WorldWideScience

Sample records for superficial skin wounds

  1. Biomechanical Skin Property Evaluation for Wounds Treated With Synthetic and Biosynthetic Wound Dressings and a Newly Developed Collagen Matrix During Healing of Superficial Skin Defects in a Rat Models.

    Science.gov (United States)

    Held, Manuel; Engelke, Anne-Sophie; Tolzmann, Dascha Sophie; Rahmanian-Schwarz, Afshin; Schaller, Hans-Eberhard; Rothenberger, Jens

    2016-09-01

    There is a high prevalence of superficial wounds such as partial-thickness burns. Treatment of these wounds frequently includes temporary application of wound dressings. The aim of this study was to compare a newly developed collagen matrix with commonly used temporary skin dressings for treatment of partial-thickness skin defects. Through a skin dermatome, 42 standardized superficial skin defects were generated on the back of 28 adult male Lewis rats. The wounds were treated with a synthetic wound dressing (Suprathel, Polymedics Innovations Inc, Woodstock, GA) (n = 14), a biosynthetic skin dressing (Biobrane, Smith & Nephew, Hull, UK) (n = 14), or a newly developed bovine collagen matrix, Collagen Cell Carrier (Viscofan BioEngineering, Weinheim, Germany) (n = 14). Biomechanical properties of the skin were determined and compared every 10 days over a 3-month period of using the Cutometer MPA 580 (Courage + Khazaka Electronic GmbH, Cologne, Germany). As opposed to healthy skin, statistically significant differences were detected between days 10 and 30, and between days 60 and 80, for calculated elasticity (Ue), firmness of skin (R0), and overall elasticity (R8). After 3 months, no statistically significant differences in skin elasticity were detected between the different wound dressings. The presented results give an opportunity to compare the wound dressings used for treatment with respect to skin elasticity and reveal the potential of the bovine collagen matrix in the treatment of superficial skin defects; therefore the results facilitate further evaluation of collagen matrix in surgical applications and regenerative medicine.

  2. Superficial herpes simplex virus wound infection following lung transplantation.

    Science.gov (United States)

    Karolak, Wojtek; Wojarski, Jacek; Zegleń, Sławomir; Ochman, Marek; Urlik, Maciej; Hudzik, Bartosz; Wozniak-Grygiel, Elzbieta; Maruszewski, Marcin

    2017-08-01

    Surgical site infections (SSIs) are infections of tissues, organs, or spaces exposed by surgeons during performance of an invasive procedure. SSIs are classified into superficial, which are limited to skin and subcutaneous tissues, and deep. The incidence of deep SSIs in lung transplant (LTx) patients is estimated at 5%. No reports have been published as to the incidence of superficial SSIs specifically in LTx patients. Common sense would dictate that the majority of superficial SSIs would be bacterial. Uncommonly, fungal SSIs may occur, and we believe that no reports exist as to the incidence of viral wound infections in LTx patients, or in any solid organ transplant patients. We report a de novo superficial wound infection with herpes simplex virus following lung transplantation, its possible source, treatment, and resolution. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Effects of He-Ne laser beam on mechanical, heat, chemical and superficial wounds

    International Nuclear Information System (INIS)

    Kakai, S.F.K.; Albarwari, S.E.; Alsenawi, T.A.

    1988-02-01

    This study summarizes the effects of low-doses of He-Ne laser radiation (λ = 6328 A), on healing of four types of wounds, including mechanical, heat, chemical and superficial wounds. The results revealed that variations between complete wound-closure in irradiated samples and that of control groups were statistically significant. Moreover, the results suggest that the stimulative action of laser is an accumulative phenomenon, that affects factors involved in the course of wound healing. The results also indicate that the skin epithelium is a highly responsive tissue towards this sort of radiation, which suggests that the stimulative action of He-Ne laser could be assayed easily by using such tissues as a test target. (author). 11 refs, 2 tabs

  4. Superficial skin ulcers

    International Nuclear Information System (INIS)

    Samaila, Modupeola O.; Rafindadi, Abdulmumini H.; Oluwole, Olabode P.; Adewuyi, Sunday A.

    2007-01-01

    Objective was to determine the underlying cause of superficial skin ulcers over a 15-year period. A retrospective histopathological analysis of 670 cases of superficial skin ulcers diagnosed in the Dept. of Pathology, Ahmadu Bello University Teaching Hospital, Zaria, Nigeria from January 1991 to December 2005. A total of 670 superficial skin ulcers were analyzed. The mail to female gender ratio was 409:261(1.5:1.0) and a peakage frequency of 44.3 %( 297) in the 5th and 6th decades. Spectrum of lesions encountered was categorized into inflammatory, infections, benign and malignant diseases. The malignant lesions were 309 (46.1%), non-specific inflammation 302 (45.1%), granulation tissue 25 (3.7%) and pseudoepitheliomatous hyperplasia 14 (2.1%). A total of 18(2.7%) specific infections were encountered, which included bacterial, fungal and viral infection. Benign lesions were 2(0.3%), comprising of neurofibroma and Bowen's disease. The most common malignant lesion was squamous cell carcinoma 203 (30.3%) with a male to female ratio of 128:75 (1.7:1.0). Of these 161 were well differentiated tumors. The lower limb was the prevalent site distribution of all the ulcers. Superficial ulcers may be harbinger of malignant diseases. Squamous cell carcinoma remains the most common malignant lesion arising from chronic superficial ulcers from our setting. Adequate tissue biopsy and early diagnosis may reduce the attendant morbidity of these ulcers. (author)

  5. Triterpenes for Well-Balanced Scar Formation in Superficial Wounds

    Directory of Open Access Journals (Sweden)

    Stefan Kindler

    2016-08-01

    Full Text Available Triterpenes are demonstrably effective for accelerating re-epithelialisation of wounds and known to improve scar formation for superficial lesions. Among the variety of triterpenes, betuline is of particular medical interest. Topical betuline gel (TBG received drug approval in 2016 from the European Commission as the first topical therapeutic agent with the proven clinical benefit of accelerating wound healing. Two self-conducted randomized intra-individual comparison clinical studies with a total of 220 patients involved in TBG treatment of skin graft surgical wounds have been screened for data concerning the aesthetic aspect of wound healing. Three months after surgery wound treatment with TBG resulted in about 30% of cases with more discreet scars, and standard of care in about 10%. Patients themselves appreciate the results of TBG after 3 months even more (about 50% compared to standard of care (about 10%. One year after surgery, the superiority of TBG counts for about 25% in comparison with about 10%, and from the patients’ point of view, for 25% compared to 4% under standard of care. In the majority of wound treatment cases, there is no difference visible between TBG treatment and standard of care after 1 year of scar formation. However, in comparison, TBG still offers a better chance for discreet scars and therefore happens to be superior in good care of wounds.

  6. Preliminary Characterization of Genipin-Cross-Linked Silk Sericin/Poly(vinyl alcohol Films as Two-Dimensional Wound Dressings for the Healing of Superficial Wounds

    Directory of Open Access Journals (Sweden)

    Tippawan Siritientong

    2013-01-01

    Full Text Available The genipin-cross-linked silk sericin/poly(vinyl alcohol (PVA films were developed aiming to be applied as two-dimensional wound dressings for the treatment of superficial wounds. The effects of genipin cross-linking concentration on the physical and biological properties of the films were investigated. The genipin-cross-linked silk sericin/PVA films showed the increased surface density, tensile strength, and percentage of elongation, but decreased percentage of light transmission, water vapor transmission rate, and water swelling, compared to the non-cross-linked films. This explained that the cross-linking bonds between genipin and silk sericin would reduce the mobility of molecular chains within the films, resulting in the more rigid molecular structure. Silk sericin was released from the genipin-cross-linked films in a sustained manner. In addition, either L929 mouse fibroblast or HaCat keratinocyte cells showed high percentage of viability when cultured on the silk sericin/PVA films cross-linked with 0.075 and 0.1% w/v genipin. The in vivo safety test performed according to ISO 10993-6 confirmed that the genipin-cross-linked silk sericin/PVA films were safe for the medical usages. The efficacy of the films for the treatment of superficial skin wounds will be further investigated in vivo and clinically. The genipin-cross-linked silk sericin/PVA films would be promising choices of two-dimensional wound dressings for the treatment of superficial wounds.

  7. Development, standardization and testing of a bacterial wound infection model based on ex vivo human skin.

    Directory of Open Access Journals (Sweden)

    Christoph Schaudinn

    Full Text Available Current research on wound infections is primarily conducted on animal models, which limits direct transferability of these studies to humans. Some of these limitations can be overcome by using-otherwise discarded-skin from cosmetic surgeries. Superficial wounds are induced in fresh ex vivo skin, followed by intradermal injection of Pseudomonas aeruginosa under the wound. Subsequently, the infected skin is incubated for 20 hours at 37°C and the CFU/wound are determined. Within 20 hours, the bacteria count increased from 107 to 109 bacteria per wound, while microscopy revealed a dense bacterial community in the collagen network of the upper wound layers as well as numerous bacteria scattered in the dermis. At the same time, IL-1alpha and IL-1beta amounts increased in all infected wounds, while-due to bacteria-induced cell lysis-the IL-6 and IL-8 concentrations rose only in the uninfected samples. High-dosage ciprofloxacin treatment resulted in a decisive decrease in bacteria, but consistently failed to eradicate all bacteria. The main benefits of the ex vivo wound model are the use of healthy human skin, a quantifiable bacterial infection, a measureable donor-dependent immune response and a good repeatability of the results. These properties turn the ex vivo wound model into a valuable tool to examine the mechanisms of host-pathogen interactions and to test antimicrobial agents.

  8. Leptin promotes wound healing in the skin.

    Directory of Open Access Journals (Sweden)

    Susumu Tadokoro

    Full Text Available Leptin, a 16 kDa anti-obesity hormone, exhibits various physiological properties. Interestingly, skin wound healing was proven to delay in leptin-deficient ob/ob mice. However, little is known on the mechanisms of this phenomenon. In this study, we attempted to elucidate a role of leptin in wound healing of skin.Immunohistochemical analysis was performed to confirm the expression of the leptin receptor (Ob-R in human and mouse skin. Leptin was topically administered to chemical wounds created in mouse back skin along with sustained-release absorbable hydrogel. The process of wound repair was histologically observed and the area of ulceration was measured over time. The effect of leptin on the proliferation, differentiation and migration of human epidermal keratinocytes was investigated.Ob-R was expressed in epidermal cells of human and mouse skin. Topical administration of leptin significantly promoted wound healing. Histological analysis showed more blood vessels in the dermal connective tissues in the leptin-treated group. The proliferation, differentiation/function and migration of human epidermal keratinocytes were enhanced by exogenous leptin.Topically administered leptin was proven to promote wound healing in the skin by accelerating proliferation, differentiation/function and migration of epidermal keratinocytes and enhancing angiogenesis around the wounded area. These results strongly suggest that topical administration of leptin may be useful as a treatment to promote wound healing in the skin.

  9. Microbiologic evaluation of skin wounds: alarming trend toward antibiotic resistance in an inpatient dermatology service during a 10-year period.

    Science.gov (United States)

    Valencia, Isabel C; Kirsner, Robert S; Kerdel, Francisco A

    2004-06-01

    Increasing resistance to commonly used antibiotics has been seen for patients with superficial skin wounds and leg ulcers. We sought to evaluate bacterial isolates from leg ulcers and superficial wounds for resistance to commonly used antibiotics and to compare current data with previous data. We performed a chart review for patients admitted to a tertiary care dermatology inpatient unit from January to December 2001. Comparison was made with 2 previous surveys of the same inpatient service from 1992 and 1996. Bacterial isolates were cultured from 148 patients, 84% (72 of 86) with leg ulcers and 38% (76 of 202) with superficial wounds. Staphylococcus aureus and Pseudomonas aeruginosa were the most common bacterial isolates in both groups. For patients with leg ulcers, S aureus grew in 67% of isolates (48/72) of which 75% (36/48) were methicillin-resistant (MRSA). Of leg ulcers, 35% (25/72) grew P aeruginosa, which was resistant to quinolones in 56% of cultures (14/25). For patients with superficial wounds, S aureus was isolated in 75% (57/76) and 44% were MRSA (25/57). P aeruginosa grew in 17% of isolates (13/76) and was resistant to quinolones in 18%. We found a marked increase in antibiotic resistance for both leg ulcers and superficial wounds. Over time, MRSA increased in leg ulcers from 26% in 1992 to 75% in 2001. For superficial wounds, MRSA increased from 7% in 1992 to 44% in 2001. P aeruginosa resistance to quinolones in leg ulcers increased from 19% in 1992 to 56% in 2001, whereas for superficial wounds there was no resistance in 1992 and 18% resistance in 2001. Rapid emergence of antibiotic-resistant bacteria continues and is a problem of increasing significance in dermatology. Common pathogenic bacteria, S aureus and P aeruginosa, showed increased resistance to commonly used antibiotics. Selection of antibiotics should be on the basis of local surveillance programs.

  10. Polymeric hydrogels for burn wound care: Advanced skin wound dressings and regenerative templates.

    Science.gov (United States)

    Madaghiele, Marta; Demitri, Christian; Sannino, Alessandro; Ambrosio, Luigi

    2014-01-01

    Wound closure represents a primary goal in the treatment of very deep and/or large wounds, for which the mortality rate is particularly high. However, the spontaneous healing of adult skin eventually results in the formation of epithelialized scar and scar contracture (repair), which might distort the tissues and cause lifelong deformities and disabilities. This clinical evidence suggests that wound closure attained by means of skin regeneration, instead of repair, should be the true goal of burn wound management. The traditional concept of temporary wound dressings, able to stimulate skin healing by repair, is thus being increasingly replaced by the idea of temporary scaffolds, or regenerative templates, able to promote healing by regeneration. As wound dressings, polymeric hydrogels provide an ideal moisture environment for healing while protecting the wound, with the additional advantage of being comfortable to the patient, due to their cooling effect and non-adhesiveness to the wound tissue. More importantly, recent advances in regenerative medicine demonstrate that bioactive hydrogels can be properly designed to induce at least partial skin regeneration in vivo. The aim of this review is to provide a concise insight on the key properties of hydrogels for skin healing and regeneration, particularly highlighting the emerging role of hydrogels as next generation skin substitutes for the treatment of full-thickness burns.

  11. Polymeric hydrogels for burn wound care: Advanced skin wound dressings and regenerative templates

    Directory of Open Access Journals (Sweden)

    Marta Madaghiele

    2014-10-01

    Full Text Available Wound closure represents a primary goal in the treatment of very deep and/or large wounds, for which the mortality rate is particularly high. However, the spontaneous healing of adult skin eventually results in the formation of epithelialized scar and scar contracture (repair, which might distort the tissues and cause lifelong deformities and disabilities. This clinical evidence suggests that wound closure attained by means of skin regeneration, instead of repair, should be the true goal of burn wound management. The traditional concept of temporary wound dressings, able to stimulate skin healing by repair, is thus being increasingly replaced by the idea of temporary scaffolds, or regenerative templates, able to promote healing by regeneration. As wound dressings, polymeric hydrogels provide an ideal moisture environment for healing while protecting the wound, with the additional advantage of being comfortable to the patient, due to their cooling effect and non-adhesiveness to the wound tissue. More importantly, recent advances in regenerative medicine demonstrate that bioactive hydrogels can be properly designed to induce at least partial skin regeneration in vivo. The aim of this review is to provide a concise insight on the key properties of hydrogels for skin healing and regeneration, particularly highlighting the emerging role of hydrogels as next generation skin substitutes for the treatment of full-thickness burns.

  12. Colloidal silver-based nanogel as nonocclusive dressing for multiple superficial pellet wounds.

    Science.gov (United States)

    Dharmshaktu, Ganesh Singh; Singhal, Aanshu; Pangtey, Tanuja

    2016-01-01

    A good dressing is mandatory to an uncomplicated wound healing, especially when foreign particles contaminate the wound. Various forms of dressing preparations are available for use and differ in chemical composition and efficacy. Silver has been a known agent with good antimicrobial and healing properties and recent times has seen an upsurge in various silver-based dressing supplements. We describe our report of use and efficacy of a silver nanoparticle- based gel dressing in the healing of multiple superficial firearm pellet wounds.

  13. Colloidal silver-based nanogel as nonocclusive dressing for multiple superficial pellet wounds

    Directory of Open Access Journals (Sweden)

    Ganesh Singh Dharmshaktu

    2016-01-01

    Full Text Available A good dressing is mandatory to an uncomplicated wound healing, especially when foreign particles contaminate the wound. Various forms of dressing preparations are available for use and differ in chemical composition and efficacy. Silver has been a known agent with good antimicrobial and healing properties and recent times has seen an upsurge in various silver-based dressing supplements. We describe our report of use and efficacy of a silver nanoparticle- based gel dressing in the healing of multiple superficial firearm pellet wounds.

  14. Conducted healing to treat large skin wounds.

    Science.gov (United States)

    Salgado, M I; Petroianu, A; Alberti, L R; Burgarelli, G L; Barbosa, A J A

    2013-01-01

    Improvement of the healing process to provide better aesthetical and functional results continues to be a surgical challenge. This study compared the treatment of skin wounds by means of conducted healing (an original method of treatment by secondary healing) and by the use of autogenous skin grafts. Two skin segments, one on each side of the dorsum,were removed from 17 rabbits. The side that served as a graft donor site was left open as to undergo conducted healing (A)and was submitted only to debridement and local care with dressings. The skin removed from the side mentioned above was implanted as a graft (B) to cover the wound on the other side. Thus, each animal received the two types of treatment on its dorsum (A and B). The rabbits were divided into two groups according to the size of the wounds: Group 1 - A and B (4 cm2)and Group 2 - A and B (25 cm2). The healing time was 19 days for Group 1 and 35 days for Group 2. The final macro- and microscopic aspects of the healing process were analysed comparatively among all subgroups. The presence of inflammatory cells, epidermal cysts and of giant cells was evaluated. No macro- or microscopic differences were observed while comparing the wounds that underwent conducted healing and those in which grafting was employed, although the wounds submitted to conducted healing healed more rapidly. Conducted wound healing was effective for the treatment of skin wounds. Celsius.

  15. The external microenvironment of healing skin wounds

    DEFF Research Database (Denmark)

    Kruse, Carla R; Nuutila, Kristo; Lee, Cameron Cy

    2015-01-01

    The skin wound microenvironment can be divided into two main components that influence healing: the external wound microenvironment, which is outside the wound surface; and the internal wound microenvironment, underneath the surface, to which the cells within the wound are exposed. Treatment...

  16. Pneumodissection for skin protection in image-guided cryoablation of superficial musculoskeletal tumours.

    Science.gov (United States)

    Maybody, Majid; Tang, Peter Q; Moskowitz, Chaya S; Hsu, Meier; Yarmohammadi, Hooman; Boas, F Edward

    2017-03-01

    Pneumodissection is described as a simple method for preventing skin injury during cryoablation of superficial musculoskeletal tumours. Superficial tumour cryoablations performed from 2009 to 2015 were retrospectively reviewed. Pneumodissection was performed in 13 patients when the shortest tumour-skin distance was less than 25 mm. Indications were pain palliation (n = 9) and local tumour control (n = 4). Patients, target tumours, technical characteristics and complications up to 60 days post ablation were reviewed. The ice ball-skin distances with and without pneumodissection were compared by a paired t-test and further assessed for association with covariates using ANCOVA. Technical success for ablation was 12 of 13. The mean shortest tumour-skin distance was 15.0 mm (3.2-24.5 mm). The mean thickness of pneumodissection was 9.6 mm (5.2-16.6 mm) resulting in mean elevation of skin of 3.4 mm (1.2-5.3 mm). Mean shortest ice ball-skin distance after pneumodissection was 10.5 mm (4.2-19.7 mm). No infection or systemic air embolism was noted. No intraprocedural frostbite was observed. Pneumodissection is feasible, effective and safe in protecting the skin during image-guided cryoablation of superficial tumours. • Frostbite during image-guided cryoablation of superficial tumours is commonly under-reported. • Frostbites are painful and may introduce infection into the superficial ablation zone. • Warm compress, saline and CO 2 have shortcomings in protecting the skin. • Pneumodissection is free, readily available, easy to use and safe and effective.

  17. The morphological effect of electron irradiation on the healing of skin wounds and skin grafts in the rat

    International Nuclear Information System (INIS)

    Wang, Q.

    1995-01-01

    Current oncological practice frequently uses pre-, intra- or post-operative radiotherapy/chemotherapy. Before such treatment can begin it is imperative to establish that satisfactory wound healing will occur. Many previous studies have examined the response of wound healing to ionizing and non-ionizing radiation. In general, clinical and experimental reports indicate that ionizing radiation produces poor to difficult healing of wounds, and can even prevent healing altogether. It is for this reason that the effect of radiation on wound repair has been a long standing concern for surgeons, radiotherapists and radiobiologists. Electron irradiation produces large differences in depth-dose distributions. This enables the delivery of a constant maximal dose throughout the superficial layer of tissue, for example, the total depth of skin, with less damage in deeper tissue layers, compared to that produced by the use of electromagnetic radiation such as X-rays. It is for this reason that electron beam irradiation has been selected as a radiation source for radiation of the graft bed. To date there have been few morphological examinations of the effect of electron radiation on the healing of skin wounds in rats. A review of the literature shows no information on the use of radiation of the graft bed in skin graft surgery. In the present work the processes involved in wound repair in response to radiation were studied, morphologically, using two experimental models, incisional wounds combined with pre-operative radiation and skin autografts combined with radiation of the wound bed. In the latter case an unirradiated skin graft was surgically attached to an irradiated wound bed. Light microscopy (LM), backscattered electron imaging (BEI), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used as investigative tools. These repair processes include inflammation, re-epithelialization, re-formation of the dermo-epidermal junction, re

  18. The morphological effect of electron irradiation on the healing of skin wounds and skin grafts in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q

    1995-07-01

    Current oncological practice frequently uses pre-, intra- or post-operative radiotherapy/chemotherapy. Before such treatment can begin it is imperative to establish that satisfactory wound healing will occur. Many previous studies have examined the response of wound healing to ionizing and non-ionizing radiation. In general, clinical and experimental reports indicate that ionizing radiation produces poor to difficult healing of wounds, and can even prevent healing altogether. It is for this reason that the effect of radiation on wound repair has been a long standing concern for surgeons, radiotherapists and radiobiologists. Electron irradiation produces large differences in depth-dose distributions. This enables the delivery of a constant maximal dose throughout the superficial layer of tissue, for example, the total depth of skin, with less damage in deeper tissue layers, compared to that produced by the use of electromagnetic radiation such as X-rays. It is for this reason that electron beam irradiation has been selected as a radiation source for radiation of the graft bed. To date there have been few morphological examinations of the effect of electron radiation on the healing of skin wounds in rats. A review of the literature shows no information on the use of radiation of the graft bed in skin graft surgery. In the present work the processes involved in wound repair in response to radiation were studied, morphologically, using two experimental models, incisional wounds combined with pre-operative radiation and skin autografts combined with radiation of the wound bed. In the latter case an unirradiated skin graft was surgically attached to an irradiated wound bed. Light microscopy (LM), backscattered electron imaging (BEI), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used as investigative tools. These repair processes include inflammation, re-epithelialization, re-formation of the dermo-epidermal junction, re

  19. Conditioning in laser skin resurfacing - betulin emulsion and skin recovery.

    Science.gov (United States)

    Metelmann, Hans-Robert; Podmelle, Fred; Waite, Peter D; Müller-Debus, Charlotte Friederieke; Hammes, Stefan; Funk, Wolfgang

    2013-04-01

    Laser skin resurfacing of the face by CO₂-laser ablation is causing superficial wounds that need rapid recovery to reduce the risk of infection, the risk of chronification and as a result the risk of unaesthetic scars. The question being addressed by this study is to demonstrate benefit of betulin emulsion skin care after CO₂-laser wounds. The outcome of this aesthetic comparison between betulin emulsion, moist wound dressing and gauze covering in promoting the recovery process in laser skin ablation is to demonstrate improved aesthetic benefit for the patient. Copyright © 2012 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  20. Interaction of low-intensity linearly polarized laser radiation with living tissues: effects on tissular acceleration of skin wound healing

    International Nuclear Information System (INIS)

    Ribeiro, Martha Simoes

    2000-01-01

    According to the Maxwell's equations to optical properties of surfaces, the energy deposition efficiency in a microroughness interface depends on the electrical field polarization component. Considering a linearly polarized beam, this efficiency will depend on the roughness parameters to p-polarized light and it will not depend on such parameters to s-polarized light. In this work it was investigated the effects of low-intensity, linearly polarized He-Ne laser beam on skin wounds healing, considering two orthogonal directions of polarization. We have considered a preferential axis as the animals' spinal column and we aligned the linear laser polarization first parallel, then perpendicular to this direction. Burns about 6 mm in diameter were created with liquid N 2 on the back of the animals and the lesions were irradiated on days 3, 7, 10 and 14 post-wounding, D= 1,0 J/cm 2 . Control lesions were not irradiated. The theoretical model consisted in describing linearly polarized light propagation in biological tissues using transport theory. The degree of polarization was measured in normal and pathological skin samples. It was verified that linearly polarized light can survive in the superficial layers of skin and it can be more preserved in skin under pathological condition when compared with health skin. The analysis of skin wound healing process has demonstrated that the relative direction of the laser polarization plays an important role on the wound healing process by light microscopy, transmission electron microscopy and radioautography. (author)

  1. Platelet-Rich Fibrin Accelerates Skin Wound Healing in Diabetic Mice.

    Science.gov (United States)

    Ding, Yinjia; Cui, Lei; Zhao, Qiming; Zhang, Weiqiang; Sun, Huafeng; Zheng, Lijun

    2017-09-01

    Diabetic foot ulcers (DFUs) are associated with an increased risk of secondary infection and amputation. Platelet-rich fibrin (PRF), a platelet and leukocyte concentrate containing several cytokines and growth factors, is known to promote wound healing. However, the effect of PRF on diabetic wound healing has not been adequately investigated. The aim of the study was to investigate the effect of PRF on skin wound healing in a diabetic mouse model. Platelet-rich fibrin was prepared from whole blood of 8 healthy volunteers. Two symmetrical skin wounds per mouse were created on the back of 16 diabetic nude mice. One of the 2 wounds in each mouse was treated with routine dressings (control), whereas the other wound was treated with PRF in addition to routine dressings (test), each for a period of 14 days. Skin wound healing rate was calculated.Use of PRF was associated with significantly improved skin wound healing in diabetic mice. On hematoxylin and eosin and CD31 staining, a significant increase in the number of capillaries and CD31-positive cells was observed, suggesting that PRF may have promoted blood vessel formation in the skin wound. In this study, PRF seemed to accelerate skin wound healing in diabetic mouse models, probably via increased blood vessel formation.

  2. [ROLE OF microRNA IN SKIN DEVELOPMENT AND WOUND HEALING].

    Science.gov (United States)

    Song, Zhifang; Liu, Dewu

    2014-07-01

    To review the role of microRNA (miRNA) in skin development and wound healing. The recent literature about miRNA in skin development and wound healing was reviewed and analyzed. miRNA extensively involved in the development of the skin, including epidermal cell proliferation, differentiation, aging and hair follicle development; miR-203 known as the "skin-specific miRNA" can directly inhibit the expression of p63 and promote the differentiation of the epidermis. Meanwhile, miRNA also involved in various stages of skin regeneration and wound healing. Abnormal expression of miRNA is closely related with abnormal wound healing. miRNA play an important role in maintaining normal skin physiology and skin regeneration. To explore their roles in the healing of skin wounds and their regulatory mechanism can provide a new target for the treatment, which has a potential value and broad prospects.

  3. Tissue-Engineered Skin Substitute Enhances Wound Healing after Radiation Therapy.

    Science.gov (United States)

    Busra, Mohd Fauzi bin Mh; Chowdhury, Shiplu Roy; bin Ismail, Fuad; bin Saim, Aminuddin; Idrus, Ruszymah Bt Hj

    2016-03-01

    When given in conjunction with surgery for treating cancer, radiation therapy may result in impaired wound healing, which, in turn, could cause skin ulcers. In this study, bilayer and monolayer autologous skin substitutes were used to treat an irradiated wound. A single dose of 30 Gy of linear electron beam radiation was applied to the hind limb of nude mice before creating the skin lesion (area of 78.6 mm). Monolayer tissue-engineered skin substitutes (MTESSs) were prepared by entrapping cultured keratinocytes in fibrin matrix, and bilayer tissue-engineered skin substitutes (BTESSs) were prepared by entrapping keratinocytes and fibroblasts in separate layers. Bilayer tissue-engineered skin substitute and MTESS were implanted to the wound area. Gross appearance and wound area were analyzed to evaluate wound healing efficiency. Skin regeneration and morphological appearance were observed via histological and electron microscopy. Protein expressions of transforming growth factor β1 (TGF-β1), platelet-derived growth factor BB (PDGF-BB), and vascular endothelial growth factor (VEGF) in skin regeneration were evaluated by immunohistochemistry (IHC). Macroscopic observation revealed that at day 13, treatments with BTESS completely healed the irradiated wound, whereas wound sizes of 1.1 ± 0.05 and 6.8 ± 0.14 mm were measured in the MTESS-treated and untreated control groups, respectively. Hematoxylin-eosin (H&E) analysis showed formation of compact and organized epidermal and dermal layers in the BTESS-treated group, as compared with MTESS-treated and untreated control groups. Ultrastructural analysis indicates maturation of skin in BTESS-treated wound evidenced by formation of intermediate filament bundles in the dermal layer and low intercellular space in the epidermal layer. Expressions of TGF-β1, PDGF-BB, and VEGF were also higher in BTESS-treated wounds, compared with MTESS-treated wounds. These results indicate that BTESS is the preferred treatment for

  4. Effects of tretinoin on wound healing in aged skin.

    Science.gov (United States)

    de Campos Peseto, Danielle; Carmona, Erica Vilaça; Silva, Kellyn Cristina da; Guedes, Flavia Roberta Valente; Hummel Filho, Fernando; Martinez, Natalia Peres; Pereira, José Aires; Rocha, Thalita; Priolli, Denise Gonçalves

    2016-03-01

    Aged and adult populations have differences in the structural, biological, and healing properties of skin. Comparative studies of healing under the influence of retinoids in both these populations are very important and, to the best of our knowledge, have not been performed to date. The purpose of this study was to compare the activities of topical tretinoin in aged and adult animal models of wound healing by secondary intention. Male aged rats (24 months old, n = 7) and adult rats (6 months old, n = 8) were used. The rats were assigned to the following groups according to the dates on which wound samples were excised (day 14 or 21 after model creation): treated group, control group, and naive group. Topical application of tretinoin cream was used only on the proximal wound and was applied daily for 7 days. Wound healing areas were measured using metal calipers, and morphological analysis was performed. Slides were stained with Hematoxylin and Eosin, Masson's trichrome, and periodic acid-Schiff stains. Statistical analysis adopted a 5% coefficient for rejection of the null hypothesis. Although aged animals showed skin repair, complete reepithelialization was found on day 21 in some animals of both groups (treated and control). In aged rats, the wound area was significantly smaller in treated wounds than in untreated wounds, resulting in a larger scar area compared with the adult group. When treated wounds were compared, no differences were found between the wound areas in adult and aged rats. As expected, the collagen concentration was higher in normal skin from adult rats than in normal skin from aged animals, but there was no difference when aged skin was treated with tretinoin. These results indicate that tretinoin increases collagen synthesis in aged skin and returns the healing process to a normal state of skin healing. © 2016 by the Wound Healing Society.

  5. Assessment of skin wound healing with a multi-aperture camera

    Science.gov (United States)

    Nabili, Marjan; Libin, Alex; Kim, Loan; Groah, Susan; Ramella-Roman, Jessica C.

    2009-02-01

    A clinical trial was conducted at the National Rehabilitation Hospital on 15 individuals to assess whether Rheparan Skin, a bio-engineered component of the extracellular matrix of the skin, is effective at promoting healing of a variety of wounds. Along with standard clinical outcome measures, a spectroscopic camera was used to assess the efficacy of Rheparan skin. Gauzes soaked with Rheparan skin were placed on volunteers wounds for 5 minutes twice weekly for four weeks. Images of the wounds were taken using a multi spectral camera and a digital camera at baseline and weekly thereafter. Spectral images collected at different wavelengths were used combined with optical skin models to quantify parameters of interest such as oxygen saturation (SO2), water content, and melanin concentration. A digital wound measurement system (VERG) was also used to measure the size of the wound. 9 of the 15 measured subjects showed a definitive improvement post treatment in the form of a decrease in wound area. 7 of these 9 individuals also showed an increase in oxygen saturation in the ulcerated area during the trial. A similar trend was seen in other metrics. Spectral imaging of skin wound can be a valuable tool to establish wound-healing trends and to clarify healing mechanisms.

  6. Can thermal lasers promote skin wound healing?

    Science.gov (United States)

    Capon, Alexandre; Mordon, Serge

    2003-01-01

    Lasers are now widely used for treating numerous cutaneous lesions, for scar revision (hypertrophic and keloid scars), for tissue welding, and for skin resurfacing and remodeling (wrinkle removal). In these procedures lasers are used to generate heat. The modulation of the effect (volatilization, coagulation, hyperthermia) of the laser is obtained by using different wavelengths and laser parameters. The heat source obtained by conversion of light into heat can be very superficial, yet intense, if the laser light is well absorbed (far-infrared:CO(2) or Erbium:Yttrium Aluminum Garnet [Er:YAG] lasers), or it can be much deeper and less intense if the laser light is less absorbed by the skin (visible or near-infrared). Lasers transfer energy, in the form of heat, to surrounding tissues and, regardless of the laser used, a 45-50 degrees C temperature gradient will be obtained in the surrounding skin. If a wound healing process exists, it is a result of live cells reacting to this low temperature increase. The generated supraphysiologic level of heat is able to induce a heat shock response (HSR), which can be defined as the temporary changes in cellular metabolism. These changes are rapid and transient, and are characterized by the production of a small family of proteins termed the heat shock proteins (HSP). Recent experimental studies have clearly demonstrated that HSP 70, which is over-expressed following laser irradiation, could play a role with a coordinated expression of other growth factors such as transforming growth factor (TGF)-beta. TGF-beta is known to be a key element in the inflammatory response and the fibrogenic process. In this process, the fibroblasts are the key cells since they produce collagen and extracellular matrix. In conclusion, the analysis of the literature, and the fundamental considerations concerning the healing process when using thermal lasers, are in favor of a modification of the growth factors synthesis after laser irradiation, induced

  7. Absorption of radionuclide through wounded skin

    International Nuclear Information System (INIS)

    Kusama, Tomoko; Ogaki, Kazushi; Yoshizawa, Yasuo

    1982-01-01

    The translocation and absorption of 58 Co(CoCl 2 ) through a wound was investigated experimentally with mice. Physical and chemical skin damages became the objects of the investigation. Abrasion, puncture and incision were made for types of the physical damage. The chemical damage included both acid and alkaline burns. The absorptions of the radionuclide through the contaminated wounds were measured with both a 2 inches NaI(Tl) scintillation detector and an auto well gamma counter at 15,30 and 60 min after the contamination. The radionuclide was hardly absorbed through an undamaged skin. After 30 min, 20 to 40% of the radionuclide applied on the physically damaged skin was absorbed, but was not absorbed through the chemically damaged skin. The absorption rate through the physically damaged skin reached a maximum at 15 to 60 min after the contamination. The velocity of the absorption through the physically damaged skin was 100 times as much as the chemically damaged skin. The absorption rates through the physically and the chemically damaged skins were expressed by the following formulas: A=a(1-e sup(-bt)) and A=a(e sup(bt)-1), where a and b is constant, respectively. (author)

  8. Wounds as probes of electrical properties of skin

    Directory of Open Access Journals (Sweden)

    Olov Erik Wahlsten

    2010-11-01

    Full Text Available We have built a model where we use a wound as a probe of the dielectric properties of skin. We introduce the notion of a skin electrochemical capacitor. This gives good agreement with recent measurements for the electric potential landscape around a wound. Possible diagnostic consequences are briefly touched upon.

  9. Mechanoregulation of Wound Healing and Skin Homeostasis

    Directory of Open Access Journals (Sweden)

    Joanna Rosińczuk

    2016-01-01

    Full Text Available Basic and clinical studies on mechanobiology of cells and tissues point to the importance of mechanical forces in the process of skin regeneration and wound healing. These studies result in the development of new therapies that use mechanical force which supports effective healing. A better understanding of mechanobiology will make it possible to develop biomaterials with appropriate physical and chemical properties used to treat poorly healing wounds. In addition, it will make it possible to design devices precisely controlling wound mechanics and to individualize a therapy depending on the type, size, and anatomical location of the wound in specific patients, which will increase the clinical efficiency of the therapy. Linking mechanobiology with the science of biomaterials and nanotechnology will enable in the near future precise interference in abnormal cell signaling responsible for the proliferation, differentiation, cell death, and restoration of the biological balance. The objective of this study is to point to the importance of mechanobiology in regeneration of skin damage and wound healing. The study describes the influence of rigidity of extracellular matrix and special restrictions on cell physiology. The study also defines how and what mechanical changes influence tissue regeneration and wound healing. The influence of mechanical signals in the process of proliferation, differentiation, and skin regeneration is tagged in the study.

  10. [Relationship between FoxO1 Expression and Wound Age during Skin Incised Wound Healing].

    Science.gov (United States)

    Chen, Y; Ji, X Y; Fan, Y Y; Yu, L S

    2018-02-01

    To investigate FoxO1 expression and its time-dependent changes during the skin incised wound healing. After the establishment of the skin incised wound model in mice, the FoxO1 expression of skin in different time periods was detected by immunohistochemistry and Western blotting. Immunohistochemistry staining showed that FoxO1 was weakly expressed in a few fibroblasts of epidermis, hair follicles, sebaceous glands, vessel endothelium and dermis in the control group. The FoxO1 expression was enhanced in the epidermis and skin appendages around the wound during 6-12 h after injury, which could be detected in the infiltrating neutrophils and a small number of monocytes. FoxO1 was mainly expressed in monocytes during 1-3 d after injury, and in neovascular endothelial cells and fibroblasts during 5-10 d. On the 14th day after injury, the FoxO1 expression still could be detected in a few fibroblasts. The Western blotting results showed that the FoxO1 expression quantity of the tissue samples in injury group was higher than in control group. The FoxO1 expression peaked at 12 h and 7 d after injury. FoxO1 is time-dependently expressed in skin wound healing, which can be a useful marker for wound age determination. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  11. Gender affects skin wound healing in plasminogen deficient mice.

    Directory of Open Access Journals (Sweden)

    Birgitte Rønø

    Full Text Available The fibrinolytic activity of plasmin plays a fundamental role in resolution of blood clots and clearance of extravascular deposited fibrin in damaged tissues. These vital functions of plasmin are exploited by malignant cells to accelerate tumor growth and facilitate metastases. Mice lacking functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation in neither wildtype nor plasmin deficient mice, and the existing differences in skin composition between males and females were unaffected by plasmin deficiency. In contrast, gender had a marked effect on the ability of plasmin deficient mice to heal skin wounds, which was seen as an accelerated wound closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds revealed larger amounts of fibrotic scars in the provisional matrix of plasmin deficient male mice compared to female mice. These fibrotic scars correlated to an obstruction of cell infiltration of the granulation tissue, which is a prerequisite for wound healing. In conclusion, the presented data show that the gender dependent effect of plasmin deficiency is tissue specific and may be secondary to already established differences between genders, such as skin

  12. Stem Cells in Skin Regeneration, Wound Healing, and Their Clinical Applications.

    Science.gov (United States)

    Ojeh, Nkemcho; Pastar, Irena; Tomic-Canic, Marjana; Stojadinovic, Olivera

    2015-10-23

    The skin is the largest organ of the body and has an array of functions. Skin compartments, epidermis, and hair follicles house stem cells that are indispensable for skin homeostasis and regeneration. These stem cells also contribute to wound repair, resulting in restoration of tissue integrity and function of damaged tissue. Unsuccessful wound healing processes often lead to non-healing wounds. Chronic wounds are caused by depletion of stem cells and a variety of other cellular and molecular mechanisms, many of which are still poorly understood. Current chronic wound therapies are limited, so the search to develop better therapeutic strategies is ongoing. Adult stem cells are gaining recognition as potential candidates for numerous skin pathologies. In this review, we will discuss epidermal and other stem cells present in the skin, and highlight some of the therapeutic applications of epidermal stem cells and other adult stem cells as tools for cell/scaffold-based therapies for non-healing wounds and other skin disorders. We will also discuss emerging concepts and offer some perspectives on how skin tissue-engineered products can be optimized to provide efficacious therapy in cutaneous repair and regeneration.

  13. PREPARATIVE SKIN PREPARATION AND SURGICAL WOUND INFECTION

    Directory of Open Access Journals (Sweden)

    Anjanappa

    2015-01-01

    Full Text Available BACKGROUND AND OBJECTIVE: It is an established fact now that the normal skin of healthy human beings harbours a rich bacterial fl ora. Normally considered non - pathogenic , these organisms way be a potential source of infection of the surgical wound. Approximately 20% of the resident flora is beyond the reach of surgical scrubs and antiseptics. The goal of surgical preparation of the skin with antiseptics is to remove transient and pathogenic microorganisms on the skin surface and to reduce the resident flora to a low level. Povidone iodine (I odophors and chlorhexidine are most often used antiseptics for pre - operative skin preparation. OBJECTIVES : To evaluate the efficacy of povidone iodine alone and in combination with antiseptic agent containing alcoholic chlorhexidine in preoperative skin p reparation by taking swab culture. (2 To compare the rate of postoperative wound infection in both the groups. METHODS: One hundred patients (fifty in each group undergoing clean elective surgery with no focus of infection on the body were included in th e study. The pre - operative skin preparation in each group is done with the respective antiseptic regimen. In both the groups after application of antiseptics , sterile saline swab culture was taken immediately from site of incision. In cases which showed gr owth of organisms , the bacteria isolated were identified by their morphological and cultural characteristics. Grams staining , coagulase test and antibiotic sensitivity test were done wherever necessary and difference in colonization rates was determined as a measure of efficacy of antiseptic regimen. RESULTS: The results of the study showed that when compared to povidone iodine alone , using a combination of povidone iodine and alcoholic solution of chlorhexidine , the colonization rates of the site of incisi on were reduced significantly. As for the rate of post - operative wound infection , it is also proven that wound infections are also

  14. Tight Skin 2 Mice Exhibit Delayed Wound Healing Caused by Increased Elastic Fibers in Fibrotic Skin.

    Science.gov (United States)

    Long, Kristen B; Burgwin, Chelsea M; Huneke, Richard; Artlett, Carol M; Blankenhorn, Elizabeth P

    2014-09-01

    Rationale: The Tight Skin 2 (Tsk2) mouse model of systemic sclerosis (SSc) has many features of human disease, including tight skin, excessive collagen deposition, alterations in the extracellular matrix (ECM), increased elastic fibers, and occurrence of antinuclear antibodies with age. A tight skin phenotype is observed by 2 weeks of age, but measurable skin fibrosis is only apparent at 10 weeks. We completed a series of wound healing experiments to determine how fibrosis affects wound healing in Tsk2/+ mice compared with their wild-type (WT) littermates. Method: We performed these experiments by introducing four 4 mm biopsy punched wounds on the back of each mouse, ventral of the midline, and observed wound healing over 10 days. Tsk2/+ mice showed significantly delayed wound healing and increased wound size compared with the WT littermates at both 5 and 10 weeks of age. We explored the potential sources of this response by wounding Tsk2/+ mice that were genetically deficient either for the NLRP3 inflammasome (a known fibrosis mediator), or for elastic fibers in the skin, using a fibulin-5 knockout. Conclusion: We found that the loss of elastic fibers restores normal wound healing in the Tsk2/+ mouse and that the loss of the NLRP3 inflammasome had no effect. We conclude that elastic fiber dysregulation is the primary cause of delayed wound healing in the Tsk2/+ mouse and therapies that promote collagen deposition in the tissue matrix in the absence of elastin deposition might be beneficial in promoting wound healing in SSc and other diseases.

  15. Gender affects skin wound healing in plasminogen deficient mice

    DEFF Research Database (Denmark)

    Rønø, Birgitte; Engelholm, Lars Henning; Lund, Leif Røge

    2013-01-01

    closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds...... functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency...... or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation...

  16. Skin Wound Healing: An Update on the Current Knowledge and Concepts.

    Science.gov (United States)

    Sorg, Heiko; Tilkorn, Daniel J; Hager, Stephan; Hauser, Jörg; Mirastschijski, Ursula

    2017-01-01

    The integrity of healthy skin plays a crucial role in maintaining physiological homeostasis of the human body. The skin is the largest organ system of the body. As such, it plays pivotal roles in the protection against mechanical forces and infections, fluid imbalance, and thermal dysregulation. At the same time, it allows for flexibility to enable joint function in some areas of the body and more rigid fixation to hinder shifting of the palm or foot sole. Many instances lead to inadequate wound healing which necessitates medical intervention. Chronic conditions such as diabetes mellitus or peripheral vascular disease can lead to impaired wound healing. Acute trauma such as degloving or large-scale thermal injuries are followed by a loss of skin organ function rendering the organism vulnerable to infections, thermal dysregulation, and fluid loss. For this update article, we have reviewed the actual literature on skin wound healing purposes focusing on the main phases of wound healing, i.e., inflammation, proliferation, epithelialization, angiogenesis, remodeling, and scarring. The reader will get briefed on new insights and up-to-date concepts in skin wound healing. The macrophage as a key player in the inflammatory phase will be highlighted. During the epithelialization process, we will present the different concepts of how the wound will get closed, e.g., leapfrogging, lamellipodial crawling, shuffling, and the stem cell niche. The neovascularization represents an essential component in wound healing due to its fundamental impact from the very beginning after skin injury until the end of the wound remodeling. Here, the distinct pattern of the neovascularization process and the special new functions of the pericyte will be underscored. At the end, this update will present 3 topics of high interest in skin wound healing issues, dealing with scarring, tissue engineering, and plasma application. Although wound healing mechanisms and specific cell functions in wound

  17. Optical coherence tomography and polarimetry of superficial skin biopsies

    Directory of Open Access Journals (Sweden)

    S. R. Utz

    2015-01-01

    Full Text Available The goal. Of this study was to develop and assess the efficacy of polarization probing of biotissues in vitro. The method is based on the determination of polarization parameters of scattered radiation. Materials and methods. The well-known superficial epidermis stripping method was applied using the Sulfacrylate self-sterile medical adhesive. Small portions of thin layers of the adhesive were applied to slide plates and then to different skin sites. The corneous layer in the normal condition and in case of skin diseases (psoriasis, lichen acuminatus, discoid lupus erythematosus, alopecia, itching and demodectic mange was examined based on the optical coherence tomography (OCT method using the 0CS1300SS device (Thorlabs Inc, USA. Results. The authors obtained pictures visualizing the structural organization of different layers of the epidermis using the superficial epidermis biopsy method in case of lichen acuminatus, hyperkeratosis, itching and other skin diseases. Conclusion. This method ensures non-invasive high-precision measurement of the structure of different layers of the epidermis, which may be useful both for research purposes and practical dermatology.

  18. Development of haemostatic decontaminants for treatment of wounds contaminated with chemical warfare agents. 3: Evaluation of in vitro topical decontamination efficacy using damaged skin.

    Science.gov (United States)

    Lydon, Helen L; Hall, Charlotte A; Dalton, Christopher H; Chipman, J Kevin; Graham, John S; Chilcott, Robert P

    2017-08-01

    Previous studies have demonstrated that haemostatic products with an absorptive mechanism of action retain their clotting efficiency in the presence of toxic materials and are effective in decontaminating chemical warfare (CW) agents when applied to normal, intact skin. The purpose of this in vitro study was to assess three candidate haemostatic products for effectiveness in the decontamination of superficially damaged porcine skin exposed to the radiolabelled CW agents, soman (GD), VX and sulphur mustard (HD). Controlled physical damage (removal of the upper 100 μm skin layer) resulted in a significant enhancement of the dermal absorption of all three CW agents. Of the haemostatic products assessed, WoundStat™ was consistently the most effective, being equivalent in performance to a standard military decontaminant (fuller's earth). These data suggest that judicious application of haemostatic products to wounds contaminated with CW agents may be a viable option for the clinical management of casualties presenting with contaminated, haemorrhaging injuries. Further studies using a relevant animal model are required to confirm the potential clinical efficacy of WoundStat™ for treating wounds contaminated with CW agents. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Traditional Therapies for Skin Wound Healing.

    Science.gov (United States)

    Pereira, Rúben F; Bártolo, Paulo J

    2016-05-01

    Significance: The regeneration of healthy and functional skin remains a huge challenge due to its multilayer structure and the presence of different cell types within the extracellular matrix in an organized way. Despite recent advances in wound care products, traditional therapies based on natural origin compounds, such as plant extracts, honey, and larvae, are interesting alternatives. These therapies offer new possibilities for the treatment of skin diseases, enhancing the access to the healthcare, and allowing overcoming some limitations associated to the modern products and therapies, such as the high costs, the long manufacturing times, and the increase in the bacterial resistance. This article gives a general overview about the recent advances in traditional therapies for skin wound healing, focusing on the therapeutic activity, action mechanisms, and clinical trials of the most commonly used natural compounds. New insights in the combination of traditional products with modern treatments and future challenges in the field are also highlighted. Recent Advances: Natural compounds have been used in skin wound care for many years due to their therapeutic activities, including anti-inflammatory, antimicrobial, and cell-stimulating properties. The clinical efficacy of these compounds has been investigated through in vitro and in vivo trials using both animal models and humans. Besides the important progress regarding the development of novel extraction methods, purification procedures, quality control assessment, and treatment protocols, the exact mechanisms of action, side effects, and safety of these compounds need further research. Critical Issues: The repair of skin lesions is one of the most complex biological processes in humans, occurring throughout an orchestrated cascade of overlapping biochemical and cellular events. To stimulate the regeneration process and prevent the wound to fail the healing, traditional therapies and natural products have been used

  20. Bioprinting of skin constructs for wound healing

    OpenAIRE

    He, Peng; Zhao, Junning; Zhang, Jiumeng; Li, Bo; Gou, Zhiyuan; Gou, Maling; Li, Xiaolu

    2018-01-01

    Extensive burns and full-thickness skin wounds are difficult to repair. Autologous split-thickness skin graft (ASSG) is still used as the gold standard in the clinic. However, the shortage of donor skin tissues is a serious problem. A potential solution to this problem is to fabricate skin constructs using biomaterial scaffolds with or without cells. Bioprinting is being applied to address the need for skin tissues suitable for transplantation, and can lead to the development of skin equivale...

  1. Human Wharton's jelly mesenchymal stem cells promote skin wound healing through paracrine signaling.

    Science.gov (United States)

    Arno, Anna I; Amini-Nik, Saeid; Blit, Patrick H; Al-Shehab, Mohammed; Belo, Cassandra; Herer, Elaine; Tien, Col Homer; Jeschke, Marc G

    2014-02-24

    The prevalence of nonhealing wounds is predicted to increase due to the growing aging population. Despite the use of novel skin substitutes and wound dressings, poorly vascularized wound niches impair wound repair. Mesenchymal stem cells (MSCs) have been reported to provide paracrine signals to promote wound healing, but the effect of human Wharton's jelly-derived MSCs (WJ-MSCs) has not yet been described in human normal skin. Human WJ-MSCs and normal skin fibroblasts were isolated from donated umbilical cords and normal adult human skin. Fibroblasts were treated with WJ-MSC-conditioned medium (WJ-MSC-CM) or nonconditioned medium. Expression of genes involved in re-epithelialization (transforming growth factor-β2), neovascularization (hypoxia-inducible factor-1α) and fibroproliferation (plasminogen activator inhibitor-1) was upregulated in WJ-MSC-CM-treated fibroblasts (P≤0.05). WJ-MSC-CM enhanced normal skin fibroblast proliferation (P≤0.001) and migration (P≤0.05), and promoted wound healing in an excisional full-thickness skin murine model. Under our experimental conditions, WJ-MSCs enhanced skin wound healing in an in vivo mouse model.

  2. Skin-resident stem cells and wound healing.

    Science.gov (United States)

    Iwata, Yohei; Akamatsu, Hirohiko; Hasebe, Yuichi; Hasegawa, Seiji; Sugiura, Kazumitsu

    2017-01-01

    CD271 is common stem cell marker for the epidermis and dermis. We assessed a kinetic movement of epidermal and dermal CD271 + cells in the wound healing process to elucidate the possible involvement with chronic skin ulcers. Epidermal CD271 + cells were proliferated and migrated from 3 days after wounding. Purified epidermal CD271 + cells expressed higher TGFβ2 and VEGFα transcripts than CD271 - cells. Delayed wound healing was observed in the aged mice compared with young mice. During the wound healing process, the peak of dermal CD271 + cell accumulation was delayed in aged mice compared with young mice. The expression levels of collagen-1, -3, -5, F4-80, EGF, FGF2, TGFβ1, and IL-1α were significantly increased in young mice compared with aged mice. Furthermore, purified dermal CD271 + cells expressed higher FGF2, EGF, PDGFB, and TGFβ1 gene transcripts than CD271 - cells. These results suggested that epidermal and dermal CD271 + cells were closely associated with wound healing process by producing various growth factors. Epidermal and dermal CD271 + cells in chronic skin ulcer patients were significantly reduced compared with healthy controls. Thus, both epidermal and dermal stem cells can play an important role in wound healing process.

  3. Thyrotropin-releasing hormone (TRH promotes wound re-epithelialisation in frog and human skin.

    Directory of Open Access Journals (Sweden)

    Natalia T Meier

    Full Text Available There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combining comparative biology with a translational medicine approach, we report the development and application of a simple ex vivo frog (Xenopus tropicalis skin organ culture system that permits exploration of the effects of amphibian skin-derived agents on re-epithelialisation in both frog and human skin. Using this amphibian model, we identify thyrotropin-releasing hormone (TRH as a novel stimulant of epidermal regeneration. Moving to a complementary human ex vivo wounded skin assay, we demonstrate that the effects of TRH are conserved across the amphibian-mammalian divide: TRH stimulates wound closure and formation of neo-epidermis in organ-cultured human skin, accompanied by increased keratinocyte proliferation and wound healing-associated differentiation (cytokeratin 6 expression. Thus, TRH represents a novel, clinically relevant neuroendocrine wound repair promoter that deserves further exploration. These complementary frog and human skin ex vivo assays encourage a comparative biology approach in future wound healing research so as to facilitate the rapid identification and preclinical testing of novel, evolutionarily conserved, and clinically relevant wound healing promoters.

  4. Thyrotropin-Releasing Hormone (TRH) Promotes Wound Re-Epithelialisation in Frog and Human Skin

    Science.gov (United States)

    Zhang, Guo-You; Emelianov, Vladimir; Paredes, Roberto; Debus, Sebastian; Augustin, Matthias; Funk, Wolfgang; Amaya, Enrique; Kloepper, Jennifer E.; Hardman, Matthew J.; Paus, Ralf

    2013-01-01

    There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combining comparative biology with a translational medicine approach, we report the development and application of a simple ex vivo frog (Xenopus tropicalis) skin organ culture system that permits exploration of the effects of amphibian skin-derived agents on re-epithelialisation in both frog and human skin. Using this amphibian model, we identify thyrotropin-releasing hormone (TRH) as a novel stimulant of epidermal regeneration. Moving to a complementary human ex vivo wounded skin assay, we demonstrate that the effects of TRH are conserved across the amphibian-mammalian divide: TRH stimulates wound closure and formation of neo-epidermis in organ-cultured human skin, accompanied by increased keratinocyte proliferation and wound healing-associated differentiation (cytokeratin 6 expression). Thus, TRH represents a novel, clinically relevant neuroendocrine wound repair promoter that deserves further exploration. These complementary frog and human skin ex vivo assays encourage a comparative biology approach in future wound healing research so as to facilitate the rapid identification and preclinical testing of novel, evolutionarily conserved, and clinically relevant wound healing promoters. PMID:24023889

  5. Functional electrospun fibers for the treatment of human skin wounds.

    Science.gov (United States)

    Wang, Jing; Windbergs, Maike

    2017-10-01

    Wounds are trauma induced defects of the human skin involving a multitude of endogenous biochemical events and cellular reactions of the immune system. The healing process is extremely complex and affected by the patient's physiological conditions, potential implications like infectious pathogens and inflammation as well as external factors. Due to increasing incidence of chronic wounds and proceeding resistance of infection pathogens, there is a strong need for effective therapeutic wound care. In this context, electrospun fibers with diameters in the nano- to micrometer range gain increasing interest. While resembling the structure of the native human extracellular matrix, such fiber mats provide physical and mechanical protection (including protection against bacterial invasion). At the same time, the fibers allow for gas exchange and prevent occlusion of the wound bed, thus facilitating wound healing. In addition, drugs can be incorporated within such fiber mats and their release can be adjusted by the material and dimensions of the individual fibers. The review gives a comprehensive overview about the current state of electrospun fibers for therapeutic application on skin wounds. Different materials as well as fabrication techniques are introduced including approaches for incorporation of drugs into or drug attachment onto the fiber surface. Against the background of wound pathophysiology and established therapy approaches, the therapeutic potential of electrospun fiber systems is discussed. A specific focus is set on interactions of fibers with skin cells/tissues as well as wound pathogens and strategies to modify and control them as key aspects for developing effective wound therapeutics. Further, advantages and limitations of controlled drug delivery from fiber mats to skin wounds are discussed and a future perspective is provided. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Barbatiman and chitosan creams as adjuvants in rabbit skin wound healing

    Directory of Open Access Journals (Sweden)

    Caroline Rocha de Oliveira Lima

    2016-06-01

    Full Text Available In this study, 5% barbatiman and 5% chitosan creams were evaluated as adjuvants in the tissue repair process by secondary intention of rabbit’s skin wounds. Four equidistant wounds were induced in the dorsal skin of 20 adult male rabbits, which were submitted to healing by secondary intention and treated with 5% chitosan cream (QC, n=5, 5% barbatiman cream (BC, n=5, 2% allantoin cream (n=5, and base cream (n=5. The creams were applied with the aid of disposable spatulas after washing the wounds. The wounds were daily analyzed by clinical examination for 21 days and histological analyses were performed on the 3rd, 14th, and 21st day after induction. The microscopic evaluation of the wounds of all groups showed macroscopic features of the healing process at different time intervals. The QC and BC treatments helped in the skin repair process in rabbits when compared to the other two treatments. They induced fibroblast activation and early collagen deposition, and modulated re-epithelialization and neovascularization. Thus, it was concluded that BC and QC are efficient and economically feasible as adjuvants in the healing process of skin wounds in rabbits.

  7. β-lapachone accelerates the recovery of burn-wound skin.

    Science.gov (United States)

    Fu, Shih-Chen; Chau, Yat-Pang; Lu, Kuo-Shyan; Kung, Hsiu-Ni

    2011-07-01

    β-lapachone is a quinone of lapachol extracted from the bark of lapacho tree. Recent findings demonstrated that punched skin wounds of mice healed faster with β-lapachone treatment. The present study investigates the effects of β-lapachone on burn-wound skin of C57BL/6 mice injured by a 100 °C iron stick. Our results indicated that wounds treated with β-lapachone recovered faster than those treated with control ointment containing no β-lapachone. On the third day after burning, the area of β-lapachone treated-wound was 30% smaller than wound treated with control ointment. H&E and immunohistochemistry staining showed that burn-wound skin treated with ointment containing β-lapachone healed faster in its epidermis, dermis, and underlying connective tissues with more macrophages appeared than those treated with control ointment alone. RAW264.7 cell, a macrophage-like cell line derived from BALB/C mice, was used as a model for scrutinizing the effect of β-lapachone on macrophages. We found that the proliferation and the secretion of EGF and VEGF by macrophages were higher in cultures treated with β-lapachone and that ß-lapachone can also increase the release of EGF with TNF-α pretreatment. We conclude that β-lapachone plays an important role in accelerating burn wound healing, and that β-lapachone not only can raise the proliferation of macrophages but also increase the release of VEGF from macrophages.

  8. Nanofibrillar cellulose wound dressing in skin graft donor site treatment.

    Science.gov (United States)

    Hakkarainen, T; Koivuniemi, R; Kosonen, M; Escobedo-Lucea, C; Sanz-Garcia, A; Vuola, J; Valtonen, J; Tammela, P; Mäkitie, A; Luukko, K; Yliperttula, M; Kavola, H

    2016-12-28

    Although new therapeutic approaches for burn treatment have made progress, there is still need for better methods to enhance wound healing and recovery especially in severely burned patients. Nanofibrillar cellulose (NFC) has gained attention due to its renewable nature, good biocompatibility and excellent physical properties that are of importance for a range of applications in pharmaceutical and biomedical fields. In the present study, we investigated the potential of a wood based NFC wound dressing in a clinical trial on burn patients. Previously, we have investigated NFC as a topical functionalized wound dressing that contributes to improve wound healing in mice. Wood based NFC wound dressing was tested in split-thickness skin graft donor site treatment for nine burn patients in clinical trials at Helsinki Burn Centre. NFC dressing was applied to split thickness skin graft donor sites. The dressing gradually dehydrated and attached to donor site during the first days. During the clinical trials, physical and mechanical properties of NFC wound dressing were optimized by changing its composition. From patient 5 forward, NFC dressing was compared to commercial lactocapromer dressing, Suprathel® (PMI Polymedics, Germany). Epithelialization of the NFC dressing-covered donor site was faster in comparison to Suprathel®. Healthy epithelialized skin was revealed under the detached NFC dressing. NFC dressing self-detached after 11-21days for patients 1-9, while Suprathel® self-detached after 16-28days for patients 5-9. In comparison studies with patients 5-9, NFC dressing self-detached on average 4days earlier compared with Suprathel®. Lower NFC content in the material was evaluated to influence the enhanced pliability of the dressing and attachment to the wound bed. No allergic reaction or inflammatory response to NFC was observed. NFC dressing did not cause more pain for patients than the traditional methods to treat the skin graft donor sites. Based on the

  9. Superficial skin infections and the use of topical and systemic ...

    African Journals Online (AJOL)

    Superficial bacterial infections of the skin are very common. With the increasing burden of human immunodeficiency virus (HIV), this is likely to worsen. Examples of such infections include impetigo, erysipelas, cellulitis, ecthyma, furuncles, carbuncles and subcutaneous abscesses. Common causative organisms are ...

  10. Reduced FOXO1 expression accelerates skin wound healing and attenuates scarring.

    Science.gov (United States)

    Mori, Ryoichi; Tanaka, Katsuya; de Kerckhove, Maiko; Okamoto, Momoko; Kashiyama, Kazuya; Tanaka, Katsumi; Kim, Sangeun; Kawata, Takuya; Komatsu, Toshimitsu; Park, Seongjoon; Ikematsu, Kazuya; Hirano, Akiyoshi; Martin, Paul; Shimokawa, Isao

    2014-09-01

    The forkhead box O (FOXO) family has been extensively investigated in aging and metabolism, but its role in tissue-repair processes remains largely unknown. Herein, we clarify the molecular aspect of the FOXO family in skin wound healing. We demonstrated that Foxo1 and Foxo3a were both up-regulated during murine skin wound healing. Partial knockout of Foxo1 in Foxo1(+/-) mice throughout the body led to accelerated skin wound healing with enhanced keratinocyte migration, reduced granulation tissue formation, and decreased collagen density, accompanied by an attenuated inflammatory response, but we observed no wound phenotype in Foxo3a(-/-) mice. Fibroblast growth factor 2, adiponectin, and notch1 genes were significantly increased at wound sites in Foxo1(+/-) mice, along with markedly altered extracellular signal-regulated kinase 1/2 and AKT phosphorylation. Similarly, transient knockdown of Foxo1 at the wound site by local delivery of antisense oligodeoxynucleotides enhanced skin wound healing. The link between FOXO1 and scarring extends to patients, in particular keloid scars, where we see FOXO1 expression markedly increased in fibroblasts and inflammatory cells within the otherwise normal dermis. This occurs in the immediate vicinity of the keloid by comparison to the center of the mature keloid, indicating that FOXO1 is associated with the overgrowth of this fibrotic response into adjacent normal skin. Overall, our data indicate that molecular targeting of FOXO1 may improve the quality of healing and reduce pathological scarring. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. PRFM enhance wound healing process in skin graft.

    Science.gov (United States)

    Reksodiputro, Mirta; Widodo, Dini; Bashiruddin, Jenny; Siregar, Nurjati; Malik, Safarina

    2014-12-01

    Facial plastic and reconstructive surgery often used skin graft on defects that cannot be covered primarily by a local flap. However, wound healing using skin graft is slow, most of the time the graft is contractured and the take of graft is not optimal. Platelet rich fibrin matrix (PRFM) is a new generation of concentrated platelets that produce natural fibrin and reported to speed up the healing process. Application of PRFM in the skin graft implants is expected to increase the survival of the graft. We used porcine as animal models to elucidate the effect of autologous PRFM on wound healing in full-thickness (FTSG) and split-thickness (STSG) skin grafts. Survival level of the skin graft was determined by using ImageJ software based on the formation of collagen type 1 and graft take. We observed that the use of PRFM in FTSG and STSG increased type 1 collagen formation. We also found that PRFM addition in STSG gave the best skin graft take. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  12. The Role of Iron in the Skin & Cutaneous Wound Healing

    Directory of Open Access Journals (Sweden)

    Josephine Anne Wright

    2014-07-01

    Full Text Available In this review article we discuss current knowledge about iron in the skin and the cutaneous wound healing process. Iron plays a key role in both oxidative stress and photo-induced skin damage. The main causes of oxidative stress in the skin include reactive oxygen species (ROS generated in the skin by ultraviolet (UVA 320-400 nm portion of the ultraviolet spectrum and biologically available iron. We also discuss the relationships between iron deficiency, anaemia and cutaneous wound healing. Studies looking at this fall into two distinct groups. Early studies investigated the effect of anaemia on wound healing using a variety of experimental methodology to establish anaemia or iron deficiency and focused on wound-strength rather than effect on macroscopic healing or re-epithelialisation. More recent animal studies have investigated novel treatments aimed at correcting the effects of systemic iron deficiency and localised iron overload. Iron overload is associated with local cutaneous iron deposition, which has numerous deleterious effects in chronic venous disease and hereditary haemochromatosis. Iron plays a key role in chronic ulceration and conditions such as Rheumatoid Arthritis (RA and Lupus Erythematosus are associated with both anaemia of chronic disease and dysregulation of local cutaneous iron haemostasis. Iron is a potential therapeutic target in the skin by application of topical iron chelators and novel pharmacological agents, and in delayed cutaneous wound healing by treatment of iron deficiency or underlying systemic inflammation.

  13. Secretion of wound healing mediators by single and bi-layer skin substitutes.

    Science.gov (United States)

    Maarof, Manira; Law, Jia Xian; Chowdhury, Shiplu Roy; Khairoji, Khairul Anuar; Saim, Aminuddin Bin; Idrus, Ruszymah Bt Hj

    2016-10-01

    Limitations of current treatments for skin loss caused by major injuries leads to the use of skin substitutes. It is assumed that secretion of wound healing mediators by these skin substitutes plays a role in treating skin loss. In our previous study, single layer keratinocytes (SK), single layer fibroblast (SF) and bilayer (BL; containing keratinocytes and fibroblasts layers) skin substitutes were fabricated using fibrin that had shown potential to heal wounds in preclinical studies. This study aimed to quantify the secretion of wound healing mediators, and compare between single and bi-layer skin substitutes. Skin samples were digested to harvest fibroblasts and keratinocytes, and expanded to obtain sufficient cells for the construction of skin substitutes. Acellular fibrin (AF) construct was used as control. Substitutes i.e. AF, SK, SF and BL were cultured for 2 days, and culture supernatant was collected to analyze secretion of wound healing mediators via multiplex ELISA. Among 19 wound healing mediators tested, BL substitute secreted significantly higher amounts of CXCL1 and GCSF compared to SF and AF substitute but this was not significant with respect to SK substitute. The BL substitute also secreted significantly higher amounts of CXCL5 and IL-6 compared to other substitutes. In contrast, the SK substitute secreted significantly higher amounts of VCAM-1 compared to other substitutes. However, all three skin substitutes also secreted CCL2, CCL5, CCL11, GM-CSF, IL8, IL-1α, TNF-α, ICAM-1, FGF-β, TGF-β, HGF, VEGF-α and PDGF-BB factors, but no significant difference was seen. Secretion of these mediators after transplantation may play a significant role in promoting wound healing process for the treatment of skin loss.

  14. An Alternative Treatment Strategy for Complicated Chronic Wounds: Negative Pressure Therapy over Mesh Skin Graft

    Directory of Open Access Journals (Sweden)

    Michele Maruccia

    2017-01-01

    Full Text Available Extensive skin defect represents a real problem and major challenge in plastic and reconstructive surgery. On one hand, skin grafts offer a practical method to deal with skin defects despite their unsuitability for several complicated wounds. On the other hand, negative pressure wound therapy (NPWT, applied before skin grafting, promotes granulation tissue growth. The aim of the study is to evaluate the improvement in wound healing given by the merger of these two different approaches. We treated 23 patients for large wounds of multiple factors. Of these, 15 were treated with the application of V.A.C.® Therapy (KCI Medical S.r.l., Milan, Italy, in combination with skin grafts after a prior unsuccessful treatment of 4 weeks with mesh skin grafts and dressings. Another 8 were treated with only mesh skin graft. Pain reduction and wound area reduction were found statistically significant (p<0.0009, p<0.0001. Infection was resolved in almost all patients. According to our study, the use of the negative pressure wound therapy over mesh skin grafts is significantly effective especially in wounds resistant to conventional therapies, thereby improving the rate of skin graft take.

  15. Innate sensing of microbial products promotes wound-induced skin cancer

    Science.gov (United States)

    Hoste, Esther; Arwert, Esther N.; Lal, Rohit; South, Andrew P.; Salas-Alanis, Julio C.; Murrell, Dedee F.; Donati, Giacomo; Watt, Fiona M.

    2015-01-01

    The association between tissue damage, chronic inflammation and cancer is well known. However, the underlying mechanisms are unclear. Here we characterize a mouse model in which constitutive epidermal extracellular-signal-regulated kinase-MAP-kinase signalling results in epidermal inflammation, and skin wounding induces tumours. We show that tumour incidence correlates with wound size and inflammatory infiltrate. Ablation of tumour necrosis factor receptor (TNFR)-1/-2, Myeloid Differentiation primary response gene 88 or Toll-like receptor (TLR)-5, the bacterial flagellin receptor, but not other innate immune sensors, in radiosensitive leukocytes protects against tumour formation. Antibiotic treatment inhibits, whereas injection of flagellin induces, tumours in a TLR-5-dependent manner. TLR-5 is also involved in chemical-induced skin carcinogenesis in wild-type mice. Leukocytic TLR-5 signalling mediates upregulation of the alarmin HMGB1 (High Mobility Group Box 1) in wound-induced papillomas. HMGB1 is elevated in tumours of patients with Recessive Dystrophic Epidermolysis Bullosa, a disease characterized by chronic skin damage. We conclude that in our experimental model the combination of bacteria, chronic inflammation and wounding cooperate to trigger skin cancer. PMID:25575023

  16. Decreasing Skin Graft Contraction through Topical Wound Bed Preparation with Anti-Inflammatory Agents

    Science.gov (United States)

    2017-10-01

    Award Number: W81XWH-14-2-0153 TITLE: Decreasing Skin Graft Contraction through Topical Wound Bed Preparation with Anti-Inflammatory Agents...09/14/2017 4. TITLE AND SUBTITLE “Decreasing Skin Graft Contraction through Topical Wound Bed Preparation with Anti-Inflammatory Agents” 5a...of a specific topical anti-inflammatory drug that will reduce and shorten the inflammatory state of the recipient wound bed and thus, skin graft

  17. Wound-Healing Studies in Cornea and Skin: Parallels, Differences and Opportunities.

    Science.gov (United States)

    Bukowiecki, Anne; Hos, Deniz; Cursiefen, Claus; Eming, Sabine A

    2017-06-12

    The cornea and the skin are both organs that provide the outer barrier of the body. Both tissues have developed intrinsic mechanisms that protect the organism from a wide range of external threats, but at the same time also enable rapid restoration of tissue integrity and organ-specific function. The easy accessibility makes the skin an attractive model system to study tissue damage and repair. Findings from skin research have contributed to unravelling novel fundamental principles in regenerative biology and the repair of other epithelial-mesenchymal tissues, such as the cornea. Following barrier disruption, the influx of inflammatory cells, myofibroblast differentiation, extracellular matrix synthesis and scar formation present parallel repair mechanisms in cornea and skin wound healing. Yet, capillary sprouting, while pivotal in proper skin wound healing, is a process that is rather associated with pathological repair of the cornea. Understanding the parallels and differences of the cellular and molecular networks that coordinate the wound healing response in skin and cornea are likely of mutual importance for both organs with regard to the development of regenerative therapies and understanding of the disease pathologies that affect epithelial-mesenchymal interactions. Here, we review the principal events in corneal wound healing and the mechanisms to restore corneal transparency and barrier function. We also refer to skin repair mechanisms and their potential implications for regenerative processes in the cornea.

  18. Skin wound healing in different aged Xenopus laevis.

    Science.gov (United States)

    Bertolotti, Evelina; Malagoli, Davide; Franchini, Antonella

    2013-08-01

    Xenopus froglets can perfectly heal skin wounds without scarring. To explore whether this capacity is maintained as development proceeds, we examined the cellular responses during the repair of skin injury in 8- and 15-month-old Xenopus laevis. The morphology and sequence of healing phases (i.e., inflammation, new tissue formation, and remodeling) were independent of age, while the timing was delayed in older frogs. At the beginning of postinjury, wound re-epithelialization occurred in form of a thin epithelium followed by a multilayered epidermis containing cells with apoptotic patterns and keratinocytes stained by anti-inducible nitric oxide synthase (iNOS) antibody. The inflammatory response, early activated by recruitment of blood cells immunoreactive to anti-tumor necrosis factor (TNF)-α, iNOS, transforming growth factor (TGF)-β1, and matrix metalloproteinase (MMP)-9, persisted over time. The dermis repaired by a granulation tissue with extensive angiogenesis, inflammatory cells, fibroblasts, and anti-α-SMA positive myofibroblasts. As the healing progressed, wounded areas displayed vascular regression, decrease in cellularity, and rearrangement of provisional matrix. The epidermis restored to a prewound morphology while granulation tissue was replaced by a fibrous tissue in a scar-like pattern. The quantitative PCR analysis demonstrated an up-regulated expression of Xenopus suppressor of cytokine signaling 3 (XSOCS-3) and Xenopus transforming growth factor-β2 (XTGF-β2) soon after wounding and peak levels were detected when granulation tissue was well developed with a large number of inflammatory cells. The findings indicate that X. laevis skin wound healing occurred by a combination of regeneration (in epidermis) and repair (in dermis) and, in contrast to froglet scarless wound healing, the growth to a more mature adult stage is associated with a decrease in regenerative capacity with scar-like tissue formation. Copyright © 2013 Wiley Periodicals, Inc.

  19. Examination of the skin barrier repair/wound healing process using a living skin equivalent model and matrix-assisted laser desorption-ionization-mass spectrometry imaging.

    Science.gov (United States)

    Lewis, E E L; Barrett, M R T; Freeman-Parry, L; Bojar, R A; Clench, M R

    2018-04-01

    Examination of the skin barrier repair/wound healing process using a living skin equivalent (LSE) model and matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to identify lipids directly involved as potential biomarkers. These biomarkers may be used to determine whether an in vivo wound is going to heal for example if infected. An in vitro LSE model was wounded with a scalpel blade and assessed at day 4 post-wounding by histology and MALDI-MSI. Samples were sectioned at wound site and were either formalin-fixed paraffin-embedded (FFPE) for histology or snapped frozen (FF) for MSI analysis. The combination of using an in vitro wounded skin model with MSI allowed the identification of lipids involved in the skin barrier repair/wound healing process. The technique was able to highlight lipids directly in the wound site and distinguish differences in lipid distribution between the epidermis and wound site. This novel method of coupling an in vitro LSE with MSI allowed in-depth molecular analysis of the skin barrier repair/wound healing process. The technique allowed the identification of lipids directly involved in the skin barrier repair/wound healing process, indicating these biomarkers may be potentially be used within the clinic. These biomarkers will help to determine, which stage of the skin barrier repair/wound healing process the wound is in to provide the best treatment. © 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  20. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing

    Science.gov (United States)

    Das, Subhamoy; Baker, Aaron B.

    2016-01-01

    Wound healing is an intricate process that requires complex coordination between many cell types and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care, the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds, including excessive inflammation, ischemia, scarring, and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or are currently used in clinical practice. PMID:27843895

  1. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing

    Directory of Open Access Journals (Sweden)

    Subhamoy Das

    2016-10-01

    Full Text Available Wound healing is an intricate process that requires complex coordination between many cells and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care; the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds including excessive inflammation, ischemia, scarring and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or currently used in clinical practice.

  2. In vivo performance of chitosan/soy-based membranes as wound-dressing devices for acute skin wounds.

    Science.gov (United States)

    Santos, Tírcia C; Höring, Bernhard; Reise, Kathrin; Marques, Alexandra P; Silva, Simone S; Oliveira, Joaquim M; Mano, João F; Castro, António G; Reis, Rui L; van Griensven, Martijn

    2013-04-01

    Wound management represents a major clinical challenge on what concerns healing enhancement and pain control. The selection of an appropriate dressing plays an important role in both recovery and esthetic appearance of the regenerated tissue. Despite the wide range of available dressings, the progress in the wound care market relies on the increasing interest in using natural-based biomedical products. Herein, a rat wound-dressing model of partial-thickness skin wounds was used to study newly developed chitosan/soy (cht/soy)-based membranes as wound-dressing materials. Healing and repair of nondressed, cht/soy membrane-dressed, and Epigard(®)-dressed wounds were followed macroscopically and histologically for 1 and 2 weeks. cht/soy membranes performed better than the controls, promoting a faster wound repair. Re-epithelialization, observed 1 week after wounding, was followed by cornification of the outermost epidermal layer at the second week of dressing, indicating repair of the wounded tissue. The use of this rodent model, although in impaired healing conditions, may enclose some drawbacks regarding the inevitable wound contraction. Moreover, being the main purpose the evaluation of cht/soy-based membranes' performance in the absence of growth factors, the choice of a clinically relevant positive control was limited to a polymeric mesh, without any growth factor influencing skin healing/repair, Epigard. These new cht/soy membranes possess the desired features regarding healing/repair stimulation, ease of handling, and final esthetic appearance-thus, valuable properties for wound dressings.

  3. Bilateral axillary skin fold flaps used for dorsal thoracic skin wound closure in a dog : clinical communication

    Directory of Open Access Journals (Sweden)

    B. G. Nevill

    2010-05-01

    Full Text Available A 10-year-old greyhound-cross dog was presented with a large, chronic skin wound extending over the interscapular region. The substantial skin defect was closed by making use of bilateral axillary skin fold flaps. It was possible to elevate the 2 skin flaps sufficiently to allow them to meet at the dorsal midline and thus facilitate complete closure of a large and awkwardly positioned wound. Small dorsal areas of the skin flaps underwent necrosis, but the resulting defects were closed without difficulty in a subsequent procedure. To the author's knowledge, this is the 1st clinical report of the use of bilateral axillary skin fold flaps in this fashion and describes an additional use of a versatile skin flap procedure.

  4. Lactic acid peeling in superficial acne scarring in Indian skin.

    Science.gov (United States)

    Sachdeva, Silonie

    2010-09-01

    Chemical peeling with both alpha and beta hydroxy acids has been used to improve acne scarring with pigmentation. Lactic acid, a mild alpha hydroxy acid, has been used in the treatment of various dermatological indications but no study is reported in acne scarring with pigmentation. To evaluate the efficacy and safety of full strength pure lactic acid 92% (pH 2.0) chemical peel in superficial acne scarring in Indian skin. Seven patients, Fitzpatrick skin type IV-V, in age group 20-30 years with superficial acne scarring were enrolled in the study. Chemical peeling was done with lactic acid at an interval of 2 weeks to a maximum of four peels. Pre- and post-peel clinical photographs were taken at every session. Patients were followed every month for 3 months after the last peel to evaluate the effects. At the end of 3 months, there was definite improvement in the texture, pigmentation, and appearance of the treated skin, with lightening of scars. Significant improvement (greater than 75% clearance of lesions) occurred in one patient (14.28%), good improvement (51-75% clearance) in three patients (42.84%), moderate improvement (26-50% clearance) in two patients (28.57%), and mild improvement (1-25% clearance) in one patient (14.28%). © 2010 Wiley Periodicals, Inc.

  5. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    International Nuclear Information System (INIS)

    Nastuta, Andrei Vasile; Topala, Ionut; Pohoata, Valentin; Popa, Gheorghe; Grigoras, Constantin

    2011-01-01

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  6. Recipient Wound Bed Characteristics Affect Scarring and Skin Graft Contraction

    Science.gov (United States)

    2015-02-13

    wound debridement followed by coverage with split thickness skin grafts (STSGs). As a consequence, skin replacement therapy has been a topic of intense...number. 1. REPORT DATE 13 FEB 2015 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Recipient wound bed characteristics affect...E), Verhoeff’s Elas- tic Masson’s Tricrhome for total collagen and elastin, or picrosirius red for differential detection of Type I and III collagen

  7. Injury-activated glial cells promote wound healing of the adult skin in mice.

    Science.gov (United States)

    Parfejevs, Vadims; Debbache, Julien; Shakhova, Olga; Schaefer, Simon M; Glausch, Mareen; Wegner, Michael; Suter, Ueli; Riekstina, Una; Werner, Sabine; Sommer, Lukas

    2018-01-16

    Cutaneous wound healing is a complex process that aims to re-establish the original structure of the skin and its functions. Among other disorders, peripheral neuropathies are known to severely impair wound healing capabilities of the skin, revealing the importance of skin innervation for proper repair. Here, we report that peripheral glia are crucially involved in this process. Using a mouse model of wound healing, combined with in vivo fate mapping, we show that injury activates peripheral glia by promoting de-differentiation, cell-cycle re-entry and dissemination of the cells into the wound bed. Moreover, injury-activated glia upregulate the expression of many secreted factors previously associated with wound healing and promote myofibroblast differentiation by paracrine modulation of TGF-β signalling. Accordingly, depletion of these cells impairs epithelial proliferation and wound closure through contraction, while their expansion promotes myofibroblast formation. Thus, injury-activated glia and/or their secretome might have therapeutic potential in human wound healing disorders.

  8. Ascorbic acid for the healing of skin wounds in rats

    Directory of Open Access Journals (Sweden)

    CC. Lima

    Full Text Available BACKGROUND: Healing is a complex process that involves cellular and biochemical events. Several medicines have been used in order to shorten healing time and avoid aesthetic damage. OBJECTIVE: to verify the topical effect of ascorbic acid for the healing of rats' skin wounds through the number of macrophages, new vessels and fibroblast verifications in the experimental period; and analyse the thickness and the collagen fibre organization in the injured tissue. METHODS: Male Rattus norvegicus weighing 270 ± 30 g were used. After thionembutal anesthesia, 15 mm transversal incisions were made in the animals' cervical backs. They were divided into two groups: Control Group (CG, n = 12 - skin wound cleaned with water and soap daily; Treated Group (TG, n = 12 - skin wound cleaned daily and treated with ascorbic acid cream (10%. Samples of skin were collected on the 3rd, 7th and 14th days. The sections were stained with hematoxylin-eosin and picrosirius red for morphologic analysis. The images were obtained and analysed by a Digital Analyser System. RESULTS: The ascorbic acid acted on every stage of the healing process. It reduced the number of macrophages, increased the proliferation of fibroblasts and new vessels, and stimulated the synthesis of thicker and more organized collagen fibres in the wounds when compared to CG. CONCLUSION: Ascorbic acid was shown to have anti-inflammatory and healing effects, guaranteeing a suiTable environment and conditions for faster skin repair.

  9. The Ability of Tissue Engineered Skin Accelerating the Closure of Different Wound

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionIn the past several decades, a number of reseacher have described the principal efficacy of tissue engineered skin to promote wound healing of venous and diabetic ulcers. But the true value of tissue-engineered skin products in different wound care remains yet to be more clearly defined. In this trial, we analysis the effective of tissue-engineered skin (ActivSkin) in the management of burns, donor sites and ulcers, which were also the frequently injury caused with warfare, disaster and terror...

  10. Wound-healing activity of the skin of the common grape (Vitis Vinifera) variant, Cabernet Sauvignon.

    Science.gov (United States)

    Nayak, B Shivananda; Ramdath, D Dan; Marshall, Julien R; Isitor, Godwin N; Eversley, Mathew; Xue, Sophia; Shi, John

    2010-08-01

    The common Grape L. (Vitaceae) is regarded as an important medicinal plant. European healers have suggested the use of grapevine sap, juice, and whole grape in the treatment of pain, allergic reactions, inflammation, and to promote wound healing. We evaluated grape-skin powder for its wound-healing activity using an excision wound model in rats. Animals were randomly divided into three groups of six (n = 6) each. The test group animals were treated topically with the grape-skin powder (100 mg/kg/day). The controls and standard group animals were treated with petroleum jelly and mupirocin ointment respectively. Healing was assessed by the rate of wound contraction, period of epithelialization, and hydroxyproline content. On day 13, treatment of the wounds with grape-skin powder enhanced significantly the rate of wound contraction (100 %). Treated animals showed significant decrease in the epithelialization period (p < 0.000) and increase in the hydroxyproline content (p < 0.05) when compared to control and the standard. Histological analysis was also consistent with the proposal that grape-skin powder exhibits significant wound-healing potential. Increased rate of wound contraction, hydroxyproline content, and decrease in epithelialization time in the treated animals support the use of grape-skin powder in the management of wound healing. Copyright (c) 2010 John Wiley & Sons, Ltd.

  11. Effective biofilm removal and changes in bacterial biofilm building capacity after wound debridement with low-frequency ultrasound as part of wound bed preparation before skin grafting

    Directory of Open Access Journals (Sweden)

    Yarets Y

    2017-03-01

    Full Text Available Yuliya Yarets Clinical Laboratory Medicine Department, The Republican Scientific Centre for Radiation Medicine and Human Ecology, Gomel, Belarus Abstract: The aim of the study was to evaluate the efficacy of ultrasonic-assisted wound debridement (UAW used for wound bed preparation of chronic wounds prior to skin grafting. Initially, 140 patients were enrolled into study. Group 1 patients (n=53 with critically colonized wounds underwent a single UAW procedure before skin grafting. Group 2 patients (n=87 with colonized wounds received two UAW sessions, skin grafting followed by the second UAW treatment. Initial wound classification in colonized and critically colonized wounds did not correlate with results from microbiological analysis of wound swab samples. Hence, comparison of efficacy of one or two debridement sessions was conducted solely for a similar group of patients, that is, patients with colonized wounds of group 1 (n=40 and group 2 (n=47. In wounds of group 1 patients, a single debridement session resulted in reduction of bacteria from >104 to <104 CFU/mL. However, bacteria remaining at wound site showed minor differences in biofilm slime production, with skin graft failure being observed in 25% cases. In wounds of group 2 patients, two debridement sessions significantly reduced bacterial presence up to <102 CFU/mL. Bacteria remaining at wound site showed low capacity for biofilm slime production and high accumulation of biomass; a complete graft healing was observed in all patients. We suggest two to three debridement sessions with UAW to be most effective in wound bed preparation before skin grafting of chronic wounds. UAW showed to be effective in cleaning the wound bed, destroying the extracellular substances in biofilms, and influencing biofilm slime building capacity of bacteria left at wound site. Keywords: wound debridement, wound bed preparation, biofilm, low-frequency ultrasound, skin grafting, biofilm assay

  12. Silica Nanofibers with Immobilized Tetracycline for Wound Dressing

    Directory of Open Access Journals (Sweden)

    Irena Lovětinská-Šlamborová

    2016-01-01

    Full Text Available Local antibiotic treatment has its justification for superficial infections. The advantage of this treatment is that the antibiotic has effects on bacterial agent directly at the application site. Skin infections which are intended for the local antibiotic treatment are superficial pyoderma, some festering wounds, burns of second and third degree, infected leg ulcers, or decubitus of second and third degree. Tetracyclines are available topical antibiotics with a broad bacterial spectrum. At present, ointments containing tetracycline are also used for the treatment, which rarely can lead to skin sensitization. In this paper, a development of novel nanofibrous material with immobilized tetracycline is presented. Two different methods of immobilized tetracycline quantification onto silica nanofibers are employed. It was proven that the prevailing part of tetracycline was bound weakly by physisorption forces, while the minor part was covalently bound by NH2 groups formed by the preceding functionalization. The silica nanofibers with immobilized tetracycline are promising material for wound dressing applications due to its antibacterial activity; it was proved by tests.

  13. Mast cells are dispensable for normal and activin-promoted wound healing and skin carcinogenesis.

    Science.gov (United States)

    Antsiferova, Maria; Martin, Caroline; Huber, Marcel; Feyerabend, Thorsten B; Förster, Anja; Hartmann, Karin; Rodewald, Hans-Reimer; Hohl, Daniel; Werner, Sabine

    2013-12-15

    The growth and differentiation factor activin A is a key regulator of tissue repair, inflammation, fibrosis, and tumorigenesis. However, the cellular targets, which mediate the different activin functions, are still largely unknown. In this study, we show that activin increases the number of mature mast cells in mouse skin in vivo. To determine the relevance of this finding for wound healing and skin carcinogenesis, we mated activin transgenic mice with CreMaster mice, which are characterized by Cre recombinase-mediated mast cell eradication. Using single- and double-mutant mice, we show that loss of mast cells neither affected the stimulatory effect of overexpressed activin on granulation tissue formation and reepithelialization of skin wounds nor its protumorigenic activity in a model of chemically induced skin carcinogenesis. Furthermore, mast cell deficiency did not alter wounding-induced inflammation and new tissue formation or chemically induced angiogenesis and tumorigenesis in mice with normal activin levels. These findings reveal that mast cells are not major targets of activin during wound healing and skin cancer development and also argue against nonredundant functions of mast cells in wound healing and skin carcinogenesis in general.

  14. Honey ointment': a natural remedy of skin wound infections

    International Nuclear Information System (INIS)

    Tasleem, S.; Naqvi, S.B.S.; Hashimi, K.

    2011-01-01

    Background: Honey is a gift of nature, principally identified and valued to possess antimicrobial and anti-inflammatory activity and has been used as a natural remedy of wounds since ancient times. The objectives of this study were to evaluate the antimicrobial activity of honey against micro-organisms, to formulate a honey ointment and to evaluate the efficacy of such ointment by conducting clinical trials on skin wound infection. Methods: This experimental study was conducted at Department of Pharmaceutics, Faculty of Pharmacy, University of Karachi and Out-patient Department of Dermatology, Fauji Foundation Hospital, Rawalpindi from November 2009 to October 2010. The antimicrobial activity of Pakistani floral sources (Trachysperm copticum, Acacia nilotica species indica, Zizyphus) honey samples was investigated by disc diffusion method against freshly isolated wound infecting bacteria (Staphylococci aureus, Staphylococci epidermidis, Streptococcus faecalis, Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli, Proteus vulgaris and Candida albicans), and Staphylococci aureus ATCC 6538, Pseudomonas aeruginosa ATCC 9022, Escherichia coli ATCC 25922, Candida albican ATCC 15146. An ointment containing 20% active antimicrobial honey was formulated. The efficacy of such ointment was evaluated by passing thought clinical trials. A total number of 27 patients (23 skin wound infection, and 4 diabetic foot ulcer) were involved in the study. Thin layer of newly formulated honey ointment on gauze were applied two to three times per day till complete healing. Results: In microbiological assay the honey samples were found to exhibit a very promising antimicrobial activity against all the micro-organisms tested. In clinical trial very significant results (99.15%) healing was observed in skin wound infections cases with mean healing time of 5.86 (2-20) days, and 95% diabetic foot ulcers healed with the mean healing time of 20 (8-40) days. Conclusion: Newly formulated

  15. Hypoandrogenism related to early skin wound healing resistance in rats.

    Science.gov (United States)

    Petroianu, A; Veloso, D F M; Alberti, L R; Figueiredo, J A; Rodrigues, F H O Carmo; Carneiro, B G M Carvalho E

    2010-04-01

    The purpose of this study was to verify the effect of testosterone depletion on healing of surgical skin wounds at different ages and post-operative periods. Forty-four Wistar male rats were divided into four groups: Group 1Y (n = 11) - young control, sham-operated rats (30-day old); Group 1A (n = 10) - adult control, sham-operated rats (3 to 4-month old); Group 2Y (n = 10) - young rats after bilateral orchiectomy; and Group 2A (n = 11) - adult rats after bilateral orchiectomy. After 6 months, a linear incision was performed on the dorsal region of the animals. The resistance of the wound healing was measured in a skin fragment using a tensiometer, on the 7th and 21st post-operative days. The wound healing resistance was higher in Group 1Y than in Group 2Y after 7 days (P Wound healing resistance at 21 days was higher than at 7 days in all groups (P wound healing resistance was not different between young and adult rats. It is concluded that bilateral orchiectomy diminished the wound healing resistance only in young animals at the 7th post-operative day.

  16. Multifunctional skin-like electronics for quantitative, clinical monitoring of cutaneous wound healing.

    Science.gov (United States)

    Hattori, Yoshiaki; Falgout, Leo; Lee, Woosik; Jung, Sung-Young; Poon, Emily; Lee, Jung Woo; Na, Ilyoun; Geisler, Amelia; Sadhwani, Divya; Zhang, Yihui; Su, Yewang; Wang, Xiaoqi; Liu, Zhuangjian; Xia, Jing; Cheng, Huanyu; Webb, R Chad; Bonifas, Andrew P; Won, Philip; Jeong, Jae-Woong; Jang, Kyung-In; Song, Young Min; Nardone, Beatrice; Nodzenski, Michael; Fan, Jonathan A; Huang, Yonggang; West, Dennis P; Paller, Amy S; Alam, Murad; Yeo, Woon-Hong; Rogers, John A

    2014-10-01

    Non-invasive, biomedical devices have the potential to provide important, quantitative data for the assessment of skin diseases and wound healing. Traditional methods either rely on qualitative visual and tactile judgments of a professional and/or data obtained using instrumentation with forms that do not readily allow intimate integration with sensitive skin near a wound site. Here, an electronic sensor platform that can softly and reversibly laminate perilesionally at wounds to provide highly accurate, quantitative data of relevance to the management of surgical wound healing is reported. Clinical studies on patients using thermal sensors and actuators in fractal layouts provide precise time-dependent mapping of temperature and thermal conductivity of the skin near the wounds. Analytical and simulation results establish the fundamentals of the sensing modalities, the mechanics of the system, and strategies for optimized design. The use of this type of "epidermal" electronics system in a realistic clinical setting with human subjects establishes a set of practical procedures in disinfection, reuse, and protocols for quantitative measurement. The results have the potential to address important unmet needs in chronic wound management. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Comparison of Laser Doppler Imaging (LDI) and clinical assessment in differentiating between superficial and deep partial thickness burn wounds.

    Science.gov (United States)

    Jan, Saadia Nosheen; Khan, Farid Ahmed; Bashir, Muhammad Mustehsan; Nasir, Muneeb; Ansari, Hamid Hussain; Shami, Hussan Birkhez; Nazir, Umer; Hanif, Asif; Sohail, Muhammad

    2018-03-01

    To compare the accuracy of Laser Doppler Imaging (LDI) and clinical assessment in differentiating between superficial and deep partial thickness burns to decide whether early tangential excision and grafting or conservative management should be employed to optimize burn and patient management. March 2015 to November 2016. Ninety two wounds in 34 patients reporting within 5days of less than 40% burn surface area were included. Unstable patients, pregnant females and those who expired were excluded. The wounds were clinically assessed and LDI done concomitantly Plastic Surgeons blinded to each other's findings. Wound appearance, color, blanching, pain, hair follicle dislodgement were the clinical parameters that distinguished between superficial and deep partial thickness burns. On day 21, the wounds were again assessed for the presence of healing by the same plastic surgeons. The findings were correlated with the initial findings on LDI and clinical assessment and the results statistically analyzed. The data of 92 burn wounds was analyzed using SPSS (ver. 17). Clinical assessment correctly identified the depth of 75 and LDI 83 wounds, giving diagnostic accuracies of 81.52% and 90.21% respectively. The sensitivity of clinical assessment was 81% and of LDI 92.75%, whereas the specificity was 82% for both. The positive predictive value was 93% for clinical assessment and 94% for LDI while the negative predictive value was 59% and 79% respectively. Predictive accuracy of LDI was found to be better than clinical assessment in the prediction of wound healing, the gold standard for wound healing being 21 days. As such it can prove to be a reliable and viable cost effective alternative per se to clinical assessment. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  18. Terbinafine-loaded wound dressing for chronic superficial fungal infections.

    Science.gov (United States)

    Paskiabi, Farnoush Asghari; Bonakdar, Shahin; Shokrgozar, Mohammad Ali; Imani, Mohammad; Jahanshiri, Zahra; Shams-Ghahfarokhi, Masoomeh; Razzaghi-Abyaneh, Mehdi

    2017-04-01

    In spite of developing new drugs and modern formulations, the treatments of chronic fungal infections are still challenging. Fibrous wound dressings are new suggestions for the treatment of chronic superficial infections. In the present study, we formulated an antifungal agent, terbinafine hydrochloride (TFH), which is a hydrophobic drug, in wound dressings prepared by electrospun polycaprolactone, polycaprolactone/gelatin (50:50 w/w) and gelatin. To obtain more water-stable meshes, the preparations were treated by glutaraldehyde and their properties were determined before and after treatment. The morphology of fibrous meshes was observed by scanning electron microscopy. Drug loading efficiency and release rate were measured by high performance liquid chromatography (HPLC) and the release rate was monitored for 144h. Antifungal tests were performed on Trichophyton mentagrophytes, Aspergillus fumigatus and Candida albicans cultured on Muller-Hinton agar. The toxicity of the meshes was measured after 24h and 14days by MTT assay. Terbinafine loading of polycaprolactone/gelatin (50:50) was 100% and it released the highest amount of TFH too. In antifungal tests, all samples were able to hinderT. mentagrophytes and A. fumigatus but not C. albicans growth among them, polycaprolactone fibers made the largest inhibition zone. In MTT assay, none of prepared samples showed toxicity against L929 cells. Teken together, the prepared TFH-loaded PCL/gelatin electrospun meshes were able to release TFH slowly and in a steady state in time. With respect to no obvious cytotoxicity in MTT assay and stong antifungal activity toward T. mentagrophytesin vitro, these TFH-based meshes could be considered as potential candidates in clinical application as wound dressing for treatment of chronic dermatophytosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Photodynamic therapy (PDT) to treat a chronic skin wound in a dog

    Science.gov (United States)

    Hage, Raduan; Plapler, Hélio; Bitar, Renata A.

    2008-02-01

    Photodynamic Therapy (PDT) is an emerging and promising therapeutic modality for treatment of a wide variety of malignant and nononcologic tumors, as well as in the treatment of infected skin ulcers. This study evaluated the effectiveness of the PDT to treat a chronic skin wound that had been already subjected to several clinical and surgical type treatments in a dog. The animal with an infected chronic skin wound with 8 cm diameter in the left leg received an injection of an aqueous solution of 1% methylene blue (MB) with 2% lidocaine into the lesion. After MB injection the wound was irradiated using a LED (LED-VET MMOptics(r)) with a wavelength between 600 and 700 nm, 2 cm diameter circular light beam, of 150 mW of power, light dose of 50 J/cm2. After 3 and 6 weeks PDT was repeated and the wound was re-evaluated. Complete healing was achieved 10 weeks after the first procedure.

  20. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy

    International Nuclear Information System (INIS)

    Zhang, E Z; Laufer, J G; Beard, P C; Pedley, R B

    2009-01-01

    The application of a photoacoustic imaging instrument based upon a Fabry-Perot polymer film ultrasound sensor to imaging the superficial vasculature is described. This approach provides a backward mode-sensing configuration that has the potential to overcome the limitations of current piezoelectric based detection systems used in superficial photoacoustic imaging. The system has been evaluated by obtaining non-invasive images of the vasculature in human and mouse skin as well as mouse models of human colorectal tumours. These studies showed that the system can provide high-resolution 3D images of vascular structures to depths of up to 5 mm. It is considered that this type of instrument may find a role in the clinical assessment of conditions characterized by changes in the vasculature such as skin tumours and superficial soft tissue damage due to burns, wounds or ulceration. It may also find application in the characterization of small animal cancer models where it is important to follow the tumour vasculature over time in order to study its development and/or response to therapy.

  1. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, E Z; Laufer, J G; Beard, P C [Department of Medical Physics and Bioengineering, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Pedley, R B [UCL Cancer Institute, Paul O' Gorman Building, University College London, 72 Huntley St, London WC1E 6BT (United Kingdom)

    2009-02-21

    The application of a photoacoustic imaging instrument based upon a Fabry-Perot polymer film ultrasound sensor to imaging the superficial vasculature is described. This approach provides a backward mode-sensing configuration that has the potential to overcome the limitations of current piezoelectric based detection systems used in superficial photoacoustic imaging. The system has been evaluated by obtaining non-invasive images of the vasculature in human and mouse skin as well as mouse models of human colorectal tumours. These studies showed that the system can provide high-resolution 3D images of vascular structures to depths of up to 5 mm. It is considered that this type of instrument may find a role in the clinical assessment of conditions characterized by changes in the vasculature such as skin tumours and superficial soft tissue damage due to burns, wounds or ulceration. It may also find application in the characterization of small animal cancer models where it is important to follow the tumour vasculature over time in order to study its development and/or response to therapy.

  2. Influence of hypoandrogenism in skin wound healing resistance in rats

    Directory of Open Access Journals (Sweden)

    Denny Fabrício Magalhães Veloso

    2009-03-01

    Full Text Available Objective: The objective of the present study is to verify the effect of testosterone depletion on healing of surgical skin wounds at different ages and postoperative times. Methods: Forty-four Wistar male rats were divided into four groups: Group 1y (n = 11 – young control, sham-operated rats (30 days-old; Group 1A (n = 10 – adult control, sham-operated rats (three to four months old; Group 2Y (n = 10 – young rats after bilateral orchiectomy; and Group 2A (n = 11 – adult rats after bilateral orchiectomy. After six months, a linear incision was performed on the dorsal region of the animals. The resistance of the wound healing was measured in a skin fragment with a tensiometer, on the 7th and 21st postoperative days. Rresults: The wound healing resistance was higher in Group 1Y than in Group 2Y after seven days (p < 0.05. Wound healing resistance at 21 days was higher than at seven days in all groups (p < 0.05. Late wound healing resistance was not different between young and adult rats. Cconclusions: Bilateral orchiectomy decreased the wound healing resistance only in young animals at the seventh postoperative day.

  3. Foxn1 Transcription Factor Regulates Wound Healing of Skin through Promoting Epithelial-Mesenchymal Transition.

    Directory of Open Access Journals (Sweden)

    Barbara Gawronska-Kozak

    Full Text Available Transcription factors are key molecules that finely tune gene expression in response to injury. We focused on the role of a transcription factor, Foxn1, whose expression is limited to the skin and thymus epithelium. Our previous studies showed that Foxn1 inactivity in nude mice creates a pro-regenerative environment during skin wound healing. To explore the mechanistic role of Foxn1 in the skin wound healing process, we analyzed post-injured skin tissues from Foxn1::Egfp transgenic and C57BL/6 mice with Western Blotting, qRT-PCR, immunofluorescence and flow cytometric assays. Foxn1 expression in non-injured skin localized to the epidermis and hair follicles. Post-injured skin tissues showed an intense Foxn1-eGFP signal at the wound margin and in leading epithelial tongue, where it co-localized with keratin 16, a marker of activated keratinocytes. This data support the concept that suprabasal keratinocytes, expressing Foxn1, are key cells in the process of re-epithelialization. The occurrence of an epithelial-mesenchymal transition (EMT was confirmed by high levels of Snail1 and Mmp-9 expression as well as through co-localization of vimentin/E-cadherin-positive cells in dermis tissue at four days post-wounding. Involvement of Foxn1 in the EMT process was verified by co-localization of Foxn1-eGFP cells with Snail1 in histological sections. Flow cytometric analysis showed the increase of double positive E-cadherin/N-cadherin cells within Foxn1-eGFP population of post-wounded skin cells isolates, which corroborated histological and gene expression analyses. Together, our findings indicate that Foxn1 acts as regulator of the skin wound healing process through engagement in re-epithelization and possible involvement in scar formation due to Foxn1 activity during the EMT process.

  4. HDR brachytherapy for superficial non-melanoma skin cancers

    International Nuclear Information System (INIS)

    Gauden, Ruth; Pracy, Martin; Avery, Anne-Marie; Hodgetts, Ian; Gauden, Stan

    2013-01-01

    Our initial experience using recommended high dose per fraction skin brachytherapy (BT) treatment schedules, resulted in poor cosmesis. This study aimed to assess in a prospective group of patients the use of Leipzig surface applicators for High Dose Rate (HDR) brachytherapy, for the treatment of small non-melanoma skin cancers (NMSC) using a protracted treatment schedule. Treatment was delivered by HDR brachytherapy with Leipzig applicators. 36Gy, prescribed to between 3 to 4mm, was given in daily 3Gy fractions. Acute skin toxicity was evaluated weekly during irradiation using the Radiation Therapy Oncology Group criteria. Local response, late skin effects and cosmetic results were monitored at periodic intervals after treatment completion. From March 2002, 200 patients with 236 lesions were treated. Median follow-up was 66 months (range 25–121 months). A total of 162 lesions were macroscopic, while in 74 cases, BT was given after resection because of positive microscopic margins. There were 121 lesions that were basal cell carcinomas, and 115 were squamous cell carcinomas. Lesions were located on the head and neck (198), the extremities (26) and trunk (12). Local control was 232/236 (98%). Four patients required further surgery to treat recurrence. Grade 1 acute skin toxicity was detected in 168 treated lesions (71%) and grade 2 in 81 (34%). Cosmesis was good or excellent in 208 cases (88%). Late skin hypopigmentation changes were observed in 13 cases (5.5%). Delivering 36Gy over 2 weeks to superficial NMSC using HDR brachytherapy is well tolerated and provides a high local control rate without significant toxicity.

  5. Chitosan Dermal Substitute and Chitosan Skin Substitute Contribute to Accelerated Full-Thickness Wound Healing in Irradiated Rats

    Directory of Open Access Journals (Sweden)

    Abu Bakar Mohd Hilmi

    2013-01-01

    Full Text Available Wounds with full-thickness skin loss are commonly managed by skin grafting. In the absence of a graft, reepithelialization is imperfect and leads to increased scar formation. Biomaterials can alter wound healing so that it produces more regenerative tissue and fewer scars. This current study use the new chitosan based biomaterial in full-thickness wound with impaired healing on rat model. Wounds were evaluated after being treated with a chitosan dermal substitute, a chitosan skin substitute, or duoderm CGF. Wounds treated with the chitosan skin substitute showed the most re-epithelialization (33.2 ± 2.8%, longest epithelial tongue (1.62 ± 0.13 mm, and shortest migratory tongue distance (7.11 ± 0.25 mm. The scar size of wounds treated with the chitosan dermal substitute (0.13 ± 0.02 cm and chitosan skin substitute (0.16 ± 0.05 cm were significantly decreased (P<0.05 compared with duoderm (0.45 ± 0.11 cm. Human leukocyte antigen (HLA expression on days 7, 14, and 21 revealed the presence of human hair follicle stem cells and fibroblasts that were incorporated into and surviving in the irradiated wound. We have proven that a chitosan dermal substitute and chitosan skin substitute are suitable for wound healing in full-thickness wounds that are impaired due to radiation.

  6. Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration.

    Science.gov (United States)

    Chandika, Pathum; Ko, Seok-Chun; Jung, Won-Kyo

    2015-01-01

    Wound healing is a complex biological process that depends on the wound condition, the patient's health, and the physicochemical support given through external materials. The development of bioactive molecules and engineered tissue substitutes to provide physiochemical support to enhance the wound healing process plays a key role in advancing wound-care management. Thus, identification of ideal molecules in wound treatment is still in progress. The discovery of natural products that contain ideal molecules for skin tissue regeneration has been greatly advanced by exploration of the marine bioenvironment. Consequently, tremendously diverse marine organisms have become a great source of numerous biological macromolecules that can be used to develop tissue-engineered substitutes with wound healing properties. This review summarizes the wound healing process, the properties of macromolecules from marine organisms, and the involvement of these molecules in skin tissue regeneration applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Tissue repair genes: the TiRe database and its implication for skin wound healing.

    Science.gov (United States)

    Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Barzilay, Thomer; Abramovich, Amir; Ziesche, Rolf; Fraifeld, Vadim E

    2016-04-19

    Wound healing is an inherent feature of any multicellular organism and recent years have brought about a huge amount of data regarding regular and abnormal tissue repair. Despite the accumulated knowledge, modulation of wound healing is still a major biomedical challenge, especially in advanced ages. In order to collect and systematically organize what we know about the key players in wound healing, we created the TiRe (Tissue Repair) database, an online collection of genes and proteins that were shown to directly affect skin wound healing. To date, TiRe contains 397 entries for four organisms: Mus musculus, Rattus norvegicus, Sus domesticus, and Homo sapiens. Analysis of the TiRe dataset of skin wound healing-associated genes showed that skin wound healing genes are (i) over-conserved among vertebrates, but are under-conserved in invertebrates; (ii) enriched in extracellular and immuno-inflammatory genes; and display (iii) high interconnectivity and connectivity to other proteins. The latter may provide potential therapeutic targets. In addition, a slower or faster skin wound healing is indicative of an aging or longevity phenotype only when assessed in advanced ages, but not in the young. In the long run, we aim for TiRe to be a one-station resource that provides researchers and clinicians with the essential data needed for a better understanding of the mechanisms of wound healing, designing new experiments, and the development of new therapeutic strategies. TiRe is freely available online at http://www.tiredb.org.

  8. Raman Microscopy and Imaging: Applications to Skin Pharmacology and Wound Healing

    Science.gov (United States)

    Flach, Carol R.; Zhang, Guojin; Mendelsohn, Richard

    The utility of confocal Raman microscopy to study biological events in skin is demonstrated with three examples. (i) monitoring the spatial and structural differences between native and cultured skin, (ii) tracking the permeation and biochemical transformation in skin of a Vitamin E derivative and (iii) tracking the spatial distribution of three major skin proteins (keratin, collagen, and elastin) during wound healing in an explant skin model.

  9. Bioprinted Amniotic Fluid-Derived Stem Cells Accelerate Healing of Large Skin Wounds

    Science.gov (United States)

    Skardal, Aleksander; Mack, David; Kapetanovic, Edi; Atala, Anthony; Jackson, John D.; Yoo, James

    2012-01-01

    Stem cells obtained from amniotic fluid show high proliferative capacity in culture and multilineage differentiation potential. Because of the lack of significant immunogenicity and the ability of the amniotic fluid-derived stem (AFS) cells to modulate the inflammatory response, we investigated whether they could augment wound healing in a mouse model of skin regeneration. We used bioprinting technology to treat full-thickness skin wounds in nu/nu mice. AFS cells and bone marrow-derived mesenchymal stem cells (MSCs) were resuspended in fibrin-collagen gel and “printed” over the wound site. At days 0, 7, and 14, AFS cell- and MSC-driven wound closure and re-epithelialization were significantly greater than closure and re-epithelialization in wounds treated by fibrin-collagen gel only. Histological examination showed increased microvessel density and capillary diameters in the AFS cell-treated wounds compared with the MSC-treated wounds, whereas the skin treated only with gel showed the lowest amount of microvessels. However, tracking of fluorescently labeled AFS cells and MSCs revealed that the cells remained transiently and did not permanently integrate in the tissue. These observations suggest that the increased wound closure rates and angiogenesis may be due to delivery of secreted trophic factors, rather than direct cell-cell interactions. Accordingly, we performed proteomic analysis, which showed that AFS cells secreted a number of growth factors at concentrations higher than those of MSCs. In parallel, we showed that AFS cell-conditioned media induced endothelial cell migration in vitro. Taken together, our results indicate that bioprinting AFS cells could be an effective treatment for large-scale wounds and burns. PMID:23197691

  10. [Effectiveness of vacuum sealing drainage combined with anti-taken skin graft for primary closing of open amputation wound].

    Science.gov (United States)

    Liao, Qiande; Xu, Jian; Weng, Xiao-Jun; Zhong, Da; Liu, Zhiqin; Wang, Chenggong

    2012-05-01

    To observe the effectiveness of vacuum sealing drainage (VSD) combined with anti-taken skin graft on open amputation wound by comparing with direct anti-taken skin graft. Between March 2005 and June 2010, 60 cases of amputation wounds for limbs open fractures were selected by using the random single-blind method. The amputation wounds were treated with VSD combined with anti-taken skin graft (test group, n = 30) and direct anti-taken skin graft (control group, n = 30). No significant difference was found in age, gender, injury cause, amputation level, defect size, preoperative albumin index, or injury time between 2 groups (P > 0.05). In test group, the redundant stump skin was used to prepare reattached staggered-meshed middle-thickness skin flap by using a drum dermatome dealing after amputation, which was transplanted amputation wounds, and then the skin surface was covered with VSD for continuous negative pressure drainage for 7-10 days. In control group, wounds were covered by anti-taken thickness skin flap directly after amputation, and conventional dress changing was given. To observe the survival condition of the skin graft in test group, the VSD device was removed at 8 days after operation. The skin graft survival rate, wound infection rate, reamputation rate, times of dressing change, and the hospitalization days in test group were significantly better than those in control group [ 90.0% vs. 63.3%, 3.3% vs. 20.0%, 0 vs. 13.3%, (2.0 +/- 0.5) times vs. (8.0 +/- 1.5) times, and (12.0 +/- 2.6) days vs. (18.0 +/- 3.2) days, respectively] (P 0.05). In comparison with the contralateral limbs, the muscle had disuse atrophy and decreased strength in residual limbs of 2 groups. There was significant difference in the muscle strength between normal and affected limbs (P 0.05). Compared with direct anti-taken skin graft on amputation wound, the wound could be closed primarily by using the VSD combined with anti-taken skin graft. At the same time it could achieve

  11. [Efficacy observation on application of negative pressure therapy in the treatment of superficial partial-thickness scald wound in children].

    Science.gov (United States)

    Shen, Chuan-an; Chai, Jia-ke; Tuo, Xiao-ye; Cai, Jian-hua; Li, Dong-jie; Zhang, Lin; Zhu, Hua; Cai, Jin-dong

    2013-02-01

    To observe the effect of negative pressure therapy in the treatment of superficial partial-thickness scald in children. Three hundred and seven children with superficial partial-thickness scald hospitalized from August 2009 to May 2012 were divided into negative pressure therapy group (NPT, n = 145) and control group (C, n = 162) according to the random number table. Patients in group NPT were treated with negative pressure from within post injury day (PID) 3 to PID 9 (with -16 kPa pressure), while traditional occlusive dressing method was used in group C. Changes in body temperature, wound healing condition, frequency of dressing change were compared between group NPT and group C. Bacterial culture results of wounds were compared before and after treatment in group NPT. Volume of drained transudate per one percent of wound area was recorded in group NPT on PID 1 to PID 3. Data were processed with t test or chi-square test. The incidence of high fever was significantly lower in group NPT (26.9%, 39/145) than in group C (63.6%, 103/162, χ(2) = 41.419, P partial-thickness scald.

  12. Burn wound: Pathophysiology and its management by herbal plants

    Directory of Open Access Journals (Sweden)

    Dhirender Kaushik

    2013-01-01

    Full Text Available In human body, wound healing is a normal biological phenomenon. Burns may be acute or chronic depending upon the source and its time of exposure. Burn wounds may be superficial, partial or full thickness wounds. When skin comes in contact with higher temperature, protein denaturation takes place due to which the plasma membrane integrity is lost. When skin is burned, a number of inflammatory mediators and releasing agents such as histamine, nitric oxide, oxygen free radicals, eicosanoid products, tumor necrosis factors, and interleukins etc., are released at the site. For wound healing mechanism, the keratinocytes has to move from uninjured site to the burned area. For deeper burns this process takes a long time. By some unknown mechanisms, burn wounds may convert from one form to another form. So burn wound depth must be accurately measured before starting the treatment to prevent the complications. Burns can be induced in experimental animals by using different models. Many treatments such as herbal drugs, topical agents, gene therapy, volume therapy, and rehabilitation can be employed. This review article mainly deals with the theoretical and practical aspects of burn wound healing. Some burn wound healing plants with their chemical constituents, plant part used, uses and animal models are described here.

  13. "Healing Effect of Topical Nifedipine on Skin Wounds of Diabetic Rats "

    Directory of Open Access Journals (Sweden)

    Abbas Ebadi

    2003-07-01

    Full Text Available Non-healing foot ulcers in patients with diabetes are the leading causes of complications such as infection and amputation. Ulceration is the most common single precursor to amputation and has been identified as a causative factor in 85% of lower extremity amputations. It seems that poor outcomes are generally associated with infection, peripheral vascular disease and wounds of increasing depth. Nifedipine, a calcium channel blocker that is mainly used for the treatment of cardiovascular disorders has recently been used to treat wounds caused by peripheral vascular disorders. In present study topical Nifedipine 3% has been used to treat skin wounds in normal and diabetic rats. Effects of Nifedipine were evaluated in three different phases of wound healing process. In both experiments (normal and diabetic rats topical Nifedipine significantly improved inflammatory phase. However, maturation phase was only significantly improved in diabetic rats. Nifedipine did not affect proliferation phase in either group significantly. Overall results of this study showed topical Nifedipine improved skin wound healing process in normal and diabetic rats.

  14. Quantitative Methods for Measuring Repair Rates and Innate-Immune Cell Responses in Wounded Mouse Skin.

    Science.gov (United States)

    Li, Zhi; Gothard, Elizabeth; Coles, Mark C; Ambler, Carrie A

    2018-01-01

    In skin wounds, innate-immune cells clear up tissue debris and microbial contamination, and also secrete cytokines and other growth factors that impact repair process such as re-epithelialization and wound closure. After injury, there is a rapid influx and efflux of immune cells at wound sites, yet the function of each innate cell population in skin repair is still under investigation. Flow cytometry is a valuable research tool for detecting and quantifying immune cells; however, in mouse back skin, the difficulty in extracting immune cells from small area of skin due to tissue complexity has made cytometric analysis an underutilized tool. In this paper, we provide detailed methods on the digestion of lesion-specific skin without disrupting antigen expression followed by multiplex cell staining that allows for identification of seven innate-immune populations, including rare subsets such as group-3 innate lymphoid cells (ILC3s), by flow-cytometry analysis. Furthermore, when studying the functions of immune cells to tissue repair an important metric to monitor is size of the wound opening. Normal wounds close steadily albeit at non-linear rates, while slow or stalled wound closure can indicate an underlying problem with the repair process. Calliper measurements are difficult and time-consuming to obtain and can require repeated sedation of experimental animals. We provide advanced methods for measuring of wound openness; digital 3D image capture and semi-automated image processing that allows for unbiased, reliable measurements that can be taken repeatedly over time.

  15. Carbonate ion-enriched hot spring water promotes skin wound healing in nude rats.

    Directory of Open Access Journals (Sweden)

    Jingyan Liang

    Full Text Available Hot spring or hot spa bathing (Onsen is a traditional therapy for the treatment of certain ailments. There is a common belief that hot spring bathing has therapeutic effects for wound healing, yet the underlying molecular mechanisms remain unclear. To examine this hypothesis, we investigated the effects of Nagano hot spring water (rich in carbonate ion, 42°C on the healing process of the skin using a nude rat skin wound model. We found that hot spring bathing led to an enhanced healing speed compared to both the unbathed and hot-water (42°C control groups. Histologically, the hot spring water group showed increased vessel density and reduced inflammatory cells in the granulation tissue of the wound area. Real-time RT-PCR analysis along with zymography revealed that the wound area of the hot spring water group exhibited a higher expression of matrix metalloproteinases-2 and -9 compared to the two other control groups. Furthermore, we found that the enhanced wound healing process induced by the carbonate ion-enriched hot spring water was mediated by thermal insulation and moisture maintenance. Our results provide the evidence that carbonate ion-enriched hot spring water is beneficial for the treatment of skin wounds.

  16. Knockout of endothelial cell-derived endothelin-1 attenuates skin fibrosis but accelerates cutaneous wound healing.

    Directory of Open Access Journals (Sweden)

    Katsunari Makino

    Full Text Available Endothelin (ET-1 is known for the most potent vasoconstrictive peptide that is released mainly from endothelial cells. Several studies have reported ET-1 signaling is involved in the process of wound healing or fibrosis as well as vasodilation. However, little is known about the role of ET-1 in these processes. To clarify its mechanism, we compared skin fibrogenesis and wound repair between vascular endothelial cell-specific ET-1 knockout mice and their wild-type littermates. Bleomycin-injected fibrotic skin of the knockout mice showed significantly decreased skin thickness and collagen content compared to that of wild-type mice, indicating that bleomycin-induced skin fibrosis is attenuated in the knockout mice. The mRNA levels of transforming growth factor (TGF-β were decreased in the bleomycin-treated skin of ET-1 knockout mice. On the other hand, skin wound healing was accelerated in ET-1 knockout mice, which was indicated by earlier granulation tissue reduction and re-epithelialization in these mice. The mRNA levels of TGF-β, tumor necrosis factor (TNF-α and connective tissue growth factor (CTGF were reduced in the wound of ET-1 knockout mice. In endothelial ET-1 knockout mouse, the expression of TNF-α, CTGF and TGF-β was down-regulated. Bosentan, an antagonist of dual ET receptors, is known to attenuate skin fibrosis and accelerate wound healing in systemic sclerosis, and such contradictory effect may be mediated by above molecules. The endothelial cell-derived ET-1 is the potent therapeutic target in fibrosis or wound healing, and investigations of the overall regulatory mechanisms of these pathological conditions by ET-1 may lead to a new therapeutic approach.

  17. Terbinafine-loaded wound dressing for chronic superficial fungal infections

    International Nuclear Information System (INIS)

    Paskiabi, Farnoush Asghari; Bonakdar, Shahin; Shokrgozar, Mohammad Ali; Imani, Mohammad; Jahanshiri, Zahra; Shams-Ghahfarokhi, Masoomeh; Razzaghi-Abyaneh, Mehdi

    2017-01-01

    In spite of developing new drugs and modern formulations, the treatments of chronic fungal infections are still challenging. Fibrous wound dressings are new suggestions for the treatment of chronic superficial infections. In the present study, we formulated an antifungal agent, terbinafine hydrochloride (TFH), which is a hydrophobic drug, in wound dressings prepared by electrospun polycaprolactone, polycaprolactone/gelatin (50:50 w/w) and gelatin. To obtain more water-stable meshes, the preparations were treated by glutaraldehyde and their properties were determined before and after treatment. The morphology of fibrous meshes was observed by scanning electron microscopy. Drug loading efficiency and release rate were measured by high performance liquid chromatography (HPLC) and the release rate was monitored for 144 h. Antifungal tests were performed on Trichophyton mentagrophytes, Aspergillus fumigatus and Candida albicans cultured on Muller-Hinton agar. The toxicity of the meshes was measured after 24 h and 14 days by MTT assay. Terbinafine loading of polycaprolactone/gelatin (50:50) was 100% and it released the highest amount of TFH too. In antifungal tests, all samples were able to hinderT. mentagrophytes and A. fumigatus but not C. albicans growth among them, polycaprolactone fibers made the largest inhibition zone. In MTT assay, none of prepared samples showed toxicity against L929 cells. Teken together, the prepared TFH-loaded PCL/gelatin electrospun meshes were able to release TFH slowly and in a steady state in time. With respect to no obvious cytotoxicity in MTT assay and stong antifungal activity toward T. mentagrophytesin vitro, these TFH-based meshes could be considered as potential candidates in clinical application as wound dressing for treatment of chronic dermatophytosis. - Highlights: • Terbinafine (TFH)-loaded PCL/gelatin electrospun fibers were successfully fabricated. • TFH-loaded PCL/gelatin electrospun fibers showed a slow drug release

  18. Terbinafine-loaded wound dressing for chronic superficial fungal infections

    Energy Technology Data Exchange (ETDEWEB)

    Paskiabi, Farnoush Asghari [Department of Mycology, Pasteur Institute of Iran, Tehran 13164. Iran (Iran, Islamic Republic of); Microbiology Research Center, Pasteur Institute of Iran, Tehran 13164. Iran (Iran, Islamic Republic of); Bonakdar, Shahin; Shokrgozar, Mohammad Ali [National Cell Bank Department, Pasteur Institute of Iran, Tehran 13164 (Iran, Islamic Republic of); Imani, Mohammad [Department of Novel Drug Delivery Systems, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Jahanshiri, Zahra [Department of Mycology, Pasteur Institute of Iran, Tehran 13164. Iran (Iran, Islamic Republic of); Shams-Ghahfarokhi, Masoomeh [Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Razzaghi-Abyaneh, Mehdi, E-mail: mrab442@yahoo.com [Department of Mycology, Pasteur Institute of Iran, Tehran 13164. Iran (Iran, Islamic Republic of); Microbiology Research Center, Pasteur Institute of Iran, Tehran 13164. Iran (Iran, Islamic Republic of)

    2017-04-01

    In spite of developing new drugs and modern formulations, the treatments of chronic fungal infections are still challenging. Fibrous wound dressings are new suggestions for the treatment of chronic superficial infections. In the present study, we formulated an antifungal agent, terbinafine hydrochloride (TFH), which is a hydrophobic drug, in wound dressings prepared by electrospun polycaprolactone, polycaprolactone/gelatin (50:50 w/w) and gelatin. To obtain more water-stable meshes, the preparations were treated by glutaraldehyde and their properties were determined before and after treatment. The morphology of fibrous meshes was observed by scanning electron microscopy. Drug loading efficiency and release rate were measured by high performance liquid chromatography (HPLC) and the release rate was monitored for 144 h. Antifungal tests were performed on Trichophyton mentagrophytes, Aspergillus fumigatus and Candida albicans cultured on Muller-Hinton agar. The toxicity of the meshes was measured after 24 h and 14 days by MTT assay. Terbinafine loading of polycaprolactone/gelatin (50:50) was 100% and it released the highest amount of TFH too. In antifungal tests, all samples were able to hinderT. mentagrophytes and A. fumigatus but not C. albicans growth among them, polycaprolactone fibers made the largest inhibition zone. In MTT assay, none of prepared samples showed toxicity against L929 cells. Teken together, the prepared TFH-loaded PCL/gelatin electrospun meshes were able to release TFH slowly and in a steady state in time. With respect to no obvious cytotoxicity in MTT assay and stong antifungal activity toward T. mentagrophytesin vitro, these TFH-based meshes could be considered as potential candidates in clinical application as wound dressing for treatment of chronic dermatophytosis. - Highlights: • Terbinafine (TFH)-loaded PCL/gelatin electrospun fibers were successfully fabricated. • TFH-loaded PCL/gelatin electrospun fibers showed a slow drug release

  19. Quantitative Methods for Measuring Repair Rates and Innate-Immune Cell Responses in Wounded Mouse Skin

    Directory of Open Access Journals (Sweden)

    Zhi Li

    2018-02-01

    Full Text Available In skin wounds, innate-immune cells clear up tissue debris and microbial contamination, and also secrete cytokines and other growth factors that impact repair process such as re-epithelialization and wound closure. After injury, there is a rapid influx and efflux of immune cells at wound sites, yet the function of each innate cell population in skin repair is still under investigation. Flow cytometry is a valuable research tool for detecting and quantifying immune cells; however, in mouse back skin, the difficulty in extracting immune cells from small area of skin due to tissue complexity has made cytometric analysis an underutilized tool. In this paper, we provide detailed methods on the digestion of lesion-specific skin without disrupting antigen expression followed by multiplex cell staining that allows for identification of seven innate-immune populations, including rare subsets such as group-3 innate lymphoid cells (ILC3s, by flow-cytometry analysis. Furthermore, when studying the functions of immune cells to tissue repair an important metric to monitor is size of the wound opening. Normal wounds close steadily albeit at non-linear rates, while slow or stalled wound closure can indicate an underlying problem with the repair process. Calliper measurements are difficult and time-consuming to obtain and can require repeated sedation of experimental animals. We provide advanced methods for measuring of wound openness; digital 3D image capture and semi-automated image processing that allows for unbiased, reliable measurements that can be taken repeatedly over time.

  20. Bubaline Cholecyst Derived Extracellular Matrix for Reconstruction of Full Thickness Skin Wounds in Rats

    Directory of Open Access Journals (Sweden)

    Poonam Shakya

    2016-01-01

    Full Text Available An acellular cholecyst derived extracellular matrix (b-CEM of bubaline origin was prepared using anionic biological detergent. Healing potential of b-CEM was compared with commercially available collagen sheet (b-CS and open wound (C in full thickness skin wounds in rats. Thirty-six clinically healthy adult Sprague Dawley rats of either sex were randomly divided into three equal groups. Under general anesthesia, a full thickness skin wound (20 × 20 mm2 was created on the dorsum of each rat. The defect in group I was kept as open wound and was taken as control. In group II, the defect was repaired with commercially available collagen sheet (b-CS. In group III, the defect was repaired with cholecyst derived extracellular matrix of bovine origin (b-CEM. Planimetry, wound contracture, and immunological and histological observations were carried out to evaluate healing process. Significantly (P<0.05 increased wound contraction was observed in b-CEM (III as compared to control (I and b-CS (II on day 21. Histologically, improved epithelization, neovascularization, fibroplasia, and best arranged collagen fibers were observed in b-CEM (III as early as on postimplantation day 21. These findings indicate that b-CEM have potential for biomedical applications for full thickness skin wound repair in rats.

  1. Alteration of skin wound healing in keratinocyte-specific mediator complex subunit 1 null mice.

    Science.gov (United States)

    Noguchi, Fumihito; Nakajima, Takeshi; Inui, Shigeki; Reddy, Janardan K; Itami, Satoshi

    2014-01-01

    MED1 (Mediator complex subunit 1) is a co-activator of various transcription factors that function in multiple transcriptional pathways. We have already established keratinocyte-specific MED1 null mice (Med1(epi-/-)) that develop epidermal hyperplasia. Herein, to investigate the function(s) of MED1 in skin wound healing, full-thickness skin wounds were generated in Med1(epi-/-) and age-matched wild-type mice and the healing process was analyzed. Macroscopic wound closure and the re-epithelialization rate were accelerated in 8-week-old Med1(epi-/-) mice compared with age-matched wild-type mice. Increased lengths of migrating epithelial tongues and numbers of Ki67-positive cells at the wounded epidermis were observed in 8-week-old Med1(epi-/-) mice, whereas wound contraction and the area of α-SMA-positive myofibroblasts in the granulation tissue were unaffected. Migration was enhanced in Med1(epi-/-) keratinocytes compared with wild-type keratinocytes in vitro. Immunoblotting revealed that the expression of follistatin was significantly decreased in Med1(epi-/-) keratinocytes. Moreover, the mitogen-activated protein kinase pathway was enhanced before and after treatment of Med1(epi-/-) keratinocytes with activin A in vitro. Cell-cycle analysis showed an increased ratio of S phase cells after activin A treatment of Med1(epi-/-) keratinocytes compared with wild-type keratinocytes. These findings indicate that the activin-follistatin system is involved in this acceleration of skin wound healing in 8-week-old Med1(epi-/-) mice. On the other hand, skin wound healing in 6-month-old Med1(epi-/-) mice was significantly delayed with decreased numbers of Ki67-positive cells at the wounded epidermis as well as BrdU-positive label retaining cells in hair follicles compared with age-matched wild-type mice. These results agree with our previous observation that hair follicle bulge stem cells are reduced in older Med1(epi-/-) mice, indicating a decreased contribution of hair

  2. Alteration of skin wound healing in keratinocyte-specific mediator complex subunit 1 null mice.

    Directory of Open Access Journals (Sweden)

    Fumihito Noguchi

    Full Text Available MED1 (Mediator complex subunit 1 is a co-activator of various transcription factors that function in multiple transcriptional pathways. We have already established keratinocyte-specific MED1 null mice (Med1(epi-/- that develop epidermal hyperplasia. Herein, to investigate the function(s of MED1 in skin wound healing, full-thickness skin wounds were generated in Med1(epi-/- and age-matched wild-type mice and the healing process was analyzed. Macroscopic wound closure and the re-epithelialization rate were accelerated in 8-week-old Med1(epi-/- mice compared with age-matched wild-type mice. Increased lengths of migrating epithelial tongues and numbers of Ki67-positive cells at the wounded epidermis were observed in 8-week-old Med1(epi-/- mice, whereas wound contraction and the area of α-SMA-positive myofibroblasts in the granulation tissue were unaffected. Migration was enhanced in Med1(epi-/- keratinocytes compared with wild-type keratinocytes in vitro. Immunoblotting revealed that the expression of follistatin was significantly decreased in Med1(epi-/- keratinocytes. Moreover, the mitogen-activated protein kinase pathway was enhanced before and after treatment of Med1(epi-/- keratinocytes with activin A in vitro. Cell-cycle analysis showed an increased ratio of S phase cells after activin A treatment of Med1(epi-/- keratinocytes compared with wild-type keratinocytes. These findings indicate that the activin-follistatin system is involved in this acceleration of skin wound healing in 8-week-old Med1(epi-/- mice. On the other hand, skin wound healing in 6-month-old Med1(epi-/- mice was significantly delayed with decreased numbers of Ki67-positive cells at the wounded epidermis as well as BrdU-positive label retaining cells in hair follicles compared with age-matched wild-type mice. These results agree with our previous observation that hair follicle bulge stem cells are reduced in older Med1(epi-/- mice, indicating a decreased contribution of hair

  3. In vitro evaluation of percutaneous diffusion of uranyl nitrate through intact or excoriated skin of rat and pig

    International Nuclear Information System (INIS)

    Petitot, F.; Moreels, A.M.; Paquet, F.

    2004-01-01

    At the present time, the International Commission on Radiological Protection (ICRP) has not published any model concerning internal radioactive contamination by uptake from wounds. The aims of our work were to determine the time available to treat contamination of intact or wounded skin before a significant uptake of uranium occurred and to evaluate the consequences of incomplete decontamination on uranium uptake. The kinetics of percutaneous diffusion of uranium through intact or excoriated skin and its distribution in skin layers were evaluated using an in vitro technique. Our data demonstrated a dramatic increase of uranium percutaneous diffusion through excoriated skin compared with intact skin. Significant uptake of uranium through excoriated skin occurred in only 30 min, indicating that there is only a short interval available to treat a contaminated wound effectively. Moreover, in the case of an incompletely decontaminated superficial wound, viable epidermis behaved as a reservoir for uranium that remained bioavailable. At the present time, potential uptake of uranium and perhaps other radionuclides through intact or wounded skin is not adequately taken into account by radiological protection agencies. Our results emphasize the need for further study and modeling of uptake of radionuclides through intact or wounded skin. (author)

  4. The electric field near human skin wounds declines with age and provides a noninvasive indicator of wound healing.

    Science.gov (United States)

    Nuccitelli, Richard; Nuccitelli, Pamela; Li, Changyi; Narsing, Suman; Pariser, David M; Lui, Kaying

    2011-01-01

    Due to the transepidermal potential of 15-50 mV, inside positive, an injury current is driven out of all human skin wounds. The flow of this current generates a lateral electric field within the epidermis that is more negative at the wound edge than at regions more lateral from the wound edge. Electric fields in this region could be as large as 40 mV/mm, and electric fields of this magnitude have been shown to stimulate human keratinocyte migration toward the wounded region. After flowing out of the wound, the current returns through the space between the epidermis and stratum corneum, generating a lateral field above the epidermis in the opposite direction. Here, we report the results from the first clinical trial designed to measure this lateral electric field adjacent to human skin wounds noninvasively. Using a new instrument, the Dermacorder®, we found that the mean lateral electric field in the space between the epidermis and stratum corneum adjacent to a lancet wound in 18-25-year-olds is 107-148 mV/mm, 48% larger on average than that in 65-80-year-olds. We also conducted extensive measurements of the lateral electric field adjacent to mouse wounds as they healed and compared this field with histological sections through the wound to determine the correlation between the electric field and the rate of epithelial wound closure. Immediately after wounding, the average lateral electric field was 122 ± 9 mV/mm. When the wound is filled in with a thick, disorganized epidermal layer, the mean field falls to 79 ± 4 mV/mm. Once this epidermis forms a compact structure with only three cell layers, the mean field is 59 ± 5 mV/mm. Thus, the peak-to-peak spatial variation in surface potential is largest in fresh wounds and slowly declines as the wound closes. The rate of wound healing is slightly greater when wounds are kept moist as expected, but we could find no correlation between the amplitude of the electric field and the rate of wound

  5. Wound-Healing Peptides for Treatment of Chronic Diabetic Foot Ulcers and Other Infected Skin Injuries

    Directory of Open Access Journals (Sweden)

    Ana Gomes

    2017-10-01

    Full Text Available As the incidence of diabetes continues to increase in the western world, the prevalence of chronic wounds related to this condition continues to be a major focus of wound care research. Additionally, over 50% of chronic wounds exhibit signs and symptoms that are consistent with localized bacterial biofilms underlying severe infections that contribute to tissue destruction, delayed wound-healing and other serious complications. Most current biomedical approaches for advanced wound care aim at providing antimicrobial protection to the open wound together with a matrix scaffold (often collagen-based to boost reestablishment of the skin tissue. Therefore, the present review is focused on the efforts that have been made over the past years to find peptides possessing wound-healing properties, towards the development of new and effective wound care treatments for diabetic foot ulcers and other skin and soft tissue infections.

  6. Wound-Healing Peptides for Treatment of Chronic Diabetic Foot Ulcers and Other Infected Skin Injuries.

    Science.gov (United States)

    Gomes, Ana; Teixeira, Cátia; Ferraz, Ricardo; Prudêncio, Cristina; Gomes, Paula

    2017-10-18

    As the incidence of diabetes continues to increase in the western world, the prevalence of chronic wounds related to this condition continues to be a major focus of wound care research. Additionally, over 50% of chronic wounds exhibit signs and symptoms that are consistent with localized bacterial biofilms underlying severe infections that contribute to tissue destruction, delayed wound-healing and other serious complications. Most current biomedical approaches for advanced wound care aim at providing antimicrobial protection to the open wound together with a matrix scaffold (often collagen-based) to boost reestablishment of the skin tissue. Therefore, the present review is focused on the efforts that have been made over the past years to find peptides possessing wound-healing properties, towards the development of new and effective wound care treatments for diabetic foot ulcers and other skin and soft tissue infections.

  7. A Comparison of Healing Effects of Propolis and Silver Sulfadiazine on Full Thickness Skin Wounds in Rats

    Directory of Open Access Journals (Sweden)

    E. Moghtaday Khorasgani*, A. H. Karimi and M. R. Nazem

    2010-04-01

    Full Text Available Healing effects of propolis and silver sulfadiazine (SS on skin wounds in rats were compared using qualitative and quantitative parameters and histopathological findings. A total of 30 full thickness skin wounds were created on dorsal aspects of 10 rats; i.e., three wounds on each rat. Of these wounds, 10 each were allocated to group A (propolis, group B (SS and group C (control. The skin wounds in the rats of groups A, B and C were covered daily for 14 days with 50% propolis cream, SS skin cream and bepanthane cream (control, respectively. Postoperatively, the wound surfaces were examined macroscopically and the healing process and the rates of wound expansion, contraction and epithelialization processes were quantitatively analyzed. As a result, propolis was found in general to have a better wound healing effect than others. At the 10th day of experiment histopathologically, there was inflammatory reaction with infiltration of lymphocytes, macrophages and neutrophils and proliferation of fibroblastic loose connective tissue in dermis of rats of all groups. The severity of these changes was lower in propolis treated group compared to other two groups.

  8. Regenerative Skin Wound Healing in Mammals: State-of-the-Art on Growth Factor and Stem Cell Based Treatments

    Directory of Open Access Journals (Sweden)

    Bizunesh M. Borena

    2015-04-01

    Full Text Available Mammal skin has a crucial function in several life-preserving processes such as hydration, protection against chemicals and pathogens, initialization of vitamin D synthesis, excretion and heat regulation. Severe damage of the skin may therefore be life-threatening. Skin wound repair is a multiphased, yet well-orchestrated process including the interaction of various cell types, growth factors and cytokines aiming at closure of the skin and preferably resulting in tissue repair. Regardless various therapeutic modalities targeting at enhancing wound healing, the development of novel approaches for this pathology remains a clinical challenge. The time-consuming conservative wound management is mainly restricted to wound repair rather than restitution of the tissue integrity (the so-called “restitutio ad integrum”. Therefore, there is a continued search towards more efficacious wound therapies to reduce health care burden, provide patients with long-term relief and ultimately scarless wound healing. Recent in vivo and in vitro studies on the use of skin wound regenerative therapies provide encouraging results, but more protracted studies will have to determine whether the effect of observed effects are clinically significant and whether regeneration rather than repair can be achieved. For all the aforementioned reasons, this article reviews the emerging field of regenerative skin wound healing in mammals with particular emphasis on growth factor- and stem cell-based therapies.

  9. Effects of carbon dioxide therapy on the healing of acute skin wounds induced on the back of rats

    Directory of Open Access Journals (Sweden)

    Maria Vitória Carmo Penhavel

    2013-05-01

    Full Text Available PURPOSE: To evaluate the healing effect of carbon dioxide therapy on skin wounds induced on the back of rats. METHODS: Sixteen rats underwent excision of a round dermal-epidermal dorsal skin flap of 2.5 cm in diameter. The animals were divided into two groups, as follows: carbon dioxide group - subcutaneous injections of carbon dioxide on the day of operation and at three, six and nine days postoperatively; control group - no postoperative wound treatment. Wounds were photographed on the day of operation and at six and 14 days postoperatively for analysis of wound area and major diameter. All animals were euthanized on day 14 after surgery. The dorsal skin and the underlying muscle layer containing the wound were resected for histopathological analysis. RESULTS: There was no statistically significant difference between groups in the percentage of wound closure, in histopathological findings, or in the reduction of wound area and major diameter at 14 days postoperatively. CONCLUSION: Under the experimental conditions in which this study was conducted, carbon dioxide therapy had no effects on the healing of acute skin wounds in rats.

  10. Effects and mechanisms of a microcurrent dressing on skin wound healing: a review.

    Science.gov (United States)

    Yu, Chao; Hu, Zong-Qian; Peng, Rui-Yun

    2014-01-01

    The variety of wound types has resulted in a wide range of wound dressings, with new products frequently being introduced to target different aspects of the wound healing process. The ideal wound dressing should achieve rapid healing at a reasonable cost, with minimal inconvenience to the patient. Microcurrent dressing, a novel wound dressing with inherent electric activity, can generate low-level microcurrents at the device-wound contact surface in the presence of moisture and can provide an advanced wound healing solution for managing wounds. This article offers a review of the effects and mechanisms of the microcurrent dressing on the healing of skin wounds.

  11. The Pharmaceutical Device Prisma® Skin Promotes in Vitro Angiogenesis through Endothelial to Mesenchymal Transition during Skin Wound Healing.

    Science.gov (United States)

    Belvedere, Raffaella; Bizzarro, Valentina; Parente, Luca; Petrella, Francesco; Petrella, Antonello

    2017-07-25

    Glycosaminoglycans are polysaccharides of the extracellular matrix supporting skin wound closure. Mesoglycan is a mixture of glycosaminoglycans such as chondroitin-, dermatan-, heparan-sulfate and heparin and is the main component of Prisma ® Skin, a pharmaceutical device developed by Mediolanum Farmaceutici S.p.a. Here, we show the in vitro effects of this device in the new vessels formation by endothelial cells, since angiogenesis represents a key moment in wound healing. We found a strong increase of migration and invasion rates of these cells treated with mesoglycan and Prisma ® Skin which mediate the activation of the pathway triggered by CD44 receptor. Furthermore, endothelial cells form longer capillary-like structures with a great number of branches, in the presence of the same treatments. Thus, the device, thanks to the mesoglycan, leads the cells to the Endothelial-to-Mesenchymal Transition, suggesting the switch to a fibroblast-like phenotype, as shown by immunofluorescence assays. Finally, we found that mesoglycan and Prisma ® Skin inhibit inflammatory reactions such as nitric oxide secretion and NF-κB nuclear translocation in endothelial cells and Tumor Necrosis Factor-α production by macrophages. In conclusion, based on our data, we suggest that Prisma ® Skin may be able to accelerate angiogenesis in skin wound healing, and regulate inflammation avoiding chronic, thus pathological, responses.

  12. The Pharmaceutical Device Prisma® Skin Promotes in Vitro Angiogenesis through Endothelial to Mesenchymal Transition during Skin Wound Healing

    Directory of Open Access Journals (Sweden)

    Raffaella Belvedere

    2017-07-01

    Full Text Available Glycosaminoglycans are polysaccharides of the extracellular matrix supporting skin wound closure. Mesoglycan is a mixture of glycosaminoglycans such as chondroitin-, dermatan-, heparan-sulfate and heparin and is the main component of Prisma® Skin, a pharmaceutical device developed by Mediolanum Farmaceutici S.p.a. Here, we show the in vitro effects of this device in the new vessels formation by endothelial cells, since angiogenesis represents a key moment in wound healing. We found a strong increase of migration and invasion rates of these cells treated with mesoglycan and Prisma® Skin which mediate the activation of the pathway triggered by CD44 receptor. Furthermore, endothelial cells form longer capillary-like structures with a great number of branches, in the presence of the same treatments. Thus, the device, thanks to the mesoglycan, leads the cells to the Endothelial-to-Mesenchymal Transition, suggesting the switch to a fibroblast-like phenotype, as shown by immunofluorescence assays. Finally, we found that mesoglycan and Prisma® Skin inhibit inflammatory reactions such as nitric oxide secretion and NF-κB nuclear translocation in endothelial cells and Tumor Necrosis Factor-α production by macrophages. In conclusion, based on our data, we suggest that Prisma® Skin may be able to accelerate angiogenesis in skin wound healing, and regulate inflammation avoiding chronic, thus pathological, responses.

  13. Mast cell concentration and skin wound contraction in rats treated with Brazilian pepper essential oil (Schinus terebinthifolius Raddi).

    Science.gov (United States)

    Estevão, Lígia Reis Moura; Medeiros, Juliana Pinto de; Simões, Ricardo Santos; Arantes, Rosa Maria Esteves; Rachid, Milene Alvarenga; Silva, Regildo Márcio Gonçalves da; Mendonça, Fábio de Souza; Evêncio-Neto, Joaquim

    2015-04-01

    To evaluate wound contraction and the concentration of mast cells in skin wounds treated with 5% BPT essential oil-based ointment in rats. Twenty rats, male, of adult age, were submitted to skin surgery on the right (RA) and left antimeres (LA) of the thoracic region. They were divided into two groups: control (RA - wounds receiving daily topical application of vaseline and lanolin) and treated (LA - wounds treated daily with the topical ointment). The skin region with wounds were collected at days 4, 7, 14 and 21 after surgery. Those were fixed in 10% formaldehyde and later processed for paraffin embedding. Sections were obtained and stained by H.E for histopathology analysis. The degree of epithelial contraction was measured and mast cell concentration were also evaluated. The treated group showed higher mast cell concentrations (poil increases mast cell concentration and promotes skin wound contraction in rats.

  14. Health-related quality of life and patient burden in patients with split-thickness skin graft donor site wounds.

    Science.gov (United States)

    Humrich, Marco; Goepel, Lisa; Gutknecht, Mandy; Lohrberg, David; Blessmann, Marco; Bruning, Guido; Diener, Holger; Dissemond, Joachim; Hartmann, Bernd; Augustin, Matthias

    2018-04-01

    Split-thickness skin grafting is a common procedure to treat different kinds of wounds. This systematic, multicentre, observational, cross-sectional study of adult patients with split-thickness skin graft (STSG) donor site wounds was conducted to evaluate quality of life (QoL) impairments caused by donor site wounds following split-thickness skin grafting. Therefore, 112 patients from 12 wound centres in Germany were examined based on patient and physician questionnaires as well as a physical examination of the donor site wound. Most indications for skin grafting were postsurgical treatment (n = 51; 42.5%) and chronic wounds (n = 47; 39.2%). European QoL visual analoque scale (EQ VAS) averaged 64.7 ± 23.3, European QoL 5 dimensions (EQ-5D) averaged 77.4 ± 30.0. Wound-QoL (range: 0-4) was rated 0.8 ± 0.8 post-surgery and 0.4 ± 0.6 at the time of survey (on average 21 weeks between the time points). Compared to averaged Wound-QoL scores of chronic wounds donor site-related QoL impairments in split-thickness skin-graft patients were less pronounced. There were significant differences in patient burden immediately after surgery compared to the time of the survey, with medium effect sizes. This supports the hypothesis that faster healing of the donor site wound leads to more favourable patient-reported outcomes. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  15. Efficacy and safety of superficial chemical peeling in treatment of active acne vulgaris.

    Science.gov (United States)

    Al-Talib, Hassanain; Al-Khateeb, Alyaa; Hameed, Ayad; Murugaiah, Chandrika

    2017-01-01

    Acne vulgaris is an extremely common condition affecting the pilosebaceous unit of the skin and characterized by presence of comedones, papules, pustules, nodules, cysts, which might result in permanent scars. Acne vulgaris commonly involve adolescents and young age groups. Active acne vulgaris is usually associated with several complications like hyper or hypopigmentation, scar formation and skin disfigurement. Previous studies have targeted the efficiency and safety of local and systemic agents in the treatment of active acne vulgaris. Superficial chemical peeling is a skin-wounding procedure which might cause some potentially undesirable adverse events. This study was conducted to review the efficacy and safety of superficial chemical peeling in the treatment of active acne vulgaris. It is a structured review of an earlier seven articles meeting the inclusion and exclusion criteria. The clinical assessments were based on pretreatment and post-treatment comparisons and the role of superficial chemical peeling in reduction of papules, pustules and comedones in active acne vulgaris. This study showed that almost all patients tolerated well the chemical peeling procedures despite a mild discomfort, burning, irritation and erythema have been reported; also the incidence of major adverse events was very low and easily manageable. In conclusion, chemical peeling with glycolic acid is a well-tolerated and safe treatment modality in active acne vulgaris while salicylic acid peels is a more convenient for treatment of darker skin patients and it showed significant and earlier improvement than glycolic acid.

  16. Forensic photography. Ultraviolet imaging of wounds on skin.

    Science.gov (United States)

    Barsley, R E; West, M H; Fair, J A

    1990-12-01

    The use of ultraviolet light (UVL) to study and document patterned injuries on human skin has opened a new frontier for law enforcement. This article discusses the photographic techniques involved in reflective and fluorescent UVL. Documentation of skin wounds via still photography and dynamic video photographic techniques, which utilize various methods of UV illumination, are covered. Techniques important for courtroom presentation of evidence gathered from lacerations, contusions, abrasions, and bite marks are presented through case studies and controlled experiments. Such injuries are common sequelae in the crimes of child abuse, rape, and assault.

  17. Impaired Biomechanical Properties of Diabetic Skin Implications in Pathogenesis of Diabetic Wound Complications

    NARCIS (Netherlands)

    Bermudez, Dustin M.; Herdrich, Benjamin J.; Xu, Junwang; Lind, Robert; Beason, David P.; Mitchell, Marc E.; Soslowsky, Louis J.; Liechty, Kenneth W.

    Diabetic skin is known to have deficient wound healing properties, but little is known of its intrinsic biomeclhanical properties. We hypothesize that diabetic skin possesses inferior biomechanical properties at baseline, rendering it more prone to injury. Skin from diabetic and nondiabetic mice and

  18. Effect of laser irradiation for healing of the skin-muscle wounds of animals

    Science.gov (United States)

    Lapina, Victoria A.; Veremei, Eduard I.; Pancovets, Evgeniy A.

    2000-05-01

    The purpose of our investigation was to study the medical effect of low-intensity laser influence on healing of skin- muscle wounds of agricultural animals. We used the laser radiation of low intensity for cub's therapy: to sucking-pigs after herniotomy and castration, to cattle cubs after skin- muscle wounds. The animals were kept under clinical observation up to their recovery. The recuperation dynamic was observed by changing of blood quotients, leukograms, sizes of inflammatory edema, general behavior of animals. The positive dynamic of blood quotients of the experimental animal groups was really higher than that in control. The analysis of wound healing after laser influence shows that wound surface of experimental group was to a great extent smaller in comparison with control group of animals. So, these facts testify about anti-inflammatory action of laser radiation, which hastens regenerative and rehabilitative processes. Analysis of the obtained experimental data has revealed the positive influence of laser irradiation on the dynamics of wound adhesion of agricultural animals.

  19. Biostimulative effects of 809 nm diode laser on cutaneous skin wounds

    Science.gov (United States)

    Solmaz, Hakan; Gülsoy, Murat; Ülgen, Yekta

    2015-03-01

    The use of low-level laser therapy (LLLT) for therapeutic purposes in medicine has become widespread recently. There are many studies in literature supporting the idea of therapeutic effects of laser irradiation on biological tissues. The aim of this study is to investigate the biostimulative effect of 809nm infrared laser irradiation on the healing process of cutaneous incisional skin wounds. 3-4 months old male Wistar Albino rats weighing 300 to 350 gr were used throughout this study. Lowlevel laser therapy was applied through local irradiation of 809nm infrared laser on open skin incisional wounds of 1 cm length. Each animal had six identical incisions on their right and left dorsal region symmetrical to each other. The wounds were separated into three groups of control, 1 J/cm2 and 3 J/cm2 of laser irradiation. Two of these six wounds were kept as control group and did not receive any laser application. Rest of the incisions was irradiated with continuous diode laser of 809nm in wavelength and 20mW power output. Two of them were subjected to laser irradiation of 1 J/cm2 and the other two were subjected to laser light with energy density of 3 J/cm2. Biostimulation effects of irradiation were studied by means of tensile strength tests and histological examinations. Wounded skin samples were morphologically examined and removed for mechanical and histological examinations at days 3, 5 and 7 following the laser applications. Three of the six fragments of skin incisions including a portion of peripheral healthy tissue from each animal were subjected to mechanical tests by means of a universal tensile test machine, whereas the other three samples were embedded in paraffin and stained with hematoxylin and eosin for histological examinations. The findings of the study show that tissue repair following laser irradiation of 809nm has been accelerated in terms of tissue morphology, strength and cellular content. These results seem to be consistent with the results of many

  20. Early burn wound excision and skin grafting postburn trauma restores in vivo neutrophil delivery to inflammatory lesions

    International Nuclear Information System (INIS)

    Tchervenkov, J.I.; Epstein, M.D.; Silberstein, E.B.; Alexander, J.W.

    1988-01-01

    This study assessed the effect of early vs delayed postburn wound excision and skin grafting on the in vivo neutrophil delivery to a delayed-type hypersensitivity (DTH) reaction and a bacterial skin lesion (BSL). Male Lewis rats were presensitized to keyhole-limpet hemocyanin. Group 1 comprised sham controls. Groups 2 through 4 were given a 30% 3 degrees scald burn, but the burn wounds were excised, and skin was grafted on days 1, 3, and 7, respectively, after the burn. Group 5 comprised burn controls. Twelve days after burn trauma, all rats were injected at different intervals (during a 24-hour period) with a trio of intradermal injections of keyhole-limpet hemocyanin, Staphylococcus aureus 502A, and saline at different sites. In vivo neutrophil delivery to these dermal lesions was determined by injecting indium in 111 oxyquinoline-labeled neutrophils isolated from similarly treated groups of rats. Neutrophil delivery to DTH and BSL lesions was restored to normal by excision and skin grafting of the burn wound one day after burn trauma. Waiting three days after burn trauma to excise and skin graft the wound partially, but not completely, restored the in vivo neutrophil delivery to DTH and BSL lesions. Waiting one week to excise and skin graft a burn wound resulted in no improvement in neutrophil delivery to DTH and BSL dermal lesions. It was concluded that burn wound excision and skin grafting immediately after burn trauma restored in vivo neutrophil delivery to a BSL and DTH dermal lesion. This may, in part, explain the beneficial effect of early aggressive burn wound debridement in patients with burn injuries

  1. Rapid preparation of a noncultured skin cell suspension that promotes wound healing.

    Science.gov (United States)

    Yoon, Cheonjae; Lee, Jungsuk; Jeong, Hyosun; Lee, Sungjun; Sohn, Taesik; Chung, Sungphil

    2017-06-01

    Autologous skin cell suspensions have been used for wound healing in patients with burns and against normal pigmentation in vitiligo. To separate cells and the extracellular matrix from skin tissue, most researchers use enzymatic digestion. Therefore, this process is difficult to perform during a routine surgical procedure. We aimed to prepare a suspension of noncultured autologous skin cells (NCSCs) using a tissue homogenizer as a new method instead of harsh biochemical reagents. The potential clinical applicability of NCSCs was analyzed using a nude-rat model of burn healing. After optimization of the homogenizer settings, cell viability ranged from 52 to 89%. Scanning electron microscopy showed evidence of keratinocyte-like cell morphology, and several growth factors, including epidermal growth factor and basic fibroblast growth factor, were present in the NCSCs. The rat model revealed that NCSCs accelerated skin regeneration. NCSCs could be generated using a tissue homogenizer for enhancement of wound healing in vivo. In the NCSC group of wounds, on day 7 of epithelialization, granulation was observed, whereas on day 14, there was a significant increase in skin adnexa regeneration as compared to the control group (PBS treatment; p study suggests that the proposed process is rapid and does not require the use of biochemical agents. Thus, we recommend a combination of surgical treatment with the new therapy for a burn as an effective method.

  2. Multispectral imaging of acute wound tissue oxygenation

    Directory of Open Access Journals (Sweden)

    Audrey Huong

    2017-05-01

    Full Text Available This paper investigates the appropriate range of values for the transcutaneous blood oxygen saturation (StO2 of granulating tissues and the surrounding tissue that can ensure timely wound recovery. This work has used a multispectral imaging system to collect wound images at wavelengths ranging between 520nm and 600nm with a resolution of 10nm. As part of this research, a pilot study was conducted on three injured individuals with superficial wounds of different wound ages at different skin locations. The StO2 value predicted for the examined wounds using the Extended Modified Lambert–Beer model revealed a mean StO2 of 61±10.3% compared to 41.6±6.2% at the surrounding tissues, and 50.1±1.53% for control sites. These preliminary results contribute to the existing knowledge on the possible range and variation of wound bed StO2 that are to be used as indicators of the functioning of the vasomotion system and wound health. This study has concluded that a high StO2 of approximately 60% and a large fluctuation in this value should precede a good progression in wound healing.

  3. Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Lina [Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); National Engineering Research Center for Nano-Medicine, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhou, Ping [Institute of Organ Transplant of Tongji Hospital, Huazhong University of Science and Technology, Wuhan (China); Zhang, Shengmin [Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan (China); Yang, Guang, E-mail: yang_sunny@yahoo.com [Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); National Engineering Research Center for Nano-Medicine, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-07-01

    Bacterial nanocellulose (BNC) was biosynthesized by Gluconacetobacter xylinus. The surface area, physicochemical structure and morphology of the materials were characterized. Here provides a method for an efficient production of uniform BNC, which is beneficial for the fast characterization and evaluation of BNC. In vitro cytotoxicity of the materials was evaluated by the proliferation, the adhesion, the viability and the morphology of NIH/3T3 cells. Low cytotoxicity of the BNC was observed, and micrographs demonstrate a good proliferation and adhesion of NIH/3T3 cells on BNC. Large area full-thickness skin defects were made on the back of C57BL/6 mice in animal surgery. The wounds were transplanted with BNC films and the results compared to those in a control group. The rehabilitation of the wound surfaces and the pathological sections of mice were investigated and are discussed. Histological examinations demonstrated faster and better healing effect and lower inflammatory response in the BNC group than those in the control group. Preliminary results on wound dressings from BNC show a curative effect promoting the healing of epithelial tissue. BNC is a promising natural polymer with medical applications in wound dressings. - Highlights: • BNC is expected to be a promising material in wound healing and skin transplantation. • We studied surface area, physicochemical structures and morphology of uniform BNC. • Cyto-evaluation results of BNC-based wound dressing show a good biocompatibility. • Large area skin transplantation experiments suggest a good performance of healing.

  4. Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation

    International Nuclear Information System (INIS)

    Fu, Lina; Zhou, Ping; Zhang, Shengmin; Yang, Guang

    2013-01-01

    Bacterial nanocellulose (BNC) was biosynthesized by Gluconacetobacter xylinus. The surface area, physicochemical structure and morphology of the materials were characterized. Here provides a method for an efficient production of uniform BNC, which is beneficial for the fast characterization and evaluation of BNC. In vitro cytotoxicity of the materials was evaluated by the proliferation, the adhesion, the viability and the morphology of NIH/3T3 cells. Low cytotoxicity of the BNC was observed, and micrographs demonstrate a good proliferation and adhesion of NIH/3T3 cells on BNC. Large area full-thickness skin defects were made on the back of C57BL/6 mice in animal surgery. The wounds were transplanted with BNC films and the results compared to those in a control group. The rehabilitation of the wound surfaces and the pathological sections of mice were investigated and are discussed. Histological examinations demonstrated faster and better healing effect and lower inflammatory response in the BNC group than those in the control group. Preliminary results on wound dressings from BNC show a curative effect promoting the healing of epithelial tissue. BNC is a promising natural polymer with medical applications in wound dressings. - Highlights: • BNC is expected to be a promising material in wound healing and skin transplantation. • We studied surface area, physicochemical structures and morphology of uniform BNC. • Cyto-evaluation results of BNC-based wound dressing show a good biocompatibility. • Large area skin transplantation experiments suggest a good performance of healing

  5. Wound healing delays in α-Klotho-deficient mice that have skin appearance similar to that in aged humans - Study of delayed wound healing mechanism.

    Science.gov (United States)

    Yamauchi, Makoto; Hirohashi, Yoshihiko; Torigoe, Toshihiko; Matsumoto, Yoshitaka; Yamashita, Ken; Kayama, Musashi; Sato, Noriyuki; Yotsuyanagi, Takatoshi

    2016-05-13

    Skin atrophy and delayed wound healing are observed in aged humans; however, the molecular mechanism are still elusive. The aim of this study was to analyze the molecular mechanisms of delayed wound healing by aging using α-Klotho-deficient (kl/kl) mice, which have phenotypes similar to those of aged humans. The kl/kl mice showed delayed wound healing and impaired granulation formation compared with those in wild-type (WT) mice. The skin graft experiments revealed that delayed wound healing depends on humoral factors, but not on kl/kl skin tissue. The mRNA expression levels of cytokines related to acute inflammation including IL-1β, IL-6 and TNF-α were higher in wound lesions of kl/kl mice compared with the levels in WT mice by RT-PCR analysis. LPS-induced TNF-α production model using spleen cells revealed that TNF-α production was significantly increased in the presence of FGF23. Thus, higher levels of FGF23 in kl/kl mouse may have a role to increase TNF-α production in would lesion independently of α-Klotho protein, and impair granulation formation and delay wound healing. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Topical haemostatic agents for skin wounds: a systematic review

    Directory of Open Access Journals (Sweden)

    Ubbink Dirk T

    2011-07-01

    Full Text Available Abstract Background Various agents and techniques have been introduced to limit intra-operative blood loss from skin lesions. No uniformity regarding the type of haemostasis exists and this is generally based on the surgeon's preference. To study the effectiveness of haemostatic agents, standardized wounds like donor site wounds after split skin grafting (SSG appear particularly suitable. Thus, we performed a systematic review to assess the effectiveness of haemostatic agents in donor site wounds. Methods We searched all randomized clinical trials (RCTs on haemostasis after SSG in Medline, Embase and the Cochrane Library until January 2011. Two reviewers independently assessed trial relevance and quality and performed data analysis. Primary endpoint was effectiveness regarding haemostasis. Secondary endpoints were wound healing, adverse effects, and costs. Results Nine relevant RCTs with a fair methodological quality were found, comparing epinephrine, thrombin, fibrin sealant, alginate dressings, saline, and mineral oil. Epinephrine achieved haemostasis significantly faster than thrombin (difference up to 2.5 minutes, saline or mineral oil (up to 6.5 minutes. Fibrin sealant also resulted in an up to 1 minute quicker haemostasis than thrombin and up to 3 minutes quicker than placebo, but was not directly challenged against epinephrine. Adverse effects appeared negligible. Due to lack of clinical homogeneity, meta-analysis was impossible. Conclusion According to best available evidence, epinephrine and fibrin sealant appear superior to achieve haemostasis when substantial topical blood loss is anticipated, particularly in case of (larger SSGs and burn debridement.

  7. 500-Gray γ-Irradiation May Increase Adhesion Strength of Lyophilized Cadaveric Split-Thickness Skin Graft to Wound Bed.

    Science.gov (United States)

    Wei, Lin-Gwei; Chen, Chieh-Feng; Wang, Chi-Hsien; Cheng, Ya-Chen; Li, Chun-Chang; Chiu, Wen-Kuan; Wang, Hsian-Jenn

    2017-03-01

    Human cadaveric skin grafts are considered as the "gold standard" for temporary wound coverage because they provide a more conductive environment for natural wound healing. Lyophilization, packing, and terminal sterilization with gamma-ray can facilitate the application of cadaveric split-thickness skin grafts, but may alter the adhesion properties of the grafts. In a pilot study, we found that 500 Gy γ-irradiation seemed not to reduce the adherence between the grafts and wound beds. We conducted this experiment to compare the adherences of lyophilized, 500-Gy γ-irradiated skin grafts to that of lyophilized, nonirradiated grafts. Pairs of wounds were created over the backs of Sprague- Dawley rats. Pairs of "lyophilized, 500-Gy γ-irradiated" and "lyophilized, nonirradiated" cadaveric split-thickness skin grafts were fixed to the wound beds. Adhesion strength between the grafts and the wound beds was measured and compared. On post-skin-graft day 7 and day 10, the adhesion strength of γ-irradiated grafts was greater than that of the nonirradiated grafts. Because lyophilized cadaveric skin grafts can be vascularized and the collagen of its dermal component can be remodeled after grafting, the superior adhesion strength of 500-Gy γ-irradiated grafts can be explained by the collagen changes from irradiation.

  8. [Expression of cannabinoid receptor I during mice skin incised wound healing course].

    Science.gov (United States)

    Zhao, Zhen-bin; Guan, Da-wei; Liu, Wei-wei; Wang, Tao; Fan, Yan-yan; Cheng, Zi-hui; Zheng, Ji-long; Hu, Geng-yi

    2010-08-01

    To investigate the expression of cannabinoid receptor I (CB1R) during mice skin incised wound healing course and time-dependent changes of CB1R in wound age determination. The changes of CBIR expression in skin incised wound were detected by immunohistochemistry and Western blotting. The control group showed a low expression of CB1R detected mainly in epidermis, hair follicles, sebaceous gland and dermomuscular layer. CB1R expression was undetectable in neutrophils in the wound specimens from 6h to 12h post-injury. CB1R positive cells were mostly mononuclear cells (MNCs) and fibroblastic cells (FBCs) from 1 d to 5 d post-injury. CB1R positive cells were mostly FBCs from 7 d to 14d post-injury. The ratio of the CB1R positive cells increased gradually in the wound specimens from 6 h to 3 d post-injury, reached peak level at 5 d, and then decreased gradually from 7d to 14 d post-injury. The positive bands of CB1R were observed in all time points of the wound healing course by Western blotting. The expression peak showed at 5 d post-injury. CB1R is activated during the wound healing course. The expression of CB1R is found in mononuclear cells, which could be involved in inflammation reaction. CBIR is observed in fibroblastic cells, which could participate in the wound healing. CB1R may be a potentially useful marker for determination of wound healing age.

  9. Antimicrobial efficacy of preoperative skin antisepsis and clonal relationship to postantiseptic skin-and-wound flora in patients undergoing clean orthopedic surgery.

    Science.gov (United States)

    Daeschlein, G; Napp, M; Layer, F; von Podewils, S; Haase, H; Spitzmueller, R; Assadian, O; Kasch, R; Werner, G; Jünger, M; Hinz, P; Ekkernkamp, A

    2015-11-01

    Nosocomial surgical site infections (SSI) are still important complications in surgery. The underlying mechanisms are not fully understood. The aim of this study was to elucidate the possible role of skin flora surviving preoperative antisepsis as a possible cause of SSI. We conducted a two-phase prospective clinical trial in patients undergoing clean orthopedic surgery at a university trauma center in northern Germany. Quantitative swab samples were taken from pre- and postantiseptic skin and, additionally, from the wound base, wound margin, and the suture of 137 patients. Seventy-four patients during phase I and 63 during phase II were investigated. Microbial growth, species spectrum, and antibiotic susceptibility were analyzed. In phase two, the clonal relationship of strains was additionally analyzed. 18.0 % of the swab samples were positive for bacterial growth in the wound base, 24.5 % in the margin, and 27.3 % in the suture. Only 65.5 % of patients showed a 100 % reduction of the skin flora after antisepsis. The microbial spectrum in all postantiseptic samples was dominated by coagulase-negative staphylococci (CoNS). Clonally related staphylococci were detected in ten patients [nine CoNS, one methicillin-susceptible Staphylococcus aureus (MSSA)]. Six of ten patients were suspected of having transmitted identical clones from skin flora into the wound. Ethanol-based antisepsis results in unexpected high levels of skin flora, which can be transmitted into the wound during surgery causing yet unexplained SSI. Keeping with the concept of zero tolerance, further studies are needed in order to understand the origin of this flora to allow further reduction of SSI.

  10. Antimicrobial-impregnated dressing combined with negative-pressure wound therapy increases split-thickness skin graft engraftment: a simple effective technique.

    Science.gov (United States)

    Wu, Cheng-Chun; Chew, Khong-Yik; Chen, Chien-Chang; Kuo, Yur-Ren

    2015-01-01

    Immobilization and adequate surface contact to wounds are critical for skin graft take. Techniques such as the tie-over dressing, cotton bolster, and vacuum-assisted closure are used to address this, but each has its limitations. This study is designed to assess the effect of antimicrobial-impregnated dressing (AMD) combined with negative-pressure wound therapy (NPWT) on skin graft survival. Retrospective case-control study : Patients with chronic or contaminated wounds treated with split-thickness skin graft. A broad spectrum of wounds was included, from causes such as trauma, burns, chronic diabetic ulcers, and infection. Antimicrobial-impregnated dressing, which contains 0.2% polyhexamethylene biguanide, with NPWT MAIN OUTCOME MEASURE:: Success of skin graft : In the AMD group, all skin grafts achieved 100% take without secondary intervention. No infection or graft failure was observed in any patients, and no complications, such as hematoma or seroma formation, were noted, although in the control group partial loss of skin grafts was noted in 3 patients. Infection and inadequate immobilization were thought to be the main reasons. There were no hematoma or seroma formations in the control group. Use of an AMD dressing with NPWT after split-thickness skin grafting can be an effective method to ensure good graft to wound contact and enhances skin graft take in chronic and contaminated wounds.

  11. [Effects of seawater immersion on the inflammatory response and oxygen free radical injury of rats with superficial partial-thickness scald at early stage].

    Science.gov (United States)

    Yang, Y X; Wang, J H; Liu, L; Zou, Q; Zhang, Y; Bai, Z

    2017-06-20

    Objective: To study the effects of seawater immersion on the inflammatory response and oxygen free radical injury of rats with superficial-thickness scald at early stage. Methods: Seventy Wistar rats were divided into healthy control group (HC, n =7), pure scald group (PS, n =21), scald+ fresh water immersion group (SF, n =21), and scald+ seawater immersion group (SS, n =21) according to the random number table. Rats in group HC did not receive any treatment, while 5% total body surface area superficial partial-thickness scald was made on the back of rats in the latter three groups. Rats in group PS lived freely immediately post burn, while wounds on the back of rats in groups SF and SS were immersed into fresh water and seawater, respectively. Serum and full-thickness skin tissue in the center of wounds on the back of 7 rats in groups PS, SF, and SS at post immersion (injury) hour (PIH) 2, 4, and 6 were collected, respectively, while serum and full-thickness skin tissue at the same position of the 7 rats in group HC were collected at PIH 6 of rats in other groups. Morphology of skin tissue was observed with HE staining; tumor necrosis factor-alpha (TNF-α) content in serum and skin tissue was determined by enzyme-linked immunosorbent assay; superoxide dismutase (SOD) content in serum and skin tissue was determined by hydroxylamine method; malondialdehyde content in serum and skin tissue was determined by thiobarbituric acid method. Data were processed with analysis of variance of factorial design, one-way analysis of variance, Welch test, LSD test, and Tamhane test. Results: (1) Epidermal cells of skin tissue of rats in group HC arranged in order and continuously, and the dermis tissue and accessory structures were clear and complete. The skin layer and epidermis of wounds of rats in group PS had no significant change, but the edema of epidermis and dermis and infiltration of inflammatory cells enhanced over time at PIH 2, 4, and 6. The horny layer of epidermis of

  12. Late Complication after Superficial Femoral Artery (SFA) Aneurysm: Stent-graft Expulsion Outside the Skin

    Energy Technology Data Exchange (ETDEWEB)

    Pecoraro, Felice, E-mail: felicepecoraro@libero.it; Sabatino, Ermanno R.; Dinoto, Ettore; Rosa, Giuliana La; Corte, Giuseppe; Bajardi, Guido [University of Palermo, Vascular Surgery Unit (Italy)

    2015-10-15

    A 78-year-old man presented with a 7-cm aneurysm in the left superficial femoral artery, which was considered unfit and anatomically unsuitable for conventional open surgery for multiple comorbidities. The patient was treated with stent-graft [Viabhan stent-graft (WL Gore and Associates, Flagstaff, AZ)]. Two years from stent-graft implantation, the patient presented a purulent secretion and a spontaneous external expulsion through a fistulous channel. No claudication symptoms or hemorrhagic signs were present. The pus and device cultures were positive for Staphylococcus aureus sensitive to piperacillin/tazobactam. Patient management consisted of fistula drainage, systemic antibiotic therapy, and daily wound dressing. At 1-month follow-up, the wound was closed. To our knowledge, this is the first case of this type of stent-graft complication presenting with external expulsion.

  13. Current Concepts in Tissue Engineering: Skin and Wound.

    Science.gov (United States)

    Tenenhaus, Mayer; Rennekampff, Hans-Oliver

    2016-09-01

    Pure regenerative healing with little to no donor morbidity remains an elusive goal for both surgeon and patient. The ability to engineer and promote the development of like tissue holds so much promise, and efforts in this direction are slowly but steadily advancing. Products selected and reviewed reflect historical precedence and importance and focus on current clinically available products in use. Emerging technologies we anticipate will further expand our therapeutic options are introduced. The topic of tissue engineering is incredibly broad in scope, and as such the authors have focused their review on that of constructs specifically designed for skin and wound healing. A review of pertinent and current clinically related literature is included. Products such as biosynthetics, biologics, cellular promoting factors, and commercially available matrices can be routinely found in most modern health care centers. Although to date no complete regenerative or direct identical soft-tissue replacement exists, currently available commercial components have proven beneficial in augmenting and improving some types of wound healing scenarios. Cost, directed specificity, biocompatibility, and bioburden tolerance are just some of the impending challenges to adoption. Quality of life and in fact the ability to sustain life is dependent on our most complex and remarkable organ, skin. Although pure regenerative healing and engineered soft-tissue constructs elude us, surgeons and health care providers are slowly gaining comfort and experience with concepts and strategies to improve the healing of wounds.

  14. Coverage of Deep Cutaneous Wounds Using Dermal Template in Combination with Negative-pressure Therapy and Subsequent Skin Graft

    Science.gov (United States)

    Chang, Alexandre A.; Lobato, Rodolfo C.; Nakamoto, Hugo A.; Tuma, Paulo; Ferreira, Marcus C.

    2014-01-01

    Background: We consider the use of dermal matrix associated with a skin graft to cover deep wounds in the extremities when tendon and bone are exposed. The objective of this article was to evaluate the efficacy of covering acute deep wounds through the use of a dermal regeneration template (Integra) associated with vacuum therapy and subsequent skin grafting. Methods: Twenty patients were evaluated prospectively. All of them had acute (up to 3 weeks) deep wounds in the limbs. We consider a deep wound to be that with exposure of bone, tendon, or joint. Results: The average area of integration of the dermal regeneration template was 86.5%. There was complete integration of the skin graft over the dermal matrix in 14 patients (70%), partial integration in 5 patients (25%), and total loss in 1 case (5%). The wound has completely closed in 95% of patients. Conclusions: The use of Integra dermal template associated with negative-pressure therapy and skin grafting showed an adequate rate of resolution of deep wounds with low morbidity. PMID:25289363

  15. Wound Healing Potential of Formulated Extract from Hibiscus Sabdariffa Calyx

    Science.gov (United States)

    Builders, P. F.; Kabele-Toge, B.; Builders, M.; Chindo, B. A.; Anwunobi, Patricia A.; Isimi, Yetunde C.

    2013-01-01

    Wound healing agents support the natural healing process, reduce trauma and likelihood of secondary infections and hasten wound closure. The wound healing activities of water in oil cream of the methanol extract of Hibiscus sabdariffa L. (Malvaceae) was evaluated in rats with superficial skin excision wounds. Antibacterial activities against Pseudomonas aeroginosa, Staphylococcus aureus and Echerichia coli were determined. The total flavonoid content, antioxidant properties and thin layer chromatographic fingerprints of the extract were also evaluated. The extract demonstrated antioxidant properties with a total flavonoid content of 12.30±0.09 mg/g. Six reproducible spots were obtained using methanol:water (95:5) as the mobile phase. The extract showed no antimicrobial activity on the selected microorganisms, which are known to infect and retard wound healing. Creams containing H. sabdariffa extract showed significant (Psabdariffa extract. This study, thus, provides evidence of the wound healing potentials of the formulated extract of the calyces of H. sabdariffa and synergism when co-formulated with gentamicin. PMID:23901160

  16. PLATELET-RICH PLASMA (PRP FOR THE TREATMENT OF PROBLEMATIC SKIN WOUNDS

    Directory of Open Access Journals (Sweden)

    Tsvetan Sokolov

    2016-12-01

    Full Text Available OBJECTIVE: To show platelet-rich plasma (PRP application of problematic skin wounds and to evaluate the results from the treatment. MATERIAL AND METHODS: A total of 31 patients with problematic skin wounds had been treated at the clinic for a period of five years (from May 2010 to September 2015 with the following patient sex ratio: male patients– 13 and female patients– 18. Average age– 46,5 (22-82. Patients with Type 2 Diabetes– 10, with decubitus ulcers– 2, traumatic– 29, with infection– 12, acute– 15, chronic– 16. Based on a scheme developed by us, all cases were treated by administering platelet-rich plasma, derived by PRGF Endoret system. Follow-up period was within 4 – 6 months (4,5 on average. We used platelet rich plasma derived by PRGF Endoret system, applied on the wound bed on a weekly basis. RESULTS: The results have been evaluated based on the following functional scoring systems - Total wound score, Total anatomic score and Total score (20. The baseline values at the very beginning of the follow-up period were as follows: Total wound score – 10 p.; Total anatomic score – 8 p., Total score – 15 p. By the end of the treatment period the score was 0 p., which means excellent results, i.e. complete healing of the wounds. CONCLUSION: We believe that the application of PRP may become optimal therapy in the treatment of difficult to heal wounds around joints, bone, subject tendons, plantar surface of the foot, etc., as it opens new perspectives in the field of human tissue regeneration.

  17. Noninvasive in vivo optical characterization of blood flow and oxygen consumption in the superficial plexus of skin

    Science.gov (United States)

    Liasi, Faezeh Talebi; Samatham, Ravikant; Jacques, Steven L.

    2017-11-01

    Assessing the metabolic activity of a tissue, whether normal, damaged, aged, or pathologic, is useful for diagnosis and evaluating the effects of drugs. This report describes a handheld optical fiber probe that contacts the skin, applies pressure to blanch the superficial vascular plexus of the skin, then releases the pressure to allow refill of the plexus. The optical probe uses white light spectroscopy to record the time dynamics of blanching and refilling. The magnitude and dynamics of changes in blood content and hemoglobin oxygen saturation yield an estimate of the oxygen consumption rate (OCR) in units of attomoles per cell per second. The average value of OCR on nine forearm sites on five subjects was 10±5 (amol/cell/s). This low-cost, portable, rapid, noninvasive optical probe can characterize the OCR of a skin site to assess the metabolic activity of the epidermis or a superficial lesion.

  18. Nanofat grafting under a split-thickness skin graft for problematic wound management.

    Science.gov (United States)

    Kemaloğlu, Cemal Alper

    2016-01-01

    Obesity and certain medical disorders make the reconstruction of skin defects challenging. Different kind of procedure can be used for these defect, besides, skin grafting is one of the most common and simplest procedure. Fat grafting and stem cells which are located in the adipose tissue have been commonly used in plastic surgery for regeneration and rejuvenation purposes. To decrease graft failure rate we performed nanofat grafting under an autologous split-thickness skin graft in our patient who had a problematic wound. The case of a 35-year-old female patient with a traumatic skin defect on her left anterior crural region is described herein. After subsequent flap reconstruction, the result was disappointing and the defect size was widened. The defect was treated with combined grafting (nanofat grafting under an autologous split-thickness skin graft). At the 6 months follow-up assessment after combined grafting, the integrity of the skin graft was good with excellent pliability. Combined grafting for problematic wounds seems to be a useful technique for cases requiring reconstruction. The potential existence of stem cells may be responsible for the successful result in our patient.

  19. Advanced skin, scar and wound care centre for children: A new era of care

    Directory of Open Access Journals (Sweden)

    Andrew Burd

    2012-01-01

    Full Text Available Advanced wound care centres are now a well established response to the growing epidemic of chronic wounds in the adult population. Is the concept transferable to children? Whilst there is not the same prevalence of chronic wounds in children there are conditions affecting the integumentary system that do have a profound effect on the quality of life of both children and their families. We have identified conditions involving the skin, scars and wounds which contribute to a critical number of potential patients that can justify the setting up of an advanced skin, scar and wound care centre for children. The management of conditions such as giant naevi, extensive scarring and epidermolysis bullosa challenge medical professionals and lead to new and novel treatments to be developed. The variation between and within such conditions calls for a customizing of individual patient care that involves a close relationship between research scientists and clinicians. This is translational medicine of its best and we predict that this is the future of wound care particularly and specifically in children.

  20. Full-thickness skin wound healing using autologous keratinocytes and dermal fibroblasts with fibrin: bilayered versus single-layered substitute.

    Science.gov (United States)

    Idrus, Ruszymah Bt Hj; Rameli, Mohd Adha bin P; Low, Kiat Cheong; Law, Jia Xian; Chua, Kien Hui; Latiff, Mazlyzam Bin Abdul; Saim, Aminuddin Bin

    2014-04-01

    Split-skin grafting (SSG) is the gold standard treatment for full-thickness skin defects. For certain patients, however, an extensive skin lesion resulted in inadequacies of the donor site. Tissue engineering offers an alternative approach by using a very small portion of an individual's skin to harvest cells for propagation and biomaterials to support the cells for implantation. The objective of this study was to determine the effectiveness of autologous bilayered tissue-engineered skin (BTES) and single-layer tissue-engineered skin composed of only keratinocytes (SLTES-K) or fibroblasts (SLTES-F) as alternatives for full-thickness wound healing in a sheep model. Full-thickness skin biopsies were harvested from adult sheep. Isolated fibroblasts were cultured using medium Ham's F12: Dulbecco modified Eagle medium supplemented with 10% fetal bovine serum, whereas the keratinocytes were cultured using Define Keratinocytes Serum Free Medium. The BTES, SLTES-K, and SLTES-F were constructed using autologous fibrin as a biomaterial. Eight full-thickness wounds were created on the dorsum of the body of the sheep. On 4 wounds, polyvinyl chloride rings were used as chambers to prevent cell migration at the edge. The wounds were observed at days 7, 14, and 21. After 3 weeks of implantation, the sheep were euthanized and the skins were harvested. The excised tissues were fixed in formalin for histological examination via hematoxylin-eosin, Masson trichrome, and elastin van Gieson staining. The results showed that BTES, SLTES-K, and SLTES-F promote wound healing in nonchambered and chambered wounds, and BTES demonstrated the best healing potential. In conclusion, BTES proved to be an effective tissue-engineered construct that can promote the healing of full-thickness skin lesions. With the support of further clinical trials, this procedure could be an alternative to SSG for patients with partial- and full-thickness burns.

  1. Differential expression of system L amino acid transporters during wound healing process in the skin of young and old rats.

    Science.gov (United States)

    Jeong, Moon-Jin; Kim, Chun Sung; Park, Joo-Cheol; Kim, Heung-Joong; Ko, Yeong Mu; Park, Kyung Jin; Jeong, Soon-Jeong; Endou, Hitoshi; Kanai, Yoshikatsu; Lim, Do-Seon; Kim, Do Kyung

    2008-03-01

    In order to elucidate the role of the system L-type amino acid transporters (LATs) in the wound healing process of aged and young subjects, we investigated the expression of LAT1, LAT2 and their subunit 4F2hc in the skin healing process after artificial wounds of dorsal skin in the young and old rats. The 1 cm full-thickness incisional wounds were made through the skin and panniculus carnosus muscle. The wounds were harvested at days 1, 3, 5 and 7 post-wounding, the experimental controls were harvested the skin of rat without wounds and the various analyses were performed. In young rats, gradually and noticeable wound healing was detected, however, in old rats, wound healing was found to be greatly delayed. In young rats, the expression of LAT1 was increased rapidly on the day 1 after wound induction, on the other hand, in old rats, the expression of LAT1 after wound induction was not different from the control group. In young rats, the expression of LAT2 after the induction of wound was not different from the control group, however in old rats, the expression of LAT2 on the day 1 of wound induction was rapidly elevated. These results suggest that the LAT1 and LAT2 increase in the wound healing process after cell injury in young and old rats, respectively.

  2. The effect of local hyperglycemia on skin cells in vitro and on wound healing in euglycemic rats

    DEFF Research Database (Denmark)

    Kruse, Carla R; Singh, Mansher; Sørensen, Jens A

    2016-01-01

    BACKGROUND: Multiple previous studies have established that high systemic blood glucose concentration impairs skin wound healing. However, the effects of local hyperglycemia on wound healing are not well defined. Comprehensive animal studies and in vitro studies using both fibroblasts and keratin......BACKGROUND: Multiple previous studies have established that high systemic blood glucose concentration impairs skin wound healing. However, the effects of local hyperglycemia on wound healing are not well defined. Comprehensive animal studies and in vitro studies using both fibroblasts...

  3. The effect of mesenchymal stem cells combined with platelet-rich plasma on skin wound healing.

    Science.gov (United States)

    Mahmoudian-Sani, Mohammad-Reza; Rafeei, Fatemeh; Amini, Razieh; Saidijam, Massoud

    2018-03-04

    Mesenchymal stem cells (MSCs) are multipotent stem cells that have the potential of proliferation, high self-renewal, and the potential of multilineage differentiation. The differentiation potential of the MSCs in vivo and in vitro has caused these cells to be regarded as potentially appropriate tools for wound healing. After the burn, trauma or removal of the tumor of wide wounds is developed. Although standard treatment for skin wounds is primary healing or skin grafting, they are not always practical mainly because of limited autologous skin grafting. Directory of Open Access Journals (DOAJ), Google Scholar, PubMed (NLM), LISTA (EBSCO), and Web of Science have been searched. For clinical use of the MSCs in wound healing, two key issues should be taken into account: First, engineering biocompatible scaffolds clinical use of which leads to the least amount of side effects without any immunologic response and secondly, use of stem cells secretions with the least amount of clinical complications despite their high capability of healing damage. In light of the MSCs' high capability of proliferation and multilineage differentiation as well as their significant role in modulating immunity, these cells can be used in combination with tissue engineering techniques. Moreover, the MSCs' secretions can be used in cell therapy to heal many types of wounds. The combination of MSCs and PRP aids wound healing which could potentially be used to promote wound healing. © 2018 Wiley Periodicals, Inc.

  4. Interaction of low-intensity linearly polarized laser radiation with living tissues: effects on tissular acceleration of skin wound healing; Interacao da radiacao laser linearmente polarizada de baixa intensidade com tecidos vivos: efeitos na acelaracao de cicatrizacao tissular em lesoes de pele

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Martha Simoes

    2000-07-01

    According to the Maxwell's equations to optical properties of surfaces, the energy deposition efficiency in a microroughness interface depends on the electrical field polarization component. Considering a linearly polarized beam, this efficiency will depend on the roughness parameters to p-polarized light and it will not depend on such parameters to s-polarized light. In this work it was investigated the effects of low-intensity, linearly polarized He-Ne laser beam on skin wounds healing, considering two orthogonal directions of polarization. We have considered a preferential axis as the animals' spinal column and we aligned the linear laser polarization first parallel, then perpendicular to this direction. Burns about 6 mm in diameter were created with liquid N{sub 2} on the back of the animals and the lesions were irradiated on days 3, 7, 10 and 14 post-wounding, D= 1,0 J/cm{sup 2}. Control lesions were not irradiated. The theoretical model consisted in describing linearly polarized light propagation in biological tissues using transport theory. The degree of polarization was measured in normal and pathological skin samples. It was verified that linearly polarized light can survive in the superficial layers of skin and it can be more preserved in skin under pathological condition when compared with health skin. The analysis of skin wound healing process has demonstrated that the relative direction of the laser polarization plays an important role on the wound healing process by light microscopy, transmission electron microscopy and radioautography. (author)

  5. Topical application of Acheflan on rat skin injury accelerates wound healing: a histopathological, immunohistochemical and biochemical study.

    Science.gov (United States)

    Perini, Jamila Alessandra; Angeli-Gamba, Thais; Alessandra-Perini, Jessica; Ferreira, Luiz Claudio; Nasciutti, Luiz Eurico; Machado, Daniel Escorsim

    2015-06-30

    Dermal wound healing involves a cascade of complex events including angiogenesis and extracellular matrix remodeling. Several groups have focused in the study of the skin wound healing activity of natural products. The phytomedicine Acheflan®, and its main active constituent is the oil from Cordia verbenacea which has known anti-inflammatory, analgesic and antimicrobial activities. To our knowledge, no investigation has evaluated the effect of Acheflan® in an experimental model of skin wound healing. The present study has explored the wound healing property of Acheflan® and has compared it with topical effectiveness of collagenase and fibrinolysin by using Wistar rat cutaneous excision wound model. Animals were divided into four groups: untreated animals are negative control (NC), wounds were treated topically every day with Collagenase ointment (TC), with Fibrinolysin ointment (TF) and with cream Acheflan (TAc). Skin samples were collected on zero, 8th and 15th days after wounding. The healing was assessed by hematoxylin-eosin (HE), picrosirius red, hydoxyproline content and immunohistochemical analysis of the vascular endothelial growth factor (VEGF) and matrix metalloprotease-9 (MMP-9). Statistical analysis was done by ANOVA and Student t-test (p Cordia verbenacea) and TC possess higher therapeutic properties for wound healing compared with TF. These ointments seem to accelerate wound healing, probably due to their involvement with the increase of angiogenesis and dermal remodeling.

  6. Mesenchymal stem cells delivered in a microsphere-based engineered skin contribute to cutaneous wound healing and sweat gland repair.

    Science.gov (United States)

    Huang, Sha; Lu, Gang; Wu, Yan; Jirigala, Enhe; Xu, Yongan; Ma, Kui; Fu, Xiaobing

    2012-04-01

    Bone-marrow-derived mesenchymal stem cells (BM-MSCs) can contribute to wound healing after skin injury. However, the role of BM-MSCs on repairing skin appendages in renewal tissues is incompletely explored. Moreover, most preclinical studies suggest that the therapeutic effects afforded by BM-MSCs transplantation are short-lived and relatively unstable. To assess whether engrafted bone-marrow-derived mesenchymal stem cells via a delivery system can participate in cutaneous wound healing and sweat-gland repair in mice. For safe and effective delivery of BM-MSCs to wounds, epidermal growth factor (EGF) microspheres were firstly developed to both support cells and maintain appropriate stimuli, then cell-seeded microspheres were incorporated with biomimetic scaffolds and thus fabricated an engineered skin construct with epithelial differentiation and proliferative potential. The applied efficacy was examined by implanting them into excisional wounds on both back and paws of hind legs in mice. After 3 weeks, BM-MSC-engineered skin (EGF loaded) treated wounds exhibited accelerated healing with increased re-epithelialization rates and less skin contraction. Furthermore, histological and immunofluorescence staining analysis revealed sweat glands-like structures became more apparent in BM-MSC-engineered skin (EGF loaded) treated wounds but the number of implanted BM-MSCs were decreased gradually in later phases of healing progression. Our study suggests that BM-MSCs delivered by this EGF microspheres-based engineered skin model may be a promising strategy to repair sweat glands and improve cutaneous wound healing after injury and success in this study might provide a potential benefit for BM-MSCs administration clinically. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. High transverse skin incisions may reduce wound complications in obese women having cesarean sections: a pilot study.

    Science.gov (United States)

    Walton, Robert B; Shnaekel, Kelsey L; Ounpraseuth, Songthip T; Napolitano, Peter G; Magann, Everett F

    2017-11-01

    Women having cesarean section have a high risk of wound complications. Our objective was to determine whether high transverse skin incisions are associated with a reduced risk of cesarean wound complications in women with BMI greater than 40. A retrospective cohort study was undertaken of parturients ages 18-45 with BMI greater than 40 having high transverse skin incisions from January 2010 to April 2015 at a tertiary maternity hospital. Temporally matched controls had low transverse skin incisions along with a BMI greater than 40. The primary outcome, wound complication, was defined as any seroma, hematoma, dehiscence, or infection requiring opening and evacuating/debriding the wound. Secondary outcomes included rates of endometritis, number of hospital days, NICU admission, Apgar scores, birth weight, and gestational age at delivery. Analysis of outcomes was performed using two-sample t-test or Wilcoxon rank-sum test for continuous variables and Fisher's exact test for categorical variables. Thirty-two women had high transverse incisions and were temporally matched with 96 controls (low transverse incisions). The mean BMI was 49 for both groups. There was a trend toward reduced wound complications in those having high transverse skin incisions, but this did not reach statistical significance (15.63% versus 27.08%, p = .2379). Those having high transverse skin incisions had lower five minute median Apgar scores (8.0 versus 9.0, p = .0021), but no difference in umbilical artery pH values. The high transverse group also had increased NICU admissions (28.13% versus 5.21%, p = .0011), and early gestational age at delivery (36.8 versus 38.0, p = .0272). High transverse skin incisions may reduce the risk of wound complications in parturients with obesity. A study with more power should be considered.

  8. In Vivo Assessment of Printed Microvasculature in a Bilayer Skin Graft to Treat Full-Thickness Wounds

    Science.gov (United States)

    Yanez, Maria; Rincon, Julio; Dones, Aracely; De Maria, Carmelo; Gonzales, Raoul

    2015-01-01

    Chronic wounds such as diabetic foot ulcers and venous leg ulcers are common problems in people suffering from type 2 diabetes. These can cause pain, and nerve damage, eventually leading to foot or leg amputation. These types of wounds are very difficult to treat and sometimes take months or even years to heal because of many possible complications during the process. Allogeneic skin grafting has been used to improve wound healing, but the majority of grafts do not survive several days after being implanted. We have been studying the behavior of fibroblasts and keratinocytes in engineered capillary-like endothelial networks. A dermo-epidermal graft has been implanted in an athymic nude mouse model to assess the integration with the host tissue as well as the wound healing process. To build these networks into a skin graft, a modified inkjet printer was used, which allowed the deposit of human microvascular endothelial cells. Neonatal human dermal fibroblast cells and neonatal human epidermal keratinocytes were manually mixed in the collagen matrix while endothelial cells printed. A full-thickness wound was created at the top of the back of athymic nude mice and the area was covered by the bilayered graft. Mice of the different groups were followed until completion of the specified experimental time line, at which time the animals were humanely euthanized and tissue samples were collected. Wound contraction improved by up to 10% when compared with the control groups. Histological analysis showed the neoskin having similar appearance to the normal skin. Both layers, dermis and epidermis, were present with thicknesses resembling normal skin. Immunohistochemistry analysis showed favorable results proving survival of the implanted cells, and confocal images showed the human cells' location in the samples that were collocated with the bilayer printed skin graft. PMID:25051339

  9. Enhancement of skin wound healing with decellularized scaffolds loaded with hyaluronic acid and epidermal growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Su, Zhongchun; Ma, Huan; Wu, Zhengzheng [Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Lab for Genetic Medicine of Guangdong Province, Jinan University, Guangzhou 510632 (China); Zeng, Huilan [Department of Hematology, The First Affiliated Hospital, Jinan University, Guangzhou 510632 (China); Li, Zhizhong [Department of Bone, The First Affiliated Hospital, Jinan University, Guangzhou 510632 (China); Wang, Yuechun; Liu, Gexiu [Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632 (China); Xu, Bin; Lin, Yongliang; Zhang, Peng [Grandhope Biotech Co., Ltd., Building D, #408, Guangzhou International Business Incubator, Guangzhou Science Park, Guangzhou 510663, Guangdong (China); Wei, Xing, E-mail: wei70@hotmail.com [Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Lab for Genetic Medicine of Guangdong Province, Jinan University, Guangzhou 510632 (China)

    2014-11-01

    Current therapy for skin wound healing still relies on skin transplantation. Many studies were done to try to find out ways to replace skin transplantation, but there is still no effective alternative therapy. In this study, decellularized scaffolds were prepared from pig peritoneum by a series of physical and chemical treatments, and scaffolds loaded with hyaluronic acid (HA) and epidermal growth factor (EGF) were tested for their effect on wound healing. MTT assay showed that EGF increased NIH3T3 cell viability and confirmed that EGF used in this study was biologically active in vitro. Scanning electron microscope (SEM) showed that HA stably attached to scaffolds even after soaking in PBS for 48 h. ELISA assay showed that HA increased the adsorption of EGF to scaffolds and sustained the release of EGF from scaffolds. Animal study showed that the wounds covered with scaffolds containing HA and EGF recovered best among all 4 groups and had wound healing rates of 49.86%, 70.94% and 87.41% respectively for days 10, 15 and 20 post-surgery compared to scaffolds alone with wound healing rates of 29.26%, 42.80% and 70.14%. In addition, the wounds covered with scaffolds containing EGF alone were smaller than no EGF scaffolds on days 10, 15 and 20 post-surgery. Hematoxylin–Eosin (HE) staining confirmed these results by showing that on days 10, 15 and 20 post-surgery, the thicker epidermis and dermis layers were observed in the wounds covered with scaffolds containing HA and EGF than scaffolds alone. In addition, the thicker epidermis and dermis layers were also observed in the wounds covered with scaffolds containing EGF than scaffolds alone. Skin appendages were observed on day 20 only in the wound covered with scaffolds containing HA and EGF. These results demonstrate that the scaffolds containing HA and EGF can enhance wound healing. - Highlights: • HA can increase the adsorption of EGF to decellularized scaffolds. • HA can sustain the release of EGF from

  10. MiR-21/PTEN Axis Promotes Skin Wound Healing by Dendritic Cells Enhancement.

    Science.gov (United States)

    Han, Zhaofeng; Chen, Ya; Zhang, Yile; Wei, Aizhou; Zhou, Jian; Li, Qian; Guo, Lili

    2017-10-01

    A number of miRNAs associated with wound repair have been identified and characterized, but the mechanism has not been fully clarified. MiR-21 is one of wound-related lncRNAs, and the study aimed to explore the functional involvement of miR-21 and its concrete mechanism in wound healing. In this study, the rat model of skin wounds was established. The expression of miR-21, PTEN and related molecules of wound tissues or cells was determined by quantitative real-time PCR and Western blot, respectively. The regulatory role of miR-21 on PTEN was examined by luciferase reporter gene assay. Flow cytometry assay was applied to measure cell number changes. MiR-21 was upregulated at 6, 24, 48, 72 h after model establishment, and the increase reached a maximum at 24 h in wound tissues. MMP-9 expression presented the same tread as miR-21 and was significantly enhanced within 6 h of wound formation, and then remained to be increased to the maximum at 24 h. The increase of miR-21 was accompanied by the increase of cell total number and DCs ratio in wound fluids. MiR-21 overexpression significantly improved the healing of skin wounds and increased the ratio of DCs in rats. The results of using FL confirmed that miR-21 overexpression obviously promoted DCs differentiation. Additionally, miR-21 could activate AKT/PI3K signaling pathway via inhibition of PTEN. MiR-21 contributes to wound healing via inhibition of PTEN that activated AKT/PI3K signaling pathway to increase DCs. J. Cell. Biochem. 118: 3511-3519, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. [Clinical application of artificial dermis combined with basic fibroblast growth factor in the treatment of cicatrix and deep skin wounds].

    Science.gov (United States)

    Liu, Yang; Zhang, Yilan; Huang, Yalan; Luo, Gaoxing; Peng, Yizhi; Yan, Hong; Luo, Qizhi; Zhang, Jiaping; Wu, Jun; Peng, Daizhi

    2016-04-01

    To observe the effects of artificial dermis combined with basic fibroblast growth factor (bFGF) on the treatment of cicatrix and deep skin wounds. The clinical data of 72 patients with wounds repaired with artificial dermis, hospitalized in our unit from October 2010 to April 2015, conforming to the study criteria, were retrospectively analyzed. The types of wounds were wounds after resection of cicatrices, deep burn wounds without exposure of tendon or bone, and wounds with exposure of small area of tendon or bone, in a total number of 102. Wounds were divided into artificial dermis group (A, n=60) and artificial dermis+ bFGF group (B, n=42) according to whether or not artificial dermis combined with bFGF. In group A, after release and resection of cicatrices or thorough debridement of deep skin wounds, artificial dermis was directly grafted to wounds in the first stage operation. After complete vascularization of artificial dermis, wounds were repaired with autologous split-thickness skin grafts in the second stage operation. In group B, all the procedures were exactly the same as those in group A except that artificial dermis had been soaked in bFGF for 30 min before grafting. Operation area, complete vascularization time of artificial dermis, survival of skin grafts, and the follow-up condition of wounds in the two groups were recorded. Data were processed with t test and Fisher's exact test. (1) Operation areas of wounds after resection of cicatrices, deep burn wounds without exposure of tendon or bone, and wounds with exposure of small area of tendon or bone in the two groups were about the same (with t values from -1.853 to -0.200, P values above 0.05). Complete vascularization time of artificial dermis in wounds after resection of cicatrices, deep burn wounds without exposure of tendon or bone, and wounds with exposure of small area of tendon or bone in group B were respectively (15.6 ± 2.9), (14.7 ± 2.7), and (20.3 ± 4.4) d, and they were shorter by an

  12. [Stimulation of skin wound contraction and epithelialization by soluble collage].

    Science.gov (United States)

    Melikiants, A G; Kut'kova, O N

    1992-04-01

    It is found that local applications of the unguent with soluble collagen, but not solution of the collagen, stimulate healing of erosions and full-thickness excision wounds in the rat skin. Not all the stages of healing were stimulated, but only two of them--contraction and epithelialization.

  13. Evaluation of subcutaneous infiltration of autologous platelet-rich plasma on skin-wound healing in dogs.

    Science.gov (United States)

    Farghali, Haithem A; AbdElKader, Naglaa A; Khattab, Marwa S; AbuBakr, Huda O

    2017-04-28

    Platelet-rich plasma (PRP) is known to be rich in growth factors and cytokines, which are crucial to the healing process. This study investigate the effect of subcutaneous (S/C) infiltration of autologous PRP at the wound boundaries on wound epithelization and contraction. Five adult male mongrel dogs were used. Bilateral acute full thickness skin wounds (3 cm diameter) were created on the thorax symmetrically. Right side wounds were subcutaneously infiltrated with activated PRP at day 0 and then every week for three consecutive weeks. The left wound was left as control. Wound contraction and epithelization were clinically evaluated. Expression of collagen type I (COLI) A2, (COLIA2),histopathology and immunohistochemical (IHC) staining of COLI α1 (COLIA1) were performed on skin biopsies at first, second and third weeks. The catalase activity, malondialdehyde (MDA) concentration and matrix metalloproteinase (MMP) 9 (MMP-9) activity were assessed in wound fluid samples. All data were analysed statistically. The epithelization percent significantly increased in the PRP-treated wound at week 3. Collagen was well organized in the PRP-treated wounds compared with control wounds at week 3. The COLIA2 expression and intensity of COLIA1 significantly increased in PRP-treated wounds. MDA concentration was significantly decreased in PRP-treated wound at week 3. The catalase activity exhibited no difference between PRP treated and untreated wounds. The activity of MMP-9 reached its peak at the second week and was significantly high in the PRP-treated group. S/C infiltration of autologous PRP at the wound margins enhances the wound epithelization and reduces the scar tissue formation. © 2017 The Author(s).

  14. Comparison of advanced therapy medicinal product gingiva and skin substitutes and their in vitro wound healing potentials.

    Science.gov (United States)

    Boink, Mireille A; Roffel, Sanne; Breetveld, Melanie; Thon, Maria; Haasjes, Michiel S P; Waaijman, Taco; Scheper, Rik J; Blok, Chantal S; Gibbs, Susan

    2018-02-01

    Skin and oral mucosa substitutes are a therapeutic option for closing hard-to-heal skin and oral wounds. Our aim was to develop bi-layered skin and gingiva substitutes, from 3 mm diameter biopsies, cultured under identical conditions, which are compliant with current European regulations for advanced therapy medicinal products. We present in vitro mode of action methods to (i) determine viability: epithelial expansion, proliferation (Ki-67), metabolic activity (MTT assay); (ii) characterize skin and gingiva substitutes: histology and immunohistochemistry; and (iii) determine potency: soluble wound healing mediator release (enzyme-linked immunosorbent assay). Both skin and gingiva substitutes consist of metabolically active autologous reconstructed differentiated epithelium expanding from the original biopsy sheet on a fibroblast populated connective tissue matrix (donor dermis). Gingival epithelium expanded 1.7-fold more than skin epithelium during the 3 week culture period. The percentage of proliferating Ki-67-positive cells located in the basal layer of the gingiva substitute was >1.5-fold higher than in the skin substitute. Keratins 16 and 17, which are upregulated during normal wound healing, were expressed in both the skin and gingiva substitutes. Notably, the gingiva substitute secreted higher amounts of key cytokines involved in mitogenesis, motogenesis and chemotaxis (interleukin-6 > 23-fold, CXCL8 > 2.5-fold) as well as higher amounts of the anti-fibrotic growth factor, hepatocyte growth factor (>7-fold), compared with the skin substitute. In conclusion, while addressing the viability, characterization and potency of the tissue substitutes, important intrinsic differences between skin and gingiva were discovered that may explain in part the superior quality of wound healing observed in the oral mucosa compared with skin. Copyright © 2017 The Authors. Tissue Engineering and Regenerative Medicine published by John Wiley & Sons, Ltd.

  15. Cell motility in models of wounded human skin is improved by Gap27 despite raised glucose, insulin and IGFBP-5

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Catherine S.; Berends, Rebecca F. [Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow G4 0BA (United Kingdom); Flint, David J. [Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE (United Kingdom); Martin, Patricia E.M., E-mail: Patricia.Martin@gcu.ac.uk [Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow G4 0BA (United Kingdom)

    2013-02-15

    Reducing Cx43 expression stimulates skin wound healing. This is mimicked in models when Cx43 function is blocked by the connexin mimetic peptide Gap27. IGF-I also stimulates wound healing with IGFBP-5 attenuating its actions. Further, the IGF-I to IGFBP-5 ratio is altered in diabetic skin, where wound closure is impaired. We investigated whether Gap27 remains effective in augmenting scrape-wound closure in human skin wound models simulating diabetes-induced changes, using culture conditions with raised glucose, insulin and IGFBP-5. Gap27 increased scrape-wound closure in normal glucose and insulin (NGI) and to a lesser extent in high glucose and insulin (HGI). IGF-I enhanced scrape-wound closure in keratinocytes whereas IGFBP-5 inhibited this response. Gap27 overcame the inhibitory effects of IGFBP-5 on IGF-I activity. Connexin-mediated communication (CMC) was reduced in HGI, despite raised Cx43, and Gap27 significantly decreased CMC in NGI and HGI. IGF-I and IGFBP-5 did not affect CMC. IGF-I increased keratinocyte proliferation in NGI, and Gap27 increased proliferation in NGI to a greater extent than in HGI. We conclude that IGF-I and Gap27 stimulate scrape-wound closure by independent mechanisms with Gap27 inhibiting Cx43 function. Gap27 can enhance wound closure in diabetic conditions, irrespective of the IGF-I:IGFBP-5 balance. - Highlights: ► Human organotypic and keratinocyte ‘diabetic’ skin models were used to demonstrate the ability of Gap27 to improve scrape-wound closure. ► Gap27 enhanced scrape-wound closure by reducing Cx43-mediated communication, whereas IGFBP-5 retarded cell migration. ► IGF-I and IGFBP-5 did not affect connexin-mediated pathways. ► Gap27 can override altered glucose, insulin, IGF-I, and IGFBP-5 in ‘diabetic’ skin models and thus has therapeutic potential.

  16. Hair bleaching and skin burning

    OpenAIRE

    Forster, K.; Lingitz, R.; Prattes, G.; Schneider, G.; Sutter, S.; Schintler, M.; Trop, M.

    2012-01-01

    Hairdressing-related burns are preventable and therefore each case is one too many. We report a unique case of a 16-yr-old girl who suffered full-thickness chemical and thermal burns to the nape of her neck and superficial burns to the occiput after her hair had been dyed blond and placed under a dryer to accelerate the highlighting procedure. The wound on the nape of the neck required surgical debridement and skin grafting. The grafted area resulted in subsequent scar formation.

  17. Clinical application of a tissue-cultured skin autograft: an alternative for the treatment of non-healing or slowly healing wounds?

    Science.gov (United States)

    Zöller, Nadja; Valesky, Eva; Butting, Manuel; Hofmann, Matthias; Kippenberger, Stefan; Bereiter-Hahn, Jürgen; Bernd, August; Kaufmann, Roland

    2014-01-01

    The treatment regime of non-healing or slowly healing wounds is constantly improving. One aspect is surgical defect coverage whereby mesh grafts and keratinocyte suspension are applied. Tissue-cultured skin autografts may be an alternative for the treatment of full-thickness wounds and wounds that cover large areas of the body surface. Autologous epidermal and dermal cells were isolated, expanded in vitro and seeded on collagen-elastin scaffolds. The developed autograft was immunohistochemically characterized and subsequently transplanted onto a facial chronic ulceration of a 71-year-old patient with vulnerable atrophic skin. Characterization of the skin equivalent revealed comparability to healthy human skin due to the epidermal strata, differentiation and proliferation markers. Within 138 days, the skin structure at the transplantation site closely correlated with the adjacent undisturbed skin. The present study demonstrates the comparability of the developed organotypic skin equivalent to healthy human skin and the versatility for clinical applications.

  18. Histological case-control study of peeling-induced skin changes by different peeling agents in surgically subcutaneous undermined skin flaps in facelift patients.

    Science.gov (United States)

    Gonser, P; Kaestner, S; Jaminet, P; Kaye, K

    2017-11-01

    A histological evaluation of peeling-induced skin changes in subcutaneous undermined preauricular facial skin flaps of nine patients was performed. There were three treatment groups: Trichloroacetic acid (TCA) 25%, TCA 40% and phenol/croton oil; one group served as control. Two independent evaluators determined the epidermal and dermal thickness and the depth of necrosis (micrometre). The percentual tissue damage due to the peeling was calculated, and a one-sample t-test for statistical significance was performed. On the basis of the histomorphological changes, peeling depth was classified as superficial, superficial-partial, deep-partial and full thickness chemical burn. The histological results revealed a progression of wound depth for different peeling agents without full thickness necrosis. TCA peels of up to 40% can be safely applied on subcutaneous undermined facial skin flaps without impairing the vascular patency, producing a predictable chemical burn, whereas deep peels such as phenol/croton oil peels should not be applied on subcutaneous undermined skin so as to not produce skin slough or necrosis by impairing vascular patency. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. Effects of permafrost microorganisms on skin wound reparation.

    Science.gov (United States)

    Kalenova, L F; Novikova, M A; Subbotin, A M

    2015-02-01

    Local application of ointment with Bacillus spp. strain MG8 (15,000-20,000 living bacterial cells), isolated from permafrost specimens, on the skin wound of about 60 mm(2) stimulated the reparation processes in experimental mice. A possible mechanism stimulating the regeneration of the damaged tissues under the effect of MG8 could be modulation of the immune system reactivity with more rapid switchover to humoral immunity anti-inflammatory mechanisms aimed at de novo synthesis of protein.

  20. Antimicrobial Peptides and Their Therapeutic Potential for Bacterial Skin Infections and Wounds

    Science.gov (United States)

    Pfalzgraff, Anja; Brandenburg, Klaus; Weindl, Günther

    2018-01-01

    Alarming data about increasing resistance to conventional antibiotics are reported, while at the same time the development of new antibiotics is stagnating. Skin and soft tissue infections (SSTIs) are mainly caused by the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) which belong to the most recalcitrant bacteria and are resistant to almost all common antibiotics. S. aureus and P. aeruginosa are the most frequent pathogens isolated from chronic wounds and increasing resistance to topical antibiotics has become a major issue. Therefore, new treatment options are urgently needed. In recent years, research focused on the development of synthetic antimicrobial peptides (AMPs) with lower toxicity and improved activity compared to their endogenous counterparts. AMPs appear to be promising therapeutic options for the treatment of SSTIs and wounds as they show a broad spectrum of antimicrobial activity, low resistance rates and display pivotal immunomodulatory as well as wound healing promoting activities such as induction of cell migration and proliferation and angiogenesis. In this review, we evaluate the potential of AMPs for the treatment of bacterial SSTIs and wounds and provide an overview of the mechanisms of actions of AMPs that contribute to combat skin infections and to improve wound healing. Bacteria growing in biofilms are more resistant to conventional antibiotics than their planktonic counterparts due to limited biofilm penetration and distinct metabolic and physiological functions, and often result in chronification of infections and wounds. Thus, we further discuss the feasibility of AMPs as anti-biofilm agents. Finally, we highlight perspectives for future therapies and which issues remain to bring AMPs successfully to the market. PMID:29643807

  1. Evaluation of Healing Intervals of Incisional Skin Wounds of Goats ...

    African Journals Online (AJOL)

    The aim of this study was to compare the healing intervals among simple interrupted (SI), ford interlocking (FI) and subcuticular (SC) suture patterns in goats. We hypothesized that these common suture patterns used for closure of incisional skin wounds may have effect on the healing interval. To test this hypothesis, two ...

  2. Low levels of glutathione are sufficient for survival of keratinocytes after UV irradiation and for healing of mouse skin wounds.

    Science.gov (United States)

    Telorack, Michèle; Abplanalp, Jeannette; Werner, Sabine

    2016-08-01

    Reduced levels of the cellular antioxidant glutathione are associated with premature skin aging, cancer and impaired wound healing, but the in vivo functions of glutathione in the skin remain largely unknown. Therefore, we analyzed mice lacking the modifier subunit of the glutamate cysteine ligase (Gclm), the enzyme that catalyzes the rate-limiting step of glutathione biosynthesis. Glutathione levels in the skin of these mice were reduced by 70 %. However, neither skin development and homeostasis, nor UVA- or UVB-induced apoptosis in the epidermis were affected. Histomorphometric analysis of excisional wounds did not reveal wound healing abnormalities in young Gclm-deficient mice, while the area of hyperproliferative epithelium as well as keratinocyte proliferation were affected in aged mice. These findings suggest that low levels of glutathione are sufficient for wound repair in young mice, but become rate-limiting upon aging.

  3. Human skin wounds: A major and snowballing threat to public health and the economy

    DEFF Research Database (Denmark)

    Sen, C.K.; Gordillo, G.M.; Roy, S.

    2009-01-01

    . Forty million inpatient surgical procedures were performed in the United States in 2000, followed closely by 31.5 million outpatient surgeries. The need for post-surgical wound care is sharply on the rise. Emergency wound care in an acute setting has major significance not only in a war setting but also...... in homeland preparedness against natural disasters as well as against terrorism attacks. An additional burden of wound healing is the problem of skin scarring, a $12 billion annual market. The immense economic and social impact of wounds in our society calls for allocation of a higher level of attention...

  4. Inflammatory microenvironment and tumor necrosis factor alpha as modulators of periostin and CCN2 expression in human non-healing skin wounds and dermal fibroblasts.

    Science.gov (United States)

    Elliott, Christopher G; Forbes, Thomas L; Leask, Andrew; Hamilton, Douglas W

    2015-04-01

    Non-healing skin wounds remain a significant clinical burden, and in recent years, the regulatory role of matricellular proteins in skin healing has received significant attention. Periostin and CCN2 are both upregulated at day 3 post-wounding in murine skin, where they regulate aspects of the proliferative phase of repair including mesenchymal cell infiltration and myofibroblast differentiation. In this study, we examined 1) the wound phenotype and expression patterns of periostin and CCN2 in non-healing skin wounds in humans and 2) the regulation of their expression in wound fibroblasts by tumor necrosis factor α (TNFα) and transforming growth factor-β1 (TGF-β1). Chronic skin wounds had a pro-inflammatory phenotype, characterized by macrophage infiltration, TNFα immunoreactivity, and neutrophil infiltration. Periostin, but not CCN2, was significantly suppressed in non-healing wound edge tissue at the mRNA and protein level compared with non-involved skin. In vitro, human wound edge fibroblasts populations were still able to proliferate and contract collagen gels. Compared to cells from non-involved skin, periostin and α-SMA mRNA levels increased significantly in the presence of TGF-β1 in wound cells and were significantly decreased by TNFα, but not those of Col1A2 or CCN2. In the presence of both TGF-β1 and TNFα, periostin and α-SMA mRNA levels were significantly reduced compared to TGF-β1 treated wound cells. Effects of TGF-β1 and TNFα on gene expression were also more pronounced in wound edge cells compared to non-involved fibroblasts. We conclude that variations in the expression of periostin and CCN2, are related to an inflammatory microenvironment and the presence of TNFα in human chronic wounds. Copyright © 2015. Published by Elsevier B.V.

  5. Neutralisation of uPA with a monoclonal antibody reduces plasmin formation and delays skin wound healing in tPA-deficient mice

    DEFF Research Database (Denmark)

    Jögi, Annika; Rønø, Birgitte; Lund, Ida K

    2010-01-01

    Proteolytic degradation by plasmin and metalloproteinases is essential for epidermal regeneration in skin wound healing. Plasminogen deficient mice have severely delayed wound closure as have mice simultaneously lacking the two plasminogen activators, urokinase-type plasminogen activator (u......PA) and tissue-type plasminogen activator (tPA). In contrast, individual genetic deficiencies in either uPA or tPA lead to wound healing kinetics with no or only slightly delayed closure of skin wounds....

  6. Epidermal stem cells - role in normal, wounded and pathological psoriatic and cancer skin

    DEFF Research Database (Denmark)

    Kamstrup, M.; Faurschou, A.; Gniadecki, R.

    2008-01-01

    In this review we focus on epidermal stem cells in the normal regeneration of the skin as well as in wounded and psoriatic skin. Furthermore, we discuss current data supporting the idea of cancer stem cells in the pathogenesis of skin carcinoma and malignant melanoma. Epidermal stem cells present...... or transit amplifying cells constitute a primary pathogenetic factor in the epidermal hyperproliferation seen in psoriasis. In cutaneous malignancies mounting evidence supports a stem cell origin in skin carcinoma and malignant melanoma and a possible existence of cancer stem cells Udgivelsesdato: 2008/5...

  7. Evaluation of the effect of the structure of bacterial cellulose on full thickness skin wound repair on a microfluidic chip.

    Science.gov (United States)

    Li, Ying; Wang, Shiwen; Huang, Rong; Huang, Zhuo; Hu, Binfeng; Zheng, Wenfu; Yang, Guang; Jiang, Xingyu

    2015-03-09

    Bacterial cellulose (BC) is a kind of nanobiomaterial for tissue engineering. How the nanoscale structure of BC affects skin wound repair is unexplored. Here, the hierarchical structure of BC films and their different effects on skin wound healing were studied both in vitro and in vivo. The bottom side of the BC film had a larger pore size, and a looser and rougher structure than that of the top side. By using a microfluidics-based in vitro wound healing model, we revealed that the bottom side of the BC film can better promote the migration of cells to facilitate wound healing. Furthermore, the full-thickness skin wounds on Wistar rats demonstrated that, compared with gauze and the top side of the BC film, the wound covered by the bottom side of the BC film showed faster recovery rate and less inflammatory response. The results indicate that the platform based on the microfluidic chip provide a rapid, reliable, and repeatable method for wound dressing screening. As an excellent biomaterial for wound healing, the BC film displays different properties on different sides, which not only provides a method to optimize the biocompatibility of wound dressings but also paves a new way to building heterogeneous BC-based biomaterials for complex tissue engineering.

  8. The effect of keratinocytes on the biomechanical characteristics and pore microstructure of tissue engineered skin using deep dermal fibroblasts.

    Science.gov (United States)

    Varkey, Mathew; Ding, Jie; Tredget, Edward E

    2014-12-01

    Fibrosis affects most organs, it results in replacement of normal parenchymal tissue with collagen-rich extracellular matrix, which compromises tissue architecture and ultimately causes loss of function of the affected organ. Biochemical pathways that contribute to fibrosis have been extensively studied, but the role of biomechanical signaling in fibrosis is not clearly understood. In this study, we assessed the effect keratinocytes have on the biomechanical characteristics and pore microstructure of tissue engineered skin made with superficial or deep dermal fibroblasts in order to determine any biomaterial-mediated anti-fibrotic influences on tissue engineered skin. Tissue engineered skin with deep dermal fibroblasts and keratinocytes were found to be less stiff and contracted and had reduced number of myofibroblasts and lower expression of matrix crosslinking factors compared to matrices with deep fibroblasts alone. However, there were no such differences between tissue engineered skin with superficial fibroblasts and keratinocytes and matrices with superficial fibroblasts alone. Also, tissue engineered skin with deep fibroblasts and keratinocytes had smaller pores compared to those with superficial fibroblasts and keratinocytes; pore size of tissue engineered skin with deep fibroblasts and keratinocytes were not different from those matrices with deep fibroblasts alone. A better understanding of biomechanical characteristics and pore microstructure of tissue engineered skin may prove beneficial in promoting normal wound healing over pathologic healing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Prospective, double-blinded, randomised controlled trial assessing the effect of an Octenidine-based hydrogel on bacterial colonisation and epithelialization of skin graft wounds in burn patients.

    Science.gov (United States)

    W, Eisenbeiß; F, Siemers; G, Amtsberg; P, Hinz; B, Hartmann; T, Kohlmann; A, Ekkernkamp; U, Albrecht; O, Assadian; A, Kramer

    2012-01-01

    Moist wound treatment improves healing of skin graft donor site wounds. Microbial colonised wounds represent an increased risk of wound infection; while antimicrobially active, topical antiseptics may impair epithelialization. The aim of this prospective randomised controlled clinical trial was to examine the influence of an Octenidine-dihydrochloride (OCT) hydrogel on bacterial colonisation and epithelialization of skin graft donor sites. The study was designed as a randomised, double-blinded, controlled clinical trial. Skin graft donor sites from a total of 61 patients were covered either with 0.05% OCT (n=31) or an OCT-free placebo wound hydrogel (n=30). Potential interaction with wound healing was assessed by measuring the time until 100% re-epithelialization. In addition, microbial wound colonisation was quantitatively determined in all skin graft donor sites. There was no statistically significant difference in the time for complete epithelialization of skin graft donor sites in the OCT and the placebo group (7.3±0.2 vs. 6.9±0.2 days; p=0.236). Microbial wound colonisation was significantly lower in the OCT group than in the placebo group (p=0.014). The OCT-based hydrogel showed no delay in wound epithelialization and demonstrated a significantly lower bacterial colonisation of skin graft donor site wounds.

  10. Clinical Evaluation of Wound Healing in Split-Skin Graft Donor Sites Using Microscopic Quantification of Reepithelialization.

    Science.gov (United States)

    Wehrens, Kim Marlou Emiele; Arnoldussen, Carsten W K P; Booi, Darren Ivar; van der Hulst, Rene R W J

    2016-06-01

    Impaired or delayed wound healing is a common health problem. However, it remains challenging to predict whether wounds in patients will heal without complication or will have a prolonged healing time. In this study, the authors developed an objective screening tool to assess wound healing using microscopic quantification of reepithelialization in a split-thickness skin graft wound model and used this tool to identify risk factors for defective wound healing. Thirty patients (16 male and 14 female) were included in this prospective study. Anterior thigh skin biopsies from the donor site region of partial-thickness skin grafts were dressed with moisture-retentive dressings, and biopsies were examined on days 0, 2, 5, and 10 postoperatively by microscopy. Images were then transferred to a computer for image analysis and epithelial measurements (epithelial thickness and total reepithelialized surface). The effects of gender, age, body mass index, and smoking behavior on these wound healing parameters were determined. The authors found comparable results for the computer and traditional measure methods. However, the time required to perform the measurements using the semiautomated computer method was less than half the time of the traditional method. Image capturing, enhancing, and analysis with the new method required approximately 2 minutes 30 seconds, whereas the traditional methods took up to 7 minutes per image. The total size of the reepithelialized surface (P = .047) and percentage of the biopsy resurfaced with epithelia (P = .011) at day 10 were both significantly higher in male patients compared with female patients. In patients younger than 55 years, reepithelialized areas were significantly thicker than in patients older than 55 years (P = .008), whereas the size of the reepithelialized surface showed no differences. No significant differences in reepithelialization parameters were found concerning body mass index and smoking behavior. Both male gender and

  11. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhonghua [Department of Burn and Plastic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Department of Burn and Plastic Surgery, The Fourth People' s Hospital Of Jinan, Jinan 250031 (China); Wang, Haiqin [Department of Obstetrics and Gynecology, The Fifth People' s Hospital Of Jinan, Jinan 250022 (China); Yang, Bo; Sun, Yukai [Department of Burn and Plastic Surgery, The Fourth People' s Hospital Of Jinan, Jinan 250031 (China); Huo, Ran, E-mail: rhuo12@163.com [Department of Burn and Plastic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China)

    2015-12-01

    The regeneration of functional skin remains elusive, due to poor engraftment, deficient vascularization, and excessive scar formation. Aiming to overcome these issues, the present study proposed the combination of a three-dimensional graphene foam (GF) scaffold loaded with bone marrow derived mesenchymal stem cells (MSCs) to improve skin wound healing. The GFs demonstrated good biocompatibility and promoted the growth and proliferation of MSCs. Meanwhile, the GFs loaded with MSCs obviously facilitated wound closure in animal model. The dermis formed in the presence of the GF structure loaded with MSCs was thicker and possessed a more complex structure at day 14 post-surgery. The transplanted MSCs correlated with upregulation of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which may lead to neo-vascularization. Additionally, an anti-scarring effect was observed in the presence of the 3D-GF scaffold and MSCs, as evidenced by a downregulation of transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) together with an increase of TGF-β3. Altogether, the GF scaffold could guide the wound healing process with reduced scarring, and the MSCs were crucial to enhance vascularization and provided a better quality neo-skin. The GF scaffold loaded with MSCs possesses necessary bioactive cues to improve wound healing with reduced scarring, which may be of great clinical significance for skin wound healing. - Highlights: • The GFs promoted the growth and proliferation of MSCs. • The GFs loaded with MSCs obviously facilitated wound closure in the animal model. • An anti-scarring effect was observed in the presence of 3D-GF scaffold and MSCs. • The GF scaffold loaded with MSCs has great effect on skin wound healing.

  12. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring

    International Nuclear Information System (INIS)

    Li, Zhonghua; Wang, Haiqin; Yang, Bo; Sun, Yukai; Huo, Ran

    2015-01-01

    The regeneration of functional skin remains elusive, due to poor engraftment, deficient vascularization, and excessive scar formation. Aiming to overcome these issues, the present study proposed the combination of a three-dimensional graphene foam (GF) scaffold loaded with bone marrow derived mesenchymal stem cells (MSCs) to improve skin wound healing. The GFs demonstrated good biocompatibility and promoted the growth and proliferation of MSCs. Meanwhile, the GFs loaded with MSCs obviously facilitated wound closure in animal model. The dermis formed in the presence of the GF structure loaded with MSCs was thicker and possessed a more complex structure at day 14 post-surgery. The transplanted MSCs correlated with upregulation of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which may lead to neo-vascularization. Additionally, an anti-scarring effect was observed in the presence of the 3D-GF scaffold and MSCs, as evidenced by a downregulation of transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) together with an increase of TGF-β3. Altogether, the GF scaffold could guide the wound healing process with reduced scarring, and the MSCs were crucial to enhance vascularization and provided a better quality neo-skin. The GF scaffold loaded with MSCs possesses necessary bioactive cues to improve wound healing with reduced scarring, which may be of great clinical significance for skin wound healing. - Highlights: • The GFs promoted the growth and proliferation of MSCs. • The GFs loaded with MSCs obviously facilitated wound closure in the animal model. • An anti-scarring effect was observed in the presence of 3D-GF scaffold and MSCs. • The GF scaffold loaded with MSCs has great effect on skin wound healing

  13. Bacterial recolonization of the skin and wound contamination during cardiac surgery: a randomized controlled trial of the use of plastic adhesive drape compared with bare skin.

    Science.gov (United States)

    Falk-Brynhildsen, K; Söderquist, B; Friberg, O; Nilsson, U G

    2013-06-01

    Sternal wound infection after cardiac surgery is a serious complication. Various perioperative strategies, including plastic adhesive drapes, are used to reduce bacterial contamination of surgical wounds. To compare plastic adhesive drape to bare skin regarding bacterial growth in wound and time to recolonization of the adjacent skin intraoperatively, in cardiac surgery patients. This single-blinded randomized controlled trial (May 2010 to May 2011) included 140 patients scheduled for cardiac surgery via median sternotomy. The patients were randomly allocated to the adhesive drape (chest covered with plastic adhesive drape) or bare skin group. Bacterial samples were taken preoperatively and intraoperatively every hour during surgery until skin closure. Disinfection with 0.5% chlorhexidine solution in 70% alcohol decreased coagulase-negative staphylococci (CoNS), while the proportion colonized with Propionibacterium acnes was not significantly reduced and was still present in more than 50% of skin samples. P. acnes was significantly more common in men than in women. Progressive bacterial recolonization of the skin occurred within 2-3 h. At 120 min there were significantly more positive cultures in the adhesive drape group versus bare skin group for P. acnes (63% vs 44%; P = 0.034) and for CoNS (45% vs 24%; P = 0.013). The only statistically significant difference in bacterial growth in the surgical wound was higher proportion of CoNS at the end of surgery in the adhesive drape group (14.7% vs 4.4%; P = 0.044). Plastic adhesive drape does not reduce bacterial recolonization. P. acnes colonized men more frequently, and was not decreased by disinfection with chlorhexidine solution in alcohol. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  14. Promotion of accelerated repair in a radiation impaired wound healing model in murine skin

    International Nuclear Information System (INIS)

    Walker, M.D.

    2000-02-01

    Surgical resection of many tumours following radiotherapy is well established as the preferred approach to eradicating the disease. However, prior irradiation compromises the healing of surgical wounds in 30-60% of cases, depending on the site of treatment. There is a need therefore, to understand the deficit in the repair process and to develop therapeutic interventions that may help address this problem. To this end, the aims of this thesis were to characterise a wound healing model in irradiated murine skin and to investigate the effects of topical- compounds and therapeutic modalities upon this wound healing model. Full-thickness dorsal skin excisions were made within a pre-irradiated area (20Gy) in male Balb/c mice and wounds were made in a corresponding area in control animals. Biopsies were removed for histological and immunohistochemical analysis, whilst wound closure experiments were used to determine effects of topical compounds and therapeutic modalities (Low Intensity Laser Therapy, Therapeutic Ultrasound and Transcutaneous Electrical Nerve Stimulation) upon the rate of repair. X-ray irradiation (20Gy) caused a significant delay in the rate of wound closure, whilst histological results indicated that prior irradiation delays the influx of inflammatory cells, delays wound reepithelialisation and reduces granulation tissue formation and collagen deposition. Macrophage and endothelial cell numbers were found to be significantly lower in the irradiated wounds when compared to unirradiated control wounds. Furthermore, apoptosis was affected by irradiation. Although results failed to support any claimed stimulatory effects of various therapeutic modalities upon wound healing, topical application of glucans were shown to have a slight beneficial effect upon the rate of repair. In conclusion, the observed cellular effects caused by irradiation may be a result of permanent damage to stem cells and their ability to replicate and reproduce. Furthermore, the

  15. Hyaluronate nanoparticles included in polymer films for the prolonged release of vitamin E for the management of skin wounds.

    Science.gov (United States)

    Pereira, Gabriela Garrastazu; Detoni, Cassia Britto; Balducci, Anna Giulia; Rondelli, Valeria; Colombo, Paolo; Guterres, Silvia Stanisçuaski; Sonvico, Fabio

    2016-02-15

    Lecithin and hyaluronic acid were used for the preparation of polysaccharide decorated nanoparticles loaded with vitamin E using the cationic lipid dioctadecyldimethylammonium bromide (DODMA). Nanoparticles showed mean particle size in the range 130-350 nm and narrow size distribution. Vitamin E encapsulation efficiency was higher than 99%. These nanoparticles were incorporated in polymeric films containing Aloe vera extract, hyaluronic acid, sodium alginate, polyethyleneoxide (PEO) and polyvinylalcohol (PVA) as an innovative treatment in skin wounds. Films were thin, flexible, resistant and suitable for application on burn wounds. Additionally, in vitro occlusion study highlighted the dependence of the occlusive effect on the presence of nanoparticles. The results obtained show that the bioadhesive films containing vitamin E acetate and Aloe vera could be an innovative therapeutic system for the treatment of skin wounds, such as burns. The controlled release of the vitamin along with a reduction in water loss through damaged skin provided by the nanoparticle-loaded polymer film are considered important features for an improvement in wound healing and skin regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Randomized Clinical Trial of the Innovative Bilayered Wound Dressing Made of Silk and Gelatin: Safety and Efficacy Tests Using a Split-Thickness Skin Graft Model

    Science.gov (United States)

    Hasatsri, Sukhontha; Angspatt, Apichai

    2015-01-01

    We developed the novel silk fibroin-based bilayered wound dressing for the treatment of partial thickness wounds. And it showed relevant characteristics and accelerated the healing of full-thickness wounds in a rat model. This study is the clinical evaluation of the bilayered wound dressing to confirm its safety and efficacy for the treatment of split-thickness skin donor sites. The safety test was performed using a patch model and no evidence of marked and severe cutaneous reactions was found. The efficacy test of the bilayered wound dressing was conducted on 23 patients with 30 split-thickness skin graft donor sites to evaluate healing time, pain score, skin barrier function, and systemic reaction in comparison to Bactigras. We found that the healing time of donor site wounds treated with the bilayered wound dressing (11 ± 6 days) was significantly faster than those treated with Bactigras (14 ± 6 days) (p = 10−6). The wound sites treated with the bilayered wound dressing showed significantly less pain and more rapid skin functional barrier recovery than those treated with Bactigras (p = 10−5). Therefore, these results confirmed the clinical safety and efficacy of the bilayered wound dressing for the treatment of split-thickness skin graft donor sites. PMID:26221170

  17. CLINICAL RESULTS FROM THE TREATMENT OF CHRONIC SKIN WOUNDS WITH PLATELET RICH PLASMA (PRP

    Directory of Open Access Journals (Sweden)

    Pencho Kossev

    2015-12-01

    Full Text Available PURPOSE: To show platelet rich plasma (PRP application of chronic skin wounds and to evaluate the results from the treatment. MATERIAL AND METHODS: A total of 14 patients with problematic skin wounds had been treated at the clinic for a period of five years (from May 2009 to December 2014 with the following patient sex ratio: male patients - 5 and female patients - 9. Average age - 48,5 (30-76. Patients with Type 2 Diabetes - 4, with decubitus ulcers - 6, traumatic - 8, with infection - 5. Based on a scheme developed by us, all cases were treated by administering platelet-rich plasma, derived by PRGF Endoret system. Follow-up period was within 4 - 6 months (4,5 on average. RESULTS: The results have been evaluated based on the following functional scoring systems - Total wound score, Total anatomic score and Total score (20. The baseline values at the very beginning of the follow-up period were as follows: Total wound score - 12 p.; Total anatomic score - 10 p., Total score - 17 p. By the end of the treatment period the score was 0 p., which means excellent results, i.e. complete healing of the wounds. CONCLUSION: We believe that the application of PRP may become optimal therapy in the treatment of difficult to heal wounds around joints, bone, subject tendons, plantar surface of the foot, etc., as it opens new perspectives in the field of human tissue regeneration.

  18. Skin appendage-derived stem cells: cell biology and potential for wound repair.

    Science.gov (United States)

    Xie, Jiangfan; Yao, Bin; Han, Yutong; Huang, Sha; Fu, Xiaobing

    2016-01-01

    Stem cells residing in the epidermis and skin appendages are imperative for skin homeostasis and regeneration. These stem cells also participate in the repair of the epidermis after injuries, inducing restoration of tissue integrity and function of damaged tissue. Unlike epidermis-derived stem cells, comprehensive knowledge about skin appendage-derived stem cells remains limited. In this review, we summarize the current knowledge of skin appendage-derived stem cells, including their fundamental characteristics, their preferentially expressed biomarkers, and their potential contribution involved in wound repair. Finally, we will also discuss current strategies, future applications, and limitations of these stem cells, attempting to provide some perspectives on optimizing the available therapy in cutaneous repair and regeneration.

  19. Healing rate and autoimmune safety of full-thickness wounds treated with fish skin acellular dermal matrix versus porcine small-intestine submucosa: a noninferiority study.

    Science.gov (United States)

    Baldursson, Baldur Tumi; Kjartansson, Hilmar; Konrádsdóttir, Fífa; Gudnason, Palmar; Sigurjonsson, Gudmundur F; Lund, Sigrún Helga

    2015-03-01

    A novel product, the fish skin acellular dermal matrix (ADM) has recently been introduced into the family of biological materials for the treatment of wounds. Hitherto, these products have been produced from the organs of livestock. A noninferiority test was used to compare the effect of fish skin ADM against porcine small-intestine submucosa extracellular matrix in the healing of 162 full-thickness 4-mm wounds on the forearm of 81 volunteers. The fish skin product was noninferior at the primary end point, healing at 28 days. Furthermore, the wounds treated with fish skin acellular matrix healed significantly faster. These results might give the fish skin ADM an advantage because of its environmental neutrality when compared with livestock-derived products. The study results on these acute full-thickness wounds might apply for diabetic foot ulcers and other chronic full-thickness wounds, and the shorter healing time for the fish skin-treated group could influence treatment decisions. To test the autoimmune reactivity of the fish skin, the participants were tested with the following ELISA (enzyme-linked immunosorbent assay) tests: RF, ANA, ENA, anti ds-DNA, ANCA, anti-CCP, and anticollagen I and II. These showed no reactivity. The results demonstrate the claims of safety and efficacy of fish skin ADM for wound care. © The Author(s) 2015.

  20. A synthetic superoxide dismutase/catalase mimetic EUK-207 mitigates radiation dermatitis and promotes wound healing in irradiated rat skin.

    Science.gov (United States)

    Doctrow, Susan R; Lopez, Argelia; Schock, Ashley M; Duncan, Nathan E; Jourdan, Megan M; Olasz, Edit B; Moulder, John E; Fish, Brian L; Mäder, Marylou; Lazar, Jozef; Lazarova, Zelmira

    2013-04-01

    In the event of a radionuclear attack or nuclear accident, the skin would be the first barrier exposed to radiation, though skin injury can progress over days to years following exposure. Chronic oxidative stress has been implicated as being a potential contributor to the progression of delayed radiation-induced injury to skin and other organs. To examine the causative role of oxidative stress in delayed radiation-induced skin injury, including impaired wound healing, we tested a synthetic superoxide dismutase (SOD)/catalase mimetic, EUK-207, in a rat model of combined skin irradiation and wound injury. Administered systemically, beginning 48 hours after irradiation, EUK-207 mitigated radiation dermatitis, suppressed indicators of tissue oxidative stress, and enhanced wound healing. Evaluation of gene expression in irradiated skin at 30 days after exposure revealed a significant upregulation of several key genes involved in detoxication of reactive oxygen and nitrogen species. This gene expression pattern was primarily reversed by EUK-207 therapy. These results demonstrate that oxidative stress has a critical role in the progression of radiation-induced skin injury, and that the injury can be mitigated by appropriate antioxidant compounds administered 48 hours after exposure.

  1. The Histopathological Investigation of Red and Blue Light Emitting Diode on Treating Skin Wounds in Japanese Big-Ear White Rabbit.

    Directory of Open Access Journals (Sweden)

    Yanhong Li

    Full Text Available The biological effects of different wavelengths of light emitting diode (LED light tend to vary from each other. Research into use of photobiomodulation for treatment of skin wounds and the underlying mechanisms has been largely lacking. We explored the histopathological basis of the therapeutic effect of photobiomodulation and the relation between duration of exposure and photobiomodulation effect of different wavelengths of LED in a Japanese big-ear white rabbit skin-wound model. Skin wound model was established in 16 rabbits (three wounds per rabbit: one served as control, the other two wounds were irradiated by red and blue LED lights, respectively. Rabbits were then divided into 2 equal groups based on the duration of exposure to LED lights (15 and 30 min/exposure. The number of wounds that showed healing and the percentage of healed wound area were recorded. Histopathological examination and skin expression levels of fibroblast growth factor (FGF, epidermal growth factor (EGF, endothelial marker (CD31, proliferating cell nuclear antigen (Ki67 and macrophagocyte (CD68 infiltration, and the proliferation of skin collagen fibers was assessed. On days 16 and 17 of irradiation, the healing rates in red (15 min and 30 min and blue (15 min and 30 min groups were 50%, 37.5%, 25% and 37.5%, respectively, while the healing rate in the control group was 12.5%. The percentage healed area in the red light groups was significantly higher than those in other groups. Collagen fiber and skin thickness were significantly increased in both red light groups; expression of EGF, FGF, CD31 and Ki67 in the red light groups was significantly higher than those in other groups; the expression of FGF in red (30 min group was not significantly different from that in the blue light and control groups. The effect of blue light on wound healing was poorer than that of red light. Red light appeared to hasten wound healing by promoting fibrous tissue, epidermal and

  2. Adenoviral gene delivery to primary human cutaneous cells and burn wounds.

    Science.gov (United States)

    Hirsch, Tobias; von Peter, Sebastian; Dubin, Grzegorz; Mittler, Dominik; Jacobsen, Frank; Lehnhardt, Markus; Eriksson, Elof; Steinau, Hans-Ulrich; Steinstraesser, Lars

    2006-01-01

    The adenoviral transfer of therapeutic genes into epidermal and dermal cells is an interesting approach to treat skin diseases and to promote wound healing. The aim of this study was to assess the in vitro and in vivo transfection efficacy in skin and burn wounds after adenoviral gene delivery. Primary keratinocytes (HKC), fibroblasts (HFB), and HaCaT cells were transfected using different concentrations of an adenoviral construct (eGFP). Transfection efficiency and cytotoxicity was determined up to 30 days. Expression was quantified by FACS analysis and fluorimeter. Cytotoxicity was measured using the trypan blue exclusion method. 45 male Sprague Dawley rats received 2x10(8) pfu of Ad5-CMV-LacZ or carrier control intradermally into either superficial partial thickness scald burn or unburned skin. Animals were euthanized after 48 h, 7 or 14 days posttreatment. Transgene expression was assessed using immunohistochemistry and bioluminescent assays. The highest transfection rate was observed 48 h posttransfection: 79% for HKC, 70% for HFB, and 48% for HaCaT. The eGFP expression was detectable in all groups over 30 days (P>0.05). Cytotoxic effects of the adenoviral vector were observed for HFB after 10 days and HaCaT after 30 days. Reporter gene expression in vivo was significantly higher in burned skin compared with unburned skin (P=0,004). Gene expression decreases from 2 to 7 days with no significant expression after 14 days. This study demonstrates that effective adenoviral-mediated gene transfer of epidermal primary cells and cell-lines is feasible. Ex vivo gene transfer in epithelial cells might have promise for the use in severely burned patients who receive autologous keratinocyte sheets. Transient cutaneous gene delivery in burn wounds using adenoviral vectors causes significant concentrations in the wound tissue for at least 1 week. Based on these findings, we hypothesize that transient cutaneous adenoviral gene delivery of wound healing promoting factors has

  3. Marine Collagen Peptides from the Skin of Nile Tilapia (Oreochromis niloticus): Characterization and Wound Healing Evaluation.

    Science.gov (United States)

    Hu, Zhang; Yang, Ping; Zhou, Chunxia; Li, Sidong; Hong, Pengzhi

    2017-03-30

    Burns can cause tremendous economic problems associated with irreparable harm to patients and their families. To characterize marine collagen peptides (MCPs) from the skin of Nile tilapia ( Oreochromis niloticus ), molecular weight distribution and amino acid composition of MCPs were determined, and Fourier transform infrared spectroscopy (FTIR) was used to analyze the chemical structure. Meanwhile, to evaluate the wound healing activity, in vitro and in vivo experiments were carried out. The results showed that MCPs prepared from the skin of Nile tilapia by composite enzymatic hydrolysis were composed of polypeptides with different molecular weights and the contents of polypeptides with molecular weights of less than 5 kDa accounted for 99.14%. From the amino acid composition, the majority of residues, accounting for over 58% of the total residues in MCPs, were hydrophilic. FTIR indicated that the main molecular conformations inside MCPs were random coil. In vitro scratch assay showed that there were significant effects on the scratch closure by the treatment of MCPs with the concentration of 50.0 μg/mL. In the experiments of deep partial-thickness scald wound in rabbits, MCPs could enhance the process of wound healing. Therefore, MCPs from the skin of Nile tilapia ( O. niloticus ) have promising applications in wound care.

  4. Negative Pressure Wound Therapy Applied Before and After Split-Thickness Skin Graft Helps Healing of Fournier Gangrene

    Science.gov (United States)

    Ye, Junna; Xie, Ting; Wu, Minjie; Ni, Pengwen; Lu, Shuliang

    2015-01-01

    Abstract Fournier gangrene is a rare but highly infectious disease characterized by fulminant necrotizing fasciitis involving the genital and perineal regions. Negative pressure wound therapy (NPWT; KCI USA Inc, San Antonio, TX) is a widely adopted technique in many clinical settings. Nevertheless, its application and effect in the treatment of Fournier gangrene are unclear. A 47-year-old male patient was admitted with an anal abscess followed by a spread of the infection to the scrotum, which was caused by Pseudomonas aeruginosa. NPWT was applied on the surface of the scrotal area and continued for 10 days. A split-thickness skin graft from the scalp was then grafted to the wound, after which, NPWT utilizing gauze sealed with an occlusive dressing and connected to a wall suction was employed for 7 days to secure the skin graft. At discharge, the percentage of the grafted skin alive on the scrotum was 98%. The wound beside the anus had decreased to 4 × 0.5 cm with a depth of 1 cm. Follow-up at the clinic 1 month later showed that both wounds had healed. The patient did not complain of any pain or bleeding, and was satisfied with the outcome. NPWT before and after split-thickness skin grafts is safe, well tolerated, and efficacious in the treatment of Fournier gangrene. PMID:25654376

  5. Atypical Exit Wound in High-Voltage Electrocution.

    Science.gov (United States)

    Parakkattil, Jamshid; Kandasamy, Shanmugam; Das, Siddhartha; Devnath, Gerard Pradeep; Chaudhari, Vinod Ashok; Shaha, Kusa Kumar

    2017-12-01

    Electrocution fatality cases are difficult to investigate. High-voltage electrocution burns resemble burns caused by other sources, especially if the person survives for few days. In that case, circumstantial evidence if correlated with the autopsy findings helps in determining the cause and manner of death. In addition, the crime scene findings also help to explain the pattern of injuries observed at autopsy. A farmer came in contact with a high-voltage transmission wire and sustained superficial to deep burns over his body. A charred and deeply scorched area was seen over the face, which was suggestive of the electric entry wound. The exit wound was present over both feet and lower leg and was atypical in the form of a burnt area of peeled blistered skin, charring, and deep scorching. The injuries were correlated with crime scene findings, and the circumstances that lead to his electrocution are discussed here.

  6. Myosin II activity is required for functional leading-edge cells and closure of epidermal sheets in fish skin ex vivo.

    Science.gov (United States)

    Morita, Toshiyuki; Tsuchiya, Akiko; Sugimoto, Masazumi

    2011-09-01

    Re-epithelialization in skin wound healing is a process in which epidermal sheets grow and close the wound. Although the actin-myosin system is thought to have a pivotal role in re-epithelialization, its role is not clear. In fish skin, re-epithelialization occurs around 500 μm/h and is 50 times faster than in mammalian skin. We had previously reported that leading-edge cells of the epidermal outgrowth have both polarized large lamellipodia and "purse string"-like actin filament cables in the scale-skin culture system of medaka fish, Oryzias latipes (Cell Tissue Res, 2007). The actin purse-string (APS) is a supracellular contractile machinery in which adherens junctions (AJs) link intracellular myosin II-including actin cables between neighboring cells. In this study, we developed a modified "face-to-face" scale-skin culture system as an ex vivo model to study epidermal wound healing, and examined the role of the actin-myosin system in the rapid re-epithelialization using a myosin II ATPase inhibitor, blebbistatin. A low level of blebbistatin suppressed the formation of APS and induced the dissociation of keratocytes from the leading edge without attenuating the growth of the epidermal sheet or the migration rate of solitary keratocytes. AJs in the superficial layer showed no obvious changes elicited by blebbistatin. However, two epidermal sheets without APSs did not make a closure with each other, which was confirmed by inhibiting the connecting AJs between the superficial layers. These results suggest that myosin II activity is required for functional leading-edge cells and for epidermal closure.

  7. Wound healing from dermal grafts containing CD34+ cells is comparable to split-thickness skin micrografts

    DEFF Research Database (Denmark)

    Nuutila, Kristo; Singh, Mansher; Kruse, Carla

    2017-01-01

    BACKGROUND:: Epidermal stem cells present in the skin appendages of the dermis might be crucial in wound healing. In this study we located these cells in the dermis and evaluated their contribution to full-thickness wound healing in a porcine model. METHODS:: Four sequentially deeper 0.35mm thick...

  8. Development and Characterisation of a Human Chronic Skin Wound Cell Line-Towards an Alternative for Animal Experimentation.

    Science.gov (United States)

    Caley, Matthew; Wall, Ivan B; Peake, Matthew; Kipling, David; Giles, Peter; Thomas, David W; Stephens, Phil

    2018-03-27

    Background : Chronic skin wounds are a growing financial burden for healthcare providers, causing discomfort/immobility to patients. Whilst animal chronic wound models have been developed to allow for mechanistic studies and to develop/test potential therapies, such systems are not good representations of the human chronic wound state. As an alternative, human chronic wound fibroblasts (CWFs) have permitted an insight into the dysfunctional cellular mechanisms that are associated with these wounds. However, such cells strains have a limited replicative lifespan and therefore a limited reproducibility/usefulness. Objectives : To develop/characterise immortalised cell lines of CWF and patient-matched normal fibroblasts (NFs). Methods and Results : Immortalisation with human telomerase resulted in both CWF and NF proliferating well beyond their replicative senescence end-point (respective cell strains senesced as normal). Gene expression analysis demonstrated that, whilst proliferation-associated genes were up-regulated in the cell lines (as would be expected), the immortalisation process did not significantly affect the disease-specific genotype. Immortalised CWF (as compared to NF) also retained a distinct impairment in their wound repopulation potential (in line with CWF cell strains). Conclusions : These novel CWF cell lines are a credible animal alternative and could be a valuable research tool for understanding both the aetiology of chronic skin wounds and for therapeutic pre-screening.

  9. Development and Characterisation of a Human Chronic Skin Wound Cell Line—Towards an Alternative for Animal Experimentation

    Science.gov (United States)

    Wall, Ivan B.; Peake, Matthew; Kipling, David; Giles, Peter; Thomas, David W.

    2018-01-01

    Background: Chronic skin wounds are a growing financial burden for healthcare providers, causing discomfort/immobility to patients. Whilst animal chronic wound models have been developed to allow for mechanistic studies and to develop/test potential therapies, such systems are not good representations of the human chronic wound state. As an alternative, human chronic wound fibroblasts (CWFs) have permitted an insight into the dysfunctional cellular mechanisms that are associated with these wounds. However, such cells strains have a limited replicative lifespan and therefore a limited reproducibility/usefulness. Objectives: To develop/characterise immortalised cell lines of CWF and patient-matched normal fibroblasts (NFs). Methods and Results: Immortalisation with human telomerase resulted in both CWF and NF proliferating well beyond their replicative senescence end-point (respective cell strains senesced as normal). Gene expression analysis demonstrated that, whilst proliferation-associated genes were up-regulated in the cell lines (as would be expected), the immortalisation process did not significantly affect the disease-specific genotype. Immortalised CWF (as compared to NF) also retained a distinct impairment in their wound repopulation potential (in line with CWF cell strains). Conclusions: These novel CWF cell lines are a credible animal alternative and could be a valuable research tool for understanding both the aetiology of chronic skin wounds and for therapeutic pre-screening. PMID:29584680

  10. Establishment of a transgenic zebrafish line for superficial skin ablation and functional validation of apoptosis modulators in vivo.

    Directory of Open Access Journals (Sweden)

    Chi-Fang Chen

    Full Text Available BACKGROUND: Zebrafish skin is composed of enveloping and basal layers which form a first-line defense system against pathogens. Zebrafish epidermis contains ionocytes and mucous cells that aid secretion of acid/ions or mucous through skin. Previous studies demonstrated that fish skin is extremely sensitive to external stimuli. However, little is known about the molecular mechanisms that modulate skin cell apoptosis in zebrafish. METHODOLOGY/PRINCIPAL FINDINGS: This study aimed to create a platform to conduct conditional skin ablation and determine if it is possible to attenuate apoptotic stimuli by overexpressing potential apoptosis modulating genes in the skin of live animals. A transgenic zebrafish line of Tg(krt4:NTR-hKikGR(cy17 (killer line, which can conditionally trigger apoptosis in superficial skin cells, was first established. When the killer line was incubated with the prodrug metrodinazole, the superficial skin displayed extensive apoptosis as judged by detection of massive TUNEL- and active caspase 3-positive signals. Great reductions in NTR-hKikGR(+ fluorescent signals accompanied epidermal cell apoptosis. This indicated that NTR-hKikGR(+ signal fluorescence can be utilized to evaluate apoptotic events in vivo. After removal of metrodinazole, the skin integrity progressively recovered and NTR-hKikGR(+ fluorescent signals gradually restored. In contrast, either crossing the killer line with testing lines or transiently injecting the killer line with testing vectors that expressed human constitutive active Akt1, mouse constitutive active Stat3, or HPV16 E6 element displayed apoptosis-resistant phenotypes to cytotoxic metrodinazole as judged by the loss of reduction in NTR-hKikGR(+ fluorescent signaling. CONCLUSION/SIGNIFICANCE: The killer/testing line binary system established in the current study demonstrates a nitroreductase/metrodinazole system that can be utilized to conditionally perform skin ablation in a real-time manner, and

  11. Effect of Postoperative Diclofenac on Anastomotic Healing, Skin Wounds and Subcutaneous Collagen Accumulation

    DEFF Research Database (Denmark)

    Klein, M; Krarup, Peter-Martin; Kongsbak, Mikkel

    2012-01-01

    Background: Retrospective studies have drawn attention to possible detrimental effects of non-steroidal anti-inflammatory drugs (NSAIDs) on the anastomotic leakage rate after colorectal resection. In this study, we examined the effects of the NSAID diclofenac on the breaking strength...... diclofenac treatment significantly inhibited collagen deposition in subcutaneous granulation tissue. Anastomotic strength and skin wound strength were not significantly affected. The ePTFE model is suitable for assessing the effect of various drugs on collagen formation and thus on wound healing....

  12. Neonatal tetanus associated with skin infection.

    Science.gov (United States)

    Maharaj, M; Dungwa, N

    2016-08-03

    A 1-week-old infant was brought to a regional hospital with a history of recurrent seizures following lower abdominal septic skin infection. She was found to have neonatal tetanus, and a spatula test was positive. The tetanus infection was associated with a superficial skin infection, common in neonates. Treatment included sedatives (diazepam, chlorpromazine, phenobarbitone and morphine), muscle relaxants, antibiotics and ventilation in the neonatal intensive care unit. Intrathecal and intramuscular immunoglobulin were given, and the wound was treated. The infant recovered, with no seizures by the 16th day from admission, and was off the ventilator by the 18th day. This was shorter than the usual 3 - 4 weeks for neonates with tetanus at the hospital. The question arises whether tetanus immunisation should be considered in infants with skin infections, which frequently occur in the neonatal period.

  13. Skin wound healing in MMP2-deficient and MMP2 / plasminogen double-deficient mice

    DEFF Research Database (Denmark)

    Frøssing, Signe; Rønø, Birgitte; Hald, Andreas

    2010-01-01

    -sensitive MMPs during wound healing. To address whether MMP2 is accountable for the galardin-induced healing deficiency in wildtype and Plg-deficient mice, incisional skin wounds were generated in MMP2 single-deficient mice and in MMP2/Plg double-deficient mice and followed until healed. Alternatively, tissue...... was isolated 7 days post wounding for histological and biochemical analyses. No difference was found in the time from wounding to overt gross restoration of the epidermal surface between MMP2-deficient and wildtype control littermate mice. MMP2/Plg double-deficient mice were viable and fertile, and displayed...... an unchallenged general phenotype resembling that of Plg-deficient mice, including development of rectal prolapses. MMP2/Plg double-deficient mice displayed a slight increase in the wound length throughout the healing period compared with Plg-deficient mice. However, the overall time to complete healing...

  14. Upregulation of BAG3 with apoptotic and autophagic activities in maggot extract‑promoted rat skin wound healing.

    Science.gov (United States)

    Dong, Jian-Li; Dong, Hai-Cao; Yang, Liang; Qiu, Zhe-Wen; Liu, Jia; Li, Hong; Zhong, Li-Xia; Song, Xue; Zhang, Peng; Li, Pei-Nan; Zheng, Lian-Jie

    2018-03-01

    Maggot extract (ME) accelerates rat skin wound healing, however its effect on cell maintenance in wound tissues remains unclear. B‑cell lymphoma (Bcl) 2‑associated athanogene (BAG)3 inhibits apoptosis and promotes autophagy by associating with Bcl‑2 or Beclin 1. Bcl‑2, the downstream effector of signal transducer and activator of transcription 3 signaling, is enhanced in ME‑treated wound tissues, which may reinforce the Bcl‑2 anti‑apoptotic activity and/or cooperate with Beclin 1 to regulate autophagy during wound healing. The present study investigated expression levels of BAG3, Bcl‑2, Beclin 1 and light chain (LC)3 levels in rat skin wound tissues in the presence and absence of ME treatment. The results revealed frequent TUNEL‑negative cell death in the wound tissues in the early three days following injury, irrespective to ME treatment. TUNEL‑positive cells appeared in the wound tissues following 4 days of injury and 150 µg/ml ME efficiently reduced apoptotic rate and enhanced BAG3 and Bcl‑2 expression. Elevated Beclin 1 and LC3 levels and an increased LC3 II ratio were revealed in the ME‑treated tissues during the wound healing. The results of the present study demonstrate the anti‑apoptotic effects of BAG3 and Bcl‑2 in ME‑promoted wound healing. Beclin 1/LC3 mediated autophagy may be favorable in maintaining cell survival in the damaged tissues and ME‑upregulated BAG3 may enhance its activity.

  15. Effects of whole-body and partial-body x irradiation upon epidermal mitotic activity during wound healing in mouse skin

    International Nuclear Information System (INIS)

    Kobayashi, K.

    1977-01-01

    Mitotic activity of normal (unwounded) and wounded skin was measured in the control (nonirradiated) and whole-body or partial-body x-irradiated mouse. Higher mitotic activity in the anterior than in the posterior region of the body was found in both the normal and the wounded skin of the control mouse. Whole-body irradiation (500 R) depressed completely the mitotic activity of normal skin 2 to 4 days after irradiation. In spite of this depression in mitotic activity, a surgical incision made 1 to 3 days after irradiation could induce a burst of proliferation after an inhibition of an initial mitosis increase. When the animals were partially irradiated with 500 R 3 days before wounding, it was shown that mitosis at 24 hr after wounding was inhibited markedly by the local effect of irradiation and that mitosis also could be inhibited diversely by the abscopal effect of irradiation. Because of a close similarity of sequential mitotic patterns between whole-body-irradiated and flapped-skin-only-irradiated groups (direct irradiation), the effect of irradiation upon mitosis was considered to be primarily local. Some discussions were made concerning the possible reasons which made a difference in mitotic patterns between the head-only-irradiated group, the irradiated group including the head and other parts of the body except for the skin flap

  16. Prefabricated neck expanded skin flap with the superficial temporal vessels for facial resurfacing.

    Science.gov (United States)

    Lazzeri, Davide; Su, Weijie; Qian, Yunliang; Messmer, Caroline; Agostini, Tommaso; Spinelli, Giuseppe; Marcus, Jeffrey R; Levin, L Scott; Zenn, Micheal R; Zhang, Yi Xin

    2013-05-01

    The achievement of a normal-appearing face after surgical resurfacing remains an elusive goal. This is due in part to insufficient color matching, restoration of contours, and the persistence of visible scars. Flap prefabrication is a staged procedure that provides an independent axial blood supply to local expanded tissues. We describe a new reconstructive alternative with superior reconstructive surgical options for facial resurfacing that better matches damaged or discarded facial tissues. A superficial temporal fascial flap was harvested as the vascular supply of the prefabricated neck flap and located in a subcutaneous neck pocket over a tissue expander. After a 5-month period for expansion and maturation, the prefabricated skin flap was raised, islanded, and rotated to resurface the facial defect. Four patients with hemifacial postburn contracture and two patients affected by hemifacial vascular malformations aged 17 to 42 years (mean 29 years) were successfully treated with no major complication after a mean period of 15 months. Prefabricated neck-expanded skin flap demonstrated an excellent color and texture match with facial skin that surrounded the repair sites, and optimal aesthetic results were obtained. Importantly, facial expression was completely maintained due to thinness and pliability of the rotated skin. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  17. [The morphological features of skin wounds inflicted by joinery hand saws designed for different types of sawing].

    Science.gov (United States)

    Sarkisian, B A; Azarov, P A

    2014-01-01

    The objective of the present work was to study the morphological features of skin wounds inflicted by joinery hand saws designed for longitudinal, transverse, and mixed sawing. A total of 60 injuries to the thigh skin inflicted by the recurring and reciprocating saw movements were simulated. The hand saws had 5 mm high "sharp" and "blunt"-tipped teeth. The analysis of the morphological features of the wounds revealed differences in their length and depth, shape of edge cuts and defects, and the relief of the walls depending on the sawtooth sharpness and the mode of sawing. It is concluded that morphological features of the wounds may be used to determine the type of the saw, the sharpness of its teeth, the direction and frequency of its movements.

  18. Cryopreserved cadaveric skin allograft for cover of excised burns wounds: early clinical experience in Singapore

    International Nuclear Information System (INIS)

    See, P.; Chua, J.J.; Phua, T.T.; Song, C.; Tan, K.C.; Foo, C.L.; Lee, S.T.; Ngim, R.

    1999-01-01

    Human cadaveric skin allograft is widely and effectively used in the treatment of extensive burns. A Skin Bank was established in Singapore National Burns Centre in late 1992 to cater to this need. Due to the shortage of skin donors, it was not until early 1998 that the Skin Bank began to store cadaveric skin harvested from consent donors under the Medical Therapy, Education and Research Act. Cadaveric skin has significant clinical usefulness particularly in the treatment of severe burns. The National Burns Centre admits on the average 300 patients a year, and about 25% of which have sustained major burns (total bum area in excess of 30% BSA or full thickness in excess of 20% BSA). In many cases, the bums are too extensive for autologous skin grafts. The pivotal role of the Skin Bank allows temporary coverage of the entire open bum wound following desloughing or bum wound excision. To date six skin donations have been dealt with. The national tissue transplant team coordinated the selection and screening of these donors. The skin harvested is cryopreserved with 10% dimethyl sulphoxide (DMSO) or glycerol in DMEM. Supplementation with antibiotics is important. Storage temperature is set at -150 degree C. The procurement, processing, preservation and storage of skin allografts were according to guidelines issued by the American Association of Tissue Banks.Three patients with extensive bums (45% mean body surface area) have benefited from this stored cadaveric skin as temporary biological dressings. The technique is by no means novel but the usage of cadaveric skin represents a further treatment milestone for the severe bum injury patients at our centre

  19. Cutting and skin-ablative properties of pulsed mid-infrared laser surgery.

    Science.gov (United States)

    Kaufmann, R; Hartmann, A; Hibst, R

    1994-02-01

    Pulsed mid-infrared lasers allow a precise removal of soft tissues with only minimal thermal damage. To study the potential dermatosurgical usefulness of currently available systems at different wavelengths (2010-nm Thulium:YAG laser, 2100-nm Holmium:YAG laser, 2790-nm Erbium:YSGG laser, and 2940-nm Erbium:YAG laser) in vivo on pig skin. Immediate effects and wound healing of superficial laser-abrasions and incisions were compared with those of identical control lesions produced by dermabrasion, scalpel incisions, or laser surgery performed by a 1060-nm Nd:YAG and a 1060-nm CO2 laser (continuous and superpulsed mode). Best efficiency and least thermal injury was found for the pulsed Erbium:YAG laser, leading to ablative and incisional lesions comparable to those obtained by dermabrasion or superficial scalpel incisions, respectively. In contrast to other mid-infrared lasers tested, the 2940-nm Erbium:YAG laser thus provides a potential instrument for future applications in skin surgery, especially when aiming at a careful ablative removal of delicate superficial lesions with maximum sparing of adjacent tissue structures. However, in the purely incisional application mode pulsed mid-infrared lasers, though of potential usefulness in microsurgical indications (eg, surgery of the cornea), do not offer a suggestive alternative to simple scalpel surgery of the skin.

  20. Ibuprofen loaded PLA nanofibrous scaffolds increase proliferation of human skin cells in vitro and promote healing of full thickness incision wounds in vivo.

    Science.gov (United States)

    Mohiti-Asli, M; Saha, S; Murphy, S V; Gracz, H; Pourdeyhimi, B; Atala, A; Loboa, E G

    2017-02-01

    This article presents successful incorporation of ibuprofen in polylactic acid (PLA) nanofibers to create scaffolds for the treatment of both acute and chronic wounds. Nanofibrous PLA scaffolds containing 10, 20, or 30 wt % ibuprofen were created and ibuprofen release profiles quantified. In vitro cytotoxicity to human epidermal keratinocytes (HEK) and human dermal fibroblasts (HDF) of the three scaffolds with varying ibuprofen concentrations were evaluated and compared to pure PLA nanofibrous scaffolds. Thereafter, scaffolds loaded with ibuprofen at the concentration that promoted human skin cell viability and proliferation (20 wt %) were evaluated in vivo in nude mice using a full thickness skin incision model to determine the ability of these scaffolds to promote skin regeneration and/or assist with scarless healing. Both acellular and HEK and HDF cell-seeded 20 wt % ibuprofen loaded nanofibrous bandages reduced wound contraction compared with wounds treated with Tegaderm™ and sterile gauze. Newly regenerated skin on wounds treated with cell-seeded 20 wt % ibuprofen bandages exhibited significantly greater blood vessel formation relative to acellular ibuprofen bandages. We have found that degradable anti-inflammatory scaffolds containing 20 wt % ibuprofen promote human skin cell viability and proliferation in vitro, reduce wound contraction in vivo, and when seeded with skin cells, also enhance new blood vessel formation. The approaches and results reported here hold promise for multiple skin tissue engineering and wound healing applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 327-339, 2017. © 2015 Wiley Periodicals, Inc.

  1. Development of the mechanical properties of engineered skin substitutes after grafting to full-thickness wounds.

    Science.gov (United States)

    Sander, Edward A; Lynch, Kaari A; Boyce, Steven T

    2014-05-01

    Engineered skin substitutes (ESSs) have been reported to close full-thickness burn wounds but are subject to loss from mechanical shear due to their deficiencies in tensile strength and elasticity. Hypothetically, if the mechanical properties of ESS matched those of native skin, losses due to shear or fracture could be reduced. To consider modifications of the composition of ESS to improve homology with native skin, biomechanical analyses of the current composition of ESS were performed. ESSs consist of a degradable biopolymer scaffold of type I collagen and chondroitin-sulfate (CGS) that is populated sequentially with cultured human dermal fibroblasts (hF) and epidermal keratinocytes (hK). In the current study, the hydrated biopolymer scaffold (CGS), the scaffold populated with hF dermal skin substitute (DSS), or the complete ESS were evaluated mechanically for linear stiffness (N/mm), ultimate tensile load at failure (N), maximum extension at failure (mm), and energy absorbed up to the point of failure (N-mm). These biomechanical end points were also used to evaluate ESS at six weeks after grafting to full-thickness skin wounds in athymic mice and compared to murine autograft or excised murine skin. The data showed statistically significant differences (p clinical morbidity from graft loss.

  2. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: An in vitro study of fibroblast and keratinocyte scratch assays

    International Nuclear Information System (INIS)

    Walter, M.N.M.; Wright, K.T.; Fuller, H.R.; MacNeil, S.; Johnson, W.E.B.

    2010-01-01

    We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditions significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-β1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix.

  3. Is rate of skin wound healing associated with aging or longevity phenotype?

    Science.gov (United States)

    Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Fraifeld, Vadim E

    2011-12-01

    Wound healing (WH) is a fundamental biological process. Is it associated with a longevity or aging phenotype? In an attempt to answer this question, we compared the established mouse models with genetically modified life span and also an altered rate of WH in the skin. Our analysis showed that the rate of skin WH in advanced ages (but not in the young animals) may be used as a marker for biological age, i.e., to be indicative of the longevity or aging phenotype. The ability to preserve the rate of skin WH up to an old age appears to be associated with a longevity phenotype, whereas a decline in WH-with an aging phenotype. In the young, this relationship is more complex and might even be inversed. While the aging process is likely to cause wounds to heal slowly, an altered WH rate in younger animals could indicate a different cellular proliferation and/or migration capacity, which is likely to affect other major processes such as the onset and progression of cancer. As a point for future studies on WH and longevity, using only young animals might yield confusing or misleading results, and therefore including older animals in the analysis is encouraged.

  4. Delayed wound healing in aged skin rat models after thermal injury is associated with an increased MMP-9, K6 and CD44 expression.

    Science.gov (United States)

    Simonetti, Oriana; Oriana, Simonetti; Lucarini, Guendalina; Guendalina, Lucarini; Cirioni, Oscar; Oscar, Cirioni; Zizzi, Antonio; Antonio, Zizzi; Orlando, Fiorenza; Fiorenza, Orlando; Provinciali, Mauro; Mauro, Provinciali; Di Primio, Roberto; Roberto, Di Primio; Giacometti, Andrea; Andrea, Giacometti; Offidani, Annamaria; Annamaria, Offidani

    2013-06-01

    Age-related differences in wound healing have been documented but little is known about the wound healing mechanism after burns. Our aim was to compare histological features and immunohistochemical expression of matrix metalloproteinase-9 (MMP-9), collagen IV, K6 and CD44 in the burn wound healing process in aged and young rats. Following burns the appearance of the wound bed in aged rats had progressed but slowly, resulting in a delayed healing process compared to the young rats. At 21 days after injury, epithelial K6, MMP-9 and CD44 expression was significantly increased in aged rats with respect to young rats; moreover, in the aged rat group we observed a not fully reconstituted basement membrane. K6, MMP-9 and CD44 expression was significantly increased in wounded skin compared to unwounded skin both in young and aged rats. We hypothesise that delayed burn skin wound healing process in the aged rats may represent an age dependent response to injury where K6, MMP-9 and CD44 play a key role. It is therefore possible to suggest that these factors contribute to the delayed wound healing in aged skin and that modulation could lead to a better and faster recovery of skin damage in elderly. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  5. Effect of the lectin of Bauhinia variegata and its recombinant isoform on surgically induced skin wounds in a murine model.

    Science.gov (United States)

    Neto, Luiz Gonzaga do Nascimento; Pinto, Luciano da Silva; Bastos, Rafaela Mesquita; Evaristo, Francisco Flávio Vasconcelos; Vasconcelos, Mayron Alves de; Carneiro, Victor Alves; Arruda, Francisco Vassiliepe Sousa; Porto, Ana Lúcia Figueiredo; Leal, Rodrigo Bainy; Júnior, Valdemiro Amaro da Silva; Cavada, Benildo Sousa; Teixeira, Edson Holanda

    2011-11-07

    Lectins are a structurally heterogeneous group of highly specific carbohydrate-binding proteins. Due to their great biotechnological potential, lectins are widely used in biomedical research. The purpose of the present study was to evaluate the healing potential of the lectin of Bauhinia variegata (nBVL) and its recombinant isoform (rBVL-1). Following surgical creation of dorsal skin wounds, seven groups of mice were submitted to topical treatment for 12 days with lectin, D-galactose, BSA and saline. The animals were anesthetized and euthanized on POD 2, 7 and 12 in order to evaluate the healing potential of each treatment. The parameters considered included wound size, contraction rate, epithelialization rate and histopathological findings. Wound closure was fastest in animals treated with rBVL-1 (POD 7). nBVL was more effective than the controls. All skin layers were reconstructed and keratin deposition increased. Our findings indicate that the lectin of Bauhinia variegata possesses pro-healing properties and may be employed in the treatment of acute skin wounds.

  6. [Healing of a deep skin wound using a collagen sponge as dressing in the animal experiment].

    Science.gov (United States)

    Sedlarik, K M; Schoots, C; Oosterbaan, J A; Klopper, J P

    1992-10-01

    The high number of available wound dressing materials as well as the scientific reports about the topic indicates that the problem of an ideal wound dressing is not jet solved. In the last thirty years lot of scientific reports about collagen as wound covering has been published. The positive effect of collagen by his application on a wound ist well known. We investigated the effect of a collagen sponge on healing of full thickness skin wound in guinea pig. The animals were divided in two control groups and two experimental groups. In the control group there were air exposed wounds and another wounds covered with paraffin gauze. In the experimental groups were such wounds covered with natural reconstituted collagen sponge as well as wounds covered with chemically prepared collagen sponge with hexamethyldiisocyanat. The results were compared. The air exposed wounds healed in 50 days, the wounds covered with paraffin gauze healed in 48 days. By covering the wounds with collagen sponge the healing was shortened in 24 or 27 days respectively. Not only the healing time was shortened but also the quality of the wound repair by dressing the wounds with collagen sponge was enhanced.

  7. Tolerance and safety of superficial chemical peeling with salicylic acid in various facial dermatoses

    Directory of Open Access Journals (Sweden)

    Iqbal Zafar

    2005-03-01

    Full Text Available BACKGROUND: Chemical peeling is a skin-wounding procedure that may have some potentially undesirable side-effects. AIMS: The present study is directed towards safety concerns associated with superficial chemical peeling with salicylic acid in various facial dermatoses. METHODS: The study was a non-comparative and a prospective one. Two hundred and sixty-eight patients of either sex, aged between 10 to 60 years, undergoing superficial chemical peeling for various facial dermatoses (melasma, acne vulgaris, freckles, post-inflammatory scars/pigmentation, actinic keratoses, plane facial warts, etc. were included in the study. Eight weekly peeling sessions were carried out in each patient. Tolerance to the procedure and any undesirable effects noted during these sessions were recorded. RESULTS: Almost all the patients tolerated the procedure well. Mild discomfort, burning, irritation and erythema were quite common but the incidence of major side-effects was very low and these too, were easily manageable. There was no significant difference in the incidence of side-effects between facial dermatoses (melasma, acne and other pigmentary disorders. CONCLUSION: Chemical peeling with salicylic acid is a well tolerated and safe treatment modality in many superficial facial dermatoses.

  8. [Treatment of the infected wound with exposed silver-ring vascular graft and delayed Thiersch method of skin transplant covering ].

    Science.gov (United States)

    Nenezić, Dragoslav; Pandaitan, Simon; Ilijevski, Nenad; Matić, Predrag; Gajin, Predag; Radak, Dorde

    2005-01-01

    Although the incidence of prosthetic infection is low (1%-6%), the consequences (limb loss or death) are dramatic for a patient, with high mortality rate (25%-75%) and limb loss in 40%-75% of cases. In case of Szilagyi's grade III infection, standard procedure consists of the excision of prosthesis and wound debridement. Alternative method is medical treatment. This is a case report of a patient with prosthetic infection of Silver-ring graft, used for femoropopliteal reconstruction, in whom an extreme skin necrosis developed in early postoperative period. This complication was successfully treated medically. After repeated debridement and wound-packing, the wound was covered using Thiersch skin graft.

  9. Effect of calorie restriction and refeeding on skin wound healing in the rat.

    Science.gov (United States)

    Hunt, Nicole D; Li, Garrick D; Zhu, Min; Miller, Marshall; Levette, Andrew; Chachich, Mark E; Spangler, Edward L; Allard, Joanne S; Hyun, Dong-Hoon; Ingram, Donald K; de Cabo, Rafael

    2012-12-01

    Calorie restriction (CR) is a reliable anti-aging intervention that attenuates the onset of a number of age-related diseases, reduces oxidative damage, and maintains function during aging. In the current study, we assessed the effects of CR and other feeding regimens on wound healing in 7-month-old Fischer-344 rats from a larger cohort of rats that had been fed either ad libitum (AL) or 40% calorie restricted based on AL consumption. Rats were assigned to one of three diet groups that received three skin punch wounds along the dorsal interscapular region (12-mm diameter near the front limbs) of the back as follows: (1) CR (n = 8) were wounded and maintained on CR until they healed, (2) AL (n = 5) were wounded and maintained on AL until wound closure was completed, and (3) CR rats were refed (RF, n = 9) AL for 48 h prior to wounding and maintained on AL until they healed. We observed that young rats on CR healed more slowly while CR rats refed for 48 h prior to wounding healed as fast as AL fed rats, similar to a study reported in aged CR and RF mice (Reed et al. 1996). Our data suggest that CR subjects, regardless of age, fail to heal well and that provision of increased nutrition to CR subjects prior to wounding enhances the healing process.

  10. In situ deposition of a personalized nanofibrous dressing via a handy electrospinning device for skin wound care

    Science.gov (United States)

    Dong, Rui-Hua; Jia, Yue-Xiao; Qin, Chong-Chong; Zhan, Lu; Yan, Xu; Cui, Lin; Zhou, Yu; Jiang, Xingyu; Long, Yun-Ze

    2016-02-01

    Current strategies for wound care provide limited relief to millions of patients who suffer from burns, chronic skin ulcers or surgical-related wounds. The goal of this work is to develop an in situ deposition of a personalized nanofibrous dressing via a handy electrospinning (e-spinning) device and evaluate its properties related to skin wound care. MCM-41 type mesoporous silica nanoparticles decorated with silver nanoparticles (Ag-MSNs) were prepared by a facile and environmentally friendly approach, which possessed long-term antibacterial activity and low cytotoxicity. Poly-ε-caprolactone (PCL) incorporated with Ag-MSNs was successfully electrospun (e-spun) into nanofibrous membranes. These in situ e-spun nanofibrous membranes allowed the continuous release of Ag ions and showed broad-spectrum antimicrobial activity against two common types of pathogens, Staphylococcus aureus and Escherichia coli. In addition, the in vivo studies revealed that these antibacterial nanofibrous membranes could reduce the inflammatory response and accelerate wound healing in Wistar rats. The above results strongly demonstrate that such patient-specific dressings could be broadly applied in emergency medical transport, hospitals, clinics and at the patients' home in the near future.Current strategies for wound care provide limited relief to millions of patients who suffer from burns, chronic skin ulcers or surgical-related wounds. The goal of this work is to develop an in situ deposition of a personalized nanofibrous dressing via a handy electrospinning (e-spinning) device and evaluate its properties related to skin wound care. MCM-41 type mesoporous silica nanoparticles decorated with silver nanoparticles (Ag-MSNs) were prepared by a facile and environmentally friendly approach, which possessed long-term antibacterial activity and low cytotoxicity. Poly-ε-caprolactone (PCL) incorporated with Ag-MSNs was successfully electrospun (e-spun) into nanofibrous membranes. These in situ e

  11. Skin lesions in Lorestan province chemically wounded combatants

    Directory of Open Access Journals (Sweden)

    roghaye Jebraili

    2004-01-01

    Findings: All of the studied cases with mean age of 39.26 years old had skin manifestations among which the most common symptoms were itching , burning ,dry skin , scaling. From view point of lesions, the most common signs were erythema (81% , excoriation (87.9% and pruritic papules (49.5%. Final diagnosis in 78% of the patients was chronic dermatitis and in 7.7% of them was seborrhoeic dermatitis and in 8.8% both chronic and seborrhoeic dermatitis were observed .During exposure to chemical gases only 37.9% of these combatants had used special masks and 40% had properly worn special clothes to protect themselves which covered their body completely , but rest of them had either used protection instruments improperly or had not used them at all. Most of the lesions were in trunk , lower extremities , abdomen , head and neck .78% of the cases had multiple lesions Conclusion: Regarding the results of this study all of the chemical wounded combatants of Lorestan province suffer from different degrees of skin lesions , although more than half of them were not aware of kind and nature of the chemical gases , but it is suggested to do further studies on long-term effects of these chemical gases.

  12. In vitro evaluation of Spirulina platensis extract incorporated skin cream with its wound healing and antioxidant activities.

    Science.gov (United States)

    Gunes, Seda; Tamburaci, Sedef; Dalay, Meltem Conk; Deliloglu Gurhan, Ismet

    2017-12-01

    Algae have gained importance in cosmeceutical product development due to their beneficial effects on skin health and therapeutical value with bioactive compounds. Spirulina platensis Parachas (Phormidiaceae) is renowned as a potential source of high-value chemicals and recently used in skincare products. This study develops and evaluates skin creams incorporated with bioactive S. platensis extract. Spirulina platensis was cultivated, the aqueous crude extract was prepared and in vitro cytotoxicity of S. platensis extract in the range of 0.001-1% concentrations for 1, 3 and 7 d on HS2 keratinocyte cells was determined. Crude extracts were incorporated in skin cream formulation at 0.01% (w/w) concentration and in vitro wound healing and genotoxicity studies were performed. Immunohistochemical staining was performed to determine the collagen activity. 0.1% S. platensis extract exhibited higher proliferation activity compared with the control group with 198% of cell viability after 3 d. Skin cream including 1.125% S. platensis crude extract showed enhanced wound healing effect on HS2 keratinocyte cell line and the highest HS2 cell viability % was obtained with this concentration. The micronucleus (MN) assay results indicated that S. platensis extract incorporated creams had no genotoxic effect on human peripheral blood cells. Immunohistochemical analysis showed that collagen 1 immunoreactivity was improved by increased extract concentration and it was strongly positive in cells treated with 1.125% extract incorporated skin cream. The cell viability, wound healing activity and genotoxicity results showed that S. platensis incorporated skin cream could be of potential value in cosmeceutical and biomedical applications.

  13. Effect of Hevea brasiliensis latex sap gel on healing of acute skin wounds induced on the back of rats

    Directory of Open Access Journals (Sweden)

    Maria Vitória Carmo Penhavel

    Full Text Available Objective : to evaluate the effect of topical delivery of latex cream-gel in acute cutaneous wounds induced on the back of rats. Methods : we subjected sixteen rats to dermo-epidermal excision of a round dorsal skin flap, with 2.5cm diameter. We divided the animals into two groups: Latex Group: application of cream-gel-based latex throughout the wound bed on postoperative days zero, three, six and nine; Control group: no treatment on the wound. Photographs of the lesions were taken on the procedure day and on the 6th and 14th postoperative days, for analyzing the area and the larger diameter of the wound. We carried out euthanasia of all animals on the 14th postoperative day, when we resected he dorsal skin and the underlying muscle layer supporting the wound for histopathological study. Results : there was no statistically significant difference in the percentage of wound closure, in the histopathological findings or in the reduction of the area and of the largest diameter of the wounds among the groups studied on the 14th postoperative day. Conclusion : according to the experimental conditions in which the study was conducted, latex cream-gel did not interfere in the healing of acute cutaneous wounds in rats.

  14. Examination of wound healing after curettage by multiphoton tomography of human skin in vivo.

    Science.gov (United States)

    Springer, S; Zieger, M; Böttcher, A; Lademann, J; Kaatz, M

    2017-11-01

    The multiphoton tomography (MPT) has evolved into a useful tool for the non-invasive investigation of morphological and biophysical characteristics of human skin in vivo. Until now, changes of the skin have been evaluated mainly by using clinical and histological techniques. In this study, the progress of wound healing was investigated by MPT over 3 weeks with a final examination after 24 months. Especially, the collagen degradation, reepithelization and tissue formation were examined. As specific parameter for wound healing and its course the second-harmonic generation-to-autofluorescence aging index of dermis (SAAID) was used. About 10 volunteers aged between 25 and 58 years were examined. Acute wounds were scanned with three Z-stacks taken per visit. The stacks were taken up to a depth of 225 μm at increments of 5 μm and a scan time for 3 seconds per scan. Subsequently, the SAAID was evaluated as an indicator for wound healing. Furthermore, single scans were taken for morphological investigations. The evaluation revealed a distinct difference in the SAAID behavior between the Z-stacks taken at each visit. Furthermore, the degradation of collagen and cells and their reappearance could be shown in the course of the visits. Clear differences in the curve behavior of the SAAID at every visit were shown in this study. The SAAID curves and morphological images could be correlated with findings of the clinical examination of different wound healing phases. Therefore, SAAID curves and morphological MPT imaging could provide a non-invasive tool for the determination of wound healing phases in patients in vivo. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. The detection of metallic residues in skin stab wounds by means of SEM-EDS: A pilot study.

    Science.gov (United States)

    Palazzo, Elisa; Amadasi, Alberto; Boracchi, Michele; Gentile, Guendalina; Maciocco, Francesca; Marchesi, Matteo; Zoja, Riccardo

    2018-05-01

    The morphological analysis of stab wounds may often not be accurate enough to link it with the type of wounding weapon, but a further evaluation may be performed with the search for metallic residues left during the contact between the instrument and the skin. In this study, Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS) was applied to the study of cadaveric stab wounds performed with kitchen knives composed of iron, chromium and nickel, in order to verify the presence of metallic residues on the wound's edge. Two groups of 10 corpses were selected: group A, including victims of stab wounds and a control group B (died of natural causes). Samplings were performed on the lesions and in intact areas of group A, whereas in group B sampling were performed in non-exposed intact skin. Samples were then analysed with optical microscopy and SEM-EDS. In group A, optical microscopic analysis showed the presence of vital haemorrhagic infiltration, while SEM-EDS showed evidence of microscopic metal traces, isolated or clustered, consisting of iron, chromium and nickel. Moreover, in two cases organic residues of calcium and phosphate were detected, as a probable sign of bone lesion. Control samples (group A in intact areas and group B), were negative for the search of exogenous material to optical microscopy and SEM-EDS. The results show the utility and possible application of the SEM-EDS in theidentification of metallic residues from sharp weapons on the skin. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  16. Acceleration of skin wound healing with tragacanth (Astragalus) preparation: an experimental pilot study in rats.

    Science.gov (United States)

    Fayazzadeh, Ehsan; Rahimpour, Sina; Ahmadi, Seyed Mohsen; Farzampour, Shahrokh; Sotoudeh Anvari, Maryam; Boroumand, Mohammad Ali; Ahmadi, Seyed Hossein

    2014-01-01

    Gum tragacanth is a natural complex mixture of polysaccharides and alkaline minerals extracted from species of Astragalus plant, which is found widely in arid regions of the Middle East. In a pilot experimental study we examined the effects of its topical application on wound healing in ten albino adult male rats. Two similar parasagittal elliptical full-thickness wounds (control vs. test samples) were created on the dorsum of each animal. Test group samples were fully covered by a thin layer of gum tragacanth daily. The extent of wound healing was evaluated by planimetric analysis on multiple occasions during the 10-day study period. On the 7th day of the study, the percent of wound closure was significantly higher in gum tragacanth-treated specimens compared to the control samples (87%±2% vs. 70%±4%, Ptragacanth in acceleration of skin wound contraction and healing. More studies are encouraged to identify the implicating agents and precisely understand the mechanism by which they exert their wound healing effects.

  17. The effects of kinesio taping on the color intensity of superficial skin hematomas: A pilot study.

    Science.gov (United States)

    Vercelli, Stefano; Colombo, Claudio; Tolosa, Francesca; Moriondo, Andrea; Bravini, Elisabetta; Ferriero, Giorgio; Francesco, Sartorio

    2017-01-01

    To analyze the effects of kinesio taping (KT) -applied with three different strains that induced or not the formation of skin creases (called convolutions)- on color intensity of post-surgical superficial hematomas. Single-blind paired study. Rehabilitation clinic. A convenience sample of 13 inpatients with post-surgical superficial hematomas. The tape was applied for 24 consecutive hours. Three tails of KT were randomly applied with different degrees of strain: none (SN); light (SL); and full longitudinal stretch (SF). We expected to obtain correct formation of convolutions with SL, some convolutions with SN, and no convolutions with SF. The change in color intensity of hematomas, measured by means of polar coordinates CIE L*a*b* using a validated and standardized digital images system. Applying KT to hematomas did not significantly change the color intensity in the central area under the tape (p > 0.05). There was a significant treatment effect (p  0.05). The changes observed along the edges of the tape could be related to the formation of a pressure gradient between the KT and the adjacent area, but were not dependent on the formation of skin convolutions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Clinical use of radiation sterile porcine skin and Ag-skin of porcine

    International Nuclear Information System (INIS)

    Zhu Xiaobo

    1995-01-01

    Clinical examination revealed that either radiation sterilized skin or Ag-skin of pig are effective biologic dressing. When used as temporary skin coverage for fresh burn wound, for wound after escharectomy, and for wounds among skin grafts, they are effective in preventing infection and loss of body fluid. They can also be used for covering the infected granulation wound to control bacterial growth and further contamination

  19. Ex vivo generation of a functional and regenerative wound epithelium from axolotl (Ambystoma mexicanum) skin.

    Science.gov (United States)

    Ferris, Donald R; Satoh, Akira; Mandefro, Berhan; Cummings, Gillian M; Gardiner, David M; Rugg, Elizabeth L

    2010-10-01

    Urodele amphibians (salamanders) are unique among adult vertebrates in their ability to regenerate structurally complete and fully functional limbs. Regeneration is a stepwise process that requires interactions between keratinocytes, nerves and fibroblasts. The formation of a wound epithelium covering the amputation site is an early and necessary event in the process but the molecular mechanisms that underlie the role of the wound epithelium in regeneration remain unclear. We have developed an ex vivo model that recapitulates many features of in vivo wound healing. The model comprises a circular explant of axolotl (Ambystoma mexicanum) limb skin with a central circular, full thickness wound. Re-epithelialization of the wound area is rapid (typically <11 h) and is dependent on metalloproteinase activity. The ex vivo wound epithelium is viable, responds to neuronal signals and is able to participate in ectopic blastema formation and limb regeneration. This ex vivo model provides a reproducible and tractable system in which to study the cellular and molecular events that underlie wound healing and regeneration. © 2010 The Authors. Journal compilation © 2010 Japanese Society of Developmental Biologists.

  20. Effect of the Lectin of Bauhinia variegata and Its Recombinant Isoform on Surgically Induced Skin Wounds in a Murine Model

    Directory of Open Access Journals (Sweden)

    Rodrigo Bainy Leal

    2011-11-01

    Full Text Available Lectins are a structurally heterogeneous group of highly specific carbohydrate-binding proteins. Due to their great biotechnological potential, lectins are widely used in biomedical research. The purpose of the present study was to evaluate the healing potential of the lectin of Bauhinia variegata (nBVL and its recombinant isoform (rBVL-1. Following surgical creation of dorsal skin wounds, seven groups of mice were submitted to topical treatment for 12 days with lectin, D-galactose, BSA and saline. The animals were anesthetized and euthanized on POD 2, 7 and 12 in order to evaluate the healing potential of each treatment. The parameters considered included wound size, contraction rate, epithelialization rate and histopathological findings. Wound closure was fastest in animals treated with rBVL-1 (POD 7. nBVL was more effective than the controls. All skin layers were reconstructed and keratin deposition increased. Our findings indicate that the lectin of Bauhinia variegata possesses pro-healing properties and may be employed in the treatment of acute skin wounds.

  1. Biological evaluation of human hair keratin scaffolds for skin wound repair and regeneration

    International Nuclear Information System (INIS)

    Xu, Songmei; Sang, Lin; Zhang, Yaping; Wang, Xiaoliang; Li, Xudong

    2013-01-01

    The cytocompatibility, in vivo biodegradation and wound healing of keratin biomaterials were investigated. For the purposes, three groups of keratin scaffolds were fabricated by freeze-drying reduced solutions at 2 wt.%, 4 wt.% and 8 wt.% keratins extracted from human hairs. These scaffolds exhibited evenly distributed high porous structures with pore size of 120–220 μm and the porosity > 90%. NIH3T3 cells proliferated well on these scaffolds in culture lasting up to 22 days. Confocal micrographs stained with AO visually revealed cell attachment and infiltration as well as scaffold architectural stability. In vivo animal experiments were conducted with 4 wt.% keratin scaffolds. Early degradation of subcutaneously implanted scaffolds occurred at 3 weeks in the outermost surface, in concomitant with inflammatory response. At 5 weeks, the overall porous structure of scaffolds severely deteriorated while the early inflammatory response in the outermost surface obviously subsided. A faster keratin biodegradation was observed in repairing full-thickness skin defects. Compared with the blank control, keratin scaffolds gave rise to more blood vessels at 2 weeks and better complete wound repair at 3 weeks with a thicker epidermis, less contraction and newly formed hair follicles. These preliminary results suggest that human hair keratin scaffolds are promising dermal substitutes for skin regeneration. - Highlights: ► Preparation of highly-interconnected human hair keratin scaffolds. ► Long-term cell culturing and in vivo animal experiments with keratin scaffolds. ► Biodegradation is dependent on implantation site and function ► Early vascularization and better repair in treating full-thickness skin wounds. ► A thicker epidermis, less contraction and newly formed hair follicles are observed.

  2. Designing a New Nano-Plant Composite of Cucurbita pepo for Wound Repair of Skin in Male Albino Mice: A New Nano Approach for Skin Repair

    Directory of Open Access Journals (Sweden)

    Nooshin Naghsh

    2013-06-01

    Full Text Available Background & Objective : The Cucurbita pepo is one of plants that are functional in traditional therapy. This plant has antioxidant and skin damage repair properties. This study investigated the effect of Cucurbita pepo nano silver as a new nano-plant composition in wound repair skin in male mice.   Materials & Methods: In this investigation, male albino mice were places in 8 groups, each containing 8 animals. Group I – VIII were treated with nano silver (500, 250, and 125 ppm concentrations and different concentrations of extracts [70%, 50%, and 25%] and the control group received a mixture of 25% Cucurbita pepo extract (125 ppm nano silver. The eighth group, as control, was treated with sterile deionizer water after the induction of wound skin. The average diameter of the wounds was measured 28 days after treatment in the control and treatment groups. These data were analyzed using the t-test and ANOVA statistical method.   Results: The results of this study showed that ethanol extraction (80% has its highest repair effect 28 days post treatment. The average diameter of the wounds in the control group was 1.16 ±. 0.46 cm, which was decreased to 0 cm and 0.12 ±. 0.23 cm in the ethanol extract (70% of the Cucurbita pepo and component groups, respectively (p value ≤ 0.01.   Conclusion: In this project, nano silver-Cucurbita pepo ethanol extraction for wound repair in albino male mice was more effective than single materials. These findings show that the repair synergic effects are between alcoholic extract and nano silver in this nano composite.

  3. Metalloproteinase Expression is Associated with Traumatic Wound Failure

    Science.gov (United States)

    2010-04-01

    Traumatic amputation- no.(%) 15 Size of wound (cm3 )* Associated vascular injury- no.(%) 7 Wound closure method no.(%) Suture 29 Skin graft 9 Number...definitive closure or coverage with skin graft . Im- paired wound healing included delayed wound closure or wound dehiscence after closure or coverage...closure time period of 10 d. Dehiscence was defined as spontaneous partial or com- plete wound disruption after primary closure or > 90% skin graft loss

  4. Acute effects of low-level laser therapy (660 nm) on oxidative stress levels in diabetic rats with skin wounds.

    Science.gov (United States)

    Denadai, Amanda Silveira; Aydos, Ricardo Dutra; Silva, Iandara Schettert; Olmedo, Larissa; de Senna Cardoso, Bruno Mendonça; da Silva, Baldomero Antonio Kato; de Carvalho, Paulo de Tarso Camillo

    2017-09-01

    Laser therapy influences oxidative stress parameters such as the activity of antioxidant enzymes and the production of reactive oxygen species. To analyze the effects of low-level laser therapy on oxidative stress in diabetics rats with skin wounds. Thirty-six animals were divided into 4 groups: NDNI: non-diabetic rats with cutaneous wounds that not received laser therapy; NDI: non-diabetic rats with cutaneous wounds that received laser therapy; DNI: diabetic rats with skin wounds who did not undergo laser therapy; DI: rats with diabetes insipidus and cutaneous wounds and received laser therapy. The animals were treated with LLLT (660 nm, 100 mW, 6 J/cm, spot size 0.028 cm). On the day of killing the animals, tissue-wrapped cutaneous wounds were collected and immediately frozen, centrifuged, and stored to analyze malondialdehyde (MDA) levels. Significant difference was observed within the groups of MDA levels (ANOVA, p = 0.0001). Tukey's post-hoc test showed significantly lower values of MDA in irradiated tissues, both in diabetic and non-diabetic rats. ANOVA of the diabetic group revealed a significant difference (p < 0.01) when all groups, except NDI and DI, were compared. LLLT was effective in decreasing MDA levels in acute surgical wounds in diabetic rats.

  5. Th erapeutic potential of d-Th erapeutic potential of d-δ-tocotrienol rich fraction -tocotrienol rich fraction on excisional skin wounds in diabetic rats

    Directory of Open Access Journals (Sweden)

    Bijo Elsy

    2017-10-01

    Full Text Available Introduction: Long-standing hyperglycemia in addition to many of its associated complications also hampers normal wound healing which may be further aggravated in the presence of infection and oxidative stress. Therefore, antioxidant supplementation appears to be strategically relevant for wound healing. This study is designed to explore the therapeutic potential of d-δ-tocotrienol rich fraction (d-δ-TRF on skin wound healing in both healthy and diabetic rats. Materials and Methods: Diabetes was induced through single subcutaneous injection of alloxan at the dose of 100 mg/kg at hip region. 24 albino rats were divided into four groups; healthy control, diabetic control, healthy treated and diabetic treated. d-δ-TRF was administered to treated groups (200 mg/kg, orally, daily for 3 weeks. Full thickness excisional skin wounds were. Wound area was studied by assessing the morphological, histomorphological and histological features at weekly intervals and biochemical analyses were performed at the end of 3rd week. Results: The findings of present study revealed that d-δ-TRF accelerated the skin wound healing by means of early regeneration of both epidermal and dermal components; enhancement of serum protein synthesis, improvement of antioxidant status, maintenance of glycemic condition and controlling serum creatinine levels in diabetic rats. Conclusion: It is concluded that d-δ-TRF has significant therapeutic potency on the healing of skin wounds in both healthy and diabetics.

  6. Does treatment of split-thickness skin grafts with negative-pressure wound therapy improve tissue markers of wound healing in a porcine experimental model?

    Science.gov (United States)

    Ward, Christopher; Ciraulo, David; Coulter, Michael; Desjardins, Steven; Liaw, Lucy; Peterson, Sarah

    2012-08-01

    Negative-pressure wound therapy (NPWT) has been used for to treat wounds for more than 15 years and, more recently, has been used to secure split-thickness skin grafts. There are some data to support this use of NPWT, but the actual mechanism by which NPWT speeds healing or improves skin graft take is not entirely known. The purpose of this project was to assess whether NPWT improved angiogenesis, wound healing, or graft survival when compared with traditional bolster dressings securing split-thickness skin grafts in a porcine model. We performed two split-thickness skin grafts on each of eight 30 kg Yorkshire pigs. We took graft biopsies on postoperative days 2, 4, 6, 8, and 10 and submitted the samples for immunohistochemical staining, as well as standard hematoxylin and eosin staining. We measured the degree of vascular ingrowth via immunohistochemical staining for von Willenbrand's factor to better identify blood vessel epithelium. We determined the mean cross-sectional area of blood vessels present for each representative specimen, and then compared the bolster and NPWT samples. We also assessed each graft for incorporation and survival at postoperative day 10. Our analysis of the data revealed that there was no statistically significant difference in the degree of vascular ingrowth as measured by mean cross-sectional capillary area (p = 0.23). We did not note any difference in graft survival or apparent incorporation on a macroscopic level, although standard hematoxylin and eosin staining indicated that microscopically, there seemed to be better subjective graft incorporation in the NPWT samples and a nonsignificant trend toward improved graft survival in the NPWT group. We were unable to demonstrate a significant difference in vessel ingrowth when comparing NPWT and traditional bolster methods for split-thickness skin graft fixation. More studies are needed to elucidate the manner by which NPWT exerts its effects and the true clinical magnitude of these

  7. Wound healing and all-cause mortality in 958 wound patients treated in home care

    DEFF Research Database (Denmark)

    Zarchi, Kian; Martinussen, Torben; Jemec, Gregor B. E.

    2015-01-01

    to investigate wound healing and all-cause mortality associated with different types of skin wounds. Consecutive skin wound patients who received wound care by home-care nurses from January 2010 to December 2011 in a district in Eastern Denmark were included in this study. Patients were followed until wound...... healing, death, or the end of follow-up on December 2012. In total, 958 consecutive patients received wound care by home-care nurses, corresponding to a 1-year prevalence of 1.2% of the total population in the district. During the study, wound healing was achieved in 511 (53.3%), whereas 90 (9.4%) died...

  8. Comparison between Conventional Mechanical Fixation and Use of Autologous Platelet Rich Plasma (PRP) in Wound Beds Prior to Resurfacing with Split Thickness Skin Graft.

    Science.gov (United States)

    P Waiker, Veena; Shivalingappa, Shanthakumar

    2015-01-01

    Platelet rich plasma is known for its hemostatic, adhesive and healing properties in view of the multiple growth factors released from the platelets to the site of wound. The primary objective of this study was to use autologous platelet rich plasma (PRP) in wound beds for anchorage of skin grafts instead of conventional methods like sutures, staplers or glue. In a single center based randomized controlled prospective study of nine months duration, 200 patients with wounds were divided into two equal groups. Autologous PRP was applied on wound beds in PRP group and conventional methods like staples/sutures used to anchor the skin grafts in a control group. Instant graft adherence to wound bed was statistically significant in the PRP group. Time of first post-graft inspection was delayed, and hematoma, graft edema, discharge from graft site, frequency of dressings and duration of stay in plastic surgery unit were significantly less in the PRP group. Autologous PRP ensured instant skin graft adherence to wound bed in comparison to conventional methods of anchorage. Hence, we recommend the use of autologous PRP routinely on wounds prior to resurfacing to ensure the benefits of early healing.

  9. TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds.

    Science.gov (United States)

    Qi, Yu; Jiang, Dongsheng; Sindrilaru, Anca; Stegemann, Agatha; Schatz, Susanne; Treiber, Nicolai; Rojewski, Markus; Schrezenmeier, Hubert; Vander Beken, Seppe; Wlaschek, Meinhard; Böhm, Markus; Seitz, Andreas; Scholz, Natalie; Dürselen, Lutz; Brinckmann, Jürgen; Ignatius, Anita; Scharffetter-Kochanek, Karin

    2014-02-01

    Proper activation of macrophages (Mφ) in the inflammatory phase of acute wound healing is essential for physiological tissue repair. However, there is a strong indication that robust Mφ inflammatory responses may be causal for the fibrotic response always accompanying adult wound healing. Using a complementary approach of in vitro and in vivo studies, we here addressed the question of whether mesenchymal stem cells (MSCs)-due to their anti-inflammatory properties-would control Mφ activation and tissue fibrosis in a murine model of full-thickness skin wounds. We have shown that the tumor necrosis factor-α (TNF-α)-stimulated protein 6 (TSG-6) released from MSCs in co-culture with activated Mφ or following injection into wound margins suppressed the release of TNF-α from activated Mφ and concomitantly induced a switch from a high to an anti-fibrotic low transforming growth factor-β1 (TGF-β1)/TGF-β3 ratio. This study provides insight into what we believe to be a previously undescribed multifaceted role of MSC-released TSG-6 in wound healing. MSC-released TSG-6 was identified to improve wound healing by limiting Mφ activation, inflammation, and fibrosis. TSG-6 and MSC-based therapies may thus qualify as promising strategies to enhance tissue repair and to prevent excessive tissue fibrosis.

  10. Effect of Topical Administration of Fractions and Isolated Molecules from Plant Extracts on Skin Wound Healing: A Systematic Review of Murine Experimental Models

    Directory of Open Access Journals (Sweden)

    Mariáurea Matias Sarandy

    2016-01-01

    Full Text Available Background and Purpose. Skin wound healing is a dynamic process driven by molecular events responsible for the morphofunctional repair of the injured tissue. In a systematic review, we analyzed the relevance of plant fractions and isolates on skin wound healing. By revising preclinical investigations with murine models, we investigated if the current evidence could support clinical trials. Methods. Studies were selected in the MEDLINE/PubMed and Scopus databases according to the PRISMA statement. All 32 identified studies were submitted to data extraction and the methodological bias was investigated according to ARRIVE strategy. Results. The studies demonstrated that plant fractions and isolates are able to modulate the inflammatory process during skin wound healing, being also effective in attenuating the oxidative tissue damage in the scar tissue and stimulating cell proliferation, neoangiogenesis, collagen synthesis, granulation tissue expansion, reepithelialization, and the wound closure rate. However, we identified serious methodological flaws in all studies, such as the high level of reporting bias and absence of standardized experimental designs, analytical methods, and outcome measures. Conclusion. Considering these limitations, the current evidence generated from flawed methodological animal studies makes it difficult to determine the relevance of herbal medicines to treat skin wounds and derails conducting clinical studies.

  11. Middle age has a significant impact on gene expression during skin wound healing in male mice.

    Science.gov (United States)

    Yanai, Hagai; Lumenta, David Benjamin; Vierlinger, Klemens; Hofner, Manuela; Kitzinger, Hugo-Benito; Kamolz, Lars-Peter; Nöhammer, Christa; Chilosi, Marco; Fraifeld, Vadim E

    2016-08-01

    The vast majority of research on the impact of age on skin wound healing (WH) compares old animals to young ones. The middle age is often ignored in biogerontological research despite the fact that many functions that decline in an age-dependent manner have starting points in mid-life. With this in mind, we examined gene expression patterns during skin WH in late middle-aged versus young adult male mice, using the head and back punch models. The rationale behind this study was that the impact of age would first be detectable at the transcriptional level. We pinpointed several pathways which were over-activated in the middle-aged mice, both in the intact skin and during WH. Among them were various metabolic, immune-inflammatory and growth-promoting pathways. These transcriptional changes were much more pronounced in the head than in the back. In summary, the middle age has a significant impact on gene expression in intact and healing skin. It seems that the head punch model is more sensitive to the effect of age than the back model, and we suggest that it should be more widely applied in aging research on wound healing.

  12. A combination of subcuticular sutures and a drain for skin closure reduces wound complications in obese women undergoing surgery using vertical incisions.

    Science.gov (United States)

    Inotsume-Kojima, Y; Uchida, T; Abe, M; Doi, T; Kanayama, N

    2011-02-01

    Obesity is a risk factor for surgical site or wound complications in women undergoing surgery involving vertical incisions. Several investigators have reported the efficacy of subcutaneous drains in minimising the complication rate but there is no consensus on using these for surgery in obese patients. In 2006, the Scottish Surveillance of Healthcare Associated Infection Programme showed that using subcuticular sutures rather than staples to close incisions significantly reduced the risk of surgical site infection. Before January 2008 (group 1; N = 40), wound complications occurred in some obese patients in our hospital after obstetric and gynaecological surgery when only staples were used for skin closure. In January 2008 (group 2; N = 31), we changed the method of skin closure for obese patients [body mass index (BMI) > 28 kg/m(2)] and we now use a subcutaneous drain with four channels along the running tube and subcuticular sutures with interrupted, buried 4-0 polydioxanone sutures. The aim of this study was to assess the effects of these interventions for skin closure in obese women. The general characteristics (age, weight and BMI) were similar between the two groups. There were no wound complications in group 2. In group 1, wound disruptions and a seroma occurred in five (12.5%) and one (2.5%) patients, respectively. The wound complication rate in group 2 was significantly lower than that in group 1 (P = 0.0319). Thus, new materials and techniques for skin closure can reduce the wound complication rate in obese women. Copyright © 2010 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  13. The use of fillers and botulinum toxin type A in combination with superficial glycolic acid (alpha-hydroxy acid) peels: optimizing injection therapy with the skin-smoothing properties of peels.

    Science.gov (United States)

    Rendon, Marta I; Effron, Cheryl; Edison, Brenda L

    2007-01-01

    There are many procedures that a physician may utilize to improve the appearance and quality of the skin. Combining procedures can enhance the overall result and lead to increased patient satisfaction. Thus, it is important to choose procedures that will complement each other. Fillers or botulinum toxin type A (BTX-A) can plump the skin and smooth lines and wrinkles but will do little for uneven tone, skin laxity, or radiance and clarity. These signs of aging can be addressed with superficial glycolic acid peels. Methods of combining injectable compounds with superficial glycolic acid peels were discussed at a dermatologist roundtable event and are summarized in this article.

  14. Oral administration of marine collagen peptides from Chum Salmon skin enhances cutaneous wound healing and angiogenesis in rats.

    Science.gov (United States)

    Zhang, Zhaofeng; Wang, Junbo; Ding, Ye; Dai, Xiaoqian; Li, Yong

    2011-09-01

    A wound is a clinical entity which often poses problems in clinical practice. The present study was aimed to investigate the wound healing potential of administering marine collagen peptides (MCP) from Chum Salmon skin by using two wound models (incision and excision) in rats. Ninety-six animals were equally divided into the two wound models and then within each model animals were randomly divided into two groups: vehicle-treated group and 2 g kg(-1) MCP-treated group. Wound closure and tensile strength were calculated. Collagen deposition was assessed by Masson staining and hydroxyproline measurement. Angiogenesis was assessed by immunohistological methods. MCP-treated rats showed faster wound closure and improved tissue regeneration at the wound site, which was supported by histopathological parameters pertaining to wound healing. MCP treatment improved angiogenesis and helped form thicker and better organised collagen fibre deposition compared to vehicle-treated group. The results show the efficacy of oral MCP treatment on wound healing in animals. Copyright © 2011 Society of Chemical Industry.

  15. Effect of low-power density laser radiation on heatling of open skin wounds in rats

    Energy Technology Data Exchange (ETDEWEB)

    Kana, J.S.; Hutschenreiter, G.; Haina, D.; Waidelich, W.

    1981-03-01

    Researchers performed a study to determine whether laser radation of low-power density would affect the healing of open skin wounds in rats. The wounds were irradiated daily with a helium-neon laser and an argon laser at a constant power density of 45 mW/sq cm. The rate of wound closure was followed by photographing the wounds in a standardized way. The collagen hydroxyproline concentration in the scar tissue was determined on the 18th postoperative day. Helium-neon laser radiation had a statistically significant stimulating effect on collagen synthesis in the wound, with a maximum effect at an energy density of 4 joules/sq cm. The rate of wound closure was enhanced significantly between the third and 12th postoperative days. The argon laser exposure produced a significant increase in collagen concentration both in irradiated and nonirradiated contralateral wounds. However, an acceleration of the healing rate was not registered in this case. The wound contraction up to the fourth day of the experiment was inhibited under helium-neon and argon laser exposure to 20 joules/sq cm. The described effects were not specific for the laser light. There may be a wavelength-selective influence of coherent light on the metabolic and proliferation processes in wound healing, with the associated problem of the possible carcinogenic effects of laser radiation.

  16. Antimicrobial peptides secreted by equine mesenchymal stromal cells inhibit the growth of bacteria commonly found in skin wounds.

    Science.gov (United States)

    Harman, Rebecca M; Yang, Steven; He, Megan K; Van de Walle, Gerlinde R

    2017-07-04

    The prevalence of chronic skin wounds in humans is high, and treatment is often complicated by the presence of pathogenic bacteria. Therefore, safe and innovative treatments to reduce the bacterial load in cutaneous wounds are needed. Mesenchymal stromal cells (MSC) are known to provide paracrine signals that act on resident skin cells to promote wound healing, but their potential antibacterial activities are not well described. The present study was designed to examine the antibacterial properties of MSC from horses, as this animal model offers a readily translatable model for MSC therapies in humans. Specifically, we aimed to (i) evaluate the in vitro effects of equine MSC on the growth of representative gram-negative and gram-positive bacterial species commonly found in skin wounds and (ii) define the mechanisms by which MSC inhibit bacterial growth. MSC were isolated from the peripheral blood of healthy horses. Gram-negative E. coli and gram-positive S. aureus were cultured in the presence of MSC and MSC conditioned medium (CM), containing all factors secreted by MSC. Bacterial growth was measured by plating bacteria and counting viable colonies or by reading the absorbance of bacterial cultures. Bacterial membrane damage was detected by incorporation of N-phenyl-1-naphthylamine (NPN). Antimicrobial peptide (AMP) gene and protein expression by equine MSC were determined by RT-PCR and Western blot analysis, respectively. Blocking of AMP activity of MSC CM was achieved using AMP-specific antibodies. We found that equine MSC and MSC CM inhibit the growth of E. coli and S. aureus, and that MSC CM depolarizes the cell membranes of these bacteria. In addition, we found that equine MSC CM contains AMPs, and blocking these AMPs with antibodies reduces the effects of MSC CM on bacteria. Our results demonstrate that equine MSC inhibit bacterial growth and secrete factors that compromise the membrane integrity of bacteria commonly found in skin wounds. We also identified

  17. Chimeric superficial temporal artery based skin and temporal fascia flap plus temporalis muscle flap - An alternative to free flap for suprastructure maxillectomy with external skin defect

    Directory of Open Access Journals (Sweden)

    Dushyant Jaiswal

    2011-01-01

    Full Text Available Flaps from temporal region have been used for mid face, orbital and peri-orbital reconstruction. The knowledge of the vascular anatomy of the region helps to dissect and harvest the muscle/fascia/skin/combined tissue flaps from that region depending upon the requirement. Suprastructure maxillectomy defects are usually covered with free flaps to fill the cavity. Here we report an innovative idea in which a patient with a supra structure maxillectomy with external skin defect was covered with chimeric flap based on the parietal and frontal branches of superficial temporal artery and the temporalis muscle flap based on deep temporal artery.

  18. The effectiveness of platelet-rich plasma on the skin wound healing process: A comparative experimental study in sheep

    Directory of Open Access Journals (Sweden)

    Daikh Badis

    2018-06-01

    Full Text Available Aim: The therapeutic evaluation of the biological effect of platelet-rich plasma (PRP used as a surgical adjunct to maintain the inflammatory process and to potentiate tissue healing, make the subject of recent research in regenerative medicine. This study was designed to evaluate the healing activity of PRP by its topical application on the skin experimentally injured in a sheep model. Materials and Methods: The study was conducted on 9 adult and clinically healthy males sheep. PRP was obtained by a protocol of double centrifugation of whole blood from each animal. After sterile skin preparation, full-thickness excisional wounds (20 mm x 20 mm were created on the back of each animal. The animals were randomly divided into three equal groups of three sheep for each. In Group I, the wounds were treated with PRP, in Group II; wounds were treated with Asiaticoside; in Group III, wounds were treated with saline solution. The different treatments were administered topically every 3 days. Morphometric measurements of the contraction surface of the wounds and histopathological biopsies were carried out at the 3rd, 7th, 14th, 21st, and 28th days of healing. Results: The results of the morphometric data obtained revealed that it was significant differences recorded at the 7th and 14th day of healing in favor for animals of Group I. Semi-quantitative histopathological evaluation showed that PRP reduces inflammation during 3 first days post-surgical and promotes epithelialization in 3 weeks of healing. Conclusion: We concluded that topical administration of PRP obtained by double centrifugation protocol could potentially improve the skin healing process in sheep.

  19. Molecular pathology of wound healing.

    Science.gov (United States)

    Kondo, Toshikazu; Ishida, Yuko

    2010-12-15

    Skin-wound healing is an orchestrated biological phenomena consisting of three sequential phases, inflammation, proliferation, and maturation. Many biological substances are involved in the process of wound repair, and this short and simplified overview of wound healing can be adopted to determine wound vitality or wound age in forensic medicine. With the development of genetically engineered animals, essential molecules for skin-wound healing have been identified. Especially, cytokines, and growth factors are useful candidates and markers for the determination of wound vitality or age. Moreover, bone marrow-derived progenitor cells would give significant information to wound age determination. In this review article, some interesting observations are presented, possibly contributing to the future practice of forensic pathologists. Copyright © 2010. Published by Elsevier Ireland Ltd.

  20. Hibiscus syriacus Extract from an Established Cell Culture Stimulates Skin Wound Healing.

    Science.gov (United States)

    di Martino, O; Tito, A; De Lucia, A; Cimmino, A; Cicotti, F; Apone, F; Colucci, G; Calabrò, V

    2017-01-01

    Higher plants are the source of a wide array of bioactive compounds that support skin integrity and health. Hibiscus syriacus , family Malvaceae, is a plant of Chinese origin known for its antipyretic, anthelmintic, and antifungal properties. The aim of this study was to assess the healing and hydration properties of H. syriacus ethanolic extract (HSEE). We established a cell culture from Hibiscus syriacus leaves and obtained an ethanol soluble extract from cultured cells. The properties of the extract were tested by gene expression and functional analyses on human fibroblast, keratinocytes, and skin explants. HSEE treatment increased the healing potential of fibroblasts and keratinocytes. Specifically, HSEE significantly stimulated fibronectin and collagen synthesis by 16 and 60%, respectively, while fibroblasts contractility was enhanced by 30%. These results were confirmed on skin explants, where HSEE accelerated the wound healing activity in terms of epithelium formation and fibronectin production. Moreover, HSEE increased the expression of genes involved in skin hydration and homeostasis. Specifically, aquaporin 3 and filaggrin genes were enhanced by 20 and 58%, respectively. Our data show that HSEE contains compounds capable of stimulating expression of biomarkers relevant to skin regeneration and hydration thereby counteracting molecular pathways leading to skin damage and aging.

  1. Hibiscus syriacus Extract from an Established Cell Culture Stimulates Skin Wound Healing

    Directory of Open Access Journals (Sweden)

    O. di Martino

    2017-01-01

    Full Text Available Higher plants are the source of a wide array of bioactive compounds that support skin integrity and health. Hibiscus syriacus, family Malvaceae, is a plant of Chinese origin known for its antipyretic, anthelmintic, and antifungal properties. The aim of this study was to assess the healing and hydration properties of H. syriacus ethanolic extract (HSEE. We established a cell culture from Hibiscus syriacus leaves and obtained an ethanol soluble extract from cultured cells. The properties of the extract were tested by gene expression and functional analyses on human fibroblast, keratinocytes, and skin explants. HSEE treatment increased the healing potential of fibroblasts and keratinocytes. Specifically, HSEE significantly stimulated fibronectin and collagen synthesis by 16 and 60%, respectively, while fibroblasts contractility was enhanced by 30%. These results were confirmed on skin explants, where HSEE accelerated the wound healing activity in terms of epithelium formation and fibronectin production. Moreover, HSEE increased the expression of genes involved in skin hydration and homeostasis. Specifically, aquaporin 3 and filaggrin genes were enhanced by 20 and 58%, respectively. Our data show that HSEE contains compounds capable of stimulating expression of biomarkers relevant to skin regeneration and hydration thereby counteracting molecular pathways leading to skin damage and aging.

  2. Aloesin from Aloe vera accelerates skin wound healing by modulating MAPK/Rho and Smad signaling pathways in vitro and in vivo.

    Science.gov (United States)

    Wahedi, Hussain Mustatab; Jeong, Minsun; Chae, Jae Kyoung; Do, Seon Gil; Yoon, Hyeokjun; Kim, Sun Yeou

    2017-05-15

    Cutaneous wound healing is a complex process involving various regulatory factors at the molecular level. Aloe vera is widely used for cell rejuvenation, wound healing, and skin moisturizing. This study aimed to investigate the effects of aloesin from Aloe vera on cutaneous wound healing and mechanisms involved therein. This study consisted of both in vitro and in vivo experiments involving skin cell lines and mouse model to demonstrate the wound healing effects of aloesin by taking into account several parameters ranging from cultured cell migration to wound healing in mice. The activities of Smad signaling molecules (Smad2 and Smad3), MAPKs (ERK and JNK), and migration-related proteins (Cdc42, Rac1, and α-Pak) were assessed after aloesin treatment in cultured cells (1, 5 and 10µM) and mouse skin (0.1% and 0.5%). We also monitored macrophage recruitment, secretion of cytokines and growth factors, tissue development, and angiogenesis after aloesin treatment using IHC analysis and ELISAs. Aloesin increased cell migration via phosphorylation of Cdc42 and Rac1. Aloesin positively regulated the release of cytokines and growth factors (IL-1β, IL-6, TGF-β1 and TNF-α) from macrophages (RAW264.7) and enhanced angiogenesis in endothelial cells (HUVECs). Aloesin treatment accelerated wound closure rates in hairless mice by inducing angiogenesis, collagen deposition and granulation tissue formation. More importantly, aloesin treatment resulted in the activation of Smad and MAPK signaling proteins that are key players in cell migration, angiogenesis and tissue development. Aloesin ameliorates each phase of the wound healing process including inflammation, proliferation and remodeling through MAPK/Rho and Smad signaling pathways. These findings indicate that aloesin has the therapeutic potential for treating cutaneous wounds. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. The combined effect of laser and oral administration of Iranian propolis extract on skin wound healing in male rats

    Directory of Open Access Journals (Sweden)

    Nematollah Ghaibi

    2015-05-01

    Full Text Available Background: To date, a lot of research has been carried out on the effect of medications and surgical methods on the treatment of wounds, but no ideal achievement has been obtained yet. This study was conducted to investigate the single and combined effect of laser and propolis on skin wound healing in male rats. Methods: 40 Wistar male rats (200-250 g were divided into 4 groups (n= 10. All animals were anesthetized and sterile skin wound was created by surgical scissors. Control group had no treatment, the second group was treated with laser (10 mW, the third group was treated with oral propolis (100 mg /kg; 3 times /day and the forth group was treated with both laser and propolis. The wound healing level was measured based on the wound area and urinary hydroxyproline content. Results: Urinary hydroxyproline content was increased in groups treated with laser, propolis and combined laser and propolis compared to the control group (P<0.01, 0.05 and 0.01, respectively. Also at the end of the treatment period, the wound extent was significantly lower in the laser, propolis, and combined laser and propolis groups than the control (P<0.05, 0.05 and 0.01, respectively. There was no significant difference between treatment groups. Conclusion: Our results showed that oral administration of propolis or low power laser radiation can increase the wound healing rate.

  4. Pseudomonas aeruginosa biofilm aggravates skin inflammatory response in BALB/c mice in a novel chronic wound model

    DEFF Research Database (Denmark)

    Trøstrup, Hannah; Thomsen, Kim; Christophersen, Lars J

    2013-01-01

    model in C3H/HeN and BALB/c mice. The chronic wound was established by an injection of seaweed alginate-embedded P. aeruginosa PAO1 beneath a third-degree thermal lesion providing full thickness skin necrosis, as in human chronic wounds. Cultures revealed growth of PA, and both alginate with or without......Chronic wounds are presumed to persist in the inflammatory state, preventing healing. Emerging evidence indicates a clinical impact of bacterial biofilms in soft tissues, including Pseudomonas aeruginosa (PA) biofilms. To further investigate this, we developed a chronic PA biofilm wound infection...... bacteria organized in clusters, resembling biofilms, and inflammation located adjacent to the PA. The chronic wound infection showed a higher number of PAO1 in the BALB/c mice at day 4 after infection as compared to C3H/HeN mice (p

  5. Buried chip skin grafting in neuropathic diabetic foot ulcers following vacuum-assisted wound bed preparation: enhancing a classic surgical tool with novel technologies.

    Science.gov (United States)

    Kopp, Jürgen; Kneser, Ulrich; Bach, Alexander D; Horch, Raymund E

    2004-09-01

    In patients with diabetes mellitus, complications such as polyneuropathy and peripheral angiopathy inevitably lead to diabetic foot complications including foot ulcers, gangrene, and osteoarthropathy. These conditions necessitate minor or major amputation as part of treatment. In patients with Charcot's arthropathy and predominant neuropathy, recurrent foot ulcers are common in areas of high pressure. Such high pressure is caused by the degrading of the architecture of the foot and inadequate footwear. These patients are a clinical challenge. A select group of such patients may benefit from free surgical tissue transfer, though free or local flap surgery is often difficult or even impossible owing to an impaired arterial circulation. In such wounds, surgical debridement followed by skin grafts often fail due to bacterial burden in the wounds. To circumvent these problems, the authors developed a therapeutic approach using buried chip skin grafting to close granulation wound beds in diabetic feet. Locally applied vacuum therapy (VAC) for wound bed preparation of chronic, nonresponsive foot ulcers and subsequent grafting using the burying technique with a minute fraction of skin was used. Firm closure was achieved. The closed wound was resistant to mechanical irritation.

  6. The Efficacy, Safety and Tolerability of Retapamulin as a Treatment Option for Impetigo and Other Uncomplicated Superficial Skin Infections: A Meta-analysis

    Directory of Open Access Journals (Sweden)

    Rudy Ciulianto

    2015-04-01

    Full Text Available BACKGROUND: The treatment of impetigo, secondarily infected dermatitis and infected traumatic lesions continue to develop as new generations of drugs are being formulated. Bacteria causing impetigo show growing resistance rates for commonly used antibiotics. Retapamulin being a new drug has been recently approved as topical antibiotic in children and adult. This study aimed to ascertain the efficacy, safety and tolerability of retapamulin as the treatment option for impetigo and other uncomplicated superficial skin infections. METHODS: A search for studies published from 2006-2014 was done in Pubmed, EBSCO, OVID, Science Direct, and Cochrane using the search strategy. The search was limited to studies conducted in human subjects and published in the English language. Randomized controlled trials evaluating the efficacy, safety and tolerability of retapamulin as treatment for impetigo and other uncomplicated superficial skin infections in children and adult were included and extracted independently and the qualities of the studies were appraised using critical appraisal tools. Data analysis was conducted by using RevMan 5. RESULTS: This study has high heterogeneity and found Retapamulin has no statistically significant difference in the clinical success after seven days and follow up among per-protocol-patients, bacteriogical confirmed patients and intention-to-treat patients with impetigo and other secondary infected traumatic lesions compared to other regimens. However, Retapamulin has beneficial effect in the clinical success, well tolerated and safe for children and adults. CONCLUSIONS: Retapamulin is comparably effective and safe as a treatment option for impetigo and other uncomplicated superficial skin infections. KEYWORDS: efficacy, safety, tolerability, retapamulin, impetigo, meta-analysis.

  7. Systematic review of the use of honey as a wound dressing

    Science.gov (United States)

    Moore, Owen A; Smith, Lesley A; Campbell, Fiona; Seers, Kate; McQuay, Henry J; Moore, R Andrew

    2001-01-01

    Objective To investigate topical honey in superficial burns and wounds though a systematic review of randomised controlled trials. Data sources Cochrane Library, MEDLINE, EMBASE, PubMed, reference lists and databases were used to seek randomised controlled trials. Seven randomised trials involved superficial burns, partial thickness burns, moderate to severe burns that included full thickness injury, and infected postoperative wounds. Review methods Studies were randomised trials using honey, published papers, with a comparator. Main outcomes were relative benefit and number-needed-to-treat to prevent an outcome relating to wound healing time or infection rate. Results One study in infected postoperative wounds compared honey with antiseptics plus systemic antibiotics. The number needed to treat with honey for good wound healing compared with antiseptic was 2.9 (95% confidence interval 1.7 to 9.7). Five studies in patients with partial thickness or superficial burns involved less than 40% of the body surface. Comparators were polyurethane film, amniotic membrane, potato peel and silver sulphadiazine. The number needed to treat for seven days with honey to produce one patient with a healed burn was 2.6 (2.1 to 3.4) compared with any other treatment and 2.7 (2.0 to 4.1) compared with potato and amniotic membrane. For some or all outcomes honey was superior to all these treatments. Time for healing was significantly shorter for honey than all these treatments. The quality of studies was low. Conclusion Confidence in a conclusion that honey is a useful treatment for superficial wounds or burns is low. There is biological plausibility. PMID:11405898

  8. Systematic review of the use of honey as a wound dressing

    Directory of Open Access Journals (Sweden)

    McQuay Henry J

    2001-06-01

    Full Text Available Abstract Objective To investigate topical honey in superficial burns and wounds though a systematic review of randomised controlled trials. Data sources Cochrane Library, MEDLINE, EMBASE, PubMed, reference lists and databases were used to seek randomised controlled trials. Seven randomised trials involved superficial burns, partial thickness burns, moderate to severe burns that included full thickness injury, and infected postoperative wounds. Review methods Studies were randomised trials using honey, published papers, with a comparator. Main outcomes were relative benefit and number-needed-to-treat to prevent an outcome relating to wound healing time or infection rate. Results One study in infected postoperative wounds compared honey with antiseptics plus systemic antibiotics. The number needed to treat with honey for good wound healing compared with antiseptic was 2.9 (95% confidence interval 1.7 to 9.7. Five studies in patients with partial thickness or superficial burns involved less than 40% of the body surface. Comparators were polyurethane film, amniotic membrane, potato peel and silver sulphadiazine. The number needed to treat for seven days with honey to produce one patient with a healed burn was 2.6 (2.1 to 3.4 compared with any other treatment and 2.7 (2.0 to 4.1 compared with potato and amniotic membrane. For some or all outcomes honey was superior to all these treatments. Time for healing was significantly shorter for honey than all these treatments. The quality of studies was low. Conclusion Confidence in a conclusion that honey is a useful treatment for superficial wounds or burns is low. There is biological plausibility.

  9. CONTAMINATED PROBLEMATIC SKIN WOUNDS IN DIABETIC PATIENTS TREATED WITH AUTOLOGOUS PLATELET-RICH PLASMA (PRP: A case series study

    Directory of Open Access Journals (Sweden)

    Tsvetan Sokolov

    2016-03-01

    Full Text Available OBJECTIVE: To study the effect of platelet-rich plasma (PRP on contaminated problematic skin ulcers in patients with diabetes. MATERIAL AND METHODS: A total of 6 patients had been treated within the period from 2012 to 2014; they had various types of problematic wounds and diabetes type 2. Patients’ distribution by sex was as follows: 1 man and 5 women; mean age- 68 years. Ulcer types: acute (2 patients, hard-to-heal (2 patients and chronic (2 patients ulcers. The mean size of the skin and soft tissue defect was 9,5 cm2. Pathogenic microflora was isolated in 4 patients - S. aureus in three and Е. Coli in one. Based on a scheme developed by us, all cases were treated by administering platelet-rich plasma, derived by PRGF Endoret system. Follow-up period was within 4 – 6 months (4,5 on average. We used platelet rich plasma derived by PRGF Endoret system, applied on the wound bed on a weekly basis. RESULTS: Application of PRP allowed successful closure of all wounds. There were no complications associated with treatment of PRP. Epithelialization of the wound took 15 weeks on average for all patients. One patient presented with hyperkeratosis. Initial score of followed wounds, based on the scales are as follows: Total wound score – 10 p. Total anatomic score – 8 p. Total score – 15 p. at the initial stage. At the end of the treatment period scores were as follows - 0 p., which means excellent results CONCLUSION: We believe that the application of PRP may become optimal therapy in the treatment of contaminated problematic wounds in diabetic patients. PRP not only stimulates wound healing, but also has antimicrobial properties, which may contribute to the prevention of infections.

  10. Analysis of clinical data to determine the minimum number of sensors required for adequate skin temperature monitoring of superficial hyperthermia treatments.

    Science.gov (United States)

    Bakker, Akke; Holman, Rebecca; Rodrigues, Dario B; Dobšíček Trefná, Hana; Stauffer, Paul R; van Tienhoven, Geertjan; Rasch, Coen R N; Crezee, Hans

    2018-04-27

    Tumor response and treatment toxicity are related to minimum and maximum tissue temperatures during hyperthermia, respectively. Using a large set of clinical data, we analyzed the number of sensors required to adequately monitor skin temperature during superficial hyperthermia treatment of breast cancer patients. Hyperthermia treatments monitored with >60 stationary temperature sensors were selected from a database of patients with recurrent breast cancer treated with re-irradiation (23 × 2 Gy) and hyperthermia using single 434 MHz applicators (effective field size 351-396 cm 2 ). Reduced temperature monitoring schemes involved randomly selected subsets of stationary skin sensors, and another subset simulating continuous thermal mapping of the skin. Temperature differences (ΔT) between subsets and complete sets of sensors were evaluated in terms of overall minimum (T min ) and maximum (T max ) temperature, as well as T90 and T10. Eighty patients were included yielding a total of 400 hyperthermia sessions. Median ΔT was 50 sensors were used. Subsets of sensors result in underestimation of T max up to -2.1 °C (ΔT 95%CI), which decreased to -0.5 °C when >50 sensors were used. Thermal profiles (8-21 probes) yielded a median ΔT 50 stationary sensors or thermal profiles. Adequate coverage of the skin temperature distribution during superficial hyperthermia treatment requires the use of >50 stationary sensors per 400 cm 2 applicator. Thermal mapping is a valid alternative.

  11. Skin Graft

    OpenAIRE

    Shimizu, Ruka; Kishi, Kazuo

    2012-01-01

    Skin graft is one of the most indispensable techniques in plastic surgery and dermatology. Skin grafts are used in a variety of clinical situations, such as traumatic wounds, defects after oncologic resection, burn reconstruction, scar contracture release, congenital skin deficiencies, hair restoration, vitiligo, and nipple-areola reconstruction. Skin grafts are generally avoided in the management of more complex wounds. Conditions with deep spaces and exposed bones normally require the use o...

  12. Non-invasive in vivo characterization of skin wound healing using label-free multiphoton microscopy (Conference Presentation)

    Science.gov (United States)

    Jones, Jake D.; Majid, Fariah; Ramser, Hallie; Quinn, Kyle P.

    2017-02-01

    Non-healing ulcerative wounds, such as diabetic foot ulcers, are challenging to diagnose and treat due to their numerous possible etiologies and the variable efficacy of advanced wound care products. Thus, there is a critical need to develop new quantitative biomarkers and diagnostic technologies that are sensitive to wound status in order to guide care. The objective of this study was to evaluate the utility of label-free multiphoton microscopy for characterizing wound healing dynamics in vivo and identifying potential differences in diabetic wounds. We isolated and measured an optical redox ratio of FAD/(NADH+FAD) autofluorescence to provide three-dimensional maps of local cellular metabolism. Using a mouse model of wound healing, in vivo imaging at the wound edge identified a significant decrease in the optical redox ratio of the epidermis (p≤0.0103) between Days 3 through 14 compared to Day 1. This decrease in redox ratio coincided with a decrease in NADH fluorescence lifetime and thickening of the epithelium, collectively suggesting a sensitivity to keratinocyte hyperproliferation. In contrast to normal wounds, we have found that keratinocytes from diabetic wounds remain in a proliferative state at later time points with a lower redox ratio at the wound edge. Microstructural organization and composition was also measured from second harmonic generation imaging of collagen and revealed differences between diabetic and non-diabetic wounds. Our work demonstrates label-free multiphoton microscopy offers potential to provide non-invasive structural and functional biomarkers associated with different stages of skin wound healing, which may be used to detect delayed healing and guide treatment.

  13. Wound healing without drains in posterior spinal fusion in idiopathic scoliosis

    International Nuclear Information System (INIS)

    Alsiddiky, A.; Nisar, K.A.; Alhuzaimi, F.; Albishi, W.; Alnuaim, B.; Albarrag, M.; Meo, S.A.

    2013-01-01

    To determine the frequency of wound infection and neurological injuries in patients with idiopathic scoliosis who underwent posterior spinal fusion without use of drains. Study Design: Case series. Place and Duration of Study: Department of Orthopaedics, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia, from February 2007 to June 2010. Methodology: Patients who underwent similar technique of posterior spinal fusion instrumentation for the correction of scoliosis without use of drain were included. Wound Demographics, wound healing, complications and duration of hospital stay were considered and described as frequency and mean values. Results: The average age at the time of surgery was 12.80 +- 1.30 years, duration of surgery was 3.80 +- 0.86 hours, hospital stay was 3.84 +- 0.78 days and patients were followed-up over the last 30 months. There was no incidence of any neurological complication and deep infection. However, only 2 (4.16%) cases with superficial skin infection were treated with dressing and antibiotics with full recovery. Conclusion: The wound healing is adequate without using drain for patients with idiopathic scoliosis who underwent posterior spinal fusion and instrumentation when good wash, watertight closure technique and appropriate antibiotics coverage is provided. (author)

  14. Negative pressure wound therapy applied before and after split-thickness skin graft helps healing of Fournier gangrene: a case report (CARE-Compliant).

    Science.gov (United States)

    Ye, Junna; Xie, Ting; Wu, Minjie; Ni, Pengwen; Lu, Shuliang

    2015-02-01

    Fournier gangrene is a rare but highly infectious disease characterized by fulminant necrotizing fasciitis involving the genital and perineal regions. Negative pressure wound therapy (NPWT; KCI USA Inc, San Antonio, TX) is a widely adopted technique in many clinical settings. Nevertheless, its application and effect in the treatment of Fournier gangrene are unclear. A 47-year-old male patient was admitted with an anal abscess followed by a spread of the infection to the scrotum, which was caused by Pseudomonas aeruginosa. NPWT was applied on the surface of the scrotal area and continued for 10 days. A split-thickness skin graft from the scalp was then grafted to the wound, after which, NPWT utilizing gauze sealed with an occlusive dressing and connected to a wall suction was employed for 7 days to secure the skin graft. At discharge, the percentage of the grafted skin alive on the scrotum was 98%. The wound beside the anus had decreased to 4 × 0.5 cm with a depth of 1 cm. Follow-up at the clinic 1 month later showed that both wounds had healed. The patient did not complain of any pain or bleeding, and was satisfied with the outcome. NPWT before and after split-thickness skin grafts is safe, well tolerated, and efficacious in the treatment of Fournier gangrene.

  15. Polyurethane Foam Wound Dressing Technique for Areola Skin Graft Stabilization and Nipple Protection After Nipple-Areola Reconstruction.

    Science.gov (United States)

    Satake, Toshihiko; Muto, Mayu; Nagashima, Yu; Haga, Shoko; Homma, Yuki; Nakasone, Reiko; Kadokura, Marina; Kou, Seiko; Fujimoto, Hiroshi; Maegawa, Jiro

    2018-04-01

    We describe a new wound management technique using a soft dressing material to stabilize the areola skin graft and protect the nipple after nipple-areola reconstruction at the final stage of breast reconstruction. We introduced a center-fenestrated multilayered hydrocellular polyurethane foam dressing material that provides adequate pressure and retains a moist environment for a smooth skin graft "take." Moreover, the reconstructed nipple can be monitored at any time through the fenestrated window for adequate blood circulation. Altogether, this simple and inexpensive wound dressing technique improves the clinical outcome. Level of Evidence IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  16. Acceleration of skin wound healing with tragacanth (Astragalus preparation: an experimental pilot study in rats.

    Directory of Open Access Journals (Sweden)

    Ehsan Fayazzadeh

    2014-01-01

    Full Text Available Gum tragacanth is a natural complex mixture of polysaccharides and alkaline minerals extracted from species of Astragalus plant, which is found widely in arid regions of the Middle East. In a pilot experimental study we examined the effects of its topical application on wound healing in ten albino adult male rats. Two similar parasagittal elliptical full-thickness wounds (control vs. test samples were created on the dorsum of each animal. Test group samples were fully covered by a thin layer of gum tragacanth daily. The extent of wound healing was evaluated by planimetric analysis on multiple occasions during the 10-day study period. On the 7th day of the study, the percent of wound closure was significantly higher in gum tragacanth-treated specimens compared to the control samples (87%±2% vs. 70%±4%, P<0.001. The majority of wounds in the test group were completely closed by the 10th day of the study. The difference in wound healing index measured by histological examination on day 10 of the study was also statistically meaningful between the two groups (0.624±0.097 vs. 0.255±0.063, P<0.05. The results of this study clearly showed the useful effects of topical application of gum tragacanth in acceleration of skin wound contraction and healing. More studies are encouraged to identify the implicating agents and precisely understand the mechanism by which they exert their wound healing effects.

  17. Effects and Mechanisms of Total Flavonoids from Blumea balsamifera (L. DC. on Skin Wound in Rats

    Directory of Open Access Journals (Sweden)

    Yuxin Pang

    2017-12-01

    Full Text Available Chinese herbal medicine (CHM evolved through thousands of years of practice and was popular not only among the Chinese population, but also most countries in the world. Blumea balsamifera (L. DC. as a traditional treatment for wound healing in Li Nationality Medicine has a long history of nearly 2000 years. This study was to evaluate the effects of total flavonoids from Blumea balsamifera (L. DC. on skin excisional wound on the back of Sprague-Dawley rats, reveal its chemical constitution, and postulate its action mechanism. The rats were divided into five groups and the model groups were treated with 30% glycerol, the positive control groups with Jing Wan Hong (JWH ointment, and three treatment groups with high dose (2.52 g·kg−1, medium dose (1.26 g·kg−1, and low dose (0.63 g·kg−1 of total flavonoids from B. balsamifera. During 10 consecutive days of treatment, the therapeutic effects of rates were evaluated. On day 1, day 3, day 5, day 7, and day 10 after treatment, skin samples were taken from all the rats for further study. Significant increases of granulation tissue, fibroblast, and capillary vessel proliferation were observed at day 7 in the high dose and positive control groups, compared with the model group, with the method of 4% paraformaldehyde for histopathological examination and immunofluorescence staining. To reveal the action mechanisms of total flavonoids on wound healing, the levels of CD68, vascular endothelial growth factor (VEGF, transforming growth factor-β1 (TGF-β1, and hydroxyproline were measured at different days. Results showed that total flavonoids had significant effects on rat skin excisional wound healing compared with controls, especially high dose ones (p < 0.05. Furthermore, the total flavonoid extract was investigated phytochemically, and twenty-seven compounds were identified from the total flavonoid sample by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass

  18. Electro spinning of Poly(ethylene-co-vinyl alcohol) Nano fibres Encapsulated with Ag Nanoparticles for Skin Wound Healing

    International Nuclear Information System (INIS)

    Xu, Ch.; Wang, B.; Lu, T.; Xu, F.; Xu, F.; Wang, B.; Xu, F.

    2011-01-01

    Skin wound healing is an urgent problem in clinics and military activities. Although significant advances have been made in its treatment, there are several challenges associated with traditional methods, for example, limited donor skin tissue for transplantation and inflammation during long-term healing time. To address these challenges, in this study we present a method to fabricate Poly(ethylene-co-vinyl alcohol) (EVOH) nano fibres encapsulated with Ag nanoparticle using electro spinning technique. The fibres were fabricated with controlled diameters (59 nm 3μm) by regulating three main parameters, that is, EVOH solution concentration, the electric voltage, and the distance between the injection needle tip (high-voltage point) and the fibre collector. Ag was added to the nano fibres to offer long-term anti-inflammation effect by slow release of Ag nanoparticles through gradual degradation of EVOH nano fibre. The method developed here could lead to new dressing materials for treatment of skin wounds.

  19. The Effects of Aloe vera Cream on the Expression of CD4+ and CD8+ Lymphocytes in Skin Wound Healing.

    Science.gov (United States)

    Prakoso, Yos Adi; Kurniasih

    2018-01-01

    The aim of this study is to explore the effect of topical application of Aloe vera on skin wound healing. Thirty-six male Sprague-Dawley rats weighing 150-200 grams were divided into four groups. All groups were anesthetized, shaved, and exposed to round full-thickness punch biopsy on the back: group I (control); group II (treated with 1% Aloe vera cream); group III (treated with 2% Aloe vera cream); and group IV (treated with madecassol®). The treatments were given once a day. Macroscopic and microscopic examination were observed at 5, 10, and 15 days after skin biopsy. Skin specimens were prepared for histopathological study using H&E stain and IHC stain against CD4 + and CD8 + lymphocytes. All the data were analyzed using SPSS16. The result showed that topical application of 1% and 2% Aloe vera cream significantly reduced the percentage of the wound, leucocytes infiltration, angiogenesis, and expression of CD8 + lymphocytes and increased the epidermal thickness and the expression of CD4 + lymphocytes ( p ≤ 0,05). There was no significant difference in the number of fibroblasts in all groups. Topical application of 1% and 2% Aloe vera cream has wound healing potential via their ability to increase the ratio of CD4 + /CD8 + lymphocytes in the wound area.

  20. Topical erythropoietin promotes wound repair in diabetic rats.

    Science.gov (United States)

    Hamed, Saher; Ullmann, Yehuda; Masoud, Muhannad; Hellou, Elias; Khamaysi, Ziad; Teot, Luc

    2010-01-01

    Wound healing in diabetic patients is slower than in healthy individuals. Erythropoietin (EPO) has non-hemopoietic targets in the skin, and systemically administered EPO promotes wound healing in experimental animals. This study investigated the effect of topical EPO treatment on defective wound repair in the skin of diabetic rats. Full-thickness excisional skin wounds were made in 38 rats, of which 30 had diabetes. The wounds were then treated topically with a cream that contained either vehicle, 600 IU ml(-1) EPO (low dose), or 3,000 IU ml(-1) (high dose) EPO. We assessed the rate of wound closure during the 12-day treatment period, and microvascular density (MVD), vascular endothelial growth factor (VEGF), and hydroxyproline (HP) contents, and the extent of apoptosis in wound tissues at the end of the 12-day treatment period. Topical EPO treatment significantly reduced the time to final wound closure. This increased rate of closure of the two EPO-treated wounds in diabetic rats was associated with increased MVD, VEGF, and HP contents, and a reduced extent of apoptosis. In light of our finding that topical EPO treatment promotes skin wound repair in diabetic rats, we propose that topical EPO treatment is a therapeutically beneficial method of treating chronic diabetic wounds.

  1. Wound care matrices for chronic leg ulcers: role in therapy

    Directory of Open Access Journals (Sweden)

    Sano H

    2015-07-01

    Full Text Available Hitomi Sano,1 Sachio Kouraba,2 Rei Ogawa11Department of Plastic, Reconstructive, and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan; 2Sapporo Wound Care and Anti-Aging Laboratory, Sapporo, JapanAbstract: Chronic leg ulcers are a significant health care concern. Although deep wounds are usually treated by flap transfers, the operation is invasive and associates with serious complications. Skin grafts may be a less invasive means of covering wounds. However, skin grafts cannot survive on deep defects unless high-quality granulation tissue can first be generated in the defects. Technologies that generate high-quality granulation tissue are needed. One possibility is to use wound care matrices, which are bioengineered skin and soft tissue substitutes. Because they all support the healing process by providing a premade extracellular matrix material, these matrices can be termed “extracellular matrix replacement therapies”. The matrix promotes wound healing by acting as a scaffold for regeneration, attracting host cytokines to the wound, stimulating wound epithelialization and angiogenesis, and providing the wound bed with bioactive components. This therapy has lasting benefits as it not only helps large skin defects to be closed with thin skin grafts or patch grafts but also restores cosmetic appearance and proper function. In particular, since it acts as a layer that slides over the subcutaneous fascia, it provides skin elasticity, tear resistance, and texture. Several therapies and products employing wound care matrices for wound management have been developed recently. Some of these can be applied in combination with negative pressure wound therapy or beneficial materials that promote wound healing and can be incorporated into the matrix. To date, the clinical studies on these approaches suggest that wound care matrices promote spontaneous wound healing or can be used to facilitate skin grafting, thereby avoiding the need to use

  2. Deficiency of liver-derived insulin-like growth factor-I (IGF-I) does not interfere with the skin wound healing rate

    Science.gov (United States)

    Narayanan, Sampath; Grünler, Jacob; Sunkari, Vivekananda Gupta; Calissendorff, Freja S.; Ansurudeen, Ishrath; Illies, Christopher; Svensson, Johan; Jansson, John-Olov; Ohlsson, Claes; Brismar, Kerstin; Catrina, Sergiu-Bogdan

    2018-01-01

    Objective IGF-I is a growth factor, which is expressed in virtually all tissues. The circulating IGF-I is however derived mainly from the liver. IGF-I promotes wound healing and its levels are decreased in wounds with low regenerative potential such as diabetic wounds. However, the contribution of circulating IGF-I to wound healing is unknown. Here we investigated the role of systemic IGF-I on wound healing rate in mice with deficiency of liver-derived IGF-I (LI-IGF-I-/- mice) during normal (normoglycemic) and impaired wound healing (diabetes). Methods LI-IGF-I-/- mice with complete inactivation of the IGF-I gene in the hepatocytes were generated using the Cre/loxP recombination system. This resulted in a 75% reduction of circulating IGF-I. Diabetes was induced with streptozocin in both LI-IGF-I-/- and control mice. Wounds were made on the dorsum of the mice, and the wound healing rate and histology were evaluated. Serum IGF-I and GH were measured by RIA and ELISA respectively. The expression of IGF-I, IGF-II and the IGF-I receptor in the skin were evaluated by qRT-PCR. The local IGF-I protein expression in different cell types of the wounds during wound healing process was analyzed using immunohistochemistry. Results The wound healing rate was similar in LI-IGF-I-/- mice to that in controls. Diabetes significantly delayed the wound healing rate in both LI-IGF-I-/- and control mice. However, no significant difference was observed between diabetic animals with normal or reduced hepatic IGF-I production. The gene expression of IGF-I, IGF-II and IGF-I receptor in skin was not different between any group of animals tested. Local IGF-I levels in the wounds were similar between of LI-IGF-I-/- and WT mice although a transient reduction of IGF-I expression in leukocytes in the wounds of LI-IGF-I-/- was observed seven days post wounding. Conclusion Deficiency in the liver-derived IGF-I does not affect wound healing in mice, neither in normoglycemic conditions nor in

  3. Noninvasive measurement of burn wound depth applying infrared thermal imaging (Conference Presentation)

    Science.gov (United States)

    Jaspers, Mariëlle E.; Maltha, Ilse M.; Klaessens, John H.; Vet, Henrica C.; Verdaasdonk, Rudolf M.; Zuijlen, Paul P.

    2016-02-01

    In burn wounds early discrimination between the different depths plays an important role in the treatment strategy. The remaining vasculature in the wound determines its healing potential. Non-invasive measurement tools that can identify the vascularization are therefore considered to be of high diagnostic importance. Thermography is a non-invasive technique that can accurately measure the temperature distribution over a large skin or tissue area, the temperature is a measure of the perfusion of that area. The aim of this study was to investigate the clinimetric properties (i.e. reliability and validity) of thermography for measuring burn wound depth. In a cross-sectional study with 50 burn wounds of 35 patients, the inter-observer reliability and the validity between thermography and Laser Doppler Imaging were studied. With ROC curve analyses the ΔT cut-off point for different burn wound depths were determined. The inter-observer reliability, expressed by an intra-class correlation coefficient of 0.99, was found to be excellent. In terms of validity, a ΔT cut-off point of 0.96°C (sensitivity 71%; specificity 79%) differentiates between a superficial partial-thickness and deep partial-thickness burn. A ΔT cut-off point of -0.80°C (sensitivity 70%; specificity 74%) could differentiate between a deep partial-thickness and a full-thickness burn wound. This study demonstrates that thermography is a reliable method in the assessment of burn wound depths. In addition, thermography was reasonably able to discriminate among different burn wound depths, indicating its potential use as a diagnostic tool in clinical burn practice.

  4. The time-course analysis of gene expression during wound healing in mouse skin.

    Science.gov (United States)

    Kagawa, Shinichiro; Matsuo, Aya; Yagi, Yoichi; Ikematsu, Kazuya; Tsuda, Ryouichi; Nakasono, Ichiro

    2009-03-01

    RNA analysis has been applied to forensic work to determine wound age. We investigated mRNA expression using quantitative RT-PCR of ten genes, including c-fos, fosB, mitogen-activated protein kinase phosphatase-1 (MKP-1), CD14, chemokine (C-C motif) ligand 9 (CCL9), placenta growth factor (PlGF), mast cell protease-5 (MCP-5), growth arrest specific 5 (Gas5), beta-2 microglobulin (B2M) and major urinary protein-1 (MUP-1), in terms of repair response in adult mice. The expression level of c-fos, fosB and MKP-1 transcripts increased drastically, peaked within 1h, and that of the CD14 and CCL9 transcripts peaked from 12 to 24h. An increase in PlGF and MCP-5 mRNA appeared on about day 5. Gas5, B2M and MUP-1 transcripts showed no significant change. Each gene had differentially expressional patterns with time-course. Our result implied that the observation of the 7 genes in wounded skin could serve to aid in the accurate diagnosis of wound age.

  5. Negative pressure wound therapy using a portable single-use device for free skin grafts on the distal extremity in seven dogs.

    Science.gov (United States)

    Miller, A J; Cashmore, R G; Marchevsky, A M; Havlicek, M; Brown, P M; Fearnside, S M

    2016-09-01

    Retrospective study to describe clinical experience with a portable single-use negative pressure wound therapy device after application of full-thickness meshed skin grafts to wounds on the distal extremities of seven dogs. Seven dogs were treated with portable NPWT after receiving skin grafts; six as the result of tumour resection and one for traumatic injury. Medical records were reviewed and data recorded on patient signalment, cause and location of wound, surgical technique, application and maintenance of portable NPWT, graft survival and outcome, and complications encountered with the system. NPWT was provided for between 4 and 7 days. Five patients were discharged from hospital during the treatment period. Application and maintenance of the portable device was technically easy and no major complications were encountered. Minor complications consisted of fluid accumulation in the evacuation tubing. All dogs achieved 100% graft survival. Application and maintenance of the portable device was technically straightforward. All dogs receiving portable NPWT after transfer of a free skin graft to the distal extremity had a successful outcome. © 2016 Australian Veterinary Association.

  6. Cicatrização conduzida e enxerto de pele parcial no tratamento de feridas Conducted healing and skin graft for the treatment of skin wounds

    Directory of Open Access Journals (Sweden)

    Mauro Ivan Salgado

    2007-02-01

    Full Text Available OBJETIVO: Avaliar comparativamente os tratamentos para área cruenta da pele por meio de cicatrização conduzida (método original de cicatrização cutânea por segunda intenção e enxerto de pele autógena. MÉTODOS: Foram utilizados 17 coelhos, dos quais foram retirados dois segmentos de pele, um de cada lado do dorso. De um lado, a área doadora do enxerto permaneceu cruenta, para cicatrização conduzida (A. Do outro lado do dorso, a pele foi implantada como enxerto (B, para recobrir a área cruenta. Assim, cada animal tinha em seu dorso os dois tipos de tratamentos (A e B. Os coelhos foram distribuídos em dois grupos, de acordo com o tamanho das feridas provocadas em seu dorso: grupo 1 - A e B (4 cm² e grupo 2 - A e B (25 cm². Avaliou-se o tempo de cicatrização de ambos os tratamentos: grupo 1, após 19 dias, e grupo 2, após 35 dias. Os aspectos macro e microscópico finais da cicatrização foram analisados comparativamente nos quatro subgrupos. À histologia, avaliaram-se o número e a espessura de estratos da epiderme, a presença de células inflamatórias, bem como de cistos epidérmicos e de células gigantes. O estudo estatístico usou os testes não paramétricos de Fischer, Kruskall-Wallis e Wilcoxon. RESULTADOS: Não se observou diferença macro ou microscópica entre a cicatrização conduzida e o enxerto de pele. CONCLUSÃO: A cicatrização conduzida parece ser uma boa opção terapêutica para áreas cruentas cutâneas em coelhos.OBJECTIVE: The present study compared the treatment of skin wounds by means of conducted healing (an innovative method for treatment of secondary healing and autogenous skin graft. METHODS: Seventeen rabbits were submitted to removal of two skin segments, one on each side of the dorsum. The graft donor area was left as a wound for conducted healing (A and was submitted only to debridement, local care and dressings. The skin removed from the above mentioned side was implanted as a graft (B to

  7. DETERMINATION OF SUPERFICIAL ABSORBED DOSE FROM EXTERNAL EXPOSURE OF WEAKLY PENETRATING RADIATIONS

    Institute of Scientific and Technical Information of China (English)

    陈丽姝

    1994-01-01

    The methods of determining the superficial absorbed dose distributions in a water phantom by means of the experiments and available theories have been reported.The distributions of beta dose were measured by an extrapolation ionization chamber at definite depthes corresponding to some superficial organs and tissues such as the radiosensitive layer of the skin,cornea,sclera,anterior chamber and lens of eyeball.The ratios among superficial absorbed dose D(0.07) and average absorbed doses at the depthes 1,2,3,4,5 and 6mm are also obtained with Cross's methods.They can be used for confining the deterministic effects of some superficial tissues and organs such as the skin and the components of eyeball for weakly penetrating radiations.

  8. Characterization of a Cryopreserved Split-Thickness Human Skin Allograft-TheraSkin.

    Science.gov (United States)

    Landsman, Adam; Rosines, Eran; Houck, Amanda; Murchison, Angela; Jones, Alyce; Qin, Xiaofei; Chen, Silvia; Landsman, Arnold R

    2016-09-01

    The purpose of this study was to examine the characteristics of a cryopreserved split-thickness skin allograft produced from donated human skin and compare it with fresh, unprocessed human split-thickness skin. Cutaneous wound healing is a complex and organized process, where the body re-establishes the integrity of the injured tissue. However, chronic wounds, such as diabetic or venous stasis ulcers, are difficult to manage and often require advanced biologics to facilitate healing. An ideal wound care product is able to directly influence wound healing by introducing biocompatible extracellular matrices, growth factors, and viable cells to the wound bed. TheraSkin (processed by LifeNet Health, Virginia Beach, Virginia, and distributed by Soluble Systems, Newport News, Virginia) is a minimally manipulated, cryopreserved split-thickness human skin allograft, which contains natural extracellular matrices, native growth factors, and viable cells. The authors characterized TheraSkin in terms of the collagen and growth factor composition using ELISA, percentage of apoptotic cells using TUNEL analysis, and cellular viability using alamarBlue assay (Thermo Fisher Scientific, Waltham, Massachusetts), and compared these characteristics with fresh, unprocessed human split-thickness skin. It was found that the amount of the type I and type III collagen, as well as the ratio of type I to type III collagen in TheraSkin, is equivalent to fresh unprocessed human split-thickness skin. Similar quantities of vascular endothelial growth factor, insulinlike growth factor 1, fibroblast growth factor 2, and transforming growth factor β1 were detected in TheraSkin and fresh human skin. The average percent of apoptotic cells was 34.3% and 3.1% for TheraSkin and fresh skin, respectively. Cellular viability was demonstrated in both TheraSkin and fresh skin.

  9. Shored gunshot wound of exit. A phenomenon with identity crisis.

    Science.gov (United States)

    Aguilar, J C

    1983-09-01

    Shored gunshot wound of exit is produced when the outstretched skin is impaled, sandwiched, and crushed between the outgoing bullet and the unyielding object over the exit site, thus leaving an abrasion collar on the wound margin. Proper coaptation of the wound margin is impossible because of the loss of skin just like those observed in entrance wounds. In contrast to the entrance wound, the supported exit wound shows a scalloped or punched-out abrasion collar and sharply contoured skin in between the radiating skin lacerations marginating the abrasion (Fig. 1). Should gunpowder be observed around the exit site, it is often unevenly distributed, and is not associated with searing, gunpowder stippled abrasion, tatooing, and deposition of soot.

  10. Possible role of ginsenoside Rb1 in skin wound healing via regulating senescent skin dermal fibroblast.

    Science.gov (United States)

    Hou, Jingang; Kim, Sunchang

    2018-05-05

    Cellular senescence suppresses cancer by inducing irreversible cell growth arrest. Nevertheless, senescent cells is proposed as causal link with aging and aging-related pathologies. The physiological beneficial functions of senescent cells are still of paucity. Here we show that senescent human dermal fibroblast accelerates keratinocytes scratch wound healing and stimulates differentiation of fibroblast. Using oxidative stress (100 μM H 2 O 2 exposure for 1 h) induction, we successfully triggered fibroblast senescence and developed senescence associated secretory phenotype (SASP). The induction of SASP was regulated by p38MAPK/MSK2/NF-κB pathway. Interestingly, inhibition of p38MAPK activation only partially suppressed SASP. However, SASP was significantly inhibited by SB747651A, a specific MSK inhibitor. Additionally, we demonstrate that SASP stimulates migration of keratinocytes and myofibroblast transition of fibroblast, through fold-increased secretion of growth factors, platelet-derived growth factor AA (PDGF-AA) and AB (PDGF-AB), transforming growth factor beta 1 (TGF-β1) and beta 2 (TGF-β2), vascular endothelial growth factor A (VEGF-A) and D (VEGF-D), vascular endothelial growth factor receptor 2 (VEGFR2) and 3 (VEGFR3). Importantly, we also confirmed ginsenoside Rb1 promoted SASP-mediated healing process via p38MAPK/MSK2/NF-κB pathway. The results pointed to senescent fibroblast as a potential mechanism of wound healing control in human skin. Further, it provided a candidate targeted for wound therapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. A prospective intra-individual evaluation of silk compared to Biobrane for the treatment of superficial burns of the hand and face.

    Science.gov (United States)

    Schiefer, Jennifer Lynn; Arens, Elena; Grigutsch, Daniel; Rath, Rebekka; Hoffmann, Alexandra; Fuchs, Paul Christian; Schulz, Alexandra

    2017-05-01

    An ever-increasing number of commercially available dressings have been applied to treat superficial burns with the aim to reduce pain and inflammation and lead to a fast wound healing and scar reduction. Nevertheless the search for cheap and effective wound dressing proceeds. Dressilk ® consisting of silkworm silk showed good results for wound healing in regards to scarring, biocompatibility and reduction of inflammation and pain. Therefore it seemed to be an interesting product for the treatment of superficial burns. In a prospective intra-individual study the healing of superficial burns was evaluated after the treatment with Dressilk ® and Biobrane ® in 30 patients with burns of the hand and face. During wound healing pain, active bleeding, exudation, dressing change and inflammation were evaluated using the Verbal Rating Scale 1-10. Three months later scar appearance was assessed by VSS (Vancouver Scar Scale) and POSAS (Patient and Observer Scar Scale). With regard to re-epithelialization, pain, inflammation and acute bleeding both dressings were equivalent. High subjective satisfaction rates were reported for both Dressilk ® and Biobrane ® dressings in regard to comfort and mobility of the face. Biobrane ® , applied as a glove was subjectively preferred for burns of the hand. Regarding their cost efficiency Dressilk ® was clearly superior to Biobrane ® . Long-term results were similar. The "ideal" wound dressing maximizes patients' comfort while reducing pain and promoting wound healing. Dressilk ® and Biobrane ® both provided an effective and safe healing environment, showing low overall complication rates with respect to infection and exudation on superficial burns of the hand and face. Therefore Dressilk ® , being clearly superior to Biobrane ® in cost efficiency is an interesting alternative especially for the treatment of superficial burns of faces. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  12. Advances in plasma skin regeneration.

    Science.gov (United States)

    Foster, K Wade; Moy, Ronald L; Fincher, Edgar F

    2008-09-01

    Plasma skin regeneration (PSR) is a novel method of resurfacing that uses plasma energy to create a thermal effect on the skin. PSR is different from lasers, light sources, and ablative lasers in that it is not chromophore dependent and does not vaporize tissue, but leaves a layer of intact, desiccated epidermis that acts as a natural biologic dressing and promotes wound healing and rapid recovery. Histological studies performed on plasma resurfacing patients have confirmed continued collagen production, reduction of elastosis, and progressive skin rejuvenation beyond 1 year after treatment. PSR has received US Food and Drug Administration 510 (k) clearance for treatment of rhytides of the body, superficial skin lesions, actinic keratoses, viral papillomata, and seborrheic keratoses. PSR also has beneficial effects in the treatment of other conditions including dyschromias, photoaging, skin laxity, and acne scars. The safety profile of PSR is excellent, and there have been no reports of demarcation lines in perioral, periorbital, or jawline areas, as can sometimes be observed following CO2 resurfacing. PSR is effective in improving facial and periorbital rhytides and can be used on nonfacial sites, including the hands, neck, and chest. Numerous treatment protocols with variable energy settings allow for individualized treatments and provide the operator with fine control over the degree of injury and length of subsequent recovery time.

  13. Beneficial effects of a novel shark-skin collagen dressing for the promotion of seawater immersion wound healing.

    Science.gov (United States)

    Shen, Xian-Rong; Chen, Xiu-Li; Xie, Hai-Xia; He, Ying; Chen, Wei; Luo, Qun; Yuan, Wei-Hong; Tang, Xue; Hou, Deng-Yong; Jiang, Ding-Wen; Wang, Qing-Rong

    2017-10-27

    Wounded personnel who work at sea often encounter a plethora of difficulties. The most important of these difficulties is seawater immersion. Common medical dressings have little effect when the affected area is immersed in seawater, and only rarely dressings have been reported for the treatment of seawater-immersed wounds. The objective of this study is to develop a new dressing which should be suitable to prevent the wound from seawater immersion and to promote the wound healing. Shark skin collagen (SSC) was purified via ethanol de-sugaring and de-pigmentation and adjusted for pH. A shark skin collagen sponge (SSCS) was prepared by freeze-drying. SSCS was attached to an anti-seawater immersion polyurethane (PU) film (SSCS + PU) to compose a new dressing. The biochemical properties of SSC and physicochemical properties of SSCS were assessed by standard methods. The effects of SSCS and SSCS + PU on the healing of seawater-immersed wounds were studied using a seawater immersion rat model. For the detection of SSCS effects on seawater-immersed wounds, 12 SD rats, with four wounds created in each rat, were divided into four groups: the 3rd day group, 5th day group, 7th day group and 12th day group. In each group, six wounds were treated with SSCS, three wounds treated with chitosan served as the positive control, and three wounds treated with gauze served as the negative control. For the detection of the SSCS + PU effects on seawater-immersed wounds, 36 SD rats were divided into three groups: the gauze (GZ) + PU group, chitosan (CS) + PU group and SSCS + PU group, with 12 rats in each group, and two wounds in each rat. The wound sizes were measured to calculate the healing rate, and histomorphology and the immunohistochemistry of the CD31 and TGF-β expression levels in the wounded tissues were measured by standard methods. The results of Ultraviolet-visible (UV-vis) spectrum, Fourier-transform infrared (FTIR) spectrum, circular dichroism (CD) spectra

  14. Anterior gradient 2 is induced in cutaneous wound and promotes wound healing through its adhesion domain.

    Science.gov (United States)

    Zhu, Qi; Mangukiya, Hitesh Bhagavanbhai; Mashausi, Dhahiri Saidi; Guo, Hao; Negi, Hema; Merugu, Siva Bharath; Wu, Zhenghua; Li, Dawei

    2017-09-01

    Anterior gradient 2 (AGR2), a member of protein disulfide isomerase (PDI) family, is both located in cytoplasm and secreted into extracellular matrix. The orthologs of AGR2 have been linked to limb regeneration in newt and wound healing in zebrafish. In mammals, AGR2 influences multiple cell signaling pathways in tumor formation and in normal cell functions related to new tissue formation like angiogenesis. However, the function of AGR2 in mammalian wound healing remains unknown. This study aimed to investigate AGR2 expression and its function during skin wound healing and the possible application of external AGR2 in cutaneous wound to accelerate the healing process. Our results showed that AGR2 expression was induced in the migrating epidermal tongue and hyperplastic epidermis after skin excision. Topical application of recombinant AGR2 significantly accelerated wound-healing process by increasing the migration of keratinocytes (Kera.) and the recruitment of fibroblasts (Fibro.) near the wounded area. External AGR2 also promoted the migration of Kera. and Fibro. in vitro in a dose-dependent manner. The adhesion domain of AGR2 was required for the formation of focal adhesions in migrating Fibro., leading to the directional migration along AGR2 gradient. These results indicate that recombinant AGR2 accelerates skin wound healing through regulation of Kera. and Fibro. migration, thus demonstrating its potential utility as an alternative strategy of the therapeutics to accelerate the healing of acute or chronic skin wounds. © 2017 Federation of European Biochemical Societies.

  15. Red Maca (Lepidium meyenii), a Plant from the Peruvian Highlands, Promotes Skin Wound Healing at Sea Level and at High Altitude in Adult Male Mice.

    Science.gov (United States)

    Nuñez, Denisse; Olavegoya, Paola; Gonzales, Gustavo F; Gonzales-Castañeda, Cynthia

    2017-12-01

    Nuñez, Denisse, Paola Olavegoya, Gustavo F. Gonzales, and Cynthia Gonzales-Castañeda. Red maca (Lepidium meyenii), a plant from the Peruvian highlands, promotes skin wound healing at sea level and at high altitude in adult male mice. High Alt Med Biol 18:373-383, 2017.-Wound healing consists of three simultaneous phases: inflammation, proliferation, and remodeling. Previous studies suggest that there is a delay in the healing process in high altitude, mainly due to alterations in the inflammatory phase. Maca (Lepidium meyenii) is a Peruvian plant with diverse biological properties, such as the ability to protect the skin from inflammatory lesions caused by ultraviolet radiation, as well as its antioxidant and immunomodulatory properties. The aim of this study was to determine the effect of high altitude on tissue repair and the effect of the topical administration of the spray-dried extract of red maca (RM) in tissue repair. Studies were conducted in male Balb/c mice at sea level and high altitude. Lesions were inflicted through a 10 mm-diameter excisional wound in the skin dorsal surface. Treatments consisted of either (1) spray-dried RM extract or (2) vehicle (VH). Animals wounded at high altitude had a delayed healing rate and an increased wound width compared with those at sea level. Moreover, wounding at high altitude was associated with an increase in inflammatory cells. Treatment with RM accelerated wound closure, decreased the level of epidermal hyperplasia, and decreased the number of inflammatory cells at the wound site. In conclusion, RM at high altitude generate a positive effect on wound healing, decreasing the number of neutrophils and increasing the number of macrophages in the wound healing at day 7 postwounding. This phenomenon is not observed at sea level.

  16. [Effects of human amniotic epithelial stem cells-derived exosomes on healing of wound with full-thickness skin defect in rats].

    Science.gov (United States)

    Zhao, B; Wu, G F; Zhang, Y J; Zhang, W; Yang, F F; Xiao, D; Zeng, K X; Shi, J H; Su, L L; Hu, D H

    2017-01-20

    Objective: To investigate the effects of human amniotic epithelial stem cells-derived exosomes on healing of wound with full-thickness skin defect in rats. Methods: (1) Human amniotic epithelial stem cells were isolated from the amnion tissue of 5 full-term pregnant women in Department of Obstetrics of our hospital by the method of trypsin digestion, and their morphology was observed. The third passage of cells were stained with rhodamine-phalloidin for cytoskeleton observation. The third passage of cells were identified with flow cytometry through the detection of expressions of cell surface markers CD29, CD31, CD34, CD90, CD105, SSEA3, SSEA4 and immunity-related marker human leukocyte antigen-D related site (HLA-DR). The third passage of cells were also assessed the ability of adipogenic and osteogenic differentiation. (2) The third passage of human amniotic epithelial stem cells were cultured in DMEM medium supplemented with 10% exosome-free fetal bovine serum. Exosomes were isolated from culture supernatant by the method of ultracentrifugation and represented with scanning electron microscope for morphologic observation. (3) Six adult SD rats were anesthetized, and four 1 cm×1 cm sized wounds with full-thickness skin defect were made on the back of each rat. The wounds on the back of each rat were divided into control group, 25 μg/mL exosomes group, 50 μg/mL exosomes group, and 100 μg/mL exosomes group according to the random number table (with 6 wounds in each group), and a total volume of 100 μL phosphate buffered saline, 25 μg/mL exosomes, 50 μg/mL exosomes, and 100 μg/mL exosomes were evenly injected around the wound through multiple subcutaneous sites, respectively. The wound healing rate was calculated based on measurement on post injury day (PID) 7, 14, and 21. On PID 21, the healed wound tissue of each group was collected and stained with HE to observe and count skin accessories, and the arrangement of collagen fibers was observed with Masson

  17. Mast Cells Regulate Wound Healing in Diabetes.

    Science.gov (United States)

    Tellechea, Ana; Leal, Ermelindo C; Kafanas, Antonios; Auster, Michael E; Kuchibhotla, Sarada; Ostrovsky, Yana; Tecilazich, Francesco; Baltzis, Dimitrios; Zheng, Yongjun; Carvalho, Eugénia; Zabolotny, Janice M; Weng, Zuyi; Petra, Anastasia; Patel, Arti; Panagiotidou, Smaro; Pradhan-Nabzdyk, Leena; Theoharides, Theoharis C; Veves, Aristidis

    2016-07-01

    Diabetic foot ulceration is a severe complication of diabetes that lacks effective treatment. Mast cells (MCs) contribute to wound healing, but their role in diabetes skin complications is poorly understood. Here we show that the number of degranulated MCs is increased in unwounded forearm and foot skin of patients with diabetes and in unwounded dorsal skin of diabetic mice (P diabetic mice. Pretreatment with the MC degranulation inhibitor disodium cromoglycate rescues diabetes-associated wound-healing impairment in mice and shifts macrophages to the regenerative M2 phenotype (P diabetic mice deficient in MCs have delayed wound healing compared with their wild-type (WT) controls, implying that some MC mediator is needed for proper healing. MCs are a major source of vascular endothelial growth factor (VEGF) in mouse skin, but the level of VEGF is reduced in diabetic mouse skin, and its release from human MCs is reduced in hyperglycemic conditions. Topical treatment with the MC trigger substance P does not affect wound healing in MC-deficient mice, but improves it in WT mice. In conclusion, the presence of nondegranulated MCs in unwounded skin is required for proper wound healing, and therapies inhibiting MC degranulation could improve wound healing in diabetes. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  18. Open Wound Healing In Vivo: Monitoring Binding and Presence of Adhesion/Growth-Regulatory Galectins in Rat Skin during the Course of Complete Re-Epithelialization

    International Nuclear Information System (INIS)

    Gál, Peter; Vasilenko, Tomáš; Kostelníková, Martina; Jakubco, Ján; Kovác, Ivan; Sabol, František; André, Sabine; Kaltner, Herbert; Gabius, Hans-Joachim; Smetana, Karel Jr.

    2011-01-01

    Galectins are a family of carbohydrate-binding proteins that modulate inflammation and immunity. This functional versatility prompted us to perform a histochemical study of their occurrence during wound healing using rat skin as an in vivo model. Wound healing is a dynamic process that exhibits three basic phases: inflammation, proliferation, and maturation. In this study antibodies against keratins-10 and -14, wide-spectrum cytokeratin, vimentin, and fibronectin, and non-cross-reactive antibodies to galectins-1, -2, and -3 were applied to frozen sections of skin specimens two days (inflammatory phase), seven days (proliferation phase), and twenty-one days (maturation phase) after wounding. The presence of binding sites for galectins-1, -2, -3, and -7 as a measure for assessing changes in reactivity was determined using labeled proteins as probes. Our study detected a series of alterations in galectin parameters during the different phases of wound healing. Presence of galectin-1, for example, increased during the early phase of healing, whereas galectin-3 rapidly decreased in newly formed granulation tissue. In addition, nuclear reactivity of epidermal cells for galectin-2 occurred seven days post-trauma. The dynamic regulation of galectins during re-epithelialization intimates a role of these proteins in skin wound healing, most notably for galectin-1 increasing during the early phases and galectin-3 then slightly increasing during later phases of healing. Such changes may identify a potential target for the development of novel drugs to aid in wound repair and patients’ care

  19. Development of haemostatic decontaminants for the treatment of wounds contaminated with chemical warfare agents. 2: evaluation of in vitro topical decontamination efficacy using undamaged skin.

    Science.gov (United States)

    Dalton, Christopher H; Hall, Charlotte A; Lydon, Helen L; Chipman, J K; Graham, John S; Jenner, John; Chilcott, Robert P

    2015-05-01

    The risk of penetrating, traumatic injury occurring in a chemically contaminated environment cannot be discounted. Should a traumatic injury be contaminated with a chemical warfare (CW) agent, it is likely that standard haemostatic treatment options would be complicated by the need to decontaminate the wound milieu. Thus, there is a need to develop haemostatic products that can simultaneously arrest haemorrhage and decontaminate CW agents. The purpose of this study was to evaluate a number of candidate haemostats for efficacy as skin decontaminants against three CW agents (soman, VX and sulphur mustard) using an in vitro diffusion cell containing undamaged pig skin. One haemostatic product (WoundStat™) was shown to be as effective as the standard military decontaminants Fuller's earth and M291 for the decontamination of all three CW agents. The most effective haemostatic agents were powder-based and use fluid absorption as a mechanism of action to sequester CW agent (akin to the decontaminant Fuller's earth). The envisaged use of haemostatic decontaminants would be to decontaminate from within wounds and from damaged skin. Therefore, WoundStat™ should be subject to further evaluation using an in vitro model of damaged skin. Copyright © 2014 Crown copyright. Journal of Applied Toxicology © 2014 John Wiley & Sons, Ltd.

  20. Human Amniotic Membrane Dressing: an Excellent Method for Outpatient Management of Burn Wounds

    Directory of Open Access Journals (Sweden)

    Ali Akbar Mohammadi

    2009-03-01

    Full Text Available Background: Burns are among the most common traumas indeveloping countries, which consume large amounts of medicalresources. It is important to find an appropriate materialfor dressing of burn wounds that improves healing and is readilyavailable, easily applicable, and economical.Methods: In a single-blind randomized controlled clinicaltrial from March to October 2006, 211 patients with less than20% burn were enrolled into two groups. The first group contained104 patients with average burn of 11.90± 3.80% of totalbody surface area (TBSA for whom amnion dressing wasused. The second group composed of 107 patients with averageburn of 12.30± 4.14% of TBSA treated with routine silversulfadiazine dressing.Results: Amniotic membrane usage was accompanied by accelerationin wound healing, less need for skin graft, and lesspain. The mean healing time in superficial parts of burnwounds in the amnion group was significantly shorter than thecontrol group (9.50±2.13 v 14.30±2.60 days; P value < 0.01.The extent of the wound with granulation tissue which neededskin graft was less in the amnion group (2.10 ± 2.21% v 4.20±1.44%; P value < 0.01.Conclusion: Widespread use of amniotic membrane dressingis recommended for limited burn wound management.

  1. Continuous Aspirin Use Does Not Increase Bleeding Risk of Split-Thickness Skin Transplantation Repair to Chronic Wounds.

    Science.gov (United States)

    Sun, Yanwei; Wang, Yibing; Li, Liang; Zhang, Zheng; Wang, Ning; Wu, Dan

    Discontinuation of aspirin therapy before cutaneous surgery may cause serious complications. The aim of this prospective study was to evaluate the bleeding risk of split-thickness skin transplantation repair to chronic wounds in patients on aspirin therapy. A total of 97 patients who underwent split-thickness skin transplantation surgery of chronic wounds during a 2-year period were enrolled. They were categorized on the basis of aspirin therapies. The primary outcome was postoperative bleeding and bleeding complications. Univariate analysis was performed to examine the association between aspirin and bleeding complications. Among the 26 patients taking aspirin continuously in group A, there were 5 bleeding complications (19.23%). Among the 55 nonusers in group B, there were 10 bleeding complications (18.18%). Among the 16 discontinuous patients in group C, there were 3 bleeding complications (18.75%). No statistical differences were found among the groups ( P = .956). Univariate analysis showed that continuous aspirin use was not significantly associated with bleeding complications (odds ratio, 0.933; 95% confidence interval, 0.283-3.074; P = .910 in the aspirin and control groups) and that discontinuous aspirin use was not significantly associated with bleeding complications (odds ratio, 0.963; 95% confidence interval, 0.230-4.025; P = .959 in the aspirin and control groups; odds ratio, 0.969; 95% confidence interval, 0.198-4.752; P = .969 in the aspirin and discontinuous groups). Continuous aspirin use does not produce an additional bleeding risk in patients who undergo split-thickness skin transplantation repair of chronic wounds.

  2. The molecular biology in wound healing & non-healing wound.

    Science.gov (United States)

    Qing, Chun

    2017-08-01

    The development of molecular biology and other new biotechnologies helps us to recognize the wound healing and non-healing wound of skin in the past 30 years. This review mainly focuses on the molecular biology of many cytokines (including growth factors) and other molecular factors such as extracellular matrix (ECM) on wound healing. The molecular biology in cell movement such as epidermal cells in wound healing was also discussed. Moreover many common chronic wounds such as pressure ulcers, leg ulcers, diabetic foot wounds, venous stasis ulcers, etc. usually deteriorate into non-healing wounds. Therefore the molecular biology such as advanced glycation end products (AGEs) and other molecular factors in diabetes non-healing wounds were also reviewed. Copyright © 2017 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  3. miRNA delivery for skin wound healing.

    Science.gov (United States)

    Meng, Zhao; Zhou, Dezhong; Gao, Yongsheng; Zeng, Ming; Wang, Wenxin

    2017-12-19

    The wound healing has remained a worldwide challenge as one of significant public health problems. Pathological scars and chronic wounds caused by injury, aging or diabetes lead to impaired tissue repair and regeneration. Due to the unique biological wound environment, the wound healing is a highly complicated process, efficient and targeted treatments are still lacking. Hence, research-driven to discover more efficient therapeutics is a highly urgent demand. Recently, the research results have revealed that microRNA (miRNA) is a promising tool in therapeutic and diagnostic fields because miRNA is an essential regulator in cellular physiology and pathology. Therefore, new technologies for wound healing based on miRNA have been developed and miRNA delivery has become a significant research topic in the field of gene delivery. Copyright © 2017. Published by Elsevier B.V.

  4. The mechanical fingerprint of murine excisional wounds.

    Science.gov (United States)

    Pensalfini, Marco; Haertel, Eric; Hopf, Raoul; Wietecha, Mateusz; Werner, Sabine; Mazza, Edoardo

    2018-01-01

    A multiscale mechanics approach to the characterization of murine excisional wounds subjected to uniaxial tensile loading is presented. Local strain analysis at a physiological level of tension uncovers the presence of two distinct regions within the wound: i) a very compliant peripheral cushion and ii) a core area undergoing modest deformation. Microstructural visualizations of stretched wound specimens show negligible engagement of the collagen located in the center of a 7-day old wound; fibers remain coiled despite the applied tension, confirming the existence of a mechanically isolated wound core. The compliant cushion located at the wound periphery appears to protect the newly-formed tissue from excessive deformation during the phase of new tissue formation. The early remodeling phase (day 14) is characterized by a restored mechanical connection between far field and wound center. The latter remains less deformable, a characteristic possibly required for cell activities during tissue remodeling. The distribution of fibrillary collagens at these two time points corresponds well to the identified heterogeneity of mechanical properties of the wound region. This novel approach provides new insight into the mechanical properties of wounded skin and will be applicable to the analysis of compound-treated wounds or wounds in genetically modified tissue. Biophysical characterization of healing wounds is crucial to assess the recovery of the skin barrier function and the associated mechanobiological processes. For the first time, we performed highly resolved local deformation analysis to identify mechanical characteristics of the wound and its periphery. Our results reveal the presence of a compliant cushion surrounding a stiffer wound core; we refer to this heterogeneous mechanical behavior as "mechanical fingerprint" of the wound. The mechanical response is shown to progress towards that of the intact skin as healing takes place. Histology and multiphoton microscopy

  5. A review of patient and skin characteristics associated with skin tears.

    Science.gov (United States)

    Rayner, R; Carville, K; Leslie, G; Roberts, P

    2015-09-01

    Skin tears are the most common wound among the elderly and have the potential to cause infection, form chronic wounds, reduce quality of life and increase health-care costs. Our aim was to identify studies that reviewed patient and skin characteristics associated with skin tears. A review of skin tear studies reported in the English literature between 1980 and 2013 was undertaken using the following electronic databases: PubMed, Medline, CINAHL, Embase, Scopus, Evidence Based and Medicine Reviews (EBM). Search terms included aged, skin, tears or lacerations, skin tearing, geri tear, epidermal tear and prevalence. There were 343 articles found with using the search terms. After abstract review nine were found to be relevant to the search. The principle findings from these eight published articles and one unpublished study revealed that the most common patient characteristics were a history of skin tears, impaired mobility and impaired cognition. Skin characteristics associated with skin tears included senile purpura, ecchymosis and oedema. This review provides an overview of identified patient and skin characteristics that predispose the elderly to skin tears and exposes the lack of research within this domain. R. Rayner is a recipient of a 2013 Australian Postgraduate Award, Curtin University Postgraduate Scholarship and a Wound Management Cooperative Research Centre (CRC) PhD stipend. The School of Nursing, Midwifery and Paramedicine, Curtin University and the Silver Chain Group, Western Australia are participants in the Wound Management Innovation CRC. No conflict of interest exists among the authors.

  6. Ischaemic wound complications in above-knee amputations in relation to the skin perfusion pressure

    DEFF Research Database (Denmark)

    Holstein, P

    1980-01-01

    Healing of the stumps in 59 above-knee amputations was correlated with the local skin perfusion pressure (SPP) measured preoperatively as the external pressure required to stop isotope washout using 131I-(-) or 125I-(-) antipyrine mixed with histamine. Out of the 11 cases with an SPP below 30 mm...... ischaemic wound complications in above-knee amputations as has previously been shown to be the case in below-knee amputations....

  7. Local superficial hyperthermia in combination with low-dose radiation therapy for palliation of superficially localized metastases

    International Nuclear Information System (INIS)

    Owczarek, G.; Miszczyk, L.

    2005-01-01

    Full text: The aim of this study is to evaluate the response of superficially located metastases and local toxicity to microwave hyperthermia combined with radiation therapy. From May 2003 through December 2004 58 patients (33 male, 25 female; mean age 60 years) with lymph nodes or skin metastases were treated with microwave superficial hyperthermia combined with low-dose radiation therapy. Hyperthermia was administered twice weekly with high frequency applicator (∼900 Mhz) with water bolus. The temperature was set to 43 o C for 45 minutes. Radiotherapy was performed daily with dose 2 Gy or 4 Gy per fraction, to a total dose 20 Gy. There were 47 patients with carcinoma, 4 with sarcoma, 7 with melanoma. Treated regions were: head and neck (37 patients), chest wall 8, abdomen wall and groins 4, upper and lower limb 2 and 8 patients respectively. Primary tumor sites were: head and neck region (9 patients), lung 15, alimentary tract 8, breast 5, soft tissue 8, urogenital 4 and 9 patients with primary tumor site unknown. The toxicity was evaluated using 6 step scale: 0-no skin reaction, 1-faint red mark, 2-distinct red mark, 3-blisters, 4-brown mark, 5-necrosis. Presence of pain and its intensity were also analyzed. Diameter of tumor after the treatment was observed. Complete response was achieved in 5 patients (8.5 %), and partial response in 29 patients (50 %), no response was observed in 12 patients (20 %) and progression of tumor in 7 patients (12 %). No skin reaction was observed in 3 patients, faint red mark in 14 patients, distinct red mark in 28 patients, blisters in 8 patients, brown mark in 4 patients and necrosis in 1 patient. The pain occurred in 9 patients but it was no the cause of stopping treatment. Local superficial hyperthermia combined with low-dose radiation therapy is an effective method of treatment in a proportion of patients with superficial metastases. This combination of treatment modalities is well tolerated and is useful for palliation

  8. The effect of wound dressings on a bio-engineered human dermo-epidermal skin substitute in a rat model

    OpenAIRE

    Hüging, Martina; Biedermann, Thomas; Sobrio, Monia; Meyer, Sarah; Böttcher-Haberzeth, Sophie; Manuel, Edith; Horst, Maya; Hynes, Sally; Reichmann, Ernst; Schiestl, Clemens; Hartmann-Fritsch, Fabienne

    2017-01-01

    Autologous bio-engineered dermo-epidermal skin substitutes are a promising treatment for large skin defects such as burns. For their successful clinical application, the graft dressing must protect and support the keratinocyte layer and, in many cases, possess antimicrobial properties. However, silver in many antimicrobial dressings may inhibit keratinocyte growth and differentiation. The purpose of our study is to evaluate the effect of various wound dressings on the healing of a human hydro...

  9. Evaluating optimal superficial limb perfusion at different angles using non-invasive micro-lightguide spectrophotometry.

    Science.gov (United States)

    Darmanin, Geraldine; Jaggard, Matthew; Hettiaratchy, Shehan; Nanchahal, Jagdeep; Jain, Abhilash

    2013-06-01

    It is common practice to elevate the limbs postoperatively to reduce oedema and hence optimise perfusion and facilitate rehabilitation. However, elevation may be counterproductive as it reduces the mean perfusion pressure. There are no clear data on the optimal position of the limbs even in normal subjects. The optimal position of limbs was investigated in 25 healthy subjects using a non-invasive micro-lightguide spectrophotometry system "O2C", which indirectly measures skin and superficial tissue perfusion through blood flow, oxygen saturation and relative haemoglobin concentration. We found a reduction in skin and superficial tissue blood flow of 17% (p=0.0001) on arm elevation (180° shoulder flexion) as compared to heart level and an increase in skin and superficial tissue blood flow of 25% (p=0.02) on forearm elevation of 45°. Lower limb skin and superficial tissue blood flow decreased by 15% (p=0.004) on elevation to 47 cm and by 70% on dependency (p=0.0001) compared to heart level. However, on elevation of the lower limb there was also a 28% reduction in superficial venous pooling (p=0.0001) compared to heart level. In the normal limb, the position for optimal superficial perfusion of the upper limb is with the arm placed at heart level and forearm at 45°. In the lower limb the optimal position for superficial perfusion would be at heart level. However, some degree of elevation may be useful if there is an element of venous congestion. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. Differential Apoptosis in Mucosal and Dermal Wound Healing

    Science.gov (United States)

    Johnson, Ariel; Francis, Marybeth; DiPietro, Luisa Ann

    2014-01-01

    Objectives: Dermal and mucosal healing are mechanistically similar. However, scarring and closure rates are dramatically improved in mucosal healing, possibly due to differences in apoptosis. Apoptosis, nature's preprogrammed form of cell death, occurs via two major pathways, extrinsic and intrinsic, which intersect at caspase3 (Casp3) cleavage and activation. The purpose of this experiment was to identify the predominant pathways of apoptosis in mucosal and dermal wound healing. Approach: Wounds (1 mm biopsy punch) were made in the dorsal skin (n=3) or tongue (n=3) of female Balb/C mice aged 6 weeks. Wounds were harvested at 6 h, 24 h, day 3 (D3), D5, D7, and D10. RNA was isolated and analyzed using real time reverse transcriptase–polymerase chain reaction. Expression levels for genes in the intrinsic and extrinsic apoptotic pathways were compared in dermal and mucosal wounds. Results: Compared to mucosal healing, dermal wounds exhibited significantly higher expression of Casp3 (at D5; phealing compared to skin. Conclusion: Expression patterns of key regulators of apoptosis in wound healing indicate that apoptosis occurs predominantly through the intrinsic pathway in the healing mucosa, but predominantly through the extrinsic pathway in the healing skin. The identification of differences in the apoptotic pathways in skin and mucosal wounds may allow the development of therapeutics to improve skin healing. PMID:25493209

  11. Effect of a Semisolid Formulation of Linum usitatissimum L. (Linseed Oil on the Repair of Skin Wounds

    Directory of Open Access Journals (Sweden)

    Eryvelton de Souza Franco

    2012-01-01

    Full Text Available The purpose of this study was to investigate the effects of a semisolid formulation of linseed oil, SSFLO (1%, 5%, or 10% or in natura linseed oil on skin wounds of rats. We used wound models, incisional and excisional, to evaluate, respectively, the contraction/reepithelialization of the wound and resistance to mechanical traction. The groups (n=6 treated with SSFLO (1% or 5% began the process of reepithelialization, to a significant extent (P<.05, on the sixth day, when compared to the petroleum jelly control group. On 14th day for the groups treated with SSFLO (1% or 5%, 100% reepithelialization was found, while in the petroleum jelly control group, this was only 33.33%. Our study showed that topical administration of SSFLO (1% or 5% in excisional wounds allowed reepithelialization in 100% of treated animals. Therefore, a therapeutic potential of linseed oil, when used at low concentrations in the solid pharmaceutical formulations, is suggested for the process of dermal repair.

  12. [Currently available skin substitutes].

    Science.gov (United States)

    Oravcová, Darina; Koller, Ján

    2014-01-01

    The current trend of burn wound care has shifted to more holistic approach of improvement in the long-term form and function of the healed burn wounds and quality of life. Autologous split or full-thickness skin graft are the best definitive burn wound coverage, but it is constrained by the limited available sources, especially in major burns. Donor site morbidities in term of additional wounds and scarring are also of concern of the autograft application. This has demanded the emergence of various skin substitutes in the management of acute burn injury as well as post burn reconstructions. This paper reviews currently available skin substitutes, produced in not for-profit skin banks as well as commercially available. They are divided according to type of material included, as biological, biosynthetic and synthetic and named respectively.

  13. Microporous dermal-mimetic electrospun scaffolds pre-seeded with fibroblasts promote tissue regeneration in full-thickness skin wounds.

    Directory of Open Access Journals (Sweden)

    Paul P Bonvallet

    Full Text Available Electrospun scaffolds serve as promising substrates for tissue repair due to their nanofibrous architecture and amenability to tailoring of chemical composition. In this study, the regenerative potential of a microporous electrospun scaffold pre-seeded with dermal fibroblasts was evaluated. Previously we reported that a 70% collagen I and 30% poly(Ɛ-caprolactone electrospun scaffold (70:30 col/PCL containing 160 μm diameter pores had favorable mechanical properties, supported fibroblast infiltration and subsequent cell-mediated deposition of extracellular matrix (ECM, and promoted more rapid and effective in vivo skin regeneration when compared to scaffolds lacking micropores. In the current study we tested the hypothesis that the efficacy of the 70:30 col/PCL microporous scaffolds could be further enhanced by seeding scaffolds with dermal fibroblasts prior to implantation into skin wounds. To address this hypothesis, a Fischer 344 (F344 rat syngeneic model was employed. In vitro studies showed that dermal fibroblasts isolated from F344 rat skin were able to adhere and proliferate on 70:30 col/PCL microporous scaffolds, and the cells also filled the 160 μm pores with native ECM proteins such as collagen I and fibronectin. Additionally, scaffolds seeded with F344 fibroblasts exhibited a low rate of contraction (~14% over a 21 day time frame. To assess regenerative potential, scaffolds with or without seeded F344 dermal fibroblasts were implanted into full thickness, critical size defects created in F344 hosts. Specifically, we compared: microporous scaffolds containing fibroblasts seeded for 4 days; scaffolds containing fibroblasts seeded for only 1 day; acellular microporous scaffolds; and a sham wound (no scaffold. Scaffolds containing fibroblasts seeded for 4 days had the best response of all treatment groups with respect to accelerated wound healing, a more normal-appearing dermal matrix structure, and hair follicle regeneration

  14. Protection of skin with subcutaneous administration of 5% dextrose in water during superficial radiofrequency ablation in a rabbit model.

    Science.gov (United States)

    Guo, Hui; Liu, Xia-Lei; Wang, Yu-Ling; Li, Jing-Yi; Lu, Wu-Zhu; Xian, Jian-Zhong; Zhang, Bai-Meng; Li, Jian

    2014-06-01

    This study was to evaluate the efficacy of subcutaneous administration of 5% dextrose in water (D5W), to prevent skin injury during radiofrequency (RF) ablation. Twenty-four rabbits were divided into three groups: a pre-injection group, a perfusion group, and a control group. Ablative zones were created in the superficial part of the thigh muscle for 6 min. A needle was placed subcutaneously for injection of D5W, and a thermal sensor was positioned nearby for real-time temperature monitoring. The sizes of the ablative zones were measured by contrast-enhanced ultrasonography, and severity of the observed skin injury were scored semi-quantitatively and compared. The highest temperature, the duration of the temperature above 50 °C, and the rise time of the post-procedure temperature were all highest in the control group (p skin injury was most severe in the control group (p skin injury of the pre-injection group and the perfusion group (p = 0.091), while the skin injury of the perfusion group was less severe than that of the pre-injection group on post-procedure day 14 (p = 0.004). No significant difference was found in the sizes of the ablative zones among the groups (p = 0.720). Subcutaneous perfusion with D5W is effective in protecting the skin against burns during RF ablation without compromising the effect of ablation.

  15. [Wound healing in the elderly].

    Science.gov (United States)

    Eming, S A; Wlaschek, M; Scharffetter-Kochanek, K

    2016-02-01

    Restoration of tissue integrity is essential for host defense and protection of the organism. The efficacy and quality of skin repair varies significantly over a person's lifetime. Whereas prenatal wound healing is characterized by regeneration and scarless healing, scarring, fibrosis, and loss of function are features of postnatal repair. In fact, aging is the prominent risk factor for chronic wounds, skin fragility, infections, comorbidities, and decreased quality of life. Current strategies for restoration of tissue integrity and wound therapy are not sufficient and require further investigation of the underlying pathomechanisms and the development of causal-based concepts.

  16. Modeling of anisotropic wound healing

    Science.gov (United States)

    Valero, C.; Javierre, E.; García-Aznar, J. M.; Gómez-Benito, M. J.; Menzel, A.

    2015-06-01

    Biological soft tissues exhibit non-linear complex properties, the quantification of which presents a challenge. Nevertheless, these properties, such as skin anisotropy, highly influence different processes that occur in soft tissues, for instance wound healing, and thus its correct identification and quantification is crucial to understand them. Experimental and computational works are required in order to find the most precise model to replicate the tissues' properties. In this work, we present a wound healing model focused on the proliferative stage that includes angiogenesis and wound contraction in three dimensions and which relies on the accurate representation of the mechanical behavior of the skin. Thus, an anisotropic hyperelastic model has been considered to analyze the effect of collagen fibers on the healing evolution of an ellipsoidal wound. The implemented model accounts for the contribution of the ground matrix and two mechanically equivalent families of fibers. Simulation results show the evolution of the cellular and chemical species in the wound and the wound volume evolution. Moreover, the local strain directions depend on the relative wound orientation with respect to the fibers.

  17. Cellularized Bilayer Pullulan-Gelatin Hydrogel for Skin Regeneration.

    Science.gov (United States)

    Nicholas, Mathew N; Jeschke, Marc G; Amini-Nik, Saeid

    2016-05-01

    Skin substitutes significantly reduce the morbidity and mortality of patients with burn injuries and chronic wounds. However, current skin substitutes have disadvantages related to high costs and inadequate skin regeneration due to highly inflammatory wounds. Thus, new skin substitutes are needed. By combining two polymers, pullulan, an inexpensive polysaccharide with antioxidant properties, and gelatin, a derivative of collagen with high water absorbency, we created a novel inexpensive hydrogel-named PG-1 for "pullulan-gelatin first generation hydrogel"-suitable for skin substitutes. After incorporating human fibroblasts and keratinocytes onto PG-1 using centrifugation over 5 days, we created a cellularized bilayer skin substitute. Cellularized PG-1 was compared to acellular PG-1 and no hydrogel (control) in vivo in a mouse excisional skin biopsy model using newly developed dome inserts to house the skin substitutes and prevent mouse skin contraction during wound healing. PG-1 had an average pore size of 61.69 μm with an ideal elastic modulus, swelling behavior, and biodegradability for use as a hydrogel for skin substitutes. Excellent skin cell viability, proliferation, differentiation, and morphology were visualized through live/dead assays, 5-bromo-2'-deoxyuridine proliferation assays, and confocal microscopy. Trichrome and immunohistochemical staining of excisional wounds treated with the cellularized skin substitute revealed thicker newly formed skin with a higher proportion of actively proliferating cells and incorporation of human cells compared to acellular PG-1 or control. Excisional wounds treated with acellular or cellularized hydrogels showed significantly less macrophage infiltration and increased angiogenesis 14 days post skin biopsy compared to control. These results show that PG-1 has ideal mechanical characteristics and allows ideal cellular characteristics. In vivo evidence suggests that cellularized PG-1 promotes skin regeneration and may

  18. Evaluation of dermal-epidermal skin equivalents ('composite-skin') of human keratinocytes in a collagen-glycosaminoglycan matrix(Integra artificial skin).

    Science.gov (United States)

    Kremer, M; Lang, E; Berger, A C

    2000-09-01

    Integra artificial skin (Integra LifeSciences Corp., Plainsboro, NJ, USA) is a dermal template consisting of bovine collagen, chondroitin-6-sulphate and a silastic membrane manufactured as Integra. This product has gained widespread use in the clinical treatment of third degree burn wounds and full thickness skin defects of different aetiologies. The product was designed to significantly reduce the time needed to achieve final wound closure in the treatment of major burn wounds, to optimise the sparse autologous donor skin resources and to improve the durable mechanical quality of the skin substitute. The clinical procedure requires two stages. The first step creates a self neodermis, the second creates a self epidermis on the neodermis. However, it is desirable to cover major burn wounds early in a single step by a skin substitute consisting of a dermal equivalent seeded in vitro with autologous keratinocytes ('composite-skin') out of which a full thickness skin develops in vivo.The goal of this experimental study was to develop a method to integrate human keratinocytes in homogeneous distribution and depth into Integra Artificial Skin. The seeded cell-matrix composites were grafted onto athymic mice in order to evaluate their potential to reconstitute a human epidermis in vivo. We were able to demonstrate that the inoculated human keratinocytes reproducibly displayed a homogeneous pattern of distribution, adherence, proliferation and confluence. The cell-matrix composites grafted in this model exhibited good wound adherence, complete healing, minor wound contraction and had the potential to reconstitute an elastic, functional and durable human skin. Histologically we were able to show that the inoculated human keratinocytes in vivo colonised the matrix in a histomorphologically characteristic epidermal pattern (keratomorula, keratinocyte bubbling) and developed a persisting, stratified, keratinising epidermis which immunohistologically proved to be of human

  19. Combination of ciclopirox olamine and sphingosine-1-phosphate as granulation enhancer in diabetic wounds.

    Science.gov (United States)

    Lim, Natalie Sheng Jie; Sham, Adeline; Chee, Stella Min Ling; Chan, Casey; Raghunath, Michael

    2016-09-01

    Granulation tissue formation requires a robust angiogenic response. As granulation tissue develops, collagen fibers are deposited and compacted. Forces generated in the wake of this process drive wound contraction to reduce the wound area. In diabetics, both angiogenesis and wound contraction are diminished leading to impaired wound healing. To emulate this pathology and to address it pharmacologically, we developed a wound healing model in the diabetic Zucker fatty rat and tested a topical proangiogenic strategy combining antifungal agent ciclopirox olamine (CPX) and lysophospholipid sphingosine-1-phosphate (S1P) to promote diabetic wound closure. In vitro, we demonstrated that CPX + S1P up-regulates a crucial driver of angiogenesis, hypoxia-inducible factor-1, in endothelial cells. Injection of CPX + S1P into subcutaneously implanted sponges in experimental rats showed, in an additive manner, a fivefold increased endothelial infiltration and lectin-perfused vessel length. We developed a splinted diabetic rodent model to achieve low wound contraction rates that are characteristic for the healing mode of diabetic ulcers in humans. We discovered specific dorsal sites that allowed for incremental full-thickness excisional wound depths from 1 mm (superficial) to 3 mm (deep). This enabled us to bring down wound contraction from 51% in superficial wounds to 8% in deep wounds. While the effects of topical gel treatment of CPX + S1P were masked by the rodent-characteristic dominant contraction in superficial wounds, they became clearly evident in deep diabetic wounds. Here, a fivefold increase of functional large vessels resulted in accelerated granulation tissue formulation, accompanied by a 40% increase of compacted thick collagen fibers. This was associated with substantially reduced matrix metalloproteinase-3 and -13 expression. These findings translated into a fivefold increase in granulation-driven contraction, promoting diabetic wound closure. With CPX

  20. [Effects of arnebia root oil on wound healing of rats with full-thickness skin defect and the related mechanism].

    Science.gov (United States)

    Shen, J Y; Ma, Q; Yang, Z B; Gong, J J; Wu, Y S

    2017-09-20

    Objective: To observe the effects of arnebia root oil on wound healing of rats with full-thickness skin defect, and to explore the related mechanism. Methods: Eighty SD rats were divided into arnebia root oil group and control group according to the random number table, with 40 rats in each group, then full-thickness skin wounds with area of 3 cm×3 cm were inflicted on the back of each rat. Wounds of rats in arnebia root oil group and control group were treated with sterile medical gauze and bandage package infiltrated with arnebia root oil gauze or Vaseline gauze, respectively, with dressing change of once every two days. On post injury day (PID) 3, 7, 14, and 21, 10 rats in each group were sacrificed respectively for general observation and calculation of wound healing rate. The tissue samples of unhealed wound were collected for observation of histomorphological change with HE staining, observation of expressions of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) with immunohistochemical staining, and determination of mRNA expressions of VEGF and bFGF with real time fluorescent quantitive reverse transcription polymerase chain reaction. Data were processed with analysis of variance of factorial design, t test, and Bonferroni correction. Results: (1) On PID 3, there were a few secretions in wounds of rats in the two groups. On PID 7, there were fewer secretions and more granulation tissue in wounds of rats in arnebia root oil group, while there were more secretions and less granulation tissue in wounds of rats in control group. On PID 14, most of the wounds of rats in arnebia root oil group were healed and there was much red granulation tissue in unhealed wounds, while part of wounds of rats in control group was healed and there were a few secretions and less granulation tissue in unhealed wounds. On PID 21, wounds of rats in arnebia root oil group were basically healed, while there were still some unhealed wounds of rats in

  1. Anti-scar Treatment for Deep Partial-thickness Burn Wounds

    Science.gov (United States)

    2017-10-01

    applied topically to deep partial-thickness burn wounds reduced α-SMA protein expression ( ELISA ). Mouse burn wounds were treated with PFD twice...immediately and at 48 hrs post- burn. α-SMA in wound skin homogenates was assayed by ELISA . α-SMA protein was significantly lower in mice treated with...Inflammatory cytokines in wound skin homogenates were assayed by ELISA . This early treatment during the inflammatory stage of healing significantly reduced

  2. Application of Three - dimensional Wound Analyzer in the Small Wound Area Measurement during the Process of Wound Healing.

    Science.gov (United States)

    Sheng, Jiajun; Li, Haihang; Jin, Jian; Liu, Tong; Ma, Bing; Liu, Gongcheng; Zhu, Shihui

    2018-02-20

    The objective of this study was to determinate the reliability of 3-dimensional wound analyzer (3-DWMD) in the wound area measurement for animal small area in the process of wound healing. Seven Sprague-Dawley rats were used to establish the skin defect model. And the wound area and time consumption were measured on days 0, 5, 10, 15 using 3-DWMD, investigators, and planimetry method. The measurement results using 3-DWMD and investigators were analyzed comparative with that using planimetry method separately. A total 46 wounds, including 32 irregular wounds and regular 14 wounds, were measured. No matter calculating the irregular wounds or the regular wounds, there was no significant difference between 3-DWMD group and planimetry group in measuring wound area (P > 0.05). However, a statistically significant difference was found in time-consuming for measuring wound area between 3-DWMD group and planimetry group (P area, and its measurement results were consistent with planimetry method. Therefore, such measuring equipment has clinical reference value for measuring precision area of the wound in the process of wound healing.

  3. Lumican as a multivalent effector in wound healing.

    Science.gov (United States)

    Karamanou, Konstantina; Perrot, Gwenn; Maquart, Francois-Xavier; Brézillon, Stéphane

    2018-03-01

    Wound healing, a complex physiological process, is responsible for tissue repair after exposure to destructive stimuli, without resulting in complete functional regeneration. Injuries can be stromal or epithelial, and most cases of wound repair have been studied in the skin and cornea. Lumican, a small leucine-rich proteoglycan, is expressed in the extracellular matrices of several tissues, such as the cornea, cartilage, and skin. This molecule has been shown to regulate collagen fibrillogenesis, keratinocyte phenotypes, and corneal transparency modulation. Lumican is also involved in the extravasation of inflammatory cells and angiogenesis, which are both critical in stromal wound healing. Lumican is the only member of the small leucine-rich proteoglycan family expressed by the epithelia during wound healing. This review summarizes the importance of lumican in wound healing and potential methods of lumican drug delivery to target wound repair are discussed. The involvement of lumican in corneal wound healing is described based on in vitro and in vivo models, with critical emphasis on its underlying mechanisms of action. Similarly, the expression and role of lumican in the healing of other tissues are presented, with emphasis on skin wound healing. Overall, lumican promotes normal wound repair and broadens new therapeutic perspectives for impaired wound healing. Copyright © 2018. Published by Elsevier B.V.

  4. Predictive value of skin perfusion pressure after endovascular therapy for wound healing in critical limb ischemia.

    Science.gov (United States)

    Utsunomiya, Makoto; Nakamura, Masato; Nagashima, Yoshinori; Sugi, Kaoru

    2014-10-01

    To determine the predictive value of skin perfusion pressure (SPP) for wound healing after endovascular therapy (EVT). Between May 2004 and March 2011, 113 consecutive patients (84 men; mean age 71.5±12.5 years) with CLI (123 limbs) underwent successful balloon angioplasty ± stenting (flow from >1 vessel to the foot without bypass) and were physically able to undergo SPP measurement before and within 48 hours after EVT. The status of wound healing was recorded over a mean follow-up of 17.4±12.4 months. The wound healing rate was 78.9% (97 limbs of 89 patients). SPP values after EVT were significantly higher in these patients than in the 24 patients (26 limbs) without wound healing (44.2±15.6 mmHg vs. 27.5±10.4 mmHg, pwound healing had an area under the curve of 0.81 (95% CI 0.723 to 0.899, pwound healing was 30 mmHg, with a sensitivity of 81.4% and a specificity of 69.2%. Binary logistic regression analysis demonstrated SPP after EVT to be an independent predictor of wound healing (pwound healing with SPP values >30 mmHg, 40 mmHg, and 50 mmHg were 69.8%, 86.3%, and 94.5%, respectively. SPP after EVT is an independent predictor of wound healing in patients with CLI. In our study, an SPP value of 30 mmHg was shown to be the best cutoff for prediction of wound healing after EVT.

  5. Radiotherapy and wound healing: principles, management and prospects (review).

    Science.gov (United States)

    Gieringer, Matthias; Gosepath, Jan; Naim, Ramin

    2011-08-01

    Radiation therapy is a major therapeutic modality in the management of cancer patients. Over 60% of these patients receive radiotherapy at some point during their course of treatment and over 90% will develop skin reactions after therapy. Problematic wound healing in radiation-damaged tissue constitutes a major surgical difficulty and despite all efforts, irradiated skin remains a therapeutic challenge. This review provides an overview of the fundamental principles of radiation therapy with regards to the wound healing in normal and irradiated skin. Furthermore, it presents techniques that describe how to prevent and manage skin side effects as well as prospects that may improve cutaneous wound repair in general and in irradiated skin.

  6. Eff ect of vitamin E isoforms on the primary intention Eff ect of vitamin E isoforms on the primary intention skin wound healing of diabetic rats

    Directory of Open Access Journals (Sweden)

    Bijo Elsy

    2017-10-01

    Full Text Available Introduction: Impaired wound healing events is a common complication in diabetes. One of the effective nutritional antioxidant on skin wound healing is vitamin E which contains saturated tocopherol and unsaturated tocotrienol forms. This present study is designed to explore the effect of different vitamin E isoforms on stitched skin wound in both healthy and diabetic rats. Materials and Methods: Forty eight albino rats were divided into eight groups; healthy control, diabetic control, healthy treated (d-α-tocopherol, d-δ-TRF and co-administrated and diabetic treated (d-αtocopherol, d-δ-TRF and co-administrated. Diabetes was induced through single subcutaneous injection of alloxan at the dose of 100 mg/kg. Treated groups were administered d-a-tocopherol (200 mg/kg, d-δ-TRF (200 mg/kg and co-administration (100 mg/kg of these two compounds each orally and daily for three weeks. A horizontal skin incision was made on right mid-thigh region at 2.95 ± 0.17cm in length and wound was closed with an absorbable suture. Results: Histopathological and histomorphological results at the end of 3rd week revealed that the d-δ-TRF treated groups promote the regeneration and reorganization of epidermal and dermal components in healing of primary intention more effectively than the d-α-tocopherol and co-administrated groups. Conclusion: It is concluded that among different vitamin E isoforms the d-δ-TRF appears to be a more effective nutritional antioxidant on skin wound healing in both healthy and diabetics.

  7. Accelerated re-epithelialization of partial-thickness skin wounds by a topical betulin gel: Results of a randomized phase III clinical trials program.

    Science.gov (United States)

    Barret, Juan P; Podmelle, Fred; Lipový, Břetislav; Rennekampff, Hans-Oliver; Schumann, Hauke; Schwieger-Briel, Agnes; Zahn, Tobias R; Metelmann, Hans-Robert

    2017-09-01

    The clinical significance of timely re-epithelialization is obvious in burn care, since delayed wound closure is enhancing the risk of wound site infection and extensive scarring. Topical treatments that accelerate wound healing are urgently needed to reduce these sequelae. Evidence from preliminary studies suggests that betulin can accelerate the healing of different types of wounds, including second degree burns and split-thickness skin graft wounds. The goal of this combined study program consisting of two randomized phase III clinical trials in parallel is to evaluate whether a topical betulin gel (TBG) is accelerating re-epithelialization of split-thickness skin graft (STSG) donor site wounds compared to standard of care. Two parallel blindly evaluated, randomised, controlled, multicentre phase III clinical trials were performed in adults undergoing STSG surgery (EudraCT nos. 2012-003390-26 and 2012-000777-23). Donor site wounds were split into two equal halves and randomized 1:1 to standard of care (a non-adhesive moist wound dressing) or standard of care plus TBG consisting of 10% birch bark extract and 90% sunflower oil (Episalvan, Birken AG, Niefern-Oeschelbronn, Germany). The primary efficacy assessment was the intra-individual difference in time to wound closure assessed from digital photographs by three blinded experts. A total of 219 patients were included and treated in the two trials. Wounds closed faster with TBG than without it (15.3 vs. 16.5 days; mean intra-individual difference=-1.1 days [95% CI, -1.5 to -0.7]; p<0.0001). This agreed with unblinded direct clinical assessment (difference=-2.1 days [95% CI, -2.7 to -1.5]; p<0.0001). Adverse events possibly related to treatment were mild or moderate and mostly at the application site. TBG accelerates re-epithelialization of partial thickness wounds compared to the current standard of care, providing a well-tolerated contribution to burn care in practice. Copyright © 2017 The Authors. Published by

  8. [Aesthetic effect of wound repair with flaps].

    Science.gov (United States)

    Tan, Qian; Zhou, Hong-Reng; Wang, Shu-Qin; Zheng, Dong-Feng; Xu, Peng; Wu, Jie; Ge, Hua-Qiang; Lin, Yue; Yan, Xin

    2012-08-01

    To investigate the aesthetic effect of wound repair with flaps. One thousand nine hundred and ninety-six patients with 2082 wounds hospitalized from January 2004 to December 2011. These wounds included 503 deep burn wounds, 268 pressure sores, 392 soft tissue defects caused by trauma, 479 soft tissue defects due to resection of skin cancer and mole removal, 314 soft tissue defects caused by scar excision, and 126 other wounds. Wound area ranged from 1.5 cm x 1.0 cm to 30.0 cm x 22.0 cm. Sliding flaps, expanded flaps, pedicle flaps, and free flaps were used to repair the wounds in accordance with the principle and timing of wound repair with flaps. Five flaps showed venous congestion within 48 hours post-operation, 2 flaps of them improved after local massage. One flap survived after local heparin wet packing and venous bloodletting. One flap survived after emergency surgical embolectomy and bridging with saphenous vein graft. One flap showed partial necrosis and healed after skin grafting. The other flaps survived well. One thousand three hundred and twenty-one patients were followed up for 3 months to 2 years, and flaps of them were satisfactory in shape, color, and elasticity, similar to that of normal skin. Some patients underwent scar revision later with good results. Application of suitable flaps in wound repair will result in quick wound healing, good function recovery, and satisfactory aesthetic effect.

  9. Assessment of reinforced poly(ethylene glycol) chitosan hydrogels as dressings in a mouse skin wound defect model

    International Nuclear Information System (INIS)

    Chen, Szu-Hsien; Tsao, Ching-Ting; Chang, Chih-Hao; Lai, Yi-Ting; Wu, Ming-Fung; Chuang, Ching-Nan; Chou, Hung-Chia; Wang, Chih-Kuang; Hsieh, Kuo-Haung

    2013-01-01

    Wound dressings of chitosan are biocompatible, biodegradable, antibacterial and hemostatic biomaterials. However, applications for chitosan are limited due to its poor mechanical properties. Here, we conducted an in vivo mouse angiogenesis study on reinforced poly(ethylene glycol) (PEG)-chitosan (RPC) hydrogels. RPC hydrogels were formed by cross-linking chitosan with PEGs of different molecular weights at various PEG to chitosan ratios in our previous paper. These dressings can keep the wound moist, had good gas exchange capacity, and was capable of absorbing or removing the wound exudate. We examined the ability of these RPC hydrogels and neat chitosan to heal small cuts and full-thickness skin defects on the backs of male Balb/c mice. Histological examination revealed that chitosan suppressed the infiltration of inflammatory cells and accelerated fibroblast proliferation, while PEG enhanced epithelial migration. The RPC hydrogels promoted wound healing in the small cuts and full layer wounds. The optimal RPC hydrogel had a swelling ratio of 100% and a water vapor transmission rate (WVTR) of about 2000 g/m 2 /day. In addition, they possess good mechanical property and appropriate degradation rates. Thus, the optimal RPC hydrogel formulation functioned effectively as a wound dressing and promoted wound healing. Highlights: ► Mouse angiogenesis study on reinforced poly(ethylene glycol)-chitosan (RPC) ► Water vapor transmission rate of about 2000 g/m 2 /day is characteristic of RPC. ► RPC suppressed inflammatory cells and accelerated fibroblast proliferation. ► RPC composed of 1000-RP10C90 can be used as a biomaterial for wound dressing

  10. Assessment of reinforced poly(ethylene glycol) chitosan hydrogels as dressings in a mouse skin wound defect model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Szu-Hsien [Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Tsao, Ching-Ting [Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Epithelial Biology Laboratory/Transgenic Mice Core-Laboratory, Department of Anatomy, Chang Gung University, Taoyuan 33302, Taiwan (China); Chang, Chih-Hao [Department of Orthopedics, National Taiwan University Hospital, Taiwan (China); National Taiwan University College of Medicine, No. 1, Jen-Ai Road, Taipei City 10018, Taiwan (China); Lai, Yi-Ting [Department of Chemical Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Wu, Ming-Fung [Animal Medicine Center, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Taipei City 10018, Taiwan (China); Chuang, Ching-Nan [Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Chou, Hung-Chia [Department of Chemical Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Wang, Chih-Kuang, E-mail: ckwang@kmu.edu.tw [Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Hsieh, Kuo-Haung, E-mail: khhsieh@ntu.edu.tw [Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China)

    2013-07-01

    Wound dressings of chitosan are biocompatible, biodegradable, antibacterial and hemostatic biomaterials. However, applications for chitosan are limited due to its poor mechanical properties. Here, we conducted an in vivo mouse angiogenesis study on reinforced poly(ethylene glycol) (PEG)-chitosan (RPC) hydrogels. RPC hydrogels were formed by cross-linking chitosan with PEGs of different molecular weights at various PEG to chitosan ratios in our previous paper. These dressings can keep the wound moist, had good gas exchange capacity, and was capable of absorbing or removing the wound exudate. We examined the ability of these RPC hydrogels and neat chitosan to heal small cuts and full-thickness skin defects on the backs of male Balb/c mice. Histological examination revealed that chitosan suppressed the infiltration of inflammatory cells and accelerated fibroblast proliferation, while PEG enhanced epithelial migration. The RPC hydrogels promoted wound healing in the small cuts and full layer wounds. The optimal RPC hydrogel had a swelling ratio of 100% and a water vapor transmission rate (WVTR) of about 2000 g/m{sup 2}/day. In addition, they possess good mechanical property and appropriate degradation rates. Thus, the optimal RPC hydrogel formulation functioned effectively as a wound dressing and promoted wound healing. Highlights: ► Mouse angiogenesis study on reinforced poly(ethylene glycol)-chitosan (RPC) ► Water vapor transmission rate of about 2000 g/m{sup 2}/day is characteristic of RPC. ► RPC suppressed inflammatory cells and accelerated fibroblast proliferation. ► RPC composed of 1000-RP10C90 can be used as a biomaterial for wound dressing.

  11. On the mathematical modeling of wound healing angiogenesis in skin as a reaction-transport process.

    Science.gov (United States)

    Flegg, Jennifer A; Menon, Shakti N; Maini, Philip K; McElwain, D L Sean

    2015-01-01

    Over the last 30 years, numerous research groups have attempted to provide mathematical descriptions of the skin wound healing process. The development of theoretical models of the interlinked processes that underlie the healing mechanism has yielded considerable insight into aspects of this critical phenomenon that remain difficult to investigate empirically. In particular, the mathematical modeling of angiogenesis, i.e., capillary sprout growth, has offered new paradigms for the understanding of this highly complex and crucial step in the healing pathway. With the recent advances in imaging and cell tracking, the time is now ripe for an appraisal of the utility and importance of mathematical modeling in wound healing angiogenesis research. The purpose of this review is to pedagogically elucidate the conceptual principles that have underpinned the development of mathematical descriptions of wound healing angiogenesis, specifically those that have utilized a continuum reaction-transport framework, and highlight the contribution that such models have made toward the advancement of research in this field. We aim to draw attention to the common assumptions made when developing models of this nature, thereby bringing into focus the advantages and limitations of this approach. A deeper integration of mathematical modeling techniques into the practice of wound healing angiogenesis research promises new perspectives for advancing our knowledge in this area. To this end we detail several open problems related to the understanding of wound healing angiogenesis, and outline how these issues could be addressed through closer cross-disciplinary collaboration.

  12. Functional and physiological characteristics of the aging skin.

    Science.gov (United States)

    Farage, Miranda A; Miller, Kenneth W; Elsner, Peter; Maibach, Howard I

    2008-06-01

    As life expectancy in the U.S. increases - and with it the proportion of the aged in the population - appropriate care of elderly skin becomes a medical concern of increasing importance. As skin ages, the intrinsic structural changes that are a natural consequence of passing time are inevitably followed by subsequent physiological changes that affect the skin's ability to function as the interface between internal and external environments. The pH of the skin surface increases with age, increasing its susceptibility to infection. Neurosensory perception of superficial pain is diminished both in intensity and speed of perception (increasing the risk of thermal injury); deep tissue pain, however, may be enhanced. A decline in lipid content as the skin ages inhibits the permeability of nonlipophilic compounds, reducing the efficacy of some topical medications. Allergic and irritant reactions are blunted, as is the inflammatory response, compromising the ability of the aged skin to affect wound repair. These functional impairments (although a predictable consequence of intrinsic structural changes) have the potential to cause significant morbidity in the elderly patient and may, as well, be greatly exacerbated by extrinsic factors like photodamage. As numbers of the elderly increase, medical as well as cosmetic dermatological interventions will be necessary to optimize the quality of life for this segment of the population.

  13. Enhancement of Wound Healing by Non-Thermal N2/Ar Micro-Plasma Exposure in Mice with Fractional-CO2-Laser-Induced Wounds

    Science.gov (United States)

    Shao, Pei-Lin; Liao, Jiunn-Der; Wong, Tak-Wah; Wang, Yi-Cheng; Leu, Steve; Yip, Hon-Kan

    2016-01-01

    Micro-plasma is a possible alternative treatment for wound management. The effect of micro-plasma on wound healing depends on its composition and temperature. The authors previously developed a capillary-tube-based micro-plasma system that can generate micro-plasma with a high nitric oxide-containing species composition and mild working temperature. Here, the efficacy of micro-plasma treatment on wound healing in a laser-induced skin wound mouse model was investigated. A partial thickness wound was created in the back skin of each mouse and then treated with micro-plasma. Non-invasive methods, namely wound closure kinetics, optical coherence tomography (OCT), and laser Doppler scanning, were used to measure the healing efficiency in the wound area. Neo-tissue growth and the expressions of matrix metallopeptidase-3 (MMP-3) and laminin in the wound area were assessed using histological and immunohistochemistry (IHC) analysis. The results show that micro-plasma treatment promoted wound healing. Micro-plasma treatment significantly reduced the wound bed region. The OCT images and histological analysis indicates more pronounced tissue regrowth in the wound bed region after micro-plasma treatment. The laser Doppler images shows that micro-plasma treatment promoted blood flow in the wound bed region. The IHC results show that the level of laminin increased in the wound bed region after micro-plasma treatment, whereas the level of MMP-3 decreased. Based on these results, micro-plasma has potential to be used to promote the healing of skin wounds clinically. PMID:27248979

  14. [Clinical study and pathological examination on the treatment of deep partial thickness burn wound with negative charge aerosol].

    Science.gov (United States)

    Li, Tian-zeng; Xu, Ying-bin; Hu, Xiao-gen; Shen, Rui; Peng, Xiao-dong; Wu, Wei-jiang; Luo, Lan; Dai, Xin-ming; Zou, Yong-tong; Qi, Shao-hai; Wu, Li-ping; Xie, Ju-lin; Deng, Xiao-xin; Chen, E; Zhang, Hui-Zhen

    2005-08-01

    To investigate the effect of negative charge aerosol (NCA) on the treatment of burn wound. Patients with superficial or deep partial thickness burn only were enrolled in the study, and they were randomly divided into trial group (T, including 180 cases of superficial thickness burn and 100 cases of deep partial thickness burn), control group (C, including 30 cases with superficial thickness burn and 30 with deep partial thickness burn), and self control group (SC, including 10 cases with superficial thickness burn and 10 with deep partial thickness burn). The patients in T and SC groups were treated with NCA for 1.5 hours, 1-2 times a day, from 6 postburn hour (PBH) to 2 postburn day (PBD), while those in C group received conventional treatment. For those in SC group, some of the wounds were covered with sterile schissel, while other wounds without schissel covering. The general changes in the wounds during NCA treatment were observed, and bacterial culture before and after NCA treatment was performed. The healing time was recorded and the blood biochemical parameters were determined. Rat model with deep partial thickness scald was established, and the rats were also divided into T and C groups, and received treatment as in human. Tissue samples were harvested from the wounds of rats in the 2 groups before and 1, 2, 3 weeks after treatment for pathological examination. There was no infection and little exudation in the patients in T group. No bacteria were found in the wound before and after NCA treatment. The healing time of the wounds of patients with superficial and deep partial thickness burn in T group was 6.3 +/- 1.6 d and 15.1 +/- 3.1 d, respectively, which was obviously shorter than those in C group (11.3 +/- 1.4 d and 21.2 +/- 1.4 d, P Negative charge aerosol is safe and effective in promoting wound healing of the patients with partial thickness burns.

  15. Penile lesion from gunshot wound: a 43-case experience

    Directory of Open Access Journals (Sweden)

    Cavalcanti Andre G.

    2006-01-01

    Full Text Available OBJECTIVE: To demonstrate the main aspects of diagnosis, treatment and follow-up of 43 patients with gunshot wounds to the penis. MATERIALS AND METHODS: The location of the lesion, the presence of associated lesions, the performance of complementary exams, surgical treatment, postoperative complications and long term follow-up of 43 patients with penile lesions from gunshot wounds were retrospectively analyzed. RESULTS: Of 43 cases assessed, 41 were submitted to surgical exploration (95.3% and 2 were submitted to conservative treatment (4.7%. We found penile lesions involving the corpus cavernosum in 37 cases; the remaining 4 patients presented no lesions involving the corpus cavernosum, urethra or testicles but did in the superficial structures. Ten cases presented an association with testicular lesions and 14 cases association with anterior urethral lesions. CONCLUSION: Penile lesions from gunshot wounds should be treated with immediate surgical intervention. In exceptional situations featuring superficial lesions only conservative treatment may be applied.

  16. Wound complications after chemo-port placement in children: Does closure technique matter?

    Science.gov (United States)

    Muncie, Colin; Herman, Richard; Collier, Anderson; Berch, Barry; Blewett, Christopher; Sawaya, David

    2018-03-01

    Wound dehiscence after chemo-port placement is a rare but potentially significant complication. We hypothesize that by using a simple running skin closure technique during chemo-port placement the rate of wound dehiscence and overall wound complications can be significantly decreased. IRB approval was obtained and patients port from June 2012 to April 2016 were analyzed. Data collected on patients included patient demographics, skin closure type, and wound complications within 30days. Chi-square was performed to examine the univariate association with skin closure technique and wound dehiscence. Logistic regression was performed to examine the multivariable association between skin closure type and wound dehiscence and to compute odds ratios. There were 259 ports placed in this cohort: 125 used simple running skin closure technique, and 134 used the subcuticular skin closure. Patients were found to not have any difference in rate of dehiscence or overall wound complications based on gender, age, location of port, or use of steroids or chemotherapy within 1week of port placement. When compared, only 1 case (0.80%) in the simple running group vs 10 cases (7.46%) in the subcuticular group experienced a wound dehiscence [unadjusted OR=14.07 (1.69, 116.99) p=0.0144]. When comparing overall wound complications the simple running group had 3 (2.4%) versus 12 (8.96%) in the subcuticular group [unadjusted OR=4.78 (1.27, 17.94) p=0.0203]. When adjusting for port-number both dehiscence and overall wound complications remained statistically significant. We conclude that the simple running skin closure for chemo-port placement in children has superior outcomes in regards to prevention of dehiscence and overall wound related complications when compared to the subcuticular technique. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The treatment of hypopigmentation after skin resurfacing.

    Science.gov (United States)

    Fulton, James E; Rahimi, A David; Mansoor, Sohail; Helton, Peter; Shitabata, Paul

    2004-01-01

    Hypopigmentation has plagued all methods of skin resurfacing. Whether the physician uses chemical peels, dermabrasion or laser resurfacing hypopigmentation can develop. To examine the pathogenesis and treatment of hypopigmentation after resurfacing. Areas of hypopigmentation after skin resurfacing were blended in with laser-assisted chemabrasion (LACA). The process begins with preconditioning of the skin with vitamin A/glycolic skin conditioning lotions. Then the area is resurfaced with the LACA. This resurfacing usually requires three to four freeze-sand cycles to remove the areas of hypopigmentation associated with dermal fibrosis. The resurfaced skin is then occluded with a combination of polyethylene/silicone sheeting during the acute phase of wound healing. Ultraviolet photography and histologic examination were used to demonstrate the improvement in dermal fibrosis and hypopigmentation. The LACA improved areas of hypopigmentation in the 22 cases studied. Under occlusive wound dressings, the melanocytes migrated into the areas of hypopigmentation, and the wounds healed without extensive fibrosis. This produced a blending of skin color. It is possible with skin preconditioning, LACA, and occlusive wound healing to provide for a wound healing environment that blends in areas of hypopigmentation that have developed after previous skin resurfacing.

  18. Mesenchymal stem cells ameliorate impaired wound healing through enhancing keratinocyte functions in diabetic foot ulcerations on the plantar skin of rats.

    Science.gov (United States)

    Kato, Jiro; Kamiya, Hideki; Himeno, Tatsuhito; Shibata, Taiga; Kondo, Masaki; Okawa, Tetsuji; Fujiya, Atsushi; Fukami, Ayako; Uenishi, Eita; Seino, Yusuke; Tsunekawa, Shin; Hamada, Yoji; Naruse, Keiko; Oiso, Yutaka; Nakamura, Jiro

    2014-01-01

    Although the initial healing stage involves a re-epithelialization in humans, diabetic foot ulceration (DFU) has been investigated using rodent models with wounds on the thigh skin, in which a wound contraction is initiated. In this study, we established a rodent model of DFU on the plantar skin and evaluated the therapeutic efficacy of bone-marrow-derived mesenchymal stem cells (BM-MSCs) in this model. The wounds made on the hind paws or thighs of streptozotocin induced diabetic or control rats were treated with BM-MSCs. Expression levels of phosphorylated focal adhesion kinase (pFAK), matrix metaroprotease (MMP)-2, EGF, and IGF-1, were evaluated in human keratinocytes, which were cultured in conditioned media of BM-MSCs (MSC-CM) with high glucose levels. Re-epithelialization initiated the healing process on the plantar, but not on the thigh, skin. The therapy utilizing BM-MSCs ameliorated the delayed healing in diabetic rats. In the keratinocytes cultured with MSC-CM, the decreased pFAK levels in the high glucose condition were restored, and the MMP2, EGF, and IGF-1 levels increased. Our study established a novel rat DFU model. The impaired healing process in diabetic rats was ameliorated by transplantation of BM-MSCs. This amelioration might be accounted for by the modification of keratinocyte functions. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. SU-E-T-421: Failure Mode and Effects Analysis (FMEA) of Xoft Electronic Brachytherapy for the Treatment of Superficial Skin Cancers

    International Nuclear Information System (INIS)

    Hoisak, J; Manger, R; Dragojevic, I

    2015-01-01

    Purpose: To perform a failure mode and effects analysis (FMEA) of the process for treating superficial skin cancers with the Xoft Axxent electronic brachytherapy (eBx) system, given the recent introduction of expanded quality control (QC) initiatives at our institution. Methods: A process map was developed listing all steps in superficial treatments with Xoft eBx, from the initial patient consult to the completion of the treatment course. The process map guided the FMEA to identify the failure modes for each step in the treatment workflow and assign Risk Priority Numbers (RPN), calculated as the product of the failure mode’s probability of occurrence (O), severity (S) and lack of detectability (D). FMEA was done with and without the inclusion of recent QC initiatives such as increased staffing, physics oversight, standardized source calibration, treatment planning and documentation. The failure modes with the highest RPNs were identified and contrasted before and after introduction of the QC initiatives. Results: Based on the FMEA, the failure modes with the highest RPN were related to source calibration, treatment planning, and patient setup/treatment delivery (Fig. 1). The introduction of additional physics oversight, standardized planning and safety initiatives such as checklists and time-outs reduced the RPNs of these failure modes. High-risk failure modes that could be mitigated with improved hardware and software interlocks were identified. Conclusion: The FMEA analysis identified the steps in the treatment process presenting the highest risk. The introduction of enhanced QC initiatives mitigated the risk of some of these failure modes by decreasing their probability of occurrence and increasing their detectability. This analysis demonstrates the importance of well-designed QC policies, procedures and oversight in a Xoft eBx programme for treatment of superficial skin cancers. Unresolved high risk failure modes highlight the need for non-procedural quality

  20. Topical treatment of oral cavity and wounded skin with a new disinfection system utilizing photolysis of hydrogen peroxide in rats.

    Science.gov (United States)

    Yamada, Yasutomo; Mokudai, Takayuki; Nakamura, Keisuke; Hayashi, Eisei; Kawana, Yoshiko; Kanno, Taro; Sasaki, Keiichi; Niwano, Yoshimi

    2012-01-01

    The present study aimed to evaluate the acute locally injurious property of hydroxyl radical generation system by photolysis of H(2)O(2), which is a new disinfection system for the treatment of periodontitis developed in our laboratory. Firstly, generation of the hydroxyl radical by a test device utilizing the photolysis of H(2)O(2) was confirmed by applying an electron spin resonance (ESR)-spin trapping technique. Secondly, the bactericidal effect of the device was examined under a simulant condition in which Staphylococcus aureus suspended in 1 M H(2)O(2) was irradiated with laser light emitted from the test device, resulting in substantial reduction of the colony forming unit of the bacteria within a short time as 2 min. Finally, acute topical effect of the disinfection system on rat oral mucosa and wounded skin was evaluated by histological examination. No abnormal findings were observed in the buccal mucosal region treated three times with 1 M H(2)O(2) and irradiation. Similarly, no abnormal findings were observed during the healing of skin treated with 1 M H(2)O(2) and irradiation immediately after wounding. Since topical treatment with the novel disinfection technique utilizing the photolysis of H(2)O(2) had no detrimental effect on the oral mucosa and the healing of full thickness skin wounds in rats, it is expected that the acute locally injurious property of the disinfection technique is low.

  1. Wound healing in above-knee amputations in relation to skin perfusion pressure

    DEFF Research Database (Denmark)

    Holstein, P; Dovey, H; Lassen, N A

    1979-01-01

    In 59 above-knee amputations healing of the stumps was correlated with the local skin perfusion pressure (SPP) measured preoperatively as the external pressure required to stop isotope washout using 1318-- or 125I--antipyrine mixed with histamine. Out of the 11 cases with an SPP below 30 mm...... on the stumps was on average only slightly and insignificantly higher than the preoperative values, explaining why the preoperative values related so closely to the postoperative clinical course. We conclude that the SPP can be used to predict ischaemic wound complications in above-knee amputations as has...... previously been shown to be the case in below-knee amputations....

  2. Effects of whole body γ irradiation on skin wound cells and the repaired-promoting action of W11-a12

    International Nuclear Information System (INIS)

    Shu Chongxiang; Cheng Tianmin; Yan Guohe; Ran Xinze

    2002-01-01

    Objective: To study the effects of 6 Gy whole body γ irradiation on components of wound cells and the repair-promoting action of W 11 -a 12 , an extract from Periplaneta americana. Methods: After mice were received 6 Gy gamma ray irradiation, the area of healing range in wound cross section, the cellular infiltration of wound and the content of basic fibroblast growth factor (bFGF) in wound epithelial cells were observed and the healing-promoting effect of W 11 -a 12 on the radiation-impaired wound was investigated. Results: The area of healing range in cross section was decreased, various infiltrated cells were all inhibited by radiation, but the range of inhibition was more or less different, and the descending order of severity was as follows: macrophages, vascular endothelial cells, fibroblasts and epithelial cells. The content of bFGF in epithelial cells was decreased. W 11 -a 12 had beneficial heal-promoting effect on radiation-impaired wound: it increased cellular infiltration and promoted synthesis and secretion of bFGF in epithelial cells. Conclusion: The depletion of wound cells is mainly responsible for the healing deficits of radiation-impaired skin wound and W 11 -a 12 enhances cell migration and proliferation and promotes synthesis and secretion of bFGF in epithelial cells

  3. The Frog Skin-Derived Antimicrobial Peptide Esculentin-1a(1-21)NH2 Promotes the Migration of Human HaCaT Keratinocytes in an EGF Receptor-Dependent Manner: A Novel Promoter of Human Skin Wound Healing?

    Science.gov (United States)

    Di Grazia, Antonio; Cappiello, Floriana; Imanishi, Akiko; Mastrofrancesco, Arianna; Picardo, Mauro; Paus, Ralf; Mangoni, Maria Luisa

    2015-01-01

    One of the many functions of skin is to protect the organism against a wide range of pathogens. Antimicrobial peptides (AMPs) produced by the skin epithelium provide an effective chemical shield against microbial pathogens. However, whereas antibacterial/antifungal activities of AMPs have been extensively characterized, much less is known regarding their wound healing-modulatory properties. By using an in vitro re-epithelialisation assay employing special cell-culture inserts, we detected that a derivative of the frog-skin AMP esculentin-1a, named esculentin-1a(1-21)NH2, significantly stimulates migration of immortalized human keratinocytes (HaCaT cells) over a wide range of peptide concentrations (0.025-4 μM), and this notably more efficiently than human cathelicidin (LL-37). This activity is preserved in primary human epidermal keratinocytes. By using appropriate inhibitors and an enzyme-linked immunosorbent assay we found that the peptide-induced cell migration involves activation of the epidermal growth factor receptor and STAT3 protein. These results suggest that esculentin-1a(1-21)NH2 now deserves to be tested in standard wound healing assays as a novel candidate promoter of skin re-epithelialisation. The established ability of esculentin-1a(1-21)NH2 to kill microbes without harming mammalian cells, namely its high anti-Pseudomonal activity, makes this AMP a particularly attractive candidate wound healing promoter, especially in the management of chronic, often Pseudomonas-infected, skin ulcers.

  4. The Frog Skin-Derived Antimicrobial Peptide Esculentin-1a(1-21NH2 Promotes the Migration of Human HaCaT Keratinocytes in an EGF Receptor-Dependent Manner: A Novel Promoter of Human Skin Wound Healing?

    Directory of Open Access Journals (Sweden)

    Antonio Di Grazia

    Full Text Available One of the many functions of skin is to protect the organism against a wide range of pathogens. Antimicrobial peptides (AMPs produced by the skin epithelium provide an effective chemical shield against microbial pathogens. However, whereas antibacterial/antifungal activities of AMPs have been extensively characterized, much less is known regarding their wound healing-modulatory properties. By using an in vitro re-epithelialisation assay employing special cell-culture inserts, we detected that a derivative of the frog-skin AMP esculentin-1a, named esculentin-1a(1-21NH2, significantly stimulates migration of immortalized human keratinocytes (HaCaT cells over a wide range of peptide concentrations (0.025-4 μM, and this notably more efficiently than human cathelicidin (LL-37. This activity is preserved in primary human epidermal keratinocytes. By using appropriate inhibitors and an enzyme-linked immunosorbent assay we found that the peptide-induced cell migration involves activation of the epidermal growth factor receptor and STAT3 protein. These results suggest that esculentin-1a(1-21NH2 now deserves to be tested in standard wound healing assays as a novel candidate promoter of skin re-epithelialisation. The established ability of esculentin-1a(1-21NH2 to kill microbes without harming mammalian cells, namely its high anti-Pseudomonal activity, makes this AMP a particularly attractive candidate wound healing promoter, especially in the management of chronic, often Pseudomonas-infected, skin ulcers.

  5. A new generation of topical chronic wound treatments containing specific MMP inhibitors

    Directory of Open Access Journals (Sweden)

    Shrivastava R

    2014-09-01

    Full Text Available Ravi Shrivastava, Nathalie Cucuat, Monika Rousse, Thomas Weigand, Pedro Neto, Claire Janicot, Christiane Shrivastava VITROBIO Research Institute, Issoire, France Purpose: Incidence of chronic wounds is constantly rising worldwide, but all currently available treatments are intended either to provide symptomatic relief or to assist cicatrization to some extent, but not to directly stimulate cellular growth. Physiologically, chronic wound healing simply requires cell growth to fill the injured cavity. To grow, our cells need to attach onto a cushion, called extracellular matrix (ECM, secreted by the mother cells and composed of multiple proteins. Recent scientific works prove that the concentration of certain matrix metalloproteinases (MMPs is extremely high in all chronic wounds and, because of their proteolytic nature, some MMPs completely degrade the ECM, hindering cell attachment and cell growth. The aim of this study was to identify, neutralize, and eliminate these MMPs from the wound surface so as to design an effective treatment for chronic wounds. Methods: Acute and chronic models of human epithelial and fibroblast cells were prepared on a defined ECM cushion in vitro and MMPs were added in the culture medium to identify the MMPs causing ECM disintegration for each cell type. ECM-degrading MMPs were then incubated with selected procyanidin-rich plant extracts (PCDs and cell growth was reanalyzed. Results: It was observed that: 1 multiple MMPs are involved in cellular matrix destruction; 2 ECM-destroying MMPs are specific with respect to cell type; and 3 specific PCDs may bind and neutralize selected MMPs. Conclusion: Topical application of specific plant PCDs to selectively neutralize ECM-destroying MMPs in acute and chronic wounds represents a novel approach for the treatment of superficial and deep skin wounds. Keywords: extra cellular matrix (ECM, matrix metalloproteinases, procyanidins (PCDs, tannins, ulcers

  6. Negative pressure wound therapy using polyvinyl alcohol foam to bolster full-thickness mesh skin grafts in dogs.

    Science.gov (United States)

    Or, Matan; Van Goethem, Bart; Kitshoff, Adriaan; Koenraadt, Annika; Schwarzkopf, Ilona; Bosmans, Tim; de Rooster, Hilde

    2017-04-01

    To report the use of negative pressure wound therapy (NPWT) with polyvinyl alcohol (PVA) foam to bolster full-thickness mesh skin grafts in dogs. Retrospective case series. Client-owned dogs (n = 8). Full-thickness mesh skin graft was directly covered with PVA foam. NPWT was maintained for 5 days (in 1 or 2 cycles). Grafts were evaluated on days 2, 5, 10, 15, and 30 for graft appearance and graft take, granulation tissue formation, and complications. Firm attachment of the graft to the recipient bed was accomplished in 7 dogs with granulation tissue quickly filling the mesh holes, and graft take considered excellent. One dog had bandage complications after cessation of the NPWT, causing partial graft loss. The PVA foam did not adhere to the graft or damage the surrounding skin. The application of NPWT with a PVA foam after full-thickness mesh skin grafting in dogs provides an effective method for securing skin grafts, with good graft acceptance. PVA foam can be used as a primary dressing for skin grafts, obviating the need for other interposing materials to protect the graft and the surrounding skin. © 2017 The American College of Veterinary Surgeons.

  7. Hypoperfusion and Wound Healing: Another Dimension of Wound Assessment.

    Science.gov (United States)

    Smollock, Wendy; Montenegro, Paul; Czenis, Amy; He, Yuan

    2018-02-01

    To examine the correlation between mean arterial pressure (MAP) and wound healing indices and describe an analytical process that can be used accurately and prospectively when evaluating all types of skin ulcerations. A correlational study in a long-term-care facility.Participants (N = 230) were adults residing in a long-term-care facility with an average age of 77.8 years (range, 35-105). Assessment through both an index of wound healing and wound surface area. Signs of wound healing included a reduction of surface area and surface necrosis and increased granulation or epithelialization. Aggregate analyses for all wound locations revealed a positive correlation between the MAP and index of wound healing (r = 0.86, n = 501, P wound healing was noted for all wound locations in this data set when MAP values were 80 mm Hg or less (r = 0.95, n = 141, P wounds and MAP of less than 80 mm Hg yielded a very strong positive correlation. The data indicated that as perfusion decreased, wounds within the sample population declined (r = 0.93, n = 102, P wound healing or worsened wounds. A predictability of wounds stalling or declining related to the MAP was observed, regardless of topical treatment or standard-of-care interventions. Therefore, the data also suggest that remediating states of low perfusion should take precedence in making treatment decisions.

  8. ′Sure closure′-skin stretching system, our clinical experience

    Directory of Open Access Journals (Sweden)

    Subramania K

    2005-01-01

    Full Text Available Objective: In clinical practice of reconstructive surgery one of the problems one routinely comes across is skin and soft tissue defects, which require coverage. Coverage of such wounds requires primary/secondary closure, skin grafting or flaps. The objective of our clinical series was to assess the efficacy of sure closure skin stretching system for closure of defects which otherwise would have required major flap cover or skin grafting. Methods: Our series included five patients with different causes and types of wound defects namely: 1. Post-traumatic soft tissue defect on dorsum of hand. 2. Post fasciotomy wound on leg (anterolateral aspect. 3. Abdominal wound dehiscence following surgery for enterocutaneous fistula. 4. Leg soft tissue defect following dehiscence of fasciocutaneous flap. 5. Secondary defect following harvesting a lateral arm/forearm free flap. The device was applied to skin edges after preparing the wound under local anesthesia and the skin edges were brought together by turning the skin-stretching knob. After adequate approximation of the edges of the wound it was sutured by conventional suturing techniques. Results: All the wounds could be successfully closed using the skin stretching system in our series. The time taken for the closure ranged from 2 to 48 h. Conclusions: Sure closure skin stretching system is an effective device for closing some of the skin defects which otherwise would have required skin flaps or grafts. In all the patients wound closure could be achieved by this method and was carried out under local anesthesia. Use of this technique is simple and helps to reduce the morbidity and cost of treatment by allowing the reconstructive surgeon to avoid using major flaps or grafts.

  9. Effect of fibrin-binding synthetic oligopeptide on the healing of full-thickness skin wounds in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Chung, Jae-Eun; Kim, Yun-Jeong; Park, Yoon-Jeong; Koo, Ki-Tae; Seol, Yang-Jo; Lee, Yong-Moo; Rhyu, In-Chul; Ku, Young

    2013-01-01

    The aim of this study was to investigate whether topical application of fibrin-binding oligopeptides derived from FN promotes wound healing in streptozotocin (STZ)-induced diabetic rats. Oligopeptides including fibrin-binding sequences (FF3: CFDKYTGNTYRV, FF5 : CTSRNRCNDQ) of FN repeats were synthesized. Each peptide was loaded in 15 x 15 mm fibrous alginate dressings, and the release kinetics of the peptides was evaluated using trinitrobenzene sulfonic acid for 336 hours. Two full-thickness cutaneous wounds were prepared on the dorsal skin of each 75 diabetes induced rats. Each wound was divided into FF3-loaded alginate dressing group, FF5-loaded alginate dressing group, alginate dressing group and negative control group. Animals were sacrificed at day 0,3,7 and 14. The wound closure rate, inflammation degree, expression of TGF-β1 and hydroxyproline contents were evaluated. Both FF3 and FF5 peptides were released rapidly within the first 24 hours. FF3-loaded dressing treated wounds closed significantly faster than other wounds at day 3. And at day 14, FF3- & FF5- loaded dressing treated wounds demonstrated less inflammatory cells infiltration than alginate dressing treated and negative group wounds. TGF-β1 positive cells were more abundant in FF3-, FF5-treated alginate dressing treated wound at day 3 and 14. At last, the hyrdroxyproline contents in the FF3, FF5 group were higher at day 7 and day 14. Topical application of fibrin-binding domain synthetic oligopeptides from FN resulted in acceleration of full-thickness cutaneous wound healing in diabetic rats.

  10. Fabrication of Non-Implant 3D Printed Skin

    Directory of Open Access Journals (Sweden)

    Chuan Yong Leng

    2018-01-01

    Full Text Available Many bandages tend to be harmful when being removed from the human skin. This is a crucial issue, especially faced by burn victims. When bandages are removed from the burn wound, they tend to be harmful by peeling off the newly formed layer of skin over the burn wound. Such nature causes the patient to endure a longer recovery time with additional pain. The objective of this project is to 3D print artificial skin for the victims of burn wounds by using natural gelation. The main aim for creating the artificial skin will be used in place of the current burn wound treatment techniques of dressing the wounds in bandages. The inner layer of this skin was lined with a natural adhesive, a thin layer of agar-agar, which has been reinforced with crushed eggshells to increase its adhesive strength and durability. The synthesized gel contained non adhesive behavior, yet aids in wound healing abilities. Applying hydrocolloids ensures that the wound is kept cool and the gel also ensures efficient heat transfer. This was done so that less sweating occurs on the patient. Based on the experiments that were conducted, the results conclude that the best ratio of artificial skin layer would be 2:1 of agar gel: crushed eggshells. This golden ratio of gel: crushed eggshells for the longest period of time for attachment on the skin without sweating, is achieved. The skin will be printed using Acrylonitrile-Butadiene-Styrene (ABS. The colour of the skin and the shape of the skin was individually designed for each specific patient. The inner gel has the capabilities of reducing the rehabilitation time, without compromising the comfort of the patient. This approach has the potential to be used as a new method to treat burn wounds..

  11. Effects of genistein on early-stage cutaneous wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eunkyo [Department of Home Economics Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Seung Min [Research Institute of Health Sciences, Korea University, Seoul 136-701 (Korea, Republic of); Jung, In-Kyung [Department of Home Economics Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lim, Yunsook [Department of Foods and Nutrition, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Jung-Hyun, E-mail: jjhkim@cau.ac.kr [Department of Home Economics Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

    2011-07-08

    Highlights: {yields} We examine the effect of genistein on cutaneous wound healing. {yields} Genistein enhanced wound closure during the early stage of wound healing. {yields} These genistein effects on wound closure were induced by reduction of oxidative stress through increasing antioxidant capacity and modulation of pro-inflammatory cytokine expression. -- Abstract: Wound healing occurs in three sequential phases: hemostasis and inflammation, proliferation, and remodeling. Inflammation, the earliest phase, is considered a critical period for wound healing because immune cells remove damaged tissues, foreign debris, and remaining dead tissue. Wound healing would be delayed without inflammation, and this phase is affected by antioxidation capacity. Therefore, we hypothesized that genistein, which has an antioxidant effect, might modulate the wound healing process by altering the inflammatory response. After three days of acclimation, mice were divided into three groups: control, 0.025% genistein, and 0.1% genistein. After two weeks of an experimental diet, skin wounds were induced. Wounded skin areas were imaged, and the healing rate calculated. To measure lipid peroxidation, antioxidant enzyme expression and activity, and pro-inflammatory cytokine expression, skin and liver tissues were harvested at 12, 24, 48, and 72 h. Genistein did not affect body weight. The rate of wound closure in mice fed genistein was significantly faster than in the control group during the early stage of wound healing, especially in first three days. Cu, Zn-SOD and Mn-SOD expression in wound skin tissue in the 0.1% genistein group was lower than in the control group. However, CAT expression did not differ among groups. We also found that genistein modulated NF-{kappa}B and TNF-{alpha} expression during the early stage of wound healing. The genistein group had significantly lower hepatic lipid peroxidation and higher SOD, CAT, and GPx activities than the control group. These results

  12. Superficial dose evaluation of four dose calculation algorithms

    Science.gov (United States)

    Cao, Ying; Yang, Xiaoyu; Yang, Zhen; Qiu, Xiaoping; Lv, Zhiping; Lei, Mingjun; Liu, Gui; Zhang, Zijian; Hu, Yongmei

    2017-08-01

    Accurate superficial dose calculation is of major importance because of the skin toxicity in radiotherapy, especially within the initial 2 mm depth being considered more clinically relevant. The aim of this study is to evaluate superficial dose calculation accuracy of four commonly used algorithms in commercially available treatment planning systems (TPS) by Monte Carlo (MC) simulation and film measurements. The superficial dose in a simple geometrical phantom with size of 30 cm×30 cm×30 cm was calculated by PBC (Pencil Beam Convolution), AAA (Analytical Anisotropic Algorithm), AXB (Acuros XB) in Eclipse system and CCC (Collapsed Cone Convolution) in Raystation system under the conditions of source to surface distance (SSD) of 100 cm and field size (FS) of 10×10 cm2. EGSnrc (BEAMnrc/DOSXYZnrc) program was performed to simulate the central axis dose distribution of Varian Trilogy accelerator, combined with measurements of superficial dose distribution by an extrapolation method of multilayer radiochromic films, to estimate the dose calculation accuracy of four algorithms in the superficial region which was recommended in detail by the ICRU (International Commission on Radiation Units and Measurement) and the ICRP (International Commission on Radiological Protection). In superficial region, good agreement was achieved between MC simulation and film extrapolation method, with the mean differences less than 1%, 2% and 5% for 0°, 30° and 60°, respectively. The relative skin dose errors were 0.84%, 1.88% and 3.90%; the mean dose discrepancies (0°, 30° and 60°) between each of four algorithms and MC simulation were (2.41±1.55%, 3.11±2.40%, and 1.53±1.05%), (3.09±3.00%, 3.10±3.01%, and 3.77±3.59%), (3.16±1.50%, 8.70±2.84%, and 18.20±4.10%) and (14.45±4.66%, 10.74±4.54%, and 3.34±3.26%) for AXB, CCC, AAA and PBC respectively. Monte Carlo simulation verified the feasibility of the superficial dose measurements by multilayer Gafchromic films. And the rank

  13. Full-Thickness Thermal Injury Delays Wound Closure in a Murine Model

    Science.gov (United States)

    2015-01-01

    skin replacement is achieved using autologous skin graft or skin substitute graft. While this strategy of early excision and grafting, first proposed in...several investigators have utilized the more appropriate model of burn eschar excision followed by sponta- neous wound closure or by skin graft or...without the application of a skin graft or a skin substitute graft. Furthermore, the effect of interval burn eschar excision on wound closure is also re

  14. Sternal wound infection revisited

    International Nuclear Information System (INIS)

    Liberatore, M.; Fiore, V.; D'Agostini, A.; Prosperi, D.; Iurilli, A.P.; Santini, C.; Baiocchi, P.; Galie, M.; Di Nucci, G.D.; Sinatra, R.

    2000-01-01

    Sternal wound infections (SWIs) can be subdivided into two types, superficial or deep, that require different treatments. The clinical diagnosis of superficial SWI is normally easy to perform, whereas the involvement of deep tissues is frequently difficult to detect. Therefore, there is a need for an imaging study that permits the assessment of SWIs and is able to distinguish between superficial and deep SWI. The present work was a prospective study aiming to evaluate the role of technetium-99m hexamethylpropylene amine oxime ( 99m Tc-HMPAO) labelled leucocyte scan in SWI management. Twenty-eight patients with suspected SWIs were included in the study. On the basis of clinical examination they were subdivided into three groups: patients with signs of superficial SWI (group 1), patients with signs of superficial SWI and suspected deep infection (group 2) and patients with suspected deep SWI without superficial involvement (group 3). Ten patients previously submitted to median sternotomy, but without suspected SWI, were also included in the study as a control group (group 4). All patients with suspected SWI had bacteriological examinations of wound secretion, if present. In addition 99m Tc-HMPAO labelled leucocyte scan was performed in all patients. The patients of groups 1, 2 and 3 were treated on the basis of the clinical signs and microbiological findings, independently of the scintigraphic results. The patients of group 4 did not receive treatment. The final assessment of infection was based on histological and microbiological findings or on long-term clinical follow-up. Sensitivity, specificity, accuracy and positive and negative predictive values for scintigraphic and non-scintigraphic results were calculated. In the diagnosis of superficial and deep SWI, clinical and microbiological examination (combined) yielded, respectively, a sensitivity of 68.7% and 100%, a specificity of 77.3% and 80.8%, an accuracy of 73.7% and 86.8%, a positive predictive value of 68

  15. Far infrared promotes wound healing through activation of Notch1 signaling.

    Science.gov (United States)

    Hsu, Yung-Ho; Lin, Yuan-Feng; Chen, Cheng-Hsien; Chiu, Yu-Jhe; Chiu, Hui-Wen

    2017-11-01

    The Notch signaling pathway is critically involved in cell proliferation, differentiation, development, and homeostasis. Far infrared (FIR) has an effect that promotes wound healing. However, the underlying molecular mechanisms are unclear. In the present study, we employed in vivo and HaCaT (a human skin keratinocyte cell line) models to elucidate the role of Notch1 signaling in FIR-promoted wound healing. We found that FIR enhanced keratinocyte migration and proliferation. FIR induced the Notch1 signaling pathway in HaCaT cells and in a microarray dataset from the Gene Expression Omnibus database. We next determined the mRNA levels of NOTCH1 in paired normal and wound skin tissues derived from clinical patients using the microarray dataset and Ingenuity Pathway Analysis software. The result indicated that the Notch1/Twist1 axis plays important roles in wound healing and tissue repair. In addition, inhibiting Notch1 signaling decreased the FIR-enhanced proliferation and migration. In a full-thickness wound model in rats, the wounds healed more rapidly and the scar size was smaller in the FIR group than in the light group. Moreover, FIR could increase Notch1 and Delta1 in skin tissues. The activation of Notch1 signaling may be considered as a possible mechanism for the promoting effect of FIR on wound healing. FIR stimulates keratinocyte migration and proliferation. Notch1 in keratinocytes has an essential role in FIR-induced migration and proliferation. NOTCH1 promotes TWIST1-mediated gene expression to assist wound healing. FIR might promote skin wound healing in a rat model. FIR stimulates keratinocyte migration and proliferation. Notch1 in keratinocytes has an essential role in FIR-induced migration and proliferation. NOTCH1 promotes TWIST1-mediated gene expression to assist wound healing. FIR might promote skin wound healing in a rat model.

  16. Chitosan: A potential biopolymer for wound management.

    Science.gov (United States)

    Bano, Ijaz; Arshad, Muhammad; Yasin, Tariq; Ghauri, Muhammad Afzal; Younus, Muhammad

    2017-09-01

    It has been seen that slow healing and non-healing wounds conditions are treatable but still challenging to humans. Wound dressing usually seeks for biocompatible and biodegradable recipe. Natural polysaccharides like chitosan have been examined for its antimicrobial and healing properties on the basis of its variation in molecular weight and degree of deacetylation. Chitosan adopts some vital characteristics for treatment of various kinds of wounds which include its bonding nature, antifungal, bactericidal and permeability to oxygen. Chitosan therefore has been modified into various forms for the treatment of wounds and burns. The purpose of this review article is to understand the exploitation of chitosan and its derivatives as wound dressings. This article will also provide a concise insight on the properties of chitosan necessary for skin healing and regeneration, particularly highlighting the emerging role of chitosan films as next generation skin substitutes for the treatment of full thickness wounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. In-vitro- and in-vivo-studies on the application of an innovative wound healing system for burn patients on the basis of a spray-transplantation of primary isolated skin cells and an active wound dressing made of hollow fiber capillaries

    OpenAIRE

    Plettig, Jörn

    2016-01-01

    The treatment of acute burns, especially for patients with 2b degree wounds, is not resolved satisfactorily. The thesis evaluates an innovative therapeutic concept based on a primary skin cell isolation from fetal or adult tissue, an autologous spray-transplantation and a temporary wound supply via an active wound dressing based on hollow fiber capillaries. The aim is to increase the yield of regenerative basal keratinocyte precursor cells through a gentle isolation technique and to distribut...

  18. Image-Processing Scheme to Detect Superficial Fungal Infections of the Skin

    Directory of Open Access Journals (Sweden)

    Ulf Mäder

    2015-01-01

    Full Text Available The incidence of superficial fungal infections is assumed to be 20 to 25% of the global human population. Fluorescence microscopy of extracted skin samples is frequently used for a swift assessment of infections. To support the dermatologist, an image-analysis scheme has been developed that evaluates digital microscopic images to detect fungal hyphae. The aim of the study was to increase diagnostic quality and to shorten the time-to-diagnosis. The analysis, consisting of preprocessing, segmentation, parameterization, and classification of identified structures, was performed on digital microscopic images. A test dataset of hyphae and false-positive objects was created to evaluate the algorithm. Additionally, the performance for real clinical images was investigated using 415 images. The results show that the sensitivity for hyphae is 94% and 89% for singular and clustered hyphae, respectively. The mean exclusion rate is 91% for the false-positive objects. The sensitivity for clinical images was 83% and the specificity was 79%. Although the performance is lower for the clinical images than for the test dataset, a reliable and fast diagnosis can be achieved since it is not crucial to detect every hypha to conclude that a sample consisting of several images is infected. The proposed analysis therefore enables a high diagnostic quality and a fast sample assessment to be achieved.

  19. Complications in skin grafts when continuing antithrombotic therapy prior to cutaneous surgery requiring skin grafting

    DEFF Research Database (Denmark)

    Jarjis, Reem Dina; Jørgensen, Lone; Finnerup, Kenneth

    2015-01-01

    Abstract The risk of postoperative bleeding and wound healing complications in skin grafts among anticoagulated patients undergoing cutaneous surgery has not been firmly established. The objective was to examine the literature and assess the risk of postoperative bleeding or wound healing...... complications in skin grafts among anticoagulated patients, compared with patients who discontinue or patients who are not receiving antithrombotic therapy prior to cutaneous surgery requiring skin grafting. A systematic review examining the effect of antithrombotic therapy on cutaneous surgery was performed...... studies were of prospective and retrospective design. Most of the reviewed studies suggest that the use of antithrombotic therapy can increase the risk of bleeding complications in skin grafts. These complications are only wound threatening and not life threatening. Therefore, this is of concern mostly...

  20. Randomized clinical trial of intestinal ostomy takedown comparing pursestring wound closure vs conventional closure to eliminate the risk of wound infection.

    Science.gov (United States)

    Camacho-Mauries, Daniel; Rodriguez-Díaz, José Luis; Salgado-Nesme, Noel; González, Quintín H; Vergara-Fernández, Omar

    2013-02-01

    The use of temporary stomas has been demonstrated to reduce septic complications, especially in high-risk anastomosis; therefore, it is necessary to reduce the number of complications secondary to ostomy takedowns, namely wound infection, anastomotic leaks, and intestinal obstruction. To compare the rates of superficial wound infection and patient satisfaction after pursestring closure of ostomy wound vs conventional linear closure. Patients undergoing colostomy or ileostomy closure between January 2010 and February 2011 were randomly assigned to linear closure (n = 30) or pursestring closure (n = 31) of their ostomy wound. Wound infection within 30 days of surgery was defined as the presence of purulent discharge, pain, erythema, warmth, or positive culture for bacteria. Patient satisfaction, healing time, difficulty managing the wound, and limitation of activities were analyzed with the Likert questionnaire. The infection rate for the control group was 36.6% (n = 11) vs 0% in the pursestring closure group (p ostomy wound closure (shorter healing time and improved patient satisfaction).

  1. The importance of hydration in wound healing: reinvigorating the clinical perspective.

    Science.gov (United States)

    Ousey, K; Cutting, K F; Rogers, A A; Rippon, M G

    2016-03-01

    Balancing skin hydration levels is important as any disruption in skin integrity will result in disturbance of the dermal water balance. The discovery that a moist environment actively supports the healing response when compared with a dry environment highlights the importance of water and good hydration levels for optimal healing. The benefits of 'wet' or 'hyper-hydrated' wound healing appear similar to those offered by moist over a dry environment. This suggests that the presence of free water may not be detrimental to healing, but any adverse effects of wound fluid on tissues is more likely related to the biological components contained within chronic wound exudate, for example elevated protease levels. Appropriate dressings applied to wounds must not only be able to absorb the exudate, but also retain this excess fluid together with its protease solutes, while concurrently preventing desiccation. This is particularly important in the case of chronic wounds where peri-wound skin barrier properties are compromised and there is increased permeation across the injured skin. This review discusses the importance of appropriate levels of hydration in skin, with a particular focus on the need for optimal hydration levels for effective healing. Declaration of interest: This paper was supported by Paul Hartmann Ltd. The authors have provided consultative services to Paul Hartmann Ltd.

  2. Bioimpedance measurement based evaluation of wound healing.

    Science.gov (United States)

    Kekonen, Atte; Bergelin, Mikael; Eriksson, Jan-Erik; Vaalasti, Annikki; Ylänen, Heimo; Viik, Jari

    2017-06-22

    Our group has developed a bipolar bioimpedance measurement-based method for determining the state of wound healing. The objective of this study was to assess the capability of the method. To assess the performance of the method, we arranged a follow-up study of four acute wounds. The wounds were measured using the method and photographed throughout the healing process. Initially the bioimpedance of the wounds was significantly lower than the impedance of the undamaged skin, used as a baseline. Gradually, as healing progressed, the wound impedance increased and finally reached the impedance of the undamaged skin. The clinical appearance of the wounds examined in this study corresponded well with the parameters derived from the bioimpedance data. Hard-to-heal wounds are a significant and growing socioeconomic burden, especially in the developed countries, due to aging populations and to the increasing prevalence of various lifestyle related diseases. The assessment and the monitoring of chronic wounds are mainly based on visual inspection by medical professionals. The dressings covering the wound must be removed before assessment; this may disturb the wound healing process and significantly increases the work effort of the medical staff. There is a need for an objective and quantitative method for determining the status of a wound without removing the wound dressings. This study provided evidence of the capability of the bioimpedance based method for assessing the wound status. In the future measurements with the method should be extended to concern hard-to-heal wounds.

  3. Different wound healing properties of dermis, adipose, and gingiva mesenchymal stromal cells.

    Science.gov (United States)

    Boink, Mireille A; van den Broek, Lenie J; Roffel, Sanne; Nazmi, Kamran; Bolscher, Jan G M; Gefen, Amit; Veerman, Enno C I; Gibbs, Susan

    2016-01-01

    Oral wounds heal faster and with better scar quality than skin wounds. Deep skin wounds where adipose tissue is exposed, have a greater risk of forming hypertrophic scars. Differences in wound healing and final scar quality might be related to differences in mesenchymal stromal cells (MSC) and their ability to respond to intrinsic (autocrine) and extrinsic signals, such as human salivary histatin, epidermal growth factor, and transforming growth factor beta1. Dermis-, adipose-, and gingiva-derived MSC were compared for their regenerative potential with regards to proliferation, migration, and matrix contraction. Proliferation was assessed by cell counting and migration using a scratch wound assay. Matrix contraction and alpha smooth muscle actin was assessed in MSC populated collagen gels, and also in skin and gingival full thickness tissue engineered equivalents (reconstructed epithelium on MSC populated matrix). Compared to skin-derived MSC, gingiva MSC showed greater proliferation and migration capacity, and less matrix contraction in full thickness tissue equivalents, which may partly explain the superior oral wound healing. Epidermal keratinocytes were required for enhanced adipose MSC matrix contraction and alpha smooth muscle actin expression, and may therefore contribute to adverse scarring in deep cutaneous wounds. Histatin enhanced migration without influencing proliferation or matrix contraction in all three MSC, indicating that salivary peptides may have a beneficial effect on wound closure in general. Transforming growth factor beta1 enhanced contraction and alpha smooth muscle actin expression in all three MSC types when incorporated into collagen gels. Understanding the mechanisms responsible for the superior oral wound healing will aid us to develop advanced strategies for optimal skin regeneration, wound healing and scar formation. © 2015 by the Wound Healing Society.

  4. Transdermal drug delivery: feasibility for treatment of superficial bone stress fractures.

    Science.gov (United States)

    Aghazadeh-Habashi, Ali; Yang, Yang; Tang, Kathy; Lőbenberg, Raimar; Doschak, Michael R

    2015-12-01

    Transdermal drug delivery offers the promise of effective drug therapy at selective sites of pathology whilst reducing systemic exposure to the pharmaceutical agents in off-target organs and tissues. However, that strategy is often limited to cells comprising superficial tissues of the body (rarely to deeper bony structures) and mostly indicated with small hydrophobic pharmacological agents, such as steroid hormones and anti-inflammatory gels to skin, muscle, and joints. Nonetheless, advances in transdermal liposomal formulation have rendered the ability to readily incorporate pharmacologically active hydrophilic drug molecules and small peptide biologics into transdermal dosage forms to impart the effective delivery of those bioactive agents across the skin barrier to underlying superficial tissue structures including bone, often enhanced by some form of electrical, chemical, and mechanical facilitation. In the following review, we evaluate transdermal drug delivery systems, with a particular focus on delivering therapeutic agents to treat superficial bone pain, notably stress fractures. We further introduce and discuss several small peptide hormones active in bone (such as calcitonins and parathyroid hormone) that have shown potential for transdermal delivery, often under the added augmentation of transdermal drug delivery systems that employ lipo/hydrophilicity, electric charge, and/or microprojection facilitation across the skin barrier.

  5. Biologic and synthetic skin substitutes: An overview.

    Science.gov (United States)

    Halim, Ahmad Sukari; Khoo, Teng Lye; Mohd Yussof, Shah Jumaat

    2010-09-01

    The current trend of burn wound care has shifted to more holistic approach of improvement in the long-term form and function of the healed burn wounds and quality of life. This has demanded the emergence of various skin substitutes in the management of acute burn injury as well as post burn reconstructions. Skin substitutes have important roles in the treatment of deep dermal and full thickness wounds of various aetiologies. At present, there is no ideal substitute in the market. Skin substitutes can be divided into two main classes, namely, biological and synthetic substitutes. The biological skin substitutes have a more intact extracellular matrix structure, while the synthetic skin substitutes can be synthesised on demand and can be modulated for specific purposes. Each class has its advantages and disadvantages. The biological skin substitutes may allow the construction of a more natural new dermis and allow excellent re-epithelialisation characteristics due to the presence of a basement membrane. Synthetic skin substitutes demonstrate the advantages of increase control over scaffold composition. The ultimate goal is to achieve an ideal skin substitute that provides an effective and scar-free wound healing.

  6. Biologic and synthetic skin substitutes: An overview

    Directory of Open Access Journals (Sweden)

    Halim Ahmad

    2010-10-01

    Full Text Available The current trend of burn wound care has shifted to more holistic approach of improvement in the long-term form and function of the healed burn wounds and quality of life. This has demanded the emergence of various skin substitutes in the management of acute burn injury as well as post burn reconstructions. Skin substitutes have important roles in the treatment of deep dermal and full thickness wounds of various aetiologies. At present, there is no ideal substitute in the market. Skin substitutes can be divided into two main classes, namely, biological and synthetic substitutes. The biological skin substitutes have a more intact extracellular matrix structure, while the synthetic skin substitutes can be synthesised on demand and can be modulated for specific purposes. Each class has its advantages and disadvantages. The biological skin substitutes may allow the construction of a more natural new dermis and allow excellent re-epithelialisation characteristics due to the presence of a basement membrane. Synthetic skin substitutes demonstrate the advantages of increase control over scaffold composition. The ultimate goal is to achieve an ideal skin substitute that provides an effective and scar-free wound healing.

  7. Biologic and synthetic skin substitutes: An overview

    OpenAIRE

    Halim, Ahmad Sukari; Khoo, Teng Lye; Mohd. Yussof, Shah Jumaat

    2010-01-01

    The current trend of burn wound care has shifted to more holistic approach of improvement in the long-term form and function of the healed burn wounds and quality of life. This has demanded the emergence of various skin substitutes in the management of acute burn injury as well as post burn reconstructions. Skin substitutes have important roles in the treatment of deep dermal and full thickness wounds of various aetiologies. At present, there is no ideal substitute in the market. Skin substit...

  8. The Effects of Topical Application of Thyroid Hormone (Liothyronine, T3 on Skin Wounds in Diabetic Wistar Rats

    Directory of Open Access Journals (Sweden)

    Mahmoud Ali Kaykhaei

    2016-04-01

    Full Text Available Background Efficient treatment of skin ulcers, a leading cause of substantial number of morbidities among diabetic patients, is a subject of matter. Objectives Since current therapies are partially effective and/or expensive and topical liothyronine (T3 was shown to get faster wound healing in mice, the present study was designed to assess its effectiveness in diabetic male rats. Materials and Methods In this experimental study, 30 male wistar rats with mean weight of 242 g were randomly assigned into control (group C (n = 10 and diabetic (n = 20 groups. Diabetes was induced by intraperitoneal (i.p. injection of streptozotocin. Diabetic rats were randomly subdivided into two groups: diabetic T3 group (group A which was treated with 150 ng/day topical T3 and diabetic placebo group (group B received vehicle. Full thickness wound on dorsum was created in each rat (1 cm2. Photographs were taken at baseline, fourth and tenth day to analyze changes in surface areas of wounds. Results Results obtained from the present study showed that baseline surface areas of wounds were similar in all groups. Conversely, wound contraction was significantly better in T3 group in fourth and tenth days compared to placebo group, (P = 0.001, P < 0.00001. Moreover, wound healing was impaired in diabetic placebo group compared to other groups (all P < 0.05. Conclusions This study revealed that topical T3 administration is an effective measure for treatment of ulcers in diabetic male rats.

  9. The alpha3 laminin subunit, alpha6beta4 and alpha3beta1 integrin coordinately regulate wound healing in cultured epithelial cells and in the skin

    DEFF Research Database (Denmark)

    Goldfinger, L E; Hopkinson, S B; deHart, G W

    1999-01-01

    Previously, we demonstrated that proteolytic processing within the globular domain of the alpha3 subunit of laminin-5 (LN5) converts LN5 from a cell motility-inducing factor to a protein complex that can trigger the formation of hemidesmosomes, certain cell-matrix attachment sites found in epithe......-inhibiting antibodies, we provide evidence that LN5 and its two integrin receptors (alpha6beta4 and alpha3beta1) appear necessary for wound healing to occur in MCF-10A cell culture wounds. We propose a model for healing of wounded epithelial tissues based on these results....... in epithelial cells. We have prepared a monoclonal antibody (12C4) whose epitope is located toward the carboxy terminus of the globular domain of the alpha3 laminin subunit. This epitope is lost from the alpha3 subunit as a consequence of proteolytic processing. Antibody 12C4 stains throughout the matrix...... the wound site. A similar phenomenon is observed in human skin wounds, since we also detect expression of the unprocessed alpha3 laminin subunit at the leading tip of the sheet of epidermal cells that epithelializes skin wounds in vivo. In addition, using alpha3 laminin subunit and integrin function...

  10. Wound Healing Activity of Topical Application Forms Based on Ayurveda

    Directory of Open Access Journals (Sweden)

    Hema Sharma Datta

    2011-01-01

    Full Text Available The traditional Indian medicine—Ayurveda, describes various herbs, fats, oils and minerals with anti-aging as well as wound healing properties. With aging, numerous changes occur in skin, including decrease in tissue cell regeneration, decrease in collagen content, loss of skin elasticity and mechanical strength. We prepared five topical anti-aging formulations using cow ghee, flax seed oil, Phyllanthus emblica fruits, Shorea robusta resin, Yashada bhasma as study materials. For preliminary efficacy evaluation of the anti-aging activity we chose excision and incision wound healing animal models and studied the parameters including wound contraction, collagen content and skin breaking strength which in turn is indicative of the tissue cell regeneration capacity, collagenation capacity and mechanical strength of skin. The group treated with the formulations containing Yashada bhasma along with Shorea robusta resin and flax seed oil showed significantly better wound contraction (P < .01, higher collagen content (P < .05 and better skin breaking strength (P < .01 as compared to control group; thus proposing them to be effective prospective anti-aging formulations.

  11. Efficacy of topical and systemic antibiotic treatment of meticillin-resistant Staphylococcus aureus in a murine superficial skin wound infection model

    DEFF Research Database (Denmark)

    Vingsbo Lundberg, Carina; Frimodt-Møller, Niels

    2013-01-01

    Meticillin-resistant Staphylococcus aureus (MRSA) is a rapidly spreading pathogen associated predominantly with skin infections. The lack of clinical evidence indicating the best treatment strategy to combat MRSA skin infections prompted us to investigate the efficacy of available treatment options...... were determined. Retapamulin, fusidic acid and mupirocin treatment for 3 days reduced the bacterial loads by 2.5, 2.9 and 2.0 log(10) CFU, respectively, and treatment for 6 days by 5.0, 4.2 and 5.1 log(10) CFU, respectively, compared with non-treated controls (P...

  12. Bacterial Aggregates Establish at the Edges of Acute Epidermal Wounds

    DEFF Research Database (Denmark)

    Bay, Lene; Kragh, Kasper N.; Eickhardt, Steffen R.

    2018-01-01

    for culturing from the wounds and adjacent skin, and the wounds including adjacent skin were excised. Tissue sections were stained with peptide nucleic acid (PNA) fluorescence in situ hybridization (FISH) probes, counterstained by 4′,6-diamidino-2-phenylindole, and evaluated by confocal laser scanning...... microscopy (CLSM). Results: No bacterial aggregates were detected at day 0. At day 4, coagulase-negative staphylococci (CoNS) were the sole bacteria identified by CLSM/PNA-FISH and culturing. CoNS was isolated from 78% of the wound swabs and 48% of the skin swabs. Bacterial aggregates (5–150 μm) were...

  13. Varying the morphology of silver nanoparticles results in differential toxicity against micro-organisms, HaCaT keratinocytes and affects skin deposition.

    Science.gov (United States)

    Holmes, Amy M; Lim, Julian; Studier, Hauke; Roberts, Michael S

    2016-12-01

    The use of silver nanoparticles (Ag NPs) within the healthcare sector and consumer products is rapidly increasing. There are now a range of diverse-shaped Ag NPs that are commercially available and many of the products containing nanosilver are topically applied to human skin. Currently, there is limited data on the extent to which the antimicrobial efficacy and cytotoxicity of Ag NPs is related to their shape and how the shape of the Ag NPs affects their distribution in both intact and burn wounded human skin after topical application. In this study, we related the relative Ag NP cytotoxicity to potential skin pathogens and HaCaT keratinocytes in vitro with the shape of the Ag NPs. We employed multiphoton fluorescence lifetime imaging to map the distribution of the native and unlabeled Ag NPs after topical application to both intact and burn wounded human skin using the localized surface plasmon resonance signal of the Ag NPs. Truncated plate shaped Ag NPs led to the highest cytotoxicity against both bacteria (IC 50 ranges from 31.25 to 125 μg/mL depending on the bacterial species) and HaCaT keratinocytes (IC 50 78.65 μg/mL [95%CI 63.88, 96.83]) thus both with similar orders of magnitude. All Ag NPs were less cytotoxic than solutions of silver nitrate (IC 50 of 7.85 μg/mL [95%CI 1.49, 14.69]). Plate-shaped Ag NPs displayed the highest substantivity within the superficial layers of the stratum corneum when topically applied to intact skin and the highest deposition into the wound bed when applied to burned ex vivo human skin relative to other Ag NP shapes.

  14. In vivo evaluation of wound bed reaction and graft performance after cold skin graft storage: new targets for skin tissue engineering.

    Science.gov (United States)

    Knapik, Alicia; Kornmann, Kai; Kerl, Katrin; Calcagni, Maurizio; Schmidt, Christian A; Vollmar, Brigitte; Giovanoli, Pietro; Lindenblatt, Nicole

    2014-01-01

    Surplus harvested skin grafts are routinely stored at 4 to 6°C in saline for several days in plastic surgery. The purpose of this study was to evaluate the influence of storage on human skin graft performance in an in vivo intravital microscopic setting after transplantation. Freshly harvested human full-thickness skin grafts and split-thickness skin grafts (STSGs) after storage of 0, 3, or 7 days in moist saline at 4 to 6°C were transplanted into the modified dorsal skinfold chamber, and intravital microscopy was performed to evaluate vessel morphology and angiogenic change of the wound bed. The chamber tissue was harvested 10 days after transplantation for evaluation of tissue integrity and inflammation (hematoxylin and eosin) as well as for immunohistochemistry (human CD31, murine CD31, Ki67, Tdt-mediated dUTP-biotin nick-end labelling). Intravital microscopy results showed no differences in the host angiogenic response between fresh and preserved grafts. However, STSGs and full-thickness skin grafts exhibited a trend toward different timing and strength in capillary widening and capillary bud formation. Preservation had no influence on graft quality before transplantation, but fresh STSGs showed better quality 10 days after transplantation than 7-day preserved grafts. Proliferation and apoptosis as well as host capillary in-growth and graft capillary degeneration were equal in all groups. These results indicate that cells may activate protective mechanisms under cold conditions, allowing them to maintain function and morphology. However, rewarming may disclose underlying tissue damage. These findings could be translated to a new approach for the design of full-thickness skin substitutes.

  15. Risk factors for wound disruption following cesarean delivery.

    Science.gov (United States)

    Subramaniam, Akila; Jauk, Victoria C; Figueroa, Dana; Biggio, Joseph R; Owen, John; Tita, Alan T N

    2014-08-01

    Risk factors for post-cesarean wound infection, but not disruption, are well-described in the literature. The primary objective of this study was to identify risk factors for non-infectious post-cesarean wound disruption. Secondary analysis was conducted using data from a single-center randomized controlled trial of staple versus suture skin closure in women ≥24 weeks' gestation undergoing cesarean delivery. Wound disruption was defined as subcutaneous skin or fascial dehiscence excluding primary wound infections. Composite wound morbidity (disruption or infection) was examined as a secondary outcome. Patient demographics, medical co-morbidities, and intrapartum characteristics were evaluated as potential risk factors using multivariable logistic regression. Of the 398 randomized patients, 340, including 26 with disruptions (7.6%) met inclusion criteria and were analyzed. After multivariable adjustments, African-American race (aOR 3.9, 95% CI 1.1-13.8) and staple - as opposed to suture - wound closure (aOR 5.4, 95% CI 1.8-16.1) remained significant risk factors for disruption; non-significant increases were observed for body mass index ≥30 (aOR 2.1, 95% CI 0.6-7.5), but not for diabetes mellitus (aOR 0.9, 95% CI 0.3-2.9). RESULTS for composite wound morbidity were similar. Skin closure with staples, African-American race, and considering the relatively small sample size, potentially obesity are associated with increased risk of non-infectious post-cesarean wound disruption.

  16. Temporary Relocation of the Testes in Anteromedial Thigh Pouches Facilitates Delayed Primary Scrotal Wound Closure in Fournier Gangrene With Extensive Loss of Scrotal Skin-Experience With 12 Cases.

    Science.gov (United States)

    Okwudili, Obi Anselm

    2016-03-01

    To share our experience on the use of temporary testicular thigh pouches to facilitate scrotal wound closure in Fournier gangrene with extensive loss of scrotal skin. Patients seen over a 10-year period who had extensive (>50%) loss of scrotal skin precluding delayed primary closure of the residual scrotal skin over the testes were documented. Patients had serial debridement as required with scrotal wound dressing until healthy granulation tissue was achieved. The testes were placed temporarily in anteromedial thigh pouches to allow for scrotal wound closure. In the postoperative period, the testes were gradually massaged back into the residual scrotal pouch, thus acting as natural tissue expanders. Mean patient age was 38.1 ± 10.0 years. Mean duration of admission was 24.4 ± 4.7 days. Identified predisposing factors were ischiorectal fossa abscess in 2 patients and urethral stricture in 1 patient. The rest were idiopathic. Mean Fournier gangrene severity index was 6.0 ± 1.3. Mean number of debridements was 2.3 ± 0.5. There was no mortality. The residual scrotal pouches expanded sufficiently over time (3-8 months) to accommodate the testes. Normal testicular volume was maintained in all patients. Mean testicular volume was 19.0 ± 3.2 cm. Follow-up was for 14.8 ± 9.7 months. Temporarily relocating the testes in anteromedial thigh pouches facilitates scrotal wound closure in Fournier gangrene with extensive loss of scrotal skin and obviates the need for specialized reconstructive surgery.

  17. Adipose Extracellular Matrix/Stromal Vascular Fraction Gel Secretes Angiogenic Factors and Enhances Skin Wound Healing in a Murine Model

    Directory of Open Access Journals (Sweden)

    Mingliang Sun

    2017-01-01

    Full Text Available Mesenchymal stem cells are an attractive cell type for cytotherapy in wound healing. The authors recently developed a novel, adipose-tissue-derived, injectable extracellular matrix/stromal vascular fraction gel (ECM/SVF-gel for stem cell therapy. This study was designed to assess the therapeutic effects of ECM/SVF-gel on wound healing and potential mechanisms. ECM/SVF-gel was prepared for use in nude mouse excisional wound healing model. An SVF cell suspension and phosphate-buffered saline injection served as the control. The expression levels of vascular endothelial growth factor (VEGF, basic fibroblast growth factor (bFGF, and monocyte chemotactic protein-1 (MCP-1 in ECM/SVF-gel were analyzed at different time points. Angiogenesis (tube formation assays of ECM/SVF-gel extracts were evaluated, and vessels density in skin was determined. The ECM/SVF-gel extract promoted tube formation in vitro and increased the expression of the angiogenic factors VEGF and bFGF compared with those in the control. The expression of the inflammatory chemoattractant MCP-1 was high in ECM/SVF-gel at the early stage and decreased sharply during the late stage of wound healing. The potent angiogenic effects exerted by ECM/SVF-gel may contribute to the improvement of wound healing, and these effects could be related to the enhanced inflammatory response in ECM/SVF-gel during the early stage of wound healing.

  18. Effect of auto-skin grafting on bacterial infection of wound in rats inflicted with combined radiation-burn injury

    International Nuclear Information System (INIS)

    Ran Xinze; Yan Yongtang; Wei Shuqing

    1992-01-01

    Rats were exposed to 6 Gy whole body γ-ray irradiation from a 60 Co source followed by light radiation burn (15% TBSA, full thickness burn) from a 5 kw bromo-tungsten lamp. The effect of auto-skin grafting on invasive bacterial infection of wound in the rats with combined radiation-burn injury was studied, In the control group inflicted with combined radiation-burn injury but without skin grafting, bacteria were found on and in the eschars at 24th hour after injury, and in the subeschar tissue on 3rd day. Tremendous bacterial multiplication occurred from 7th to 15th day, and the amount of bacteria in the internal organs increased along with the increase of subeschar infection. At the same time, no bacterial infection was found in internal organs in auto-skin grafted group at 24th hour after injury. The results show that skin grafting can decrease or prevent bacterial infection in both subeschar tissue and internal organs

  19. Frey′s Syndrome as a Sequela of Superficial Parotidectomy

    Directory of Open Access Journals (Sweden)

    Rishi Kumar Bali

    2006-01-01

    The disorder is characterized by unilateral sweating and flushing of facial skin in the area of parotid gland occurring during meals. We present a case of a patient who developed symptoms of Frey Syndrome 4 months after undergoing superficial parotidectomy on left side.

  20. Phytochemical Composition, Antioxidant Activity, and the Effect of the Aqueous Extract of Coffee (Coffea arabica L.) Bean Residual Press Cake on the Skin Wound Healing.

    Science.gov (United States)

    Affonso, Regina Celis Lopes; Voytena, Ana Paula Lorenzen; Fanan, Simone; Pitz, Heloísa; Coelho, Daniela Sousa; Horstmann, Ana Luiza; Pereira, Aline; Uarrota, Virgílio Gavicho; Hillmann, Maria Clara; Varela, Lucas Andre Calbusch; Ribeiro-do-Valle, Rosa Maria; Maraschin, Marcelo

    2016-01-01

    The world coffee consumption has been growing for its appreciated taste and its beneficial effects on health. The residual biomass of coffee, originated in the food industry after oil extraction from coffee beans, called coffee beans residual press cake, has attracted interest as a source of compounds with antioxidant activity. This study investigated the chemical composition of aqueous extracts of coffee beans residual press cake (AE), their antioxidant activity, and the effect of topical application on the skin wound healing, in animal model, of hydrogels containing the AE, chlorogenic acid (CGA), allantoin (positive control), and carbopol (negative control). The treatments' performance was compared by measuring the reduction of the wound area, with superior result ( p coffee AE (78.20%) with respect to roasted coffee AE (53.71%), allantoin (70.83%), and carbopol (23.56%). CGA hydrogels reduced significantly the wound area size on the inflammatory phase, which may be associated with the well known antioxidant and anti-inflammatory actions of that compound. The topic use of the coffee AE studied improved the skin wound healing and points to an interesting biotechnological application of the coffee bean residual press cake.

  1. Phytochemical Composition, Antioxidant Activity, and the Effect of the Aqueous Extract of Coffee (Coffea arabica L. Bean Residual Press Cake on the Skin Wound Healing

    Directory of Open Access Journals (Sweden)

    Regina Celis Lopes Affonso

    2016-01-01

    Full Text Available The world coffee consumption has been growing for its appreciated taste and its beneficial effects on health. The residual biomass of coffee, originated in the food industry after oil extraction from coffee beans, called coffee beans residual press cake, has attracted interest as a source of compounds with antioxidant activity. This study investigated the chemical composition of aqueous extracts of coffee beans residual press cake (AE, their antioxidant activity, and the effect of topical application on the skin wound healing, in animal model, of hydrogels containing the AE, chlorogenic acid (CGA, allantoin (positive control, and carbopol (negative control. The treatments’ performance was compared by measuring the reduction of the wound area, with superior result (p<0.05 for the green coffee AE (78.20% with respect to roasted coffee AE (53.71%, allantoin (70.83%, and carbopol (23.56%. CGA hydrogels reduced significantly the wound area size on the inflammatory phase, which may be associated with the well known antioxidant and anti-inflammatory actions of that compound. The topic use of the coffee AE studied improved the skin wound healing and points to an interesting biotechnological application of the coffee bean residual press cake.

  2. Experimental studies on decontamination in first aid for contaminated wounds

    International Nuclear Information System (INIS)

    Kusama, Tomoko; Ogaki, Kazushi; Yoshizawa, Yasuo

    1982-01-01

    The present study was designed to investigate the decontamination procedures in first aid for wounds contaminated with radionuclides. Abrasion of mouse skin was contaminated with 58 CoCl 2 . Irrigation by decontamination fluids began at 2 min after administration of the radionuclide and continued for 14 min. Tap water, 0.5% Hyamine solution or 10% Ca-DTPA solution were used as the decontamination fluids. Radioactivities of whole body, wounded skin surface and washed solution were measured with an animal counter with 5 cm NaI(Tl) and a well-type auto-gamma-counter. Decontamination effectiveness were expressed as follows: (1) absorption rate of radionuclide through the wound and (2) residual rate of radionuclide on the wound. More than 20% of the radionuclide applied on the wounded skin was absorbed in 15 min after contamination. The absorption rate decreased to 2% by the decontamination procedures. The Ca-DTPA solution reduced the residual rate of radionuclide on the wounds. The results suggested that the decontamination for the contaminated wounds should begin as soon as possible. Irrigation with 0.5% Hyamine solution has been advocated for the decontamination in the first aid. (author)

  3. Impact of evidence-based interventions on wound complications after cesarean delivery.

    Science.gov (United States)

    Temming, Lorene A; Raghuraman, Nandini; Carter, Ebony B; Stout, Molly J; Rampersad, Roxane M; Macones, George A; Cahill, Alison G; Tuuli, Methodius G

    2017-10-01

    A number of evidence-based interventions have been proposed to reduce post-cesarean delivery wound complications. Examples of such interventions include appropriate timing of preoperative antibiotics, appropriate choice of skin antisepsis, closure of the subcutaneous layer if subcutaneous depth is ≥2 cm, and subcuticular skin closure with suture rather than staples. However, the collective impact of these measures is unclear. We sought to estimate the impact of a group of evidence-based surgical measures (prophylactic antibiotics administered before skin incision, chlorhexidine-alcohol for skin antisepsis, closure of subcutaneous layer, and subcuticular skin closure with suture) on wound complications after cesarean delivery and to estimate residual risk factors for wound complications. We conducted a secondary analysis of data from a randomized controlled trial of chlorhexidine-alcohol vs iodine-alcohol for skin antisepsis at cesarean delivery from 2011-2015. The primary outcome for this analysis was a composite of wound complications that included surgical site infection, cellulitis, seroma, hematoma, and separation within 30 days. Risk of wound complications in women who received all 4 evidence-based measures (prophylactic antibiotics within 60 minutes of cesarean delivery and before skin incision, chlorhexidine-alcohol for skin antisepsis with 3 minutes of drying time before incision, closure of subcutaneous layer if ≥2 cm of depth, and subcuticular skin closure with suture) were compared with those women who did not. We performed logistic regression analysis limited to patients who received all the evidence-based measures to estimate residual risk factors for wound complications and surgical site infection. Of 1082 patients with follow-up data, 349 (32.3%) received all the evidence-based measures, and 733 (67.7%) did not. The risk of wound complications was significantly lower in patients who received all the evidence-based measures compared with those who

  4. Surface biology of collagen scaffold explains blocking of wound contraction and regeneration of skin and peripheral nerves.

    Science.gov (United States)

    Yannas, I V; Tzeranis, D; So, P T

    2015-12-23

    We review the details of preparation and of the recently elucidated mechanism of biological (regenerative) activity of a collagen scaffold (dermis regeneration template, DRT) that has induced regeneration of skin and peripheral nerves (PN) in a variety of animal models and in the clinic. DRT is a 3D protein network with optimized pore size in the range 20-125 µm, degradation half-life 14 ± 7 d and ligand densities that exceed 200 µM α1β1 or α2β1 ligands. The pore has been optimized to allow migration of contractile cells (myofibroblasts, MFB) into the scaffold and to provide sufficient specific surface for cell-scaffold interaction; the degradation half-life provides the required time window for satisfactory binding interaction of MFB with the scaffold surface; and the ligand density supplies the appropriate ligands for specific binding of MFB on the scaffold surface. A dramatic change in MFB phenotype takes place following MFB-scaffold binding which has been shown to result in blocking of wound contraction. In both skin wounds and PN wounds the evidence has shown clearly that contraction blocking by DRT is followed by induction of regeneration of nearly perfect organs. The biologically active structure of DRT is required for contraction blocking; well-matched collagen scaffold controls of DRT, with structures that varied from that of DRT, have failed to induce regeneration. Careful processing of collagen scaffolds is required for adequate biological activity of the scaffold surface. The newly understood mechanism provides a relatively complete paradigm of regenerative medicine that can be used to prepare scaffolds that may induce regeneration of other organs in future studies.

  5. Armpits, Belly Buttons and Chronic Wounds: The ABCs of Our Body Bacteria

    Science.gov (United States)

    ... and Chronic Wounds: The ABCs of Our Body Bacteria By Alisa Machalek and Allison MacLachlan Posted April ... treating skin and other conditions. Chronic Wounds and Bacteria Bacteria from human skin grown on agar in ...

  6. Wound infection following stoma takedown: primary skin closure versus subcuticular purse-string suture.

    Science.gov (United States)

    Marquez, Thao T; Christoforidis, Dimitrios; Abraham, Anasooya; Madoff, Robert D; Rothenberger, David A

    2010-12-01

    Stoma closure has been associated with a high rate of surgical site infection (SSI) and the ideal stoma-site skin closure technique is still debated. The aim of this study was to compare the rate of SSI following primary skin closure (PC) versus a skin-approximating, subcuticular purse-string closure (APS). All consecutive patients undergoing stoma closure between 2002 and 2007 by two surgeons at a single tertiary-care institution were retrospectively assessed. Patients who had a new stoma created at the same site or those without wound closure were excluded. The end point was SSI, determined according to current CDC guidelines, at the stoma closure site and/or the midline laparotomy incision. There were 61 patients in the PC group (surgeon A: 58 of 61) and 17 in the APS group (surgeon B: 16 of 17). The two groups were similar in baseline and intraoperative characteristics, except that patients in the PC group were more often diagnosed with benign disease (p = 0.0156) and more often had a stapled anastomosis (p = 0.002). The overall SSI rate was 14 of 78 (18%). All SSIs occurred in the PC group (14 of 61 vs. 0 of 17, p = 0.03). Our study suggests that a skin-approximating closure with a subcuticular purse-string of the stoma site leads to less SSI than a primary closure. Randomized studies are needed to confirm our findings and assess additional end points such as healing time, cost, and patient satisfaction.

  7. The management of perineal wounds

    Directory of Open Access Journals (Sweden)

    Ramesh k Sharma

    2012-01-01

    Full Text Available Management of perineal wounds can be very frustrating as these invariably get contaminated from the ano-genital tracts. Moreover, the apparent skin defect may be associated with a significant three dimensional dead space in the pelvic region. Such wounds are likely to become chronic and recalcitrant if appropriate wound management is not instituted in a timely manner. These wounds usually result after tumor excision, following trauma or as a result of infective pathologies like hideradenitis suppurativa or following thermal burns. Many options are available for management of perineal wounds and these have been discussed with illustrative case examples. A review of literature has been done for listing commonly instituted options for management of the wounds in perineum.

  8. Identification of a transcriptional signature for the wound healing continuum.

    Science.gov (United States)

    Peake, Matthew A; Caley, Mathew; Giles, Peter J; Wall, Ivan; Enoch, Stuart; Davies, Lindsay C; Kipling, David; Thomas, David W; Stephens, Phil

    2014-01-01

    There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Microarray analysis of adult oral mucosal fibroblast (OMF), normal skin fibroblast (NF), and chronic wound fibroblast (CWF) at 0 and 6 hours post-serum stimulation was performed. Genes whose expression increases following serum exposure in the order OMF healing phenotype (the dysfunctional healing group), whereas genes with the converse pattern are potentially associated with a positive/preferential healing phenotype (the enhanced healing group). Sixty-six genes in the enhanced healing group and 38 genes in the dysfunctional healing group were identified. Overrepresentation analysis revealed pathways directly and indirectly associated with wound healing and aging and additional categories associated with differentiation, development, and morphogenesis. Knowledge of this wound healing continuum gene signature may in turn assist in the therapeutic assessment/treatment of a patient's wounds. © 2014 The Authors. Wound Repair and Regeneration published by Wiley Periodicals, Inc. on behalf of Wound Healing Society.

  9. Cultured skin substitutes reduce donor skin harvesting for closure of excised, full-thickness burns.

    Science.gov (United States)

    Boyce, Steven T; Kagan, Richard J; Yakuboff, Kevin P; Meyer, Nicholas A; Rieman, Mary T; Greenhalgh, David G; Warden, Glenn D

    2002-02-01

    Comparison of cultured skin substitutes (CSS) and split-thickness skin autograft (AG) was performed to assess whether donor-site harvesting can be reduced quantitatively and whether functional and cosmetic outcome is similar qualitatively in the treatment of patients with massive cutaneous burns. Cultured skin substitutes consisting of collagen-glycosaminoglycan substrates populated with autologous fibroblasts and keratinocytes have been shown to close full-thickness skin wounds in preclinical and clinical studies with acceptable functional and cosmetic results. Qualitative outcome was compared between CSS and AG in 45 patients on an ordinal scale (0, worst; 10, best) with primary analyses at postoperative day 28 and after about 1 year for erythema, pigmentation, pliability, raised scar, epithelial blistering, and surface texture. In the latest 12 of the 45 patients, tracings were performed of donor skin biopsies and wounds treated with CSS at postoperative days 14 and 28 to calculate percentage engraftment, the ratio of closed wound:donor skin areas, and the percentage of total body surface area closed with CSS. Measures of qualitative outcome of CSS or AG were not different statistically at 1 year after grafting. Engraftment at postoperative day 14 exceeded 75% in the 12 patients evaluated. The ratio of closed wound:donor skin areas for CSS at postoperative day 28 was significantly greater than for conventional 4:1 meshed autografts. The percentage of total body surface area closed with CSS at postoperative day 28 was significantly less than with AG. The requirement for harvesting of donor skin for CSS was less than for conventional skin autografts. These results suggest that acute-phase recovery of patients with extensive burns is facilitated and that complications are reduced by the use of CSS together with conventional skin grafting.

  10. Wound bed preparation for ischemic diabetic foot ulcer.

    Science.gov (United States)

    Zhang, Zhaoxin; Lv, Lei; Guan, Sheng

    2015-01-01

    This study is to evaluate the effect of allograft skin on wound angiogenesis and wound bed preparation of ischemic diabetic foot ulcer. A total of 60 cases of patients with diabetic foot ulcer were randomly divided into the experimental group (n = 30) and the control group (n = 30). After debridement, in the experimental group, allograft skin was used to cover the wound while in the control group, vaseline and gauze was used to cover the wound. The wound was opened and dressed at 3, 5, 7, 14 days after operation and the growth condition of the granulation tissue was observed and recorded. The wound bed preparation time of the experimental group was 14.37 ± 1.06 days, compared with the control group 25.99 ± 4.03 days, there was statistically significant difference (t = 14.78, P cure time of the experimental group was 32 ± 1.93 days and this time was significantly shortened than the control group 39.73 ± 2.55 days (t = 12.521, P ulcer and shorten the wound bed preparation time and treatment cycle.

  11. Fibromodulin Is Essential for Fetal-Type Scarless Cutaneous Wound Healing.

    Science.gov (United States)

    Zheng, Zhong; Zhang, Xinli; Dang, Catherine; Beanes, Steven; Chang, Grace X; Chen, Yao; Li, Chen-Shuang; Lee, Kevin S; Ting, Kang; Soo, Chia

    2016-11-01

    In contrast to adult and late-gestation fetal skin wounds, which heal with scar, early-gestation fetal skin wounds display a remarkable capacity to heal scarlessly. Although the underlying mechanism of this transition from fetal-type scarless healing to adult-type healing with scar has been actively investigated for decades, in utero restoration of scarless healing in late-gestation fetal wounds has not been reported. In this study, using loss- and gain-of-function rodent fetal wound models, we identified that fibromodulin (Fm) is essential for fetal-type scarless wound healing. In particular, we found that loss of Fm can eliminate the ability of early-gestation fetal rodents to heal without scar. Meanwhile, administration of fibromodulin protein (FM) alone was capable of restoring scarless healing in late-gestation rat fetal wounds, which naturally heal with scar, as characterized by dermal appendage restoration and organized collagen architectures that were virtually indistinguishable from those in age-matched unwounded skin. High Fm levels correlated with decreased transforming growth factor (TGF)-β1 expression and scarless repair, while low Fm levels correlated with increased TGF-β1 expression and scar formation. This study represents the first successful in utero attempt to induce scarless repair in late-gestation fetal wounds by using a single protein, Fm, and highlights the crucial role that the FM-TGF-β1 nexus plays in fetal-type scarless skin repair. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Nanotechnology-Based Therapies for Skin Wound Regeneration

    International Nuclear Information System (INIS)

    Tocco, I.; Bassetto, F.; Vindigni, V.; Zavan, B.

    2012-01-01

    The cutting-edge combination of nano technology with medicine offers the unprecedented opportunity to create materials and devices at a nano scale level, holding the potential to revolutionize currently available macro scale therapeutics. Nano technology already provides a plethora of advantages to medical care, and the success of nano particulate systems suggests that a progressive increase in the exploration of their potential will take place in the near future. An overview on the current applications of nano technology to wound healing and wound care is presented

  13. Age-related aspects of cutaneous wound healing: a mini-review.

    Science.gov (United States)

    Sgonc, Roswitha; Gruber, Johann

    2013-01-01

    As the aging population in developed countries is growing in both numbers and percentage, the medical, social, and economic burdens posed by nonhealing wounds are increasing. Hence, it is all the more important to understand the mechanisms underlying age-related impairments in wound healing. The purpose of this article is to give a concise overview of (1) normal wound healing, (2) alterations in aging skin that have an impact on wound repair, (3) alterations in the repair process of aged skin, and (4) general factors associated with old age that might impair wound healing, with a focus on the literature of the last 10 years. Copyright © 2012 S. Karger AG, Basel.

  14. Closure of large wounds using rubber bands in rabbits

    Directory of Open Access Journals (Sweden)

    Maria Angélica Baron Magalhães

    Full Text Available OBJECTIVE: to verify the effectiveness of the rubber elastic band in the treatment of large wounds of the body wall of rabbits by means of traction of its edges. METHODS: we studied 30 New Zealand rabbits, divided into three groups (n=10: Group 1- healing by secondary intention; Group 2- removal and eutopic repositioning of skin as full thickness skin graft; Group 3- Approximation of wound edges with elastic rubber band. In all animals, we removed a segment of the back skin and subcutaneous tissue down to the fascia, in accordance with an acrylic mold of 8cm long by 12cm wide. All animals were observed for 21 days. RESULTS: two animals of groups 1 and 2 had wound abscess. In Group 2, there was partial or total graft loss in 90% of animals. The complete closure of the wounds was observed in four animals of Group 1, six of Group 2 and eight of Group 3. There was no difference between the scar resistance values of groups 2 and 3, which were higher than those in Group 1. The scars of the three groups were characterized by the presence of mature connective tissue mixed with blood vessels and inflammatory infiltration, predominantly polymorphonuclear. CONCLUSION: the tensile strength of the wound edges with rubber elastic band is as efficient as the skin graft to treat rabbits' large body wounds.

  15. The quantification of wound healing as a method to assess late radiation damage in primate skin exposed to high-energy protons

    Science.gov (United States)

    Cox, A. B.; Lett, J. T.

    In an experiment examining the effects of space radiations on primates, different groups of rhesus monkeys (Macaca mulatta) were exposed to single whole-body doses of 32- or 55-MeV protons. Survivors of those exposures, together with age-matched controls, have been monitored continuously since 1964 and 1965. Late effects of nominal proton doses ranging from 2-6 Gray have been measured in vitro using skin fibroblasts from the animals. A logical extension of that study is reported here, and it involves observations of wound healing after 3-mm diameter dermal punches were removed from the ears (pinnae) of control and irradiated monkeys. Tendencies in the reduction of competence to repair cutaneous wound have been revealed by the initial examinations of animals that received doses greater than 2 Gy more than 2 decades earlier. These trends indicate that this method of assessing radiation damage to skin exposed to high-energy radiations warrants further study.

  16. Superficial shell insulation in resting and exercising men in cold water.

    Science.gov (United States)

    Veicsteinas, A; Ferretti, G; Rennie, D W

    1982-06-01

    From measurements of subcutaneous fat temperature (Tsf) at known depths below the surface, skin surface temperature (Tsk), and direct skin heat flux (H), the superficial shell isulation (Iss) of the thigh (fat + skin) was calculated as Iss (degrees C.m2.w-1) = (Tsf - Tsk)/H in nine male subjects immersed head out in a well-stirred water bath. Also, at critical water temperature (CWT = 28-33 degrees C), eight of the subjects rested for 3 h, enabling overall maximal tissue insulation (It,max) to be calculated as It,max (degrees C.m2.W-1) = (Tre - Tw)/(0.92 M +/- delta S), where Tre is rectal temperature, Tw is water temperature, M is metabolic rate, and s is loss or gain of body heat. Five subjects performed up to 2 h of mild leg cycling, preceded and followed by 60 min of rest, and both thigh Iss and overall It were measured during exercise. Iss increased from minimal values in Tw greater than 33 degrees C to maximal values (Iss,max) at CWT or below. Iss,max was linearly related to tissue thickness (d) in millimeters of fat plus skin, Iss,max (degrees C.m2.W-1) = 0.0048d-0.0052; r = 0.95, n = 37, and was not influenced by leg exercise up to a metabolic rate of 150 W.m-2 in CWT despite large increases in Tsf and H and large decreases in overall It. The slope of Iss,max vs. depth, 0.0048 degrees C.m2.W-1.mm-1, is almost identical to thermal resistivity of fat in vitro, suggesting that the superficial shell is unperfused in CWT at rest or during mild exercise. When maximal superficial shell insulation (It,ss,max) for the whole body was calculated with allowance for differing fat thicknesses and surface areas of body regions, it could account for only 10-15% of overall It,max at rest and 35-40% of overall It in mild exercise. We suggest that the poorly perfused muscle shell plays a more important role as a defense against cooling at CWT than does the superficial shell (fat + skin), particularly at rest.

  17. Wound healing in animal models: review article

    Directory of Open Access Journals (Sweden)

    Fariba Jaffary

    2017-10-01

    Full Text Available Wound healing and reduction of its recovery time is one of the most important issues in medicine. Wound is defined as disruption of anatomy and function of normal skin. This injury could be the result of physical elements such as  surgical incision, hit or pressure cut of the skin and gunshot wound. Chemical or caustic burn is another category of wound causes that can be induced by acid or base contact irritation. Healing is a process of cellular and extracellular matrix interactions that occur in the damaged tissue. Wound healing consists of several stages including hemostasis, inflammatory phase, proliferative phase and new tissue formation which reconstructs by new collagen formation. Wounds are divided into acute and chronic types based on their healing time. Acute wounds have sudden onset and in normal individuals usually have healing process of less than 4 weeks without any residual side effects. In contrast, chronic wounds have gradual onset. Their inflammatory phase is prolonged and the healing process is stopped due to some background factors like diabetes, ischemia or local pressure. If the healing process lasts more than 4 weeks it will be classified as chronic wound. Despite major advances in the treatment of wounds, still finding effective modalities for healing wounds in the shortest possible time with the fewest side effects is a current challenge. In this review different phases of wound healing and clinical types of wound such as venous leg ulcer, diabetic foot ulcer and pressure ulcer are discussed. Also acute wound models (i.e burn wounds or incisional wound and chronic wound models (such as venous leg ulcers, diabetic foot ulcer, pressure ulcers or bedsore in laboratory animals are presented. This summary can be considered as a preliminary step to facilitate designing of more targeted and applied research in this area.

  18. [Nursing Experience With a Patient With Gastrostomy Leakage Resulting in Moisture-Associated Skin Damage].

    Science.gov (United States)

    Hsu, Mei-Yu; Hsu, Hsiao-Hui; Lyu, Ji-Yan

    2016-10-01

    Leakage is a common complication of gastrostomy. Exposure of the skin surrounding the gastrostomy tube to moisture or chemical irritants may cause moisture-associated skin damage (MASD) and seriously affect the patient's quality of life. This case study describes a nursing experience with gastrostomy leakage that resulted in MASD. An assessment conducted from July 29, 2015 to August 20, 2015 revealed that heavy gastronomy leakage had caused extensive skin erosion, ulceration, hyperplasia, and superficial infection. Simultaneously, the patient was required to conduct complex stoma care, which resulted in physical and psychological exhaustion. Changes in traditional tube and wound care were discussed on multiple occasions with an interdisciplinary healthcare team. Based on the evidence-based literature, we provide gastrostomy and MASD management strategies. Through team collaboration, we prevented gastric contents from contacting the patient's skin directly, improved patient comfort, controlled effluent and skin infections, maintained fluid and electrolyte balances, and acce-lerated the healing of the damaged skin. We recommend that healthcare professionals caring for patients with gastrostomy leakage be provided with early skin protection programs to learn the standard methods for identifying and correcting leakage factors, containing effluent, and adequately stabilizing the gastrostomy tube in order to reduce the impact on the patient's quality of life. In addition, patient education on tube and skin care should be provided to prevent the reoccurrence of complications.

  19. Clinical utility of foam dressings in wound management: a review

    Directory of Open Access Journals (Sweden)

    Nielsen J

    2015-02-01

    Full Text Available Jakob Nielsen, Karsten Fogh Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark Background: The management of chronic wounds is a significant medical burden associated with large health care expenditures. Since the establishment of moist wound healing in the 1960s, several types of wound dressings have been developed. However, the evidence for effectiveness when comparing various types of wound dressings is limited. Objectives: The purpose of this review is 1 to provide a general description of the role of foam in wound therapy and 2 to evaluate the evidence for effectiveness of foam dressings compared to other frequently used products. Summary and conclusion: Foam has a significant role in the clinical management of chronic wounds and in moist wound healing. There are only a few randomized controlled trials, which in general, show no significant difference in the healing effect of different dressing types. The choice of wound dressing should therefore be based on clinical evaluation of the wound and the periwound skin. Keywords: foam dressing, chronic wounds, comparative effectiveness, healing, periwound skin, ulcers 

  20. Skin-textile friction and skin elasticity in young and aged persons

    NARCIS (Netherlands)

    Gerhardt, L.C.; Lenz, A.; Spencer, N.D.; Munzer, T.; Derler, S.

    2009-01-01

    Background/purpose: The mechanical properties of human skin are known to change with ageing, rendering skin less resistant to friction and shear forces, as well as more vulnerable to wounds. Until now, only few and contradictory results on the age-dependent friction properties of skin have been

  1. Electrocautery skin incision for neurosurgery procedures--technical note.

    Science.gov (United States)

    Nitta, Naoki; Fukami, Tadateru; Nozaki, Kazuhiko

    2011-01-01

    The reluctance to incise skin with electrocautery is partly attributable to concerns about excessive scarring and poor wound healing. However, recently no difference was reported in wound complications between the cold scalpel and electrocautery scalpel. We assessed the safety and efficacy of electrocautery skin incision in 22 scalp incisions, including 4 cases of reoperation. Electrocautery skin incisions were created using a sharp needle electrode. The generator unit was set on cutting mode, with power of 6 W and 330 kHz sinusoid waveform. Subcutaneous dissections also used the sharp needle electrode, set on coagulating mode, with power of 10 W and 1 MHz pulse-modulated waveform. Galea incisions used a standard blade tip, set on coagulating mode, with power of 20 W and 1 MHz pulse-modulated waveform. Skin incision with the sharp needle electrode caused no charring of the wound. Little bleeding or oozing were observed and skin clips were not necessary. No wound complication such as necrosis or infection occurred. Electrocautery skin incisions for re-operations were also performed safely without complications. Electrocautery skin incision is sufficiently safe procedure not only for first operation but also for re-operation. Electrocautery skin incision is efficacious, especially for extended operation times, because of little blood loss from the edges of skin incision and possible avoidance of skin edge necrosis or alopecia caused by skin clips.

  2. Identification of a transcriptional signature for the wound healing continuum

    OpenAIRE

    Peake, Matthew A; Caley, Mathew; Giles, Peter J; Wall, Ivan; Enoch, Stuart; Davies, Lindsay C; Kipling, David; Thomas, David W; Stephens, Phil

    2014-01-01

    There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Mi...

  3. Wound-Related Allergic/Irritant Contact Dermatitis.

    Science.gov (United States)

    Alavi, Afsaneh; Sibbald, R Gary; Ladizinski, Barry; Saraiya, Ami; Lee, Kachiu C; Skotnicki-Grant, Sandy; Maibach, Howard

    2016-06-01

    To provide information from a literature review about the prevention, recognition, and treatment for contact dermatitis. This continuing education activity is intended for physicians and nurses with an interest in skin and wound care. After participating in this educational activity, the participant should be better able to:1. Identify signs and symptoms of and diagnostic measures for contact dermatitis.2. Identify causes and risks for contact dermatitis.3. Select appropriate treatment for contact dermatitis and its prevention. Contact dermatitis to wound care products is a common, often neglected problem. A review was conducted to identify articles relevant to contact dermatitis.A PubMed English-language literature review was conducted for appropriate articles published between January 2000 and December 2015.Contact dermatitis is both irritant (80% of cases) or allergic (20% of cases). Frequent use of potential contact allergens and impaired barrier function of the skin can lead to rising sensitization in patients with chronic wounds. Common known allergens to avoid in wound care patients include fragrances, colophony, lanolin, and topical antibiotics.Clinicians should be cognizant of the allergens in wound care products and the potential for sensitization. All medical devices, including wound dressings, adhesives, and bandages, should be labeled with their complete ingredients, and manufacturers should be encouraged to remove common allergens from wound care products, including topical creams, ointments, and dressings.

  4. A rare case of failed healing in previously burned skin after a secondary burns.

    Science.gov (United States)

    Goldie, Stephen J; Parsons, Shaun; Menezes, Hana; Ives, Andrew; Cleland, Heather

    2017-01-01

    Patients presenting with large surface area burns are common in our practice; however, patients with a secondary large burn on pre-existing burn scars and grafts are rare and not reported. We report on an unusual case of a patient sustaining a secondary large burn to areas previously injured by a burn from a different mechanism. We discuss the potential implications when managing a case like this and suggest potential biological reasons why the skin may behave differently. Our patient was a 33-year-old man who presented with a 5% TBSA burn on skin scarred by a previous 40% total body surface area (TBSA) burn and skin grafts. Initially assessed as superficial partial thickness in depth, the wounds were treated conservatively with dressings; however, they failed to heal and became infected requiring surgical management. Burns sustained in areas of previous burn scars and grafts may behave differently to normal patterns of healing, requiring more aggressive management and surgical intervention at an early stage.

  5. Identification of a transcriptional signature for the wound healing continuum

    Science.gov (United States)

    Peake, Matthew A; Caley, Mathew; Giles, Peter J; Wall, Ivan; Enoch, Stuart; Davies, Lindsay C; Kipling, David; Thomas, David W; Stephens, Phil

    2014-01-01

    There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Microarray analysis of adult oral mucosal fibroblast (OMF), normal skin fibroblast (NF), and chronic wound fibroblast (CWF) at 0 and 6 hours post-serum stimulation was performed. Genes whose expression increases following serum exposure in the order OMF healing phenotype (the dysfunctional healing group), whereas genes with the converse pattern are potentially associated with a positive/preferential healing phenotype (the enhanced healing group). Sixty-six genes in the enhanced healing group and 38 genes in the dysfunctional healing group were identified. Overrepresentation analysis revealed pathways directly and indirectly associated with wound healing and aging and additional categories associated with differentiation, development, and morphogenesis. Knowledge of this wound healing continuum gene signature may in turn assist in the therapeutic assessment/treatment of a patient's wounds. PMID:24844339

  6. Bone marrow mesenchymal stem cells accelerate the hyperglycemic refractory wound healing by inhibiting an excessive inflammatory response.

    Science.gov (United States)

    Nan, Wenbin; Xu, Zhihao; Chen, Zhibin; Yuan, Xin; Lin, Juntang; Feng, Huigen; Lian, Jie; Chen, Hongli

    2017-05-01

    The aim of the present study was to evaluate the healing effect of bone marrow-derived mesenchymal stem cells administered to hyperglycemia model mice with skin wounds, and to explore the underlying mechanism contributing to their effects in promoting refractory wound healing. A full‑thickness skin wound mouse model was established, and refers to a wound of the skin and subcutaneous tissue. The mice were randomly divided into three groups: Blank control group, hyperglycemic group and a hyperglycemic group treated with stem cells. Wound healing was monitored and the wound‑healing rate was determined at 3, 6, 9, and 12 days following trauma. The structure of the organization of new skin tissue was observed by hematoxylin and eosin staining, and expression levels of the inflammatory cytokines interleukin (IL)‑6 and tumor necrosis factor (TNF)‑α were determined from 1 to 6 days following trauma. The wound healing of the hyperglycemic group was slower than that of the blank group, and the hyperglycemic mice treated with stem cells presented faster healing than the hyperglycemia group. The horny layer and granular layer of the skin were thinner and incomplete in the new skin tissue of the hyperglycemic group, whereas the new skin wound tissue basal layer was flat and demonstrated better fusion with the wound edge in the other two groups. The expression of inflammatory cytokines (IL‑6 and TNF‑α) was significantly increased in all three groups, with continuously higher expression in the hyperglycemic group and decreased expression in the other two groups over time. Hyperglycemia refractory wounds are likely related to the excessive expression of inflammatory cytokines surrounding the wound area. Stem cells may be able to alleviate the excessive inflammatory reaction in the wound tissue of hyperglycemic mice, so as to promote wound healing.

  7. Evaluation of Human Amniotic Membrane as a Wound Dressing for Split-Thickness Skin-Graft Donor Sites

    Directory of Open Access Journals (Sweden)

    Denys J. Loeffelbein

    2014-01-01

    Full Text Available Human amniotic membrane (HAM has been used as a biomaterial in various surgical procedures and exceeds some qualities of common materials. We evaluated HAM as wound dressing for split-thickness skin-graft (STSG donor sites in a swine model (Part A and a clinical trial (Part B. Part A: STSG donor sites in 4 piglets were treated with HAM or a clinically used conventional polyurethane (PU foil (n=8 each. Biopsies were taken on days 5, 7, 10, 20, 40, and 60 and investigated immunohistochemically for alpha-smooth muscle actin (αSMA: wound contraction marker, von Willebrand factor (vWF: angiogenesis, Ki-67 (cell proliferation, and laminin (basement membrane integrity. Part B: STSG donor sites in 45 adult patients (16 female/29 male were treated with HAM covered by PU foam, solely by PU foam, or PU foil/paraffin gauze (n=15 each. Part A revealed no difference in the rate of wound closure between groups. HAM showed improved esthetic results and inhibitory effects on cicatrization. Angioneogenesis was reduced, and basement membrane formation was accelerated in HAM group. Part B: no difference in re-epithelialization/infection rate was found. HAM caused less ichor exudation and less pruritus. HAM has no relevant advantage over conventional dressings but might be a cost-effective alternative.

  8. [Wound healing is still a game of " blind men and an elephant"].

    Science.gov (United States)

    Han, C M

    2016-10-20

    The wound healing includes non-healing and overhealing of the wounds. The results of wound healing are well known by people such as non-healing of the diabetic ulcer or hypertrophic scar after deep burn. In this issue, three papers involve in wound healing, one about autologous adipose-derived mesenchymal stem cells injected into wound or scar of rabbit ear, one about severe hypoxia and hypoalbuminemia inducing human hypertrophic scar derived fibroblast apoptosis in vitro, and another about the dysfunction of protein kinase B/mammalian target of rapamycin signaling pathway contributing to the pathophysiological characteristics of diabetic skin and non-healing wound. The basic problem of hypertrophic scar study is lacking an ideal animal model. Although rabbit ear model or red Duroc pig model has been used widely for study on hypertrophic scar, they can not fully represent human dermal fibrosis after deep trauma on the skin. I recommend A novel nude mouse model of hypertrophic scarring using scratched full thickness human skin grafts recently published in Advances in Wound Care to the readers. The author emphasizes that the wound healing study is still in the situation like the game of " blind men and an elephant" .

  9. Skin graft - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100100.htm Skin graft - series—Normal anatomy To use the sharing features ... entire body, and acts as a protective barrier. Skin grafts may be recommended for: Extensive wounds Burns Specific ...

  10. Use of a copolymer dressing on superficial and partial-thickness burns in a paediatric population.

    Science.gov (United States)

    Everett, M; Massand, S; Davis, W; Burkey, B; Glat, P M

    2015-07-01

    Despite extensive research into the treatment of partial-thickness burns, to date there has not been the emergence of a preeminent modality. This pilot study, the first such study to be performed in a burn unit in the US, was designed to evaluate the efficacy and outcomes of the application of copolymer dressing (Suprathel; PolyMedics Innovations Corporation, Stuttgart, Germany) for both superficial and deeper partial-thickness burns. The copolymer dressing was used as a primary wound dressing to treat superficial and deep partial-thickness burns (average 5% total body surface area) in paediatric patients. Burns were debrided within 24 hours, at bedside, in the burn unit or in the operating room. The copolymer dressing was then applied directly to the wound and covered with a non-adherent second layer and an absorptive outer dressing. After discharge, patients were seen every 5-7 days until healed. Parameters evaluated included average hospital length of stay, average number of intravenous doses of narcotics administered, pain score at first follow-up visit, average time to complete re epithelialisation, incidence of burn wound infection, and patient/parent satisfaction on a 4-point scale. We also evaluated our experience with the dressing. Data were evaluated retrospectively under an Investigational Review Board approved protocol. Of the 17 patients assessed the average hospital length of stay was 1.4 days during which the average number of intravenous narcotic doses administered before copolymer dressing application was 1.5 and after was 0.1 doses. At the first follow-up visit, average pain score was 1.2 on a 10-point scale and the average time to re epithelialisation was 9.5 days. There was no incidence of burn wound infection. Patient/parent satisfaction was average of 3.66 on a 4-point scale. The staff had found that the self-adherence and elasticity of the dressing made it easy to apply and stay adherent, especially in areas of difficult contour. There were

  11. MRI of superficial soft tissue masses: analysis of features useful in distinguishing between benign and malignant lesions

    Energy Technology Data Exchange (ETDEWEB)

    Calleja, Michele; Dimigen, Marion; Saifuddin, Asif [Royal National Orthopaedic Hospital, Stanmore (United Kingdom)

    2012-12-15

    To identify the MRI features of superficial soft tissue masses, that may allow differentiation between malignant and non-malignant lesions. A total of 136 consecutive patients referred to a supra-regional musculoskeletal oncology center over a 10-year period with the diagnosis of a superficial soft tissue mass were included in this retrospective study. Features analyzed included patient demographics, lesion size, MRI signal characteristics, margins, lobulation, hemorrhage, necrosis, fascial edema, relationship to the fascia, as well as involvement of the skin. Comparison was then made with the final histological diagnosis. Of the patients reviewed, 58 were male and 78 were female, and the mean age was 49.9 years. The mean age for malignant lesions was 57.9 years, and that for non-neoplastic and benign conditions 41.9 years (p < 0.001). A significant relationship was identified between malignancy and lobulation (p < 0.01), hemorrhage (p < 0.001), fascial edema (p < 0.001), hemorrhage (p < 0.0001) and necrosis (p < 0.001). The relationship between skin thickening and skin contact and malignancy was also found to be significant. However, size was not found to be an important determining factor for malignancy, with a significant proportion of malignant superficial sarcomas measuring less than 5 cm in maximal diameter. This study has shown that a significant proportion of malignant superficial sarcomas measured less than 5 cm in maximal diameter. Fascial edema, skin thickening, skin contact, hemorrhage, and necrosis were found to be highly significant factors indicative of malignancy. Lobulation and peritumoral edema were also significant MRI features. (orig.)

  12. Agar/collagen membrane as skin dressing for wounds

    Energy Technology Data Exchange (ETDEWEB)

    Bao Lei; Yang Wei; Mao Xuan; Mou Shansong; Tang Shunqing [Biomedical Engineering Institute, Jinan University, Guangzhou (China)], E-mail: tshunqt@jnu.edu.cn, E-mail: tmuss@jnu.edu.cn

    2008-12-15

    Agar, a highly hydrophilic polymer, has a special gel property and favorable biocompatibility, but moderate intension strength in an aqueous condition and a low degradation rate. In order to tailor both properties of mechanical intension and degradation, type I collagen was composited with agar in a certain ratio by drying at 50 {sup 0}C or by a freeze-dry process. Glutaraldehyde was chosen as a crosslinking agent, and the most favorable condition for crosslinking was that the weight ratio of agar to glutaraldehyde was 66.7 and the pH value about 5. Dynamic mechanical analysis results showed that the single agar membrane had a modulus value between 640 MPa and 1064 MPa, but it was between 340 MPa and 819 MPa after being composited with type I collagen. It was discovered under an optical microscope that the pores were interconnected in the composite scaffolds instead of the honeycomb-like pores in a single type I collagen scaffold or the laminated gaps in a single agar scaffold. The results of an acute toxicity test disclosed that the composites were not toxic to mice although the composites were crosslinked with a certain concentration of glutaraldehyde. The results of gross examinations showed that when the composite membranes or scaffolds were applied to a repair rabbit skin lesion, the composites had a good repair effect without infection, liquid exudation or visible scar in the lesion covered with them. But in the control group, the autologous skin showed necrosis and there were a lot of scar tissues in the lesion site. H and E staining results showed that the repair tissue was similar to the normal one and very few scaffolds or membranes were left without degradation after 2 or 3 weeks. In conclusion, it is proved that type I collagen increases the toughness of the agar membrane, and the agar/type I collagen composites are promising biomaterials as wound dressings for healing burns or ulcers.

  13. Agar/collagen membrane as skin dressing for wounds

    International Nuclear Information System (INIS)

    Bao Lei; Yang Wei; Mao Xuan; Mou Shansong; Tang Shunqing

    2008-01-01

    Agar, a highly hydrophilic polymer, has a special gel property and favorable biocompatibility, but moderate intension strength in an aqueous condition and a low degradation rate. In order to tailor both properties of mechanical intension and degradation, type I collagen was composited with agar in a certain ratio by drying at 50 0 C or by a freeze-dry process. Glutaraldehyde was chosen as a crosslinking agent, and the most favorable condition for crosslinking was that the weight ratio of agar to glutaraldehyde was 66.7 and the pH value about 5. Dynamic mechanical analysis results showed that the single agar membrane had a modulus value between 640 MPa and 1064 MPa, but it was between 340 MPa and 819 MPa after being composited with type I collagen. It was discovered under an optical microscope that the pores were interconnected in the composite scaffolds instead of the honeycomb-like pores in a single type I collagen scaffold or the laminated gaps in a single agar scaffold. The results of an acute toxicity test disclosed that the composites were not toxic to mice although the composites were crosslinked with a certain concentration of glutaraldehyde. The results of gross examinations showed that when the composite membranes or scaffolds were applied to a repair rabbit skin lesion, the composites had a good repair effect without infection, liquid exudation or visible scar in the lesion covered with them. But in the control group, the autologous skin showed necrosis and there were a lot of scar tissues in the lesion site. H and E staining results showed that the repair tissue was similar to the normal one and very few scaffolds or membranes were left without degradation after 2 or 3 weeks. In conclusion, it is proved that type I collagen increases the toughness of the agar membrane, and the agar/type I collagen composites are promising biomaterials as wound dressings for healing burns or ulcers.

  14. A human model of small fiber neuropathy to study wound healing.

    Science.gov (United States)

    Illigens, Ben M W; Gibbons, Christopher H

    2013-01-01

    The aim of this study was to develop a human model of acute wound healing that isolated the effects of small fiber neuropathy on the healing process. Twenty-five healthy subjects had the transient receptor vanilloid 1 agonist capsaicin and placebo creams topically applied to contralateral areas on the skin of the thigh for 48 hours. Subjects had shallow (1.2 millimeter) and deep (>3 millimeter) punch skin biopsies from each thigh on days 1 and 14. Biopsy wound healing was monitored photographically until closure. Intra-epidermal and sweat-gland nerve fiber densities were measured for each biopsy. Shallow wounds in capsaicin-treated sites healed more slowly than in placebo treated skin with biopsies taken on day 1 (PDeep biopsies in the capsaicin and placebo areas healed at similar rates at both time points. Nerve fiber densities were reduced only in capsaicin treated regions (Pshallow, but not deep wounds. This novel human model may prove valuable in the study of wound healing in patients with neuropathy.

  15. Clinical experience with Leptospermum honey use for treatment of hard to heal neonatal wounds: case series.

    Science.gov (United States)

    Boyar, V; Handa, D; Clemens, K; Shimborske, D

    2014-02-01

    Preterm, critically ill neonates represent a challenge in wound healing. Many factors predispose infants to skin injuries, including decreased epidermal-dermal cohesion, deficient stratum corneum, relatively alkaline pH of skin surface, impaired nutrition and presence of multiple devices on the skin. We present a case series describing the use of medical-grade honey-Leptospermum honey (Medihoney), for successful treatment of slowly healing neonatal wounds, specifically stage 3 pressure ulcer, dehiscent and infected sternal wound, and full-thickness wound from an extravasation injury.

  16. Pediatric burn wound impetigo after grafting.

    Science.gov (United States)

    Aikins, Kimberly; Prasad, Narayan; Menon, Seema; Harvey, John G; Holland, Andrew J A

    2015-01-01

    Modern burn care techniques have reduced the risk of infection of the acute burn wound, resulting in more rapid healing and a lower incidence of graft loss. Secondary breakdown may still occur. The loss of epithelium in association with multifocal superficial abscesses and ulceration has been termed burns impetigo. This may result in considerable morbidity and require prolonged treatment. The events preceding development, the impact on the patient, and the ideal treatment appear unclear and poorly reported. In 5 years, between 2006 and 2011, 406 pediatric burns were treated with skin grafts, with 7% developing burns impetigo. Time to resolution ranged from 5 to 241 days: the mean time to complete healing was greatest with conservative management (96 days), followed by antibacterial dressings (37 days), oral antibiotics (36 days), topical steroids (16 days), and oral antibiotics in combination with topical steroids (13.5 days). Burns impetigo resulted in significant morbidity, requiring multiple visits to the treatment center and prolonged symptoms. Delay in diagnosis and treatment resulted in worse outcomes. Prompt consideration of burns impetigo should occur when postgraft patients present with suggestive clinical signs and treatment with oral antibiotics plus topical steroids should be considered.

  17. Saliva and wound healing.

    Science.gov (United States)

    Brand, Henk S; Ligtenberg, Antoon J M; Veerman, Enno C I

    2014-01-01

    Oral wounds heal faster and with less scar formation than skin wounds. One of the key factors involved is saliva, which promotes wound healing in several ways. Saliva creates a humid environment, thus improving the survival and functioning of inflammatory cells that are crucial for wound healing. In addition, saliva contains several proteins which play a role in the different stages of wound healing. Saliva contains substantial amounts of tissue factor, which dramatically accelerates blood clotting. Subsequently, epidermal growth factor in saliva promotes the proliferation of epithelial cells. Secretory leucocyte protease inhibitor inhibits the tissue-degrading activity of enzymes like elastase and trypsin. Absence of this protease inhibitor delays oral wound healing. Salivary histatins in vitro promote wound closure by enhancing cell spreading and cell migration, but do not stimulate cell proliferation. A synthetic cyclic variant of histatin exhibits a 1,000-fold higher activity than linear histatin, which makes this cyclic variant a promising agent for the development of a new wound healing medication. Conclusively, recognition of the many roles salivary proteins play in wound healing makes saliva a promising source for the development of new drugs involved in tissue regeneration.

  18. Telemedicine for wound management

    Directory of Open Access Journals (Sweden)

    Ravi K Chittoria

    2012-01-01

    Full Text Available The escalating physiological, psychological, social and financial burdens of wounds and wound care on patients, families and society demand the immediate attention of the health care sector. Many forces are affecting the changes in health care provision for patients with chronic wounds, including managed care, the limited number of wound care therapists, an increasingly ageing and disabled population, regulatory and malpractice issues, and compromised care. The physician is also faced with a number of difficult issues when caring for chronic wound patients because their conditions are time consuming and high risk, represent an unprofitable part of care practice and raise issues of liability. Telemedicine enhances communication with the surgical wound care specialist. Digital image for skin lesions is a safe, accurate and cost-effective referral pathway. The two basic modes of telemedicine applications, store and forward (asynchronous transfer and real-time transmission (synchronous transfer, e.g. video conference, are utilized in the wound care setting. Telemedicine technology in the hands of an experienced physician can streamline management of a problem wound. Although there is always an element of anxiety related to technical change, the evolution of wound care telemedicine technology has demonstrated a predictable maturation process.

  19. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice.

    Directory of Open Access Journals (Sweden)

    Stefanie Michael

    Full Text Available Tissue engineering plays an important role in the production of skin equivalents for the therapy of chronic and especially burn wounds. Actually, there exists no (cellularized skin equivalent which might be able to satisfactorily mimic native skin. Here, we utilized a laser-assisted bioprinting (LaBP technique to create a fully cellularized skin substitute. The unique feature of LaBP is the possibility to position different cell types in an exact three-dimensional (3D spatial pattern. For the creation of the skin substitutes, we positioned fibroblasts and keratinocytes on top of a stabilizing matrix (Matriderm®. These skin constructs were subsequently tested in vivo, employing the dorsal skin fold chamber in nude mice. The transplants were placed into full-thickness skin wounds and were fully connected to the surrounding tissue when explanted after 11 days. The printed keratinocytes formed a multi-layered epidermis with beginning differentiation and stratum corneum. Proliferation of the keratinocytes was mainly detected in the suprabasal layers. In vitro controls, which were cultivated at the air-liquid-interface, also exhibited proliferative cells, but they were rather located in the whole epidermis. E-cadherin as a hint for adherens junctions and therefore tissue formation could be found in the epidermis in vivo as well as in vitro. In both conditions, the printed fibroblasts partly stayed on top of the underlying Matriderm® where they produced collagen, while part of them migrated into the Matriderm®. In the mice, some blood vessels could be found to grow from the wound bed and the wound edges in direction of the printed cells. In conclusion, we could show the successful 3D printing of a cell construct via LaBP and the subsequent tissue formation in vivo. These findings represent the prerequisite for the creation of a complex tissue like skin, consisting of different cell types in an intricate 3D pattern.

  20. Determination of Pathogens in Postoperative Wound Infection After Surgically Reduced Calcaneal Fractures and Implications for Prophylaxis and Treatment

    NARCIS (Netherlands)

    Backes, Manouk; Spijkerman, Ingrid J.; de Muinck-Keizer, Robert-Jan O.; Goslings, J. Carel; Schepers, Tim

    2018-01-01

    High rates of postoperative wound infection (POWI) have been reported after surgery for calcaneal fractures. This is a retrospective cohort study to determine the causative pathogens of these infections and subsequent treatment strategies. In addition, microbacterial growth from superficial wound

  1. Comparative Study Between Coaptive Film Versus Suture For Wound Closure After Long Bone Fracture Fixation

    Directory of Open Access Journals (Sweden)

    IM Anuar Ramdhan

    2013-03-01

    Full Text Available INTRODUCTION: Coaptive film (i.e., Steri-StripsTM is an adhesive tape used to replace sutures in wound closure. The use of coaptive film for wound closure after long bone fracture fixation has not been well documented in the literature. METHODS: The aim of this prospective, randomized controlled trial comparing coaptive film with sutures for wound closure after long bone fracture fixation was skin closure time, incidence of wound complications and scar width at 12 week follow-up. Forty-five patients underwent femur fracture fixation (22 patients’ wound closed with sutures, 23 with coaptive film. RESULTS: The mean time for skin closure using coaptive film was 171.13 seconds compared to 437.27 seconds using suture. The mean wound lengths in the coaptive film group and suture group were 187.65 mm and 196.73 mm, respectively. One patient in each group had wound complications. CONCLUSION: Coaptive film is a time-saving procedure for skin closure following long bone fracture fixation. There is no difference in the incidence of wound complications and scar width between these two methods of skin closure.

  2. Plasma Rich in Growth Factors Enhances Wound Healing and Protects from Photo-oxidative Stress in Dermal Fibroblasts and 3D Skin Models.

    Science.gov (United States)

    Anitua, Eduardo; Pino, Ander; Jaen, Pedro; Orive, Gorka

    2016-01-01

    Optimal skin repair has been a desired goal for many researchers. Recently, plasma rich in growth factors (PRGF) has gained importance in dermatology proving it is beneficial effects in wound healing and cutaneous regeneration. The anti-fibrotic, pro-contractile and photo-protective effect of PRGF on dermal fibroblasts and 3D skin models has been evaluated. The effect against TGFβ1 induced myofibroblast differentiation was tested. Cell contractile activity over collagen gel matrices was analyzed and the effect against UV derived photo-oxidative stress was assessed. The effectiveness of PRGF obtained from young aged and middle aged donors was compared. Furthermore, 3D organotypic skin explants were used as human skin models with the aim of analyzing ex vivo cutaneous preventive and regenerative photo-protection after UV exposure. TGFβ1 induced myofibroblast levels decreased significantly after treatment with PRGF while the contractile activity increased compared to the control group. After UV irradiation, cell survival was promoted while apoptotic and ROS levels were noticeably reduced. Photo-exposed 3D explants showed higher levels of metabolic activity and lower levels of necrosis, cell damage, irritation and ROS formation when treated with PRGF. The histological integrity and connective tissue fibers showed lower signals of photodamage among PRGF injected skin models. No significant differences for the assessed biological outcomes were observed when PRGF obtained from young aged and middle aged donors were compared. These findings suggest that this autologous approach might be useful for antifibrotic wound healing and provide an effective protection against sun derived photo-oxidative stress regardless the age of the patient.

  3. Silver nanoparticles enhance wound healing in zebrafish (Danio rerio).

    Science.gov (United States)

    Seo, Seung Beom; Dananjaya, S H S; Nikapitiya, Chamilani; Park, Bae Keun; Gooneratne, Ravi; Kim, Tae-Yoon; Lee, Jehee; Kim, Cheol-Hee; De Zoysa, Mahanama

    2017-09-01

    Silver nanoparticles (AgNPs) were successfully synthesized by a chemical reduction method, physico-chemically characterized and their effect on wound-healing activity in zebrafish was investigated. The prepared AgNPs were circular-shaped, water soluble with average diameter and zeta potential of 72.66 nm and -0.45 mv, respectively. Following the creation of a laser skin wound on zebrafish, the effect of AgNPs on wound-healing activity was tested by two methods, direct skin application (2 μg/wound) and immersion in a solution of AgNPs and water (50 μg/L). The zebrafish were followed for 20 days post-wounding (dpw) by visual observation of wound size, calculating wound healing percentage (WHP), and histological examination. Visually, both direct skin application and immersion AgNPs treatments displayed clear and faster wound closure at 5, 10 and 20 dpw compared to the controls, which was confirmed by 5 dpw histology data. At 5 dpw, WHP was highest in the AgNPs immersion group (36.6%) > AgNPs direct application group (23.7%) > controls (18.2%), showing that WHP was most effective in fish immersed in AgNPs solution. In general, exposure to AgNPs induced gene expression of selected wound-healing-related genes, namely, transforming growth factor (TGF-β), matrix metalloproteinase (MMP) -9 and -13, pro-inflammatory cytokines (IL-1β and TNF-α) and antioxidant enzymes (superoxide dismutase and catalase), which observed differentiation at 12 and 24 h against the control; but the results were not consistently significant, and many either reached basal levels or were down regulated at 5 dpw in the wounded muscle. These results suggest that AgNPs are effective in acceleration of wound healing and altered the expression of some wound-healing-related genes. However, the detailed mechanism of enhanced wound healing remains to be investigated in fish. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Acceleration of skin wound healing by low-dose indirect ionizing radiation in male rats.

    Science.gov (United States)

    Jabbari, Nasrollah; Farjah, Gholam Hossein; Ghadimi, Behnam; Zanjani, Hajar; Heshmatian, Behnam

    2017-08-01

    A recent hypothesis has revealed that low-dose irradiation (LDI) with ionizing radiation might have a promoting effect on fracture healing. The aim of this study was to investigate the influence of direct (electron beam) and indirect (gamma-ray) low-dose ionizing irradiations on the wound healing process in male rats. In 72 male rats, a full-thickness wound was incised. The animals were randomly assigned to three groups, each with 24 rats. The first two groups were named IG-I and IG-II and respectively exposed to electron and gamma-radiations (75 cGy) immediately after the surgical procedure. The third group was considered as the control (CG) and remained untreated. Skin biopsies from the subgroups were collected on days 3, 7, 15, and 21 after the operation and evaluated using histological and biomechanical methods. Data were analyzed by one-way ANOVA, followed by Tukey's post hoc test using SPSS 20 software. Histological studies of tissues showed that the mean number of fibroblasts, macrophages, blood vessel sections, and neutrophils on the third and seventh days after the surgery in the gamma-treated group was higher than that in both other groups. In contrast, on day 21, the mean number of mentioned cells in the gamma-treated group was lower than in the other two groups. In addition, the mean maximum stress value was significantly greater in the gamma-treated group. Results of this study showed that gamma-ray irradiation is effective in the acceleration of wound healing. Copyright © 2017. Published by Elsevier Taiwan.

  5. Acceleration of skin wound healing by low-dose indirect ionizing radiation in male rats

    Directory of Open Access Journals (Sweden)

    Nasrollah Jabbari

    2017-08-01

    Full Text Available A recent hypothesis has revealed that low-dose irradiation (LDI with ionizing radiation might have a promoting effect on fracture healing. The aim of this study was to investigate the influence of direct (electron beam and indirect (gamma-ray low-dose ionizing irradiations on the wound healing process in male rats. In 72 male rats, a full-thickness wound was incised. The animals were randomly assigned to three groups, each with 24 rats. The first two groups were named IG–I and IG–II and respectively exposed to electron and gamma-radiations (75 cGy immediately after the surgical procedure. The third group was considered as the control (CG and remained untreated. Skin biopsies from the subgroups were collected on days 3, 7, 15, and 21 after the operation and evaluated using histological and biomechanical methods. Data were analyzed by one-way ANOVA, followed by Tukey's post hoc test using SPSS 20 software. Histological studies of tissues showed that the mean number of fibroblasts, macrophages, blood vessel sections, and neutrophils on the third and seventh days after the surgery in the gamma-treated group was higher than that in both other groups. In contrast, on day 21, the mean number of mentioned cells in the gamma-treated group was lower than in the other two groups. In addition, the mean maximum stress value was significantly greater in the gamma-treated group. Results of this study showed that gamma-ray irradiation is effective in the acceleration of wound healing.

  6. Bi-Layer Wound Dressing System for Combat Casualty Care

    National Research Council Canada - National Science Library

    Martineau, Lucie; Shek, Pang N

    2004-01-01

    ... dressing to address key requirements for treating external war wounds. In the present report, we assess our dressing's bactericidal efficacy, wound healing properties, and skin-cooling characteristics using various pre-clinical models...

  7. The role of nuclear hormone receptors in cutaneous wound repair.

    Science.gov (United States)

    Rieger, Sandra; Zhao, Hengguang; Martin, Paige; Abe, Koichiro; Lisse, Thomas S

    2015-01-01

    The cutaneous wound repair process involves balancing a dynamic series of events ranging from inflammation, oxidative stress, cell migration, proliferation, survival and differentiation. A complex series of secreted trophic factors, cytokines, surface and intracellular proteins are expressed in a temporospatial manner to restore skin integrity after wounding. Impaired initiation, maintenance or termination of the tissue repair processes can lead to perturbed healing, necrosis, fibrosis or even cancer. Nuclear hormone receptors (NHRs) in the cutaneous environment regulate tissue repair processes such as fibroplasia and angiogenesis. Defects in functional NHRs and their ligands are associated with the clinical phenotypes of chronic non-healing wounds and skin endocrine disorders. The functional relationship between NHRs and skin niche cells such as epidermal keratinocytes and dermal fibroblasts is pivotal for successful wound closure and permanent repair. The aim of this review is to delineate the cutaneous effects and cross-talk of various nuclear receptors upon injury towards functional tissue restoration. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Polydeoxyribonucleotide improves wound healing of fractional laser resurfacing in rat model.

    Science.gov (United States)

    Yu, Mi; Lee, Jun Young

    2017-02-01

    Polydeoxyribonucleotide (PDRN) is an active compound that can promote wound healing. PDRN stimulates wound healing by enhancing angiogenesis and increasing fibroblast growth rates. Laser skin resurfacing is a popular cosmetic procedure for skin rejuvenation. Despite excellent improvement of photo-damaged skin and acne scarring, it is accompanied with drawbacks, such as prolonged erythema and crusting. This study was designed to assess the effect of PDRN on wounds induced by fractional laser resurfacing. Twelve male rats aged 8 weeks were randomly assigned to the PDRN treatment group and the control group. Wounds were induced using a fractional ablative CO 2 laser. The treatment group received daily injections of PDRN and the control group received injections of the vehicle. Wound healing assessed by clinical features and histopathologic findings. The process of wound healing was faster in the treatment group than in the control group. In the histopathological examination, the granulation tissue thickness score of the treatment group was significantly higher than that of the control group. Results of immunohistochemical staining showed a marked increase of VEGF-positive cells and PECAM-1/CD31-positive microvessels in the treatment group. PDRN may be a beneficial option to promote wound healing after laser treatment.

  9. Application of a plasma-jet for skin antisepsis: analysis of the thermal action of the plasma by laser scanning microscopy

    International Nuclear Information System (INIS)

    Lademann, O; Kramer, A; Richter, H; Patzelt, A; Alborova, A; Humme, D; Weltmann, K-D; Hartmann, B; Hinz, P; Koch, S

    2010-01-01

    Recently, it was reported that a plasma-jet could be efficiently applied for the antisepsis of wounds. In this case, the discharge in an argon gas stream was used to produce a so-called ''cold plasma'' on the skin surface. The thermal action of the plasma on the skin was investigated in the present study by means of laser scanning microscopy (LSM) and by histological analysis. Consequently, the plasma beam was moved with a definite velocity at an optimal distance over the skin surface. The structural changes of the tissue were analyzed. It was found by LSM that a thermal damage could be detected only in the upper cell layers of the stratum corneum (SC) at moving velocities of the plasma beam, usually applied in clinical practice. Deeper parts of the SC were not damaged. The structural changes were so superficial that they could be detected only by LSM but not by analysis of the histological sections

  10. Gallic Acid Promotes Wound Healing in Normal and Hyperglucidic Conditions

    Directory of Open Access Journals (Sweden)

    Dong Joo Yang

    2016-07-01

    Full Text Available Skin is the outermost layer of the human body that is constantly exposed to environmental stressors, such as UV radiation and toxic chemicals, and is susceptible to mechanical wounding and injury. The ability of the skin to repair injuries is paramount for survival and it is disrupted in a spectrum of disorders leading to skin pathologies. Diabetic patients often suffer from chronic, impaired wound healing, which facilitate bacterial infections and necessitate amputation. Here, we studied the effects of gallic acid (GA, 3,4,5-trihydroxybenzoic acid; a plant-derived polyphenolic compound on would healing in normal and hyperglucidic conditions, to mimic diabetes, in human keratinocytes and fibroblasts. Our study reveals that GA is a potential antioxidant that directly upregulates the expression of antioxidant genes. In addition, GA accelerated cell migration of keratinocytes and fibroblasts in both normal and hyperglucidic conditions. Further, GA treatment activated factors known to be hallmarks of wound healing, such as focal adhesion kinases (FAK, c-Jun N-terminal kinases (JNK, and extracellular signal-regulated kinases (Erk, underpinning the beneficial role of GA in wound repair. Therefore, our results demonstrate that GA might be a viable wound healing agent and a potential intervention to treat wounds resulting from metabolic complications.

  11. Estrogens and aging skin

    OpenAIRE

    Thornton, M. Julie

    2013-01-01

    Estrogen deficiency following menopause results in atrophic skin changes and acceleration of skin aging. Estrogens significantly modulate skin physiology, targeting keratinocytes, fibroblasts, melanocytes, hair follicles and sebaceous glands, and improve angiogenesis, wound healing and immune responses. Estrogen insufficiency decreases defense against oxidative stress; skin becomes thinner with less collagen, decreased elasticity, increased wrinkling, increased dryness and reduced vascularity...

  12. Real time monitoring in-vivo micro-environment through the wound heal mechanism

    Science.gov (United States)

    Yan, Jack

    2013-02-01

    One of the In-vivo system's challenge is real time display the sensing information. Usually Ultrasound, CT, MRI, PET are used to get the internal information, this thesis proposed another approach to address the display challenge. Special nano-particles are in-taken or injected to living subject (usually into blood circulation) to sense and collect psychological information when the active particles pass through the tissues of interest. Using the wound healing mechanism, these activated particles (Information collected) can be drifted out to the wound area and adhibited close to the skin, then skin can show different color if the activated particles are concentrated enough in the specific area to create a skin screen. The skin screen can display the blood status, internal organ's temperature, pressure depending the nano-particles' function and their pathway. This approach can also be used to display in-body video if the particles are sensitive and selective enough. In the future, the skin screen can be bio-computer's monitor. The wound healing in an animal model normally divides in four phase: Hemostasis, Inflammation, Proliferation and Maturation. Hemostasis phase is to form a stable clot sealing the damaged vessel. Inflammation phase causes the blood vessels to become leaky releasing plasma and PMN's (polymorphonucleocytes) into the surrounding tissue and provide the first line of defense against infection. Proliferation phase involves replacement of dermal tissues and sometimes subdermal tissues in deeper wounds as well as contraction of the wound. Maturation phase remodels the dermal tissues mainly by fibroblast to produce greater tensile strength. The skin screen wound will be carefully controlled to be triggered at dermis layer.

  13. Psoriasis and wound healing outcomes: A retrospective cohort study examining wound complications and antibiotic use.

    Science.gov (United States)

    Young, Paulina M; Parsi, Kory K; Schupp, Clayton W; Armstrong, April W

    2017-11-15

    Little is known about wound healing in psoriasis. We performed a cohort study examining differences in wound healing complications between patients with and without psoriasis. Psoriasis patients with traumatic wounds were matched 1:3 to non-psoriasis patients with traumatic wounds based on age, gender, and body mass index (BMI). We examined theincidence of wound complications including infection, necrosis, and hematoma as well as incident antibiotic use within three months following diagnosis of a traumatic wound. The study included 164 patients with traumatic wounds, comprised of 41 patients with psoriasis matched to 123 patients without psoriasis. No statistically significant differences were detected in the incidence of overall wound complications between wound patients with psoriasis and wound patients without psoriasis (14.6% versus. 13.0%, HR 1.18, CI 0.39-3.56). After adjustment for diabetes, peripheral vascular disease, and smoking, no statistically significant differences were detected in the incidence of overall wound complications between patients with and without psoriasis (HR 1.11, CI 0.34-3.58). Specifically, the adjusted rates of antibiotic use were not significantly different between those with and without psoriasis (HR 0.65, CI 0.29-1.46). The incidence of wound complications following traumatic wounds of the skin was found to be similar between patients with and without psoriasis.

  14. Upper Blepharoplasty and Lateral Wound Dehiscence.

    Science.gov (United States)

    Kashkouli, Mohsen Bahmani; Jamshidian-Tehrani, Mansooreh; Sharzad, Sahab; Sanjari, Mostafa Soltan

    2015-01-01

    To report the frequency of lateral wound dehiscence (LWD) after upper blepharoplasty (UB), a technique and its outcome to prevent LWD. A retrospective review was performed for cases of LWD after UB presenting between 2003 and 2009, and then a prospective comparative study was performed between February 2009 and March 2013. For the comparison, subjects were divided into two groups based on intraoperative assessment of lateral wound tension (same technique and surgeon). Group 1 received 1-3 orbicularis/subcutaneous buried sutures (6-0 polyglactin) before interrupted 6-0 nylon skin closure. Group 2 underwent skin closure only. Subjects, who had re-operation, skin healing disorders, and incomplete follow-up (LWD with a mean age of 36.2 years in the audit (2003-2009). The prospective study included 68 subjects (68/293, 23.2%) in Group 1 and 225 in Group 2. Gender and simultaneous forehead and eyebrow procedures were similar between groups (P = 0.3 and P = 0.4 respectively). Group 1 was statistically significantly younger at mean age of 41.4 years, compared to Group 2 at 56.1 years (P = 0.000). The frequency of LWD significantly (P = 0.04) decreased to 0.3% (1/293). In the presence of wound tension on skin closure (intraoperative assessment), tension relieving buried orbicularis/subcutaneous 6-0 polyglactin suturing of the lateral UB incision could prevent LWD.

  15. Understanding the three-dimensional anatomy of the superficial lymphatics of the limbs.

    Science.gov (United States)

    Tourani, Saam S; Taylor, G Ian; Ashton, Mark W

    2014-11-01

    There are minimal data in the current literature regarding the depth of the superficial lymphatic collectors of the limbs in relation to the various subcutaneous tissue layers. Injection, microdissection, radiographic, and histologic studies of the superficial lymphatics and the subcutaneous tissues of 32 limbs from 15 human cadavers were performed. Five layers were consistently identified in the integument of all the upper and lower limb specimens: (1) skin, (2) subcutaneous fat, (3) superficial fascia, (4) loose areolar tissue, and (5) deep fascia. Layer 2 was further divided into superficial (2a) and deep (2c) compartments by a thin, transparent, horizontal septum (layer 2b). The main superficial veins and the superficial nerves coursed in layer 4. The lymphatic collectors were found at layer 2c and layer 4. The use of consistent nomenclature to describe the subcutaneous tissue layers facilitates a greater understanding and discussion of the anatomy. In lymphovenous anastomosis for the treatment of lymphedema, indocyanine green lymphography is an unreliable method for identification of the superficial collectors of the thigh. The medial proximal leg, the dorsum of the wrist over the anatomical snuffbox, and the volar proximal forearm provide suitable areas for locating superficial collectors with nearby matching size veins. In vertical medial thigh lift, choosing a dissection plane superficial to the great saphenous vein is unlikely to preserve the collectors of the ventromedial bundle.

  16. Substance P promotes wound healing in diabetes by modulating inflammation and macrophage phenotype.

    Science.gov (United States)

    Leal, Ermelindo C; Carvalho, Eugénia; Tellechea, Ana; Kafanas, Antonios; Tecilazich, Francesco; Kearney, Cathal; Kuchibhotla, Sarada; Auster, Michael E; Kokkotou, Efi; Mooney, David J; LoGerfo, Frank W; Pradhan-Nabzdyk, Leena; Veves, Aristidis

    2015-06-01

    Diabetic foot ulceration is a major complication of diabetes. Substance P (SP) is involved in wound healing, but its effect in diabetic skin wounds is unclear. We examined the effect of exogenous SP delivery on diabetic mouse and rabbit wounds. We also studied the impact of deficiency in SP or its receptor, neurokinin-1 receptor, on wound healing in mouse models. SP treatment improved wound healing in mice and rabbits, whereas the absence of SP or its receptor impaired wound progression in mice. Moreover, SP bioavailability in diabetic skin was reduced as SP gene expression was decreased, whereas the gene expression and protein levels of the enzyme that degrades SP, neutral endopeptidase, were increased. Diabetes and SP deficiency were associated with absence of an acute inflammatory response important for wound healing progression and instead revealed a persistent inflammation throughout the healing process. SP treatment induced an acute inflammatory response, which enabled the progression to the proliferative phase and modulated macrophage activation toward the M2 phenotype that promotes wound healing. In conclusion, SP treatment reverses the chronic proinflammatory state in diabetic skin and promotes healing of diabetic wounds. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Scalp Wound Closure with K wires: An alternative easier method to scalp wound closure.

    Science.gov (United States)

    Ramesh, S; Ajik, S

    2012-12-01

    Scalp defects and lacerations present a reconstructive challenge to plastic surgeons. Many methods have been described from the use of skin grafting to rotation flaps. Here we present a method of closure of a contaminated scalp wound with the use of Kirschner wires. In our case, closure of scalp laceration was made possible with the use of 1.4 Kirschner wires and cable tie/ zip tie fasteners. The duration to closure of wound was 10 days. In reconstructing the scalp defect, this method was found to adhere to principles of scalp reconstruction. There were no post operative complications found from the procedure. On initial application on the edge of the wound, tension applied caused the K wires to cut through the wound edge. On replacement of K wires 1cm away from wound edge the procedure was not plagued by any further complication. In conclusion we find scalp closure with Kirschner wires are a simple and effective method for scalp wound closure.

  18. Risk analysis and outcome of mediastinal wound and deep mediastinal wound infections with specific emphasis to omental transposition

    LENUS (Irish Health Repository)

    Parissis, Haralabos

    2011-09-19

    Abstract Background To report our experience, with Deep mediastinal wound infections (DMWI). Emphasis was given to the management of deep infections with omental flaps Methods From February 2000 to October 2007, out of 3896 cardiac surgery patients (prospective data collection) 120 pts (3.02%) developed sternal wound infections. There were 104 males & 16 females; (73.7%) CABG, (13.5%) Valves & (9.32%) CABG and Valve. Results Superficial sternal wound infection detected in 68 patients (1.75%) and fifty-two patients (1.34%) developed DMWI. The incremental risk factors for development of DMWI were: Diabetes (OR = 3.62, CI = 1.2-10.98), Pre Op Creatinine > 200 μmol\\/l (OR = 3.33, CI = 1.14-9.7) and Prolong ventilation (OR = 4.16, CI = 1.73-9.98). Overall mortality for the DMWI was 9.3% and the specific mortality of the omental flap group was 8.3%. 19% of the "DMWI group", developed complications: hematoma 6%, partial flap loss 3.0%, wound dehiscence 5.3%. Mean Hospital Stay: 59 ± 21.5 days. Conclusion Post cardiac surgery sternal wound complications remain challenging. The role of multidisciplinary approach is fundamental, as is the importance of an aggressive early wound exploration especially for deep sternal infections.

  19. Effects of topical topiramate in wound healing in mice.

    Science.gov (United States)

    Jara, Carlos Poblete; Bóbbo, Vanessa Cristina Dias; Carraro, Rodrigo Scarpari; de Araujo, Thiago Matos Ferreira; Lima, Maria H M; Velloso, Licio A; Araújo, Eliana P

    2018-02-23

    Recent studies have indicated that systemic topiramate can induce an improvement on the aesthetic appearance of skin scars. Here, we evaluated topical topiramate as an agent to improve wound healing in C57/BL6 mice. Mice were inflicted with a 6.0 mm punch to create two wounds in the skin of the dorsal region. Thereafter, mice were randomly assigned to either vehicle or topical topiramate (20 µl of 2% cream) once a day for 14 days, beginning on the same day as wound generation. We analyzed the wound samples over real-time PCR, Western blotting, and microscopy. There was no effect of the topiramate treatment on the time for complete reepithelization of the wound. However, on microscopic analysis, topiramate treatment resulted in increased granulation tissue, thicker epidermal repair, and improved deposition of type I collagen fibers. During wound healing, there were increased expressions of anti-inflammatory markers, such as IL-10, TGF-β1, and reduced expression of the active form of JNK. In addition, topiramate treatment increased the expression of active forms of two intermediaries in the insulin-signaling pathway, IRS-1 and Akt. Finally, at the end of the wound-healing process, topiramate treatment resulted in increased expression of SOX-2, a transcription factor that is essential to maintain cell self-renewal of undifferentiated embryonic stem cells. We conclude that topical topiramate can improve the overall quality of wound healing in the healthy skin of mice. This improvement is accompanied by reduced expression of markers involved in inflammation and increased expression of proteins of the insulin-signaling pathway.

  20. MANAGEMENT OF A CHRONIC NECROTIZING WOUND IN A DOG USING NATURAL HONEY THERAPY

    Directory of Open Access Journals (Sweden)

    Adeyemi A.B.

    2017-12-01

    Full Text Available Infected skin wounds are common in pet animals. Following an infected severe bite wound in a dog with marked necrotic aftermath, natural honey was successfully used alongside systemic antibiotic therapy to hasten healing. The condition improved with speed and regeneration of skin tissue, avoiding sloughing. The wound took 168 days to heal and to form a scar. Natural honey can be considered as a wound management tool, as it is both highly effective, can render a low cost therapy and less managemental expenditure compared to other specialized therapies and techniques.

  1. Effective herbs on the wound and skin disorders: a ethnobotanical study in Lorestan province, west of Iran

    Directory of Open Access Journals (Sweden)

    Bahram Delfan

    2014-09-01

    Full Text Available Objective: To identify medicinal plants in Lorestan Province (west of Iran in treatment of wound healing and skin lesions. Methods: Questionnaire were made by health volunteers who were trained. The questionnaire about the beliefs and herbal therapy were filled by liaisons trained in the villages. Results: Questionnaire survey showed that 18 medicinal plants from 11 plant families were detected in the province for treating and healing skin lesions. Conclusions: The achieving information in the study reported that bioactive substances in some plants have pharmacologic effects in regulating biological processes which can accelerate healing, reducing inflammation and improving health effects. Suggested ideas in this study should be tested in clinical trials and the effectiveness of their therapeutic effects, their effective recognition and secondary materials in the form of natural medicine must be detected for releasing into the pharmaceutical market.

  2. Porcine cholecyst–derived scaffold promotes full-thickness wound healing in rabbit

    Directory of Open Access Journals (Sweden)

    Deepa Revi

    2013-12-01

    Full Text Available Graft-assisted healing is an important strategy for treating full-thickness skin wounds. This study evaluated the properties of porcine cholecyst–derived scaffold and its use for treating full-thickness skin wound in rabbit. The physical properties of cholecyst-derived scaffold were congenial for skin-graft application. Compared to a commercially available skin-graft substitute made of porcine small intestinal submucosa, the cholecyst-derived scaffold was rich in natural biomolecules like elastin and glycosaminoglycans. When used as a xenograft, it promoted healing with excess cell proliferation at early phases and acceptable collagen deposition in the later remodelling phases.

  3. 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes.

    Science.gov (United States)

    Vijayavenkataraman, S; Lu, W F; Fuh, J Y H

    2016-09-08

    The skin is the largest organ of the body, having a complex multi-layered structure and guards the underlying muscles, bones, ligaments, and internal organs. It serves as the first line of defence to any external stimuli, hence it is the most vulnerable to injury and warrants the need for rapid and reliable regeneration methods. Tissue engineered skin substitutes help overcome the limitations of traditional skin treatment methods, in terms of technology, time, and cost. While there is commendable progress in the treating of superficial wounds and injuries with skin substitutes, treatment of full-thickness injuries, especially with third or fourth degree burns, still looks murkier. Engineering multi-layer skin architecture, conforming to the native skin structure is a tougher goal to achieve with the current tissue engineering methods, if not impossible, restoring all the functions of the native skin. The testing of drugs and cosmetics is another area, where engineered skins are very much needed, with bans being imposed on product testing on animals. Given this greater need, 3D bioprinting is a promising technology that can achieve rapid and reliable production of biomimetic cellular skin substitutes, satisfying both clinical and industrial needs. This paper reviews all aspects related to the 3D bioprinting of skin, right from imaging the injury site, 3D model creation, biomaterials that are used and their suitability, types of cells and their functions, actual bioprinting technologies, along with the challenges and future prospects.

  4. Temporal expression of wound healing-related genes in skin burn injury.

    Science.gov (United States)

    Kubo, Hidemichi; Hayashi, Takahito; Ago, Kazutoshi; Ago, Mihoko; Kanekura, Takuro; Ogata, Mamoru

    2014-01-01

    Determination of the age of burns, as well as of wounds induced mechanically, is essential in forensic practice, particularly in cases of suspected child abuse. Here, we investigated temporal changes in the expression of 13 genes during wound healing after a burn. The expression of cytokines (IL-1β, IL-6, IL-10, TNF-α, and IFN-γ), chemokines (KC, MCP-1), proliferative factors (TGF-β, VEGF), proteases (MMP-2, 9, 13) and type I collagen in murine skin was examined by real-time PCR at 3, 6, 9, and 12 h and 1, 2, 3, 5, 7, and 14 days after a burn. Based on macroscopic and histological appearance, the healing process of a burn consists of 3 phases: inflammatory (from 3 h to 1 day after the burn), proliferative (from 1 to 7 days), and maturation (from 7 to 14 days). Expression of IL-1β, IL-6, TNF-α, IFN-γ and KC increased significantly in a biphasic pattern from 3 or 6 h to 12 h or 1 day and from 3 or 5 days to 7 days. Expression of MCP-1 increased significantly from 6 h to 5 days. Expression of both IL-10 and TGF-β increased significantly from 12 h to 7 days. Expression of VEGF, MMP-2, MMP-13 and type I collagen increased significantly from 3 days to 7 or 14 days. Expression of MMP-9 increased significantly from 6 h to 14 days. Our results suggest that evaluating the expression of a combination of these genes would enable the exact estimation of the age of a burn. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Chemokine Involvement in Fetal and Adult Wound Healing

    Science.gov (United States)

    Balaji, Swathi; Watson, Carey L.; Ranjan, Rajeev; King, Alice; Bollyky, Paul L.; Keswani, Sundeep G.

    2015-01-01

    Significance: Fetal wounds heal with a regenerative phenotype that is indistinguishable from surrounding skin with restored skin integrity. Compared to this benchmark, all postnatal wound healing is impaired and characterized by scar formation. The biologic basis of the fetal regenerative phenotype can serve as a roadmap to recapitulating regenerative repair in adult wounds. Reduced leukocyte infiltration, likely mediated, in part, through changes in the chemokine milieu, is a fundamental feature of fetal wound healing. Recent Advances: The contributions of chemokines to wound healing are a topic of active investigation. Recent discoveries have opened the possibility of targeting chemokines therapeutically to treat disease processes and improve healing capability, including the possibility of achieving a scarless phenotype in postnatal wounds. Critical Issues: Successful wound healing is a complex process, in which there is a significant interplay between multiple cell types, signaling molecules, growth factors, and extracellular matrix. Chemokines play a crucial role in this interplay and have been shown to have different effects in various stages of the healing process. Understanding how these chemokines are locally produced and regulated during wound healing and how the chemokine milieu differs in fetal versus postnatal wounds may help us identify ways in which we can target chemokine pathways. Future Directions: Further studies on the role of chemokines and their role in the healing process will greatly advance the potential for using these molecules as therapeutic targets. PMID:26543680

  6. Effect of antiseptic irrigation on infection rates of traumatic soft tissue wounds: a longitudinal cohort study.

    Science.gov (United States)

    Roth, B; Neuenschwander, R; Brill, F; Wurmitzer, F; Wegner, C; Assadian, O; Kramer, A

    2017-03-02

    Acute traumatic wounds are contaminated with bacteria and therefore an infection risk. Antiseptic wound irrigation before surgical intervention is routinely performed for contaminated wounds. However, a broad variety of different irrigation solutions are in use. The aim of this retrospective, non-randomised, controlled longitudinal cohort study was to assess the preventive effect of four different irrigation solutions before surgical treatment, on wound infection in traumatic soft tissue wounds. Over a period of three decades, the prophylactic application of wound irrigation was studied in patients with contaminated traumatic wounds requiring surgical treatment, with or without primary wound closure. The main outcome measure was development of wound infection. From 1974-1983, either 0.04 % polihexanide (PHMB), 1 % povidone-iodine (PVP-I), 4 % hydrogen peroxide, or undiluted Ringer's solution were concurrently in use. From 1984-1996, only 0.04 % PHMB or 1 % PVP-I were applied. From 1997, 0.04 % PHMB was used until the end of the study period in 2005. The combined rate for superficial and deep wound infection was 1.7 % in the 0.04 % PHMB group (n=3264), 4.8 % in the 1 % PVP-I group (n=2552), 5.9 % in the Ringer's group (n=645), and 11.7 % in the 4 % hydrogen peroxide group (n=643). Compared with all other treatment arms, PHMB showed the highest efficacy in preventing infection in traumatic soft tissue wounds (p<0.001). However, compared with PVP-I, the difference was only significant for superficial infections. The large patient numbers in this study demonstrated a robust superiority of 0.04 % PHMB to prevent infection in traumatic soft tissue wounds. These retrospective results may further provide important information as the basis for power calculations for the urgently needed prospective clinical trials in the evolving field of wound antisepsis.

  7. Lincosamide resistance is less frequent in Denmark in Staphylococcus pseudintermedius from first-time canine superficial pyoderma compared with skin isolates from clinical samples with unknown clinical background.

    Science.gov (United States)

    Larsen, Rikke; Boysen, Lene; Berg, June; Guardabassi, Luca; Damborg, Peter

    2015-06-01

    Antimicrobial resistance may be overestimated in bacterial isolates from clinical samples because veterinarians often submit samples in cases of treatment failure or recurrent cases, which are more frequently associated with resistant strains. To assess to what extent the prevalence of antimicrobial resistance in Staphylococcus pseudintermedius isolated from first-time superficial pyoderma differs from canine skin isolates from clinical samples with unknown clinical background. Two study groups were enrolled in Denmark between March 2012 and October 2013: 57 dogs with first-time superficial pyoderma and no prior antimicrobial treatment (Group A); and 289 different dogs for which skin specimens were submitted for culture during the study (Group B). One S. pseudintermedius isolate from each dog was confirmed by MALDI-TOF mass spectrometry and tested for antimicrobial susceptibility by broth microdilution. Resistance levels in the two groups were compared by Fisher's exact test. Clindamycin resistance was less frequent in Group A (14%) than in Group B (27%) (P = 0.02). Similar trends were observed for amoxicillin-clavulanic acid (1.8 versus 4.8%), chloramphenicol (8.8 versus 14.5%), enrofloxacin (1.8 versus 3.5%), oxacillin (1.8 versus 4.8%) and trimethoprim/sulfamethoxazole (3.5 versus 5.9%). Oxacillin resistance was significantly associated with resistance to six of seven non-β-lactams. The prevalence of lincosamide resistance is markedly influenced by patients' clinical and antimicrobial treatment history. To limit selection of multidrug-resistant bacteria, lincosamides are appropriate empirical choices for treatment of first-time superficial pyoderma even though resistance is not infrequent. Culture and susceptibility testing are, however, recommended for all pyoderma patients. © 2015 ESVD and ACVD.

  8. Feline superficial pyoderma: a retrospective study of 52 cases (2001-2011).

    Science.gov (United States)

    Yu, Hui W; Vogelnest, Linda J

    2012-10-01

    Superficial pyoderma is traditionally considered rare in cats but may be more prevalent than previously reported. To better characterize superficial pyoderma in cats. Fifty-two cats from a dermatology referral population over a 10 year period. This study was retrospective. Cases were included if neutrophils and intracellular bacteria were reported from surface cytology of skin lesions. Medical records were reviewed for signalment, historical and clinical data, cytology results, primary skin diagnoses and treatment details. Disease prevalence was 20%, with no breed or sex predispositions. The estimated median age of onset was 2 years, affecting 54% of cats by 3 years and 23% after 9 years. Fewer cases presented during winter (15%) compared with other seasons. Skin lesions were typically multifocal, affecting the face (62%), neck (37%), limbs (33%) and ventral abdomen (29%) most commonly. Crusting (83%), alopecia (67%), ulceration/erosion (54%) and erythema (46%) were common lesion types. Pruritus was reported in 92% of cats. Underlying hypersensitivities (confirmed in 60%; suspected in 19%), and atopic dermatitis specifically (confirmed in 48%), were the most frequent primary dermatoses. Cats were treated with a variety of systemic and/or topical antimicrobials. The overall apparent response was considered good in 61% and poor in 27% of cats. Recurrence was confirmed or suspected in 42% of cats. Feline superficial pyoderma was more prevalent in this study population than previously reported. Young cats with hypersensitivities and older cats were more commonly affected, and a variety of lesion types and distributions occurred. © 2012 The Authors. Veterinary Dermatology © 2012 ESVD and ACVD.

  9. Platelet-rich plasma with keratinocytes and fibroblasts enhance healing of full-thickness wounds.

    Science.gov (United States)

    Law, Jia Xian; Chowdhury, Shiplu Roy; Saim, Aminuddin Bin; Idrus, Ruszymah Bt Hj

    2017-08-01

    Advances in tissue engineering led to the development of various tissue-engineered skin substitutes (TESS) for the treatment of skin injuries. The majority of the autologous TESS required lengthy and costly cell expansion process to fabricate. In this study, we determine the possibility of using a low density of human skin cells suspended in platelet-rich plasma (PRP)-enriched medium to promote the healing of full-thickness skin wounds. To achieve this, full-thickness wounds of size 1.767 cm 2 were created at the dorsum part of nude mice and treated with keratinocytes (2 × 10 4  cells/cm 2 ) and fibroblasts (3 × 10 4  cells/cm 2 ) suspended in 10% PRP-enriched medium. Wound examination was conducted weekly and the animals were euthanized after 2 weeks. Gross examination showed that re-epithelialization was fastest in the PRP+cells group at both day 7 and 14, followed by the PRP group and NT group receiving no treatment. Only the PRP+cells group achieved complete wound closure by 2 weeks. Epidermal layer was presence in the central region of the wound of the PRP+cells and PRP groups but absence in the NT group. Comparison between the PRP+cells and PRP groups showed that the PRP+cells-treated wound was more mature as indicated by the presence of thinner epidermis with single cell layer thick basal keratinocytes and less cellular dermis. In summary, the combination of low cell density and diluted PRP creates a synergistic effect which expedites the healing of full-thickness wounds. This combination has the potential to be developed as a rapid wound therapy via the direct application of freshly harvested skin cells in diluted PRP. Copyright © 2017 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  10. The adhesion of pacemaker skin wounds with Histoacryl tissue adhesive: an analysis of its efficacy and cost

    International Nuclear Information System (INIS)

    Zhou Yong; Jiang Haibin; Qin Yongwen; Chen Shaoping

    2011-01-01

    Objective: To evaluate the clinical efficacy and cost of Histoacryl tissue adhesive in adhering the pacemaker skin wounds. Methods: During the period from April 2010 to October 2010, permanent cardiac pacemaker implantation was performed in 112 patients in authors' hospital. The patients were divided into tissue adhesive group (n=64) and conventional suture group (n=48). Histoacryl tissue adhesive was employed in patients of tissue adhesive group. The extent of wound healing, the post-procedure hospitalization days and the hospitalization cost were recorded, and the results were compared between the two groups. Results: The clinical baselines of the two groups were compatible with each other. Primary closure of wounds was achieved in all patients of two groups. The mean post-procedure hospitalization time in tissue adhesive group and in conventional suture group was (4.4±1.4) days and (6.2±1.3) days respectively, the difference between the two groups was statistically significant (P<0.01). If the costs of pacemaker equipment, surgery and DSA were not included, the mean medical expenses in tissue adhesive group and in conventional suture group were (4383.39±792.40) and (4199.81±1059.93) Chinese Yuan respectively, and no significant difference in medical expenses existed between the two groups (P=0.651). Conclusion: Histoacryl tissue adhesive can effectively adhere pacemaker wounds tissue. Compared to the use of conventional suture, the use of Histoacryl tissue adhesive can reduce the post-procedure hospitalization days although the medical expenses are quite the same as that using conventional suture treatment. (authors)

  11. Early versus delayed dressing removal after primary closure of clean and clean-contaminated surgical wounds.

    Science.gov (United States)

    Toon, Clare D; Lusuku, Charnelle; Ramamoorthy, Rajarajan; Davidson, Brian R; Gurusamy, Kurinchi Selvan

    2015-09-03

    Most surgical procedures involve a cut in the skin that allows the surgeon to gain access to the deeper tissues or organs. Most surgical wounds are closed fully at the end of the procedure (primary closure). The surgeon covers the closed surgical wound with either a dressing or adhesive tape. The dressing can act as a physical barrier to protect the wound until the continuity of the skin is restored (within about 48 hours) and to absorb exudate from the wound, keeping it dry and clean, and preventing bacterial contamination from the external environment. Some studies have found that the moist environment created by some dressings accelerates wound healing, although others believe that the moist environment can be a disadvantage, as excessive exudate can cause maceration (softening and deterioration) of the wound and the surrounding healthy tissue. The utility of dressing surgical wounds beyond 48 hours of surgery is, therefore, controversial. To evaluate the benefits and risks of removing a dressing covering a closed surgical incision site within 48 hours permanently (early dressing removal) or beyond 48 hours of surgery permanently with interim dressing changes allowed (delayed dressing removal), on surgical site infection. In March 2015 we searched the following electronic databases: The Cochrane Wounds Group Specialised Register; The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library); Database of Abstracts of Reviews of Effects (DARE) (The Cochrane Library); Ovid MEDLINE; Ovid MEDLINE (In-Process & Other Non-Indexed Citations); Ovid EMBASE; and EBSCO CINAHL. We also searched the references of included trials to identify further potentially-relevant trials. Two review authors independently identified studies for inclusion. We included all randomised clinical trials (RCTs) conducted with people of any age and sex, undergoing a surgical procedure, who had their wound closed and a dressing applied. We included only trials that compared

  12. Outcomes of Vacuum-Assisted Therapy in the Treatment of Head and Neck Wounds.

    Science.gov (United States)

    Satteson, Ellen S; Crantford, John Clayton; Wood, Jeyhan; David, Lisa R

    2015-10-01

    Head and neck wounds can present a reconstructive challenge for the plastic surgeon. Whether from skin cancer, trauma, or burns, there are many different treatment modalities used to dress and manage complex head and neck wounds. Vacuum-assisted closure (VAC) therapy has been used on wounds of nearly every aspect of the body but not routinely in the head and neck area. This study was conducted to demonstrate our results using the VAC in the treatment of complex head and neck wounds. This is an IRB-approved, retrospective review of 69 patients with 73 head and neck wounds that were managed using the VAC between 1999 and 2008. The wound mechanism, location, and size, length of VAC therapy, patient comorbidities, use of radiation, complications, and ultimate outcome were assessed. In this patient population, the VAC was utilized because the standard reconstructive ladder was not a good option or had previously failed. Sixty-nine patients with complex head and neck wounds were treated with the wound VAC. The mean age of the patients was 66 years, with a range of 5-96 years. Males outnumbered females in this study nearly 2:1. Eighty-six percent of patients had wounds secondary to cancer, 8% secondary to trauma, 3% secondary to infection, and 3% secondary to burns. The VAC was used as a dressing over skin grafts in 50%, over Integra in 21%, and over open debrided wounds in 29%. Wounds healed without complication in 44% of the skin grafts, 67% of Integra-covered wounds, and 71% of debrided wounds. Minor complications included failure of complete graft take, failure of granulation tissue formation in open debrided wounds, infection, and hematoma formation under skin grafts. Major complications included positive cancer margins requiring reexcision and death secondary to pulmonary embolism, sepsis, and metastatic cancer. Most complications resolved with dressing changes, repeat grafting, or the administration of antibiotics. Our results demonstrate that the wound VAC

  13. Puncture Wounds: First Aid

    Science.gov (United States)

    ... Skin problems. In: American Medical Association Handbook of First Aid and Emergency Care. New York, N.Y.: Random House; 2009. Jan. 12, 2018 Original article: http://www.mayoclinic.org/first-aid/first-aid-puncture-wounds/basics/ART-20056665 . Mayo ...

  14. Antioxidant and wound healing activity of Lavandula aspic L. ointment.

    Science.gov (United States)

    Ben Djemaa, Ferdaous Ghrab; Bellassoued, Khaled; Zouari, Sami; El Feki, Abdelfatteh; Ammar, Emna

    2016-11-01

    Lavandula aspic L. is a strongly aromatic shrub plant of the Lamiaceae family and traditionally used in herbal medicine for the treatment of several skin disorders, including wounds, burns, and ulcers. The present study aimed to investigate the composition and in vitro antioxidant activity of lavender essential oil. In addition, it aimed to evaluate the excision wound healing activity and antioxidant property of a Lavandula aspic L. essential oil formulated in ointment using a rat model. The rats were divided into five groups of six animals each. The test groups were topically treated with the vehicle, lavender ointment (4%) and a reference drug, while the control group was left untreated. Wound healing efficiency was determined by monitoring morphological and biochemical parameters and skin histological analysis. Wound contraction and protein synthesis were also determined. Antioxidant activity was assessed by the determination of MDA rates and antioxidant enzymes (GPx, catalase and superoxide dismutase). The treatment with lavender ointment was noted to significantly enhance wound contraction rate (98%) and protein synthesis. Overall, the results provided strong support for the effective wound healing activity of lavender ointment, making it a promising candidate for future application as a therapeutic agent in tissue repairing processes associated with skin injuries. Copyright © 2016 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  15. Clinico Mycological Study of Superficial Mycoses

    Directory of Open Access Journals (Sweden)

    Rachana J. Magdum

    2016-10-01

    Full Text Available Background: Generally it is well established fact that geographical distribution of the fungi may change from time to time; hence this study was planned. Aim and Objectives: To analyze the prevalence of superficial mycoses, its clinical presentation and species identification of the fungal isolates responsible for the disease. Material and Methods: A total 125 clinically diagnosed cases of superficial mycoses visiting Dermatology and Venereology outpatient department of Bharati Hospital, Sangli, for a period of one year were included in the study. Specimens like skin scrapping, nail clipping, hair were collected and subjected to KOH mount and culture. Identification of species was done by macroscopic examination of culture, tease mount and other physiological tests including Urease test, Hair perforation tests and Germ tube test. Results: Superficial mycosis was more common in the age group of 21-30 years (28% and in males (60.8%. The infection was more common in students (29.6%. Tinea corporis (42.4% was the commonest clinical type followed by tinea cruris (22.4%. 61.6% cases were positive by direct microscopy and 60.8% cases showed culture positive. Out of 125 samples, dermatophytes were grown in 63 cases (82.89% followed by non dermatophytic moulds in 10 cases (13.16% and Candida albicans in 3 cases (3.95%. The most common isolate among dermtophytosis was T. rubrum (46.05% followed by T. mentagrophyte (25%. Conclusion: It was concluded that along with dermatophytes, non dermatophytic moulds are also important to cause of superficial mycoses

  16. Management of small fragment wounds in war: current research.

    Science.gov (United States)

    Bowyer, G W; Cooper, G J; Rice, P

    1995-03-01

    The majority of war wounds are caused by antipersonnel fragments from munitions such as mortars and bomblets. Modern munitions aim to incapacitate soldiers with multiple wounds from very small fragments of low available kinetic energy. Many of these fragments may be stopped by helmets and body armour and this has led to a predominance of multiple wounds to limbs in those casualties requiring surgery. The development of an appropriate management strategy for these multiple wounds requires knowledge of the contamination and extent of soft tissue injury; conservative management may be appropriate. The extent of skin and muscle damage associated with a small fragment wound, the way in which these wounds may progress without intervention and their colonisation by bacteria has been determined in an experimental animal model. Results from 12 animals are presented. There was a very small (approximately 1 mm) margin of nonviable skin around the entrance wound. The amount of devitalised muscle in the wound tract was a few hundred milligrams. Some muscles peripheral to the wound track also showed signs of damage 1 h after wounding, but this improved over 24 h; the proportion of fragmented muscle fibres in the tissue around the track decreased as time went on. There was no clinical sign or bacteriological evidence of the track becoming infected up to 24 h after wounding. This preliminary work suggests that, in the absence of infection, the amount of muscle damage caused by small fragment wounds begins to resolve in the first 24 h after injury, even without surgical intervention.

  17. Heat enhances radiation inhibition of wound healing

    International Nuclear Information System (INIS)

    Twomey, P.; Hill, S.; Joiner, M.; Hobson, B.; Denekamp, J.

    1987-01-01

    To study the effect of hyperthermia on the inhibition of healing by radiation, the authors used 2 models of wound tensile strength in mice. In one, tensile strength of 1 cm strips of wounded skin was measured. In the other, strength was measured on 2 by 1 by .3 cm surgical prosthetic sponges of polyvinyl alcohol which has been cut, resutured, and implanted subcutaneously. Granulation tissue grows into the pores of the sponges which gradually fill with collagen. Tensile strength in both models was measured on day 14 using a constant strain extensiometer. The wounds were given graduated doses of ortho-voltage radiation with or without hyperthermia. Maximum radiation sensitivity occurred during the period of rapid neovascularization in the first 5 days after wounding, when a loss of 80% in wound strength occurred with doses less than 20 gray. For single radiation doses given 48 hours after wounding, the authors found a steep dose-response curve with half maximum reduction in strength occurring in both models at approximately 10 gray. Hyperthermia was produced in two ways. Skin wounds were heated in a circulating water bath. In the sponge model, more uniform heating occurs with an RF generator scaled to the mouse. At a dose of 43 C for 30 minutes, no inhibition of healing by heat alone was found. However the combination of heat and radiation produced definite enhancement of radiation damage, with thermal enhancement ratios of up to 1.9 being observed

  18. Efficient Healing Takes Some Nerve: Electrical Stimulation Enhances Innervation in Cutaneous Human Wounds.

    Science.gov (United States)

    Emmerson, Elaine

    2017-03-01

    Cutaneous nerves extend throughout the dermis and epidermis and control both the functional and reparative capacity of the skin. Denervation of the skin impairs cutaneous healing, presenting evidence that nerves provide cues essential for timely wound repair. Sebastian et al. demonstrate that electrical stimulation promotes reinnervation and neural differentiation in human acute wounds, thus accelerating wound repair. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  19. Different types of biotechnological wound coverages created with the application of alive human cells

    Directory of Open Access Journals (Sweden)

    Papuga A. Ye.

    2015-04-01

    Full Text Available Currently, the development and the implementation of the new biotechnological wound coverings (skin equivalents designed for temporal or permanent replacement of damaged or destroyed areas of human skin remains extremely actual relevant in clinical practice. Skin equivalents or equivalents of individual skin layers which include alive cells of different types take a special place among the artificial wound coverings. They mostly contain two basic types of cells – fibroblasts and keratinocytes (together or separately. Such bioconstructions are usually served as temporary coverings, which supply the damaged skin by biologically active substances and stimulate the regeneration of the patient's own tissues. In this review we consider as commercially available wound coverings and those which are still studied in the laboratories. Until now ideal substitutes of natural skin have not yet created, so the efforts of many researchers are focusing on the solution of this problem.

  20. Consequences of age on ischemic wound healing in rats: altered antioxidant activity and delayed wound closure.

    Science.gov (United States)

    Moor, Andrea N; Tummel, Evan; Prather, Jamie L; Jung, Michelle; Lopez, Jonathan J; Connors, Sarah; Gould, Lisa J

    2014-04-01

    Advertisements targeted at the elderly population suggest that antioxidant therapy will reduce free radicals and promote wound healing, yet few scientific studies substantiate these claims. To better understand the potential utility of supplemental antioxidant therapy for wound healing, we tested the hypothesis that age and tissue ischemia alter the balance of endogenous antioxidant enzymes. Using a bipedicled skin flap model, ischemic and non-ischemic wounds were created on young and aged rats. Wound closure and the balance of the critical antioxidants superoxide dismutase and glutathione in the wound bed were determined. Ischemia delayed wound closure significantly more in aged rats. Lower superoxide dismutase 2 and glutathione in non-ischemic wounds of aged rats indicate a basal deficit due to age alone. Ischemic wounds from aged rats had lower superoxide dismutase 2 protein and activity initially, coupled with decreased ratios of reduced/oxidized glutathione and lower glutathione peroxidase activity. De novo glutathione synthesis, to restore redox balance in aged ischemic wounds, was initiated as evidenced by increased glutamate cysteine ligase. Results demonstrate deficiencies in two antioxidant pathways in aged rats that become exaggerated in ischemic tissue, culminating in profoundly impaired wound healing and prolonged inflammation.

  1. Comparison of the antiseptic efficacy of tissue-tolerable plasma and an octenidine hydrochloride-based wound antiseptic on human skin.

    Science.gov (United States)

    Lademann, J; Richter, H; Schanzer, S; Patzelt, A; Thiede, G; Kramer, A; Weltmann, K-D; Hartmann, B; Lange-Asschenfeldt, B

    2012-01-01

    Colonization and infection of wounds represent a major reason for the impairment of tissue repair. Recently, it has been reported that tissue-tolerable plasma (TTP) is highly efficient in the reduction of the bacterial load of the skin. In the present study, the antiseptic efficacy of TTP was compared to that of octenidine hydrochloride with 2-phenoxyethanol. Both antiseptic methods proved to be highly efficient. Cutaneous treatment of the skin with octenidine hydrochloride and 2-phenoxyethanol leads to a 99% elimination of the bacteria, and 74% elimination is achieved by TTP treatment. Technical challenges with an early prototype TTP device could be held responsible for the slightly reduced antiseptic properties of TTP, compared to a standard antiseptic solution, since the manual treatment of the skin surface with a small beam of the TTP device might have led to an incomplete coverage of the treated area. Copyright © 2012 S. Karger AG, Basel.

  2. Analysis of the influence of low-power HeNe laser on the healing of skin wounds in diabetic and non-diabetic rats

    Directory of Open Access Journals (Sweden)

    Carvalho Paulo de Tarso Camillo de

    2006-01-01

    Full Text Available PURPOSE: To study the influence of HeNe laser irradiation on the collagen percentage in surgically-induced skin wounds in rats with and without alloxan-induced diabetes, by morphometric analysis of collagen fibers. METHODS: 48 male Wistar rats were used, divided into groups: laser-treated diabetic (group 1; untreated diabetic (group 2; treated non-diabetic (group 3; and untreated non-diabetic (group 4. For groups 1 and 2, diabetes was induced by intravenous injection of alloxan (2,4,5,6-tetraoxypyrimidine; 5,6-dioxyuracil; Sigma, into the dorsal vein of the penis, at a rate of 0.1 ml of solution per 100 g of body weight. A wound was made on the back of all the animals. Groups 1 and 3 were treated with HeNe laser (4 J/cm² for 60 s. One animal from each group was sacrificed on the 3rd, 7th and 14th days after wounding. Samples were taken, embedded in paraffin, stained with hematoxylin-eosin and Masson's trichrome, and morphometrically analyzed using the Imagelab software. The percentages of collagen fibers were determined from the samples from the euthanasia animals. The data were treated statistically using analysis of variance (ANOVA and the Student t and Kruskal-Wallis tests. The significance level was set at 0.05 or 5%. RESULTS: The results obtained from the samples taken on the third, seventh and fourteenth days after wounding demonstrated that the laser-treated group presented a statistically significant (p<0.05 greater mean quantity of collagen fibers than in the non-treated group, both for diabetic rats (p = 0.0104 and for non-diabetic rats (p = 0.039. CONCLUSION: The low-power laser (632.8 nm was shown to be capable of influencing the collagen percentage in skin wounds by increasing the mean quantity of collagen fibers, both for the diabetic and for the non-diabetic group.

  3. Wound healing morbidity in STS patients treated with preoperative radiotherapy in relation to in vitro skin fibroblast radiosensitivity, proliferative capacity and TGF-β activity

    International Nuclear Information System (INIS)

    Akudugu, John M.; Bell, Robert S.; Catton, Charles; Davis, Aileen M.; Griffin, Anthony M.; O'Sullivan, Brian; Waldron, John N.; Ferguson, Peter C.; Wunder, Jay S.; Hill, Richard P.

    2006-01-01

    Background and purpose: In a recent study, we demonstrated that the ability of dermal fibroblasts, obtained from soft tissue sarcoma (STS) patients, to undergo initial division in vitro following radiation exposure correlated with the development of wound healing morbidity in the patients following their treatment with preoperative radiotherapy. Transforming growth factor beta (TGF-β) is thought to play an important role in fibroblast proliferation and radiosensitivity both of which may impact on wound healing. Thus, in this study we examined the interrelationship between TGF-β activity, radiosensitivity and proliferation of cultured fibroblasts and the wound healing response of STS patients after preoperative radiotherapy to provide a validation cohort for our previous study and to investigate mechanisms. Patients and methods: Skin fibroblasts were established from skin biopsies of 46 STS patients. The treatment group consisted of 28 patients who received preoperative radiotherapy. Eighteen patients constituted a control group who were either irradiated postoperatively or did not receive radiation treatment. Fibroblast cultures were subjected to the colony forming and cytokinesis-blocked binucleation assays (low dose rate: ∼0.02 Gy/min) and TGF-β assays (high dose-rate: ∼1.06 Gy/min) following γ-irradiation. Fibroblast radiosensitivity and initial proliferative ability were represented by the surviving fraction at 2.4 Gy (SF 2.4 ) and binucleation index (BNI), respectively. Active and total TGF-β levels in fibroblast cultures were determined using a biological assay. Wound healing complication (WHC), defined as the requirement for further surgery or prolonged deep wound packing, was the clinical endpoint examined. Results: Of the 28 patients treated with preoperative radiotherapy, 8 (29%) had wound healing difficulties. Fibroblasts from patients who developed WHC showed a trend to retain a significantly higher initial proliferative ability after

  4. Human lactoferrin stimulates skin keratinocyte function and wound re-epithelialization.

    Science.gov (United States)

    Tang, L; Wu, J J; Ma, Q; Cui, T; Andreopoulos, F M; Gil, J; Valdes, J; Davis, S C; Li, J

    2010-07-01

    Human lactoferrin (hLF), a member of the transferrin family, is known for its antimicrobial and anti-inflammatory effects. Recent studies on various nonskin cell lines indicate that hLF may have a stimulatory effect on cell proliferation. To study the potential role of hLF in wound re-epithelialization. The effects of hLF on cell growth, migration, attachment and survival were assessed, with a rice-derived recombinant hLF (holo-rhLF), using proliferation analysis, scratch migration assay, calcein-AM/propidium iodide staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) method, respectively. The mechanisms of hLF on cell proliferation and migration were explored using specific pathway inhibitors. The involvement of lactoferrin receptor low-density lipoprotein receptor-related protein 1 (LRP1) was examined with RNA interference technique. An in vivo swine second-degree burn wound model was also used to assess wound re-epithelialization. Studies revealed that holo-rhLF significantly stimulated keratinocyte proliferation which could be blocked by mitogen-activated protein kinase (MAPK) kinase 1 inhibitor. Holo-rhLF also showed strong promoting effects on keratinocyte migration, which could be blocked by either inhibition of the MAPK, Src and Rho/ROCK pathways, or downregulation of the LRP1 receptor. With cells under starving or 12-O-tetradecanoylphorbol-13-acetate exposure, the addition of holo-rhLF was found greatly to increase cell viability and inhibit cell apoptosis. Additionally, holo-rhLF significantly increased the rate of wound re-epithelialization in swine second-degree burn wounds. Our studies demonstrate the direct effects of holo-rhLF on wound re-epithelialization including the enhancement of keratinocyte proliferation and migration as well as the protection of cells from apoptosis. The data strongly indicate its potential therapeutic applications in wound healing.

  5. Altered procollagen gene expression in mid-gestational mouse excisional wounds.

    Science.gov (United States)

    Goldberg, Stephanie R; Quirk, Gerald L; Sykes, Virginia W; Kordula, Tomasz; Lanning, David A

    2007-11-01

    Many pathologic conditions are characterized by excessive tissue contraction and scar formation. Previously, we developed a murine model of excisional wound healing in which mid-gestational wounds heal scarlessly compared with late-gestational wounds. We theorized that variations in procollagen gene expression may contribute to the scarless and rapid closure. Time-dated pregnant FVB strain mice underwent laparotomy and hysterotomy on embryonic days 15 (E15) and 18 (E18). Full-thickness, excisional wounds (3 mm) were made on each of 4 fetuses per doe and then harvested at 32, 48, or 72 h. Control tissue consisted of age-matched normal fetal skin. Procollagen types 1alpha1, 1alpha2, and 3 gene expressions were measured by real-time polymerase chain reaction and normalized to glyceraldehyde-3-phosphate dehydrogenase. Trichrome staining was also performed. Procollagen 1alpha1 expression was decreased in E15 wounds at 32 h compared with their normal skin groups. Procollagen types 1alpha2 and 3 expressions were both increased in the E15 groups compared with the E18 groups at 48 h. At 72 h, the E15 wounds had a collagen density similar to the surrounding normal skin while E18 wounds exhibited increased collagen deposition in a disorganized pattern. This study demonstrates that the pattern of gene expression for types 1 and 3 collagen varies between mid- and late-gestational mouse excisional wounds. These alterations in procollagen expression may contribute to a pattern of collagen deposition in the mid-gestational fetuses that is more favorable for scarless healing with less type 1 and more type 3 collagen.

  6. 2-Octyl Cyanoacrylate (Dermabond® skin adhesive versus polyglactin for skin closure in endoscopic radial artery harvesting

    Directory of Open Access Journals (Sweden)

    Ahmed Mostafa Omran

    2018-03-01

    Full Text Available Background: As the goal of endoscopic conduit harvesting is to decrease pain and better cosmetic appearance, and as the optimal choice of skin closure after endoscopic radial artery harvesting (ERAH has not yet been determined, we started this study with an aim to compare wound complications, patient satisfaction and scar healing between glue (Dermabond versus polyglactin intra-cuticular suture for skin closure after ERAH. Methods: This observational study was done at Al Dabbous Cardiac Center, Kuwait, from January 2017 till October 2017 enrolling 40 patients divided into two equal groups (Dermabond group and sutures group. Inclusion criterion was patients underwent coronary artery bypass grafting (CABG using ERAH, while open technique for radial artery harvesting and Negro race are considered as exclusion criteria. Demographic data were collected, (gender, age, race, body mass index (BMI, preoperative medication and albumin level, as well as diabetes or peripheral vascular disease. Operatively, wound closure time was calculated for all patients. Postoperatively: Cosmetic appearance was assessed using the Hollander scale. Patient satisfaction was recorded at week 6–8 weeks. Results: Demographic and preoperative data were comparable; Dermabond group showed shorter closure time, better scar pigmentation, shape and patient satisfaction. Pain, scar size, infection and hematoma showed no statistical difference. Conclusion: Dermabond can be used safely in closure of skin after ERAH. The excellent results in the small wound of ERAH encouraged us to use it in larger wounds. Keywords: Dermabond, Wound, ERAH, Skin adhesive, OCA

  7. The organisation and role of the Euro skin bank

    International Nuclear Information System (INIS)

    Van Baare, J.

    1999-01-01

    In the treatment of burns, either superficial or deep, partial or full thickness, where sufficient autograft is lacking, wound covering by fresh or stored allogencic human skin is currently preferred over the use of (bio-) synthetic dressings by most physicians involved in burn care. Several methods to preserve, store and provide sufficient quantities of allograft (homo- or xeno-) at any given time have been developed over the last decades and have been extensively documented. Skin banks differ in their mode of operation (local, regional, national and international) and the techniques applied for preservation and storage of human skin. The Dutch National Skin Bank was established in 1976 as a subsidiary to the Dutch Bums Foundation with no other goal than providing human allograft skin for the treatment of bum victims to the Red Cross Hospital Bum Unit and later to other Dutch bum centres and general hospitals. The initial preservation technique the skin bank used was cryopreservation. In 1984 there was an important change in the preservation technique. Based on literature high concentrations of glycerol were introduced to preserve human skin for long-term storage. Meanwhile, a gradual increase in the yearly number of skin donors from 1984 onwards was observed, and by 1989 regular requests from bum centres in other countries for glycerol preserved donor skin were received. In 1992 the skin bank changed their name into Euro Skin Bank to express their international collaboration. The Euro Skin Bank operates on a non-profit basis and was until recently dependent on financial support of the Dutch Bums Foundation. Due to the large amount of requests for donor skin, the Euro Skin Bank started to set up satellite skin banks in various European countries. With this initiative it was not only possible to help the specific countries to supply their own bum centres with allograft skin, but also an amount of skin was send back to the Euro Skin Bank in order to distribute the

  8. EDUCATIONAL PERSPECTIVES ON SIMULATED LEARNING IN WOUND MANAGEMENT

    DEFF Research Database (Denmark)

    Christiansen, Sytter; Rethmeier, Anita

    authenticity of the simulated learning. The objectives of the course are that students can identify different kinds of chronic wounds and risk factors contributing to decreased wound healing. This demands knowledge related to skin and wound types. We used five medium fidelity mannequins equipped......Aim: The aim was to explore whether simulated learning is useful in relation to wound management among undergraduate student nurses. Methods: A key element in simulated learning is to create an authentic environment. The pur-pose of establishing collaboration with a private company was to keep...

  9. Modality of wound closure after total knee replacement: are staples as safe as sutures? A retrospective study of 181 patients

    Directory of Open Access Journals (Sweden)

    Hammerberg E Mark

    2011-10-01

    Full Text Available Abstract Background Surgical site wound closure plays a vital role in post-operative success. This effect is magnified in regard to commonly performed elective procedures such as total knee arthroplasty. The use of either sutures or staples for skin re-approximation remains a contested subject, which may have a significant impact on both patient safety and surgical outcome. The literature remains divided on this topic. Methods Two cohorts of patients at a level one trauma and regional referral center were reviewed. Cohorts consisted of consecutive total knee arthroplasties performed by two surgeons who achieved surgical wound re-approximation by either staples or absorbable subcuticular sutures. Outcome variables included time of surgery, wound dehiscence, surgical site infection per Center for Disease Control criteria and repeat procedures for debridement and re-closure. Results 181 patients qualified for study inclusion. Staples were employed in 82 cases (45.3% of total and sutures in 99 cases (54.7%. The staples group had no complications while the sutures group had 9 (9.1%. These consisted of: 4 infections (2 superficial, one deep, one organ/space; three patients required re-suturing for dehiscence; one allergic type reaction to suture material; and one gout flare resulting in dehiscence. The mean surgical time with sutures was 122.3 minutes (sd = 33.4 and with staples was 114 minutes (sd = 24.4. Conclusion This study demonstrated significantly fewer complications with staple use than with suture use. While all complications found in this study cannot be directly attributed to skin re-approximation method, the need for further prospective, randomized trials is established.

  10. A comparison of obsidian and surgical steel scalpel wound healing in rats.

    Science.gov (United States)

    Disa, J J; Vossoughi, J; Goldberg, N H

    1993-10-01

    There are several anecdotal clinical articles claiming wound healing and scar superiority using obsidian (volcanic glass) scalpels. In order to determine if skin incisions made with obsidian were superior to those made with standard surgical steel, wound tensile strength, scar width, and histology were assessed in 40 adult male Sprague-Dawley rats. Each rat received two parallel 8-cm dorsal skin incisions, one with an obsidian scalpel and the other with a surgical steel scalpel (no. 15 blade). Data were analyzed by ANOVA. Tensile strength of the two wound types was not different at 7, 14, 21, and 42 days. Scar width, however, was significantly less in the obsidian wounds at 7, 10, and 14 days (p obsidian wounds contained fewer inflammatory cells and less granulation tissue at 7 days.

  11. High levels of pigment epithelium-derived factor in diabetes impair wound healing through suppression of Wnt signaling.

    Science.gov (United States)

    Qi, Weiwei; Yang, Chuan; Dai, Zhiyu; Che, Di; Feng, Juan; Mao, Yuling; Cheng, Rui; Wang, Zhongxiao; He, Xuemin; Zhou, Ti; Gu, Xiaoqiong; Yan, Li; Yang, Xia; Ma, Jian-Xing; Gao, Guoquan

    2015-04-01

    Diabetic foot ulcer (DFU) caused by impaired wound healing is a common vascular complication of diabetes. The current study revealed that plasma levels of pigment epithelium-derived factor (PEDF) were elevated in type 2 diabetic patients with DFU and in db/db mice. To test whether elevated PEDF levels contribute to skin wound-healing delay in diabetes, endogenous PEDF was neutralized with an anti-PEDF antibody in db/db mice. Our results showed that neutralization of PEDF accelerated wound healing, increased angiogenesis in the wound skin, and improved the functions and numbers of endothelial progenitor cells (EPCs) in the diabetic mice. Further, PEDF-deficient mice showed higher baseline blood flow in the skin, higher density of cutaneous microvessels, increased skin thickness, improved numbers and functions of circulating EPCs, and accelerated wound healing compared with wild-type mice. Overexpression of PEDF suppressed the Wnt signaling pathway in the wound skin. Lithium chloride-induced Wnt signaling activation downstream of the PEDF interaction site attenuated the inhibitory effect of PEDF on EPCs and rescued the wound-healing deficiency in diabetic mice. Taken together, these results suggest that elevated circulating PEDF levels contribute to impaired wound healing in the process of angiogenesis and vasculogenesis through the inhibition of Wnt/β-catenin signaling. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  12. Honey: A Skin Graft Fixator Convenient for Both Patient and Surgeon

    OpenAIRE

    Maghsoudi, Hemmat; Moradi, Sohrab

    2014-01-01

    Skin grafts can be used effectively to cover burn injuries. A critical element of this treatment is the adherence of the graft to the wound bed. Honey has been shown to increase the adherence of skin grafts to wound beds and have antibacterial and anti-inflammatory effects and increase healing rate of wounds. We therefore devised a clinical trial to determine the effect of honey on skin graft fixation in burn injuries. Sixty patients were included in this study (in 30 patients, graft was fixe...

  13. Experimental study on tissue phantoms to understand the effect of injury and suturing on human skin mechanical properties.

    Science.gov (United States)

    Chanda, Arnab; Unnikrishnan, Vinu; Flynn, Zachary; Lackey, Kim

    2017-01-01

    Skin injuries are the most common type of injuries occurring in day-to-day life. A skin injury usually manifests itself in the form of a wound or a cut. While a shallow wound may heal by itself within a short time, deep wounds require surgical interventions such as suturing for timely healing. To date, suturing practices are based on a surgeon's experience and may vary widely from one situation to another. Understanding the mechanics of wound closure and suturing of the skin is crucial to improve clinical suturing practices and also to plan automated robotic surgeries. In the literature, phenomenological two-dimensional computational skin models have been developed to study the mechanics of wound closure. Additionally, the effect of skin pre-stress (due to the natural tension of the skin) on wound closure mechanics has been studied. However, in most of these analyses, idealistic two-dimensional skin geometries, materials and loads have been assumed, which are far from reality, and would clearly generate inaccurate quantitative results. In this work, for the first time, a biofidelic human skin tissue phantom was developed using a two-part silicone material. A wound was created on the phantom material and sutures were placed to close the wound. Uniaxial mechanical tests were carried out on the phantom specimens to study the effect of varying wound size, quantity, suture and pre-stress on the mechanical behavior of human skin. Also, the average mechanical behavior of the human skin surrogate was characterized using hyperelastic material models, in the presence of a wound and sutures. To date, such a robust experimental study on the effect of injury and sutures on human skin mechanics has not been attempted. The results of this novel investigation will provide important guidelines for surgical planning and validation of results from computational models in the future.

  14. Leptospermum Honey for Wound Care in an Extremely Premature Infant.

    Science.gov (United States)

    Esser, Media

    2017-02-01

    Neonatal wound care is challenging due to the fragility and vulnerable skin structure. Neonates are often left susceptible to the forces of their environment, leaving them open to infection when skin injury occurs. Leptospermum honey has been used successfully in adult patients, with evidence lacking in the neonatal population. This case demonstrates the management of a difficult-to-heal wound in a 23-week gestation infant. Selecting the proper treatment and products for wound healing is challenging, with little evidence-based research available for the treatment of neonatal wounds. Leptospermum honey and other adult-driven dressings have been used for neonatal wound care as well as other adult-driven dressings. This case demonstrates the benefits of Leptospermum honey as an option for neonatal wounds. This case presents the treatment and healing of an extensive wound of a 23-week gestation neonate using a hydrogel product initially and then transitioning to a Leptospermum honey dressing due to suboptimal healing. Results of this treatment included quick healing time, little to no scarring, and no loss of movement or function to the affected extremities. The incorporation of Leptospermum honey for wound care has the potential to promote faster wound healing, with less scarring in the neonatal population. Adult wound care principles have been applied in the face of a weak evidence base relating to neonatal-specific cases. There is a need for continued research related to moist wound healing in the neonatal population, with resulting product and practice recommendations.

  15. Wound Healing Properties of Selected Plants Used in Ethnoveterinary Medicine

    Directory of Open Access Journals (Sweden)

    Amos Marume

    2017-09-01

    Full Text Available Plants have arrays of phytoconstituents that have wide ranging biological effects like antioxidant, anti-inflammatory and antimicrobial properties key in wound management. In vivo wound healing properties of ointments made of crude methanolic extracts (10% extract w/w in white soft paraffin of three plant species, Cissus quadrangularis L. (whole aerial plant parts, Adenium multiflorum Klotzsch (whole aerial plant parts and Erythrina abyssinica Lam. Ex DC. (leaves and bark used in ethnoveterinary medicine were evaluated on BALB/c female mice based on wound area changes, regular observations, healing skin's percentage crude protein content and histological examinations. White soft paraffin and 3% oxytetracycline ointment were used as negative and positive controls, respectively. Wound area changes over a 15 day period for mice treated with C. quadrangularis and A. multiflorum extract ointments were comparable to those of the positive control (oxytetracycline ointment. Wounds managed with the same extract ointments exhibited high crude protein contents, similar to what was observed on animals treated with the positive control. Histological evaluations revealed that C. quadrangularis had superior wound healing properties with the wound area completely returning to normal skin structure by day 15 of the experiment. E. abyssinica leaf and bark extract ointments exhibited lower wound healing properties though the leaf extract exhibited some modest healing properties.

  16. The thermosensitive TRPV3 channel contributes to rapid wound healing in oral epithelia.

    Science.gov (United States)

    Aijima, Reona; Wang, Bing; Takao, Tomoka; Mihara, Hiroshi; Kashio, Makiko; Ohsaki, Yasuyoshi; Zhang, Jing-Qi; Mizuno, Atsuko; Suzuki, Makoto; Yamashita, Yoshio; Masuko, Sadahiko; Goto, Masaaki; Tominaga, Makoto; Kido, Mizuho A

    2015-01-01

    The oral cavity provides an entrance to the alimentary tract to serve as a protective barrier against harmful environmental stimuli. The oral mucosa is susceptible to injury because of its location; nonetheless, it has faster wound healing than the skin and less scar formation. However, the molecular pathways regulating this wound healing are unclear. Here, we show that transient receptor potential vanilloid 3 (TRPV3), a thermosensitive Ca(2+)-permeable channel, is more highly expressed in murine oral epithelia than in the skin by quantitative RT-PCR. We found that temperatures above 33°C activated TRPV3 and promoted oral epithelial cell proliferation. The proliferation rate in the oral epithelia of TRPV3 knockout (TRPV3KO) mice was less than that of wild-type (WT) mice. We investigated the contribution of TRPV3 to wound healing using a molar tooth extraction model and found that oral wound closure was delayed in TRPV3KO mice compared with that in WT mice. TRPV3 mRNA was up-regulated in wounded tissues, suggesting that TRPV3 may contribute to oral wound repair. We identified TRPV3 as an essential receptor in heat-induced oral epithelia proliferation and wound healing. Our findings suggest that TRPV3 activation could be a potential therapeutic target for wound healing in skin and oral mucosa. © FASEB.

  17. Multimodality gynecomastia repair by cross-chest power-assisted superficial liposuction combined with endoscopic-assisted pull-through excision.

    Science.gov (United States)

    Ramon, Ytzhack; Fodor, Lucian; Peled, Isaac J; Eldor, Liron; Egozi, Dana; Ullmann, Yehuda

    2005-12-01

    Numerous methods of gynecomastia repair have been described to accomplish removal of breast tissue. Our multimodality surgical approach for the treatment of gynecomastia combines the use of power-assisted superficial cross-chest liposuction with direct pull-through excision of the breast parenchyma under endoscopic supervision. Seventeen patients, aging 17-39, underwent this multimodality approach. According to Simon's grading, 3 patients had grade 1, 5 had grade 2a, 6 had grade 2b, and 3 had grade 3 gynecomastia. Power-assisted liposuction was performed with a 3- or 4-mm triple-hole cannula inserted through the contralateral periareolar medial incision to suction the contralateral prepectoral fatty breast. At the end of the liposuction, the fibrous tissue was easily pulled through the ipsilateral stab wound and excised under endoscopic control. Follow-up time ranged from 6 to 34 months. The amount of fat removed by liposuction varied from 100-800 mL per breast, and the amount of breast parenchyma removed by excision varied from 20-110 g. All patients recovered remarkably well. No complications were recorded. All patients were satisfied with their results. This technique enables an effective treatment of both the fatty and fibrous tissue of the male breast and avoids skin redundancy due to skin contraction. A smooth masculine breast contour is consistently achieved without the stigma of this type of surgery.

  18. Novel biodegradable porous scaffold applied to skin regeneration.

    Science.gov (United States)

    Wang, Hui-Min; Chou, Yi-Ting; Wen, Zhi-Hong; Wang, Chau-Zen; Wang, Zhao-Ren; Chen, Chun-Hong; Ho, Mei-Ling

    2013-01-01

    Skin wound healing is an important lifesaving issue for massive lesions. A novel porous scaffold with collagen, hyaluronic acid and gelatin was developed for skin wound repair. The swelling ratio of this developed scaffold was assayed by water absorption capacity and showed a value of over 20 g water/g dried scaffold. The scaffold was then degraded in time- and dose-dependent manners by three enzymes: lysozyme, hyaluronidase and collagenase I. The average pore diameter of the scaffold was 132.5±8.4 µm measured from SEM images. With human skin cells growing for 7 days, the SEM images showed surface fractures on the scaffold due to enzymatic digestion, indicating the biodegradable properties of this scaffold. To simulate skin distribution, the human epidermal keratinocytes, melanocytes and dermal fibroblasts were seeded on the porous scaffold and the cross-section immunofluorescent staining demonstrated normal human skin layer distributions. The collagen amount was also quantified after skin cells seeding and presented an amount 50% higher than those seeded on culture wells. The in vivo histological results showed that the scaffold ameliorated wound healing, including decreasing neutrophil infiltrates and thickening newly generated skin compared to the group without treatments.

  19. Novel biodegradable porous scaffold applied to skin regeneration.

    Directory of Open Access Journals (Sweden)

    Hui-Min Wang

    Full Text Available Skin wound healing is an important lifesaving issue for massive lesions. A novel porous scaffold with collagen, hyaluronic acid and gelatin was developed for skin wound repair. The swelling ratio of this developed scaffold was assayed by water absorption capacity and showed a value of over 20 g water/g dried scaffold. The scaffold was then degraded in time- and dose-dependent manners by three enzymes: lysozyme, hyaluronidase and collagenase I. The average pore diameter of the scaffold was 132.5±8.4 µm measured from SEM images. With human skin cells growing for 7 days, the SEM images showed surface fractures on the scaffold due to enzymatic digestion, indicating the biodegradable properties of this scaffold. To simulate skin distribution, the human epidermal keratinocytes, melanocytes and dermal fibroblasts were seeded on the porous scaffold and the cross-section immunofluorescent staining demonstrated normal human skin layer distributions. The collagen amount was also quantified after skin cells seeding and presented an amount 50% higher than those seeded on culture wells. The in vivo histological results showed that the scaffold ameliorated wound healing, including decreasing neutrophil infiltrates and thickening newly generated skin compared to the group without treatments.

  20. Morphological analysis of three wound-cleaning processes on potentially contamined wounds in rats

    Directory of Open Access Journals (Sweden)

    d'Acampora Armando José

    2006-01-01

    Full Text Available PURPOSE: To evaluate the inflammatory response of potentially infected wounds treated with isotonic saline solution, chlorhexidine and PVP-I, seven days after surgery. METHODS: Thirty-two male rats were used, divided into 4 groups. All animals had their surgical wounds infected with a standard bacterial inoculum. Control group (A: animals had their surgical wounds sutured without any kind of cleaning. Saline solution group (B: animals had their wounds cleaned with saline solution. Chlorhexidine group (C: animals had their wounds cleaned with chlorhexidine. PVP-I group (D: animals had their wounds cleaned with PVP-I. Seven days after surgery, all the animals had their skin submitted to microscopic and macroscopic evaluation. RESULTS: Edema was found on all histological slices analyzed, as well as vascular proliferation and congestion. Groups A and D showed presence of mild neutrophilic infiltrate, and moderate lymphocytic and macrophage infiltrate. Group B showed severe neutrophilic, macrophage, and lymphocytic infiltrate. Group C showed moderate neutrophilic, macrophage, and lymphocytic infiltrate. CONCLUSION: Group D was the group which showed inflammatory infiltrate most similar to the group that was not submitted to treatment.

  1. Skin bioengineering and stem cells for severe burn treatment

    International Nuclear Information System (INIS)

    Lataillade, J.J.; Trouillas, M.; Alexaline, M.; Brachet, M.; Bey, E.; Duhamel, P.; Leclerc, T.; Bargues, L.

    2015-01-01

    Severely burned patients need definitive and efficient wound coverage. The outcome of massive burns has improved with cultured epithelial auto-grafts (CEA). In spite of its fragility, percentage of success, cost of treatment and long-term tendency to contracture, this surgical technique has been developed in some burn centres. The first improvements involved combining CEA and dermis-like substitutes. Cultured skin substitutes provide faster skin closure and satisfying functional results. These methods have been used successfully in massive burns. A second improvement was to enable skin regeneration by using epidermal stem cells. Stem cells can differentiate into keratinocytes, to promote wound repair and to regenerate skin appendages. Human mesenchymal stem cells foster wound healing and were used in cutaneous radiation syndrome. Skin regeneration and tissue engineering methods remain a complex challenge and offer the possibility of new treatment for injured and burned patients. (authors)

  2. Effects and mechanisms of a microcurrent dressing on skin wound healing: a review

    OpenAIRE

    Yu, Chao; Hu, Zong-Qian; Peng, Rui-Yun

    2014-01-01

    The variety of wound types has resulted in a wide range of wound dressings, with new products frequently being introduced to target different aspects of the wound healing process. The ideal wound dressing should achieve rapid healing at a reasonable cost, with minimal inconvenience to the patient. Microcurrent dressing, a novel wound dressing with inherent electric activity, can generate low-level microcurrents at the device-wound contact surface in the presence of moisture and can provide an...

  3. Partial Denervation of Subbasal Axons Persists Following Debridement Wounds to the Mouse Cornea

    Science.gov (United States)

    Pajoohesh-Ganji, Ahdeah; Pal-Ghosh, Sonali; Tadvalkar, Gauri; Kyne, Briana M.; Saban, Daniel R.; Stepp, Mary Ann

    2015-01-01

    Although sensory reinnervation occurs after injury in the PNS, poor reinnervation in the elderly and those with diabetes often leads to pathology. Here we quantify subbasal axon density in the central and peripheral mouse cornea over time after three different types of injury. The mouse cornea is highly innervated with a dense array of subbasal nerves that form a spiral called the vortex at the corneal center or apex; these nerves are readily detected within flat mounted corneas. After anesthesia, corneal epithelial cells were removed using either a dulled blade or a rotating burr within an area demarcated centrally with a 1.5 mm trephine. A third wound type, superficial trephination, involved demarcating the area with the 1.5 mm trephine but not removing cells. By 7d after superficial trephination, subbasal axon density returns to control levels; by 28d the vortex reforms. Although axon density is similar to control 14d after dulled blade and rotating burr wounding, defects in axon morphology at the corneal apex remain. After 14d, axons retract from the center leaving the subbasal axon density reduced by 37.2% and 36.8% at 28d after dulled blade and rotating burr wounding, respectively, compared to control. Assessment of inflammation using flow cytometry shows that persistent inflammation is not a factor in the incomplete reinnervation. Expression of mRNAs encoding 22 regeneration associated genes (RAGs) involved in axon targeting assessed by QPCR reveals that netrin-1 and ephrin signaling are altered after wounding. Subpopulations of corneal epithelial basal cells at the corneal apex stop expressing ki67 as early as 7d after injury and by 14d and 28d after wounding, many of these basal cells undergo apoptosis and die. While subbasal axons are restored to their normal density and morphology after superficial trephination, subbasal axon recovery is partial after debridement wounds. The increase in corneal epithelial basal cell apoptosis at the apex observed at 14d

  4. Management of Acute Skin Trauma

    Institute of Scientific and Technical Information of China (English)

    Joel W. Beam

    2010-01-01

    @@ Acute skin trauma (ie, abrasions, avulsions, blisters, incisions, lacerations, and punctures) is common among individuals involved in work, recreational, and athletic activities. Appropriate management of these wounds is important to promote healing and lessen the risk of cross-contamination and infection. Wound management techniques have undergone significant changes in the past 40 years but many clinicians continue to manage acute skin trauma with long-established, traditional techniques (ie, use of hydrogen peroxide, adhesive strips/patches, sterile gauze, or no dressing) that can delay healing and increase the risk of infection. The purpose of this review is to discuss evidence-based cleansing, debridement, and dressing techniques for the management of acute skin trauma.

  5. Wound Care Center of Excellence: A Process for Continuous Monitoring and Improvement of Wound Care Quality.

    Science.gov (United States)

    Howell, Raelina S; Kohan, Lauren S; Woods, Jon S; Criscitelli, Theresa; Gillette, Brian M; Donovan, Virginia; Gorenstein, Scott

    2018-05-01

    To provide information about a study using a new process for continuous monitoring to improve chronic wound care quality.This continuing education activity is intended for physicians, physician assistants, nurse practitioners, and nurses with an interest in skin and wound care.After completing this continuing education activity, you should be better able to:1. Recognize problems associated with chronic wound care.2. Identify methods used in this project to improve care.3. Illustrate the findings from this and similar projects and implications for providing improved wound care.Patients with chronic wounds require complex care because of comorbidities that can affect healing. Therefore, the goal of this project was to develop a system of reviewing all hospitalized patients seen by the study authors' wound care service on a weekly basis to decrease readmissions, morbidity, and mortality. Weekly multidisciplinary conferences were conducted to evaluate patient data and systematically assess for adherence to wound care protocols, as well as to create and modify patient care plans. This review of pathology and the performance of root-cause analyses often led to improved patient care.

  6. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering.

    Science.gov (United States)

    Rahmani Del Bakhshayesh, Azizeh; Annabi, Nasim; Khalilov, Rovshan; Akbarzadeh, Abolfazl; Samiei, Mohammad; Alizadeh, Effat; Alizadeh-Ghodsi, Mohammadreza; Davaran, Soodabeh; Montaseri, Azadeh

    2018-06-01

    The tissue engineering field has developed in response to the shortcomings related to the replacement of the tissues lost to disease or trauma: donor tissue rejection, chronic inflammation and donor tissue shortages. The driving force behind the tissue engineering is to avoid the mentioned issues by creating the biological substitutes capable of replacing the damaged tissue. This is done by combining the scaffolds, cells and signals in order to create the living, physiological, three-dimensional tissues. A wide variety of skin substitutes are used in the treatment of full-thickness injuries. Substitutes made from skin can harbour the latent viruses, and artificial skin grafts can heal with the extensive scarring, failing to regenerate structures such as glands, nerves and hair follicles. New and practical skin scaffold materials remain to be developed. The current article describes the important information about wound healing scaffolds. The scaffold types which were used in these fields were classified according to the accepted guideline of the biological medicine. Moreover, the present article gave the brief overview on the fundamentals of the tissue engineering, biodegradable polymer properties and their application in skin wound healing. Also, the present review discusses the type of the tissue engineered skin substitutes and modern wound dressings which promote the wound healing.

  7. Phenotypic differences between oral and skin fibroblasts in wound contraction and growth factor expression.

    Science.gov (United States)

    Shannon, Diane B; McKeown, Scott T W; Lundy, Fionnuala T; Irwin, Chris R

    2006-01-01

    Wounds of the oral mucosa heal in an accelerated fashion with reduced scarring compared with cutaneous wounds. The differences in healing outcome between oral mucosa and skin could be because of phenotypic differences between the respective fibroblast populations. This study compared paired mucosal and dermal fibroblasts in terms of collagen gel contraction, alpha-smooth muscle actin expression (alpha-SMA), and production of the epithelial growth factors: keratinocyte growth factor (KGF) and hepatocyte growth factor/scatter factor (HGF). The effects of transforming growth factor -beta1 and -beta3 on each parameter were also determined. Gel contraction in floating collagen lattices was determined over a 7-day period. alpha-SMA expression by fibroblasts was determined by Western blotting. KGF and HGF expression were determined by an enzyme-linked immunosorbent assay. Oral fibroblasts induced accelerated collagen gel contraction, yet surprisingly expressed lower levels of alpha-SMA. Oral cells also produced significantly greater levels of both KGF and HGF than their dermal counterparts. Transforming growth factor-beta1 and -beta3, over the concentration range of 0.1-10 ng/mL, had similar effects on cell function, stimulating both gel contraction and alpha-SMA production, but inhibiting KGF and HGF production by both cell types. These data indicate phenotypic differences between oral and dermal fibroblasts that may well contribute to the differences in healing outcome between these two tissues.

  8. Hyperbaric oxygen and wound healing

    Directory of Open Access Journals (Sweden)

    Sourabh Bhutani

    2012-01-01

    Full Text Available Hyperbaric oxygen therapy (HBOT is the use of 100% oxygen at pressures greater than atmospheric pressure. Today several approved applications and indications exist for HBOT. HBOT has been successfully used as adjunctive therapy for wound healing. Non-healing wounds such as diabetic and vascular insufficiency ulcers have been one major area of study for hyperbaric physicians where use of HBOT as an adjunct has been approved for use by way of various studies and trials. HBOT is also indicated for infected wounds like clostridial myonecrosis, necrotising soft tissue infections, Fournier′s gangrene, as also for traumatic wounds, crush injury, compartment syndrome, compromised skin grafts and flaps and thermal burns. Another major area of application of HBOT is radiation-induced wounds, specifically osteoradionecrosis of mandible, radiation cystitis and radiation proctitis. With the increase in availability of chambers across the country, and with increasing number of studies proving the benefits of adjunctive use for various kinds of wounds and other indications, HBOT should be considered in these situations as an essential part of the overall management strategy for the treating surgeon.

  9. Acceleration of wound healing with stem cell-derived growth factors.

    Science.gov (United States)

    Tamari, Masayuki; Nishino, Yudai; Yamamoto, Noriyuki; Ueda, Minoru

    2013-01-01

    Recently, it has been revealed that bone marrow-derived mesenchymal stem cells (MSCs) accelerate the healing of skin wounds. Although the proliferative capacity of MSCs decreases with age, MSCs secrete many growth factors. The present study examined the effect of mesenchymal stem cell-conditioned medium (MSC-CM) on wound healing. The wound-healing process was observed macroscopically and histologically using an excisional wound-splinting mouse model, and the expression level of hyaluronic acid related to the wound healing process was observed to evaluate the wound-healing effects of MSC, MSC-CM, and control (phosphate-buffered saline). The MSC and MSC-CM treatments accelerated wound healing versus the control group. At 7 days after administration, epithelialization was accelerated, thick connective tissue had formed in the skin defect area, and the wound area was reduced in the MSC and MSC-CM groups versus the control group. At 14 days, infiltration of inflammatory cells was decreased versus 7 days, and the wounds were closed in the MSC and MSC-CM groups, while a portion of epithelium was observed in the control group. At 7 and 14 days, the MSC and MSC-CM groups expressed significantly higher levels of hyaluronic acid versus the control group (P wound healing versus the control group to a similar degree. Accordingly, it is suggested that the MSC-CM contains growth factor derived from stem cells, is able to accelerate wound healing as well as stem cell transplantation, and may become a new therapeutic method for wound healing in the future.

  10. Investigating the depth of thermal burns in elephants

    Directory of Open Access Journals (Sweden)

    A. Shakespeare

    2006-06-01

    Full Text Available Histological examination of burn injuries in elephants revealed that the depth was not as severe as expected from clinical observation. Although the actual burn depth was deep, the thickness of elephant skin, especially the dermis, resulted in the lesions being classified as less severe than expected. Examination of skin samples from selected areas showed that most lesions were either superficial (1st degree or superficial partial-thickness (superficial 2nd degree burns with the occasional deep partial thickness (deep 2nd degree wound. These lesions however, resulted in severe complications that eventually led to the death of a number of the elephants.

  11. Wound care in the geriatric client

    Directory of Open Access Journals (Sweden)

    Steve Gist

    2009-06-01

    Full Text Available Steve Gist, Iris Tio-Matos, Sharon Falzgraf, Shirley Cameron, Michael BeebeGeriatrics and Extended Care, Programs, VA Puget Sound Health Care Systems, American Lake Division, Tacoma, WA, USAAbstract: With our aging population, chronic diseases that compromise skin integrity such as diabetes, peripheral vascular disease (venous hypertension, arterial insufficiency are becoming increasingly common. Skin breakdown with ulcer and chronic wound formation is a frequent consequence of these diseases. Types of ulcers include pressure ulcers, vascular ulcers (arterial and venous hypertension, and neuropathic ulcers. Treatment of these ulcers involves recognizing the four stages of healing: coagulation, inflammation, proliferation, and maturation. Chronic wounds are frequently stalled in the inflammatory stage. Moving past the inflammation stage requires considering the bacterial burden, necrotic tissue, and moisture balance of the wound being treated. Bacterial overgrowth or infection needs to be treated with topical or systemic agents. In most cases, necrotic tissue needs to be debrided and moisture balance needs to be addressed by wetting dry tissue and drying wet tissue. Special dressings have been developed to accomplish these tasks. They include films, hydrocolloids, hydrogel dressings, foams, hydro-fibers, composite and alginate dressings.Keywords: wound care, pressure ulcers, vascular ulcers, diabetic ulcers, debridement, elderly

  12. New strategies in clinical care of skin wound healing.

    Science.gov (United States)

    Günter, C I; Machens, H-G

    2012-01-01

    The prevalence of chronic wounds is closely correlated to the aging population and so-called civilizational diseases. Therefore, they are causing morbidity and mortality of millions of patients worldwide, with an unbroken upward trend. As a consequence, chronic wounds induce enormous and rapidly growing costs for our health care systems and society in general. Thus, medically effective and cost-efficient treatment methods are urgently needed. Methods of 'regenerative medicine' might offer innovative scientific solutions, including the use of stem cells, growth factors and new bioactive materials. These tools are experimentally well described but clinically poorly performed. The main reasons for this are both legislative and economic. This review describes state-of-the-art techniques, up-to-date research projects, innovative preclinical and clinical approaches in wound care, and activities to translate these innovative techniques into clinical routine. Copyright © 2012 S. Karger AG, Basel.

  13. Electrotransfer parameters as a tool for controlled and targeted gene expression in skin

    Directory of Open Access Journals (Sweden)

    Spela Kos

    2016-01-01

    Full Text Available Skin is an attractive target for gene electrotransfer. It consists of different cell types that can be transfected, leading to various responses to gene electrotransfer. We demonstrate that these responses could be controlled by selecting the appropriate electrotransfer parameters. Specifically, the application of low or high electric pulses, applied by multi-electrode array, provided the possibility to control the depth of the transfection in the skin, the duration and the level of gene expression, as well as the local or systemic distribution of the transgene. The influence of electric pulse type was first studied using a plasmid encoding a reporter gene (DsRed. Then, plasmids encoding therapeutic genes (IL-12, shRNA against endoglin, shRNA against melanoma cell adhesion molecule were used, and their effects on wound healing and cutaneous B16F10 melanoma tumors were investigated. The high-voltage pulses resulted in gene expression that was restricted to superficial skin layers and induced a local response. In contrast, the low-voltage electric pulses promoted transfection into the deeper skin layers, resulting in prolonged gene expression and higher transgene production, possibly with systemic distribution. Therefore, in the translation into the clinics, it will be of the utmost importance to adjust the electrotransfer parameters for different therapeutic approaches and specific mode of action of the therapeutic gene.

  14. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing.

    Science.gov (United States)

    Mofazzal Jahromi, Mirza Ali; Sahandi Zangabad, Parham; Moosavi Basri, Seyed Masoud; Sahandi Zangabad, Keyvan; Ghamarypour, Ameneh; Aref, Amir R; Karimi, Mahdi; Hamblin, Michael R

    2018-01-01

    According to the latest report from the World Health Organization, an estimated 265,000 deaths still occur every year as a direct result of burn injuries. A widespread range of these deaths induced by burn wound happens in low- and middle-income countries, where survivors face a lifetime of morbidity. Most of the deaths occur due to infections when a high percentage of the external regions of the body area is affected. Microbial nutrient availability, skin barrier disruption, and vascular supply destruction in burn injuries as well as systemic immunosuppression are important parameters that cause burns to be susceptible to infections. Topical antimicrobials and dressings are generally employed to inhibit burn infections followed by a burn wound therapy, because systemic antibiotics have problems in reaching the infected site, coupled with increasing microbial drug resistance. Nanotechnology has provided a range of molecular designed nanostructures (NS) that can be used in both therapeutic and diagnostic applications in burns. These NSs can be divided into organic and non-organic (such as polymeric nanoparticles (NPs) and silver NPs, respectively), and many have been designed to display multifunctional activity. The present review covers the physiology of skin, burn classification, burn wound pathogenesis, animal models of burn wound infection, and various topical therapeutic approaches designed to combat infection and stimulate healing. These include biological based approaches (e.g. immune-based antimicrobial molecules, therapeutic microorganisms, antimicrobial agents, etc.), antimicrobial photo- and ultrasound-therapy, as well as nanotechnology-based wound healing approaches as a revolutionizing area. Thus, we focus on organic and non-organic NSs designed to deliver growth factors to burned skin, and scaffolds, dressings, etc. for exogenous stem cells to aid skin regeneration. Eventually, recent breakthroughs and technologies with substantial potentials in tissue

  15. A case of peeling skin syndrome

    OpenAIRE

    Anil K Singhal; Devendra K Yadav; Bajrang Soni; Savita Arya

    2017-01-01

    Peeling skin syndrome is a very rare autosomal recessive disease characterized by widespread painless peeling of the skin in superficial sheets. Etiology is still unknown with an autosomal recessive inheritance. Less than 100 cases have been reported in the medical literature. We present a 32-year-old man having asymptomatic peeling of skin since birth. Sheets of skin were peeling from his neck, trunk, and extremities, following friction or rubbing especially if pre-soaked in water but sparin...

  16. A human model of small fiber neuropathy to study wound healing.

    Directory of Open Access Journals (Sweden)

    Ben M W Illigens

    Full Text Available The aim of this study was to develop a human model of acute wound healing that isolated the effects of small fiber neuropathy on the healing process. Twenty-five healthy subjects had the transient receptor vanilloid 1 agonist capsaicin and placebo creams topically applied to contralateral areas on the skin of the thigh for 48 hours. Subjects had shallow (1.2 millimeter and deep (>3 millimeter punch skin biopsies from each thigh on days 1 and 14. Biopsy wound healing was monitored photographically until closure. Intra-epidermal and sweat-gland nerve fiber densities were measured for each biopsy. Shallow wounds in capsaicin-treated sites healed more slowly than in placebo treated skin with biopsies taken on day 1 (P<0.001 and day 14 (P<0.001. Deep biopsies in the capsaicin and placebo areas healed at similar rates at both time points. Nerve fiber densities were reduced only in capsaicin treated regions (P<0.01. In conclusion, topical application of capsaicin causes a small fiber neuropathy and is associated with a delay in healing of shallow, but not deep wounds. This novel human model may prove valuable in the study of wound healing in patients with neuropathy.

  17. Blood-derived small Dot cells reduce scar in wound healing

    International Nuclear Information System (INIS)

    Kong, Wuyi; Li Shaowei; Longaker, Michael T.; Lorenz, H. Peter

    2008-01-01

    Wounds in fetal skin heal without scar, however the mechanism is unknown. We identified a novel group of E-cadherin positive cells in the blood of fetal and adult mice and named them 'Dot cells'. The percentage of Dot cells in E16.5 fetal mice blood is more than twenty times higher compared to adult blood. Dot cells also express integrin β1, CD184, CD34, CD13 low and Sca1 low , but not CD45, CD44, and CD117. Dot cells have a tiny dot shape between 1 and 7 μm diameters with fast proliferation in vitro. Most of the Dot cells remain positive for E-cadherin and integrin β1 after one month in culture. Transplantation of Dot cells to adult mice heals skin wounds with less scar due to reduced smooth muscle actin and collagen expression in the repair tissue. Tracking GFP-positive Dot cells demonstrates that Dot cells migrate to wounds and differentiate into dermal cells, which also express strongly to FGF-2, and later lose their GFP expression. Our results indicate that Dot cells are a group of previously unidentified cells that have strong wound healing effect. The mechanism of scarless wound healing in fetal skin is due to the presence of a large number of Dot cells

  18. Effects on Glycemic Control in Impaired Wound Healing in Spontaneously Diabetic Torii (SDT) Fatty Rats.

    Science.gov (United States)

    Katsuhiro, Miyajima; Hui Teoh, Soon; Yamashiro, Hideaki; Shinohara, Masami; Fatchiyah, Fatchiyah; Ohta, Takeshi; Yamada, Takahisa

    2018-02-01

    Impaired diabetic wound healing is an important issue in diabetic complications. The present study aims to evaluate the protective effect on glycemic control against impaired diabetic wound healing using a diabetic rat model. We investigated the wound healing process and effect on the impaired wound repair by glycemic control in the Spontaneously Diabetic Torii (SDT) fatty rat, which is a new animal model of obese type 2 diabetes and may be a good model for study impaired wound healing. Male SDT fatty rats at 15 weeks of age were administered orally with sodium glucose co-transporter (SGLT) 2 inhibitor for 3 weeks. Wounds were induced at 2 weeks after SGLT 2 inhibitor treatment, and the wound areas were periodically examined in morphological and histological analyses. The SDT fatty rats showed a delayed wound healing as compared with the normal rats, but a glycemic control improved the impaired wound healing. In histological analysis in the skin of SDT fatty rats showed severe infiltration of inflammatory cell, hemorrhage and many bacterial masses in the remaining and slight fibrosis of crust on skin tissue . Thought that this results skin performance to be a delay of crust formation and regeneration of epithelium; however, these findings were ameliorated in the SGLT 2 inhibitor treated group. Glycemic control is effective for treatment in diabetic wounds and the SDT fatty rat may be useful to investigate pathophysiological changes in impaired diabetic wound healing.

  19. Treatment of chronic heel osteomyelitis in vasculopathic patients. Can the combined use of Integra® , skin graft and negative pressure wound therapy be considered a valid therapeutic approach after partial tangential calcanectomy?

    Science.gov (United States)

    Fraccalvieri, Marco; Pristerà, Giuseppe; Zingarelli, Enrico; Ruka, Erind; Bruschi, Stefano

    2012-04-01

    Osteomyelitis of the calcaneus is a difficult problem to manage. Patients affected by osteomyelitis of the calcaneus often have a below-the-knee amputation because of their comorbidity. In this article, we present seven cases of heel ulcerations with chronic osteomyelitis treated with Integra(®) Dermal Regeneration Template, skin graft and negative pressure wound therapy after partial tangential calcanectomy, discussing the surgical and functional results. In this casuistic of patients, all wounds healed after skin grating of the neodermis generated by Integra(®), with no patient requiring a below-knee amputation. © 2011 The Authors. © 2011 Blackwell Publishing Ltd and Medicalhelplines.com Inc.

  20. A comparative study of histopathological effects of aqueous extract of cinnamon and honey with sulfadiazine on skin burn wound healing in rats infected with Pseudomonas aeuroginosa

    Directory of Open Access Journals (Sweden)

    Mohammadreza Valilou

    2017-11-01

    Full Text Available Pseudomonas aeruginosa, a ubiquitous opportunistic pathogen, is the most common infective agent of burn wounds. The aim of this study was to compare the histopathological effect of a mixture of aqueous extract of cinnamon and honey with silver sulfadiazine on the healing of Pseudomonas aeruginosa infected second grade skin burn wounds in rats. To this end, 60 male rats were randomly assigned to four experimental groups (15 rats in each group. After inducing anesthesia, second grade burn wound with the diameter of 12 mm was created in the dorsal region of rats. Then, 1.5×108 cfu/ml P. aeruginosa PA01was equally bestrewed on the wound of all rats. Every 12 hours, silver sulfadiazine (group 1, honey (group 2 and aqueous extract of cinnamon and honey (group 3 were applied to the wounds and group 4 was kept as control. On days 7, 14, and 21, five rats were selected from each group at each time point and after inducing anesthesia and measuring the diameter of the wound by coliseum, microbial and histopathological samples were taken from the wounds. Microbial studies showed that in all groups except the control group, the growth of the microbe was stopped. Histopathological observations regarding wound healing and diameter showed that there was a significant difference between treatment groups and the control group on days 7, 14 and 21 (p

  1. Wound healing properties of ethyl acetate fraction of Moringa oleifera in normal human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    Sivapragasam Gothai

    2016-03-01

    Full Text Available Background/Aim: Wounds are the outcome of injuries to the skin that interrupt the soft tissue. Healing of a wound is a complex and long-drawn-out process of tissue repair and remodeling in response to injury. A large number of plants are used by folklore traditions for treatment of cuts, wounds and burns. Moringa oleifera is an herb used as traditional folk medicine for the treatment of various skin wounds and associated diseases. The underlying mechanisms of wound healing activity of ethyl acetate fraction of M. oleifera leaves extract are completely unknown. Methods: In the current study, ethyl acetate fraction of Moringa oleifera leaves was investigated for its efficacy on cell viability, proliferation and migration (wound closure rate in human normal dermal fibroblast cells. Results: Results revealed that lower concentration (12.5 µg/ml, 25 µg/ml, and 50 µg/ml of ethyl acetate fraction of M. oleifera leaves showed remarkable proliferative and migratory effect on normal human dermal fibroblasts. Conclusion: The present study suggested that ethyl acetate fraction of M. oleifera leaves might be a potential therapeutic agent for skin wound healing by promoting fibroblast proliferation and migration through increasing the wound closure rate corroborating its traditional use. [J Complement Med Res 2016; 5(1.000: 1-6

  2. Recent advances in topical wound care

    Directory of Open Access Journals (Sweden)

    Sujata Sarabahi

    2012-01-01

    Full Text Available There are a wide variety of dressing techniques and materials available for management of both acute wounds and chronic non-healing wounds. The primary objective in both the cases is to achieve a healed closed wound. However, in a chronic wound the dressing may be required for preparing the wound bed for further operative procedures such as skin grafting. An ideal dressing material should not only accelerate wound healing but also reduce loss of protein, electrolytes and fluid from the wound, and help to minimize pain and infection. The present dictum is to promote the concept of moist wound healing. This is in sharp contrast to the earlier practice of exposure method of wound management wherein the wound was allowed to dry. It can be quite a challenge for any physician to choose an appropriate dressing material when faced with a wound. Since wound care is undergoing a constant change and new products are being introduced into the market frequently, one needs to keep abreast of their effect on wound healing. This article emphasizes on the importance of assessment of the wound bed, the amount of drainage, depth of damage, presence of infection and location of wound. These characteristics will help any clinician decide on which product to use and where,in order to get optimal wound healing. However, there are no ′magical dressings′. Dressings are one important aspect that promotes wound healing apart from treating the underlying cause and other supportive measures like nutrition and systemic antibiotics need to be given equal attention.

  3. PMN Leukocytes and Fibroblasts Numbers on Wound Burn Healing on the Skin of White Rat after Administration of Ambonese Plantain Banana

    Directory of Open Access Journals (Sweden)

    Juniarti

    2012-04-01

    Full Text Available A study of ambonese plantain banana (Musa paradisiaca var sapientum Lamb treatment in burn wound healing on the skin of white rats (Rattus novergicus has been conducted. The wound healing of burn injuries was evaluated by counting the number of PMN leukocytes and fibroblasts at the 7th, 14th, and 21st days following the treatment. The study showed that the decrease in number of PMN leukocytes of subjects treated with ambonese plantain banana was relatively more significant compared to both negative and positive control (Bioplacenton ®. In contrast, an increasing number of fibroblasts was significantly demonstrated at the 14th and 21st days after treatment. In conclusion, ambonese plantain banana treatment in burn injuries will provide better results compared to both positive and negative controls.

  4. Combing a novel device and negative pressure wound therapy for managing the wound around a colostomy in the open abdomen: A case report.

    Science.gov (United States)

    Sun, Xiaofang; Wu, Shaohan; Xie, Ting; Zhang, Jianping

    2017-12-01

    An open abdomen complicated with small-bowel fistulae becomes a complex wound for local infection, systemic sepsis and persistent soiling irritation by intestinal content. While controlling the fistulae drainage, protecting surrounding skin, healing the wound maybe a challenge. In this paper we described a 68-year-old female was admitted to emergency surgery in general surgery department with severe abdomen pain. Resection part of the injured small bowel, drainage of the intra-abdominal abscess, and fashioning of a colostomy were performed. She failed to improve and ultimately there was tenderness and lot of pus under the skin around the fistulae. The wound started as a 3-cm lesion and progressed to a 6 ×13  (78 cm) around the stoma. In our case we present a novel device for managing colostomy wound combination with negative pressure wound therapy. This tube allows for an effective drainage of small-bowel secretion and a safe build-up of granulation tissue. Also it could be a barrier between the bowel suction point and foam. Management of open abdomen wound involves initial dressing changes, antibiotic use and cutaneous closure. When compared with traditional dressing changes, the NPWT offers several advantages including increased granulation tissue formation, reduction in bacterial colonization, decreased of bowel edema and wound size, and enhanced neovascularization. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  5. ANALYSIS OF TREATMENT OF WOUNDS IN PATIENTS WITH GRADE IIIB COMPOUND FRACTURE WITH VACUUM-ASSISTED WOUND MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Ashish R. Agarwal

    2017-08-01

    Full Text Available BACKGROUND Delayed wound healing is a significant health problem, particularly in patients with compound fractures. It still remains a challenging task in orthopaedic surgery, which in addition to the pain and suffering, failure of the wound to heal, also imposes social and financial burdens. The aim of the study is to evaluate the results of vacuum-assisted wound therapy in patients with open musculoskeletal injuries. MATERIALS AND METHODS 30 patients of open musculoskeletal injuries underwent randomised trial of vacuum-assisted closure therapy versus standard wound therapy around the upper limb and lower limb. Mean patient age was 39 ± 18 years necrotic tissues were debrided before applying VAC therapy. Dressings were changed every 3 or 4 days. For standard wound therapy, debridement followed by daily dressings was done. Data Management and Statistical Analysis- The results obtained were subjected to statistical analysis. RESULTS Granulation tissue status and skin healing is better in patients undergoing VAC therapy. Hospital stay of patients undergoing VAC therapy was also less. CONCLUSION Vacuum-assisted wound therapy was better method of wound management.

  6. Chimeric autologous/allogeneic constructs for skin regeneration.

    Science.gov (United States)

    Rasmussen, Cathy Ann; Tam, Joshua; Steiglitz, Barry M; Bauer, Rebecca L; Peters, Noel R; Wang, Ying; Anderson, R Rox; Allen-Hoffmann, B Lynn

    2014-08-01

    The ideal treatment for severe cutaneous injuries would eliminate the need for autografts and promote fully functional, aesthetically pleasing autologous skin regeneration. NIKS progenitor cell-based skin tissues have been developed to promote healing by providing barrier function and delivering wound healing factors. Independently, a device has recently been created to "copy" skin by harvesting full-thickness microscopic tissue columns (MTCs) in lieu of autografts traditionally harvested as sheets. We evaluated the feasibility of combining these two technologies by embedding MTCs in NIKS-based skin tissues to generate chimeric autologous/allogeneic constructs. Chimeric constructs have the potential to provide immediate wound coverage, eliminate painful donor site wounds, and promote restoration of a pigmented skin tissue possessing hair follicles, sweat glands, and sebaceous glands. After MTC insertion, chimeric constructs and controls were reintroduced into air-interface culture and maintained in vitro for several weeks. Tissue viability, proliferative capacity, and morphology were evaluated after long-term culture. Our results confirmed successful MTC insertion and integration, and demonstrated the feasibility of generating chimeric autologous/allogeneic constructs that preserved the viability, proliferative capacity, and structure of autologous pigmented skin. These feasibility studies established the proof-of-principle necessary to further develop chimeric autologous/allogeneic constructs for the treatment of complex skin defects. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  7. Adenoviral Gene Delivery to Primary Human Cutaneous Cells and Burn Wounds

    OpenAIRE

    Hirsch, Tobias; von Peter, Sebastian; Dubin, Grzegorz; Mittler, Dominik; Jacobsen, Frank; Lehnhardt, Markus; Eriksson, Elof; Steinau, Hans-Ulrich; Steinstraesser, Lars

    2006-01-01

    The adenoviral transfer of therapeutic genes into epidermal and dermal cells is an interesting approach to treat skin diseases and to promote wound healing. The aim of this study was to assess the in vitro and in vivo transfection efficacy in skin and burn wounds after adenoviral gene delivery. Primary keratinocytes (HKC), fibroblasts (HFB), and HaCaT cells were transfected using different concentrations of an adenoviral construct (eGFP). Transfection efficiency and cytotoxicity was determine...

  8. Non-thermal atmospheric-pressure plasma possible application in wound healing.

    Science.gov (United States)

    Haertel, Beate; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Lindequist, Ulrike

    2014-11-01

    Non-thermal atmospheric-pressure plasma, also named cold plasma, is defined as a partly ionized gas. Therefore, it cannot be equated with plasma from blood; it is not biological in nature. Non-thermal atmospheric-pressure plasma is a new innovative approach in medicine not only for the treatment of wounds, but with a wide-range of other applications, as e.g. topical treatment of other skin diseases with microbial involvement or treatment of cancer diseases. This review emphasizes plasma effects on wound healing. Non-thermal atmospheric-pressure plasma can support wound healing by its antiseptic effects, by stimulation of proliferation and migration of wound relating skin cells, by activation or inhibition of integrin receptors on the cell surface or by its pro-angiogenic effect. We summarize the effects of plasma on eukaryotic cells, especially on keratinocytes in terms of viability, proliferation, DNA, adhesion molecules and angiogenesis together with the role of reactive oxygen species and other components of plasma. The outcome of first clinical trials regarding wound healing is pointed out.

  9. Partial denervation of sub-basal axons persists following debridement wounds to the mouse cornea.

    Science.gov (United States)

    Pajoohesh-Ganji, Ahdeah; Pal-Ghosh, Sonali; Tadvalkar, Gauri; Kyne, Briana M; Saban, Daniel R; Stepp, Mary Ann

    2015-11-01

    Although sensory reinnervation occurs after injury in the peripheral nervous system, poor reinnervation in the elderly and those with diabetes often leads to pathology. Here we quantify sub-basal axon density in the central and peripheral mouse cornea over time after three different types of injury. The mouse cornea is highly innervated with a dense array of sub-basal nerves that form a spiral called the vortex at the corneal center or apex; these nerves are readily detected within flat mounted corneas. After anesthesia, corneal epithelial cells were removed using either a dulled blade or a rotating burr within an area demarcated centrally with a 1.5 mm trephine. A third wound type, superficial trephination, involved demarcating the area with the 1.5 mm trephine but not removing cells. By 7 days after superficial trephination, sub-basal axon density returns to control levels; by 28 days the vortex reforms. Although axon density is similar to control 14 days after dulled blade and rotating burr wounding, defects in axon morphology at the corneal apex remain. After 14 days, axons retract from the center leaving the sub-basal axon density reduced by 37.2 and 36.8% at 28 days after dulled blade and rotating burr wounding, respectively, compared with control. Assessment of inflammation using flow cytometry shows that persistent inflammation is not a factor in the incomplete reinnervation. Expression of mRNAs encoding 22 regeneration-associated genes involved in axon targeting assessed by QPCR reveals that netrin-1 and ephrin signaling are altered after wounding. Subpopulations of corneal epithelial basal cells at the corneal apex stop expressing ki67 as early as 7 days after injury and by 14 and 28 days after wounding, many of these basal cells undergo apoptosis and die. Although sub-basal axons are restored to their normal density and morphology after superficial trephination, sub-basal axon recovery is partial after debridement wounds. The increase in corneal

  10. Anatomy of the Skin and the Pathogenesis of Nonmelanoma Skin Cancer.

    Science.gov (United States)

    Losquadro, William D

    2017-08-01

    Skin is composed of the epidermis, dermis, and adnexal structures. The epidermis is composed of 4 layers-the stratums basale, spinosum, granulosum, and corneum. The dermis is divided into a superficial papillary dermis and deeper reticular dermis. Collagen and elastin within the reticular dermis are responsible for skin tensile strength and elasticity, respectively. The 2 most common kinds of nonmelanoma skin cancers are basal cell and squamous cell carcinoma. Both are caused by a host of environmental and genetic factors, although UV light exposure is the single greatest predisposing factor. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Effect of Topical Estrogen in the Mangement of Traumatic Facial Wounds

    OpenAIRE

    Seyed Amirhosein Ghazizadeh Hashemi; Behrooz Barati; Hosein Mohammadi; Masumeh Saeidi; Abbas Bahreini; Mohammad Ali Kiani

    2016-01-01

    Introduction: Acute skin wound healing is a complicated process comprising various phases. Recent animal studies have shown that steroid sex hormones such as estrogen maybe helpful in the regulation of several pathophysiologic stages that are involved in wound healing. In this study we examined the effects of topical estrogen in the treatment of traumatic facial wounds.   Materials and Methods: Patients referred to Luqman Hospital, Tehran with traumatic wounds were enrolled in this case-contr...

  12. Aberrant Wound Healing in an Epidermal Interleukin-4 Transgenic Mouse Model of Atopic Dermatitis

    Science.gov (United States)

    Zhao, Yan; Bao, Lei; Chan, Lawrence S.; DiPietro, Luisa A.; Chen, Lin

    2016-01-01

    Wound healing in a pre-existing Th2-dominated skin milieu was assessed by using an epidermal specific interleukin-4 (IL-4) transgenic (Tg) mouse model, which develops a pruritic inflammatory skin condition resembling human atopic dermatitis. Our results demonstrated that IL-4 Tg mice had delayed wound closure and re-epithelialization even though these mice exhibited higher degrees of epithelial cell proliferation. Wounds in IL-4 Tg mice also showed a marked enhancement in expression of inflammatory cytokines/chemokines, elevated infiltration of inflammatory cells including neutrophils, macrophages, CD3+ lymphocytes, and epidermal dendritic T lymphocytes. In addition, these mice exhibited a significantly higher level of angiogenesis as compared to wild type mice. Furthermore, wounds in IL-4 Tg mice presented with larger amounts of granulation tissue, but had less expression and deposition of collagen. Taken together, an inflamed skin condition induced by IL-4 has a pronounced negative influence on the healing process. Understanding more about the pathogenesis of wound healing in a Th2- dominated environment may help investigators explore new potential therapeutic strategies. PMID:26752054

  13. Preoperative antiseptic skin preparations and reducing SSI.

    Science.gov (United States)

    Al Maqbali, Mohammed Abdullah

    Surgical site infection (SSI) can affect the quality of care and increase the morbidity and mortality rate in after-surgical procedure. The use of an antiseptic skin preparation agent before the procedure can reduce the pathogens in the skin surface around the incision. Indicating the type of skin antiseptic preparation could prevent the infection and contamination of the wound. The most commonly used types of skin preparations are chlorhexidine and povidone iodine. However, the antiseptic solutions of both agents are strengthened with alcohol to prevent postoperative wound infection. The aim of this paper is to identify the best antiseptic agent in terms of skin preparation by evaluating the evidence in the literature. The factors associated with choosing the antiseptic skin agent, such as patients' allergies, skin condition and environmental risk, are also taken into account. This review suggests that cholorhexdine with alcohol may be the most effective in terms of reducing SSI.

  14. The use of wound healing assessment methods in psychological studies: a review and recommendations.

    Science.gov (United States)

    Koschwanez, Heidi E; Broadbent, Elizabeth

    2011-02-01

    To provide a critical review of methods used to assess human wound healing in psychological research and related disciplines, in order to guide future research into psychological influences on wound healing. Acute wound models (skin blister, tape stripping, skin biopsy, oral palate biopsy, expanded polytetrafluoroethylene tubing), surgical wound healing assessment methods (wound drains, wound scoring), and chronic wound assessment techniques (surface area, volumetric measurements, wound composition, and assessment tools/scoring systems) are summarized, including merits, limitations, and recommendations. Several dermal and mucosal tissue acute wound models have been established to assess the effects of psychological stress on the inflammatory, proliferative, and repair phases of wound healing in humans, including material-based models developed to evaluate factors influencing post-surgical recovery. There is a paucity of research published on psychological factors influencing chronic wound healing. There are many assessment techniques available to study the progression of chronic wound healing but many difficulties inherent to long-term clinical studies. Researchers need to consider several design-related issues when conducting studies into the effects of psychological stress on wound healing, including the study aims, type of wound, tissue type, setting, sample characteristics and accessibility, costs, timeframe, and facilities available. Researchers should consider combining multiple wound assessment methods to increase the reliability and validity of results and to further understand mechanisms that link stress and wound healing. ©2010 The British Psychological Society.

  15. The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization

    DEFF Research Database (Denmark)

    Kruse, Carla R; Singh, Mansher; Targosinski, Stefan

    2017-01-01

    primary keratinocyte and fibroblast function in vitro and on wound healing in vivo. In vitro, primary human keratinocytes and fibroblasts were cultured in different levels of pH (5.5-12.5) and the effect on cell viability, proliferation, and migration was studied. A rat full-thickness wound model was used...... to investigate the effect of pH (5.5-9.5) on wound healing in vivo. The effect of pH on inflammation was monitored by measuring IL-1 α concentrations from wounds and cell cultures exposed to different pH environments. Our results showed that both skin cell types tolerated wide range of pH very well. They further...... demonstrated that both acidic and alkaline environments decelerated cell migration in comparison to neutral environments and interestingly alkaline conditions significantly enhanced cell proliferation. Results from the in vivo experiments indicated that a prolonged, strongly acidic wound environment prevents...

  16. Negative pressure therapy for the treatment of complex wounds

    Directory of Open Access Journals (Sweden)

    RENAN VICTOR KÜMPEL SCHMIDT LIMA

    Full Text Available ABSTRACT The objective of this study is to evaluate the effectiveness of negative pressure therapy (NPT in the treatment of complex wounds, with emphasis on its mechanisms of action and main therapeutic indications. We searched the Pubmed / Medline database for articles published from 1997 to 2016, and selected the most relevant ones. The mechanisms of action of NPT involveboth physical effects, such as increased perfusion, control of edema and exudate, reduction of wound dimensions and bacterial clearance, and biological ones, such as the stimulation of granulation tissue formation, microdeformations and reduction of Inflammatory response. The main indications of NPT are complex wounds, such as pressure ulcers, traumatic wounds, operative wound dehiscences, burns, necrotizing wounds, venous ulcers, diabetic wounds, skin grafts, open abdomen, prevention of complications in closed incisions and in the association with instillation of solutions in infected wounds.

  17. Wound Healing in Mac-1 Deficient Mice

    Science.gov (United States)

    2017-05-01

    Dentistry, University of Illinois at Chicago, Chicago, IL, USA. 2 Department of Defense Biotechnology High Performance Computing Software...study, we used a commercially available Mac-1 deficient strain to examine whether this deficit 5 extends to slightly smaller wounds and incisional...levels of Collagen I and Collagen III in wounds from the two strains of mice at any time point. Unwounded skin from both WT and Mac-1 -/- mice contained

  18. CCD-Based Skinning Injury Recognition on Potato Tubers (Solanum tuberosum L.): A Comparison between Visible and Biospeckle Imaging.

    Science.gov (United States)

    Gao, Yingwang; Geng, Jinfeng; Rao, Xiuqin; Ying, Yibin

    2016-10-18

    Skinning injury on potato tubers is a kind of superficial wound that is generally inflicted by mechanical forces during harvest and postharvest handling operations. Though skinning injury is pervasive and obstructive, its detection is very limited. This study attempted to identify injured skin using two CCD (Charge Coupled Device) sensor-based machine vision technologies, i.e., visible imaging and biospeckle imaging. The identification of skinning injury was realized via exploiting features extracted from varied ROIs (Region of Interests). The features extracted from visible images were pixel-wise color and texture features, while region-wise BA (Biospeckle Activity) was calculated from biospeckle imaging. In addition, the calculation of BA using varied numbers of speckle patterns were compared. Finally, extracted features were implemented into classifiers of LS-SVM (Least Square Support Vector Machine) and BLR (Binary Logistic Regression), respectively. Results showed that color features performed better than texture features in classifying sound skin and injured skin, especially for injured skin stored no less than 1 day, with the average classification accuracy of 90%. Image capturing and processing efficiency can be speeded up in biospeckle imaging, with captured 512 frames reduced to 125 frames. Classification results obtained based on the feature of BA were acceptable for early skinning injury stored within 1 day, with the accuracy of 88.10%. It is concluded that skinning injury can be recognized by visible and biospeckle imaging during different stages. Visible imaging has the aptitude in recognizing stale skinning injury, while fresh injury can be discriminated by biospeckle imaging.

  19. [Antiseptic effect of compound lysostaphin disinfectant and its preventive effect on infection of artificial dermis after graft on full-thickness skin defect wound in rats].

    Science.gov (United States)

    Jin, J; Zhou, H; Cui, Z C; Wang, L; Luo, P F; Ji, S Z; Hu, X Y; Ma, B; Wang, G Y; Zhu, S H; Xia, Z F

    2018-04-20

    Objective: To study the antiseptic effect of compound lysostaphin disinfectant and its preventive effect on infection of artificial dermis after graft on full-thickness skin defect wound in rats. Methods: (1) Each one standard strain of Klebsiella pneumoniae, Acinetobacter baumannii, and Staphylococcus aureus were selected. Each 20 clinical strains of Klebsiella pneumoniae, Acinetobacter baumannii, and Staphylococcus aureus were collected from those isolated from wound exudates of burn patients hospitalized in our wards from January 2014 to December 2016 according to the random number table. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of compound lysostaphin disinfectant to above-mentioned strains were detected. The experiment was repeated 3 times. Compared with the corresponding standard strain, the clinical strain with higher MIC and/or MBC was considered as having decreased sensitivity to the disinfectant. The percentage of strains of each of the three kinds of bacteria with decreased sensitivity was calculated. (2) Artificial dermis pieces were soaked in compound lysostaphin disinfectant for 5 min, 1 h, 2 h, and 4 h, respectively, with 21 pieces at each time point. After standing for 0 (immediately), 12, 24, 36, 48, 60, 72 h (with 3 pieces at each time point), respectively, the diameters of their inhibition zones to standard strains of Klebsiella pneumoniae, Acinetobacter baumannii, and Staphylococcus aureus were measured. The experiment was repeated 3 times. The shortest soaking time corresponding to the longest standing time, after which the disinfectant-soaked artificial dermis could form an effective inhibition zone (with diameter more than 7 mm), was the sufficient soaking time of the disinfectant to the artificial dermis. (3) Forty Sprague-Dawley rats were divided into post injury day (PID) 3, 7, 14, and 21 sampling groups according to the random number table, with 10 rats in each group. A full-thickness skin

  20. Wound healing efficacy of a 660-nm diode laser in a rat incisional wound model.

    Science.gov (United States)

    Suzuki, Ryoichi; Takakuda, Kazuo

    2016-11-01

    This study aimed to elucidate the optimum usage parameters of low reactive-level laser therapy (LLLT) in a rat incisional wound model. In Sprague-Dawley rats, surgical wounds of 15-mm length were made in the dorsal thoracic region. They were divided into groups to receive 660-nm diode laser irradiation 24 h after surgery at an energy density of 0 (control), 1, 5, or 10 J/cm 2 . Tissue sections collected on postoperative day 3 were stained with hematoxylin-eosin and an antibody for ED1 to determine the number of macrophages around the wound. Samples collected on day 7 were stained with hematoxylin-eosin and observed via polarized light microscopy to measure the area occupied by collagen fibers around the wound; day 7 skin specimens were also subjected to mechanical testing to evaluate tensile strength. On postoperative day 3, the numbers of macrophages around the wound were significantly lower in the groups receiving 1 and 5 J/cm 2 irradiation, compared to the control and 10 J/cm 2 irradiation groups (p diode laser with energy density of 1 and 5 J/cm 2 enhanced wound healing in a rat incisional wound model. However, a higher radiation energy density yielded no significant enhancement.