WorldWideScience

Sample records for supergiant star betelgeuse

  1. Sharpest views of Betelgeuse reveal how supergiant stars lose mass-Unveiling the true face of a behemoth

    Science.gov (United States)

    2009-07-01

    Using different state-of-the-art techniques on ESO's Very Large Telescope, two independent teams of astronomers have obtained the sharpest ever views of the supergiant star Betelgeuse. They show that the star has a vast plume of gas almost as large as our Solar System and a gigantic bubble boiling on its surface. These discoveries provide important clues to help explain how these mammoths shed material at such a tremendous rate. Betelgeuse - the second brightest star in the constellation of Orion (the Hunter) - is a red supergiant, one of the biggest stars known, and almost 1000 times larger than our Sun [1]. It is also one of the most luminous stars known, emitting more light than 100000 Suns. Such extreme properties foretell the demise of a short-lived stellar king. With an age of only a few million years, Betelgeuse is already nearing the end of its life and is soon doomed to explode as a supernova. When it does, the supernova should be seen easily from Earth, even in broad daylight. Red supergiants still hold several unsolved mysteries. One of them is just how these behemoths shed such tremendous quantities of material - about the mass of the Sun - in only 10 000 years. Two teams of astronomers have used ESO's Very Large Telescope (VLT) and the most advanced technologies to take a closer look at the gigantic star. Their combined work suggests that an answer to the long-open mass-loss question may well be at hand. The first team used the adaptive optics instrument, NACO, combined with a so-called "lucky imaging" technique, to obtain the sharpest ever image of Betelgeuse, even with Earth's turbulent, image-distorting atmosphere in the way. With lucky imaging, only the very sharpest exposures are chosen and then combined to form an image much sharper than a single, longer exposure would be. The resulting NACO images almost reach the theoretical limit of sharpness attainable for an 8-metre telescope. The resolution is as fine as 37 milliarcseconds, which is roughly

  2. Long-term spectropolarimetric monitoring of the cool supergiant Betelgeuse

    CERN Document Server

    Bedecarrax, I; Aurière, M; Grunhut, J; Wade, G; Chiavassa, A; Donati, J -F; Konstantinova-Antova, R; Perrin, G

    2013-01-01

    We report on a long-term monitoring of the cool supergiant Betelgeuse, using the NARVAL and ESPaDOnS high-resolution spectropolarimeters, respectively installed at Telescope Bernard Lyot (Pic du Midi Observatory, France) and at the Canada-France-Hawaii Telescope (Mauna Kea Observatory, Hawaii). The data set, constituted of circularly polarized (Stokes V) and intensity (Stokes I) spectra, was collected between 2010 and 2012. We investigate here the temporal evolution of magnetic field, convection and temperature at photospheric level, using simultaneous measurements of the longitudinal magnetic field component, the core emission of the Ca II infrared triplet, the line-depth ratio of selected photospheric lines and the radial velocity of the star.

  3. DOUBLE BOW SHOCKS AROUND YOUNG, RUNAWAY RED SUPERGIANTS: APPLICATION TO BETELGEUSE

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, Jonathan; Mohamed, Shazrene; Neilson, Hilding R.; Langer, Norbert; Meyer, Dominique M.-A., E-mail: jmackey@astro.uni-bonn.de [Argelander-Institut fuer Astronomie, Auf dem Huegel 71, D-53121 Bonn (Germany)

    2012-05-20

    A significant fraction of massive stars are moving supersonically through the interstellar medium (ISM), either due to disruption of a binary system or ejection from their parent star cluster. The interaction of their wind with the ISM produces a bow shock. In late evolutionary stages these stars may undergo rapid transitions from red to blue and vice versa on the Hertzsprung-Russell diagram, with accompanying rapid changes to their stellar winds and bow shocks. Recent three-dimensional simulations of the bow shock produced by the nearby runaway red supergiant (RSG) Betelgeuse, under the assumption of a constant wind, indicate that the bow shock is very young (<30, 000 years old), hence Betelgeuse may have only recently become an RSG. To test this possibility, we have calculated stellar evolution models for single stars which match the observed properties of Betelgeuse in the RSG phase. The resulting evolving stellar wind is incorporated into two-dimensional hydrodynamic simulations in which we model a runaway blue supergiant (BSG) as it undergoes the transition to an RSG near the end of its life. We find that the collapsing BSG wind bubble induces a bow shock-shaped inner shell around the RSG wind that resembles Betelgeuse's bow shock, and has a similar mass. Surrounding this is the larger-scale retreating bow shock generated by the now defunct BSG wind's interaction with the ISM. We suggest that this outer shell could explain the bar feature located (at least in projection) just in front of Betelgeuse's bow shock.

  4. Double bow shocks around young, runaway red supergiants: application to Betelgeuse

    CERN Document Server

    Mackey, Jonathan; Neilson, Hilding R; Langer, Norbert; Meyer, Dominique M -A

    2012-01-01

    A significant fraction of massive stars are moving supersonically through the interstellar medium (ISM), either due to disruption of a binary system or ejection from their parent star cluster. The interaction of their wind with the ISM produces a bow shock. In late evolutionary stages these stars may undergo rapid transitions from red to blue and vice versa on the Hertzsprung-Russell diagram, with accompanying rapid changes to their stellar winds and bow shocks. Recent 3D simulations of the bow shock produced by the nearby runaway red supergiant (RSG) Betelgeuse, under the assumption of a constant wind, indicate that the bow shock is very young (<30000 years old), hence Betelgeuse may have only recently become a RSG. To test this possibility, we have calculated stellar evolution models for single stars which match the observed properties of Betelgeuse in the RSG phase. The resulting evolving stellar wind is incorporated into 2D hydrodynamic simulations in which we model a runaway blue supergiant (BSG) as i...

  5. The past and future evolution of a star like Betelgeuse

    CERN Document Server

    Meynet, Georges; Ekstrom, Sylvia; Georgy, Cyril; Groh, Jose; Maeder, Andre

    2013-01-01

    We discuss the physics and the evolution of a typical massive star passing through an evolutionary stage similar to that of Betelgeuse. After a brief introduction recalling various observed parameters of Betelgeuse, we discuss the Pre-Main-Sequence phase (PMS), the Main-Sequence (MS) phase, the physics governing the duration of the first crossing of the HR diagram, the red supergiant stage (RSG), the post-red supergiant phases and the final fate of solar metallicity stars with masses between 9 and 25 M$_\\odot$. We examine the impact of different initial rotation and of various prescriptions for the mass loss rates during the red supergiant phase. We show that, whatever the initial rotation rate (chosen between 0 and 0.7$\\times\\upsilon_{\\rm crit}$, $\\upsilon_{\\rm crit}$ being the surface equatorial velocity producing a centrifugal acceleration balancing exactly the gravity) and the mass loss rates during the RSG stage (varied between a standard value and 25 times that value), a 15 M$_\\odot$ star always ends it...

  6. Photometry of the Variable Bright Red Supergiant Betelgeuse from the Ground and from Space with the BRITE Nano-satellites

    Science.gov (United States)

    Minor, Robert; Guinan, Edward F.

    2016-01-01

    Robert B. Minor, Edward Guinan, Richard Wasatonic Betelgeuse (Alpha Orionis) is a large, luminous semi-regular red supergiant of spectral class M1.5-2Iab. It is the 8th brightest star in the night sky. Betelgeuse is 30,000 times more luminous than the Sun and 700 times larger. It has an estimated age of ~8 +/- 2 Myr. Betelgeuse explode in a Type II supernova (anytime within the next million years). When it explodes, it will shine with about the intensity of a full moon and may be visible during the day. However, it is too far away to cause any major damage to Earth. Photometry of this pre-supernova star has been ongoing at Villanova for nearly 45 years. These observations are being used to define the complex brightness variations of this star. Semi-regular periodic light variations have been found with periods of 385 days up to many years. These light variations are used to study its unstable atmosphere and resulting complex pulsations. Over the last 15 years, it has been observed by Wasatonic who has accumulated a large photometric database. The ground-based observations are limited to precisions of 1.5%, and due to poor weather, limit observations to about 1-2 times per week. However, with the recent successful launch of the BRITE Nano-satellites (http://www.brite-constellation.at) during 2013-14, it is possible to secure high precision photometry of bright stars, including Betelgeuse, continuously for up to 3 months. Villanova has participated in the BRITE guest investigators program and has been awarded observing time and data rights many bright stars, including Betelgeuse. BRITE blue and red observations of Betelgeuse were carried out during the Nov-Feb 2013-14 season and the 2014-15. These datasets were given to Villanova and have been combined with coexistent photometry from Wasatonic. Although BRITE's red data is saturated, the blue data is useable. The BRITE datasets were combined with our ground-based V, red, and near-IR photometry. Problems were

  7. Mass loss from giant and supergiant stars

    Science.gov (United States)

    Wannier, P. G.; Sahai, R.

    1986-01-01

    The 12 m telescope of the National Radio Astronomy Observatory has been used at the J = 2-1 transition of CO to increase the known list of giant and supergiant stars with observable circumstellar envelopes. The candidate objects were generally M-type giants and supergiants, chosen for their strong infrared luminosities. Of the 35 objects which were previously undetected, or only marginally detected, 10 were found to produce detectable CO emission. Physical parameters of the envelopes are derived by source modeling. Mass-loss rates vary from 10 to the -7th to 4 x 10 to the -5th solar mass/yr.

  8. Numerical models for the circumstellar medium around Betelgeuse

    CERN Document Server

    Mackey, Jonathan; Neilson, Hilding R; Langer, Norbert; Meyer, Dominique M -A

    2013-01-01

    The nearby red supergiant (RSG) Betelgeuse has a complex circumstellar medium out to at least 0.5 parsecs from its surface, shaped by its mass-loss history within the past 0.1 Myr, its environment, and its motion through the interstellar medium (ISM). In principle its mass-loss history can be constrained by comparing hydrodynamic models with observations. Observations and numerical simulations indicate that Betelgeuse has a very young bow shock, hence the star may have only recently become a RSG. To test this possibility we calculated a stellar evolution model for a single star with properties consistent with Betelgeuse. We incorporated the resulting evolving stellar wind into 2D hydrodynamic simulations to model a runaway blue supergiant (BSG) undergoing the transition to a RSG near the end of its life. The collapsing BSG wind bubble induces a bow shock-shaped inner shell which at least superficially resembles Betelgeuse's bow shock, and has a similar mass. Surrounding this is the larger-scale retreating bow...

  9. Discovery of a complex linearly polarized spectrum of Betelgeuse dominated by depolarization of the continuum

    CERN Document Server

    Aurière, M; Ariste, López; Mathias, P; Lèbre, A; Josselin, E; Montargès, M; Petit, P; Chiavassa, A; Paletou, F; Fabas, N; Konstantinova-Antova, R; Donati, J -F; Grunhut, J H; Wade, G A; Herpin, F; Kervella, P; Perrin, G; Tessore, B

    2016-01-01

    Betelgeuse is an M supergiant that harbors spots and giant granules at its surface and presents linear polarization of its continuum. We have previously discovered linear polarization signatures associated with individual lines in the spectra of cool and evolved stars. Here, we investigate whether a similar linearly polarized spectrum exists for Betelgeuse. We used the spectropolarimeter Narval, combining multiple polarimetric sequences to obtain high signal-to-noise ratio spectra of individual lines, as well as the least-squares deconvolution (LSD) approach. We have discovered the existence of a linearly polarized spectrum for Betelgeuse, detecting a rather strong signal (at a few times 10$^{-4}$ of the continuum intensity level), both in individual lines and in the LSD profiles. Studying its properties and the signal observed for the resonant \\ion{Na}{i}\\,D lines, we conclude that we are mainly observing depolarization of the continuum by the absorption lines. The linear polarization of the Betelgeuse conti...

  10. The Betelgeuse Project: constraints from rotation

    Science.gov (United States)

    Wheeler, J. Craig; Nance, S.; Diaz, M.; Smith, S. G.; Hickey, J.; Zhou, L.; Koutoulaki, M.; Sullivan, J. M.; Fowler, J. M.

    2017-03-01

    In order to constrain the evolutionary state of the red supergiant Betelgeuse (α Orionis), we have produced a suite of models with zero-age main sequence masses from 15 to 25 M⊙ in intervals of 1 M⊙ including the effects of rotation. The models were computed with the stellar evolutionary code MESA. For non-rotating models, we find results that are similar to other work. It is somewhat difficult to find models that agree within 1σ of the observed values of R, Teff and L, but modestly easy within 3σ uncertainty. Incorporating the nominal observed rotational velocity, ∼15 km s-1, yields significantly different and challenging constraints. This velocity constraint is only matched when the models first approach the base of the red supergiant branch (RSB), having crossed the Hertzsprung gap, but not yet having ascended the RSB and most violate even generous error bars on R, Teff and L. Models at the tip of the RSB typically rotate at only ∼0.1 km s-1, independent of any reasonable choice of initial rotation. We discuss the possible uncertainties in our modelling and the observations, including the distance to Betelgeuse, the rotation velocity and model parameters. We summarize various options to account for the rotational velocity and suggest that one possibility is that Betelgeuse merged with a companion star of about 1 M⊙ as it ascended the RSB, in the process producing the ring structure observed at about 7 arcmin away. A past coalescence would complicate attempts to understand the evolutionary history and future of Betelgeuse.

  11. The Betelgeuse Project: Constraints from Rotation

    Science.gov (United States)

    Diaz, Manuel; Nance, Sarafina; Sullivan, James; Wheeler, J. Craig

    2017-01-01

    In order to constrain the evolutionary state of the red supergiant Betelgeuse, we have produced a suite of models with ZAMS masses from 15 to 25 Msun in intervals of 1 Msun including the effects of rotation computed with the stellar evolutionary code MESA. For non--rotating models we find results that are similar to other work. It is somewhat difficult to find models that agree within 1 σ of the observed values of R, Teff and L, but modestly easy within 3 σ uncertainty. Incorporating the nominal observed rotational velocity, ~15 km/s, yields significantly different, and challenging, constraints. This velocity constraint is only matched when the models first approach the base of the red supergiant branch (RSB), having crossed the Hertzsprung gap, but not yet having ascended the RSB and most violate even generous error bars on R, Teff and L. Models at the tip of the RSB typically rotate at only ~0.1 km/s, independent of any reasonable choice of initial rotation. We discuss the possible uncertainties in our modeling and the observations, including the distance to Betelgeuse, the rotation velocity, and model parameters. We summarize various options to account for the rotational velocity and suggest that one possibility is that Betelgeuse merged with a companion star of about 1 Msun as it ascended the RSB, in the process producing the ring structure observed at about 7' away. A past coalescence would complicate attempts to understand the evolutionary history and future of Betelgeuse. To that end, we also present asteroseismology models with acoustic waves driven by inner convective regions that could elucidate the inner structure and evolutionary state.

  12. Interferometric observations of the supergiant stars alpha Orionis and alpha Herculis with FLUOR at IOTA

    CERN Document Server

    Perrin, G; Foresto, V C; Mennesson, B; Traub, W A; Lacasse, M G

    2004-01-01

    We report the observations in the K band of the red supergiant star alpha Orionis and of the bright giant star alpha Herculis with the FLUOR beamcombiner at the IOTA interferometer. The high quality of the data allows us to estimate limb-darkening and derive precise diameters in the K band which combined with bolometric fluxes yield effective temperatures. In the case of Betelgeuse, data collected at high spatial frequency although sparse are compatible with circular symmetry and there is no clear evidence for departure from circular symmetry. We have combined the K band data with interferometric measurements in the L band and at 11.15 micron. The full set of data can be explained if a 2055 K layer with optical depths $\\tau_{K}=0.060\\pm0.003$, $\\tau_{L}=0.026\\pm0.002$ and $\\tau_{11.15\\mu m}=2.33\\pm0.23$ is added 0.33 $R_{\\star}$ above the photosphere providing a first consistent view of the star in this range of wavelengths. This layer provides a consistent explanation for at least three otherwise puzzling ob...

  13. A magnetic betelgeuse? Numerical simulations of non-linear dynamo action

    DEFF Research Database (Denmark)

    Dorch, S. B. F.

    2004-01-01

    Betelgeuse is an example of a cool super-giant displaying brightness fluctuations and irregular surface structures. Simulations by Freytag et al. (2002) of the convective envelope of the star have shown that the fluctuations in the star's luminosity may be caused by giant cell convection. A related...... question regarding the nature of Betelgeuse and supergiants in general is whether these stars may be magnetically active. If so, that may in turn also contribute to their variability. By performing detailed numerical simulations, I find that both linear kinematic and non-linear dynamo action are possible...... and that the non-linear magnetic field saturates at a value somewhat below equipartition: in the linear regime there are two modes of dynamo action....

  14. Vigorous atmospheric motion in the red supergiant star Antares

    Science.gov (United States)

    Ohnaka, K.; Weigelt, G.; Hofmann, K.-H.

    2017-08-01

    Red supergiant stars represent a late stage of the evolution of stars more massive than about nine solar masses, in which they develop complex, multi-component atmospheres. Bright spots have been detected in the atmosphere of red supergiants using interferometric imaging. Above the photosphere of a red supergiant, the molecular outer atmosphere extends up to about two stellar radii. Furthermore, the hot chromosphere (5,000 to 8,000 kelvin) and cool gas (less than 3,500 kelvin) of a red supergiant coexist at about three stellar radii. The dynamics of such complex atmospheres has been probed by ultraviolet and optical spectroscopy. The most direct approach, however, is to measure the velocity of gas at each position over the image of stars as in observations of the Sun. Here we report the mapping of the velocity field over the surface and atmosphere of the nearby red supergiant Antares. The two-dimensional velocity field map obtained from our near-infrared spectro-interferometric imaging reveals vigorous upwelling and downdrafting motions of several huge gas clumps at velocities ranging from about -20 to +20 kilometres per second in the atmosphere, which extends out to about 1.7 stellar radii. Convection alone cannot explain the observed turbulent motions and atmospheric extension, suggesting that an unidentified process is operating in the extended atmosphere.

  15. A magnetic betelgeuse? Numerical simulations of non-linear dynamo action

    DEFF Research Database (Denmark)

    Dorch, S. B. F.

    2004-01-01

    question regarding the nature of Betelgeuse and supergiants in general is whether these stars may be magnetically active. If so, that may in turn also contribute to their variability. By performing detailed numerical simulations, I find that both linear kinematic and non-linear dynamo action are possible...... and that the non-linear magnetic field saturates at a value somewhat below equipartition: in the linear regime there are two modes of dynamo action....

  16. Dust-forming molecules in VY Canis Majoris (and Betelgeuse)

    CERN Document Server

    Kaminski, T; Schmidt, M R; Patel, N A; Young, K H; Menten, K M; Brunken, S; Muller, H S P; Winters, J M; McCarthy, M C

    2013-01-01

    The formation of inorganic dust in circumstellar environments of evolved stars is poorly understood. Spectra of molecules thought to be most important for the nucleation, i.e. AlO, TiO, and TiO2, have been recently detected in the red supergiant VY CMa. These molecules are effectively formed in VY CMa and the observations suggest that non-equilibrium chemistry must be involved in their formation and nucleation into dust. In addition to exploring the recent observations of VY CMa, we briefly discuss the possibility of detecting these molecules in the dust-poor circumstellar environment of Betelgeuse.

  17. Mass Losing Asymptotic Giant Branch Stars and Supergiants

    CERN Document Server

    Whitelock, Patricia A; Höfner, Susanne; Wittkowski, Markus; Zijlstra, Albert A

    2016-01-01

    This paper presents a summary of four invited and twelve contributed presentations on asymptotic giant branch stars and red supergiants, given over the course of two afternoon splinter sessions at the 19th Cool Stars Workshop. It highlights both recent observations and recent theory, with some emphasis on high spatial resolution, over a wide range of wavelengths. Topics covered include 3D models, convection, binary interactions, mass loss, dust formation and magnetic fields.

  18. Blue supergiants as descendants of magnetic main sequence stars

    Science.gov (United States)

    Petermann, I.; Langer, N.; Castro, N.; Fossati, L.

    2015-12-01

    About 10% of the massive main sequence stars have recently been found to host a strong, large scale magnetic field. Both, the origin and the evolutionary consequences of these fields are largely unknown. We argue that these fields may be sufficiently strong in the deep interior of the stars to suppress convection near the outer edge of their convective core. We performed parametrised stellar evolution calculations and assumed a reduced size of the convective core for stars in the mass range 16M⊙ to 28M⊙ from the zero age main sequence until core carbon depletion. We find that such models avoid the coolest part of the main sequence band, which is usually filled by evolutionary models that include convective core overshooting. Furthermore, our "magnetic" models populate the blue supergiant region during core helium burning, i.e., the post-main sequence gap left by ordinary single star models, and some of them end their life in a position near that of the progenitor of Supernova 1987A in the Hertzsprung-Russell diagram. Further effects include a strongly reduced luminosity during the red supergiant stage, and downward shift of the limiting initial mass for white dwarf and neutron star formation.

  19. The chemistry of dust formation in red supergiants

    CERN Document Server

    Cherchneff, Isabelle

    2013-01-01

    Massive stars in their late stages of evolution as Red Supergiants experience mass loss. The resulting winds show various degrees of dynamical and chemical complexity and produce molecules and dust grains. This review summarises our knowledge of the molecular and dust components of the wind of Red Supergiants, including VY CMa and Betelgeuse. We discuss the synthesis of dust as a non-equilibrium process in stellar winds, and present the current knowledge of the chemistry involved in the formation of oxygen-rich dust such as silicates and metal oxides.

  20. The dust condensation sequence in red super-giant stars

    CERN Document Server

    Verhoelst, T; Hony, S; Decin, L; Cami, J; Eriksson, K

    2009-01-01

    Context: Red super-giant (RSG) stars exhibit significant mass loss through a slow and dense wind. They are often considered to be the more massive counter parts of Asymptotic Giant Branch (AGB) stars. While the AGB mass loss is linked to their strong pulsations, the RSG are often only weakly variable. Aim: To study the conditions at the base of the wind, by determining the dust composition in a sample of RSG. The dust composition is thought to be sensitive to the density, temperature and acceleration at the base of the wind. Method: We compile a sample of 27 RSG infrared spectra (ISO-SWS) and supplement these with photometric measurements to obtain the full spectral energy distribution (SED). These data are modelled using a dust radiative transfer code. The results are scrutinised for correlations. Results: We find (1) strong correlations between dust composition, mass-loss rate and stellar luminosity, roughly in agreement with the theoretical dust condensation sequence, (2) the need for a continuous (near-)I...

  1. Discovery of a complex linearly polarized spectrum of Betelgeuse dominated by depolarization of the continuum

    Science.gov (United States)

    Aurière, M.; López Ariste, A.; Mathias, P.; Lèbre, A.; Josselin, E.; Montargès, M.; Petit, P.; Chiavassa, A.; Paletou, F.; Fabas, N.; Konstantinova-Antova, R.; Donati, J.-F.; Grunhut, J. H.; Wade, G. A.; Herpin, F.; Kervella, P.; Perrin, G.; Tessore, B.

    2016-06-01

    Context. Betelgeuse is an M supergiant that harbors spots and giant granules at its surface and presents linear polarization of its continuum. Aims: We have previously discovered linear polarization signatures associated with individual lines in the spectra of cool and evolved stars. Here, we investigate whether a similar linearly polarized spectrum exists for Betelgeuse. Methods: We used the spectropolarimeter Narval, combining multiple polarimetric sequences to obtain high signal-to-noise ratio spectra of individual lines, as well as the least-squares deconvolution (LSD) approach, to investigate the presence of an averaged linearly polarized profile for the photospheric lines. Results: We have discovered the existence of a linearly polarized spectrum for Betelgeuse, detecting a rather strong signal (at a few times 10-4 of the continuum intensity level), both in individual lines and in the LSD profiles. Studying its properties and the signal observed for the resonant Na i D lines, we conclude that we are mainly observing depolarization of the continuum by the absorption lines. The linear polarization of the Betelgeuse continuum is due to the anisotropy of the radiation field induced by brightness spots at the surface and Rayleigh scattering in the atmosphere. We have developed a geometrical model to interpret the observed polarization, from which we infer the presence of two brightness spots and their positions on the surface of Betelgeuse. We show that applying the model to each velocity bin along the Stokes Q and U profiles allows the derivation of a map of the bright spots. We use the Narval linear polarization observations of Betelgeuse obtained over a period of 1.4 yr to study the evolution of the spots and of the atmosphere. Conclusions: Our study of the linearly polarized spectrum of Betelgeuse provides a novel method for studying the evolution of brightness spots at its surface and complements quasi-simultaneous observations obtained with PIONIER at the

  2. Explosion of red-supergiant stars: Influence of the atmospheric structure on shock breakout and early-time supernova radiation

    Science.gov (United States)

    Dessart, Luc; John Hillier, D.; Audit, Edouard

    2017-09-01

    Early-time observations of Type II supernovae (SNe) 2013cu and 2013fs have revealed an interaction of ejecta with material near the star surface. Unlike Type IIn SN 2010jl, which interacts with a dense wind for 1 yr, the interaction ebbs after 2-3 d, suggesting a dense and compact circumstellar envelope. Here, we use multi-group radiation hydrodynamics and non-local-thermodynamic-equilibrium radiative transfer to explore the properties of red-supergiant (RSG) star explosions embedded in a variety of dense envelopes. We consider the cases of an extended static atmosphere or a steady-state wind, adopting a range of mass loss rates. The shock breakout signal, luminosity and color evolution up to 10 d, and ejecta dynamics are strongly influenced by the properties of this nearby environment. This compromises the use of early-time observations to constrain R⋆. For dense circumstellar envelopes, the time-integrated luminosity over the first 10-15 d can be boosted by a factor of a few. The presence of narrow lines for 2-3 d in 2013fs and 2013cu require a cocoon of material of 0.01 M⊙ out to 5-10 R⋆. Spectral lines evolve from electron scattering to Doppler broadened with a growing blueshift of their emission peaks. Recent studies propose a super-wind phase with a mass loss rate from 0.001 up to 1 M⊙ yr-1 in the last months or years of the life of a RSG, although there is no observational constraint that this external material is a steady-state outflow. Alternatively, observations may be explained by the explosion of a RSG star inside its complex atmosphere. Indeed, spatially resolved observations reveal that RSG stars have extended atmospheres, with the presence of downflows and upflows out to several R⋆, even in a standard RSG such as Betelgeuse. Mass loading in the region intermediate between star and wind can accommodate the 0.01 M⊙ needed to explain the observations of 2013fs. Signatures of interaction in early-time spectra of RSG star explosions may

  3. The close circumstellar environment of Betelgeuse - III. SPHERE/ZIMPOL visible polarimetry of the inner envelope and photosphere

    CERN Document Server

    Kervella, P; Montargès, M; Ridgway, S T; Chiavassa, A; Haubois, X; Schmid, H -M; Langlois, M; Gallenne, A; Perrin, G

    2016-01-01

    The physical mechanism through which the outgoing material of massive red supergiants is accelerated above the escape velocity is unclear. Thanks to the transparency of its circumstellar envelope, the nearby red supergiant Betelgeuse gives the opportunity to probe the innermost layers of the envelope of a typical red supergiant down to the photosphere, i.e. where the acceleration of the wind is expected to occur. We took advantage of the SPHERE/ZIMPOL adaptive optics imaging polarimeter to resolve the visible photosphere and close envelope of Betelgeuse. We detect an asymmetric gaseous envelope inside a radius of 2 to 3 times the near-infrared photospheric radius of the star (R*), and a significant Halpha emission mostly contained within 3 R*. From the polarimetric signal, we also identify the signature of dust scattering in an asymmetric and incomplete dust shell located at a similar radius. The presence of dust so close to the star may have a significant impact on the wind acceleration through radiative pre...

  4. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    Science.gov (United States)

    Bozzo, E.; Oskinova, L.; Feldmeier, A.; Falanga, M.

    2016-05-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain.

  5. The magnetic field of Betelgeuse: a local dynamo from giant convection cells?

    CERN Document Server

    Auriere, M; Konstantinova-Antova, R; Perrin, G; Petit, P; Roudier, T

    2010-01-01

    Betelgeuse is an M supergiant with a complex and extended atmosphere, which also harbors spots and giant granules at its surface. A possible magnetic field could contribute to the mass loss and to the heating of the outer atmosphere. We observed Betelgeuse, to directly study and infer the nature of its magnetic field. We used the new-generation spectropolarimeter NARVAL and the least square deconvolution (LSD) method to detect circular polarization within the photospheric absorption lines of Betelgeuse. We have unambiguously detected a weak Stokes V signal in the spectral lines of Betelgeuse, and measured the related surface-averaged longitudinal magnetic field Bl at 6 different epochs over one month. The detected longitudinal field is about one Gauss and is apparently increasing on the time scale of our observations. This work presents the first direct detection of the magnetic field of Betelgeuse. This magnetic field may be associated to the giant convection cells that could enable a "local dynamo:.

  6. The close circumstellar environment of Betelgeuse - Adaptive optics spectro-imaging in the near-IR with VLT/NACO

    CERN Document Server

    Kervella, Pierre; Ridgway, Stephen T; Perrin, Guy; Lacour, Sylvestre; Cami, Jan; Haubois, Xavier

    2009-01-01

    Context: Betelgeuse is one the largest stars in the sky in terms of angular diameter. Structures on the stellar photosphere have been detected in the visible and near-infrared as well as a compact molecular environment called the MOLsphere. Mid-infrared observations have revealed the nature of some of the molecules in the MOLsphere, some being the precursor of dust. Aims: Betelgeuse is an excellent candidate to understand the process of mass loss in red supergiants. Using diffraction-limited adaptive optics (AO) in the near-infrared, we probe the photosphere and close environment of Betelgeuse to study the wavelength dependence of its extension, and to search for asymmetries. Methods: We obtained AO images with the VLT/NACO instrument, taking advantage of the "cube" mode of the CONICA camera to record separately a large number of short-exposure frames. This allowed us to adopt a "lucky imaging" approach for the data reduction, and obtain diffraction-limited images over the spectral range 1.04-2.17 $\\mu$m in 1...

  7. Towards a Unified View of Inhomogeneous Stellar Winds in Isolated Supergiant Stars and Supergiant High Mass X-Ray Binaries

    Science.gov (United States)

    Martínez-Núñez, Silvia; Kretschmar, Peter; Bozzo, Enrico; Oskinova, Lidia M.; Puls, Joachim; Sidoli, Lara; Sundqvist, Jon Olof; Blay, Pere; Falanga, Maurizio; Fürst, Felix; Gímenez-García, Angel; Kreykenbohm, Ingo; Kühnel, Matthias; Sander, Andreas; Torrejón, José Miguel; Wilms, Jörn

    2017-03-01

    Massive stars, at least ˜10 times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy. In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense "clumps". The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles in various wavelength regimes, and their analysis based on tailored, inhomogeneous wind models). The limited characterization of the clump physical properties (mass, size) obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such uncertainties limit our understanding of the role of massive star winds in galactic and cosmic evolution. Supergiant high mass X-ray binaries (SgXBs) are among the brightest X

  8. Near-infrared spectroscopy of candidate red supergiant stars in clusters

    CERN Document Server

    Messineo, Maria; Ivanov, Valentin D; Figer, Donald F; Davies, Ben; Menten, Karl M; Kudritzki, Rolf P; Chen, C -H Rosie

    2014-01-01

    Clear identifications of Galactic young stellar clusters farther than a few kpc from the Sun are rare, despite the large number of candidate clusters. We aim to improve the selection of candidate clusters rich in massive stars with a multiwavelength analysis of photometric Galactic data that range from optical to mid-infrared wavelengths. We present a photometric and spectroscopic analysis of five candidate stellar clusters, which were selected as overdensities with bright stars (Ks < 7 mag) in GLIMPSE and 2MASS images. A total of 48 infrared spectra were obtained. The combination of photometry and spectroscopy yielded six new red supergiant stars with masses from 10 Msun to 15 Msun. Two red supergiants are located at Galactic coordinates (l,b)=(16.7deg,-0.63deg) and at a distance of about ~3.9 kpc; four other red supergiants are members of a cluster at Galactic coordinates (l,b)=(49.3deg,+0.72deg) and at a distance of ~7.0 kpc. Spectroscopic analysis of the brightest stars of detected overdensities and st...

  9. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    CERN Document Server

    Bozzo, E; Feldmeier, A; Falanga, M

    2016-01-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the non-stationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total time scale of several hours), the transition of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the non-stationary wind. Th...

  10. Probing the structure and dynamics of B[e] supergiant stars' disks

    Science.gov (United States)

    Kraus, M.

    2016-08-01

    B[e] supergiants are a group of evolved massive stars in a short-lived transition phase. During this phase, these objects eject large amounts of material, which accumulates in a circumstellar ring or disk-like structure, revolving around the star on Keplerian orbits. In most objects, the disks seem to be stable over many decades. This guarantees these disks as ideal chemical laboratories to study molecule formation and dust condensation. Combining high-resolution optical and infrared spectroscopic data allows to search for emission features that trace the disk structure, kinematics, and chemical composition at different distances from the star. Certain forbidden emission lines of singly ionized or neutral metals, such as [Caii] and [Oi], are ideal tracers for the innermost gaseous (atomic) regions. Farther out, molecules form. While first-overtone bands of carbon monoxide (CO) mark the hot, inner rim of the molecular disk, more molecules are expected to form and to fill the space between the CO emitting region and the dust condensation zone. Observing campaigns have been initiated to search for these molecules and their emission features, in order to construct a global picture of the properties of the disks around B[e] supergiants. This paper presents an overview of the status of our knowledge about the structure and kinematics of B[e] supergiant stars' disks, based on currently available information from different observational tracers.

  11. Luminous and Variable Stars in M31 and M33. III. The Yellow and Red Supergiants and Post-Red Supergiant Evolution

    CERN Document Server

    Gordon, Michael S; Jones, Terry J

    2016-01-01

    Recent supernova and transient surveys have revealed an increasing number of non-terminal stellar eruptions. Though the progenitor class of these eruptions includes the most luminous stars, little is known of the pre-supernova mechanics of massive stars in their most evolved state, thus motivating a census of possible progenitors. From surveys of evolved and unstable luminous star populations in nearby galaxies, we select a sample of yellow and red supergiant candidates in M31 and M33 for review of their spectral characteristics and spectral energy distributions. Since the position of intermediate and late-type supergiants on the color-magnitude diagram can be heavily contaminated by foreground dwarfs, we employ spectral classification and multi-band photometry from optical and near-infrared surveys to confirm membership. Based on spectroscopic evidence for mass loss and the presence of circumstellar dust in their SEDs, we find that $30-40\\%$ of the yellow supergiants are likely in a post-red supergiant state...

  12. RED SUPERGIANT STARS AS COSMIC ABUNDANCE PROBES. III. NLTE EFFECTS IN J-BAND MAGNESIUM LINES

    Energy Technology Data Exchange (ETDEWEB)

    Bergemann, Maria [Max-Planck Institute for Astronomy, D-69117, Heidelberg (Germany); Kudritzki, Rolf-Peter; Gazak, Zach [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Davies, Ben [University of Liverpool (United Kingdom); Plez, Bertrand, E-mail: bergemann@mpia-hd.mpg.de, E-mail: kud@ifa.hawaii.edu, E-mail: zgazak@ifa.hawaii.edu, E-mail: bdavies@ast.cam.ac.uk, E-mail: bertrand.plez@univ-montp2.fr [Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS, F-34095 Montpellier (France)

    2015-05-10

    Non-local thermodynamic equilibrium (NLTE) calculations for Mg i in red supergiant stellar atmospheres are presented to investigate the importance of NLTE for the formation of Mg i lines in the NIR J-band. Recent work using medium resolution spectroscopy of atomic lines in the J-band of individual red supergiant stars has demonstrated this technique is a very promising tool for investigating the chemical composition of the young stellar population in star forming galaxies. As in previous work, where NLTE effects were studied for iron, titanium, and silicon, substantial effects are found resulting in significantly stronger Mg i absorption lines. For the quantitative spectral analysis the NLTE effects lead to magnesium abundances significantly smaller than in local thermodynamic equilibrium with the NLTE abundance corrections varying smoothly between −0.4 dex and −0.1 dex for effective temperatures between 3400 and 4400 K. We discuss the physical reasons of the NLTE effects and the consequences for extragalactic J-band abundance studies using individual red supergiants in the young massive galactic double cluster h and χ Persei.

  13. The Coolest Stars in the Clouds: Unusual Red Supergiants in the Magellanic Clouds

    CERN Document Server

    Levesque, Emily M; Olsen, K A G; Plez, Bertrand

    2007-01-01

    Red supergiants (RSGs) are a He-burning phase in the evolution of moderately high mass stars (10-25 solar masses). The evolution of these stars, particularly at low metallicities, is still poorly understood. The latest-type RSGs in the Magellanic Clouds are cooler than the current evolutionary tracks allow, occupying the region to the right of the Hayashi limit where stars are no longer in hydrodynamic equilibrium. We have discovered four Cloud RSGs in this region that display remarkably similar unusual behavior. All of them show considerable variations in their V magnitudes and effective temperatures (and spectral types). Two of these stars, HV 11423 and [M2002] SMC 055188, have been observed in an M4.5 I state, considerably later and cooler than any other supergiant in the SMC. These stars suffer dramatic physical changes on timescales of months - when they are at their warmest, they are also brighter, more luminous, and show an increased amount of extinction. This variable extinction is characteristic of t...

  14. ALMA observations of the supergiant B[e] star Wd1-9

    Science.gov (United States)

    Fenech, D. M.; Clark, J. S.; Prinja, R. K.; Morford, J. C.; Dougherty, S.; Blomme, R.

    2017-01-01

    Mass-loss in massive stars plays a critical role in their evolution, although the precise mechanism(s) responsible - radiatively driven winds, impulsive ejection and/or binary interaction - remain uncertain. In this Letter, we present Atacama Large Millimetre/Submillimeter Array line and continuum observations of the supergiant B[e] star Wd1-9, a massive post-main-sequence object located within the starburst cluster Westerlund 1 (Wd1). We find it to be one of the brightest stellar point sources in the sky at millimetre wavelengths, with (serendipitously identified) emission in the H41α radio recombination line. We attribute these properties to a low velocity (˜100 km s-1 ) ionized wind, with an extreme mass-loss rate ≳6.4 × 10-5(d/5 kpc)1.5 M⊙yr- 1. External to this is an extended aspherical ejection nebula indicative of a prior phase of significant mass-loss. Taken together, the millimetre properties of Wd1-9 show a remarkable similarity to those of the highly luminous stellar source MWC349A. We conclude that these objects are interacting binaries evolving away from the main sequence and undergoing rapid case-A mass transfer. As such they - and by extension the wider class of supergiant B[e] stars - may provide a unique window into the physics of a process that shapes the life-cycle of ˜70 per cent of massive stars found in binary systems.

  15. The Circumstellar Medium of Massive Stars in Motion

    CERN Document Server

    Mackey, Jonathan; Meyer, Dominique M -A; Gvaramadze, Vasilii V; Mohamed, Shazrene; Neilson, Hilding R; Mignone, Andrea

    2014-01-01

    The circumstellar medium around massive stars is strongly impacted by stellar winds, radiation, and explosions. We use numerical simulations of these interactions to constrain the current properties and evolutionary history of various stars by comparison with observed circumstellar structures. Two- and three-dimensional simulations of bow shocks around red supergiant stars have shown that Betelgeuse has probably only recently evolved from a blue supergiant to a red supergiant, and hence its bow shock is very young and has not yet reached a steady state. We have also for the first time investigated the magnetohydrodynamics of the photoionised H II region around the nearby runaway O star Zeta Oph. Finally, we have calculated a grid of models of bow shocks around main sequence and evolved massive stars that has general application to many observed bow shocks, and which forms the basis of future work to model the explosions of these stars into their pre-shaped circumstellar medium.

  16. Spectroscopic Variability of Supergiant Star HD14134, B3Ia

    Indian Academy of Sciences (India)

    Y. M. Y. M. Maharramov

    2017-06-01

    Profile variations in the ${H}\\alpha$ and ${H}\\beta$ lines in the spectra of the star HD14134 are investigated using observations carried out in 2013–2014 and 2016 with the 2-m telescope at the Shamakhy Astrophysical Observatory. The absorption and emission components of the ${H}\\alpha$ line are found to disappear on some observational days, and two of the spectrograms exhibit inverse P-Cyg profile of ${H}\\alpha$. It was revealed that when the ${H}\\alpha$ line disappeared or an inversion of the P-Cyg-type profile is observed in the spectra, the ${H}\\beta$ line is displaced to the longer wavelengths, but no synchronous variabilities were observed in other spectral lines (CII λ 6578.05 Å, λ 6582.88 Å and HeI λ 5875.72 Å) formed in deeper layers of the stellar atmosphere. In addition, the profiles of the ${H}\\alpha$ and ${H}\\beta$ lines have been analysed, as well as their relations with possible expansion, contraction and mixed conditions of the atmosphere of HD14134. We suggest that the observational evidence for the non-stationary atmosphere of HD14134 can be associated in part with the non-spherical stellar wind.

  17. SiO and H2O Maser Observations of Red Supergiants in Star Clusters Embedded in the Galactic Disk

    Science.gov (United States)

    Deguchi, Shuji; Nakashima, Jun-Ichi; Zhang, Yong; Chong, Selina S. N.; Koike, Kazutaka; Kwok, Sun

    2010-04-01

    We present the results of radio observations of red supergiants in a star cluster, Stephenson (1990, AJ, 99, 1867)'s #2, and of candidates for red supergiants in three star clusters, Mercer et al. (2005, ApJ, 635, 560)'s #4, #8, and #13, in the SiO and H2O maser lines. The Stephenson's #2 cluster and nearby aggregation at the southwest contain more than 15 red supergiants. We detected one red supergiant at the center of Stephenson's #2 and three in a southwest aggregation in the SiO maser line; three out of these four were also detected in the H2O maser line. The average radial velocity of the four detected objects is 97 km s-1, giving a kinematic distance of 5.5 kpc, which locates this cluster near the base of the Scutum-Crux spiral arm. We also detected six SiO emitting objects associated with other star clusters. In addition, mapping observations in the CO J = 1-0 line toward these clusters revealed that an appreciable amount of molecular gas still remains around the Stephenson's #2 cluster in contrast to the prototypical red-supergiant cluster, Bica et al. (2003, A&A, 404, 223)'s #122. This indicates that the time scale of gas expulsion differs considerably in individual clusters.

  18. Discovery of magnetic A supergiants: the descendants of magnetic main-sequence B stars

    Science.gov (United States)

    Neiner, Coralie; Oksala, Mary E.; Georgy, Cyril; Przybilla, Norbert; Mathis, Stéphane; Wade, Gregg; Kondrak, Matthias; Fossati, Luca; Blazère, Aurore; Buysschaert, Bram; Grunhut, Jason

    2017-10-01

    In the context of the high resolution, high signal-to-noise ratio, high sensitivity, spectropolarimetric survey BritePol, which complements observations by the BRITE constellation of nanosatellites for asteroseismology, we are looking for and measuring the magnetic field of all stars brighter than V = 4. In this paper, we present circularly polarized spectra obtained with HarpsPol at ESO in La Silla (Chile) and ESPaDOnS at CFHT (Hawaii) for three hot evolved stars: ι Car, HR 3890 and ε CMa. We detected a magnetic field in all three stars. Each star has been observed several times to confirm the magnetic detections and check for variability. The stellar parameters of the three objects were determined and their evolutionary status was ascertained employing evolution models computed with the Geneva code. ε CMa was already known and is confirmed to be magnetic, but our modelling indicates that it is located near the end of the main sequence, i.e. it is still in a core hydrogen burning phase. ι Car and HR 3890 are the first discoveries of magnetic hot supergiants located well after the end of the main sequence on the Hertzsprung-Russell diagram. These stars are probably the descendants of main-sequence magnetic massive stars. Their current field strength (a few G) is compatible with magnetic flux conservation during stellar evolution. These results provide observational constraints for the development of future evolutionary models of hot stars including a fossil magnetic field.

  19. Three-micron spectra of AGB stars and supergiants in nearby galaxies

    CERN Document Server

    Matsuura, M; Van Loon, J T; Yamamura, I; Markwick, A J; Whitelock, P A; Woods, P M; Marshall, J R; Feast, M W; Waters, L B F M

    2005-01-01

    The dependence of stellar molecular bands on the metallicity is studied using infrared L-band spectra of AGB stars (both carbon-rich and oxygen-rich) and M-type supergiants in the Large and Small Magellanic Clouds (LMC and SMC) and in the Sagittarius Dwarf Spheroidal Galaxy. The spectra cover SiO bands for oxygen-rich stars, and acetylene (C2H2), CH and HCN bands for carbon-rich AGB stars. The equivalent width of acetylene is found to be high even at low metallicity. The high C2H2 abundance can be explained with a high carbon-to-oxygen (C/O) ratio for lower metallicity carbon stars. In contrast, the HCN equivalent width is low: fewer than half of the extra-galactic carbon stars show the 3.5micron HCN band, and only a few LMC stars show high HCN equivalent width. HCN abundances are limited by both nitrogen and carbon elemental abundances. The amount of synthesized nitrogen depends on the initial mass, and stars with high luminosity (i.e. high initial mass) could have a high HCN abundance. CH bands are found in...

  20. Magnetic field and convection in Betelgeuse

    CERN Document Server

    Petit, P; Konstantinova-Antova, R; Morgenthaler, A; Perrin, G; Roudier, T; Donati, J -F

    2011-01-01

    We present the outcome of a highly-sensitive search for magnetic fields on the cool supergiant Betelgeuse. A time-series of six circularly-polarized spectra was obtained using the NARVAL spectropolarimeter at T\\'elescope Bernard Lyot (Pic du Midi Observatory), between 2010 March and April. Zeeman signatures were repeatedly detected in cross-correlation profiles, corresponding to a longitudinal component of about 1 G. The time-series unveils a smooth increase of the longitudinal field from 0.5 to 1.5 G, correlated with radial velocity fluctuations. We observe a strong asymmetry of Stokes V signatures, also varying in correlation with the radial velocity. The Stokes V line profiles are red-shifted by about 9 km/s with respect to the Stokes I profiles, suggesting that the observed magnetic elements may be concentrated in the sinking components of the convective flows.

  1. GIANO-TNG spectroscopy of red supergiants in the young star cluster RSGC2

    CERN Document Server

    Origlia, L; Maiolino, R; Mucciarelli, A; Baffa, C; Biliotti, V; Bruno, P; Falcini, G; Gavriousev, V; Ghinassi, F; Giani, E; Gonzalez, M; Leone, F; Lodi, M; Massi, F; Montegriffo, P; Mochi, I; Pedani, M; Rossetti, E; Scuderi, S; Sozzi, M; Tozzi, A

    2013-01-01

    The inner disk of the Galaxy has a number of young star clusters dominated by red supergiants that are heavily obscured by dust extinction and observable only at infrared wavelengths. These clusters are important tracers of the recent star formation and chemical enrichment history in the inner Galaxy. During the technical commissioning and as a first science verification of the GIANO spectrograph at the Telescopio Nazionale Galileo, we secured high-resolution (R~50,000) near-infrared spectra of three red supergiants in the young Scutum cluster RSGC2. Taking advantage of the full YJHK spectral coverage of GIANO in a single exposure, we were able to identify several tens of atomic and molecular lines suitable for chemical abundance determinations. By means of spectral synthesis and line equivalent width measurements, we obtained abundances of Fe and other iron-peak elements such as V, Cr, Ni, of alpha (O, Mg, Si, Ca and Ti) and other light elements (C, N, Na, Al, K, Sc), and of some s-process elements (Y, Sr). ...

  2. GIANO-TNG spectroscopy of red supergiants in the young star cluster RSGC3

    CERN Document Server

    Origlia, L; Sanna, N; Mucciarelli, A; Dalessandro, E; Scuderi, S; Baffa, C; Biliotti, V; Carbonaro, L; Falcini, G; Giani, E; Iuzzolino, M; Massi, F; Sozzi, M; Tozzi, A; Ghedina, A; Ghinassi, F; Lodi, M; Harutyunyan, A; Pedani, M

    2015-01-01

    The Scutum complex in the inner disk of the Galaxy has a number of young star clusters dominated by red supergiants that are heavily obscured by dust extinction and observable only at infrared wavelengths. These clusters are important tracers of the recent star formation and chemical enrichment history in the inner Galaxy. During the technical commissioning and as a first science verification of the GIANO spectrograph at the Telescopio Nazionale Galileo, we secured high-resolution (R=50,000) near-infrared spectra of five red supergiants in the young Scutum cluster RSGC3. Taking advantage of the full YJHK spectral coverage of GIANO in a single exposure, we were able to measure several tens of atomic and molecular lines that were suitable for determining chemical abundances. By means of spectral synthesis and line equivalent width measurements, we obtained abundances of Fe and iron-peak elements such as Ni, Cr, and Cu, alpha (O, Mg, Si, Ca, Ti), other light elements (C, N, F, Na, Al, and Sc), and some s-process...

  3. RED SUPERGIANT STARS AS COSMIC ABUNDANCE PROBES: KMOS OBSERVATIONS IN NGC 6822

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, L. R.; Evans, C. J.; Ferguson, A. M. N. [Institute for Astronomy, University of Edinburgh, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Davies, B. [Astrophysics Research Institute, Liverpool John Moores University, Liverpool Science Park ic2, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Kudritzki, R-P.; Gazak, J. Z. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Bergemann, M. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Plez, B. [Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS, F-34095 Montpellier (France)

    2015-04-10

    We present near-IR spectroscopy of red supergiant (RSG) stars in NGC 6822, obtained with the new K-band Multi-Object Spectrograph Very Large Telescope, Chile. From comparisons with model spectra in the J-band we determine the metallicity of 11 RSGs, finding a mean value of [Z] = −0.52 ± 0.21, which agrees well with previous abundance studies of young stars and H ii regions. We also find an indication for a low-significance abundance gradient within the central 1 kpc. We compare our results with those derived from older stellar populations and investigate the difference using a simple chemical evolution model. By comparing the physical properties determined for RSGs in NGC 6822 with those derived using the same technique in the Galaxy and the Magellanic Clouds, we show that there appears to be no significant temperature variation of RSGs with respect to metallicity, in contrast to recent evolutionary models.

  4. Complexes of triggered star formation in supergiant shell of Holmberg II.

    Science.gov (United States)

    Egorov, Oleg V.; Lozinskaya, Tatiana A.; Moiseev, Alexei V.; Shchekinov, Yuri A.

    2016-09-01

    We report a detailed analysis of all regions of current star formation in the walls of the supergiant H I shell (SGS) in the galaxy Holmberg II based on observations with a scanning Fabry-Perot interferometer at the 6-m SAO RAS telescope. We compare the structure and kinematics of ionized gas with that of atomic hydrogen and with the stellar population of the SGS. Our deep Hα images and archival images taken by the HST demonstrate that current star formation episodes are larger and more complicated than previously thought: they represent unified star-forming complexes with sizes of several hundred pc rather than `chains' of separate bright nebulae in the walls of the SGS. The fact that we are dealing with unified complexes is evidenced by identified faint shell-like structures of ionized and neutral gas which connect several distinct bright H II regions. Formation of such complexes is due to the feedback of stars with very inhomogeneous ambient gas in the walls of the SGS. The arguments supporting an idea about the triggering of star formation in SGS by the H I supershells collision are presented. We also found a faint ionized supershell inside the H I SGS expanding with a velocity of no greater than 10 - 15 km s-1. Five OB stars located inside the inner supershell are sufficient to account for its radiation, although a possibility of leakage of ionizing photons from bright H II regions is not ruled out as well.

  5. Complexes of triggered star formation in supergiant shell of Holmberg II

    Science.gov (United States)

    Egorov, Oleg V.; Lozinskaya, Tatiana A.; Moiseev, Alexei V.; Shchekinov, Yuri A.

    2017-01-01

    We report a detailed analysis of all regions of current star formation in the walls of the supergiant H I shell (SGS) in the galaxy Holmberg II based on observations with a scanning Fabry-Perot interferometer at the Russian 6-m telescope. We compare the structure and kinematics of ionized gas with that of atomic hydrogen and with the stellar population of the SGS. Our deep Hα images and archival images taken by the Hubble Space Telescope demonstrate that current star formation episodes are larger and more complicated than previously thought: they represent unified star-forming complexes with sizes of several hundred pc rather than `chains' of separate bright nebulae in the walls of the SGS. The fact that we are dealing with unified complexes is evidenced by identified faint shell-like structures of ionized and neutral gas which connect several distinct bright H II regions. Formation of such complexes is due to the feedback of stars with very inhomogeneous ambient gas in the walls of the SGS. The arguments supporting an idea about the triggering of star formation in SGS by the H I supershells collision are presented. We also found a faint ionized supershell inside the H I SGS expanding with a velocity of no greater than 10-15 km s-1. Five OB stars located inside the inner supershell are sufficient to account for its radiation, although a possibility of leakage of ionizing photons from bright H II regions is not ruled out as well.

  6. Luminous and Variable Stars in M31 and M33. III. The Yellow and Red Supergiants and Post-red Supergiant Evolution

    Science.gov (United States)

    Gordon, Michael S.; Humphreys, Roberta M.; Jones, Terry J.

    2016-07-01

    Recent supernova (SN) and transient surveys have revealed an increasing number of non-terminal stellar eruptions. Though the progenitor class of these eruptions includes the most luminous stars, little is known of the pre-SN mechanics of massive stars in their most evolved state, thus motivating a census of possible progenitors. From surveys of evolved and unstable luminous star populations in nearby galaxies, we select a sample of yellow and red supergiant (RSG) candidates in M31 and M33 for review of their spectral characteristics and spectral energy distributions (SEDs). Since the position of intermediate- and late-type supergiants on the color-magnitude diagram can be heavily contaminated by foreground dwarfs, we employ spectral classification and multi-band photometry from optical and near-infrared surveys to confirm membership. Based on spectroscopic evidence for mass loss and the presence of circumstellar (CS) dust in their SEDs, we find that 30%-40% of the yellow supergiants are likely in a post-RSG state. Comparison with evolutionary tracks shows that these mass-losing, post-RSGs have initial masses between 20 and 40 M ⊙. More than half of the observed RSGs in M31 and M33 are producing dusty CS ejecta. We also identify two new warm hypergiants in M31, J004621.05+421308.06 and J004051.59+403303.00, both of which are likely in a post-RSG state. Based on observations obtained with the Large Binocular Telescope (LBT), an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia.

  7. LMC Blue Supergiant Stars and the Calibration of the Flux-weighted Gravity-Luminosity Relationship

    Science.gov (United States)

    Urbaneja, M. A.; Kudritzki, R.-P.; Gieren, W.; Pietrzyński, G.; Bresolin, F.; Przybilla, N.

    2017-09-01

    High-quality spectra of 90 blue supergiant stars in the Large Magellanic Cloud are analyzed with respect to effective temperature, gravity, metallicity, reddening, extinction, and extinction law. An average metallicity, based on Fe and Mg abundances, relative to the Sun of [Z] = -0.35 ± 0.09 dex is obtained. The reddening distribution peaks at E(B-V) = 0.08 mag, but significantly larger values are also encountered. A wide distribution of the ratio of extinction to reddening is found ranging from {R}{{V}} = 2 to 6. The results are used to investigate the blue supergiant relationship between flux-weighted gravity, g f ≡ g/{T}{eff}4, and absolute bolometric magnitude M bol. The existence of a tight relationship, the Flux-weighted Gravity-Luminosity Relationship (FGLR), is confirmed. However, in contrast to previous work, the observations reveal that the FGLR is divided into two parts with a different slope. For flux-weighted gravities larger than 1.30 dex, the slope is similar to that found in previous work, but the relationship becomes significantly steeper for smaller values of the flux-weighted gravity. A new calibration of the FGLR for extragalactic distance determinations is provided.

  8. SiO and H2O Maser Observations of Red Supergiants in Star Clusters Embedded in the Galactic Disk

    CERN Document Server

    Deguchi, S; Zhang, Y; Chong, S S N; Koike, K; Kwok, S

    2010-01-01

    We present the result of radio observations of red supergiants in the star cluster, Stephenson's #2, and candidates for red supergiants in the star clusters, Mercer et al. (2005)'s #4, #8, and #13, in the SiO and H$_2$O maser lines.The Stephenson's #2 cluster and nearby aggregation at the South-West contain more than 15 red supergiants. We detected one at the center of Stephenson's #2 and three in the south-west aggregation in the SiO maser line, and three of these 4 were also detected in the H2O maser line. The average radial velocity of the 4 detected objects is 96 km s^{-1}, giving a kinematic distance of 5.5 kpc, which locates this cluster near the base of the Scutum-Crux spiral arm. We also detected 6 SiO emitting objects associated with the other star clusters. In addition, mapping observations in the CO J=1--0 line toward these clusters revealed that an appreciable amount of molecular gas still remains around Stephenson's #2 cluster in contrast to the prototypical red-supergiant cluster, Bica et al.'s ...

  9. Complexes of triggered star formation in supergiant shell of Holmberg II

    CERN Document Server

    Egorov, Oleg V; Moiseev, Alexei V; Shchekinov, Yuri A

    2016-01-01

    We report a detailed analysis of all regions of current star formation in the walls of the supergiant HI shell (SGS) in the galaxy Holmberg II based on observations with a scanning Fabry-Perot interferometer at the 6-m SAO RAS telescope. We compare the structure and kinematics of ionized gas with that of atomic hydrogen and with the stellar population of the SGS. Our deep H$\\alpha$ images and archival images taken by the HST demonstrate that current star formation episodes are larger and more complicated than previously thought: they represent unified star-forming complexes with sizes of several hundred pc rather than 'chains' of separate bright nebulae in the walls of the SGS. The fact that we are dealing with unified complexes is evidenced by identified faint shell-like structures of ionized and neutral gas which connect several distinct bright HII regions. Formation of such complexes is due to the feedback of stars with very inhomogeneous ambient gas in the walls of the SGS. The arguments supporting an ide...

  10. Chemical abundances for A-and F-type supergiant stars

    CERN Document Server

    Molina, R E

    2016-01-01

    We present the stellar parameters and elemental abundances of a set of A--F-type supergiant stars HD\\,45674, HD\\,180028, HD\\,194951 and HD\\,224893 using high resolution ($R$\\,$\\sim$\\,42,000) spectra taken from ELODIE library. We present the first results of the abundance analysis for HD\\,45674 and HD\\,224893. We reaffirm the abundances for HD\\,180028 and HD\\,194951 studied previously by Luck (2014) respectively. Alpha-elements indicates that objects belong to the thin disc population. From their abundances and its location on the Hertzsprung-Russell diagram seems point out that HD\\,45675, HD\\,194951 and HD\\,224893 are in the post-first dredge-up (post-1DUP) phase and they are moving in the red-blue loop region. HD~180028, on the contary, shows typical abundances of the population I but its evolutionary status could not be satisfactorily defined.

  11. Chemical abundances for A-and F-type supergiant stars

    Science.gov (United States)

    Molina, R. E.; Rivera, H.

    2016-04-01

    We present the stellar parameters and elemental abundances of a set of A-F-type supergiant stars HD 45674, HD 180028, HD 194951 and HD 224893 using high resolution (R≈ 42,000) spectra taken from ELODIE library. We present the first results of the abundance analysis for HD 45674 and HD 224893. We reaffirm the abundances for HD 180028 and HD 194951 studied previously by Luck. Alpha-elements indicate that the objects belong to the thin disc population. Their abundances and their location on the Hertzsprung-Russell diagram seem to indicate that HD 45675, HD 194951 and HD 224893 are in the post-first dredge-up (post-1DUP) phase, and that they are moving in the red-blue loop region. HD 180028, on the contary, shows typical abundances of Population I, but its evolutionary status cannot be satisfactorily defined.

  12. The Betelgeuse Project: Constraints from Rotation

    CERN Document Server

    Wheeler, J Craig; Diaz, M; Smith, S G; Hickey, J; Zhou, L; Koutoulaki, M; Sullivan, J M; Fowler, J M

    2016-01-01

    In order to constrain the evolutionary state of the red supergiant Betelgeuse, we have produced a suite of models with ZAMS masses from 15 to 25 Msun in intervals of 1 Msun including the effects of rotation. The models were computed with the stellar evolutionary code MESA. For non-rotating models we find results that are similar to other work. It is somewhat difficult to find models that agree within 1 sigma of the observed values of R, Teff and L, but modestly easy within 3 sigma uncertainty. Incorporating the nominal observed rotational velocity, ~15 km/s, yields significantly different, and challenging, constraints. This velocity constraint is only matched when the models first approach the base of the red supergiant branch (RSB), having crossed the Hertzsprung gap, but not yet having ascended the RSB and most violate even generous error bars on R, Teff and L. Models at the tip of the RSB typically rotate at only ~0.1 km/s, independent of any reasonable choice of initial rotation. We discuss the possible u...

  13. High-velocity Hα Absorption Events in B8 Ia - A2 Ia Supergiant Stars

    Science.gov (United States)

    Morrison, Nancy D.; Markova, N.; Rother, S. J.

    2009-12-01

    Late B- and early A-type supergiants are notorious for the time variability of their Hα line profiles, but the physical cause of the variations is poorly understood. Usually, the line is filled in by emission, and the blue absorption wing does not extend to the terminal wind speed, which is roughly defined by the blue edges of the ultraviolet resonance lines. On rare occasions, however, the blue wing of Hα goes strongly into absorption over a wide velocity range, from the photospheric velocity almost all the way to the terminal wind speed. This phenomenon was first described by Kaufer et al. (1996, A&A, 314, 599), who denoted it by the term, "High-Velocity Absorption Event." In this report, high-resolution spectra from Ritter Observatory will be combined with published spectra to examine the temporal recurrence behavior and strength distribution of high-velocity absorption events and their incidence as a function of stellar parameters for the available sample of stars. All B8- and A0-type, Ia-class, stars in the sample that have been sufficiently well observed, as well as one A2-type star, show the events. However, there is some evidence that hyperluminous stars (luminosity class Ia+) do not show the events. In one of the most extensively observed stars in the sample (Rigel, B8 Ia), there is no clear periodicity in the recurrence times of the events. In addition to the strong events discovered by Kaufer et al. (1996), there is a broad distribution of more frequent, weaker events. Ritter Observatory receives operating support from the National Science Foundation Program for Research and Education with Small Telescopes (PREST) award AST-0440784.

  14. Chemistry and Kinematics of Red Supergiant Stars in the Young Massive Cluster NGC 2100

    CERN Document Server

    Patrick, L R; Davies, B; Kudritzki, R-P; Hénault-Brunet, V; Bastian, N; Lapenna, E; Bergemann, M

    2016-01-01

    We have obtained K-band Multi-Object Spectrograph (KMOS) near-IR spectroscopy for 14 red supergiant stars (RSGs) in the young massive star cluster NGC 2100 in the Large Magellanic Cloud (LMC). Stellar parameters including metallicity are estimated using the J-band analysis technique, which has been rigorously tested in the Local Universe. We find an average metallicity for NGC 2100 of [Z]=$-$0.38$\\pm$0.20 dex, in good agreement with estimates from the literature for the LMC. Comparing our results in NGC 2100 with those for a Galactic cluster (at Solar-like metallicity) with a similar mass and age we find no significant difference in the location of RSGs in the Hertzsprung--Russell diagram. We combine the observed KMOS spectra to form a simulated integrated-light cluster spectrum and show that, by analysing this spectrum as a single RSG, the results are consistent with the average properties of the cluster. Radial velocities are estimated for the targets and the dynamical properties are estimated for the first...

  15. ALMA observations of the supergiant B[e] star Wd1-9

    CERN Document Server

    Fenech, D; Prinja, R K; Morford, J C; Dougherty, S; Blomme, R

    2016-01-01

    Mass-loss in massive stars plays a critical role in their evolution, although the precise mechanism(s) responsible - radiatively driven winds, impulsive ejection and/or binary interaction -remain uncertain. In this paper we present ALMA line and continuum observations of the supergiant B[e] star Wd1-9, a massive post-Main Sequence object located within the starburst cluster Westerlund 1. We find it to be one of the brightest stellar point sources in the sky at millimetre wavelengths, with (serendipitously identified) emission in the H41alpha radio recombination line. We attribute these properties to a low velocity (~100 km/s) ionised wind, with an extreme mass-loss rate 6.4x10^-5(d/5kpc)^1.5 Msol/yr. External to this is an extended aspherical ejection nebula indicative of a prior phase of significant mass-loss. Taken together, the millimetre properties of Wd1-9 show a remarkable similarity to those of the highly luminous stellar source MWC349A.We conclude that these objects are interacting binaries evolving a...

  16. The Physical Properties of the Red Supergiant WOH G64: The Largest Star Known?

    CERN Document Server

    Levesque, Emily M; Plez, Bertrand; Olsen, Knut A G

    2009-01-01

    WOH G64 is an unusual red supergiant (RSG) in the Large Magellanic Cloud (LMC), with a number of properties that set it apart from the rest of the LMC RSG population, including a thick circumstellar dust torus, an unusually late spectral type, maser activity, and nebular emission lines. Its reported physical properties are also extreme, including the largest radius for any star known and an effective temperature that is much cooler than other RSGs in the LMC, both of which are at variance with stellar evolutionary theory. We fit moderate-resolution optical spectrophotometry of WOH G64 with the MARCS stellar atmosphere models, determining an effective temperature of 3400 +/- 25 K. We obtain a similar result from the star's broadband V - K colors. With this effective temperature, and taking into account the flux contribution from the aysmmetric circumstellar dust envelope, we calculate log(L/L_sun) = 5.45 +/- 0.05 for WOH G64, quite similar to the luminosity reported by Ohnaka and collaborators based on their r...

  17. HD 179821 (V1427 Aql, IRAS 19114+0002) - a massive post-red supergiant star?

    Science.gov (United States)

    Şahin, T.; Lambert, David L.; Klochkova, Valentina G.; Panchuk, Vladimir E.

    2016-10-01

    We have derived elemental abundances of a remarkable star, HD 179821, with unusual composition (e.g. [Na/Fe] = 1.0 ± 0.2 dex) and extra-ordinary spectral characteristics. Its metallicity at [Fe/H] = 0.4 dex places it among the most metal-rich stars yet analysed. The abundance analysis of this luminous star is based on high-resolution and high-quality (S/N ≈ 120-420) optical echelle spectra from McDonald Observatory and Special Astronomy Observatory. The data includes five years of observations over 21 epochs. Standard 1D local thermodynamic equilibrium analysis provides a fresh determination of the atmospheric parameters over all epochs: Teff = 7350 ± 200 K, log g= +0.6 ± 0.3, and a microturbulent velocity ξ = 6.6 ± 1.6 km s-1 and [Fe/H] = 0.4 ± 0.2, and a carbon abundance [C/Fe] = -0.19 ± 0.30. We find oxygen abundance [O/Fe] = -0.25 ± 0.28 and an enhancement of 0.9 dex in N. A supersonic macroturbulent velocity of 22.0 ± 2.0 km s-1 is determined from both strong and weak Fe I and Fe II lines. Elemental abundances are obtained for 22 elements. HD 179821 is not enriched in s-process products. Eu is overabundant relative to the anticipated [X/Fe] ≈ 0.0. Some peculiarities of its optical spectrum (e.g. variability in the spectral line shapes) is noticed. This includes the line profile variations for H α line. Based on its estimated luminosity, effective temperature and surface gravity, HD 179821 is a massive star evolving to become a red supergiant and finally a Type II supernova.

  18. Chemistry and kinematics of red supergiant stars in the young massive cluster NGC 2100

    Science.gov (United States)

    Patrick, L. R.; Evans, C. J.; Davies, B.; Kudritzki, R.-P.; Hénault-Brunet, V.; Bastian, N.; Lapenna, E.; Bergemann, M.

    2016-06-01

    We have obtained K-band Multi-Object Spectrograph (KMOS) near-IR spectroscopy for 14 red supergiant stars (RSGs) in the young massive star cluster NGC 2100 in the Large Magellanic Cloud (LMC). Stellar parameters including metallicity are estimated using the J-band analysis technique, which has been rigorously tested in the Local Universe. We find an average metallicity for NGC 2100 of [Z] = -0.43 ± 0.10 dex, in good agreement with estimates from the literature for the LMC. Comparing our results in NGC 2100 with those for a Galactic cluster (at Solar-like metallicity) with a similar mass and age we find no significant difference in the location of RSGs in the Hertzsprung-Russell diagram. We combine the observed KMOS spectra to form a simulated integrated-light cluster spectrum and show that, by analysing this spectrum as a single RSG, the results are consistent with the average properties of the cluster. Radial velocities are measured for the targets and the dynamical properties are estimated for the first time within this cluster. The data are consistent with a flat velocity dispersion profile, and with an upper limit of 3.9 kms-1, at the 95 per cent confidence level, for the velocity dispersion of the cluster. However, the intrinsic velocity dispersion is unresolved and could, therefore, be significantly smaller than the upper limit reported here. An upper limit on the dynamical mass of the cluster is derived as Mdyn ≤ 15.2 × 104 M⊙ assuming virial equilibrium.

  19. Seeing Stars Like Never Before: A Multi-Year Interferometric Imaging Study of Red Supergiants in the H-Band.

    Science.gov (United States)

    Norris, Ryan P.; Baron, Fabien

    2017-01-01

    As some of the largest stars, red supergiants (RSG) are ideal candidates for interferometric imaging. 3D radiative hydrodynamic (RHD) models suggest that RSG have large convection cells with lifetimes on the order of 1000s of days. Many imaging projects have hinted at the existence of these features but, until recently, we have lacked the angular resolution to directly compare models to observations. In this presentation, we discuss early results from a multi-year survey of red supergiants using the Michigan InfraRed Combinber (MIRC) on the Center for High Angular Resolution Astronomy (CHARA Array), which has a maximum baseline of 330 m. We will present H-band images of RSG spanning several years developed using a new machine learning based image reconstruction tool for interferometric data. We will also present fundamental parameters for the targets, and discuss the implications of these results on 1D model atmospheres and 3D RHD models of RSG.

  20. The supergiant B[e] star LHA 115-S 18 - binary and/or luminous blue variable?

    CERN Document Server

    Clark, J S; Coe, M J; Dorda, R; Haberl, F; Lamb, J B; Negueruela, I; Udalski, A

    2013-01-01

    The mechanism by which supergiant (sg)B[e] stars support cool, dense dusty discs/tori and their physical relationship with other evolved, massive stars such as luminous blue variables is uncertain. In order to investigate both issues we have analysed the long term behaviour of the canonical sgB[e] star LHA 115-S 18. We employed the OGLE II-IV lightcurve to search for (a-)periodic variability and supplemented these data with new and historic spectroscopy. In contrast to historical expectations for sgB[e] stars, S18 is both photometrically and spectroscopically highly variable. The lightcurve is characterised by rapid aperiodic `flaring' throughout the 16 years of observations. Changes in the high excitation emission line component of the spectrum imply evolution in the stellar temperature - as expected for luminous blue variables - although somewhat surprisingly, spectroscopic and photometric variability appears not to be correlated. Characterised by emission in low excitation metallic species, the cool circum...

  1. Cold gas in hot star clusters: the wind from the red supergiant W26 in Westerlund 1

    Science.gov (United States)

    Mackey, Jonathan; Castro, Norberto; Fossati, Luca; Langer, Norbert

    2015-10-01

    The massive red supergiant W26 in Westerlund 1 is one of a growing number of red supergiants shown to have winds that are ionized from the outside in. The fate of this dense wind material is important for models of second generation star formation in massive star clusters. Mackey et al. (2014, Nature, 512, 282) showed that external photoionization can stall the wind of red supergiants and accumulate mass in a dense static shell. We use spherically symmetric radiation-hydrodynamic simulations of an externally photoionized wind to predict the brightness distribution of Hα and [N II] emission arising from photoionized winds both with and without a dense shell. We analyse spectra of the Hα and [N II] emission lines in the circumstellar environment around W26 and compare them with simulations to investigate whether W26 has a wind that is confined by external photoionization. Simulations of slow winds that are decelerated into a dense shell show strongly limb-brightened line emission, with line radial velocities that are independent of the wind speed. Faster winds (≳22 km s-1) do not form a dense shell, have less limb-brightening, and the line radial velocity is a good tracer of the wind speed. The brightness of the [N II] and Hα lines as a function of distance from W26 agrees reasonably well with observations when only the line flux is considered. The radial velocity of the simulated winds disagrees with observations, however: the brightest observed emission is blueshifted by ≈25 km s-1 relative to the radial velocity of the star, whereas a spherically symmetric wind has the brightest emission at zero radial velocity because of limb brightening. Our results show that the bright nebula surrounding W26 must be asymmetric, and we suggest that it is confined by external ram pressure from the extreme wind of the nearby supergiant W9. We obtain a lower limit on the nitrogen abundance within the nebula of 2.35 times solar. The line ratio strongly favours photoionization

  2. A Spectroscopic Study of Blue Supergiant Stars in the Sculptor Galaxy NGC 55: Chemical Evolution and Distance

    Science.gov (United States)

    Kudritzki, R. P.; Castro, N.; Urbaneja, M. A.; Ho, I.-T.; Bresolin, F.; Gieren, W.; Pietrzyński, G.; Przybilla, N.

    2016-10-01

    Low-resolution (4.5-5 Å) spectra of 58 blue supergiant stars distributed over the disk of the Magellanic spiral galaxy NGC 55 in the Sculptor group are analyzed by means of non-LTE techniques to determine stellar temperatures, gravities, and metallicities (from iron peak and α-elements). A metallicity gradient of -0.22 ± 0.06 dex/R 25 is detected. The central metallicity on a logarithmic scale relative to the Sun is [Z] = -0.37 ± 0.03. A chemical evolution model using the observed distribution of column densities of the stellar and interstellar medium gas mass reproduces the observed metallicity distribution well and reveals a recent history of strong galactic mass accretion and wind outflows with accretion and mass-loss rates of the order of the star formation rate. There is an indication of spatial inhomogeneity in metallicity. In addition, the relatively high central metallicity of the disk confirms that two extraplanar metal-poor H ii regions detected in previous work 1.13 to 2.22 kpc above the galactic plane are ionized by massive stars formed in situ outside the disk. For a subsample of supergiants, for which Hubble Space Telescope photometry is available, the flux-weighted gravity-luminosity relationship is used to determine a distance modulus of 26.85 ± 0.10 mag.

  3. The flux-weighted gravity-luminosity relationship of blue supergiant stars as a constraint for stellar evolution

    Science.gov (United States)

    Meynet, Georges; Kudritzki, Rolf-Peter; Georgy, Cyril

    2015-09-01

    Context. The flux-weighted gravity-luminosity relationship (FGLR) of blue supergiant stars (BSG) links their absolute magnitude to the spectroscopically determined flux-weighted gravity log g/T_text{eff ^4}. BSG are the brightest stars in the universe at visual light and the application of the FGLR has become a powerful tool for determining extragalactic distances. Aims: Observationally, the FGLR is a tight relationship with only small scatter. It is, therefore, ideal for using as a constraint for stellar evolution models. The goal of this work is to investigate whether stellar evolution can reproduce the observed FGLR and to develop an improved foundation for the FGLR as an extragalactic distance indicator. Methods: We used different grids of stellar models for initial masses between 9 and 40 M⊙ and for metallicities between Z = 0.002 and 0.014, with and without rotation, which were computed with various mass loss rates during the red supergiant phase. For each of these models, we discuss the details of post-main sequence evolution and construct theoretical FGLRs by means of population synthesis models that we then compare with the observed FGLR. Results: In general, the stellar evolution model FGLRs agree reasonably well with the observed one. There are, however, differences between the models, in particular with regard to the shape and width (scatter) in the flux-weighted gravity-luminosity plane. The best agreement is obtained with models that include the effects of rotation and assume that the large majority, if not all, of the observed BSG evolve toward the red supergiant phase and that only a few are evolving back from this stage. The effects of metallicity on the shape and scatter of the FGLR are small. Conclusions: The shape, scatter, and metallicity dependence of the observed FGLR are explained well by stellar evolution models. This provides a solid theoretical foundation for using this relationship as a robust extragalactic distance indicator.

  4. Near-Infrared Photometric Properties of Red Supergiant Stars in Neaby Galaxies: NGC 4214, NGC 4736 and M51

    Science.gov (United States)

    Jung, DooSeok; Chun, Sang-Hyun; Choudhury, Samyaday; Sohn, Young-Jong

    2017-01-01

    Red supergiant stars (RSGs) are post-main sequence phase of massive stars which can be easily resolved in nearby galaxies due to their bright luminosity as compared to the low-mass stars. RSGs are cool, and hence have a dominant light output at near-infrared (NIR) wavelengths. To investigate the photometric properties of RSGs in a few nearby galaxies, we observed NGC 4214, NGC 4736 and M51 by using the WFCAM detector mounted on the UKIRT telescope at Hawaii, and obtained the NIR (JHK bands) imaging data. After carrying out the photometry, the age ranges of RSGs in each galaxy were estimated by over-plotting PARSEC isochrones to the (J-K, K) colour-magnitude diagram: log(tyr) = 6.9 - 7.3 for NGC 4214; log(tyr) = 7.0 - 8.0 for NGC 4736; and log(tyr) = 6.7 - 6.9 for M51. The effective temperatures and luminosities of RSGs were calculated using MARCS synthetic fluxes, and these results were used to compare the properties of RSGs in Hertzsprung-Russell (H-R) diagram of dominant H II regions within each galaxy, over-plotted with PARSEC evolutionary tracks. The RSGs in NGC 4214 and NGC 4736 are found to have a mass of 9 M⊙ - 30 M⊙, and the maximum luminosities found to be almost constant with log(L/L⊙) = 5.6 - 5.7. However, the location of the RSGs in the H-R diagram are not consistent with the evolutionary tracks for M51.(Key Words: stars: massive - supergiants - galaxies: photometry - galaxies: stellar content - infrared: stars)

  5. The flux-weighted gravity-luminosity relationship of blue supergiant stars as a constraint for stellar evolution

    CERN Document Server

    Meynet, Georges; Georgy, Cyril

    2015-01-01

    (abridged) The flux-weighted gravity-luminosity relationship (FGLR) of blue supergiant stars (BSG) links their absolute magnitude to the spectroscopically determined flux-weighted gravity log g = Teff^4. BSG are the brightest stars in the universe at visual light and the application of the FGLR has become a powerful tool to determine extragalactic distances. Observationally, the FGLR is a tight relationship with only small scatter. It is, therefore, ideal to be used as a constraint for stellar evolution models. The goal of this work is to investigate whether stellar evolution can reproduce the observed FGLR and to develop an improved foundation of the FGLR as an extragalactic distance indicator. We use different grids of stellar models for initial masses between 9 and 40 Msun, for metallicities between Z = 0.002 and 0.014, with and without rotation, computed with various mass loss rates during the red supergiant phase. For each of these models we discuss the details of post-main sequence evolution and constru...

  6. HST Studies of the Chromospheres, Wind, and Mass-Loss Rates of Cool Giant and Supergiant Stars

    Science.gov (United States)

    Carpenter, Kenneth G.

    2000-01-01

    UV spectra of K-M giant and supergiant stars and of carbon stars have been acquired with the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope (HST). These spectra have been used to measure chromospheric flow and turbulent velocities, study the acceleration of their stellar winds, acquire constraints on their outer atmospheric structure, and enable estimates of their mass-loss rates. Results from our observations of the giant stars Gamma Dra (K5 III hybrid), Alpha Tau (K5 III), Gamma Cru (M3.4 III), Mu Gem (M3 IIIab), and 30 Her (MG III), the supergiants Alpha Ori (M2 Iab) and Lambda Vel (K5 Ib), and the carbon stars TX Psc (NO; C6,2) and TW Hor (NO; C7,2) will be summarized and compared. The high resolution and wavelength accuracy of these data have allowed the direct measurement of the acceleration of the stellar winds in the chromospheres of several of these stars (from initial velocities of 3-9 km/s to upper velocities of 15-25 km/s) and of the chromospheric macroturbulence (-25-35 km/s). The high signal-to-noise and large dynamic range of these spectra have allowed the detection and identification of numerous new emission features, including weak C IV emission indicative of hot transition-region plasma in the non-coronal giant Alpha Tau, many new fluorescent lines of Fe II, and the first detection of fluorescent molecular hydrogen emission and of Ca II recombination lines in the UV spectrum of a giant star. The UV spectrum of two carbon stars have been studied with unprecedented resolution and reveal extraordinarily complicated Mg II lines nearly smothered by circumstellar absorptions. Finally, comparison of synthetic UV emission line profiles computed with the Lamers et al. (1987) Sobolev with Exact Integration (SEI) code with observations of chromospheric emission lines overlain with wind absorption features provides estimates of the mass-loss rates for four of these stars.

  7. On the metallicity dependence of crystalline silicates in oxygen-rich asymptotic giant branch stars and red supergiants

    CERN Document Server

    Jones, O C; Sargent, B A; McDonald, I; Gielen, C; Woods, Paul M; Sloan, G C; Boyer, M L; Zijlstra, A A; Clayton, G C; Kraemer, K E; Srinivasan, S; Ruffle, P M E

    2012-01-01

    We investigate the occurrence of crystalline silicates in oxygen-rich evolved stars across a range of metallicities and mass-loss rates. It has been suggested that the crystalline silicate feature strength increases with increasing mass-loss rate, implying a correlation between lattice structure and wind density. To test this, we analyse Spitzer IRS and Infrared Space Observatory SWS spectra of 217 oxygen-rich asymptotic giant branch stars and 98 red supergiants in the Milky Way, the Large and Small Magellanic Clouds and Galactic globular clusters. These encompass a range of spectral morphologies from the spectrally-rich which exhibit a wealth of crystalline and amorphous silicate features to 'naked' (dust-free) stars. We combine spectroscopic and photometric observations with the GRAMS grid of radiative transfer models to derive (dust) mass-loss rates and temperature. We then measure the strength of the crystalline silicate bands at 23, 28 and 33 microns. We detect crystalline silicates in stars with dust ma...

  8. A grid of NLTE corrections for magnesium and calcium in late-type giant and supergiant stars: application to Gaia

    CERN Document Server

    Merle, Thibault; Pichon, Bernard; Bigot, Lionel

    2011-01-01

    We investigate NLTE effects for magnesium and calcium in the atmospheres of late-type giant and supergiant stars. The aim of this paper is to provide a grid of NLTE/LTE equivalent width ratios W/W* of Mg and Ca lines for the following range of stellar parameters: Teff in [3500, 5250] K, log g in [0.5, 2.0] dex and [Fe/H] in [-4.0, 0.5] dex. We use realistic model atoms with the best physics available and taking into account the fine structure. The Mg and Ca lines of interest are in optical and near IR ranges. A special interest concerns the lines in the Gaia spectrograph (RVS) wavelength domain [8470, 8740] A. The NLTE corrections are provided as function of stellar parameters in an electronic table as well as in a polynomial form for the Gaia/RVS lines.

  9. SOFIA-EXES Mid-IR Observations of [Fe II] Emission from the Extended Atmosphere of Betelgeuse

    Science.gov (United States)

    Harper, G. M.; DeWitt, C.; Richter, M. J.; Greathouse, T. K.; Ryde, N.; Guinan, E. F.; O’Gorman, E.; Vacca, W. D.

    2017-02-01

    We present a NASA-DLR SOFIA-Echelon Cross Echelle Spectrograph (EXES) and NASA Infrared Telescope Facility-Texas Echelon Cross Echelle Spectrograph (TEXES) mid-IR R≃ {{50,000}} spectral study of forbidden Fe ii transitions in the early-type M supergiants, Betelgeuse (α Ori: M2 Iab) and Antares (α Sco: M1 Iab + B3 V). With EXES, we spectrally resolve the ground term [Fe ii] 25.99 μm (a{}6{D}J=7/2{--9/2}: {E}{up}=540 K) emission from Betelgeuse. We find a small centroid blueshift of 1.9 ± 0.4 {km} {{{s}}}-1 that is a significant fraction (20%) of the current epoch wind speed, with a FWHM of 14.3 ± 0.1 {km} {{{s}}}-1. The TEXES observations of [Fe ii] 17.94 μm (a{}4{F}J=7/2-9/2: {E}{up}={{3400}} K) show a broader FWHM of 19.1 ± 0.2 {km} {{{s}}}-1, consistent with previous observations, and a small redshift of 1.6 ± 0.6 {km} {{{s}}}-1 with respect to the adopted stellar center-of-mass velocity of {V}{CoM}=20.9+/- 0.3 {km} {{{s}}}-1. To produce [Fe ii] 25.99 μm blueshifts of 20% wind speed requires that the emission arises closer to the star than existing thermal models for α Ori’s circumstellar envelope predict. This implies a more rapid wind cooling to below 500 K within 10{R}* ({θ }* =44 mas, dist = 200 pc) of the star, where the wind has also reached a significant fraction of the maximum wind speed. The line width is consistent with the turbulence in the outflow being close to the hydrogen sound speed. EXES observations of [Fe ii] 22.90 μm (a{}4{D}J=5/2{--7/2}: {E}{up}={{11,700}} K) reveal no emission from either star. These findings confirm the dominance of cool plasma in the mixed region where hot chromospheric plasma emits copiously in the UV, and they also constrain the wind heating produced by the poorly understood mechanisms that drive stellar outflows from these low variability and weak-dust signature stars.

  10. Abundance analysis of the supergiant stars HD 80057 and HD 80404 based on their UVES Spectra

    CERN Document Server

    Tanrıverdi, Taner

    2015-01-01

    This study presents elemental abundances of the early A-type supergiant HD 80057 and the late A-type supergiant HD80404. High resolution and high signal-to-noise ratio spectra published by the UVES Paranal Observatory Project (Bagnulo et al., 2003) were analysed to compute their elemental abundances using ATLAS9 (Kurucz, 1993, 2005; Sbordone et al., 2004). In our analysis we assumed local thermodynamic equilibrium. The atmospheric parameters of HD 80057 used in this study are from Firnstein & Przybilla (2012), and that of HD80404 are derived from spectral energy distribution, ionization equilibria of Cr I/II and Fe I/II, and the fits to the wings of Balmer lines and Paschen lines as Teff = 7700 +/- 150 K and log g=1.60 +/- 0.15 (in cgs). The microturbulent velocities of HD 80057 and HD 80404 have been determined as 4.3 +/- 0.1 and 2.2 +/- 0.7 km s^-1 . The rotational velocities are 15 +/-1 and 7 +/- 2 km s^-1 and their macroturbulence velocities are 24 +/-2 and 2+/-1 km s^-1 . We have given the abundances...

  11. e-MERLIN resolves Betelgeuse at wavelength 5 cm

    CERN Document Server

    Richards, A M S; Decin, L; Etoka, S; Harper, G M; Lim, J J; Garrington, S T; Gray, M D; McDonald, I; O'Gorman, E; Wittkowski, M

    2013-01-01

    Convection, pulsation and magnetic fields have all been suggested as mechanisms for the transport of mass and energy from the optical photosphere of red supergiants, out to the region where the stellar wind is launched. We imaged the red supergiant Betelgeuse at 0.06-0.18 arcsec resolution, using e-MERLIN at 5.5--6.0 GHz, with a sensitivity of ~0.01 mJy/beam. Most of the radio emission comes from within an ellipse (0.235x0.218) arcsec^2 (~5x the optical radius), with a flux density of 1.62 mJy, giving an average brightness temperature ~1250 K. This radio photosphere contains two hotspots of 0.53 and 0.79 mJy/beam, separated by 90 milli-arcsec, with brightness temperatures 5400+/-600 K and 3800+/-500 K. Similar hotspots, at more than double the distance from the photosphere of those seen in any other regime, were detected by the less-sensitive `old' MERLIN in 1992, 1995 and 1996 and many exceed the photospheric temperature of 3600 K. Such brightness temperatures are high enough to emanate from pockets of chrom...

  12. Evolved Massive Stars in the Local Group. I. Identification of Red Supergiants in NGC 6822, M31, and M33

    Science.gov (United States)

    Massey, Philip

    1998-07-01

    Knowledge of the red supergiant (RSG) population of nearby galaxies allows us to probe massive star evolution as a function of metallicity; however, contamination by foreground Galactic dwarfs dominates surveys for red stars in Local Group galaxies beyond the Magellanic Clouds. Model atmospheres predict that low-gravity supergiants will have B-V values that are redder by several tenths of a magnitude than foreground dwarfs at a given V-R color, a result that is largely independent of reddening. We conduct a BVR survey of several fields in the Local Group galaxies NGC 6822, M33, and M31 as well as neighboring control fields and identify RSG candidates from CCD photometry. The survey is complete to V = 20.5, corresponding to MV = -4.5 or an Mbol of -6.3 for the reddest stars. Follow-up spectroscopy at the Ca II triplet of 130 stars is used to demonstrate that our photometric criterion for identifying RSGs is highly successful (96% for stars brighter than V = 19.5; 82% for V = 19.5-20.5). Classification spectra are also obtained for a number of stars in order to calibrate color with spectral type empirically. We find that there is a marked progression in the average (B-V)0 and (V-R)0 colors of RSGs in these three galaxies, with the higher metallicity systems having a later average spectral type, which is consistent with previous findings by Elias, Frogel, & Humphreys for the Milky Way and Magellanic Clouds. More significantly, we find that there is a clear progression with metallicity in the relative number of the highest luminosity RSGs, a trend that is apparent both in absolute visual magnitude and in bolometric luminosity. Thus any use of RSGs as distance indicators requires correction for the metallicity of the parent galaxy. Our findings are in accord with the predictions of the ``Conti scenario'' in which higher metallicities result in higher mass-loss rates, resulting in a star of a given luminosity spending an increasing fraction of its He-burning lifetime as

  13. The supergiant shell with triggered star formation in Irr galaxy IC 2574: neutral and ionized gas kinematics

    CERN Document Server

    Egorov, O V; Moiseev, A V; Smirnov-Pinchukov, G V

    2014-01-01

    We analyse the ionized gas kinematics in the star formation regions of the supergiant shell (SGS) of the IC 2574 galaxy using observations with the Fabry-Perot interferometer at the 6-m telescope of SAO RAS; the data of the THINGS survey are used to analyze the neutral gas kinematics in the area. We perform the 'derotation' of the H-alpha and HI data cubes and show its efficiency in kinematics analysis. We confirm the SGS expansion velocity 25 km/s obtained by Walter & Brinks (1999) and conclude that the SGS is located at the far side of the galactic disc plane. We determine the expansion velocities, kinematic ages, and the required mechanical energy input rates for four star formation complexes in the walls of the SGS; for the remaining ones we give the limiting values of the above parameters. A comparison with the age and energy input of the complexes' stellar population shows that sufficient energy is fed to all HII regions except one. We discuss in detail the possible nature of this region and that of...

  14. Cold gas in hot star clusters: the wind from the red supergiant W26 in Westerlund 1

    CERN Document Server

    Mackey, Jonathan; Fossati, Luca; Langer, Norbert

    2015-01-01

    The massive red supergiant (RSG) W26 in Westerlund 1 is one of a growing number of RSGs shown to have winds that are ionized from the outside in. The fate of this dense wind material is important for models of second generation star formation in massive star clusters. Mackey et al. (2014) showed that external photoionization can stall the wind of RSGs and accumulate mass in a dense static shell. We use 1D R-HD simulations of an externally photoionized wind to predict the Halpha and [NII] emission arising from photoionized winds both with and without a dense shell. We analyse spectra of the Halpha and [NII] emission in the environment around W26 and compare them with predicted synthetic emission. Simulations of slow winds that are decelerated into a dense shell show strongly limb-brightened line emission, with line radial velocities that are independent of the wind speed. Faster winds (>22 km/s) do not form a dense shell, have less limb-brightening, and the line radial velocity is a good tracer of the wind spe...

  15. A spectroscopic study of blue supergiant stars in the Sculptor galaxy NGC 55: chemical evolution and distance

    CERN Document Server

    Kudritzki, Rolf; Castro, Norberto; Ho, I-Ting; Bresolin, Fabio; Gieren, Wolfgang; Pietrzynski, Grzegorz; Przybilla, Norbert

    2016-01-01

    Low resolution (4.5 to 5 Angstroem) spectra of 58 blue supergiant stars distributed over the disk of the Magellanic spiral galaxy NGC 55 in the Sculptor group are analyzed by means of non-LTE techniques to determine stellar temperatures, gravities and metallicities (from iron peak and alpha-elements). A metallicity gradient of -0.22 +/- 0.06$ dex/R_25 is detected. The central metallicity on a logarithmic scale relative to the Sun is [Z] = -0.37 +\\- 0.03. A chemical evolution model using the observed distribution of stellar and interstellar medium gas mass column densities reproduces the observed metallicity distribution well and reveals a recent history of strong galactic mass accretion and wind outflows with accretion and mass-loss rates of the order of the star formation rate. There is an indication of spatial inhomogeneity in metallicity. In addition, the relatively high central metallicity of the disk confirms that two extra-planar metal poor HII regions detected in previous work 1.13 to 2.22 kpc above th...

  16. NuSTAR detection of a cyclotron line in the supergiant fast X-ray transient IGR J17544-2619

    DEFF Research Database (Denmark)

    Bhalerao, Varun; Romano, Patrizia; Tomsick, John

    2015-01-01

    We present NuSTAR spectral and timing studies of the supergiant fast X-ray transient (SFXT) IGR J17544-2619. The spectrum is well described by an  ∼ 1 keV blackbody and a hard continuum component, as expected from an accreting X-ray pulsar. We detect a cyclotron line at 17 keV, confirming...... do not find any significant pulsations in the source on time-scales of 1-2000 s....

  17. The supergiant B[e] star LHA 115-S 18 - binary and/or luminous blue variable?

    Science.gov (United States)

    Clark, J. S.; Bartlett, E. S.; Coe, M. J.; Dorda, R.; Haberl, F.; Lamb, J. B.; Negueruela, I.; Udalski, A.

    2013-12-01

    Context. The mechanism by which supergiant (sg)B[e] stars support cool, dense dusty discs/tori and their physical relationship with other evolved, massive stars such as luminous blue variables is uncertain. Aims: In order to investigate both issues we have analysed the long term behaviour of the canonical sgB[e] star LHA 115-S 18. Methods: We employed the OGLE II-IV lightcurve to search for (a-)periodic variability and supplemented these data with new and historic spectroscopy. Results: In contrast to historical expectations for sgB[e] stars, S18 is both photometrically and spectroscopically highly variable. The lightcurve is characterised by rapid aperiodic "flaring" throughout the 16 years of observations. Changes in the high excitation emission line component of the spectrum imply evolution in the stellar temperature - as expected for luminous blue variables - although somewhat surprisingly, spectroscopic and photometric variability appears not to be correlated. Characterised by emission in low excitation metallic species, the cool circumstellar torus appears largely unaffected by this behaviour. Finally, in conjunction with intense, highly variable He ii emission, X-ray emission implies the presence of an unseen binary companion. Conclusions: S18 provides observational support for the putative physical association of (a subset of) sgB[e] stars and luminous blue variables. Given the nature of the circumstellar environment of S18 and that luminous blue variables have been suggested as supernovae progenitors, it is tempting to draw a parallel to the progenitors of SN1987A and SN2009ip. Moreover the likely binary nature of S18 strengthens the possibility that the dusty discs/tori that characterise sgB[e] stars are the result of binary-driven mass-loss; consequently such stars may provide a window on the short lived phase of mass-transfer in massive compact binaries. This work is partly based on observations collected at the European Southern Observatory (programme

  18. Luminous and Variable Stars in M31 and M33. IV. Luminous Blue Variables, Candidate LBVs, and the B[e] Supergiants; How to Tell Them Apart

    CERN Document Server

    Humphreys, Roberta M; Martin, John C; Weis, Kerstin; Hahn, David

    2016-01-01

    In this series of papers we have presented the results of a spectroscopic survey of luminous and variable stars in the nearby spirals M31 and M33. In this paper, we present spectroscopy of 132 additional luminous stars, variables, and emission line objects. Most of the stars have emission line spectra, including LBVs and candidate LBVs, Fe II emission line stars and the B[e] supergiants, and the warm hypergiants. Many of these objects are spectroscopically similar and are often confused with each other. With this large spectroscopic data set including various types of emission line stars, we examine their similarities and differences and propose the following criteria that can be used to help distinguish these stars in future work: 1. The B[e] supergiants have emission lines of [O I] and [Fe II] in their spectra. Most of the spectroscopically confirmed sgB[e] stars also have warm circumstellar dust in their SEDs. 2. Confirmed LBVs do not have the [O I] emission lines in their spectra. Some LBVs have [Fe II] e...

  19. The Mass-Loss Return from Evolved Stars to the Large Magellanic Cloud IV: Construction and Validation of a Grid of Models for Oxygen-Rich AGB Stars, Red Supergiants, and Extreme AGB Stars

    CERN Document Server

    Sargent, Benjamin A; Meixner, M

    2014-01-01

    To measure the mass loss from dusty oxygen-rich (O-rich) evolved stars in the Large Magellanic Cloud (LMC), we have constructed a grid of models of spherically-symmetric dust shells around stars with constant mass-loss rates using 2Dust. These models will constitute the O-rich model part of the "Grid of Red supergiant and Asymptotic giant branch star ModelS" (GRAMS). This model grid explores 4 parameters - stellar effective temperature from 2100 K - 4700 K; luminosity from 10^3-10^6 L_Sun; dust shell inner radii of 3, 7, 11, and 15 R_Star; and 10.0 micron optical depth from 10^-4 to 26. From an initial grid of ~1200 2Dust models, we create a larger grid of ~69,000 models by scaling to cover the luminosity range required by the data. These models are offered to the public on a website. The matching in color-magnitude diagrams and color-color diagrams to observed O-rich asymptotic giant branch (AGB) and red supergiant (RSG) candidate stars from the SAGE and SAGE-Spec LMC samples and a small sample of OH/IR star...

  20. Pre-supernova outbursts via wave heating in massive stars - I. Red supergiants

    Science.gov (United States)

    Fuller, Jim

    2017-09-01

    Early observations of supernovae (SNe) indicate that enhanced mass-loss and pre-SN outbursts may occur in progenitors of many types of SNe. We investigate the role of energy transport via waves driven by vigorous convection during late-stage nuclear burning of otherwise typical 15 M⊙ red supergiant SN progenitors. Using mesa stellar evolution models including 1D hydrodynamics, we find that waves carry ∼107 L⊙ of power from the core to the envelope during core neon/oxygen burning in the final years before core collapse. The waves damp via shocks and radiative diffusion at the base of the hydrogen envelope, which heats up fast enough to launch a pressure wave into the overlying envelope that steepens into a weak shock near the stellar surface, causing a mild stellar outburst and ejecting a small (≲1 M⊙) amount of mass at low speed (≲50 km s-1) roughly one year before the SN. The wave heating inflates the stellar envelope but does not completely unbind it, producing a non-hydrostatic pre-SN envelope density structure different from prior expectations. In our models, wave heating is unlikely to lead to luminous Type IIn SNe, but it may contribute to flash-ionized SNe and some of the diversity seen in II-P/II-L SNe.

  1. VizieR Online Data Catalog: OB and Supergiants stars in LMC (Philip+, 1979)

    Science.gov (United States)

    Philip, A. G. Davis; Sanduleak, N.

    2017-07-01

    An objective-prism survey of the LMC was made with the Lichigan Curtis Schmidt Telescope at the Cerro Tololo Inter-American Observatory. The prims gives a dispersion of 136nm/mm at Hγ and covers the spectral range 330-540nm when used with nitrogen baked, IIIa-J plates. The 60-min exposuers reach stars of apparent magnitude ~16. Accurate positions and more reliable photometry of the stars were added in July 2017, using the finding charts of the authors, and the Aladin tool (Bonnarel et al. 2000A&AS..143...33B) In addition, accurate positions of the B stars in Field 39 as given by Shobbrook and Visvanathan (1987MNRAS.225..947S, Table A1) are presented in the file "pl39.dat". (3 data files).

  2. The cool supergiant population of the massive young star cluster RSGC1

    NARCIS (Netherlands)

    Davies, B.; Figer, D.F.; Law, C.J.; Kudritzki, R.-P.; Najarro, F.; Herrero, A.; MacKenty, J.W.

    2008-01-01

    We present new high-resolution near-IR spectroscopy and OH maser observations to investigate the population of cool luminous stars of the young massive Galactic cluster RSGC1. Using the 2.293 mu m CO band-head feature, we make high-precision radial velocity measurements of 16 of the 17 candidate red

  3. The Jet from MWC 137 Points at a Supergiant B[e] Star in a Binary

    Science.gov (United States)

    Mehner, A.; de Wit, W. J.; Groh, J. H.; Oudmaijer, R. D.; Baade, D.; Rivinius, Th.; Selman, F.; Boffin, H. M. J.; Martayan, C.

    2017-02-01

    The Galactic B[e] star MWC 137 is a prime example of an object with an uncertain evolutionary classification. Previous work has suggested that is either a pre- or a post-main sequence object. Integral field spectrograph observations with the Very Large Telescope Multi Unit Spectroscopic Explorer (VLT MUSE) of the host cluster SH 2-266 are used to provide a reliable evolutionary classification. The MUSE data also allowed the discovery of a large collimated outflow, geometrically centered on MWC 137. A color-magnitude diagram analysis of the cluster promotes strongly a post-main sequence stage for MWC 137, while the existence of a jet implies the presence of an accretion disk. A SWIFT X-ray source, which may be associated with MWC 137, hints at the possibility of a neutron star companion.

  4. HD 179821 (V1427 Aql, IRAS 19114+0002) -- A Massive Post-Red Supergiant Star?

    CERN Document Server

    Sahin, Timur; Klochkova, Valentina G; Panchuk, Vladimir E

    2016-01-01

    We have derived elemental abundances of a remarkable star, HD 179821, with unusual composition (e.g. [Na/Fe]=1.0$\\pm$0.2 dex) and extra-ordinary spectral characteristics. Its metallicity at [Fe/H]=0.4 dex places it among the most metal-rich stars yet analyzed. The abundance analysis of this luminous star is based on high resolution and high quality (S/N$\\approx$120--420) optical echelle spectra from McDonald Observatory and Special Astronomy Observatory. The data includes five years of observations over twenty-one epochs. Standard 1D {\\sc LTE} analysis provides a fresh determination of the atmospheric parameters over all epochs: \\Teff = 7350$\\pm$200 \\kelvin, \\logg = +0.6$\\pm$0.3, and a microturbulent velocity $\\xi =$ 6.6$\\pm$1.6 km s$^{\\rm -1}$ and [Fe/H] = 0.4$\\pm$0.2, and a carbon abundance [C/Fe]= $-$0.19$\\pm$0.30. We find oxygen abundance [O/Fe]= $-$0.25$\\pm$0.28 and an enhancement of 0.9 dex in N. A supersonic macroturbulent velocity of 22.0 $\\pm$ 2.0 km s$^{\\rm -1}$ is determined from both strong and we...

  5. NuSTAR Detection Of A Cyclotron Line In The Supergiant Fast X-ray Transient IGR J17544-2619

    CERN Document Server

    Bhalerao, Varun; Tomsick, John; Natalucci, Lorenzo; Smith, David M; Bellm, Eric; Boggs, Steven E; Chakrabarty, Deepto; Christensen, Finn E; Craig, William W; Fuerst, Felix; Hailey, Charles J; Harrison, Fiona A; Krivonos, Roman A; Lu, Ting-Ni; Madsen, Kristin; Stern, Daniel; Younes, George; Zhang, William

    2014-01-01

    We present NuSTAR spectral and timing studies of the Supergiant Fast X-ray Transient (SFXT) IGR J17544-2619. The spectrum is well-described by a ~1 keV blackbody and a hard continuum component, as expected from an accreting X-ray pulsar. We detect a cyclotron line at 17 keV, confirming that the compact object in IGR J17544-2619 is indeed a neutron star. This is the first measurement of the magnetic field in a SFXT. The inferred magnetic field strength, B = (1.45 +/- 0.03) * 10^12 G * (1+z) is typical of neutron stars in X-ray binaries, and rules out a magnetar nature for the compact object. We do not find any significant pulsations in the source on time scales of 1-2000 s.

  6. Kepler sheds new and unprecedented light on the variability of a blue supergiant: Gravity waves in the O9.5Iab star HD 188209

    Science.gov (United States)

    Aerts, C.; Símon-Díaz, S.; Bloemen, S.; Debosscher, J.; Pápics, P. I.; Bryson, S.; Still, M.; Moravveji, E.; Williamson, M. H.; Grundahl, F.; Fredslund Andersen, M.; Antoci, V.; Pallé, P. L.; Christensen-Dalsgaard, J.; Rogers, T. M.

    2017-06-01

    Stellar evolution models are most uncertain for evolved massive stars. Asteroseismology based on high-precision uninterrupted space photometry has become a new way to test the outcome of stellar evolution theory and was recently applied to a multitude of stars, but not yet to massive evolved supergiants.Our aim is to detect, analyse and interpret the photospheric and wind variability of the O9.5 Iab star HD 188209 from Kepler space photometry and long-term high-resolution spectroscopy. We used Kepler scattered-light photometry obtained by the nominal mission during 1460 d to deduce the photometric variability of this O-type supergiant. In addition, we assembled and analysed high-resolution high signal-to-noise spectroscopy taken with four spectrographs during some 1800 d to interpret the temporal spectroscopic variability of the star. The variability of this blue supergiant derived from the scattered-light space photometry is in full in agreement with the one found in the ground-based spectroscopy. We find significant low-frequency variability that is consistently detected in all spectral lines of HD 188209. The photospheric variability propagates into the wind, where it has similar frequencies but slightly higher amplitudes. The morphology of the frequency spectra derived from the long-term photometry and spectroscopy points towards a spectrum of travelling waves with frequency values in the range expected for an evolved O-type star. Convectively-driven internal gravity waves excited in the stellar interior offer the most plausible explanation of the detected variability. Based on photometric observations made with the NASA Kepler satellite and on spectroscopic observations made with four telescopes: the Nordic Optical Telescope operated by NOTSA and the Mercator Telescope operated by the Flemish Community, both at the Observatorio del Roque de los Muchachos (La Palma, Spain) of the Instituto de Astrofísica de Canarias, the T13 2.0 m Automatic Spectroscopic

  7. The Yellow and Red Supergiants of M33

    CERN Document Server

    Drout, Maria R; Meynet, Georges

    2012-01-01

    Yellow and red supergiants are evolved massive stars whose numbers and locations on the HR diagram can provide a stringent test for models of massive star evolution. Previous studies have found large discrepancies between the relative number of yellow supergiants observed as a function of mass and those predicted by evolutionary models, while a disagreement between the predicted and observed locations of red supergiants on the HR diagram was only recently resolved. Here we extend these studies by examining the yellow and red supergiant populations of M33. Unfortunately, identifying these stars is difficult as this portion of the color-magnitude diagram is heavily contaminated by foreground dwarfs. We identify the red supergiants through a combination of radial velocities and a two-color surface gravity discriminant and, after re-characterizing the rotation curve of M33 with our newly selected red supergiants, we identify the yellow supergiants through a combination of radial velocities and the strength of the...

  8. Post-Merger Evolution of Betelgeuse

    Science.gov (United States)

    Sullivan, James; Wheeler, J. Craig; Nance, Sarafina; Diaz, Manuel

    2017-01-01

    Betelgeuse appears to rotate anomalously rapidly. One possible explanation is that if merged with a companion of about 1 solar mass when it evolved up the Hyashi track to become a red giant. We have used the MESA evolutionary code to explore the effects of such a merger. We have added a solar mass of matter with angular momentum corresponding to the Keplerian angular velocity at the current radius of Betelgeuse and then followed the evolution of that mass and angular momentum. A wave of angular momentum propagates in toward the core where it is stalled by the composition barrier at the boundary with the helium core. There is also a rearrangement of the envelope material that results in a decrease in the surface gravity, yielding a result in closer agreement with observations than either non-rotating models or models evolved from rotating ZAMS models.

  9. XMM-Newton and NuSTAR joint observation of the periodic Supergiant Fast X-ray Transient IGR J11215-5952

    Science.gov (United States)

    Sidoli, L.; Paizis, A.; Sguera, V.

    2016-06-01

    IGRJ11215-5952 is the only Supergiant Fast X-ray Transient showing periodic outbursts (every 165 days, the orbital period of the system). The driving mechanism causing the transient X-ray emission in this sub-class of High Mass X-ray Binaries is still a matter of debate, after 10 years from the discovery of the class. To disentangle between magnetar-like neutron stars from models requiring more usual neutron star magnetic fields (1E12G), we observed the SFXT pulsar IGRJ11215-5952 with XMM-Newton coordinated with NuSTAR on 2016, February 14, during the expected peak of the outburst, for a net exposure time of 20 ks. The source was indeed caught in outburst (1E36 erg/s), with several bright flares repeating quasi-periodically with timescales of a few thousand seconds, spanning a dynamic range of two orders of magnitude. The overlapping observation with both XMM-Newton and NuSTAR enabled the study of the simultaneous broad band spectrum from 0.3 to 78 keV. The work is still in progress, given the extreme variability of the X-ray emission. X-ray pulsations were detected at 187.14 s, consistent with the last XMM-Newton observation, performed in 2007. We will discuss XMM+NuSTAR results in light of the different models proposed to explain the SFXTs behavior.

  10. The close circumstellar environment of Betelgeuse. IV. VLTI/PIONIER interferometric monitoring of the photosphere

    CERN Document Server

    Montargès, M; Perrin, G; Chiavassa, A; Bouquin, J B Le; Aurière, M; López-Ariste, A; Mathias, P; Ridgway, S T; Lacour, S; Haubois, X; Berger, J P

    2016-01-01

    Context. The mass-loss mechanism of cool massive evolved stars is poorly understood. The proximity of Betelgeuse makes it an appealing target to study its atmosphere, map the shape of its envelope, and follow the structure of its wind from the photosphere out to the interstellar medium. Aims. A link is suspected between the powerful convective motions in Betelgeuse and its mass loss. We aim to constrain the spatial structure and temporal evolution of the convective pattern on the photosphere and to search for evidence of this link. Methods. We report new interferometric observations in the infrared H band using the VLTI/PIONIER instrument. We monitored the photosphere of Betelgeuse between 2012 January and 2014 November to look for evolutions that may trigger the outflow. Results. Our interferometric observations at low spatial frequencies are compatible with the presence of a hot spot on the photosphere that has a characteristic width of one stellar radius. It appears to be superposed on the smaller scale co...

  11. Near-infrared counterparts to Chandra X-ray sources toward the Galactic Center. II. Discovery of Wolf-Rayet stars and O supergiants

    CERN Document Server

    Mauerhan, Jon C; Morris, Mark R; Stolovy, Susan R; Cotera, Angela S

    2009-01-01

    We present new identifications of infrared counterparts to the population of hard X-ray sources near the Galactic center detected by the Chandra X-ray Observatory. We have confirmed 16 new massive stellar counterparts to the X-ray population, including nitrogen-type (WN) and carbon-type (WC) Wolf-Rayet stars, and O supergiants. For the majority of these sources, the X-ray photometry is consistent with thermal emission from plasma having temperatures in the range of kT=1-8 keV or non-thermal emission having power-law indices in the range of -1stars but are typical of massive binaries, in which the high-energy emission is generated by the collision of supersonic winds, or by accretion onto a compact companion. However, the possibility of intrinsic hard X-ray generation from...

  12. NuSTAR observations of the supergiant X-ray pulsar IGR J18027-2016: accretion from the stellar wind and possible cyclotron absorption line

    CERN Document Server

    Lutovinov, A; Postnov, K; Krivonos, R; Molkov, S; Tomsick, J

    2016-01-01

    We report on the first focused hard X-ray view of the absorbed supergiant system IGRJ18027-2016 performed with the NuSTAR observatory. The pulsations are clearly detected with a period of P_{spin}=139.866(1) s and a pulse fraction of about 50-60% at energies from 3 to 80 keV. The source demonstrates an approximately constant X-ray luminosity on a time scale of more than dozen years with an average spin-down rate of dP/dt~6x10^{-10} s/s. This behaviour of the pulsar can be explained in terms of the wind accretion model in the settling regime. The detailed spectral analysis at energies above 10 keV was performed for the first time and revealed a possible cyclotron absorption feature at energy ~23 keV. This energy corresponds to the magnetic field B~3x10^{12} G at the surface of the neutron star, which is typical for X-ray pulsars.

  13. The identification of extreme asymptotic giant branch stars and red supergiants in M33 with 24 μm variability

    Energy Technology Data Exchange (ETDEWEB)

    Montiel, Edward J.; Clayton, Geoffrey C.; Johnson, Christopher B. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Srinivasan, Sundar [Academica Sinica, Institute of Astronomy and Astrophysics, PO Box 23-141, Taipei 10617, Taiwan, R. O. C. (China); Engelbracht, Charles W., E-mail: emonti2@lsu.edu [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2015-02-01

    We present the first detection of 24 μm variability in 24 sources in the Local Group galaxy M33. These results are based on 4 epochs of Multiband Imaging Photometer for Spitzer observations, which are irregularly spaced over ∼750 days. We find that these sources are constrained exclusively to the Holmberg radius of the galaxy, which increases their chances of being members of M33. We have constructed spectral energy distributions (SEDs) ranging from the optical to the submillimeter to investigate the nature of these objects. We find that 23 of our objects are most likely heavily self-obscured, evolved stars, while the remaining source is the Giant H ii region, NGC 604. We believe that the observed variability is the intrinsic variability of the central star reprocessed through their circumstellar dust shells. Radiative transfer modeling was carried out to determine their likely chemical composition, luminosity, and dust production rate (DPR). As a sample, our modeling has determined an average luminosity of (3.8±0.9)×10{sup 4} L{sub ⊙} and a total DPR of (2.3±0.1)×10{sup −5} M{sub ⊙} yr{sup −1}. Most of the sources, given the high DPRs and short wavelength obscuration, are likely extreme asymptotic giant branch (XAGB) stars. Five of the sources are found to have luminosities above the classical AGB limit (M{sub bol} <−7.1 mag, L > 54,000 L{sub ⊙}), which classifies them as probable red supergiants (RSGs). Almost all of the sources are classified as oxygen-rich. As also seen in the LMC, a significant fraction of the dust in M33 is produced by a handful of XAGB and RSG stars.

  14. Discovery and Characterization of Luminous Blue Variables, Wolf-Rayet Stars, and Massive Supergiants and Their Shells Using Spitzer, WISE, and Herschel Data

    Science.gov (United States)

    Stringfellow, Guy

    The extensive WISE all-sky 12 and 22 micron survey data, the Herschel PACS and SPIRE imaging archive (including the GTO and OT Key Programs), as well as the Spitzer IRAC 8 and MIPS 24 micron imaging archival data (GO, GTO, and Legacy Surveys) are being mined for the discovery of new shell and ring-nebulae. Combined with 2MASS data, the progenitor stars are also being identified, and optical and near-IR spectroscopy obtained to confirm their spectral types. Origin of the nebulae arise from a variety of progenitors that include very massive stars, with the vast majority not having been previously identified. Representative classes for the progenitor stars are Luminous Blue Variables (LBVs), Wolf-Rayet (WR), B[e], OB, and Supergiant stars. The discovery potential for these rare massive evolved stars from the mid-IR imaging archives is greater than any other technique utilized over the past several decades, including extensive broadband infrared photometry-color determinations (Hadfield et al. 2007), and near-IR narrowband methods (Shara et al. 2009). The statistics being provided on this new, previously hidden population of evolved stars may very well enable evolutionary pathways to be better delineated, thereby identifying the physics operating in these extreme stars. The data being collected will more tightly define the evolutionary models that apply to these stars, and that enter into modeling and interpretation of extragalactic massive star formation regions (starbursts). Multi-wavelength color-color maps wil be constructed and used to analyze the dust distribution, the energetics of the nebulae and its interaction with the ISM, and identification of nearby star formation perhaps being triggered by the massive stars and the nebulae they produce. As demonstrated in a recent publication presenting the discovery and analysis of two new candidate LBVs found in the early WISE data release (Gvaramadze et al. 2012), much discovery potential yet resides within the

  15. Red supergiants and stellar evolution

    CERN Document Server

    Ekström, Sylvia; Meynet, Georges; Groh, Jose; Granada, Anahí

    2013-01-01

    We review the significant role played by red supergiants (RSGs) in stellar populations, and some challenges and questions they raise for theoretical stellar evolution. We present how metallicity and rotation modify the way stars go to the red part of the Hertzsprung- Russell diagram or come back from it, and how RSGs might keep a trace of their main-sequence evolution. We compare theoretical popu- lation ratios with observed ones.

  16. An Updated 2017 Astrometric Solution for Betelgeuse

    Science.gov (United States)

    Harper, G. M.; Brown, A.; Guinan, E. F.; O'Gorman, E.; Richards, A. M. S.; Kervella, P.; Decin, L.

    2017-07-01

    We provide an update for the astrometric solution for the Type II supernova progenitor Betelgeuse using the revised Hipparcos Intermediate Astrometric Data (HIAD) of van Leeuwen, combined with existing VLA and new e-MERLIN and ALMA positions. The 2007 Hipparcos refined abscissa measurements required the addition of so-called Cosmic Noise of 2.4 mas to find an acceptable 5-parameter stochastic solution. We find that a measure of radio Cosmic Noise should also be included for the radio positions because surface inhomogeneities exist at a level significant enough to introduce additional intensity centroid uncertainty. Combining the 2007 HIAD with the proper motions based solely on the radio positions leads to a parallax of π =5.27+/- 0.78 mas ({190}-25+33 pc), smaller than the Hipparcos 2007 value of 6.56 ± 0.83 mas ({152}-17+22 pc). Furthermore, combining the VLA and new e-MERLIN and ALMA radio positions with the 2007 HIAD, and including radio Cosmic Noise of 2.4 mas, leads to a nominal parallax solution of 4.51 ± 0.80 mas ({222}-34+48 pc), which, while only 0.7σ different from the 2008 solution of Harper et al., is 2.6σ different from the solution of van Leeuwen. An accurate and precise parallax for Betelgeuse is always going to be difficult to obtain because it is small compared to the stellar angular diameter (θ =44 mas). We outline an observing strategy utilizing future mm and sub-mm high-spatial resolution interferometry that must be used if substantial improvements in the precision and accuracy of the parallax and distance are to be achieved.

  17. Yellow and Red Supergiants in the Large Magellanic Cloud

    CERN Document Server

    Neugent, Kathryn F; Skiff, Brian; Meynet, Georges

    2012-01-01

    Due to their transitionary nature, yellow supergiants provide a critical challenge for evolutionary modeling. Previous studies within M31 and the SMC show that the Geneva evolutionary models do a poor job at predicting the lifetimes of these short-lived stars. Here we extend this study to the LMC while also investigating the galaxy's red supergiant content. This task is complicated by contamination by Galactic foreground stars that color and magnitude criteria alone cannot weed out. Therefore, we use proper motions and the LMC's large systemic radial velocity (\\sim278 km/s) to separate out these foreground dwarfs. After observing nearly 2,000 stars, we identified 317 probable yellow supergiants, 6 possible yellow supergiants and 505 probable red supergiants. Foreground contamination of our yellow supergiant sample was \\sim80%, while that of the the red supergiant sample was only 3%. By placing the yellow supergiants on the H-R diagram and comparing them against the evolutionary tracks, we find that new Geneva...

  18. Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles - II. CO line survey of evolved stars: derivation of mass-loss rate formulae

    CERN Document Server

    De Beck, E; de Koter, A; Justtanont, K; Verhoelst, T; Kemper, F; Menten, K M M

    2010-01-01

    We aim to (1) set up simple and general analytical expressions to estimate mass-loss rates of evolved stars, and (2) from those calculate estimates for the mass-loss rates of asymptotic giant branch (AGB), red supergiant (RSG), and yellow hypergiant stars in our galactic sample. Rotationally excited lines of CO are a very robust diagnostic in the study of circumstellar envelopes (CSEs). When sampling different layers of the CSE, observations of these molecular lines lead to detailed profiles of kinetic temperature, expansion velocity, and density. A state-of-the-art, nonlocal thermal equilibrium, and co-moving frame radiative transfer code that predicts CO line intensities in the CSEs of late-type stars is used in deriving relations between stellar and molecular-line parameters, on the one hand, and mass-loss rate, on the other. We present analytical expressions for estimating the mass-loss rates of evolved stellar objects for 8 rotational transitions of the CO molecule, apply them to our extensive CO data se...

  19. The Identification of Extreme Asymptotic Giant Branch Stars and Red Supergiants in M33 by 24 {\\mu}m Variability

    CERN Document Server

    Montiel, Edward J; Clayton, Geoffrey C; Engelbracht, Charles W; Johnson, Christopher B

    2014-01-01

    We present the first detection of 24 {\\mu}m variability in 24 sources in the Local Group galaxy M33. These results are based on 4 epochs of MIPS observations, which are irregularly spaced over ~750 days. We find that these sources are constrained exclusively to the Holmberg radius of the galaxy, which increases their chances of being members of M33. We have constructed spectral energy distributions (SEDs) ranging from the optical to the sub-mm to investigate the nature of these objects. We find that 23 of our objects are most likely heavily self-obscured, evolved stars; while the remaining source is the Giant HII region, NGC 604. We believe that the observed variability is the intrinsic variability of the central star reprocessed through their circumstellar dust shells. Radiative transfer modeling was carried out to determine their likely chemical composition, luminosity, and dust production rate (DPR). As a sample, our modeling has determined an average luminosity of (3.8 $\\pm$ 0.9) x 10$^4$ L$_\\odot$ and a ...

  20. New perspectives on red supergiants

    Science.gov (United States)

    Dorda, R.; Negueruela, I.; González-Fernández, C.; Tabernero H. M.

    2017-03-01

    There is a high interest in cool supergiants (CSGs), because they play a key role in the understanding of the evolution and death of massive stars: most high-mass stars pass through this phase at some point of their evolution, and the physical conditions during it will determine their subsequent evolution. In addition, these stars are a powerful high-mass stellar formation tracers and also the main progenitors of core-collapse supernovae (SNe). Despite this, they are poorly characterized in some aspects: their extreme sizes and peculiar conditions defy the predictions of present-day atmospheric and evolutionary models. To bring perspective to this topic, we investigate the behaviour of CSGs as a population. For this, we studied the largest homogeneous multiepoch spectroscopic sample of CSGs (from the SMC and LMC) to date (>500). Our results give a new global view about the physical conditions of CSGs and their evolution

  1. The effects of red supergiant mass loss on supernova ejecta and the circumburst medium

    CERN Document Server

    van Loon, Jacco Th

    2009-01-01

    Massive stars becoming red supergiants lose a significant amount of their mass during that brief evolutionary phase. They then either explode as a hydrogen-rich supernova (SN Type II), or continue to evolve as a hotter supergiant (before exploding). The slow, dusty ejecta of the red supergiant will be over-run by the hot star wind and/or SN ejecta. I will present estimates of the conditions for this interaction and discuss some of the implications.

  2. Luminous and Variable Stars in M31 and M33. II. Luminous Blue Variables, Candidate LBVs, Fe II Emission Line Stars, and Other Supergiants

    CERN Document Server

    Humphreys, Roberta M; Davidson, Kris; Bomans, D J; Burggraf, Birgitta

    2014-01-01

    An increasing number of non-terminal eruptions are being found in the numerous surveys for optical transients. Very little is known about these giant eruptions, their progenitors and their evolutionary state. A greatly improved census of the likely progenitor class, including the most luminous evolved stars, the Luminous Blue Varaibles (LBVs), and the warm and cool hypergiants is now needed for a complete picture of the final pre-SN stages of very massive stars. We have begun a survey of the evolved and un stable luminous star populations in several nearby resolved galaxies. In this second paper on M31 and M33, we review the spectral characteristics, spectral energy distributions, circumstellar ejecta, and evidence for mass loss for 82 luminous and variable stars.We show that many of these stars have warm circumstellar dust including several of the Fe II emission line stars, but conclude that the confirmed LBVs in M31 and M33 do not. The confirmed LBVs have relatively low wind speeds even in their hot, quiesc...

  3. Gaia TGAS search for Large Magellanic Cloud runaway supergiant stars:Candidate hypervelocity star discovery, and the nature of R71

    CERN Document Server

    Lennon, Daniel J; Lerate, Mercedes Ramos; O'Mullane, William; Sahlmann, Johannes

    2016-01-01

    We search for runaway stars in the Large Magellanic Cloud (LMC) by computing the space velocities of the visually brightest stars in the LMC that are included in the Gaia TGAS proper motion catalog. We compare with predictions from stellar dynamical models to obtain (peculiar) velocities relative to their local stellar environment. Two of the 31 stars have unusually high proper motions. Of the remaining 29 stars we find that most objects in this sample have velocities in very good agreement with model predictions of a circularly rotating disk model. Indeed the excellent fit to the model implies that the TGAS uncertainty estimates are likely overestimated. The fastest outliers in this subsample contain the LBV R71 and a few other well known emission line objects though in no case do we derive velocities consistent with fast (~100 km/s) runaways. Our results imply that R 71 in particular has a moderate deviation from the local stellar velocity field (40 km/s) lending support to the proposition that this object ...

  4. The Red Supergiant Content of M31

    CERN Document Server

    Massey, Philip

    2016-01-01

    We investigate the red supergiant (RSG) population of M31, obtaining radial velocities of 255 stars. These data substantiate membership of our photometrically-selected sample, demonstrating that Galactic foreground stars and extragalactic RSGs can be distinguished on the basis of B-V, V-R two-color diagrams. In addition, we use these spectra to measure effective temperatures and assign spectral types, deriving physical properties for 192 RSGs. Comparison with the solar-metallicity Geneva evolutionary tracks indicates astonishingly good agreement. The most luminous RSGs in M31 are likely evolved from 25-30 Mo stars, while the vast majority evolved from stars with initial masses of 20 Mo or less. There is an interesting bifurcation in the distribution of RSGs with effective temperatures that increases with higher luminosities, with one sequence consisting of early K-type supergiants, and with the other consisting of M-type supergiants that become later (cooler) with increasing luminosities. This separation is o...

  5. Core Hydrogen Burning Red Supergiants in the Young Globular Clusters

    Science.gov (United States)

    Szecsi, Dorottya; Mackey, Jonathan; Langer, Norbert

    2015-08-01

    The first stellar generation in galactic globular clusters contained massive low metallicity stars. We modelled the evolution of this massive stellar population and found that such stars with masses 100-600 Msun evolve into red supergiants. These red supergiants are particularly interesting because they spend not only the helium burning phase but even the last few hundres tousands of years of the core hydrogen burning phase on the RSG branch. Due to the presence of hot massive stars at the same time, we show that the RSG wind is trapped into photoionization confined shells. We simulate the shell formation around such red supergiants and find them to become gravitationally unstable. We propose a scenario in which these shells are responsible for the formation of the second generation low mass stars in globular clusters with anomalous surface abundances.

  6. Ülihiidtäht Betelgeuse kaotab massi / Jüri Ivask

    Index Scriptorium Estoniae

    Ivask, Jüri, 1961-

    2009-01-01

    Betelgeuse, heleduselt teine täht Orioni tähtkujus, on punane ülihiid - üks suurimaid tähti, mida teatakse. Olles vaid mõne miljoni aasta vanune, läheneb Betelgeuse juba oma eluea lõpule ning peab peagi plahvatama supernoovana

  7. Mining the HST Treasury: The ASTRAL Reference Spectra for Evolved M Stars

    Science.gov (United States)

    Carpenter, K. G.; Ayres, T.; Harper, G.; Kober, G.; Wahlgren, G. M.

    2012-01-01

    The "Advanced Spectral Library (ASTRAL) Project: Cool Stars" (PI = T. Ayres) is an HST Cycle 18 Treasury Program designed to collect a definitive set of representative, high-resolution (R greater than 100,000) and high signal/noise (S/N greater than 100) UV spectra of eight F-M evolved cool stars. These extremely high-quality STIS UV echelle spectra are available from the HST archive and through the University of Colorado (http://casa.colorado.edu/ayres/ASTRAL/) portal and will enable investigations of a broad range of problems -- stellar, interstellar. and beyond -- for many years. In this current paper, we concentrate on producing a roadrnap to the very rich spectra of the two evolved M stars in the sample, the M3.4 giant Gamma Crucis (GaCrux) and the M2Iab supergiant Alpha Orionis (Betelgeuse) and illustrate the huge increase in coverage and quality that these spectra provide over that previously available from IUE and earlier HST observations. These roadmaps will facilitate the study of the spectra, outer atmospheres, and winds of not only these stars. but also numerous other cool, low-gravity stars and make a very interesting comparison to the already-available atlases of the K2III giant Arcturus.

  8. Temporal Evolution of the Size and Temperature of Betelgeuse's Extended Atmosphere

    CERN Document Server

    O'Gorman, Eamon; Brown, Alexander; Guinan, Edward F; Richards, Anita M S; Vlemmings, Wouter; Wasatonic, Richard

    2015-01-01

    We use the Very Large Array (VLA) in the A configuration with the Pie Town (PT) Very Long Baseline Array (VLBA) antenna to spatially resolve the extended atmosphere of Betelgeuse over multiple epochs at 0.7, 1.3, 2.0, 3.5, and 6.1 cm. The extended atmosphere deviates from circular symmetry at all wavelengths while at some epochs we find possible evidence for small pockets of gas significantly cooler than the mean global temperature. We find no evidence for the recently reported e-MERLIN radio hotspots in any of our multi-epoch VLA/PT data, despite having sufficient spatial resolution and sensitivity at short wavelengths, and conclude that these radio hotspots are most likely interferometric artefacts. The mean gas temperature of the extended atmosphere has a typical value of 3000 K at 2 $R_{\\star}$ and decreases to 1800 K at 6 $R_{\\star}$, in broad agreement with the findings of the single epoch study from Lim et al. (1998). The overall temperature profile of the extended atmosphere between $2 R_{\\star} \\less...

  9. Supernova shock breakout from a red supergiant.

    Science.gov (United States)

    Schawinski, Kevin; Justham, Stephen; Wolf, Christian; Podsiadlowski, Philipp; Sullivan, Mark; Steenbrugge, Katrien C; Bell, Tony; Röser, Hermann-Josef; Walker, Emma S; Astier, Pierre; Balam, Dave; Balland, Christophe; Carlberg, Ray; Conley, Alex; Fouchez, Dominique; Guy, Julien; Hardin, Delphine; Hook, Isobel; Howell, D Andrew; Pain, Reynald; Perrett, Kathy; Pritchet, Chris; Regnault, Nicolas; Yi, Sukyoung K

    2008-07-11

    Massive stars undergo a violent death when the supply of nuclear fuel in their cores is exhausted, resulting in a catastrophic "core-collapse" supernova. Such events are usually only detected at least a few days after the star has exploded. Observations of the supernova SNLS-04D2dc with the Galaxy Evolution Explorer space telescope reveal a radiative precursor from the supernova shock before the shock reached the surface of the star and show the initial expansion of the star at the beginning of the explosion. Theoretical models of the ultraviolet light curve confirm that the progenitor was a red supergiant, as expected for this type of supernova. These observations provide a way to probe the physics of core-collapse supernovae and the internal structures of their progenitor stars.

  10. Unveiling the evolutionary phase of B[e] supergiants

    Science.gov (United States)

    Muratore, M. F.; Kraus, M.; Liermann, A.; Schnurr, O.; Cidale, L. S.; Arias, M. L.

    We obtained medium resolution K-band spectra for two B[e] supergiants and one yellow hypergiant (YHG) in the Large Magellanic Cloud (LMC) and found that the spectra of all three stars show enhanced 13CO band emis- sion, in agreement with theoretical predictions for evolved massive stars. Our preliminary results for the two B[e]SGs seem to indicate that one is a pre-RSG star while the other is in a post-RSG phase.

  11. Invisible Giant: Chandra's Limits on X-rays from Betelgeuse

    CERN Document Server

    Posson-Brown, J; Pease, D O; Drake, J J; Posson-Brown, Jennifer; Kashyap, Vinay L.; Pease, Deron O.; Drake, Jeremy J.

    2006-01-01

    We have analyzed Chandra calibration observations of Betelgeuse ($\\alpha$ Ori, M2 Iab, $m_{V} = 0.58$, 131 pc) obtained at the aimpoint locations of the HRC-I (8 ks), HRC-S (8 ks), and ACIS-I (5 ks). Betelgeuse is undetected in all the individual observations as well as cumulatively. We derive $3\\sigma$ upper limits to its X-ray count rates and compute the corresponding X-ray flux upper limits for isothermal coronal plasma over a range of temperatures, $T=0.3-10$~MK. We place a flux limit at the telescope of $\\fx\\approx4\\times10^{-15}$~ergs~s$^{-1}$ cm$^{-2}$ at T=1~MK. The upper limit is lowered by a factor of $\\approx3$ at higher temperatures, roughly an order of magnitude lower than that obtained previously. Assuming that the entire stellar surface is active, these fluxes correspond to a surface flux limit that ranges from 30-7000~ergs~s$^{-1}$ cm$^{-2}$ at T=1~MK, to $\\approx 1$~ergs~s$^{-1}$ cm$^{-2}$ at higher temperatures, five orders of magnitude lower than the quiet Sun X-ray surface flux. We discuss...

  12. Supernova Shock Breakout from a Red Supergiant

    CERN Document Server

    Schawinski, Kevin; Wolf, Christian; Podsiadlowski, Philipp; Sullivan, Mark; Steenbrugge, Katrien C; Bell, Tony; Roeser, Hermann-Josef; Walker, Emma; Astier, Pierre; Balam, Dave; Balland, Christophe; Basa, Stephane; Carlberg, Ray; Conley, Alex; Fouchez, Dominque; Guy, Julien; Hardin, Delphine; Hook, Isobel; Howell, Andy; Pain, Reynald; Perrett, Kathy; Pritchet, Chris; Regnault, Nicolas; Yi, Sukyoung K

    2008-01-01

    Massive stars undergo a violent death when the supply of nuclear fuel in their cores is exhausted, resulting in a catastrophic `core-collapse' supernova. Such events are usually detected long after the star has exploded. Here we report the first detection of the radiative precursor from a supernova shock before it has reached the surface of a star followed by the initial expansion of the star at the beginning of the explosion. Theoretical models of the ultraviolet light curve show that the progenitor was a red supergiant, as expected for this type of supernova. These observations provide a promising and novel way to probe the physics of core-collapse supernovae and the internal structures of their progenitors.

  13. The Sun: A Star at the Center of Our Solar System

    Science.gov (United States)

    Adams, Mitzi L.

    2016-01-01

    There is a star at the center of our solar system! But what is a star? How do stars work? What are the characteristics of our Sun and how are these traits different from other stars? How does the Sun compare to stars such as Betelgeuse and Rigel? "Will the Sun end its life with a bang or a whimper?"

  14. Supergiant Fast X-ray Transients

    CERN Document Server

    Sidoli, Lara

    2011-01-01

    The phenomenology of a subclass of High Mass X-ray Binaries hosting a blue supergiant companion, the so-called Supergiant Fast X-ray Transients (SFXTs), is reviewed. Their number is growing, mainly thanks to the discoveries performed by the INTEGRAL satellite, then followed by soft X-rays observations (both aimed at refining the source position and at monitoring the source behavior) leading to the optical identification of the blue supergiant nature of the donor star. Their defining properties are a transient X-ray activity consisting of sporadic, fast and bright flares, (each with a variable duration between a few minutes and a few hours), reaching 1E36-1E37 erg/s. The quiescence is at a luminosity of 1E32 erg/s, while their more frequent state consists of an intermediate X-ray emission of 1E33-1E34 erg/s (1-10 keV). Only the brightest flares are detected by INTEGRAL (>17 keV) during short pointings, with no detected persistent emission. The physical mechanism driving the short outbursts is still debated, al...

  15. The pulsating yellow supergiant V810 Centauri

    CERN Document Server

    Kienzle-Focacci, M N; Burnet, M; Meynet, G

    1998-01-01

    The F8Ia supergiant V810 Centauri is part of a long-term high-precision photometric monitoring program on long period variables started twenty years ago. Time series analysis of this unique set of 500 data points, spanning almost fifteen years in the homogeneous Geneva photometric system, is presented. Cluster membership, physical parameters and evolutionary status of the star are reinvestigated. Radial velocity data do not support the cluster membership to Stock 14}. Ultraviolet and optical spectrophotometry is combined with optical and infrared photometry to evaluate the physical parameters of the yellow supergiant (Teff = 5970 K, M_bol = -8.5, R = 420 R_sun) and of its B0III companion. From theoretical stellar evolutionary tracks, an initial mass of 25 M_sun is estimated for V810 Cen, which is actually at the end of its first redward evolution. V810 Cen is a multi-periodic small amplitude variable star, whose amplitudes are variable with time. The period of the main mode, 156 d, is in agreement with the Pe...

  16. Observational constraints on the X-ray Bright supergiant B[e] stars LHA 115-S18 \\& LHA 120-S 134

    CERN Document Server

    Bartlett, Elizabeth S

    2016-01-01

    We present the preliminary results of an ongoing series of spectroscopic observations of the Small Magellanic Cloud star LHA 115-S 18 (S18), which has demonstrated extreme photospheric and spectroscopic variability that, in some respects, is reminiscent of Luminous Blue Variables (LBVs). In contrast to our previously published results, between 2012-2015 S18 remained in an spectral state intermediate between S18's "hot" and "cool" extremes. In conjunction with contemporaneous OGLE-IV photometric monitoring of S18, these data will be used to determine the characteristic timescale of the variability and search for periodicities, in particular binary modulated periodicity. We also present the results of a pilot study of the LMC star LHA 120-S 134.

  17. An Observational Evaluation of Magnetic Confinement in the Winds of BA Supergiants

    CERN Document Server

    Shultz, M; Petit, V; Grunhut, J; Neiner, C; Hanes, D

    2013-01-01

    Magnetic wind confinement has been proposed as one explanation for the complex wind structures of supergiant stars of spectral types B and A. Observational investigation of this hypothesis was undertaken using high-resolution ({\\lambda}/{\\Delta}{\\lambda} {\\sim} 65,000) circular polarization (Stokes V ) spectra of six late B and early A type supergiants ({\\beta} Ori, B8Iae; 4 Lac, B9Iab; {\\eta} Leo, A0Ib; HR1040, A0Ib; {\\alpha} Cyg, A2Iae; {\

  18. Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles I. Theoretical model -- Mass-loss history unravelled in VY CMa

    CERN Document Server

    Decin, L; De Koter, A; Justtanont, K; Tielens, A G G M; Waters, L B F M

    2006-01-01

    Context: Mass loss plays a dominant role in the evolution of low mass stars while they are on the Asymptotic Giant Branch (AGB). The gas and dust ejected during this phase are a major source in the mass budget of the interstellar medium. Recent studies have pointed towards the importance of variations in the mass-loss history of such objects. Aims: By modelling the full line profile of low excitation CO lines emitted in the circumstellar envelope, we can study the mass-loss history of AGB stars. Methods: We have developed a non-LTE radiative transfer code, which calculates the velocity structure and gas kinetic temperature of the envelope in a self-consistent way. The resulting structure of the envelope provides the input for the molecular line radiative calculations which are evaluated in the comoving frame. The code allows for the implementation of modulations in the mass-loss rate. This code has been benchmarked against other radiative transfer codes and is shown to perform well and efficiently. Results: W...

  19. Peculiar Type II Supernovae from Blue Supergiants

    CERN Document Server

    Kleiser, Io K W; Kasen, Daniel; Young, Timothy R; Chornock, Ryan; Filippenko, Alexei V; Challis, Peter; Ganeshalingam, Mohan; Kirshner, Robert P; Li, Weidong; Matheson, Thomas; Nugent, Peter E; Silverman, Jeffrey M

    2011-01-01

    The vast majority of Type II supernovae (SNe) are produced by red supergiants (RSGs), but SN 1987A revealed that blue supergiants (BSGs) can produce members of this class as well, albeit with some peculiar properties. This best studied event revolutionized our understanding of SNe, and linking it to the bulk of Type II events is essential. We present here optical photometry and spectroscopy gathered for SN 2000cb, which is clearly not a standard Type II SN and yet is not a SN 1987A analog. The light curve of SN 2000cb is reminiscent of that of SN 1987A in shape, with a slow rise to a late optical peak, but on substantially different time scales. Spectroscopically, SN 2000cb resembles a normal SN II but with ejecta velocities that far exceed those measured for SN 1987A or normal SNe II, above 18000 km/s for H-alpha at early times. The red colours, high velocities, late photometric peak, and our modeling of this object all point toward a scenario involving the high-energy explosion of a small-radius star, most ...

  20. Spectroscopic and photometric observations of M supergiants in Carina.

    Science.gov (United States)

    Humphreys, R. M.; Strecker, D. W.; Ney, E. P.

    1972-01-01

    Spectroscopic study of 30 Southern-Hemisphere M supergiants mostly in Carina in the blue and near-infrared, and photometrical study of these stars from 0.4 to 18 microns. The uncertainties in the determinations of interstellar extinction are discussed, and the spatial distribution of the M supergiants in the Carina arm is shown. The presence of the 11-micron excess attributed to silicate dust is a common feature. Stars of the same spectral type and luminosity class are remarkably homogeneous in their long-wave behavior. The silicate feature becomes more prominent in the more luminous stars and in stars of later spectral type. Four composite systems show little long-wave excess. The two VV Cephei objects have excesses probably produced by gas emission, and the other two have little or no excess - supporting the suggestion that the presence of the early star prohibits the formation of a dust envelope. Three stars - VY CMa, VX Sgr, and HD 9767 - appear to be extreme examples of stars with large excesses over the entire long-wave region. It is suggested that these objects are surrounded by large amounts of particulate material over a great range of distances from the stars.

  1. Characterisation of red supergiants in the Gaia spectral range

    Science.gov (United States)

    Dorda, Ricardo; González-Fernández, Carlos; Negueruela, Ignacio

    2016-11-01

    Context. The infrared calcium triplet and its nearby spectral region have been used for spectral and luminosity classification of late-type stars, but the samples of cool supergiants (CSGs) used have been very limited (in size, metallicity range, and spectral types covered). The spectral range of the Gaia Radial Velocity Spectrograph (RVS) covers most of this region but does not reach the main TiO bands in this region, whose depths define the M sequence. Aims: We study the behaviour of spectral features around the calcium triplet and develop effective criteria to identify and classify CSGs, comparing their efficiency with other methods previously proposed. Methods: We measure the main spectral features in a large sample (almost 600) of red supergiants (RSGs) from three different galaxies, and we analyse their behaviour through a principal component analysis. Using the principal components, we develop an automatised method to differentiate CSGs from other bright late-type stars, and to classify them. Results: The proposed method identifies a high fraction (0.98 ± 0.04) of the supergiants in our test sample, which cover a wide metallicity range (supergiants from the Magellanic Clouds and the Milky Way) and with spectral types from G0 up to late-M. In addition, it is capable to separate most of the non-supergiants in the sample, identifying as supergiants only a very small fraction of them (0.02 ± 0.04). A comparison of this method with other previously proposed shows that it is more efficient and selects less interlopers. A way to automatically assign a spectral type to the supergiants is also developed. We apply this study to spectra at the resolution and spectral range of the Gaia RVS, with a similar success rate. Conclusions: The method developed identifies and classifies CSGs in large samples, with high efficiency and low contamination, even in conditions of wide metallicity and spectral-type ranges. As this method uses the infrared calcium triplet spectral

  2. Understanding A-type supergiants. I. Ultraviolet and visible spectral atlas of A-type supergiants

    CERN Document Server

    Verdugo, E; Gómez de Castro, A I

    1999-01-01

    This paper is the first of a series whose aim is to perform a systematic study of A-type supergiant atmospheres and winds. Here we present a spectral atlas of 41 A-supergiants observed by us in high and medium resolution in the visible and ultraviolet. The atlas consists of profiles of the H alpha , H beta , H gamma , H delta , H epsilon , Ca II (H and K), Na I (D1 and D2), Mg II/sub 4481/, Mg II uv1 and Fe II uv1, uv2, uv3, uv62, uv63, uv161 lines for 41 stars with spectral types ranging from B9 to A9 and luminosity classes Ia, Iab and Ib, and provides the basic data for a thoughtful study of these stars. The overall characteristics of the sample as well as the data reduction procedures are described. We also present some examples of spectral variability. Figures 1-3 are only available in electronic form at http://www.edpsciences.com. (27 refs).

  3. Quantitative Studies of the Optical and UV Spectra of Galactic Early B Supergiants

    Science.gov (United States)

    Searle, S. C.; Prinja, R. K.; Massa, D.; Ryans, R.

    2008-01-01

    We undertake an optical and ultraviolet spectroscopic analysis of a sample of 20 Galactic B0-B5 supergiants of luminosity classes Ia, Ib, Iab, and II. Fundamental stellar parameters are obtained from optical diagnostics and a critical comparison of the model predictions to observed UV spectral features is made. Methods. Fundamental parameters (e.g., T(sub eff), log L(sub *), mass-loss rates and CNO abundances) are derived for individual stars using CMFGEN, a nLTE, line-blanketed model atmosphere code. The impact of these newly derived parameters on the Galactic B supergiant Ten scale, mass discrepancy, and wind-momentum luminosity relation is examined. Results. The B supergiant temperature scale derived here shows a reduction of about 1000-3000 K compared to previous results using unblanketed codes. Mass-loss rate estimates are in good agreement with predicted theoretical values, and all of the 20 BO-B5 supergiants analysed show evidence of CNO processing. A mass discrepancy still exists between spectroscopic and evolutionary masses, with the largest discrepancy occuring at log (L/(solar)L approx. 5.4. The observed WLR values calculated for B0-B0.7 supergiants are higher than predicted values, whereas the reverse is true for B1-B5 supergiants. This means that the discrepancy between observed and theoretical values cannot be resolved by adopting clumped (i.e., lower) mass-loss rates as for O stars. The most surprising result is that, although CMFGEN succeeds in reproducing the optical stellar spectrum accurately, it fails to precisely reproduce key UV diagnostics, such as the N v and C IV P Cygni profiles. This problem arises because the models are not ionised enough and fail to reproduce the full extent of the observed absorption trough of the P Cygni profiles. Conclusions. Newly-derived fundamental parameters for early B supergiants are in good agreement with similar work in the field. The most significant discovery, however, is the failure of CMFGEN to predict

  4. Quantitative Studies of the Optical and UV Spectra of Galactic Early B Supergiants

    Science.gov (United States)

    Searle, S. C.; Prinja, R. K.; Massa, D.; Ryans, R.

    2008-01-01

    We undertake an optical and ultraviolet spectroscopic analysis of a sample of 20 Galactic B0-B5 supergiants of luminosity classes Ia, Ib, Iab, and II. Fundamental stellar parameters are obtained from optical diagnostics and a critical comparison of the model predictions to observed UV spectral features is made. Methods. Fundamental parameters (e.g., T(sub eff), log L(sub *), mass-loss rates and CNO abundances) are derived for individual stars using CMFGEN, a nLTE, line-blanketed model atmosphere code. The impact of these newly derived parameters on the Galactic B supergiant Ten scale, mass discrepancy, and wind-momentum luminosity relation is examined. Results. The B supergiant temperature scale derived here shows a reduction of about 1000-3000 K compared to previous results using unblanketed codes. Mass-loss rate estimates are in good agreement with predicted theoretical values, and all of the 20 BO-B5 supergiants analysed show evidence of CNO processing. A mass discrepancy still exists between spectroscopic and evolutionary masses, with the largest discrepancy occuring at log (L/(solar)L approx. 5.4. The observed WLR values calculated for B0-B0.7 supergiants are higher than predicted values, whereas the reverse is true for B1-B5 supergiants. This means that the discrepancy between observed and theoretical values cannot be resolved by adopting clumped (i.e., lower) mass-loss rates as for O stars. The most surprising result is that, although CMFGEN succeeds in reproducing the optical stellar spectrum accurately, it fails to precisely reproduce key UV diagnostics, such as the N v and C IV P Cygni profiles. This problem arises because the models are not ionised enough and fail to reproduce the full extent of the observed absorption trough of the P Cygni profiles. Conclusions. Newly-derived fundamental parameters for early B supergiants are in good agreement with similar work in the field. The most significant discovery, however, is the failure of CMFGEN to predict

  5. A New Survey for Red Supergiants in the Magellanic Clouds

    Science.gov (United States)

    González-Fernández, C.; Negueruela, I.; Dorda, R.

    2016-10-01

    We present a pilot program focused on the red supergiant population of the Magellanic Clouds, with the intent of extending the current known sample to include the unexplored low end of the brightness distribution of these stars, building a more representative dataset with which to extrapolate their behavior to other Galactic and extra-galactic environments. For a pool of candidates selected over near-infrared photometry, we obtain medium resolution multi-object spectroscopy to confirm their nature and their membership in the clouds. Around two hundred new red supergiants have been detected, hinting at a yet-to-be-observed large population. Based on this sample, new a priori classification criteria are investigated, combining mid- and near-infrared photometry to improve the observational efficiency of programs similar to this. A more complete and detailed analysis of this dataset can be found in González- Fernández et al. (2015).

  6. Fast radio bursts counterparts in the scenario of supergiant pulses

    Science.gov (United States)

    Popov, S. B.; Pshirkov, M. S.

    2016-10-01

    We discuss identification of possible counterparts and persistent sources related to fast radio bursts (FRBs) in the framework of the model of supergiant pulses from young neutron stars with large spin-down luminosities. In particular, we demonstrate that at least some of the sources of FRBs can be observed as ultraluminous X-ray sources (ULXs). At the moment no ULXs are known to be coincident with localization areas of FRBs. We searched for a correlation of FRB positions with galaxies in the 2MASS Redshift survey catalogue. Our analysis produced statistically insignificant overabundance (p-value ≈ 4 per cent) of galaxies in error boxes of FRBs. In the very near future with even modestly increased statistics of FRBs and with the help of dedicated X-ray observations and all-sky X-ray surveys it will be possible to decisively prove or falsify the supergiant pulses model.

  7. The blue supergiant MN18 and its bipolar circumstellar nebula

    CERN Document Server

    Gvaramadze, V V; Bestenlehner, J M; Bodensteiner, J; Langer, N; Greiner, J; Grebel, E K; Berdnikov, L N; Beletsky, Y

    2015-01-01

    We report the results of spectrophotometric observations of the massive star MN18 revealed via discovery of a bipolar nebula around it with the Spitzer Space Telescope. Using the optical spectrum obtained with the Southern African Large Telescope, we classify this star as B1 Ia. The evolved status of MN18 is supported by the detection of nitrogen overabundance in the nebula, which implies that it is composed of processed material ejected by the star. We analysed the spectrum of MN18 by using the code CMFGEN, obtaining a stellar effective temperature of \\approx 21 kK. The star is highly reddened, E(B-V)\\approx 2 mag. Adopting an absolute visual magnitude of M_V=-6.8\\pm0.5 (typical of B1 supergiants), MN18 has a luminosity of log L/Lsun \\approx 5.42\\pm0.30, a mass-loss rate of \\approx (2.8-4.5)\\times10^{-7} Msun/yr, and resides at a distance of \\approx 5.6^{+1.5} _{-1.2} kpc. We discuss the origin of the nebula around MN18 and compare it with similar nebulae produced by other blue supergiants in the Galaxy (She...

  8. Supernovae from yellow, blue supergiants: origin and consequences for stellar evolution

    Science.gov (United States)

    Meynet, Georges; Georgy, Cyril; Saio, Hideyuki; Kudritzki, Rolf-Peter; Groh, Jose

    2015-08-01

    A few core collapse supernovae progenitors have been found to be yellow or blue supergiants. We shall discuss possible scenarios involving single and close binary evolution allowing to explain this kind of core collapse supernova progenitors. According to stellar models for both single and close binaries, blue supergiants, at the end of their nuclear lifetimes and thus progenitors of core collapse supernovae, present very different characteristics for what concerns their surface compositions, rotational surface velocities and pulsational properties with respect to blue supergiants in their core helium burning phase. We discuss how the small observed scatter of the flux-weighted gravity-luminosity (FWGL) relation of blue supergiants constrains the evolution of massive stars after the Main-Sequence phase and the nature of the progenitors of supernovae in the mass range between 12 and 40 solar masses. The present day observed surface abundances of blue supergiants, of their pulsational properties, as well as the small scatter of the FWGL relation provide strong constraints on both internal mixing and mass loss in massive stars and therefore on the end point of their evolution.

  9. Evolved Stars: Interferometer Baby Food or Staple Diet?

    Science.gov (United States)

    Tuthill, Peter

    With their extreme red and infrared luminosities and large apparent diameters, evolved stars have nurtured generations of interferometers (beginning with Michelson's work on Betelgeuse) with unique science programs at attainable resolutions. Furthermore, the inflated photosphere and circumstellar material associated with dying stars presents complex targets with asymmetric structure on many scales encoding a wealth of poorly-understood astrophysics. A brief review the major past milestones and future prospects for interferometry's contribution to studies of circumstellar matter in evolved stars is presented.

  10. Spectroscopic diagnostics for circumstellar disks of B[e] supergiants

    CERN Document Server

    Kraus, Michaela

    2016-01-01

    B[e] supergiants (B[e]SGs) are emission-line objects, presumably in a short-lived phase in the post-main sequence evolution of massive stars. Their intense infrared excess emission indicates large amounts of warm circumstellar dust, and the stars were longtime assumed to possess an aspherical wind consisting of a classical line-driven wind in polar direction and a dense, slow equatorial wind dubbed outflowing disk. The general properties obtained for these disks are in line with this scenario, although current theories have considerable difficulties reproducing the observed quantities. Therefore, more sophisticated observational constraints are needed. These follow from combined optical and infrared spectroscopic studies, which delivered the surprising result that the circumstellar material of B[e]SGs is concentrated in multiple rings revolving the stars on stable Keplerian orbits. Such a scenario requires new ideas for the formation mechanism, in which pulsations might play an important role.

  11. The population of OB supergiants in the starburst cluster Westerlund 1

    CERN Document Server

    Negueruela, Ignacio; Ritchie, Ben W

    2010-01-01

    After leaving the main sequence, massive stars undergo complex evolution, still poorly understood. With a population of 100s OB stars, the starburst cluster Westerlund~1 offers an unparallelled environment to study their evolutionary tracks. We used the VLT/FORS2 to obtain intermediate-resolution spectroscopy over the range 5800-9000A of ~ 100 likely members. We developed criteria for their spectral classification using only spectral features in the range observed. We discuss these criteria, useful for spectral classification of early-type stars in the GAIA spectral region, in the appendix. Using these criteria, we obtain spectral classifications, probably accurate to one subtype, for 57 objects, most of which had no previous classification or a generic classification. We identify more than 50 objects as OB supergiants. We find almost 30 luminous early-B supergiants and a number of less luminous late-O supergiants. In addition, we find a few mid B supergiants with very high luminosity, some of them displaying...

  12. Spectroscopic study of the variability of three northern Of+ supergiants

    CERN Document Server

    De Becker, M; Linder, N

    2009-01-01

    The transition from early Of stars to WN type objects is poorly understood. O-type supergiants with emission lines (OIf+) are considered to be intermediate between these two classes. The scope of this paper is to investigate the spectral variability of three Of+ supergiants. We constituted spectral time series of unprecedented quality for our targets (~ 200 spectra in total), essentially in the blue domain, covering time-scales from a few hours up to a few years. Time Variance Spectrum (TVS) and Fourier analyses were performed in order to characterize their spectral variability. We report on a correlated significant line profile variability in the prominent He II \\lambda 4686 and H\\beta lines most likely related to the strong stellar winds. The variability pattern is similar for the three stars investigated (HD14947, HD15570 and HD16691), and the main differences are more quantitative than qualitative. However, the reported time-scales are somewhat different, and the most striking variability pattern is repor...

  13. Searching for supergiant fast X-ray transients with Swift

    CERN Document Server

    Romano, P; Esposito, P; Sbarufatti, B; Haberl, F; Ponti, G; D'Avanzo, P; Ducci, L; Segreto, A; Jin, C; Masetti, N; Del Santo, M; Campana, S; Mangano, V

    2016-01-01

    Supergiant fast X-ray transients (SFXTs) are high mass X-ray binaries (HMXBs) hosting a neutron star and an OB supergiant companion. We examine the available Swift data, as well as other new or archival/serendipitous data, on three sources: IGR J17407-2808, 2XMM J185114.3-000004, and IGR J18175-2419, whose X-ray characteristics qualify them as candidate SFXT, in order to explore their properties and test whether they are consistent with an SFXT nature. As IGR J17407-2808 and 2XMM J185114.3-000004 triggered the Burst Alert Telescope on board Swift, the Swift data allow us to provide their first arcsecond localisations, leading to an unequivocal identification of the source CXOU J174042.0-280724 as the soft X-ray counterpart of IGR J17407-2808, as well as their first broadband spectra, which can be fit with models generally describing accreting neutron stars in HMXBs. While still lacking optical spectroscopy to assess the spectral type of the companion, we propose 2XMM J185114.3-000004 as a very strong SFXT can...

  14. An Emerging Coherent Picture of Red Supergiant Explosions

    CERN Document Server

    Poznanski, Dovi

    2013-01-01

    A large fraction of supernovae (SNe) arise from the core collapse of red supergiant stars. By comparing the ejecta velocities of a large sample of such SNe with initial stellar masses derived from pre-explosion images of the progenitor star, I find that there is a significant and approximately linear relation between initial mass and ejecta velocity, which in turn implies that the energy released during core collapse and captured by the ejecta depends strongly on this mass as E is proportional to M^3. This correlation naturally explains why most such SNe have almost identical "plateau-phase" durations in their light curves, and places an important constraint on the elusive physics of core collapse.

  15. A new survey of cool supergiants in the Magellanic Clouds

    CERN Document Server

    González-Fernández, Carlos; Negueruela, Ignacio; Marco, Amparo

    2015-01-01

    In this study, we conduct a pilot program aimed at the red supergiant population of the Magellanic Clouds. We intend to extend the current known sample to the unexplored low end of the brightness distribution of these stars, building a more representative dataset with which to extrapolate their behaviour to other Galactic and extra-galactic environments. We select candidates using only near infrared photometry, and with medium resolution multi-object spectroscopy, we perform spectral classification and derive their line-of-sight velocities, confirming the nature of the candidates and their membership to the clouds. Around two hundred new RSGs have been detected, hinting at a yet to be observed large population. Using near and mid infrared photometry we study the brightness distribution of these stars, the onset of mass-loss and the effect of dust in their atmospheres. Based on this sample, new a priori classification criteria are investigated, combining mid and near infrared photometry to improve the observat...

  16. Accretion in supergiant High Mass X-ray Binaries

    Directory of Open Access Journals (Sweden)

    Manousakis Antonios

    2014-01-01

    Full Text Available Supergiant High Mass X-ray Binary systems (sgHMXBs consist of a massive, late type, star and a neutron star. The massive stars exhibits strong, radiatively driven, stellar winds. Wind accretion onto compact object triggers X-ray emission, which alters the stellar wind significantly. Hydrodynamic simulation has been used to study the neutron star - stellar wind interaction it two sgHMXBs: i A heavily obscured sgHMXB (IGR J17252–3616 discovered by INTEGRAL. To account for observable quantities (i.e., absorbing column density we have to assume a very slow wind terminal velocity of about 500 km/s and a rather massive neutron star. If confirmed in other obscured systems, this could provide a completely new stellar wind diagnostics. ii A classical sgHMXB (Vela X-1 has been studied in depth to understand the origin of the off-states observed in this system. Among many models used to account for this observed behavior (clumpy wind, gating mechanism we propose that self-organized criticality of the accretion stream is the likely reason for the observed behavior. In conclusion, the neutron star, in these two examples, acts very effciently as a probe to study stellar winds.

  17. LBT Discovery of a Yellow Supergiant Eclipsing Binary in the Dwarf Galaxy Holmberg IX

    CERN Document Server

    Prieto, J L; Kochanek, C S; Weisz, D R; Baruffolo, A; Bechtold, J; Burwitz, V; DeSantis, C; Gallozzi, S; Garnavich, P M; Giallongo, E; Hill, J M; Pogge, R W; Ragazzoni, R; Speziali, R; Thompson, D J; Wagner, R M

    2007-01-01

    In a variability survey of M81 using the Large Binocular Telescope we have discovered a peculiar eclipsing binary (MV ~ -7.1) in the field of the dwarf galaxy Holmberg IX. It has a period of 272 days and the light curve is well-fit by an overcontact model in which both stars are overflowing their Roche lobes. It is composed by two yellow supergiants (V-I ~ 1 mag, T_eff = 4800 K), rather than the far more common red or blue supergiants. Such systems must be rare. While we failed to find any similar systems in the literature, we did, however note a second example. The SMC F0 supergiant R47 is a bright (MV ~ -7.5) periodic variable whose All Sky Automated Survey (ASAS) light curve is well-fit as a contact binary with a 181 day period. We propose that these systems are the progenitors of supernovae like SN 2004et and SN 2006ov, which appeared to have yellow progenitors. The binary interactions (mass transfer, mass loss) limit the size of the supergiant to give it a higher surface temperature than an isolated star...

  18. THE TYPE IIb SUPERNOVA 2011dh FROM A SUPERGIANT PROGENITOR

    Energy Technology Data Exchange (ETDEWEB)

    Bersten, Melina C.; Nomoto, Ken' ichi; Folatelli, Gaston; Maeda, Keiichi [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Benvenuto, Omar G. [Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, B1900FWA La Plata (Argentina); Ergon, Mattias; Sollerman, Jesper [The Oskar Klein Centre, Department of Astronomy, AlbaNova, SE-106 91 Stockholm (Sweden); Benetti, Stefano; Ochner, Paolo; Tomasella, Lina [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Botticella, Maria Teresa [INAF-Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, I-80131 Napoli (Italy); Fraser, Morgan; Kotak, Rubina, E-mail: melina.bersten@ipmu.jp [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom)

    2012-09-20

    A set of hydrodynamical models based on stellar evolutionary progenitors is used to study the nature of SN 2011dh. Our modeling suggests that a large progenitor star-with R {approx} 200 R{sub Sun }-is needed to reproduce the early light curve (LC) of SN 2011dh. This is consistent with the suggestion that the yellow super-giant star detected at the location of the supernova (SN) in deep pre-explosion images is the progenitor star. From the main peak of the bolometric LC and expansion velocities, we constrain the mass of the ejecta to be Almost-Equal-To 2 M{sub Sun }, the explosion energy to be E = (6-10) Multiplication-Sign 10{sup 50} erg, and the {sup 56}Ni mass to be approximately 0.06 M{sub Sun }. The progenitor star was composed of a helium core of 3-4 M{sub Sun} and a thin hydrogen-rich envelope of Almost-Equal-To 0.1M{sub Sun} with a main-sequence mass estimated to be in the range of 12-15 M{sub Sun }. Our models rule out progenitors with helium-core masses larger than 8 M{sub Sun }, which correspond to M{sub ZAMS} {approx}> 25M{sub Sun }. This suggests that a single star evolutionary scenario for SN 2011dh is unlikely.

  19. The Type IIb Supernova 2011dh from a Supergiant Progenitor

    CERN Document Server

    Bersten, Melina C; Nomoto, Ken'ichi; Ergon, Mattias; Folatelli, Gastón; Sollerman, Jesper; Benetti, Stefano; Botticella, Maria Teresa; Fraser, Morgan; Kotak, Rubina; Maeda, Keiichi; Ochner, Paolo; Tomasella, Lina

    2012-01-01

    A set of hydrodynamical models based on stellar evolutionary progenitors is used to study the nature of SN 2011dh. Our modeling suggests that a large progenitor star ---with R ~200 Rsun---, is needed to reproduce the early light curve of SN 2011dh. This is consistent with the suggestion that the yellow super-giant star detected at the location of the SN in deep pre-explosion images is the progenitor star. From the main peak of the bolometric light curve and expansion velocities we constrain the mass of the ejecta to be ~2 Msun, the explosion energy to be E= 6-10 x 10^50 erg, and the 56Ni mass to be approximately 0.06 Msun. The progenitor star was composed of a helium core of 3 to 4 Msun and a thin hydrogen-rich envelope of ~0.1 M_sun with a main sequence mass estimated to be in the range of 12--15 Msun. Our models rule out progenitors with helium-core masses larger than 8 Msun, which correspond to M_ZAMS > 25 Msun. This suggests that a single star evolutionary scenario for SN 2011dh is unlikely.

  20. B[e] Supergiants' circumstellar environment: disks or rings?

    CERN Document Server

    Maravelias, G; Aret, A; Cidale, L; Arias, M L; Fernandes, M Borges

    2016-01-01

    B[e] Supergiants are a phase in the evolution of some massive stars for which we have observational evidence but no predictions by any stellar evolution model. The mass-loss during this phase creates a complex circumstellar environment with atomic, molecular, and dust regions usually found in rings or disk-like structures. However, the detailed structure and the formation of the circumstellar environment are not well-understood, requiring further investigation. To address that we initiated an observing campaign to obtain a homogeneous set of high-resolution spectra in both the optical and NIR (using MPG-ESO/FEROS, GEMINI/Phoenix and VLT/CRIRES, respectively). We monitor a number of Galactic B[e] Supergiants, for which we examined the [OI] and [CaII] emission lines and the bandheads of the CO and SiO molecules to probe the structure and the kinematics of their formation regions. We find that the emission from each tracer forms either in a single or in multiple equatorial rings.

  1. B[e] Supergiants' Circumstellar Environment: Disks or Rings?

    Science.gov (United States)

    Maravelias, G.; Kraus, M.; Aret, A.; Cidale, L.; Arias, M. L.; Borges Fernandes, M.

    2017-02-01

    B[e] supergiants are a phase in the evolution of some massive stars for which we have observational evidence but no predictions by any stellar evolution model. The mass-loss during this phase creates a complex circumstellar environment with atomic, molecular, and dust regions usually found in rings or disk-like structures. However, the detailed structure and the formation of the circumstellar environment are not well-understood, requiring further investigation. To address that we initiated an observing campaign to obtain a homogeneous set of high-resolution spectra in both the optical and NIR (using MPG-ESO/FEROS, GEMINI /Phoenix and VLT/CRIRES, respectively). We monitor a number of Galactic B[e] supergiants, for which we examined the [O I] and [Ca II] emission lines and the bandheads of the CO and SiO molecules to probe the structure and the kinematics of their formation regions. We find that the emission from each tracer forms either in a single or multiple equatorial rings.

  2. ALMA observations of anisotropic dust mass loss in the inner circumstellar environment of the red supergiant VY Canis Majoris

    NARCIS (Netherlands)

    O'Gorman, E.; Vlemmings, W.; Richards, A.M.S.; Baudry, A.; De Beck, E.; Decin, L.; Harper, G.M.; Humphreys, E.M.; Kervella, P.; Khouri, T.; Muller, S.

    2015-01-01

    The processes leading to dust formation and the subsequent role it plays in driving mass loss in cool evolved stars is an area of intense study. Here we present high resolution ALMA Science Verification data of the continuum emission around the highly evolved oxygen-rich red supergiant VY CMa. These

  3. ALMA observations of anisotropic dust mass loss in the inner circumstellar environment of the red supergiant VY Canis Majoris

    NARCIS (Netherlands)

    O'Gorman, E.; Vlemmings, W.; Richards, A.M.S.; Baudry, A.; De Beck, E.; Decin, L.; Harper, G.M.; Humphreys, E.M.; Kervella, P.; Khouri, T.; Muller, S.

    2015-01-01

    The processes leading to dust formation and the subsequent role it plays in driving mass loss in cool evolved stars is an area of intense study. Here we present high resolution ALMA Science Verification data of the continuum emission around the highly evolved oxygen-rich red supergiant VY CMa. These

  4. Supergiants transiting towards white dwarf

    CERN Document Server

    Klochkova, V G

    2016-01-01

    Observational manifestations of far evolved stars at the asymptotic giants branch and their nearest descendants are briefly considered. Main results of their chemical composition determinations based on long term high resolution spectroscopy at the 6-m telescope are also briefly summed up. A new kind of peculiarity of optical spectra is found and discussed: splitting or asymmetry of strongest absorptions in the optical spectra of selected post-AGB stars with envelopes and atmospheres enriched in carbon and s-process heavy metals.

  5. The spin-up of contracting red supergiants

    CERN Document Server

    Heger, A; Heger, Alexander; Langer, Norbert

    1998-01-01

    We report on a mechanism which may lead to a spin-up of the surface of a rotating single star leaving the Hayashi line, which is much stronger than the spin-up expected from the mere contraction of the star. By analyzing rigidly rotating, convective stellar envelopes, we qualitatively work out the mechanism through which these envelopes may be spun up or down by mass loss through their lower or upper boundary, respectively. We find that the first case describes the situation in retreating convective envelopes, which tend to retain most of the angular momentum while becoming less massive, thereby increasing the specific angular momentum in the convection zone and thus in the layers close to the stellar surface. We explore the spin-up mechanism quantitatively in a stellar evolution calculation of a rotating 12 M_sun star, which is found to be spun up to critical rotation after leaving the red supergiant branch. We discuss implications of this spin-up for the circumstellar matter around several types of stars, i...

  6. Red Supergiants in the Inner Galaxy: Stellar Properties

    Science.gov (United States)

    Messineo, Maria; Zhu, Qingfeng; Menten, Karl M.; Ivanov, Valentin D.; Figer, Donald F.; Kudritzki, Rolf-Peter; Chen, C.-H. Rosie

    2017-02-01

    Red supergiants (RSGs) are luminous cool stars detectable in disks of distant spirals. About a thousand are known in the Galaxy. Here, we analyze a sample of late-type stars recently observed by Messineo et al. in the inner Galaxy (10^\\circ 45 Å, ≳M0I). In this work, luminosities are estimated with infrared measurements and distance moduli for 47 spectroscopically classified RSGs; they range from 3.2× {10}4 to 1.3× {10}5 {L}ȯ . Six other RSGs with smaller EW(CO)s are classified according to their luminosities. Using a prescription based on {K}{{s}}{--}[W4], moderate mass-loss rates from 10‑8 to {10}-6.5 {M}ȯ yr‑1 are inferred. In addition, we report on H and K spectra of 26 stars at R = 1500–2200. EWs of the CO at 2.293 and 1.620 μm, and of atomic lines, are consistent with those of nearby RSGs, within uncertainties. Mg i appears to be a useful diagnostic to confirm RSGs at R = 1500–2200. RSG #66 is a member of the cluster Alicante 7. Star #92 is projected onto the overdensity #495 of Camargo et al., but our analysis suggests they are unrelated. Remaining targets are isolated from other known RSGs within ≈3‧.

  7. The evolution of Red Supergiants to supernova in the LMC cluster NGC 2100

    CERN Document Server

    Beasor, Emma R

    2016-01-01

    The mass loss rates of red supergiants (RSGs) govern their evolution towards supernova and dictate the appearance of the resulting explosion. To study how mass-loss rates change with evolution we measure the mass-loss rates (\\mdot) and extinctions of 19 red supergiants in the young massive cluster NGC2100 in the Large Magellanic Cloud. By targeting stars in a coeval cluster we can study the mass-loss rate evolution whilst keeping the variables of mass and metallicity fixed. Mass-loss rates were determined by fitting DUSTY models to mid-IR photometry from WISE and Spitzer/IRAC. We find that the \\mdot\\ in red supergiants increases as the star evolves, and is well described by \\mdot\\ prescription of de Jager, used widely in stellar evolution calculations. We find the extinction caused by the warm dust is negligible, meaning the warm circumstellar material of the inner wind cannot explain the higher levels of extinction found in the RSGs compared to other cluster stars. We discuss the implications of this work in...

  8. Spectral type, temperature and evolutionary stage in cool supergiants

    CERN Document Server

    Dorda, Ricardo; González-Fernández, Carlos; Tabernero, Hugo M

    2016-01-01

    In recent years, temperature scales in cool supergiants (CSGs) have been disputed, and the possibility that spectral types (SpTs) do not depend primarily on temperature has been raised. We explore the relations between different observed parameters and the capability of deriving accurate intrinsic stellar parameters from them through the analysis of the largest spectroscopic sample of CSGs to date from SMC and LMC. We explore possible correlations between different observational parameters, also making use of near- and mid-infrared colours and literature on photometric variability. Direct comparison between the behaviour of atomic lines (Fe I, Ti I, and Ca II) in the observed spectra and synthetic atmospheric models provides compelling evidence that effective temperature is the prime underlying variable driving the SpT sequence in CSGs. However, there is a clear correlation between SpT and luminosity, with later ones tending to correspond to more luminous stars with heavier mass loss. The population of CSGs i...

  9. Two supergiants in the Large Magellanic Cloud with thick dust shells

    Science.gov (United States)

    Elias, J. H.; Frogel, J. A.; Schwering, P. B. W.

    1986-01-01

    Ground-based observations from 0.6 to 20 microns have identified two luminous, evolved stars surrounded by thick dust shells among the Magellanic Cloud sources detected by the Infrared Astronomical Satellite. Their energy distributions resemble those of typical Galactic OH/IR stars, but they have bolometric magnitudes brighter than -9 and the small-amplitude variability of supergiants. One star, IRAS 04553 - 6825, has a special type of M7.5 and a dust shell which absorbs and reradiates roughly 75 percent of the star's luminosity; its radial velocity confirms its LMC membership. The second star, IRAS 05346 - 6949, has an even thicker dust shell, and the central star is not observable.

  10. 2 supergiants and 2 hypergiants radio spectra (Teyssier+, 2012) [Dataset

    NARCIS (Netherlands)

    Teyssier, D.; Quintana-Lacaci, G.; Marston, A.P.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Decin, L.; Dominik, C.; Justtanont, K.; de Koter, A.; Melnick, G.; Menten, K.M.; Neufeld, D.A.; Olofsson, H.; Planesas, P.; Schmidt, M.; Soria-Ruiz, R.; Schoeier, F. L.; Szczerba, R.; Waters, L.B.F.M.

    2012-01-01

    SourceName_LineRestFreqMHz.fits, FITS file created by GILDAS/Class where - SourceName is one of "AFGL2343", "BETELGEUSE", "NML_CYG" or "IRC+10420" - LineRestFreq is the rest frequency in MHz of the main spectral line concerned by the file.

  11. A transient supergiant X-ray binary in IC 10: An extragalactic SFXT?

    Energy Technology Data Exchange (ETDEWEB)

    Laycock, Silas; Cappallo, Rigel; Oram, Kathleen; Balchunas, Andrew [Department of Physics and Applied Physics, Olney Science Center, University of Massachusetts, Lowell, MA 01854 (United States)

    2014-07-01

    We report the discovery of a large amplitude (factor of ∼100) X-ray transient (IC 10 X-2, CXOU J002020.99+591758.6) in the nearby dwarf starburst galaxy IC 10 during our Chandra monitoring project. Based on the X-ray timing and spectral properties, and an optical counterpart observed with Gemini, the system is a high-mass X-ray binary consisting of a luminous blue supergiant and a neutron star. The highest measured luminosity of the source was 1.8 × 10{sup 37} erg s{sup –1}during an outburst in 2003. Observations before, during, and after a second outburst in 2010 constrain the outburst duration to be less than 3 months (with no lower limit). The X-ray spectrum is a hard power law (Γ = 0.3) with fitted column density (N{sub H} = 6.3 × 10{sup 21} atom cm{sup –2}), consistent with the established absorption to sources in IC 10. The optical spectrum shows hydrogen Balmer lines strongly in emission at the correct blueshift (-340 km s{sup –1}) for IC 10. The N III triplet emission feature is seen, accompanied by He II [4686] weakly in emission. Together these features classify the star as a luminous blue supergiant of the OBN subclass, characterized by enhanced nitrogen abundance. Emission lines of He I are seen, at similar strength to Hβ. A complex of Fe II permitted and forbidden emission lines are seen, as in B[e] stars. The system closely resembles galactic supergiant fast X-ray transients, in terms of its hard spectrum, variability amplitude, and blue supergiant primary.

  12. The eccentric short-period orbit of the supergiant fast X-ray transient HD 74194 (=LM Vel)

    CERN Document Server

    Gamen, R; Walborn, N R; Morrell, N I; Arias, J I; Apellániz, J Maíz; Sota, A; Alfaro, E J

    2015-01-01

    Aims. We present the first orbital solution for the O-type supergiant star HD 74194, which is the optical counterpart of the supergiant fast X-ray transient IGR J08408-4503. Methods. We measured the radial velocities in the optical spectrum of HD 74194, and we determined the orbital solution for the first time. We also analysed the complex H{\\alpha} profile. Results. HD 74194 is a binary system composed of an O-type supergiant and a compact object in a short-period ($P=9.5436\\pm0.0002$ d) and high-eccentricity ($e=0.63\\pm0.03$) orbit. The equivalent width of the H{\\alpha} line is not modulated entirely with the orbital period, but seems to vary in a superorbital period ($P=285\\pm10$ d) nearly 30 times longer than the orbital one.

  13. Clumpy molecular structures revolving the B[e] supergiant MWC 137

    CERN Document Server

    Kraus, M; Liimets, T; Cappa, C E; Duronea, N; Gunawan, D S; Oksala, M E; Santander-Garcia, M; Arias, M L; Nickeler, D H; Maravelias, G; Fernandes, M Borges; Cure, M

    2016-01-01

    The peculiar emission-line star MWC 137 with its extended optical nebula was recently classified as B[e] supergiant. To study the spatial distribution of its circumstellar molecular gas on small and large scales, we obtained near-infrared and radio observations using SINFONI and APEX, respectively. We find that the hot CO gas is arranged in moving clumpy ring and shell structures close to the star, while a cold CO envelope is encircling the borders of the optical nebula from the south to the west.

  14. Diffraction-limited Speckle-Masking Interferometry of the Red Supergiant VY CMa

    CERN Document Server

    Wittkowski, M; Weigelt, G

    1998-01-01

    We present the first diffraction-limited images of the mass-loss envelope of the red supergiant star VY CMa. The two-dimensional optical and NIR images were reconstructed from 3.6 m telescope speckle data using bispectrum speckle interferometry. At the wavelengths ~0.8 \\mum (RG 780 filter), 1.28 \\mum, and 2.17 \\mum the diffraction-limited resolutions of 46 mas, 73 mas, and 124 mas were achieved. All images clearly show that the circumstellar envelope of VY CMa is non-spherical. The RG 780, 1.28 \\mum, and 2.17 mum FWHM Gauss fit diameters are 67 mas * 83 mas, 80 mas * 116 mas and 138 mas * 205 mas, respectively, or 100 AU * 125 AU, 120 AU * 174 AU and 207 AU * 308 AU (for a distance of 1500 pc). We discuss several interpretations for the asymmetric morphology. Combining recent results about the angular momentum evolution of red supergiants and their pulsational properties, we suggest that VY CMa is an immediate progenitor of IRC +10420, a post red supergiant during its transformation into a Wolf-Rayet star.

  15. RED SUPERGIANTS AS COSMIC ABUNDANCE PROBES: THE SCULPTOR GALAXY NGC 300

    Energy Technology Data Exchange (ETDEWEB)

    Gazak, J. Zachary; Kudritzki, Rolf; Bresolin, Fabio [Institute for Astronomy, University of Hawai’i, 2680 Woodlawn Dr, Honolulu, HI 96822 (United States); Evans, Chris [UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh., EH9 3HJ (United Kingdom); Patrick, Lee [Institute for Astronomy, Royal Observatory Edinburgh, Blackford Hill, Edinburgh., EH9 3HJ (United Kingdom); Davies, Ben [Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Bergemann, Maria [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Plez, Bertrand [Laboratoire Univers et Particules de Montpellier, Université de Montpellier, CNRS, F-34095 Montpellier (France); Bender, Ralf; Wegner, Michael [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany); Bonanos, Alceste Z.; Williams, Stephen J. [IAASARS, National Observatory of Athens, GR-15236 Penteli (Greece)

    2015-06-01

    We present a quantitative spectroscopic study of 27 red supergiants (RSGs) in the Sculptor Galaxy NGC 300. J-band spectra were obtained using KMOS on the Very Large Telescope and studied with state of the art synthetic spectra including NLTE corrections for the strongest diagnostic lines. We report a central metallicity of [Z] = −0.03 ± 0.05 with a gradient of −0.083 ± 0.014 [dex/kpc], in agreement with previous studies of blue supergiants and H ii-region auroral line measurements. This result marks the first application of the J-band spectroscopic method to a population of individual RSG stars beyond the Local Group of galaxies and reveals the great potential of this technique.

  16. A red supergiant nebula at 25 micron: arcsecond scale mass-loss asymmetries of mu Cep

    CERN Document Server

    De Wit, W J; Fujiyoshi, T; Hoare, M G; Honda, M; Kataza, H; Miyata, T; Okamoto, Y K; Onaka, T; Sako, S; Yamashita, T

    2008-01-01

    We present diffraction limited (0.6") 24.5micron Subaru/COMICS images of the red supergiant mu Cep. We report the detection of a circumstellar nebula, that was not detected at shorter wavelengths. It extends to a radius of at least 6" in the thermal infrared. On these angular scales, the nebula is roughly spherical, in contrast, it displays a pronounced asymmetric morphology closer in. We simultaneously model the azimuthally averaged intensity profile of the nebula and the observed spectral energy distribution using spherical dust radiative transfer models. The models indicate a constant mass-loss process over the past 1000 years, for mass-loss rates a few times 10^(-7) Msun/yr. This work supports the idea that at least part of the asymmetries in shells of evolved massive stars and supernovae may be due to the mass-loss process in the red supergiant phase.

  17. The Red Supergiant Progenitor of Supernova 2012aw (PTF12bvh) in Messier 95

    CERN Document Server

    Van Dyk, Schuyler D; Poznanski, Dovi; Arcavi, Iair; Gal-Yam, Avishay; Filippenko, Alexei V; Silverio, Kathryn; Stockton, Alan; Cuillandre, Jean-Charles; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard

    2012-01-01

    We report on the direct detection and characterization of the probable red supergiant progenitor of the intermediate-luminosity Type II-Plateau (II-P) supernova (SN) 2012aw in the nearby (10.0 Mpc) spiral galaxy Messier 95 (M95; NGC 3351). We have identified the star in both Hubble Space Telescope images of the host galaxy, obtained 17-18 yr prior to the explosion, and near-infrared ground-based images, obtained 6-12 yr prior to the SN. The luminous supergiant showed evidence for substantial circumstellar dust, manifested as excess line-of-sight extinction. The effective total-to-selective ratio of extinction to the star was R'_V \\approx 4.35, which is significantly different from that of diffuse interstellar dust (i.e., R_V=3.1), and the total extinction to the star was therefore, on average, A_V \\approx 3.1 mag. We find that the observed spectral energy distribution for the progenitor star is consistent with an effective temperature of 3600 K (spectral type M3), and that the star therefore had a bolometric ...

  18. X-RAY PHOTOIONIZED BUBBLE IN THE WIND OF VELA X-1 PULSAR SUPERGIANT COMPANION

    Energy Technology Data Exchange (ETDEWEB)

    Krticka, Jiri; Skalicky, Jan [Ustav teoreticke fyziky a astrofyziky, Masarykova univerzita, Kotlarska 2, CZ-611 37 Brno (Czech Republic); Kubat, Jiri [Astromomicky ustav Akademie ved Ceske republiky, Fricova 298, CZ-251 65 Ondrejov (Czech Republic)

    2012-10-01

    Vela X-1 is the archetype of high-mass X-ray binaries (HMXBs), composed of a neutron star and a massive B supergiant. The supergiant is a source of a strong radiatively driven stellar wind. The neutron star sweeps up this wind and creates a huge amount of X-rays as a result of energy release during the process of wind accretion. Here, we provide detailed NLTE models of the Vela X-1 envelope. We study how the X-rays photoionize the wind and destroy the ions responsible for the wind acceleration. The resulting decrease of the radiative force explains the observed reduction of the wind terminal velocity in a direction to the neutron star. The X-rays create a distinct photoionized region around the neutron star filled with a stagnating flow. The existence of such photoionized bubbles is a general property of HMXBs. We unveil a new principle governing these complex objects, according to which there is an upper limit to the X-ray luminosity the compact star can have without suspending the wind due to inefficient line driving.

  19. Two Ring Nebulae around Blue Supergiants in the Large Magellanic Cloud

    CERN Document Server

    Weis, K; Duschl, W J; Bomans, D J

    1997-01-01

    Ring nebulae are often found around massive stars such as Wolf-Rayet stars, OB and Of stars and Luminous Blue Variables (LBVs). In this paper we report on two ring nebulae around blue supergiants in the Large Magellanic Cloud. The star Sk-69 279 is classified as O9f and is surrounded by a closed shell with a diameter of 4.5 pc. Our echelle observations show an expansion velocity of 14 km/s and a high [N II]6583A/H alpha ratio. This line ratio suggests nitrogen abundance enhancement consistent with those seen in ejectas from LBVs. Thus the ring nebula around Sk-69 279 is a circumstellar bubble. The star Sk-69 271, a B2 supergiant, is surrounded by an H alpha arc resembling an half shell. Echelle observations show a large expanding shell with the arc being part of the approaching surface. The expansion velocity is about 24 km/s and the [N II]6583A/H alpha is not much higher than that of the background emission. The lack of nitrogen abundance anomaly suggests that the expanding shell is an interstellar bubble wi...

  20. The outer atmosphere of the M-type supergiant alpha Orionis KI 7699A emission

    CERN Document Server

    Plez, B; Plez, Bertrand; Lambert, David L.

    2002-01-01

    Spatially-resolved high-resolution long-slit spectra of Betelgeuse's circumstellar shell are described for a spectral window centered on the 7699\\AA resonance line of neutral potassium. The K I emission from resonance fluorescent scattering of photospheric photons which is mapped out to 50 arcsec from the star is approximately spherically symmetric with a brightness decreasing as r^{-2.36 \\pm 0.03}, where $r$ is the radial distance from the star. Our measurements together with the earlier theoretical interpretation by Rodgers & Glassgold suggest that the mass loss rate is about 2 . 10^{-6} solar mass/year. The K I emission is far from homogeneous: intensity inhomogeneities are seen down to the seeing limit of about 1 arcsec and the velocity resolution of about 2 km/s. There is clear evidence for a thin shell of 50 arcsec radius. This is identified with the weaker circumstellar absorption component known as S2. Estimates are made of the density of K atoms in this shell (approx. 6 . 10^{-5} cm^{-3}).

  1. Characterisation of red supergiants in the Gaia spectral range

    CERN Document Server

    Dorda, Ricardo; Negueruela, Ignacio

    2016-01-01

    The infrared Calcium Triplet and its nearby spectral region have been used for spectral and luminosity classification of late-type stars, but the samples of cool supergiants (CSGs) used have been very limited (in size, metallicity range, and spectral types covered). The spectral range of the Gaia Radial Velocity Spectrograph (RVS) covers most of this region but does not reach the main TiO bands in this region, whose depths define the M sequence. We study the behaviour of spectral features around the Calcium Triplet and develop effective criteria to identify and classify CSGs, comparing their efficiency with other methods previously proposed. We measure the main spectral features in a large sample (almost 600) of CSGs from three different galaxies, and we analyse their behaviour through a principal component analysis. Using the principal components, we develop an automatised method to differentiate CSGs from other bright late-type stars, and to classify them. The proposed method identifies a high fraction of t...

  2. Supernova 2008bk and Its Red Supergiant Progenitor

    CERN Document Server

    Van Dyk, Schuyler D; Elias-Rosa, Nancy; Taubenberger, Stefan; Li, Weidong; Howerton, Stanley; Pignata, Giuliano; Morrell, Nidia; Hamuy, Mario; Filippenko, Alexei V

    2010-01-01

    We have observed Supernova (SN) 2008bk in NGC 7793, both photometrically and spectroscopically, primarily at late times. We find that it is a Type II-Plateau (II-P) SN, which most closely resembles the low-luminosity SN 1999br in NGC 4900. Given the overall similarity between the observed light curves and colors of SNe 2008bk and 1999br, we infer that the total visual extinction to SN 2008bk must be almost entirely due to the Galactic foreground, similar to that for SN 1999br: A_V=0.065 mag, which is substantially less than the 1.0 +/- 0.5 mag assumed by Mattila et al. (2008). Furthermore, we confirm the identification of the putative red supergiant progenitor star of the SN in high-quality g'r'i' Gemini-South images from 2007. Little ambiguity exists in this progenitor identification; besides the connection between the star Sk -69 202 and SN 1987A, it qualifies as one of the best SN progenitor identifications to date. From a combination of the Gemini images with archival, pre-SN, Very Large Telescope JHK_s i...

  3. The early-type strong emission-line supergiants of the Magellanic Clouds - A spectroscopic zoology

    Science.gov (United States)

    Shore, S. N.; Sanduleak, N.

    1984-01-01

    The results of a spectroscopic survey of 21 early-type extreme emission line supergiants of the Large and Small Magellanic Clouds using IUE and optical spectra are presented. The combined observations are discussed and the literature on each star in the sample is summarized. The classification procedures and the methods by which effective temperatures, bolometric magnitudes, and reddenings were assigned are discussed. The derived reddening values are given along with some results concerning anomalous reddening among the sample stars. The derived mass, luminosity, and radius for each star are presented, and the ultraviolet emission lines are described. Mass-loss rates are derived and discussed, and the implications of these observations for the evolution of the most massive stars in the Local Group are addressed.

  4. High Mass X-ray Binaries: Progenitors of double neutron star systems

    CERN Document Server

    Chaty, Sylvain

    2015-01-01

    In this review I briefly describe the nature of the three kinds of High-Mass X-ray Binaries (HMXBs), accreting through: (i) Be circumstellar disc, (ii) supergiant stellar wind, and (iii) Roche lobe filling supergiants. A previously unknown population of HMXBs hosting supergiant stars has been revealed in the last years, with multi-wavelength campaigns including high energy (INTEGRAL, Swift, XMM, Chandra) and optical/infrared (mainly ESO) observations. This population is divided between obscured supergiant HMXBs, and supergiant fast X-ray transients (SFXTs), characterized by short and intense X-ray flares. I discuss the characteristics of these types of supergiant HMXBs, propose a scenario describing the properties of these high-energy sources, and finally show how the observations can constrain the accretion models (e.g. clumpy winds, magneto-centrifugal barrier, transitory accretion disc, etc). Because they are the likely progenitors of Luminous Blue Variables (LBVs), and also of double neutron star systems,...

  5. Optical spectra of 5 new Be/X-ray Binaries in the Small Magellanic Cloud and the link of the supergiant B[e] star LHA 115-S 18 with an X-ray source

    CERN Document Server

    Maravelias, Grigoris; Antoniou, Vallia; Hatzidimitriou, Despoina

    2013-01-01

    The Small Magellanic Cloud (SMC) is well known to harbor a large number of High-Mass X-ray Binaries (HMXBs). The identification of their optical counterparts provides information on the nature of the donor stars and can help to constrain the parameters of these systems and their evolution. We obtained optical spectra for a number of HMXBs identified in previous Chandra and XMM-Newton surveys of the SMC using the AAOmega/2dF fiber-fed spectrograph at the Anglo-Australian Telescope. We find 5 new Be/X-ray binaries (BeXRBs; including a tentative one), by identifying the spectral type of their optical counterparts, and we confirm the spectral classification of an additional 15 known BeXRBs. We compared the spectral types, orbital periods, and eccentricities of the BeXRB populations in the SMC and the Milky Way and we find marginal evidence for difference between the spectral type distributions, but no statistically significant differences for the orbital periods and the eccentricities. Moreover, our search reveal...

  6. High spectral resolution spectroscopy of the SiO fundamental lines in red giants and red supergiants with VLT/VISIR

    CERN Document Server

    Ohnaka, Keiichi

    2013-01-01

    We present high spectral resolution (R = 30000) spectroscopic observations of the SiO fundamental lines near 8.1 micron in 16 bright red giants and red supergiants using VLT/VISIR. Our sample consists of seven normal K--M giants, three Mira stars, three optically bright red supergiants, two dusty red supergiants, and the enigmatic object GCIRS3 near the Galactic center. We detected SiO fundamental lines in all of our program stars except for GCIRS3. The SiO lines in normal K and M giants as well as optically bright red supergiants do not show P-Cyg profiles or blueshifts, which means the absence of systematic outflows in the SiO line forming region. On the other hand, we detected P-Cyg profiles in the SiO lines in the dusty red supergiants VY CMa and VX Sgr (with the latter being a new detection), which suggest outflow velocities of 27 and 17 km/s, respectively. We derived basic stellar parameters (effective temperature, surface gravity, luminosity, and mass) for the normal K--M giants and optically bright re...

  7. Spectroscopy of unusual emission-line stars

    Science.gov (United States)

    Bopp, Bernard W.

    1988-01-01

    New spectroscopic observations are reported for ten stars that have been identified in the literature as having H-alpha emission with suspected F, G, or K spectral types. Three of the stars are shown to be BE stars, two are confirmed as early-type supergiants, three show composite (F or K + B) spectra, one is a 'post-T Tauri' star, and one is an ordinary F star without emission.

  8. A photometric determination of the metal content for F-G type supergiants in the Large Magellanic Cloud

    Science.gov (United States)

    van Genderen, A. M.; Greidanus, H.; van Driel, W.

    1986-01-01

    A VBLUW photometric analysis is used to derive the metal content of some 100 F- and G type supergiants in the LMC. Using the empirical locus of Pel in the V-B/B-L diagram in conjunction with the relative dependence of theoretical colors on the metal abundance, a metal deficiency of 1.4-1.6 is found for the LMC stars in comparison with those in the solar neighborhood. With an average UBV system foreground reddening of E(B-V) = 0.05 for the LMC, these stars have a metal content of 0.66 + 0.11, -0.03 of the solar abundance. Agreement is found with the result of previous studies. Application to the derivation of the reddenings of most of the galactic supergiants is noted.

  9. Postexplosion hydrodynamics of supernovae in red supergiants

    Science.gov (United States)

    Herant, Marc; Woosley, S. E.

    1994-01-01

    Shock propagation, mixing, and clumping are studied in the explosion of red supergiants as Type II supernovae using a two-dimensional smooth particle hydrodynamic (SPH) code. We show that extensive Rayleigh-Talor instabilities develop in the ejecta in the wake of the reverse shock wave. In all cases, the shell structure of the progenitor is obliterated to leave a clumpy, well-mixed supernova remnant. However, the occurrence of mass loss during the lifetime of the progenitor can significantly reduce the amount of mixing. These results are independent of the Type II supernova explosion mechanism.

  10. A Dark Energy Camera Search for Missing Supergiants in the LMC after the Advanced LIGO Gravitational-wave Event GW150914

    Science.gov (United States)

    Annis, J.; Soares-Santos, M.; Berger, E.; Brout, D.; Chen, H.; Chornock, R.; Cowperthwaite, P. S.; Diehl, H. T.; Doctor, Z.; Drlica-Wagner, A.; Drout, M. R.; Farr, B.; Finley, D. A.; Flaugher, B.; Foley, R. J.; Frieman, J.; Gruendl, R. A.; Herner, K.; Holz, D.; Kessler, R.; Lin, H.; Marriner, J.; Neilsen, E.; Rest, A.; Sako, M.; Smith, M.; Smith, N.; Sobreira, F.; Walker, A. R.; Yanny, B.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Benoit-Lévy, A.; Bernstein, R. A.; Bertin, E.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cenko, S. B.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Dietrich, J. P.; Eifler, T. F.; Evrard, A. E.; Fernandez, E.; Fischer, J.; Fong, W.; Fosalba, P.; Fox, D. B.; Fryer, C. L.; Garcia-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gutierrez, G.; Honscheid, K.; James, D. J.; Karliner, I.; Kasen, D.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Maia, M. A. G.; Martini, P.; Metzger, B. D.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nichol, R. C.; Nord, B.; Ogando, R.; Peoples, J.; Petravic, D.; Plazas, A. A.; Quataert, E.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, R. C.; Stebbins, A.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, R. C.; Tucker, D. L.; Vikram, V.; Wechsler, R. H.; Weller, J.; Wester, W.; DES Collaboration

    2016-06-01

    The collapse of a stellar core is expected to produce gravitational waves (GWs), neutrinos, and in most cases a luminous supernova. Sometimes, however, the optical event could be significantly less luminous than a supernova and a direct collapse to a black hole, where the star just disappears, is possible. The GW event GW150914 was detected by the LIGO Virgo Collaboration via a burst analysis that gave localization contours enclosing the Large Magellanic Cloud (LMC). Shortly thereafter, we used DECam to observe 102 deg2 of the localization area, including 38 deg2 on the LMC for a missing supergiant search. We construct a complete catalog of LMC luminous red supergiants, the best candidates to undergo invisible core collapse, and collected catalogs of other candidates: less luminous red supergiants, yellow supergiants, blue supergiants, luminous blue variable stars, and Wolf-Rayet stars. Of the objects in the imaging region, all are recovered in the images. The timescale for stellar disappearance is set by the free-fall time, which is a function of the stellar radius. Our observations at 4 and 13 days after the event result in a search sensitive to objects of up to about 200 solar radii. We conclude that it is unlikely that GW150914 was caused by the core collapse of a relatively compact supergiant in the LMC, consistent with the LIGO Collaboration analyses of the gravitational waveform as best interpreted as a high mass binary black hole merger. We discuss how to generalize this search for future very nearby core-collapse candidates.

  11. Interplay between pulsations and mass loss in the blue supergiant 55 Cygnus = HD 198478

    CERN Document Server

    Kraus, M; Cidale, L S; Venero, R O J; Nickeler, D H; Nemeth, P; Niemczura, E; Tomic, S; Aret, A; Kubat, J; Kubatova, B; Oksala, M E; Cure, M; Kaminski, K; Dimitrov, W; Fagas, M; Polinska, M

    2015-01-01

    Blue supergiant stars are known to display photometric and spectroscopic variability that is suggested to be linked to stellar pulsations. Pulsational activity in massive stars strongly depends on the star's evolutionary stage and is assumed to be connected with mass-loss episodes, the appearance of macroturbulent line broadening, and the formation of clumps in the wind. To investigate a possible interplay between pulsations and mass-loss, we carried out an observational campaign of the supergiant 55 Cyg over a period of five years to search for photospheric activity and cyclic mass-loss variability in the stellar wind. We modeled the H, He I, Si II and Si III lines using the nonlocal thermal equilibrium atmosphere code FASTWIND and derived the photospheric and wind parameters. In addition, we searched for variability in the intensity and radial velocity of photospheric lines and performed a moment analysis of the line profiles to derive frequencies and amplitudes of the variations. The Halpha line varies wit...

  12. The Ionized Nebula surrounding the Red Supergiant W26 in Westerlund 1

    CERN Document Server

    Wright, Nicholas J; Drew, Janet E; Barentsen, Geert; Barlow, Michael J; Walsh, Jeremy R; Zijlstra, Albert; Drake, Jeremy J; Eisloffel, Jochen; Farnhill, Hywel J

    2013-01-01

    We present H\\alpha images of an ionized nebula surrounding the M2-5Ia red supergiant (RSG) W26 in the massive star cluster Westerlund 1. The nebula consists of a circumstellar shell or ring ~0.1pc in diameter and a triangular nebula ~0.2pc from the star that in high-resolution Hubble Space Telescope images shows a complex filamentary structure. The excitation mechanism of both regions is unclear since RSGs are too cool to produce ionizing photons and we consider various possibilities. The presence of the nebula, high stellar luminosity and spectral variability suggest that W26 is a highly evolved RSG experiencing extreme levels of mass-loss. As the only known example of an ionized nebula surrounding a RSG W26 deserves further attention to improve our understanding of the final evolutionary stages of massive stars.

  13. The Discovery of a Massive Cluster of Red Supergiants with GLIMPSE

    CERN Document Server

    Alexander, Michael J; Clemens, Dan P; Jameson, Katherine; Pinnick, April; Pavel, Michael

    2009-01-01

    We report the discovery of a previously unknown massive Galactic star cluster at l=29.22, b=-0.20. Identified visually in mid-IR images from the Spitzer GLIMPSE survey, the cluster contains at least 8 late-type supergiants, based on followup near-IR spectroscopy, and an additional 3-6 candidate supergiant embers having IR photometry consistent with a similar distance and reddening. The cluster lies at a local minimum in the 13-CO column density and 8 micron emission. We interpret this feature as a hole carved by the energetic winds of the evolving massive stars. The 13-CO hole seen in molecular maps at V_LSR ~95 km/s corresponds to near/far kinematic distances of 6.1/8.7+/-1 kpc. We calculate a mean spectrophotometric distance of 7.0^+3.7_-2.4 kpc, broadly consistent with the kinematic distances inferred. This location places it near the northern end of the Galactic bar. For the mean extinction of A_V=12.6+/-0.5 mag (A_K=1.5+/-0.1 mag), the color-magnitude diagram of probable cluster members is well fit by is...

  14. X-ray Emission from an Expanding Supergiant Shell in IC 2574

    CERN Document Server

    Walter, F; Duric, N; Brinks, E; Klein, U; Walter, Fabian; Duric, Neb; Brinks, Elias; Klein, Uli

    1998-01-01

    We present a multi--wavelength study of a supergiant shell within the violent interstellar medium of the nearby dwarf galaxy IC 2574, a member of the M81 group of galaxies. Neutral hydrogen (HI) observations obtained with the Very Large Array (VLA) reveal a prominent expanding supergiant HI shell which is thought to be produced by the combined effects of stellar winds and supernova explosions. It measures roughly 1000 x 500 pc in size and is expanding at about 25 km/s. The HI data suggest an age of about 1.4 x 10^6 yrs; the energy input must have been of order (2.6\\pm 1) x 10^53 ergs. Massive star forming regions, as traced by H$\\alpha$ emission, are situated predominantly on the rim of this HI shell. VLA radio continuum observations at 6 cm show that these star-forming regions are the main sources of radio continuum emission in this galaxy. Soft X-ray emission from within the HI hole is detected by a pointed ROSAT PSPC observation. The emission is resolved, coinciding in size and orientation with the HI shel...

  15. SPECTROSCOPIC AND PHOTOMETRIC VARIABILITY IN THE A0 SUPERGIANT HR 1040

    Energy Technology Data Exchange (ETDEWEB)

    Corliss, David J.; Morrison, Nancy D. [Department of Physics and Astronomy, The University of Toledo, Toledo, OH 43606 (United States); Adelman, Saul J., E-mail: david.corliss@wayne.edu [Department of Physics, The Citadel, 171 Moultrie Street, Charleston, SC 29409 (United States)

    2015-12-15

    A time-series analysis of spectroscopic and photometric observables of the A0 Ia supergiant HR 1040 has been performed, including equivalent widths, radial velocities, and Strömgren photometric indices. The data, obtained from 1993 through 2007, include 152 spectroscopic observations from the Ritter Observatory 1 m telescope and 269 Strömgren photometric observations from the Four College Automated Photoelectric Telescope. Typical of late B- and early A-type supergiants, HR 1040 has a highly variable Hα profile. The star was found to have an intermittent active phase marked by correlation between the Hα absorption equivalent width and blue-edge radial velocity and by photospheric connections observed in correlations to equivalent width, second moment and radial velocity in Si ii λλ6347, 6371. High-velocity absorption (HVA) events were observed only during this active phase. HVA events in the wind were preceded by photospheric activity, including Si ii radial velocity oscillations 19–42 days prior to onset of an HVA event and correlated increases in Si ii W{sub λ} and second moment from 13 to 23 days before the start of the HVA event. While increases in various line equivalent widths in the wind prior to HVA events have been reported in the past in other stars, our finding of precursors in enhanced radial velocity variations in the wind and at the photosphere is a new result.

  16. The impact of mass-loss on the evolution and pre-supernova properties of red supergiants

    CERN Document Server

    Meynet, G; Ekström, S; Georgy, C; Granada, A; Groh, J; Maeder, A; Eggenberger, P; Levesque, E; Massey, P

    2014-01-01

    The post main-sequence evolution of massive stars is very sensitive to many parameters of the stellar models. Key parameters are the mixing processes, the metallicity, the mass-loss rate and the effect of a close companion. We study how the red supergiant lifetimes, the tracks in the Hertzsprung-Russel diagram (HRD), the positions in this diagram of the pre-supernova progenitor as well as the structure of the stars at that time change for various mass-loss rates during the red supergiant phase (RSG), and for two different initial rotation velocities. The surface abundances of RSGs are much more sensitive to rotation than to the mass-loss rates during that phase. A change of the RSG mass-loss rate has a strong impact on the RSG lifetimes and therefore on the luminosity function of RSGs. At solar metallicity, the enhanced mass-loss rate models do produce significant changes on the populations of blue, yellow and red supergiants. When extended blue loops or blue ward excursions are produced by enhanced mass-loss...

  17. A Dark Energy Camera Search for Missing Supergiants in the LMC After the Advanced LIGO Gravitational Wave Event GW150914

    CERN Document Server

    Annis, J; Berger, E; Brout, D; Chen, H; Chornock, R; Cowperthwaite, P S; Diehl, H T; Doctor, Z; Drlica-Wagner, A; Drout, M R; Farr, B; Finley, D A; Flaugher, B; Foley, R J; Frieman, J; Gruendl, R A; Herner, K; Holz, D; Kessler, R; Lin, H; Marriner, J; Neilsen, E; Rest, A; Sako, M; Smith, M; Smith, N; Sobreira, F; Walker, A R; Yanny, B; Abbott, T M C; Abdalla, F B; Allam, S; Benoit-Levy, A; Bernstein, R A; Bertin, E; Buckley-Geer, E; Burke, D L; Capozzi, D; Rosell, A Carnero; Kind, M Carrasco; Carretero, J; Castander, F J; Cenko, S B; Crocce, M; Cunha, C E; D'Andrea, C B; da Costa, L N; Desai, S; Dietrich, J P; Eifler, T F; Evrard, A E; Fernandez, E; Fischer, J; Fong, W; Fosalba, P; Fox, D B; Fryer, C L; Garcia-Bellido, J; Gaztanaga, E; Gerdes, D W; Goldstein, D A; Gruen, D; Gutierrez, G; Honscheid, K; James, D J; Karliner, I; Kasen, D; Kent, S; Kuehn, K; Kuropatkin, N; Lahav, O; Li, T S; Lima, M; Maia, M A G; Martini, P; Metzger, B D; Miller, C J; Miquel, R; Mohr, J J; Nichol, R C; Nord, B; Ogando, R; Peoples, J; Plazas, A A; Quataert, E; Romer, A K; Roodman, A; Rykoff, E S; Sanchez, E; Santiago, B; Scarpine, V; Schindler, R; Schubnell, M; Sevilla-Noarbe, I; Sheldon, E; Smith, R C; Stebbins, A; Swanson, M E C; Tarle, G; Thaler, J; Thomas, R C; Tucker, D L; Vikram, V; Wechsler, R H; Weller, J; Wester, W

    2016-01-01

    The collapse of the core of a star is expected to produce gravitational radiation. While this process will usually produce a luminous supernova, the optical signatue could be subluminous and a direct collapse to a black hole, with the star just disappearing, is possible. The gravitational wave event GW150914 reported by the LIGO Virgo Collaboration (LVC) on 2015 September 16, was detected by a burst analysis and whose high probability spatial localization included the Large Magellanic Cloud. Shortly after the announcement of the event, we used the Dark Energy Camera to observe 102 deg$^2$ of the localization area, including a 38 deg$^2$ area centered on the LMC. Using a catalog of 152 LMC luminous red supergiants, candidates to undergo a core collapse without a visible supernova, we find that the positions of 144 of these are inside our images, and that all are detected - none have disappeared. There are other classes of candidates: we searched existing catalogs of red supergiants, yellow supergiants, Wolf-Ra...

  18. Entropy Production of Stars

    Directory of Open Access Journals (Sweden)

    Leonid M. Martyushev

    2015-06-01

    Full Text Available The entropy production (inside the volume bounded by a photosphere of main-sequence stars, subgiants, giants, and supergiants is calculated based on B–V photometry data. A non-linear inverse relationship of thermodynamic fluxes and forces as well as an almost constant specific (per volume entropy production of main-sequence stars (for 95% of stars, this quantity lies within 0.5 to 2.2 of the corresponding solar magnitude is found. The obtained results are discussed from the perspective of known extreme principles related to entropy production.

  19. Studying the photometric and spectroscopic variability of the magnetic hot supergiant ζ Orionis Aa

    Science.gov (United States)

    Buysschaert, B.; Neiner, C.; Richardson, N. D.; Ramiaramanantsoa, T.; David-Uraz, A.; Pablo, H.; Oksala, M. E.; Moffat, A. F. J.; Mennickent, R. E.; Legeza, S.; Aerts, C.; Kuschnig, R.; Whittaker, G. N.; Popowicz, A.; Handler, G.; Wade, G. A.; Weiss, W. W.

    2017-06-01

    Massive stars play a significant role in the chemical and dynamical evolution of galaxies. However, much of their variability, particularly during their evolved supergiant stage, is poorly understood. To understand the variability of evolved massive stars in more detail, we present a study of the O9.2Ib supergiant ζ Ori Aa, the only currently confirmed supergiant to host a magnetic field. We have obtained two-color space-based BRIght Target Explorer photometry (BRITE) for ζ Ori Aa during two observing campaigns, as well as simultaneous ground-based, high-resolution optical CHIRON spectroscopy. We perform a detailed frequency analysis to detect and characterize the star's periodic variability. We detect two significant, independent frequencies, their higher harmonics, and combination frequencies: the stellar rotation period Prot = 6.82 ± 0.18 d, most likely related to the presence of the stable magnetic poles, and a variation with a period of 10.0 ± 0.3 d attributed to circumstellar environment, also detected in the Hα and several He I lines, yet absent in the purely photospheric lines. We confirm the variability with Prot/4, likely caused by surface inhomogeneities, being the possible photospheric drivers of the discrete absorption components. No stellar pulsations were detected in the data. The level of circumstellar activity clearlydiffers between the two BRITE observing campaigns. We demonstrate that ζ Ori Aa is a highly variable star with both periodic and non-periodic variations, as well as episodic events. The rotation period we determined agrees well with the spectropolarimetric value from the literature. The changing activity level observed with BRITE could explain why the rotational modulation of the magnetic measurements was not clearly detected at all epochs. Based on data collected by the BRITE Constellation satellite mission, designed, built, launched, operated and supported by the Austrian Research Promotion Agency (FFG), the University of

  20. CARMA CO(J = 2 - 1) Observations of the Circumstellar Envelope of Betelgeuse

    CERN Document Server

    O'Gorman, Eamon; Brown, Joanna M; Brown, Alexander; Redfield, Seth; Richter, Matthew J; Requena-Torres, Miguel A

    2012-01-01

    We report radio interferometric observations of the 12C16O 1.3 mm J = 2-1 emission line in the circumstellar envelope of the M supergiant Alpha Ori and have detected and separated both the S1 and S2 flow components for the first time. Observations were made with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) interferometer in the C, D, and E antenna configurations. We obtain good u-v coverage (5-280 klambda) by combining data from all three configurations allowing us to trace spatial scales as small as 0.9\\arcsec over a 32\\arcsec field of view. The high spectral and spatial resolution C configuration line profile shows that the inner S1 flow has slightly asymmetric outflow velocities ranging from -9.0 km s-1 to +10.6 km s-1 with respect to the stellar rest frame. We find little evidence for the outer S2 flow in this configuration because the majority of this emission has been spatially-filtered (resolved out) by the array. We also report a SOFIA-GREAT CO(J= 12-11) emission line profile w...

  1. The Type IIb Supernova 2013df and its Cool Supergiant Progenitor

    Science.gov (United States)

    VanDyk, Schuyler D.; Zeng, Weikang; Fox, Ori D.; Cenko, S. Bradley; Clubb, Kelsey I.; Filippenko, Alexei; Foley, Ryan J.; Miller, Adam A.; Smith, Nathan; Kelly, Patrick L.; Lee, William H.; Ben-Ami, Sagi; Gal-Yam, Avishay

    2014-01-01

    We have obtained early-time photometry and spectroscopy of supernova (SN) 2013df in NGC 4414. The SN is clearly of Type II b, with notable similarities to SN 1993J. From its luminosity at secondary maximum light, it appears that less Ni-56 (is approximately less than 0.06M) was synthesized in the SN 2013df explosion than was the case for the SNe II b 1993J, 2008ax, and 2011dh. Based on a comparison of the light curves, the SN 2013df progenitor must have been more extended in radius prior to explosion than the progenitor of SN 1993J. The total extinction for SN 2013dfis estimated to be A(sub V) = 0.30 mag. The metallicity at the SN location is likely to be solar. We have conducted Hubble Space Telescope(HST) Target of Opportunity observations of the SN with the Wide Field Camera 3, and from a precise comparison of these new observations to archival HST observations of the host galaxy obtained 14 yr prior to explosion, we have identified the progenitor of SN 2013df to be a yellow supergiant, somewhat hotter than a red supergiant progenitor for a normal Type II-Plateau SN. From its observed spectral energy distribution, assuming that the light is dominated by one star, the progenitor had effective temperature T(sub eff) = 4250+/-100 K and a bolometric luminosity L(sub bol) =10(exp 4.94+/-0.06) Solar Luminosity. This leads to an effective radius Reff = 545+/-65 Solar Radius. The star likely had an initial mass in the range of 13-17Solar Mass; however, if it was a member of an interacting binary system, detailed modeling of the system is required to estimate this mass more accurately. The progenitor star of SN 2013df appears to have been relatively similar to the progenitor of SN 1993J.

  2. The type IIb supernova 2013df and its cool supergiant progenitor

    Energy Technology Data Exchange (ETDEWEB)

    Van Dyk, Schuyler D. [Spitzer Science Center/Caltech, Mail Code 220-6, Pasadena, CA 91125 (United States); Zheng, WeiKang; Fox, Ori D.; Clubb, Kelsey I.; Filippenko, Alexei V.; Kelly, Patrick L. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Foley, Ryan J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Miller, Adam A. [Jet Propulsion Laboratory, MS 169-506, Pasadena, CA 91109 (United States); Smith, Nathan [Steward Observatory, University of Arizona, Tucson, AZ 85720 (United States); Lee, William H. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 70-264, Cd. Universitaria, México DF 04510 (Mexico); Ben-Ami, Sagi; Gal-Yam, Avishay, E-mail: vandyk@ipac.caltech.edu [Benoziyo Center for Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel)

    2014-02-01

    We have obtained early-time photometry and spectroscopy of supernova (SN) 2013df in NGC 4414. The SN is clearly of Type IIb, with notable similarities to SN 1993J. From its luminosity at secondary maximum light, it appears that less {sup 56}Ni (≲ 0.06 M {sub ☉}) was synthesized in the SN 2013df explosion than was the case for the SNe IIb 1993J, 2008ax, and 2011dh. Based on a comparison of the light curves, the SN 2013df progenitor must have been more extended in radius prior to explosion than the progenitor of SN 1993J. The total extinction for SN 2013df is estimated to be A{sub V} = 0.30 mag. The metallicity at the SN location is likely to be solar. We have conducted Hubble Space Telescope (HST) Target of Opportunity observations of the SN with the Wide Field Camera 3, and from a precise comparison of these new observations to archival HST observations of the host galaxy obtained 14 yr prior to explosion, we have identified the progenitor of SN 2013df to be a yellow supergiant, somewhat hotter than a red supergiant progenitor for a normal Type II-Plateau SN. From its observed spectral energy distribution, assuming that the light is dominated by one star, the progenitor had effective temperature T {sub eff} = 4250 ± 100 K and a bolometric luminosity L {sub bol} = 10{sup 4.94±0.06} L {sub ☉}. This leads to an effective radius R {sub eff} = 545 ± 65 R {sub ☉}. The star likely had an initial mass in the range of 13-17 M {sub ☉}; however, if it was a member of an interacting binary system, detailed modeling of the system is required to estimate this mass more accurately. The progenitor star of SN 2013df appears to have been relatively similar to the progenitor of SN 1993J.

  3. INTEGRAL Long-Term Monitoring of the Supergiant Fast X-Ray Transient XTE J1739-302

    Science.gov (United States)

    Blay, P.; Martinez-Nunez, S.; Negueruela, I.; Pottschmidt, K.; Smith, D. M.; Torrejon, J. M.; Reig, P.; Kretschmar, P.; Kreykenbohm, I.

    2008-01-01

    Context. In the past few years, a new class of High Mass X-Ray Binaries (HMXRB) has been claimed to exist, the Supergiant Fast X-ray Transients (SFXT). These are X-ray binary systems with a compact companion orbiting a supergiant star which show very short and bright outbursts in a series of activity periods overimposed on longer quiescent periods. Only very recently the first attempts to model the behaviour of these sources have been published, some of them within the framework of accretion from clumpy stellar winds. Aims. Our goal is to analyze the properties of XTE J1739-302/IGR J17391-3021 within the context of the clumpy structure of the supergiant wind. Methods. We have used INTEGRAL and RXTE/PCA observations in order to obtain broad band (1 - 200 keV) spectra and light curves of XTE J1739-302 and investigate its X-ray spectrum and temporal variability. Results. We have found that XTE J1739-302 follows a much more complex behaviour than expected. Far from presenting a regular variability pattern, XTE J1739-302 shows periods of high, intermediate, and low flaring activity.

  4. Ring Nebula and Bipolar Outflows Associated with the B1.5 Supergiant Sher #25 in NGC 3603

    CERN Document Server

    Brandner, W; Chu, Y H; Weis, K; Brandner, Wolfgang; Grebel, Eva K.; Chu, You-Hua; Weis, Kerstin

    1996-01-01

    We have identified a ring-shaped emission-line nebula and a possible bipolar outflow centered on the B1.5 supergiant Sher #25 in the Galactic giant HII region NGC 3603 (distance 6 kpc). The clumpy ring around Sher #25 appears to be tilted by 64 deg against the plane of the sky. Its semi-major axis (position angle approx. 165 deg) is 6.9" long, which corresponds to a ring diameter of 0.4 pc. The bipolar outflow filaments, presumably located above and below the ring plane on either side of Sher #25, show a separation of approx. 0.5 pc from the central star. High-resolution spectra show that the ring has a systemic velocity of V_LSR = +19 km/s and a de-projected expansion velocity of 20 km/s, and that one of the bipolar filaments has an outflow speed of approx. 83 km/s. The spectra also show high [NII]/Halpha ratio, suggestive of strong N enrichment. Sher #25 must be an evolved blue supergiant (BSG) past the red supergiant (RSG) stage. We find that the ratio of equatorial to polar mass-loss rate during the red s...

  5. INTEGRAL Long-Term Monitoring of the Supergiant Fast X-Ray Transient XTE J1739-302

    Science.gov (United States)

    Blay, P.; Martinez-Nunez, S.; Negueruela, I.; Pottschmidt, K.; Smith, D. M.; Torrejon, J. M.; Reig, P.; Kretschmar, P.; Kreykenbohm, I.

    2008-01-01

    Context. In the past few years, a new class of High Mass X-Ray Binaries (HMXRB) has been claimed to exist, the Supergiant Fast X-ray Transients (SFXT). These are X-ray binary systems with a compact companion orbiting a supergiant star which show very short and bright outbursts in a series of activity periods overimposed on longer quiescent periods. Only very recently the first attempts to model the behaviour of these sources have been published, some of them within the framework of accretion from clumpy stellar winds. Aims. Our goal is to analyze the properties of XTE J1739-302/IGR J17391-3021 within the context of the clumpy structure of the supergiant wind. Methods. We have used INTEGRAL and RXTE/PCA observations in order to obtain broad band (1 - 200 keV) spectra and light curves of XTE J1739-302 and investigate its X-ray spectrum and temporal variability. Results. We have found that XTE J1739-302 follows a much more complex behaviour than expected. Far from presenting a regular variability pattern, XTE J1739-302 shows periods of high, intermediate, and low flaring activity.

  6. Is macroturbulent broadening in OB Supergiants related to pulsations?

    CERN Document Server

    Simón-Díaz, S; Herrero, A; Castro, N; Puls, J; Aerts, C

    2010-01-01

    The spectrum of O and B Supergiants is known to be affected by an important extra line-broadening (usually called \\macro) that adds to stellar rotation. Recent analysis of high resolution spectra has shown that the interpretation of this line-broadening as a consequence of large-scale turbulent motions would imply highly super-sonic velocity fields, making this scenario quite improbable. Stellar oscillations have been proposed as a likely alternative explanation. We present first encouraging results of an observational project aimed at investigating the $macroturbulent$ broadening in O and B Supergiants, and its possible connection with spectroscopic variability phenomena and stellar oscillations: a) all the studied B Supergiants show line profile variations, quantified by means of the first () and third velocity () moments of the lines, b) there is a strong correlation between the peak-to-peak amplitudes of the and variability and the size of the extra-broadening.

  7. Quantitative spectroscopic J-band study of red supergiants in Perseus OB-1

    Energy Technology Data Exchange (ETDEWEB)

    Gazak, J. Zachary; Kudritzki, Rolf [Institute for Astronomy, University of Hawai' i, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Davies, Ben [Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Bergemann, Maria [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Plez, Bertrand [Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS, F-34095 Montpellier (France)

    2014-06-10

    We demonstrate how the metallicities of red supergiant (RSG) stars can be measured from quantitative spectroscopy down to resolutions of ≈3000 in the J-band. We have obtained high resolution spectra on a sample of the RSG population of h and χ Persei, a double cluster in the solar neighborhood. We show that careful application of the MARCS model atmospheres returns measurements of Z consistent with solar metallicity. Using two grids of synthetic spectra–one in pure LTE and one with non-LTE (NLTE) calculations for the most important diagnostic lines–we measure Z = +0.04 ± 0.10 (LTE) and Z = –0.04 ± 0.08 (NLTE) for the sample of eleven RSGs in the cluster. We degrade the spectral resolution of our observations and find that those values remain consistent down to resolutions of less than λ/δλ of 3000. Using measurements of effective temperatures we compare our results with stellar evolution theory and find good agreement. We construct a synthetic cluster spectrum and find that analyzing this composite spectrum with single-star RSG models returns an accurate metallicity. We conclude that the RSGs make ideal targets in the near infrared for measuring the metallicities of star forming galaxies out to 7-10 Mpc and up to 10 times farther by observing the integrated light of unresolved super star clusters.

  8. UV Observations of the Powering Source of the Supergiant Shell in IC2574

    CERN Document Server

    Stewart, S G; Stewart, Susan G.; Walter, Fabian

    2000-01-01

    A multi-band analysis of the region containing the supergiant HI shell in the nearby dwarf irregular galaxy IC2574 presents evidence of a causal relationship between a central star cluster, the surrounding expanding HI shell, and secondary star formation sites on the rim of the HI shell. Comparisons of the far-UV (FUV, 1521 A), optical broad-band, H-alpha, X-ray, and HI morphologies suggest that the region is in an auspicious moment of star formation triggered by the central stellar cluster. The derived properties of the HI shell, the central stellar cluster, and the star forming regions on the rim support this scenario: The kinematic age of the HI shell is <14 Myr and in agreement with the age of the central stellar cluster derived from the FUV observations (sim 11 Myr). An estimate for the mechanical energy input from SN and stellar winds of the central stellar cluster made from FUV photometry and the derived cluster age is 4.1 x 10^52 erg, roughly a few times higher than the kinetic energy of the HI she...

  9. Blue Supergiant X-Ray Binaries in the Nearby Dwarf Galaxy IC 10

    Science.gov (United States)

    Laycock, Silas G. T.; Christodoulou, Dimitris M.; Williams, Benjamin F.; Binder, Breanna; Prestwich, Andrea

    2017-02-01

    In young starburst galaxies, the X-ray population is expected to be dominated by the relics of the most massive and short-lived stars, black hole and neutron-star high-mass X-ray binaries (XRBs). In the closest such galaxy, IC 10, we have made a multi-wavelength census of these objects. Employing a novel statistical correlation technique, we have matched our list of 110 X-ray point sources, derived from a decade of Chandra observations, against published photometric data. We report an 8σ correlation between the celestial coordinates of the two catalogs, with 42 X-ray sources having an optical counterpart. Applying an optical color–magnitude selection to isolate blue supergiant (SG) stars in IC 10, we find 16 matches. Both cases show a statistically significant overabundance versus the expectation value for chance alignments. The blue objects also exhibit systematically higher {f}x/{f}v ratios than other stars in the same magnitude range. Blue SG-XRBs include a major class of progenitors of double-degenerate binaries, hence their numbers are an important factor in modeling the rate of gravitational-wave sources. We suggest that the anomalous features of the IC 10 stellar population are explained if the age of the IC 10 starburst is close to the time of the peak of interaction for massive binaries.

  10. The weak magnetic field of the O9.7 supergiant zeta Orionis A

    CERN Document Server

    Bouret, J -C; Martins, F; Escolano, C; Marcolino, W; Lanz, T; Howarth, Ian

    2008-01-01

    We report here the detection of a weak magnetic field of 50 - 100 G on the O9.7 supergiant zeta Ori A, using spectropolarimetric observations obtained with NARVAL at the 2m Telescope Bernard Lyot atop Pic du Midi (France). zeta Ori A is the third O star known to host a magnetic field (along with theta^1 Ori C and HD 191612), and the first detection on a 'normal' rapidly-rotating O star. The magnetic field of zeta Ori A is the weakest magnetic field ever detected on a massive star. The measured field is lower than the thermal equipartition limit (about 100 G). By fitting NLTE model atmospheres to our spectra, we determined that zeta Ori A is a 40 Msun star with a radius of 25 Rsun and an age of about 5 - 6 Myr, showing no surface nitrogen enhancement and losing mass at a rate of about 2x10^(-6) Msol/yr. The magnetic topology of zeta Ori A is apparently more complex than a dipole and involves two main magnetic polarities located on both sides of the same hemisphere; our data also suggest that zeta Ori A rotates...

  11. Multiwavelength study of the fast rotating supergiant high-mass X-ray binary IGR J16465-4507

    CERN Document Server

    Chaty, Sylvain; Negueruela, Ignacio; Coleiro, Alexis; Castro, Norberto; Simon-Diaz, Sergio; Heras, Juan Antonio Zurita; Goldoni, Paolo; Goldwurm, Andrea

    2016-01-01

    Since its launch, the X-ray and gamma-ray observatory INTEGRAL satellite has revealed a new class of high-mass X-ray binaries (HMXB) displaying fast flares and hosting supergiant companion stars. Optical and infrared (OIR) observations in a multi-wavelength context are essential to understand the nature and evolution of these newly discovered celestial objects. The goal of this multiwavelength study (from ultraviolet to infrared) is to characterise the properties of IGR J16465-4507, to confirm its HMXB nature and that it hosts a supergiant star. We analysed all OIR, photometric and spectroscopic observations taken on this source, carried out at ESO facilities. Using spectroscopic data, we constrained the spectral type of the companion star between B0.5 and B1 Ib, settling the debate on the true nature of this source. We measured a high rotation velocity of v = 320 +/- 8 km/s from fitting absorption and emission lines in a stellar spectral model. We then built a spectral energy distribution from photometric ob...

  12. The evolution of circumstellar medium around rotating massive stars

    NARCIS (Netherlands)

    Chita, S.M.; Marle, A.J.; Langer, N.; García-Segura, G.

    2007-01-01

    A rotating 12Mȯ star, after its main-sequence evolution, becomes a redsupergiant when it starts core He burning. During core helium burning, as consequence of a variation of the hydrogen shell burning efficiency, the star undergoes a so called ``blue loop'', i.e. it evolves into a blue supergiant st

  13. CARMA CO(J = 2 - 1) OBSERVATIONS OF THE CIRCUMSTELLAR ENVELOPE OF BETELGEUSE

    Energy Technology Data Exchange (ETDEWEB)

    O' Gorman, Eamon; Harper, Graham M. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Brown, Joanna M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-78, Cambridge, MA 02138 (United States); Brown, Alexander [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309-0389 (United States); Redfield, Seth [Astronomy Department, Van Vleck Observatory, Wesleyan University, Middletown, CT 06459 (United States); Richter, Matthew J. [Physics Department, UC Davis, 1 Shields Avenue, Davis, CA 95616 (United States); Requena-Torres, Miguel A. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, 53121 Bonn (Germany)

    2012-08-15

    We report radio interferometric observations of the {sup 12}C{sup 16}O 1.3 mm J = 2 - 1 emission line in the circumstellar envelope of the M supergiant {alpha} Ori and have detected and separated both the S1 and S2 flow components for the first time. Observations were made with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) interferometer in the C, D, and E antenna configurations. We obtain good u - v coverage (5-280 k{lambda}) by combining data from all three configurations allowing us to trace spatial scales as small as 0.''9 over a 32'' field of view. The high spectral and spatial resolution C configuration line profile shows that the inner S1 flow has slightly asymmetric outflow velocities ranging from -9.0 km s{sup -1} to +10.6 km s{sup -1} with respect to the stellar rest frame. We find little evidence for the outer S2 flow in this configuration because the majority of this emission has been spatially filtered (resolved out) by the array. We also report a SOFIA-GREAT CO(J = 12 - 11) emission line profile, which we associate with this inner higher excitation S1 flow. The outer S2 flow appears in the D and E configuration maps and its outflow velocity is found to be in good agreement with high-resolution optical spectroscopy of K I obtained at the McDonald Observatory. We image both S1 and S2 in the multi-configuration maps and see a gradual change in the angular size of the emission in the high absolute velocity maps. We assign an outer radius of 4'' to S1 and propose that S2 extends beyond CARMA's field of view (32'' at 1.3 mm) out to a radius of 17'', which is larger than recent single-dish observations have indicated. When azimuthally averaged, the intensity falloff for both flows is found to be proportional to R{sup -1}, where R is the projected radius, indicating optically thin winds with {rho}{proportional_to}R{sup -2}.

  14. HD 133656 : A new high-latitude supergiant

    NARCIS (Netherlands)

    VanWinckel, H; Oudmaijer, RD; Trams, NR

    1996-01-01

    In the course of our study of post-asymptotic Giant Branch objects, we discovered that the seventh magnitude A supergiant HD 133656 has an infrared excess emission due to cool circumstellar dust, and that its photospheric abundance pattern is population II like. We present a detailed abundance study

  15. The VLT-FLAMES Tarantula Survey . XXIV. Stellar properties of the O-type giants and supergiants in 30 Doradus

    Science.gov (United States)

    Ramírez-Agudelo, O. H.; Sana, H.; de Koter, A.; Tramper, F.; Grin, N. J.; Schneider, F. R. N.; Langer, N.; Puls, J.; Markova, N.; Bestenlehner, J. M.; Castro, N.; Crowther, P. A.; Evans, C. J.; García, M.; Gräfener, G.; Herrero, A.; van Kempen, B.; Lennon, D. J.; Maíz Apellániz, J.; Najarro, F.; Sabín-Sanjulián, C.; Simón-Díaz, S.; Taylor, W. D.; Vink, J. S.

    2017-04-01

    Context. The Tarantula region in the Large Magellanic Cloud (LMC) contains the richest population of spatially resolved massive O-type stars known so far. This unmatched sample offers an opportunity to test models describing their main-sequence evolution and mass-loss properties. Aims: Using ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to determine stellar, photospheric and wind properties of 72 presumably single O-type giants, bright giants and supergiants and to confront them with predictions of stellar evolution and of line-driven mass-loss theories. Methods: We apply an automated method for quantitative spectroscopic analysis of O stars combining the non-LTE stellar atmosphere model fastwind with the genetic fitting algorithm pikaia to determine the following stellar properties: effective temperature, surface gravity, mass-loss rate, helium abundance, and projected rotational velocity. The latter has been constrained without taking into account the contribution from macro-turbulent motions to the line broadening. Results: We present empirical effective temperature versus spectral subtype calibrations at LMC-metallicity for giants and supergiants. The calibration for giants shows a +1kK offset compared to similar Galactic calibrations; a shift of the same magnitude has been reported for dwarfs. The supergiant calibrations, though only based on a handful of stars, do not seem to indicate such an offset. The presence of a strong upturn at spectral type O3 and earlier can also not be confirmed by our data. In the spectroscopic and classical Hertzsprung-Russell diagrams, our sample O stars are found to occupy the region predicted to be the core hydrogen-burning phase by state-of-the-art models. For stars initially more massive than approximately 60 M⊙, the giant phase already appears relatively early on in the evolution; the supergiant phase develops later. Bright giants, however, are not

  16. Measuring the stellar wind parameters in IGR J17544-2619 and Vela X-1 constrains the accretion physics in Supergiant Fast X-ray Transient and classical Supergiant X-ray Binaries

    CERN Document Server

    Gimenez-Garcia, A; Torrejon, J M; Oskinova, L; Martinez-Nunez, S; Hamann, W -R; Rodes-Roca, J J; Gonzalez-Galan, A; Alonso-Santiago, J; Gonzalez-Fernandez, C; Bernabeu, G; Sander, A

    2016-01-01

    Classical Supergiant X-ray Binaries (SGXBs) and Supergiant Fast X-ray Transients (SFXTs) are two types of High-mass X-ray Binaries (HMXBs) that present similar donors but, at the same time, show very different behavior in the X-rays. The reason for this dichotomy of wind-fed HMXBs is still a matter of debate. Among the several explanations that have been proposed, some of them invoke specific stellar wind properties of the donor stars. Only dedicated empiric analysis of the donors' stellar wind can provide the required information to accomplish an adequate test of these theories. However, such analyses are scarce. To close this gap, we perform a comparative analysis of the optical companion in two important systems: IGR J17544-2619 (SFXT) and Vela X-1 (SGXB). We analyse the spectra of each star in detail and derive their stellar and wind properties. We compare the wind parameters, giving us an excellent chance of recognizing key differences between donor winds in SFXTs and SGXBs. We find that the stellar para...

  17. The chemical abundances in the Galactic Centre from the atmospheres of Red Supergiants

    CERN Document Server

    Davies, Ben; Kudritzki, Rolf-Peter; Figer, Don F; Rich, R Michael; Najarro, Francisco

    2008-01-01

    The Galactic Centre (GC) has experienced a high degree of recent star-forming activity, as evidenced by the large number of massive stars currently residing there. The relative abundances of chemical elements in the GC may provide insights into the origins of this activity. Here, we present high-resolution $H$-band spectra of two Red Supergiants in the GC (IRS~7 and VR~5-7), and in combination with spectral synthesis we derive abundances for Fe and C, as well as other $\\alpha$-elements Ca, Si, Mg Ti and O. We find that the C-depletion in VR~5-7 is consistent with the predictions of evolutionary models of RSGs, while the heavy depletion of C and O in IRS~7's atmosphere is indicative of deep mixing, possibly due to fast initial rotation and/or enhanced mass-loss. Our results indicate that the {\\it current} surface Fe/H content of each star is slightly above Solar. However, comparisons to evolutionary models indicate that the {\\it initial} Fe/H ratio was likely closer to Solar, and has been driven higher by H-de...

  18. The Chemical composition of the post-AGB F-supergiant CRL 2688

    CERN Document Server

    Ishigaki, Miho N; Reddy, Bacham E; García-Lario, Pedro; Takeda, Yoichi; Aoki, Wako

    2012-01-01

    We present an analysis of a high resolution (R \\sim 30000) optical spectrum of the central region of the proto-planetary nebula CRL 2688. This object is thought to have recently moved off the AGB, and display abundance patterns of CNO and heavy elements that can provide us with important clues to understand the nucleosynthesis, dredge-up and mixing experienced by the envelope of the central star during its AGB stage of evolution. The analysis of the molecular features, presumably originated from the circumstellar matter provides further constraints on the chemistry and velocity of the expanding shell, expelled as a consequence of the strong mass loss experienced by the central star. We confirm that the central star shows a spectrum typical of an F-type supergiant with Teff=7250 K, log g=0.5 and [Fe/H]=-0.3 dex. We find that the abundance pattern of this object is characterized by enhancements of Carbon ([C/Fe]=0.6), Nitrogen ([N/Fe]=1.0) and Na ([Na/Fe]=0.7), similar to other previously known carbon-rich post...

  19. DISCOVERY OF SiO BAND EMISSION FROM GALACTIC B[e] SUPERGIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, M. [Astronomický ústav, Akademie věd České republiky, Fričova 298, 251 65 Ondřejov (Czech Republic); Oksala, M. E. [LESIA, Observatoire de Paris, CNRS UMR 8109, UPMC, Université Paris Diderot, 5 place Jules Janssen, F-92190, Meudon (France); Cidale, L. S.; Arias, M. L.; Torres, A. F. [Departamento de Espectroscopía Estelar, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata (Argentina); Fernandes, M. Borges, E-mail: michaela.kraus@asu.cas.cz [Observatório Nacional, Rua General José Cristino 77, 20921-400 São Cristovão, Rio de Janeiro (Brazil)

    2015-02-20

    B[e] supergiants (B[e]SGs) are evolved massive stars in a short-lived transition phase. During this phase, these objects eject large amounts of material, which accumulate in a circumstellar disk-like structure. The expelled material is typically dense and cool, providing the cradle for molecule and dust condensation and for a rich, ongoing chemistry. Very little is known about the chemical composition of these disks, beyond the emission from dust and CO revolving around the star on Keplerian orbits. As massive stars preserve an oxygen-rich surface composition throughout their life, other oxygen-based molecules can be expected to form. As SiO is the second most stable oxygen compound, we initiated an observing campaign to search for first-overtone SiO emission bands. We obtained high-resolution near-infrared L-band spectra for a sample of Galactic B[e]SGs with reported CO band emission. We clearly detect emission from the SiO first-overtone bands in CPD-52 9243 and indications for faint emission in HD 62623, HD 327083, and CPD-57 2874. From model fits, we find that in all these stars the SiO bands are rotationally broadened with a velocity lower than observed in the CO band forming regions, suggesting that SiO forms at larger distances from the star. Hence, searching for and analyzing these bands is crucial for studying the structure and kinematics of circumstellar disks, because they trace complementary regions to the CO band formation zone. Moreover, since SiO molecules are the building blocks for silicate dust, their study might provide insight in the early stage of dust formation.

  20. High spectral resolution spectroscopy of the SiO fundamental lines in red giants and red supergiants with VLT/VISIR

    Science.gov (United States)

    Ohnaka, K.

    2014-01-01

    Context. The mass-loss mechanism in red giants and red supergiants is not yet understood well. The SiO fundamental lines near 8 μm are potentially useful for probing the outer atmosphere, which is essential for clarifying the mass-loss mechanism. However, these lines have been little explored until now. Aims: We present high spectral resolution spectroscopic observations of the SiO fundamental lines near 8.1 μm in 16 bright red giants and red supergiants. Our sample consists of seven normal (i.e., non-Mira) K-M giants (from K1.5 to M6.5), three Mira stars, three optically bright red supergiants, two dusty red supergiants, and the enigmatic object GCIRS3 near the Galactic center. Methods: Our program stars were observed between 8.088 μm and 8.112 μm with a spectral resolution of 30 000 using VLT/VISIR. Results: We detected SiO fundamental lines in all of our program stars except for GCIRS3. The SiO lines in normal K and M giants as well as optically bright (i.e., not dusty) red supergiants do not show P-Cyg profiles or blueshifts, which means the absence of systematic outflows in the SiO line forming region. We detected P-Cyg profiles in the SiO lines in the dusty red supergiants VY CMa and VX Sgr, with the latter object being a new detection. These SiO lines originate in the outflowing gas with the thermal dust continuum emission seen as the background. The outflow velocities of the SiO line forming region in VY CMa and VX Sgr are estimated to be 27 km s-1 and 17 km s-1, respectively. We derived basic stellar parameters (effective temperature, surface gravity, luminosity, and mass) for the normal K-M giants and optically bright red supergiants in our sample and compared the observed VISIR spectra with synthetic spectra predicted from MARCS photospheric models. Most of the SiO lines observed in the program stars warmer than ~3400 K are reasonably reproduced by the MARCS models, which allowed us to estimate the silicon abundance as well as the 28Si/29Si and 28Si

  1. RED SUPERGIANTS AS COSMIC ABUNDANCE PROBES: THE FIRST DIRECT METALLICITY DETERMINATION OF NGC 4038 IN THE ANTENNAE

    Energy Technology Data Exchange (ETDEWEB)

    Lardo, C.; Davies, B. [Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Kudritzki, R-P.; Gazak, J. Z. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Evans, C. J. [UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Patrick, L. R. [Institute for Astronomy, University of Edinburgh, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Bergemann, M. [Max-Planck Institute for Astronomy, D-69117 Heidelberg (Germany); Plez, B. [Laboratoire Univers et Particules de Montpellier, Université de Montpellier, CNRS, F-34095 Montpellier (France)

    2015-10-20

    We present a direct determination of the stellar metallicity in the close pair galaxy NGC 4038 (D = 20 Mpc) based on the quantitative analysis of moderate-resolution KMOS/Very Large Telescope spectra of three super star clusters. The method adopted in our analysis has been developed and optimized to measure accurate metallicities from atomic lines in the J-band of single red supergiant (RSG) or RSG-dominated star clusters. Hence, our metallicity measurements are not affected by the biases and poorly understood systematics inherent to strong line H ii methods, which are routinely applied to massive data sets of galaxies. We find [Z] = +0.07 ± 0.03 and compare our measurements to H ii strong line calibrations. Our abundances and literature data suggest the presence of a flat metallicity gradient, which can be explained as redistribution of metal-rich gas following the strong interaction.

  2. Red Supergiants as Cosmic Abundance Probes: The First Direct Metallicity Determination of NGC 4038 in the Antennae

    Science.gov (United States)

    Lardo, C.; Davies, B.; Kudritzki, R.-P.; Gazak, J. Z.; Evans, C. J.; Patrick, L. R.; Bergemann, M.; Plez, B.

    2015-10-01

    We present a direct determination of the stellar metallicity in the close pair galaxy NGC 4038 (D = 20 Mpc) based on the quantitative analysis of moderate-resolution KMOS/Very Large Telescope spectra of three super star clusters. The method adopted in our analysis has been developed and optimized to measure accurate metallicities from atomic lines in the J-band of single red supergiant (RSG) or RSG-dominated star clusters. Hence, our metallicity measurements are not affected by the biases and poorly understood systematics inherent to strong line H ii methods, which are routinely applied to massive data sets of galaxies. We find [Z] = +0.07 ± 0.03 and compare our measurements to H ii strong line calibrations. Our abundances and literature data suggest the presence of a flat metallicity gradient, which can be explained as redistribution of metal-rich gas following the strong interaction.

  3. Supergiant Fast X-ray Transients: A Case Study for LOFT

    Science.gov (United States)

    Romano, Patrizia; Mangano, V.; Bozzo, E.; Esposito, P.; Ferrigno, C.

    2013-04-01

    LOFT, the Large Observatory For X-ray Timing, is a new space mission concept selected by ESA in February 2011 and currently competing for a launch of opportunity in 2022. LOFT will carry a coded mask Wide Field Monitor (WFM) and a 10-m^2 class collimated X-ray Large Area Detector (LAD) operating in the energy range 2-80 keV. The instruments on-board LOFT will dramatically deepen our knowledge of Supergiant Fast X-ray Transients, a class of High-Mass X-ray Binaries whose optical counterparts are O or B supergiant stars, and whose X-ray outbursts are about 4 orders of magnitude brighter than the quiescent state. The LAD and the WFM will provide simultaneous high S/N broad-band and time-resolved spectroscopy in several intensity states, long term monitoring that will yield new determinations of orbital periods, as well as spin periods. We show the results of an extensive set of simulations based on the Swift broad-band and detailed XMM-Newton observations we collected up to now. Our simulations describe the outbursts at several intensities (F(2-10 keV)=5.9E-9 to 5.5E-10 erg cm-2 s-1), the intermediate and most common state (1E-11 erg cm-2 s-1), and the low state (1.2E-12 to 5E-13 erg cm-2 s-1). We also considered large variations of NH and the presence of emission lines, as observed by Swift and XMM-Newton. We acknowledge financial contribution from ASI-INAF I/004/11/0 and I/021/12/0.

  4. Core collapse supernovae from blue supergiant progenitors : The evolutionary history of SN 1987A

    Science.gov (United States)

    Menon, Athira

    2015-08-01

    SN 1987A is historically one of the most remarkable supernova explosions to be seen from Earth. Due to the proximity of its location in the LMC, it remains the most well-studied object outside the solar system. It was also the only supernova whose progenitor was observed prior to its explosion.SN 1987A however, was a unique and enigmatic core collapse supernova. It was the first Type II supernova to have been observed to have exploded while its progenitor was a blue supergiant (BSG). Until then Type II supernovae were expected to originate from explosions of red supergiants (RSGs). A spectacular triple-ring nebula structure, rich in helium and nitrogen, was observed around the remnant, indicating a recent RSG phase before becoming a BSG. Even today it is not entirely understood what the evolutionary history may have been to cause a BSG to explode. The most commonly accepted hypothesis for its origin is the merger of a massive binary star system.An evolutionary scenario for such a binary system, was proposed by Podsiadlowski (1992) (P92). Through SPH simulations of the merger and the stellar evolution of the post-merger remnant, Ivanova & Podsiadlowski (2002) and (2003) (I&M) could successfully obtain the RSG to BSG transition of the progenitor.The aim of the present work is to produce the evolutionary history of the progenitor of SN 1987A and its explosion. We construct our models based on the results of P92 and I&M. Here, the secondary (less massive) star is accreted on the primary, while being simultaneously mixed in its envelope over a period of 100 years. The merged star is evolved until the onset of core collapse. For this work we use the 1-dimensional, implicit, hydrodynamical stellar evolution code, KEPLER. A large parameter space is explored, consisting of primary (16-20 Ms) and secondary masses (5-8 Ms), mixing boundaries, and accreting timescales. Those models whose end states match the observed properties of the progenitor of SN 1987A are exploded. The

  5. The quest for blue supergiants : The evolution of the progenitor of SN 1987A

    Science.gov (United States)

    Menon, Athira; Heger, Alexander

    2015-08-01

    SN 1987A is historically one of the most remarkable supernova explosions to be seen from Earth. Due to the proximity of its location in the LMC, it remains the most well-studied object outside the solar system. It was also the only supernova whose progenitor was observed prior to its explosion.SN 1987A however, was a unique and enigmatic core collapse supernova. It was the first Type II supernova to have been observed to have exploded while its progenitor was a blue supergiant (BSG). Until then Type II supernovae were expected to originate from explosions of red supergiants (RSGs). A spectacular triple-ring nebula structure, rich in helium and nitrogen, was observed around the remnant, indicating a recent RSG phase before becoming a BSG. Even today it is not entirely understood what the evolutionary history may have been to cause a BSG to explode. The most commonly accepted hypothesis for its origin is the merger of a massive binary star system.An evolutionary scenario for such a binary system, was proposed by Podsiadlowski (1992) (P92). Through SPH simulations of the merger and the stellar evolution of the post-merger remnant, Ivanova & Podsiadlowski (2002) and (2003) (I&M) could successfully obtain the RSG to BSG transition of the progenitor.The aim of the present work is to produce the evolutionary history of the progenitor of SN 1987A and its explosion. We construct our models based on the results of P92 and I&M. Here, the secondary (less massive) star is accreted on the primary, while being simultaneously mixed in its envelope over a period of 100 years. The merged star is evolved until the onset of core collapse. For this work we use the 1-dimensional, implicit, hydrodynamical stellar evolution code, KEPLER. A large parameter space is explored, consisting of primary (16-20 Ms) and secondary masses (5-8 Ms), mixing boundaries, and accreting timescales. Those models whose end states match the observed properties of the progenitor of SN 1987A are exploded. The

  6. The mass-loss rates of red supergiants at low metallicity: Detection of rotational CO emission from two red supergiants in the Large Magellanic Cloud

    CERN Document Server

    Matsuura, Mikako; Swinyard, Bruce; Yates, Jeremy; Royer, P; Barlow, M J; Boyer, Martha; Decin, L; Khouri, Theo; Meixner, Margaret; van Loon, Jacco Th; Woods, Paul M

    2016-01-01

    Using the PACS and SPIRE spectrometers on-board the Herschel Space Observatory, we obtained spectra of two red supergiants (RSGs) in the Large Magellanic Cloud (LMC). Multiple rotational CO emission lines (J=6-5 to 15-14) and 15 H2O lines were detected from IRAS 05280-6910, and one CO line was detected from WOH G64. This is the first time CO rotational lines have been detected from evolved stars in the LMC. Their CO line intensities are as strong as those of the Galactic RSG, VY CMa. Modelling the CO lines and the spectral energy distribution results in an estimated mass-loss rate for IRAS 05280-6910 of 3x10^-4 Msun per yr. The model assumes a gas-to-dust ratio and a CO-to-H2 abundance ratio is estimated from the Galactic values scaled by the LMC metallicity ([Fe/H]~-0.3), i.e., that the CO-to-dust ratio is constant for Galactic and LMC metallicities within the uncertainties of the model. The key factor determining the CO line intensities and the mass-loss rate found to be the stellar luminosity.

  7. The Envelopes of B[e] Supergiants in the Magellanic Clouds as Seen by Polarimetry

    Science.gov (United States)

    Seriacopi, D. B.; Carciofi, A. C.; Magalhães, A. M.

    2017-02-01

    B[e] supergiants (sgB[e]) are rare, massive post-main sequence stars. Their evolutionary status with respect to other objects on the H-R diagram is still unknown. These stars are surrounded by a non-spherically symmetric circumstellar envelope, from which arises a net intrinsic polarization. Therefore, spectropolarimetry is a very useful tool in the study of these objects. Since emission, absorption, and scattering processes are imprinted in the polarized flux, this technique can provide useful information about the circumstellar structure. We present a study of the envelope structure of RMC 82, a sgB[e] in the Large Magellanic Cloud, based on spectropolarimetric data. Our observations were obtained with the 8.2 m VLT/UT1 telescope at the Paranal Observatory (ESO). We analyzed the Balmer line formation loci, and their corresponding physical conditions. The data was modeled by a bimodal wind model of the circumstellar envelope, consisting of a slow, dense equatorial wind and a fast polar wind. The calculations were done with the radiative transfer code HDUST. Our results suggest that this geometry is indeed consistent with the RMC 82 data. Our best fit parameters are an opening angle of the disk of 15° and a total mass loss rate of 1.0×10-5 M⊙ yr-1 sr-1.

  8. Similarities in the structure of the circumstellar environments of B[e] supergiants and yellow hypergiants

    CERN Document Server

    Aret, Anna; Kraus, Michaela; Maravelias, Grigoris

    2016-01-01

    Yellow Hypergiants (YHGs) and B[e] supergiants (B[e]SGs), though in different phases in their evolution, display many features in common. This is partly due to the fact that both types of objects undergo strong, often asymmetric mass loss, and the ejected material accumulates in shells, rings, or disk-like structures, giving rise to emission from warm molecules and dust. We performed an optical spectroscopic survey of northern Galactic emission-line stars aimed at identifying tracers for the structure and kinematics of circumstellar environments. We identified two sets of lines, [O I] and [Ca II], which originate from the discs of B[e]SGs. The same set of lines is observed in V1302 Aql and V509 Cas, which are both hot YHGs. While V1302 Aql is known to have a disc-like structure, the kinematical broadening of the lines in V509 Cas suggest a Keplerian disk or ring around this star alike their hotter B[e]SG counterparts.

  9. Neutral and ionized gas around the post-Red Supergiant IRC+10420 at au size scales

    CERN Document Server

    Oudmaijer, Rene

    2012-01-01

    IRC +10420 is one of the few known massive stars in rapid transition from the Red Supergiant phase to the Wolf-Rayet or Luminous Blue Variable phase. The star has an ionised wind and using the Br gamma hydrogen recombination emission we assess the mass-loss on spatial scales of order 1 au. We present new VLT Interferometer AMBER data which are combined with all other AMBER data in the literature. The final dataset covers a position angle range of 180 degrees and baselines up to 110 meters. The spectrally dispersed visibilities, differential phases and line flux are conjointly analyzed and modelled. We also present AMBER/FINITO observations which cover a larger wavelength range and allow us to observe the Na I doublet at 2.2 micron. The data are complemented by X-Shooter data, which provide a higher spectral resolution view. The Brackett gamma line and the Na I doublet are both spatially resolved. After correcting the AMBER data for the fact that the lines are not spectrally resolved, we find that Br gamma tra...

  10. DISCOVERY OF THE FIRST B[e] SUPERGIANTS IN M 31

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, M.; Oksala, M. E. [Astronomický ústav, Akademie věd České republiky, Fričova 298, 251 65 Ondřejov (Czech Republic); Cidale, L. S.; Arias, M. L. [Departamento de Espectroscopía Estelar, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, B1900FWA La Plata (Argentina); Borges Fernandes, M., E-mail: kraus@sunstel.asu.cas.cz [Observatório Nacional, Rua General José Cristino 77, 20921-400 São Cristovão, Rio de Janeiro (Brazil)

    2014-01-01

    B[e] supergiants (B[e]SGs) are transitional objects in the post-main sequence evolution of massive stars. The small number of B[e]SGs known so far in the Galaxy and the Magellanic Clouds indicates that this evolutionary phase is short. Nevertheless, the strong aspherical mass loss occurring during this phase, which leads to the formation of rings or disk-like structures, and the similarity to possible progenitors of SN1987 A emphasize the importance of B[e]SGs for the dynamics of the interstellar medium as well as stellar and galactic chemical evolution. The number of objects and their mass-loss behavior at different metallicities are essential ingredients for accurate predictions from stellar and galactic evolution calculations. However, B[e]SGs are not easily identified, as they share many characteristics with luminous blue variables (LBVs) in their quiescent (hot) phase. We present medium-resolution near-infrared K-band spectra for four stars in M 31, which have been assigned a hot LBV (candidate) status. Applying diagnostics that were recently developed to distinguish B[e]SGs from hot LBVs, we classify two of the objects as bonafide LBVs; one of them currently in outburst. In addition, we firmly classify the two stars 2MASS J00441709+4119273 and 2MASS J00452257+4150346 as the first B[e]SGs in M 31 based on strong CO band emission detected in their spectra, and infrared colors typical for this class of stars.

  11. Quantitative Spectroscopy of BA-type Supergiants

    CERN Document Server

    Przybilla, N; Becker, S R; Kudritzki, R P

    2005-01-01

    Luminous BA-SGs allow topics ranging from NLTE physics and the evolution of massive stars to the chemical evolution of galaxies and cosmology to be addressed. A hybrid NLTE technique for the quantitative spectroscopy of BA-SGs is discussed. Thorough tests and first applications of the spectrum synthesis method are presented for four bright Galactic objects. Stellar parameters are derived from spectroscopic indicators. The internal accuracy of the method allows the 1sigma-uncertainties to be reduced to <1-2% in Teff and to 0.05-0.10dex in log g. Elemental abundances are determined for over 20 chemical species, with many of the astrophysically most interesting in NLTE. The NLTE computations reduce random errors and remove systematic trends in the analysis. Inappropriate LTE analyses tend to systematically underestimate iron group abundances and overestimate the light and alpha-process element abundances by up to factors of 2-3 on the mean. Contrary to common assumptions, significant NLTE abundance correction...

  12. The advanced stages of stellar evolution: impact of mass loss, rotation, and link with B[e] stars

    CERN Document Server

    Georgy, Cyril; Ekström, Sylvia; Meynet, Georges

    2016-01-01

    In this paper, we discuss some consequences of rotation and mass loss on the evolved stages of massive star evolution. The physical reasons of the time evolution of the surface velocity are explained, and then we show how the late-time evolution of massive stars are impacted in combination with the effects of mass loss. The most interesting result is that in some cases, a massive star can have a blue-red-blue evolution, opening the possibility that Blue Supergiants are composed by two distinct populations of stars: one just leaving the main sequence and crossing the HRD for the first time, and the other one evolving back to the blue side of the HRD after a Red Supergiant phase. We discuss a few possible observational tests that can allow to distinguish these two populations, and how supergiant B[e] stars fit in this context.

  13. Infrared spectroscopy of radio-luminous OH/IR stars

    Science.gov (United States)

    Jones, Terry Jay; Hyland, A. R.; Fix, John D.; Cobb, Michael L.

    1988-01-01

    Low-resolution 1.5-2.5-micron spectra for 21 radio-luminous OH/IR stars are presented. These spectra divide into two broad classes. Those with very strong water-vapor absorption closely resemble the spectra of classical Mira variables and are classified Type VM. Those with weaker water-vapor absorption, but still showing strong CO absorption, resemble the spectra of true core-burning supergiants and are classified Type SG. Comparison of the classification of 30 radio-luminous OH/IR stars with their Delta(V)s and luminosities suggests this classification is a good indicator of the intrinsic nature of the underlying star. There is some evidence, however, that some true supergiants (massive main-sequence progenitors) develop the pulsation properties and photospheric characteristics of the Mira-like OH/IR stars when they become optically obscured OH/IR stars.

  14. VLTI/AMBER spectro-interferometry of the late-type supergiants V766 Cen (=HR 5171 A), sigma Oph, BM Sco, and HD 206859

    CERN Document Server

    Wittkowski, M; Marcaide, J M; Abellan, F J; Chiavassa, A; Guirado, J C

    2016-01-01

    We add four warmer late-type supergiants to our previous spectro-interferometric studies of red giants and supergiants. V766 Cen (=HR 5171 A) is found to be a high-luminosity log(L/L_sun)=5.8+-0.4 source of Teff 4290+-760 K and radius 1490+-540 Rsun located close to both the Hayashi and Eddington limits; this source is consistent with a 40 Msun evolutionary track without rotation and current mass 27-36 Msun. It exhibits NaI in emission arising from a shell of radius 1.5 Rphot and a photocenter displacement of about 0.1 Rphot. V766 Cen shows strong extended molecular (CO) layers and a dusty circumstellar background component. This suggest an optically thick pseudo-photosphere at about 1.5 Rphot at the onset of the wind. V766 Cen is a red supergiant located close to the Hayashi limit instead of a yellow hypergiant already evolving back toward warmer Teff as previously discussed. The stars sigma Oph, BM Sco, and HD 206859 are found to have lower luminosities of about log(L/Lsun)=3.4-3.5 and Teff of 3900-5300 K, ...

  15. Resolved photometry of extragalactic young massive star clusters

    CERN Document Server

    Larsen, S S; Eldridge, J J; Langer, N; Bastian, N; Seth, A; Smith, L J; Brodie, J; Efremov, Y N

    2011-01-01

    We present colour-magnitude diagrams (CMDs) for a sample of seven young massive clusters in the galaxies NGC 1313, NGC 1569, NGC 1705, NGC 5236 and NGC 7793. The clusters have ages in the range 5-50 million years and masses of 10^5 -10^6 Msun. Although crowding prevents us from obtaining photometry in the central regions of the clusters, we are still able to measure up to 30-100 supergiant stars in each of the richest clusters, along with the brighter main sequence stars. The resulting CMDs and luminosity functions are compared with photometry of artificially generated clusters, designed to reproduce the photometric errors and completeness as realistically as possible. In agreement with previous studies, our CMDs show no clear gap between the H-burning main sequence and the He-burning supergiant stars, contrary to predictions by common stellar isochrones. In general, the isochrones also fail to match the observed number ratios of red-to-blue supergiant stars, although the difficulty of separating blue supergi...

  16. Outflowing disk winds in B[e] Supergiants

    CERN Document Server

    Cur'e, M; Cidale, L; Cur\\'{e}, Michel; Rial, Diego F.; Cidale, Lydia

    2005-01-01

    The effects of rapid rotation and bi--stability upon the density contrast between the equatorial and polar directions of a B[e] supergiant are investigated. Based on a new slow solution for different high rotational radiation--driven winds and the fact that bi--stability allows a change in the line--force parameters ($\\alpha$, $k$, and $\\delta$), the equatorial densities are about $10^2$--$10^3$ times higher than the polar ones. These values are in qualitative agreement with the observations. This calculation also permits to obtain the aperture angle of the disk.

  17. ALMA Observations of Anisotropic Dust Mass-loss in the Inner Circumstellar Environment of the Red Supergiant VY CMa

    CERN Document Server

    O'Gorman, E; Richards, A M S; Baudry, A; De Beck, E; Decin, L; Harper, G M; Humphreys, E M; Kervella, P; Khouri, T; Muller, S

    2014-01-01

    The processes leading to dust formation and the subsequent role it plays in driving mass-loss in cool evolved stars is an area of intense study. Here, we present high resolution ALMA Science Verification data of the continuum emission around the highly evolved oxygen-rich red supergiant VY CMa. These data enable us to study the dust in its inner circumstellar environment at a spatial resolution of 129 mas at 321 GHz and 59 mas at 658 GHz, allowing us to trace dust on spatial scales down to 11 R$_{\\star}$ (71 AU). Two prominent dust components are detected and resolved. The brightest dust component, C, is located 334 mas (61 R$_{\\star}$) south-east of the star and has a dust mass of at least $2.5\\times 10^{-4} $M$_{\\odot}$. It has an emissivity spectral index of $\\beta =-0.1$ at its peak, implying that it is either optically thick at these frequencies with a cool core of $T_{d}\\lesssim 100$ K, and/or contains very large dust grains. Interestingly, not a single molecule in the ALMA data has emission close to th...

  18. The VLT-FLAMES Tarantula Survey XXV. Surface nitrogen abundances of O-type giants and supergiants

    CERN Document Server

    Grin, N J; de Koter, A; Sana, H; Puls, J; Brott, I; Crowther, P A; Dufton, P L; Evans, C J; Graefener, G; Herrero, A; Langer, N; Lennon, D J; van Loon, J Th; Markova, N; de Mink, S E; Najarro, F; Schneider, F R N; Taylor, W D; Tramper, F; Vink, J S; Walborn, W R

    2016-01-01

    Theoretically, rotation-induced chemical mixing in massive stars has far reaching evolutionary consequences, affecting the sequence of morphological phases, lifetimes, nucleosynthesis, and supernova characteristics. Using a sample of 72 presumably single O-type giants to supergiants observed in the context of the VLT-FLAMES Tarantula Survey (VFTS), we aim to investigate rotational mixing in evolved core-hydrogen burning stars initially more massive than $15\\,M_\\odot$ by analysing their surface nitrogen abundances. Using stellar and wind properties derived in a previous VFTS study, we constrained the nitrogen abundance by fitting the equivalent widths of relatively strong lines that are sensitive to changes in the abundance of this element. Given the quality of the data, we constrained the nitrogen abundance in 38 cases; for 34 stars only upper limits could be derived, which includes almost all stars rotating at $v_\\mathrm{e}\\sin i >200\\,\\mathrm{km s^{-1}}$. We analysed the nitrogen abundance as a function of ...

  19. 2D radiaition-hydrodynamic simulations of supernova shock breakout in bipolar explosions of a blue supergiant progenitor

    CERN Document Server

    Suzuki, Akihiro; Shigeyama, Toshikazu

    2016-01-01

    A two-dimensional special relativistic radiation-hydrodynamics code is developed and applied to numerical simulations of supernova shock breakout in bipolar explosions of a blue supergiant. Our calculations successfully simulate the dynamical evolution of a blast wave in the star and its emergence from the surface. Results of the model with spherical energy deposition show a good agreement with previous simulations. Furthermore, we calculate several models with bipolar energy deposition and compare their results with the spherically symmetric model. The bolometric light curves of the shock breakout emission are calculated by a ray-tracing method. Our radiation-hydrodynamic models indicate that the early part of the shock breakout emission can be used to probe the geometry of the blast wave produced as a result of the gravitational collapse of the iron core.

  20. Olivier Chesneau's work on massive stars

    CERN Document Server

    Millour, Florentin

    2016-01-01

    Olivier Chesneau challenged several fields of observational stellar astrophysics with bright ideas and an impressive amount of work to make them real in the span of his career, from his first paper on P Cygni in 2000, up to his last one on V838 Mon in 2014. He was using all the so-called high-angular resolution techniques since it helped his science to be made, namely study in details the inner structure of the environments around stars, be it small mass (AGBs), more massive (supergiant stars), or explosives (Novae). I will focus here on his work on massive stars.

  1. Chemical Composition of RM_1-390 - Large Magellanic Cloud Red Supergiant

    Directory of Open Access Journals (Sweden)

    Alexander V. Yushchenko

    2017-09-01

    Full Text Available A high resolution spectroscopic observation of the red supergiant star RM_1-390 in the Large Magellanic Cloud was made from a 3.6 m telescope at the European Southern Observatory. Spectral resolving power was R=20,000, with a signal-to-noise ratio S/N > 100. We found the atmospheric parameters of RM_1-390 to be as follows: the effective temperature Teff = 4,250 ± 50 K, the surface gravity log g = 0.16 ± 0.1, the microturbulent velocity vmicro = 2.5 km/s, the macroturbulence velocity vmacro = 9 km/s and the iron abundance [Fe/H] = -0.73 ± 0.11. The abundances of 18 chemical elements from silicon to thorium in the atmosphere of RM_1-390 were found using the spectrum synthesis method. The relative deficiencies of all elements are close to that of iron. The fit of abundance pattern by the solar system distribution of r- and s-element isotopes shows the importance of the s-process. The plot of relative abundances as a function of second ionization potentials of corresponding chemical elements allows us to find a possibility of convective energy transport in the photosphere of RM_1-390.

  2. SN 2004A: Another Type II-P Supernova with a Red Supergiant Progenitor

    CERN Document Server

    Hendry, M A; Cenko, S B; Crockett, R M; Fox, D W; Gal-Yam, A; Kudritzki, R P; Maund, J R; Moon, D S; Smartt, S J

    2006-01-01

    We present a monitoring study of SN 2004A and probable discovery of a progenitor star in pre-explosion HST images. The photometric and spectroscopic monitoring of SN 2004A show that it was a normal Type II-P which was discovered in NGC 6207 about two weeks after explosion. We compare SN 2004A to the similar Type II-P SN 1999em and estimate an explosion epoch of 2004 January 6. We also calculate three new distances to NGC 6207 of 21.0 +/-4.3, 21.4 +/-3.5 and 25.1 +/-1.7Mpc. The former was calculated using the Standard Candle Method (SCM) for SNe II-P, and the latter two from the Brightest Supergiants Method (BSM). We combine these three distances with existing kinematic distances, to derive a mean value of 20.3 +/-3.4Mpc. Using this distance we estimate that the ejected nickel mass in the explosion is 0.046(+0.031,-0.017) Msolar. The progenitor of SN 2004A is identified in pre-explosion WFPC2 F814W images with a magnitude of mF814W = 24.3 +/-0.3, but is below the detection limit of the F606W images. We show th...

  3. The eclipsing, double-lined, Of supergiant binary Cygnus OB2-B17

    Science.gov (United States)

    Stroud, V. E.; Clark, J. S.; Negueruela, I.; Roche, P.; Norton, A. J.; Vilardell, F.

    2010-02-01

    Context. Massive, eclipsing, double-lined, spectroscopic binaries are not common but are necessary to understand the evolution of massive stars as they are the only direct way to determine stellar masses. They are also the progenitors of energetic phenomena such as X-ray binaries and γ-ray bursts. Aims: We present a photometric and spectroscopic analysis of the candidate binary system Cyg OB2-B17 to show that it is indeed a massive evolved binary. Methods: We utilise V band and white-light photometry to obtain a light curve and period of the system, and spectra at different resolutions to calculate preliminary orbital parameters and spectral classes for the components. Results: Our results suggest that B17 is an eclipsing, double-lined, spectroscopic binary with a period of 4.0217±0.0004 days, with two massive evolved components with preliminary classifications of O7 and O9 supergiants. The radial velocity and light curves are consistent with a massive binary containing components with similar luminosities, and in turn with the preliminary spectral types and age of the association.

  4. The eclipsing, double-lined, Of supergiant binary Cyg OB2-B17

    CERN Document Server

    Stroud, V E; Negueruela, I; Roche, P; Norton, A J; Vilardell, F

    2010-01-01

    Massive, eclipsing, double-lined, spectroscopic binaries are not common but are necessary to understand the evolution of massive stars as they are the only direct way to determine stellar masses. They are also the progenitors of energetic phenomena such as X-ray binaries and gamma-ray bursts. We present a photometric and spectroscopic analysis of the candidate binary system Cyg OB2-B17 to show that it is indeed a massive evolved binary. We utilise V band and white-light photometry to obtain a light curve and period of the system, and spectra at different resolutions to calculate preliminary orbital parameters and spectral classes for the components. Our results suggest that B17 is an eclipsing, double-lined, spectroscopic binary with a period of 4.0217+/-0.0004 days, with two massive evolved components with preliminary classifications of O7 and O9 supergiants. The radial velocity and light curves are consistent with a massive binary containing components with similar luminosities, and in turn with the prelimi...

  5. Quantitative Spectroscopic J-band Study of Red Supergiants in Perseus OB-1

    CERN Document Server

    Gazak, J Zachary; Kudritzki, Rolf; Bergemann, Maria; Plez, Bertrand

    2014-01-01

    We demonstrate how the metallicities of red supergiant (RSG) stars can be measured from quantitative spectroscopy down to resolutions of ~3000 in the J-band. We have obtained high resolution spectra on a sample of the RSG population of h and chi Persei, a double cluster in the solar neighborhood. We show that careful application of the MARCS model atmospheres returns measurements of Z consistent with solar metallicity. Using two grids of synthetic spectra--one in pure LTE and one with NLTE calculations for the most important diagnostic lines--we measure Z = +0.04 +/- 0.10 (LTE) and Z = -0.04 +/- 0.08 (NLTE) for the sample of eleven RSGs in the cluster. We degrade the spectral resolution of our observations and find that those values remain consistent down to resolutions of less than R of 3000. Using measurements of effective temperatures we compare our results with stellar evolution theory and find good agreement. We construct a synthetic cluster spectrum and find that analyzing this composite spectrum with s...

  6. THE ULTRA-LONG GAMMA-RAY BURST 111209A: THE COLLAPSE OF A BLUE SUPERGIANT?

    Energy Technology Data Exchange (ETDEWEB)

    Gendre, B.; Cutini, S.; D' Elia, V. [ASI Science Data Center, via Galileo Galilei, I-00044 Frascati (Italy); Stratta, G. [Osservatorio Astronomico di Roma, OAR-INAF, via Frascati 33, I-00040, Monte Porzio Catone (Italy); Atteia, J. L.; Klotz, A. [Universite de Toulouse, UPS-OMP, IRAP, Toulouse (France); Basa, S. [Aix Marseille Universite, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388, Marseille (France); Boeer, M. [CNRS, ARTEMIS, UMR 7250, Boulevard de l' Observatoire, BP 4229, F-06304 Nice Cedex 4 (France); Coward, D. M.; Howell, E. J [University of Western Australia, School of Physics, University of Western Australia, Crawley WA 6009 (Australia); Piro, L., E-mail: bruce.gendre@gmail.com [Istituto di Astrofisica e Planetologia Spaziali di Roma, INAF, via fosso del cavaliere 100, I-00133 Roma (Italy)

    2013-03-20

    We present optical, X-ray and gamma-ray observations of GRB 111209A, observed at a redshift of z = 0.677. We show that this event was active in its prompt phase for about 25000 s, making it the longest burst ever observed. This rare event could have been detected up to z {approx} 1.4 in gamma-rays. Compared to other long gamma-ray bursts (GRBs), GRB 111209A is a clear outlier in the energy-fluence and duration plane. The high-energy prompt emission shows no sign of a strong blackbody component, the signature of a tidal disruption event, or a supernova shock breakout. Given the extreme longevity of this event, and lack of any significant observed supernova signature, we propose that GRB 111209A resulted from the core-collapse of a low-metallicity blue supergiant star. This scenario is favored because of the necessity to supply enough mass to the central engine over a duration of thousands of seconds. Hence, we suggest that GRB 111209A could have more in common with population III stellar explosions, rather than those associated with normal long GRBs.

  7. A Transient Supergiant X-ray Binary in IC10. An Extragalactic SFXT?

    CERN Document Server

    Laycock, Silas; Oram, Kathleen; Balchunas, Andrew

    2014-01-01

    We report the discovery of a large amplitude (factor of $\\sim$100) X-ray transient (IC 10 X-2, CXOU J002020.99+591758.6) in the nearby dwarf starburst galaxy IC10 during our Chandra monitoring project. Based on the X-ray timing and spectral properties, and an optical counterpart observed with Gemini, the system is a high mass X-ray binary (HMXB) consisting of a luminous blue supergiant and a neutron star (NS). The highest measured luminosity of the source was 1.8$\\times$10$^{37}$ erg s$^{-1}$ during an outburst in 2003. Observations before, during and after a second outburst in 2010 constrain the outburst duration to be less than 3 months (with no lower limit). The X-ray spectrum is a hard powerlaw ($\\Gamma$=0.3) with fitted column density ($N_H$=6.3$\\times$10$^{21}$ atom cm$^{-2}$) consistent with the established absorption to sources in IC10. The optical spectrum shows hydrogen Balmer lines strongly in emission, at the correct blueshift (-340 km/s) for IC10. The NIII triplet emission feature is seen, accomp...

  8. Photometric and Spectroscopic Study of the Supergiant with an Infrared Excess V1027 Cygni

    CERN Document Server

    Arkhipova, V P; Ikonnikova, N P; Esipov, V F; Komissarova, G V; Shenavrin, V I; Burlak, M A

    2016-01-01

    We present the results of our $UBV$ and $JHKLM$-photometry for the semiregular pulsating variable V1027~Cyg, a supergiant with an infrared excess, over the period from 1991 to 2015. Our search for a periodicity in the $UBV$ brightness variations has led to several periods from $P=212^{d}$ to $P=320^{d}$ in different time intervals. We have found the period $P=237^{d}$ based on our infrared photometry. The variability amplitude, the light-curve shape, and the magnitude of V1027~Cyg at maximum light change noticeably from cycle to cycle. An ambiguous correlation of the $B-V$ and $U-B$ colors with the brightness has been revealed. The spectral energy distribution for V1027~Cyg from our photometry in the range 0.36 ($U$)-5.0 ($M$) $\\mu$m corresponds to spectral types from G8I to K3I at different phases of the pulsation cycle. Low-resolution spectra of V1027 Cyg in the range $\\lambda$4400--9200 \\AA\\ were taken during 16 nights over the period 1995--2015. At the 1995 and 2011 photometric minima the star's spectrum ...

  9. Inhomogeneous molecular ring around the B[e] supergiant LHA 120-S 73

    CERN Document Server

    Kraus, M; Arias, M L; Maravelias, G; Nickeler, D H; Torres, A F; Fernandes, M Borges; Aret, A; Cure, M; Vallverdu, R; Barba, R H

    2016-01-01

    We aim to improve our knowledge on the structure and dynamics of the circumstellar disk of the LMC B[e] supergiant LHA 120-S 73. High-resolution optical and near-IR spectroscopic data were obtained over a period of 16 and 7 years, respectively. The spectra cover the diagnostic emission lines from [CaII] and [OI], as well as the CO bands. These features trace the disk at different distances from the star. We analyzed the kinematics of the individual emission regions by modeling their emission profiles. A low-resolution mid-infrared spectrum was obtained as well, which provides information on the composition of the dusty disk. All diagnostic emission features display double-peaked line profiles, which we interpret as due to Keplerian rotation. We find that LHA 120-S 73 is surrounded by at least four individual rings of material with alternating densities (or by a disk with strongly non-monotonic radial density distribution). Moreover, we find that the molecular ring must have gaps or at least strong density inh...

  10. Nucleosynthesis and Evolution of Massive Metal-Free Stars

    CERN Document Server

    Heger, Alexander

    2008-01-01

    The evolution and explosion of metal-free stars with masses 10--100 solar masses are followed, and their nucleosynthetic yields, light curves, and remnant masses determined. When the supernova yields are integrated over a Salpeter initial mass function, the resulting elemental abundance pattern is qualitatively solar, but with marked deficiencies of odd-Z elements with 7 <= Z <= 13. Neglecting the contribution of the neutrino wind from the neutron stars that they make, no appreciable abundances are made for elements heavier than germanium. The computed pattern compares favorably with what has been observed in metal-deficient stars with [Z] ~< -3. Most of the stars end their lives as blue supergiants and make supernovae with distinctive light curves resembling SN 1987A, but some produce primary nitrogen by dredge up and become red supergiants. A novel automated fitting algorithm is developed for determining optimal combinations of explosion energy, mixing, and initial mass function in the large model ...

  11. Pair Instability Supernovae of Very Massive Population III Stars

    CERN Document Server

    Chen, Ke-Jung; Woosley, Stan; Almgren, Ann; Whalen, Daniel

    2014-01-01

    Numerical studies of primordial star formation suggest that the first stars in the universe may have been very massive. Stellar models indicate that non-rotating Population III stars with initial masses of 140-260 Msun die as highly energetic pair-instability supernovae. We present new two-dimensional simulations of primordial pair-instability supernovae done with the CASTRO code. Our simulations begin at earlier times than previous multidimensional models, at the onset of core collapse, to capture any dynamical instabilities that may be seeded by collapse and explosive burning. Such instabilities could enhance explosive yields by mixing hot ash with fuel, thereby accelerating nuclear burning, and affect the spectra of the supernova by dredging up heavy elements from greater depths in the star at early times. Our grid of models includes both blue supergiants and red supergiants over the range in progenitor mass expected for these events. We find that fluid instabilities driven by oxygen and helium burning ari...

  12. Water in stars: expected and unexpected

    Science.gov (United States)

    Tsuji, T.; Aoki, W.; Ohnaka, K.

    1999-03-01

    We have confirmed the presence of water in the early M giant α Cet (M1.5III) and supergiant KK Per (M2Iab) by the highest resolution grating mode of SWS, but this result is quite unexpected from present model atmospheres. In late M giant and supergiant stars, water observed originates partly in the photosphere as expected by the model atmospheres, but ISO SWS has revealed that the 2.7 mic\\ absorption bands appear to be somewhat stronger than predicted while 6.5 mic\\ bands weaker, indicating the contamination by an emission component. In the mid-infrared region extending to 45 mic, pure rotation lines of hho\\ appear as distinct emission on the high resolution SWS spectra of 30g Her (M7III) and S Per (M4-7Ia), along with the dust emission at 10, 13, 20 mic\\ and a new unidentified feature at 30 mic. Thus, together with the dust, water contributes to the thermal balance of the outer atmosphere already in the mid-infrared. The excitation temperature of hho\\ gas is estimated to be 500 - 1000 K. In view of this result for late M (super)giants, unexpected water observed in early M (super)giants should also be of non-photospheric in origin. Thus, ISO has finally established the presence of a new component of the outer atmosphere - a warm molecular envelope - in red giant and supergiant stars from early to late types. Such a rather warm molecular envelope will be a site of various activities such as chemical reactions, dust formation, mass-outflow etc.

  13. UV, optical and near-IR diagnostics of massive stars

    CERN Document Server

    Martins, F

    2010-01-01

    We present an overview of a few spectroscopic diagnostics of massive stars. We explore the following wavelength ranges: UV (1000 to 2000 A), optical (4000--7000 A) and near-infrared (mainly H and K bands). The diagnostics we highlight are available in O and Wolf-Rayet stars as well as in B supergiants. We focus on the following parameters: effective temperature, gravity, surface abundances, luminosity, mass loss rate, terminal velocity, wind clumping, rotation/macroturbulence and surface magnetic field.

  14. Cosmography of OB stars in the solar neighbourhood

    Science.gov (United States)

    Bouy, H.; Alves, J.

    2015-12-01

    We construct a 3D map of the spatial density of OB stars within 500 pc from the Sun using the Hipparcos catalogue and find three large-scale stream-like structures that allow a new view on the solar neighbourhood. The spatial coherence of these blue streams and the monotonic age sequence over hundreds of parsecs suggest that they are made of young stars, similar to the young streams that are conspicuous in nearby spiral galaxies. The three streams are 1) the Scorpius to Canis Majoris stream, covering 350 pc and 65 Myr of star formation history; 2) the Vela stream, encompassing at least 150 pc and 25 Myr of star formation history; and 3) the Orion stream, including not only the well-known Orion OB1abcd associations, but also a large previously unreported foreground stellar group lying only 200 pc from the Sun. The map also reveals a remarkable and previously unknown nearby OB association, between the Orion stream and the Taurus molecular clouds, which might be responsible for the observed structure and star formation activity in this cloud complex. This new association also appears to be the birthplace of Betelgeuse, as indicated by the proximity and velocity of the red giant. If this is confirmed, it would solve the long-standing puzzle of the origin of Betelgeuse. The well-known nearby star-forming low-mass clouds, including the nearby T and R associations Lupus, Cha, Oph, CrA, Taurus, Vela R1, and various low-mass cometary clouds in Vela and Orion, appear in this new view of the local neighbourhood to be secondary star formation episodes that most likely were triggered by the feedback from the massive stars in the streams. We also recover well-known star clusters of various ages that are currently cruising through the solar neighbourhood. Finally, we find no evidence of an elliptical structure such as the Gould belt, a structure we suggest is a 2D projection effect, and not a physical ring. Table 3 is available in elctronic form at http://www.aanda.org

  15. Polarimetry and the Envelopes of Magellanic B[e] Supergiants

    CERN Document Server

    Magalhães, A M; Melgarejo, R; Pereyra, A

    2006-01-01

    We discuss the nature of the circumstellar envelopes around the B[e] supergiants (B[e]SG) in the Magellanic Clouds (MC). Contrary to those in the Galaxy, the MC B[e]SG have a well defined luminosity and can be considered members of a well defined class. We discuss spectroscopy and optical broadband polarimetry and spectropolarimetry data. These data show for the first time detailed changes in the polarization across several spectral features. We show that the envelopes of the B[e]SG are generally variable. Broadband polarimetry data show that the envelopes are definitely non-spherically symmetric and large non-axisymmetric ejections may occur. In addition to that, spectropolarimetry is coming of age as a tool to study the B[e]SG envelope structure.

  16. A numerical investigation of wind accretion in persistent Supergiant X-ray Binaries I - Structure of the flow at the orbital scale

    CERN Document Server

    Mellah, I El

    2016-01-01

    Classical Supergiant X-ray Binaries host a neutron star orbiting a supergiant OB star and display persistent X-ray luminosities of 10$^{35}$ to 10$^{37}$ erg/s. The stellar wind from the massive companion is believed to be the main source of matter accreted by the compact object. With this first paper, we introduce a ballistic model to characterize the structure of the wind at the orbital scale as it accelerates, from the stellar surface to the vicinity of the accretor. Thanks to the parametrization we retained and the numerical pipeline we designed, we can investigate the supersonic flow and the subsequent observables as a function of a reduced set of characteristic numbers and scales. We show that the shape of the permanent flow is entirely determined by the mass ratio, the filling factor, the Eddington factor and the $\\alpha$-force multiplier which drives the stellar wind acceleration. Provided scales such as the orbital period are known, we can trace back the observables to evaluate the mass accretion rat...

  17. The VLT-FLAMES Tarantula Survey. XXV. Surface nitrogen abundances of O-type giants and supergiants

    Science.gov (United States)

    Grin, N. J.; Ramírez-Agudelo, O. H.; de Koter, A.; Sana, H.; Puls, J.; Brott, I.; Crowther, P. A.; Dufton, P. L.; Evans, C. J.; Gräfener, G.; Herrero, A.; Langer, N.; Lennon, D. J.; van Loon, J. Th.; Markova, N.; de Mink, S. E.; Najarro, F.; Schneider, F. R. N.; Taylor, W. D.; Tramper, F.; Vink, J. S.; Walborn, N. R.

    2017-04-01

    Context. Theoretically, rotation-induced chemical mixing in massive stars has far reaching evolutionary consequences, affecting the sequence of morphological phases, lifetimes, nucleosynthesis, and supernova characteristics. Aims: Using a sample of 72 presumably single O-type giants to supergiants observed in the context of the VLT-FLAMES Tarantula Survey (VFTS), we aim to investigate rotational mixing in evolved core-hydrogen burning stars initially more massive than 15 M⊙ by analysing their surface nitrogen abundances. Methods: Using stellar and wind properties derived in a previous VFTS study we computed synthetic spectra for a set of up to 21 N ii-v lines in the optical spectral range, using the non-LTE atmosphere code FASTWIND. We constrained the nitrogen abundance by fitting the equivalent widths of relatively strong lines that are sensitive to changes in the abundance of this element. Given the quality of the data, we constrained the nitrogen abundance in 38 cases; for 34 stars only upper limits could be derived, which includes almost all stars rotating at νesini> 200 km s-1. Results: We analysed the nitrogen abundance as a function of projected rotation rate νesini and confronted it with predictions of rotational mixing. We found a group of N-enhanced slowly-spinning stars that is not in accordance with predictions of rotational mixing in single stars. Among O-type stars with (rotation-corrected) gravities less than log gc = 3.75 this group constitutes 30-40 percent of the population. We found a correlation between nitrogen and helium abundance which is consistent with expectations, suggesting that, whatever the mechanism that brings N to the surface, it displays CNO-processed material. For the rapidly-spinning O-type stars we can only provide upper limits on the nitrogen abundance, which are not in violation with theoretical expectations. Hence, the data cannot be used to test the physics of rotation induced mixing in the regime of high spin rates

  18. Crossing the Yellow Void: Spatially Resolved Spectroscopy of the Post-Red Supergiant IRC +10420 and Its Circumstellar Ejecta

    Science.gov (United States)

    Humphreys, Roberta M.; Davidson, Kris; Smith, Nathan

    2002-08-01

    IRC +10420 is one of the extreme hypergiant stars that define the empirical upper luminosity boundary in the H-R diagram. During their post-red supergiant evolution, these massive stars enter a temperature range (6000-9000 K) of increased dynamical instability, high mass loss, and increasing opacity, a semiforbidden region that de Jager and his collaborators have called the ``yellow void.'' We report HST/STIS spatially resolved spectroscopy of IRC +10420 and its reflection nebula with some surprising results. Long-slit spectroscopy of the reflected spectrum allows us to effectively view the star from different directions. Measurements of the double-peaked Hα emission profile show a uniform outflow of gas in a nearly spherical distribution, contrary to previous models with an equatorial disk or bipolar outflow. Based on the temperature and mass-loss rate estimates that are usually quoted for this object, the wind is optically thick to the continuum at some and possibly all wavelengths. Consequently, the observed variations in apparent spectral type and inferred temperature are changes in the wind and do not necessarily mean that the underlying stellar radius and interior structure are evolving on such a short timescale. To explain the evidence for simultaneous outflow and infall of material near the star, we propose a ``rain'' model, in which blobs of gas condense in regions of lowered opacity outside the dense wind. With the apparent warming of its wind, the recent appearance of strong emission, and a decline in the mass-loss rate, IRC +10420 may be about to shed its opaque wind, cross the yellow void, and emerge as a hotter star. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  19. VLTI/AMBER spectro-interferometry of the late-type supergiants V766 Cen (=HR 5171 A), σ Oph, BM Sco, and HD 206859

    Science.gov (United States)

    Wittkowski, M.; Arroyo-Torres, B.; Marcaide, J. M.; Abellan, F. J.; Chiavassa, A.; Guirado, J. C.

    2017-01-01

    Aims: We add four warmer late-type supergiants to our previous spectro-interferometric studies of red giants and supergiants. Methods: We measure the near-continuum angular diameter, derive fundamental parameters, discuss the evolutionary stage, and study extended atmospheric atomic and molecular layers. Results: V766 Cen (=HR 5171 A) is found to be a high-luminosity (log L/L⊙ = 5.8 ± 0.4) source of effective temperature 4290 ± 760 K and radius 1490 ± 540 R⊙, located in the Hertzsprung-Russell (HR) diagram close to both the Hayashi limit and Eddington limit; this source is consistent with a 40 M⊙ evolutionary track without rotation and current mass 27-36 M⊙. V766 Cen exhibits Na i in emission arising from a shell of radius 1.5 RPhot and a photocenter displacement of about 0.1 RPhot. It shows strong extended molecular (CO) layers and a dusty circumstellar background component. The other three sources are found to have lower luminosities of about log L/L⊙ = 3.4-3.5, corresponding to 5-9 M⊙ evolutionary tracks. They cover effective temperatures of 3900 K to 5300 K and radii of 60-120 R⊙. They do not show extended molecular layers as observed for higher luminosity RSGs of our sample. BM Sco shows an unusually strong contribution by an over-resolved circumstellar dust component. Conclusions: V766 Cen is a red supergiant located close to the Hayashi limit instead of a yellow hypergiant already evolving back toward warmer effective temperatures as discussed in the literature. Our observations of the Na i line and the extended molecular layers suggest an optically thick pseudo-photosphere at about 1.5 RPhot at the onset of the wind. The stars σ Oph, BM Sco, and HD 206859 are more likely high-mass red giants instead of RSGs as implied by their luminosity class Ib. This leaves us with an unsampled locus in the HR diagram corresponding to luminosities log L/L⊙ 3.8-4.8 or masses 10-13 M⊙, possibly corresponding to the mass region where stars explode as

  20. UV spectroscopy of the blue supergiant SBW1: the remarkably weak wind of a SN 1987A analog

    CERN Document Server

    Smith, Nathan; France, Kevin; McCray, Richard

    2016-01-01

    The Galactic blue supergiant SBW1 with its circumstellar ring nebula represents the best known analog of the progenitor of SN 1987A. High-resolution imaging has shown H-alpha and IR structures arising in an ionized flow that partly fills the ring's interior. To constrain the influence of the stellar wind on this structure, we obtained an ultraviolet (UV) spectrum of the central star of SBW1 with the HST Cosmic Origins Spectrograph (COS). The UV spectrum shows none of the typical wind signatures, indicating a very low mass-loss rate. Radiative transfer models suggest an extremely low rate below 10$^{-10}$ Msun/yr, although we find that cooling timescales probably become comparable to or longer than the flow time below 10$^{-8}$ Msun/yr. We therefore adopt this latter value as a conservative upper limit. For the central star, the model yields $T_{\\rm eff}$=21,000$\\pm$1000 K, $L\\simeq$5$\\times$10$^4$ $L_{\\odot}$, and roughly Solar composition except for enhanced N abundance. SBW1's very low mass-loss rate may hi...

  1. High-amplitude supergiant V5112 Sgr: enrichment of the envelope with heavy s-process metals

    CERN Document Server

    Klochkova., V G

    2013-01-01

    High-resolution (R=60000) echelle spectroscopy of the post-AGB supergiant V5112 Sgr performed in 1996-2012 with the 6-m telescope BTA has revealed peculiarities of the star optical spectrum and has allowed the variability of the velocity field in the stellar atmosphere and envelope to be studied in detail. An asymmetry and splitting of strong absorption lines with a low lower-level excitation potential have been detected for the first time. The effect is maximal in BaII lines whose profile is split into three components. The profile shape and positions of the split lines change with time. The blue components of the split absorption lines are shown to be formed in a structured circumstellar envelope, suggesting an efficient dredge-up of the heavy metals produced during the preceding evolution of this star into the envelope. The envelope expansion velocities have been estimated to be 20 and 30 km/s. The mean radial velocity from diffuse bands in the spectrum of V5112 Sgr coincides with that from the short-wavel...

  2. Life Cycle of Stars

    Science.gov (United States)

    1999-01-01

    In this stunning picture of the giant galactic nebula NGC 3603, the crisp resolution of NASA's Hubble Space Telescope captures various stages of the life cycle of stars in one single view. To the upper left of center is the evolved blue supergiant called Sher 25. The star has a unique circumstellar ring of glowing gas that is a galactic twin to the famous ring around the supernova 1987A. The grayish-bluish color of the ring and the bipolar outflows (blobs to the upper right and lower left of the star) indicates the presence of processed (chemically enriched) material. Near the center of the view is a so-called starburst cluster dominated by young, hot Wolf-Rayet stars and early O-type stars. A torrent of ionizing radiation and fast stellar winds from these massive stars has blown a large cavity around the cluster. The most spectacular evidence for the interaction of ionizing radiation with cold molecular-hydrogen cloud material are the giant gaseous pillars to the right of the cluster. These pillars are sculptured by the same physical processes as the famous pillars Hubble photographed in the M16 Eagle Nebula. Dark clouds at the upper right are so-called Bok globules, which are probably in an earlier stage of star formation. To the lower left of the cluster are two compact, tadpole-shaped emission nebulae. Similar structures were found by Hubble in Orion, and have been interpreted as gas and dust evaporation from possibly protoplanetary disks (proplyds). This true-color picture was taken on March 5, 1999 with the Wide Field Planetary Camera 2.

  3. PACS and SPIRE Spectroscopy of the Red Supergiant VY CMa

    CERN Document Server

    Royer, P; Wesson, R; Barlow, M J; Polehampton, E T; Matsuura, M; Agundez, M; Blommaert, J A D L; Cernicharo, J; Cohen, M; Daniel, F; Degroote, P; De Meester, W; Exter, K; Feuchtgruber, H; Gear, W K; Gomez, H L; Groenewegen, M A T; Hargrave, P C; Huygen, R; Imhof, P; Ivison, R J; Jean, C; Kerschbaum, F; Leeks, S J; Lim, T; Lombaert, R; Olofsson, G; Posch, T; Regibo, S; Savini, G; Sibthorpe, B; Swinyard, B M; Vandenbussche, B; Waelkens, C; Witherick, D K; Yates, J A

    2010-01-01

    With a luminosity > 10^5 Lsun and a mass-loss rate of about 2.10-4 Msun/yr, the red supergiant VY CMa truly is a spectacular object. Because of its extreme evolutionary state, it could explode as supernova any time. Studying its circumstellar material, into which the supernova blast will run, provides interesting constraints on supernova explosions and on the rich chemistry taking place in such complex circumstellar envelopes. We have obtained spectroscopy of VYCMa over the full wavelength range offered by the PACS and SPIRE instruments of Herschel, i.e. 55 to 672 micron. The observations show the spectral fingerprints of more than 900 spectral lines, of which more than half belong to water. In total, we have identified 13 different molecules and some of their isotopologues. A first analysis shows that water is abundantly present, with an ortho-to-para ratio as low as 1.3:1, and that chemical non-equilibrium processes determine the abundance fractions in the inner envelope.

  4. Structure of Supergiant Shells in the Large Magellanic Cloud

    CERN Document Server

    Book, Laura G; Gruendl, Robert A

    2007-01-01

    Nine supergiant shells (SGSs) have been identified in the Large Magellanic Cloud (LMC) based on H-alpha images, and twenty-three SGSs have been reported based on HI 21-cm line observations, but these sets do not always identify the same structures. We have examined the physical structure of the optically identified SGSs using HI channel maps and P-V diagrams to analyze the gas kinematics. There is good evidence for seven of the nine optically identified SGSs to be true shells. Of these seven H-alpha SGSs, four are the ionized inner walls of HI SGSs, while three are an ionized portion of a larger and more complex HI structure. All of the H-alpha SGSs are identified as such because they have OB associations along the periphery or in the center, with younger OB associations more often found along the periphery. After roughly 12 Myrs, if no new OB associations have been formed a SGS will cease to be identifiable at visible wavelengths. Thus, the presence and location of ionizing sources is the main distinction be...

  5. Broad Balmer Wings in BA Hyper/Supergiants Distorted by Diffuse Interstellar Bands: Five Examples in the 30 Doradus Region from the VLT-FLAMES Tarantula Survey

    CERN Document Server

    Walborn, Nolan R; Evans, Christopher J; Taylor, William D; Sabbi, Elena; Barbá, Rodolfo H; Morrell, Nidia I; Apellániz, Jesús Maíz; Sota, Alfredo; Dufton, Philip L; McEvoy, Catherine M; Clark, J Simon; Markova, Nevena; Ulaczyk, Krzysztof

    2015-01-01

    Extremely broad emission wings at H$\\beta$ and H$\\alpha$ have been found in VFTS data for five very luminous BA supergiants in or near 30 Doradus in the Large Magellanic Cloud. The profiles of both lines are extremely asymmetrical, which we have found to be caused by very broad diffuse interstellar bands (DIBs) in the longward wing of H$\\beta$ and the shortward wing of H$\\alpha$. These DIBs are well known to interstellar but not to many stellar specialists, so that the asymmetries may be mistaken for intrinsic features. The broad emission wings are generally ascribed to electron scattering, although we note difficulties for that interpretation in some objects. Such profiles are known in some Galactic hyper/supergiants and are also seen in both active and quiescent Luminous Blue Variables. No prior or current LBV activity is known in these 30 Dor stars, although a generic relationship to LBVs is not excluded; subject to further observational and theoretical investigation, it is possible that these very luminou...

  6. The Massive Star Population in M101

    Science.gov (United States)

    Grammer, Skyler H.

    An increasing number of non-terminal giant eruptions are being observed by modern supernova and transient surveys. Very little is known about the origin of these giant eruptions and their progenitors which are presumably very-massive, evolved stars such as luminous blue variables, hypergiants, and supergiants. Motivated by the small number of progenitors positively associated with these giant eruptions, we have begun a survey of the luminous and evolved massive star populations in several nearby galaxies. We aim to identify the likely progenitors of the giant eruptions, study the spatial variations in the stellar populations, and examine the relationship between massive star populations and their environment. The work presented here is focused on stellar populations in the relatively nearby, giant, spiral galaxy M101 from sixteen archival BVI HST/ACS images. We create a catalog of stars in the direction to M101 with photometric errors history (SFH) for the stellar populations in five 2' wide annuli by fitting the color-magnitude diagrams. Binning the SFH into time frames corresponding to populations traced by Halpha, far ultraviolet (FUV), and near ultraviolet (NUV) emission, we show that the fraction of stellar populations young enough to contribute in Halpha is 15% " 35% in the inner regions, compared to less than 5% in the outer regions. This provides a sufficient explanation for the lack of Halpha emission at large radii. We also model the blue to red supergiant ratio in our five annuli, examine the effects that a metallicity gradient and variable SFH have on the predicted ratios, and compare to the observed values. We find that the radial behavior of our modeled blue to red supergiant ratios is highly sensitive to both spatial variations in the SFH and metallicity. Incorporating the derived SFH into the modeled ratios, we are able to reproduce the observed values at large radii (low metallicity), but at small radii (high metallicity) the modeled and observed

  7. Stellar atmospheres, atmospheric extension and fundamental parameters: weighing stars using the stellar mass index

    CERN Document Server

    Neilson, Hilding R; Norris, Ryan; Kloppenborg, Brian; Lester, John B

    2016-01-01

    One of the great challenges in understanding stars is measuring their masses. The best methods for measuring stellar masses include binary interaction, asteroseismology and stellar evolution models, but these methods are not ideal for red giant and supergiant stars. In this work, we propose a novel method for inferring stellar masses of evolved red giant and supergiant stars using interferometric and spectrophotometric observations combined with spherical model stellar atmospheres to measure what we call the stellar mass index, defined as the ratio between the stellar radius and mass. The method is based on the correlation between different measurements of angular diameter, used as a proxy for atmospheric extension, and fundamental stellar parameters. For a given star, spectrophotometry measures the Rosseland angular diameter while interferometric observations generally probe a larger limb-darkened angular diameter. The ratio of these two angular diameters is proportional to the relative extension of the stel...

  8. State of matter for quark stars

    CERN Document Server

    Lai, X Y

    2009-01-01

    It depends on the state of matter at supra-nuclear density to model pulsar's structure, which is unfortunately not certain due to the difficulties in physics. In cold quark matter at realistic baryon densities of compact stars (with an average value of $\\sim 2-3\\rho_0$), the interaction between quarks is so strong that they would condensate in position space to form quark-clusters. We argue that quarks in quark stars are grouped in clusters, then we apply two phenomenological models for quark stars, the polytropic model and Lennard-Jones model. Both of the two models have stiffer EoS, and larger maximum mass for quark stars (larger than 2 $M_\\odot$). The gravitational energy releases during the AIQ process could explain the observed energy of three supergiant flares from soft gamma-ray repeaters ($\\sim 10^{47}$ ergs).

  9. Massive Stars in the Quintuplet Cluster

    CERN Document Server

    Figer, D F; Morris, M; Figer, Donald F.; Lean, Ian S. Mc

    1999-01-01

    We present near-infrared photometry and K-band spectra of newly-identified massive stars in the Quintuplet Cluster, one of the three massive clusters projected within 50 pc of the Galactic Center. We find that the cluster contains a variety of massive stars, including more unambiguously identified Wolf-Rayet stars than any cluster in the Galaxy, and over a dozen stars in earlier stages of evolution, i.e., LBV, Ofpe/WN9, and OB supergiants. One newly identified star is the second ``Luminous Blue Variable'' in the cluster, after the ``Pistol Star.'' Given the evolutionary stages of the identified stars, the cluster appears to be about 4 \\pm 1 Myr old, assuming coeval formation. The total mass in observed stars is $\\sim 10^3 \\Msun$, and the implied mass is initial mass function. The implied mass density in stars is at least a few thousand $\\Msun pc^{-3}$. The newly-identified stars increase the estimated ionizing flux from this cluster by about an order of magnitude with respect to earlier estimates, to 10^{50.9...

  10. AI canis minoris, a pulsating low-mass supergiant at an early transition phase from the AGB to the post-AGB stage of evolution

    Science.gov (United States)

    Arkhipova, V. P.; Ikonnikova, N. P.; Esipov, V. F.; Komissarova, G. V.

    2017-06-01

    The U BV photometry and low-resolution spectroscopy for the semiregular variable AI CMi, a candidate for post-AGB objects, performed in 1996-2016 and 2000-2013, respectively, are presented. The star showed multiperiodic brightness variations with an amplitude up to 1\\underset{\\cdot}{m} 5 in the V band, a significant (up to 0\\underset{\\cdot}{m} 4) bluing of the B - V and U - B colors as the star faded, and a change of its spectrum from G5 I to K3-5 I, depending on its brightness. A possible long-term fading of AI CMi below 8\\underset{\\cdot}{m} 5 in the period from May 2013 to early 2015 is observed in the light curve. The colors in this episode did not change the pattern of their unusual behavior with brightness. The main feature of the spectrum for AI CMi is the appearance and strengthening of TiO absorption bands as its brightness declines, which are atypical in the spectra of ordinary G5-K3 supergiants. The bluing of the B - V and U - B colors is interpreted as the blanketing of stellar radiation predominantly in V (and to a lesser extent in B) by the TiO absorption bands whose intensity increases dramatically with decreasing brightness. Another cause of the bluing can be the scattering of stellar radiation by small dust particles in the gas-dust shell of AI CMi. The star's continuum-normalized spectra over the period from 2000 to 2013 in the wavelength range 4200 to 7700 or 9200 Å are presented. These were taken at different phases of the pulsation cycle and clearly demonstrate the behavior of the TiO absorption bands depending on the V magnitude and B - V color. The equivalent widths of individual TiO bands weremeasured, and their correlation with the photometric parameters of the star is shown. AI CMi belongs to the O-rich branch of AGB/post-AGB supergiants and has a luminosity of 4000 L ⊙ at a distance of 1500 ± 700 pc. The mass of AI CMi is most likely small and close to the lower mass limit for post-AGB stars. The connection of the star

  11. The emission-line regions in the nucleus of NGC 1313 probed with GMOS-IFU: a supergiant/hypergiant candidate and a kinematically cold nucleus

    Science.gov (United States)

    Menezes, R. B.; Steiner, J. E.

    2017-04-01

    NGC 1313 is a bulgeless nearby galaxy, classified as SB(s)d. Its proximity allows high spatial resolution observations. We performed the first detailed analysis of the emission-line properties in the nuclear region of NGC 1313, using an optical data cube obtained with the Gemini Multi-object Spectrograph. We detected four main emitting areas, three of them (regions 1, 2 and 3) having spectra typical of H II regions. Region 1 is located very close to the stellar nucleus and shows broad spectral features characteristic of Wolf-Rayet stars. Our analysis revealed the presence of one or two WC4-5 stars in this region, which is compatible with results obtained by previous studies. Region 4 shows spectral features (as a strong Hα emission line, with a broad component) typical of a massive emission-line star, such as a luminous blue variable, a B[e] supergiant or a B hypergiant. The radial velocity map of the ionized gas shows a pattern consistent with rotation. A significant drop in the values of the gas velocity dispersion was detected very close to region 1, which suggests that the young stars there were formed from this cold gas, possibly keeping low values of velocity dispersion. Therefore, although detailed measurements of the stellar kinematics were not possible (due to the weak stellar absorption spectrum of this galaxy), we predict that NGC 1313 may also show a drop in the values of the stellar velocity dispersion in its nuclear region.

  12. The Biggest Star in the Sky

    Science.gov (United States)

    1997-03-01

    An international team of astronomers has used large telescopes in Chile and Australia to measure the biggest star in the sky. The star, designated R Doradus , is of the so-called red giant type and is located in the southern constellation of Dorado. Its apparent diameter (i.e., the size which the star appears to have when seen from the Earth) is larger than any other so far observed, except for the Sun. In particular, it exceeds by more than 30 % that of Betelgeuse , which for the past 75 years has held the title of star with the largest apparent size. Measuring sizes of stars Measuring the sizes of stars is very difficult due to their enormous distances. For example, if our Sun were placed at the distance of the next closest star (four light-years away), it would have about the same apparent size as a DM 1 (or US quarter-dollar) coin placed at a distance of 500 km (about 0.01 arcsec). Even for the most powerful astronomical telescopes, it is a very challenging task to measure such small angles. Ideally, the angular resolution of a telescope (its capability to resolve fine details in celestial sources) increases with its diameter. In practice, although ground-based optical telescopes now have diameters up to 10 metres, their actual resolution of visual light is that of a telescope of only about 20 centimetres aperture. This is because of the constant turbulence in the Earth's atmosphere. This turbulence causes the stars to twinkle in a way which delights the poets but frustrates the astronomers, since it blurs the fine details of the images. The first, and largest, star apart from the Sun to have its diameter measured was Betelgeuse, the brightest star in the constellation of Orion. Its angular diameter was found to be 0.044 arcsec by Albert Michelson and his team who used the Hooker telescope on Mt. Wilson in California in the early 1920s, pioneering interferometry techniques. Betelgeuse kept its title as the star with the largest apparent size for the next 75

  13. TYC 3159-6-1: a runaway blue supergiant

    Science.gov (United States)

    Gvaramadze, V. V.; Miroshnichenko, A. S.; Castro, N.; Langer, N.; Zharikov, S. V.

    2014-01-01

    We report the results of optical spectroscopy of a candidate evolved massive star in the Cygnus-X region, TYC 3159-6-1, revealed via detection of its curious circumstellar nebula in archival data of the Spitzer Space Telescope. We classify TYC 3159-6-1 as an O9.5-O9.7 Ib star and derive its fundamental parameters by using the stellar atmosphere code FASTWIND. The He and CNO abundances in the photosphere of TYC 3159-6-1 are consistent with the solar abundances, suggesting that the star only recently evolved off the main sequence. Proper motion and radial velocity measurements for TYC 3159-6-1 show that it is a runaway star. We propose that Dolidze 7 is its parent cluster. We discuss the origin of the nebula around TYC 3159-6-1 and suggest that it might be produced in several successive episodes of enhanced mass-loss rate (outbursts) caused by rotation of the star near the critical Ω limit.

  14. TYC 3159-6-1: a runaway blue supergiant

    CERN Document Server

    Gvaramadze, V V; Castro, N; Langer, N; Zharikov, S V

    2013-01-01

    We report the results of optical spectroscopy of a candidate evolved massive star in the Cygnus X region, TYC 3159-6-1, revealed via detection of its curious circumstellar nebula in archival data of the Spitzer Space Telecope. We classify TYC 3159-6-1 as an O9.5-O9.7 Ib star and derive its fundamental parameters by using the stellar atmosphere code FASTWIND. The He and CNO abundances in the photosphere of TYC 3159-6-1 are consistent with the solar abundances, suggesting that the star only recently evolved off the main sequence. Proper motion and radial velocity measurements for TYC 3159-6-1 show that it is a runaway star. We propose that Dolidze 7 is its parent cluster. We discuss the origin of the nebula around TYC 3159-6-1 and suggest that it might be produced in several successive episodes of enhanced mass-loss rate (outbursts) caused by rotation of the star near the critical, \\Omega-limit.

  15. Swift/XRT orbital monitoring of the candidate supergiant fast X-ray transient IGR J17354-3255

    CERN Document Server

    Ducci, L; Esposito, P; Bozzo, E; Krimm, H A; Vercellone, S; Mangano, V; Kennea, J A

    2013-01-01

    We report on the Swift/X-ray Telescope (XRT) monitoring of the field of view around the candidate supergiant fast X-ray transient (SFXT) IGR J17354-3255, which is positionally associated with the AGILE/GRID gamma-ray transient AGL J1734-3310. Our observations, which cover 11 days for a total on-source exposure of about 24 ks, span 1.2 orbital periods (P_orb=8.4474 d) and are the first sensitive monitoring of this source in the soft X-rays. These new data allow us to exploit the timing variability properties of the sources in the field to unambiguously identify the soft X-ray counterpart of IGR J17354-3255. The soft X-ray light curve shows a moderate orbital modulation and a dip. We investigated the nature of the dip by comparing the X-ray light curve with the prediction of the Bondi-Hoyle-Lyttleton accretion theory, assuming both spherical and nonspherical symmetry of the outflow from the donor star. We found that the dip cannot be explained with the X-ray orbital modulation. We propose that an eclipse or the...

  16. Low-amplitude rotational modulation rather than pulsations in the CoRoT B-type supergiant HD 46769

    CERN Document Server

    Aerts, C; Catala, C; Neiner, C; Briquet, M; Castro, N; Schmid, V S; Scardia, M; Rainer, M; Poretti, E; Papics, I; Degroote, P; Bloemen, S; Oestensen, R H; Auvergne, M; Baglin, A; Baudin, F; Michel, E; Samadi, R

    2013-01-01

    {We aim to detect and interpret photometric and spectroscopic variability of the bright CoRoT B-type supergiant target HD\\,46769 ($V=5.79$). We also attempt to detect a magnetic field in the target.} {We analyse a 23-day oversampled CoRoT light curve after detrending, as well as spectroscopic follow-up data, by using standard Fourier analysis and Phase Dispersion Minimization methods. We determine the fundamental parameters of the star, as well as its abundances from the most prominent spectral lines. We perform a Monte Carlo analysis of spectropolarimetric data to obtain an upper limit of the polar magnetic field, assumping a dipole field.} {In the CoRoT data, we detect a dominant period of 4.84\\,d with an amplitude of 87\\,ppm, and some of its (sub-)multiples. Given the shape of the phase-folded light curve and the absence of binary motion, we interpret the dominant variability in terms of rotational modulation, with a rotation period of 9.69\\,d. Subtraction of the rotational modulation signal does not revea...

  17. Periodic mass loss episodes due to an oscillation mode with variable amplitude in the hot supergiant HD50064

    CERN Document Server

    Aerts, C; Baglin, A; Degroote, P; Oreiro, R; Vuckovic, M; Smolders, K; Acke, B; Verhoelst, T; Desmet, M; Godart, M; Noels, A; Dupret, M -A; Auvergne, M; Baudin, F; Catala, C; Michel, E; Samadi, R

    2010-01-01

    We aim to interpret the photometric and spectroscopic variability of the luminous blue variable supergiant HD\\,50064 ($V=8.21$).CoRoT space photometry and follow-up high-resolution spectroscopy, with a time base of 137\\,d and 169\\,d, respectively, was gathered, analysed and interpreted using standard time series analysis and light curve modelling methods as well as spectral line diagnostics.The space photometry reveals one period of 37\\,d, which undergoes a sudden amplitude change with a factor 1.6. The pulsation period is confirmed in the spectroscopy, which additionally reveals metal line radial velocity values differing by $\\sim 30\\,$km\\,s$^{-1}$ depending on the spectral line and on the epoch. We estimate \\teff$\\sim$13\\,500\\,K, \\logg$\\sim$1.5 from the equivalent width of Si lines. The Balmer lines reveal that the star undergoes episodes of changing mass loss on a time scale similar to the changes in the photometric and spectroscopic variability, with an average value of $\\log\\dot{\\rm M}\\simeq-5$ (in M$_\\o...

  18. Detection of the 128 day radial velocity variations in the supergiant {\\alpha} Persei. Rotational modulations, pulsations, or a planet?

    CERN Document Server

    Lee, Byeong-Cheol; Park, Myeong-Gu; Kim, Kang-Min; Mkrtichian, David E

    2012-01-01

    Aims. In order to search for and study the nature of the low-amplitude and long-periodic radial velocity (RV) variations of massive stars, we have been carrying out a precise RV survey for supergiants that lie near or inside the Cepheid instability strip. Methods. We have obtained high-resolution spectra of {\\alpha} Per (F5 Ib) from November 2005 to September 2011 using the fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) at Bohyunsan Optical Astronomy Observatory (BOAO). Results. Our measurements reveal that {\\alpha} Per shows a periodic RV variation of 128 days and a semi-amplitude of 70 m/s. We find no strong correlation between RV variations and bisector velocity span (BVS), but the 128-d peak is indeed present in the BVS variations among several other significant peaks in periodogram. Conclusions. {\\alpha} Per may have an exoplanet, but the combined data spanning over 20 years seem to suggest that the 128-d RV variations have not been stable on long-term scale, which is somewhat difficult to r...

  19. The XMM-Newton view of Supergiant Fast X-ray Transients: the case of IGRJ16418-4532

    CERN Document Server

    Sidoli, L; Sguera, V; Pizzolato, F

    2011-01-01

    We report on a 40 ks long, uninterrupted X-ray observation of the candidate supergiant fast X-ray transient (SFXT) IGRJ16418-4532 performed with XMM-Newton on February 23, 2011. This high mass X-ray binary lies in the direction of the Norma arm, at an estimated distance of 13 kpc. During the observation, the source showed strong variability exceeding two orders of magnitudes, never observed before from this source. Its X-ray flux varied in the range from 0.1 counts/s to about 15 counts/s, with several bright flares of different durations (from a few hundreds to a few thousands seconds) and sometimes with a quasi-periodic behavior. This finding supports the previous suggestion that IGRJ16418-4532 is a member of the SFXTs class. In our new observation we measured a pulse period of 1212+/-6 s, thus confirming that this binary contains a slowly rotating neutron star. During the periods of low luminosity the source spectrum is softer and more absorbed than during the flares. A soft excess is present below 2 keV in...

  20. Cold Dust in Three Massive Evolved Stars in the LMC

    CERN Document Server

    Boyer, M L; van Loon, J Th; Srinivasan, S; Clayton, G C; Kemper, F; Smith, L J; Matsuura, M; Woods, Paul M; Marengo, M; Meixner, M; Engelbracht, C; Gordon, K D; Hony, S; Indebetouw, R; Misselt, K; Okumura, K; Panuzzo, P; Riebel, D; Roman-Duval, J; Sauvage, M; Sloan, G C

    2010-01-01

    Massive evolved stars can produce large amounts of dust, and far-infrared (IR) data are essential for determining the contribution of cold dust to the total dust mass. Using Herschel, we search for cold dust in three very dusty massive evolved stars in the Large Magellanic Cloud: R71 is a Luminous Blue Variable, HD36402 is a Wolf-Rayet triple system, and IRAS05280-6910 is a red supergiant. We model the spectral energy distributions using radiative transfer codes and find that these three stars have mass-loss rates up to 10^-3 solar masses/year, suggesting that high-mass stars are important contributors to the life-cycle of dust. We found far-IR excesses in two objects, but these excesses appear to be associated with ISM and star-forming regions. Cold dust (T < 100 K) may thus not be an important contributor to the dust masses of evolved stars.

  1. ON THE NATURE OF RAPIDLY ROTATING SINGLE EVOLVED STARS

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, R. Rodrigues; Canto Martins, B. L.; De Medeiros, J. R., E-mail: renan@dfte.ufrn.br [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal RN (Brazil)

    2015-03-01

    We present an analysis of the nature of the rapidly rotating, apparently single giant based on rotational and radial velocity measurements carried out by the CORAVEL spectrometers. From the analyzed sample, composed of 2010 spectroscopic, apparently single, evolved stars of luminosity classes IV, III, II, and Ib with spectral types G and K, we classified 30 stars that presented unusual, moderate to rapid rotation. This work reports, for the first time, the presence of these abnormal rotators among subgiant, bright giant, and Ib supergiant stars. To date, this class of stars was reported only among giant stars of luminosity class III. Most of these abnormal rotators present an IRAS infrared excess, which, in principle, can be related to dust around these stars.

  2. Inhomogeneous molecular ring around the B[e] supergiant LHA 120-S 73

    Science.gov (United States)

    Kraus, M.; Cidale, L. S.; Arias, M. L.; Maravelias, G.; Nickeler, D. H.; Torres, A. F.; Borges Fernandes, M.; Aret, A.; Curé, M.; Vallverdú, R.; Barbá, R. H.

    2016-10-01

    Context. B[e] supergiants are evolved massive stars, enshrouded in a dense wind and surrounded by a molecular and dusty disk. The mechanisms that drive phases of enhanced mass loss and mass ejections, responsible for the shaping of the circumstellar material of these objects, are still unclear. Aims: We aim to improve our knowledge on the structure and dynamics of the circumstellar disk of the Large Magellanic Cloud B[e] supergiant LHA 120-S 73. Methods: High-resolution optical and near-infrared spectroscopic data were obtained over a period of 16 and 7 yr, respectively. The spectra cover the diagnostic emission lines from [Ca ii] and [O i], as well as the CO bands. These features trace the disk at different distances from the star. We analyzed the kinematics of the individual emission regions by modeling their emission profiles. A low-resolution mid-infrared spectrum was obtained as well, which provides information on the composition of the dusty disk. Results: All diagnostic emission features display double-peaked line profiles, which we interpret as due to Keplerian rotation. We find that the profile of each forbidden line contains contributions from two spatially clearly distinct rings. In total, we find that LHA 120-S 73 is surrounded by at least four individual rings of material with alternating densities (or by a disk with strongly non-monotonic radial density distribution). Moreover, we find that the molecular ring must have gaps or at least strong density inhomogeneities, or in other words, a clumpy structure. The optical spectra additionally display a broad emission feature at 6160-6180 Å, which we interpret as molecular emission from TiO. The mid-infrared spectrum displays features of oxygen- and carbon-rich grain species, which indicates a long-lived, stable dusty disk. We cannot confirm the previously reported high value for the stellar rotation velocity. He i λ 5876 is the only clearly detectable pure atmospheric absorption line in our data. Its

  3. Can the magnetic field in the Orion arm inhibit the growth of instabilities in the bow shock of Betelgeuse?

    Science.gov (United States)

    van Marle, A. J.; Decin, L.; Meliani, Z.

    2014-01-01

    Context. Many evolved stars travel through space at supersonic velocities, which leads to the formation of bow shocks ahead of the star where the stellar wind collides with the interstellar medium (ISM). Herschel observations of the bow shock of α-Orionis show that the shock is almost free of instabilities, despite being, at least in theory, subject to both Kelvin-Helmholtz and Rayleigh-Taylor instabilities. Aims: A possible explanation for the lack of instabilities lies in the presence of an interstellar magnetic field. We wish to investigate whether the magnetic field of the ISM in the Orion arm can inhibit the growth of instabilities in the bow shock of α-Orionis. Methods: We used the code MPI-AMRVAC to make magneto-hydrodynamic simulations of a circumstellar bow shock, using the wind parameters derived for α-Orionis and interstellar magnetic field strengths of B = 1.4, 3.0, and 5.0 μG, which fall within the boundaries of the observed magnetic field strength in the Orion arm of the Milky Way. Results: Our results show that even a relatively weak magnetic field in the ISM can suppress the growth of Rayleigh-Taylor and Kelvin-Helmholtz instabilities, which occur along the contact discontinuity between the shocked wind and the shocked ISM. Conclusions: The presence of even a weak magnetic field in the ISM effectively inhibits the growth of instabilities in the bow shock. This may explain the absence of such instabilities in the Herschel observations of α-Orionis. Appendix A and associated movies are available in electronic form at http://www.aanda.org

  4. The dustiest Post-Main sequence stars in the Magellanic Clouds

    CERN Document Server

    Jones, Olivia C; Sargent, Benjamin A; Boyer, Martha L; Sewilo, Marta; Hony, Sacha; Roman-Duval, Julia

    2015-01-01

    Using observations from the {\\em Herschel} Inventory of The Agents of Galaxy Evolution (HERITAGE) survey of the Magellanic Clouds, we have found thirty five evolved stars and stellar end products that are bright in the far-infrared. These twenty eight (LMC) and seven (SMC) sources were selected from the 529 evolved star candidates in the HERITAGE far-infrared point source catalogs. Our source identification method is based on spectral confirmation, spectral energy distribution characteristics, careful examination of the multiwavelength images and includes constraints on the luminosity, resulting in a thoroughly vetted list of evolved stars. These sources span a wide range in luminosity and hence initial mass. We found thirteen low- to intermediate mass evolved stars, including asymptotic giant branch (AGB) stars, post-AGB stars, planetary nebulae and a symbiotic star. We also identify ten high mass stars, including four of the fifteen known B[e] stars in the Magellanic Clouds, three extreme red supergiants wh...

  5. An HST COS 'SNAPSHOT' spectrum of the K supergiant λ Vel (K4Ib-II)

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, Kenneth G. [NASA/GSFC Code 667, Greenbelt, MD 20771 (United States); Ayres, Thomas R. [University of Colorado, CASA, 389-UCB, Boulder, CO 80309 (United States); Harper, Graham M. [School of Physics, Trinity College, Dublin 2 (Ireland); Kober, Gladys; Nielsen, Krister E.; Wahlgren, Glenn M., E-mail: Kenneth.G.Carpenter@nasa.gov [Deptartment of Physics, Catholic University of America, Washington, DC 20064 (United States)

    2014-10-10

    We present a far-ultraviolet spectrum of the K4 Ib-II supergiant λ Vel obtained with the Hubble Space Telescope's Cosmic Origins Spectrograph (COS) as a part of the SNAPshot program 'SNAPing coronal iron' (GO 11687). The observation covers a wavelength region (1326-1467 Å) not previously recorded for λ Vel at a spectral resolving power of R ∼ 20,000 and displays strong emission and absorption features, superposed on a bright chromospheric continuum. Fluorescent excitation is responsible for much of the observed emission, mainly powered by strong H I Lyα and the O I (UV 2) triplet emission near λ1304. The molecular CO and H{sub 2} fluorescences are weaker than in the early-K giant α Boo while the Fe II and Cr II lines, also pumped by H I Lyα, are stronger in λ Vel. This pattern of relative line strengths between the two stars is explained by the lower iron-group element abundance in α Boo, which weakens that star's Fe II and Cr II emission without reducing the molecular fluorescences. The λ Vel spectrum shows fluorescent Fe II, Cr II, and H{sub 2} emission similar to that observed in the M supergiant α Ori, but more numerous well-defined narrow emissions from CO. The additional CO emissions are visible in the spectrum of λ Vel since that star does not have the cool, opaque circumstellar shells that surround α Ori and produce broad circumstellar CO (A-X) band absorptions that hide those emissions in the cooler star. The presence of Si IV emission in λ Vel indicates a ∼8 × 10{sup 4} K plasma that is mixed into the cooler chromosphere. Evidence of the stellar wind is seen in the C II λλ1334,1335 lines and in the blueshifted Fe II and Ni II wind absorption lines. Line modeling using Sobolev with Exact Integration for the C II lines indicates a larger terminal velocity (∼45 versus ∼30 km s{sup –1}) and turbulence (∼27 versus <21 km s{sup –1}) with a more quickly accelerating wind (β = 0.35 versus 0.7) at the time of

  6. Spectrophotometry of Twenty of the Brightest Stars in the Southern Sky

    Science.gov (United States)

    Krisciunas, Kevin; Suntzeff, Nicholas B.; Kelarek, Bethany; Bonar, Kyle; Stenzel, Joshua

    2017-01-01

    We have obtained spectra of 20 bright southern stars (including Sirius, Canopus, Betelgeuse, Rigel, and Procyon) using the CTIO 1.5-m telescope and its grating spectrograph RCSPEC. The brightness of the targets required the use of a 7.5 magnitude neutral density filter. Given a Kurucz model spectrum of Sirius (t = 9850 K, log g = 4.30, [Fe/H] = +0.4) with an appropriate spectral resolution, we can place the spectrophotometry on the system of Sirius, which is much less problematic than basing the ultimate calibration on Vega. The resulting B- and V-band synthetic photometry compares well with that of Cousins, with minimal color terms. Our synthetic R- and I-band photometry indicates non-zero offsets and color-terms with respect to Cousins' data.

  7. Spectroscopic survey of emission-line stars. I. B[e] stars

    CERN Document Server

    Aret, Anna; Šlechta, Miroslav

    2015-01-01

    Emission-line stars are typically surrounded by dense circumstellar material, often in form of rings or disc-like structures. Line emission from forbidden transitions trace a diversity of density and temperature regimes. Of particular interest are the forbidden lines of [O I] {\\lambda}{\\lambda}6300, 6364 and [Ca II] {\\lambda}{\\lambda}7291, 7324. They arise in complementary, high-density environments, such as the inner-disc regions around B[e] supergiants. To study physical conditions traced by these lines and to investigate how common they are, we initiated a survey of emission-line stars. Here, we focus on a sample of nine B[e] stars in different evolutionary phases. Emission of the [O I] lines is one of the characteristics of B[e] stars. We find that four of the objects display [Ca II] line emission: for the B[e] supergiants V1478 Cyg and 3 Pup the kinematics obtained from the [O I] and [Ca II] line profiles agrees with a Keplerian rotating disc scenario; the forbidden lines of the compact planetary nebula ...

  8. Carbon abundance and the N/C ratio in atmospheres of A-, F- and G-type supergiants and bright giants

    CERN Document Server

    Lyubimkov, Leonid S; Korotin, Sergey A; Rachkovskaya, Tamara M; Poklad, Dmitry B

    2014-01-01

    Based on our prior accurate determination of fundamental parameters for 36 Galactic A-, F- and G-type supergiants and bright giants (luminosity classes I and II), we undertook a non-LTE analysis of the carbon abundance in their atmospheres. It is shown that the non-LTE corrections to the C abundances derived from C I lines are negative and increase with the effective temperature Teff; the corrections are especially significant for the infrared C I lines with wavelengths 9060-9660 \\AA. The carbon underabundance as a general property of the stars in question is confirmed; a majority of the stars studied has the carbon deficiency [C/Fe] between -0.1 and -0.5 dex, with a minimum at -0.7 dex. When comparing the derived C deficiency with the N excess found by us for the same stars earlier, we obtain a pronounced N vs. C anti-correlation, which could be expected from predictions of the theory.We found that the ratio [N/C] spans mostly the range from 0.3 to 1.7 dex. Both these enhanced [N/C] values and the C and N an...

  9. NEW LUMINOUS ON SPECTRA FROM THE GALACTIC O-STAR SPECTROSCOPIC SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Walborn, Nolan R. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Morrell, Nidia I. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Barbá, Rodolfo H. [Departamento de Física y Astronomía, Universidad de La Serena, Cisternas 1200 Norte, La Serena (Chile); Sota, Alfredo, E-mail: walborn@stsci.edu, E-mail: nmorrell@lco.cl, E-mail: rbarba@dfuls.cl, E-mail: sota@iaa.es [Instituto de Astrofísica de Andalucía—CSIC, Glorieta de la Astronomía s/n, E-18008 Granada (Spain)

    2016-04-15

    Two new ON supergiant spectra (bringing the total known to seven) and one new ONn giant (total of this class now eight) are presented; they have been discovered by the Galactic O-Star Spectroscopic Survey. These rare objects represent extremes in the mixing of CNO-cycled material to the surfaces of evolved, late-O stars, by uncertain mechanisms in the first category but likely by rotation in the second. The two supergiants are at the hot edge of the class, which is a selection effect from the behavior of defining N iii and C iii absorption blends, related to the tendency toward emission (Of effect) in the former. An additional N/C criterion first proposed by Bisiacchi et al. is discussed as a means to alleviate that effect, and it is relevant to the two new objects. The entire ON supergiant class is discussed; they display a fascinating diversity of detail undoubtedly related to the complexities of their extended atmospheres and winds that are sensitive to small differences in physical parameters, as well as to binary effects in some cases. Serendipitously, we have found significant variability in the spectrum of a little-known hypergiant with normal N, C spectra selected as a comparison for the anomalous objects. In contrast to the supergiants, the ONn spectra are virtual (nitrogen)-carbon copies of one another except for the degrees of line broadening, which emphasizes their probable unique origin and hence amenability to definitive astrophysical interpretation.

  10. Evolved star water maser cloud size determined by star size

    CERN Document Server

    Richards, A M S; Gray, M D; Lekht, E E; Mendoza-Torres, J E; Murakawa, K; Rudnitskij, G; Yates, J A

    2012-01-01

    Cool, evolved stars undergo copious mass loss but the details of how the matter is returned to the ISM are still under debate. We investigated the structure and evolution of the wind at 5 to 50 stellar radii from Asymptotic Giant Branch and Red Supergiant stars. 22-GHz water masers around seven evolved stars were imaged using MERLIN, at sub-AU resolution. Each source was observed at between 2 and 7 epochs (several stellar periods). We compared our results with long-term Pushchino single dish monitoring. The 22-GHz emission is located in ~spherical, thick, unevenly filled shells. The outflow velocity doubles between the inner and outer shell limits. Water maser clumps could be matched at successive epochs separated by <2 years for AGB stars, or at least 5 years for RSG. This is much shorter than the decades taken for the wind to cross the maser shell, and comparison with spectral monitoring shows that some features fade and reappear. In 5 sources, most of the matched features brighten or dim in concert from...

  11. The Onset of Chaos in Pulsating Variable Stars

    CERN Document Server

    Turner, David G; Percy, J R; Abdel-Latif, Mohamed Abdel-Sabour

    2011-01-01

    Random changes in pulsation period occur in cool pulsating Mira variables, Type A, B, and C semiregular variables, RV Tauri variables, and in most classical Cepheids. The physical processes responsible for such fluctuations are uncertain, but presumably originate in temporal modifications of the envelope convection in such stars. Such fluctuations are seemingly random over a few pulsation cycles of the stars, but are dominated by the regularity of the primary pulsation over the long term. The magnitude of stochasticity in pulsating stars appears to be linked directly to their dimensions, although not in simple fashion. It is relatively larger in M supergiants, for example, than in short-period Cepheids, but is common enough that it can be detected in visual observations for many types of pulsating stars. Although chaos was discovered in such stars 80 years ago, detection of its general presence in the group has only been possible in recent studies.

  12. Copernicus observations of the N v resonance doublet in 53 early-type stars

    Science.gov (United States)

    Abbott, D. C.; Bohlin, R. C.; Savage, B. D.

    1982-01-01

    UV spectra in the wavelength interval 1170-1270 A are presented for 53 early-type stars ranging in spectral type from O6.5 V to B2.5 IV. The sample includes four Wolf-Rayet stars, seven known Oe-Be stars, and six galactic halo OB stars. A qualitative analysis of the stellar N v doublet reveals that: (1) N v is present in all stars hotter and more luminous than type B0 for the main sequence, B1 for giants, and B2 for supergiants; (2) shell components of N v and an unidentified absorption feature at 1230 A are present in about half of the stars; (3) the column density of N v is well correlated with bolometric luminosity over the spectral range O6 to B2; and (4) the ratio of emission to absorption equivalent width is a factor of 2 smaller in the main sequence stars than in supergiants, which suggests that the wind structure changes as a star evolves. For several stars, this ratio is too small to be explained by traditional wind models.

  13. Stellar and wind parameters of massive stars from spectral analysis

    Science.gov (United States)

    Araya, I.; Curé, M.

    2017-07-01

    The only way to deduce information from stars is to decode the radiation it emits in an appropriate way. Spectroscopy can solve this and derive many properties of stars. In this work we seek to derive simultaneously the stellar and wind characteristics of A and B supergiant stars. Our stellar properties encompass the effective temperature, the surface gravity, the stellar radius, the micro-turbulence velocity, the rotational velocity and, finally, the chemical composition. For wind properties we consider the mass-loss rate, the terminal velocity and the line-force parameters (α, k and δ) obtained from the standard line-driven wind theory. To model the data we use the radiative transport code Fastwind considering the newest hydrodynamical solutions derived with Hydwind code, which needs stellar and line-force parameters to obtain a wind solution. A grid of spectral models of massive stars is created and together with the observed spectra their physical properties are determined through spectral line fittings. These fittings provide an estimation about the line-force parameters, whose theoretical calculations are extremely complex. Furthermore, we expect to confirm that the hydrodynamical solutions obtained with a value of δ slightly larger than ˜ 0.25, called δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and at the same time explain disagreements between observational data and theoretical models for the Wind-Momentum Luminosity Relationship (WLR).

  14. An Upper Mass Limit on a Red Supergiant Progenitor for the Type II-Plateau Supernova SN 2006my

    Science.gov (United States)

    Leonard, Douglas C.; Gal-Yam, Avishay; Fox, Derek B.; Cameron, P. B.; Johansson, Erik M.; Kraus, Adam L.; Le Mignant, David; van Dam, Marcos A.

    2008-12-01

    We analyze two pre-supernova (SN) and three post-SN high-resolution images of the site of the Type II-Plateau supernova SN 2006my in an effort to either detect the progenitor star or to constrain its properties. Following image registration, we find that an isolated stellar object is not detected at the location of SN 2006my in either of the two pre-SN images. In the first, an I-band image obtained with the Wide-Field and Planetary Camera 2 on board the Hubble Space Telescope, the offset between the SN 2006my location and a detected source (“Source 1”) is too large: ≥0.08‧‧, which corresponds to a confidence level of non-association of 96% from our most liberal estimates of the transformation and measurement uncertainties. In the second, a similarly obtained V-band image, a source is detected (“Source 2”) that has overlap with the SN 2006my location but is definitively an extended object. Through artificial star tests carried out on the precise location of SN 2006my in the images, we derive a 3 σ upper bound on the luminosity of a red supergiant that could have remained undetected in our pre-SN images of log L/L⊙ = 5.10, which translates to an upper bound on such a star’s initial mass of 15 M⊙ from the STARS stellar evolutionary models. Although considered unlikely, we can not rule out the possibility that part of the light comprising Source 1, which exhibits a slight extension relative to other point sources in the image, or part of the light contributing to the extended Source 2, may be due to the progenitor of SN 2006my. Only additional, high-resolution observations of the site taken after SN 2006my has faded beyond detection can confirm or reject these possibilities. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was

  15. Semi-analytical Formulas for the Fundamental Parameters of Galactic Early B Supergiants

    Directory of Open Access Journals (Sweden)

    Zaninetti, L.

    2009-12-01

    Full Text Available The publication of new tables of calibration of some fundamental parameters of Galactic B0-B5 supergiants in the two classes $I_mathrm{a}$ and $I_mathrm{b} $ allows to particularize the eight parameters conjecture that model five fundamental parameters. The numerical expressions for visual magnitude, radius, mass, luminosity and surface gravity are derived for supergiants in the range of temperature between 29700 K and 15200 K. The availability of accurate tables of calibration allows us to estimate the efficiency of the derived formulas in reproducing the observed values. The average efficiency of the new formulas, expressed in percent, is 94 for the visual magnitude, 81 for the mass, 96 for the radius, 99 for the logarithm of the luminosity and 97 for the logarithm of the surface gravity.

  16. A Survey of Local Group Galaxies Currently Forming Stars: \\\\II. UBVRI Photometry of Stars in Seven Dwarfs

    CERN Document Server

    Massey, P; Hodge, P W; Jacoby, G H; McNeill, R T; Smith, R C; Strong, S B; Massey, Philip; Hodge, Paul W.; Jacoby, George H.; Neill, Reagin T. Mc; Strong, Shay B.

    2007-01-01

    We have obtained UBVRI images with the Kitt Peak and Cerro Tololo 4-m telescopes and Mosaic cameras of seven dwarfs in (or near) the Local Group, all of which have known evidence of recent star formation: IC10, NGC 6822, WLM, Sextans B, Sextans A, Pegasus,and Phoenix. We construct color-magnitude diagrams (CMDs) of these systems, as well as neighboring regions that can be used to evaluate the degree of foreground contamination by stars in the Milky Way. Inter-comparison of these CMDs with those of M31, M33, the LMC, and the SMC permits us to determine improved reddening values for a typical OB star found within these galaxies. All of the CMDs reveal a strong or modest number of blue supergiants. All but Pegasus and Phoenix also show the clear presence of red supergiants in the CMD, although IC10 appears to be deficient in these objects given its large WR population. The bright stars of intermediate color in the CMD are badly contaminated by foreground stars (30-100%), and considerable spectroscopy is needed b...

  17. Mid-infrared observations of O-type stars: spectral morphology

    Science.gov (United States)

    Marcolino, W. L. F.; Bouret, J.-C.; Lanz, T.; Maia, D. S.; Audard, M.

    2017-09-01

    We present mid-infrared (mid-IR) observations for a sample of 16 O-type stars. The data were acquired with the NASA Spitzer Space Telescope, using the IRS instrument at moderate resolution (R ∼ 600), covering the range of ∼10-37 μm. Our sample includes early, mid and late O supergiants and dwarfs. We explore for the first time their mid-IR spectral morphology in a quantitative way. We use NLTE expanding atmosphere models to help with line identifications, analyse profile contributions and line-formation regions. The O supergiants present a rich emission line spectra. The most intense features are from hydrogen - 6 α, 7 α and 8 α - that have non-negligible contributions of He i or He ii lines, depending on the spectral type. The spectrum of early O supergiants is a composite of H i and He ii lines, He i lines being absent. On the other hand, late O supergiants present features composed mainly by H i and He i lines. All emission lines are formed throughout the stellar wind. We found that O dwarfs exhibit a featureless mid-IR spectrum. Two stars of our sample exhibit very similar mid-IR features, despite having a very different optical spectral classification. The analysis of O-type stars based on mid-IR spectra alone to infer spectral classes or to estimate physical parameters may thus be prone to substantial errors. Our results may therefore inform spectroscopic observations of massive stars located in heavily obscured regions and help establish an initial framework for observations of massive stars using the Mid-Infrared Instrument on the James Webb Space Telescope.

  18. Dynamical Mass of the O-Type Supergiant in Zeta Orionis A

    Science.gov (United States)

    2013-01-01

    A&A 554, A52 (2013) DOI: 10.1051/0004-6361/201321434 c© ESO 2013 Astronomy & Astrophysics Dynamical mass of the O-type supergiant in ζ Orionis A C...STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES Astronomy & Astrophysics, 554, A52 (2013),7 pgs 14. ABSTRACT...MJD 51143 to 51160). For the purpose of this work, deriving the orbital radial velocity (RV) variations, spectra within one season have been

  19. HD 187885 and s-process elements in high galactic latitude supergiants

    NARCIS (Netherlands)

    VanWinckel, H; Waelkens, C; Waters, LBFM

    1996-01-01

    We present an accurate LTE chemical analysis of HD 187885 on the basis of high-resolution, high signal-to-noise spectra. The low iron abundance of [Fe/H] = -0.5 confirms the old, low-mass nature of the supergiant. With [C/Fe] = +0.9, [N/Fe] = +0.7, [O/Fe] = +0.6 and above all the high s-process elem

  20. HD 187885 and s-process elements in high galactic latitude supergiants

    NARCIS (Netherlands)

    VanWinckel, H; Waelkens, C; Waters, LBFM

    We present an accurate LTE chemical analysis of HD 187885 on the basis of high-resolution, high signal-to-noise spectra. The low iron abundance of [Fe/H] = -0.5 confirms the old, low-mass nature of the supergiant. With [C/Fe] = +0.9, [N/Fe] = +0.7, [O/Fe] = +0.6 and above all the high s-process

  1. Low-amplitude rotational modulation rather than pulsations in the CoRoT B-type supergiant HD 46769

    Science.gov (United States)

    Aerts, C.; Simón-Díaz, S.; Catala, C.; Neiner, C.; Briquet, M.; Castro, N.; Schmid, V. S.; Scardia, M.; Rainer, M.; Poretti, E.; Pápics, P. I.; Degroote, P.; Bloemen, S.; Østensen, R. H.; Auvergne, M.; Baglin, A.; Baudin, F.; Michel, E.; Samadi, R.

    2013-09-01

    Aims: We aim to detect and interpret photometric and spectroscopic variability of the bright CoRoT B-type supergiant target HD 46769 (V = 5.79). We also attempt to detect a magnetic field in the target. Methods: We analyse a 23-day oversampled CoRoT light curve after detrending and spectroscopic follow-up data using standard Fourier analysis and phase dispersion minimization methods. We determine the fundamental parameters of the star, as well as its abundances from the most prominent spectral lines. We perform a Monte Carlo analysis of spectropolarimetric data to obtain an upper limit of the polar magnetic field, assuming a dipole field. Results: In the CoRoT data, we detect a dominant period of 4.84 d with an amplitude of 87 ppm and some of its (sub-)multiples. Given the shape of the phase-folded light curve and the absence of binary motion, we interpret the dominant variability in terms of rotational modulation, with a rotation period of 9.69 d. Subtraction of the rotational modulation signal does not reveal any sign of pulsations. Our results are consistent with the absence of variability in the Hipparcos light curve. The spectroscopy leads to a projected rotational velocity of 72 ± 2 km s-1 and does not reveal periodic variability or the need to invoke macroturbulent line broadening. No signature of a magnetic field is detected in our data. A field stronger than ~500 G at the poles can be excluded, unless the possible non-detected field were more complex than dipolar. Conclusions: The absence of pulsations and macroturbulence of this evolved B-type supergiant is placed into the context of instability computations and of observed variability of evolved B-type stars. Based on CoRoT space-based photometric data; the CoRoT space mission was developed and operated by the French space agency CNES, with the participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. Based on observations collected at La Silla Observatory, ESO

  2. Infrared observations of circumstellar ammonia in OH/IR supergiants

    Science.gov (United States)

    Mclaren, R. A.; Betz, A. L.

    1980-01-01

    Ammonia has been detected in the circumstellar envelopes of VY Canis Majoris, VX Sagittarii, and IRC +10420 by means of several absorption lines in the nu-2 vibration-rotation band near 950 kaysers. The line profiles are well resolved (0.2 km/sec resolution) and show the gas being accelerated to terminal expansion velocities near 30 km/sec. The observations reveal a method for determining the position of the central star on VLBI maps of OH maser emission to an accuracy of approximately 0.2 arcsec. A firm lower limit of 2 x 10 to the 15th/sq cm is obtained for the NH3 column density in VY Canis Majoris.

  3. SUPERGIANT SHELLS AND MOLECULAR CLOUD FORMATION IN THE LARGE MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, J. R.; Dickey, John M. [School of Mathematics and Physics, University of Tasmania, Sandy Bay Campus, Churchill Avenue, Sandy Bay, TAS 7005 (Australia); McClure-Griffiths, N. M. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Marsfield NSW 2122 (Australia); Wong, T. [Astronomy Department, University of Illinois, Urbana, IL 61801 (United States); Hughes, A. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117, Heidelberg (Germany); Fukui, Y. [Department of Physics and Astrophysics, Nagoya University, Chikusa-ku, Nagoya (Japan); Kawamura, A., E-mail: joanne.dawson@utas.edu.au [National Astronomical Observatory of Japan, Tokyo 181-8588 (Japan)

    2013-01-20

    We investigate the influence of large-scale stellar feedback on the formation of molecular clouds in the Large Magellanic Cloud (LMC). Examining the relationship between H I and {sup 12}CO(J = 1-0) in supergiant shells (SGSs), we find that the molecular fraction in the total volume occupied by SGSs is not enhanced with respect to the rest of the LMC disk. However, the majority of objects ({approx}70% by mass) are more molecular than their local surroundings, implying that the presence of a supergiant shell does on average have a positive effect on the molecular gas fraction. Averaged over the full SGS sample, our results suggest that {approx}12%-25% of the molecular mass in supergiant shell systems was formed as a direct result of the stellar feedback that created the shells. This corresponds to {approx}4%-11% of the total molecular mass of the galaxy. These figures are an approximate lower limit to the total contribution of stellar feedback to molecular cloud formation in the LMC, and constitute one of the first quantitative measurements of feedback-triggered molecular cloud formation in a galactic system.

  4. The discovery of nonthermal radio emission from magnetic Bp-Ap stars

    Science.gov (United States)

    Drake, Stephen A.; Abbott, David C.; Bastian, T. S.; Bieging, J. H.; Churchwell, E.

    1987-01-01

    In a VLA survey of chemically peculiar B- and A-type stars with strong magnetic fields, five of the 34 stars observed have been identified as 6 cm continuum sources. Three of the detections are helium-strong early Bp stars (Sigma Ori E, HR 1890, and Delta Ori C), and two are helium weak, silicon-strong stars with spectral types near A0p (IQ Aur = HD 34452, Babcock's star = HD 215441). The 6 cm luminosities L6 (ergs/s Hz) range from log L6 = 16.2 to 17.9, somewhat less than the OB supergiants and W-R stars. Three-frequency observations indicate that the helium-strong Bp stars are variable nonthermal sources.

  5. The nature of FS CMa stars as revealed by host young clusters

    Science.gov (United States)

    de la Fuente, D.; Najarro, F.; Trombley, C.; Davies, B.; Figer, D. F.

    2015-05-01

    The nature and evolutionary state of the diverse objects displaying the B[e] phenomenon are reasonably known, except for a rare subtype named FS CMa stars. These are surrounded by compact disks of warm dust whose origin is unclear. Although the luminosity of these objects corresponds to main-sequence stars, mass loss rates derived from emission lines are 2 orders of magnitude larger than predicted by wind theory. Hitherto, FS CMa stars have been only found in isolation, which hinders the study of their nature. In this contribution, we present the discovery of FS CMa stars in two young Galactic clusters, which host Wolf-Rayet stars and OB supergiants. Membership to these coeval populations allows us to constrain the luminosity, circumstellar extinction and age of FS CMa stars in an unprecedented way. Due to their relatively low brightness when compared with coeval evolved massive stars, a high number of these objects may remain unnoticed in young clusters.

  6. The Puppis region and the last crusade for faint OB stars

    Science.gov (United States)

    Orsatti, Ana M.

    1992-08-01

    UBV photoelectric and photographic measurements of OB stars from a list of 397 OB stars and 5 early-type supergiants and from the Luminous Stars Survey are presented. The galactic distribution of the OB stars in the region shows concentrations around the open clusters Ruprecht 44 and Ruprecht 55, and the presence of an important grouping of young stars located far below the plane. The distribution in latitude shows that young stars in the region are not restricted to a thin sheet around the plane but are spread over negative latitudes reaching at least b = -5 deg. In longitude, the OB distribution exhibits a concentration of Ob stars in the interval 244-251 deg; this is argued to be due to the presence of the local arm extension.

  7. Evolution of intermediate mass and massive binary stars: physics, mass loss, and rotation

    CERN Document Server

    Vanbeveren, D

    2016-01-01

    In the present review we discuss the past and present status of the interacting OB-type binary frequency. We critically examine the popular idea that Be-stars and supergiant sgB[e] stars are binary evolutionary products. The effects of rotation on stellar evolution in general, stellar population studies in particular, and the link with binaries will be evaluated. Finally a discussion is presented of massive double compact star binary mergers as possible major sites of chemical enrichment of r-process elements and as the origin of recent aLIGO GW events.

  8. Pulsations as a mass-loss trigger in evolved hot stars

    CERN Document Server

    Kraus, Michaela; Haucke, Maximiliano; Cidale, Lydia; Venero, Roberto; Fernandes, Marcelo Borges; Tomic, Sanja; Cure, Michel

    2013-01-01

    During the post-main sequence evolution massive stars pass through several short-lived phases, in which they experience enhanced mass loss in the form of clumped winds and mass ejection events of unclear origin. The discovery that stars populating the blue, luminous part of the Hertzsprung-Russell diagram can pulsate hence suggests that stellar pulsations might influence or trigger enhanced mass loss and eruptions. We present recent results for two objects in different phases: a B[e] star at the end of the main sequence and a B-type supergiant.

  9. From B[e] to A[e]. On the peculiar variations of the SMC supergiant LHA 115-S 23 (AzV 172)

    CERN Document Server

    Kraus, Michaela; Kubat, Jiri; de Araujo, Francisco X

    2008-01-01

    Optical observations from 1989 of the SMC B[e] supergiant star S23 revealed the presence of photospheric HeI absorption lines. In our high-resolution optical spectra from 2000, however, we could not identify any HeI line. The observed changes in spectral behaviour of S23 lead to different spectral classifications at different observing epochs. The aim of this research is, therefore, to find and discuss possible scenarios that might cause a disappearance of the photospheric HeI absorption lines within a period of only 11 years. From our high-resolution optical spectra, we perform a detailed investigation of the different spectral appearances of S23. We further determine the projected rotational velocities of S23 in the two epochs of observations. Based on its spectral appearance in 2000, we classify S23 as A1Ib star with an effective temperature of about 9000 K. Further, an interstellar extinction value of E(B-V) = 0.03 is derived. This is considerably lower than the previously published value, which means tha...

  10. Identification of the Red Supergiant Progenitor of Supernova 2005cs: Do the Progenitors of Type II-P Supernovae Have Low Mass?

    CERN Document Server

    Li, W; Filippenko, A V; Cuillandre, J C; Jha, S; Bloom, J S; Riess, A G; Livio, M; Li, Weidong; Dyk, Schuyler D. Van; Filippenko, Alexei V.; Cuillandre, Jean-Charles; Jha, Saurabh; Bloom, Joshua S.; Riess, Adam G.; Livio, Mario

    2006-01-01

    The stars that end their lives as supernovae (SNe) have been directly observed in only a handful of cases, due mainly to the extreme difficulty in identifying them in images obtained prior to the SN explosions. Here we report the identification of the progenitor for the recent Type II-plateau (core-collapse) SN 2005cs in pre-explosion archival images of the Whirlpool Galaxy (M51) obtained with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS). From high-quality ground-based images of the SN from the Canada-France-Hawaii Telescope, we precisely determine the position of the SN and are able to isolate the SN progenitor to within 0".04 in the HST/ACS optical images. We further pinpoint the SN location to within 0".005 from HST/ACS ultraviolet images of the SN, confirming our progenitor identification. From photometry of the SN progenitor obtained with the pre-SN ACS images, and also limits to its brightness in pre-SN HST/NICMOS images, we infer that the progenitor is a red supergiant star of spe...

  11. Observations and theory of mass loss in late-type stars

    Science.gov (United States)

    Hartmann, L.

    1981-01-01

    The presented review is mainly concerned with the ubiquitous mass loss which occurs during most of a star's existence as a cool giant or supergiant. Observations of mass loss are considered, taking into account wind components and kinematics, and the temperature structure of cool winds. Theories of mass loss are examined, giving attention to radiation pressure on dust, radiation pressure in Lyman alpha, and magnetic wave-driven winds. It is pointed out that the study of mass loss from late-type stars appears to be entering a promising new phase. In this phase, the behavior of cool giants and supergiants is considered from a solar perspective, a perspective which contains important implications concerning the nature of solar activity.

  12. Observational consequences of turbulent pressure in the envelopes of massive stars

    CERN Document Server

    Grassitelli, Luca; Simon-Diaz, Sergio; Langer, Norbert; Castro, Norberto; Sanyal, Debashis

    2015-01-01

    The major mass fraction of the envelope of hot luminous stars is radiatively stable. However, the partial ionisation of hydrogen, helium and iron gives rise to extended sub-surface convection zones in all of them. In this work, we investigate the effect of the pressure induced by the turbulent motion in these zones based on the mixing length theory, and search for observable consequences. We find that the turbulent pressure fraction can amount up to ~5% in OB supergiants, and to ~30% in cooler supergiants. The resulting structural changes are, however, not significantly affecting the evolutionary tracks compared to previous calculations. Instead, a comparison of macroturbulent velocities derived from high quality spectra of OB stars with the turbulent pressure fraction obtained in corresponding stellar models reveals a strong correlation of these two quantities. We discuss a possible physical connection, and conclude that turbulent pressure fluctuations may drive high-order oscillations, which - as conjecture...

  13. External Shaping of Circumstellar Envelopes of Evolved Stars

    Science.gov (United States)

    Cox, N. L. J.

    2015-08-01

    The circumstellar envelopes of asymptotic giant branch (AGB) stars and red supergiants (RSGs) are complex chemical and physical environments, and the specifics of their mass-loss history are important for both stellar and galactic evolution. One key aspect in this is to understand how the circumstellar medium of these stars can be shaped and affected by both internal and external mechanisms. These influences can skew our view on the (dust) chemistry and mass-loss history of these stars, and hence their role in the chemical enrichment of galaxies. This contribution focuses on the external mechanism related to the interaction between the slow dusty stellar wind and the local ambient medium. I will discuss what recent observations and hydrodynamical simulations have revealed and how these can help us learn more about AGB stars and RSGs, as well as the interstellar medium (ISM).

  14. Massive Stars in the W33 Giant Molecular Complex

    CERN Document Server

    Messineo, Maria; Figer, Donald F; Kudritzki, Rolf-Peter; Najarro, Francisco; Rich, R Michael; Menten, Karl M; Ivanov, Valentin D; Valenti, Elena; Trombley, Christine; Chen, C -H Rosie; Davies, Ben

    2015-01-01

    Rich in HII regions, giant molecular clouds are natural laboratories to study massive stars and sequential star formation. The Galactic star forming complex W33 is located at l=~12.8deg and at a distance of 2.4 kpc, has a size of ~10 pc and a total mass of (~0.8 - ~8.0) X 10^5 Msun. The integrated radio and IR luminosity of W33 - when combined with the direct detection of methanol masers, the protostellar object W33A, and protocluster embedded within the radio source W33 main - mark the region out as a site of vigorous ongoing star formation. In order to assess the long term star formation history, we performed an infrared spectroscopic search for massive stars, detecting for the first time fourteen early-type stars, including one WN6 star and four O4-7 stars. The distribution of spectral types suggests that this population formed during the last ~2-4 Myr, while the absence of red supergiants precludes extensive star formation at ages 6-30 Myr. This activity appears distributed throughout the region and does ...

  15. Evidence of the evolved nature of the B[e] star MWC 137

    Energy Technology Data Exchange (ETDEWEB)

    Muratore, M. F.; Arias, M. L.; Cidale, L. [Departamento de Espectroscopía Estelar, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, and Instituto de Astrofísica de La Plata, CCT La Plata, CONICET-UNLP, Paseo del Bosque S/N, B1900FWA, La Plata (Argentina); Kraus, M.; Oksala, M. E. [Astronomický ústav, Akademie věd České Republiky, Fričova 298, 251 65 Ondřejov (Czech Republic); Fernandes, M. Borges [Observatório Nacional, Rua General José Cristino 77, 20921-400 São Cristovão, Rio de Janeiro (Brazil); Liermann, A., E-mail: fmuratore@carina.fcaglp.unlp.edu.ar [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany)

    2015-01-01

    The evolutionary phase of B[e] stars is difficult to establish due to the uncertainties in their fundamental parameters. For instance, possible classifications for the Galactic B[e] star MWC 137 include pre-main-sequence and post-main-sequence phases, with a large range in luminosity. Our goal is to clarify the evolutionary stage of this peculiar object, and to study the CO molecular component of its circumstellar medium. To this purpose, we modeled the CO molecular bands using high-resolution K-band spectra. We find that MWC 137 is surrounded by a detached cool (T=1900±100 K) and dense (N=(3±1)×10{sup 21} cm{sup −2}) ring of CO gas orbiting the star with a rotational velocity, projected to the line of sight, of 84 ± 2 km s{sup −1}. We also find that the molecular gas is enriched in the isotope {sup 13}C, excluding the classification of the star as a Herbig Be. The observed isotopic abundance ratio ({sup 12}C/{sup 13}C = 25 ± 2) derived from our modeling is compatible with a proto-planetary nebula, main-sequence, or supergiant evolutionary phase. However, based on some observable characteristics of MWC 137, we propose that the supergiant scenario seems to be the most plausible. Hence, we suggest that MWC 137 could be in an extremely short-lived phase, evolving from a B[e] supergiant to a blue supergiant with a bipolar ring nebula.

  16. Winds of low-metallicity OB-type stars: HST-COS spectroscopy in IC 1613

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Miriam; Najarro, Francisco [Centro de Astrobiología, CSIC-INTA. Ctra. Torrejón a Ajalvir km.4, E-28850 Torrejón de Ardoz, Madrid (Spain); Herrero, Artemio [Instituto de Astrofísica de Canarias. Vía Láctea s/n, E-38200 La Laguna (S. C. Tenerife) (Spain); Lennon, Daniel J. [European Space Astronomy Centre, Camino Bajo del Castillo, E-28692 Villanueva de la Cañada, Madrid (Spain); Urbaneja, Miguel Alejandro [Institute for Astro- and Particle Physics, University of Innsbruck, Technikerstr. 25/8, A-6020 Innsbruck (Austria)

    2014-06-10

    We present the first quantitative ultraviolet spectroscopic analysis of resolved OB stars in IC 1613. Because of its alleged very low metallicity (≲1/10 Z {sub ☉}, from H II regions), studies in this Local Group dwarf galaxy could become a significant step forward from the Small Magellanic Cloud (SMC) toward the extremely metal-poor massive stars of the early universe. We present HST-COS data covering the ∼1150-1800 Å wavelength range with resolution R ∼ 2500. We find that the targets do exhibit wind features, and these are similar in strength to SMC stars. Wind terminal velocities were derived from the observed P Cygni profiles with the Sobolev plus Exact Integration method. The v {sub ∞}-Z relationship has been revisited. The terminal velocity of IC 1613 O stars is clearly lower than Milky Way counterparts, but there is no clear difference between IC 1613 and SMC or LMC analog stars. We find no clear segregation with host galaxy in the terminal velocities of B-supergiants, nor in the v {sub ∞}/v {sub esc} ratio of the whole OB star sample in any of the studied galaxies. Finally, we present the first evidence that the Fe-abundance of IC 1613 OB stars is similar to the SMC, which is in agreement with previous results on red supergiants. With the confirmed ∼1/10 solar oxygen abundances of B-supergiants, our results indicate that IC 1613's α/Fe ratio is sub-solar.

  17. The intrinsic values and color excesses of (B-V) for 115 F-K supergiants

    Science.gov (United States)

    Kelsall, T.

    1972-01-01

    Color excesses in B-V are determined indirectly from a study of Stromgren's b-y color for a sample of F0 - K5 supergiants. The resulting E(B-V)'s are estimated to have an expected precision of + or - 0.05. With the calculated color excesses and the observed values of B-V given in various catalogs, the run of B-V with spectral type is obtained. This B-V/(spectral type) relationship is compared with those found previously by other investigators.

  18. Sodium Enrichment in Yellow Supergiants: a Perspective from the Uncertainties of Reaction Rates

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Sodium overabundance in yellow supergiants has stumped people for more than 20 years. The purpose of this paper is to explore this problem from the perspective of nuclear physics. We investigate carefully the CNO and NeNa cycles that are responsible for sodium production. We investigate some key reactions in the appropriate network. We show whether and how the sodium output can be affected by the rate uncertainties in these reactions. In this way, we evaluate if a reaction is important enough to deserve a better determination of its rate in terrestrial laboratories.

  19. e-MERLIN 21cm constraints on the mass-loss rates of OB stars in Cyg OB2

    CERN Document Server

    Morford, Jack; Prinja, Raman; Blomme, Ronnie; Yates, Jeremy

    2016-01-01

    We present e-MERLIN 21 cm (L-band) observations of single luminous OB stars in the Cygnus OB2 association, from the COBRaS Legacy programme. The radio observations potentially offer the most straightforward, least model-dependent, determinations of mass-loss rates, and can be used to help resolve current discrepancies in mass-loss rates via clumped and structured hot star winds. We report here that the 21 cm flux densities of O3 to O6 supergiant and giant stars are less than ~ 70 microJy. These fluxes may be translated to `smooth' wind mass-loss upper limits of ~ 4.4 - 4.8 x 10^(-6) M_sol/yr for O3 supergiants and < 2.9 x 10^(-6) M_sol/yr for B0 to B1 supergiants. The first ever resolved 21 cm detections of the hypergiant (and LBV candidate) Cyg OB2 #12 are discussed; for multiple observations separated by 14 days, we detect a ~ 69% increase in its flux density. Our constraints on the upper limits for the mass-loss rates of evolved OB stars in Cyg OB2 support the model that the inner wind region close to t...

  20. e-MERLIN 21 cm constraints on the mass-loss rates of OB stars in Cyg OB2

    Science.gov (United States)

    Morford, J. C.; Fenech, D. M.; Prinja, R. K.; Blomme, R.; Yates, J. A.

    2016-11-01

    We present e-MERLIN 21 cm (L-band) observations of single luminous OB stars in the Cygnus OB2 association, from the Cyg OB2 Radio Survey Legacy programme. The radio observations potentially offer the most straightforward, least model-dependent, determinations of mass-loss rates, and can be used to help resolve current discrepancies in mass-loss rates via clumped and structured hot star winds. We report here that the 21 cm flux densities of O3 to O6 supergiant and giant stars are less than ˜70 μJy. These fluxes may be translated to `smooth' wind mass-loss upper limits of ˜4.4-4.8 × 10-6 M⊙ yr -1 for O3 supergiants and ≲2.9 × 10-6 M⊙ yr -1 for B0 to B1 supergiants. The first ever resolved 21 cm detections of the hypergiant (and luminous blue variable candidate) Cyg OB2 #12 are discussed; for multiple observations separated by 14 d, we detect an ˜69 per cent increase in its flux density. Our constraints on the upper limits for the mass-loss rates of evolved OB stars in Cyg OB2 support the model that the inner wind region close to the stellar surface (where Hα forms) is more clumped than the very extended geometric region sampled by our radio observations.

  1. VLT spectroscopy of massive stars in NGC55

    Directory of Open Access Journals (Sweden)

    N. Castro

    2007-01-01

    Full Text Available We present the first spectroscopy study of massive stars in NGC55. The data, taken with VLT-FORS2 allow us to provide spectral classification for 200 objects located through- out the galaxy. From this sample, suitable B-type supergiants are chosen for subsequent higher resolution spectroscopic observations that will enable a quantitative study. The stellar abundances will be a key point in the study of galaxy chemical evolution. We also discuss how GTC-OSIRIS can be a valuable tool for similar studies.

  2. A Spectroscopic Survey of Massive Stars in M31 and M33

    Science.gov (United States)

    Massey, Philip; Neugent, Kathryn F.; Smart, Brianna M.

    2016-09-01

    We describe our spectroscopic follow-up to the Local Group Galaxy Survey (LGGS) photometry of M31 and M33. We have obtained new spectroscopy of 1895 stars, allowing us to classify 1496 of them for the first time. Our study has identified many foreground stars, and established membership for hundreds of early- and mid-type supergiants. We have also found nine new candidate luminous blue variables and a previously unrecognized Wolf-Rayet star. We republish the LGGS M31 and M33 catalogs with improved coordinates, and including spectroscopy from the literature and our new results. The spectroscopy in this paper is responsible for the vast majority of the stellar classifications in these two nearby spiral neighbors. The most luminous (and hence massive) of the stars in our sample are early-type B supergiants, as expected; the more massive O stars are more rare and fainter visually, and thus mostly remain unobserved so far. The majority of the unevolved stars in our sample are in the 20-40 M ⊙ range. The spectroscopic observations reported here were obtained at the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution. MMT telescope time was granted by NOAO, through the Telescope System Instrumentation Program (TSIP). TSIP is funded by the National Science Foundation. This paper uses data products produced by the OIR Telescope Data Center, supported by the Smithsonian Astrophysical Observatory.

  3. THE MASSIVE STAR POPULATION IN M101. III. SPECTRA AND PHOTOMETRY OF THE LUMINOUS AND VARIABLE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Grammer, Skyler H.; Humphreys, Roberta M. [Minnesota Institute for Astrophysics, 116 Church Street SE, University of Minnesota , Minneapolis, MN 55455 (United States); Gerke, Jill, E-mail: grammer@astro.umn.edu, E-mail: roberta@umn.edu [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States)

    2015-05-15

    We discuss moderate-resolution spectra, multicolor photometry, and light curves of 31 of the most luminous stars and variables in the giant spiral M101. The majority are intermediate A- to F-type supergiants. We present new photometry and light curves for three known “irregular blue variables,” V2, V4, and V9, and identify a new candidate. Their spectra and variability confirm that they are luminous blue variable (LBV) candidates and V9 may be in an LBV-like maximum light state or eruption.

  4. Atmospheric Heating and Wind Acceleration in Cool Evolved Stars

    CERN Document Server

    Airapetian, Vladimir S

    2014-01-01

    A chromosphere is a universal attribute of stars of spectral type later than ~F5. Evolved (K and M) giants and supergiants (including the zeta Aurigae binaries) show extended and highly turbulent chromospheres, which develop into slow massive winds. The associated continuous mass loss has a significant impact on stellar evolution, and thence on the chemical evolution of galaxies. Yet despite the fundamental importance of those winds in astrophysics, the question of their origin(s) remains unsolved. What sources heat a chromosphere? What is the role of the chromosphere in the formation of stellar winds? This chapter provides a review of the observational requirements and theoretical approaches for modeling chromospheric heating and the acceleration of winds in single cool, evolved stars and in eclipsing binary stars, including physical models that have recently been proposed. It describes the successes that have been achieved so far by invoking acoustic and MHD waves to provide a physical description of plasma...

  5. Triggered star formation in giant HI supershells: ionized gas

    CERN Document Server

    Egorov, O V; Moiseev, A V

    2015-01-01

    We considered the regions of triggered star formation inside kpc-sized HI supershells in three dwarf galaxies: IC 1613, IC 2574 and Holmberg II. The ionized and neutral gas morphology and kinematics were studied based on our observations with scanning Fabry-Perot interferometer at the SAO RAS 6-m telescope and 21 cm archival data of THINGS and LITTLE THINGS surveys. The qualitative analysis of the observational data performed in order to highlight the two questions: why the star formation occurred very locally in the supershells, and how the ongoing star formation in HI supershells rims influence its evolution? During the investigation we discovered the phenomenon never observed before in galaxies IC 2574 and Holmberg II: we found faint giant (kpc-sized) ionized shells in H-alpha and [SII]6717,6731 lines inside the supergiant HI shells.

  6. Dynamical mass of the O-type supergiant in Zeta Orionis A

    CERN Document Server

    Hummel, C A; Nieva, M -F; Stahl, O; van Belle, G; Zavala, R T

    2013-01-01

    A close companion of Zeta Orionis A was found in 2000 with the Navy Precision Optical Interferometer (NPOI), and shown to be a physical companion. Because the primary is a supergiant of type O, for which dynamical mass measurements are very rare, the companion was observed with NPOI over the full 7-year orbit. Our aim was to determine the dynamical mass of a supergiant that, due to the physical separation of more than 10 AU between the components, cannot have undergone mass exchange with the companion. The interferometric observations allow measuring the relative positions of the binary components and their relative brightness. The data collected over the full orbital period allows all seven orbital elements to be determined. In addition to the interferometric observations, we analyzed archival spectra obtained at the Calar Alto, Haute Provence, Cerro Armazones, and La Silla observatories, as well as new spectra obtained at the VLT on Cerro Paranal. In the high-resolution spectra we identified a few lines tha...

  7. The Intermediate Luminosity Optical Transient SN 2010da: The Progenitor, Eruption and Aftermath of an Unusual Supergiant High-mass X-ray Binary

    Science.gov (United States)

    Villar, Victoria; Berger, Edo; Chornock, Ryan; Laskar, Tanmoy; Margutti, Raffaella; Brown, Peter J.

    2016-06-01

    We present high- and medium-resolution optical spectroscopy, optical/UV imaging and archival Chandra, Hubble and Spitzer observations of the intermediate luminosity optical transient (ILOT) SN 2010da, discovered in the nearby galaxy NGC 300 (d=1.86 Mpc). SN 2010da had a peak absolute magnitude of M ~ -10.4 mag, dimmer than other recent ILOTs and supernova impostors. We detect hydrogen Balmer, Paschen and Ca II emission lines in our high-resolution spectra, which indicate a dusty and complex circumstellar environment. Based on SN 2010da's light curve and multi-epoch SEDs, we conclude that the progenitor of SN 2010da is a ~10-12 Msol yellow supergiant possibly transitioning into a blue loop phase. Since the 2010 eruption, the star has brightened by a factor of ~5 and remains highly variable in the optical. SN 2010da is a unique ILOT which seems to stem from a different physical origin than red SN 2008S-like events and luminous blue variable outbursts. Furthermore, we detect SN 2010da in archival Swift observations as an ultraluminous X-ray source. We additionally attribute He II 4686 and coronal Fe emission in addition to a steady X-ray luminosity of ~10^{37} erg/s to the presence of a compact companion.

  8. The Intermediate Luminosity Optical Transient SN 2010da: The Progenitor, Eruption, and Aftermath of a Peculiar Supergiant High-mass X-Ray Binary

    Science.gov (United States)

    Villar, V. A.; Berger, E.; Chornock, R.; Margutti, R.; Laskar, T.; Brown, P. J.; Blanchard, P. K.; Czekala, I.; Lunnan, R.; Reynolds, M. T.

    2016-10-01

    We present optical spectroscopy, ultraviolet-to-infrared imaging, and X-ray observations of the intermediate luminosity optical transient (ILOT) SN 2010da in NGC 300 (d = 1.86 Mpc) spanning from ‑6 to +6 years relative to the time of outburst in 2010. Based on the light-curve and multi-epoch spectral energy distributions of SN 2010da, we conclude that the progenitor of SN 2010da is a ≈10–12 M ⊙ yellow supergiant possibly transitioning into a blue-loop phase. During outburst, SN 2010da had a peak absolute magnitude of M bol ≲ ‑10.4 mag, dimmer than other ILOTs and supernova impostors. We detect multi-component hydrogen Balmer, Paschen, and Ca ii emission lines in our high-resolution spectra, which indicate a dusty and complex circumstellar environment. Since the 2010 eruption, the star has brightened by a factor of ≈5 and remains highly variable in the optical. Furthermore, we detect SN 2010da in archival Swift and Chandra observations as an ultraluminous X-ray source (L X ≈ 6 × 1039 erg s‑1). We additionally attribute He ii 4686 Å and coronal Fe emission lines in addition to a steady X-ray luminosity of ≈1037 erg s‑1 to the presence of a compact companion.

  9. The Intermediate Luminosity Optical Transient SN 2010da: The Progenitor, Eruption and Aftermath of a Peculiar Supergiant High-mass X-ray Binary

    CERN Document Server

    Villar, V Ashley; Chornock, Ryan; Margutti, Raffaella; Laskar, Tanmoy; Brown, Peter J; Blanchard, Peter K; Czekala, Ian; Lunnan, Ragnhild; Reynolds, Mark T

    2016-01-01

    We present optical spectroscopy, ultraviolet to infrared imaging and X-ray observations of the intermediate luminosity optical transient (ILOT) SN 2010da in NGC 300 (d=1.86 Mpc) spanning from -6 to +6 years relative to the time of outburst in 2010. Based on the light curve and multi-epoch SEDs of SN 2010da, we conclude that the progenitor of SN 2010da is a ~10-12 Msol yellow supergiant possibly transitioning into a blue loop phase. During outburst, SN 2010da had a peak absolute magnitude of M<-10.4 mag, dimmer than other ILOTs and supernova impostors. We detect multi-component hydrogen Balmer, Paschen, and Ca II emission lines in our high-resolution spectra, which indicate a dusty and complex circumstellar environment. Since the 2010 eruption, the star has brightened by a factor of ~5 and remains highly variable in the optical. Furthermore, we detect SN 2010da in archival Swift and Chandra observations as an ultraluminous X-ray source (L~6x10^{39} erg/s). We additionally attribute He II 4686 Angstrom and c...

  10. First supernova companion star found

    Science.gov (United States)

    2004-01-01

    Supernova 1993J exploding hi-res Size hi-res: 222 kb Credits: ESA and Justyn R. Maund (University of Cambridge) Supernova 1993J exploding (artist’s impression) New observations with the Hubble Space Telescope allow a look into a supernova explosion under development. In this artist’s view the red supergiant supernova progenitor star (left) is exploding after having transferred about 10 solar masses of hydrogen gas to the blue companion star (right). This interaction process happened over about 250 years and affected the supernova explosion to such an extent that SN 1993J was later known as one of the most peculiar supernovae ever seen. Supernova 1993J exploding hi-res Size hi-res: 4200 kb Credits: ESA and Justyn R. Maund (University of Cambridge) The site of the Supernova 1993J explosion A virtual journey into one of the spiral arms of the grand spiral Messier 81 (imaged with the Isaac Newton Telescope on La Palma, left) reveals the superb razor-sharp imaging power of the NASA/ESA Hubble Space Telescope (Hubble’s WFPC2 instrument, below). The close-up (with Hubble’s ACS, to the right) is centred on the newly discovered companion star to Supernova 1993J that itself is no longer visible. The quarter-circle around the supernova companion is a so-called light echo originating from sheets of dust in the galaxy reflecting light from the original supernova explosion. Supernova 1993J explosing site hi-res Size hi-res: 1502 kb Credits: ESA and Justyn R. Maund (University of Cambridge) Close-up of the Supernova 1993J explosion site (ACS/HRC image) This NASA/ESA Hubble Space Telescope image shows the area in Messier 81 where Supernova 1993J exploded. The companion to the supernova ‘mother star’ that remains after the explosion is seen in the centre of the image. The image is taken with Hubble’s Advanced Camera for Surveys and is a combination of four exposures taken with ACS’ High Resolution Camera. The exposures were taken through two near-UV filters (250W

  11. Discovery of a red supergiant counterpart to RX~J004722.4-252051, a ULX in NGC 253

    CERN Document Server

    Heida, M; Jonker, P G; Servillat, M; Repetto, S; Roberts, T P; Walton, D J; Moon, D -S; Harrison, F A

    2015-01-01

    We present two epochs of near-infrared spectroscopy of the candidate red supergiant counterpart to RX~J004722.4-252051, a ULX in NGC 253. We measure radial velocities of the object and its approximate spectral type by cross-correlating our spectra with those of known red supergiants. Our VLT/X-shooter spectrum is best matched by that of early M-type supergiants, confirming the red supergiant nature of the candidate counterpart. The radial velocity of the spectrum, taken on 2014, August 23, is $417 \\pm 4$ km/s. This is consistent with the radial velocity measured in our spectrum taken with Magellan/MMIRS on 2013, June 28, of $410 \\pm 70$ km/s, although the large error on the latter implies that a radial velocity shift expected for a black hole of tens of $M_\\odot$ can easily be hidden. Using nebular emission lines we find that the radial velocity due to the rotation of NGC 253 is 351 $\\pm$ 4 km/s at the position of the ULX. Thus the radial velocity of the counterpart confirms that the source is located in NGC ...

  12. Uncovering the monster stars in W49: the most luminous star-forming region in the Milky Way

    Science.gov (United States)

    Wu, Shiwei; Bik, Arjan; Henning, Thomas; Pasquali, Anna; Brandner, Wolfgang; Stolte, Andrea

    2015-08-01

    As a part of the LOBSTAR project (Luci OBservations of STARburst regions), which aims at understanding the stellar content of some of the most massive star-forming regions, we present our result on the high-mass stellar content of W49. K-band spectra of the candidate massive stars from VLT/ISAAC and LBT/LUCI provide us with reliable spectral types of dozens of massive stars in this HII region.The first results show that this region hosts several of the most massive stars in our galaxy. Two most brightest stars, one in the core of the central cluster and one in W49 South, were identified as very massive stars (M > 100 M⊙). Their K-band spectra exhibit strong stellar wind features, and they are classified as O2-3.5If* supergiant stars. After comparison to the Geneva evolutionary models, the mass range of W49nr1 was estimated to be between 100 M⊙ and 180 M⊙. Additionally we find 12 O stars with spectral types between O7V and O3V and masses from 25 M⊙ to 125 M⊙, respectively.These results allow us to derive the fundamental parameters of the cluster (mass, age) as well as the total energy output in the form of ionising photons. This will enable us to study the feedback effects of this extreme star forming region in great detail. To our surprise, two young stellar objects with infrared excess feature showing CO emission lines in their spectra are identified. This suggests that circumstellar disks can survive even in this extreme environment. Finally the spatial distribution of the massive stars is analysed to discuss the star formation history and identify potential runaway stars. The extreme properties of this region makes it a good template for more extreme star formation outside our galaxy.

  13. New Luminous ON Spectra from the Galactic O-Star Spectroscopic Survey

    CERN Document Server

    Walborn, Nolan R; Barba, Rodolfo H; Sota, Alfredo

    2016-01-01

    Two new ON supergiant spectra (bringing the total known to seven) and one new ONn giant (total of this class now eight) are presented; they have been discovered by the Galactic O-Star Spectroscopic Survey. These rare objects represent extremes in the mixing of CNO-cycled material to the surfaces of evolved, late-O stars, by uncertain mechanisms in the first category but likely by rotation in the second. The two supergiants are at the hot edge of the class, which is a selection effect from the behavior of defining N III and C III absorption blends, related to the tendency toward emission (Of effect) in the former. An additional N/C criterion first proposed by Bisiacchi et al. is discussed as a means to alleviate that effect, and it is relevant to the two new objects. The entire ON supergiant class is discussed; they display a fascinating diversity of detail undoubtedly related to the complexities of their extended atmospheres and winds that are sensitive to small differences in physical parameters, as well as ...

  14. Star Clusters

    OpenAIRE

    Gieles, M.

    1993-01-01

    Star clusters are observed in almost every galaxy. In this thesis we address several fundamental problems concerning the formation, evolution and disruption of star clusters. From observations of (young) star clusters in the interacting galaxy M51, we found that clusters are formed in complexes of stars and star clusters. These complexes share similar properties with giant molecular clouds, from which they are formed. Many (70%) of the young clusters will not survive the fist 10 Myr, due to t...

  15. Stars and Star Myths.

    Science.gov (United States)

    Eason, Oliver

    Myths and tales from around the world about constellations and facts about stars in the constellations are presented. Most of the stories are from Greek and Roman mythology; however, a few Chinese, Japanese, Polynesian, Arabian, Jewish, and American Indian tales are also included. Following an introduction, myths are presented for the following 32…

  16. Stars and Star Myths.

    Science.gov (United States)

    Eason, Oliver

    Myths and tales from around the world about constellations and facts about stars in the constellations are presented. Most of the stories are from Greek and Roman mythology; however, a few Chinese, Japanese, Polynesian, Arabian, Jewish, and American Indian tales are also included. Following an introduction, myths are presented for the following 32…

  17. Massive stars in their death-throes

    CERN Document Server

    Eldridge, J J

    2008-01-01

    The study of the stars that explode as supernovae used to be a forensic study, working backwards from the remnants of the star. This changed in 1987 when the first progenitor star was identified in pre-explosion images. Currently there are 8 detected progenitors with another 21 non-detections, for which only a limit on the pre-explosion luminosity can be placed. This new avenue of supernova research has led to many interesting conclusions, most importantly that the progenitors of the most common supernovae, type IIP, are red supergiants as theory has long predicted. However no progenitors have been detected thus far for the hydrogen-free type Ib/c supernovae which, given the expected progenitors, is an unlikely result. Also observations have begun to show evidence that luminous blue variables, which are among the most massive stars, may directly explode as supernovae. These results contradict current stellar evolution theory. This suggests that we may need to update our understanding.

  18. Massive stars in their death throes.

    Science.gov (United States)

    Eldridge, John J

    2008-12-13

    The study of the stars that explode as supernovae used to be a forensic study, working backwards from the remnants of the star. This changed in 1987 when the first progenitor star was identified in pre-explosion images. Currently, there are eight detected progenitors with another 21 non-detections, for which only a limit on the pre-explosion luminosity can be placed. This new avenue of supernova research has led to many interesting conclusions, most importantly that the progenitors of the most common supernovae, type IIP, are red supergiants, as theory has long predicted. However, no progenitors have been detected thus far for the hydrogen-free type Ib/c supernovae, which, given the expected progenitors, is an unlikely result. Also, observations have begun to show evidence that luminous blue variables, which are among the most massive stars, may directly explode as supernovae. These results contradict the current stellar evolution theory. This suggests that we may need to update our understanding.

  19. Massive Stars in the Quintuplet Cluster

    Science.gov (United States)

    Figer, Donald F.; McLean, Ian S.; Morris, Mark

    1999-03-01

    We present near-infrared photometry and K-band spectra of newly identified massive stars in the Quintuplet cluster, one of the three massive clusters projected within 50 pc of the Galactic center. We find that the cluster contains a variety of massive stars, including more unambiguously identified Wolf-Rayet stars than any cluster in the Galaxy, and over a dozen stars in earlier stages of evolution, i.e., luminous blue variables (LBVs), Ofpe/WN9, and OB supergiants. One newly identified star is the second luminous blue variable in the cluster, after the ``Pistol star.'' Although we are unable to provide certain spectral classifications for the five enigmatic Quintuplet-proper members, we tentatively propose that they are extremely dusty versions of the WC stars found elsewhere in the cluster and similar to the dozen or so known examples in the Galaxy. Although the cluster parameters are uncertain because of photometric errors and uncertainties in stellar models, i.e., extrapolating initial masses and estimating ionizing fluxes, we have the following conclusions. Given the evolutionary stages of the identified stars, the cluster appears to be about 4+/-1 Myr old, assuming coeval formation. The total mass in observed stars is ~103 Msolar, and the implied mass is ~104 Msolar, assuming a lower mass cutoff of 1 Msolar and a Salpeter initial mass function. The implied mass density in stars is greater than or similar to a few thousand Msolar pc-3. The newly identified stars increase the estimated ionizing flux from this cluster by about an order of magnitude with respect to earlier estimates, to 1050.9 photons s-1, or roughly what is required to ionize the nearby ``Sickle'' H II region (G0.18-0.04). The total luminosity from the massive cluster stars is ~107.5 Lsolar, enough to account for the heating of the nearby molecular cloud, M0.20-0.033. We propose a picture that integrates most of the major features in this part of the sky, excepting the nonthermal filaments. We

  20. X-ray diagnostics of massive star winds

    Science.gov (United States)

    Oskinova, Lidia M.

    2016-09-01

    Nearly all types of massive stars with radiatively driven stellar winds are X-ray sources that can be observed by the presently operating powerful X-ray telescopes. In this review I briefly address recent advances in our understanding of stellar winds obtained from X-ray observations. X-rays may strongly influence the dynamics of weak winds of main sequence B-type stars. X-ray pulsations were detected in a β Cep type variable giving evidence of tight photosphere-wind connections. The winds of OB dwarfs with subtypes later than O9V may be predominantly in a hot phase, and X-ray observations offer the best window for their studies. The X-ray properties of OB supergiants are largely determined by the effects of radiative transfer in their clumped stellar winds. The recently suggested method to directly measure mass-loss rates of O stars by fitting the shapes of X-ray emission lines is considered but its validity cannot be confirmed. To obtain robust quantitative information on stellar wind parameters from X-ray spectroscopy, a multiwavelength analysis by means of stellar atmosphere models is required. Independent groups are now performing such analyses with encouraging results. Joint analyses of optical, UV, and X-ray spectra of OB supergiants yield consistent mass-loss rates. Depending on the adopted clumping parameters, the empirically derived mass-loss rates are a factor of a few smaller or comparable to those predicted by standard recipes (Vink et al., 2001). All sufficiently studied O stars display variable X-ray emission that might be related to corotating interaction regions in their winds. In the latest stages of stellar evolution, single red supergiants (RSG) and luminous blue variable (LBV) stars do not emit observable amounts of X-rays. On the other hand, nearly all types of Wolf-Rayet (WR) stars are X-ray sources. X-ray spectroscopy allows a sensitive probe of WR wind abundances and opacities.

  1. Stars Just Got Bigger - A 300 Solar Mass Star Uncovered

    Science.gov (United States)

    2010-07-01

    raises the challenge to theorists still further. "Either they were born so big or smaller stars merged together to produce them," explains Crowther. Stars between about 8 and 150 solar masses explode at the end of their short lives as supernovae, leaving behind exotic remnants, either neutron stars or black holes. Having now established the existence of stars weighing between 150 and 300 solar masses, the astronomers' findings raise the prospect of the existence of exceptionally bright, "pair instability supernovae" that completely blow themselves apart, failing to leave behind any remnant and dispersing up to ten solar masses of iron into their surroundings. A few candidates for such explosions have already been proposed in recent years. Not only is R136a1 the most massive star ever found, but it also has the highest luminosity too, close to 10 million times greater than the Sun. "Owing to the rarity of these monsters, I think it is unlikely that this new record will be broken any time soon," concludes Crowther. Notes [1] The star A1 in NGC 3603 is a double star, with an orbital period of 3.77 days. The two stars in the system have, respectively, 120 and 92 times the mass of the Sun, which means that they have formed as stars weighing, respectively, 148 and 106 solar masses. [2] The team used the SINFONI, ISAAC and MAD instruments, all attached to ESO's Very Large Telescope at Paranal, Chile. [3] (note added on 26 July 2010) The "bigger" in the title does not imply that these stars are the biggest observed. Such stars, called red supergiants, can have radii up to about a thousand solar radii, while R136a1, which is blue, is about 35 times as large as the Sun. However, R136a1 is the star with the greatest mass known to date. More information This work is presented in an article published in the Monthly Notices of the Royal Astronomical Society ("The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 Msun stellar mass limit", by

  2. The Massive Star Population in M101. II. Spatial Variations in the Recent Star Formation History

    CERN Document Server

    Grammer, Skyler

    2014-01-01

    We investigate the star formation history (SFH) as a function of radius in M101 using archival HST/ACS photometry. We derive the SFH from the resolved stellar populations in five 2' wide annuli. Binning the SFH into time frames corresponding to stellar populations traced by H$\\alpha$, far ultraviolet (FUV), and near ultraviolet (NUV) emission, we find that the fraction of stellar populations young enough to contribute in H$\\alpha$ is 15%-35% in the inner regions, compared to less than 5% in the outer regions. This provides a sufficient explanation for the lack of H$\\alpha$ emission at large radii. We also model the blue to red supergiant ratio in our five annuli, examine the effects that a metallicity gradient and variable SFH have on the predicted ratios, and compare to the observed values. We find that the radial behavior of our modeled blue to red supergiant ratios is highly sensitive to both spatial variations in the SFH and metallicity. Incorporating the derived SFH into modeled ratios, we find that we a...

  3. The Massive Star Population in M101. II. Spatial Variations in the Recent Star Formation History

    Science.gov (United States)

    Grammer, Skyler; Humphreys, Roberta M.

    2014-09-01

    We investigate star formation history (SFH) as a function of radius in M101 using archival Hubble Space Telescope Advanced Camera for Surveys photometry. We derive the SFH from the resolved stellar populations in five 2' wide annuli. Binning the SFH into time frames corresponding to stellar populations traced by Hα, far-ultraviolet, and near-ultraviolet emission, we find that the fraction of stellar populations young enough to contribute in Hα is 15%-35% in the inner regions, compared to less than 5% in the outer regions. This provides a sufficient explanation for the lack of Hα emission at large radii. We also model the blue to red supergiant ratio in our five annuli, examine the effects that a metallicity gradient and variable SFH have on the predicted ratios, and compare to the observed values. We find that the radial behavior of our modeled blue to red supergiant ratios is highly sensitive to both spatial variations in the SFH and metallicity. Incorporating the derived SFH into modeled ratios, we find that we are able to reproduce the observed values at large radii (low metallicity), but at small radii (high metallicity) the modeled and observed ratios are discrepant.

  4. The Swift Supergiant Fast X-Ray Transients Project:. [A Review, New Results and Future Perspectives

    Science.gov (United States)

    Romano, P.; Mangano, V.; Ducci, L.; Esposito, P.; Vercellone, S.; Bocchino, F.; Burrows, D. N.; Kennea, J. A.; Krimm, H. A.; Gehrels, N.; Farinelli, R.; Ceccobello, C.

    2013-01-01

    We present a review of the Supergiant Fast X-ray Transients (SFXT) Project, a systematic investigation of the properties of SFXTs with a strategy that combines Swift monitoring programs with outburst follow-up observations. This strategy has quickly tripled the available sets of broad-band data of SFXT outbursts, and gathered a wealth of out-of-outburst data, which have led us to a broad-band spectral characterization, an assessment of the fraction of the time these sources spend in each phase, and their duty cycle of inactivity. We present some new observational results obtained through our outburst follow-ups, as fitting examples of the exceptional capabilities of Swift in catching bright flares and monitor them panchromatically.

  5. Landscape and Astronomy in Megalithic Portugal: the Carregal do Sal Nucleus and Star Mountain Range

    Directory of Open Access Journals (Sweden)

    Fabio Silva

    2013-02-01

    Full Text Available Central Portugal, delimited by the Douro river to the north and the Mondego to the south, is the second densest region of megalithic monuments in the country. The Neolithic archaeological record indicates seasonal transhumance between higher pastures in the summer and lower grounds in the winter. The monuments are found in lower ground and it has been suggested that they were built during the winter occupation of their surroundings. The astronomical orientation of their entrances lends further support to this hypothesis. A recent survey of the orientation of the chambers and corridors of these dolmens, conducted by the author, found good agreement with prior surveys, but also demonstrated that other interpretations are possible. This paper presents an update on the survey, including extra sites surveyed in the spring of 2011, as well as the GIS confirmation of all horizon altitudes that couldn’t be empirically measured. The megalithic nucleus of Carregal do Sal, on the Mondego valley, is then looked at in more detail. It is found that there is a preference for the orientation of dolmens towards Star Mountain Range in-line with the topographic arguments of landscape archaeology. In addition, it was found that the topography also marks the rise of particular red stars, Betelgeuse and Aldebaran, during the period of megalithic building, at the onset of spring marking the transition from low ground to the high pastures. This hypothesis finds further support from toponymic folktales that explain the origin of the name of the mountain range.

  6. The Stars behind the Curtain

    Science.gov (United States)

    2010-02-01

    ESO is releasing a magnificent VLT image of the giant stellar nursery surrounding NGC 3603, in which stars are continuously being born. Embedded in this scenic nebula is one of the most luminous and most compact clusters of young, massive stars in our Milky Way, which therefore serves as an excellent "local" analogue of very active star-forming regions in other galaxies. The cluster also hosts the most massive star to be "weighed" so far. NGC 3603 is a starburst region: a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust. Located 22 000 light-years away from the Sun, it is the closest region of this kind known in our galaxy, providing astronomers with a local test bed for studying intense star formation processes, very common in other galaxies, but hard to observe in detail because of their great distance from us. The nebula owes its shape to the intense light and winds coming from the young, massive stars which lift the curtains of gas and clouds revealing a multitude of glowing suns. The central cluster of stars inside NGC 3603 harbours thousands of stars of all sorts (eso9946): the majority have masses similar to or less than that of our Sun, but most spectacular are several of the very massive stars that are close to the end of their lives. Several blue supergiant stars crowd into a volume of less than a cubic light-year, along with three so-called Wolf-Rayet stars - extremely bright and massive stars that are ejecting vast amounts of material before finishing off in glorious explosions known as supernovae. Using another recent set of observations performed with the SINFONI instrument on ESO's Very Large Telescope (VLT), astronomers have confirmed that one of these stars is about 120 times more massive than our Sun, standing out as the most massive star known so far in the Milky Way [1]. The clouds of NGC 3603 provide us with a family picture of stars in different stages of their life, with gaseous structures that are

  7. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....

  8. The quantitative assessment of UV extinction derived from IUE data of giants and supergiants

    Science.gov (United States)

    Cardelli, Jason A.; Sembach, Kenneth R.; Mathis, John S.

    1992-01-01

    It is shown here that the UV interstellar extinction towards hot luminous stars can be determined as accurately as for hot main-sequence stars. An atlas of IUE dereddened fluxes is presented for 13 lightly reddened stars within the 1160-3125 A range. The fluxes of these stars how absorption line strengths that allow a rather accurate determination of relative temperatures and luminosities which is more suitable for the determination of UV extinction via the pair method than choosing a comparison star based on quoted optical MK classifications.

  9. Low resolution spectroscopy of hot post-AGB candidates II. LS, LSS, LSE stars and additional IRAS sources

    CERN Document Server

    Parthasarathy, M; Vijapurkar, J; Takeda, Y

    2011-01-01

    Hot (OB) post-AGB stars are immediate progenitors of planetary nebulae (PNe). Very few hot post-AGB stars are known. Detecting new hot post-AGB candidates and follow-up multiwavelength studies will enable us to further understand the processes during the post-AGB evolution that lead to the formation of PNe. Case-Hamburg OB star surveys and their extension (LS, LSS, and LSE catalogues) and IRAS (point source) catalogues are good sources for detecting new hot post-AGB candidates from low resolution spectroscopy. Spectral types are determined from low resolution optical spectra of 44 stars selected from the LS, LSS, and LSE catalogues. Unlike the stars in the first paper, the stars in this paper were selected using criteria other than positional coincidence with an IRAS source with far IR (IRAS) colours similar to post-AGB supergiants and planetary nebulae. These included high galactic latitude, spectral types of O, B, A supergiants, emission lines in the spectrum and known spectral peculiarity. From the present...

  10. Massive Stars

    Science.gov (United States)

    Livio, Mario; Villaver, Eva

    2009-11-01

    Participants; Preface Mario Livio and Eva Villaver; 1. High-mass star formation by gravitational collapse of massive cores M. R. Krumholz; 2. Observations of massive star formation N. A. Patel; 3. Massive star formation in the Galactic center D. F. Figer; 4. An X-ray tour of massive star-forming regions with Chandra L. K. Townsley; 5. Massive stars: feedback effects in the local universe M. S. Oey and C. J. Clarke; 6. The initial mass function in clusters B. G. Elmegreen; 7. Massive stars and star clusters in the Antennae galaxies B. C. Whitmore; 8. On the binarity of Eta Carinae T. R. Gull; 9. Parameters and winds of hot massive stars R. P. Kudritzki and M. A. Urbaneja; 10. Unraveling the Galaxy to find the first stars J. Tumlinson; 11. Optically observable zero-age main-sequence O stars N. R. Walborn; 12. Metallicity-dependent Wolf-Raynet winds P. A. Crowther; 13. Eruptive mass loss in very massive stars and Population III stars N. Smith; 14. From progenitor to afterlife R. A. Chevalier; 15. Pair-production supernovae: theory and observation E. Scannapieco; 16. Cosmic infrared background and Population III: an overview A. Kashlinsky.

  11. Hadron star models. [neutron stars

    Science.gov (United States)

    Cohen, J. M.; Boerner, G.

    1974-01-01

    The properties of fully relativistic rotating hadron star models are discussed using models based on recently developed equations of state. All of these stable neutron star models are bound with binding energies as high as about 25%. During hadron star formation, much of this energy will be released. The consequences, resulting from the release of this energy, are examined.

  12. Mass loss rate determinations of southern OB stars

    CERN Document Server

    Benaglia, P; Koribalski, B S

    2001-01-01

    A sample of OB stars (eleven Of, one O and one B supergiant) has been surveyed with the Australia Telescope Compact Array at 4.8 and 8.64 GHz with a resolution of 2'' -- 4''. Five stars were detected; three of them have negative spectral indices, consistent with non-thermal emission, and two have positive indices. The thermal radiation from HD 150135 and HD 163181 can be explained as coming from an optically thick ionized stellar wind. The non-thermal radiation from CD-47 4551, HD 124314 and HD 150136 possibly comes from strong shocks in the wind itself and/or in the wind colliding region if the stars have a massive early-type companion. The percentage of non-thermal emitters among detected O stars has increased up to ~50%. The Of star HD 124314 clearly shows flux density variations. Mass loss rates (or upper limits) were derived for all the observed stars and the results compared with non-radio measurements and theoretical predictions.

  13. Combining observational techniques to constrain convection in evolved massive star models

    CERN Document Server

    Georgy, C; Meynet, G

    2014-01-01

    Recent stellar evolution computations indicate that massive stars in the range ~ 20 - 30 Msun are located in the blue supergiant (BSG) region of the Hertzsprung-Russell diagram at two different stages of their life: immediately after the main sequence (MS, group 1) and during a blueward evolution after the red supergiant phase (group 2). From the observation of the pulsationnal properties of a subgroup of variable BSGs (alpha Cyg variables), one can deduce that these stars belongs to group 2. It is however difficult to simultaneously fit the observed surface abundances and gravity for these stars, and this allows to constrain the physical processes of chemical species transport in massive stars. We will show here that the surface abundances are extremely sensitive to the physics of convection, particularly the location of the intermediate convective shell that appears at the ignition of the hydrogen shell burning after the MS. Our results show that the use of the Ledoux criterion to determine the convective r...

  14. Further Results from the Galactic O-Star Spectroscopic Survey: Rapidly Rotating Late ON Giants

    CERN Document Server

    Walborn, Nolan R; Sota, Alfredo; Alfaro, Emilio J; Morrell, Nidia I; Barba, Rodolfo H; Arias, Julia I; Gamen, Roberto C

    2011-01-01

    With new data from the Galactic O-Star Spectroscopic Survey, we confirm and expand the ONn category of late-O, nitrogen-enriched (N), rapidly rotating (n) giants. In particular, we have discovered two "clones" (HD 102415 and HD 117490) of one of the most rapidly rotating O stars previously known (HD 191423, "Howarth's Star"). We compare the locations of these objects in the theoretical HR Diagram to those of slowly rotating ON dwarfs and supergiants. All ON giants known to date are rapid rotators, whereas no ON dwarf or supergiant is; but all ON stars are small fractions of their respective spectral-type/luminosity-class/rotational subcategories. The ONn giants, displaying both substantial processed material and high rotation at an intermediate evolutionary stage, may provide significant information about the development of those properties. They may have preserved high initial rotational velocities or been spun up by TAMS core contraction; but alternatively and perhaps more likely, they may be products of bi...

  15. Bispectrum speckle interferometry observations and radiative transfer modelling of the red supergiant NML Cyg. Multiple dust-shell structures evidencing previous superwind phases

    Science.gov (United States)

    Blöcker, T.; Balega, Y.; Hofmann, K.-H.; Weigelt, G.

    2001-04-01

    NML Cyg is a highly evolved OH/IR supergiant, one of the most prominent infrared objects due to its strong obscuration by dust, and supposed to be among the most luminous supergiants in the galaxy. We present the first diffraction-limited 2.13 mu m observations of NML Cyg with 73 mas resolution. The speckle interferograms were obtained with the 6 m telescope at the Special Astrophysical Observatory, and the image reconstruction is based on the bispectrum speckle-interferometry method. The visibility function declines towards the diffraction limit to ~ 0.6. Radiative transfer calculations have been carried out to model the spectral energy distribution, given by ground-based photometry and ISO spectroscopy, and our 2.13 mu m visibility function. Additionally, mid-infrared visibility functions at 11 mu m were considered. The observed dust shell properties do not appear to be in accordance with standard single-shell (uniform outflow) models but seem to require multiple components. Considering previous periods of enhanced mass-loss, various density enhancements in the dust shell were taken into account. An extensive grid of models was calculated for different locations and strenghts of such superwind regions in the dust shell. To match the observations from the optical to the sub-mm domain requires at least two superwind regions embedded in the shell. The best model includes a dust shell with a temperature of 1000 K at its inner radius of 6.2 R*, a close embedded superwind shell extending from 15.5 R* to 21.7 R* with an amplitude (factor of density enhancement) of 10, and a far-out density enhancement at 186 R* with an amplitude of 5. The angular diameters of the central star and of the inner rim of the dust shell amount to 16.2 mas and 105 mas, resp. The diameter of the embedded close superwind region extends from 263 mas to 368 mas, and the inner boundary of the distant superwind region has a diameter of 3\\farcs 15. In the near-infrared the dust condensation zone is

  16. Spectroscopic evolution of massive stars on the main sequence

    Science.gov (United States)

    Martins, F.; Palacios, A.

    2017-02-01

    Context. The evolution of massive stars depends on several parameters, and the relation between different morphological types is not fully constrained. Aims: We aim to provide an observational view of evolutionary models in the Hertzsprung-Russell diagram, on the main sequence. This view should help compare observations and model predictions. Methods: We first computed evolutionary models with the code STAREVOL for initial masses between 15 and 100 M⊙. We subsequently calculated atmosphere models at specific points along the evolutionary tracks, using the code CMFGEN. Synthetic spectra obtained in this way were classified as if they were observational data: we assigned them a spectral type and a luminosity class. We tested our spectral classification by comparison to observed spectra of various stars with different spectral types. We also compared our results with empirical data of a large number of OB stars. Results: We obtain spectroscopic sequences along evolutionary tracks. In our computations, the earliest O stars (O2-3.5) appear only above 50 M⊙. For later spectral types, a similar mass limit exists, but is lower. A luminosity class V does not correspond to the entire main sequence. This only holds for the 15 M⊙ track. As mass increases, a larger portion of the main sequence is spent in luminosity class III. Above 50 M⊙, supergiants appear before the end of core-hydrogen burning. Dwarf stars (luminosity class V) do not occur on the zero-age main sequence above 80 M⊙. Consequently, the distribution of luminosity class V in the HR diagram is not a diagnostic of the length of the main sequence (above 15 M⊙) and cannot be used to constrain the size of the convective core. The distribution of dwarfs and giants in the HR diagram that results from our calculations agrees well with the location of stars analyzed by means of quantitative spectroscopy. For supergiants, there is a slight discrepancy in the sense that luminosity class I is observed slightly

  17. The MiMeS Survey of Magnetism in Massive Stars: CNO surface abundances of Galactic O stars

    CERN Document Server

    Martins, F; Bouret, J -C; Marcolino, W; Wade, G A; Neiner, C; Alecian, E; Grunhut, J; Petit, V

    2014-01-01

    The evolution of massive stars is still partly unconstrained. Mass, metallicity, mass loss and rotation are the main drivers of stellar evolution. Binarity and magnetic field may also significantly affect the fate of massive stars. Our goal is to investigate the evolution of single O stars in the Galaxy. For that, we use a sample of 74 objects comprising all luminosity classes and spectral types from O4 to O9.7. We rely on optical spectroscopy obtained in the context of the MiMeS survey of massive stars. We perform spectral modelling with the code CMFGEN. We determine the surface properties of the sample stars, with special emphasis on abundances of carbon, nitrogen and oxygen. Most of our sample stars have initial masses in the range 20 to 50 Msun. We show that nitrogen is more enriched and carbon/oxygen more depleted in supergiants than in dwarfs, with giants showing intermediate degrees of mixing. CNO abundances are observed in the range of values predicted by nucleosynthesis through the CNO cycle. More ma...

  18. Massive stars and the energy balance of the interstellar medium. II. The 35 solar mass star and a solution to the "missing wind problem"

    CERN Document Server

    Freyer, T; Yorke, H W; Freyer, Tim; Hensler, Gerhard; Yorke, Harold W.

    2006-01-01

    We continue our numerical analysis of the morphological and energetic influence of massive stars on their ambient interstellar medium for a 35 solar mass star that evolves from the main sequence through red supergiant and Wolf-Rayet phases, until it ultimately explodes as a supernova. We find that structure formation in the circumstellar gas during the early main-sequence evolution occurs as in the 60 solar mass case but is much less pronounced because of the lower mechanical wind luminosity of the star. Since on the other hand the shell-like structure of the HII region is largely preserved, effects that rely on this symmetry become more important. At the end of the stellar lifetime 1% of the energy released as Lyman continuum radiation and stellar wind has been transferred to the circumstellar gas. From this fraction 10% is kinetic energy of bulk motion, 36% is thermal energy, and the remaining 54% is ionization energy of hydrogen. The sweeping up of the slow red supergiant wind by the fast Wolf-Rayet wind p...

  19. Star Wreck

    OpenAIRE

    Kusenko, Alexander; Shaposhnikov, Mikhail E.; Tinyakov, P. G.; Tkachev, Igor I.

    1998-01-01

    Electroweak models with low-energy supersymmetry breaking predict the existence of stable non-topological solitons, Q-balls, that can be produced in the early universe. The relic Q-balls can accumulate inside a neutron star and gradually absorb the baryons into the scalar condensate. This causes a slow reduction in the mass of the star. When the mass reaches a critical value, the neutron star becomes unstable and explodes. The cataclysmic destruction of the distant neutron stars may be the or...

  20. Star polygons

    OpenAIRE

    Riosa, Blažka

    2014-01-01

    In mathematics we often encounter polygons, such us triangle, square, hexagon, etc., but we hardly encounter star polygons. Despite the fact that we do not meet them so often in mathematics, in nature they can be traced almost on every step. In this paper the emphasis is on the geometric meaning of regular star polygons. Star polygon is a generalization of the concept of regular polygons. In star polygons also non-adjacent sides intersect. Up to similarity they are determined by Schläfli symb...

  1. New spectroscopic and polarimetric observations of the A0 supergiant HD92207

    CERN Document Server

    Hubrig, S; Schöller, M; Anderson, R I; Saesen, S; Gonzalez, J F; Ilyin, I; Briquet, M

    2015-01-01

    Our recent search for the presence of a magnetic field in the bright early A-type supergiant HD92207 using FORS2 in spectropolarimetric mode revealed the presence of a longitudinal magnetic field of the order of a few hundred Gauss. However, the definite confirmation of the magnetic nature of this object remained pending due to the detection of short-term spectral variability probably affecting the position of line profiles in left- and right-hand polarized spectra. We present new magnetic field measurements of HD92207 obtained on three different epochs in 2013 and 2014 using FORS2 in spectropolarimetric mode. A 3sigma detection of the mean longitudinal magnetic field using the entire spectrum, _all=104+-34G, was achieved in observations obtained in 2014 January. At this epoch, the position of the spectral lines appeared stable. Our analysis of spectral line shapes recorded in opposite circularly polarized light, i.e. in light with opposite sense of rotation, reveals that line profiles in the light polarized ...

  2. The Type IIb Supernova 2013df and Its Cool Supergiant Progenitor

    CERN Document Server

    Van Dyk, Schuyler D; Fox, Ori D; Cenko, S Bradley; Clubb, Kelsey I; Filippenko, Alexei V; Foley, Ryan J; Miller, Adam A; Smith, Nathan; Kelly, Patrick L; Lee, William H; Ben-Ami, Sagi; Gal-Yam, Avishay

    2013-01-01

    We have obtained early-time photometry and spectroscopy of Supernova (SN) 2013df in NGC 4414. The SN is clearly of Type IIb, with notable similarities to SN 1993J. From its luminosity at secondary maximum light, it appears that less $^{56}$Ni ($\\lesssim 0.06\\ M_{\\odot}$) was synthesized in the SN 2013df explosion than was the case for the SNe IIb 1993J, 2008ax, and 2011dh. Based on a comparison of the light curves, the SN 2013df progenitor must have been more extended in radius prior to explosion than the progenitor of SN 1993J. The total extinction for SN 2013df is estimated to be $A_V=0.30$ mag. The metallicity at the SN location is likely to be solar. We have conducted Hubble Space Telescope (HST) Target of Opportunity observations of the SN with the Wide Field Camera 3, and from a precise comparison of these new observations to archival HST observations of the host galaxy obtained 14 years prior to explosion, we have identified the progenitor of SN 2013df to be a yellow supergiant, somewhat hotter than a ...

  3. TEXES Observations of M Supergiants: Dynamics and Thermodynamics of Wind Acceleration

    CERN Document Server

    Harper, G M; Ryde, N; Brown, A; Brown, J; Greathouse, T K; Strong, S

    2009-01-01

    We have detected [Fe II] 17.94 um and 24.52 um emission from a sample of M supergiants using TEXES on the IRTF. These low opacity emission lines are resolved at R = 50, 000 and provide new diagnostics of the dynamics and thermodynamics of the stellar wind acceleration zone. The [Fe II] lines, from the first excited term, are sensitive to the warm plasma where energy is deposited into the extended atmosphere to form the chromosphere and wind outflow. These diagnostics complement previous KAO and ISO observations which were sensitive to the cooler and more extended circumstellar envelopes. The turbulent velocities, Vturb is about 12 to 13 km/s, observed in the [Fe II] forbidden lines are found to be a common property of our sample, and are less than that derived from the hotter chromospheric C II] 2325 Angstrom lines observed in alpha Ori, where Vturb is about 17 to 19 km/s. For the first time, we have dynamically resolved the motions of the dominant cool atmospheric component discovered in alpha Ori from multi...

  4. Monitoring Supergiant Fast X-ray Transients with Swift. Results from the first year

    CERN Document Server

    Romano, P; Cusumano, G; La Parola, V; Vercellone, S; Pagani, C; Ducci, L; Mangano, V; Cummings, J; Krimm, H A; Guidorzi, C; Kennea, J A; Hoversten, E A; Burrows, D N; Gehrels, N

    2009-01-01

    Swift has allowed the possibility to give Supergiant Fast X-ray Transients (SFXTs), the new class of High Mass X-ray Binaries discovered by INTEGRAL, non serendipitous attention throughout all phases of their life. We present our results based on the first year of intense Swift monitoring of four SFXTs, IGR J16479-4514, XTE J1739-302, IGR J17544-2619 and AX J1841.0-0536. We obtain the first assessment of how long each source spends in each state using a systematic monitoring with a sensitive instrument. The duty-cycle of inactivity is 17, 28, 39, 55% (5% uncertainty), for IGR J16479-4514, AX J1841.0-0536, XTE J1739-302, and IGR J17544-2619, respectively, so that true quiescence is a rare state. This demonstrates that these transients accrete matter throughout their life at different rates. AX J1841.0-0536 is the only source which has not undergone a bright outburst during our campaign. Although individual sources behave somewhat differently, common X-ray characteristics of this class are emerging such as outb...

  5. Cumulative luminosity distributions of Supergiant Fast X-ray Transients in hard X-rays

    CERN Document Server

    Paizis, A

    2014-01-01

    We have analyzed in a systematic way about nine years of INTEGRAL data (17-100 keV) focusing on Supergiant Fast X-ray Transients (SFXTs) and three classical High Mass X-ray Binaries (HMXBs). Our approach has been twofold: image based analysis, sampled over a ~ks time frame to investigate the long-term properties of the sources, and lightcurve based analysis, sampled over a 100s time frame to seize the fast variability of each source during its ~ks activity. We find that while the prototypical SFXTs (IGR J17544-2619, XTE J1739-302 and SAX J1818.6-1703) are among the sources with the lowest ~ks based duty cycle ($<$1% activity over nine years of data), when studied at the 100s level, they are the ones with the highest detection percentage, meaning that, when active, they tend to have many bright short-term flares with respect to the other SFXTs. To investigate in a coherent and self consistent way all the available results within a physical scenario, we have extracted cumulative luminosity distributions for ...

  6. X-ray, UV and optical analysis of supergiants: $\\epsilon$ Ori

    CERN Document Server

    Puebla, Raul E; Zsargó, Janos; Cohen, David H; Leutenegger, Maurice A

    2015-01-01

    We present a multi-wavelength (X-ray to optical) analysis, based on non-local thermodynamic equilibrium photospheric+wind models, of the B0 Ia-supergiant: $\\epsilon$~Ori. The aim is to test the consistency of physical parameters, such as the mass-loss rate and CNO abundances, derived from different spectral bands. The derived mass-loss rate is $\\dot{M}/\\sqrt{f_\\infty}\\sim$1.6$\\times$10$^{-6}$ M$_\\odot$ yr$^{-1}$ where $f_\\infty$ is the volume filling factor. However, the S IV $\\lambda\\lambda$1062,1073 profiles are too strong in the models; to fit the observed profiles it is necessary to use $f_\\infty<$0.01. This value is a factor of 5 to 10 lower than inferred from other diagnostics, and implies $\\dot{M} \\lesssim1 \\times 10^{-7}$ M$_\\odot$ yr$^{-1}$. The discrepancy could be related to porosity-vorosity effects or a problem with the ionization of sulfur in the wind. To fit the UV profiles of N V and O VI it was necessary to include emission from an interclump medium with a density contrast ($\\rho_{cl}/\\rho...

  7. Enigma of Runaway Stars Solved

    Science.gov (United States)

    1997-01-01

    evolution theory predicts that all OB stars will end their life in a supernova explosion. The heavier the OB star, the shorter its life. For instance, an OB star with a mass of 25 times that of the Sun, will explode after only 10 million years, compared to an expected life-time of about 13,000 million years for the Sun (which is not an OB star and will not become a supernova). Blaauw suggested that when an OB star is bound to another OB star in a binary system (a `double star'), the supernova explosion of one of the stars (the heaviest of the two would explode first) results in the rapid acceleration (in astronomical terminology, a `kick') of the other one. The reason for this is as follows. When two heavy stars orbit each other at high velocity, they are held together by their mutual gravitational attraction. But after the supernova explosion, one of the stars has lost most of its mass and there is no force to hold back the remaining OB star. The OB-star therefore immediately leaves its orbit and continues in a straight line while preserving its high orbital velocity. The effect is the same as when cutting a swinging rope with a stone attached to the end. Soon thereafter, this star will escape from the OB-association and start its journey through interstellar space as a new OB-runaway. Stellar evolution in a binary system About half of the known OB stars are members of a binary system. Modern evolutionary scenarios for such systems were developed by Edward van den Heuvel [4]. He realized that during the evolution of a close binary system, a phase of intensive mass transfer occurs, whereby matter flows from the heavier star towards its lighter companion. This has important consequences for the further evolution of the system. The mass transfer happens, after a few million years or even less, when the heaviest and therefore most rapidly evolving star increases in size and becomes a supergiant , many times larger than our Sun. The rate of mass transfer can become so large

  8. Soft $\\gamma$-ray Repeaters in Clusters of Massive Stars

    CERN Document Server

    Mirabel, I F; Chaty, S; Mirabel, Felix I; Fuchs, Yael; Chaty, and Sylvain

    1999-01-01

    Infrared observations of the environment of the two Soft Gamma-ray Repeaters(SGRs) with the best known locations on the sky show that they are associatedto clusters of massive stars. Observations with ISO revealed that SGR 1806-20is in a cluster of giant massive stars, still enshrouded in a dense cloud ofgas and dust. SGR 1900+14 is at the edge of a similar cluster that was recentlyfound hidden in the glare of a pair of M5 supergiant stars. Since none of thestars of these clusters has shown in the last years significant flux variationsin the infrared, these two SGRs do not form bound binary systems with massivestars. SGR 1806-20 is at only ~ 0.4 pc, and SGR 1900+14 at ~ 0.8 pc from thecenters of their parental star clusters. If these SGRs were born with typicalneutron star runaway velocities of ~ 300 km/s, they are not older than a few10$^{3}$ years. We propose that SGR 1806-20 and SGR 1900+14 are ideallaboratories to study the evolution of supernovae explosions insideinterstellar bubbles produced by the stro...

  9. STAR Calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, W W, E-mail: jacobsw@indiana.ed [Indiana University Cyclotron Facility and Department of Physics, 2401 Milo B. Sampson Lane, Bloomington IN 47408 (United States)

    2009-04-01

    The main STAR calorimeters comprise a full Barrel EMC and single Endcap EMC plus a Forward Meson Spectrometer. Together they give a nearly complete coverage over the range -1 < pseudorapidity < 4 and provide EM readout and triggering that help drive STAR physics capabilities. Their description, status, performance and operations (and a few physics anecdotes) are briefly presented and discussed.

  10. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....

  11. Star Imager

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Jørgensen, John Leif; Thuesen, Gøsta;

    1997-01-01

    The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol.......The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol....

  12. Evidence of the Evolved Nature of the B[e] Star MWC 137

    Science.gov (United States)

    Muratore, M. F.; Kraus, M.; Oksala, M. E.; Arias, M. L.; Cidale, L.; Borges Fernandes, M.; Liermann, A.

    2015-01-01

    The evolutionary phase of B[e] stars is difficult to establish due to the uncertainties in their fundamental parameters. For instance, possible classifications for the Galactic B[e] star MWC 137 include pre-main-sequence and post-main-sequence phases, with a large range in luminosity. Our goal is to clarify the evolutionary stage of this peculiar object, and to study the CO molecular component of its circumstellar medium. To this purpose, we modeled the CO molecular bands using high-resolution K-band spectra. We find that MWC 137 is surrounded by a detached cool (T=1900+/- 100 K) and dense (N=(3+/- 1)× {{10}21} {{cm}-2}) ring of CO gas orbiting the star with a rotational velocity, projected to the line of sight, of 84 ± 2 km s-1. We also find that the molecular gas is enriched in the isotope 13C, excluding the classification of the star as a Herbig Be. The observed isotopic abundance ratio (12C/13C = 25 ± 2) derived from our modeling is compatible with a proto-planetary nebula, main-sequence, or supergiant evolutionary phase. However, based on some observable characteristics of MWC 137, we propose that the supergiant scenario seems to be the most plausible. Hence, we suggest that MWC 137 could be in an extremely short-lived phase, evolving from a B[e] supergiant to a blue supergiant with a bipolar ring nebula. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), under program IDs GN-2011B-Q-24 and GN-2013B-Q-11.

  13. Comparative Precise Parameters for OB Stars in Three Galaxies

    Science.gov (United States)

    Walborn, Nolan

    2014-10-01

    The chemical abundances, wind terminal velocities, and mass-loss rates of OB stars in the Small and Large Magellanic Clouds will be determined homogeneously from high-resolution spectroscopic data in the Mikulski Archive; and they will be further compared with analogous determinations in the Solar Neighborhood. As is well known, the three systems offer a metallicity sequence with values in solar units generally given as 0.2, 0.5, and 1, respectively, which should have corresponding effects on the metallic-line-driven winds. However, the quantitative basis for that general result can and should be improved for various reasons. For instance, it is based on heterogeneous analyses, some dated, of data with varying quality. Moreover, there is not a single metallicity but different relative values for different elements, seldom available for individual stars, with CNO significantly affected by internal evolutionary processes. We propose advances with state-of-the-art analyses of the best data, primarily from STIS and COS in the UV, but also incorporating FUSE observations of the same stars, and IUE high-resolution of a few. We shall also analyze correlative groundbased optical data. J-CB and collaborators have already published recent results for Galactic supergiants and SMC dwarfs, while work on the SMC giants/supergiants is in progress. We shall build upon that work with further Galactic and SMC data, and especially with the still relatively small but significant LMC UV sample, with detailed spectral-type matching insofar as possible. We shall also produce an atlas of all spectra analyzed, to be placed in the Archive as a high-level product to guide future work.

  14. Using numerical models of bow shocks to investigate the circumstellar medium of massive stars

    Science.gov (United States)

    van Marle, A. J.; Decin, L.; Cox, N. L. J.; Meliani, Z.

    2015-01-01

    Many massive stars travel through the interstellar medium at supersonic speeds. As a result they form bow shocks at the interface between the stellar wind. We use numerical hydrodynamics to reproduce such bow shocks numerically, creating models that can be compared to observations. In this paper we discuss the influence of two physical phenomena, interstellar magnetic fields and the presence of interstellar dust grains on the observable shape of the bow shocks of massive stars. We find that the interstellar magnetic field, though too weak to restrict the general shape of the bow shock, reduces the size of the instabilities that would otherwise be observed in the bow shock of a red supergiant. The interstellar dust grains, due to their inertia can penetrate deep into the bow shock structure of a main sequence O-supergiant, crossing over from the ISM into the stellar wind. Therefore, the dust distribution may not always reflect the morphology of the gas. This is an important consideration for infrared observations, which are dominated by dust emission. Our models clearly show, that the bow shocks of massive stars are useful diagnostic tools that can used to investigate the properties of both the stellar wind as well as the interstellar medium.

  15. The X-Ray View of OB Star Wind Structure and Dynamics

    Science.gov (United States)

    Cohen, D. H.

    2012-12-01

    High-resolution X-ray grating spectroscopy enables us to measure the kinematics and spatial distribution of the shock-heated wind plasma in O and early B stars, testing the predictions of the embedded wind shock scenario of massive star X-ray production. By fitting models to the resolved, Doppler broadened X-ray emission line profiles measured by the Chandra X-ray Observatory's grating spectrometer, we find an onset radius of X-ray production of roughly Ro = 1.5 R★ for the O supergiants, ζ Pup and HD 93129A. From the profile fitting we also find that the terminal velocity of the X-ray emitting plasma is consistent with that of the bulk, UV absorbing wind. We also use the X-ray emission line profiles to measure the wind mass-loss rates and break the degeneracy between mass-loss rate and clumping factor that affects traditional Hα and radio free-free diagnostics. We find clumping factors of order fcl = 10, which also agrees with the simulations of the wind instability. And we find that clumping begins very close to the photosphere, significantly lower in the wind than the onset of X-ray production. For lower density B star winds, the X-ray emission lines are much narrower than in the O supergiants, and are inconsistent with the hot plasma sharing the kinematics of the bulk wind.

  16. Stellar evolution in real time: The exciting star of the Stingray nebula

    Science.gov (United States)

    Reindl, N.; Rauch, T.; Parthasarathy, M.; Kruk, J. W.

    2014-04-01

    SAO 244567 (Hen 3-1357) was classified as a B-type supergiant in the 1970s. Within twenty years only, nebula emission lines became visible in the ultraviolet and optical wavelength range. Imaging in 1994 showed that SAO 244567 had become the central star of the bi-polar Stingray nebula. Prominent P-Cygni profiles that were exhibited in the first ultraviolet spectra from 1988 became weaker with time, but can still be seen in the FUSE spectrum in 2006. Recent observations show that the rapid evolution of this enigmatic star is still going on. For the first time, we performed a comprehensive spectral analysis by means of state-of-the NLTE models for static and expanding atmospheres based on all available spectra from 1988 until 2006. We determined the temporal evolution of its effective temperature, surface gravity, mass-loss rate, and photospheric abundances. We discuss possible single- and binary-star evolutionary scenarios.

  17. VizieR Online Data Catalog: Radial velocities for 1309 stars and 166 OCl (Mermilliod+, 2008)

    Science.gov (United States)

    Mermilliod, J.-C.; Mayor, M.; Udry, S.

    2008-02-01

    We present the final catalogues of a long term observing program performed with the two Coravel spectrovelocimeters for red giants in open clusters. The main aims were to detect spectroscopic binaries and determine their orbital parameters, determine the membership, and compute mean velocities for the stars and open clusters. We computed weighted mean radial velocities for 1309 stars from 10517 individual observations, including the systemic radial velocities from spectroscopic orbits and for Cepheids. The final results are contained in three catalogues collecting 10517 individual radial velocities, mean radial velocities for 1309 red giants, and mean radial velocities for 166 open clusters, among which 57 are new determinations. We identify 891 members and 418 non-members. We discovered a total of 288 spectroscopic binaries, among which 57 were classified as non-members. In addition 27 stars were judged to be variable in radial velocities, all of them being red supergiants. (5 data files).

  18. Magnetic fields around late-type stars using water maser observations

    CERN Document Server

    Vlemmings, W H T; Diamond, P J

    2005-01-01

    We present the analysis of the circular polarization, due to Zeeman splitting, of the water masers around a sample of late-type stars to determine the magnetic fields in their circumstellar envelopes. The magnetic field strengths in the water maser regions around the Mira variable stars U Ori and U Her are shown to be several Gauss while those of the supergiants S Per, NML Cyg and VY CMa are several hundred mG. We also show that large scale magnetic fields permeate the CSE of an evolved star; the polarization of the water masers around VX Sgr reveals a dipole field structure. We shortly discuss the coupling of the magnetic field with the stellar outflow, as such fields could possibly be the cause of distinctly aspherical mass-loss and the resulting aspherical planetary nebulae.

  19. Multi-epoch BVRI Photometry of Luminous Stars in M31 and M33

    Science.gov (United States)

    Martin, John C.; Humphreys, Roberta M.; pre="(">Minnesota Luminous Stars In Nearby Galaxies,

    2017-09-01

    We present the first four years of BVRI photometry from an on-going survey to annually monitor the photometric behavior of evolved luminous stars in M31 and M33. Photometry was measured for 199 stars at multiple epochs, including 9 classic Luminous Blue Variables (LBVs), 22 LBV candidates, 10 post-RGB A/F type hypergiants, and 18 B[e] supergiants. At all epochs, the brightness is measured in the V-band and at least one other band to a precision of 0.04-0.10 mag down to a limiting magnitude of 19.0-19.5. Thirty three stars in our survey exhibit significant variability, including at least two classic LBVs caught in S Doradus-type outbursts. A hyperlinked version of the photometry catalog is at http://go.uis.edu/m31m33photcat.

  20. Runaway stars as progenitors of supernovae and gamma-ray bursts

    CERN Document Server

    Eldridge, John J; Tout, Christopher A

    2011-01-01

    When a core collapse supernova occurs in a binary system, the surviving star as well as the compact remnant emerging from the SN, may reach a substantial space velocity. With binary population synthesis modelling at solar and one fifth of solar metallicity, we predict the velocities of such runaway stars or binaries. We compile predictions for runaway OB stars, red supergiants and Wolf-Rayet stars. For those stars or binaries which undergo a second stellar explosion we compute their further evolution and the distance travelled until a Type II or Type Ibc SN or a long or short gamma-ray burst occurs. We find our predicted population of OB runaway stars broadly matches the observed population of stars but, to match the fastest observed WR runaway stars, we require that black holes receive an asymmetric kick upon formation. We find that at solar metallicity Type Ic SN progenitors travel shorter distances than the progenitors of other SN types because they are typically more massive and thus have shorter lifetime...

  1. A newly-discovered young massive star cluster at the end of the Galactic Bar

    CERN Document Server

    Davies, Ben; Najarro, Francisco; Hinton, Jim A; Trombley, Christine; Figer, Donald F; Puga, Elena

    2011-01-01

    We present a near-infrared study of the candidate star cluster Mercer 81, located at the centre of the G338.4+0.1 HII region, and close to the TeV gamma-ray source HESS 1640-465. Using HST/NICMOS imaging and VLT/ISAAC spectroscopy we have detected a compact and highly extincted cluster of stars, though the bright stars in the centre of the field are in fact foreground objects. The cluster contains nine stars with strong Paschen-alpha emission, one of which we identify as a Wolf-Rayet (WR) star, as well as an A-type supergiant. The line-of-sight extinction is very large, $A_{V}\\sim 45$, illustrating the challenges of locating young star clusters in the Galactic Plane. From a quantitative analysis of the WR star we argue for a cluster age of 3.7$^{+0.4}_{-0.5}$\\,Myr, and, assuming that all emission-line stars are WRs, a cluster mass of $\\ga 10^4$\\msun. A kinematic analysis of the cluster's surrounding HII-region shows that the cluster is located in the Galactic disk at a distance of 11$\\pm$2\\,kpc. This places t...

  2. Rising Star

    OpenAIRE

    Worley, Christiana

    2012-01-01

    Rising Star is a novel about appearances. Thailand Allen is a girl who thinks she understands what she sees. But when what she sees are cracks in her perfect world, maturation and new sight are not far off. Before growth can occur, Thailand must undergo a painful process of learning that carries with it embarrassment, sorrow, anger and confusion. Thailand lives with her mother in a small Texas town called Rising Star. Rising Star is like every other small town with its community gather...

  3. Core-collapse supernova progenitor constraints using the spatial distributions of massive stars in local galaxies

    Science.gov (United States)

    Kangas, T.; Portinari, L.; Mattila, S.; Fraser, M.; Kankare, E.; Izzard, R. G.; James, P.; González-Fernández, C.; Maund, J. R.; Thompson, A.

    2017-01-01

    We studied the spatial correlations between the Hα emission and different types of massive stars in two local galaxies, the Large Magellanic Cloud (LMC) and Messier 33. We compared these to correlations derived for core-collapse supernovae (CCSNe) in the literature to connect CCSNe of different types with the initial masses of their progenitors and to test the validity of progenitor mass estimates which use the pixel statistics method. We obtained samples of evolved massive stars in both galaxies from catalogues with good spatial coverage and/or completeness, and combined them with coordinates of main-sequence stars in the LMC from the SIMBAD database. We calculated the spatial correlation of stars of different classes and spectral types with Hα emission. We also investigated the effects of distance, noise and positional errors on the pixel statistics method. A higher correlation with Hα emission is found to correspond to a shorter stellar lifespan, and we conclude that the method can be used as an indicator of the ages, and therefore initial masses, of SN progenitors. We find that the spatial distributions of type II-P SNe and red supergiants of appropriate initial mass (≳9 M⊙) are consistent with each other. We also find the distributions of type Ic SNe and WN stars with initial masses ≳20 M⊙ consistent, while supergiants with initial masses around 15 M⊙ are a better match for type IIb and II-L SNe. The type Ib distribution corresponds to the same stellar types as type II-P, which suggests an origin in interacting binaries. On the other hand, we find that luminous blue variable stars show a much stronger correlation with Hα emission than do type IIn SNe.

  4. Outflowing disk formation in B[e] supergiants due to rotation and bi--stability in radiation driven winds

    CERN Document Server

    Cure, M; Cidale, L

    2005-01-01

    The effects of rapid rotation and bi-stability upon the density contrast between the equatorial and polar directions of a B[e] supergiant are re-investigated. Based upon a new slow solution for different high rotational radiation driven winds (Cur\\'e 2004) and the fact that bi--stability allows a change in the line--force parameters ($\\alpha$, $k$, and $\\delta$), the equatorial densities are about $10^2$--$10^4$ times higher than the polar ones. These values are in qualitative agreement with the observations.

  5. Rock Stars

    Institute of Scientific and Technical Information of China (English)

    张国平

    2000-01-01

    Around the world young people are spending unbelievable sums of money to listen to rock music. Forbes Magazine reports that at least fifty rock stars have incomes between two million and six million dollars per year.

  6. Carbon Stars

    Indian Academy of Sciences (India)

    T. Lloyd Evans

    2010-12-01

    In this paper, the present state of knowledge of the carbon stars is discussed. Particular attention is given to issues of classification, evolution, variability, populations in our own and other galaxies, and circumstellar material.

  7. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star....

  8. STAR POLYMERS

    OpenAIRE

    Ch. von Ferber; Yu.Holovatch

    2002-01-01

    It is our great pleasure to present a collection of papers devoted to theoretical, numerical, and experimental studies in the field of star polymers. Since its introduction in the early 80-ies, this field has attracted increasing interest and has become an important part of contemporary polymer physics. While research papers in this field appear regularly in different physical and chemical journals, the present collection is an attempt to join together the studies of star polymers showing the...

  9. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Andersen, Thomas Lykke

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star....

  10. FEROS Finds a Strange Star

    Science.gov (United States)

    1999-02-01

    New Spectrograph Explores the Skies from La Silla While a major effort is now spent on the Very Large Telescope and its advanced instruments at Paranal, ESO is also continuing to operate and upgrade the extensive research facilities at La Silla, its other observatory site. ESO PR Photo 03a/99 ESO PR Photo 03a/99 [Preview - JPEG: 800 x 1212 pix - 606k] [High-Res - JPEG: 1981 x 3000 pix - 3.6M] Caption to PR Photo 03a/99 : This photo shows the ESO 1.52-m telescope, installed since almost 30 years in its dome at the La Silla observatory in the southern Atacama desert. The new FEROS spectrograph is placed in an adjacent, thermally and humidity controlled room in the telescope building (where a classical coudé spectrograph was formerly located). The light is guided from the telescope to the spectrograph by 14-m long optical fibres. Within this programme, a new and powerful spectrograph, known as the Fibre-fed Extended Range Optical Spectrograph (FEROS) , has recently been built by a consortium of European institutes. It was commissioned in late 1998 at the ESO 1.52-m telescope by a small team of astronomers and engineers and has already produced the first, interesting scientific results. FEROS is able to record spectra of comparatively faint stars. For instance, it may be used to measure the chemical composition of stars similar to our Sun at distances of up to about 2,500 light-years, or to study motions in the atmospheres of supergiant stars in the Magellanic Clouds. These satellite galaxies to the Milky Way are more than 150,000 light-years away and can only be observed with telescopes located in the southern hemisphere. First FEROS observations uncover an unusual star ESO PR Photo 03b/99 ESO PR Photo 03b/99 [Preview - JPEG: 800 x 958 pix - 390k] [High-Res - JPEG: 3000 x 3594 pix - 1.7M] Caption to PR Photo 03b/99 : This diagramme shows the spectrum of the Lithium rich giant star S50 in the open stellar cluster Be21 , compared to that of a normal giant star ( S156

  11. The Luminous Starburst Ring in NGC 7771 Sequential Star Formation?

    CERN Document Server

    Smith, D A; Haynes, M P; Neff, S G; Smith, Denise A.; Herter, Terry; Haynes, Martha P.; Neff, Susan G.

    1999-01-01

    Only two of the twenty highly luminous starburst galaxies analyzed by Smith et al. exhibit circumnuclear rings of star formation. These galaxies provide a link between 10^11 L_sun systems and classical, less-luminous ringed systems. We report the discovery of a near-infrared counterpart to the nuclear ring of radio emission in NGC 7771. A displacement between the ~10 radio bright clumps and the ~10 near-infrared bright clumps indicates the presence of multiple generations of star formation. The estimated thermal emission from each radio source is equivalent to that of ~35000 O6 stars. Each near-infrared bright knot contains ~5000 red supergiants, on average. The stellar mass of each knot is estimated to be ~10^7 M_sun. The implied time-averaged star formation rate is system and other ringed and non-ringed starbursts. Morphological differences between NGC 7771 and the starburst + Seyfert 1 galaxy NGC 7469 suggest that NGC 7771 may not be old enough to fuel an AGN, or may not be capable of fueling an AGN. Alter...

  12. On the Origin of the Supergiant HI Shell and Putative Companion in NGC 6822

    CERN Document Server

    Cannon, John M; Weisz, Daniel R; Skillman, Evan D; Dolphin, Andrew E; Bigiel, Frank; Cole, Andrew A; de Blok, W J G; Walter, Fabian

    2012-01-01

    We present new Hubble Space Telescope Advanced Camera for Surveys imaging of six positions spanning 5.8 kpc of the HI major axis of the Local Group dIrr NGC 6822, including both the putative companion galaxy and the large HI hole. The resulting deep color magnitude diagrams show that NGC 6822 has formed >50% of its stars in the last ~5 Gyr. The star formation histories of all six positions are similar over the most recent 500 Myr, including low-level star formation throughout this interval and a weak increase in star formation rate during the most recent 50 Myr. Stellar feedback can create the giant HI hole, assuming that the lifetime of the structure is longer than 500 Myr; such long-lived structures have now been observed in multiple systems and may be the norm in galaxies with solid-body rotation. The old stellar populations (red giants and red clump stars) of the putative companion are consistent with those of the extended halo of NGC 6822; this argues against the interpretation of this structure as a bon...

  13. ON THE ORIGIN OF THE SUPERGIANT H I SHELL AND PUTATIVE COMPANION IN NGC 6822

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, John M.; O' Leary, Erin M. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Weisz, Daniel R. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85706 (United States); Bigiel, Frank [Institut fuer Theoretische Astrophysik, Universitaet Heidelberg, Albert-Ueberle-Str. 2, 69120 Heidelberg (Germany); Cole, Andrew A.; Walter, Fabian [School of Mathematics and Physics, University of Tasmania, Private Bag 37, Hobart 7001, Tasmania (Australia); De Blok, W.J.G., E-mail: jcannon@macalester.edu, E-mail: eoleary@macalester.edu, E-mail: dweisz@astro.washington.edu, E-mail: skillman@astro.umn.edu, E-mail: adolphin@raytheon.com, E-mail: bigiel@uni-heidelberg.de, E-mail: andrew.cole@utas.edu.au, E-mail: edeblok@ast.uct.ac.za, E-mail: walter@mpia.de [Department of Astronomy, University of Cape Town, Rondebosch 7700 (South Africa)

    2012-03-10

    We present new Hubble Space Telescope Advanced Camera for Surveys imaging of six positions spanning 5.8 kpc of the H I major axis of the Local Group dIrr NGC 6822, including both the putative companion galaxy and the large H I hole. The resulting deep color-magnitude diagrams show that NGC 6822 has formed >50% of its stars in the last {approx}5 Gyr. The star formation histories of all six positions are similar over the most recent 500 Myr, including low-level star formation throughout this interval and a weak increase in star formation rate during the most recent 50 Myr. Stellar feedback can create the giant H I hole, assuming that the lifetime of the structure is longer than 500 Myr; such long-lived structures have now been observed in multiple systems and may be the norm in galaxies with solid-body rotation. The old stellar populations (red giants and red clump stars) of the putative companion are consistent with those of the extended halo of NGC 6822; this argues against the interpretation of this structure as a bona fide interacting companion galaxy and against its being linked to the formation of the H I hole via an interaction. Since there is no evidence in the stellar population of a companion galaxy, the most likely explanation of the extended H I structure in NGC 6822 is a warped disk inclined to the line of sight.

  14. Two bi-stability jumps in theoretical wind models for massive stars and the implications for Luminous Blue Variable supernovae

    CERN Document Server

    Petrov, Blagovest; Gräfener, Götz

    2016-01-01

    Luminous Blue Variables have been suggested to be the direct progenitors of supernova types IIb and IIn, with enhanced mass loss prior to explosion. However, the mechanism of this mass loss is not yet known. Here, we investigate the qualitative behaviour of theoretical stellar wind mass-loss as a function of Teff across two bi-stability jumps in blue supergiant regime and also in proximity to the Eddington limit, relevant for LBVs. To investigate the physical ingredients that play a role in the radiative acceleration we calculate blue supergiant wind models with the CMFGEN non-LTE model atmosphere code over an effective temperature range between 30000 and 8800 K. Although our aim is not to provide new mass-loss rates for BA supergiants, we study and confirm the existence of two bi-stability jumps in mass-loss rates predicted by Vink, de Koter, & Lamers (1999). However, they are found to occur at somewhat lower Teff (20000 and 9000 K, respectively) than found previously, which would imply that stars may ev...

  15. Distances to Galaxies from the Brightest Stars in the Universe

    CERN Document Server

    Kudritzki, R -P

    2011-01-01

    Blue Supergiants (BSGs) are the brightest stars in the universe at visual light with absolute magnitudes up to Mv=-10 mag. They are ideal stellar objects for the determination of extragalactic distances, in particular, because the perennial uncertainties troubling most of the other stellar distance indicators, interstellar extinction and metallicity, do not affect them. The quantitative spectral analysis of low resolution spectra of individual BSGs provides accurate stellar parameters and chemical composition, which are then used to determine accurate reddening and extinction from photometry for each individual object. Accurate distances can be determined from stellar gravities and effective temperatures using the "Flux Weighted Gravity - Luminosity Relationship (FGLR)". Most recent results of the quantitative spectral analysis of BSGs in galaxies within and beyond the Local Group based on medium and low resolution spectra obtained with the ESO VLT and the Keck telescopes on Mauna Kea are presented and distan...

  16. Giant outburst from the supergiant fast X-ray transient IGR J17544-2619: accretion from a transient disc?

    CERN Document Server

    Romano, P; Mangano, V; Esposito, P; Israel, G; Tiengo, A; Campana, S; Ducci, L; Ferrigno, C; Kennea, J A

    2015-01-01

    Supergiant fast X-ray transients (SFXTs) are high mass X-ray binaries associated with OB supergiant companions and characterised by an X-ray flaring behaviour whose dynamical range reaches 5 orders of magnitude on timescales of a few hundred to thousands of seconds. Current investigations concentrate on finding possible mechanisms to inhibit accretion in SFXTs and explain their unusually low average X-ray luminosity. We present the Swift observations of an exceptionally bright outburst displayed by the SFXT IGR J17544-2619 on 2014 October 10 when the source achieved a peak luminosity of $3\\times10^{38}$ erg s$^{-1}$. This extends the total source dynamic range to $\\gtrsim$10$^6$, the largest (by a factor of 10) recorded so far from an SFXT. Tentative evidence for pulsations at a period of 11.6 s is also reported. We show that these observations challenge, for the first time, the maximum theoretical luminosity achievable by an SFXT and propose that this giant outburst was due to the formation of a transient ac...

  17. Herschel SPIRE and PACS observations of the red supergiant VY CMa: analysis of the molecular line spectra

    CERN Document Server

    Matsuura, Mikako; Barlow, M J; Swinyard, B M; Royer, P; Cernicharo, J; Decin, L; Wesson, R; Polehampton, E T; Blommaert, J A D L; Groenewegen, M A T; Van de Steene, G C; van Hoof, P A M

    2013-01-01

    We present an analysis of the far-infrared and submillimetre molecular emission line spectrum of the luminous M-supergiant VY CMa, observed with the SPIRE and PACS spectrometers aboard the Herschel Space Observatory. Over 260 emission lines were detected in the 190-650-micron SPIRE FTS spectra, with one-third of the observed lines being attributable to H2O. Other detected species include CO, 13CO, H2^18O, SiO, HCN, SO, SO2, CS, H2S, and NH3. Our model fits to the observed 12CO and 13CO line intensities yield a 12C/13C ratio of 5.6+-1.8, consistent with measurements of this ratio for other M supergiants, but significantly lower than previously estimated for VY CMa from observations of lower-J lines. The spectral line energy distribution for twenty SiO rotational lines shows two temperature components: a hot component at 1000 K, which we attribute to the stellar atmosphere and inner wind, plus a cooler ~200 K component, which we attribute to an origin in the outer circumstellar envelope. We fit the line fluxes ...

  18. The VLT-FLAMES Tarantula Survey XIX. B-type Supergiants - Atmospheric Parameters and Nitrogen Abundances to Investigate the Role of Binarity and the Width of the Main Sequence

    CERN Document Server

    McEvoy, C M; Evans, C J; Kalari, V M; Markova, N; Simón-Díaz, S; Vink, J S; Walborn, N R; Crowther, P A; de Koter, A; de Mink, S E; Dunstall, P R; Hénault-Brunet, V; Herrero, A; Langer, N; Lennon, D J; Apellániz, J Maíz; Najarro, F; Puls, J; Sana, H; Schneider, F R N; Taylor, W D

    2014-01-01

    TLUSTY non-LTE model atmosphere calculations have been used to determine atmospheric parameters and nitrogen (N) abundances for 34 single and 18 binary B-type supergiants (BSGs). The effects of flux contribution from an unseen secondary were considered for the binary sample. We present the first systematic study of the incidence of binarity for a sample of BSGs across the theoretical terminal age main sequence (TAMS). To account for the distribution of effective temperatures of the BSGs it may be necessary to extend the TAMS to lower temperatures. This is consistent with the derived distribution of mass discrepancies, projected rotational velocities (vsini) and N abundances, provided that stars cooler than this temperature are post RSG objects. For the BSGs in the Tarantula and previous FLAMES surveys, most have small vsini. About 10% have larger vsini (>100 km/s) but surprisingly these show little or no N enhancement. All the cooler BSGs have low vsini of <70km/s and high N abundance estimates, implying t...

  19. HUBBLE WATCHES STAR TEAR APART ITS NEIGHBORHOOD

    Science.gov (United States)

    2002-01-01

    NASA's Hubble Space Telescope has snapped a view of a stellar demolition zone in our Milky Way Galaxy: a massive star, nearing the end of its life, tearing apart the shell of surrounding material it blew off 250,000 years ago with its strong stellar wind. The shell of material, dubbed the Crescent Nebula (NGC 6888), surrounds the 'hefty,' aging star WR 136, an extremely rare and short-lived class of super-hot star called a Wolf-Rayet. Hubble's multicolored picture reveals with unprecedented clarity that the shell of matter is a network of filaments and dense knots, all enshrouded in a thin 'skin' of gas [seen in blue]. The whole structure looks like oatmeal trapped inside a balloon. The skin is glowing because it is being blasted by ultraviolet light from WR 136. Hubble's view covers a small region at the northeast tip of the structure, which is roughly three light-years across. A picture taken by a ground-based telescope [lower right] shows almost the entire nebula. The whole structure is about 16 light-years wide and 25 light-years long. The bright dot near the center of NGC 6888 is WR 136. The white outline in the upper left-hand corner represents Hubble's view. Hubble's sharp vision is allowing scientists to probe the intricate details of this complex system, which is crucial to understanding the life cycle of stars and their impact on the evolution of our galaxy. The results of this study appear in the June issue of the Astronomical Journal. WR 136 created this web of luminous material during the late stages of its life. As a bloated, red super-giant, WR 136 gently puffed away some of its bulk, which settled around it. When the star passed from a super-giant to a Wolf-Rayet, it developed a fierce stellar wind - a stream of charged particles released from its surface - and began expelling mass at a furious rate. The star began ejecting material at a speed of 3.8 million mph (6.1 million kilometers per hour), losing matter equal to that of our Sun's every 10

  20. Two bi-stability jumps in theoretical wind models for massive stars and the implications for luminous blue variable supernovae

    Science.gov (United States)

    Petrov, Blagovest; Vink, Jorick S.; Gräfener, Götz

    2016-05-01

    Luminous blue variables (LBVs) have been suggested to be the direct progenitors of supernova Types IIb and IIn, with enhanced mass loss prior to explosion. However, the mechanism of this mass loss is not yet known. Here, we investigate the qualitative behaviour of theoretical stellar wind mass loss as a function of Teff across two bi-stability jumps in blue supergiant regime and also in proximity to the Eddington limit, relevant for LBVs. To investigate the physical ingredients that play a role in the radiative acceleration we calculate blue supergiant wind models with the CMFGEN non-local thermodynamic equilibrium model atmosphere code over an effective temperature range between 30 000 and 8800 K. Although our aim is not to provide new mass-loss rates for BA supergiants, we study and confirm the existence of two bi-stability jumps in mass-loss rates predicted by Vink et al. However, they are found to occur at somewhat lower Teff (20 000 and 9000 K, respectively) than found previously, which would imply that stars may evolve towards lower Teff before strong mass loss is induced by the bi-stability jumps. When the combined effects of the second bi-stability jump and the proximity to Eddington limit are accounted for, we find a dramatic increase in the mass-loss rate by up to a factor of 30. Further investigation of both bi-stability jumps is expected to lead to a better understanding of discrepancies between empirical modelling and theoretical mass-loss rates reported in the literature, and to provide key inputs for the evolution of both normal AB supergiants and LBVs, as well as their subsequent supernova Type II explosions.

  1. Identification of dusty massive stars in star-forming dwarf irregular galaxies in the Local Group with mid-IR photometry

    CERN Document Server

    Britavskiy, N E; Mehner, A; Boyer, M L; McQuinn, K B W

    2015-01-01

    Increasing the statistics of spectroscopically confirmed evolved massive stars in the Local Group enables the investigation of the mass loss phenomena that occur in these stars in the late stages of their evolution. We aim to complete the census of luminous mid-IR sources in star-forming dwarf irregular (dIrr) galaxies of the Local Group. To achieve this we employed mid-IR photometric selection criteria to identify evolved massive stars, such as red supergiants (RSGs) and luminous blue variables (LBVs), by using the fact that these types of stars have infrared excess due to dust. The method is based on 3.6 $\\mu$m and 4.5 $\\mu$m photometry from archival ${\\it Spitzer}$ Space Telescope images of nearby galaxies. We applied our criteria to 4 dIrr galaxies: Pegasus, Phoenix, Sextans A, and WLM, selecting 79 point sources, which we observed with the VLT/FORS2 spectrograph in multi-object spectroscopy mode. We identified 13 RSGs, of which 6 are new discoveries, also 2 new emission line stars, and 1 candidate yellow...

  2. The B-Supergiant Components of the Double-Lined Binary HD1383

    CERN Document Server

    Boyajian, T S; Helsel, M E; Kaye, A B; McSwain, M V; Riddle, R L; Wingert, D W

    2006-01-01

    We present new results from a study of high quality, red spectra of the massive binary star system HD 1383 (B0.5 Ib + B0.5 Ib). We determined radial velocities and revised orbital elements (P = 20.28184 +/- 0.0002 d) and made Doppler tomographic reconstructions of the component spectra. A comparison of these with model spectra from non-LTE, line blanketed atmospheres indicates that both stars have almost identical masses (M_2/M_1 = 1.020 +/- 0.014), temperatures (T_eff = 28000 +/- 1000 K), gravities (log g = 3.25 +/- 0.25), and projected rotational velocities (V sin i < 30 km/s). We investigate a number of constraints on the radii and masses of the stars based upon the absence of eclipses, surface gravity, stellar wind terminal velocity, and probable location in the Perseus spiral arm of the Galaxy, and these indicate a range in probable radius and mass of R/R_sun = 14 - 20 and M/M_sun = 16 - 35, respectively. These values are consistent with model evolutionary masses for single stars of this temperature a...

  3. Simultaneous X-ray and optical spectroscopy of the Oef supergiant lambda Cep

    CERN Document Server

    Rauw, G; Naze, Y; Gonzalez-Perez, J N; Hempelmann, A; Mittag, M; Schmitt, J H M M; Schroeder, K -P; Gosset, E; Eenens, P; Uuh-Sonda, J M

    2015-01-01

    Probing the structures of stellar winds is of prime importance for the understanding of massive stars. Based on their optical spectral morphology and variability, the stars of the Oef class have been suggested to feature large-scale structures in their wind. High-resolution X-ray spectroscopy and time-series of X-ray observations of presumably-single O-type stars can help us understand the physics of their stellar winds. We have collected XMM-Newton observations and coordinated optical spectroscopy of the O6Ief star lambda Cep to study its X-ray and optical variability and to analyse its high-resolution X-ray spectrum. We investigate the line profile variability of the He II 4686 and H-alpha emission lines in our time series of optical spectra, including a search for periodicities. We further discuss the variability of the broadband X-ray flux and analyse the high-resolution spectrum of lambda Cep using line-by-line fits as well as a code designed to fit the full high-resolution X-ray spectrum consistently. D...

  4. BRITE-Constellation: Nanosatellites for precision photometry of bright stars

    Science.gov (United States)

    Weiss, W. W.; Moffat, A. F. J.; Schwarzenberg-Czerny, A.; Koudelka, O. F.; Grant, C. C.; Zee, R. E.; Kuschnig, R.; Mochnacki, St.; Rucinski, S. M.; Matthews, J. M.; Orleański, P.; Pamyatnykh, A. A.; Pigulski, A.; Alves, J.; Guedel, M.; Handler, G.; Wade, G. A.; Scholtz, A. L.; Scholtz

    2014-02-01

    will be selected is shown in Fig. 1. This sample falls into two principal classes of stars: (1) Hot luminous H-burning stars (O to F stars). Analyses of OB star variability have the potential to help solve two outstanding problems: the sizes of convective (mixed) cores in massive stars and the influence of rapid rotation on their structure and evolution. (2) Cool luminous stars (AGB stars, cool giants and cool supergiants). Measurements of the time scales involved in surface granulation and differential rotation will constrain turbulent convection models. Mass loss from these stars (especially the massive supernova progenitors) is a major contributor to the evolution of the interstellar medium, so in a sense, this sample dominates cosmic ``ecology'' in terms of future generations of star formation. The massive stars are believed to share many characteristics of the lower mass range of the first generation of stars ever formed (although the original examples are of course long gone). BRITE observations will also be used to detect some Jupiter- and even Neptune-sized planets around bright host stars via transits, as expected on the basis of statistics from the Kepler exoplanet mission. Detecting planets around such very bright stars will greatly facilitate their subsequent characterization. BRITE will also use surface spots to investigate stellar rotation. The following Table summarizes launch and orbit parameters of BRITE-Constellation components. The full version of this paper describing in more detail BRITE-Constellation will be published separately in a journal. The symposium presentation is available at http://iaus301.astro.uni.wroc.pl/program.php

  5. Morning Star

    OpenAIRE

    Harris, Mark

    2010-01-01

    Morning Star comprises a group of paintings and drawings whose imagery derives from photographs of 1960s American hippie communes. The paintings are made using oil paint on linen. Their dimensions vary between 180 x 120, and 228 x 217 centimetres. The drawings are in pencil on watercolour paper and are all 56 x 76 centimetres. The work has been exhibited in conventional form, hanging on gallery walls. For Morning Star I made pencil drawings and oil paintings derived from images in Dick Fa...

  6. Do Stellar Winds Prevent the Formation of Supermassive Stars by Accretion?

    CERN Document Server

    Nakauchi, Daisuke; Omukai, Kazuyuki; Saio, Hideyuki; Nomoto, Ken'ichi

    2016-01-01

    Supermassive stars (SMS; ~ 10^5 M_sun) formed from metal-free gas in the early Universe attract attention as progenitors of supermassive black holes observed at high redshifts. To form SMSs by accretion, central protostars must accrete at as high rates as ~ 0.1-1 M_sun/yr. Such protostars have very extended structures with bloated envelopes, like super-giant stars, and are called super-giant protostars (SGPSs). Under the assumption of hydrostatic equilibrium, SGPSs have density inverted layers, where the luminosity becomes locally super-Eddington, near the surface. If the envelope matter is allowed to flow out, however, a stellar wind could be launched and hinder the accretion growth of SGPSs before reaching the supermassive regime. We examine whether radiation-driven winds are launched from SGPSs by constructing steady and spherically symmetric wind solutions. We find that the wind velocity does not reach the escape velocity in any case considered. This is because once the temperature falls below ~ 10^4 K, t...

  7. Hydrodynamical Simulations of the Stream-Core Interaction in the Slow Merger of Massive Stars

    CERN Document Server

    Ivanova, N; Spruit, H; Podsiadlowski, Ph.

    2002-01-01

    We present detailed simulations of the interaction of a stream emanating from a mass-losing secondary with the core of a massive supergiant in the slow merger of the two stars inside a common envelope. The dynamics of the stream can be divided into a ballistic phase, starting at the L_1 point, and a hydrodynamical phase where the stream interacts strongly with the core. Considering the merger of a 1 and 5Msun star with a 20Msun evolved supergiant, we present two-dimensional hydrodynamical simulations using the PROMETHEUS code to demonstrate how the penetration depth and post-impact conditions depend on the initial properties of stream material (e.g. entropy, angular momentum, stream width) and the properties of the core (e.g. density structure and rotation rate). Using these results, we present a fitting formula for the entropy generated in the stream--core interaction and a recipe for the determination of the penetration depth based on a modified Bernoulli integral.

  8. Do stellar winds prevent the formation of supermassive stars by accretion?

    Science.gov (United States)

    Nakauchi, Daisuke; Hosokawa, Takashi; Omukai, Kazuyuki; Saio, Hideyuki; Nomoto, Ken'ichi

    2017-03-01

    Supermassive stars (SMSs; ∼105 M⊙) formed from metal-free gas in the early Universe attract attention as progenitors of supermassive black holes observed at high redshifts. To form SMSs by accretion, central protostars must accrete at as high rates as ∼0.1-1 M⊙ yr-1. Such protostars have very extended structures with bloated envelopes, like supergiant stars, and are called supergiant protostars (SGPSs). Under the assumption of hydrostatic equilibrium, SGPSs have density-inverted layers, where the luminosity becomes locally super-Eddington, near the surface. If the envelope matter is allowed to flow out, however, a stellar wind could be launched and hinder the accretion growth of SGPSs before reaching the supermassive regime. We examine whether radiation-driven winds are launched from SGPSs by constructing steady and spherically symmetric wind solutions. We find that the wind velocity does not reach the escape velocity in any case considered. This is because once the temperature falls below ∼104 K, the opacity plummet drastically owing to the recombination of hydrogen and the acceleration ceases suddenly. This indicates that, in realistic non-steady cases, even if outflows are launched from the surface of SGPSs, they would fall back again. Such a 'wind' does not result in net mass-loss and does not prevent the growth of SGPSs. In conclusion, SGPSs will grow to SMSs and eventually collapse to massive black holes of ∼105 M⊙, as long as the rapid accretion is maintained.

  9. The evolution of massive stars and their spectra I. A non-rotating 60 Msun star from the zero-age main sequence to the pre-supernova stage

    CERN Document Server

    Groh, Jose; Ekstrom, Sylvia; Georgy, Cyril

    2014-01-01

    For the first time, the interior and spectroscopic evolution of a massive star is analyzed from the zero-age main sequence (ZAMS) to the pre-supernova (SN) stage. For this purpose, we combined stellar evolution models using the Geneva code and atmospheric models using CMFGEN. With our approach, we were able to produce observables, such as a synthetic high-resolution spectrum and photometry, aiding the comparison between evolution models and observed data. Here we analyze the evolution of a non-rotating 60 Msun star and its spectrum throughout its lifetime. Interestingly, the star has a supergiant appearance (luminosity class I) even at the ZAMS. We find the following evolutionary sequence of spectral types: O3 I (at the ZAMS), O4 I (middle of the H-core burning phase), B supergiant (BSG), B hypergiant (BHG), hot luminous blue variable (LBV; end of H-core burning), cool LBV (H-shell burning through the beginning of the He-core burning phase), rapid evolution through late WN and early WN, early WC (middle of He...

  10. ALE OF TWO CLUSTERS YIELDS SECRETS OF STAR BIRTH IN THE EARLY UNIVERSE

    Science.gov (United States)

    2002-01-01

    Sequence stars (like our Sun) with average surface temperatures of 6000 Kelvin; red stars are cool giants and supergiants (3500 K); white stars are hot young stars (25,000 K or more) that are bright in ultraviolet. Credit: R. Gilmozzi, Space Telescope Science Institute/European Space Agency; Shawn Ewald, JPL; and NASA

  11. The Soft State of Cygnus X-1 Observed With NuSTAR: A Variable Corona and a Stable Inner Disk

    DEFF Research Database (Denmark)

    Walton, D. J.; Tomsick, J. A.; Madsen, K. K.

    2016-01-01

    We present a multi-epoch hard X-ray analysis of Cygnus X-1 in its soft state based on four observations with the Nuclear Spectroscopic Telescope Array (NuSTAR). Despite the basic similarity of the observed spectra, there is clear spectral variability between epochs. To investigate this variability...... in the temperature of the scattering electron plasma. Finally, we consistently observe absorption from ionized iron at similar to 6.7 keV, which varies in strength as a function of orbital phase in a manner consistent with the absorbing material being an ionized phase of the focused stellar wind from the supergiant...

  12. A modern search for Wolf-Rayet stars in the Magellanic Clouds: First results

    Energy Technology Data Exchange (ETDEWEB)

    Massey, Philip; Neugent, Kathryn F. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Morrell, Nidia [Las Campanas Observatory, Carnegie Observatories, Casilla 601 La Serena (Chile); Hillier, D. John, E-mail: phil.massey@lowell.edu, E-mail: kneugent@lowell.edu, E-mail: nmorrell@lco.cl, E-mail: hillier@pitt.edu [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT PACC), University of Pittsburgh, Pittsburgh, PA 15260 (United States)

    2014-06-10

    Over the years, directed surveys and incidental spectroscopy have identified 12 Wolf-Rayet (WR) stars in the Small Magellanic Cloud (SMC) and 139 in the Large Magellanic Cloud (LMC), numbers which are often described as 'essentially complete'. Yet, new WRs are discovered in the LMC almost yearly. We have therefore initiated a new survey of both Magellanic Clouds using the same interference-filter imaging technique previously applied to M31 and M33. We report on our first observing season, in which we have successfully surveyed ∼15% of our intended area of the SMC and LMC. Spectroscopy has confirmed nine newly found WRs in the LMC (a 6% increase), including one of WO-type, only the third known in that galaxy and the second to be discovered recently. The other eight are WN3 stars that include an absorption component. In two, the absorption is likely from an O-type companion, but the other six are quite unusual. Five would be classified naively as 'WN3+O3 V', but such a pairing is unlikely given the rarity of O3 stars, the short duration of this phase (which is incommensurate with the evolution of a companion to a WN star), and because these stars are considerably fainter than O3 V stars. The sixth star may also fall into this category. CMFGEN modeling suggests these stars are hot, bolometrically luminous, and N-rich like other WN3 stars, but lack the strong winds that characterize WNs. Finally, we discuss two rare Of?p stars and four Of supergiants we found, and propose that the B[e] star HD 38489 may have a WN companion.

  13. THE COMPACT STAR-FORMING COMPLEX AT THE HEART OF NGC 253

    Energy Technology Data Exchange (ETDEWEB)

    Davidge, T. J., E-mail: tim.davidge@nrc.ca [Dominion Astrophysical Observatory, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada)

    2016-02-20

    We discuss integral field spectra of the compact star-forming complex that is the brightest near-infrared (NIR) source in the central regions of the starburst galaxy NGC 253. The spectra cover the H and K passbands and were recorded with the Gemini NIR Spectrograph during subarcsecond seeing conditions. Absorption features in the spectrum of the star-forming complex are weaker than in the surroundings. An absorption feature is found near 1.78 μm that coincides with the location of a C{sub 2} bandhead. If this feature is due to C{sub 2} then the star-forming complex has been in place for at least a few hundred Myr. Emission lines of Brγ, [Fe ii], and He i 2.06 μm do not track the NIR continuum light. Pockets of star-forming activity that do not have associated concentrations of red supergiants, and so likely have ages <8 Myr, are found along the western edge of the complex, and there is evidence that one such pocket contains a rich population of Wolf–Rayet stars. Unless the star-forming complex is significantly more metal-poor than the surroundings, then a significant fraction of its total mass is in stars with ages <8 Myr. If the present-day star formation rate is maintained then the timescale to double its stellar mass ranges from a few Myr to a few tens of Myr, depending on the contribution made by stars older than ∼8 Myr. If—as suggested by some studies—the star-forming complex is centered on the galaxy’s nucleus, which presumably contains a large population of old and intermediate-age stars, then the nucleus of NGC 253 is currently experiencing a phase of rapid growth in its stellar mass.

  14. Pulsating stars

    CERN Document Server

    Catelan, M?rcio

    2014-01-01

    The most recent and comprehensive book on pulsating stars which ties the observations to our present understanding of stellar pulsation and evolution theory.  Written by experienced researchers and authors in the field, this book includes the latest observational results and is valuable reading for astronomers, graduate students, nuclear physicists and high energy physicists.

  15. Stars Underground

    CERN Multimedia

    Jean Leyder

    1996-01-01

    An imaginary voyage in time where we were witness of the birth of the universe itself, the time of the Big-Bang 15 billion years ago. Particules from the very first moments of time : protons, neutrons and electrons, and also much more energetic one. These particules are preparing to interact collider and generating others which will be the birth to the stars ........

  16. STAR Highlights

    OpenAIRE

    Masui, Hiroshi; collaboration, for the STAR

    2011-01-01

    We report selected results from STAR collaboration at RHIC, focusing on jet-hadron and jet-like correlations, quarkonium suppression and collectivity, di-electron spectrum in both p+p and Au+Au, and higher moments of net-protons as well as azimuthal anisotropy from RHIC Beam Energy Scan program.

  17. Type C Semiregulars and Irregulars: the Forgotten Pulsating Luminous Stars (Abstract)

    Science.gov (United States)

    Turner, D. G.

    2016-12-01

    (Abstract only) Variable M supergiants, comprising the SRC and LC classes of semiregular and irregular variables, represent late stages of evolution for stars of about 20-25 solar masses, and the likely progenitors for many core collapse supernovae. Most have escaped dedicated study, either long-term photometry or detailed spectroscopy, primarily because of lengthy pulsation periods of 100-1000 days. Yet they appear to share many of the characteristics of classical Cepheids, and their high luminosities make them just as valuable, if not more so, for calibrating the extragalactic distance scale. Many are double-mode, and possibly triple-mode, pulsators, much like Cepheids, which complicates estimates for their periods of variability. Demonstrated here are some of the techniques used for studying such stars, and what has been learned so far about their characteristics. AAVSO observers have a wonderful opportunity to contribute to the field through observations of the forthcoming 2016 maximum of m Cephei.

  18. Convection and convective overshooting in stars more massive than 10 $M_\\odot$

    CERN Document Server

    Jie, Jin; Lv, Guoliang

    2015-01-01

    In this paper, four sets of evolutionary models are computed with different values of the mixing length parameter $\\alpha_{\\rm p}$ and the overshooting parameter $\\delta_{\\rm ov}$. The properties of the convective cores and the convective envelopes are studied in the massive stars. We get three conclusions: First, the larger $\\alpha_{\\rm p}$ leads to enhancing the convective mixing, removing the chemical gradient, and increasing the convective heat transfer efficiency. Second, core potential $\\phi_{\\rm c} = M_{\\rm c} / R_{\\rm c}$ describes sufficiently the evolution of a star, whether it is a red or blue supergiant at central helium ignition. Third, the discontinuity of hydrogen profile above the hydrogen burning shell seriously affect the occurrence of blue loops in the Hertzsprung--Russell diagram.

  19. Cosmic ray electrons and positrons from supernova explosions of massive stars.

    Science.gov (United States)

    Biermann, P L; Becker, J K; Meli, A; Rhode, W; Seo, E S; Stanev, T

    2009-08-07

    We attribute the recently discovered cosmic ray electron and cosmic ray positron excess components and their cutoffs to the acceleration in the supernova shock in the polar cap of exploding Wolf-Rayet and red supergiant stars. Considering a spherical surface at some radius around such a star, the magnetic field is radial in the polar cap as opposed to most of 4pi (the full solid angle), where the magnetic field is nearly tangential. This difference yields a flatter spectrum, and also an enhanced positron injection for the cosmic rays accelerated in the polar cap. This reasoning naturally explains the observations. Precise spectral measurements will be the test, as this predicts a simple E;{-2} spectrum for the new components in the source, steepened to E;{-3} in observations with an E;{-4} cutoff.

  20. Radial dependence of line profile variability in seven O9--B0.5 stars

    CERN Document Server

    Martins, F; Hillier, D J; Donati, J -F; Bouret, J -C

    2014-01-01

    Massive stars show a variety of spectral variability: presence of discrete absorption components in UV P-Cygni profiles, optical line profile variability, X-ray variability, radial velocity modulations. Our goal is to study the spectral variability of single OB stars to better understand the relation between photospheric and wind variability. For that, we rely on high spectral resolution, high signal-to-noise ratio optical spectra collected with the spectrograph NARVAL on the Telescope Bernard Lyot at Pic du Midi. We investigate the variability of twelve spectral lines by means of the Temporal Variance Spectrum (TVS). The selected lines probe the radial structure of the atmosphere, from the photosphere to the outer wind. We also perform a spectroscopic analysis with atmosphere models to derive the stellar and wind properties, and to constrain the formation region of the selected lines. We show that variability is observed in the wind lines of all bright giants and supergiants, on a daily timescale. Lines form...

  1. Star clusterings in the Carina complex UBVRI photometry of NGC 3324 and Loden 165

    CERN Document Server

    Carraro, G; Baumgardt, H

    2001-01-01

    We report on UBVRI photometry of two $5^{\\prime} \\times 5^{\\prime}$ fields in the region of the young open cluster NGC 3324. One of our fields covers the core region, while the other is closer to the tidal radius of the cluster. Our study provides the first CCD photometry of NGC 3324. We find that the cluster is very young and probably contains several pre Main Sequence (MS) stars. 25 members are identified on the basis of their position in the (U-B) vs (B-V) diagram. We investigate the relation of the red super-giant HD 92207 with NGC 3324, suggesting that it probably does not belong to the cluster. Our second field is close to Loden 165, a possible cluster of stars that has never been studied so far. We show that this object is a probable open cluster, much older than NGC 3324 and much closer to the Sun.

  2. Optical and near-infrared spectrophotometric properties of Long Period Variables and other luminous red stars

    CERN Document Server

    Alvarez, R; Plez, B; Wood, P R

    2000-01-01

    Based on a new and large sample of optical and near-infrared spectra obtained at the Mount Stromlo and Siding Spring Observatories (Lancon & Wood 1998; Lancon & Wood, in preparation), spectrophotometric properties of cool oxygen- and carbon-rich Long Period Variables and supergiants are presented. Temperatures of oxygen-rich stars are assigned by comparison with synthetic spectra computed from up-to-date oxygen-rich model atmosphere grids. The existence of reliable optical and near-infrared temperature indicators is investigated. A narrow relation between the bolometric correction BC(I) and the broad-band colour I-J is obtained for oxygen-rich cool stars. The ability of specific near-infrared indices to separate luminosity classes, atmospheric chemistry or variability subtypes is discussed. Some comments are also given on extinction effects, water band strengths in Long Period Variables and the evaluation of 12CO/13CO ratio in red giants.

  3. The Compact Star-Forming Complex at the Heart of NGC 253

    CERN Document Server

    Davidge, T J

    2016-01-01

    We discuss integral field spectra of the compact star-forming complex that is the brightest near-infrared (NIR) source in the central regions of the starburst galaxy NGC 253. The spectra cover the H and K passbands and were recorded with the Gemini NIR Spectrograph during sub-arcsec seeing conditions. Absorption features in the spectrum of the star-forming complex are weaker than in the surroundings. An absorption feature is found near 1.78um that coincides with the location of a C2 bandhead. Emission lines of Brgamma, [FeII], and HeI2.06um do not track the NIR continuum light. Pockets of star-forming activity that do not have associated concentrations of red supergiants, and so likely have ages < 8 Myr, are found along the western edge of the complex, and there is evidence that one such pocket contains a rich population of Wolf-Rayet stars. Unless the star-forming complex is significantly more metal-poor than the surroundings, then a significant fraction of its total mass is in stars with ages < 8 Myr....

  4. A massive hypergiant star as the progenitor of the supernova SN 2005gl.

    Science.gov (United States)

    Gal-Yam, A; Leonard, D C

    2009-04-16

    Our understanding of the evolution of massive stars before their final explosions as supernovae is incomplete, from both an observational and a theoretical standpoint. A key missing piece in the supernova puzzle is the difficulty of identifying and studying progenitor stars. In only a single case-that of supernova SN 1987A in the Large Magellanic Cloud-has a star been detected at the supernova location before the explosion, and been subsequently shown to have vanished after the supernova event. The progenitor of SN 1987A was a blue supergiant, which required a rethink of stellar evolution models. The progenitor of supernova SN 2005gl was proposed to be an extremely luminous object, but the association was not robustly established (it was not even clear that the putative progenitor was a single luminous star). Here we report that the previously proposed object was indeed the progenitor star of SN 2005gl. This very massive star was likely a luminous blue variable that standard stellar evolution predicts should not have exploded in that state.

  5. Models of the circumstellar medium of evolving, massive runaway stars moving through the Galactic plane

    CERN Document Server

    Meyer, D M -A; Langer, N; Gvaramadze, V V; Mignone, A; Izzard, R G; Kaper, L

    2014-01-01

    At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass loss and space velocity of massive runaway stars affect the morphology of their bow shocks. We run two-dimensional axisymmetric hydrodynamical simulations following the evolution of the circumstellar medium of these stars in the Galactic plane from the main sequence to the red supergiant phase. We find that thermal conduction is an important process governing the shape, size and structure of the bow shocks around hot stars, and that they have an optical luminosity mainly produced by forbidden lines, e.g. [OIII]. The Ha emission of the bow shocks around hot stars originates from near their contact discontinuity. The H$\\alpha$ emission of bow shocks around cool stars originates from their forward shock, and is too faint to be observed for the bow shocks that we simulate. The emission of optically-thin radiation mainly comes from th...

  6. Evolution of Massive Stars under New Mass-Loss Rates for RSG Is the mystery of the missing blue gap solved?

    CERN Document Server

    Salasnich, B; Chiosi, C

    1997-01-01

    In this paper we present new models of massive stars based on recent advancements in the theory of diffusive mixing and a new empirical formulation of the mass-loss rates of red supergiant stars. We compute two sets of stellar models of massive stars with initial chemical composition [Z=0.008, Y=0.25] and [Z=0.020, Y=0.28]. Mass loss by stellar wind is also taken into account according to the empirical relationship by de Jager et al. (1988). Despite the new mixing prescription, these models share the same problems of older models in literature as far as the interpretation of the observational distribution of stars across the HRD is concerned. Examining possible causes of the failure, we find that the adopted rate of mass loss for the red supergiant stages under-estimates the observational values by a large factor. Revising the whole problem, first we adopt the recent formulation by Feast (1991), and secondly we take also into account the possibility that the dust to gas ratio varies with the stellar luminosit...

  7. The Mass-Loss Return From Evolved Stars to The Large Magellanic Cloud VI: Luminosities and Mass-Loss Rates on Population Scales

    CERN Document Server

    Riebel, D; Sargent, B; Meixner, M

    2012-01-01

    We present results from the first application of the Grid of Red Supergiant and Asymptotic Giant Branch ModelS (GRAMS) model grid to the entire evolved stellar population of the Large Magellanic Cloud (LMC). GRAMS is a pre-computed grid of 80,843 radiative transfer (RT) models of evolved stars and circumstellar dust shells composed of either silicate or carbonaceous dust. We fit GRAMS models to ~30,000 Asymptotic Giant Branch (AGB) and Red Supergiant (RSG) stars in the LMC, using 12 bands of photometry from the optical to the mid-infrared. Our published dataset consists of thousands of evolved stars with individually determined evolutionary parameters such as luminosity and mass-loss rate. The GRAMS grid has a greater than 80% accuracy rate discriminating between Oxygen- and Carbon-rich chemistry. The global dust injection rate to the interstellar medium (ISM) of the LMC from RSGs and AGB stars is on the order of 1.5x10^(-5) solar masses/yr, equivalent to a total mass injection rate (including the gas) into t...

  8. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter; Brorsen, Michael

    Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004.......Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004....

  9. Planck stars

    CERN Document Server

    Rovelli, Carlo

    2014-01-01

    A star that collapses gravitationally can reach a further stage of its life, where quantum-gravitational pressure counteracts weight. The duration of this stage is very short in the star proper time, yielding a bounce, but extremely long seen from the outside, because of the huge gravitational time dilation. Since the onset of quantum-gravitational effects is governed by energy density --not by size-- the star can be much larger than planckian in this phase. The object emerging at the end of the Hawking evaporation of a black hole can can then be larger than planckian by a factor $(m/m_{\\scriptscriptstyle P})^n$, where $m$ is the mass fallen into the hole, $m_{\\scriptscriptstyle P}$ is the Planck mass, and $n$ is positive. The existence of these objects alleviates the black-hole information paradox. More interestingly, these objects could have astrophysical and cosmological interest: they produce a detectable signal, of quantum gravitational origin, around the $10^{-14} cm$ wavelength.

  10. An XMM-Newton and NuSTAR Study of IGR J18214-1318: A Non-pulsating High-mass X-Ray Binary with a Neutron Star

    Science.gov (United States)

    Fornasini, Francesca M.; Tomsick, John A.; Bachetti, Matteo; Krivonos, Roman A.; Fürst, Felix; Natalucci, Lorenzo; Pottschmidt, Katja; Wilms, Jörn

    2017-05-01

    IGR J18214-1318, a Galactic source discovered by the International Gamma-Ray Astrophysics Laboratory, is a high-mass X-ray binary (HMXB) with a supergiant O-type stellar donor. We report on the XMM-Newton and NuSTAR observations that were undertaken to determine the nature of the compact object in this system. This source exhibits high levels of aperiodic variability, but no periodic pulsations are detected with a 90% confidence upper limit of 2% fractional rms between 0.00003-88 Hz, a frequency range that includes the typical pulse periods of neutron stars (NSs) in HMXBs (0.1-103 s). Although the lack of pulsations prevents us from definitively identifying the compact object in IGR J18214-1318, the presence of an exponential cutoff with e-folding energy ≲ 30 {keV} in its 0.3-79 keV spectrum strongly suggests that the compact object is an NS. The X-ray spectrum also shows a Fe Kα emission line and a soft excess, which can be accounted for by either a partial-covering absorber with {N}{{H}}≈ {10}23 cm-2, which could be due to the inhomogeneous supergiant wind, or a blackbody component with {kT}={1.74}-0.05+0.04 keV and {R}{BB}≈ 0.3 km, which may originate from NS hot spots. Although neither explanation for the soft excess can be excluded, the former is more consistent with the properties observed in other supergiant HMXBs. We compare IGR J18214-1318 to other HMXBs that lack pulsations or have long pulsation periods beyond the range covered by our observations.

  11. The MiMeS survey of magnetism in massive stars: CNO surface abundances of Galactic O stars

    Science.gov (United States)

    Martins, F.; Hervé, A.; Bouret, J.-C.; Marcolino, W.; Wade, G. A.; Neiner, C.; Alecian, E.; Grunhut, J.; Petit, V.

    2015-03-01

    Context. The evolution of massive stars is still partly unconstrained. Mass, metallicity, mass loss, and rotation are the main drivers of stellar evolution. Binarity and the magnetic field may also significantly affect the fate of massive stars. Aims: Our goal is to investigate the evolution of single O stars in the Galaxy. Methods: For that, we used a sample of 74 objects comprising all luminosity classes and spectral types from O4 to O9.7. We relied on optical spectroscopy obtained in the context of the MiMeS survey of massive stars. We performed spectral modelling with the code CMFGEN. We determined the surface properties of the sample stars, with special emphasis on abundances of carbon, nitrogen, and oxygen. Results: Most of our sample stars have initial masses in the range of 20 to 50 M⊙. We show that nitrogen is more enriched and carbon and oxygen are more depleted in supergiants than in dwarfs, with giants showing intermediate degrees of mixing. CNO abundances are observed in the range of values predicted by nucleosynthesis through the CNO cycle. More massive stars, within a given luminosity class, appear to be more chemically enriched than lower mass stars. We compare our results with predictions of three types of evolutionary models and show that for two sets of models, 80% of our sample can be explained by stellar evolution including rotation. The effect of magnetism on surface abundances is unconstrained. Conclusions: Our study indicates that in the 20-50 M⊙ mass range, the surface chemical abundances of most single O stars in the Galaxy are fairly well accounted for by stellar evolution of rotating stars. Based on observations obtained at 1) the Telescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France; 2) at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut

  12. Measure of the stars

    Energy Technology Data Exchange (ETDEWEB)

    Henbest, N.

    1984-12-13

    The paper concerns the Hertzsprung-Russel (H-R) diagram, which is graph relating the brightness to the surface temperature of the stars. The diagram provides a deep insight into the fundamental properties of the stars. Evolution of the stars; the death of a star; distances; and dating star clusters, are all briefly discussed with reference to the H-R diagram.

  13. When stars collide

    NARCIS (Netherlands)

    Glebbeek, E.; Pols, O.R.

    2007-01-01

    When two stars collide and merge they form a new star that can stand out against the background population in a star cluster as a blue straggler. In so called collision runaways many stars can merge and may form a very massive star that eventually forms an intermediate mass blackhole. We have perfor

  14. High dispersion spectroscopy of two A supergiant systems in the Small Magellanic Cloud with novel properties

    CERN Document Server

    Mennickent, R E

    2010-01-01

    We present the results of a spectroscopic investigation of two novel variable bright blue stars in the SMC, OGLE004336.91-732637.7 (SMC-SC3) and the periodically occulted star OGLE004633.76-731204.3 (SMC-SC4), whose photometric properties were reported by Mennickent et al. (2010). High-resolution spectra in the optical and far-UV show that both objects are actually A + B type binaries. Three spectra of SMC-SC4 show radial velocity variations, consistent with the photometric period of 184.26 days found in Mennickent et al. 2010. The optical spectra of the metallic lines in both systems show combined absorption and emission components that imply that they are formed in a flattened envelope. A comparison of the radial velocity variations in SMC-SC4 and the separation of the V and R emission components in the Halpha emission profile indicate that this envelope, and probably also the envelope around SMC-SC3, is a circumbinary disk with a characteristic orbital radius some three times the radius of the binary syste...

  15. Circumstellar Dust Shells: Clues to the Evolution of R Coronae Borealis Stars

    Science.gov (United States)

    Montiel, Edward J.; Clayton, Geoffrey C.

    2016-06-01

    R Coronae Borealis (RCB) stars are an exotic group of extremely hydrogen- deficient, carbon-rich supergiants that are known for their spectacular declines in brightness (up to 8 mags) at irregular intervals. Two scenarios are currently competing to explain the origins of these stars. One suggests that RCB stars are the products after a binary white dwarf (WD) system merges. The other takes a single, evolved star and has it undergo a final, helium-shell flash (FF) and becoming a cool giant. Recently, observations of elemental abundances in RCB stars have strongly swung the argument in favor of the WD merger model. The FF scenario has maintained its relevancy by seemingly being the only model able to offer a suitable explanation for one RCB feature that merger model has historically struggled with explaining: the presence of cold, circumstellar dust envelopes which might be fossil planetary nebulae (PNe). In reality, the shells could actually be fossil PNe, material left over from the WD merger, or mass lost during the RCB phase, itself. I will present the results of my dissertation, which is to try and discern the nature and history of the far-IR dust shells around RCB stars to help understand the origin of these enigmatic stars. I will discuss our efforts to determine the mass, size, temperature, and morphology of these diffuse structures surrounding a sample of RCB stars using multi-wavelength observations ranging from the ultraviolet to the submillimeter. These observations have provided unprecedented wavelength coverage for both the central stars and their CSM. They have been examined by eye for morphology and have been used in the construction of maximum-light spectral energy distributions (SEDs). I will present the results of our Monte Carlo radiative transfer of the maximum-light SEDs. Finally, I will highlight our work investigating the HI abundance of the envelope of R Coronae Borealis, itself, using archival 21—cm observations from the Arecibo

  16. Constraints on the low-mass IMF in young super-star clusters in starburst galaxies

    Science.gov (United States)

    Greissl, Julia Jennifer

    2010-12-01

    As evidence for variations in the initial mass function (IMF) in nearby star forming regions remains elusive we are forced to expand our search to more extreme regions of star formation. Starburst galaxies, which contain massive young clusters have in the past been reported to have IMFs different than that characterizing the field star IMF. In this thesis we use high signal-to-noise near-infrared spectra to place constraints on the shape of the IMF in extreme regions of extragalactic star formation and also try to understand the star formation history in these regions. Through high signal-to-noise near-infrared spectra it is possible to directly detect low-mass PMS stars in unresolved young super-star clusters, using absorption features that trace cool stars. Combining Starburst99 and available PMS tracks it is then possible to constrain the IMF in young super-star clusters using a combination of absorption lines each tracing different ranges of stellar masses and comparing observed spectra to models. Our technique can provide a direct test of the universality of the IMF compared to the Milky Way. We have obtained high signal-to-noise H- and K-band spectra of two young super-star clusters in the starburst galaxies NGC 4039/39 and NGC 253 in order to constrain the low-mass IMF and star formation history in the clusters. The cluster in NGC 4038/39 shows signs of youth such as thermal radio emission and strong hydrogen emission lines as well as late-type absorption lines indicative of cool stars. The strength and ratio of these absorption lines cannot be reproduced through either late-type pre-main sequence stars or red supergiants alone. We interpret the spectrum as a superposition of two star clusters of different ages over the physical region of 90 pc our spectrum represents. One cluster is young (≤ 3 Myr) and is responsible for part of the late-type absorption features, which are due to PMS stars in the cluster, and the hydrogen emission lines. The second

  17. Primordial Core-Collapse Supernovae and the Chemical Abundances of Metal-Poor Stars

    CERN Document Server

    Joggerst, C C; Bell, J; Heger, Alexander; Whalen, Daniel; Woosley, S E

    2009-01-01

    The inclusion of rotationally-induced mixing in stellar evolution can alter the structure and composition of presupernova stars. We survey the effects of progenitor rotation on nucleosynthetic yields in Population III and II supernovae using the new adaptive mesh refinement (AMR) code CASTRO. We examine spherical explosions in 15, 25 and 40 solar mass stars at Z = 0 and 10^-4 solar metallicity with three explosion energies and two rotation rates. Rotation in the Z = 0 models resulted in primary nitrogen production and a stronger hydrogen burning shell which led all models to die as red supergiants. On the other hand, the Z=10^-4 solar metallicity models that included rotation ended their lives as compact blue stars. Because of their extended structure, the hydrodynamics favors more mixing and less fallback in the metal free stars than the Z = 10^-4 models. As expected, higher energy explosions produce more enrichment and less fallback than do lower energy explosions, and less massive stars produce more enrich...

  18. Low-metallicity massive single stars with rotation. Evolutionary models applicable to I Zwicky 18

    CERN Document Server

    Szécsi, D; Yoon, S -C; Sanyal, D; de Mink, S; Evans, C J; Dermine, T

    2015-01-01

    Massive rotating single stars with an initial metal composition appropriate for the dwarf galaxy I Zw 18 ([Fe/H]=$-$1.7) are modelled during hydrogen burning for initial masses of 9-300 M$_{\\odot}$ and rotational velocities of 0-900 km s$^{-1}$. Internal mixing processes in these models were calibrated based on an observed sample of OB-type stars in the Magellanic Clouds. Even moderately fast rotators, which may be abundant at this metallicity, are found to undergo efficient mixing induced by rotation resulting in quasi chemically-homogeneous evolution. These homogeneously-evolving models reach effective temperatures of up to 90 kK during core hydrogen burning. This, together with their moderate mass-loss rates, make them Transparent Wind Ultraviolet INtense stars (TWUIN star), and their expected numbers might explain the observed HeII ionizing photon flux in I Zw 18 and other low-metallicity HeII galaxies. Our slowly rotating stars above $\\sim$80 M$_{\\odot}$ evolve into late B- to M-type supergiants during c...

  19. The Two Young Star Disks in the Central Parsec of the Galaxy: Properties, Dynamics and Formation

    CERN Document Server

    Paumard, T; Alexander, T; Beloborodov, A M; Cuadra, J; Eisenhauer, F; Genzel, R; Gillessen, S; Levin, Y; Martins, F; Nayakshin, S; Ott, T; Sternberg, A; Trippe, S

    2006-01-01

    We report the definite spectroscopic identification of 41 OB supergiants, giants and main sequence stars in the central parsec of the Galaxy. Detection of their absorption lines have become possible with the high spatial and spectral resolution and sensitivity of the adaptive optics integral field spectrometer SPIFFI/SINFONI on the ESO VLT. Several of these OB stars appear to be helium and nitrogen rich. Almost all of the ~80 massive stars now known in the central parsec (central arcsecond excluded) reside in one of two somewhat thick (~0.14) rotating disks. These stellar disks have fairly sharp inner edges (R~1") and surface density profiles that scale as R^{-2}. We do not detect any OB stars outside the central 0.5 pc. The majority of the stars in the clockwise system appear to be on almost circular orbits, whereas most of those in the `counter-clockwise' disk appear to be on eccentric orbits. Based on its stellar surface density distribution and dynamics we propose that IRS 13E is an extremely dense cluste...

  20. Following the rapid evolution of the central star of the Stingray Nebula in real time

    Science.gov (United States)

    Reindl, Nicole

    2014-10-01

    SAO 244567 is an unusually fast evolving star. Within twenty years only, it has turned from a B-type supergiant into the central star of the Stingray nebula. Space and ground-based observations obtained over the last decades have revealed that its spectrum changes noticeably over just a few years, showing stellar evolution in real time. Previous analysis indicates it must be a low mass star and thus the observed fast evolution is in strong contradiction with canonical post-asymptotic giant branch (AGB) evolution. A late He-shell flash is able to account for the rapid evolution. This scenario would predict an evolution back to the AGB, e.g. a decrease of the effective temperature (which is already indicated by the FUSE observations in 2006) and an increase of luminosity. With COS spectroscopy we want to follow the evolution of the surface properties of SAO 244567 to verify this thesis. The very compact nebula of SAO 244567 makes it impossible to derive these parameters from optical spectra, because most of the photospheric lines are blended by nebular emission lines thus they are not suitable for a spectral analysis. The derived surface parameters will establish constraints for late thermal pulse evolutionary calculations. With these calculations we aim not only to explain the nature of SAO 244567, but they also will provide a deeper insight in the formation process of hydrogen deficient stars, which make up 25% of the post AGB-stars and white dwarfs.

  1. An ISO/SWS study of the dust composition around S stars

    CERN Document Server

    Hony, S; Molster, F J; Smolders, K

    2009-01-01

    We investigate the composition of the solid-state materials in the winds around S-type AGB stars. The S stars produce dust in their wind that bears a resemblance to the dust produced in some O-rich AGB stars. However, the reported resemblance is mostly based on IRAS/LRS spectra with limited spectral resolution, sensitivity, and wavelength coverage. We investigate the dust composition around S stars using ISO/SWS data that surpass the previous studies in terms of spectral resolution and wavelength coverage. We compare the dust spectra from the 9 sources with the O-rich AGB spectra and a subset of M super-giants. We constructed average dust emission spectra of the different categories. We report the discovery of several previously unreported dust emission features in the S star spectra. The long wavelength spectra of W Aql and pi1 Gru exhibit the "30" micrometer feature attributed to MgS. Two sources exhibit a series of emission bands between 20 and 40 micrometer that we tentatively ascribe to Diopside. We show...

  2. A search for new variable stars using digitized Moscow collection plates

    CERN Document Server

    Sokolovsky, Kirill; Kolesnikova, Daria; Lebedev, Alexandr; Samus, Nikolai; Sat, Lyudmila; Zubareva, Alexandra

    2014-01-01

    By digitizing astronomical photographic plates one may extract full information stored on them, something that could not be practically achieved with classical analogue methods. We are developing algorithms for variable objects search using digitized photographic images and apply them to 30cm (10x10 deg. field of view) plates obtained with the 40cm astrograph in 1940-90s and digitized with a flatbed scanner. Having more than 100 such plates per field, we conduct a census of high-amplitude (>0.3m) variable stars changing their brightness in the range 13stars. We estimate that 1.2 +/- 0.1% of all stars show easily-detectable light variations; 0.7 +/- 0.1% of the stars are eclipsing binaries (64 +/- 4% of them are EA type, 22 +/- 2% are EW type and 14 +/- 2% are EB type); 0.3 +/- 0.1% of the stars are red variable giants and supergiants of M, SR and L types.

  3. All Known Hot RCB Stars Are Fading Fast Over the Last Century

    CERN Document Server

    Schaefer, Bradley E

    2016-01-01

    The R Coronae Borealis (RCB) stars are cool supergiants that display irregular and deep dips in their light curves, caused by dust formation. There are four known hot RCB stars (DY Cen, MV Sgr, V348 Sgr, and HV 2671), with surface temperatures of 15,000--25,000 K, and prior work has suggested that three of these have secular fading in brightness. I have tested this result by measuring century-long light curves in the Johnson B-band with modern comparison star magnitudes, and I have extended this by measuring many magnitudes over a wide time range as well as for the fourth hot RCB star. In all four cases, the B-band magnitude of the maximum light is now fast fading. The fading rates (in units of magnitudes per century) are 2.5 for DY Cen after 1960, 1.3 for MV Sgr, 1.3 for V348 Sgr, and 0.7 for HV 2671. This secular fading is caused by the expected evolution of the star across the top of the HR diagram at constant luminosity, as the temperature rises and the bolometric correction changes. For DY Cen, the brigh...

  4. Search for aluminium monoxide in the winds of oxygen-rich AGB stars

    CERN Document Server

    De Beck, E; Ramstedt, S; Olofsson, H; Menten, K M; Patel, N A; Vlemmings, W H T

    2016-01-01

    Aluminium monoxide, AlO, is likely efficiently depleted from the gas around oxygen-rich evolved stars to form alumina clusters and dust seeds. Its presence in the extended atmospheres of evolved stars has been derived from optical spectroscopy. More recently, AlO gas was also detected at long wavelengths around the supergiant VY CMa and the oxygen-rich asymptotic giant branch (AGB) star o Cet (Mira A). In search of AlO, we mined data obtained with APEX, the IRAM 30m telescope, Herschel/HIFI, SMA, and ALMA, which were primarily aimed at studying other molecular species. We report here on observations of AlO towards a sample of eight oxygen-rich AGB stars in different rotational transitions, up to seven for some stars. We present definite detections of one rotational transition of AlO for o Cet and R Aqr, and tentative detections of one transition for R Dor and o Cet, and two for IK Tau and W Hya. The presented spectra of WX Psc, R Cas, and TX Cam show no signature of AlO. For o Cet, R Aqr, and IK Tau, we find ...

  5. The Magnetic Coupling of Chromospheres and Winds From Late Type Evolved Stars: Role of MHD Waves

    Science.gov (United States)

    Airapetian, Vladimir; Leake, James; Carpenter, Kenneth

    2015-08-01

    Stellar chromospheres and winds represent universal attributes of stars on the cool portion of H-R diagram. In this paper we derive observational constrains for the chromospheric heating and wind acceleration from cool evolved stars and examine the role of Alfven waves as a viable source of energy dissipation and momentum deposition. We use a 1.5D magnetohydrodynamic code with a generalized Ohm's law to study propagation of Alfven waves generated along a diverging magnetic field in a stellar photosphere at a single frequency. We demonstrate that due to inclusion of the effects of ion-neutral collisions in magnetized weakly ionized chromospheric plasma on resistivity and the appropriate grid resolution, the numerical resistivity becomes 1-2 orders of magnitude smaller than the physical resistivity. The motions introduced by non-linear transverse Alfven waves can explain non-thermally broadened and non-Gaussian profiles of optically thin UV lines forming in the stellar chromosphere of α Tau and other late-type giant and supergiant stars. The calculated heating rates in the stellar chromosphere model due to resistive (Joule) dissipation of electric currents on Pedersen resistivity are consistent with observational constraints on the net radiative losses in UV lines and the continuum from α Tau. At the top of the chromosphere, Alfven waves experience significant reflection, producing downward propagating transverse waves that interact with upward propagating waves and produce velocity shear in the chromosphere. Our simulations also suggest that momentum deposition by non-linear Alfven waves becomes significant in the outer chromosphere within 1 stellar radius from the photosphere that initiates a slow and massive winds from red giants and supergiants.

  6. The VLT-FLAMES Tarantula Survey X: Evidence for a bimodal distribution of rotational velocities for the single early B-type stars

    CERN Document Server

    Dufton, P L; Dunstall, P R; Evans, C J; Brott, I; de Mink, S E; Howarth, I D; Kennedy, M; McEvoy, C; Potter, A T; Ramírez-Agudelo, O H; Sana, H; Simón-Díaz, S; Taylor, W; Vink, J S

    2012-01-01

    Aims: Projected rotational velocities (\\vsini) have been estimated for 334 targets in the VLT-FLAMES Tarantula survey that do not manifest significant radial velocity variations and are not supergiants. They have spectral types from approximately O9.5 to B3. The estimates have been analysed to infer the underlying rotational velocity distribution, which is critical for understanding the evolution of massive stars. Methods: Projected rotational velocities were deduced from the Fourier transforms of spectral lines, with upper limits also being obtained from profile fitting. For the narrower lined stars, metal and non-diffuse helium lines were adopted, and for the broader lined stars, both non-diffuse and diffuse helium lines; the estimates obtained using the different sets of lines are in good agreement. The uncertainty in the mean estimates is typically 4% for most targets. The iterative deconvolution procedure of Lucy has been used to deduce the probability density distribution of the rotational velocities. R...

  7. Observational constraints for the circumstellar disk of the B[e] star CPD-52 9243

    Science.gov (United States)

    Cidale, L. S.; Borges Fernandes, M.; Andruchow, I.; Arias, M. L.; Kraus, M.; Chesneau, O.; Kanaan, S.; Curé, M.; de Wit, W. J.; Muratore, M. F.

    2012-12-01

    Context. The formation and evolution of gas and dust environments around B[e] supergiants are still open issues. Aims: We intend to study the geometry, kinematics and physical structure of the circumstellar environment (CE) of the B[e] supergiant CPD-52 9243 to provide further insights into the underlying mechanism causing the B[e] phenomenon. Methods: The influence of the different physical mechanisms acting on the CE (radiation pressure, rotation, bi-stability or tidal forces) is somehow reflected in the shape and kinematic properties of the gas and dust regions (flaring, Keplerian, accretion or outflowing disks). To investigate these processes we mainly used quasi-simultaneous observations taken with high spatial resolution optical long-baseline interferometry (VLTI/MIDI), near-IR spectroscopy of CO bandhead features (Gemini/Phoenix and VLT/CRIRES) and optical spectra (CASLEO/REOSC). Results: High angular resolution interferometric measurements obtained with VLTI/MIDI provide strong support for the presence of a dusty disk(ring)-like structure around CPD-52 9243, with an upper limit for its inner edge of ~8 mas (~27.5 AU, considering a distance of 3.44 kpc to the star). The disk has an inclination angle with respect to the line of sight of 46 ± 7°. The study of CO first overtone bandhead evidences a disk structure in Keplerian rotation. The optical spectrum indicates a rapid outflow in the polar direction. Conclusions: The IR emission (CO and warm dust) indicates Keplerian rotation in a circumstellar disk while the optical line transitions of various species are consistent with a polar wind. Both structures appear simultaneously and provide further evidence for the proposed paradigms of the mass-loss in supergiant B[e] stars. The presence of a detached cold CO ring around CPD-52 9243 could be due to a truncation of the inner disk caused by a companion, located possibly interior to the disk rim, clearing the center of the system. More spectroscopic and

  8. Three-micron spectroscopy of highly reddened field stars

    Science.gov (United States)

    Tapia, Mauricio; Persi, P.; Roth, M.; Ferrari-Toniolo, M.

    1989-01-01

    Broad absorption features centered at 3.45 microns and at 3.0-3.0 microns towards a number of late-type supergiants in the vicinity of the galactic center were repeatedly reported. Here, 2.0 to 2.5 and 3.0 to 4.0 micron spectra are presented for field late-type highly reddened (A sub V is approximately 17-27) stars located in different regions of the galactic plane more than 20 deg away from the galactic center direction. The observations, made with the 3.6, 2.2, and 1.0 m ESO telescopes at La Silla, Chile, consists of CVF spectra with resolution lambda/delta lambda is approximately or equal to 100 and IRSPEC spectra with resolution lambda/delta lambda is approximately or equal to 700. In the direction of the most highly reddened stars, definitive detections of the 3.45 and the 3.0 to 3.1 micron absorption features are reported. The 3.45 micron feature was attributed to absorption arising in a vibrational transition resulting from the C-H stretching in organic compounds, while the 3.0 to 3.1 micron broader feature are tentatively attributed to O-H bonds. The observations strongly support that the agent producing the 3.45 micron feature, presumably organic molecules, is an important component of the diffuse interstellar medium and is not characteristic only of the galactic center environment.

  9. X-ray diagnostics of massive star winds

    CERN Document Server

    Oskinova, Lidia

    2016-01-01

    Nearly all types of massive stars with radiatively driven stellar winds are X-ray sources that can be observed by the presently operating powerful X-ray telescopes. In this review I briefly address recent advances in our understanding of stellar winds obtained from X-ray observations. The winds of OB dwarfs with subtypes later than O9V may be predominantly in a hot phase, and X-ray observations offer the best window for their studies. The X-ray properties of OB supergiants are largely determined by the effects of radiative transfer in their clumped stellar winds. The recently suggested method to directly measure mass-loss rates of O stars by fitting the shapes of X-ray emission lines is considered but its validity cannot be confirmed. To obtain robust quantitative information on stellar wind parameters from X-ray spectroscopy, a multiwavelength analysis by means of stellar atmosphere models is required. Independent groups are now performing such analyses with encouraging results. Joint analyses of optical, UV...

  10. THE ROLE OF THE MAGNETOROTATIONAL INSTABILITY IN MASSIVE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, J. Craig [Department of Astronomy, University of Texas at Austin, Austin, TX (United States); Kagan, Daniel [Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Chatzopoulos, Emmanouil, E-mail: wheel@astro.as.utexas.edu [Department of Astronomy and Astrophysics and FLASH Center for Computational Science, University of Chicago, Chicago, IL 60637 (United States)

    2015-01-20

    The magnetorotational instability (MRI) is key to physics in accretion disks and is widely considered to play some role in massive star core collapse. Models of rotating massive stars naturally develop very strong shear at composition boundaries, a necessary condition for MRI instability, and the MRI is subject to triply diffusive destabilizing effects in radiative regions. We have used the MESA stellar evolution code to compute magnetic effects due to the Spruit-Tayler (ST) mechanism and the MRI, separately and together, in a sample of massive star models. We find that the MRI can be active in the later stages of massive star evolution, leading to mixing effects that are not captured in models that neglect the MRI. The MRI and related magnetorotational effects can move models of given zero-age main sequence mass across ''boundaries'' from degenerate CO cores to degenerate O/Ne/Mg cores and from degenerate O/Ne/Mg cores to iron cores, thus affecting the final evolution and the physics of core collapse. The MRI acting alone can slow the rotation of the inner core in general agreement with the observed ''initial'' rotation rates of pulsars. The MRI analysis suggests that localized fields ∼10{sup 12} G may exist at the boundary of the iron core. With both the ST and MRI mechanisms active in the 20 M {sub ☉} model, we find that the helium shell mixes entirely out into the envelope. Enhanced mixing could yield a population of yellow or even blue supergiant supernova progenitors that would not be standard SN IIP.

  11. All known hot RCB stars are fading fast over the last century

    Science.gov (United States)

    Schaefer, Bradley E.

    2016-08-01

    The R Coronae Borealis (RCB) stars are cool supergiants that display irregular and deep dips in their light curves, caused by dust formation. There are four known hot RCB stars (DY Cen, MV Sgr, V348 Sgr, and HV 2671), with surface temperatures of 15 000-25 000 K, and prior work has suggested that three of these have secular fading in brightness. I have tested this result by measuring century-long light curves in the Johnson B band with modern comparison star magnitudes, and I have extended this by measuring many magnitudes over a wide time range as well as for the fourth hot RCB star. In all four cases, the B band magnitude of the maximum light is now fast fading. The fading rates (in units of magnitudes per century) are 2.5 for DY Cen after 1960, 1.3 for MV Sgr, 1.3 for V348 Sgr, and 0.7 for HV 2671. This secular fading is caused by the expected evolution of the star across the top of the Hertzsprung-Russell (HR) diagram at constant luminosity, as the temperature rises and the bolometric correction changes. For DY Cen, the brightness at maximum light is rising from 1906 to 1932, and this is caused by the temperature increase from near 5800 to 7500 K. Before 1934, DY Cen had frequent dust dips, while after 1934 there are zero dust dips, so there is some apparent connection between the rising temperature and the formation of the dust. Thus, we have watched DY Cen evolve from an ordinary RCB star up to a hot RCB star and now appearing as an extreme helium star, all in under one century.

  12. The rapid evolution of the central star of the Stingray Nebula — latest news from the HST

    Science.gov (United States)

    Reindl, Nicole; Rauch, Thomas; Miller Bertolami, Marcelo M.; Werner, Klaus

    2016-07-01

    SAO 244567 is an unusually fast evolving star. Within twenty years only, it had turned from a B-type supergiant into the central star of the Stingray Nebula. Space- and ground-based observations obtained over the last decades have revealed that its spectrum changes noticeably over just a few years, showing stellar evolution in real time. The low mass of SAO 244567 is, however, in strong contradiction with canonical post-asymptotic giant branch evolution. Thus, its fast evolution has been a mystery for decades. We present preliminary results of the non-LTE spectral analyis of the recently obtained HST/COS observations, which finally allow us to shed light on the evolutionary history of this extraordinary object.

  13. High resolution spectral survey of symbiotic stars in the near-IR over the GAIA wavelength range

    CERN Document Server

    Marrese, P M; Munari, U; Marrese, Paola M.; Sordo, Rosanna; Munari, Ulisse

    2002-01-01

    High resolution (R~20,000), high signal-to-noise (S/N~100) spectra were collected for ~40 symbiotic stars with the Asiago echelle spectrograph over the same 8480-8740 Ang wavelength range covered by the ESA Cornerstone mission GAIA, centered on the near-IR CaII triplet and the head of the Paschen series. A large number (~140) of cool MKK giant and supergiant templates were observed with the same instrumentation to serve as a reference and classification grid. The spectra offer bright prospects in classifying and addressing the nature of the cool component of symbiotic stars (deriving T(eff), log g, [Fe/H], [alpha/Fe], V(rot)sin i both via MDM-like methods and syntetic atmosphere modeling) and mapping the physical condition and kinematics of the gas regions responsible for the emission lines.

  14. Can strange stars mimic dark energy stars?

    CERN Document Server

    Deb, Debabrata; Guha, B K; Ray, Saibal

    2016-01-01

    The possibility of strange stars mixed with dark energy to be one of candidates for dark energy stars is the main issue of the present study. Our investigation shows that quark matter is acting as dark energy after certain yet unknown critical condition inside the quark stars. Our proposed model reveals that strange stars mixed with dark energy feature not only a physically acceptable stable model but also mimic characteristics of dark energy stars. The plausible connections are shown through the mass-radius relation as well as the entropy and temperature. We particulary note that two-fluid distribution is the major reason for anisotropic nature of the spherical stellar system.

  15. The XMM Newton and INTEGRAL observations of the supergiant fast X-ray transient IGR J16328-4726

    CERN Document Server

    Fiocchi, M; Natalucci, L; Ubertini, P; Sguera, V; Bird, A J; Boon, C M; Persi, P; Piro, L

    2016-01-01

    The accretion mechanism producing the short flares observed from the Supergiant Fast X-ray Transients (SFXT) is still highly debated and forms a major part in our attempts to place these X-ray binaries in the wider context of the High Mass X-ray Binaries. We report on a 216 ks INTEGRAL observation of the SFXT IGR J16328-4726 (August 24-27, 2014) simultaneous with two fixed-time observations with XMM Newton (33ks and 20ks) performed around the putative periastron passage, in order to investigate the accretion regime and the wind properties during this orbital phase. During these observations, the source has shown luminosity variations, from 4x10^{34} erg/s to 10^{36} erg/s, linked to spectral properties changes. The soft X-ray continuum is well modeled by a power law with a photon index varying from 1.2 up to 1.7 and with high values of the column density in the range 2-4x10^{23}/cm^2. We report on the presence of iron lines at 6.8-7.1 keV suggesting that the X-ray flux is produced by accretion of matter from ...

  16. Spectral and temporal properties of the supergiant fast X-ray transient IGR J18483-0311 observed by INTEGRAL

    CERN Document Server

    Ducci, L; Sasaki, M; Santangelo, A; Esposito, P; Romano, P; Vercellone, S

    2013-01-01

    IGR J18483-0311 is a supergiant fast X-ray transient whose compact object is located in a wide (18.5 d) and eccentric (e~0.4) orbit, which shows sporadic outbursts that reach X-ray luminosities of ~1e36 erg/s. We investigated the timing properties of IGR J18483-0311 and studied the spectra during bright outbursts by fitting physical models based on thermal and bulk Comptonization processes for accreting compact objects. We analysed archival INTEGRAL data collected in the period 2003-2010, focusing on the observations with IGR J18483-0311 in outburst. We searched for pulsations in the INTEGRAL light curves of each outburst. We took advantage of the broadband observing capability of INTEGRAL for the spectral analysis. We observed 15 outbursts, seven of which we report here for the first time. This data analysis almost doubles the statistics of flares of this binary system detected by INTEGRAL. A refined timing analysis did not reveal a significant periodicity in the INTEGRAL observation where a ~21s pulsation w...

  17. CHARA/MIRC observations of two M supergiants in Perseus OB1: Temperature, bayesian modeling, and compressed sensing imaging

    Energy Technology Data Exchange (ETDEWEB)

    Baron, F.; Monnier, J. D.; Anderson, M.; Aarnio, A. [Department of Astronomy, University of Michigan, 918 Dennison Building, Ann Arbor, MI 48109-1090 (United States); Kiss, L. L. [Sydney Institute for Astrophysics, School of Physics, University of Sydney, NSW 2006 (Australia); Neilson, H. R. [Department of Physics and Astronomy, East Tennessee State University, Box 70652, Johnson City, TN 37614 (United States); Zhao, M. [Department of Astronomy and Astrophysics, Penn State University, University Park, PA 16802 (United States); Pedretti, E.; Thureau, N. [Department of Physics and Astronomy, University of St. Andrews (United Kingdom); Ten Brummelaar, T. A.; Sturmann, J.; Sturmann, L.; Turner, N. [The CHARA Array, Georgia State University, P.O. Box 3965, Atlanta, GA 30302-3965 (United States); Ridgway, S. T. [National Optical Astronomy Observatory, Tucson, AZ 85726-6732 (United States); McAlister, H. A., E-mail: baron@phy-astr.gsu.edu [CHARA and Department of Physics and Astronomy, Georgia State University, P. O. Box 4106, Atlanta, GA 30302-4106 (United States)

    2014-04-10

    Two red supergiants (RSGs) of the Per OB1 association, RS Per and T Per, have been observed in the H band using the Michigan Infra-Red Combiner (MIRC) instrument at the CHARA array. The data show clear evidence of a departure from circular symmetry. We present here new techniques specially developed to analyze such cases, based on state-of-the-art statistical frameworks. The stellar surfaces are first modeled as limb-darkened disks based on SATLAS models that fit both MIRC interferometric data and publicly available spectrophotometric data. Bayesian model selection is then used to determine the most probable number of spots. The effective surface temperatures are also determined and give further support to the recently derived hotter temperature scales of RSGs. The stellar surfaces are reconstructed by our model-independent imaging code SQUEEZE, making use of its novel regularizer based on Compressed Sensing theory. We find excellent agreement between the model-selection results and the reconstructions. Our results provide evidence for the presence of near-infrared spots representing about 3%-5% of the stellar flux.

  18. The wind speeds, dust content, and mass-loss rates of evolved AGB and RSG stars at varying metallicity

    CERN Document Server

    Goldman, Steven R; Zijlstra, Albert A; Green, James A; Wood, Peter R; Nanni, Ambra; Imai, Hiroshi; Whitelock, Patricia A; Matsuura, Mikako; Groenewegen, Martin A T; Gómez, José F

    2016-01-01

    We present the results of our survey of 1612 MHz circumstellar OH maser emission from asymptotic giant branch (AGB) stars and red supergiants (RSGs) in the Large Magellanic Cloud. We have discovered four new circumstellar maser sources in the LMC, and increased the number of reliable wind speeds from IR stars in the LMC from 5 to 13. Using our new wind speeds, as well as those from Galactic sources, we have derived an updated relation for dust driven winds: $v_{exp} \\propto Z L^{0.4}$. We compare the sub-solar metallicity LMC OH/IR stars with carefully selected samples of more metal-rich OH/IR stars, also at known distances, in the Galactic Centre and Galactic Bulge. For 8 of the Bulge stars we derive pulsation periods for the first time, using near-IR photometry from the VVV survey. We have modeled our LMC OH/IR stars and developed an empirical method of deriving gas-to-dust ratios and mass loss rates by scaling the models to the results from maser profiles. We have done this also for samples in the Galactic...

  19. The IACOB project: III. New observational clues to understand macroturbulent broadening in massive O- and B-type stars

    CERN Document Server

    Simón-Díaz, S; Castro, N; Herrero, A; Aerts, C; Puls, J; Telting, J; Grassitelli, L

    2016-01-01

    We aim to provide new empirical clues about macroturbulent spectral line broadening in O- and B-type stars to evaluate its physical origin. We use high-resolution spectra of ~430 stars with spectral types in the range O4-B9 (all luminosity classes). We characterize the line-broadening of adequate diagnostic metal lines using a combined FT and GOF technique. We perform a quantitative spectroscopic analysis of the whole sample using automatic tools coupled with a huge grid of FASTWIND models. We also incorporate quantitative information about line asymmetries to our observational description of the characteristics of the line-profiles, and present a comparison of the shape and type of line-profile variability found in a small sample of O stars and B supergiants with still undefined pulsational properties and B main sequence stars with variable line-profiles. We present a homogeneous and statistically significant overview of the (single snapshot) line-broadening properties of stars in the whole O and B star doma...

  20. Lifestyles of the Stars.

    Science.gov (United States)

    National Aeronautics and Space Administration, Cocoa Beach, FL. John F. Kennedy Space Center.

    Some general information on stars is provided in this National Aeronautics and Space Administration pamphlet. Topic areas briefly discussed are: (1) the birth of a star; (2) main sequence stars; (3) red giants; (4) white dwarfs; (5) neutron stars; (6) supernovae; (7) pulsars; and (8) black holes. (JN)

  1. 28 SiO v=0 J=1-0 emission from evolved stars

    CERN Document Server

    de Vicente, P; Díaz-Pulido, A; Albo, C; Alcolea, J; Barcia, A; Barbas, L; Bolaño, R; Colomer, F; Diez, M C; Gallego, J D; Gómez-González, J; López-Fernández, I; López-Fernández, J A; López-Pérez, J A; Malo, I; Moreno, A; Patino, M; Serna, J M; Tercero, F; Vaquero, B

    2016-01-01

    Observations of 28SiO v=0 J=1-0 line emission (7-mm wavelength) from AGB stars show in some cases peculiar profiles, composed of a central intense component plus a wider plateau. Very similar profiles have been observed in CO lines from some AGB stars and most post-AGB nebulae and, in these cases, they are clearly associated with the presence of conspicuous axial symmetry and bipolar dynamics. We present systematic observations of 28SiO v=0 J=1-0 emission in 28 evolved stars, performed with the 40~m radio telescope of the IGN in Yebes, Spain. We find that the composite core plus plateau profiles are almost always present in O-rich Miras, OH/IR stars, and red supergiants. They are also found in one S-type Mira ($\\chi$ Cyg), as well as in two semiregular variables (X Her and RS Cnc) that are known to show axial symmetry. In the other objects, the profiles are simpler and similar to those of other molecular lines. The composite structure appears in the objects in which SiO emission is thought to come from the ve...

  2. Spitzer SAGE survey of the Large Magellanic Cloud II : Evolved Stars and Infrared Color Magnitude Diagrams

    CERN Document Server

    Blum, R D; Olsen, K A; Frogel, J A; Werner, M; Meixner, M; Markwick-Kemper, F; Indebetouw, R; Whitney, B; Meade, M; Babler, B; Churchwell, E B; Gordon, K; Engelbracht, C W; Misselt, K; Vijh, U; Leitherer, C; Volk, K; Points, S; Reach, W; Hora, J L; Bernard, J P; Boulanger, F; Bracker, S; Cohen, M; Fukui, Y; Gallagher, J; Gorjian, V; Harris, J; Kelly, D; Kawamura, A; Latter, W B; Madden, S; Mizuno, A; Mizuno, N; Nota, A; Oey, M S; Onishi, T; Paladini, R; Panagia, N; Perez-Gonzalez, P; Shibai, H; Sato, S; Smith, L; Staveley-Smith, L; Tielens, A G G M; Ueta, T; Van Dyk, S D; Zaritsky, D

    2006-01-01

    Color-magnitude diagrams (CMDs) are presented for the Spitzer SAGE (Surveying the Agents of a Galaxy's Evolution) survey of the Large Magellanic Cloud (LMC). IRAC and MIPS 24 um epoch one data are presented. These data represent the deepest, widest mid-infrared CMDs of their kind ever produced in the LMC. Combined with the 2MASS survey, the diagrams are used to delineate the evolved stellar populations in the Large Magellanic Cloud as well as Galactic foreground and extragalactic background populations. Some 32000 evolved stars brighter than the tip of the red giant branch are identified. Of these, approximately 17500 are classified as oxygen-rich, 7000 carbon-rich, and another 1200 as ``extreme'' asymptotic giant branch (AGB) stars. Brighter members of the latter group have been called ``obscured'' AGB stars in the literature owing to their dusty circumstellar envelopes. A large number (1200) of luminous oxygen--rich AGB stars/M supergiants are also identified. Finally, there is strong evidence from the 24 u...

  3. The magnetic field around late-type stars revealed by the circumstellar H2O masers

    CERN Document Server

    Vlemmings, W H T; Diamond, P J

    2005-01-01

    Through polarization observations, circumstellar masers are excellent probes of the magnetic field in the envelopes of late-type stars. Whereas observations of the polarization of the SiO masers close to the star and on the OH masers much further out were fairly commonplace, observations of the magnetic field strength in the intermediate density and temperature region where the 22 GHz water masers occur have only recently become possible. Here we present the analysis of the circular polarization, due to Zeeman splitting, of the water masers around the Mira variable stars U Her and U Ori and the supergiant VX Sgr. We present an upper limit of the field around U Her that is lower but consistent with previous measurements, reflecting possible changes in the circumstellar envelope. The field strengths around U Ori and VX Sgr are shown to be of the order of several Gauss. Moreover, we show for the first time that large scale magnetic fields permeate the circumstellar envelopes of an evolved star; the polarization ...

  4. The Cambridge Double Star Atlas

    Science.gov (United States)

    MacEvoy, Bruce; Tirion, Wil

    2015-12-01

    Preface; What are double stars?; The binary orbit; Double star dynamics; Stellar mass and the binary life cycle; The double star population; Detecting double stars; Double star catalogs; Telescope optics; Preparing to observe; Helpful accessories; Viewing challenges; Next steps; Appendices: target list; Useful formulas; Double star orbits; Double star catalogs; The Greek alphabet.

  5. Galex and Pan-STARRS1 Discovery of SN IIP 2010aq: The First Few Days After Shock Breakout in a Red Supergiant Star

    Science.gov (United States)

    2010-09-01

    Colgate 1974; Falk 1978; Klein & Chevalier 1978; Matzner & McKee 1999). The duration of this radiative precursor in the UV/X-rays is smeared out by light...Chevalier, R. A., & Fransson, C. 2008, ApJ, 683, L135 Colgate , S. A. 1974, ApJ, 187, 333 Couch, S. M., Wheeler, J. C., & Milosavljevic, M. 2009, ApJ, 696

  6. The R136 star cluster dissected with Hubble Space Telescope/STIS. I. Far-ultraviolet spectroscopic census and the origin of HeII 1640 in young star clusters

    CERN Document Server

    Crowther, Paul A; Bostroem, K A; Apellaniz, J Maiz; Schneider, F R N; Walborn, N R; Angus, C R; Brott, I; Bonanos, A; de Koter, A; de Mink, S E; Evans, C J; Grafener, G; Herrero, A; Howarth, I D; Langer, N; Lennon, D J; Puls, J; Sana, H; Vink, J S

    2016-01-01

    We introduce a HST/STIS stellar census of R136a, the central ionizing star cluster of 30 Doradus. We present low resolution far-ultraviolet STIS/MAMA spectroscopy of R136 using 17 contiguous 52x0.2 arcsec slits which together provide complete coverage of the central 0.85 parsec (3.4 arcsec). We provide spectral types of 90% of the 57 sources brighter than m_F555W = 16.0 mag within a radius of 0.5 parsec of R136a1, plus 8 additional nearby sources including R136b (O4\\,If/WN8). We measure wind velocities for 52 early-type stars from CIV 1548-51, including 16 O2-3 stars. For the first time we spectroscopically classify all Weigelt & Baier members of R136a, which comprise three WN5 stars (a1-a3), two O supergiants (a5-a6) and three early O dwarfs (a4, a7, a8). A complete Hertzsprung-Russell diagram for the most massive O stars in R136 is provided, from which we obtain a cluster age of 1.5+0.3_-0.7 Myr. In addition, we discuss the integrated ultraviolet spectrum of R136, and highlight the central role played b...

  7. Cool Stars in the Hertzsprung-Russell Diagram

    CERN Document Server

    van Loon, Jacco Th

    2015-01-01

    As the opening review to the focus meeting ``Stellar Behemoths: Red Supergiants across the Local Universe'', I here provide a brief introduction to red supergiants, setting the stage for subsequent contributions. I highlight some recent activity in the field, and identify areas of progress, areas where progress is needed, and how such progress might be achieved.

  8. A Bake-Off Between CMFGEN and FASTWIND: Modeling the Physical Properties of SMC and LMC O-type Stars

    CERN Document Server

    Massey, Philip; Hillier, D John; Puls, Joachim

    2013-01-01

    The model atmosphere programs FASTWIND and CMFGEN are both elegantly designed to perform non-LTE analyses of the spectra of hot massive stars, and include sphericity and mass-loss. The two codes differ primarily in their approach towards line blanketing, with CMFGEN treating all of the lines in the co-moving frame and FASTWIND taking an approximate approach which speeds up execution times considerably. Although both have been extensively used to model the spectra of O-type stars, no studies have used the codes to independently model the same spectra of the same stars and compare the derived physical properties. We perform this task on ten O-type stars in the Magellanic Clouds. For the late-type O supergiants, both CMFGEN and FASTWIND have trouble fitting some of the He I lines, and we discuss causes and cures. We find that there is no difference in the average effective temperatures found by the two codes for the stars in our sample, although the dispersion is large, due primarily to the various difficulties ...

  9. ENERGY STAR Certified Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Boilers that are effective as of October 1,...

  10. ENERGY STAR Certified Furnaces

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Furnaces that are effective as of February 1,...

  11. ENERGY STAR Certified Computers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 6.1 ENERGY STAR Program Requirements for Computers that are effective as of June 2, 2014....

  12. Autonomous Star Tracker Algorithms

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Kilsgaard, Søren

    1998-01-01

    Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances.......Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances....

  13. Star operations and Pullbacks

    OpenAIRE

    Fontana, Marco; Park, Mi Hee

    2003-01-01

    In this paper we study the star operations on a pullback of integral domains. In particular, we characterize the star operations of a domain arising from a pullback of ``a general type'' by introducing new techniques for ``projecting'' and ``lifting'' star operations under surjective homomorphisms of integral domains. We study the transfer in a pullback (or with respect to a surjective homomorphism) of some relevant classes or distinguished properties of star operations such as $v-, t-, w-, b...

  14. Estimation of Mass-Loss Rates from Emission Line Profiles in the UV Spectra of Cool Stars

    Science.gov (United States)

    Carpenter, K. G.; Robinson, R. D.; Harper, G. M.

    1999-01-01

    The photon-scattering winds of cool, low-gravity stars (K-M giants and supergiants) produce absorption features in the strong chromospheric emission lines. This provides us with an opportunity to assess important parameters of the wind, including flow and turbulent velocities, the optical depth of the wind above the region of photon creation, and the star's mass-loss rate. We have used the Lamers et al. Sobolev with Exact Integration (SEI) radiative transfer code along with simple models of the outer atmospheric structure to compute synthetic line profiles for comparison with the observed line profiles. The SEI code has the advantage of being computationally fast and allows a great number of possible wind models to be examined. We therefore use it here to obtain initial first-order estimates of the wind parameters. More sophisticated, but more time-consuming and resource intensive calculations will be performed at a later date, using the SEI-deduced wind parameters as a starting point. A comparison of the profiles over a range of wind velocity laws, turbulence values, and line opacities allows us to constrain the wind parameters, and to estimate the mass-loss rates. We have applied this analysis technique (using lines of Mg II, 0 I, and Fe II) so far to four stars: the normal K5-giant alpha Tau, the hybrid K-giant gamma Dra, the K5 supergiant lambda Vel, and the M-giant gamma Cru. We present in this paper a description of the technique, including the assumptions which go into its use, an assessment of its robustness, and the results of our analysis.

  15. Covering tree with stars

    DEFF Research Database (Denmark)

    Baumbach, Jan; Guo, Jian-Ying; Ibragimov, Rashid

    2013-01-01

    We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting ...

  16. Covering tree with stars

    DEFF Research Database (Denmark)

    Baumbach, Jan; Guo, Jiong; Ibragimov, Rashid

    2015-01-01

    We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting ...

  17. Magnetism in massive stars

    NARCIS (Netherlands)

    Henrichs, H.F.

    2012-01-01

    Stars with mass more than 8 solar masses end their lives as neutron stars, which we mostly observe as highly magnetized objects. Where does this magnetic field come from? Such a field could be formed during the collapse, or is a (modified) remnant of a fossil field since the birth of the star, or ot

  18. Managing the star performer.

    Science.gov (United States)

    Hills, Laura

    2013-01-01

    Our culture seems to be endlessly fascinated with its stars in entertainment, athletics, politics, and business, and holds fast to the idea that extraordinary talent accounts for an individual's extraordinary performance. At first glance, managing a star performer in your medical practice may seem like it would be an easy task. However, there's much more to managing a star performer than many practice managers realize. The concern is how to keep the star performer happy and functioning at a high level without detriment to the rest of the medical practice team. This article offers tips for practice managers who manage star performers. It explores ways to keep the star performer motivated, while at the same time helping the star performer to meld into the existing medical practice team. This article suggests strategies for redefining the star performer's role, for holding the star performer accountable for his or her behavior, and for coaching the star performer. Finally, this article offers practical tips for keeping the star performer during trying times, for identifying and cultivating new star performers, and for managing medical practice prima donnas.

  19. America's Star Libraries

    Science.gov (United States)

    Lyons, Ray; Lance, Keith Curry

    2009-01-01

    "Library Journal"'s new national rating of public libraries, the "LJ" Index of Public Library Service, identifies 256 "star" libraries. It rates 7,115 public libraries. The top libraries in each group get five, four, or three Michelin guide-like stars. All included libraries, stars or not, can use their scores to learn from their peers and improve…

  20. America's Star Libraries

    Science.gov (United States)

    Lyons, Ray; Lance, Keith Curry

    2009-01-01

    "Library Journal"'s new national rating of public libraries, the "LJ" Index of Public Library Service, identifies 256 "star" libraries. It rates 7,115 public libraries. The top libraries in each group get five, four, or three Michelin guide-like stars. All included libraries, stars or not, can use their scores to learn from their peers and improve…

  1. To rescue a star

    OpenAIRE

    1996-01-01

    Massless neutrinos are exchanged in a neutron star, leading to long range interactions. Many body forces of this type follow and we resum them. Their net contribution to the total energy is negligible as compared to the star mass. The stability of the star is not in danger, contrary to recent assertions.

  2. New OB star candidates in the Carina Arm around Westerlund 2 from VPHAS+

    Science.gov (United States)

    Mohr-Smith, M.; Drew, J. E.; Barentsen, G.; Wright, N. J.; Napiwotzki, R.; Corradi, R. L. M.; Eislöffel, J.; Groot, P.; Kalari, V.; Parker, Q. A.; Raddi, R.; Sale, S. E.; Unruh, Y. C.; Vink, J. S.; Wesson, R.

    2015-07-01

    O and early B stars are at the apex of galactic ecology, but in the Milky Way, only a minority of them may yet have been identified. We present the results of a pilot study to select and parametrize OB star candidates in the Southern Galactic plane, down to a limiting magnitude of g = 20. A 2 deg2 field capturing the Carina Arm around the young massive star cluster, Westerlund 2, is examined. The confirmed OB stars in this cluster are used to validate our identification method, based on selection from the (u - g, g - r) diagram for the region. Our Markov Chain Monte Carlo fitting method combines VPHAS+ u, g, r, i with published J, H, K photometry in order to derive posterior probability distributions of the stellar parameters log (Teff) and distance modulus, together with the reddening parameters A0 and RV. The stellar parameters are sufficient to confirm OB status while the reddening parameters are determined to a precision of σ(A0) ˜ 0.09 and σ(RV) ˜ 0.08. There are 489 objects that fit well as new OB candidates, earlier than ˜B2. This total includes 74 probable massive O stars, 5 likely blue supergiants and 32 reddened subdwarfs. This increases the number of previously known and candidate OB stars in the region by nearly a factor of 10. Most of the new objects are likely to be at distances between 3 and 6 kpc. We have confirmed the results of previous studies that, at these longer distances, these sight lines require non-standard reddening laws with 3.5 < RV < 4.

  3. Are Ultra-long Gamma-Ray Bursts Caused by Blue Supergiant Collapsars, Newborn Magnetars, or White Dwarf Tidal Disruption Events?

    CERN Document Server

    Ioka, Kunihito; Piran, Tsvi

    2016-01-01

    Ultra-long gamma-ray bursts (ulGRBs) are a new population of GRBs with an extreme duration $\\sim 10^{4}$ s. Leading candidates for their origin are blue supergiant Collapsars, magnetars, and white dwarf tidal disruption events (WD-TDEs) by massive black holes (BHs). Recent observations of supernova-like (SN-like) bumps associated with ulGRBs challenged both the WD-TDE and the blue supergiant models because of the detection of SNe and the absence of hydrogen lines, respectively. We propose that WD-TDEs can accommodate the observed SN-like bumps if the fallback WD matter releases energy into the unbound WD ejecta. The observed ejecta energy, luminosity, and velocity are explained by the gravitational energy, Eddington luminosity, and escape velocity of the formed accretion disk, respectively. We also show that the observed X-rays can ionize the ejecta, eliminating lines. The SN-like light curves (SN 2011kl) for the ulGRB 111209A are consistent with all three models, although a magnetar model is unnatural in whi...

  4. Are Ultra-long Gamma-Ray Bursts Caused by Blue Supergiant Collapsars, Newborn Magnetars, or White Dwarf Tidal Disruption Events?

    Science.gov (United States)

    Ioka, Kunihito; Hotokezaka, Kenta; Piran, Tsvi

    2016-12-01

    Ultra-long gamma-ray bursts (ulGRBs) are a new population of GRBs with extreme durations of ∼104 s. Leading candidates for their origin are blue supergiant collapsars, magnetars, and white dwarf tidal disruption events (WD-TDEs) caused by massive black holes (BHs). Recent observations of supernova-like (SN-like) bumps associated with ulGRBs challenged both the WD-TDE and the blue supergiant models because of the detection of SNe and the absence of hydrogen lines, respectively. We propose that WD-TDEs can accommodate the observed SN-like bumps if the fallback WD matter releases energy into the unbound WD ejecta. The observed ejecta energy, luminosity, and velocity are explained by the gravitational energy, Eddington luminosity, and escape velocity of the formed accretion disk, respectively. We also show that the observed X-rays can ionize the ejecta, eliminating lines. The SN-like light curves (SN 2011kl) for the ulGRB 111209A are consistent with all three models, although a magnetar model is unnatural because the spin-down time required to power the SN-like bump is a hundred times longer than the GRB. Our results imply that TDEs are a possible energy source for SN-like events in general and for ulGRBs in particular.

  5. The Supergiant Fast X-ray Transient with the shortest orbital period: Suzaku observes one orbit in IGRJ16479-4514

    CERN Document Server

    Sidoli, L; Sguera, V; Bodaghee, A; Tomsick, J A; Pottschmidt, K; Rodriguez, J; Romano, P; Wilms, J

    2013-01-01

    The eclipsing hard X-ray source IGR J16479-4514 is the Supergiant Fast X-ray Transient (SFXT) with the shortest orbital period (3.32 days). This allowed us to perform a 250 ks long X-ray observation with Suzaku in 2012 February, covering most of its orbit, including the eclipse egress. Outside the eclipse, the source luminosity is around a few 1E34erg/s. The X-ray spectrum can be fit with an absorbed power law together with a neutral iron emission line at 6.4 keV. The column density is constant at 1E23 cm-2 outside the X-ray eclipse. During the eclipse it is lower, consistent with a scattering origin for the low X-ray emission during the eclipse by the supergiant companion wind. The scattered X-ray emission during the X-ray eclipse is used to directly probe the density of the companion wind at the orbital separation, resulting in 7E-14 g/cm3, which translates into a ratio Mdot_w/v_terminal = 7E-17 solar masses/km of the wind mass loss rate to the wind terminal velocity. This ratio, assuming reasonable termina...

  6. THE DUST BUDGET OF THE SMALL MAGELLANIC CLOUD: ARE ASYMPTOTIC GIANT BRANCH STARS THE PRIMARY DUST SOURCE AT LOW METALLICITY?

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, M. L.; Gordon, K. D.; Meixner, M.; Sargent, B. A. [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Srinivasan, S. [UPMC-CNRS UMR7095, Institut d' Astrophysique de Paris, F-75014 Paris (France); Riebel, D. [Department of Physics and Astronomy, The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); McDonald, I. [Jodrell Bank Centre for Astrophysics, Alan Turing Building, University of Manchester, Manchester M13 9PL (United Kingdom); Van Loon, J. Th. [Astrophysics Group, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom); Clayton, G. C. [Department of Physics and Astronomy, Louisiana State University, 233-A Nicholson Hall, Tower Dr., Baton Rouge, LA 70803-4001 (United States); Sloan, G. C., E-mail: mboyer@stsci.edu [Astronomy Department, Cornell University, Ithaca, NY 14853-6801 (United States)

    2012-03-20

    We estimate the total dust input from the cool evolved stars in the Small Magellanic Cloud, using the 8 {mu}m excess emission as a proxy for the dust-production rate (DPR). We find that asymptotic giant branch (AGB) and red supergiant (RSG) stars produce (8.6-9.5) Multiplication-Sign 10{sup -7} M{sub Sun} yr{sup -1} of dust, depending on the fraction of far-infrared sources that belong to the evolved star population (with 10%-50% uncertainty in individual DPRs). RSGs contribute the least (<4%), while carbon-rich AGB stars (especially the so-called extreme AGB stars) account for 87%-89% of the total dust input from cool evolved stars. We also estimate the dust input from hot stars and supernovae (SNe), and find that if SNe produce 10{sup -3} M{sub Sun} of dust each, then the total SN dust input and AGB input are roughly equivalent. We consider several scenarios of SN dust production and destruction and find that the interstellar medium (ISM) dust can be accounted for solely by stellar sources if all SNe produce dust in the quantities seen around the dustiest examples and if most SNe explode in dense regions where much of the ISM dust is shielded from the shocks. We find that AGB stars contribute only 2.1% of the ISM dust. Without a net positive contribution from SNe to the dust budget, this suggests that dust must grow in the ISM or be formed by another unknown mechanism.

  7. Nuclear physics of stars

    CERN Document Server

    Iliadis, Christian

    2015-01-01

    Most elements are synthesized, or ""cooked"", by thermonuclear reactions in stars. The newly formed elements are released into the interstellar medium during a star's lifetime, and are subsequently incorporated into a new generation of stars, into the planets that form around the stars, and into the life forms that originate on the planets. Moreover, the energy we depend on for life originates from nuclear reactions that occur at the center of the Sun. Synthesis of the elements and nuclear energy production in stars are the topics of nuclear astrophysics, which is the subject of this book

  8. Magnetic chemically peculiar stars

    CERN Document Server

    Schöller, Markus

    2015-01-01

    Chemically peculiar (CP) stars are main-sequence A and B stars with abnormally strong or weak lines for certain elements. They generally have magnetic fields and all observables tend to vary with the same period. Chemically peculiar stars provide a wealth of information; they are natural atomic and magnetic laboratories. After a brief historical overview, we discuss the general properties of the magnetic fields in CP stars, describe the oblique rotator model, explain the dependence of the magnetic field strength on the rotation, and concentrate at the end on HgMn stars.

  9. A new method for measuring metallicities of young super star clusters

    Energy Technology Data Exchange (ETDEWEB)

    Gazak, J. Zachary; Kudritzki, Rolf; Bresolin, Fabio [Institute for Astronomy, University of Hawai' i, 2680 Woodlawn Dr, Honolulu, HI 96822 (United States); Davies, Ben; Bastian, Nate [Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Bergemann, Maria [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Plez, Bertrand [Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS, F-34095 Montpellier (France); Evans, Chris [UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Patrick, Lee [Institute for Astronomy, Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Schinnerer, Eva [MPI for Astronomy, Konigstuhl 17, D-69117 Heidelberg (Germany)

    2014-06-01

    We demonstrate how the metallicities of young super star clusters (SSC) can be measured using novel spectroscopic techniques in the J-band. The near-infrared flux of SSCs older than ∼6 Myr is dominated by tens to hundreds of red supergiant stars. Our technique is designed to harness the integrated light of that population and produces accurate metallicities for new observations in galaxies above (M83) and below (NGC 6946) solar metallicity. In M83 we find [Z] = +0.28 ± 0.14 dex using a moderate resolution (R ∼ 3500) J-band spectrum and in NGC 6496 we report [Z] = -0.32 ± 0.20 dex from a low resolution spectrum of R ∼ 1800. Recently commissioned low resolution multiplexed spectrographs on the Very Large Telescope (KMOS) and Keck (MOSFIRE) will allow accurate measurements of SSC metallicities across the disks of star-forming galaxies up to distances of 70 Mpc with single night observation campaigns using the method presented in this paper.

  10. Radiative Feedback from Primordial Protostars and Final Mass of the First Stars

    Science.gov (United States)

    Hosokawa, Takashi; Omukai, Kazuyuki; Yoshida, Naoki; Yorke, Harold W.

    2012-01-01

    In this contribution, we review our efforts toward understanding the typical mass-scale of primordial stars. Our direct numerical simulations show that, in both of Population III.1 and III.2 cases, strong UV stellar radiative feedback terminatesmass accretion onto a protostar.AnHII region formed around the protostar very dynamically expands throughout the gas accreting envelope, which cuts off the gas supply to a circumstellar disk. The disk is exposed to the stellar UV radiation and loses its mass by photoevaporation. The derived final masses are 43 Stellar Mass and 17 Stellar Mass in our fiducial Population III.1 and III.2 cases. Much more massive stars should form in other exceptional conditions. In atomic-cooling halos where H2 molecules are dissociated, for instance, a protostar grows via very rapid mass accretion with the rates M* approx. 0.1 - 1 Stellar Mass/yr. Our newstellar evolution calculations show that the protostar significantly inflates and never contracts to reach the ZAMS stage in this case. Such the "supergiant protostars" have very low UV luminosity, which results in weak radiative feedback against the accretion flow. In the early universe, supermassive stars formed through this process might provide massive seeds of supermassive black holes.

  11. Radiative Feedback from Primordial Protostars and Final Mass of the First Stars

    Science.gov (United States)

    Hosokawa, Takashi; Omukai, Kazuyuki; Yoshida, Naoki; Yorke, Harold W.

    2012-01-01

    In this contribution, we review our efforts toward understanding the typical mass-scale of primordial stars. Our direct numerical simulations show that, in both of Population III.1 and III.2 cases, strong UV stellar radiative feedback terminatesmass accretion onto a protostar.AnHII region formed around the protostar very dynamically expands throughout the gas accreting envelope, which cuts off the gas supply to a circumstellar disk. The disk is exposed to the stellar UV radiation and loses its mass by photoevaporation. The derived final masses are 43 Stellar Mass and 17 Stellar Mass in our fiducial Population III.1 and III.2 cases. Much more massive stars should form in other exceptional conditions. In atomic-cooling halos where H2 molecules are dissociated, for instance, a protostar grows via very rapid mass accretion with the rates M* approx. 0.1 - 1 Stellar Mass/yr. Our newstellar evolution calculations show that the protostar significantly inflates and never contracts to reach the ZAMS stage in this case. Such the "supergiant protostars" have very low UV luminosity, which results in weak radiative feedback against the accretion flow. In the early universe, supermassive stars formed through this process might provide massive seeds of supermassive black holes.

  12. The ongoing pursuit of R Coronae Borealis stars: ASAS-3 survey strikes again

    CERN Document Server

    Tisserand, P; Welch, D L; Pilecki, B; Wyrzykowski, L; Kilkenny, D

    2012-01-01

    R Coronae Borealis stars (RCBs) are rare, hydrogen-deficient, carbon-rich supergiant variable stars that are likely the evolved merger products of pairs of CO and He white dwarfs. Only 55 RCB stars are known in our galaxy and their distribution on the sky is weighted heavily by microlensing survey field positions. A less-biased wide-area survey would provide the ability to test competing evolutionary scenarios, understand the population or populations that produce RCBs and constraint their formation rate. The ASAS-3 survey monitored the sky south of declination +28 deg since 2000 to a limiting magnitude of V=14. We searched ASAS-3 for RCB variables using a number of different methods to ensure that the probability of RCB detection was as high as possible and to reduce selection biases based on luminosity, temperature, dust production activity and shell brightness. Candidates whose light curves were visually inspected were pre-selected based on their infrared excesses due to warm dust in their circumstellar sh...

  13. H-alpha as a Luminosity Class Diagnostic for K- and M-type Stars

    CERN Document Server

    Jennings, Jeff

    2016-01-01

    We have identified the H-alpha absorption feature as a new spectroscopic diagnostic of luminosity class in K- and M-type stars. From high-resolution spectra of 19 stars with well-determined physical properties (including effective temperatures and stellar radii), we measured equivalent widths for H-alpha and the Ca II triplet and examined their dependence on both luminosity class and stellar radius. H-alpha shows a strong relation with both luminosity class and radius that extends down to late M spectral types. This behavior in H-alpha has been predicted as a result of the density-dependent overpopulation of the metastable 2S level in hydrogen, an effect that should become dominant for Balmer line formation in non-LTE conditions. We conclude that this new metallicity-insensitive diagnostic of luminosity class in cool stars could serve as an effective means of discerning between populations such as Milky Way giants and supergiant members of background galaxies.

  14. R CORONAE BOREALIS STARS IN M31 FROM THE PALOMAR TRANSIENT FACTORY

    Energy Technology Data Exchange (ETDEWEB)

    Tang Sumin; Bildsten, Lars [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Cao Yi; Bellm, Eric; Kulkarni, Shrinivas R.; Levitan, David; Prince, Thomas A.; Sesar, Branimir [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Nugent, Peter [Computational Cosmology Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720 (United States); Laher, Russ; Surace, Jason [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Masci, Frank [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Ofek, Eran O. [Benoziyo Center for Astrophysics and the Helen Kimmel Center for Planetary Science, Weizmann Institute of Science, 76100 Rehovot (Israel)

    2013-04-20

    We report the discovery of R Coronae Borealis (RCB) stars in the Andromeda galaxy (M31) using the Palomar Transient Factory (PTF). RCB stars are rare hydrogen-deficient, carbon-rich supergiant variables, most likely the merger products of two white dwarfs. These new RCBs, including two confirmed ones and two candidates, are the first to be found beyond the Milky Way and the Magellanic Clouds. All of M31 RCBs showed >1.5 mag irregular declines over timescales of weeks to months. Due to the limiting magnitude of our data (R Almost-Equal-To 21-22 mag), these RCB stars have R Almost-Equal-To 19.5-20.5 mag at maximum light, corresponding to M{sub R} = -4 to -5, making them some of the most luminous RCBs known. Spectra of two objects show that they are warm RCBs, similar to the Milky Way RCBs RY Sgr and V854 Cen. We consider these results, derived from a pilot study of M31 variables, as an important proof-of-concept for the study of rare bright variables in nearby galaxies with the PTF or other synoptic surveys.

  15. R Coronae Borealis Stars in M31 from the Palomar Transient Factory

    CERN Document Server

    Tang, Sumin; Bildsten, Lars; Nugent, Peter; Bellm, Eric; Kulkarni, Shrinivas R; Laher, Russ; Levitan, David; Masci, Frank; Ofek, Eran O; Prince, Thomas A; Sesar, Branimir; Surace, Jason

    2013-01-01

    We report the discovery of R Coronae Borealis (RCB) stars in the Andromeda galaxy (M31) using the Palomar Transient Factory (PTF). RCB stars are rare hydrogen-deficient, carbon-rich supergiant variables, most likely the merger products of two white dwarfs. These new RCBs, including two confirmed ones and two candidates, are the first to be found beyond the Milky Way and the Magellanic Clouds. All of M31 RCBs showed >1.5 mag irregular declines over timescales of weeks to months. Due to the limiting magnitude of our data (R~21-22 mag), these RCB stars have R~19.5 to 20.5 mag at maximum light, corresponding to M_R= -4 to -5, making them some of the most luminous RCBs known. Spectra of two objects show that they are warm RCBs, similar to the Milky Way RCBs RY Sgr and V854 Cen. We consider these results, derived from a pilot study of M31 variables, as an important proof-of-concept for the study of rare bright variables in nearby galaxies with the PTF or other synoptic surveys.

  16. The C-12/C-13 ratio in stellar atmospheres. VI - Five luminous cool stars

    Science.gov (United States)

    Hinkle, K. H.; Lambert, D. L.; Snell, R. L.

    1976-01-01

    A simple curve-of-growth technique is described for extracting the C-12/C-13 ratio for M stars from high-resolution spectra of CO infrared vibration-rotation lines. The technique is applied to the CO lines at 1.6 and 2.3 microns in spectra of two M supergiants (Alpha Ori and Alpha Sco), two M giants (Alpha Her and Beta Peg), and a Mira-type variable (Chi Cyg). As a check on the CO analysis, the C-12/C-13 ratio is derived from the red CN system at 8000 A for Alpha Sco, Alpha Ori, and Beta Peg. The CO analysis is also applied to the K giant Alpha Boo as a check. The CN and CO results are found to be in general agreement, and the C-12/C-13 ratio in all the examined stars is shown to be considerably lower than the solar-system value. It is suggested that these stars were formed from clouds with a C-12/C-13 ratio of 40 to 89 and that their atmospheres now exhibit an enhancement of C-13 abundance due to internal production and mixing to the surface.

  17. THE FIRST STARS

    Directory of Open Access Journals (Sweden)

    Daniel J. Whalen

    2013-12-01

    Full Text Available Pop III stars are the key to the character of primeval galaxies, the first heavy elements, the onset of cosmological reionization, and the seeds of supermassive black holes. Unfortunately, in spite of their increasing sophistication, numerical models of Pop III star formation cannot yet predict the masses of the first stars. Because they also lie at the edge of the observable universe, individual Pop III stars will remain beyond the reach of observatories for decades to come, and so their properties are unknown. However, it will soon be possible to constrain their masses by direct detection of their supernovae, and by reconciling their nucleosynthetic yields to the chemical abundances measured in ancient metal-poor stars in the Galactic halo, some of which may bear the ashes of the first stars. Here, I review the state of the art in numerical simulations of primordial stars and attempts to directly and indirectly constrain their properties.

  18. Identification of the Mass Donor Star's Spectrum in SS 433

    CERN Document Server

    Hillwig, T C; Huang, W; McSwain, M V; Stark, M A; Van der Meer, Alex F G; Kaper, L

    2004-01-01

    We present spectroscopy of the microquasar SS 433 obtained near primary eclipse and disk precessional phase Psi = 0.0, when the accretion disk is expected to be most ``face-on''. The likelihood of observing the spectrum of the mass donor is maximized at this combination of orbital and precessional phases since the donor is in the foreground and above the extended disk believed to be present in the system. The spectra were obtained over four different runs centered on these special phases. The blue spectra show clear evidence of absorption features consistent with a classification of A3-7 I. The behavior of the observed lines indicates an origin in the mass donor. The observed radial velocity variations are in anti-phase to the disk, the absorption lines strengthen at mid-eclipse when the donor star is expected to contribute its maximum percentage of the total flux, and the line widths are consistent with lines created in an A supergiant photosphere. We discuss and cast doubt on the possibility that these line...

  19. Surveying the Agents of Galaxy Evolution in the Tidally-Stripped, Low Metallicity Small Magellanic Cloud (SAGE-SMC) II. Cool Evolved Stars

    CERN Document Server

    Boyer, Martha L; van Loon, Jacco Th; McDonald, Iain; Meixner, Margaret; Zaritsky, Dennis; Gordon, Karl D; Kemper, F; Babler, Brian; Block, Miwa; Bracker, Steve; Engelbracht, Charles W; Hora, Joe; Indebetouw, Remy; Meade, Marilyn; Misselt, Karl; Robitaille, Thomas; Sewilo, Marta; Shiao, Bernie; Whitney, Barbara

    2011-01-01

    We investigate the infrared (IR) properties of cool, evolved stars in the Small Magellanic Cloud (SMC), including the red giant branch (RGB) stars and the dust-producing red supergiant (RSG) and asymptotic giant branch (AGB) stars using observations from the Spitzer Space Telescope Legacy program entitled: "Surveying the Agents of Galaxy Evolution in the Tidally-stripped, Low Metallicity SMC", or SAGE-SMC. The survey includes, for the first time, full spatial coverage of the SMC bar, wing, and tail regions at infrared (IR) wavelengths (3.6 - 160 microns). We identify evolved stars using a combination of near-IR and mid-IR photometry and point out a new feature in the mid-IR color-magnitude diagram that may be due to particularly dusty O-rich AGB stars. We find that the RSG and AGB stars each contribute ~20% of the global SMC flux (extended + point-source) at 3.6 microns, which emphasizes the importance of both stellar types to the integrated flux of distant metal-poor galaxies. The equivalent SAGE survey of t...

  20. Comoving frame models of hot star winds. II. Reduction of O star wind mass-loss rates in global models

    Science.gov (United States)

    Krtička, J.; Kubát, J.

    2017-10-01

    We calculate global (unified) wind models of main-sequence, giant, and supergiant O stars from our Galaxy. The models are calculated by solving hydrodynamic, kinetic equilibrium (also known as NLTE) and comoving frame (CMF) radiative transfer equations from the (nearly) hydrostatic photosphere to the supersonic wind. For given stellar parameters, our models predict the photosphere and wind structure and in particular the wind mass-loss rates without any free parameters. Our predicted mass-loss rates are by a factor of 2-5 lower than the commonly used predictions. A possible cause of the difference is abandoning of the Sobolev approximation for the calculation of the radiative force, because our models agree with predictions of CMF NLTE radiative transfer codes. Our predicted mass-loss rates agree nicely with the mass-loss rates derived from observed near-infrared and X-ray line profiles and are slightly lower than mass-loss rates derived from combined UV and Hα diagnostics. The empirical mass-loss rate estimates corrected for clumping may therefore be reconciled with theoretical predictions in such a way that the average ratio between individual mass-loss rate estimates is not higher than about 1.6. On the other hand, our predictions are by factor of 4.7 lower than pure Hα mass-loss rate estimates and can be reconciled with these values only assuming a microclumping factor of at least eight.

  1. Multiplicity of massive stars

    CERN Document Server

    Preibisch, T; Zinnecker, H; Preibisch, Thomas; Weigelt, Gerd; Zinnecker, Hans

    2000-01-01

    We discuss the observed multiplicity of massive stars and implications on theories of massive star formation. After a short summary of the literature on massive star multiplicity, we focus on the O- and B-type stars in the Orion Nebula Cluster, which constitute a homogenous sample of very young massive stars. 13 of these stars have recently been the targets of a bispectrum speckle interferometry survey for companions. Considering the visual and also the known spectroscopic companions of these stars, the total number of companions is at least 14. Extrapolation with correction for the unresolved systems suggests that there are at least 1.5 and perhaps as much as 4 companions per primary star on average. This number is clearly higher than the mean number of about 0.5 companions per primary star found for the low-mass stars in the general field population and also in the Orion Nebula cluster. This suggests that a different mechanism is at work in the formation of high-mass multiple systems in the dense Orion Nebu...

  2. Star Clusters within FIRE

    Science.gov (United States)

    Perez, Adrianna; Moreno, Jorge; Naiman, Jill; Ramirez-Ruiz, Enrico; Hopkins, Philip F.

    2017-01-01

    In this work, we analyze the environments surrounding star clusters of simulated merging galaxies. Our framework employs Feedback In Realistic Environments (FIRE) model (Hopkins et al., 2014). The FIRE project is a high resolution cosmological simulation that resolves star forming regions and incorporates stellar feedback in a physically realistic way. The project focuses on analyzing the properties of the star clusters formed in merging galaxies. The locations of these star clusters are identified with astrodendro.py, a publicly available dendrogram algorithm. Once star cluster properties are extracted, they will be used to create a sub-grid (smaller than the resolution scale of FIRE) of gas confinement in these clusters. Then, we can examine how the star clusters interact with these available gas reservoirs (either by accreting this mass or blowing it out via feedback), which will determine many properties of the cluster (star formation history, compact object accretion, etc). These simulations will further our understanding of star formation within stellar clusters during galaxy evolution. In the future, we aim to enhance sub-grid prescriptions for feedback specific to processes within star clusters; such as, interaction with stellar winds and gas accretion onto black holes and neutron stars.

  3. Dark stars: a review.

    Science.gov (United States)

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only [Formula: see text]0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (∼10 AU) and cool (surface temperatures  ∼10 000 K) objects. We follow the evolution of dark stars from their inception at  ∼[Formula: see text] as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >[Formula: see text] and luminosities  >[Formula: see text], making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  4. Dark stars: a review

    Science.gov (United States)

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only ≲ 0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (˜10 AU) and cool (surface temperatures  ˜10 000 K) objects. We follow the evolution of dark stars from their inception at  ˜1{{M}⊙} as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >{{10}6}{{M}⊙} and luminosities  >{{10}10}{{L}⊙} , making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  5. Star-Branched Polymers (Star Polymers)

    KAUST Repository

    Hirao, Akira

    2015-09-01

    The synthesis of well-defined regular and asymmetric mixed arm (hereinafter miktoarm) star-branched polymers by the living anionic polymerization is reviewed in this chapter. In particular, much attention is being devoted to the synthetic development of miktoarm star polymers since 2000. At the present time, the almost all types of multiarmed and multicomponent miktoarm star polymers have become feasible by using recently developed iterative strategy. For example, the following well-defined stars have been successfully synthesized: 3-arm ABC, 4-arm ABCD, 5-arm ABCDE, 6-arm ABCDEF, 7-arm ABCDEFG, 6-arm ABC, 9-arm ABC, 12-arm ABC, 13-arm ABCD, 9-arm AB, 17-arm AB, 33-arm AB, 7-arm ABC, 15-arm ABCD, and 31-arm ABCDE miktoarm star polymers, most of which are quite new and difficult to synthesize by the end of the 1990s. Several new specialty functional star polymers composed of vinyl polymer segments and rigid rodlike poly(acetylene) arms, helical polypeptide, or helical poly(hexyl isocyanate) arms are introduced.

  6. Touchstone Stars: Highlights from the Cool Stars 18 Splinter Session

    CERN Document Server

    Mann, Andrew W; Boyajian, Tabetha; Gaidos, Eric; von Braun, Kaspar; Feiden, Gregory A; Metcalfe, Travis; Swift, Jonathan J; Curtis, Jason L; Deacon, Niall R; Filippazzo, Joseph C; Gillen, Ed; Hejazi, Neda; Newton, Elisabeth R

    2014-01-01

    We present a summary of the splinter session on "touchstone stars" -- stars with directly measured parameters -- that was organized as part of the Cool Stars 18 conference. We discuss several methods to precisely determine cool star properties such as masses and radii from eclipsing binaries, and radii and effective temperatures from interferometry. We highlight recent results in identifying and measuring parameters for touchstone stars, and ongoing efforts to use touchstone stars to determine parameters for other stars. We conclude by comparing the results of touchstone stars with cool star models, noting some unusual patterns in the differences.

  7. The death of massive stars - I. Observational constraints on the progenitors of type II-P supernovae

    CERN Document Server

    Smartt, S J; Crockett, R M; Maund, J R

    2008-01-01

    We present the results of a 10.5 yr, volume limited (28 Mpc) search for supernova (SN) progenitor stars. We compile all SNe discovered within this volume (132, of which 27% are type Ia) and determine the relative rates of each sub-type from literature studies : II-P (59%), Ib/c (29%), IIb (5%), IIn (4%) and II-L (3%). Twenty II-P SNe have high quality optical or near-IR pre-explosion images that allow a meaningful search for the progenitor stars. In four cases they are clearly red supergiants, one case is unconstrained, two fall on compact coeval star clusters and the other 13 have no progenitor detected. We review and update all the available data for the host galaxies (distance, metallicity and extinction) and determine masses and upper mass estimates using the STARS stellar evolutionary code and a single consistent homogeneous method. A maximum likelihood calculation suggests that the minimum stellar mass for a type II-P to form is m(min)=8.5 +1/-1.5 Msol and the maximum mass for II-P progenitors is m(max)...

  8. An Abundance Analysis of the Primary Star of the Peculiar Eclipsing Binary ɛ Aurigae out of the Eclipsing Phase

    Science.gov (United States)

    Sadakane, Kozo; Kambe, Eiji; Sato, Bun'ei; Honda, Satoshi; Hashimoto, Osamu

    2010-12-01

    A detailed abundance analysis of the primary star of ɛ Aur before an eclipse was carried out using a very high signal-to-noise ratio optical-region spectrum. An A7 Iab supergiant HD 81471, presumably a member of the Vela OB1 association, was used as a reference. We obtained atmospheric parameters (Teff, log g, and ξt) to be (8025 K, 1.0 and 10 km s-1) and (8050 K, 1.0 and 7 km s-1) for ɛ Aur and HD 81471, respectively. The abundances of Mg, Si, S, Ca, Sc, Ti, Cr, and Fe were very close to the solar abundances in both stars. Light elements C and O were under-abundant, while N and Na were over-abundant in both stars, after correcting for non-LTE effects. Definite under-abundances of Sr were detected in both stars. Slight, but definite, over-abundances were found in ɛ Aur for the s-process elements Y, Zr, and Ba, when compared with the results of HD 81471. Enhancements in the abundances of N, Na, and s-process elements might indicate the occurences of thermal dredge-up and the s-process nucleosynthesis in ɛ Aur during the past evolution.

  9. First spectro-interferometric survey of Be stars I. Observations and constraints on the disks geometry and kinematics

    CERN Document Server

    Meilland, Anthony; Kanaan, Samer; Stee, Philippe; Petrov, Romain

    2011-01-01

    Context. Classical Be stars are hot non-supergiant stars surrounded by a gaseous circumstellar disk responsible for the observed infrared-excess and emission lines. The phenomena involved in the disk formation still remain highly debated. Aims. To progress in the understanding of the physical process or processes responsible for the mass-ejection and test the hypothesis that they depends on the stellar parameters, we initiate a survey on the circumstellar environment of the brightest Be stars. Methods. To achieve this goal, we used spectro-interferometry, the only technique combining high spectral (R=12000) and high spatial (\\thetamin=4mas) resolutions. Observations were carried out at Paranal observatory with the VLTI/AMBER instrument. We concentrate our observations on the Br{\\gamma} emission line to be able to study the kinematics within the circumstellar disk. Our sample is composed of eight bright classical Be stars : \\alph Col, \\kappa CMa, \\omega Car, p Car, \\delta Cen, \\mu Cen, \\alpha Ara, and o Aqr. R...

  10. Magnetic Fields in Evolved Stars: Imaging the Polarized Emission of High-Frequency SiO Masers

    CERN Document Server

    Vlemmings, W H T; Franco-Hernández, R

    2011-01-01

    We present Submillimeter Array observations of high frequency SiO masers around the supergiant VX Sgr and the semi-regular variable star W Hya. The J=5-4, v=1 28SiO and v=0 29SiO masers of VX Sgr are shown to be highly linearly polarized with a polarization from ~5-60%. Assuming the continuum emission peaks at the stellar position, the masers are found within ~60 mas of the star, corresponding to ~100 AU at a distance of 1.57 kpc. The linear polarization vectors are consistent with a large scale magnetic field, with position and inclination angles similar to that of the dipole magnetic field inferred in the H2O and OH maser regions at much larger distances from the star. We thus show for the first time that the magnetic field structure in a circumstellar envelope can remain stable from a few stellar radii out to ~1400 AU. This provides further evidence supporting the existence of large scale and dynamically important magnetic fields around evolved stars. Due to a lack of parallactic angle coverage, the linear...

  11. STAR in CTO PCI: When is STAR not a star?

    Science.gov (United States)

    Hira, Ravi S; Dean, Larry S

    2016-04-01

    Subintimal tracking and reentry (STAR) has been used as a bailout strategy and involves an uncontrolled dissection and recanalization into the distal lumen to reestablish vessel patency. In the current study, thrombolysis in myocardial infarction (TIMI) flow < 3 was the only variable which they found to be significantly associated with restenosis and reocclusion after stent placement. It may be reasonable to consider second generation drug eluting stent placement in patients receiving STAR that have TIMI 3 flow, however, this should only be done if there is no compromise of major side branches. If unsure, we recommend to perform balloon angioplasty without stenting. © 2016 Wiley Periodicals, Inc.

  12. The First Stars

    Science.gov (United States)

    Yoshida, Naoki

    2010-10-01

    The standard cosmological model predicts that the first cosmological objects are formed when the age of the universe is a few hundred million years. Recent theoretical studies and numerical simulations consistently suggest that the first objects are very massive primordial stars. We introduce the key physics and explain why the first stars are thought to be massive, rather than to be low-mass stars. The state-of-the-art simulations include all the relevant atomic and molecular physics to follow the thermal evolution of a prestellar gas cloud to very high ``stellar'' densities. Evolutionary calculations of the primordial stars suggest the formation of massive blackholes in the early universe. Finally, we show the results from high-resolution simulations of star formation in a low-metallicity gas. Vigorous fragmentation is triggered in a star-forming gas cloud at a metallicity of as low as Z = 10-5Zsolar.

  13. High-dispersion spectroscopy of two A supergiant systems in the Small Magellanic Cloud with novel properties

    Science.gov (United States)

    Mennickent, R. E.; Smith, M. A.

    2010-09-01

    We present the results of a spectroscopic investigation of two novel variable bright blue stars in the SMC, OGLE004336.91-732637.7 (SMC-SC3) and the periodically occulted star OGLE004633.76-731204.3 (SMC-SC4), whose photometric properties were reported by Mennickent et al. (2010). High-resolution spectra in the optical and far-UV show that both objects are actually A + B type binaries. Three spectra of SMC-SC4 show radial velocity variations, consistent with the photometric period of 184.26 d found in Mennickent et al. 2010. The optical spectra of the metallic lines in both systems show combined absorption and emission components that imply that they are formed in a flattened envelope. A comparison of the radial velocity variations in SMC-SC4 and the separation of the V and R emission components in the Hα emission profile indicate that this envelope, and probably also the envelope around SMC-SC3, is a circumbinary disc with a characteristic orbital radius some three times the radius of the binary system. The optical spectra of SMC-SC3 and SMC-SC4 show, respectively, HeI emission lines and discrete blue absorption components (BACs) in metallic lines. The high excitations of the HeI lines in the SMC-SC3 spectrum and the complicated variations of FeII emission and absorption components with orbital phase in the spectrum of SMC-SC4 suggests that shocks occur between the winds and various static regions of the stars' corotating binary-disc complexes. We suggest that BACs arise from wind shocks from the A star impacting the circumbinary disc and a stream of former wind-efflux from the B star accreting on to the A star. The latter picture is broadly similar to mass transfer occurring in the more evolved (but less massive) ALGOL (B/A + K) systems, except that we envision transfer occurring in the other direction and not through the inner Lagrangian point. Accordingly, we dub these objects prototype of a small group of Magellanic Cloud wind-interacting A + B binaries.

  14. Strange nonchaotic stars

    CERN Document Server

    Lindner, John F; Kia, Behnam; Hippke, Michael; Learned, John G; Ditto, William L

    2015-01-01

    The unprecedented light curves of the Kepler space telescope document how the brightness of some stars pulsates at primary and secondary frequencies whose ratios are near the golden mean, the most irrational number. A nonlinear dynamical system driven by an irrational ratio of frequencies generically exhibits a strange but nonchaotic attractor. For Kepler's "golden" stars, we present evidence of the first observation of strange nonchaotic dynamics in nature outside the laboratory. This discovery could aid the classification and detailed modeling of variable stars.

  15. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  16. ENERGY STAR Unit Reports

    Data.gov (United States)

    Department of Housing and Urban Development — These quarterly Federal Fiscal Year performance reports track the ENERGY STAR qualified HOME units that Participating Jurisdictions record in HUD's Integrated...

  17. Strange Nonchaotic Stars

    Science.gov (United States)

    Lindner, John F.; Kohar, Vivek; Kia, Behnam; Hippke, Michael; Learned, John G.; Ditto, William L.

    2015-08-01

    Exploiting the unprecedented capabilities of the planet-hunting Kepler space telescope, which stared at 150 000 stars for four years, we discuss recent evidence that certain stars dim and brighten in complex patterns with fractal features. Such stars pulsate at primary and secondary frequencies whose ratios are near the famous golden mean, the most irrational number. A nonlinear system driven by an irrational ratio of frequencies is generically attracted toward a “strange” behavior that is geometrically fractal without displaying the “butterfly effect” of chaos. Strange nonchaotic attractors have been observed in laboratory experiments and have been hypothesized to describe the electrochemical activity of the brain, but a bluish white star 16 000 light years from Earth in the constellation Lyra may manifest, in the scale-free distribution of its minor frequency components, the first strange nonchaotic attractor observed in the wild. The recognition of stellar strange nonchaotic dynamics may improve the classification of these stars and refine the physical modeling of their interiors. We also discuss nonlinear analysis of other RR Lyrae stars in Kepler field of view and discuss some toy models for modeling these stars.References: 1) Hippke, Michael, et al. "Pulsation period variations in the RRc Lyrae star KIC 5520878." The Astrophysical Journal 798.1 (2015): 42.2) Lindner, John F., et al. "Strange nonchaotic stars." Phys. Rev. Lett. 114, 054101 (2015)

  18. Horizontal Branch stars as AmFm/HgMn stars

    CERN Document Server

    Michaud, G

    2008-01-01

    Recent observations and models for horizontal branch stars are briefly described and compared to models for AmFm stars. The limitations of those models are emphasized by a comparison to observations and models for HgMn stars.

  19. Crossing the `Yellow Void' -- Spatially Resolved Spectroscopy of the Post- Red Supergiant IRC+10420 and Its Circumstellar Ejecta

    CERN Document Server

    Humphreys, R M; Smith, N; Humphreys, Roberta M.; Davidson, Kris; Smith, Nathan

    2002-01-01

    IRC +10420 is one of the extreme hypergiant stars that define the empirical upper luminosity boundary in the HR diagram. During their post--RSG evolution, these massive stars enter a temperature range (6000-9000 K) of increased dynamical instability, high mass loss, and increasing opacity, a semi--forbidden region, that de Jager and his collaborators have called the `yellow void'. We report HST/STIS spatially resolved spectroscopy of IRC +10420 and its reflection nebula with some surprising results. Long slit spectroscopy of the reflected spectrum allows us to effectively view the star from different directions. Measurements of the double--peaked Halpha emission profile show a uniform outflow of gas in a nearly spherical distribution, contrary to previous models with an equatorial disk or bipolar outflow. Based on the temperature and mass loss rate estimates that are usually quoted for this object, the wind is optically thick to the continuum at some and possibly all wavelengths. Consequently the observed var...

  20. Star Trek in the Schools

    Science.gov (United States)

    Journal of Aerospace Education, 1977

    1977-01-01

    Describes specific educational programs for using the Star Trek TV program from kindergarten through college. For each grade level lesson plans, ideas for incorporating Star Trek into future classes, and reports of specific programs utilizing Star Trek are provided. (SL)