8.480 \\times 10^{-22} M_\\rm{Pl}^4$. All of foregoing results are well more than the lower limit derived from WMAP7 for both large and s...
Prospects for Inflationary B-Mode Detection
Kogut, Alan J.
2011-01-01
Measurements of the linear polarization of the cosmic microwave background provide a direct window into the physics of inflation. The experimental challenges are daunting: not only is the predicted signal faint compared to the photon noise limit, but it is hidden behind competing foregrounds from both local and cosmic sources. I will discuss the experimental response to these challenges and the prospects for eventual detection and characterization of the inflationary signal.
Ferreira, Ricardo J Z; Sloth, Martin S
2014-01-01
Recent observational claims of magnetic fields stronger than $10^{-16}$ G in the extragalactic medium motivate a new look for their origin in the inflationary magnetogenesis models. In this work we shall review the constraints on the simplest gauge invariant model $f^2(\\phi)F_{\\mu \
Resurrecting Quadratic Inflation in No-Scale Supergravity in Light of BICEP2
Ellis, John; Nanopoulos, Dimitri V; Olive, Keith A
2014-01-01
The magnitude of primordial tensor perturbations reported by the BICEP2 experiment is consistent with simple models of chaotic inflation driven by a single scalar field with a power-law potential \\propto \\phi^n: n \\simeq 2, in contrast to the WMAP and Planck results, which favored models resembling the Starobinsky R + R^2 model if running of the scalar spectral index could be neglected. While models of inflation with a quadratic potential may be constructed in simple N=1 supergravity, these constructions are more challenging in no-scale supergravity. We discuss here how quadratic inflation can be accommodated within supergravity, focussing primarily on the no-scale case. We also argue that the quadratic inflaton may be identified with the supersymmetric partner of a singlet (right-handed) neutrino, whose subsequent decay could have generated the baryon asymmetry via leptogenesis.
Background field formalism for chiral matter and gauge fields conformally coupled to supergravity
Butter, Daniel
2009-01-01
We expand the generic model involving chiral matter, super Yang-Mills gauge fields, and supergravity to second order in the gravity and gauge prepotentials in a manifestly covariant and conformal way. Such a class of models includes conventional chiral matter coupled to supergravity via a conformal compensator. This is a first step toward calculating one-loop effects in supergravity in a way that does not require a perturbative expansion in the inverse Planck scale or a recourse to component level calculations to handle the coupling of the K\\"ahler potential to the gravity sector. We also consider a more restrictive model involving a linear superfield in the role of the conformal compensator and investigate the similarities it has to the dual chiral model.
Resurrecting quadratic inflation in no-scale supergravity in light of BICEP2
Energy Technology Data Exchange (ETDEWEB)
Ellis, John [Theoretical Particle Physics and Cosmology Group, Department of Physics, King' s College London, London, WC2R 2LS (United Kingdom); García, Marcos A.G.; Olive, Keith A. [William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN, 55455 (United States); Nanopoulos, Dimitri V., E-mail: john.ellis@cern.ch, E-mail: garciagarcia@physics.umn.edu, E-mail: dimitri@physics.tamu.edu, E-mail: olive@physics.umn.edu [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, Texas, 77843 (United States)
2014-05-01
The magnitude of primordial tensor perturbations reported by the BICEP2 experiment is consistent with simple models of chaotic inflation driven by a single scalar field with a power-law potential ∝ φ{sup n} : n ≅ 2, in contrast to the WMAP and Planck results, which favored models resembling the Starobinsky R+R{sup 2} model if running of the scalar spectral index could be neglected. While models of inflation with a quadratic potential may be constructed in simple N = 1 supergravity, these constructions are more challenging in no-scale supergravity. We discuss here how quadratic inflation can be accommodated within supergravity, focusing primarily on the no-scale case. We also argue that the quadratic inflaton may be identified with the supersymmetric partner of a singlet (right-handed) neutrino, whose subsequent decay could have generated the baryon asymmetry via leptogenesis.
A detailed discussion of superfield supergravity prepotential perturbations
Ovalle, J.
2011-04-01
This paper presents a detailed discussion of the issue of supergravity perturbations around the flat five dimensional superspace required for manifest superspace formulations of the supergravity side of the AdS_{5}/CFT_{4} Correspondence.
Inflationary cosmology in unimodular F(T) gravity
Bamba, Kazuharu; Odintsov, Sergei D.; Saridakis, Emmanuel N.
2017-07-01
We investigate the inflationary realization in the context of unimodular F(T) gravity, which is based on the F(T) modification of teleparallel gravity, in which one imposes the unimodular condition through the use of Lagrange multipliers. We develop the general reconstruction procedure of the F(T) form that can give rise to a given scale-factor evolution, and then we apply it in the inflationary regime. We extract the Hubble slow-roll parameters that allow us to calculate various inflation-related observables, such as the scalar spectral index and its running, the tensor-to-scalar ratio, and the tensor spectral index. Then, we examine the particular cases of de Sitter and power-law inflation, of Starobinsky inflation, as well as inflation in a specific model of unimodular F(T) gravity. As we show, in all cases the predictions of our scenarios are in a very good agreement with Planck observational data. Finally, inflation in unimodular F(T) gravity has the additional advantage that it always allows for a graceful exit for specific regions of the model parameters.
Estimation of Inflationary Expectations and the Effectiveness of Inflation Targeting Strategy
Directory of Open Access Journals (Sweden)
Amalia CRISTESCU
2011-02-01
Full Text Available The credibility and accountability of a central bank, acting in an inflation targeting regime, are essential because they allow a sustainable anchoring of the inflationary anticipation of economic agents. Their decisions and behavior will increasingly be grounded on information provided by the central bank, especially if it shows transparency in the process of communicating with the public. Thus, inflationary anticipations are one of the most important channels through which the monetary policy affects the economic activity. They are crucial in the formation of the consumer prices among producers and traders, especially since it is relatively expensive for the economic agents to adjust their prices at short intervals. That is why many central banks use response functions containing inflationary anticipations, in their inflation targeting models. The most frequently problem in relation to these anticipations is that they are based on the assumption of optimal forecasts of future inflation, which are, implicitly, rational anticipations. In fact, the economic agents’ inflationary anticipations are most often adaptive or even irrational. Thus, rational anticipations cannot be used to estimate equations for the Romanian economy because the agents who form their expectations do not have sufficient information and an inflationary environment stable enough to fully anticipate the inflation evolution. The inflation evolution in the Romanian economy helps to calculate adaptive forecasts for which the weight of the "forward looking" component has to be rather important. The economic agents form their inflation expectations for periods of time that, usually, coincide with a production cycle (one year and consider the official and unofficial inflation forecasts present on the market in order to make strategic decisions. Thus, in recent research on inflation modeling, actual inflationary anticipations of economic agents which are revealed based on national
Supergravity with Doubled Spacetime Structure
Ma, Chen-Te
2016-01-01
Double Field Theory (DFT) is a low-energy effective theory of a manifestly $O(D,D)$ invariant formulation of the closed string theory when the toroidally compact dimensions are present. The theory is based on a doubled spacetime structure and, in order to preserve the gauge symmetry provided by the invariance under generalized diffeomorphisms, a constraint has to be imposed on fields and gauge parameters. In this paper, we propose a DFT-inspired Supergravity by using a suitable {\\em star product} with the aim of studying the corresponding algebraic structure. We get a consistent DFT in which also an orthogonality condition of momenta is necessary for having a closed gauge algebra. In constructing this theory, we start from the simplest case of doubling one spatial dimension where the action is uniquely determined, without any ambiguities, by the gauge symmetry. Then, the extension to the generic $O(D, D)$ case is studied and it results to be consistent with the closed string field theory.
SELF-DUAL SUPERGRAVITY THEORIES IN 2+2 DIMENSIONS
BERGSHOEFF, E; SEZGIN, E
1992-01-01
Starting from the new minimal multiplet of supergravity in 2 + 2 dimensions, we construct two types of self-dual supergravity theories. One of them involves a self-duality condition on the Riemann curvature and implies the equations of motion following from the Hilbert-Einstein type supergravity act
Super-Poincare' algebras, space-times and supergravities (II)
Santi, Andrea
2011-01-01
The presentation of supergravity theories of our previous paper "Super-Poincare' algebras, space-times and supergravities (I)" is re-formulated in the language of Berezin-Leites-Kostant theory of supermanifolds. It is also shown that the equations of Cremmer, Julia and Scherk's theory of 11D-supergravity are equivalent to manifestly covariant equations on a supermanifold.
The Bianchi classification of maximal D=8 gauged supergravities
Bergshoeff, E; Gran, U; Linares, R; Nielsen, M; Ortin, T; Roest, D
2004-01-01
We construct maximal D = 8 gauged supergravities by the reduction of D = 11 supergravity over three-dimensional group manifolds. Such manifolds have been classified by Bianchi. We divide the corresponding gauged supergravities into two classes: class A (with a Lagrangian) and class B (without a Lagr
The Bianchi classification of maximal D = 8 gauged supergravities
Bergshoeff, E.; Gran, U.; Linares, R.; Nielsen, M.; Ortín, T.; Roest, D.
2004-01-01
We construct maximal D = 8 gauged supergravities by the reduction of D = 11 supergravity over three-dimensional group manifolds. Such manifolds have been classified by Bianchi. We divide the corresponding gauged supergravities into two classes: class A (with a Lagrangian) and class B (without a Lagr
Inflationary cosmology in unimodular $F(T)$ gravity
Bamba, Kazuharu; Saridakis, Emmanuel N
2016-01-01
We investigate the inflationary realization in the context of unimodular $F(T)$ gravity, which is based on the $F(T)$ modification of teleparallel gravity, in which one imposes the unimodular condition through the use of Lagrange multipliers. We develop the general reconstruction procedure of the $F(T)$ form that can give rise to a given scale-factor evolution, and then we apply it in the inflationary regime. We extract the Hubble slow-roll parameters that allow us to calculate various inflation-related observables, such as the scalar spectral index and its running, the tensor-to-scalar ratio, and the tensor spectral index. Then, we examine the particular cases of de Sitter and power-law inflation, of Starobinsky inflation, as well as inflation in a specific model of unimodular $F(T)$ gravity. As we show, in all cases the predictions of our scenarios are in a very good agreement with Planck observational data. Finally, inflation in unimodular $F(T)$ gravity has the additional advantage that it always allows f...
Low reheating temperatures in monomial and binomial inflationary potentials
Rehagen, Thomas
2015-01-01
We investigate the allowed range of reheating temperature values in light of the Planck 2015 results and the recent joint analysis of Cosmic Microwave Background (CMB) data from the BICEP2/Keck Array and Planck experiments, using monomial and binomial inflationary potentials. While the well studied $\\phi^2$ inflationary potential is no longer favored by current CMB data, as well as $\\phi^p$ with $p>2$, a $\\phi^1$ potential and canonical reheating ($w_{re}=0$) provide a good fit to the CMB measurements. In this last case, we find that the Planck 2015 $68\\%$ confidence limit upper bound on the spectral index, $n_s$, implies an upper bound on the reheating temperature of $T_{re}\\lesssim 6\\times 10^{10}\\,{\\rm GeV}$, and excludes instantaneous reheating. The low reheating temperatures allowed by this model open the possiblity that dark matter could be produced during the reheating period instead of when the Universe is radiation dominated, which could lead to very different predictions for the relic density and mo...
SU(2) Reduction of Six-dimensional (1,0) Supergravity
Lü, H; Sezgin, E
2003-01-01
We obtain a gauged supergravity theory in three dimensions with eight real supersymmetries by means of a Scherk-Schwarz reduction of pure N=(1,0) supergravity in six dimension on the SU(2) group manifold. The SU(2) Yang-Mills fields in the model propagate, since they have an ordinary kinetic term in addition to Chern-Simons couplings. The other propagating degrees of freedom consist of a dilaton, five scalars which parameterise the coset SL(3,R)/SO(3), three vector fields in the adjoint of SU(2), and twelve spin 1/2 fermions. The model admits an AdS_3 vacuum solution. We also show how a charged black hole solution can be obtained, by performing a dimensional reduction of the rotating self-dual string of six-dimensional (1,0) supergravity.
Inflationary paradigm after Planck 2013
Guth, Alan H; Nomura, Yasunori
2014-01-01
Models of cosmic inflation posit an early phase of accelerated expansion of the universe, driven by the dynamics of one or more scalar fields in curved spacetime. Though detailed assumptions about fields and couplings vary across models, inflation makes specific, quantitative predictions for several observable quantities, such as the flatness parameter ($\\Omega_k = 1 - \\Omega$) and the spectral tilt of primordial curvature perturbations ($n_s - 1 = d \\ln {\\cal P}_{\\cal R} / d \\ln k$), among others---predictions that match the latest observations from the {\\it Planck} satellite to very good precision. In the light of data from {\\it Planck} as well as recent theoretical developments in the study of eternal inflation and the multiverse, we address recent criticisms of inflation by Ijjas, Steinhardt, and Loeb. We argue that their conclusions rest on several problematic assumptions, and we conclude that cosmic inflation is on a stronger footing than ever before.
Inflationary paradigm after Planck 2013
Energy Technology Data Exchange (ETDEWEB)
Guth, Alan H., E-mail: guth@ctp.mit.edu [Center for Theoretical Physics, Laboratory for Nuclear Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Kaiser, David I., E-mail: dikaiser@mit.edu [Center for Theoretical Physics, Laboratory for Nuclear Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Nomura, Yasunori, E-mail: ynomura@berkeley.edu [Berkeley Center for Theoretical Physics, Department of Physics, and Theoretical Physics Group, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)
2014-06-02
Models of cosmic inflation posit an early phase of accelerated expansion of the universe, driven by the dynamics of one or more scalar fields in curved spacetime. Though detailed assumptions about fields and couplings vary across models, inflation makes specific, quantitative predictions for several observable quantities, such as the flatness parameter (Ω{sub k}=1−Ω) and the spectral tilt of primordial curvature perturbations (n{sub s}−1=dlnP{sub R}/dlnk), among others—predictions that match the latest observations from the Planck satellite to very good precision. In the light of data from Planck as well as recent theoretical developments in the study of eternal inflation and the multiverse, we address recent criticisms of inflation by Ijjas, Steinhardt, and Loeb. We argue that their conclusions rest on several problematic assumptions, and we conclude that cosmic inflation is on a stronger footing than ever before.
Inflationary paradigm after Planck 2013
Guth, Alan H.; Kaiser, David I.; Nomura, Yasunori
2014-06-01
Models of cosmic inflation posit an early phase of accelerated expansion of the universe, driven by the dynamics of one or more scalar fields in curved spacetime. Though detailed assumptions about fields and couplings vary across models, inflation makes specific, quantitative predictions for several observable quantities, such as the flatness parameter (Ωk = 1 - Ω) and the spectral tilt of primordial curvature perturbations (ns - 1 = dln PR / dln k), among others-predictions that match the latest observations from the Planck satellite to very good precision. In the light of data from Planck as well as recent theoretical developments in the study of eternal inflation and the multiverse, we address recent criticisms of inflation by Ijjas, Steinhardt, and Loeb. We argue that their conclusions rest on several problematic assumptions, and we conclude that cosmic inflation is on a stronger footing than ever before.
Dark Radiation and Inflationary Freedom
Gariazzo, Stefano
2016-01-01
We perform a cosmological analysis in which we allow the primordial power spectrum of scalar perturbations to assume a shape that is different with respect to the usual power-law, arising from the simplest models of cosmological inflation. We parametrize the primordial power spectrum with a piecewise monotone cubic Hermite function and we use it to investigate how the constraints on the various cosmological parameters change: we find that the obtained limits are relaxed with respect to the power-law case, if CMB polarization data are not included. Moreover, the cosmological analyses provide us some indications about the shape of the reconstructed primordial power spectrum, where we notice possible features around $k\\simeq0.002\\,\\mathrm{Mpc}^{-1}$ and $k\\simeq0.0035\\,\\mathrm{Mpc}^{-1}$. If confirmed in future analyses involving enhanced experimental data, these features suggests that the simplest cosmological inflation models may be incomplete.
Euclidean supergravity and multi-centered solutions
Directory of Open Access Journals (Sweden)
W.A. Sabra
2017-04-01
Full Text Available In ungauged supergravity theories, the no-force condition for BPS states implies the existence of stable static multi-centered solutions. The first solutions to Einstein–Maxwell theory with a positive cosmological constant describing an arbitrary number of charged black holes were found by Kastor and Traschen. Generalisations to five and higher dimensional theories were obtained by London. Multi-centered solutions in gauged supergravity, even with time-dependence allowed, have yet to be constructed. In this letter we construct supersymmetry-preserving multi-centered solutions for the case of D=5, N=2 Euclidean gauged supergravity coupled to an arbitrary number of vector multiplets. Higher dimensional Einstein–Maxwell multi-centered solutions are also presented.
The Background Geometry of DLCQ Supergravity
Hyun, S
1998-01-01
By following Seiberg's prescriptions on DLCQ of M theory, we give the background geometries of DLCQ supergravity associated with $N$ sector of DLCQ of M theory on $T^p$. Most of these are the product of anti-de Sitter spacetimes and spheres, which have been found as the spontaneous compactifications of eleven dimensional supergravity long time ago and also are revisited recently by Maldacena by considering the near horizon geometry of various D-branes in appropriate limit. Those geometries are maximally symmetric and have full 32 supersymmetries of eleven dimensional supergravity, which agrees with the number of supersymmetries of DLCQ M theory. This tells us that in the large $N$ limit of DLCQ M theory, we get M/string theory on these nontrivial background.
Euclidean supergravity and multi-centered solutions
Sabra, W. A.
2017-04-01
In ungauged supergravity theories, the no-force condition for BPS states implies the existence of stable static multi-centered solutions. The first solutions to Einstein-Maxwell theory with a positive cosmological constant describing an arbitrary number of charged black holes were found by Kastor and Traschen. Generalisations to five and higher dimensional theories were obtained by London. Multi-centered solutions in gauged supergravity, even with time-dependence allowed, have yet to be constructed. In this letter we construct supersymmetry-preserving multi-centered solutions for the case of D = 5, N = 2 Euclidean gauged supergravity coupled to an arbitrary number of vector multiplets. Higher dimensional Einstein-Maxwell multi-centered solutions are also presented.
The Anomaly Structure of Regularized Supergravity
Butter, Daniel
2014-01-01
On-shell Pauli-Villars regularization of the one-loop divergences of supergravity theories is used to study the anomaly structure of supergravity and the cancellation of field theory anomalies under a $U(1)$ gauge transformation and under the T-duality group of modular transformations in effective supergravity theories with three K\\"ahler moduli $T^i$ obtained from orbifold compactification of the weakly coupled heterotic string. This procedure requires constraints on the chiral matter representations of the gauge group that are consistent with known results from orbifold compactifications. Pauli-Villars regulator fields allow for the cancellation of all quadratic and logarithmic divergences, as well as most linear divergences. If all linear divergences were canceled, the theory would be anomaly free, with noninvariance of the action arising only from Pauli-Villars masses. However there are linear divergences associated with nonrenormalizable gravitino/gaugino interactions that cannot be canceled by PV fields...
The homogeneity conjecture for supergravity backgrounds
Figueroa-O'Farrill, José Miguel
2009-06-01
These notes record three lectures given at the workshop "Higher symmetries in Physics", held at the Universidad Complutense de Madrid in November 2008. In them we explain how to construct a Lie (super)algebra associated to a spin manifold, perhaps with extra geometric data, and a notion of privileged spinors. The typical examples are supersymmetric supergravity backgrounds; although there are more classical instances of this construction. We focus on two results: the geometric constructions of compact real forms of the simple Lie algebras of type B4, F4 and E8 from S7, S8 and S15, respectively; and the construction of the Killing superalgebra of eleven-dimensional supergravity backgrounds. As an application of this latter construction we show that supersymmetric supergravity backgrounds with enough supersymmetry are necessarily locally homogeneous.
Energy Technology Data Exchange (ETDEWEB)
Ferreira, Ricardo J.Z.; Jain, Rajeev Kumar; Sloth, Martin S., E-mail: ferreira@cp3.dias.sdu.dk, E-mail: jain@cp3.dias.sdu.dk, E-mail: sloth@cp3.dias.sdu.dk [CP" 3-Origins, Center for Cosmology and Particle Physics Phenomenology, University of Southern Denmark, Campusvej 55, 5230 Odense M (Denmark)
2014-06-01
Recent observational claims of magnetic fields stronger than 10{sup −16} G in the extragalactic medium motivate a new look for their origin in the inflationary magnetogenesis models. In this work we shall review the constraints on the simplest gauge invariant model f{sup 2}(φ)F{sub μν}F{sup μν} of inflationary magnetogenesis, and show that in the optimal region of parameter space the anisotropic constraints coming from the induced bispectrum, due to the generated electromagnetic fields, yield the strongest constraints. In this model, only a very fine tuned scenario at an energy scale of inflation as low as 10{sup −2} GeV can explain the observations of void magnetic fields. These findings are consistent with the recently derived upper bound on the inflationary energy scale. However, if the detection of primordial tensor modes by BICEP2 is confirmed, the possibility of low scale inflation is excluded. Assuming the validity of the BICEP2 claim of a tensor-to-scalar ratio r = 0.2{sup +0.07}{sub −0.05}, we provide the updated constraints on this model of inflationary magnetogenesis. On the Mpc scale, we find that the maximal allowed magnetic field strength from inflation is less than 10{sup −30} G.
A problem of the QCD axion in supergravity
Energy Technology Data Exchange (ETDEWEB)
Endo, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Takahashi, F. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Tokyo Univ. (Japan). Inst. for the Physics and Mathematics of the Universe; Yanagida, T.T. [Tokyo Univ. (Japan). Inst. for the Physics and Mathematics of the Universe]|[Tokyo Univ. (Japan). Dept. of Physics
2007-12-15
We point out that the QCD axion generally couples to all the gauge fields in nature through the Super-Weyl, Kaehler and sigma-model anomalies in supergravity. If supersymmetry is dynamically broken by the hidden-sector gauge interactions, the axion potential receives corrections due to the instanton in the hidden sector. We show that the supersymmetry breaking models are tightly constrained for the Peccei-Quinn mechanism to successfully solve the strong CP problem. In particular, the gravity mediation turns out to be strongly disfavored. (orig.)
Lorentz-violating inflationary magnetogenesis
Energy Technology Data Exchange (ETDEWEB)
Campanelli, Leonardo [Universita di Bari, Dipartimento di Fisica, Bari (Italy)
2015-06-15
A non-conformally invariant coupling between the inflaton and the photon in the minimal Lorentz-violating standard model extension is analyzed. For specific forms of the Lorentz-violating background tensor, the strong-coupling and back-reaction problems of magnetogenesis in de Sitter inflation with scale ∝ 10{sup 16} GeV are evaded, the electromagnetic-induced primordial spectra of (Gaussian and non-Gaussian) scalar and tensor curvature perturbations are compatible with cosmic microwave background observations, and the inflation-produced magnetic field directly accounts for cosmic magnetic fields. (orig.)
Conservation of Supergravity Currents from Matrix Theory
Van Raamsdonk, M
1999-01-01
In recent work by Kabat and Taylor, certain Matrix theory quantities have been identified with the spatial moments of the supergravity stress-energy tensor, membrane current, and fivebrane current. In this note, we determine the relations between these moments required by current conservation, and prove that these relations hold as exact Matrix Theory identities at finite N. This establishes conservation of the effective supergravity currents (averaged over the compact circle). In addition, the constraints of current conservation allow us to deduce Matrix theory quantities corresponding to moments of the spatial current of the longitudinal fivebrane charge, not previously identified.
Construction of the de Sitter supergravity
Bergshoeff, Eric; Kallosh, Renata; Van Proeyen, Antoine
2016-01-01
Recently, the complete action for an N=1 pure supergravity action in 4 dimensions that allows a positive, negative or zero cosmological constant has been constructed. The action is the generalization of a Volkov-Akulov action for the Goldstino coupled to supergravity. The construction uses a nilpotent multiplet. This paper is written in honour of Philippe Spindel. AVP enjoyed collaborations and many interactions with Philippe, who has always appreciated very precise derivations. We use this occasion to give a very detailed account of the calculations that lead to the published results. We review aspects of supersymmetry with de Sitter backgrounds, the treatment of auxiliary fields, and other ingredients in the construction.
Supersymmetric counterterms from new minimal supergravity
Assel, Benjamin; Martelli, Dario
2014-01-01
We present a systematic classification of counterterms of four-dimensional supersymmetric field theories on curved space, obtained as the rigid limit of new minimal supergravity. These are supergravity invariants constructed using the field theory background fields. We demonstrate that if the background preserves two supercharges of opposite chirality, then all dimensionless counterterms vanish. This implies that a supersymmetric renormalisation scheme is free of ambiguities. When only one Euclidean supercharge is preserved, we describe the ambiguities that appear in supersymmetric observables, in particular in the dependence on marginal couplings.
Jordan C*-Algebras and Supergravity
Rios, Michael
2010-01-01
It is known that black hole charge vectors of N=8 and magic N=2 supergravity in four and five dimensions can be represented as elements of Jordan algebras of degree three over the octonions and split-octonions and their Freudenthal triple systems. We show both such Jordan algebras are contained in the exceptional Jordan C*-algebra and construct its corresponding Freudenthal triple system and single variable extension. The transformation groups for these structures give rise to the complex forms of the U-duality groups for N=8 and magic N=2 supergravities in three, four and five dimensions.
Inflationary trispectrum from graviton exchange
Seery, David; Vernizzi, Filippo
2008-01-01
We compute the connected four-point correlation function of the primordial curvature perturbation generated during inflation with standard kinetic terms, where the correlation is established via exchange of a graviton between two pairs of scalar fluctuations. Any such correlation yields a contribution to the scalar trispectrum of the order of the tensor to scalar ratio r. This contribution is numerically one order of magnitude larger than the one previously calculated on the basis of scalar perturbations interacting at a point and satisfies a simple relation in the limit where the momentum of the graviton which is exchanged becomes much smaller than the external momenta. We conclude that the total non-linearity parameter generated by single-field models of slow-roll inflation is at maximum tauNL ~ r.
Inflationary trispectrum from graviton exchange
Energy Technology Data Exchange (ETDEWEB)
Seery, David [Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom); Sloth, Martin S. [Department of Physics and Astronomy, University of Aarhus, Ny Munkegade, DK-8000 Aarhus C (Denmark); Vernizzi, Filippo, E-mail: djs61@cam.ac.uk, E-mail: sloth@phys.au.dk, E-mail: filippo.vernizzi@cea.fr [CEA, IPhT, 91191 Gif-sur-Yvette cedex, France CNRS, URA-2306, 91191 Gif-sur-Yvette cedex (France)
2009-03-15
We compute the connected four-point correlation function of the primordial curvature perturbation generated during inflation with standard kinetic terms, where the correlation is established via exchange of a graviton between two pairs of scalar fluctuations. Any such correlation yields a contribution to the scalar trispectrum of the order of the tensor to scalar ratio r. This contribution is numerically one order of magnitude larger than the one previously calculated on the basis of scalar perturbations interacting at a point and satisfies a simple relation in the limit where the momentum of the graviton which is exchanged becomes much smaller than the external momenta. We conclude that the total non-linearity parameter generated by single-field models of slow-roll inflation is at maximum |{tau}{sub NL}| {approx} r.
Scalar cosmological perturbations from inflationary black holes
Energy Technology Data Exchange (ETDEWEB)
Prokopec, Tomislav; Reska, Paul, E-mail: t.prokopec@uu.nl, E-mail: p.m.reska@uu.nl [Spinoza Institute and Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht (Netherlands)
2011-03-01
We study the correction to the scale invariant power spectrum of a scalar field on de Sitter space from small black holes that formed during a pre-inflationary matter dominated era. The formation probability of such black holes is estimated from primordial Gaussian density fluctuations. We determine the correction to the spectrum of scalar cosmological perturbations from the Keldysh propagator of a massless scalar field on Schwarzschild-de Sitter space. Our results suggest that the effect is strong enough to be tested — and possibly even ruled out — by observations.
CMB Cold Spot from Inflationary Feature Scattering
Wang, Yi
2015-01-01
We propose a "feature-scattering" mechanism to explain the cosmic microwave background cold spot seen from {\\it WMAP} and {\\it Planck} maps. If there are hidden features in the potential of multi-field inflation, the inflationary trajectory can be scattered by such features. The scattering is controlled by the amount of isocurvature fluctuations, and thus can be considered as a mechanism to convert isocurvature fluctuations into curvature fluctuations. This mechanism predicts localized cold spots (instead of hot ones) on the CMB. In addition, it may also bridge a connection between the cold spot and a dip on the CMB power spectrum at $\\ell \\sim 20$.
Quantum gravity extension of the inflationary scenario.
Agullo, Ivan; Ashtekar, Abhay; Nelson, William
2012-12-21
Since the standard inflationary paradigm is based on quantum field theory on classical space-times, it excludes the Planck era. Using techniques from loop quantum gravity, the paradigm is extended to a self-consistent theory from the Planck scale to the onset of slow roll inflation, covering some 11 orders of magnitude in energy density and curvature. This preinflationary dynamics also opens a small window for novel effects, e.g., a source for non-Gaussianities, which could extend the reach of cosmological observations to the deep Planck regime of the early Universe.
Supersymmetric AdS{sub 6} solutions of type IIB supergravity
Energy Technology Data Exchange (ETDEWEB)
Kim, Hyojoong, E-mail: h.kim@khu.ac.kr; Kim, Nakwoo, E-mail: nkim@khu.ac.kr [Department of Physics and Research Institute of Basic Science, Kyung Hee University, 130-701, Seoul (Korea, Republic of); Suh, Minwoo, E-mail: minsuh@usc.edu [Department of Physics, Sogang University, 121-742, Seoul (Korea, Republic of)
2015-10-11
We study the general requirement for supersymmetric AdS{sub 6} solutions in type IIB supergravity. We employ the Killing spinor technique and study the differential and algebraic relations among various Killing spinor bilinears to find the canonical form of the solutions. Our result agrees precisely with the work of Apruzzi et al. (JHEP 1411:099, 2014), which used the pure spinor technique. Hoping to identify the geometry of the problem, we also computed four-dimensional theory through the dimensional reduction of type IIB supergravity on AdS{sub 6}. This effective action is essentially a non-linear sigma model with five scalar fields parametrizing SL(3,ℝ)/SO(2,1), modified by a scalar potential and coupled to Einstein gravity in Euclidean signature. We argue that the scalar potential can be explained by a subgroup CSO(1,1,1) ⊂SL(3,ℝ) in a way analogous to gauged supergravity.
Supersymmetric AdS{sub 6} solutions of type IIB supergravity
Energy Technology Data Exchange (ETDEWEB)
Kim, Hyojoong; Kim, Nakwoo [Kyung Hee University, Department of Physics and Research Institute of Basic Science, Seoul (Korea, Republic of); Suh, Minwoo [Sogang University, Department of Physics, Seoul (Korea, Republic of)
2015-10-15
We study the general requirement for supersymmetric AdS{sub 6} solutions in type IIB supergravity. We employ the Killing spinor technique and study the differential and algebraic relations among various Killing spinor bilinears to find the canonical form of the solutions. Our result agrees precisely with the work of Apruzzi et al. (JHEP 1411:099, 2014), which used the pure spinor technique. Hoping to identify the geometry of the problem, we also computed four-dimensional theory through the dimensional reduction of type IIB supergravity on AdS{sub 6}. This effective action is essentially a non-linear sigma model with five scalar fields parametrizing SL(3,R)/ SO(2,1), modified by a scalar potential and coupled to Einstein gravity in Euclidean signature. We argue that the scalar potential can be explained by a subgroup CSO(1,1,1) is contained in SL(3,R) in a way analogous to gauged supergravity. (orig.)
Component reduction in N=2 supergravity: the vector, tensor, and vector-tensor multiplets
Butter, Daniel
2012-01-01
Recent advances in curved N=2 superspace methods have rendered the component reduction of superspace actions more feasible than in the past. In this paper, we consider models involving both vector and tensor multiplets coupled to supergravity and demonstrate explicitly how component actions may be efficiently obtained. In addition, tensor multiplets coupled to conformal supergravity are considered directly within projective superspace, where their formulation is most natural. We then demonstrate how the inverse procedure -- the lifting of component results to superspace -- can simplify the analysis of complicated multiplets. We address the off-shell N=2 vector-tensor multiplet coupled to conformal supergravity with a central charge and demonstrate explicitly how its constraints and Lagrangian can be written in a simpler way using superfields.
Inflation in R2 supergravity with non-minimal superpotentials
Directory of Open Access Journals (Sweden)
G.A. Diamandis
2015-05-01
Full Text Available We investigate the cosmological inflation in a class of supergravity models that are generalizations of non-supersymmetric R2 models. Although such models have been extensively studied recently, especially after the launch of the PLANCK and BICEP2 data, the class of models that can be constructed has not been exhausted. In this note, working in a supergravity model that is a generalization of Cecotti's model, we show that the appearance of new superpotential terms, which are quadratic in the superfield Λ that couples to the Ricci supermultiplet, alters substantially the form of the scalar potential. The arising potential has the form of the Starobinsky potential times a factor that is exponential in the inflaton field and dominates for large inflaton values. We show that the well-known Starobinsky inflation scenario is maintained only for unnaturally small fine-tuned values of the coupling describing the Λ2 superpotential terms. A welcome feature is the possible increase of the tensor to scalar ratio r, within the limits set by the new Planck and BICEP2 data.
The violation of the No-Hair Conjecture in four-dimensional ungauged Supergravity
Bueno, Pablo
2013-01-01
By choosing a particular, String Theory inspired, Special K\\"ahler manifold, we are able to find a N=2 four-dimensional ungauged Supergravity model that contains supersymmetric black hole solutions that violate the folk uniqueness theorems that are expected to hold in ungauged Supergravity. The black hole solutions are regular in the sense that they have a positive mass and a unique physical singularity hidden by an event horizon. In contradistinction to the examples already known in the literature, we find our solutions in a theory without scalar potential, gaugings or higher order curvature terms.
Projective multiplets and hyperkähler cones in conformal supergravity
Energy Technology Data Exchange (ETDEWEB)
Butter, Daniel [Nikhef Theory Group, Science Park 105, 1098 XG Amsterdam (Netherlands)
2015-06-24
Projective superspace provides a natural framework for the construction of actions coupling hypermultiplets to conformal supergravity. We review how the off-shell actions are formulated in superspace and then discuss how to eliminate the infinite number of auxiliary fields to produce an on-shell N=2 supersymmetric sigma model, with the target space corresponding to a generic 4n-dimensional hyperkähler cone. We show how the component action coupling the hypermultiplets to conformal supergravity may be constructed starting from curved superspace. The superspace origin of the geometric data — the hyperkähler potential, complex structures, and any gauged isometries — is also addressed.
Inflationary predictions in scalar-tensor DBI inflation
Weller, Joel M; Mota, David F
2011-01-01
The scalar-tensor Dirac-Born-Infeld (DBI) inflation scenario provides a simple mechanism to reduce the large values of the boost factor associated with single field models with DBI action, whilst still being able to drive 60 efolds of inflation. Using a slow-roll approach, we obtain an analytical expression for the spectral index of the perturbations and, moreover, determine numerically the regions of the parameter space of the model capable of giving rise to a power spectrum with amplitude and spectral index within the observed bounds. We find that regions that exhibit significant DBI effects throughout the inflationary period can be discarded by virtue of a blue-tilted spectral index, however, there are a number of viable cases --- associated with a more red-tilted spectral index --- for which the boost factor is initially suppressed by the effect of the coupling between the fields, but increases later to moderate values.
Turzynski, Krzysztof
2014-01-01
We calculate the scalar spectral index n_s and the tensor-to-scalar ratio r in a class of recently proposed two-field no-scale models. We show that in order to obtain correct predictions it is crucial to include in the calculations the coupling between the curvature and the isocurvature perturbations induced by the noncanonical form of the kinetic terms. This coupling enhances the curvature perturbations and suppresses the resulting tensor-to-scalar ratio to the per mille level even for values of the slow-roll parameter epsilon~0.01.
Alonso-Alberca, N; Ortín, Tomas
2001-01-01
The so-called ``massive 11-dimensional supergravity'' theory gives, for one Killing vector, Romans' massive 10-dimensional supergravity in 10 dimensions, for two Killing vectors an Sl(2,Z) multiplet of massive 9-dimensional supergravity theories that can be obtained by standard generalized dimensional reduction type IIB supergravity and has been shown to contain a gauged supergravity. We consider a straightforward generalization of this theory to three Killing vectors and a 3\\times 3 symmetric mass matrix and show that it gives an Sl(3,Z) multiplet of 8-dimensional supergravity theories that contain an SO(3) gauged supergravity which is, in some way, the dual to the one found by Salam and Sezgin by standard generalized dimensional reduction.
Phenomenological aspects of supergravity theories in de Sitter vacua
Knoops, Rob
2016-01-01
We introduce an $N=1$ supergravity model based on the gauged shift symmetry of a single chiral multiplet, which can be identified with the string dilaton or a compactification modulus. The model allows for a tunably small and positive value of the cosmological constant. The gravitino mass parameter and the dilaton Vacuum Expectation Value are separately tunable. In a second part we analyze the quantum consistency of these models. Recent work on anomalies in supergravity theories with Fayet-Iliopoulos terms was extended, such that their results can be interpreted from a field-theoretic point of view. We show that for certain values of the parameters the anomaly cancellation conditions are inconsistent with a TeV gravitino mass. In the third part the above model is used as a hidden sector for supersymmetry breaking. In its minimal version, the model leads to tachyonic scalar soft masses. This problem can however be circumvented by the introduction of an extra Pol\\'onyi-like hidden sector field, or by allowing f...
Bosonic physical states in N = 1 supergravity?
Carroll, S M; Ortiz, M E; Page, D N; Carroll, S M; Freedman, D Z; Ortiz, M E; Page, D N
1994-01-01
It is argued that states in N=1 supergravity that solve all of the constraint equations cannot be bosonic in the sense of being independent of the fermionic degrees of freedom. (Based on a talk given by Miguel Ortiz at the 7th Marcel Grossmann Meeting.)
Lifshitz solutions in supergravity and string theory
Gregory, Ruth; Tasinato, Gianmassimo; Zavala, Ivonne
2010-01-01
We derive Lifshitz configurations in string theory for general dynamical exponents z \\geq 1. We begin by obtaining simple Li x Omega solutions to supergravities in diverse dimensions, with Omega a compact constant curvature manifold. Then we uplift the solutions to ten dimensions, providing configurations that correspond to warped compactifications in Type II string theory.
Twin Supergravities from Yang-Mills Squared
Anastasiou, A; Duff, M J; Hughes, M J; Marrani, A; Nagy, S; Zoccali, M
2016-01-01
We consider `twin supergravities' - pairs of supergravities with $\\mathcal{N}_+$ and $\\mathcal{N}_-$ supersymmetries, $\\mathcal{N}_+>\\mathcal{N}_-$, with identical bosonic sectors - in the context of tensoring super Yang-Mills multiplets. It is demonstrated that the pairs of twin supergravity theories are related through their left and right super Yang-Mills factors. This procedure generates new theories from old. In particular, the matter coupled $\\mathcal{N}_-$ twins in $D=3,5,6$ and the $\\mathcal{N}_-=1$ twins in $D=4$ have not, as far as we are aware, been obtained previously using the double-copy construction, adding to the growing list of double-copy constructible theories. The use of fundamental matter multiplets in the double-copy construction leads us to introduce a bi-fundamental scalar that couples to the well-known bi-adjoint scalar field. It is also shown that certain matter coupled supergravities admit more than one factorisation into left and right super Yang-Mills-matter theories.
Black Hole Attractors in Extended Supergravity
Ferrara, Sergio
2007-01-01
We review some aspects of the attractor mechanism for extremal black holes of (not necessarily supersymmetric) theories coupling Einstein gravity to scalars and Maxwell vector fields. Thence, we consider N=2 and N=8, d=4 supergravities, reporting some recent advances on the moduli spaces associated to BPS and non-BPS attractor solutions supported by charge orbits with non-compact stabilizers.
Extremal black holes in N=2 supergravity
Katmadas, S.
2011-01-01
An explanation for the entropy of black holes has been an outstanding problem in recent decades. A special case where this is possible is that of extremal black holes in N=2 supergravity in four and five dimensions. The best developed case is for black holes preserving some supersymmetry (BPS), whic
The gaugings of maximal D=6 supergravity
Bergshoeff, E.; Samtleben, H.; Sezgin, E.
2008-01-01
We construct the most general gaugings of the maximal D = 6 supergravity. The theory is ( 2, 2) supersymmetric, and possesses an on-shell SO( 5, 5) duality symmetry which plays a key role in determining its couplings. The field content includes 16 vector fields that carry a chiral spinor representat
A bound on the entropy of supergravity?
de Boer, Jan; Messamah, Ilies; Bleeken, Dieter Van den
2009-01-01
We determine, in two independent ways, the number of BPS quantum states arising from supergravity degrees of freedom in a system with fixed total D4D0 charge. First, we count states generated by quantizing the spacetime degrees of freedom of 'entropyless' multicentered solutions consisting of anti-D0-branes bound to a D6-anti-D6 pair. Second, we determine the number of free supergravity excitations of the corresponding AdS_3 geometry with the same total charge. We find that, although these two approaches yield a priori different sets of states, the leading degeneracies in a large charge expansion are equal to each other and that, furthermore, the number of such states is parametrically smaller than that arising from the D4D0 black hole's entropy. This strongly suggests that supergravity alone is not sufficient to capture all degrees of freedom of large supersymmetric black holes. Comparing the free supergravity calculation to that of the D6-anti-D6-D0 system we find that the bound on the free spectrum imposed...
Gauged supergravities in various spacetime dimensions
Energy Technology Data Exchange (ETDEWEB)
Weidner, M.
2006-12-15
In this thesis we study the gaugings of extended supergravity theories in various space-time dimensions. These theories describe the low-energy limit of non-trivial string compactifications. For each theory under consideration we work out all possible gaugings that are compatible with supersymmetry. They are parameterized by the so-called embedding tensor which is a group theoretical object that has to satisfy certain representation constraints. This embedding tensor determines all couplings in the gauged theory that are necessary to preserve gauge invariance and supersymmetry. The concept of the embedding tensor and the general structure of the gauged supergravities are explained in detail. The methods are then applied to the half-maximal (N=4) supergravities in d=4 and d=5 and to the maximal supergravities in d=2 and d=7. Examples of particular gaugings are given. Whenever possible, the higher-dimensional origin of these theories is identified and it is shown how the compactification parameters like fluxes and torsion are contained in the embedding tensor. (orig.)
From Wave Geometry to Fake Supergravity
Townsend, Paul K
2007-01-01
The `Wave Geometry' equation of the pre-WWII Hiroshima program is also the key equation of the current `fake supergravity' program. I review the status of (fake) supersymmetric domain walls and (fake) pseudo-supersymmetric cosmologies. An extension of the domain-wall/cosmology correspondence to a triple correspondence with instantons shows that `pseudo-supersymmetry' has another interpretation as Euclidean supersymmetry.
Extremal black holes in N=2 supergravity
Katmadas, S.
2011-01-01
An explanation for the entropy of black holes has been an outstanding problem in recent decades. A special case where this is possible is that of extremal black holes in N=2 supergravity in four and five dimensions. The best developed case is for black holes preserving some supersymmetry (BPS), whic
Matter coupling in N = 4 supergravity
Roo, M. de
1985-01-01
An arbitrary number of abelian vector multiplets is coupled to N = 4 supergravity. The resulting action is invariant under global SO(n,6), where n is the number of vector multiplets, and under local SU(4) Ã— U(1) transformations. The scalar fields of the theory parametrize the manifold [SO(n,6)/SO(n
Precise measurements of inflationary features with 21 cm observations
Xu, Yidong; Chen, Xuelei
2016-01-01
Future observations of 21~cm emission using HI intensity mapping will enable us to probe the large scale structure of the Universe over very large survey volumes within a reasonable observation time. We demonstrate that the three-dimensional information contained in such surveys will be an extremely powerful tool in searching for features that were imprinted in the primordial power spectrum and bispectrum during inflation. Here we focus on the "resonant" and "step" inflation models, and forecast the potential of upcoming 21~cm experiments to detect these inflationary features in the observable power- and bispectrum. We find that the full scale Tianlai experiment and the Square Kilometre Array (SKA) have the potential to improve on the sensitivity of current Cosmic Microwave Background (CMB) experiments by several orders of magnitude.
A quantum gravitational inflationary scenario in Bianchi-I spacetime
Gupt, Brajesh
2013-01-01
We investigate the $\\phi^2$ inflationary model in the Bianchi-I spacetime using effective spacetime description of loop quantum cosmology to understand the issues of the resolution of initial singularity, isotropization, effect of anisotropies on amount of inflation, and the phase space attractors in the presence of non-perturbative quantum gravitational modifications. A comparative analysis with the classical theory by including more general initial conditions than the ones previously considered in the latter is also performed. We show that, in general, the classical singularity is replaced by a bounce of the mean scale factor in loop quantum cosmology. Due to the underlying quantum geometric effects, the energy density of the inflaton and the anisotropic shear remain bounded throughout the non-singular evolution. Starting from arbitrary anisotropic initial conditions, a loop quantum universe isotropizes either before or soon after the onset of slow-roll inflation. We find a double attractor behavior in the ...
The origin of density fluctuations in the 'new inflationary universe'
Turner, M. S.
1983-01-01
Cosmological mysteries which are not explained by the Big Bang hypothesis but may be approached by a revamped inflationary universe model are discussed. Attention is focused on the isotropy, the large-scale homogeneity, small-scale inhomogeneity, the oldness/flatness of the universe, and the baryon asymmetry. The universe is assumed to start in the lowest energy state, be initially dominated by false vacuum energy, enter a de Sitter phase, and then cross a barrier which is followed by the formation of fluctuation regions that lead to structure. The scalar fields (perturbation regions) experience quantum fluctuations which produce spontaneous symmetry breaking on a large scale. The scalar field value would need to be much greater than the expansion rate during the de Sitter epoch. A supersymmetric (flat) potential which satisfies the requirement, yields fluctuations of the right magnitude, and allows inflation to occur is described.
de Sitter vacua in N=8 supergravity and slow-roll conditions
Energy Technology Data Exchange (ETDEWEB)
Dall' Agata, G., E-mail: dallagat@pd.infn.it [Dipartimento di Fisica ' Galileo Galilei' , Universita di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Inverso, G. [Dipartimento di Fisica, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica, 00133 Roma (Italy); INFN, Sezione di Roma 2, ' Tor Vergata' , Via della Ricerca Scientifica, 00133 Roma (Italy)
2013-01-08
In this Letter we discuss de Sitter vacua in maximal gauged supergravity in 4 dimensions. We show that, using the newly deformed theories introduced in Dall'Agata et al. (2012) [1], we can obtain de Sitter vacua with arbitrarily flat tachyonic directions in the SO(4,4){sub c} models.
Supergravity Solutions in the Low-$\\tan\\beta$ $ \\lambda_t$ Fixed Point Region
Barger, V; Ohmann, P
1994-01-01
There has been much discussion in the literature about applying the radiative electroweak symmetry breaking (EWSB) requirement to GUT models with supergravity. We motivate and discuss the application of the EWSB requirement to the low $\\tan\\beta$ fixed-point region and describe the solutions we find.
Directory of Open Access Journals (Sweden)
Federico A. Sturzeneger
1992-03-01
Full Text Available Currency Substitution and the Regressivity of Inflationary Taxation The purpose of this paper is to show that in the presence of financial adaptation or currency substitution. the inflation tax is extremely regressive. This regressivity arises from the existence of a fixed cost of switching to inflation-proof transactions technologies. This fixed cost makes it optimal only for those agents with sufficiently high incomes to switch out of domestic currency. The effects are illustrated and quantified for a particular case.
Galilean Creation of the Inflationary Universe
Kobayashi, Tsutomu; Yokoyama, Jun'ichi
2015-01-01
It has been pointed out that the null energy condition can be violated stably in some non-canonical scalar-field theories. This allows us to consider the Galilean Genesis scenario in which the universe starts expanding from Minkowski spacetime and hence is free from the initial singularity. We use this scenario to study the early-time completion of inflation, pushing forward the recent idea of Pirtskhalava et al. We present a generic form of the Lagrangian governing the background and perturbation dynamics in the Genesis phase, the subsequent inflationary phase, and the graceful exit from inflation, as opposed to employing the effective field theory approach. Our Lagrangian belongs to a more general class of scalar-tensor theories than the Horndeski theory and Gleyzes-Langlois-Piazza-Vernizzi generalization, but still has the same number of the propagating degrees of freedom, and thus can avoid Ostrogradski instabilities. We investigate the generation and evolution of primordial perturbations in this scenario...
Propagation of inflationary shocks in Costa Rica
Directory of Open Access Journals (Sweden)
Adolfo Rodríguez Vargas
2013-06-01
Full Text Available Abstract We present an estimation of propagation effects of inflationary shocks to groups and specific products of the CPI using a SVAR framework. We found significant propagation effects for 6 out of the 12 groups of the CPI, which together account for 72% of the basket. These groups include those related to food, home apparel and housekeeping services and transportation. The estimations suggest that shocks to Food and Non-Alcoholic Beverages and to fuels are passed through entirely to the rest of the CPI basket. The majority of the most important propagation effects occur between 6 and 10 months after the shocks. This includes propagation effects stemming from shocks to fuels, products with regulated price, tradables and the IPPI index.
Relaxing the limits on inflationary magnetogenesis
Tsagas, Christos G
2015-01-01
Inflation has long been thought as the best way of producing primordial large-scale magnetic fields. To achieve fields strong enough to seed the galactic dynamo, most of the mechanisms operate outside conventional electromagnetic theory. The latter is typically restored after the end of the de Sitter phase. Breaking away from standard electromagnetism can lead to substantially stronger magnetic fields at the end of inflation, compensating for the depletion caused by their subsequent adiabatic decay. We argue that the drastic magnetic enhancements during the de Sitter era may not be necessary because, contrary to the widespread perception, superhorizon-sized magnetic fields decay at a slower pace after inflation. The principle behind this claim is causality, which confines the post-inflationary electric currents inside the horizon. Without the currents there can be no electric-field elimination and no magnetic-flux freezing on super-Hubble lengths. There, the magnetic decay slows down, making it easier to prod...
Phenomenology of R-parity violating minimal supergravity
Energy Technology Data Exchange (ETDEWEB)
Bernhardt, M.A.
2008-02-15
We investigate in detail the low-energy spectrum of the P{sub 6} violating minimal supergravity model using the SOFTSUSY spectrum code. We impose the experimental constraints from the measurement of the anomalous magnetic moment of the muon (g-2){sub {mu}}, the b{yields}s{gamma} decay, the branching ration of B{sub s}{yields}{mu}{sup +}{mu}{sup -}, as well as the mass bound from direct searches at colliders, in particular the Higgs boson and the lightest Chargino. We focus on regions, where the lightest neutralino is not the lightest supersymmetric particle (LSP). In these regions of parameter space either the lightest scalar tau or one of the sneutrinos is the LSP. We suggest four benchmark points with typical spectra and novel collider signatures which we investigate with a parton level Monte-Carlo simulation. We give an outlook for their detailed phenomenological analysis and simulation by the LHC collaborations, then including detector effects. In addition, we discuss a full Monte-Carlo simulation for single slepton production in association with a single top quark via an LQD type operator at the hadron colliders LHC and Tevatron. We present these results and show a predicted range of detectability for this process- for small couplings in various minimal supergravity models at the LHC. (orig.)
One loop divergences and anomalies from chiral superfields in supergravity
Butter, Daniel
2009-01-01
We apply the heat kernel method (using Avramidi's non-recursive technique) to the study of the effective action of chiral matter in a complex representation of an arbitrary gauge sector coupled to background U(1) supergravity. This generalizes previous methods, which restricted to 1) real representations of the gauge sector in traditional Poincar\\'e supergravity or 2) vanishing supergravity background. In this new scheme, we identify a classical ambiguity in these theories which mixes the supergravity U(1) with the gauge U(1). At the quantum level, this ambiguity is maintained since the effective action changes only by a local counterterm as one shifts a U(1) factor between the supergravity and gauge sectors. An immediate application of our formalism is the calculation of the one-loop gauge, Kahler, and reparametrization anomalies of chiral matter coupled to minimal supergravity from purely chiral loops. Our approach gives an anomaly whose covariant part is both manifestly supersymmetric and non-perturbative ...
3D gauged supergravity from SU(2) reduction of $N=1$ 6D supergravity
Gava, Edi; Narain, K S
2010-01-01
We obtain Yang-Mills $SU(2)\\times G$ gauged supergravity in three dimensions from $SU(2)$ group manifold reduction of (1,0) six dimensional supergravity coupled to an anti-symmetric tensor multiplet and gauge vector multiplets in the adjoint of $G$. The reduced theory is consistently truncated to $N=4$ 3D supergravity coupled to $4(1+\\textrm{dim}\\, G)$ bosonic and $4(1+\\textrm{dim}\\, G)$ fermionic propagating degrees of freedom. This is in contrast to the reduction in which there are also massive vector fields. The scalar manifold is $\\mathbf{R}\\times \\frac{SO(3,\\, \\textrm{dim}\\, G)}{SO(3)\\times SO(\\textrm{dim}\\, G)}$, and there is a $SU(2)\\times G$ gauge group. We then construct $N=4$ Chern-Simons $(SO(3)\\ltimes \\mathbf{R}^3)\\times (G\\ltimes \\mathbf{R}^{\\textrm{dim}G})$ three dimensional gauged supergravity with scalar manifold $\\frac{SO(4,\\,1+\\textrm{dim}G)}{SO(4)\\times SO(1+\\textrm{dim}G)}$ and explicitly show that this theory is on-shell equivalent to the Yang-Mills $SO(3)\\times G$ gauged supergravity the...
Deformations of gauged SO(8) supergravity and supergravity in eleven dimensions
de Wit, Bernard; Nicolai, Hermann
2013-05-01
Motivated by the fact that there exists a continuous one-parameter family of gauged SO(8) supergravities, possible eleven-dimensional origins of this phenomenon are explored. Taking the original proof of the consistency of the truncation of 11 D supergravity to SO(8) gauged supergravity as a starting point, a number of critical issues is discussed, such as the preferred electric-magnetic duality frame in four dimensions and the existence of dual magnetic gauge fields and related quantities in eleven dimensions. Some of those issues are resolved but others seem to point to obstructions in embedding the continuous degeneracy in 11 D supergravity. While the final outcome of these efforts remains as yet inconclusive, several new results are obtained. Among those is the full non-linear ansatz for the seven-dimensional flux expressed in terms of the scalars and pseudoscalars of 4 D supergravity, valid for both the S 7 and the T 7 truncations without resorting to tensor-scalar duality.
Inflationary attractor in Gauss-Bonnet brane cosmology
Meng, X H; Meng, Xin-He; Wang, Peng
2003-01-01
The inflationary attractor properties of the canonical scalar field and Born-Infeld field are investigated in the Randall-Sundrum II scenario with a Gauss-Bonnet term in the bulk action. We find that the inflationary attractor property will always hold for canonical scalar fields for any allowed non-negative Gauss-Bonnet coupling. However, for Born-Infeld field, the Gauss-Bonnet coupling will be highly constrained for the inflationary attractor property to hold. We also briefly discuss the possibility of explaining the suppressed lower multiples and running scalar spectral index simultaneously in the scenario of Gauss-Bonnet brane inflation.
The coupling of non-linear supersymmetry to supergravity
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, Ignatios [Sorbonne Universites, UPMC Paris 6, LPTHE, UMR CNRS 7589, Paris (France); University of Bern, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland); Markou, Chrysoula [Sorbonne Universites, UPMC Paris 6, LPTHE, UMR CNRS 7589, Paris (France)
2015-12-15
We study the coupling of non-linear supersymmetry to supergravity. The goldstino nilpotent superfield of global supersymmetry coupled to supergravity is described by a geometric action of the chiral curvature superfield R subject to the constraint (R - λ){sup 2} = 0 with an appropriate constant λ. This constraint can be found as the decoupling limit of the scalar partner of the goldstino in a class of f(R) supergravity theories. (orig.)
The coupling of non-linear supersymmetry to supergravity
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, Ignatios, E-mail: antoniad@lpthe.jussieu.fr [LPTHE, UMR CNRS 7589, Sorbonne Universités, UPMC Paris 6, 75005, Paris (France); Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlestrasse 5, 3012, Bern (Switzerland); Markou, Chrysoula, E-mail: chrysoula@lpthe.jussieu.fr [LPTHE, UMR CNRS 7589, Sorbonne Universités, UPMC Paris 6, 75005, Paris (France)
2015-12-09
We study the coupling of non-linear supersymmetry to supergravity. The goldstino nilpotent superfield of global supersymmetry coupled to supergravity is described by a geometric action of the chiral curvature superfield R subject to the constraint (R-λ){sup 2}=0 with an appropriate constant λ. This constraint can be found as the decoupling limit of the scalar partner of the goldstino in a class of f(R) supergravity theories.
BPS preons in M-theory and supergravity
Bandos, I A
2007-01-01
After introducing the notion of BPS preons as the basic constituents of M-theory, we discuss the recent negative results in the search for solutions of the D=10 and D=11 supergravity equations preserving 31/32 supersymmetries i.e., of preonic solutions. The absence of these supergravity preonic solutions may point out to a pure quantum nature of BPS preons, manifesting itself in the need of incorporating quantum (stringy/M-theoretic) corrections to the supergravity equations.
Rotating black holes in an expanding universe from fake supergravity
Chimento, Samuele
2014-01-01
Using the recipe of arXiv:0902.4814, where all fake supersymmetric backgrounds of matter-coupled fake N=2, d=4 gauged supergravity were classified, we construct dynamical rotating black holes in an expanding FLRW universe. This is done for two different prepotentials that are both truncations of the stu model and correspond to just one vector multiplet. In this scenario, the cosmic expansion is driven by two U(1) gauge fields and by a complex scalar that rolls down its potential. Generically, the solutions of arXiv:0902.4814 are fibrations over a Gauduchon-Tod base space, and we make three different choices for this base, namely flat space, the three-sphere and the Berger sphere. In the first two cases, the black holes are determined by harmonic functions on the base, while in the last case they obey a deformed Laplace equation that contains the squashing parameter of the Berger sphere. This is the generalization to a cosmological context of the usual recipe in ungauged supergravity, where black holes are giv...
Generalized Attractor Points in Gauged Supergravity
Energy Technology Data Exchange (ETDEWEB)
Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC; Kallosh, Renata; /Stanford U., Phys. Dept.; Shmakova, Marina; /KIPAC, Menlo Park /SLAC /Stanford U., Phys. Dept.
2011-08-15
The attractor mechanism governs the near-horizon geometry of extremal black holes in ungauged 4D N=2 supergravity theories and in Calabi-Yau compactifications of string theory. In this paper, we study a natural generalization of this mechanism to solutions of arbitrary 4D N=2 gauged supergravities. We define generalized attractor points as solutions of an ansatz which reduces the Einstein, gauge field, and scalar equations of motion to algebraic equations. The simplest generalized attractor geometries are characterized by non-vanishing constant anholonomy coefficients in an orthonormal frame. Basic examples include Lifshitz and Schroedinger solutions, as well as AdS and dS vacua. There is a generalized attractor potential whose critical points are the attractor points, and its extremization explains the algebraic nature of the equations governing both supersymmetric and non-supersymmetric attractors.
New Canonical Variables for d=11 Supergravity
Melosch, S; Melosch, Stephan; Nicolai, Hermann
1998-01-01
A set of new canonical variables for $d=11$ supergravity is proposed which renders the supersymmetry variations and the supersymmetry constraint polynomial. The construction is based on the $SO(1,2)\\times SO(16)$ invariant reformulation of $d=11$ supergravity given in previous work, and has some similarities with Ashtekar's reformulation of Einstein's theory. The new bosonic variables fuse the gravitational degrees of freedom with those of the three-index photon $A_{MNP}$ in accordance with the hidden symmetries of the dimensionally reduced theory. Although $E_8$ is not a symmetry of the theory, the bosonic sector exhibits a remarkable $E_8$ structure, hinting at the existence of a novel type of ``exceptional geometry''.
On the magical supergravities in six dimensions
Energy Technology Data Exchange (ETDEWEB)
Guenaydin, M., E-mail: murat@phys.psu.ed [Center for Fundamental Theory, Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park, PA 16802 (United States); Samtleben, H., E-mail: henning.samtleben@ens-lyon.f [Universite de Lyon, Laboratoire de Physique, UMR 5672, CNRS, Ecole Normale Superieure de Lyon, F-69364 Lyon cedex 07 (France); Institut Universitaire de France (France); Sezgin, E., E-mail: sezgin@tamu.ed [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843-4242 (United States)
2011-07-01
Magical supergravities are a very special class of supergravity theories whose symmetries and matter content in various dimensions correspond to symmetries and underlying algebraic structures of the remarkable geometries of the Magic Square of Freudenthal, Rozenfeld and Tits. These symmetry groups include the exceptional groups and some of their special subgroups. In this paper, we study the general gaugings of these theories in six dimensions which lead to new couplings between vector and tensor fields. We show that in the absence of hypermultiplet couplings the gauge group is uniquely determined by a maximal set of commuting translations within the isometry group SO(n{sub T},1) of the tensor multiplet sector. Moreover, we find that in general the gauge algebra allows for central charges that may have nontrivial action on the hypermultiplet scalars. We determine the new minimal couplings, Yukawa couplings and the scalar potential.
On the magical supergravities in six dimensions
Günaydin, M.; Samtleben, H.; Sezgin, E.
2011-07-01
Magical supergravities are a very special class of supergravity theories whose symmetries and matter content in various dimensions correspond to symmetries and underlying algebraic structures of the remarkable geometries of the Magic Square of Freudenthal, Rozenfeld and Tits. These symmetry groups include the exceptional groups and some of their special subgroups. In this paper, we study the general gaugings of these theories in six dimensions which lead to new couplings between vector and tensor fields. We show that in the absence of hypermultiplet couplings the gauge group is uniquely determined by a maximal set of commuting translations within the isometry group SO(n,1) of the tensor multiplet sector. Moreover, we find that in general the gauge algebra allows for central charges that may have nontrivial action on the hypermultiplet scalars. We determine the new minimal couplings, Yukawa couplings and the scalar potential.
High energy scattering in gravity and supergravity
DEFF Research Database (Denmark)
B. Giddings, Steven; Schmidt-Sommerfeld, Maximilian; Andersen, Jeppe Rosenkrantz
2010-01-01
We investigate features of perturbative gravity and supergravity by studying scattering in the ultraplanckian limit, and sharpen arguments that the dynamics is governed by long-distance physics. A simple example capturing aspects of the eikonal resummation suggests why short distance phenomena...... and in particular divergences or nonrenormalizability do not necessarily play a central role in this regime. A more profound problem is apparently unitarity. These considerations can be illustrated by showing that known gravity and supergravity amplitudes have the same long-distance behavior, despite the extra...... a physical scattering process, and ultraplanckian scattering exhibiting Regge behavior. These arguments sharpen the need to find a nonperturbative completion of gravity with mechanisms which restore unitarity in the strong gravity regime....
Massive = 2 supergravity in three dimensions
Alkaç, Gökhan; Basanisi, Luca; Bergshoeff, Eric A.; Ozkan, Mehmet; Sezgin, Ergin
2015-02-01
There exists two distinct off-shell = 2 supergravities in three dimensions. They are also referred to as = (1, 1) and = (2, 0) supergravities, and they arise from the coupling of the Weyl multiplet to a compensating scalar or vector multiplet, respectively, followed by fixing of conformal symmetries. The = ( p, q) terminology refers to the underlying anti-de Sitter superalgebras OSp(2, p) ⊕ OSp(2, q) with R-symmetry group SO( p) × SO( q). We construct off-shell invariants of these theories up to fourth order in derivatives. As an application of these results, we determine the special combinations of the = (1, 1) invariants that admit anti-de Sitter vacuum solution about which there is a ghost-free massive spin-2 multiplet of propagating modes. We also show that the =(2,0) invariants do not allow such possibility.
Scalar-induced compactifications in higher dimensional supergravities
Energy Technology Data Exchange (ETDEWEB)
Kehagias, Alex [Department of Physics, National Technical University of Athens, GR-15773 Zografou, Athens (Greece); Mattheopoulou, Constantina [Department of Physics, National Technical University of Athens, GR-15773 Zografou, Athens (Greece)
2005-08-01
We discuss compactifications of higher dimensional supergravities which are induced by scalars. In particular, we consider vector multiplets coupled to the supergravity multiplet in the case of D = 9,8 and D = 7 minimal supergravities. These vector multiplets contain scalars, which parametrize coset spaces of the general form SO(10-D,n)/SO(10-D) x SO(n), where n is the number of vector multiplets. We discuss the compactification of the supergravity theory to D-2 dimensons, which is induced by non-trivial vacuum scalar field configurations. There are singular and non-singular solutions, which preserve half of the supersymmetries.
Ultraviolet Behavior of N = 8 supergravity
Energy Technology Data Exchange (ETDEWEB)
Dixon, Lance J.; /SLAC
2010-06-07
In these lectures the author describes the remarkable ultraviolet behavior of N = 8 supergravity, which through four loops is no worse than that of N = 4 super-Yang-Mills theory (a finite theory). I also explain the computational tools that allow multi-loop amplitudes to be evaluated in this theory - the KLT relations and the unitarity method - and sketch how ultraviolet divergences are extracted from the amplitudes.
Is N = 8 Supergravity Ultraviolet Finite?
Bern, Z; Roiban, R; Bern, Zvi; Dixon, Lance J.; Roiban, Radu
2007-01-01
Conventional wisdom holds that no four-dimensional gravity field theory can be ultraviolet finite. This understanding is based mainly on power counting. Recent studies confirm that one-loop N = 8 supergravity amplitudes satisfy the so-called `no-triangle hypothesis', which states that triangle and bubble integrals cancel from these amplitudes. A consequence of this hypothesis is that for any number of external legs, at one loop N = 8 supergravity and N = 4 super-Yang-Mills have identical superficial degrees of ultraviolet behavior in D dimensions. We describe how the unitarity method allows us to promote these one-loop cancellations to higher loops, suggesting that previous power counts were too conservative. We discuss higher-loop evidence suggesting that N = 8 supergravity has the same degree of divergence as N = 4 super-Yang-Mills theory and is ultraviolet finite in four dimensions. We comment on calculations needed to reinforce this proposal, which are feasible using the unitarity method.
String Theory Origin of Dyonic N=8 Supergravity and Its Chern-Simons Duals.
Guarino, Adolfo; Jafferis, Daniel L; Varela, Oscar
2015-08-28
We clarify the higher-dimensional origin of a class of dyonic gaugings of D=4 N=8 supergravity recently discovered, when the gauge group is chosen to be ISO(7). This dyonically gauged maximal supergravity arises from consistent truncation of massive IIA supergravity on S^6, and its magnetic coupling constant descends directly from the Romans mass. The critical points of the supergravity uplift to new four-dimensional anti-de Sitter space (AdS4) massive type IIA vacua. We identify the corresponding three-dimensional conformal field theory (CFT3) duals as super-Chern-Simons-matter theories with simple gauge group SU(N) and level k given by the Romans mass. In particular, we find a critical point that uplifts to the first explicit N=2 AdS4 massive IIA background. We compute its free energy and that of the candidate dual Chern-Simons theory by localization to a solvable matrix model, and find perfect agreement. This provides the first AdS4/CFT3 precision match in massive type IIA string theory.
Non-Abelian black string solutions of N = (2,0) , d = 6 supergravity
Cano, Pablo A.; Ortín, Tomás; Santoli, Camilla
2016-12-01
We show that, when compactified on a circle, N = (2, 0), d = 6 supergravity coupled to 1 tensor multiplet and n V vector multiplets is dual to N = (2 , 0) , d = 6 supergravity coupled to just n T = n V + 1 tensor multiplets and no vector multiplets. Both theories reduce to the same models of N = 2 , d = 5 supergravity coupled to n V 5 = n V + 2 vector fields. We derive Buscher rules that relate solutions of these theories (and of the theory that one obtains by dualizing the 3-form field strength) admitting an isometry. Since the relations between the fields of N = 2 , d = 5 supergravity and those of the 6-dimensional theories are the same with or without gaugings, we construct supersymmetric non-Abelian solutions of the 6-dimensional gauged theories by uplifting the recently found 5-dimensional supersymmetric non-Abelian black-hole solutions. The solutions describe the usual superpositions of strings and waves supplemented by a BPST instanton in the transverse directions, similar to the gauge dyonic string of Duff, Lü and Pope. One of the solutions obtained interpolates smoothly between two AdS3× S3 geometries with different radii.
Non-Abelian black string solutions of N=(2,0),d=6 supergravity
Cano, Pablo A; Santoli, Camilla
2016-01-01
We show that, when compactified on a circle, N=(2,0),d=6 supergravity coupled to 1 tensor multiplet and nV vector multiplets is dual to N=(2,0),d=6 supergravity coupled to just nT=nV+1 tensor multiplets and no vector multiplets. Both theories reduce to the same models of N=2,d=5 supergravity coupled to nV5=nV+2 vector fields. We derive Buscher rules that relate solutions of these theories (and of the theory that one obtains by dualizing the 3-form field strength) admitting an isometry. Since the relations between the fields of N=2,d=5 supergravity and those of the 6-dimensional theories are the same with or without gaugings, we construct supersymmetric non-Abelian solutions of the 6-dimensional gauged theories by uplifting the recently found 5-dimensional supersymmetric non-Abelian black-hole solutions. The solutions describe the usual superpositions of strings and waves supplemented by a BPST instanton in the transverse directions. One of the solutions obtained interpolates smoothly between two AdS3xS3 geome...
Higgs vacuum stability and inflationary dynamics after BICEP2 and PLANCK dust polarisation data
Energy Technology Data Exchange (ETDEWEB)
Bhattacharya, Kaushik; Chakrabortty, Joydeep; Das, Suratna [Department of Physics, Indian Institute of Technology, Kanpur-208016 (India); Mondal, Tanmoy, E-mail: kaushikb@iitk.ac.in, E-mail: joydeep@iitk.ac.in, E-mail: suratna@iitk.ac.in, E-mail: tanmoym@prl.res.in [Theoretical Physics Division, Physical Research Laboratory, Ahmedabad-380009 (India)
2014-12-01
If the recent detection of B-mode polarization of the Cosmic Microwave Background by BICEP2 observations, withstand the test of time after the release of recent PLANCK dust polarisation data, then it would surprisingly put the inflationary scale near Grand Unification scale if one considers single-field inflationary models. On the other hand, Large Hadron Collider has observed the elusive Higgs particle whose presently observed mass can lead to electroweak vacuum instability at high scale (∼ O(10{sup 10}) GeV). In this article, we seek for a simple particle physics model which can simultaneously keep the vacuum of the theory stable and yield high-scale inflation successfully. To serve our purpose, we extend the Standard Model of particle physics with a U(1){sub B-L} gauged symmetry which spontaneously breaks down just above the inflationary scale. Such a scenario provides a constrained parameter space where both the issues of vacuum stability and high-scale inflation can be successfully accommodated. The threshold effect on the Higgs quartic coupling due to the presence of the heavy inflaton field plays an important role in keeping the electroweak vacuum stable. Furthermore, this scenario is also capable of reheating the universe at the end of inflation. Though the issues of Dark Matter and Dark Energy, which dominate the late-time evolution of our universe, cannot be addressed within this framework, this model successfully describes the early universe dynamics according to the Big Bang model.
Quantum creation and inflationary universes a critical appraisal
Coule, D H
2000-01-01
We contrast the possibility of inflation starting a) from the universe's inception or b) from an earlier non-inflationary state. Neither case is ideal since a) assumes quantum mechanical reasoning is straightforwardly applicable to the early universe; while case b) requires that a singularity still be present. Further, in agreement with Vachaspati and Trodden [1] case b) can only solve the horizon problem if the non-inflationary phase has equation of state $\\gamma<4/3$.
Probing bilinear R-parity violating supergravity at the LHC
De Campos, F; Magro, M B; Porod, Werner; Restrepo, D; Hirsch, M; Valle, J W F
2008-01-01
We study the collider phenomenology of bilinear R-parity violating supergravity, the simplest effective model for supersymmetric neutrino masses accounting for the current neutrino oscillation data. At the CERN Large Hadron Collider the center-of-mass energy will be high enough to probe directly these models through the search for the superpartners of the Standard Model particles. We analyze the impact of R-parity violation on the canonical supersymmetry searches - that is, we examine how the decay of the lightest supersymmetric particle (LSP) via bilinear R-parity violating interactions degrades the average expected missing momentum of the reactions and show how this diminishes the reach in the 'usual' channels for supersymmetry searches. However, the R-parity violating interactions lead to an enhancement of the final states containing isolated same-sign di-leptons and trileptons, compensating the reach loss in the fully inclusive channel. Moreover we show how the searches for displaced vertices associated t...
Energy Technology Data Exchange (ETDEWEB)
Saririan, Kamran [Univ. of California, Berkeley, CA (United States)
1997-05-01
In this thesis, the author presents some works in the direction of studying quantum effects in locally supersymmetric effective field theories that appear in the low energy limit of superstring theory. After reviewing the Kaehler covariant formulation of supergravity, he shows the calculation of the divergent one-loop contribution to the effective boson Lagrangian for supergravity, including the Yang-Mills sector and the helicity-odd operators that arise from integration over fermion fields. The only restriction is on the Yang-Mills kinetic energy normalization function, which is taken diagonal in gauge indices, as in models obtained from superstrings. He then presents the full result for the divergent one-loop contribution to the effective boson Lagrangian for supergravity coupled to chiral and Yang-Mills supermultiplets. He also considers the specific case of dilaton couplings in effective supergravity Lagrangians from superstrings, for which the one-loop result is considerably simplified. He studies gaugino condensation in the presence of an intermediate mass scale in the hidden sector. S-duality is imposed as an approximate symmetry of the effective supergravity theory. Furthermore, the author includes in the Kaehler potential the renormalization of the gauge coupling and the one-loop threshold corrections at the intermediate scale. It is shown that confinement is indeed achieved. Furthermore, a new running behavior of the dilaton arises which he attributes to S-duality. He also discusses the effects of the intermediate scale, and possible phenomenological implications of this model.
Taming the Runaway Problem of Inflationary Landscapes
Energy Technology Data Exchange (ETDEWEB)
Hall, Lawrence J.; Watari, Taizan; Yanagida, T. T.
2006-03-15
A wide variety of vacua, and their cosmological realization, may provide an explanation for the apparently anthropic choices of some parameters of particle physics and cosmology. If the probability on various parameters is weighted by volume, a flat potential for slow-roll inflation is also naturally understood, since the flatter the potential the larger the volume of the sub-universe. However, such inflationary landscapes have a serious problem, predicting an environment that makes it exponentially hard for observers to exist and giving an exponentially small probability for a moderate universe like ours. A general solution to this problem is proposed, and is illustrated in the context of inflaton decay and leptogenesis, leading to an upper bound on the reheating temperature in our sub-universe. In a particular scenario of chaotic inflation and non-thermal leptogenesis, predictions can be made for the size of CP violating phases, the rate of neutrinoless double beta decay and, in the case of theories with gauge-mediated weak scale supersymmetry, for the fundamental scale of supersymmetry breaking.
Inflationary power spectra with quantum holonomy corrections
Energy Technology Data Exchange (ETDEWEB)
Mielczarek, Jakub, E-mail: jakub.mielczarek@uj.edu.pl [Institute of Physics, Jagiellonian University, Reymonta 4, Cracow, 30-059 Poland (Poland)
2014-03-01
In this paper we study slow-roll inflation with holonomy corrections from loop quantum cosmology. It was previously shown that, in the Planck epoch, these corrections lead to such effects as singularity avoidance, metric signature change and a state of silence. Here, we consider holonomy corrections affecting the phase of cosmic inflation, which takes place away from the Planck epoch. Both tensor and scalar power spectra of primordial inflationary perturbations are computed up to the first order in slow-roll parameters and V/ρ{sub c}, where V is a potential of the scalar field and ρ{sub c} is a critical energy density (expected to be of the order of the Planck energy density). Possible normalizations of modes at short scales are discussed. In case the normalization is performed with use of the Wronskian condition applied to adiabatic vacuum, the tensor and scalar spectral indices are not quantum corrected in the leading order. However, by choosing an alternative method of normalization one can obtain quantum corrections in the leading order. Furthermore, we show that the holonomy-corrected equations of motion for tensor and scalar modes can be derived based on effective background metrics. This allows us to show that the classical Wronskian normalization condition is well defined for the cosmological perturbations with holonomy corrections.
Uniformity of CMB as a non-inflationary geometrical effect
Vlahovic, Branislav; Ilie, Cosmin; Eingorn, Maxim
2014-03-01
The conventional LambdaCDM cosmological model supplemented by the inflation concept explains the Universe evolution well. However, there are still a few concerns: New Planck data impose a non-trivial constraint on the shape of the inflation potential, which excludes many inflationary models; the dark matter is not detected directly; and the dark energy is not described theoretically on a satisfactory level. Within the FLRW formalism we consider a model of the closed Universe (with the spherical spatial topology), filled with the additional perfect fluid with the constant parameter -1/3 in the linear equation of state (which may be called quintessence). We compare this model with the standard LambdaCDM and answer the following question: can this additional fluid lead to light traveling between the antipodal points during the current age of the Universe? This possibility could strongly affect the inflation scenario which may completely lose its necessity. This work is supported by NSF CREST (HRD-0833184) and NASA (NNX09AV07A).
Ambitwistor pure spinor string in a type II supergravity background
Energy Technology Data Exchange (ETDEWEB)
Chandia, Osvaldo [Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez,Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,Diagonal Las Torres 2640, Peñalolén, Santiago (Chile); Vallilo, Brenno Carlini [Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andres Bello,República 220, Santiago (Chile)
2015-06-30
We construct the ambitwistor pure spinor string in a general type II supergravity background in the semi-classical regime. Almost all supergravity constraints are obtained from nilpotency of the BRST charge and further consistency conditions from additional world-sheet the case of AdS{sub 5}×S{sup 5} background.
Compactifications of IIA supergravity on SU(2)-structure manifolds
Energy Technology Data Exchange (ETDEWEB)
Spanjaard, B.
2008-07-15
In this thesis, we study compactifications of type IIA supergravity on six-dimensional manifolds with an SU(2)-structure. A general study of six-dimensional manifolds with SU(2)-structure shows that IIA supergravity compactified on such a manifold should yield a four-dimensional gauged N=4 supergravity. We explicitly derive the bosonic spectrum, gauge transformations and action for IIA supergravity compactified on two different manifolds with SU(2)-structure, one of which also has an H{sup (3)}{sub 10}-flux, and confirm that the resulting four-dimensional theories are indeed N=4 gauged supergravities. In the second chapter, we study an explicit construction of a set of SU(2)-structure manifolds. This construction involves a Scherk-Schwarz duality twist reduction of the half-maximal six-dimensional supergravity obtained by compactifying IIA supergravity on a K3. This reduction results in a gauged N=4 four-dimensional supergravity, where the gaugings can be divided into three classes of parameters. We relate two of the classes to parameters we found before, and argue that the third class of parameters could be interpreted as a mirror flux. (orig.)
Attractor horizons in six-dimensional type IIB supergravity
Energy Technology Data Exchange (ETDEWEB)
Astefanesei, Dumitru, E-mail: dumitru.astefanesei@ucv.cl [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Miskovic, Olivera, E-mail: olivera.miskovic@ucv.cl [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Olea, Rodrigo, E-mail: rodrigo.olea@unab.cl [Universidad Andres Bello, Departamento de Ciencias Fisicas, Republica 220, Santiago (Chile)
2012-08-14
We consider near horizon geometries of extremal black holes in six-dimensional type IIB supergravity. In particular, we use the entropy function formalism to compute the charges and thermodynamic entropy of these solutions. We also comment on the role of attractor mechanism in understanding the entropy of the Hopf T-dual solutions in type IIA supergravity.
Off-shell D=5, N=2 Riemann squared supergravity
Bergshoeff, Eric A.; Rosseel, Jan; Sezgin, Ergin
2011-01-01
We construct a new off-shell invariant in N = 2, D = 5 supergravity whose leading term is the square of the Riemann tensor. It contains a gravitational Chern-Simons term involving the vector field that belongs to the supergravity multiplet. The action is obtained by mapping the transformation rules